
HP 9000 Computer Systems

ALLBASE/SQL

Database Administration Guide

ABCDE

HP Part No. 36217-90005

Printed in U.S.A. May 1997

Eighth Edition

E0597

Copyright c 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1997 by Hewlett-Packard
Company.

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or �tness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Product Number Hardware
Series

HP-UX
Release

First Edition (800) March 1987 36217-02A.01.00 800 1.0

First Edition (300) March 1987 79725 1.0 300 1.0

Update 1 (800) June 1987 36217-02A.01.03 800 1.3

Update 1 (300) June 1987 79725 1.0 300 1.0

Update Incorporated (800) August 1987 36217-02A.01.03 800 1.3

Update Incorporated (300) August 1987 79725 1.0 300 1.0

Second Edition (800) February 1988 36217-02A.B2.00.03 800 2.0

Second Edition (300) February 1988 79725 2.0 300 6.5

Third Edition (800) November 1988 36217-02A.03.00 800 3.0

Third Edition (300) November 1988 HP79725 Rev. 6.5 300 6.5

Fourth Edition September 1989 36217-02A.07.00 800 7.0

HP79725 Rev. 7.0 300 7.0

Update 1 October 1989 36217-02A.07.00 800 7.0

HP79725 Rev. 7.0 300 7.0

Fifth Edition January 1991 36217-02A.E1.00 800 8.0

36217-02A.E1.00 700 8.0

HP79725A.E1.00 400 8.0

HP79725A.E1.00 300 8.0

Sixth Edition September 1992 36217-02A.F0.00 800 8.0 and 9.0

36217-02A.F0.00 700 8.0 and 9.0

HP79725A.F0.00 400 8.0 and 9.0

HP79725A.F0.00 300 8.0 and 9.0

HP79725A.G0.00

Seventh Edition April 1994 36217-02A.G0.00 700 9.0

800

Eighth Edition May 1997 36217-02A.G2.00 700 10.0

800

iii

ALLBASE/SQL Documents

Title Part Number

ALLBASE/ISQL Reference Manual 36217-90188

ALLBASE/NET User's Guide 36217-90093

ALLBASE/SQL Advanced Application Programming Guide 36217-90186

ALLBASE/SQL C Application Programming Guide 36217-90014

ALLBASE/SQL COBOL Application Programming Guide 36217-90058

ALLBASE/SQL Database Administration Guide 36217-90005

ALLBASE/SQL FORTRAN Application Programming Guide 36217-90013

ALLBASE/SQL Message Manual 36217-90009

ALLBASE/SQL Pascal Application Programming Guide 36217-90007

ALLBASE/SQL Performance and Monitoring Guidelines 36217-90185

ALLBASE/SQL Reference Manual 36217-90001

Up and Running with ALLBASE/SQL 36389-90011

ODBCLINK/SE Reference Manual 36217-90403

iv

Preface

This manual describes how to design, create, and maintain ALLBASE/SQL databases
on HP 9000 computers running under the HP-UX operating system. ALLBASE/SQL is
Hewlett-Packard's proprietary relational database management product.

This manual contains advanced information about ALLBASE/SQL database administration.
It is intended for experienced users of SQL and SQL application programmers. Topics are
discussed in separate chapters, as follows:

Chapter 1, \DBA Tasks and Tools," presents the basic concepts and terms relating to
ALLBASE/SQL database administration.
Chapter 2, \Logical Design," shows how to create a database schema prior to creating an
ALLBASE/SQL DBEnvironment.
Chapter 3, \Physical Design," describes the physical �les used in ALLBASE/SQL, and
shows how to calculate the amount of space required for various database objects.
Chapter 4, \DBEnvironment Con�guration and Security," details the steps in creating a
new DBEnvironment.
Chapter 5, \Database Creation and Security," shows how to create speci�c database objects.
Chapter 6, \Backup and Recovery," describes procedures for routine backup and for
recovery when needed.
Chapter 7, \Maintenance," presents the tasks required for modifying a DBEnvironment once
it has been in operation.
Chapter 8, \System Catalog," contains a complete description of all the system catalog
pseudotables and views.

The following appendixes contain additional reference material.

Appendix A describes system limits.
Appendix B presents a table of the authorities required to execute ALLBASE/SQL
commands.
Appendix C is a summary of SQL syntax.
Appendix D is a summary of ISQL syntax.
Appendix E is a list of locks obtained on the system catalog by various SQL commands.
Appendix F contains the syntax of SQLUtil commands.
Appendix G contains the syntax of SQLGEN commands.
Appendix H contains the syntax of SQLMigrate commands.
Appendix I contains the syntax of SQLAudit commands.
Appendix J explains how to use HP-UX raw �les with ALLBASE/SQL.

Most of the examples in this manual are based on the tables, views, and other objects in the
sample DBEnvironment PartsDBE. For complete information about PartsDBE, refer to the
ALLBASE/SQL Reference Manual , appendix C.

v

What's New in this Release

G.1 and G.2 New Features

The following table highlights the new or changed functionality added in G.1 and G.2 releases,
and shows you where each feature is documented.

New Features in ALLBASE/SQL Releases G.1 and G.2

Feature (Category) Description Documented in . . .

New operand to
concatenate strings
(Standards)

Adds an operand to concatenate
character or binary strings in an
expression. New operand: jj

ALLBASE/SQL Reference Manual ,
\Expressions."

RENAME Column
or Table
(Usability)

Adds capability of de�ning a new
name for an existing table or
column in a DBEnvironment. You
cannot rename a table or column
that has check constraints or an
IMAGE/SQL table. New
commands: RENAME COLUMN,
RENAME TABLE.

ALLBASE/SQL Reference Manual ,
RENAME COLUMN and RENAME
TABLE in \SQL Statements."

CAST function
added to
Expression syntax
(Usability)

Adds the CAST function to allow
explicitly converting from one data
type to another. It allows
conversion between compatible
data types and between normally
incompatible data types such as
CHAR and INTEGER. New
Expression function:
CastFunction.

ALLBASE/SQL Reference Manual , \Cast"
in \Expressions."

Syntax added to
VALIDATE
(Usability,
Performance)

Automates execution of COMMIT
WORK after each module or
procedure is validated when WITH
AUTOCOMMIT is used. All
sections are revalidated whether
valid or invalid when FORCE is
used. This can reduce log space
and shared memory requirements
for the VALIDATE statement.
New syntax for VALIDATE:
FORCE, WITH AUTOCOMMIT.

ALLBASE/SQL Reference Manual ,
VALIDATE in \SQL Statements."

vi

New Features in ALLBASE/SQL Releases G.1 and G.2 (continued)

Feature (Category) Description Documented in . . .

Syntax added to
DELETE
(Usability,
Performance)

Automates execution of COMMIT
WORK at the beginning of the
DELETE and after each batch of
rows is deleted when WITH
AUTOCOMMIT is used. Reduces
log-space and shared-memory
requirements. WITH
AUTOCOMMIT cannot be used
in some cases (see the DELETE
statement). New syntax for
DELETE: WITH
AUTOCOMMIT.

ALLBASE/SQL Reference Manual,
DELETE in \SQL Statements."

Decimal operations
(Usability)

Increases maximum precision from
18 to 27.

ALLBASE/SQL Reference Manual,
\Decimal Operations" in \Data Types."

Terminate a query
(Usability,
Performance)

Allows termination of a query for
a connection or transaction. New
statement: TERMINATE
QUERY. New syntax for SET
SESSION, SET TRANSACTION.

ALLBASE/SQL Reference Manual,
TERMINATE QUERY, SET SESSION, SET
TRANSACTION in \SQL Statements."

Terminate a
transaction
(Usability,
Performance)

Allows stopping of a given
transaction. New statement:
TERMINATE TRANSACTION.
New syntax for SET SESSION,
SET TRANSACTION.

ALLBASE/SQL Reference Manual,
TERMINATE TRANSACTION, SET
SESSION, SET TRANSACTION in \SQL
Statements."

Timeout enhanced
to allow specifying
what is rolled back
or terminated
(Usability,
Performance)

Allows specifying the action when
a timeout expires. New attributes
for SET SESSION and SET
TRANSACTION:
TERMINATION AT LEVEL,
USER TIMEOUT, ON
TIMEOUT ROLLBACK.

ALLBASE/SQL Reference Manual, SET
SESSION in \SQL Statements."

New SQLUtil
command
CHKPTHLP
reduces time for
ushing data
(Performance)

Flushes the data in parallel to the
CHECKPOINT command in
ISQL. New SQLUtil command:
CHKPTHLP.

ALLBASE/SQL Database Administration
Guide, CHKPTHLP in \SQLUtil"

Allow or disallow
SQLMON for
users.
(Usability)

Grants or revokes the ability to
run SQLMON for speci�c users.
New attribute for GRANT and
REVOKE: MONITOR.

ALLBASE/SQL Reference Manual,
GRANT, REVOKE in \SQL Statements."

vii

New Features in ALLBASE/SQL Releases G.1 and G.2 (continued)

Feature (Category) Description Documented in . . .

Allow or disallow
authority to create
modules.
(Usability)

Grants or revokes the ability to
create modules for speci�c users.
New attributes for GRANT and
REVOKE: INSTALL.

ALLBASE/SQL Reference Manual ,
GRANT, REVOKE in \SQL Statements."

Script for
migration to a new
release (Usability,
Tools)

Provides SQLINSTL script for
migration to a new release of
ALLBASE/SQL. Read the
SQLINSTL �le on your system for
more information.

SQLINSTL �le; Communicator 3000
MPE/iX Release 5.5 (Non-Platform Software
Release C.55.00), \ALLBASE/SQL
Enhancements"; ALLBASE/SQL Database
Administration Guide in \SQLINSTL"
section of the \DBA Tasks and Tools"
chapter.

GENPLAN on a
section (Usability)

Obtains an access plan of a stored
static query by specifying the
module and section number.
Changed syntax: GENPLAN.

ALLBASE/SQL Reference Manual ,
GENPLAN in \SQL Statements."

POSIX support
(Tools)

Starting with G.1, the
ALLBASE/SQL preprocessor
(PSQLCOB) supports
preprocessing and generation of
Microfocus COBOL source code
under POSIX (Portable Operating
System Interface).

Communicator 3000 MPE/iX Release 5.5
(Non-Platform Software Release C.55.00),
\ALLBASE/SQL Enhancements."

Terminate a user's
connections
(Connectivity)

Terminates one or more
connections for a user. New
syntax for TERMINATE USER:
CID ConnectionID .

ALLBASE/SQL Reference Manual ,
TERMINATE USER in \SQL Statements."

Run Queue
Control for
ALLBASE/NET
(Connectivity)

Allows running HPDADVR in D
queue for an MPE/iX session or
HP-UX connection or C queue for
an MPE/iX job connection. New
environment variable:
HPSQLJOBTYPE.

Communicator 3000 MPE/iX Release 5.5
(Non-Platform Software Release C.55.00),
\ALLBASE/SQL Enhancements."

PC ODBC 16-bit
and 32-bit support
(Connectivity,
Client/server)

ODBCLINK/SE allows
connectivity to ALLBASE and
IMAGE/SQL servers from a PC
running MS Windows using
ODBC.

ODBCLINK/SE Reference Manual

Year 2000 solution
(Standards)

Provides the JCW
HPSQLSPLITCENTURY to use
in setting a value between 0 and
99. This value is used to change
the century part of the DATE and
DATETIME functions to override
the default of 19.

\Date/Time Functions" in the \Expressions"
chapter of the ALLBASE/SQL Reference
Manual

viii

G.0 Features

The following table highlights the new or changed functionality in release G.0, and shows you
where each feature is documented.

New Features in ALLBASE/SQL Release G.0

Feature (Category) Description Documented in . . .

Stored procedures
(Usability)

Provides additional stored
procedure functionality for
application programs. Allows
declaration of a procedure cursor
and fetching of multiple rows
within a procedure to applications.
New statement: ADVANCE.
Changed syntax: CLOSE,
CREATE PROCEDURE,
DECLARE CURSOR,
DESCRIBE, EXECUTE,
EXECUTE PROCEDURE,
FETCH, OPEN.

ALLBASE/SQL Reference Manual, \SQL
Statements" and \Using Procedures" in
\Constraints, Procedures and Rules;"
ALLBASE/SQL Advanced Application
Programming Guide, \Using Procedures in
Application Programs."

Case insensitivity
(Usability)

Adds an optional attribute to the
character and varchar type column
attributes of tables. Allows search
and compare of these columns in a
case insensitive manner. Four new
SQLCore data types are added.
Changed syntax: ALTER TABLE,
CREATE TABLE.

ALLBASE/SQL Reference Manual,
\Comparison Predicate" in \Search
Conditions," CREATE TABLE in \SQL
Statements."

Support for 1023
columns
(Usability)

Increases the maximum number of
columns per table or view to 1023.
Increases maximum sort columns
and parameters in a procedure to
1023.

ALLBASE/SQL Reference Manual,
CREATE TABLE and CREATE VIEW in
\SQL Statements;" ALLBASE/SQL
Database Administration Guide,
\ALLBASE/SQL Limits" appendix.

ISQL HELP
improvements
(Usability)

Gives help for entire command
instead of only the verb.

ALLBASE/ISQL Reference Manual, HELP
in \ISQL Commands."

EXTRACT
command
(Usability)

Extracts modules from the
database and stores them in a
module �le. Allows for creation of
a module �le at any time based on
the current DBEnvironment
without preprocessing. New
command: EXTRACT. Changed
syntax: INSTALL.

ALLBASE/ISQL Reference Manual, \Using
Modules" in \Using ISQL for Database
Tasks," EXTRACT, INSTALL in \ISQL
Commands."

ix

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

New SQLGEN
GENERATE
parameters
(Usability)

Generates SQL statements
necessary to recreate modi�ed
access plans for module sections.
New syntax for GENERATE:
DEFAULTSPACE,
MODOPTINFO, PARTITION,
PROCOPTINFO, SPACEAUTH.

ALLBASE/SQL Database Administration
Guide, \SQLGEN Commands" appendix.

Row level locking
(Usability)

Permits multiple transactions to
read and update a table
concurrently because locking is
done at row level. Since the
transaction will obtain more locks,
the bene�ts must be weighed
against the costs. (Previously
documented in an addendum after
F.0 release.)

ALLBASE/SQL Reference Manual ,
\Concurrency Control through Locks and
Isolation Levels;" ALLBASE/SQL Database
Administration Guide, \E�ects of Page and
Row Level Locking" in \Physical Design."

Increased number
of users
(Usability)

Removes the limitation of 240
users supported by pseudotables.
(Maximum is system session
limits: 2000 on HP-UX; 1700 on
MPE/iX.)

ALLBASE/SQL Database Administration
Guide, \ALLBASE/SQL Limits" appendix.

POSIX support
(Usability)

Improves application portability
across MPE/iX and HP-UX.
Enhances the ALLBASE/SQL
preprocessors to run under POSIX
(Portable Operating System
Interface) on MPE/iX.

ALLBASE/SQL Advanced Application
Programming Guide, \POSIX Preprocessor
Invocation" in \Using the Preprocessor."

Application thread
support
(Performance,
Usability)

Provides the use of threads in an
application. Allows
ALLBASE/SQL to be used in an
application threaded environment
on MPE/iX. Application threads
are light weight processes that
share some resources and last for
the duration of a transaction.
Threaded applications reduce the
overhead of context switching and
improve the performance of
OpenTP applications.

ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor."

x

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

High Availability Provides a collection of features to
keep systems available nonstop
including: Partial STORE and
RESTORE, Partial rollforward
recovery, DBEFiles in di�erent
groups (MPE/iX), detaching and
attaching database objects,
CHECKPOINT host variable,
changing log �les, console
messages logged to a �le,
generating fewer log records by
using TRUNCATE TABLE to
delete rows, and new system
catalog information. See the
following features for new and
changed syntax.

ALLBASE/SQL Reference Manual, \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \Maintaining a
Nonstop Production System" in
\Maintenance" chapter and \SQLUtil"
appendix.

Partial rollforward
recovery
(High Availability)

Supports partial rollforward
recovery through PARTIAL option
on SETUPRECOVERY. Used to
recover speci�c DBEFiles while
allowing access to other DBEFiles.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
SETUPRECOVERY PARTIAL in
\SQLUtil" appendix.

Partial STORE
and RESTORE
(High Availability)

Gives more exibility in backup
and recovery strategies by allowing
partial store and restore of
DBEFiles, DBEFileSets or
combinations of both. See \New
and changed SQLUtil commands
for increased availability" later in
this table.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
\SQLUtil" appendix.

DBEFile group
change on MPE/iX
(High Availability)

Manages DBEFiles so they can be
placed in a particular group or on
a particular volume (MPE/iX).
Use either CREATE DBEFILE or
MOVEFILE.

ALLBASE/SQL Reference Manual,
CREATE DBEFile in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter and
MOVEFILE in \SQLUtil" appendix.

Detaching and
attaching database
objects
(High Availability)

Detaches or attaches a DBEFile or
DBEFileSet from the
DBEnvironment. This is useful for
data that is accessed infrequently
such as tables containing historical
data only. New SQLUtil
commands: DETACHFILE,
ATTACHFILE.

ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter and
DETACHFILE, ATTACHFILE in
\SQLUtil" appendix.

xi

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

New and changed
SQLUtil
commands for
increased
availability
(High Availability)

Adds support for high availability
and System Management
Intrinsics. Intended for non-stop,
continuously available operations.
New SQLUtil commands:
ATTACHFILE, CHANGELOG,
DETACHFILE, RESTORE
PARTIAL, STORE PARTIAL,
STOREINFO, STOREONLINE
PARTIAL, WRAPDBE.
Modi�ed SQLUtil commands:
MOVEFILE, RESTORE,
RESTORELOG, SHOWDBE,
SETUPRECOVERY, STORE,
STORELOG, STOREONLINE.

ALLBASE/SQL Database Administration
Guide, \SQLUtil" appendix.

List �les on backup
device
(High Availability)

Lists physical names of �les stored
on backup device with new
SQLUtil command: STOREINFO.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
STOREINFO in \SQLUtil" appendix.

Log �le
improvements
(High Availability)

Allows changing log �les,
switching of console messages to a
�le, and gives advance warning for
log full. Increased maximum size
of a single DBE log �le to 4
gigabytes. A DBEnvironment can
have up to 34 log �les con�gured.
Changed syntax: CHECKPOINT.
New SQLUtil command:
CHANGELOG.

ALLBASE/SQL Reference Manual ,
CHECKPOINT in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter,
CHANGELOG in \SQLUtil" appendix, and
\ALLBASE/SQL Limits" appendix.

New SET
SESSION and SET
TRANSACTION
statements
(Standards,
Performance)

Provides additional exibility and
improved performance. Allows
setting and changing transaction
and session attributes.

ALLBASE/SQL Reference Manual , SET
SESSION and SET TRANSACTION in
\SQL Statements."

FIPS agger
(Standards)

Meets Federal Information
Processing Standard (FIPS) 127.1
agger support. Flags
non-standard statement or
extension. Invoked with a agger
option in the preprocessor
command line or the SET
FLAGGER command in ISQL.
Updatability rules are di�erent
when agger is invoked. New
syntax: DECLARE CURSOR,
WHENEVER. Changes to C and
COBOL host variable declaration.

ALLBASE/SQL Reference Manual ,
DECLARE CURSOR in \SQL Commands"
and \Standards Flagging Support"
appendix; ALLBASE/SQL Advanced
Application Programming Guide, \Flagging
Non-Standard SQL with the FIPS Flagger;"
ALLBASE/ISQL Reference Manual , SET in
\ISQL Commands."

xii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Optimizer
enhancement
(Performance)

Uses a more e�cient algorithm
that signi�cantly reduces the time
to generate the access plan.

ALLBASE/SQL Performance and
Monitoring Guidelines, \Optimization" in
\Basic Concepts in ALLBASE/SQL
Performance."

Access plan
modi�cation
(Performance)

Allows modi�cation of access plans
for stored section to optimize
performance. View the plan with
SYSTEM.SETOPTINFO. New
statement: SETOPT.

ALLBASE/SQL Reference Manual,
SETOPT in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, SYSTEM.SETOPINFO in \System
Catalog."

Syntax added to
disable access plan
optimization
(Performance,
Usability)

Speci�es that the optimization
information in the module �le is
not to be used. Changed syntax:
EXTRACT, INSTALL,
VALIDATE.

ALLBASE/SQL Reference Manual,
VALIDATE in \SQL Statements;
ALLBASE/ISQL Reference Manual,"
EXTRACT, INSTALL in \ISQL
Commands."

Application
Development
Concurrency
(Performance,
Usability)

Provides enhancements to improve
preprocessing performance when
simultaneously accessed by
multiple users. Page or row level
locking on any system base table
and processing without storing
sections. See the related features
in this table.
New SQL parameter: SET
DEFAULT DBEFileSet. SQL
changed syntax: ALTER TABLE,
GRANT, REVOKE, UPDATE
STATISTICS. ISQL changed
syntax: INSTALL. Changed
SYSTEM and CATALOG view.
New STOREDSECT tables.
Special owners HPRDBSS and
STOREDSECT. Changed syntax
for Full Preprocessing Mode.

ALLBASE/SQL Reference Manual,
\Names" and \SQL Statements;"
ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor;" ALLBASE/ISQL Reference
Manual, \ISQL Commands;"
ALLBASE/SQL Database Administration
Guide, \Database Creation and Security"
and \System Catalog."

System Catalog
tables
(Performance)

Provides greater concurrency by
allowing users to specify table,
page, or row level locking of any
system table owned by
STOREDSECT through the
ALTER TABLE statement.

ALLBASE/SQL Reference Manual,
\Names;" ALLBASE/SQL Database
Administration Guide, \System Catalog."

Preprocessors
(Performance)

Allows optional speci�cation of a
DBEFileSet for storage of sections.
Allows preprocessing without
storing sections in
DBEnvironment.

ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor."

xiii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

I/O performance
improvement
(Performance)

Optimizes I/O for initial load,
index build, serial scans, internal
data restructuring, �le activity,
pseudo mapped �les and
temporary �les. See the following
features for new and changed
syntax.

ALLBASE/SQL Reference Manual , \SQL
Statements."

TRUNCATE
TABLE statement
(Performance)

Deletes all rows in a speci�ed table
leaving its structure intact.
Indexes, views, default values,
constraints, rules de�ned on the
table, and all authorizations are
retained. TRUNCATE TABLE is
faster than the DELETE
statement and generates fewer
logs. New statement:
TRUNCATE TABLE.

ALLBASE/SQL Reference Manual ,
TRUNCATE TABLE in \SQL Statements."

New scans
(Performance)

Reads tables with a new parallel
sequential scan. The tables are
partitioned and �les are read in a
round robin fashion to allow OS
prefetch to be more e�ective.
Allows the I/O for a serial scan to
spread across multiple disc drives.

ALLBASE/SQL Performance and
Monitoring Guidelines, \Using Parallel Serial
Scans" in \Guidelines on Query Design."

Load performance
improvement
(Performance)

Improves performance with new
SET and SET SESSION
attributes, a new binary search
algorithm, and deferred allocation
of HASH pages. New attributes
for SET SESSION statement:
FILL, PARALLEL FILL.

ALLBASE/SQL Reference Manual , SET
SESSION in \SQL Statements."

ISQL enhanced to
improve the
performance of
LOADs
(Performance)

Uses new parameters of the ISQL
SET command to set load bu�er
size and message reporting.
Improves load performance.
Choose a procedure, command �le,
or new ISQL command to set
constraints deferred, lock table
exclusively, and set row level DML
atomicity. Changed syntax: SET
(see the following feature).

ALLBASE/ISQL Reference Manual , SET in
\ISQL Commands."

xiv

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Modi�ed SET
options
(Performance)

Provides better performance for
LOADs and UNLOADs. Specify
bu�er size, status reporting for
LOAD/UNLOAD or exclusive lock
for data table. AUTOSAVE row
limit increased to 2147483647.
New and changed SET options:
LOAD BUFFER, LOAD ECHO,
AUTOLOCK, AUTOSAVE.

ALLBASE/ISQL Reference Manual, SET in
\ISQL Commands;" ALLBASE/SQL
Performance and Monitoring Guidelines,
\Initial Table Loads" in \Guidelines on
Logical and Physical Design."

SQLMON
(Tools)

Monitors the activity of
ALLBASE/SQL DBEnvironment.
Provides information on �le
capacity, locking, I/O, logging,
tables, and indexes. Summarizes
activity for entire DBEnvironment
or focuses on individual sessions,
programs, or database
components. Provides read-only
information.

ALLBASE/SQL Performance and
Monitoring Guidelines, chapters 6-9.

Audit
(Tools)

Provides a series of features to set
up an audit DBEnvironment
which generates audit log records
that you can analyze with the new
SQLAudit utility for security or
administration. Includes the
ability to set up partitions. See
ALLBASE/SQL Database
Administration Guide for
SQLAudit commands. Modi�ed
statements: ALTER TABLE,
CREATE TABLE, START DBE
NEW, START DBE NEWLOG.
New statements: CREATE
PARTITION, DROP
PARTITION, DISABLE AUDIT
LOGGING, ENABLE AUDIT
LOGGING, LOG COMMENT.

ALLBASE/SQL Reference Manual, \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \DBEnvironment
Con�guration and Security" chapter and
\SQLAudit" appendix.

Wrapper
DBEnvironments
(Tools)

Creates a DBEnvironment to wrap
around the log �les orphaned after
a hard crash of DBEnvironment.
New SQLUtil command:
WRAPDBE.

ALLBASE/SQL Reference Manual,
\Wrapper DBEnvironments" in \Using
ALLBASE/SQL;" ALLBASE/SQL Database
Administration Guide, WRAPDBE in
\SQLUtil."

HP PC API is now
bundled with
ALLBASE/SQL.

PC API is an application
programming interface that allows
tools written with either the
GUPTA or the ODBC interface to
access ALLBASE/SQL and
IMAGE/SQL from a PC.

HP PC API User's Guide for
ALLBASE/SQL.

xv

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Increased memory
for MPE/iX
(HP-UX shared
memory allocation
is unchanged)
(Performance)

Increases memory up to 50,000
data bu�er pages and 2,000 run
time control block pages. Increases
the limits signi�cantly allowing
allocation of enough data bu�er
pages to keep the entire
DBEnvironment in memory if
desired for performance.

ALLBASE/SQL Reference Manual ,
STARTDBE, STARTDBE NEW, and
START DBE NEWLOG in \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \ALLBASE/SQL
Limits" appendix.

ALLBASE/NET
enhancements
(Connectivity,
Performance)

Improves performance of
ALLBASE/NET, allows more
client connections on server
system, and reduces number of
programs on MPE/iX.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

ALLBASE/NET
commands and
options for
MPE/iX
(Connectivity,
Usability)

Adds option ARPA. Adds option
NUMSERVERS to check status of
listeners and number of network
connections. Changed syntax:
ANSTART, ANSTAT, ANSTOP.
Changed NETUtil commands:
ADD ALIAS, CHANGE ALIAS.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET" and \NETUtil Reference."

ALLBASE/NET
and NetWare
(Connectivity)

ALLBASE/NET listener for
NetWare now works with the 3.11
version of Novell's NetWare for
UNIX (HP NetWare/iX).

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

Changed
restrictions for
executing NETUtil
commands for
MPE/iX
(Connectivity,
Usability)

Adds SM or AM (in the speci�ed
account) to MANAGER.SYS for
adding, changing, or deleting users
for MPE/iX.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

ARPA is only
TCP/IP interface
for data
communication
through
ALLBASE/NET
beginning with
HP-UX 10.0
(Connectivity)

Remote database access
applications that specify NS will
not work if the client and/or
server machine is an HP 9000
Series 700/800 running HP-UX
10.0 or greater. Server Node Name
entry must be changed from NS
node name to ARPA host name.
For the NETUsers �le, the \Client
Node Name" must be changed
from the NS node name to the
ARPA host name. New NETUtil
commands: MIGRATE USER,
MIGRATE ALIAS.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET" and \NETUtil Reference."

xvi

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

xvii

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�C �CTRL� followed by an uppercase character indicates a control
character. For example, �CTRL�Y means that you press the control
key and the Y key simultaneously.

xviii

Contents

1. DBA Tasks and Tools
Tasks for the DBA . 1-2
Creating Logical and Physical Objects 1-2
Starting and Stopping DBE Sessions 1-6
Establishing Multiple DBEnvironment Connections 1-6
Managing ALLBASE/SQL Logs 1-7
De�ning Logs . 1-7
Logs and Recovery . 1-7
LOG FULL Condition . 1-8

Maintaining Bu�ers for Data and Log Pages 1-8
Managing Transactions and Locks 1-10
Setting Parameters in the DBECon File 1-10
Monitoring the System Catalog . 1-10
Managing Nonstop Production Systems 1-11
Backing Up and Restoring DBEnvironments 1-12
Migrating DBEnvironments Between Releases of ALLBASE/SQL 1-12

Tools for the DBA . 1-13
Using ISQL . 1-13
Using SQLUtil . 1-13
Starting SQLUtil . 1-14

Using SQLGEN . 1-14
Starting SQLGEN . 1-15
SQLGEN Commands . 1-15
SQLGEN Schema Files . 1-16
SQLGEN Conventions . 1-16
Entering Object Names . 1-17

Using SQLMigrate . 1-18
Running SQLMigrate . 1-18
Types of Forward Migration . 1-18
Steps for Forward Migration . 1-19
Steps for Backward Migration 1-21

Using SQLINSTL . 1-22
Using SQLMON . 1-23
Using SQLVer . 1-23
Using SQLAudit . 1-24
SQLAudit Conventions . 1-25
Understanding Audit Points . 1-26
Example of Getting Audit Points 1-27
Establishing SQLAudit Log Locks 1-28
Performing an Audit . 1-28
SQLAudit Result Files . 1-29

Checking the Exit Status . 1-30

Contents-1

System Administration for ALLBASE/SQL 1-30
Special User Names . 1-30
HP-UX System Resources . 1-31
Shared Memory Usage . 1-32
Native Language Support . 1-32
Network Administration . 1-33
Using NETUtil . 1-33
Using ALLBASE/SQL in a Diskless Cluster 1-33

Setting Up Raw Files . 1-34

2. Logical Design
Identifying the Data for Tables . 2-1
Normalizing the Data . 2-4
First Normal Form . 2-4
Second Normal Form . 2-5
Third Normal Form . 2-6

Arranging Data in Tables . 2-7
De�ning Tables . 2-8
Planning Joins . 2-8
Final Form of Sample Database Tables 2-9

De�ning Columns . 2-10
De�ning Column Names . 2-10
De�ning Column Data Type . 2-10
De�ning Column Size . 2-12
De�ning Null Values For Columns 2-12

Designing Views . 2-13
Designing Indexes . 2-15
Determining Index Keys . 2-16
How Index Keys are Used . 2-17

Determining Index Type . 2-17
De�ning Unique Indexes . 2-18
De�ning Clustering Indexes . 2-18

Designing Hash Structures . 2-19
Understanding the Hash Function 2-19
Choosing Hash Keys . 2-20
Choosing the Number of Primary Pages 2-20

Designing Integrity Constraints . 2-21
De�ning Security Levels . 2-22
Authority Types . 2-22
Special Authorities . 2-23
Owner Authority . 2-24
Table and View Authorities . 2-24
RUN Authority . 2-25
EXECUTE Authority . 2-25
Space Authorities . 2-25
De�ning Authorization Groups . 2-25
Determining Group Membership 2-26

De�ning Classes . 2-27
Di�erences Between Groups and Classes 2-27
Guidelines for Creating Classes 2-28

De�ning the DBEnvironment Scope 2-28

Contents-2

3. Physical Design
Calculating Storage for Database Objects 3-1
Understanding DBEFile Characteristics 3-2
Calculating Storage for Tables . 3-3
Calculating Row Length . 3-4
Calculating Rows per Page . 3-5
Calculating Number of Pages . 3-5
Calculating Directory Overhead 3-6

Calculating Storage for Indexes . 3-6
Calculating the Index Key Length 3-6
Calculating the Size of the Index Header 3-7
Calculating the Number of Rows per Leaf Page 3-7
Calculating the Number of Rows per Non-Leaf Page 3-7
Calculating the Number of Leaf Pages 3-8
Calculating the Number of Non-Leaf Pages 3-8
Calculating the Number of Directory Overhead Pages 3-9
Calculating Total Number of Index Pages 3-9

Arranging Tables and Indexes in DBEFileSets 3-9
Grouping Tables in DBEFileSets 3-9
Choosing DBEFile Types and Devices 3-11
Using a Single MIXED DBEFile 3-11
Using Separate DBEFiles for Tables and Indexes 3-11
Using Di�erent Storage Devices 3-12
Estimating DBEFile Size . 3-13

Calculating Storage for Hash Structures 3-14
Calculating Primary Pages . 3-14
Allowing for Overow . 3-15
Calculating the Size of DBEFiles for Hash Structures 3-15
Allocating DBEFiles for Hash Structures 3-15

Mapping Logical Page Number to Physical File Location in Hash Structures 3-16
Calculating Storage for Integrity Constraints 3-16
Unique Constraints . 3-16
Referential Constraints . 3-17
Hashing on Constraints . 3-17
Check Constraints . 3-17

Calculating Storage for the System Catalog 3-17
Storage of De�nitions for Newly Created Objects 3-18
Number of Columns in Tables . 3-18
De�nitions of Rules, Procedures, Constraints, and Views 3-18
Storage of Sections . 3-19
Calculating Space Needed for Sections 3-19
Monitoring System Catalog Size 3-20

Calculating Storage for Logging . 3-20
Understanding Log File Characteristics 3-20
Log Records and Transactions . 3-21
Using Archive or Nonarchive Logs 3-21
Using Single or Dual Logging . 3-22
Using Multiple Log Files . 3-22
Sample Log Con�guration . 3-23
Disk Space for the Log . 3-23
Determining the Number of Log Files 3-23

Contents-3

Estimating Log File Size . 3-24
Example . 3-24

Calculating Temporary Disk Space 3-26
Controlling the Use of Temporary Space 3-27

Estimating Shared Memory Requirements 3-27
Estimating Runtime Control Block Bu�er Pages 3-28
E�ects of Page and Row Level Locking 3-28
Running out of Shared Memory 3-29

Estimating Data Bu�er Pages . 3-30
Estimating Log Bu�er Pages . 3-30
System Parameter . 3-31
Allocating Semaphores and Shared Memory Segments 3-33

Estimating the Number of Transactions 3-35
Implementing the Design . 3-35

4. DBEnvironment Con�guration and Security
Setting Up the DBEnvironment Directory 4-1
Using START DBE NEW . 4-2
Supplying Startup Parameters with START DBE NEW 4-3
Log Files . 4-5
Dual Logging . 4-5
Archive Logging . 4-5
Multiple Log Files . 4-6

Specifying a Native Language Parameter 4-6
Looking at the DBEnvironment Elements 4-7
Examining HP-UX Files . 4-7
Examining DBECon Parameters 4-7
Examining the System Catalog 4-8
Examining Log File Characteristics 4-9

Creating Audit DBEnvironments . 4-10
Example of Setting Up an Audit DBEnvironment 4-11
De�ning Additional Audit DBEnvironment Log Files 4-12
Disabling Audit Logging . 4-12

Creating DBEFileSets and DBEFiles 4-13
Creating DBEFileSets . 4-13
Assigning Default DBEFileSets . 4-14
Creating DBEFiles . 4-14
Adding DBEFiles to DBEFileSets 4-15
Allocating Expandable DBEFile Space 4-16
Allocating Expandable DBEFile Space in the SYSTEM DBEFileSet 4-17
Partial DBEFile Expansion . 4-17
Obtaining Information about Expandable DBEFiles 4-18

Creating the DBEnvironment Security Scheme 4-18
Creating Authorization Groups . 4-18
Managing Authorization Groups 4-18
Using DBA Authority . 4-19
The DBECreator . 4-19
DBA Functions . 4-20

Granting Authorities to PUBLIC 4-20
Granting/Revoking CONNECT Authority 4-20
Granting/Revoking RESOURCE Authority 4-22

Contents-4

Granting/Revoking RUN Authority 4-23
Granting/Revoking EXECUTE Authority 4-23
Granting/Revoking SECTIONSPACE or TABLESPACE Authority 4-23
Veri�cation of Authority . 4-23

Managing DBEnvironment Sessions 4-24
Using Autostart . 4-24
Using START DBE . 4-25
Starting a DBE Session in Single-User Mode 4-26
Overriding DBECon Parameters 4-26
Starting DBE Sessions without Autostart 4-26
Rollback Recovery with START DBE 4-26

Connecting to a DBE . 4-27
Terminating a DBE Session . 4-27
Using RELEASE . 4-27
Using STOP DBE . 4-27
Using TERMINATE USER . 4-28
Terminating Transactions and Queries 4-28

Setting Timeout Values . 4-29
Remote Database Access . 4-29

5. Database Creation and Security
Creating Tables . 5-1
Table Type . 5-2
Revoking and Granting Authorities on PUBLICROW and PUBLIC Tables 5-3
Altering Table Type . 5-3

Owner and Table Name . 5-3
Column De�nition . 5-4
Column Name and Data Type 5-4
Language Clause . 5-5
DEFAULT Clause . 5-5

Constraint De�nitions . 5-5
Unique Constraints . 5-5
Referential Constraints . 5-5
Check Constraints . 5-6

DBEFileSet Name . 5-6
Examining Table Attributes . 5-7
De�ning Partitions and Tables . 5-8

Creating Views . 5-9
Creating Hash Structures . 5-10
Creating Indexes . 5-11
Creating Procedures and Rules . 5-12
Creating a Procedure . 5-12
Creating a Rule . 5-12

Creating the Database Security Scheme 5-13
Controlling Table Access with Authorities 5-13
Authorities for Single Users . 5-14
Authorities for Groups . 5-14
Creating Classes . 5-14
Revoking Table and View Authorities 5-15

Controlling Table Access with Views 5-15
Using the GRANT OPTION Clause 5-17

Contents-5

Orphaned Privileges . 5-18
Using the WITH GRANT OPTION Clause and Authorization Groups . . 5-19

Creating a Database Schema . 5-20
Loading Tables . 5-20
Loading from an External File . 5-21
Loading from an Internal File . 5-21
Loading Tables with Constraints on Them 5-22
Loading Tables with Rules Built on Them 5-22
Using Command Files for Loading 5-22

6. Backup and Recovery
Choosing an Approach to Backup and Recovery 6-1
Choosing Nonarchive Logging . 6-1
Choosing Archive Logging . 6-2

Understanding Log File Types . 6-2
Understanding the LOG FULL Condition 6-3
Using Single or Dual Logs . 6-3
Using Multiple Log Files . 6-3
Log Names and Numbers . 6-3
Log File Names . 6-3
Identi�er Numbers . 6-3
Sequence Numbers . 6-4

Using Nonarchive Logs . 6-4
Multiple Files in Nonarchive Mode 6-4

Using Archive Logs . 6-5
Multiple Files in Archive Mode 6-6

Choosing Full or Partial Backup Procedures 6-8
Choosing Full or Partial Recovery Procedures 6-9
Backup and Recovery Procedures for Nonarchive Logging 6-10
Nonarchive Backup Procedures . 6-10
Adding Files to the Nonarchive Log 6-10
Nonarchive Full Recovery Procedures 6-11
Nonarchive Partial Recovery Procedures 6-11

Backup and Recovery Procedures for Archive Logging 6-12
Online Backup Procedures in Archive Mode 6-12
Static Full or Partial Backup Procedures in Archive Mode 6-13
Adding Files to the Archive Log 6-14
Archive Recovery Procedures . 6-14
Rollback Recovery . 6-14
Full Rollforward Recovery . 6-14
Partial Rollforward Recovery . 6-16

Managing Log Files . 6-18
Monitoring the Log with SHOWLOG 6-18
Displaying Files in the Log . 6-18
Log File Status Types . 6-20
Displaying Available File Space 6-20
Using the CHECKPOINT command 6-21

Adding Log Files with ADDLOG 6-21
Storing Log Files with STORELOG 6-21
Rescuing Log Files with RESCUELOG 6-22
Restoring Log Files with RESTORELOG 6-22

Contents-6

Purging Log Files with PURGELOG 6-23
Moving Log Files with MOVELOG 6-24

Starting a New Log . 6-24
Monitoring the Log with SQLMON 6-25
Setting up a Wrapper DBEnvironment 6-25
Selecting Valid Log Files with SHOWLOG 6-26
Single Logs . 6-26
Dual Logs . 6-27
Selecting Log Files when the DBECon File is Inaccessible 6-28

Creating a DBEnvironment . 6-28
Wrapping the DBEnvironment Around the Log Files 6-29
Example of Setting Up a Wrapper DBE 6-30

7. Maintenance
Using Simple and Complex Maintenance Operations 7-1
Maintaining the DBEnvironment . 7-2
Adjusting Startup Values . 7-2
Determining Behavior of Rules in a DBEnvironment Session 7-5
Updating System Catalog Statistics 7-5
Changing System Table Lock Types 7-7
Managing DBEFiles and DBEFileSets 7-7
Adding a New DBEFile . 7-8
Changing DBEFile Type . 7-8
From TABLE or INDEX to MIXED 7-8
From MIXED to TABLE or INDEX 7-9

Dropping a DBEFile . 7-9
Maintaining Tables . 7-10
Changing a Table's Locking Behavior 7-10
Dropping Tables . 7-10
Adding Columns . 7-11
Deleting Columns . 7-11
Removing Rows from a Table . 7-12
Merging Tables . 7-13
Dividing Tables . 7-14
Renaming Tables or Columns . 7-14

Dropping and Recreating Hash Structures 7-15
Maintaining Indexes . 7-15
Monitoring Index Space . 7-15
Monitoring the Cluster Count . 7-16
Dropping and Recreating an Index 7-16
Reloading a Table to Improve Index Performance 7-17
Altering the Index Key . 7-17

Maintaining Constraints . 7-17
Adding Constraints . 7-17
Dropping Constraints . 7-18

Maintaining Rules and Procedures 7-18
Granting and Revoking Procedure Authorities 7-18
Examining the Inventory of Rules and Procedures 7-19
Dropping and Recreating Rules and Procedures 7-19
Validating Procedure Sections . 7-20

Maintaining Sets of Interrelated Objects 7-20

Contents-7

Maintaining Applications . 7-21
Invalidation and Revalidation of Sections 7-21
Information in the System Catalog on Validity of Sections 7-21

Monitoring File Space for Modules and Sections 7-23
Causes for Invalidation of Sections 7-23
Avoiding the Need for Re-Preprocessing 7-23
Determining Available Space for Sections 7-24
Determining Number of Sections in the DBEnvironment 7-24

Module Related Authorities . 7-24
Sharing Modules Between DBEnvironments 7-25
Dropping Modules . 7-26

Maintaining a Nonstop Production System 7-26
Storing DBEFiles on Di�erent Devices 7-26
Detaching and Attaching Database Files 7-27
Using a Host Variable with the CHECKPOINT Statement 7-28
Using Console Message Files . 7-28
Making Changes to a New Log File 7-29
Checking the System Catalog . 7-29

Maintaining Security . 7-29
Disabling Data De�nition . 7-30
Judging Maintenance Expenses . 7-30
Cleaning Up After Abnormal Termination 7-31

8. System Catalog
Views owned by SYSTEM and CATALOG 8-1
Summary of System Catalog Views by Function 8-2
Using the System Catalog . 8-4
System Catalog Views . 8-5
Using UPDATE STATISTICS on System Views 8-5
Locking of the System Catalog . 8-6
Storedsect.System . 8-7
Storedsect.DBEFileSetName . 8-8
System.Account . 8-9
System.Call . 8-10
System.CheckDef . 8-14
System.Colauth . 8-15
System.Coldefault . 8-18
System.Column . 8-19
System.Constraint . 8-23
System.Constraintcol . 8-25
System.ConstraintIndex . 8-26
System.Counter . 8-29
System.DBEFile . 8-31
System.DBEFileSet . 8-34
System.Group . 8-35
System.Hash . 8-36
System.Index . 8-38
System.Installauth . 8-42
System.Modauth . 8-43
System.Paramdefault . 8-44
System.Parameter . 8-45

Contents-8

System.Partition . 8-48
System.Plan . 8-49
System.Procauth . 8-51
System.Procedure . 8-52
System.ProcedureDef . 8-54
System.ProcResult . 8-55
System.Rule . 8-57
System.RuleColumn . 8-59
System.RuleDef . 8-60
System.Section . 8-62
System.Setoptinfo . 8-64
System.Spaceauth . 8-65
System.Spacedefault . 8-66
System.Specauth . 8-67
System.Tabauth . 8-69
System.Table . 8-72
System.TempSpace . 8-75
System.Transaction . 8-76
System.User . 8-77
System.ViewDef . 8-78

A. ALLBASE/SQL Limits

B. Authorities Required by ALLBASE/SQL Statements

C. SQL Syntax Summary

D. ISQL Syntax Summary

E. Locks Held on the System Catalog by SQL Statements

F. SQLUtil
ADDLOG . F-2
ALTDBE . F-4
ATTACHFILE . F-7
CHANGELOG . F-9
CHKPTHLP . F-10
DETACHFILE . F-11
ENDRECOVERY . F-13
EXIT . F-15
HELP . F-16
MOVEFILE . F-18
MOVELOG . F-20
PURGEALL . F-22
PURGEDBE . F-23
PURGEFILE . F-24
PURGELOG . F-26
QUIT . F-27
RECOVERLOG . F-28
RESCUELOG . F-31
RESTORE . F-33

Contents-9

RESTORELOG . F-35
RESTORE PARTIAL . F-39
SET . F-41
SETDBEMAINT . F-43
SETUPRECOVERY . F-44
SETUPRECOVERY PARTIAL . F-47
SHOWDBE . F-50
SHOWDBE-ALL . F-52
SHOWDBE-EXIT . F-53
SHOWDBE-HELP . F-54
SHOWDBE-LANG . F-56
SHOWDBE-MAINT . F-57
SHOWDBE-QUIT . F-58
SHOWDBE-STARTPARMS . F-59
SHOWLOG . F-60
SHOWSET . F-63
STORE . F-64
STOREINFO . F-66
STORELOG . F-68
STOREONLINE . F-70
STOREONLINE PARTIAL . F-72
STORE PARTIAL . F-75
SYSTEM . F-77
WRAPDBE . F-78

G. SQLGEN
EDITOR . G-2
EXIT . G-3
GENERATE ALL . G-4
GENERATE DBE . G-9
GENERATE DBEFILES . G-10
GENERATE DEFAULTSPACE . G-12
GENERATE GROUPS . G-13
GENERATE INDEXES . G-15
GENERATE INSTALLAUTH . G-17
GENERATE LOAD . G-18
GENERATE MODAUTH . G-20
GENERATE MODOPTINFO . G-22
GENERATE PARTITION . G-24
GENERATE PROCAUTH . G-25
GENERATE PROCEDURES . G-27
GENERATE PROCOPTINFO . G-29
GENERATE RULES . G-31
GENERATE SPACEAUTH . G-33
GENERATE SPECAUTH . G-34
GENERATE STATISTICS . G-35
GENERATE TABAUTH . G-37
GENERATE TABLES . G-39
GENERATE TEMPSPACES . G-42
GENERATE VIEWAUTH . G-43
GENERATE VIEWS . G-45

Contents-10

HELP . G-47
RELEASE . G-48
SET ECHO ALL OFF . G-49
SET ECHO ALL ON . G-50
SET EDITOR . G-51
SET EXIT ON DBERR OFF . G-52
SET EXIT ON DBERR ON . G-53
SET SCHEMA . G-54
STARTDBE . G-55
! . G-56

H. SQLMigrate
ADD DBEFILE . H-2
CREATE DBEFILE . H-3
EXIT . H-4
HELP . H-5
MIGRATE . H-6
PREVIEW . H-9
QUIT . H-12
REPAIR . H-13
SET . H-14
SHOW 'DBEnvironmentName' VERSION H-16
SHOW VERSIONS . H-17
! . H-18

I. SQLAudit
AUDIT . I-2
EDITOR . I-5
EXIT . I-6
GET AUDITPOINT . I-7
HELP . I-9
LOCK AUDITPOINT . I-10
MODIFY AUDITPOINT . I-12
QUIT . I-14
SET . I-15
SET DBENVIRONMENT . I-16
SET ECHO ALL . I-17
SET EDITOR . I-18
SET EXIT ON DBERR . I-19
SET RECOVERFILE . I-20
SHOW AUDITPOINT . I-21
UNLOCK AUDITPOINT . I-22

Contents-11

J. Using HP-UX Raw Files for DBEFiles and Logs
Comparing Raw Files with HP-UX Bu�ered Files J-1
Reading from and Writing to Disk in Block and Character Mode J-2
Setting up Raw Files . J-2
Calculating Disk Space Needed for the File J-3
Identifying the Drive Model . J-3
Identifying Available Disk Sections J-3
Disk Section Diagrams . J-4

Section Sizes for Speci�c Disk Models J-5
Identifying Disk Sections in Use J-7

Preparing Raw Devices for Exclusive Use by ALLBASE/SQL J-7
Determining the Required Size of the File J-8
Choosing a Raw Section . J-8
Changing the Ownership and Access Mode of Raw Sections J-8

Cleaning up Raw Files . J-8
Restoring Data or Moving Data to Raw Files J-9
Tuning the ALLBASE/SQL Bu�er Cache J-9

Examples of Using Raw Files . J-9
Creating a Log with Raw Files . J-9
Choosing the Raw Section . J-9
Creating a Log . J-10
Creating a Database Object . J-10

Expandable Raw Files . J-10
For More Information . J-11

Index

Contents-12

Figures

1-1. Tables, DBEFiles, and DBEFileSets 1-3
1-2. Databases and DBEFileSets . 1-4
1-3. Elements of an ALLBASE/SQL DBEnvironment 1-5
1-4. The Relationship between Files and Bu�ers 1-9
2-1. Identifying Data Categories . 2-2
2-2. Entities, Attributes, and Keys . 2-3
2-3. First Normal Form: Removing Repeating Groups 2-5
2-4. Second Normal Form: Establishing Dependency 2-6
2-5. Third Normal Form: Removing Transitive Dependencies 2-7
2-6. Common Columns for Joins . 2-9
2-7. B-Tree Index Design . 2-15
2-8. Relationship among Authorities . 2-23
2-9. Authorization Group Chain . 2-27
2-10. DBEnvironment used by Integrated Peripherals, Inc. 2-29
3-1. DBEFiles in DBEFileSets . 3-2
3-2. Data Stored in DBEFiles within a DBEFileSet 3-3
3-3. DBEFileSets in the Sample DBEnvironment 3-10
3-4. Table and Index DBEFiles in the OrdersFS DBEFileSet 3-12
3-5. DBEFiles, DBEFileSets, and Direct-Access Storage 3-13
4-1. The Sample DBEnvironment Immediately After Con�guration 4-4
4-2. SQL Commands for Authorization Group Management 4-19
4-3. Autostart and User Mode Dependencies 4-25
5-1. Views Restricting Access . 5-16
5-2. Example Database Security Scheme 5-18
6-1. Nonarchive Log . 6-5
6-2. Archive Log . 6-6
6-3. Log Switching in Archive Mode . 6-7
J-1. Section Breakdown for HP 7397 Drive J-6

Contents-13

Tables

1-1. SQLGEN General Conventions . 1-17
1-2. SQLGEN Name Entry Conventions 1-17
1-3. SQLAudit General Conventions . 1-26
2-1. Sample Database Tables . 2-10
2-2. Column Attributes for Two Tables 2-13
3-1. Data Type Storage Requirements 3-4
3-2. Page Requirements for Table Data 3-14
3-3. Page Requirements for Index Data 3-14
3-4. Logical Page Number and DBEFile Location in Hash Structure 3-16
3-5. Maximum Numbers of Locks Obtained at Di�erent Granularities 3-28
3-6. System Parameters Used by ALLBASE/SQL 3-31
3-7. Additional System Parameters . 3-33
4-1. DBECon Default Startup Parameters 4-3
5-1. Table and View Authorities . 5-13
6-1. SQLMON Log Monitoring Tasks 6-25
6-2. Example Log File Names and Sequence Numbers 6-27
7-1. DBECon Parameters . 7-3
8-1. System Catalog Views by Function 8-2
8-2. System.Account . 8-9
8-3. System.Call . 8-10
8-4. System.CheckDef . 8-14
8-5. System.Colauth . 8-16
8-6. System.Coldefault . 8-18
8-7. System.Column . 8-19
8-8. System.Constraint . 8-23
8-9. System.ConstraintCol . 8-25
8-10. System.ConstraintIndex . 8-27
8-11. System.Counter . 8-29
8-12. System.DBEFile . 8-31
8-13. System.DBEFileSet . 8-34
8-14. System.Group . 8-35
8-15. System.Hash . 8-36
8-16. System.Index . 8-38
8-17. System.Installauth . 8-42
8-18. System.Modauth . 8-43
8-19. System.Paramdefault . 8-44
8-20. System.Parameter . 8-45
8-21. SYSTEM.PARTITION . 8-48
8-22. System.Plan . 8-49
8-23. System.Procauth . 8-51
8-24. System.Procedure . 8-52
8-25. System.ProcedureDef . 8-54
8-26. System.ProcResult . 8-55

Contents-14

8-27. System.Rule . 8-57
8-28. System.RuleColumn . 8-59
8-29. System.RuleDef . 8-60
8-30. System.Section . 8-62
8-31. System.Setoptinfo . 8-64
8-32. System.Spaceauth . 8-65
8-33. System.Spacedefault . 8-66
8-34. System.Specauth . 8-67
8-35. System.Tabauth . 8-69
8-36. System.Table . 8-72
8-37. System.TempSpace . 8-75
8-38. System.Transaction . 8-76
8-39. System.User . 8-77
8-40. System.ViewDef . 8-78
A-1. System Control Limits . A-1
A-2. Logical Data Limits . A-1
A-3. Space Management Limits . A-2
B-1. Authorities Required By ALLBASE/SQL Statements B-1
E-1. Mapping the System Views to the Base System Tables E-2
E-2. Locks Held on the System Catalog by SQL Statements E-4

Contents-15

1

DBA Tasks and Tools

This guide shows how to perform database administration tasks for your ALLBASE/SQL
relational database management system. The present chapter introduces the following topics:

Tasks for the DBA
Tools for the DBA
System administration for ALLBASE/SQL

Chapters 1 through 3 describe the concepts behind ALLBASE/SQL database administration
tasks. Subsequent chapters describe DBA concepts and tasks in detail. Experienced database
administrators may wish to turn directly to Chapter 4, \DBEnvironment Con�guration
and Security." Before you read this manual, you should be familiar with the material in the
ALLBASE/SQL Reference Manual and the ALLBASE/ISQL Reference Manual .

Most of the examples presented in this guide are based on a DBEnvironment named
PartsDBE, which is provided with the ALLBASE/SQL product. This DBEnvironment
contains the sample database PurchDB, which includes several tables: Parts, SupplyPrice,
Vendors, Orders, OrderItems, and Inventory. Refer to the \Sample DBEnvironment"
appendix in the ALLBASE/SQL Reference Manual for complete details.

This guide assumes that a single individual is carrying out the tasks of database
administrator, also known as the DBA. The DBA uses SQL statements, usually through
ISQL, to create and maintain ALLBASE/SQL DBEnvironments. The DBA also uses a variety
of utility programs, explained later in this chapter, to perform speci�c kinds of maintenance.
If you create and maintain your own DBEnvironment, then you are its DBECreator as well as
its DBA.

The individual who serves as database administrator normally needs DBA authority
for the DBEnvironments that are to be administered. If you are the DBECreator of a
DBEnvironment, you automatically receive DBA authority in that DBEnvironment, and you
can therefore use almost all the commands described in this manual. A few commands require
HP-UX superuser capability; these are clearly indicated.

DBA Tasks and Tools 1-1

Tasks for the DBA

The database administrator is responsible for the overall operation of DBEnvironments. This
includes:

Creating logical and physical objects.
Starting and stopping DBE sessions.
Establishing multiple DBEnvironment connections.
Managing ALLBASE/SQL logs.
Maintaining bu�ers for data and log pages.
Managing transactions and locks.
Setting parameters in the DBECon �le.
Monitoring the system catalog.
Managing nonstop production systems.
Backing up and restoring DBEnvironments.
Migrating DBEnvironments between releases of ALLBASE/SQL.

Creating Logical and Physical Objects

The largest physical unit in ALLBASE/SQL is the DBEnvironment, which is a collection of
�les for one or more logical databases. A DBEnvironment is the maximum unit of transaction
scope and recovery. The DBEnvironment contains:

DBEFiles for storage of data and index pages
a DBEFile for system information
a DBECon �le containing startup parameters for the DBE
log �les.

A DBEFile is an HP-UX �le that can be associated with a DBEFileSet. ALLBASE/SQL
database tables are stored in one or more DBEFiles. Indexes for a table are also stored in
DBEFiles. Figure 1-1 illustrates the relationship among tables, indexes, DBEFileSets, and
DBEFiles.

1-2 DBA Tasks and Tools

Figure 1-1. Tables, DBEFiles, and DBEFileSets

A DBEFileSet is a collection of DBEFiles containing data for one or more tables. The tables
and indexes associated with a DBEFileSet do not have to be for the same database.

Figure 1-2 illustrates that while a DBEFileSet can contain data for all the tables in a
database, a DBEFileSet can also contain data for some of the tables in a database, or for
tables in more than one database.

DBA Tasks and Tools 1-3

Figure 1-2. Databases and DBEFileSets

Thus, DBEFileSets o�er a way to allocate data storage independently of how users think
about the data. During physical design and database creation, the DBA determines
space requirements for the tables and indexes and creates DBEFiles and DBEFileSets to
accommodate them.

A DBEnvironment, illustrated in Figure 1-3, houses the DBEFiles for one or more
ALLBASE/SQL databases.

1-4 DBA Tasks and Tools

Figure 1-3. Elements of an ALLBASE/SQL DBEnvironment

The DBEnvironment also contains the following entities, which contain information for all
databases in the DBEnvironment:

A DBECon �le. This �le contains information about the DBEnvironment's con�guration,
such as the size of various bu�ers and other startup parameters. The name of the DBECon
�le is the same as the name of the DBEnvironment.

Log �les. A log �le contains a record of DBEnvironment changes. ALLBASE/SQL uses log
�les to undo (roll back) or redo (roll forward) changes made in the DBEnvironment. You
can add additional log �les as needed. In the case of dual logging, two sets of log �les are
maintained.

A system catalog. The system catalog is a collection of tables and views that contain
data describing DBEnvironment structure and activity. The parts of the system catalog
necessary for DBEnvironment startup reside in a DBEFile known as DBEFile0. All system
catalog DBEFiles are associated with a DBEFileSet called SYSTEM.

The DBA determines the con�guration, the startup parameters, the name and size of
DBEFile0, the name and size of data and index DBEFiles, and the name and size of initial log
�les before con�guring the DBEnvironment. ALLBASE/SQL uses defaults for any of these
values if a choice is not made.

DBA Tasks and Tools 1-5

Starting and Stopping DBE Sessions

The DBA controls access to each DBEnvironment by turning the AUTOSTART ag ON or
OFF and by issuing START DBE and STOP DBE commands. Use the SQLUtil ALTDBE
command (described later in this chapter) to turn AUTOSTART mode ON or OFF.

When users have the proper authorization, they access a database by �rst connecting to the
DBEnvironment in which the database resides. To connect, you use a CONNECT statement,
as in the following example:

isql=> CONNECT TO 'PartsDBE';

Following a successful CONNECT, ALLBASE/SQL establishes a DBE session for the user,
which allows SQLCore to process commands.

If AUTOSTART is OFF, the DBA must start the DBEnvironment using the START DBE
statement:

isql=> START DBE 'PartsDBE';

Following this statement, the DBEnvironment remains available to users until the DBA issues
the STOP DBE statement.

A DBEnvironment can be started in one of two user modes:

In single-user mode, only one user or program can access a DBEnvironment at a time.
Single-user mode is employed by the DBA to perform maintenance and restructuring tasks.

In multiuser mode, more than one user and/or program can access a DBEnvironment at a
time. Multiuser mode is for production, in which the DBA's responsibility is to maintain
the DBEnvironment for the multiple users that access it.

You can access a DBEnvironment interactively or through an application program.

Establishing Multiple DBEnvironment Connections

Users can access multiple DBEnvironments at the same time. Each connection is assigned a
di�erent connection name, as in the following:

CONNECT TO 'PartsDBE' AS 'DBE1'

CONNECT TO 'MusicDBE' AS 'DBE2'

The SET CONNECTION statement establishes the current DBEnvironment connection:

SET CONNECTION 'DBE1'

To support the use of multiple connections, the DBA should set default and maximum user
timeout values in each DBEnvironment. For additional information, see the section \Using
Multiple Connections and Transactions with Timeouts" in the ALLBASE/SQL Reference
Manual .

1-6 DBA Tasks and Tools

Managing ALLBASE/SQL Logs

For each DBEnvironment you create, ALLBASE/SQL automatically starts a log containing
log records which reect the DBEnvironment's activities. ALLBASE/SQL uses writeahead
logging. This means that actual changes are not made to the DBEnvironment until the
changes are �rst written to the log �les as log records. Log records enable an ALLBASE/SQL
DBEnvironment to roll back transactions and to recover in the event of a soft crash or a
media failure.

For additional security, you can specify dual logging, which means that ALLBASE/SQL
maintains two identical logs. If there is a write or read failure in one log, the other will then
be used. ALLBASE/SQL has two log modes: nonarchive and archive. Nonarchive mode, the
default, permits only rollback recovery. Archive mode, which you enable with the SQLUtil
STOREONLINE command, permits both rollback and rollforward recovery (that is, recovery
from an earlier stored version of the DBEnvironment).

Defining Logs

You choose single or dual logging initially in the START DBE NEW statement. You also
determine the size and location of initial logs using the LOG clause of this statement:

LOG DBEFILE DBELog1ID
�
AND DBELog2ID

�
WITH PAGES = DBELogSize, NAME =

'SystemFileName1'
�
AND 'SystemFileName2'

�
You can de�ne a new log with the START DBE NEWLOG statement. This lets you change
the log �le name and size, turn archive mode on or o�, and change from single to dual logging
and back.

Detailed information about START DBE NEW and START DBE NEWLOG appears in
the \DBEnvironment Con�guration and Security" chapter. The syntax of both statements
appears in the \SQL Statements" chapter of the ALLBASE/SQL Reference Manual .

The DBA must also manage the size, number, and location of all ALLBASE/SQL logs. This
is done through using the SQLUtil log commands:

ADDLOG MOVELOG

PURGELOG RESCUELOG

RESTORELOG SHOWLOG

STORELOG

SQLUtil commands are fully explained in the \SQLUtil" appendix. Detailed information
about managing logs appears in the \Backup and Recovery" chapter.

Logs and Recovery

After a system failure (other than a media failure), all the data within a DBEnvironment is
automatically recovered to a consistent state the next time the DBEnvironment is started.
Changes performed by any transactions that were incomplete at failure time are rolled back.
Changes performed by transactions that were complete at failure time are written to the data
�les on disk from the log. In the case of a media failure, you must initiate a manual recovery
of the DBEnvironment from backups. This process is described fully in the \Backup and
Recovery" chapter.

DBA Tasks and Tools 1-7

Rollback recovery is an automatic feature of both nonarchive and archive log modes. Rollback
recovery has two purposes:

to let users roll back the e�ects of a transaction with the ROLLBACK WORK statement
to let ALLBASE/SQL automatically roll back the DBEnvironment to a consistent state
after a soft crash, and whenever the START DBE statement is executed.

A soft crash is a program abort or a system failure that does not damage the storage media.
ALLBASE/SQL always does rollback recovery when a DBEnvironment starts up, and this
ensures that whether or not there was a crash, all complete transactions are made permanent
to disk, and all incomplete transactions are undone (rolled back).

Rollforward recovery is possible only with archive log mode. It allows you to reconstruct a
DBEnvironment from a backup copy and one or more stored archive log �les in the event of
a hard crash. A hard crash is a failure, such as a disk head crash, that damages �les on disk.
Complete details about rollforward recovery from archive log �les is presented in the \Backup
and Recovery" chapter.

LOG FULL Condition

Under some circumstances, the log can become full, which means that no additional
transactions can be logged until log space is provided. When a LOG FULL condition arises,
ALLBASE/SQL performs a special rollback operation which rolls back all transactions and
issues the following error message:

Log Full. (DBERR 14046)

To avoid a LOG FULL condition, make sure there are enough log �les available for all the
concurrent transactions running on your system. Refer to the \Backup and Recovery" chapter
for additional information about managing log �les.

Note When LOG FULL arises, in most cases all transactions are rolled back. This
includes transactions that have performed no updates.

Maintaining Buffers for Data and Log Pages

ALLBASE/SQL uses two kinds of bu�ers to hold data as it is passed between your
applications and the operating system:

the log bu�er, which holds log records that reect changes made to data pages by active
transactions.

the data bu�er, which holds DBEFile pages from tables and indexes currently being
accessed.

The DBA must decide on the appropriate number of log and data bu�er pages for the system.
Bu�ers are ushed (written to disk) only at speci�c times. Once they are ushed, the bu�ers
can be used by other transactions.

ALLBASE/SQL ushes log bu�ers to the log �le when one of the following occurs:

a COMMIT WORK ends a transaction that modi�ed the DBEnvironment.

the data bu�er is full, so changes to the DBEnvironment must be written to disk to free
data bu�er space. Log bu�ers must also be ushed because of writeahead logging.

1-8 DBA Tasks and Tools

the log bu�er is full, so changes to the DBEnvironment must be written to disk to free log
bu�er space.

when a checkpoint is taken by means of a user's CHECKPOINT statement or by
ALLBASE/SQL internally. The checkpoint writes a system checkpoint record to the log,
and it ushes the log bu�er as well as the data bu�er.

ALLBASE/SQL ushes pages from the data bu�er to DBEFiles when one of the following
occurs:

the data bu�er is full, so individual changed pages are written to disk to free data bu�er
space.

when a checkpoint is taken by means of a user's CHECKPOINT statement or by
ALLBASE/SQL internally. The checkpoint writes a system checkpoint record to the log,
and it ushes the log bu�er as well as the data bu�er.

Figure 1-4 shows the relationship between �les and bu�ers.

Figure 1-4. The Relationship between Files and Buffers

As you see from the �gure, data is transferred from DBEFiles on disk and loaded into the
data bu�er when an SQL statement requiring data is executed. When user or system data
must be changed, log records are �rst written to the log bu�er, and then DBEFile pages in the
data bu�er are modi�ed. If the data bu�er is full or if a checkpoint is taken, some data and
log bu�er pages will be ushed to disk.

DBA Tasks and Tools 1-9

Managing Transactions and Locks

Within a DBEnvironment, ALLBASE/SQL manipulates data in units of recoverable work
known as transactions. A transaction is one or more SQL statements that together perform
a unit of work on one or more databases in a DBEnvironment. A transaction begins with
an SQL statement and ends with either a COMMIT WORK statement or a ROLLBACK
WORK statement. All work done within a transaction can be made permanent (committed)
or undone (rolled back).

Transactions acquire locks, which regulate concurrent access to the DBEnvironment. The
DBA keeps track of the locking behavior of the DBEnvironment, monitoring the number of
lock waits and deadlocks, and choosing approaches to locking and isolation levels that can
minimize deadlock while obtaining the greatest system throughput. Refer to the chapter
\Concurrency Control through Locks and Isolation Levels" in the ALLBASE/SQL Reference
Manual for basic information about transactions and locking. Additional information is found
in the ALLBASE/SQL Performance and Monitoring Guidelines .

Logging and recovery are also performed in terms of transactions. For more information, refer
to the \Backup and Recovery" chapter.

Setting Parameters in the DBECon File

The DBE con�guration �le (DBECon �le) contains startup parameters for each
DBEnvironment. The DBA adjusts these parameters as needed as the DBEnvironment is
developed, put into production, and modi�ed. Some DBECon parameters are quantitative:

Run time control blocks
Maximum transactions
Number of log and data bu�er pages
Timeout values

Others are ON/OFF:

DDL Enabled
Autostart mode
Single or multi startup
Archive mode

All these are useful in tuning the performance of the DBE for your speci�c installation's
needs.

The \DBEnvironment Con�guration and Security" chapter describes the initial state of each
DBECon parameter at START DBE NEW time, and the \Maintenance" chapter shows how
to alter DBECon parameters using SQLUtil.

Monitoring the System Catalog

The system catalog contains information about all the objects stored in the DBEnvironment
and about ongoing processes while the DBEnvironment is active. The DBA can monitor this
information to determine when it is necessary to add objects, remove them, add �le space,
reallocate bu�er space, or adjust other parameters.

The system catalog contains information about:

What tables, views, and indexes exist.
How much DBEFile space is available.

1-10 DBA Tasks and Tools

The size of rows and columns in tables.
The cluster count of indexes.
Which transactions are waiting for locks to be released.
The names of users on the system and their session ids.
View and table de�nitions.

The \Maintenance" chapter shows how to perform many useful maintenance tasks using
system catalog information. The \System Catalog" chapter describes each view and
pseudotable in the system catalog with examples of its contents. Much of the information
contained in the system catalog is displayed by SQLMON, the online monitoring tool. See the
ALLBASE/SQL Performance and Monitoring Guidelines for more information.

Managing Nonstop Production Systems

A collection of ALLBASE/SQL features can be used to help keep systems available with as
few stops as possible. These features also help users who have large databases servicing a
large number of concurrent sessions and requiring lengthy backup and recovery times. Users
who experience a large amount of Online Transaction Processing (OLTP) and have their
systems run for signi�cant periods without an operator present will also �nd these features
useful for performing tasks when operator time permits.

These features are implemented through SQLUtil commands and ALLBASE/SQL statements.
The commands and statements comprise the tasks of database creation, maintenance, and
recovery.

The SQLUtil features are implemented in the following commands:

STORE or STOREONLINE PARTIAL Stores parts of a DBEnvironment (DBEFiles or
DBEFileSets).

STOREINFO Displays DBEFile information stored on a backup
device.

RESTORE PARTIAL Restores a set of DBEFiles.

SETUPRECOVERY PARTIAL Rolls forward a set of DBEFiles.

ATTACHFILE or DETACHFILE Attaches or detaches a DBEFile or DBEFileSet.

CHANGELOG Causes a DBEnvironment to change to a new log
�le.

SHOWDBE Displays database attribute information including
audit DBEnvironment parameters and whether it is
a wrapper database.

The syntax for the SQLUtil commands is found in Appendix F of this manual.

The ALLBASE/SQL CHECKPOINT statements can be used interactively or
programmatically to retrieve the number of free blocks available in a log �le. The full syntax
for the SQL statements is found in the \SQL Statements" chapter of the ALLBASE/SQL
Reference Manual .

DBA Tasks and Tools 1-11

Backing Up and Restoring DBEnvironments

The DBA is also responsible for routine backup and, when necessary, the restoring of
DBEnvironments following a system failure. This means:

Choosing either archive or nonarchive logging.
Implementing a backup strategy.
Backing up DBEnvironments and log �les regularly.
Adding and dropping log �les as needed.
Restoring the system from backups as needed.

The subject is discussed fully in the chapter \Backup and Recovery."

Migrating DBEnvironments Between Releases of ALLBASE/SQL

The internal structure of a DBEnvironment must be compatible with the particular release
of ALLBASE/SQL software being used. After installing a new version of ALLBASE/SQL,
use SQLMigrate to migrate a DBEnvironment forward to the current release or backward
to an earlier release. Under normal conditions, you would not need to perform a backward
migration. This functionality is provided so that if you ever choose to restore older software,
you will be able to migrate your DBEnvironment backward quickly and easily.

Prior to release A.07.00 of ALLBASE/SQL, it was sometimes necessary to use the ISQL
UNLOAD command, recreate the DBEnvironment, and use the LOAD command to migrate
your DBEnvironment to one that was compatible with a new release. This approach may still
be useful. The process of unloading and reloading is described in the \Maintenance" chapter.
Additional information is provided about SQLMigrate later in this chapter under \Using
SQLMigrate."

1-12 DBA Tasks and Tools

Tools for the DBA

In addition to the general set of SQL statements, the DBA uses several utility programs in
creating and maintaining DBEnvironments. These are:

ISQL
SQLUtil
SQLGEN
SQLMigrate
SQLMON
SQLVer
SQLAudit

The use of each toolset is described in the following paragraphs. Complete command syntax
for ISQL, SQLUtil, SQLGEN, SQLMigrate, and SQLAudit is in the appendices. In addition,
there is a discussion of SQLINSTL. SQLINSTL is a script used when moving to a new version
of ALLBASE/SQL.

Using ISQL

ISQL lets you issue most SQL commands interactively. In addition, it lets you load and
unload tables using the LOAD and UNLOAD statements. ISQL also includes a help facility
which explains the syntax of SQL and ISQL commands.

ISQL command �les o�er a shortcut to creating databases. Command �les allow you to store
a series of ISQL and SQL commands and then, with a single START command, execute all
the commands in that �le. This is very useful for groups of commands you execute together
frequently. In addition, if an entire DBEnvironment is created by using command �les, it is
easy to recreate the DBEnvironment, as well as examine or modify any part of its de�nition.
The sample DBEnvironment used in all the examples in this manual can actually be created
with the series of command �les found in the \Sample DBEnvironment" appendix in the
ALLBASE/SQL Reference Manual .

SQL data de�nition statements such as CREATE and maintenance commands such as
UPDATE STATISTICS obtain locks on the system catalog. To avoid contention, you can use
command �les to execute these statements on a DBEnvironment during o� hours. This will
reduce the amount of waiting on locks during peak working hours.

You can use SQLGEN to create command �les for use through ISQL. See the section \Using
SQLGEN" later in this chapter. For complete information on ISQL command �les, refer to
the ALLBASE/ISQL Reference Manual .

Using SQLUtil

SQLUtil is an ALLBASE/SQL utility program that lets you manage the startup parameters
for each DBEnvironment and perform several other maintenance tasks. With SQLUtil, you
can:

Display and change startup parameters in the DBECon �le.
Move DBEFiles or log �les from one location to another.
Purge DBEFiles.
Purge the DBEnvironment.
Back up and restore a DBEnvironment.
Monitor the log.

DBA Tasks and Tools 1-13

Add, purge, store, and restore log �les.
Perform rollforward recovery.

Starting SQLUtil

There are two ways to run the SQLUtil program: directly from HP-UX, or within ISQL. For
the �rst method, type the following command:

$ sqlutil

To execute SQLUtil within ISQL, type:

isql=> sqlutil;

No matter which method you use, you will see the SQLUtil banner and prompt (>>).

The SQLUtil commands are described in the appendix, \SQLUtil." Now you can execute
SQLUtil commands until you enter an EXIT or QUIT command.

SQLUtil requires the use of the message catalog, /usr/lib/n-computer/hpsqlcat. If you are
using native language data, the name of the catalog is /usr/lib/nls/$LANG/hpsqlcat, where
$LANG is the name of your current language as selected with the setenv command. If this �le
is not available, SQLUtil uses /usr/lib/nls/n-computer/hpsqlcat. SQLUtil accepts responses
to prompts for a DBEnvironment name or for a �lename in either the current language or
n-computer.

Instead of entering commands at the keyboard, you may redirect input from a command �le,
as in the following example:

$ sqlutil < commandfile

As with ISQL, you can use a semicolon to terminate an SQLUtil command. Semicolons are
not needed, however. All responses to commands must be contained on one line; continuation
of responses is not supported.

Some SQLUtil commands display a subsidiary prompt (\->"). From this prompt, you can
enter // to return to the SQLUtil prompt (\>>"). Also, if input from within the ISQL
session was coming from a command �le or the command bu�er when SQLUtil was invoked,
that input is suspended during the SQLUtil session until the user enters either EXIT or
QUIT. Finally, prompting-mode is the only mode of operation in SQLUtil. You cannot specify
a complete command line as you would in ISQL.

Using SQLGEN

SQLGEN is a utility that generates the commands used to recreate all or part of an existing
ALLBASE/SQL DBEnvironment. It also generates LOAD/UNLOAD and UPDATE
STATISTICS commands. These commands are placed in one or more data �les called schema
�les which can then be used as ISQL command �les to recreate the DBEnvironment.

SQLGEN has several uses. It aids in migrating to new releases of ALLBASE/SQL when
unloading or reloading are necessary. In addition, SQLGEN helps with other database tasks.
DBEnvironments can be designed and tuned on a development system and then the entire
schema can be transferred to a production system. SQLGEN can also help move part of
a DBEnvironment. For example, if a department transfers from one site to another, that
department's portion of a DBEnvironment can be easily moved to a new system.

1-14 DBA Tasks and Tools

You can also use SQLGEN to create a replicate DBEnvironment schema from the master
DBEnvironment. When you do so, you must use the START DBE NEWLOG statement to
specify the AUDIT LOG, AUDIT NAME, DEFAULT PARTITION, MAXPARTITIONS,
and AUDIT ELEMENTS parameters. You must also use CREATE PARTITIONS to create
partitions and ALTER TABLE to assign tables to the partitions.

Starting SQLGEN

You must have DBA authority to use SQLGEN. Enter commands at the keyboard or redirect
the input by specifying a command �le name in the run string. To run SQLGEN directly from
the operating system, type:

$ sqlgen

or if input is redirected, type:

$ sqlgen -i < inputfile

The -i ag causes SQLGEN to echo input to the standard output.

To run SQLGEN from within ISQL, type:

isql => sqlgen;

No matter which method you use, the SQLGEN prompt (>>) appears, ready for you to enter
commands.

SQLGEN requires the use of the message catalog, /usr/lib/n-computer/hpsqlcat. If you are
using native language data, the name of the catalog is /usr/lib/nls/$LANG/hpsqlcat, where
$LANG is the name of your current language as selected with the setenv command. If this �le
is not available, SQLGEN uses /usr/lib/nls/n-computer/hpsqlcat. SQLGEN accepts responses
to prompts for a DBEnvironment name or for a �lename in either the current language
or n-computer. See \Native Language Support" for information about specifying a native
language as the current language.

Usually, STARTDBE will be the �rst command you enter. This command connects to the
DBEnvironment and checks to make sure you have DBA authority. It is recommended that
the DBEnvironment be shut down prior to issuing the STARTDBE command to ensure that
system catalogs are not being altered during SQLGEN execution. When you �nish entering
commands, use the EXIT command to return either to HP-UX or to ISQL.

When you run SQLGEN directly from HP-UX, you can specify the editor name as a command
line argument. When you run SQLGEN from ISQL, the current editor name is passed to and
displayed by SQLGEN. Refer to the SET EDITOR command for more information.

SQLGEN Commands

SQLGEN commands can be divided into two categories, generate commands and auxiliary
commands. Generate commands such as GENERATE ALL build the SQL statements
necessary to recreate all or part of a DBEnvironment. Auxiliary commands provide
services needed to use SQLGEN. For example, the STARTDBE command connects to
the DBEnvironment. The EDITOR command allows you to access an editor from within
SQLGEN. With SET commands you rede�ne the editor or designate a schema �le name.
HELP, RELEASE, and EXIT are also auxiliary commands. SQLGEN also allows you to enter
HP-UX commands when they are preceded by the character '!'.

The SQLGEN commands are described in the appendix, \SQLGEN."

DBA Tasks and Tools 1-15

SQLGEN Schema Files

SQLGEN places the statements it generates in schema �les which are then used as ISQL
command �les for recreating the DBEnvironment. All GENERATE commands prompt for
a schema �le name unless you have already designated the name with the SET SCHEMA
command. If you enter a carriage return instead of a name at the schema �le name prompt,
the output is displayed on your terminal screen. In most cases, GENERATE commands
automatically include a COMMIT WORK at the end of the schema �le. However, if the
generate command was not able to build any commands (for example, GENERATE GROUP
cannot build commands if no groups exist in the DBEnvironment), then no COMMIT WORK
is generated.

When a GENERATE command encounters an unexpected ALLBASE/SQL error, SQLGEN
automatically returns the schema �le in use to the the state it was in before the command
began. For example, if an error occurs during a GENERATE ALL command, any commands
that have already been placed in the schema �le are automatically rolled back. To execute the
command, correct the problem and re-enter GENERATE ALL.

SQLGEN Conventions

To use SQLGEN e�ectively you must be familiar with the conventions it uses. The SQLGEN
prompt is >>. Unlike ISQL, SQLGEN does not require a command-terminating semicolon.
Once you enter a command, SQLGEN prompts for your responses. At an object name
prompt, enter the name of the object for which you wish to generate commands. When
you enter an object name, SQLGEN prompts you for another. When you �nish entering
object names, a carriage return returns you to the SQLGEN prompt. If you wish to select
all qualifying names, enter an '@' at the object name prompt. To see a list of all qualifying
names, type a '?'. If no objects qualify, SQLGEN displays a message and automatically
returns you to the previous prompt.

When choosing from two options, (y/n) for example, the �rst choice listed is always the
default (carriage return). To return to the SQLGEN prompt from any command, type '//'
or '/'. To access the operating system, enter an exclamation point (!) and a carriage return.
Type exit or control-D to return to SQLGEN. To enter system commands from within
SQLGEN, type an exclamation point (!) as the �rst character of the command. In either case,
only commands allowed in a shell can be executed. Table 1-1 summarizes SQLGEN's general
conventions.

1-16 DBA Tasks and Tools

Table 1-1. SQLGEN General Conventions

Convention Explanation Example

No Semicolons Command terminating semicolons are
not needed, but allowed.

EXIT or EXIT;

!<Command> to
enter system
commands

Use any command allowed in shell. >> !ls � Return �

! to escape to shell Use any command allowed in shell.
Type exit to return to SQLGEN.

>> ! � Return �
$ exit � Return �
>>

'//' OR '/' to
return to the
SQLGEN prompt

Single or double slashes end a
command.

Table Name >> // � Return �
>>

Entering Object Names

SQLGEN automatically upshifts all object names not entered in quotes. To enter an object
name, in most cases all you need to do is type the name. SQL pattern matching symbols (%
and) can be used. For example, at a table name prompt, P% selects all tables starting with
P.

Single and double quotation marks are used for special cases.

Use single quotes around lower case names. Pattern matching symbols are allowed within
the single quotes. For example, to select all objects starting with Na, enter 'Na%'.

Use double quotes around object names that contain one of the pattern matching symbols
(% or). In this case, pattern matching cannot be used. For example, the table name
NJS% must be entered \NJS%".

Table 1-2 summarizes SQLGEN's naming conventions.

Table 1-2. SQLGEN Name Entry Conventions

Convention Explanation Example

Pattern Matching
Using % and _

% replaces 0 or more characters. _
replaces one character.

P% all objects starting with the
character P

P_ all two-letter names starting
with P

No Quotes Use in most cases. Name is upshifted.
Pattern matching allowed.

PurchDB PURCHDB
P% all names starting with P

Single Quotes Use around lower case names. Names
are not upshifted. Pattern matching
allowed.

'tab' tab
'T%s' all names starting with T and

ending with s

Double Quotes Use when the name itself contains a %

or_. Names are taken exactly as
entered. No pattern matching allowed.

"t%s" t%s

DBA Tasks and Tools 1-17

Using SQLMigrate

If you are updating from an earlier release of ALLBASE/SQL, you must perform the
ALLBASE/SQL migration to migrate your DBEnvironment. The method used depends upon
the version of ALLBASE/SQL that you are currently using. Use SQLMigrate to convert the
DBEnvironment between major releases such as from F.0 to G.0. Use the SQLINSTL script
to migrate between versions of a release (such as from G1.14 to G1.15) or minor releases (such
as from G.0 to G.1).

The SQLINSTL script is provided in the G.1 and later versions of ALLBASE/SQL to make
it easy for the DBA to move to a delta release. Using SQLINSTL ensures that you will
have access to the most recent version of the System and Catalog views, and it also uses
VALIDATE FORCE statements to revalidate all stored sections to be compatible with the
new release.

If SQLINSTL is not executed on a DBEnvironment after installing a new version, stored
sections may not be properly revalidated causing run-time errors. Revalidating stored sections
at run-time during production hours can also cause concurrency problems due to write
locks placed on the system catalog. You must use SQLINSTL whenever a new version of
ALLBASE/SQL is installed; however, SQLINSTL does not need to be executed separately
if SQLMigrate is being executed to migrate between major releases. (SQLMigrate will
execute SQLINSTL.) Refer to the section, \Using SQLINSTL," later in this chapter for more
information.

Running SQLMigrate

Use SQLMigrate to migrate between major revisions of ALLBASE/SQL. Backup the
DBEnvironment prior to running SQLMigrate.

You must be the DBECreator or superuser to migrate a DBEnvironment.

To run SQLMigrate, use the following command:

$ sqlmig

You will see the SQLMigrate banner and prompt (SQLMIGRATE=>). Command entry follows
ISQL rules; that is, commands are terminated with a semicolon. The SQLMigrate commands
are described in the appendix \SQLMigrate."

Forward and backward migration steps are discussed below. Only one DBEnvironment can be
migrated at a time.

Types of Forward Migration

There are two avors of forward migration to consider:

1. Migrating a DBEnvironment without audit logging into audit logging releases.

2. Migrating a DBEnvironment with audit logging into audit logging releases.

For both cases, all tables are placed in the default partition. In the �rst case, no audit logging
is enabled for the DBEnvironment. In the second case, the only audit logging element allowed
is DATA because SQLMigrate does not support any other audit elements.

If you migrate an audit logging DBEnvironment, it should not be migrated to a non-audit
logging DBEnvironment. Therefore, you must specify AUDIT LOG in any START DBE
NEWLOG statement that SQLMigrate performs.

1-18 DBA Tasks and Tools

For backward migration, since previous releases do not support partitions, the only supported
option for a DBEnvironment with audit logging in use is to place all the tables in the
default partition with the only audit logging element speci�ed being DATA. Then the
DBEnvironment can be migrated backward unchanged.

If the audit elements include something other than DATA, one of the following may happen:

The migration is not allowed to proceed.

The elements are reset to be only DATA.

Steps for Forward Migration

1. Prior to updating the operating system and ALLBASE/SQL software, do the following for
each DBEnvironment that will be migrated:

a. Run ISQL and issue a START DBE statement. This ensures that the DBEnvironment
is logically consistent.

b. Run SQLUtil and issue the STORE command to backup each DBEnvironment. Note:
Log �les are not stored using this command. Application programs associated with the
DBEnvironment must be backed up separately.

2. Backup the ALLBASE/SQL software. Refer to the Release Notes document for your
current release of ALLBASE/SQL for a complete listing of �les.

3. Update the operating system and the ALLBASE/SQL software. Refer to Installing and
Updating HP-UX for information. If you are updating the operating system, make sure
you have a backup of the operating system (including the old release of ALLBASE/SQL
software). Refer to the System Administrator's Manual for information on how to do a
system backup.

4. Type the following command at the operating system prompt:

sqlmig

5. Issue the SHOW VERSIONS command to determine the possible version values
that can be entered as the version parameter in both the PREVIEW and the
MIGRATE commands. The version parameter indicates to SQLMigrate the release of
ALLBASE/SQL software with which you wish the DBEnvironment to be compatible.

For example, you can enter the following command:

SQLMIGRATE=> show versions;

VERSION RELEASE

E HP36217-02A.E

F HP36217-02A.F

G HP36217-02A.G

SQLMIGRATE=>

This shows the versions and releases for which you can use SQLMigrate.

DBA Tasks and Tools 1-19

6. For each DBEnvironment that will be migrated, issue the PREVIEW command to check
for errors that might occur during migration. The syntax for PREVIEW of a forward
migration is:

SQLMIGRATE=> PREVIEW 'DBEnvironmentName' FORWARD
�
TO 'Version'

�
;

Note that the version parameter is optional. If this parameter is omitted, the most recent
version supported by SQLMigrate will be used as the default.

If you receive the message that there is not enough space in the SYSTEM DBEFileSet
to complete the migration successfully, the number of DBEFile pages needed will be
returned. Use the following commands to create a new DBEFile and add it to the
SYSTEM DBEFileSet:

SQLMIGRATE=> CREATE DBEFILE DBEFileName

WITH PAGES = DBEFileSize, NAME ='SystemFileName';

SQLMIGRATE=> ADD DBEFILE DBEFileName TO DBEFILESET SYSTEM;

Note that the syntax of these commands is the same as in ISQL.

Repeat this step until no errors are encountered and SQLMigrate returns the message:

The proposed migration should be successful.

If you encounter errors during the PREVIEW step that you do not understand, contact
your HP Service Representative or Response Center.

7. Once you have completed the PREVIEW step, issue the MIGRATE command to modify
the DBEnvironment so that it is compatible with the release of ALLBASE/SQL that you
wish to use. The MIGRATE FORWARD syntax is:

SQLMIGRATE=> MIGRATE 'DBEnvironmentName' FORWARD
�
TO 'Version'

�
;

Note that the version parameter is optional. If it is omitted, the most recent version
supported by SQLMigrate will be used as the default.

When the MIGRATE command is �nished, SQLMigrate automatically purges the old
user log �les and performs a START DBE NEWLOG statement to create new user log
�les. The options of the START DBE NEWLOG statement match the startup parameters
contained in the DBECon �le. SQLMigrate does not issue a START DBE NEWLOG
statement if the NEWLOG option has been set to OFF.

If the START DBE NEWLOG statement fails you must exit from SQLMigrate, run ISQL,
and issue a START DBE NEWLOG statement. This creates a new log �le that will be
compatible with the target release of ALLBASE/SQL. Note that you cannot use your
DBEnvironment after it has been migrated until the START DBE NEWLOG statement
executes successfully.

If you encounter errors during the MIGRATE step that you do not understand, contact
your HP Service Representative or Response Center.

8. Make a backup of the migrated DBEnvironment immediately after the START DBE
NEWLOG statement completes. If you wish to use nonarchive logging, run SQLUtil
and use the STORE command. For archive logging, use the SQLUtil STOREONLINE
command.

1-20 DBA Tasks and Tools

9. Run SQLUtil (if you are not already in SQLUtil from the previous step) and issue the
SHOWDBE command to check the parameters of the new version of the DBEnvironment.
Use the ALTDBE command if changes are necessary. Use the SHOWLOG command to
display current log information.

10. You may have received a message stating that stored sections were invalidated. This is to
be expected. Stored sections will be revalidated automatically when they are executed.
For some users, production may be faster if revalidation is done before that time.
Revalidation can be accomplished by preprocessing the application programs that contain
the stored sections. If you are migrating from release F (or later), you can revalidate
stored sections with the VALIDATE statement in ISQL.

Steps for Backward Migration

1. Run SQLMigrate and issue the SHOW VERSIONS command to determine the possible
values that can be entered as the version parameter in both the PREVIEW and the
MIGRATE commands. The version parameter indicates to SQLMigrate the release of
ALLBASE/SQL software with which you wish the DBEnvironment to be compatible.

2. Prior to restoring the backup version of the operating system and ALLBASE/SQL, do the
following for each DBEnvironment that will be migrated:

a. Run ISQL and issue a START DBE statement. This ensures that the DBEnvironment
is logically consistent.

b. Run SQLUtil and issue the STORE command to make a backup of the DBEnvironment.
Note: Log �les are not stored using this command. Application programs associated
with the DBEnvironment must be backed up separately.

c. Run SQLMigrate and issue the PREVIEW command to check for errors that might
occur during migration. The DBEnvironment is not modi�ed during this command.
The syntax for the PREVIEW of a backward migration is:

SQLMIGRATE=> PREVIEW 'DBEnvironmentName' BACKWARD TO 'Version';

If you receive the message that there is not enough space in the SYSTEM DBEFileSet
to complete the migration successfully, the number of DBEFile pages needed will be
returned. To increase the number of pages, you need to add another DBEFile to the
SYSTEM DBEFileSet. To do this, use the following syntax:

SQLMIGRATE=> CREATE DBEFILE DBEFileName

WITH PAGES = DBEFileSize, NAME ='SystemFileName';

SQLMIGRATE=> ADD DBEFILE DBEFileName TO DBEFILESET SYSTEM;

Repeat this step until no errors are encountered and SQLMigrate returns the message:

The proposed migration should be successful.

If you encounter errors during the PREVIEW step that you do not understand, contact
your HP Service Representative or Response Center.

DBA Tasks and Tools 1-21

d. Run SQLMigrate and issue the MIGRATE command to modify your DBEnvironment
to make it compatible with the old release of ALLBASE/SQL. The MIGRATE
BACKWARD syntax is:

SQLMIGRATE=> MIGRATE 'DBEnvironmentName' BACKWARD TO 'Version';

If you encounter errors during the MIGRATE step that you do not understand, contact
your HP Service Representative or Response Center.

3. Restore the backup versions of the operating system and of ALLBASE/SQL that were
made during the forward migration steps.

4. For each DBEnvironment that was backward migrated, do the following:

a. Run ISQL and issue the START DBE NEWLOG statement. This creates a new log �le
that will be compatible with the old release of ALLBASE/SQL. Note that you will not
be able to use your DBEnvironment after it has been migrated until this step has been
completed. SQLMigrate does not automatically perform a START DBE NEWLOG
statement during backward migration.

b. Run SQLUtil and issue the SHOWDBE command to check the parameters of the new
version of the DBEnvironment. Use the ALTDBE command if changes are necessary.

c. For archive logging, run SQLUtil and issue the STOREONLINE command.

5. Drop views and any stored sections created under the later release, because these views and
sections are no longer usable. Refer to the DROP VIEW and DROP MODULE commands
in the ALLBASE/SQL Reference Manual . Do not try to install modules that were created
under the release you are migrating back from as they will not be compatible with the
release of ALLBASE/SQL you are migrating to.

6. You may have received a message stating that stored sections were invalidated. This is to
be expected. Stored sections will be revalidated automatically when they are executed.
For some customers, production may be faster if revalidation is done before that time.
Revalidation can be accomplished by preprocessing the application programs that contain
the stored sections. If you are migrating from release F (or later), you can revalidate stored
sections with the VALIDATE statement in ISQL.

Using SQLINSTL

SQLINSTL is a script that you use instead of SQLMigrate when migrating between releases of
versions of ALLBASE/SQL (such as G1.14 to G1.15) or minor releases (such as G.0 to G.1).
When migrating between major releases (such as F.0 to G.0 or F.0 to G.1), you must instead
use SQLMigrate to migrate your DBEnvironment. Refer to the previous section, \Using
SQLMigrate," for more information.

When using SQLINSTL, execute SQLINSTL on each DBEnvironment on the system to ensure
that you have access to the most recent version of the system catalog views. SQLINSTL also
ensures that stored sections are properly revalidated to be compatible with the new release.
If SQLINSTL is not executed, errors may result when stored sections are executed due to
compatibility problems.

1-22 DBA Tasks and Tools

Warning SQLINSTL drops all system catalog views. If any view has been created upon

a system catalog view, that view will also be dropped. To avoid dropping views,

before executing SQLINSTL, use the GENERATE VIEWS command in SQLGEN

to create a script to recreate the user view.

The following is an example of using SQLINSTL from ISQL:

:/usr/bin/isql

isql=>start /usr/lib/allbase/hpsql/sqlinstl mydbe;

isql=>exit;

Read the SQLINSTL �le on your system for more information.

If you are using ARCHIVE MODE LOGGING, you must make a backup of the
DBEnvironment after using SQLINSTL. This backup must be used if rollforward recovery is
to be performed at some time in the future.

Using SQLMON

SQLMON is an online diagnostic tool that monitors the activity of an ALLBASE/SQL
DBEnvironment. SQLMON screens provide information on �le capacity, locking, I/O, logging,
tables, and indexes. They summarize activity for the entire DBEnvironment, or focus on
individual sessions, programs, or database components. SQLMON is a read only utility, and
cannot modify any aspect of the DBEnvironment. SQLMON is documented fully in the
ALLBASE/SQL Performance and Monitoring Guidelines .

To run SQLMON, log on as root, as the database administrator, or a user that was granted
MONITOR authority, and issue the following command:

% sqlmon

Using SQLVer

SQLVer allows you to check the version strings of the ALLBASE/SQL �les. The syntax of
SQLVer is as follows:

sqlver
�
-v
�

When the -v option is speci�ed, the version string and long listing (ls -l) of each �le is
displayed.

DBA Tasks and Tools 1-23

In the example that follows, the version of ALLBASE/SQL is checked in non-verbose mode:

$ sqlver

--

Checking AB-RUN (Runtime).

AB-RUN: No missing files.

--

Checking AB-DEV (Development).

AB-DEV: No missing files.

--

Checking AB-NET (Net).

AB-NET: No missing files.

--

This Pass => A.G1.21

0 missing files.

--

Using SQLAudit

SQLAudit is an ALLBASE/SQL utility program that can be used in conjunction with audit
DBEnvironments to view the changes that have been made to the DBEnvironment. They
include such groups as DML commands (INSERT, UPDATE, DELETE), and DDL commands
(data de�nition, storage, and authorization commands, for example).

The committed transactions are audited by extracting information from the audit log records
in the log �les. These audit log records are generated when audit logging is enabled on the
DBEnvironment through the START DBE NEW or START DBE NEWLOG commands.
Besides enabling audit logging, these commands include other audit logging parameters that
de�ne the groups of SQL commands you want to audit. These groups are discussed under
\Creating Audit DBEnvironments" elsewhere in this manual. They include such groups as
DML commands (INSERT, UPDATE, DELETE), and DDL commands (data de�nition,
storage, and authorization commands, for example).

SQLAudit is designed with a number of commands for viewing the changes made to the
DBEnvironment. The following list of SQLAudit commands provides an overview of these
commands:

AUDIT Audits changes made between two given audit points.

EDITOR Invokes the currently set editor.

EXIT Terminates SQLAudit execution.

GET AUDITPOINT Determines the current audit point information from the
DBEnvironment.

HELP Displays and describes all SQLAudit commands.

LOCK AUDITPOINT Locks an audit point to prevent overwriting transactions in the
log �les that have not been audited

MODIFY AUDITPOINT Modi�es the current audit point information for the
DBEnvironment.

QUIT Terminates SQLAudit execution.

1-24 DBA Tasks and Tools

SET Displays current SQLAudit settings.

SET DBENVIRONMENT Establishes or releases the connection to the DBEnvironment.

SET ECHO ALL Enables or disables echoing of user input to the standard
output.

SET EDITOR De�nes the current editor.

SET EXIT ON DBERR Sets SQLAudit to exit or continue when a database error is
encountered.

SET RECOVERFILE De�nes the recovery �le used by the AUDIT command.

SHOW AUDITPOINT Displays audit point information contained in a �le.

UNLOCK AUDITPOINT Removes a locked audit point from the log.

! Escapes temporarily to the operating system for the execution
of operating system commands.

Refer to the appendix \SQLAudit" for the complete SQLAudit command reference.

SQLAudit Conventions

The following conventions should be noted when using SQLAudit:

Unlike ISQL, SQLAudit does not require a command terminating semicolon. (If a semicolon
is entered, SQLAudit ignores it.)

When choosing from two options, (y/n), for example, the �rst choice listed is always the
default (carriage return).

To return to the main prompt (SQLAudit >>) at any time, type a double or single slash
(// or /).

To escape to the shell (HP-UX) enter an exclamation point (!) and a carriage return. To
enter operating system commands from within SQLAudit, type an exclamation point (!) as
the �rst character of the command. (In either case, only commands allowed in a shell can
be executed.) You then type exit RETURN or control-D to return to SQLAudit.

Table 1-3 summarizes these conventions.

DBA Tasks and Tools 1-25

Table 1-3. SQLAudit General Conventions

Convention Explanation Example

No Semicolons Command terminating
semicolons are not needed, but
allowed.

EXIT or EXIT;

!<Command> to enter system
commands

Use any command allowed in
shell.

SQLAudit >> !ls �RETURN�

! to escape to shell Use any command allowed in
shell.

SQLAudit >> ! �RETURN�

$ exit �RETURN�
SQLAudit >>

// OR / to return to the
SQLAudit prompt

Single or double slashes end a
command.

DBEnvironment Name >> //
SQLAudit >>

Understanding Audit Points

SQLAudit requires a beginning and ending point in the log �les to determine what portion
of the log history to audit. These audit points are de�ned by using the command GET
AUDITPOINT. GET AUDITPOINT determines all the current transaction information
for the DBEnvironment and stores it and identi�cation information in a �le for later use.
The audit point �le can then be used by other commands, such as AUDIT or SHOW
AUDITPOINT.

The beginning audit point provides the AUDIT command with information about the
previously committed transactions. The AUDIT command uses this information to audit
all transactions that have committed after the beginning audit point was de�ned by GET
AUDITPOINT.

The ending audit point is used by the AUDIT command to provide a point where the AUDIT
command can stop processing audit log records. In addition, the ending point also provides a
list of partitions that have committed transactions, and when compared with the beginning
audit point, a list of partitions to be audited.

If you do not specify a beginning audit point, the AUDIT command assumes by default that
you want to audit every transaction, starting from the �rst committed transaction for each
partition being audited. If you do not specify an ending audit point �le, the AUDIT command
assumes by default that you want to use the last committed transaction in the log �le as the
stopping criteria.

Whether you specify a beginning audit point or assume the default, SQLAudit must still be
able to �nd the �rst committed transaction for the partition in the log �les. Therefore, if the
�rst committed transaction for an audited partition cannot be found, an error is returned and
the partition is dropped from the list of partitions being audited.

Suppose, for example, that at the time the beginning audit point is de�ned, the current list of
partitions and their committed transactions exists as follows:

Partition Transaction Identification Information

1 Transaction # 10

2 Transaction # 21

6 Transaction # 16

1-26 DBA Tasks and Tools

Transaction number 10 was the last transaction that changed data in partition number
1. Similarly, transaction numbers 21 and 16 were the last transactions to change data in
partition numbers 2 and 6, respectively.

Suppose that the following transaction information is reected in the ending audit point
information:

Partition Transaction Identification Information

1 Transaction # 45

2 Transaction # 21

4 Transaction # 51

6 Transaction # 45

In comparing these two audit points, SQLAudit can determine several facts:

No new transactions have been committed on partition number two.

Transactions have been committed (since the beginning audit point) on partitions 1 and 6.

Partition number 4 has had its �rst transaction committed since the beginning audit point.

With this information, the AUDIT command can determine that the only partitions that need
to be audited are 1, 4, and 6. The AUDIT command would still include partition 2 in the list
of partitions being audited, but no transactions should be found.

Note that in this example, two partitions have the same transaction number (partitions 1 and
6). This means that transaction number 45 made changes to data in both partitions 1 and 6.

Although this example is an oversimpli�cation of what the transaction information looks like,
the concepts still hold true.

Example of Getting Audit Points

The following example illustrates how GET AUDITPOINT de�nes and displays an audit
point:

SQLAudit >> GET AUDITPOINT

Audit Point File >> STARTPT

Lock Log for Current Audit Point (no/yes) >> NO

Display Current Audit Point Information (no/yes) >> YES

Creator Name: dbauser

Lockpoint: Log Sequence No (5) Page No (327)

No. of Partition Instances: 3

Audit Partition Global Newlog Local

Name Number CommitID Timestamp CommitID

-------- --------- ---------------- ----------------- ----------------

DBE1 DEF 0000000400000121 2C13D50F000896EB 0000000400000121

DBE1 1 0000000A00000105 2C13D50F000896EB 0000000A00000105

DBE1 2 00000004000000E0 2C13D50F000896EB 00000004000000E0

SQLAudit >>

Refer to the SHOW AUDITPOINT command for an explanation of the display of current
audit point information.

DBA Tasks and Tools 1-27

Establishing SQLAudit Log Locks

Since audit log records for transactions are written to the same DBEnvironment log �les
as nonaudit log records, it is possible that transactions that have not been audited can be
overwritten. To prevent this, the LOCK AUDITPOINT command can be used to prevent
users from overwriting transactions that you have not audited.

While it is possible to have many di�erent audit points de�ned for a DBEnvironment, it is
only possible to have one audit point locked for the DBEnvironment. Therefore, only one
database administrator should be assigned to determine which audit point should remain
locked. This log lock de�nes the point in the log �le which no user can write beyond. If any
user transaction attempts to write beyond this point, a LOG FULL message is issued and the
transaction is rolled back.

The audit point can be unlocked with the UNLOCK AUDITPOINT. Since only one audit
point can be locked for the DBEnvironment, locking a new audit point automatically unlocks
any previously locked audit point. Audit points can also be locked when they are de�ned
through the GET AUDITPOINT command.

Performing an Audit

Assume that a company (perhaps a bank) wants to determine what changes have been made
to their data during the course of a business day. They have previously enabled audit logging
for the DBEnvironment and are about to start their business day.

The �rst thing that must be done is to determine the beginning audit point in the
DBEnvironment log �les. This point will be used as the starting point of the audit process
used at the end of the business day.

Since the bank does not want to lose any information before they audit it, they also lock the
beginning audit point to make sure the transactions are not overwritten. This is done with
the SQLAudit command GET AUDITPOINT as follows:

SQLAudit >> SET DBENVIRONMENT BankDBE

SQLAudit >> GET AUDITPOINT

Audit Point File >> STARTPT

Lock Log for Current Audit Point (no/yes) >> YES

Display Current Audit Point Information (no/yes) >> NO

This sequence of commands creates a �le called StartPt containing the beginning audit point
information and locks the log �les to prevent unaudited transactions from being overwritten.

Since log �les are being locked, the database administrator makes sure that they have enough
log space in the DBEnvironment to last the full day. If they �nd that they are running out of
log space during the day, additional log �les will be added.

At the end of the day the bank wishes to audit the changes that have been made to the data
during the course of the business day. Since the AUDIT command needs an ending audit
point, the following sequence of commands can be used to de�ne it:

SQLAudit >> SET DBENVIRONMENT BankDBE

SQLAudit >> GET AUDITPOINT

Audit Point File >> ENDPT

Lock Log for Current Audit Point (no/yes) >> NO

Display Current Audit Point Information (no/yes) >> NO

Notice that this audit point is not locked since that would drop the lock on the previous audit
point and allow transactions committed between the two audit points to be overwritten.

1-28 DBA Tasks and Tools

Now the actual auditing of the database changes can be performed as follows:

SQLAudit >> AUDIT

Beginning Audit Point File >> STARTPT

Ending Audit Point File >> ENDPT

Result File to be generated >> RESULTS

Do you wish to specify Partition Numbers (n/y) >> no

Generating Results ...

Records Audited: 10000 Records In Result File: 10000

Records Audited: 20000 Records In Result File: 20000

Records Audited: 21427 Records In Result File: 21427

Finished Generating Results.

SQLAudit >>

If the bank wants to do continuous auditing, the ending point of one day can be used as
the starting point for the next day. You should lock the new starting audit point so that no
transactions get overwritten, as illustrated in the following example:

SQLAudit >> LOCK AUDITPOINT

Audit Point File >> ENDPT

Lock Log for Audit Point (n/y) >> yes

SQLAudit >> !rm StartPt

SQLAudit >> !mv EndPt StartPt

By using this process every day, you should always be able to audit the last 24 hours without
the transactions ever being overwritten.

SQLAudit Result Files

The results of an audit are put into a �le in a user readable format. The following example
shows what the contents of this �le could look like for an audit of partition number 2:

***** SQLAUDIT: GENERATING RESULTS ****

Creator: dbauser Creation Time: 1993-05-11 14:22:16.531

BEGIN

INSERT (2) USER1.TABLE1 (123, 'test data', NULL, 1.23)

UPDATE (2) USER1.TABLE1 (123, 'test data', NULL, 1.23) ((3) 0x0000123C)

COMMIT User: USER1 Label: TRANS1 Time: 1993-05-11 10:15:00.123

BEGIN

DELETE (2) USER1.TABLE1 (123, 'test data', 0x0000123C, 1.23)

COMMIT User: USER1 Label: TRANS2 Time: 1993-05-11 10:15:01.455

End of File

In this example, the �rst transaction audited shows that a record was inserted into table
USER1.TABLE1 and that the third column in the record was then updated. In the next
transaction, the record was deleted. The number in parenthesis following the operation type is
the partition number that the operation was performed against (partition number two in this
case).

For performance and log space reasons, some information is not contained in the audit log
record. For example, column names of the table being updated are not contained in audit
log records. Since log records are being audited rather than an active DBEnvironment, it is
not possible to get the column names from the system catalogs. For example, a table may
have been dropped and recreated a number of times between the time the audit log record was

DBA Tasks and Tools 1-29

created and the time you run SQLAudit. Therefore you should keep the following points in
mind:

DATE, DATETIME, TIME, INTERVAL, and DECIMAL data are printed in the
hexadecimal format.

DDL commands (as they are categorized under the audit elements DEFINITION,
STORAGE, AUTHORIZATION, and SECTION) return only the operation type such as
whether the command was a CREATE TABLE or GRANT, for example.

Long �elds in a record are implemented as a pointer to the data. The pointer value is
printed, not the data itself.

Checking the Exit Status

When running ISQL, SQLUtil, SQLGEN, or SQLMigrate in a script, you can check the exit
status to ensure that the utility completed successfully. The exit status is set to the number of
DBERRs encountered. If a DBERR is not encountered, the exit status is set to 0. The exit
status may contain a value in the range 0 - 255.

System Administration for ALLBASE/SQL

The DBA must cooperate with the system administrator on several crucial matters. These
include:

Special user names
HP-UX system resources
Shared memory usage
Native language support
Network administration
Setting up raw �les

Special User Names

In order to create or connect to an ALLBASE/SQL DBEnvironment, you must be sure there
is a special user named hpdb with a user id number of 27 and a group id number of 2 on the
system. Prior to installing the ALLBASE/SQL product, enter the following line in the user
password �le /etc/passwd:

hpdb:*:27:2:hpdb ALLBASE/HP-UX:/usr/bin:/bin/csh

In addition, you should add hpdb to the group bin in the /etc/group �le. The entry should
look as follows:

bin::2:root,rootc,bin,daemon,lp,hpdb

The user id number of 27 has been reserved for the user name hpdb and is required to execute
the ALLBASE program �les. If this user id number does not exist on your system, or if a
user other than hpdb is assigned to this user id number, the security and integrity of your
DBEnvironments cannot be guaranteed.

The ALLBASE/SQL program �les are owned by the user hpdb with the user id number
of 27, and by the group bin, which has a group id number of 2. In addition, several of the

1-30 DBA Tasks and Tools

ALLBASE/SQL program �les have their �le mode set to 4555, which causes the \switch user
id bit" to be turned on. Thus, any users executing the ALLBASE/SQL or SQLUtil program
�les have their e�ective user name changed to hpdb while these programs are executing. The
user's group name remains the same as the name of the group the user is normally associated
with in the �le /etc/group.

Because the \switch user id bit" is turned on, all �les that are created by the ALLBASE/SQL
programs have a �le mode of 600, an owner id of hpdb, and the �le creator's group id, as in
the following example:

-rw------- 1 hpdb dbsupport 368 Mar 15 17:00 PartsDBE

A �le mode of 600 secures database �les (DBEFiles) from modi�cation by other system users
because these �les cannot be accessed by any user other than hpdb.

The owner name and user id number of the program �les and the user name and user id
number of the entry in the �le /etc/passwd can be changed; however, all DBEnvironments on
the system are created with the same user id number and owner name as the ALLBASE/SQL
program �les. If the superuser changes owner names and user id numbers for the
ALLBASE/SQL program �les, you will be unable to access a DBEnvironment that does not
have an owner name and user id that matches the ALLBASE/SQL program �les.

The best way to ensure that all DBEnvironments are compatible is always to use the owner
name hpdb with the user id number 27 for all ALLBASE/SQL program �les. In addition,
make sure the entry in the /etc/passwd �le for hpdb has an asterisk (*) in the password slot to
prevent logins by any remote users named hpdb.

Note If you are running ISQL or SQLGEN, your userid remains your login
name. This allows you to customize your session by remaining the owner
of the �les isqlpro, isqlsyn, and any command �les you create. Refer to the
ALLBASE/ISQL Reference Manual for information on how to connect to a
DBEnvironment using ISQL, and for information on command �les. SQLGEN
is described in a previous section of this chapter.

HP-UX System Resources

ALLBASE/SQL makes use of HP-UX system resources for communication among applications
that connect to DBEnvironments. You must con�gure your HP-UX kernel for an appropriate
number of shared memory segments and semaphores. The HP-UX system administrator
should adjust the values of the following parameters:

shmseg
shmmni
shmmax
semmns
semmni
semmap

These adjustments are especially important for large multiuser systems or for systems in
which you expect to use multi-connect functionality. Instructions for calculating values
to assign to these parameters may be found in the Release Notes that accompanies the
installation media. For information about how to change system parameters, refer to the
chapter \Physical Design."

DBA Tasks and Tools 1-31

Shared Memory Usage

Since ALLBASE/SQL may have to coexist on a system with other applications, the amount
of available shared memory for log bu�ers, data bu�ers, and runtime control blocks must
be negotiated with the system administrator. Refer to the section on \Estimating Shared
Memory Requirements" in the \Physical Design" chapter.

Native Language Support

ALLBASE/SQL lets you manipulate databases in a wide variety of native languages in
addition to the default language, known as n-computer. You can use either 8-bit or 16-bit
character data, as appropriate for the language you select. In addition, you can always include
ASCII data in any database, since ASCII is a subset of each supported character set. The
collating sequence for sorting and comparisons is that of the native language selected. A list of
supported languages is in /usr/lib/nls/con�g.

You can use native language characters in a wide variety of places, including:

character literals
host variables for CHAR or VARCHAR data (but not variable names)
ALLBASE/SQL object names
WHERE and VALUES clauses
�lenames

If your system has the proper message �les installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select, and it displays dates and time according
to local customs. In addition, ISQL accepts responses to its prompts in the native language
selected. However, regardless of the native language used, the syntax of ISQL and SQL
commands|including punctuation|remains in ASCII.

In order to use a native language other than the default, you must do the following:

1. Make sure your I/O devices support the character set you wish to use.

2. Set the HP-UX environment variable LANG to the native language (LanguageName) you
wish to use. For the C shell, use the following command:

setenv LANG LanguageName

For the K shell, use the following command (no spaces before or after the equals sign):

typeset -x LANG=LanguageName

For the Bourne shell, use the following commands:

LANG = LanguageName

export LANG

This language then becomes the current language. (If LANG is not set, the current
language is n-computer.)

3. Use the LANG = LanguageName option of the START DBE NEW statement to specify the
language when you create a DBEnvironment.

1-32 DBA Tasks and Tools

You can use native language characters in the DBEnvironment name. If you do so, you must
set the LANG environment variable to the same language before you can connect to the
DBEnvironment. To avoid confusion, it is advised that you always use the same language for
the DBEnvironment that you use in the LANG variable.

Resetting the LANG variable while you are connected to a DBEnvironment has no e�ect on
the current DBE session.

Network Administration

Administering the network that permits operation of a distributed database is a task that
may involve both the DBA and the system administrator. If your system uses diskless
workstations, it must be con�gured as a distributed system using ALLBASE/NET. You
manage the network using a utility program called NETUtil, as explained in the next
paragraphs.

For an end user to connect to a remote DBEnvironment, two �les must exist: the AliasDB �le
and the NETUsers �le. The AliasDB �le, residing on the client node, contains an entry for
each remote DBEnvironment that is available on the network. The entry contains an alias
name for the DBEnvironment along with the server node and pathname on the server. The
NETUsers �le, residing on the server node, contains an entry for each user on a client node
that has access to a DBEnvironment on the server node.

Using NETUtil

The system administrator (superuser) uses a utility called NETUtil on the client and server
nodes to add entries to and to maintain the AliasDB and NETUsers �les. Each �le is
automatically created when you add the �rst entry to it. On the client node, the system
administrator invokes NETUtil and uses the ADD ALIAS command to create an entry in the
AliasDB �le. All NETUtil commands prompt the user for information, so in this case, the
administrator is prompted for details about the speci�c DBEnvironment to be accessed. (The
entry added to the AliasDB �le will contain the answers to the prompts.)

On the server node, the system administrator invokes NETUtil and uses the ADD USER
command to create an entry in the NETUsers �le. Again, the administrator will by prompted
by NETUtil for the appropriate information. The entry added to the NETUsers �le will
include speci�cs about the user who will be accessing the remote DBEnvironment.

Additionally, users of DBEnvironments can invoke NETUtil to display the entries in the
AliasDB �le so that alias names of DBEnvironments can be checked or con�rmed.

Complete information about NETUtil is found in the ALLBASE/NET User's Guide.

Using ALLBASE/SQL in a Diskless Cluster

ALLBASE/SQL users on diskless machines cannot create a DBEnvironment. The
DBEnvironment must be created by a user on the DUX cluster server. The creator of the
DBE can then give the diskless user access to database tables by setting up ALLBASE/NET
and granting the appropriate authorities.

DBA Tasks and Tools 1-33

Setting Up Raw Files

You can use HP-UX raw (character mode) devices as DBEFiles or log �les with an
ALLBASE/SQL DBEnvironment. Setting up these �les requires a thorough understanding
of the HP-UX �le system and a high degree of cooperation with an HP-UX system
administrator. For additional information, refer to the appendix \Using HP-UX Raw Files for
DBEFiles and Logs" in this manual.

1-34 DBA Tasks and Tools

2

Logical Design

An ALLBASE/SQL database is de�ned both logically and physically. Logically, an
ALLBASE/SQL database is one or more tables or views with the same owner. This chapter
will give guidelines on how to design the logical structure of a relational database and to
use ALLBASE/SQL table, view, and index de�nition features to meet the needs of users
and applications. The logical design process lets you create e�cient databases so that your
applications will perform smoothly and be easy to maintain and support. The process consists
of several distinct steps:

Identifying the data for tables
Normalizing the data
Arranging data in tables
Designing views
Designing indexes
Designing hash structures
Designing integrity constraints
De�ning security levels
De�ning the DBEnvironment scope

The following sections describe each of these steps using the sample DBEnvironment
PartsDBE as an illustration.

Identifying the Data for Tables

Before designing the tables, indexes, and views of the database, you must determine what the
data is. Where will you get the data? How will the data be used? Consider the following test
case.

Integrated Peripherals Incorporated uses purchase order documents that track the purchasing
of parts from external vendors. The goal of the Data Management Group is to create an
automatic process for tracking purchases, paying accounts, mapping external parts to internal
parts, and keeping track of internal part stock levels.

Figure 2-1 shows the purchase order used by Integrated Peripherals.

Logical Design 2-1

Figure 2-1. Identifying Data Categories

You can use similar documents as a starting point for designing the tables in your own
databases. Data from the purchase order can be arranged in categories.

Once the data has been identi�ed, it must be broken up into tables. This is done by
identifying entities, attributes, and keys within the data. An entity is a category of
information to be tracked by the database; an attribute is a characteristic of an entity; and a
key is one or more attributes that uniquely identify a member of an entity.

2-2 Logical Design

For example, on the purchase order for Integrated Peripherals, the database designer might
identify the following general groups of information as entities:

Vendor information
Order information
Order item information

The Vendor Information entity has several attributes, including vendor number, vendor
name, vendor address, sales contact, and phone number. The vendor number attribute
might be identi�ed as a key for the Vendor Information entity, since it is a unique code that
distinguishes vendors from one another.

Make a list of the entities used by your organization in creating applications. For each of the
entities, list the attributes, including keys. Refer to Figure 2-2 for the entities, attributes, and
keys taken from the purchase order used by Integrated Peripherals.

Figure 2-2. Entities, Attributes, and Keys

The entities become tables, and the attributes and keys become the columns in the tables.
Each entity must have a unique value or combination of values for each row in the database
table in which it will appear. This value or combination is known as the primary key.

Logical Design 2-3

Note that the key for order item information is composed of two items. This is because
neither the Item Number nor the Order Number is signi�cant by itself. Remember that a
primary key must be unique. Item number alone cannot be the primary key because every
order can have an item #1. The order number alone cannot be the primary key either because
one order can have several items, forcing the order number to be repeated (not unique).
Therefore, the two pieces of information are combined to yield a unique key.

Once the data has been de�ned and put into groups, it can be normalized to produce the
tables that will become the database.

Normalizing the Data

Normalization is a process that helps you arrange data into tables. The goal of normalization
is to reduce data redundancy and facilitate e�cient updates. In theory, a perfectly normalized
database uses data at maximum e�ciency and minimum redundancy. In practice, however,
normalization does not take into consideration the speci�c applications of a database.
Consequently, normalization is recommended only as a guideline for database design. Use
normalization to get your data into relational format (two-dimensional tables) and then alter
the table format to �t the speci�c needs of users and applications.

The process of normalization entails examining the data and the table format of a database
against each of the criteria for each of the normal forms. Although there are at least �ve
normal forms, most database tables need to be processed only to the second or third
normal form. Therefore, only the �rst three normal forms are discussed here. When data is
normalized, each lower normal form is a prerequisite to the next higher normal form. In other
words, data must be in �rst normal form before it can be put into second normal form.

First Normal Form

In �rst normal form, data contains rows that have the same number of columns.
Unnormalized data is not so orderly. For example, some purchase orders contain one order
item, others contain two or more. Thus, if each order number from the purchase order in
Figure 2-1 were to occupy a single row, each row would have a di�erent number of columns.
By separating the data into three groups as in Figure 2-3, repeated categories are removed,
leaving each row with the same number of columns.

2-4 Logical Design

Figure 2-3. First Normal Form: Removing Repeating Groups

Second Normal Form

In second normal form, shown in Figure 2-4, all attributes are functionally dependent on the
primary key.

Logical Design 2-5

Figure 2-4. Second Normal Form: Establishing Dependency

Attributes are functionally dependent when their values depend directly upon the value of the
primary key. The primary key in the Order Item information is the order and item number
combination. Each such combination represents a unique row.

Since the vendor part number and the order quantity relate to a particular order and item
number, they are functionally dependent on the primary key. However, the unit price depends
on the order quantity (which, in turn, depends on the order and item number), but it does not
depend directly on order or item number. This is called a transitive dependency.

Third Normal Form

In third normal form, data does not have transitive dependencies. In Figure 2-5, unit price
is removed from the Order Items information and placed in a new set of information called
Supply Price, which is used to calculate the price of an item dependent on the quantity
ordered and date delivered.

2-6 Logical Design

Figure 2-5. Third Normal Form: Removing Transitive Dependencies

Third normal form relieves update problems. For example, in second normal form, when an
item's price changes, all orders containing that item would have to be altered. In third normal
form, only the rows for that item in the Supply Price table need to be changed.

Normalized data provides a starting point for table de�nition. Note that the data in
Figure 2-3, Figure 2-4, and Figure 2-5 is in tabular form. The next step in table design is to
take the normalized data and �t it into ALLBASE/SQL columns, tables, views, and indexes.

Arranging Data in Tables

The basic data structure in an ALLBASE/SQL database is a table. Data is stored within
a table as rows divided into columns. Indexes and views are created using the columns of a
table.

To design the tables in your database from normalized data, you must:

de�ne tables from the normalized data according to the uses of the data in your applications

de�ne the columns in the tables

Logical Design 2-7

Defining Tables

To design tables you need to know how the applications use data in SELECT, DELETE,
INSERT, and UPDATE operations. Data that is deleted, inserted, or updated at the same
time should be put in the same table. Use these criteria to start grouping your data into
tables.

To determine the composition of your tables, keep the following guidelines in mind:

The maximum number of tables you can de�ne in a DBEnvironment is 231 -1.

The maximum number of columns in a table is 1023.

The maximum length of a column is 3996 bytes.

The maximum length of a row in bytes is

(NC + 1) � 2 + SCL <= 4000

where NC is the number of columns in the table and SCL is the sum of the column lengths.

If you add a column to a table using the ALTER TABLE statement, the added column is
placed on the right-hand side of the table.

The following paragraphs are a few more guidelines to help you determine table design.

A row is the smallest unit you can delete or insert at a time. This means two columns should
be placed in di�erent tables if they can be inserted or deleted at di�erent times. Assume a
part name is never inserted or deleted unless a corresponding part number is inserted or
deleted. Part name and part number should be in the same table. On the other hand, a
vendor name can be inserted or deleted independent of, say, the order number. Therefore, the
vendor name and order number should be placed in separate tables.

Interactively you can only use the UPDATE statement on one table at a time. This means if
you use a single statement to update one column based on the value of another column, both
columns must be in the same table. The unit price of a part is updated as it pertains to a
particular part number column; therefore, the unit price and part number columns should be
in the same table.

Planning Joins

A join is a query that selects columns from at least two tables. If many applications request
information that can logically reside in two tables, you may want to place the information in
a single table to improve performance. A table with a large number of columns can impair
performance as will several smaller tables that are joined frequently.

The WHERE clause of the SELECT statement is used to specify the condition(s) under which
rows are joined. ALLBASE/SQL allows joins on compatible data types, but for maximum
e�ciency, joins should be performed on identical columns.

Note An application consistently containing queries that join more than six tables
indicates that the tables are over-normalized and the database design should
be re-examined.

2-8 Logical Design

Tables can be joined as Cartesian products where each row of one table is joined with every
row in another table. However, in order for tables to be meaningfully joined, they must share
a common column. If two tables do not share a common column, then a third table containing
common columns for both tables must be introduced into the join, as shown in Figure 2-6.

Figure 2-6. Common Columns for Joins

Several of the sample database tables must be joined to provide the required data to the
users and applications. However, the normalized data does not allow some tables to be joined
directly. Refer to Figure 2-3. The OrderItems table cannot be meaningfully joined with the
Vendors table because there is no common column in the tables. To facilitate retrieval for
those applications that use the Vendors and OrderItems tables, the VendorNumber column
was added to the Orders table, as shown in Table 2-1. This allows a join to be made between
the Vendors and OrderItems tables using the Orders table.

Adding the VendorNumber column, of course, violates the third normal form. However,
normalization is just a tool that helps you design e�cient tables. It is up to the DBA to alter
the table design to meet the needs of the users.

For additional information on joins, including Cartesian products, refer to the \SQL Queries"
chapter of the ALLBASE/SQL Reference Manual .

Final Form of Sample Database Tables

The normalized data from the purchase order form produced the Vendors, Orders,
OrderItems, and SupplyPrice tables. Integrated Peripherals, Inc. also designed a Parts table
and an Inventory table to keep track of the internal parts. As a result, a total of six tables
were designed from the de�ning and normalization phase.

Logical Design 2-9

Columns are added to some of the tables to �t the user's needs. A VendorRemarks column is
added to Vendors to keep comments for that vendor. A ReceivedQty column is added to the
OrderItems table to denote when a shipment arrives. The resulting six tables are shown in
Table 2-1.

Table 2-1. Sample Database Tables

TABLE COLUMNS

Parts PartNumber, PartName, SalesPrice

SupplyPrice PartNumber, VendorNumber, VendPartNumber, UnitPrice,
DeliveryDays, Quantity

Vendors VendorNumber, VendorName, ContactName,
PhoneNumber, VendorStreet, VendorCity, VendorState,
VendorZipCode, VendorRemarks

Orders OrderNumber, VendorNumber, OrderDate

OrderItems OrderNumber, ItemNumber, VendPartNumber,
PurchasePrice, OrderQty, ItemDueDate, ReceivedQty

Inventory PartNumber, BinNumber, QtyOnHand, LastCountDate,
CountCycle, AdjustmentQty, ReorderQty, ReorderPoint

Defining Columns

Each attribute of each entity is de�ned in ALLBASE/SQL as a column in a table. The
\Data Types" chapter in the ALLBASE/SQL Reference Manual contains basic information
on column names and data types. Use the information presented there and the following
guidelines to de�ne columns. A column is de�ned by specifying:

Name
Data type
Size
Whether or not it can contain null values

Defining Column Names

Be precise in your names and descriptions so no user can misunderstand a data element or
its meaning. Each column name can be as long as 20 characters. Try to choose meaningful,
unambiguous names. For example, a name of \Qty" in the OrderItems table could refer to
order quantity or received quantity while \OrderQty" can refer only to order quantity. Long
names, however, may become unwieldy in a report. In the sample database, the column and
table names have been made as unambiguous as possible.

Defining Column Data Type

A data type tells ALLBASE/SQL what type of data can be stored in the column and what
can be done with the column. Thus, a column with an INTEGER data type can only
have integers. A column with a numeric data type (FLOAT, DECIMAL, INTEGER, or
SMALLINT) can be used in arithmetic operations. A column with an alphanumeric data type
(CHAR or VARCHAR) can appear in a string operation such as a comparison using the LIKE
predicate.

2-10 Logical Design

Some guidelines for data types are:

Match the data type to the data, for example:

Columns used for quantity or count should be de�ned as INTEGER or SMALLINT.

Columns containing real numbers or engineering data should be de�ned as REAL or
FLOAT.

Columns used for money should be de�ned as DECIMAL so there is no loss of precision
when rounding.

Columns containing alphanumeric characters should be de�ned as CHAR or VARCHAR.
VARCHAR is used for particularly large alphanumeric columns like descriptions or
comments. The VARCHAR data type is recommended when there are a few potentially
large character strings, but most of the time the entire column will not be �lled. The
VARCHAR data type stores character data more e�ciently because the column is not
padded with blanks. The VendorRemarks column in the Vendors table is de�ned as
VARCHAR.

Columns containing binary data or data of an unspeci�ed kind should be de�ned as
BINARY or VARBINARY. The VARBINARY data type is recommended when there are
a few potentially large binary strings, but most of the time the entire column will not
be �lled. The VARBINARY data type stores binary data more e�ciently because the
column is not padded with zeroes.

For very large column values (greater than 3996 bytes), use the LONG BINARY or
LONG VARBINARY data type.

Columns used for dates should be de�ned as DATE.

Columns used for times should be de�ned as TIME.

Columns used for timestamps should be de�ned as DATETIME.

Columns used for intervals should be de�ned as INTERVAL.

Avoid data conversions by using the same data type for columns that are frequently
compared or used in a WHERE clause. For example, if you compare two columns
frequently, do not de�ne one as INTEGER and the other as FLOAT. ALLBASE/SQL will
have to convert one number to the data type of the other which could result in performance
degradation and possible loss of precision.

CHAR and VARCHAR columns are de�ned with a length in bytes. Therefore, if your log-on
language is a 16-bit language such as Chinese, the number of two-byte characters you can
store will be equal to half the column width.

Columns of type VARCHAR or VARBINARY may cause an extra tuple header to be stored.
A tuple header is a description of the rows on a DBEFile page. If all rows on the page are the
same, the header can be shared. A VARCHAR or VARBINARY column may be a di�erent
length in each row thus requiring each row to have its own tuple header. The calculations in
Chapter 3, \Physical Design", assume that each row has its own tuple header. Refer to the
ALLBASE/SQL Reference Manual chapter on \Data Types" for further explanation.

The use of VARCHAR or VARBINARY data types can result in page shifting, that is,
movement of data from one page to another when the size of the data changes. This can be a
drain on performance.

Logical Design 2-11

Defining Column Size

You should always de�ne your columns to be large enough to hold the largest piece of
information you expect it will ever hold. This helps to avoid restructuring of tables at a later
time. Column size a�ects both physical design and logging.

Rows are stored in 4096-byte DBEFile pages. After the space for a page header is used, 3996
bytes are left for data storage. During physical design row length is used in calculating the
number of DBEFile pages needed to store data for a table. The sum of all columns plus a two
byte overhead for each column is equal to the total row length:

RL = SC + (2 �NC)

where RL is row length, SC is the sum of the length of all columns in the table, and NC is the
number of columns in the table.

Since a page has 3996 bytes for storage, a row of 2000 to 3000 bytes is going to waste space
by taking one half to three quarters of a page and leaving the rest of the page empty. Column
size can be adjusted to use pages more e�ciently, or a large table can be broken into two
smaller tables to improve page use. This is also discussed under \Calculating Row Length" in
the \Physical Design" chapter in this guide.

Large columns that are modi�ed frequently create proportionately large log records and
consequently use more log �le space. When you determine log �le size in the \Physical
Design" chapter, keep in mind the size of the columns that are being modi�ed.

Defining Null Values For Columns

Columns that might not always have data available should be allowed to contain null values.
A column containing a null value does not store any data. Null values are distinguished from
zeros and blank character data. If the UnitPrice column contains a null value, the price is
considered unavailable. However, if the UnitPrice column contains a zero, the price is $0.00
and the item is free. The default when de�ning columns is to allow null values. Columns
not permitted to contain null values must be created with the NOT NULL option. Some
guidelines for null values are:

If you create a column with the NOT NULL option, you must specify a value for that
column whenever you insert a new row or update the column.

If a column is to be a key value in an index, you should de�ne it as NOT NULL.

If an update application will not necessarily have all the information available, you should
allow null values in the non-key columns (that is, omit the NOT NULL option for those
columns).

There are application and physical design implications with the use of null values. Application
programs that use null values must declare special variables called indicator variables to
handle the null values. Refer to the ALLBASE/SQL Application Programming Guide for the
language you are using for details on using indicator variables.

The use of null values can result in page shifting when the size of the row changes. This can
be a drain on performance. For performance improvement, use the NOT NULL option on a
column de�nition whenever possible. If a column is potentially null, SQLCore uses a two-byte
overhead per column during query processing to check the null status of every selected
column. Although SQLCore also needs to check the status for every inserted and updated
value if the column is de�ned as NOT NULL, performance is better than if the column
allowed null values.

2-12 Logical Design

In addition, a two-byte tuple header is stored on disk for each tuple which has a NULL value
if the inserted tuple's header does not match the �rst shared header on the DBEFile page.
The data types and sizes of the columns for the OrderItems and Vendors tables are shown in
Table 2-2.

Table 2-2. Column Attributes for Two Tables

TABLE COLUMN ATTRIBUTES

OrderItems OrderNumber INTEGER NOT NULL,

ItemNumber INTEGER NOT NULL,

VendPartNumber CHAR(16),

PurchasePrice DECIMAL(10,2) NOT NULL,

OrderQty SMALLINT,

ItemDueDate CHAR(8),

ReceivedQty SMALLINT

Vendors VendorNumber INTEGER NOT NULL,

VendorName CHAR(30) NOT NULL,

ContactName CHAR(30),

PhoneNumber CHAR (15),

VendorStreet VARCHAR(30) NOT NULL,

VendorCity VARCHAR(20) NOT NULL,

VendorState CHAR (2) NOT NULL,

VendorZipCode CHAR (10),

VendorRemarks VARCHAR(60)

Designing Views

A view is a virtual table de�ned on one or more tables or views, or a combination of tables
and views. The term base table refers to the table in which data is actually stored. Views
and query results, although they appear in the form of a table, are virtual tables derived from
one or more base tables. ALLBASE/SQL maintains information and statistics on views in
the SYSTEM.TABLE, SYSTEM.SECTION, and SYSTEM.VIEWDEF views in the system
catalog, which is presented fully in the chapter, \System Catalog." The following are some
primary reasons for de�ning a view:

Restricting access to the base tables.
Keeping data independent of the applications that use it.

In an interactive environment, views are commonly used to restrict access to base tables.
A large table containing data from several areas can be broken up into smaller views, one
for each area. The data is available to those who need it, but the entire table is secure from
unauthorized users. For example, in a personnel database, a view containing employee names,
extensions, and locations can be derived from a table that also contains home addresses,
salary, and other information to which access should be restricted. Users can then be granted
access to the views without being able to access the sensitive data in the base tables. Refer to
Chapter 5, \Database Creation and Security," for information on coordinating view de�nition
with security design.

Logical Design 2-13

Data independence is usually a concern in programmatic environments. An application
that accesses several tables would have to be modi�ed each time the tables were altered. A
view de�ned to look like the old tables would keep applications independent of database
changes. Refer to the appropriate ALLBASE/SQL Application Programming Guide for more
information on how views a�ect and are manipulated by application programs.

View de�nition is not restricted to base tables. You can de�ne a view on another view's
derived columns. Refer to the ALLBASE/SQL Reference Manual for a complete list of
restrictions on de�ning views.

To de�ne a view, use the same guidelines as for de�ning a table (refer to \De�ning Tables" in
this chapter), plus the following:

ALLBASE/SQL does not limit the number of views you can de�ne.

A view cannot be created with an ORDER BY clause.

You cannot de�ne an index on a view.

You can de�ne as many as 1023 columns per view.

You can use up to 32 base tables to de�ne a view, which includes the tables that comprise a
view from which another view is de�ned.

You can manipulate data through views as you would through tables, but certain restrictions
apply. In general, you cannot INSERT, DELETE, or UPDATE through a view if any of the
following are used to de�ne it:

Multiple tables (joins).

A GROUP BY clause.

An aggregate function (AVG, MAX, MIN, SUM, COUNT).

A DISTINCT in the SELECT clause.

De�ned �elds in the SELECT clause, e.g., ColumnA + ColumnB. In this case, DELETE is
allowed. For more information, refer to \Updatability of Queries" in the \SQL Queries"
chapter of the ALLBASE/SQL Reference Manual .

A UNION clause.

A view is essentially a stored SELECT statement. Therefore you cannot alter a view by
adding columns to it. To add a column to a view, simply delete the old view and create a new
view, specifying the additional column in the SELECT clause.

For the most part views are used to restrict data access. However, views are actually
an additional layer to the base tables. This means that each time a view is used,
ALLBASE/SQL must perform an additional step to build the view before the user gets the
data. Preprocessing applications also takes longer if the application contains views because
the system catalog must be accessed twice: once for the view and once for the base tables
on which the view is de�ned. Ultimately, the DBA must weigh the factors for and against
creating views depending on the needs of the users.

2-14 Logical Design

Designing Indexes

An index is de�ned on one or more columns in a table to facilitate rapid retrieval of data.
ALLBASE/SQL decides whether to use an index in the process of creating an optimal access
path for the data during query optimization. By default, you cannot specify the use of
an index in an SQL statement; the optimizer will decide to use an index if it will improve
performance during query processing. However, if you use the SETOPT statement you can
override the optimizer and specify the use of an index.

ALLBASE/SQL uses a B-tree (balanced tree) design for indexes, as shown in Figure 2-7.

Figure 2-7. B-Tree Index Design

The tree has di�erent levels:

Root level| a single root page containing key values that subdivide the index search.
Intermediate levels| pages containing key values that further subdivide an index search.
Leaf level| pages which point to data values in the indexed column or columns.

When an index is used to access a row on the basis of a key value, ALLBASE/SQL �rst looks
at the root page, then follows pointers down the tree until it �nds an appropriate leaf entry,
which points to a speci�c location in a data page. In Figure 2-7, the root page contains one
subdividing value, Larry. In order to �nd student Glen, we would �rst examine the root page,
which points to the leftmost page on the next level, since Glen comes before Larry in this
collating sequence.

Logical Design 2-15

This page in turn points to the second leaf page from the left, since Glen comes after Dave
and before Larry. Finally, the leaf page points to a speci�c data page where the desired row is
found.

Note that ALLBASE/SQL B-tree indexes are doubly linked, in that the leaf pages point to
other leaf pages, so that the next higher or lower value in key order can be quickly located
without \backing out" to a higher level in the tree.

Keep in mind the following general guidelines when designing indexes:

Indexes can only be de�ned on tables.

An index can only be de�ned on one table.

The maximum number of columns allowed per index is 16.

There is no limit to the number of indexes you can de�ne.

Too many indexes can degrade performance because when a row is inserted, deleted, or
updated in a table, the indexes must also be updated.

A small table may not need an index.

Cyclic applications requiring multiple access paths (for example, accounting applications
for quarterly and annual reports) can create indexes, then drop them when �nished. This
reduces index overhead and maintenance and improves application performance. DDL must
be enabled for this approach to be possible.

An index may improve the performance of queries containing a WHERE clause involving a
comparison on the �rst column of a multicolumn index key.

ALLBASE/SQL updates indexes automatically as rows in the table are updated,
inserted, or deleted. This adds considerable overhead to the UPDATE, DELETE, and
INSERT operations. ALLBASE/SQL maintains index information and statistics in the
SYSTEM.INDEX view in the system catalog, which is presented fully in the chapter, \System
Catalog."

Determining Index Keys

All of the columns in an index together compose what is called a key. An index on a single
column has a simple key. An index on multiple columns has a compound key.

Any column that you specify as a search item in a query will cause ALLBASE/SQL to look
for an index with that column speci�ed as part of a key. If no appropriate index is found, or if
the optimizer decides not to use the index, ALLBASE/SQL performs a sequential search on
that table. Sequential searches may degrade performance when most of the performed queries
have a WHERE clause.

The ideal index has the one or two most common columns used in a WHERE clause de�ned
as keys. Keep the following guidelines in mind when determining which columns to use for a
key:

A simple key can be as long as 1010 bytes.

An index should contain a column that is used in the WHERE clause of a frequently
executed query.

An index should contain a column that is used to verify the existence of a value, especially
if it is a unique index.

2-16 Logical Design

If you are considering a compound key, you should also keep the following in mind:

A compound key can have up to 16 columns.

The length of a compound key must be less than or equal to 1024 bytes. Use the following
formula to determine whether or not a proposed compound key is acceptable:

2NC +KL+ 18 <= 1024

Where NC is the number of columns, and KL is the sum of the column lengths in the key.
A single column index may not exceed 1010 bytes.

The order in which you specify columns in the CREATE INDEX statement determines
the sort ordering: the �rst column listed is the primary, or �rst, order of sort; the second
column listed is second in order; and so on.

The most common index is created on the primary key of a table. For example, the order
number is the primary key in the Orders table. Therefore an index with the OrderNumber
column as a key should be created on the Orders table.

How Index Keys are Used

ALLBASE/SQL uses simple and compound key indexes di�erently. Suppose most of your
queries have a WHERE clause for the VendorNumber and OrderNumber, but the two columns
are never used in the same WHERE clause:

WHERE VendorNumber='StringConstant'

WHERE OrderNumber=Integer

In this case, you should create two separate indexes, each with a simple key.

Even if the two columns are used in the same WHERE clause, but they are compared against
each other, only one of the columns can be used as a search item.

WHERE VendorNumber=OrderNumber

In this case as well, you should create two indexes with simple keys.

On the other hand, suppose the two columns are always used together in a WHERE clause:

WHERE VendorNumber='StringConstant' AND OrderNumber=Integer

In this case you should create one index with a compound key. While it is not required to
have an index on each table in a join, de�ning an index on one or both of the tables may
improve performance. In general, you should de�ne an index on the columns speci�ed in the
join. For example, if the sample database has an application that joins the SupplyPrice table
with the OrderItems table, then an index with VendPartNumber (the common column) should
be de�ned on one of the tables if not both of them.

Determining Index Type

You can design one of four di�erent types of index:

Unique
Clustering
Clustering and unique
Neither clustering nor unique

Logical Design 2-17

The unique index will not permit duplicate values for the key columns speci�ed. The
clustering index attempts to place rows with similar key values physically close to each other
on disk.

Defining Unique Indexes

If you specify the unique option when creating an index, the columns named in the index key
are kept unique. Unique indexes prevent duplicate data in the columns used as keys of the
index.

In the sample database, the Vendors table has a unique index created on the VendorNumber
column to ensure that a vendor number refers to only one vendor. A table can have multiple
unique indexes. However, ALLBASE/SQL will not allow you to create a unique index on a
table that already contains rows with duplicate values in the key columns.

Defining Clustering Indexes

Clustering indexes are closely related to physical design of the database. To understand what
a clustering index does, you must know that ALLBASE/SQL arranges data in sections of a
DBEFile called pages. A clustering index attempts to place all rows with similar key values on
the same or consecutive pages. Because the rows are physically close, I/O overhead is reduced
and performance improved whenever the rows are retrieved in key order. This can be helpful
with queries in which you make use of LIKE and BETWEEN predicates.

A clustering index should be de�ned on a table after the initial loading of the table but before
any additional rows are inserted in the table. It is recommended that you sort data on the
clustering key before you load it into the table. Rows inserted before a clustering index is
created are not repositioned after the index is created. Therefore, if you want to create a
clustering index on a table that already contains data, you should unload the table using a
SELECT statement with an ORDER BY clause, reload the table, then create the clustering
index.

Keep the following guidelines in mind when considering a clustering index:

Regardless of the number of indexes you de�ne on a table, only one index can be a
clustering index.

A clustering index can be either non-unique or unique.

A clustering index should be based on the most commonly used sort sequence.

Clustering bene�ts applications that must search large amounts of data to retrieve rows in
sequential order based on a key value.

A clustering index can be de�ned on an existing table; however, existing rows will not be
repositioned.

A clustering index may improve the performance of a query containing a DISTINCT,
GROUP BY or ORDER BY clause if the columns in the sort list match the �rst columns in
the index de�nition.

A clustering index may improve the performance of a query containing a WHERE clause
involving a comparison on the �rst few columns listed in the index.

Any index makes INSERTs and UPDATEs more expensive.

2-18 Logical Design

Clustering of data is maintained when there is a relatively large volume of DELETE
operations followed by a similar volume of INSERT operations on the table. Clustering of
data is not maintained when there is a larger volume of INSERT operations than DELETE
operations.

Designing Hash Structures

Like an index, a hash structure speci�es up to 16 key columns on a table to facilitate rapid
access to data. But unlike an index, a hash structure is not a separate object; instead, it is
a way of arranging the actual table data in DBEFile pages. To create a hash structure, you
must de�ne a hash key and specify a number of primary pages in a DBEFileSet containing one
or more empty TABLE or MIXED DBEFiles.

Because of the nature of hashing, you can de�ne only one hash structure for a single table.
You can, however, de�ne multiple B-tree indexes on the same table. You cannot de�ne a
clustering index, because clustering a�ects the physical placement of data, and this would be
incompatible with the physical placement chosen by the hash algorithm.

Another consequence of hashing is the requirement that you specify a number of primary
pages. When the table grows to include more data than will �t on the primary pages, new
tuples are placed on overow pages , which can be located in the same or in other DBEFiles
within the same DBEFileSet. The larger the number of overow pages, the slower the access
to the average tuple.

Understanding the Hash Function

Each time a row is inserted into the table, a hash function maps the speci�ed key value to a
logical page in the DBEFileSet associated with the hash structure. If two keys hash to the
same page (in what is called a collision), then space is allocated on the same page if possible
for both rows. If space cannot be allocated on the same page, a new page is allocated (an
overow page) and linked to the old page.

To access data through a hash structure, ALLBASE/SQL calculates the correct data page
location in the DBEFileSet from the key value by means of the hash function.

The hash function used by ALLBASE/SQL derives the primary page number in three steps:

1. Creates a concatenated form of the key.
2. Folds the concatenated key into a 4-byte integer.
3. Computes the primary page number, as follows:

Primary Page Number = (Folded Key) mod (Number of Primary Pages + 1)

The important thing to note is that hashing works best with a fairly even distribution of key
values, spreading the corresponding rows evenly over the number of pages available. A key
with a skewed distribution will attempt to place all rows on a correspondingly skewed set of
pages. For good results, use a prime number of primary pages when you are hashing on a
non-integer key.

Logical Design 2-19

Choosing Hash Keys

In choosing a hash key, one important consideration is your query design. There must be
an EQUAL factor for each key column in the predicates of queries that will use the hash
structure.

Another important issue is the distribution of key values. The best key results in a set of hash
values that are evenly distributed among the primary pages available. The worst key results in
hash values that cluster tightly in a narrow range of primary pages, leaving others empty.

Another consideration is that the key must be unique. It can either be a unique single column
value or a unique combination. In addition to being unique, a hash key should be non-volatile,
that is, not subject to frequent update. Since you cannot use the UPDATE statement with a
hash key column, you must do a DELETE followed by an INSERT when a key modi�cation is
necessary.

An integer key such as a social security number is ideal. You can also use multiple columns to
create a unique key, as in the following example:

CREATE PUBLIC TABLE PurchDB.OrderItems

(OrderNumber INTEGER NOT NULL,

ItemNumber INTEGER NOT NULL,

VendPartNumber CHAR(16),

PurchasePrice DECIMAL(10,2) NOT NULL,

OrderQty SMALLINT,

ItemDueDate CHAR(8),

ReceivedQty SMALLINT)

UNIQUE HASH ON (OrderNumber, VendPartNumber) PAGES=101

IN OrderFS

Note that use of a multicolumn key does not, in itself, ensure uniqueness.

Choosing the Number of Primary Pages

The number of primary pages in a hash structure is the number of data pages allocated as
hash buckets. The optimal number depends partially on how much data you need to store,
and partially on how sparse you wish the DBEFile pages to be. The larger the number of
primary pages, the more sparse the pages.

In general, choose a number that is large enough for the data you need to store plus space
for a reasonable amount of growth. In practical terms, the smallest number of primary
pages would be equal to the size of the data divided by the size of a page (about 3900 bytes,
allowing for overhead). The largest number of primary pages you might choose would be equal
to the total number of rows; for a unique hash structure with a completely even distribution of
key values, this would mean one row per page.

For small tables subject to frequent access, create a hash structure with the number of
primary pages equal to the number of rows and with an even distribution of key values. An
example is a currency exchange table containing entries for 50 currencies using a currency
code key with values ranging from 1001 to 1050 and 50 primary pages. This structure will
enable you to lock only a single row at a time while accessing data, thereby improving
concurrency.

2-20 Logical Design

Designing Integrity Constraints

You can enforce integrity in particular tables or in the relationships among tables in your
design by creating integrity constraints on speci�c columns. Unique, referential, and check
integrity constraints can be included as part of the CREATE TABLE or ALTER TABLE
statements. A check constraint can be included as part of a CREATE VIEW statement.

A unique constraint lets you eliminate duplicate key values. To create the unique constraint,
you use the PRIMARY KEY or UNIQUE option along with the NOT NULL clause in the
CREATE TABLE or ALTER TABLE statement. To enforce uniqueness, ALLBASE/SQL
automatically creates a unique index on the speci�ed key in the same DBEFileSet as the
table. A unique constraint di�ers from a unique index in that you do not create it with a
separate SQL statement, and you do not have to name it.

A referential constraint lets you enforce a relationship of dependency between di�erent keys.
This relationship implies the existence of both a referenced table and a referencing table,
which may be the same table. The referential relationship means that a key value must exist
in the referenced table before a row containing that key value is inserted in the referencing
table. (However, the foreign key in the referencing table can contain NULL values, even
though the primary or unique key in the referenced table cannot contain NULL values.)

The referenced table must be created with a PRIMARY KEY or UNIQUE clause in the
CREATE TABLE or ALTER TABLE statement. The primary or unique key is then referred
to in the FOREIGN KEY or REFERENCES clause in the CREATE TABLE or ALTER
TABLE statement for the referencing table.

Table check constraints additionally ensure that a speci�ed search condition does not evaluate
to false for any row of a table. The search condition may evaluate to unknown if a column
speci�ed in the condition contains a NULL value. A search condition is de�ned on columns of
a table in the CREATE TABLE or ALTER TABLE statement.

A check constraint for a view is de�ned through the WITH CHECK OPTION clause. This
constraint ensures that no changes made through the view violate its de�nition. Such a check
constraint is enforced during an insert or update to a table through the view. The check must
satisfy �rst the view constraints and the constraints de�ned on the table on which the view is
based.

You can also defer constraint checking to the transaction level and set general error checking
to row level. Constraint error checking is performed at the current general error checking level
unless constraint checking is deferred. Deferring constraint error checking avoids constraint
errors that will be resolved by the end of the transaction. Setting general error checking to
row level avoids some logging and rollback overhead if you are using nonarchive logging.

For complete information about integrity constraints, refer to \Constraints, Procedures, and
Rules" chapter in the ALLBASE/SQL Reference Manual , and to the application programming
guide for the language of your choice.

Logical Design 2-21

Defining Security Levels

In ALLBASE/SQL, you create security controls by granting authorities to speci�c users or
groups. An authority is a privilege that enables a user to access the DBEnvironment, create
database objects, use SQL statements, preprocess and run application programs containing
SQL statements, or maintain the DBEnvironment. By selectively granting and revoking
authorities, the DBA can control access to the DBEnvironment as well as to the tables, views,
columns, groups, and modules within the DBEnvironment.

You can grant authorities to one of four entities:

A DBEUserID
An authorization group
A class
PUBLIC

The DBEUserID is the same as your HP-UX userid. Therefore a user logged on as wolfgang
has a DBEUserID of wolfgang . An authorization group is a named collection of users sharing
the same authorities. A class is an entity which may own objects that should not belong to
any individual or group.

PUBLIC is a special, nonrestrictive category of user. By granting an authority to PUBLIC,
you implicitly grant that authority to any user who has CONNECT authority to the
DBEnvironment.

Authority Types

There are �ve basic types of authority in a security design:

Special authorities
OWNER authority
Table and view authorities
RUN authority
EXECUTE authority
Space authorities

Except for DBA, RESOURCE, and OWNER authorities, ALLBASE/SQL authorities are
discrete, not hierarchical; for example, granting CONNECT authority does not automatically
grant RUN authority. This relationship is shown in this �gure.

2-22 Logical Design

NNNNNNNNNNN
DBA

|

| | | | | | | |

SECTION- DBA CONNECT TABLE- RESOURCE.....
NNNNNNNNNNNNNNNNN
OWNER MONITOR INSTALL

SPACE | SPACE |

etc. ------------------

| | |

EXECUTE RUN ALTER

DELETE

INDEX

INSERT

SELECT

UPDATE

REFERENCES

.......implicit grant

-------explicit grant

NNNNNNNNNNNNNNNNN
OWNER authority can be transferred

Figure 2-8. Relationship among Authorities

Special Authorities

The following authorities are special authorities:

DBA authority
RESOURCE authority
CONNECT authority
MONITOR authority
INSTALL authority

A user with DBA authority has all other authorities plus some special capabilities for
DBEnvironment maintenance. A user with DBA authority shares OWNER authority for
all objects in the DBEnvironment. DBA authority is required to grant or revoke any of the
special authorities.

A user with RESOURCE authority can create tables and authorization groups. The user
becomes the owner of the table or group. That user has OWNER authority for the object
until ownership is transferred to another user.

A user with CONNECT authority can connect to the DBEnvironment.

A user with MONITOR authority can run SQLMON on the DBEnvironment.

A user with INSTALL authority can install stored sections owned by another user, class, or
group.

Logical Design 2-23

Owner Authority

The following objects can have owners:

Tables
Views
Modules
Procedures
Authorization groups

The owner of an object can drop that object. The owner of a table, view, module, or
procedure can grant authorities for that table, view, module, or procedure to other users. The
owner of a module has RUN authority for that module plus the capability to re-preprocess
the module. The owner of an authorization group can add members to the group, remove
members from the group, or drop the group.

The name of an authorization group must be unique within the DBEnvironment. There
cannot be either another owner or another authorization group with the same name on the
system.

OWNER authority for a table or view implies all table and view authorities. Even a user
with DBA authority can neither revoke table and view authorities from the owner of a
table or view, nor revoke RUN authority from the owner of a module. OWNER authority
cannot be granted or revoked, but it can be acquired during object creation or transferred to
another owner by either the current owner or by a user with DBA authority. If ownership
is transferred, the original user no longer has any authorities to access the object unless
explicitly granted.

The owner of an object can be an individual user, an authorization group, or a class.
OWNER authority is obtained in one of the following ways:

By creating an object. RESOURCE authority is required for users to be able to create
ownable objects. Only a user with DBA authority can create an object and assign another
individual user, a group, or a class name as the object's owner.

By having DBA authority. All users with DBA authority share ownership of all objects in
the DBEnvironment with the actual owners. Users with DBA authority are also exclusive
owners of objects owned by authorization groups and classes.

By transferring ownership. Ownership can be transferred from any name to any other name
by either the current owner of the object or by a user with DBA authority.

Table and View Authorities

Table and view authorities, listed below, determine which users or groups may have access
to the columns of tables for speci�c tasks, such as selecting, updating, deleting, inserting, or
indexing:

ALTER
DELETE
INDEX
INSERT

2-24 Logical Design

SELECT
UPDATE
REFERENCES

Table and view authorities are described fully in Chapter 5.

RUN Authority

RUN authority determines who has access to speci�c preprocessed application modules stored
in the DBEnvironment. RUN authority is further described in the \Maintenance" chapter.

EXECUTE Authority

EXECUTE authority determines who has access to speci�c procedures stored in the
DBEnvironment. EXECUTE authority is further described in the \Maintenance" chapter.

Space Authorities

The following authorities are space authorities:

SECTIONSPACE
TABLESPACE

A user with SECTIONSPACE authority can store sections in the speci�ed DBEFileSet. If the
user does not have SECTIONSPACE authority, the default SECTIONSPACE DBEFileSet is
used instead, even if the user has DBA authority.

A user with TABLESPACE authority can store table and long column data in the speci�ed
DBEFileSet. If the user does not have TABLESPACE authority, the default TABLESPACE
DBEFileSet is used instead, even if the user has DBA authority.

For more information, refer to \Parameters|Grant DBEFileSet Authority" in the Grant
section of the \SQL Statements" chapter of the ALLBASE/SQL Reference Manual .

Defining Authorization Groups

An authorization group can be created by any user with RESOURCE or DBA authority, and
ownership can be transferred to any user. Authorization groups are created and dropped as
objects, but have the attributes of a user because they can:

Be granted any or all authorities.
Have any or all of their authorities revoked.
Own tables, views, modules, and other authorization groups.

When an authorization group is created, its group name is entered into the SYSTEM.GROUP
table in the system catalog (for more information, refer to the \System Catalog" chapter of
this manual). You cannot create a group using a name that already exists as a DBEUserID
or owner name in the DBEnvironment. Conversely, you cannot grant authorities to a valid
DBEUserID if the name already exists as an authorization group or as an owner name in the
DBEnvironment.

The following DBEUserIDs are reserved and cannot be added to a group or used as a group
name:

HPRDBSS

Logical Design 2-25

PUBLIC
SEMIPERM
STOREDSECT
SYSTEM
TEMP

In addition, the DBECreator cannot be added to an authorization group.

Each member of the authorization group has the authorities granted to the group. The owner
of the group, if not explicitly a member of the group, does not have any of the authorities that
have been granted to the group.

After de�ning groups, you can then control authorities on a group basis instead of an
individual user basis.

Determining Group Membership

Group membership is determined by common authority requirements. The DBEUserIDs used
in the sample database belong to di�erent departments within the Integrated Peripherals,
Inc. organization. Each department or function requires a di�erent set of authorities.
Authorization groups are created for each function and DBEUserIDs are added accordingly.

A user can be a member of any number of authorization groups. An authorization group can
itself be a member of other authorization groups. A member of an authorization group that
is, in turn, a member of a second authorization group is known as an indirect member of the
second authorization group. Indirect members of groups have the authorities granted to the
group of which they are a direct member and the group of which they are an indirect member.
In Figure 2-9, the valid chain shows Kelly as a direct member of GroupA and an indirect
member of GroupD and GroupE. Kelly has the authorities granted to GroupA, GroupD, and
GroupE.

Although there is no limit on the number of authorization groups that an authorization group
can belong to indirectly, as illustrated in Figure 2-9, the chain cannot link back to itself.

2-26 Logical Design

Figure 2-9. Authorization Group Chain

Defining Classes

A class is a special category of owner that is neither a conventional DBEUserID nor a group.
You may wish to assign ownership of objects to a class when you do not want any individual
or group to have automatic access to them. With class ownership, the DBA controls all
authorities, since objects that belong to a class can be created and maintained only by the
DBA.

Strictly speaking, a class is an owner that does not have CONNECT authority. An example
of this is an owner for which there is not a corresponding userid on the system and to which
you have not granted CONNECT authority. For a class to be useful, its class name must be
di�erent from the name of any existing DBEUserID or group ID.

Differences Between Groups and Classes

You create a group explicitly by using the CREATE GROUP statement. You create a class
implicitly by creating objects that have a class name as owner name.

A group has members, all of which have the same group privileges. For example, if user alex
is a member of a group Sales then alex can drop or alter objects owned by Sales .

A class does not have members, nor can it use any authorities, though you can grant them
if you wish. This can be useful in a scenario in which you want to pre-assign ownership of
objects to a DBEUserID for which there is not yet a userid on your system.

As DBA, you retain all authorities over the objects owned by a class and must explicitly grant
authority to any user of those objects.

Logical Design 2-27

Guidelines for Creating Classes

In designing a security scheme that includes classes, follow these guidelines:

Make sure that a new class name is di�erent from any DBEUserID.

Make sure the class name is not the same as any group name de�ned in the
DBEnvironment.

Choose a class name that reects the concept behind the class, e.g., PurchDB for
Purchasing Department Database.

Do not assign CONNECT authority to a class. Doing so converts the class into a
DBEUserID with OWNER authority over objects in the class. This could create problems
at a later time if a real userid were created that had the same name as the class.

As an exception to the last rule, you can safely grant CONNECT authority when you actually
want the new DBEUserID to become the owner of the object once the correct userid is added
to the system.

Defining the DBEnvironment Scope

ALLBASE/SQL databases are contained in a DBEnvironment. A DBEnvironment is one
or more databases that share the same system catalog and the same logging and recovery.
Databases within a DBEnvironment can be related to each other through ISQL and in
applications if security allows it. Databases that are contained in separate DBEnvironments
cannot be linked to each other. An interactive user or application program can only access
one DBEnvironment at a time. (However, the same application can maintain several
DBEnvironment connections and access di�erent DBEnvironments in sequence. Refer to the
section \Using Multiple Connections and Transactions with Timeouts" in the ALLBASE/SQL
Reference Manual chapter \Using ALLBASE/SQL.")

As shown in Figure 2-10, the DBEnvironment used by Integrated Peripherals, Inc., has three
databases.

2-28 Logical Design

Figure 2-10. DBEnvironment used by Integrated Peripherals, Inc.

The PurchDB database has been designed in the present chapter; the other databases are
included to illustrate the use of multiple databases in a single DBEnvironment. All three
databases are placed in a single DBEnvironment because the data, although used separately in
most applications, is sometimes used together in reports and global applications. The number
of databases that you can put in a DBEnvironment is limited only by the amount of disk
space available to you.

There are some reasons why you might create separate DBEnvironments for databases.

You may have several users who need to create and drop objects frequently. Consider
putting their databases into di�erent DBEnvironments, since the frequent creation and
dropping of objects by several users in the same DBEnvironment requires heavy use of the
system catalog and can cause deadlocks.

You may have databases with di�erent users functioning as DBA. DBA authority is
granted at the DBEnvironment level. Databases with di�erent DBAs should be in di�erent
DBEnvironments.

Recovery time increases as the size of the DBEnvironment increases.

Databases are logically separated by the owner name of the tables, indexes, and views. They
can also be physically separated for independent manipulation through selective allocation
of space using DBEFiles and DBEFileSets. The allocation of space or physical design of the
database is covered in the next chapter.

The DBEnvironment designed for Integrated Peripherals, Inc. is the basis for the sample
DBEnvironment PartsDBE, which is included with the ALLBASE/SQL product. Most of the
examples in the rest of this book refer to tables or other objects in PartsDBE.

Logical Design 2-29

3

Physical Design

Physically, an ALLBASE/SQL DBEnvironment is a collection of �les for the storage of
databases. The physical design process helps you compute the storage requirements for the
tables, indexes, and other objects that emerge at the end of the logical design process. This
chapter describes several steps that are involved in developing an appropriate physical design
for your DBEnvironments:

Calculating storage for database objects
Calculating storage for the system catalog
Calculating storage for logging
Calculating temporary disk space
Estimating shared memory requirements
Estimating the number of transactions
Implementing the design

Before designing physical storage, you must �rst establish the logical design of your databases.
The layout of the tables, the number of columns and column sizes, the column data types,
the number and types of indexes, and the estimated number of rows per table are all factors
that a�ect physical design. You should also have an idea of how the the tables are going to be
used, since you can design physical storage to optimize performance.

Physical design also requires an understanding of ALLBASE/SQL �les. Therefore, this
chapter also describes the characteristics of DBEFiles and log �les while presenting guidelines
on determining storage requirements. Familiarity with the HP-UX �le system will also help
you during the physical design phase.

Calculating Storage for Database Objects

A good database storage design requires the following:

Understanding DBEFile characteristics
Calculating storage for tables
Calculating storage for indexes
Arranging tables and indexes in DBEFileSets
Calculating storage for hash structures
Calculating storage for integrity constraints

The numbers derived from the calculations described in the following sections are used to
assign a value for a number of pages in the PAGES= clause of the CREATE TABLE and
CREATE DBEFILE statements.

Physical Design 3-1

Understanding DBEFile Characteristics

DBEFiles are used to store table and index data. They are composed of 4096-byte pages.
DBEFiles can be from 2 to 524,287 pages. The number of pages in an ALLBASE/SQL �le is
determined when it is created. In the case of expandable DBEFiles, the maximum size and
the size of an increment are determined when the DBEFile is created.

All DBEFiles must be associated with a DBEFileSet before they can be used to store data. A
DBEFileSet is a logical grouping of one or more DBEFiles. Figure 3-1 shows a DBEFileSet
(represented by the dotted lines because it is a logical construct) which contains three
DBEFiles (represented by solid lines because they are physical constructs).

Figure 3-1. DBEFiles in DBEFileSets

The amount of storage available in a DBEFileSet is the sum of the pages of all the DBEFiles
in that DBEFileSet. The DBEFileSet in Figure 3-1 shows a total of 200 pages. When a table
in the DBEFileSet illustrated needs more than 200 pages to store data, additional DBEFiles
can be added to the DBEFileSet to accommodate more data.

You can specify the type of data that a DBEFile can contain. DBEFiles can be of type
MIXED, TABLE, or INDEX. MIXED DBEFiles can store either table or index data. TABLE
DBEFiles can store only table data. INDEX DBEFiles can store only index data. As shown
in Figure 3-2, DBEFile1 can be of type TABLE, while DBEFile2 and DBEFile3 must be of
type MIXED.

3-2 Physical Design

Figure 3-2. Data Stored in DBEFiles within a DBEFileSet

All the DBEFiles for a given table and its indexes must be contained in one DBEFileSet.
Table and index data can span more than one DBEFile within a DBEFileSet. Figure 3-2
shows the relationship between DBEFileSets, DBEFiles, and data. Note that in the �gure the
tables and indexes are stored in one or more DBEFiles, but they are all contained within a
single DBEFileSet.

Calculating Storage for Tables

You will need the following information to calculate the number of DBEFile pages needed by
each table and index:

The column size and data type for each column in the table
The row length of the table
The approximate number of rows that the table will contain initially.

Use the following procedure to calculate the necessary number of DBEFile pages needed for
your tables:

1. Calculate the row length for the table (RL).
2. Calculate the number of rows that can �t on a page (NRP).
3. Calculate the number of pages needed to hold all rows (NDP).
4. Calculate the number of directory overhead pages (DO) needed by ALLBASE/SQL.
5. Add the results of steps three and four to arrive at the total number of DBEFile pages

needed for that table.

Physical Design 3-3

The examples presented below show worst-case calculations. They assume that each row has
its own tuple header. Refer to the section \De�ning Null Values for Columns" in the \Logical
Design" chapter for more information about tuple headers.

Calculating Row Length

The row length is dependent on the data type and size of the columns in the table.

Column size is calculated in bytes. INTEGER, SMALLINT, REAL, and FLOAT columns
are a �xed number of bytes. The size of BINARY, VARBINARY, DECIMAL, CHAR, and
VARCHAR columns depends on the size given in the column de�nition. Refer to Table 3-1 for
the storage requirements of the various data types.

Table 3-1. Data Type Storage Requirements

Type Storage Required

CHAR (n) n bytes (where n must be an integer from 1 to 3996)

VARCHAR (n) n bytes (where n must be an integer from 1 to 3996)

DECIMAL (p[,s]) 4 bytes (where p <= 7) or 8 bytes (where 7 < p <= 15) or 12 bytes
(where 15 < p <= 23) or 16 bytes (where p > 23)

FLOAT 8 bytes

REAL 4 bytes

INTEGER 4 bytes. Integer values less than -2147483648 (-2**31) or larger than
2147483647 (2**31 - 1) up to 15 digits long are stored as decimals with
a precision of 15 and a scale of 0, i.e., equivalent to DECIMAL (15,0)

SMALLINT 2 bytes

DATE 16 bytes

TIME 16 bytes

DATETIME 16 bytes

INTERVAL 16 bytes

BINARY (n) n bytes (where n must be an integer from 1 to 3996)

VARBINARY (n) n bytes (where n must be an integer from 1 to 3996)

LONG BINARY (n) n bytes (where n must be an integer from 1 to 231 - 1)

LONG VARBINARY (n) n bytes (where n must be an integer from 1 to 231 - 1)

As you begin calculating row lengths, try to use physical space as e�ciently as possible.
Tables can share DBEFiles, but only one table can store rows in a given DBEFile page. A row
whose columns add up to a length greater than 2000 bytes will potentially waste page space.
For example, if you have a table with a row length of 2050 bytes, a DBEFile page of 4096
bytes with a 100 byte overhead would only be able to hold one 2050 byte row. The remaining
1950 bytes would be left empty.

3-4 Physical Design

The Parts table used in the examples in this chapter has three columns with the following
characteristics:

PartNumber CHAR(16),

PartName CHAR(30),

SalesPrice DECIMAL (10,2)

Use the following calculation to determine the row length for the table:

RL = 16 + 30 + 8 = 54Bytes

The calculations in the following examples assume 30,000 rows will be stored in the Parts
table.

Calculating Rows per Page

The following formula is used to calculate the number of rows per page (NRP):

NRP =
4030

RL+ (2NC) + 4

where RL is row length, and NC is the number of columns in the table, divided into the
number of bytes that can �t on a page (a set value of 4030). This formula includes overhead
for column values that can be NULL as well as overhead for the size of VARCHAR and
VARBINARY data.

Using the values for the Parts table, the number of rows that can �t on a page is calculated as
follows:

NRP =
4030

54 + 2 � 3 + 4
=

4030

64
= 62:97

The value for NRP is rounded down to the next integer because a partial row cannot be
stored on a page. The result is 62 rows per page.

Calculating Number of Pages

The following formula is used to calculate the number of DBEFile pages (NDP) needed to
hold all rows in the table:

NDP =
NR

NRP

where NR is the number of rows in the table, and NRP is the number of rows per page.

Using the previous value for NRP of 62 and an assumed value of 30,000 rows in the Parts
table, the number of pages needed for the table is calculated as follows:

NDP =
30000

62
= 483:8

The value for NDP is rounded up to the next integer because DBEFiles are not created with
partial pages. The result is 484 data pages.

Physical Design 3-5

Calculating Directory Overhead

For every 252 pages in a DBEFile, ALLBASE/SQL creates a page table page as a directory
to store information about the next 252 pages. It contains pointers to data and keeps track of
which pages are empty and which tables contain rows in which pages. The directory overhead
(DO) can be calculated with this formula:

DO =
NDP

252

where NDP is the number of data pages which is divided by a set value of 252.

Using the previous value for NDP of 484 pages, the directory overhead is calculated as follows:

DO =
484

252
= 1:9

The value for directory overhead is rounded up to the next integer because DBEFiles cannot
have partial page table pages. The result is 2 page table pages.

The total number of DBEFile pages needed to store 30,000 rows in the Parts table is
calculated as follows:

Pages = 484Data Pages+ 2 Pages Overhead = 486 Total Pages

Perform the calculation for each table to get the total estimated number of DBEFile pages
needed for the DBEnvironment. Be sure to leave enough space in the DBEFiles for minor
expansion of the tables, so you do not need to add DBEFiles to DBEFileSets frequently.

Calculating Storage for Indexes

For indexes, ALLBASE/SQL uses a doubly linked balanced tree (B-tree) structure, which
can have several levels between its initial node, or root page, and the leaf node, or leaf page,
containing the pointer to the requested row. (For basic information about B-tree indexes, refer
to \Designing Indexes" in the \Logical Design" chapter.) Calculate the following values to
determine the number of DBEFile pages needed for an index:

Index key length
Size of index header
Number of bytes per page
Number of rows per non-leaf page
Number of leaf pages
Number of non-leaf pages
Number of overhead pages

The total number of index pages needed is the sum of the number of leaf pages, non-leaf
pages, and overhead pages.

Calculating the Index Key Length

The index key length (KL) is calculated by adding 10 to the sum of length of the columns
(SLC) on which the index is created:

KL = SLC + 10

3-6 Physical Design

The 10 bytes includes 8 bytes for the data TID entry and 2 bytes needed for the slot table
entry. Consult the preceding table, \Data Type Storage Requirements," for the column length
of each data type. If the index is de�ned upon a CHAR(16) column, an INTEGER column,
and a CHAR(20) column, the index key length (KL) is calculated as follows:

KL = 16 + 4 + 20 + 10 = 50

Calculating the Size of the Index Header

The size of the index header (IH) can be calculated with the following formula:

IH = 2 � (NIC + 1) + 2

NIC is the number of columns upon which the index is de�ned. The constant 1 represents the
byte needed for the TID. An additional 2 bytes is needed for overhead. If the index is de�ned
upon 3 columns then the size of the index header is determined as follows:

IH = 2 � (3 + 1) + 2 = 10

Calculating the Number of Rows per Leaf Page

The formula used to calculate the number of rows per leaf page (RLP) depends on whether
the index header can be shared. If the columns on which the index has been de�ned allow
NULL values, or if their data type is VARCHAR, then the index header cannot be shared.

Use the following formula to calculate the number of rows per leaf page (RLP) when the index
header can be shared :

RLP =
4006

KL+ 2 + 8

2 is 2 bytes for the slot table entry; 8 is 8 bytes for the data TID entry. If the index header
cannot be shared, use the following formula:

RLP =
4006

KL+ 2 + 8 + IH
�
2

3

4006 is the number of bytes available in a page. For a conservative estimate, assume that the
leaf pages are 2/3 full. If the result is a fraction, round down to the nearest integer because
a partial row cannot be stored in a page. For example, if the index key length is 50 and the
index header cannot be shared, the number of rows per leaf page is calculated as follows:

RLP =
4006

50 + 10
�
2

3
= 44

Calculating the Number of Rows per Non-Leaf Page

If the index header can be shared, calculate the number of rows per non-leaf page (RNLP)
with the following formula:

RNLP =
4006

KL+ 2 + 8 + 8
�
1

2

Where 2 is 2 bytes for the slot table entry; 8 is 8 bytes for the data TID entry; 8 is the next
data TID pointer. Use the following formula if the index header cannot be shared:

RNLP =
4006

KL+ 2+ 8 + 8 + IH
�
1

2

Physical Design 3-7

The value is multiplied by 1/2, because we assume that the non-leaf pages are half full. If the
result is a fraction, round down to the nearest integer because a partial row cannot be stored
in a page. For example, if the index key length is 50 and the index header cannot be shared,
then the calculation is as follows:

RNLP =
4006

50 + 2 + 8 + 8 + 10
�
1

2
= 26

Calculating the Number of Leaf Pages

Each row of table data is pointed to by a row in a leaf page. To calculate the number of leaf
pages (LP), divide the number of rows your table will contain (RT) by the number of rows per
leaf page (RLP). If the result is a fraction, round down to the nearest integer because partial
pages do not exist. The formula is as follows:

LP =
RT

RLP

If the table will contain 651090 rows of data, and the value of rows per leaf page is 44, the
number of leaf pages is calculated as follows:

LP =
651090

44
= 14797

Calculating the Number of Non-Leaf Pages

To determine the total number of non-leaf pages, you must calculate the number of non-leaf
pages at each level in the B-tree. Start at the lowest non-leaf level, that is, the level just
above the leaf pages, and move up the B-tree until the level has only one page. At each level,
use the following formula:

NLP (n) =
RL(n)

RNLP

NLP(n) is the number of non-leaf pages a level n, RL(n) is the number of rows needed at level
n, and RNLP is the number of rows per non-leaf page. If the result is a fraction, round down
to the nearest integer because partial pages do not exist. Since the rows of non-leaf pages
point to the leaves at the next level down, the value of RL decreases with each higher level.

In the example that follows, assume that the rows per non-leaf page is 33 and the number of
leaf pages is 14797. First, calculate the number of pages at the lowest non-leaf level. The rows
at this level point to the leaf pages. Since there are 14797 leaf pages, the RL(0) is 14797. The
calculation is as follows:

NLP (0) =
14797

33
= 448

Next, calculate the number of non-leaf pages at the next level up. The rows at this level point
to 448 non-leaf pages. The calculation is as follows:

NLP (1) =
448

33
= 13

At the next level up, the page rows point to 13 non-leaf pages. After rounding up to the
nearest integer, the result of the following calculation is 1, indicating that the highest level has
been reached:

NLP (2) =
13

33
= 1

3-8 Physical Design

The total number of non-leaf pages is the sum of the non-leaf pages at each level:

NLP = 448 + 13 + 1 = 462

Calculating the Number of Directory Overhead Pages

For every 252 pages in the B-tree, a directory overhead page (DO) is required:

DO =
LP +NLP

252

A directory overhead page is also referred to as a page table page. Using the values from the
previous examples, the number of overhead pages is calculated as follows:

DO =
14797 + 462

252
= 61

Calculating Total Number of Index Pages

The total number of index pages (TIP) is the sum of the leaf pages (LP), non-leaf pages
(NLP), and directory overhead pages (DO):

TIP = LP +NLP +DO

Using the values from the previous examples, the total number of index pages is calculated as
follows:

TIP = 14797 + 462 + 61 = 15320

Arranging Tables and Indexes in DBEFileSets

Remember the following when allocating DBEFile storage:

All data for a given table and its indexes (including integrity constraints) must be contained
in a single DBEFileSet.

If you do not specify a DBEFileSet when creating a table, the table is put in the SYSTEM
DBEFileSet.

Storage is allocated for tables, indexes, and constraints by adding DBEFiles with the
adequate number of pages to the DBEFileSet in which you intend to create the tables and
indexes.

When you create an index on a table that is located in the SYSTEM DBEFileSet, index
pages also are stored in DBEFiles associated with SYSTEM.

Any DBEFile in a DBEFileSet can potentially store rows from any table and index
associated with that DBEFileSet.

Grouping Tables in DBEFileSets

The following factors a�ect how tables should be grouped in DBEFileSets:

ease of maintenance
performance tuning capability
independence of hash data

Grouping tables in separate DBEFileSets increases traceability of storage for particular tables.
For example, if you store all tables in the SYSTEM DBEFileSet, you will not be able to
tell which DBEFiles hold system catalog data and which hold data for a particular table.

Physical Design 3-9

As a result, all tables and the system catalog would have to be taken into consideration
when storage space is added to the DBEnvironment. All maintenance functions such as
the UPDATE STATISTICS statement would take longer if all tables are stored in a single
DBEFileSet. Therefore, you should create a DBEFileSet for each table or group of tables that
you want to maintain separately.

You may want to place tables that are used infrequently in the same DBEFileSet to use
space more e�ciently. You can add DBEFiles to the DBEFileSet to accommodate the space
requirements of several tables.

Hash tables must be created in separate DBEFiles. It may be useful to create separate
DBEFileSets for your hash tables.

Large tables should have their own DBEFileSet. If a small table is in the same DBEFileSet
as a large one, the performance of sequential scans on the small table will not be as good as if
the small and large tables are separated.

You may want to place related tables in the same DBEFileSet. In the sample database,
one DBEFileSet is created for the internal parts information in the Parts and Inventory
tables. Another DBEFileSet is for the vendor information in the Vendors and SupplyPrice
tables. A third DBEFileSet contains the order data of the Orders and OrderItems tables.
Since related tables are often updated simultaneously, DBEFiles can be added to the
DBEFileSet to accommodate the growth of multiple tables. Figure 3-3 shows how the sample
DBEnvironment is divided into three DBEFileSets.

Figure 3-3. DBEFileSets in the Sample DBEnvironment

3-10 Physical Design

Choosing DBEFile Types and Devices

When a DBEFile is created, it can be speci�ed as one of three types:

TABLE, which contains only table data
INDEX, which contains only index data
MIXED, which can contain both table and index data

You can control performance by selecting DBEFile types carefully and by locating DBEFiles
on the appropriate devices. The characteristics of the transactions to be processed determine
if you should create a separate INDEX DBEFile. If your applications access indexes
frequently, placing the indexes in a separate DBEFile (and possibly on a di�erent, faster
device) may improve performance. If your applications access the indexes infrequently, having
index and table data share the same DBEFile uses disk space more e�ciently.

Using a Single MIXED DBEFile

The default �le type is MIXED. If table and index data are stored together in a MIXED
DBEFile, the disk drive does not have to search multiple DBEFiles when ALLBASE/SQL
uses an index. However, this may not be true for large tables that span several DBEFiles, or
for tables with multiple indexes.

Using Separate DBEFiles for Tables and Indexes

You can improve performance by placing table and index data in di�erent DBEFiles and
locating the DBEFiles on di�erent devices. Then, when an index is used during query
processing, each disk drive accesses either index or table data and reads and updates are
distributed over multiple devices rather than concentrated on a single disk drive.

To ensure that table and index data will be stored in di�erent DBEFiles, create separate
DBEFiles of type TABLE and INDEX, and do not create any MIXED DBEFiles. If there are
no MIXED DBEFiles, ALLBASE/SQL must place all index data in the INDEX DBEFile and
table data in the TABLE DBEFile. If space of the appropriate type is not available, an error
is generated.

If you use separate TABLE and INDEX DBEFiles in a DBEFileSet, you should use the results
of the calculations presented above in \Disk Space for Tables" to provide enough space in the
TABLE DBEFiles to contain all the tables in the DBEFileSet. Similarly, use the results of
the calculations presented above in \Disk Space for Indexes" to provide enough space in the
INDEX DBEFiles for all the indexes de�ned on all tables in the DBEFileSet.

Figure 3-4 shows how the Orders and OrderItems tables in the sample database are stored in
one TABLE DBEFile, and the indexes stored in an INDEX DBEFile.

Physical Design 3-11

Figure 3-4. Table and Index DBEFiles in the OrdersFS DBEFileSet

Note that the OrderFS DBEFileSet does not contain any MIXED DBEFiles.

Using Different Storage Devices

You can use the MOVEFILE command in SQLUtil to locate INDEX DBEFiles on separate
devices from the TABLE DBEFiles in the same DBEFileSet. Since you can only move
physical �les (i.e. DBEFiles), you must keep tables physically separate to be able to place
them on di�erent devices. Simply storing tables in di�erent DBEFiles does not ensure that
they are physically separate.

You may want to create separate DBEFileSets for two tables that are accessed frequently
at the same time by users or applications. Then tables can be associated with di�erent
DBEFileSets and located on di�erent disk drives to minimize disk drive workload.

In Figure 3-5, some of the DBEFiles are located on di�erent disks even though they belong to
the same DBEFileSet.

3-12 Physical Design

Figure 3-5. DBEFiles, DBEFileSets, and Direct-Access Storage

Estimating DBEFile Size

You specify a DBEFile size in the PAGES clause of the CREATE DBEFILE statement.
Once you have determined the storage requirements for each table and index and you have
determined which tables and indexes will be assigned to which DBEFileSets, you can estimate
how big the DBEFiles should be.

Determining DBEFile size involves a trade-o� between convenience (that is, how often you
have to add additional DBEFiles) and use of direct access storage space. Remember the
following when choosing a size for your DBEFiles:

It is a more e�cient use of disk space to add DBEFiles as they are needed rather than to
allocate large DBEFiles before the space is required.

DBEFiles within a DBEFileSet can be of di�erent sizes.

Tables and indexes can span more than one DBEFile.

A DBEFile cannot be dropped if it is associated with a DBEFileSet.

The size of a nonexpandable DBEFile cannot be changed without dropping and recreating
it.

Expandable DBEFiles expand as needed in increments you specify when you create them up
to the maximum you indicate.

Initially, DBEFiles should be large enough to hold the estimated number of rows for all the
tables and indexes in the DBEFileSet.

Physical Design 3-13

The DBEFile in the OrderFS DBEFileSet should be large enough to contain the data for both
the Orders and the OrderItems tables. The formulas discussed earlier in this chapter were
used to arrive at the following page requirements assuming 30,000 rows per table:

Table 3-2. Page Requirements for Table Data

Table Name Size

Orders Table 195 pages

OrderItems Table 450 pages

A DBEFile of type TABLE with at least 645 pages should be created to contain the data for
the two tables. You should create the DBEFiles slightly larger than the estimate to make
room for minor growth. DBEFiles can be added to make room for signi�cant growth.

The Orders table has two indexes and the OrderItems table has one index. Again, using the
formulas on the previous pages, the following numbers are calculated:

Table 3-3. Page Requirements for Index Data

Index Name Table Name Key Column Column Data Type Size

OrderNumIndex Orders OrderNumber Integer 430 pages

OrderVendIndex Orders VendorNumber Integer 430 pages

OrderItemIndex OrderItems OrderNumber Integer 430 pages

A DBEFile of type INDEX with at least 1290 pages will accommodate 30,000 keys for each
of the three indexes. The DBEFiles should be created slightly larger to make room for minor
growth. Again, additional DBEFiles of type INDEX can be added to accommodate signi�cant
growth.

Calculating Storage for Hash Structures

The amount of disk space used by a hash structure consists of the primary pages you de�ne
when you create the structure, page table pages used as overhead by ALLBASE/SQL, and
any overow pages used for rows which do not �t on the primary page pointed to by their
hash key.

Calculating Primary Pages

You can use the following formula to estimate the approximate number of primary pages:

Primary Pages =
Number of Rows �Row Size

Page Size � Fill Factor

Page Size is the amount of space available on a page for data. After subtracting overhead
from a 4096-byte page, about 3900 bytes are free for tuples. Fill Factor is the percentage of
each primary page that should be �lled.

3-14 Physical Design

Suppose you will have a table with 2000 rows that are 350 bytes long and you wish to allow
30% space for additional growth:

Primary Pages =
2000 � 350

3900 � :70
= 256:410

Rounding up to the next whole page, the result is 257 primary pages. For non-integer keys,
you should round up again to the next prime number of pages, which will yield the best
results.

Allowing for Overflow

When ALLBASE/SQL cannot �nd room for a new row on a primary page, it places the data
on an overow page. Overow pages can be in the same DBEFile as the primary pages, or
they can be in any other TABLE or MIXED DBEFile within the same DBEFileSet. When
designing the hash structure, you can create a DBEFile that accommodates both primary
pages and overow pages. Specify a DBEFile size that is larger than the number of primary
pages; the extra pages will then be available only for use by the hash structure.

Some overow is accommodated by the �ll factor described above. You must also estimate
the amount of overow space needed due to variation in key values. For an integer key with
sequential values, no additional pages are needed. For a non-integer key, add 20% of the
number of primary pages for overow.

Calculating the Size of DBEFiles for Hash Structures

When deciding how large to make the DBEFiles for your hash structures, start by calculating
the total amount of space needed, as follows:

File Space = Primary Pages+ Overflow Pages+ Overhead

In addition to primary pages and overow pages, allow one additional page for every 252
primary pages for page directory overhead.

You can allocate the space for primary hash pages over several DBEFiles. Using this
approach, you create several smaller DBEFiles that add up to the total number of primary
pages plus any overow. These �les can then be moved, if you wish, to di�erent devices. The
total number of DBEFiles allocated for primary pages in a hash structure cannot exceed 16.
Remember to allow one directory page for every 252 primary pages in each DBEFile.

Remember that DBEFiles used by hash structures are considered bound , that is, unavailable
for any other purpose.

Allocating DBEFiles for Hash Structures. The DBEFiles for a hash structure are allocated in
the reverse of the order in which they were added to the DBEFileSet in which the table is
created. If you create the hash structure in the same transaction as the one in which you
create the DBEFiles for the hash and add them to the DBEFileSet, you can be sure that other
transactions will not use the new �les.

The primary pages for a hash table can be spread over no more than 16 DBEFiles. Overow
pages for a hash table can be placed in any non-bound non-index DBEFile with space for
them. DBEFiles containing the hash primary pages are considered bound and therefore
unavailable for use by any other table.

Physical Design 3-15

When UPDATE STATISTICS is executed, all DBEFiles bound to hash primary pages are
listed as 100% full to indicate that no more new pages can be allocated from these DBEFiles.
(However, data may still be inserted if the allocated pages are not yet full, and the last bound
DBEFile may contain overow pages if primary pages did not use all of it.)

Mapping Logical Page Number to Physical File Location in Hash Structures

Given a number of DBEFiles with speci�c sizes and a number of primary pages, it is possible
to determine the physical location of a logical page number within a hash structure. This
information may be useful in performance tuning.

DBEFile pages are allocated for use by the hash structure in the reverse of the order in which
they were added to their DBEFileSet. For example, suppose you have created three DBEFiles,
each with 100 pages, and added them to DBEFileSet HashFS in the following order: File1,
File2, and File3. Then, in the same transaction, you create a hash structure in HashFS with
261 primary pages. The distribution of logical pages is shown in Table 3-4:

Table 3-4. Logical Page Number and DBEFile Location in Hash Structure

DBEFile Physical
Page

Number

Contents

File3 0 Page table page (directory)

1-99 Primary Pages 1-99

File2 0 Page table page (directory)

1-99 Primary Pages 100-198

File1 0 Page table page (directory)

1-63 Primary Pages 199-261

64-99 Unused (available for overow)

Page 0 in each DBEFile is allocated as a page table page for directory information. A new
page table page must be allocated every 252 pages if the �le is large enough. The �les in the
above example do not have additional page table pages. If you are using large DBEFiles, you
should include additional page table pages in your calculations.

Calculating Storage for Integrity Constraints

Integrity constraints make use of index structures to enforce the constraint condition. In
addition, each constraint de�nition is stored in the system catalog.

Unique Constraints

Unique constraints make use of unique indexes. When you de�ne a primary key or specify
the UNIQUE option in creating a table, ALLBASE/SQL will create a unique B-tree index.
The storage required for this index is the same as for unique indexes, described in a previous
section. Unique indexes for unique constraints are stored in the same DBEFileSet as the table
on which the primary or unique key is de�ned.

3-16 Physical Design

Referential Constraints

In addition to the unique index that is built on a table that has a PRIMARY key, each
referential constraint you de�ne on the referencing table uses a separate index structure known
as a parent-child relationship (PCR). A PCR is di�erent from a standard B-tree index in that
it contains pointers to both the referencing and the referenced tables. The data for a PCR is
stored in the same DBEFileSet as the referenced table.

You can get a size estimate for a PCR by using the formulas discussed in the section,
\Calculating Storage for Indexes." Be sure to include the keys from both the referenced table
and the referencing table when calculating the index length of the PCR.

Hashing on Constraints

When a unique constraint is de�ned as you create a new table using the HASH ON
CONSTRAINT clause, the table is built as a hash structure, and space is allocated as shown
in the section, \Calculating Storage for Hash Structures."

Check Constraints

Check constraints do not depend on building indexes or PCR's. Therefore, the only additional
space required is for the constraint de�nition in the system catalog.

Calculating Storage for the System Catalog

Each DBEnvironment requires space allocation for the system catalog, located in DBEFile0,
which is associated with the SYSTEM DBEFileSet. The system catalog is a collection of
data that describes the contents of the DBEnvironment. It contains the de�nitions of all
database objects (tables, indexes, views, procedures, rules, constraints, stored sections, and
authorization data) as well as information about the relationship between DBEFiles and
DBEFileSets. Refer to the \System Catalog" chapter for details on the contents of the system
catalog.

Space for the initial contents of the system catalog is allocated in the DBEFILE0 DBEFILE
clause of the START DBE NEW statement. Refer to the ALLBASE/SQL Reference Manual
for further information on the START DBE NEW statement. When a DBEnvironment is
con�gured, ALLBASE/SQL automatically creates one DBEFileSet called SYSTEM and one
DBEFile with the default �le name of DBEFile0. ALLBASE/SQL associates DBEFile0 with
the SYSTEM DBEFileSet and stores in it the initial system catalog data.

The minimum and default size of DBEFile0 is 150 pages, which is su�cient space for
the initial system catalog information plus 20% overhead for expansion. You can use the
default name and size, or you can specify a name and size (up to 16,777,215 pages) during
con�guration.

The following START DBE NEW statement for the PartsDBE sample DBEnvironment
creates a 150 page DBEFile0 named PartsDBE0 and an HP-UX system �le name of PartsF0:

isql=> START DBE '../sampledb/PartsDBE' NEW

> DBEFILE0 DBEFILE PartsDBE0

> WITH PAGES = 150,

> NAME = 'PartsF0';

Physical Design 3-17

As the system catalog becomes larger, you can add DBEFiles to the SYSTEM DBEFileSet
as needed. Alternatively, you can anticipate the growth and con�gure the DBEnvironment
with a DBEFile0 large enough to accommodate the potential system catalog growth.
Conservatively, you can �gure that approximately two DBEFile pages are needed to store
catalog information for every 33 user tables and every 37 indexes. Add a 20% page overhead
for temporary storage during query processing and expansion.

As objects are added to the DBEnvironment, the DBA can monitor the system catalog
to determine if a new DBEFile must be added to the SYSTEM DBEFileSet. Refer to the
\Maintenance" chapter for more details on how to determine when to add a DBEFile to the
SYSTEM DBEFileSet.

The following factors a�ect system catalog size:

SQL statements that create ALLBASE/SQL objects and grant authorities.
The number of sections stored in the system catalog from preprocessed SQL statements.
The number of columns in all tables and views in the DBEnvironment.
Query operations that require sorting.

Storage of Definitions for Newly Created Objects

SQL statements that create objects or alter existing objects will add or update rows in the
system catalog each time they are processed. The following statements add rows to the system
catalog:

ADD TO GROUP ALTER TABLE CREATE DBEFILE

CREATE DBEFILESET CREATE GROUP CREATE INDEX

CREATE PROCEDURE CREATE RULE CREATE TABLE

CREATE VIEW DECLARE CURSOR GRANT

PREPARE

Sections are removed when any DROP statement is executed.

Number of Columns in Tables

The number of columns in the DBEnvironment a�ects the system catalog size because rows
are stored in the system catalog for each column in each table in the DBEnvironment.
Therefore, as columns are added to tables and new tables are created, the system catalog size
increases.

Definitions of Rules, Procedures, Constraints, and Views

The system catalog contains a de�nition string for each rule, procedure, constraint, and view
you create. These de�nitions are stored as character data, and they add additional overhead
to the system catalog.

For procedures, sections and static information are also stored in the system catalog in a base
table that is not exposed to the user.

3-18 Physical Design

Storage of Sections

Sections can be stored in the system catalog by SQL statements when they are preprocessed
as part of an application program. They can also be stored interactively via ISQL.

It is di�cult to put an exact number on how many DBEFile pages are needed for a
given number of sections since more complex statements use more space. For example, a
preprocessed SELECT statement that describes a three-table join stores a larger section than
a SELECT on one table.

Refer to the ALLBASE/SQL Reference Manual chapter \Constraints, Procedures, and
Rules" for information about sections created for procedures. Refer to the appropriate
ALLBASE/SQL Application Programming Guide for more information on which SQL
statements in an application cause sections to be stored.

Calculating Space Needed for Sections

For each section in the SYSTEM.SECTION view, ALLBASE/SQL stores at least one input
tree and, conditionally, one run tree. A tree may take one or more rows depending on the
SQL statement. A row is 504 bytes. SQL statements containing several column names or
host variables may generate multiple-row input trees. Views only store input trees. Complex
SELECT statements such as joins and queries using the GROUP BY or HAVING clauses tend
to generate multiple-row run trees.

To calculate the number of pages needed to store a module, you must calculate the number of
non-query SQL statements (N1) and the number of queries (N2) in the module. The formula
shown below calculates the approximate number of bytes required to store sections. Only
space for sections belonging to modules is calculated.

Tree Bytes = (N1 � 504 +N2 � 504 � 1:2) � 2

The above formula assumes that 20% of the queries are complex. You can alter the formula
to �t a speci�c module by changing 1.2 to the appropriate ratio. If 50% of the queries are
complex, use 1.5 instead of 1.2 to calculate tree bytes for that module.

Assume a program stores eighteen sections during preprocessing and three of those sections
are queries. N2 is three and N1 is �fteen. The number of bytes needed for the module is:

Tree Bytes = (15 � 504 + 3 � 504 � 1:2) � 2 = 18;748:4

Rounded up, the value is 18,749. A DBEFile page can contain eight 504-byte rows. To
translate the 18,749 bytes into pages use the following calculation:

18; 749Bytes

504Bytes Per Row
= 37:2

Rounding up, the result is 38 rows. Then,

38Rows

8Rows Per Page
= 4:75

Physical Design 3-19

Rounding up, the result is 5 pages. The result is always rounded up because DBEFiles cannot
be created with partial pages. These formulas help you determine how many DBEFile pages
should be available in the SYSTEM DBEFileSet for preprocessed applications. Keep in mind
the other factors that a�ect space in the SYSTEM DBEFileSet such as the number of objects
in the DBEnvironment and the DBEFile pages needed to perform CREATE INDEX, ORDER
BY, GROUP BY, HAVING, and DISTINCT operations. Refer to the \Physical Design"
chapter for more information.

Remember to UPDATE STATISTICS and COMMIT WORK after an application is
preprocessed to get an accurate reading of how many DBEFile pages are left in the SYSTEM
DBEFileSet.

Monitoring System Catalog Size

As objects are added to the DBEnvironment, the DBA can monitor the system catalog
to determine if a new DBEFile must be added to the SYSTEM DBEFileSet. Refer to the
\Maintenance" chapter for details on how to determine when to add a DBEFile to the
SYSTEM DBEFileSet.

Although user-de�ned tables can be created in the SYSTEM DBEFileSet, it is recommended
that you create new DBEFileSets to keep user data separate from system catalog data to
facilitate maintenance and performance tuning. Refer to \Arranging Tables and Indexes in
DBEFileSets," earlier in this chapter.

Calculating Storage for Logging

The DBA should calculate the appropriate size of log �les for use with the ALLBASE/SQL
log. Eventually, log �les can become full, and the result is known as a LOG FULL error
condition. To avoid this, you must set up logs that are large enough for your system's heaviest
needs.

Understanding Log File Characteristics

Log �les are di�erent from DBEFiles. Log �les store log records used by ALLBASE/SQL to
perform recovery. DBEFiles contain tables and indexes.

Log �les are composed of 512-byte pages. A log �le can be from 250 to 524,287 pages. The
number of pages in a log �le is determined when it is created. The maximum size of a
single log �le is 4 gigabytes. A single DBEnvironment can have up to 34 log �les con�gured,
providing a maximum of 136 gigabytes of log �le space. Log �les are not associated with a
DBEFileSet.

3-20 Physical Design

Log Records and Transactions

ALLBASE/SQL logs changes made to DBEFile pages. Changes are written to a log �le
(or �les) as log records. At least one log record is created for each data or index page that
is changed. For example, if you update a column in a table that has three indexes created
on that column, you have a minimum of four log records written to the log �le: one for the
change to the column, and one for each of the three indexes.

A log record is a maximum of twice the size of the updated row plus overhead of about 50
bytes. For example, updating a 200-byte column would create a log record of approximately
450 bytes. An update uses the largest amount of space in a log record; other kinds of activity
(INSERT and DELETE operations) use smaller log records.

Note that a log record may be larger than a log page, which is 512 bytes. On the other hand,
a log page may contain several log records. Log space is allocated in pages, whereas log entries
are created as log records, which are inserted into one or more pages.

Transaction size also a�ects log �le size. A transaction is one or more SQL statements that
together perform a unit of work in a DBEnvironment. Transactions are implicitly begun by
ALLBASE/SQL whenever a user or application program executes most SQL statements. You
can also explicitly start a transaction with the BEGIN WORK statement. The transaction is
not ended until a COMMIT WORK or ROLLBACK WORK is executed.

A log �leset should be large enough to hold all current transactions. If one �le in the �leset
�lls up, ALLBASE/SQL switches to the next available �le (if there is one) and continues
logging. If the log �lls up before a transaction in progress completes, and if there is no more
�le space available, ALLBASE/SQL rolls back the current transaction. In most cases, all
other transactions are also rolled back, whether or not they involve updates. This can happen
if your transaction is larger than available �le space in the log. When such a LOG FULL
condition occurs, you will not be able to process any more transactions of the same size until
some log �le space is recovered (in nonarchive logging only), or until a new log �le is added to
the DBEnvironment. Use the SHOWLOG command and the CHECKPOINT statement to
monitor log �le use, as described in the \Backup and Recovery" chapter. Use the SQLUtil
ADDLOG command to add log �les. If you are logging in archive mode, use the STORELOG
command to free archive logs for reuse.

Using Archive or Nonarchive Logs

You can specify archive or nonarchive logging for the DBEnvironment. Nonarchive logging
tracks all current DBEnvironment activity in a log �le. This lets you roll back incomplete
transactions when necessary, maintaining consistency in database tables. When transactions
are no longer current, the space they occupy in the log �le can be reused by other log records.
Archive logging tracks all DBEnvironment activity continuously from the time it is enabled.

By default, nonarchive logging is in e�ect after you issue a START DBE NEW or START
DBE NEWLOG statement. You can turn archive logging on by using the SQLUtil
STOREONLINE command, which backs up the DBEnvironment and then enables archive
logging. Once archive logging is on, you can only disable it with a START DBE NEWLOG
statement.

Physical Design 3-21

For many installations, nonarchive logging is appropriate for the phase of database creation
and initial loading of tables. Once the DBEnvironment has been loaded, you can use the
SQLUtil STOREONLINE command to create a complete backup and turn on archive
logging at the same time. (For complete information about the process of backing up the
DBEnvironment and turning on archive mode, refer to the \Backup and Recovery" chapter.)

Using Single or Dual Logging

When you create the DBEnvironment, you specify either SINGLE or DUAL logging. In
single logging, ALLBASE/SQL maintains one set of log �les in either archive or nonarchive
mode. For greater security, you can specify dual logging, in which a duplicate set of log �les is
maintained. When dual logging is in e�ect, all the procedures described in this chapter apply
to the �les of both logs .

Using Multiple Log Files

By default, ALLBASE/SQL creates a single log �le (or two �les, in dual logging) when you
create the DBEnvironment. During normal operation, transactions are logged until there is
no more space available. This is known as a LOG FULL error condition. If a LOG FULL
condition arises, all transactions are rolled back.

With archive logging, LOG FULL occurs when the end of the last �le has been reached, and
if there is no other log available to switch into. You can assure that there is always another
log to switch into by making sure that all transactions commit promptly, and by using the
SQLUtil STORELOG command to store log �les as they �ll up. Once stored, and once all the
transactions in them are complete, archive log �les are marked available for reuse.

With nonarchive logging, LOG FULL occurs if there is still no available space in the �le after
ALLBASE/SQL takes a checkpoint while using the last �le in the �leset. To prevent LOG
FULL in nonarchive logging, make sure the combined size of all the �les in the �leset is larger
than the space required for the largest number of concurrent transactions you expect in the
DBEnvironment.

To prevent a LOG FULL condition from ever arising, you can use multiple log �les to
provide enough log �le space for the largest amount of DBEnvironment activity that will ever
require logging at any one time. You can do this by setting up a log containing a circular
�leset (or two circular �lesets, for dual logging). A circular �leset is a group of reusable �les
belonging to the same log. You can add log �les to the circular �leset without stopping the
DBEnvironment. When you are using a circular �leset, a LOG FULL condition can only arise
if there is no available space in any of the �les in the �leset. With either archive or nonarchive
logging, you may use up to 34 additional log �les in a log (or 34 additional �les for each set in
dual logging).

For a complete discussion of log �le types, refer to the \Backup and Recovery" chapter.

3-22 Physical Design

Sample Log Configuration

The following START DBE statement creates a sample DBEnvironment named PartsDBE in
dual logging mode with two 256-page log �les named PartsDBELog1 and PartsDBELog2 and
system �le names of PartsLg1 and PartsLg2:

isql=> START DBE '../sampledb/PartsDBE' NEW

> DUAL LOG, LOG DBEFILE PartsDBELog1 AND PartsDBELog2

> WITH PAGES = 256,

> NAME = 'PartsLg1' AND 'PartsLg2';

The following SQLUtil ADDLOG command adds another �le to each of the dual logs. The
result is two log �lesets:

>> addlog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Enter Log File Name(s) Separated by a Blank? PartsLg3 PartsLg4

New Log File Size? 300

Add Log File (y/n)? y

Log files 'PartsLg3' and 'PartsLg4' were Added.

Log Identifier Is: 2

Whatever size you choose to make the individual log �les, the disk space used for logging will
double if you use dual logging.

Disk Space for the Log

The major di�erence between the archive and nonarchive log �lesets is that archive log �les
must be backed up for possible use in the event of a media failure. Nonarchive log �les do
not need to be backed up. Also, certain operations (such as initial table loads) produce more
logging in archive mode than in nonarchive mode. In the following sections, size estimates are
based on archive logging, so the result will be more than adequate for nonarchive logging as
well.

When a DBEnvironment is con�gured, ALLBASE/SQL creates at least one log �le with a
default �le name of DBELOG1 (and DBELOG2 if DUAL LOG is speci�ed), and a default
size of 250 pages. The �le name is relative to the DBECon �le name unless you specify an
absolute pathname. You can use the default name and size or specify a name and size (up
to 524,287 pages) during con�guration. You use the SQLUtil ADDLOG command to add
additional �les to the DBEnvironment.

Determining the Number of Log Files

In nonarchive logging, log �le space can be reclaimed once transactions are committed or
rolled back. This means that your log �le (�les, for dual logging) should be large enough to
hold the single longest transactions plus all concurrent transactions.

In archive logging, log �le space is reclaimed and reused by storing each log �le after it
becomes full. As with nonarchive mode, the sizes of all component �les taken together must
be large enough to contain all active transactions. But for archive logging, there should be at
least two separate �les in the log (two �les for each log, in the case of dual logging) so as to
permit log switching followed by eventual log backup and reuse.

Physical Design 3-23

Estimating Log File Size

To estimate the total size (sum of the sizes of component �les) of a log:

1. Calculate the number of log pages (LP) that the longest transaction will require.

2. Multiply the results (LP) by the maximum number of concurrent transactions allowed in
the DBEnvironment to get the total number of log pages (TLP) required. (This assumes
that the maximum number will all be involved in operations that require the same amount
of logging. If you are running transactions in applications such as report generators that do
not involve logging, subtract the non-logging transactions from the maximum, and use the
result in the calculation.)

3. Add 38 pages per log �le for overhead used by ALLBASE/SQL to maintain the log.

Step 1 calculates the number of log pages needed for the longest transaction. The longest
transaction is the transaction that a�ects the largest number of rows in a DBEnvironment
between a BEGIN WORK and a COMMIT WORK or ROLLBACK WORK statement issued
either programmatically or through ISQL.

The formula used to approximate the log pages needed for the longest transaction is as
follows:

LP =
(DBE Size) � (PercentInserted + PercentDeleted+ PercentChanged) � 2

500Bytes Per Page

PercentInserted , PercentDeleted , and PercentChanged are the percentages of your tables that
are a�ected by the transaction. You can derive these values by dividing the number of rows
inserted (or deleted or changed) by the total number of rows in the table. These percentages
are then applied to the entire DBEnvironment to arrive at a number of log pages for storing
all the information (data from tables, indexes, and constraints, plus overhead) that is logged
by the transaction. DBE Size (in bytes) can be estimated by using the following query after
doing an UPDATE STATISTICS for all tables in your DBEnvironment:

isql=> SELECT 4030*SUM(DBEFUPAGES) FROM SYSTEM.DBEFILE;

Example. Assume that you have a DBEnvironment containing six tables with 30,000 rows
each (total 180,000 rows). Together, all the tables and indexes occupy �ve megabytes. Your
longest transaction will insert 50 rows, delete 25 rows, and change 100 rows. This calculates to
.03% inserted, .01% deleted, and .06% changed.

If you apply these numbers to the calculation for LP in step 1, you get the following results:

LP =
5; 000;000 � (:0003 + :0001 + :0006) � 2

500
= 20 Pages

In step 2, you multiply the number of log pages (LP) by the total number of concurrent
transactions allowed in the DBEnvironment. The total number of concurrent transactions is
a value that you can set at DBEnvironment con�guration and change later using SQLUtil or
START DBE. It is stored in the Maximum Transactions parameter in the DBECon �le, which
is discussed in the next chapter, \DBEnvironment Con�guration and Security."

3-24 Physical Design

Note Using the value for Maximum Transactions in the preceding formula assumes
that all transactions are equally involved in logging. In other words, it is
assumed that each transaction contains roughly the same amount of INSERT,
UPDATE, or DELETE operations.

If this is not true, you may wish to use a weighted or average value in arriving
at the total. While the above calculations will provide more than enough log
�le space, you can arrive at an optimal log size by using weighted values.

The following is the calculation for total log pages:

TLP = LP � (Maximum Transactions)

Suppose that Maximum Transactions is set to 30. The following calculations give the total
number of log pages (TLP) based on the previous calculations:

TLP = 20 Pages � (30 Transactions) = 600 Log Pages

Finally, in step 3, add 38 pages of overhead used by ALLBASE/SQL to arrive at the size your
log �le should be.

Log File Size = 600 Log Pages+ 38 Overhead Pages = 638 Pages

For nonarchive logging, one log �le larger than 638 pages should be su�cient (two log �les, if
you are using dual logging). If you add additional log �les, ALLBASE/SQL will switch to the
second �le if additional space is needed.

For archive logging, you should use at least two separate �les, so that ALLBASE/SQL can
switch from the �rst to the second, thus permitting the �rst to be backed up. The size of each
log �le should be no smaller than 638 pages, but the actual size should take into account the
number of log �les available for log switching and the frequency with which logs can be backed
up on your system. If backups are not done at frequent intervals, a larger number of log �les
will be necessary in archive mode.

Note Updates involving indexed pages can result in a considerable amount of B-tree
page splitting, which requires additional logging.

Until your system is in full production, use a larger than necessary log. You can then
monitor the free log space from time to time until you know the optimal size for your
con�guration. You can easily add and purge log �les as needed with the SQLUtil ADDLOG
and PURGELOG commands.

For all the foregoing calculations on the required size of log �les, it is assumed that all
users are starting and ending transactions in reasonable ways. However, if a user starts
a transaction and then neglects to commit work for a very long time, �les in which that
transaction is active will not be available for switching as assumed in the calculation. In such
a case, the calculations are meaningless.

Physical Design 3-25

Note If you are using dual logging, you specify two di�erent �lenames for each �le
you add to the DBEnvironment with the START DBE NEW, START DBE
NEWLOG, or ADDLOG commands.

Additional information about creating and maintaining logs is found in the \Backup and
Recovery" chapter.

Calculating Temporary Disk Space

ALLBASE/SQL uses temporary disk space of two kinds for sorting and other operations:

Space in temporary operating system �les
Space in the SYSTEM DBEFileSet

Queries that contain the following clauses use temporary pages in operating system �les to
store temporary information:

DISTINCT
GROUP BY
ORDER BY
UNION (but not UNION ALL)

In addition, the following operations also use temporary table space in the SYSTEM
DBEFileSet to store sorted data:

Queries that use sort/merge join processing.
The CREATE INDEX statement, when it operates on tables containing data.

Sorting normally requires about twice the space occupied by the result table being sorted.
Three times the space is required for sorting the result of a SELECT that employs a de�ned
key �eld or that joins two or more tables and uses an ORDER BY clause. Space for sorting
is taken from the tempspace available on the system. Temporary �les are created in the
tempspace, and they are removed after the query is processed. Space is used in the SYSTEM
DBEFileSet whenever a temporary table is created as a result of sorting or query processing.
The SYSTEM DBEFileSet must be large enough to store these temporary tables.

ALLBASE/SQL will use space in the /tmp directory if you do not specify any other location
for temporary space. If this area is not adequate for your needs, you can use the CREATE
TEMPSPACE statement to de�ne a di�erent area, which then serves as the location for
creating temporary �les when they are needed for sorting.

The default number of pages used per �le for tempspace is 256. The total amount of space
used is all that is available in the tempspace area, which on HP-UX is the /tmp directory.

The following is an example of a statement that de�nes an existing HP-UX directory as a
tempspace:

CREATE TEMPSPACE Temp1 WITH MAXFILEPAGES=400, LOCATION= '/disk3/sort1';

The directory /disk3/sort1 must exist already. After you issue this statement, the directory
/disk3/sort1 becomes available for the creation of one or more temporary �les, each of which
can be up to 400 pages in size.

3-26 Physical Design

Many �les may be opened in one tempspace, and each may be expanded up to 400 pages. The
number 400 is an arbitrary value chosen for this example. See the \CREATE TEMPSPACE"
section in the ALLBASE/SQL Reference Manual for the range of allowed values.

Note that the CREATE TEMPSPACE statement does not actually create the directory
/disk3/sort1; it merely stores the description of the TempSpace in the system catalog table
SYSTEM.TEMPSPACE. The actual temporary �les for sorting are created at the time the
sort is carried out, and they are dropped when the sort is �nished. If you want to remove the
TempSpace de�nition from the system catalog, use the DROP TEMPSPACE statement.

Controlling the Use of Temporary Space

The order in which you carry out database operations may determine the amount of
temporary space required. For example, the following two scenarios use the same number of
pages at the end of the operation, but require di�erent amounts of temporary space because
the CREATE INDEX statement calls the same sort routine for an empty table as for a
non-empty table:

(1) CREATE TABLE

CREATE INDEX

INSERT 20000 rows

Scenario 1 does not require the use of temporary space, since the table is never sorted.
Instead, the index is updated as a part of each INSERT operation.

(2) CREATE TABLE

INSERT 20000 rows

CREATE INDEX

Scenario 2 uses temporary �les for sorting, and it also creates a temporary relation to hold the
sorted table prior to the creation of the index.

Estimating Shared Memory Requirements

Each time a multi-user DBEnvironment session is started with either the START DBE
statement or the �rst CONNECT statement, if the autostart option is set to on, a block
of shared memory is reserved for this ALLBASE/SQL session. Until the DBEnvironment
session is ended, all users and programs accessing the DBEnvironment share this allocated
memory. This memory remains reserved until the DBEnvironment is stopped, at which point
the memory is made available for re-use by the system. If AUTOSTART is ON, memory
remains reserved until the last DBE session open against the DBEnvironment terminates.
If AUTOSTART is OFF, memory remains reserved until the DBA issues the STOP DBE
statement.

ALLBASE/SQL uses shared memory for three types of bu�ers:

Runtime control block bu�er
Data bu�er
Log bu�er

You can specify how much shared memory is to be allocated to each bu�er when you create
the DBEnvironment with the START DBE NEW statement. The parameters you specify for
ControlBlocks, DataBu�erPages , and LogBu�erPages are stored in the DBECon �le. A DBA
can temporarily override several of the parameters that comprise shared memory by using the

Physical Design 3-27

START DBE statement, or alter each of the shared memory parameters by using the SQLUtil
ALTDBE command. Initial memory allocation and system con�guration is performed before
installation of the product.

Note Refer to the ALLBASE/HP-UX System Planning and Administration Notes .
Also, refer to the appropriate System Administrator's Manual for your system
for additional information on memory allocation and system con�guration.

Estimating Runtime Control Block Buffer Pages

Each type of DBCore service requires a speci�c number and size of control block bu�er
pages. The number and type needed at any one time depends on such factors as the number,
duration, and type of concurrent transactions, the amount of row or page level locking, and
the amount of update activity occurring. Whether or not a runtime control block bu�er page
is available for re-use by the system depends on the type of runtime control blocks being used.
Transaction lock control block pages may not be available for re-use until after the transaction
successfully terminates with either a COMMIT WORK or a ROLLBACK WORK statement.

Lock management is the single greatest user of shared memory. The greater the number of
concurrent locks held, the greater the number of runtime control block bu�er pages needed to
manage these locks. Consequently, a program designed to have shorter transactions, coarser
lock granularity, or more e�cient concurrency practices is less likely to deplete the amount of
shared memory available.

Effects of Page and Row Level Locking

Page level locking uses more runtime control blocks than table level locking, since each
page must be locked. Row level locking uses even more runtime control blocks than page
level locking, since each row must be locked individually. This can cause the allocation of a
considerable amount of shared memory. The following indicates the maximum number of locks
associated with table, page, and row level locking:

Table 3-5. Maximum Numbers of Locks Obtained at Different Granularities

Locking Level Maximum Number of Locks

Table Level 1

Page Level n + 1

Row Level m + (n + 1)

where n is the number of pages in the table and m is the number of rows in the table.

Table level locking requires a single lock. Page level locking requires up to n page level locks
plus one intention lock at the table level. Row level locking requires up to m row level locks
plus up to (n + 1) intention locks at the page and table levels. Because row level locking on
a large table can consume a tremendous number of runtime control blocks, the use of the
PUBLICROW table type on large tables is discouraged. Large tables for which maximum
read/write concurrency is desired should generally be de�ned as PUBLIC. The PUBLICROW
table type should generally be reserved for use on small tables.

3-28 Physical Design

As an illustration, consider a table that occupies 500 pages in a DBEFile. Assume that each
page holds 20 rows. Suppose that 40% of all rows are a�ected by concurrent activity using
index scans at the RR isolation level on this table|that is, at any one time about 40% of all
rows are being read or updated. Further assume that these rows are spread out among 80% of
the pages in the table.

With page level locking, the number of runtime control blocks used is as follows:

RCB = 500 � :8 = 400

Adding one for the table level intent lock, the total is as follows:

Total = 400 + 1 = 401

If each RCB occupies 90 bytes, the total memory required would be 36,090 bytes, or 9 runtime
control block bu�er pages.

With row level locking, the number of runtime control blocks used is as follows:

RCB = 500 � 20 � :4 = 4;000

In addition to row locks, you need to add the number of page locks (intent locks) from the
earlier calculation. Finally, you should add one intent lock for the table.

The total is as follows:

Total = 4; 000 + 400 + 1 = 4; 401

Then, if each RCB occupies 90 bytes, the total memory required would be 396,090 bytes, or 97
runtime control block bu�er pages.

In addition to the shared memory required for locks, row level locking also requires additional
CPU time to fetch and release the locks.

Running out of Shared Memory

The DBCore allocates memory for runtime control blocks in 4 Kilobyte pages. More
speci�cally, the DBCore can allocate up to 72 4-Kilobyte pages of memory for the control
structures for the data bu�er pages, the log bu�er pages, and the runtime control block pages.

When the DBCore cannot obtain the required number of runtime control block bu�er pages,
the transaction requesting the additional shared memory is rolled back and ALLBASE/SQL
returns the error code -4008.

Because the conditions that caused the DBEnvironment to run out of shared memory may not
exist if the transaction is simply restarted, the programmatic user can check for this error
return code value and re-execute the program a �nite number of times if it occurs. The ISQL
user can simply re-execute the transaction.

If a DBEnvironment consistently runs out of shared memory, you can increase the number of
runtime control block bu�ers by 20 percent and re-try the a�ected transactions. If you are
using large PUBLICROW tables, you can use the ALTER TABLE statement to convert to
PUBLIC mode. With large LOAD and INSERT operations, use the LOCK TABLE statement
with the EXCLUSIVE option to avoid depleting shared memory.

Physical Design 3-29

Note The minimum number of runtime control block bu�er pages is 17. The
maximum is 800. The default is 37.

The number of 4096-byte pages in the runtime control block bu�er is set using the START
DBE NEW statement or the SQLUtil ALTDBE command. When you specify values for these
parameters in START DBE and START DBE NEWLOG, you do not update the value stored
in the DBECon �le but change the value for the current DBEnvironment session only.

Estimating Data Buffer Pages

During query processing, pages from DBEFiles currently being accessed are held in the data
bu�er. The number of 4 Kilobyte pages to be allocated in the data bu�er is speci�ed in the
BUFFER clause of the START DBE NEW statement. This number should be based on the
number of concurrent users and the type of applications. You should start with a number of
data bu�er pages equal to slightly more than the maximum number of concurrent users on
your system.

Each transaction may need from one to several bu�er pages depending on the type of query
being processed. The more complex a query the more bu�er pages are needed. For a complex
query, the required number of data bu�er pages may be from 5 to 15 times the maximum
number of concurrent transactions. Because some of the bu�er pages are shared in a multiuser
mode, the page requirement per user decreases as the number of users increases.

Note The minimum number of data bu�er pages is 15. There is no maximum
number; you are limited only by the available memory on your system.

The default number of data bu�er pages is 100.

The number of pages in the data bu�er can be temporarily overridden with the START DBE
statement. The ALTDBE command in SQLUtil allows you to permanently change the number
of bu�er pages.

Estimating Log Buffer Pages

The log bu�er holds before- and after-images of pages that are changed during a transaction.
You specify the number of 512-byte pages for the log bu�er in the BUFFER clause of the
START DBE NEW statement.

In deciding the number of log bu�er pages, you should consider the duration of a typical
transaction, that is, the time between a BEGIN WORK statement and its corresponding
COMMIT WORK statement. As log records are generated during a transaction, they are kept
in the log bu�er until any one of the following occurs:

A COMMIT WORK is performed.
A CHECKPOINT is performed.
All the log bu�ers are full.

When any one of the above occurs, the log bu�er pages are written to the log �le. Once
transactions in the bu�er are written to disk, the bu�er pages can be used again. If
transactions are short, the number of log bu�er pages need not be very large, since the log
records will be written to disk frequently. However, if there are lengthy transactions and few
log bu�er pages, transactions spend time forcing log records to disk.

3-30 Physical Design

A minimum of 24 log bu�er pages is required; this is the default value supplied by
ALLBASE/SQL. You can request up to 1024 log bu�er pages. You can temporarily override
the number of log bu�er pages with the START DBE statement. The ALTDBE command in
SQLUtil allows you to permanently change the number of bu�er pages. For more detailed
discussion of data bu�er page size, refer to the ALLBASE/SQL Performance and Monitoring
Guidelines .

System Parameter

This section discusses the system con�gurable parameters which directly a�ect the execution
of ALLBASE/SQL. These parameters are part of the system con�guration and can be
modi�ed using SAM. Please refer to the System Administration Tasks HP 9000 for more
information. You may need to increase parameter values to meet your needs.

When you use multiconnect functionality, your applications can use up HP-UX system
resources quickly. Be sure to allocate a su�cient number of shared memory segments and
semaphores for your system.

The system parameters namely semmni, semmns, shmmni and shmseg and their uses by
ALLBASE/SQL are explained in Table 3-6. The formulas listed may help you determine the
optimal numbers for your system.

Table 3-6. System Parameters Used by ALLBASE/SQL

Parameter 700/800
Default

Purpose

maxuprc 50 Speci�es the maximum number of processes that a user may have.
When an application connects to a DBEnvironment, a process is
spawned. In addition, each active DBEnvironment has one database
daemon process running.

semmni 64 Speci�es the number of sets (identi�ers) of semaphores available to the
users. The semmni should be set to:

semmni = NDBE + (2 * NCON)

where: NDBE = number of distinct DBEnvironments

NCON = number of DBEnvironment connections

(maximum of 32 per user application)

See the System Administration Tasks HP 9000 for the interactions of
the semmni parameter with other system parameters.

semmap formula
at right

Speci�es the maximum number of semaphore maps. The system
default is:

semmap = ((semmni + 1) / 2 + 2)

where: semmni = number of semaphore identifiers

Note: If semmap is set too low, the following message will appear on
the console:

danger: mfree map overflow

Physical Design 3-31

Table 3-6. System Parameters Used by ALLBASE/SQL (continued)

Parameter 700/800
Default

Purpose

semmns 64 Speci�es the maximum number of semaphores. To determine the
maximum number of semaphores allowed, use the following formula:

semmns = (2 * NDBE) + (3 * NCON)

where: NDBE = number of distinct DBEnvironments

NCON = number of DBEnvironment connections

(maximum of 32 per user application)

shmseg 12 Speci�es the maximum number of shared memory segments to which
one process can simultaneously attach. An ALLBASE/SQL user
application will be attached one shared memory segment for every
connection to a DBEnvironment. The maximum number of
DBEnvironment connections for a user application is 32. This shared
memory segment allows communication between the user application
and the ALLBASE/SQL DBCore process.

shmmni 100 Speci�es the maximum number of shared memory segments that can
be allocated by the system. To determine how many shared memory
segments you will need, use the following formula:

shmmni = NDBE + NCON

where: NDBE = number of distinct DBEnvironments

NCON = number of DBEnvironment connections

(maximum of 32 per user application)

shmmax 64
Mbytes

Speci�es in hexadecimal the maximum number of bytes in a shared
memory segment. (Decimal values are given in parentheses). The total
size of the shared memory segment speci�ed by the parameters of the
SQL START DBE command or the SQLUtil ALTDBE command
cannot exceed this maximum. For ALLBASE/SQL, the shared
memory used by a particular DBEnvironment comprises the Number
of Runtime Control Block Pages, the Number of Log Bu�er Pages, the
Number of Data Bu�er Pages, and the Number of Transaction Block
Bu�er Pages.

There are several other system parameters which are not directly a�ected by the execution of
ALLBASE/SQL, but may be indirectly a�ected by an ALLBASE/SQL user's application.
These include: nproc, n�le, and ninode.

3-32 Physical Design

Table 3-7. Additional System Parameters

Parameter Default Purpose

nproc formula at right Speci�es the maximum number of processes which may simultaneously
exist on the system, as in the following formula:

nproc = NDBE + NAPP + NCON

where: NDBE = number of distinct DBEnvironments

NAPP = number of ALLBASE/SQL applications

NCON = number of DBEnvironment connections

(maximum of 32 per user application)

n�le formula at right Speci�es the maximum number of open �les allowed on the system, as
in the following formula:

nfile = 16*((nproc + 16 + MAXUSERS)/10) + 32 + (2*NPTY)

ninode formula at right Speci�es the maximum number of open in-core inodes allowed on the
system, as in the following formula:

ninode = nproc + 16 + MAXUSERS + 32 +

(2*NPTY) + SERVER_NODE * 18 * NUM_CNODES

If you are running more than 32 users on your system, you may require additional swap
space. You can use the formulas to calculate the heaviest expected use of your system, and
then set the parameters accordingly. Refer to the System Administration Tasks HP 9000 for
information on memory allocation and system recon�guration.

Allocating Semaphores and Shared Memory Segments

After a user makes the �rst connection to the DBEnvironment, you can enter the HP-UX
command ipcs -sb to display the number of semaphore sets used. The result would be similar
to this one:

IPC status from /dev/kmem as of Thu Jan 13 15:38:36 1994

T ID KEY MODE OWNER GROUP NSEMS

Semaphores:

s 1948507 0x00000000 --ra-ra---- doug hpsql 1

s 1818508 Ox00000000 --ra------- hpdb hpsql 2

s 564009 0x00000000 --ra------- hpdb hpsql 2

Each line in the display represents a semaphore set, and the NSEMS �eld in each line represents
the number of semaphores in the set. The �rst semaphore set contains one semaphore that is
used for interprocess communication between the application and an hpsqlproc process. The
owner of the semaphore is the user running the application. Each connection has one such
semaphore set.

The second semaphore set contains two semaphores and has the owner hpdb and the group
hpsql . Each connection also has a semaphore set like this one. The third semaphore set
belongs to an sqldaemon process, which monitors the DBEnvironment and cleans up shared
memory and semaphores when necessary (for example, if a connection is lost).

Physical Design 3-33

Now suppose a second connection is made to the DBEnvironment. The command ipcs -sb
would display a list similar to this one:

IPC status from /dev/kmem as of Thu Jan 13 16:04:22 1994

T ID KEY MODE OWNER GROUP NSEMS

Semaphores:

s 1948507 0x00000000 --ra-ra---- doug hpsql 1

s 1818508 Ox00000000 --ra------- hpdb hpsql 2

s 564009 0x00000000 --ra------- hpdb hpsql 2

s 61510 0x00000000 --ra-ra---- doug hpsql 1

s 5511 0x00000000 --ra------- hpdb hpsql 2

Note that additional semaphores were added at the end of the list. However, there is still only
one sqldaemon process for the DBEnvironment, the third semaphore set in the list. Therefore,
there are only 3 additional semaphores, not 5.

The sqldaemon will only clean up semaphores owned by hpdb. Ordinarily, when a connection
is released, the hpsqlproc process releases the semaphores associated with its connection and
with the application. If the hpsqlproc process terminates unexpectedly, the sqldaemon removes
the semaphore associated with the interprocess communication. The sqldaemon checks
each hpsqlproc process every 30 seconds. If both the sqldaemon and hpsqlproc processes are
terminated, the semaphore associated with the connection is not released.

In the display, you can see the semaphores associated with the connection the sqldaemon
makes to the DBEnvironment, because the connection is maintained as long as the sqldaemon
exists. If the sqldaemon cannot connect to the DBEnvironment because it cannot obtain a
semaphore, it aborts, generating a DBCore error. In this case, the sqldaemon does not release
the semaphores and shared memory that were used for the DBEnvironment.

If you set semmap too low, the message

danger: mfree map overflow

may appear on the console.

Example. Assume a system in which there are 3 DBEnvironments and 5 users who would like
to use the multiconnect feature. Each user is running one application with a maximum of 32
connections. The following system resources are recommended:

shmmni >= (3 + 32*5) = 163

semmns >= (2*3 + 3*32*5) = 486

shmseg >= 32

nproc >= (3 + 5 + 32*5) = 168

This is in addition to the shared memory segments, processes, and semaphores needed for
other system uses. For more information on system recon�guration, refer to \Changing Kernel
Parameters" in the System Administration Task Manual for your HP-UX system. For more
information on ALLBASE/SQL system parameters, refer to the section \Estimating Shared
Memory Requirements" in this chapter.

3-34 Physical Design

Estimating the Number of Transactions

As the number of users accessing the DBEnvironment increases, you should increase the
number of concurrent transactions allowed. The maximum should be set slightly higher than
the number of expected users because ALLBASE/SQL may start a second transaction on the
user's behalf when executing data de�nition statements such as CREATE. Set the maximum
to twice the number of users if you expect to be doing a lot of data de�nition.

The minimum number of transactions is 2, and the default value is 50. There is no limit on
the number of transactions you can request. You can temporarily override the number of
transactions with the START DBE statement. The ALTDBE command in SQLUtil allows
you to permanently change the maximum number of transactions.

Implementing the Design

Once both logical and physical design have been established, you are ready to create a
DBEnvironment and the databases within it. The next chapters lead you through the creation
of the sample DBEnvironment using the design guidelines presented in the \Logical Design"
and \Physical Design" chapters.

Physical Design 3-35

4

DBEnvironment Configuration and Security

Before you can create ALLBASE/SQL databases, you must con�gure a DBEnvironment.
After you con�gure the DBEnvironment, you create the physical storage space for the
databases, then you create the actual tables, views, and indexes.

If this is your �rst time using ALLBASE/SQL, you should study the examples in this chapter,
which are based on the sample DBEnvironment, PartsDBE. The \Sample DBEnvironment"
appendix in the ALLBASE/SQL Reference Manual contains a complete description of
PartsDBE.

The topics described in this chapter are:

Setting up the DBEnvironment directory
Using START DBE NEW
Creating Audit DBEnvironments
Creating DBEFileSets and DBEFiles
Creating the DBEnvironment security scheme
Managing DBEnvironment Sessions

After reading this chapter, you can con�gure your own DBEnvironments and create databases
using your own design speci�cations.

Setting Up the DBEnvironment Directory

Although the database �les in a DBEnvironment (DBEFiles) are secure from modi�cation
by unauthorized users, these �les can be removed or replaced by any user who has write
permission in the directory where the DBEnvironment resides. Therefore, the DBEnvironment
is not secure unless you restrict access to this directory.

The special user hpdb must have write permission in the directory in which you are creating
the DBEnvironment. Additionally, it is recommended that the directory which contains the
DBEnvironment be created with a mode of 755, be owned by userid hpdb, and be associated
with group bin. This is the most secure directory scheme; it allows all system users read
and execute access to the �les, but reserves write access only for the special userid hpdb.
Because ordinary users can access the �les in this directory only through ALLBASE/SQL, the
DBEnvironment is secure.

DBEnvironment Configuration and Security 4-1

Use the following sequence of commands from the directory above the one where the
DBEnvironment will be located:

$ mkdir sampledb

$ chmod 755 sampledb

$ chgrp bin sampledb

$ chown hpdb sampledb

You can use the ll command to display the result:

drwxr-xr-x 2 hpdb bin 1024 Dec 17 15:56 sampledb

In addition, it is recommended that the user invoke ISQL and connect to the DBEnvironment
from a directory where the user has write permission (but other than the directory where the
DBEnvironment resides). This allows the user to create �les such as isqlpro, isqlsyn, and
command �les, and to customize individual access to a particular DBEnvironment. Although
users may change into the directory where the DBEnvironment resides and invoke ISQL, they
must still set isqlout to a �lename in a directory for which they have write permission. Refer
to the ALLBASE/ISQL Reference Manual for further information about the isqlout �le and
connecting to a DBEnvironment.

Using START DBE NEW

Con�guring a DBEnvironment begins with using the START DBE NEW statement, whether
in interactive mode through ISQL, using ISQL command �les. Refer to the ALLBASE/ISQL
Reference Manual for more information on command �les. START DBE NEW may be used
only once for a given DBEnvironment:

START DBE 'DBEnvironmentName' NEW [StartUp Values];

If you try to execute a START DBE NEW statement for an existing DBEnvironment,
ALLBASE/SQL returns an error. You must purge the existing DBEnvironment and the
log �les associated with it using SQLUtil before you can use START DBE NEW to create
a DBEnvironment with the same name. The START DBE NEW statement allows you to
supply startup parameters, which are used to set operating limits, such as the user mode and
the number of log bu�ers, each time the DBEnvironment is started. The startup parameters
are stored in a �le called the DBECon �le.

If no startup parameters are speci�ed, ALLBASE/SQL provides default values. Table 4-1
shows the startup parameters that are stored in the DBECon �le and their default values.

4-2 DBEnvironment Configuration and Security

Table 4-1. DBECon Default Startup Parameters

Parameter Default Startup Option

DBECreator your DBEUserID

Maintenance Word none

DBEnvironment Language n-computer

AutoStart ON

User Mode SINGLE

DBEFile0 Name DBEFILE0

Log File Name(s) DBELOG1

DBELOG2 *

Archive Mode OFF

DDL Enabled YES

Number of Run Time Control Block Pages 37

Number of Data Bu�er Pages 100

Number of Log Bu�er Pages 24

Maximum Transactions 2

Maximum Timeout None

Default Timeout Maximum

Authorize once per session OFF

* for dual logging

You can override all these parameters except DBECreator, maintenance word, autostart,
archive mode, DDL Enabled, and Authorize Once per Session by specifying other values in the
START DBE NEW statement.

After the DBEnvironment has been con�gured, you can change some startup values using
SQLUtil. See Table 7-1 in the \Maintenance" chapter for a description of each parameter,
including how it can be changed.

Supplying Startup Parameters with START DBE NEW

Your DBEnvironment may require startup parameters di�erent from the default
values supplied by ALLBASE/SQL. For example, you may want to create a multiuser
DBEnvironment, or assign a more descriptive name to DBEFile0.

The sample DBEnvironment was con�gured with the following statement:

isql=> START DBE '../sampledb/PartsDBE' MULTI NEW

> DUAL LOG,

> TRANSACTION = 5,

> DBEFILE0 DBEFILE PartsDBE0

> WITH PAGES = 150,

> NAME = 'PartsF0',

> LOG DBEFILE PartsDBELog1 AND PartsDBELog2

> WITH PAGES = 256,

> NAME = 'PartsLg1' AND 'PartsLg2';

Note that the ALLBASE/SQL defaults were used for the number of bu�er pages.

DBEnvironment Configuration and Security 4-3

Figure 4-1 is a diagram of the PartsDBE DBEnvironment immediately after con�guration.
The DBECon �le is expanded to show startup parameters and the log �le directory.

Figure 4-1. The Sample DBEnvironment Immediately After Configuration

A newly con�gured DBEnvironment has the following elements:

One DBECon �le containing the DBEnvironment con�guration parameters. The name of
the DBECon �le is the same as the DBEnvironment name.

One or two log �les. The system �le name(s) are speci�ed in the NAME= clause of the
LOG DBEFILE option of the START DBE NEW statement. The default name(s) are
DBELOG1 and DBELOG2.

One DBEFileSet named SYSTEM.

One DBEFile0 DBEFile to store the initial system catalog data. The system �le name is
speci�ed in the NAME= clause of the DBEFILE0 DBEFILE option of the START DBE
NEW statement. The default name is DBEFILE0. This DBEFile is associated with the
SYSTEM DBEFileSet.

One system catalog to store information about the DBEnvironment. The tables, views, and
indexes constituting the ALLBASE/SQL system catalog (refer to the \System Catalog"
chapter in this guide) are created in the SYSTEM DBEFileSet. At �rst, entries in the
system catalog describe the initial state of the DBEnvironment, including the pseudotables
and views of the system catalog itself. As objects are added, the system catalog is updated.

Refer to the \Maintenance" chapter for additional information about the DBECon �le
parameters and how to change them.

4-4 DBEnvironment Configuration and Security

Log Files

ALLBASE/SQL creates a log �le when the DBEnvironment is con�gured. A log �le can be
from 250 to 524,287 pages. Each page is 512 bytes. You can set the size and name of the log
�le(s) using the LOG DBEFile option of the START DBE NEW statement:

isql=> START DBE '../sampledb/PartsDBE' MULTI NEW

> .

> .

> .

> LOG DBEFile PartsLg1

> WITH PAGES= 350,

> NAME= 'PartsLg1';

If you do not specify a �le name or log size, ALLBASE/SQL creates a log �le with the default
size of 250 pages and the default name of DBELOG1. In the above example, the name
PartsLg1 was chosen for the sample DBEnvironment. Refer to the \Physical Design" chapter
of this guide for guidelines on determining the size of the log �le.

Dual Logging

Successful recovery requires a good copy of each log record. Since a log �le is critical to the
recovery procedure, ALLBASE/SQL provides dual logging which improves the probability of
successful recovery by maintaining two log �les.

You must specify two log �le names when you specify dual logging:

isql=> START DBE '../sampledb/PartsDBE' MULTI NEW

> DUAL LOG,

> LOG DBEFILE PartsDBELog1 AND PartsDBELog2

> WITH PAGES = 256,

> NAME = 'PartsLg1' AND 'PartsLg2';

The SQLUtil SHOWLOG command will display two log �le names when dual logging is in
use.

A hard crash on a device containing a log �le is potentially very serious, since it reduces the
chances of being able to recover the DBEnvironment. Whenever you use dual logging, you can
safeguard against both log �les being damaged by a hard crash by locating the two logs on
separate disks. Use the SQLUtil MOVELOG command to move log �les to di�erent disks.

If you cannot a�ord the time to reissue transactions in case a media failure corrupts your log
�le, use dual logging. When you use dual logging, keep in mind that disk space use is doubled
and performance may be a�ected because the number of I/O operations is also doubled.

You can specify two archive log �les or two nonarchive �les, but you cannot specify one of
each with dual logging.

Archive Logging

Once you have con�gured a DBEnvironment, you can convert to archive logging in one of the
following ways:

Do a complete online backup using the SQLUtil STOREONLINE command. You use
STOREONLINE after you have loaded all the database tables and are ready to start using
the DBEnvironment in production.

DBEnvironment Configuration and Security 4-5

After you enable archive logging, you should add additional log �les to permit log switching,
log backup, and reuse of logs. The next section shows how to add log �les; for complete
information about managing logs, refer to the \Backup and Recovery" chapter.

Note Once the DBEnvironment is running with archive logging, you must use the
START DBE NEWLOG statement to return to nonarchive logging.

Multiple Log Files

Use the SQLUtil ADDLOG command to add additional log �les to the DBEnvironment for
either nonarchive or archive logging. The following example adds a second log �le with 350
pages to the sample DBEnvironment NewDBE :

>> addlog

DBEnvironment Name: NewDBE

Maintenance Word: �Return �
Enter Log File Name(s) Separated by a Blank? NewLg2

New Log File Size? 350

Add Log File (y/n)? y

Log file 'NewLg2' was Added.

Log Identifier Is: 2

Note ADDLOG adds a single log �le at a time. In the case of dual logging, two
physical log �les are added. You cannot add more than one �le in single
logging mode. In dual logging mode, you cannot add more than two or less
than two �les.

Specifying a Native Language Parameter

You can specify a native language parameter in creating a DBEnvironment. Use the LANG =
LanguageName option in the START DBE NEW statement to specify a native language other
than n-computer, as in the following example:

START DBE 'SomeDBE' NEW LANG = japanese

If you want to specify the name of the DBEnvironment in a native language, then the native
language you specify in the LANG = clause must be covered by the same character set as the
current language. In other cases, your current language can be di�erent from that of the
DBEnvironment. All processing|including comparisons and sorting|will take place in
accordance with the language of the DBEnvironment, but prompts and messages will appear
in the current language if the appropriate message catalog is available. Also, scanning of
user input will be in the current language. See \Native Language Support" in Chapter 1 for
information about specifying a native language as the current language.

4-6 DBEnvironment Configuration and Security

Looking at the DBEnvironment Elements

You can look at each of the elements created by the START DBE NEW statement.

Examining HP-UX Files

Use the HP-UX ll command to list all the �les in the directory where your DBEnvironment
resides. The DBEFiles, log �les, and DBECon �le will appear as user �les owned by the user
hpdb, with �le permissions of 600:

$ ll sampledb

total 4222

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 FileData

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 OrderDF1

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 OrderXF1

-rw------ 1 hpdb dbsupport 12288 Mar 13 13:54 PartsDBE

-rw------ 1 hpdb dbsupport 614400 Mar 13 13:54 PartsF0

-rw------ 1 hpdb dbsupport 131072 Mar 13 13:54 PartsLG1

-rw------ 1 hpdb dbsupport 131072 Mar 13 13:54 PartsLG2

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 PurchDF1

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 PurchXF1

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 RecDF1

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 WarehDF1

-rw------ 1 hpdb dbsupport 204800 Mar 13 13:54 WarehXF1

Examining DBECon Parameters

Run SQLUtil from HP-UX or from ISQL to look at the startup parameters in the DBECon
�le, as in the following example:

isql=> sqlutil; �Return�

MON, JAN 6, 1992, 11:11 AM

HP36217-02A.F0.08 DBE Utility/9000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991,1992. ALL RIGHTS RESERVED.

>> SHOWDBE �Return�
DBEnvironment Name: PartsDBE �Return�
Maintenance Word: �Return�
Output File Name (opt): �Return�

-> all �Return�
Maintenance word:

DBEnvironment Language: n-computer

DBECreator ID: 2204

AutoStart: ON

User Mode: MULTI

DBEFile0 Name: PARTSF0

DDL Enabled: YES

No. of Runtime Control Block Pages: 37

No. of Data Buffer Pages: 100

No. of Log Buffer Pages: 24

Max. Transactions: 5

Maximum Timeout: NONE

Default Timeout: MAXIMUM

Authorize Once per session: OFF

->

DBEnvironment Configuration and Security 4-7

The parameters are displayed as they appear in the DBECon �le illustration in Table 4-1.
For more information on SQLUtil, refer to the \DBA Tasks and Tools" chapter and the
\SQLUtil" appendix.

Examining the System Catalog

The system catalog is a set of tables and views owned by special users CATALOG and
SYSTEM that describe the contents of a DBEnvironment. You must be connected to a
DBEnvironment and have SELECT authority or DBA authority in order to query the
SYSTEM views. Users without DBA authority can examine the CATALOG views to see
information about the objects they own. As DBA, you can also grant or revoke SELECT
authority on SYSTEM views. You can query the system catalog views to look at the initial
DBEFileSet, DBEFile, and system views created when a DBEnvironment is con�gured. You
can also monitor space requirements, user access, and performance, and generally keep track
of what is in the DBEnvironment. Some of the information contained in the system catalog
can also be examined with SQLMON, an online monitoring tool. SQLMON is described in the
ALLBASE/SQL Performance and Monitoring Guidelines .

A simple SELECT statement shows you all the system catalog views:

select name, owner, type, rtype, numc from system.table where owner = 'SYSTEM';

--------------------+--------------------+------+------+-----------

NAME |OWNER |TYPE |RTYPE |NUMC

--------------------+--------------------+------+------+-----------

ACCOUNT |SYSTEM | 0| 3| 6

CALL |SYSTEM | 0| 3| 5

CHECKDEF |SYSTEM | 1| 0| 6

COLAUTH |SYSTEM | 1| 0| 7

COLDEFAULT |SYSTEM | 1| 0| 6

COLUMN |SYSTEM | 1| 0| 13

CONSTRAINT |SYSTEM | 1| 0| 8

CONSTRAINTCOL |SYSTEM | 1| 0| 4

CONSTRAINTINDEX |SYSTEM | 1| 0| 11

COUNTER |SYSTEM | 0| 3| 3

DBEFILE |SYSTEM | 1| 0| 10

DBEFILESET |SYSTEM | 1| 0| 6

GROUP |SYSTEM | 1| 0| 4

HASH |SYSTEM | 1| 0| 11

INDEX |SYSTEM | 1| 0| 11

MODAUTH |SYSTEM | 1| 0| 3

PARAMDEFAULT |SYSTEM | 1| 0| 6

PARAMETER |SYSTEM | 1| 0| 12

PLAN |SYSTEM | 0| 3| 7

PROCAUTH |SYSTEM | 1| 0| 3

PROCEDURE |SYSTEM | 1| 0| 5

PROCEDUREDEF |SYSTEM | 1| 0| 6

RULE |SYSTEM | 1| 0| 10

RULECOLUMN |SYSTEM | 1| 0| 3

RULEDEF |SYSTEM | 1| 0| 6

SECTION |SYSTEM | 1| 0| 8

SPECAUTH |SYSTEM | 1| 0| 4

TABAUTH |SYSTEM | 1| 0| 14

TABLE |SYSTEM | 1| 0| 15

TEMPSPACE |SYSTEM | 1| 0| 4

TRANSACTION |SYSTEM | 0| 3| 4

USER |SYSTEM | 0| 3| 2

VIEWDEF |SYSTEM | 1| 0| 6

--

Number of rows selected is 33

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

4-8 DBEnvironment Configuration and Security

To look at the DBEFile0 DBEFile created at con�guration time, query the
SYSTEM.DBEFILE view using the following statement:

isql=> SELECT * FROM System.DBEFile;

SELECT * FROM System.DBEFile;

--------------------+--------+--

DBEFNAME |DBEFTYPE|FILEID

--------------------+--------+--

PARTSDBE0 | 90|PARTSF0

--

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

Note that the DBEFile name stored in the system catalog is the name given in the DBEFILE
DBEFILE0 clause, and the FILE ID is the HP-UX �le name given in the NAME clause of the
START DBE NEW statement.

Refer to the \System Catalog" chapter for a complete description of each view in the system
catalog.

Examining Log File Characteristics

Use the SQLUtil SHOWLOG command to display the characteristics of a newly con�gured
log. For example:

>> SHOWLOG

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Connect (y/n) (opt): y

Archive Mode: OFF

Log Sequence Number Containing Most Recent Archive Checkpoint: 0

Current Log Sequence Number: 1

First Log Sequence Number Needed for Recovery: 0

Log Mode is: Dual

Number of Free Block(s): 340

First Log Name: PartsLG1

First Log File Status: Useable

First Log Name: PartsLG2

First Log File Status: Useable

Log File Size: 250

Log Identifier Is: 1

Log Sequence Number: 1

Log Backup Status: Backup Is Not Required

For an explanation of each parameter, refer to the description of the SHOWLOG command in
the \SQLUtil" appendix. See the \Backup and Recovery" chapter for a complete explanation
of how logging operates in ALLBASE/SQL.

DBEnvironment Configuration and Security 4-9

Creating Audit DBEnvironments

Audit functionality is a group of statements and statement parameters that allows you to
generate audit log records. Audit log records contain partition information that allows you to
group log records for analysis with the Audit Tool. Some types of database operations you
might analyze are INSERT, UPDATE, or DELETE operations, perhaps for security reasons.

Audit log records contain identi�ers such as table names in contrast to non-audit database
log records which contain identi�ers such as page references and data. When audit logging is
enabled, these audit log records are generated in addition to non-audit database log records.
You can use the Audit Tool, described in the section \Using the Audit Tool," to audit these
log records.

Audit DBEnvironments are de�ned by specifying audit parameters in the START DBE NEW
or START DBE NEWLOG statement.

The six parameters used to make a DBEnvironment an audit DBEnvironment are listed
below. One of the six, the AUDIT LOG parameter, causes the other �ve audit parameters to
be in e�ect. None of the �ve parameters is in e�ect unless you specify AUDIT LOG.

AUDIT LOG causes the audit parameters listed below to be in e�ect.

AUDIT NAME identi�es the DBEnvironment in each transaction.

DEFAULT PARTITION identi�es the default partition number for the DBEnvironment.

COMMENT PARTITION identi�es the comment partition number for the
DBEnvironment.

MAXPARTITIONS speci�es the maximum number of partitions in an audit
DBEnvironment.

AUDIT ELEMENTS consists of the following elements:

COMMENT allows use of the LOG COMMENT
statement.

DATA generates audit log records for user
data write operations (INSERT,
DELETE, and UPDATE).

DEFINITION generates audit log records for
statements that de�ne data.

STORAGE generates audit log records for �le and
storage statements.

AUTHORIZATION generates audit log records for
authorization statements.

SECTION generates audit log records for the
creation and deletion of permanent
sections.

ALL speci�es generation of audit log records
for all audit elements.

4-10 DBEnvironment Configuration and Security

Audit elements are prioritized in a simple hierarchy where the following assumptions exist:

1. DATA is assumed to be speci�ed if AUDIT LOG is in e�ect. In other words, if AUDIT
LOG is speci�ed in a START DBE NEW or START DBE NEWLOG statement, without
specifying any audit elements, only DATA is in e�ect.

2. Audit elements can be explicitly speci�ed as shown below:

DATA STORAGE SECTION AUDIT ELEMENTS;

3. Specifying ALL assumes that all audit elements are requested.

See the syntax for the START DBE NEW and START DBE NEWLOG statements in the
\SQL Statements" chapter of the ALLBASE/SQL Reference Manual for information on how
to specify audit DBEnvironment parameters.

Example of Setting Up an Audit DBEnvironment

The following examples show how to create a DBEnvironment, load it, and then enable audit
logging.

First, create the DBEnvironment with a temporary log named TempLog:

START DBE 'DBE1' MULTI NEW

BUFFER = (240, 120),

TRANSACTION = 50,

DBEFile0 DBEFILE MyDBE1

WITH PAGES = 300,

NAME = 'MyDBE1',

LOG DBEFILE TempLog

WITH PAGES = 5000,

NAME = 'TempLog';

CREATE TABLE MyTable1

.

.

.

CREATE TABLE MyTable2

.

.

.

LOAD FROM INTERNAL LdFile1 TO MyTable1;

COMMIT WORK;

LOAD FROM INTERNAL LdFile2 TO MyTable2;

COMMIT WORK;

.

.

.

COMMIT WORK RELEASE;

DBEnvironment Configuration and Security 4-11

Now you can use START DBE NEWLOG to enable audit logging and audit �les:

START DBE 'DBE1' MULTI NEWLOG

AUDIT LOG,

AUDIT NAME = 'MyDBE1',

DEFAULT PARTITION = 1,

MAXPARTITIONS = 10,

ALL AUDIT ELEMENTS

LOG DBEFILE MyLog1

WITH PAGES = 5000,

NAME = 'MyLog1';

EXIT;

Now use SQLUtil to create the additional log �le that is needed for audit DBEnvironments:

isql=> sqlutil

>> addlog

DBEnvironment Name: DBE1

Maintenance Word:

Enter Log File Name(s) Separated by a Blank? MyLog2

New Log File Size? 5000

Add Log File (y/n)? y

Log file 'MyLog2' Was Added.

Log Identifier Is: 2

>> exit

Log �les need to be made slightly larger to account for audit log records generated in addition
to non-audit log records. Audit log records are generated for all the statement types speci�ed
in the AUDIT ELEMENTS parameter, so log �les may �ll up more quickly with audit logging
speci�ed.

Defining Additional Audit DBEnvironment Log Files

Audit DBEnvironments require that at least one additional log �le be added. This is
performed with the SQLUtil ADDLOG command. It is recommended that several additional
log �les be added because log �les will �ll up more quickly.

When START DBE NEWLOG is executed for an existing audit DBEnvironment, most
audit-related parameters not speci�ed remain unchanged. The AUDIT LOG parameter is an
exception. If AUDIT LOG is in e�ect and you execute a START DBE NEWLOG statement
to change parameter values without again specifying AUDIT LOG, audit logging is then not
in e�ect.

Disabling Audit Logging

You can disable audit logging for a particular session where you are entering statements that
should not generate audit log records. This allows all other sessions to continue to generate
audit log records. The following statement is used to disable audit logging for a session:

DISABLE AUDIT LOGGING

Audit logging should be enabled again before the session is ended. The following statement is
used to enable audit logging:

ENABLE AUDIT LOGGING

However, since disabling only lasts for the duration of a session, when the session ends, audit
logging is enabled even if you do not explicitly enable it again.

4-12 DBEnvironment Configuration and Security

Creating DBEFileSets and DBEFiles

As discussed in the \Physical Design" chapter, DBEFileSets and DBEFiles are the key
elements of ALLBASE/SQL storage. A DBEFile is an HP-UX �le that contains table data, or
index data, or both. A DBEFileSet is a logical group of one or more DBEFiles. The amount
of storage available in a DBEFileSet can be increased by adding DBEFiles.

When a DBEnvironment is con�gured, ALLBASE/SQL creates the SYSTEM DBEFileSet
containing DBEFile0. DBEFile0 contains all the table, view, and index data for the system
catalog, as well as all stored sections for preprocessed programs. If the SYSTEM DBEFileSet
runs out of space, create another DBEFile and add it to the SYSTEM DBEFileSet before you
create anything else. If you never create any new DBEFileSets and DBEFiles, all tables and
indexes created in the DBEnvironment are placed in the SYSTEM DBEFileSet. As discussed
in the \Physical Design" chapter, separate DBEFileSets should be created for groups of tables
that are maintained together.

Creating DBEFileSets

You must have DBA authority to create a DBEFileSet. Use the following syntax:

CREATE DBEFILESET DBEFileSetName

The name you specify is stored in the system catalog, as shown in the view
SYSTEM.DBEFILESET. Two DBEFileSets in the same DBEnvironment cannot have the
same name.

A DBEFileSet is a logical construct. There is no physical space associated with it until you
create DBEFiles and add them to the DBEFileSet.

The statements to create the three DBEFileSets for the PurchDB database are as follows:

isql=> CREATE DBEFILESET PurchFS;

isql=> CREATE DBEFILESET WarehFS;

isql=> CREATE DBEFILESET OrderFS;

The DBEFileSet names are stored as character strings in SYSTEM.DBEFILESET. Names are
all upshifted unless you enclose them in double quotes.

To look at the DBEFileSets that were created, examine the Static DBEFile screen in
SQLMON, or query the system catalog as follows:

isql=> SELECT DBEFSNAME, DBEFSNDBEFILES,

> DBEFSNPAGES, DBEFSUPAGES FROM System.DBEFileSet;

--------------------+--------------+-----------+-----------+

DBEFSNAME |DBEFSNDBEFILES|DBEFSNPAGES|DBEFSUPAGES|

--------------------+--------------+-----------+-----------+

SYSTEM | 1| 150| 0|

PURCHFS | 2| 100| 2|

WAREHFS | 2| 100| 2|

ORDERFS | 2| 100| 2|

RECFS | 1| 50| 3|

--

Number of rows selected is 5

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

DBEFileSet names follow the rules of ALLBASE/SQL basic names; refer to the SQL
Reference Manual for ALLBASE/SQL naming conventions.

DBEnvironment Configuration and Security 4-13

Assigning Default DBEFileSets

ALLBASE/SQL system catalog tables are stored in the SYSTEM DBEFileSet. When a
new DBEnvironment is created (with the START DBE NEW statement), the SYSTEM
DBEFileSet is the default DBEFileSet for storing all user tables and sections. When user data
is stored in the SYSTEM DBEFileSet, system performance is impacted.

One way of insuring that user sections and data are stored in a DBEFileSet other than
SYSTEM is to assign a default DBEFileSet. Then, when tables and long column data
are created without being assigned a speci�c DBEFileSet, they are stored in the default
TABLESPACE DBEFileSet you have assigned. And when sections are created without being
assigned a speci�c DBEFileSet, they are stored in the default SECTIONSPACE DBEFileSet.
For example:

SET DEFAULT SECTIONSPACE TO DBEFILESET SectionDBESet FOR PUBLIC;

SET DEFAULT TABLESPACE TO DBEFILESET TableDBESet FOR PUBLIC;

Complete syntax for the SET DEFAULT DBEFILESET statement is found in the
ALLBASE/SQL Reference Manual .

Creating DBEFiles

You must have DBA authority to create DBEFiles. Use the following syntax:

CREATE DBEFILE DBEFilename WITH PAGES = DBEFileSize, NAME = 'SystemFileName'�
, INCREMENT = DBEFileIncrSize

�
, MAXPAGES = DBEFileMaxSize

� �
2
4 ,TYPE =

8<
:

TABLE

INDEX

MIXED

9=
;
3
5

DBEFileName is the name by which a DBEFile is known to ALLBASE/SQL. It is stored in
the system catalog, as shown in the view SYSTEM.DBEFILE. No two DBEFiles can have
the same DBEFileName. DBEFileNames follow the rules of ALLBASE/SQL basic names.
DBEFileNames are stored as character strings; they are upshifted unless you enclose them in
double quotes.

PAGES is the number of 4096-byte pages that will be preallocated to the DBEFile. A number
from 2 to 524,287 must be speci�ed. The number of pages you assign to the DBEFile depends
on how much data you plan to store in it. Use your calculations from \Physical Design" to
determine how many pages you should assign to a DBEFile. Remember that a DBEFile is an
HP-UX �le, so its size is limited by the system resources available.

SystemFileName is the name of the DBEFile as it appears in the HP-UX directory. It must
follow HP-UX naming conventions. If you use the ll command to view the �les on your
system, you can see the system �le name speci�ed in the CREATE DBEFILE statement for
all DBEFiles you have created. HP-UX �le names entered in single quotes are not upshifted.

Type TABLE allows only table data; type INDEX allows only index data. The default type is
MIXED, which allows both table and index data. The sample database DBEFiles are created
as either TABLE or INDEX so that the tables and indexes can be manipulated independently
of each other. As discussed in the \Physical Design" chapter, locating index data and
table data on separate devices decreases the work load for the disk drives and increases
performance.

4-14 DBEnvironment Configuration and Security

The following examples show how to create two DBEFiles for the PurchFS DBEFileSet:

isql=> CREATE DBEFILE PurchDataF1

> WITH PAGES = 50,

> NAME = 'PurchDF1',

> TYPE = TABLE;

isql=> CREATE DBEFILE PurchIndxF1

> WITH PAGES = 50,

> NAME = 'PurchXF1',

> TYPE = INDEX;

Similarly, the following examples show how to create DBEFiles for the DBEFileSets WarehFS
and OrderFS respectively:

isql=> CREATE DBEFILE WarehDataF1

> WITH PAGES = 50,

> NAME = 'WarehDF1',

> TYPE = TABLE;

isql=> CREATE DBEFILE WarehIndxF1

> WITH PAGES = 50,

> NAME = 'WarehXF1',

> TYPE = INDEX;

isql=> CREATE DBEFILE OrderDataF1

> WITH PAGES = 50,

> NAME = 'OrderDF1',

> TYPE = TABLE;

isql=> CREATE DBEFILE OrderIndxF1

> WITH PAGES = 50,

> NAME = 'OrderXF1',

> TYPE = INDEX;

The characteristics of the DBEFiles are stored in the system catalog, as shown in the
view SYSTEM.DBEFILE. You can perform a SELECT on SYSTEM.DBEFILE to see the
DBEFiles you have created along with DBEFile0 created at DBEnvironment con�guration
time. Note that although you entered the DBEFile names in upper and lower case, they are
recorded in the system catalog as all upper case letters unless you enclose them in double
quotes. However, the HP-UX system �le names entered in single quotes are not upshifted.

Adding DBEFiles to DBEFileSets

Adding DBEFiles to a DBEFileSet allocates storage space in which table and index data can
be stored. Although you can create tables in an empty DBEFileSet, you cannot create indexes
in a DBEFileSet until a DBEFile has been added to the DBEFileSet. Creating an index
causes a root page to be created, whereas creating a table does not cause any physical page to
be created.

You must have DBA authority to add DBEFiles to DBEFileSets. Use the following statement
syntax:

ADD DBEFILE DBEFileName TO DBEFILESET DBEFileSetName

Both the DBEFile and the DBEFileSet must already exist in the DBEnvironment.

You can add DBEFiles to the SYSTEM DBEFileSet using the following syntax:

ADD DBEFILE DBEFileName TO DBEFILESET SYSTEM

DBEnvironment Configuration and Security 4-15

To add a �le to the SYSTEM DBEFileSet, your transaction must be the only active
transaction in the system. If other users are active, your transaction will wait until they
complete.

The PurchDB database has three DBEFileSets, each of which contains two DBEFiles. The
following series of statements adds the DBEFiles to their respective DBEFileSets and allocates
storage for the sample database:

isql=> ADD DBEFILE PurchDataF1 TO DBEFILESET PurchFS;

isql=> ADD DBEFILE PurchIndxF1 TO DBEFILESET PurchFS;

isql=> ADD DBEFILE WarehDataF1 TO DBEFILESET WarehFS;

isql=> ADD DBEFILE WarehIndxF1 TO DBEFILESET WarehFS;

isql=> ADD DBEFILE OrderDataF1 TO DBEFILESET OrderFS;

isql=> ADD DBEFILE OrderIndxF1 TO DBEFILESET OrderFS;

Now query the SYSTEM.DBEFILE view to see which DBEFiles are associated with which
DBEFileSets:

isql=> SELECT DBEFName,DBEFSName FROM SYSTEM.DBEFILE;

The query result is as follows:

SELECT DBEFName,DBEFSName FROM System.DBEFile;

--------------------+--------------------

DBEFNAME |DBEFSNAME

--------------------+--------------------

PARTSDBE0 |SYSTEM

PURCHDATAF1 |PURCHFS

PURCHINDXF1 |PURCHFS

WAREHDATAF1 |WAREHS

WAREHINDXF1 |WAREHS

ORDERDATAF1 |ORDERFS

ORDERINDXF1 |ORDERFS

--

Number of rows selected is 7

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

DBEFiles should be created and added to DBEFileSets as they are needed so that you do not
have empty DBEFiles wasting disk space.

Allocating Expandable DBEFile Space

As an alternative to creating �xed-length DBEFiles, you can create DBEFiles which are
expandable, by specifying a maximum DBEFile size and an expansion increment. This
approach is known as dynamic DBEFile expansion, which you can employ by using the
optional INCREMENT and MAXPAGES clauses of the CREATE DBEFILE statement. The
procedure is as follows:

1. Create expandable DBEFiles of the appropriate type (TABLE, INDEX, or MIXED) using
the CREATE DBEFILE statement. Specify an expansion increment and a maximum �le
size. For example:

isql=> CREATE DBEFILE DBEFile1 WITH PAGES=100,

> NAME='DBEFile1', INCREMENT=100, MAXPAGES=5000, TYPE=TABLE;

2. Use the ADD DBEFile statement to add each DBEFile to a previously created
DBEFileSet.

By using this method, you do not have to add DBEFiles to the DBEFileSet to increase its
capacity until the space has expanded to the maximum �le size speci�ed. If a DBEFile runs

4-16 DBEnvironment Configuration and Security

out of initial capacity during execution of an INSERT or UPDATE statement, an additional
increment of space is added to the �le. However, when expandable DBEFiles are in use, the
DBA should still monitor the size of DBEFiles to determine the following:

How close the �le's size is to the maximum.
Whether the �le has grown unexpectedly large following a temporary condition in the
database.

Note If a transaction that causes expansion of a DBEFile were to abort, the
DBEFile expansion is rolled back logically and not physically. In this event,
the size of the DBEFile as shown in the DBEFNPAGES column of the
SYSTEM.DBEFile view can be smaller than the actual �le size shown on
the operating system. The discrepancy disappears the next time a successful
expansion takes place.

Allocating Expandable DBEFile Space in the SYSTEM DBEFileSet

The SYSTEM DBEFileSet contains the system catalog and its indexes, together with space
used by temporary tables during query processing. When you create a DBEnvironment
using the START DBE NEW statement, ALLBASE/SQL creates a �xed-length �le called
DBEFILE0 and adds it to the SYSTEM DBEFileSet. You specify the size of the �le in the
START DBE NEW statement. Because DBEFile0 is of �xed length, it is not expandable.
Therefore, in order to provide dynamic space expansion for the system catalog or for sort
operations during query processing, you must create one or more additional expandable
DBEFiles and add them to the SYSTEM DBEFileSet. You cannot create an expandable
DBEFile using the START DBE NEW statement.

Caution An expandable DBEFile cannot be compressed again once expanded. Also
a DBEFile cannot easily be removed from the SYSTEM DBEFileSet once
added because it could be used by the system catalog. Large sorted queries
can easily require large amounts of sort space from the SYSTEM DBEFileSet
causing expandable SYSTEM DBEFiles to expand to their maximum size.
These DBEFiles cannot be reduced or dropped once expanded. Therefore,
care should be taken to limit the maximum size of expandable SYSTEM
DBEFiles.

Partial DBEFile Expansion

Partial expansion of �les can occur if the following conditions exist:

The current size of a DBEFile is not a multiple of DBEFileIncrSize. In this case, the
number of pages by which the DBEFile is expanded is determined as follows:

If the number of pages needed to bring the size of the DBEFile to a multiple of its
increment is less than or equal to half the increment size, the DBEFile is expanded by
that many pages plus those speci�ed in the increment size.

Otherwise, the DBEFile is expanded by the number of pages needed to make its size a
multiple of its increment.

If the �le system gets full during expansion, the DBEFile remains partially expanded.

DBEnvironment Configuration and Security 4-17

Obtaining Information about Expandable DBEFiles

The following query displays information about expandable DBEFiles as it appears in the
SYSTEM.DBEFile view:

isql=> SELECT DBEFNAME, DBEFTYPE, FILEID,

> DBEFNPAGES, DBEFUPAGES, DBEFINCRSZ, DBEFIPAGES,

> DBEFMPAGES, CTIME, DBEFSNAME

> FROM SYSTEM.DBEFILE;

Creating the DBEnvironment Security Scheme

After con�guring the DBEnvironment, you must create the security scheme that will control
its use. To do this, you grant and revoke authorities for speci�c users and groups with
the GRANT and REVOKE statements, respectively, as described in the ALLBASE/SQL
Reference Manual . You can also control the authority to perform certain maintenance tasks
using the SQLUtil maintenance word, which is a password for SQLUtil. For more information
on the maintenance word, refer to the \SQLUtil" appendix.

Creating Authorization Groups

You can grant all authorities to each DBEUserID individually. However, if several users
require the same set of authorities, you can use an authorization group. First, create
the groups, then add speci�c users to them. For example, if all managers need the same
authorities, you can create a group called PurchManagers and add the DBEUserIDs of the
managers to it, as follows:

isql=> CREATE GROUP PurchManagers;

isql=> ADD Margy TO GROUP PurchManagers;

isql=> ADD Ron TO GROUP PurchManagers;

isql=> ADD Sharon TO GROUP PurchManagers;

Managing Authorization Groups

Authorization group management consists of adding members to the group and removing
them when appropriate. An authorization group is owned and managed by the owner of the
group and/or by a user with DBA authority.

To delegate group management to another user, do one of the following:

assign the user as the owner in the CREATE GROUP statement (requires DBA authority)

create the group and transfer ownership to the user (requires DBA or OWNER authority)

Owners of groups are able to indirectly grant and revoke authorities by adding and removing
members. An example is given in \Granting/Revoking CONNECT Authority" later in this
chapter.

The SQL statements used to manage authorization groups are shown in Figure 4-2.

4-18 DBEnvironment Configuration and Security

CREATE GROUP
�
Owner.

�
GroupName

ADD

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�
TO GROUP TargetGroupName

REMOVE

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�
FROM GROUP TargetGroupName

DROP GROUP GroupName

TRANSFER OWNERSHIP OF

8<
:
�
TABLE

��
Owner.

�
TableName�

VIEW
��
Owner.

�
ViewName

GROUP GroupName

9=
;TO NewOwnerName

Figure 4-2. SQL Commands for Authorization Group Management

For more information about these statements, refer to the ALLBASE/SQL Reference Manual .

Using DBA Authority

DBA authority is for database administrators and users who create, maintain, and control
access to the DBEnvironment.

DBA authority is granted to (and cannot be revoked from) the user who con�gures the
DBEnvironment (DBECreator). A user with DBA authority can execute any SQL statement
or ISQL command in the DBEnvironment. DBA authority also gives the user co-ownership
of all objects in the DBEnvironment. A user with DBA authority can even revoke DBA
authority from any other user except the DBECreator.

ALLBASE/SQL does not restrict the number of users that can have DBA authority, but
because DBA authority is so powerful and therefore potentially dangerous, you should be
selective in granting it to others. You need DBA authority to grant DBA, RESOURCE,
CONNECT, RUN and EXECUTE, and DBEFileSet authority to other users, as in the
following examples:

isql=> GRANT DBA TO John;

isql=> GRANT CONNECT TO John;

isql=> GRANT RESOURCE TO John;

The DBECreator

The DBECreator is the user who either:

con�gures a DBEnvironment with the START DBE NEW statement or

is assigned as DBECreator when the DBEnvironment is restored to your system by the
superuser using the SQLUtil RESTORE command

DBEnvironment Configuration and Security 4-19

The DBECreator is able to execute all of the SQLUtil commands and is given irrevocable
DBA authority for the DBEnvironment. The DBECreator's DBEUserID appears in the
DBECon �le and is entered into the system catalog, as shown in the SYSTEM.SPECAUTH
view.

When a DBEnvironment is restored by the superuser with the SQLUtil RESTORE command,
the superuser is prompted for the userid to be assigned as the DBECreator. The DBEUserID
in the DBECon �le is then changed to the name the superuser enters. The DBEUserID of
the DBECreator is changed in the system catalog as soon as the DBEnvironment is accessed
again.

When a DBEnvironment is restored by a non-superuser with the SQLUtil RESTORE
command, the DBECreator name remains the same as it was when the DBEnvironment
was saved with the SQLUtil STORE command. If there is no matching login id in the
/etc/passwd �le, an error occurs and the RESTORE fails. In this case, only the superuser
can change the name of the DBEcreator to another valid DBEUserID using the SQLUtil
RESTORE command. There can be only one DBECreator for each DBEnvironment. DBA
authority cannot be revoked from the DBECreator. The DBECreator cannot be added to an
authorization group.

The DBECreator has special capabilities that general users do not have. The DBECreator
can:

execute the START DBE NEWLOG statement.
execute the SQLUtil commands (except PURGEFILE).

DBA Functions

Speci�c functions requiring DBA authority, and their appropriate SQL statements, are listed
in the appendix \Authorities Required by ALLBASE/SQL Statements."

Granting Authorities to PUBLIC

PUBLIC is a special, nonrestrictive category of user. By granting RUN authority or table
and view authorities to PUBLIC, you implicitly grant that authority to any user who has
CONNECT authority to the DBEnvironment.

When you explicitly grant an authority to PUBLIC, you are granting that authority to
all users in the DBEnvironment. Granting authorities to PUBLIC on an object is not the
same as creating a table PUBLIC. Although you implicitly perform a GRANT ALL TO
PUBLIC when you create a table PUBLIC, you are also specifying the locking strategy for the
table. You can revoke the authorities on a PUBLIC table, but the locking strategy remains
unchanged.

Granting/Revoking CONNECT Authority

Users cannot access the DBEnvironment until they are explicitly granted CONNECT
authority. A user with CONNECT authority has all table and view authorities that may have
been granted to the special user PUBLIC; however, granting CONNECT authority does not
grant a user any other privilege. To grant CONNECT authority, use the following statement:

isql=> GRANT CONNECT TO Peter;

4-20 DBEnvironment Configuration and Security

You can revoke CONNECT authority at any time. A user that is currently connected to
the DBEnvironment is allowed to continue their DBE session after CONNECT authority is
revoked, but cannot reconnect once the session is terminated. Once CONNECT authority
is revoked, the user cannot access the DBEnvironment regardless of any other authorities
(except DBA authority) previously granted.

If CONNECT authority is revoked from a user who owns objects, these objects, as well as any
other authorities the user may have been granted, are una�ected by the revocation. To revoke
CONNECT authority, use the following statement:

isql=> REVOKE CONNECT FROM Peter;

Since granting and revoking CONNECT authority does not a�ect a module's ownership or
other user authorities, DBEnvironment access can be restricted without restructuring the
security scheme. DBA authority is required to execute the GRANT and REVOKE statements
for special authorities, including CONNECT.

You can centralize access control to the DBEnvironment using authorization groups. In the
sample DBEnvironment the group Purch has CONNECT authority and all other groups
and users are members of Purch. The DBA can revoke CONNECT authority from Purch to
temporarily keep all users out of the DBEnvironment for maintenance and backup purposes.
Note that if the group being added as a member of another group does not exist, no error
results, since the entry is assumed to be a class name and not an authorization group.
Therefore, assure that a group is created before it is granted any authority or added to
another authorization group. The following series of statements creates the sample database
CONNECT authority scheme:

isql=> CREATE GROUP Purch;

isql=> ADD PurchManagers TO GROUP Purch;

isql=> ADD PurchDBMaint TO GROUP Purch;

isql=> ADD Purchasing TO GROUP Purch;

isql=> ADD Receiving TO GROUP Purch;

isql=> ADD WareHouse TO GROUP Purch;

isql=> ADD AccountsPayable TO GROUP Purch;

isql=> ADD Tom TO GROUP Purch;

isql=> GRANT CONNECT TO Purch;

Only a user with DBA authority can grant or revoke CONNECT authority directly to or
from an individual user or an authorization group. However, you can delegate the ability to
indirectly grant CONNECT authority to a user without granting DBA authority to that user
by transferring ownership of a group with CONNECT authority to that user.

isql=> TRANSFER OWNERSHIP OF GROUP Purch TO Ron;

Ron owns this authorization group and can control access to the DBEnvironment by adding
members to or removing members from Purch. You can get the same results by granting
CONNECT authority to an authorization group already owned by a non-DBA user.

Note Remember to COMMIT WORK to make your changes permanent.

DBEnvironment Configuration and Security 4-21

Granting/Revoking RESOURCE Authority

RESOURCE authority gives a user the ability to create:

tables
authorization groups

When you grant RESOURCE authority to an individual user, you are, in e�ect, giving the
user the capability to create a database. Any resources created by the user are owned by that
user's DBEUserID and are treated as a separate logical database.

isql=> GRANT RESOURCE TO Annie;

Suppose Annie, a member of the PurchDBMaint group, creates a new table called Employees.
The table's fully quali�ed name is Annie.Employees, and belongs to the Annie database rather
than the PurchDB database.

If RESOURCE authority is revoked from Annie, she still has OWNER authority for those
objects she created, but she cannot create any more objects:

isql=> REVOKE RESOURCE FROM Annie;

In the sample DBEnvironment the group PurchDBMaint has RESOURCE authority. The
members of PurchDBMaint are DBA assistants that create tables and groups. Once the
design of the objects is approved, the DBA can transfer their ownership so they become part
of an existing database. The following statements establish the PurchDBMaint group:

isql=> CREATE GROUP PurchDBMaint;

isql=> GRANT RESOURCE TO PurchDBMaint;

isql=> GRANT ALL ON PurchDB.Parts TO PurchDBMaint;

isql=> GRANT ALL ON PurchDB.Inventory TO PurchDBMaint;

isql=> GRANT ALL ON PurchDB.SupplyPrice TO PurchDBMaint;

isql=> GRANT ALL ON PurchDB.Vendors TO PurchDBMaint;

isql=> GRANT ALL ON PurchDB.Orders TO PurchDBMaint;

isql=> GRANT ALL ON PurchDB.OrderItems TO PurchDBMaint;

isql=> GRANT SELECT ON PurchDB.VendorStatistics TO PurchDBMaint;

isql=> GRANT SELECT ON PurchDB.PartInfo TO PurchDBMaint;

Users are then added to the PurchDBMaint group:

isql=> ADD Annie TO GROUP PurchDBMaint;

isql=> ADD Doug TO GROUP PurchDBMaint;

isql=> ADD David TO GROUP PurchDBMaint;

You can remove a user from the PurchDBMaint group to remove the user's associated
RESOURCE authority:

isql=> REMOVE David FROM GROUP PurchDBMaint;

To remove a user's OWNER authority, you can transfer ownership of the object, then grant
the required table and view authorities to the user.

4-22 DBEnvironment Configuration and Security

Granting/Revoking RUN Authority

RUN authority permits a user or group to execute an already preprocessed program that the
user or group does not own. RUN authority can be granted by the DBA or the owner of the
module.

isql=> GRANT RUN ON PurchDB.Program TO John;

RUN authority can also be revoked by the DBA or the owner of the module:

isql=> REVOKE RUN ON PurchDB.Program FROM John;

RUN authority can be granted to a group. For more information on module authorities, refer
to the \Maintenance" chapter.

Granting/Revoking EXECUTE Authority

EXECUTE authority permits a user or group to execute a section stored in the
DBEnvironment that the user does not own. EXECUTE authority can be granted by the
DBA or the owner of the procedure.

isql=> GRANT EXECUTE ON PurchDB.ReportMonitor TO John;

EXECUTE authority can also be revoked by the DBA or the owner of the procedure:

isql=> REVOKE EXECUTE ON PurchDB.ReportMonitor FROM John;

EXECUTE authority can be granted to a group. For more information on procedure
authorities, refer to the \Maintenance" chapter.

Granting/Revoking SECTIONSPACE or TABLESPACE Authority

SECTIONSPACE authority permits the grantee to store sections in the speci�ed DBEFileSet,
as in the following grant to PUBLIC:

isql=> GRANT SECTIONSPACE ON DBEFILESET DBEFileSet1 TO PUBLIC;

TABLESPACE authority permits the grantee to store table and long column data in the
speci�ed DBEFileSet, as in the following grant to the Warehse group:

isql=> GRANT TABLESPACE ON DBEFILESET DBEFileSet2 TO Warehse;

Refer to complete syntax for the GRANT statement in the ALLBASE/SQL Reference
Manual .

Verification of Authority

ALLBASE/SQL checks the DBECreator name in the DBECon �le to make sure you are
the DBECreator whenever you execute the START DBE NEWLOG statement and certain
SQLUtil commands. In addition, ALLBASE/SQL checks your DBEUserID in the system
catalog authorization tables for:

DBA authority when you perform a START DBE
CONNECT authority when you enter a CONNECT statement

DBEnvironment Configuration and Security 4-23

DBA or the appropriate authority when you:
specify an SQL statement that accesses the database (refer to the appendix, \Authorities
Required by SQL Statements," for a listing of SQL statements and their respective
authorities)
run an application program
preprocess an application program

Interactively, ALLBASE/SQL checks authority each time you issue a statement.
Programmatically, ALLBASE/SQL checks authority of the embedded SQL statements during
preprocessing and for DBA, OWNER, or RUN authority when a user attempts to run the
application program.

Managing DBEnvironment Sessions

This section shows the di�erent ways to start and terminate a DBEnvironment session for
daily operations and gives guidelines on when to use each method discussed.

A DBE session is a period of time between establishing and terminating access to a
DBEnvironment by a user or a program. Each user or program has a unique session. When
you start a DBEnvironment with the START DBE statement, you also start a DBE session.
Once a DBEnvironment is started, provided that it is in multiuser mode, all users must
use the CONNECT statement to start a DBE session. A user must be in a DBE session to
execute any statements except START DBE or CONNECT.

The DBEnvironment is not stopped until the STOP DBE statement is executed or until
the last DBE session terminates. The STOP DBE, RELEASE, and TERMINATE USER
statements are di�erent ways to terminate DBE sessions.

The START DBE statement must not be confused with the other two START DBE
statements available with ALLBASE/SQL. START DBE NEW, covered at the beginning of
this chapter, is used to con�gure a DBEnvironment and is performed one time only for a
DBEnvironment. The other START DBE statement, START DBE NEWLOG, is used only to
create a new log �le. This statement is described in the \Backup And Recovery" chapter of
this guide.

Using Autostart

Autostart automates the DBEnvironment startup procedure. When autostart is ON, the
DBEnvironment can be started with either a START DBE or a CONNECT statement.
When START DBE is used, the user mode must be speci�ed as MULTI or the default of
SINGLE is used. All other parameters not speci�ed are taken from the DBECon �le. When
CONNECT is used, all startup parameters, including user mode, are taken from the DBECon
�le. ALLBASE/SQL executes a START DBE statement on behalf of the �rst CONNECT
statement. All subsequent CONNECT statements are treated as conventional CONNECT
statements.

Figure 4-3 shows the relationship between autostart and user mode.

4-24 DBEnvironment Configuration and Security

Figure 4-3. Autostart and User Mode Dependencies

The recommended procedure for automating multiuser access using autostart is as follows:

Use SQLUtil to modify the startup parameters for your needs.
Make sure Autostart is ON.
Make sure User Mode is set to MULTI.

Once the con�guration is set up with autostart ON and user mode MULTI, the startup
procedure becomes transparent to any user. A user with CONNECT or DBA authority can
start the DBEnvironment in multiuser mode with the following statement:

isql=> CONNECT TO '../sampledb/PartsDBE';

Using START DBE

Using the CONNECT statement with autostart ON is the recommended way to start a DBE
session. However, the DBA might want to use START DBE for any one of the following
reasons:

to start a DBE session in single user mode to perform functions such as creating new
objects, loading large amounts of data, database restructuring and database maintenance

to temporarily override the con�guration parameters in the DBECon �le

to start a DBEnvironment that does not use autostart

to perform rollback recovery after a system failure in which the DBEnvironment was not
damaged

DBEnvironment Configuration and Security 4-25

The START DBE statement starts an existing DBEnvironment and initiates a DBE session.
You must have DBA authority to use START DBE. The START DBE statement is only
successful if no users are currently accessing the DBEnvironment. Complete syntax to start a
DBEnvironment is presented in the ALLBASE/SQL Reference Manual .

Starting a DBE Session in Single-User Mode

To start a DBE session in single user mode simply issue the START DBE statement without
specifying a user mode. The user mode defaults to SINGLE, and all other parameters not
speci�ed default to the values in the DBECon �le. The following statement starts a single user
session in the sample DBEnvironment:

isql=> START DBE '../sampledb/PartsDBE';

Overriding DBECon Parameters

You can use the START DBE statement to temporarily override the values in the DBECon
�le when the default options are not su�cient. For example, a database may undergo several
updates on a certain day, requiring a greater than usual number of log and data bu�er pages.
The following statement will increase the number of bu�er pages so that performance will not
be impaired:

isql=> START DBE '../sampledb/PartsDBE' MULTI

> BUFFER = (300,45);

The data bu�er pages and log bu�er pages are increased to 300 and 45, respectively. Note
that the TRANSACTION option was not speci�ed in the START DBE statement. The
default value in the DBECon �le is used. Once the STOP DBE statement is issued, the page
numbers return to the default values in the DBECon �le. To permanently change the number
of bu�er pages or other startup parameters, use the ALTDBE command in SQLUtil. A
DBA who needs more control over how users access the DBEnvironment might want to leave
autostart OFF and start the DBEnvironment every time users need access.

Starting DBE Sessions without Autostart

If a DBEnvironment does not use autostart, the DBA must perform a START DBE before
additional users can connect to the DBEnvironment. The following statement simply starts
the sample DBEnvironment in multiuser mode:

isql=> START DBE '../sampledb/PartsDBE' MULTI;

Rollback Recovery with START DBE

ALLBASE/SQL ensures the DBEnvironment is consistent when it is opened by the START
DBE statement by automatically doing the following:

permanently reapplying all changes made by transactions that were terminated by a
COMMIT WORK statement but were not written to disk prior to the termination or failure

rolling back (undoing) any changes made by incomplete or aborted transactions

The �rst CONNECT statement executed with autostart ON executes an implicit START
DBE which performs a rollback for any incomplete transactions.

4-26 DBEnvironment Configuration and Security

Connecting to a DBE

The CONNECT statement only works when one of the following is true:

The DBEnvironment has been started using the START DBE statement with the MULTI
option.
Autostart is ON.

You must have CONNECT or DBA authority in a DBEnvironment before you can connect to
it.

Once the DBEnvironment has been started with the MULTI option, all subsequent users must
use the CONNECT statement to start a DBE session.

Terminating a DBE Session

There are three statements available that terminate a DBE session:

RELEASE

STOP DBE

TERMINATE USER

Using RELEASE

Any user that can connect to the DBEnvironment can execute the RELEASE statement. To
terminate a DBE session in a single user or multiuser DBEnvironment, simply type:

isql=> RELEASE;

Before releasing the current DBE session, either COMMIT WORK to make changes
permanent, or ROLLBACK WORK to undo the transaction. All transactions that were not
committed are aborted, and their changes are rolled back when the DBEnvironment is started
again.

ALLBASE/SQL keeps the DBEnvironment open until the last session terminates. When the
last session is terminated, ALLBASE/SQL closes the DBEnvironment by performing a STOP
DBE on the user's behalf.

Type either END or EXIT at the ISQL prompt to terminate ISQL. If you try to exit ISQL
before entering the RELEASE statement, ISQL asks if you want to COMMIT WORK. Type
Y or YES to keep all changes made in the current transaction. Type N or NO to roll back the
current transaction.

Using STOP DBE

The STOP DBE statement is used to close a DBEnvironment. DBA authority is required to
execute this statement. The STOP DBE statement stops all DBE sessions, whether in a single
or multiuser DBEnvironment. The statement is:

isql=> STOP DBE;

DBEnvironment Configuration and Security 4-27

Transactions that have not been committed before the DBEnvironment is stopped are
aborted. Their changes are rolled back when a START DBE statement is executed. The
STOP DBE statement can be used to stop the DBEnvironment before making a backup,
recovering a DBEnvironment, performing maintenance, or changing DBECon parameters. The
DBA may wish to query the SYSTEM.USER table to see which users are currently accessing
the DBEnvironment, and advise those users to use the COMMIT WORK statement with the
RELEASE option to make all changes permanent before the DBA issues the STOP DBE
statement.

To exit ISQL type E or EXIT. If you try to exit ISQL before entering the STOP DBE
statement, ISQL will ask if you want to COMMIT WORK. Type Y or YES to keep all changes
made in the current transaction. A YES response will not keep changes made in other DBE
sessions. Type N or NO to abort all current transactions.

Using TERMINATE USER

The TERMINATE USER statement allows you to terminate your own or another user's DBE
session. You can always terminate your own session with the TERMINATE USER statement.
You must have DBA authority to terminate another user's session.

A DBA might use the TERMINATE USER statement to terminate a DBE session that is
using excessive system resources and causing deadlocks, or a session that is impeded. The
statement to abort all active sessions for DBEUserID Kelly is:

isql=> TERMINATE USER Kelly;

You can also use the TERMINATE USER statement to terminate one of several
ALLBASE/SQL sessions running under the same DBEUserID. Specify a session ID instead of
a DBEUserID in the statement:

isql=> TERMINATE USER 108;

where 108 is the session identi�er as shown in the SYSTEM.USER view or the process
identi�er displayed on the SQLMON Overview Session screen.

If a user's session is impeded or waiting, TERMINATE USER aborts the session immediately.
However, if a user's session is active and not waiting, TERMINATE USER does not take
e�ect until the session makes its next call to ALLBASE/SQL.

You can monitor the SYSTEM.USER view in the system catalog to determine the users
currently connected to a DBEnvironment and the session identi�ers for each user. Refer to the
\System Catalog" chapter for more information. To identify current DBEnvironment users,
you can also monitor the Overview Session screen in SQLMON. The session identi�er column
in the SYSTEM.USER view is equivalent to the process identi�er �eld in SQLMON. For more
information, see the ALLBASE/SQL Performance and Monitoring Guidelines .

Terminating Transactions and Queries

Use the TERMINATE TRANSACTION statement to terminate a given transaction. Use
the TERMINATE QUERY statement to terminate a running query. Also the TERMINATE
AT QUERY LEVEL or the TERMINATE AT TRANSACTION LEVEL option must have
been set for the speci�ed connection or transaction. See the \SQL Statements" chapter in the
ALLBASE/SQL Reference Manual for more information.

4-28 DBEnvironment Configuration and Security

Setting Timeout Values

You can set default and maximum timeout values for a DBEnvironment with the SQLUtil
ALTDBE command. These values apply to both lock waits and throttle waits. In addition,
individual users can set timeout values for individual user sessions.

The timeout action can also be set to abort the command being processed instead of the
entire transaction for a particular session or transaction. Both SET SESSION and SET
TRANSACTION have parameters to specify which action the system should take when a
timeout expires. The setting of timeout values is also incorporated into these commands. The
SQLUtil SHOWDBE command displays the current, default, and maximum values of the
timeout parameter in the DBECon �le.

Remote Database Access

You can access ALLBASE/SQL database �les on remote nodes by using ALLBASE/NET
and a local area network. The local machine is known as the client node, and the remote
machine, where the DBEnvironment is located, is known as the server node. Refer to the
ALLBASE/NET User's Guide for complete details.

Note that ALLBASE/SQL users on diskless machines cannot create a DBEnvironment. See
the note in the section \Using START DBE" earlier in this chapter.

Currently, you cannot access ALLBASE/SQL database �les remotely using NFS. However, an
ALLBASE/SQL application can access non-database �les within NFS �lesystems.

DBEnvironment Configuration and Security 4-29

5

Database Creation and Security

Once the DBEnvironment is con�gured and storage is allocated, you can begin creating the
tables, views, indexes, and other objects that comprise databases. The examples in this
chapter show the statements for creating speci�c tables, views, and authorities within the
sample DBEnvironment PartsDBE. A complete set of statements for creating all the tables,
views, and authorities in PartsDBE is found in the \Sample DBEnvironment" appendix of the
ALLBASE/SQL Reference Manual .

Tasks presented in this chapter are:

Creating tables
Creating views
Creating hash structures
Creating indexes
Creating procedures and rules
Creating the database security scheme
Creating a database schema
Loading tables

Creating Tables

You can create a table using the following basic syntax:

CREATE

2
664
PRIVATE

PUBLICREAD

PUBLIC

PUBLICROW

3
775TABLE �

Owner.
�
TableName

�
LANG = TableLanguageName

�

(

8>><
>>:

ColumnDe�nition

UniqueConstraint

ReferentialConstraint

CheckConstraint

9>>=
>>;
�
, . . .

�
)

2
4 UNIQUE HASH ON (HashColumnName

�
, . . .

�
) PAGES = PrimaryPages

HASH ON CONSTRAINT
�
ConstraintID

�
PAGES = PrimaryPages

CLUSTERING ON CONSTRAINT
�
ConstraintID

�
3
5

2
4 IN PARTITION

8<
:
PartitionName

DEFAULT

NONE

9=
;
3
5

�
IN DBEFileSetName1

�
Refer to the CREATE TABLE statement in the ALLBASE/SQL Reference Manual for
complete syntax and semantics.

Database Creation and Security 5-1

Table Type

The �rst parameter in the CREATE TABLE statement speci�es the table type. If you do not
specify a table type, the default is PRIVATE. The table type option creates a table with the
following implied attributes:

The initial security level of the table:

PRIVATE (the default type) - gives no authorities to PUBLIC.

PUBLICREAD - causes ALLBASE/SQL to perform an implicit GRANT SELECT TO
PUBLIC. This gives any user with CONNECT authority the authority to look at the
table.

PUBLIC and PUBLICROW - causes ALLBASE/SQL to perform an implicit GRANT
ALL TO PUBLIC. This gives any user with CONNECT authority the authority to look
at and modify the table as well as alter the table and create indexes on it.

The locking mode of the table:

PRIVATE (the default type) - causes ALLBASE/SQL to hold exclusive (X) locks at
the table level for both reads and writes. These locks are easy for ALLBASE/SQL to
manage and unlikely to cause a deadlock condition because each table is always accessed
exclusively by one user. Tables that must not be accessed by more than one user at a
time should be PRIVATE.

PUBLICREAD - causes ALLBASE/SQL to hold share (S) locks at the table level for
reads and exclusive (X) locks at the table level for writes. A table created PUBLICREAD
can be read by several users, which increases concurrency, but can only be modi�ed
by one transaction at a time, which increases data consistency. Tables that are rarely
updated should be PUBLICREAD.

PUBLIC - causes ALLBASE/SQL to hold share (S) locks at the page level for reads
(SELECT) and hold exclusive (X) locks at the page level for writes (INSERT, UPDATE,
DELETE). When locks are obtained at the page level for reads, an intention share
(IS) lock is obtained on the table, and an S lock is obtained on the page. When locks
are obtained at the page level for reads with an intention to update or write a row, an
intention exclusive (IX) lock is obtained on the table, and a share and intention exclusive
(SIX) lock is obtained on the page. If a page is actually written to, the SIX lock must
become an X lock.

PUBLIC mode provides higher concurrency than PUBLICREAD and PRIVATE tables
for both reads and writes because a user does not have to wait for a locked table to get
released. Moderate to large size tables for which you want to maximize concurrency
should be PUBLIC.

PUBLICROW - causes ALLBASE/SQL to hold share (S) locks at the row level for reads
and exclusive (X) locks at the row level for writes. When locks are obtained at the row
level for reads, an intention share (IS) lock is obtained on the table and on the page, and
an S lock is obtained on the row. When locks are obtained at the row level for reads with
an intention to update or write a row, an intention exclusive (IX) lock is obtained on the
table and on the page, and a share and intention exclusive (SIX) lock is obtained on the
row. If a row is actually updated, the SIX lock must become an X lock.

PUBLICROW provides the greatest concurrency for both reads and writes because a
user does not have to wait for a lock on a page or table to get released. A side e�ect of
PUBLICROW mode is the large number of locks that must be obtained when accessing

5-2 Database Creation and Security

data from moderate or large size tables. Locks are obtained at table, page, and row levels
for PUBLICROW tables under normal circumstances. PUBLICROW mode is often
the best choice for a small table that you expect to be accessed by a large number of
concurrent transactions.

ALLBASE/SQL automatically uses the locking mode implicit in the table type whenever
you access that table. You can use the LOCK TABLE statement to temporarily override
this automatic locking behavior. With LOCK TABLE, you can increase the granularity of
locking from page to table level or from row to table level. However, you cannot decrease
the granularity of locking from table to page level or from page to row level by using LOCK
TABLE.

Revoking and Granting Authorities on PUBLICROW and PUBLIC Tables

The REVOKE and GRANT statements may be used by the DBA or the table's owner to
change the automatic grant implied at creation time; however, the locking mode remains
unchanged.

You can get PUBLIC, PUBLICROW, or PUBLICREAD locking on a table without the
security implications by creating the table PUBLIC, PUBLICROW, or PUBLICREAD and
revoking the implied authority from PUBLIC:

isql=> CREATE PUBLIC TABLE SomeTable (SomeColumn . . .);

isql=> REVOKE ALL ON SomeTable FROM PUBLIC;

Likewise, you can have PRIVATE locking on a table and grant authorization to PUBLIC:

isql=> CREATE PRIVATE TABLE SomeTable (SomeColumn . . .);

isql=> GRANT SELECT ON SomeTable TO PUBLIC;

Table locking strategy is discussed in more detail in the chapter \Concurrency Control
Through Locks and Isolation Levels" in the ALLBASE/SQL Reference Manual .

Altering Table Type

You can alter a table's type (lock mode) by using the ALTER TABLE statement. The
following example shows how to change locking mode to PUBLICROW without changing the
authority scheme for the table:

isql=> ALTER TABLE PurchDB.Vendors

> SET TYPE PUBLICROW PRESERVE AUTHORITY;

isql=>

Owner and Table Name

The next parameter in the CREATE TABLE statement, OwnerName, defaults to the
DBEUserID of the user who creates the table. DBA authority is required to create tables with
an owner name other than the default. You can set the default owner's name to something
other than the creator's DBEUserID by using the ISQL SET OWNER command. Refer to
the \Logical Design" chapter for information on the di�erent types of owners (class names,
DBEUserIDs, or authorization groups) and OWNER authority.

Database Creation and Security 5-3

A table name may be up to 20 bytes long in any combination of letters, digits, $, #, @, or
underscore. The �rst character, however, cannot be a decimal digit or an underscore. A table
name can contain any characters if it is enclosed in double quotes. However, the name must
then be enclosed in double quotes each time it is referenced, and the �rst character following
the �rst double quote cannot be a blank.

Specify the owner name any time you reference a table that is not your own.

Use the LANG = TableLanguageName clause in the CREATE TABLE statement to specify a
language other than the DBEnvironment's language. For example, you might wish to specify
n-computer (ASCII) for a certain table although the DBEnvironment language is Japanese.

isql=> CREATE TABLE NewTable LANG = "n-computer"

> (Column1 char(20), Column2 char(10));

You must use double quotes around the name \n-computer" because it contains a hyphen.
Normally, native language names do not require quotes.

Column Definition

ColumnName

�
ColumnDataType

LongColumnType
�
IN DBEFileSetName2

�
�

�
LANG = ColumnLanguageName

�
� �

NOT
�
CASE SENSITIVE

�
2
664 DEFAULT

8>><
>>:

Constant

USER

NULL

CurrentFunction

9>>=
>>;

3
775

2
6666666664

NOT NULL

��
UNIQUE

PRIMARY KEY

��
CONSTRAINT ConstraintID

� �

REFERENCES RefTableName
�
(RefColumnName)

��
CONSTRAINT ConstraintID

�
�
. . .

�

CHECK (SearchCondition)
�
CONSTRAINT ConstraintID

�
�
IN DBEFileSetName3

�

3
7777777775

�
. . .

�

The column de�nition includes the following parts, of which only the column name and data
type are required:

Column name
Data type
Language clause
DEFAULT clause
Constraint de�nitions

Column Name and Data Type

A table must have at least one column and each column must be given a name and a data
type. In addition, the NOT NULL attribute, which disallows null values from being entered
in the column, can be assigned. Several columns in the sample DBEnvironment PartsDBE,
including PartNumber, VendorNumber and OrderNumber, are de�ned as NOT NULL and
consequently are required to contain data.

5-4 Database Creation and Security

Language Clause

Use the LANG = ColumnLanguageName clause in the CREATE TABLE statement to specify
a column with a language di�erent from that of the default table language. You can only
specify n-computer (ASCII) or the current native language. Example:

isql=> CREATE TABLE NewTable

> (Column1 char(20) LANG = "n-computer",

> Column2 char(20));

DEFAULT Clause

Use the DEFAULT clause to specify a default value for a column. Example:

isql=> CREATE TABLE Table5

> (Column1 char(20) DEFAULT 'Empty',

> (Column2 integer NOT NULL);

For further information on data types in creating tables, refer to the chapters \Names" and
\Data Types" in the ALLBASE/SQL Reference Manual .

Constraint Definitions

In creating a table de�nition, you can include the following types of integrity constraints:

Unique constraints
Referential constraints
Check constraints

Unique Constraints

Use the UNIQUE clause to specify a unique constraint on a table. Use the PRIMARY KEY
clause to specify a unique constraint that also de�nes the primary key for a table. Example:

CREATE PUBLIC TABLE RecDB.Clubs

(ClubName CHAR(15) NOT NULL PRIMARY KEY,

ClubPhone SMALLINT,

Activity CHAR(16))

IN RecFS;

Note that the primary key must be on a column that is NOT NULL.

The di�erence between a PRIMARY KEY and a UNIQUE constraint is that the PRIMARY
KEY designation lets you reference the key in a referenced table without specifying column
names.

Referential Constraints

The REFERENCES clause lets you specify the manner in which a referencing table points
to a unique or primary key of another table. You use the REFERENCES clause within a
column de�nition to de�ne a referential constraint in which only that column references a key
in another table.

Example:

CREATE PUBLIC TABLE RecDB.Members

(MemberName CHAR(20) NOT NULL,

Club CHAR(15) NOT NULL REFERENCES RecDB.Clubs (ClubName),

MemberPhone SMALLINT)) IN RecFS;

Database Creation and Security 5-5

This assumes that RecDB.Clubs has already been created with ClubName as a unique or
primary key.

You use REFERENCES along with the FOREIGN KEY clause to de�ne a referential
constraint on multiple columns at the table level. In order to illustrate this, it is necessary to
show an alternate way of creating the RecDB.Members table, in which MemberName and
Club are de�ned as a two-column primary key:

CREATE PUBLIC TABLE RecDB.Members

(MemberName CHAR(20) NOT NULL,

Club CHAR(15) NOT NULL,

MemberPhone SMALLINT,

PRIMARY KEY (MemberName, Club),

FOREIGN KEY (Club) REFERENCES RecDB.Clubs (ClubName)) IN RecFS;

Based on this referenced table, we can de�ne the RecDB.Events table as follows with a
two-column foreign key:

CREATE PUBLIC TABLE RecDB.Events

(SponsorClub CHAR(15),

Event CHAR(30),

Date DATE,

Time TIME,

Coordinator CHAR(20),

FOREIGN KEY (Coordinator, SponsorClub)

REFERENCES RecDB.Members (MemberName, Club)) IN RecFS;

Note that since (MemberName, Club) is speci�ed as the PRIMARY KEY for
RecDB.Members, the use of the column names in the REFERENCES clause of the example is
optional.

Check Constraints

The following example shows a table created with a check constraint. The check constraint
ensures that the Date column will not be updated with a date earlier than January 1, 1990.

CREATE PUBLIC TABLE RecDB.Events

(SponsorClub CHAR(15),

Event CHAR(30),

Date DATE,

Time TIME,

Coordinator CHAR(20),

CHECK (Date >= '1990-01-01'))

IN RecFS

For more information about integrity constraints, see the chapter \Constraints, Procedures,
and Rules" in the ALLBASE/SQL Reference Manual .

DBEFileSet Name

The last parameter in the CREATE TABLE statement speci�es the DBEFileSet with which
the table and its indexes are associated. If you do not specify a DBEFileSet and you have
not assigned a default DBEFileSet with the SET DEFAULT DBEFILESET statement,
tables are created in the SYSTEM DBEFileSet, which also contains the system catalog. It is
recommended practice to keep the system catalog apart from your data and index �les. Refer
to the \Physical Design" chapter under \Grouping Tables in DBEFileSets" for information on
why you might wish to create separate DBEFileSets for tables.

In addition, two parameters in the column de�nition syntax allow speci�cation of a
DBEFileSet for long column data and for check constraint sections.

5-6 Database Creation and Security

Examining Table Attributes

After creating tables, you can query the SYSTEM.TABLE and SYSTEM.COLUMN views
to see how their de�nitions appear. The following query on SYSTEM.TABLE will display
information about all the tables in the PurchDB database:

isql=> SELECT * FROM System.Table WHERE Owner='PURCHDB';

SELECT * FROM System.Table WHERE Owner='PURCHDB';

--------------------+--------------------+--------------------+------+--

NAME |OWNER |DBEFILESET |TYPE |RT

--------------------+--------------------+--------------------+------+--

INVENTORY |PURCHDB |WAREHFS | 0|

ORDERITEMS |PURCHDB |ORDERFS | 0|

ORDERS |PURCHDB |ORDERFS | 0|

PARTINFO |PURCHDB |SYSTEM | 1|

PARTS |PURCHDB |WAREHFS | 0|

REPORTS |PURCHDB |ORDERFS | 0|

SUPPLYPRICE |PURCHDB |PURCHFS | 0|

VENDORS |PURCHDB |PURCHFS | 0|

VENDORSTATISTICS |PURCHDB |SYSTEM | 1|

--

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

You can also use the Static subsystem of SQLMON to see which tables are contained in a
DBEFileset. For more information on SQLMON, see the ALLBASE/SQL Performance and
Monitoring Guidelines .

You must use an additional query of the system catalog to display the column de�nitions of
particular tables:

isql=> select * from system.column

> where owner= 'PURCHDB' and tablename = 'PARTS';

The query result is as follows:

select * from system.column where owner= 'PURCHDB' and tablename = 'PARTS';

--------------------+--------------------+--------------------+-----------+

COLNAME |TABLENAME |OWNER |COLNUM |

--------------------+--------------------+--------------------+-----------+

PARTNUMBER |PARTS |PURCHDB | 1|

PARTNAME |PARTS |PURCHDB | 2|

SALESPRICE |PARTS |PURCHDB | 3|

Number of rows selected is 3

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

You can also use the ISQL INFO command to display column de�nitions for a table:

isql=> INFO PURCHDB.PARTS;

Column Name Data Type (length) Nulls Allowed Language

--

PARTNUMBER Char (16) NO n-computer

PARTNAME Char (30) YES n-computer

SALESPRICE Decimal (10, 2) YES

The CREATE TABLE statement only enters the table de�nition into the system catalog. The
table does not occupy storage in the DBEFileSet until you insert a row.

All names that are stored as character strings in the system catalog are upshifted when they
are stored unless they are in double quotes. For example, the statement

Database Creation and Security 5-7

isql=> CREATE PUBLIC TABLE PurchDB.SomeTable

> (Column1 INTEGER, Column2 INTEGER) in FS;

would store PURCHDB as the owner and SOMETABLE as the table name in the system catalog,
whereas the statement

isql=> CREATE PUBLIC TABLE "PurchDB"."SomeTable"

> (Column1 INTEGER, Column2 INTEGER) in FS;

would store PurchDB as the owner and SomeTable as the table name. To examine the
attributes of the �rst, you would use the following statement:

isql=> SELECT * FROM SYSTEM.TABLE

> WHERE NAME = 'SOMETABLE' AND OWNER = 'PURCHDB';

For the second, you would use lower case spelling:

isql=> SELECT * FROM SYSTEM.TABLE

> WHERE NAME = 'SomeTable' AND OWNER = 'PurchDB';

To eliminate any possible confusion, avoid using double quotes in de�ning objects.

Defining Partitions and Tables

To create partitions, you use the CREATE PARTITION statement. Then, to assign a table to
a partition, you can use the IN PARTITION parameter of the CREATE TABLE statement
or the SET PARTITION parameter of the ALTER TABLE statement. If you do not assign a
table to a partition, the table is assigned to the DEFAULT partition.

If you do not want audit logging done on the table, you can specify NONE with either IN
PARTITION or SET PARTITION; then, operations on the table do not generate audit log
records.

If you assign a table to a partition, and if you speci�ed DATA AUDIT ELEMENTS when
you started the DBEnvironment (either explicitly or by default), then any inserts, updates, or
deletes you perform on the table generate audit log records.

Partitions are dropped with the DROP PARTITION statement. Before you can drop a
partition, you must assign each of its tables to a new partition with the statement ALTER
TABLE SET PARTITION.

Example

In the following example, the IN PARTITION clause of the CREATE TABLE statement is
used to assign a table to the already created partition, P1:

FF
CREATE PARTITION P1 with ID = 1;

CREATE PUBLIC TABLE table1 (Col1 integer not null,

Col2 char(12) not null,

Col3 integer not null)FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
IN PARTITION P1

IN FileSetA;

Refer to the CREATE TABLE statement and ALTER TABLE statement syntax in the \SQL
Statements" chapter of the ALLBASE/SQL Reference Manual .

5-8 Database Creation and Security

Creating Views

A view is a table derived by placing a \window" over one or more tables to let users or
programs see only certain data. Views are useful for limiting data visibility; they are also
useful for pulling together various tables to simplify complex SELECT statements. Refer to
\Designing Views" in the \Logical Design" chapter of this guide.

A view is actually a SELECT statement that is permanently stored as a section in the system
catalog. You can store a SELECT statement that extracts part of a table, or, as in the sample
database, you can store a SELECT that joins two or more tables together. Refer to the
\Maintenance" chapter for further explanation of sections.

The following is the basic syntax for creating a view:

CREATE VIEW
�
Owner.

�
ViewName

�
(ColumnName

�
, . . .

�
)
�

AS QueryExpression
�
IN DBEFileSetName

�
�
WITH CHECK OPTION

�
CONSTRAINT ConstraintID

� �
Refer to the ALLBASE/SQL Reference Manual for complete syntax and semantics.

Owner names for views are established the same way they are for tables.

View names must conform to the same conventions as table names. The view name is
stored in both SYSTEM.TABLE and SYSTEM.SECTION. The view de�nition is stored in
SYSTEM.VIEWDEF.

Constraint information is stored in the SYSTEM.CONSTRAINT table.

The section containing the SELECT statement for the view is stored in one of three places:

the DBEFileSet you specify in the CREATE VIEW statement
the default section space DBEFileSet you specify with SET DEFAULT DBEFILESET
the system DBEFileSet

If you omit the column names, they are derived from the column names of the table entered as
part of the query expression, which is a SELECT that de�nes the contents of the view.

The CHECK OPTION clause de�nes a check constraint that enforces the condition de�ning
the view when changes are made through the view. When the table from which the view is
derived is modi�ed through the view, this check constraint must be satis�ed. The view must
also meet the requirements for updatability.

Note The query expression that de�nes a view cannot include an ORDER BY
clause. If you need to use ORDER BY, use it in the SELECT on the view.

Database Creation and Security 5-9

The following statement creates a view that allows authorized users to see the relationship
between the PartNumber column, the VendPartNumber, VendorName, and ListPrice:

isql=>CREATE VIEW PurchDB.PartInfo

> (PartNumber,PartName,VendorNumber,VendorName,

> VendorPartNumber,ListPrice,Quantity) AS

> SELECT PurchDB.SupplyPrice.PartNumber,

> PurchDB.Parts.PartName,

> PurchDB.SupplyPrice.VendorNumber,

> PurchDB.Vendors.VendorName,

> PurchDB.Supplyprice.VendPartNumber,

> PurchDB.SupplyPrice.UnitPrice,

> PurchDB.SupplyPrice.DiscountQty

> FROM PurchDB.Parts,

> PurchDB.SupplyPrice,

> PurchDB.Vendors

> WHERE PurchDB.SupplyPrice.PartNumber =

> PurchDB.Parts.PartNumber

> AND PurchDB.SupplyPrice.VendorNumber =

> PurchDB.Vendors.VendorNumber;

Note that the SELECT statement joins three tables. Views can facilitate query processing and
can also be used to limit data visibility.

A check constraint is de�ned on an updatable view, as follows:

CREATE VIEW RecDB.EventView

(Event,

Date) AS

SELECT RecDB.Event,

RecDB.Date

FROM RecDB.Events

WHERE Date >= '1992-01-01'

WITH CHECK OPTION

See the section \Controlling Table Access with Views," below.

Creating Hash Structures

You create a hash structure at the same time you create a table, using the CREATE TABLE
statement, as in the following syntax.

CREATE

2
4 PUBLIC

PUBLICREAD

PRIVATE

3
5TABLE �

Owner.
�
TableName

�
LANG = TableLanguageName

�

(
�
ColumnName ColumnDataType

�
LANG = ColumnLanguageName

��
NOT NULL

� 	
�
, . . .

�
)
�
UNIQUE HASH ON (HashColumnName

�
, . . .

�
) PAGES = PrimaryPages

�
�
IN DBEFileSetName

�
Refer to the ALLBASE/SQL Reference Manual for complete syntax and semantics.

The following sequence of statements shows how to create the PurchDB.Vendors table using
a hash structure. Commands to create and add a dedicated DBEFile to contain the hash
structure are also shown, since there must be su�ciently large empty DBEFiles of type
TABLE or MIXED available when you issue the CREATE TABLE statement in creating a
hash structure:

5-10 Database Creation and Security

isql=> BEGIN WORK;

isql=> CREATE DBEFile PurchHashF1

> WITH PAGES = 120, NAME = 'PurchHF1',

> TYPE = TABLE;

isql=> ADD DBEFile PurchHashF1

> TO DBEFILESET PurchFS;

isql=> CREATE PUBLIC TABLE PurchDB.Vendors

> (VendorNumber INTEGER NOT NULL,

> VendorName CHAR(30) NOT NULL,

> ContactName CHAR(30),

> PhoneNumber CHAR(15),

> VendorStreet CHAR(30) NOT NULL,

> VendorCity CHAR(20) NOT NULL,

> VendorState CHAR(2) NOT NULL,

> VendorZipCode CHAR(10) NOT NULL,

> VendorRemarks VARCHAR(60))

> UNIQUE HASH ON (VendorNumber) PAGES = 101

> IN PurchFS;

isql=> COMMIT WORK;

Note that all these statements are shown as part of the same transaction. This ensures that
the DBEFiles you create will not be used by any other transaction before the hash structure is
created.

Creating Indexes

ALLBASE/SQL uses the data in the columns as a key to facilitate data retrieval. Use the
CREATE INDEX statement as in the following syntax:

CREATE
�
UNIQUE

��
CLUSTERING

�
INDEX

�
Owner.

�
IndexName ON

�
Owner.

�
TableName (ColumnName

�
ASC

DESC

� �
,ColumnName

�
ASC

DESC

� ��
. . .

�
)

The index name must conform to ALLBASE/SQL naming conventions explained in the
ALLBASE/SQL Reference Manual . If you do not specify an owner name, then the index
name must be unique throughout the DBEnvironment. Refer to the ALLBASE/SQL
Reference Manual for complete syntax and semantics.

There are several indexes in the sample database. The following examples show how to create
each type. The �rst is a nonunique, nonclustering index:

isql=> CREATE INDEX VendPartIndex

> ON PurchDB.SupplyPrice (VendorNumber);

The next example shows the creation of a unique index:

isql=> CREATE UNIQUE INDEX PartNumIndex

> ON PurchDB.Parts (PartNumber);

The following shows the creation of a clustering index:

isql=> CREATE CLUSTERING INDEX PartToNumIndex

> ON PurchDB.SupplyPrice (PartNumber);

Database Creation and Security 5-11

For details on how ALLBASE/SQL uses each type of index, refer to the \Logical Design" and
\Maintenance" chapters.

Note Before you build a large index, it is advisable to use the CREATE
TEMPSPACE statement to designate an area where the system can open
temporary �les that are large enough for the sorting that is required.
By default, /tmp is used as a tempspace. If there is not enough space in
/tmp, the CREATE INDEX statement may fail for large indexes, unless
alternate tempspaces are designated. Refer to \Physical Design" chapter for
more information about creating tempspaces. Also refer to the \CREATE
TEMPSPACE" statement in the ALLBASE/SQL Reference Manual .

Creating Procedures and Rules

Rules and procedures work together to provide a method of enforcing the relationships in a
database design without application programming. You create procedures, which are stored in
the DBEnvironment; then you create rules that invoke the procedures when certain conditions
are met. This section shows how to create simple rules and procedures. For more detailed
information, refer to the chapter \Constraints, Procedures and Rules" in the ALLBASE/SQL
Reference Manual .

Creating a Procedure

You can create procedures that perform most database operations when �red by a rule or
when invoked in ISQL or in an application program. The following example shows how
to create procedure PurchDB.RemovePart, which is invoked by the rule described in the
following section:

CREATE PROCEDURE PurchDB.RemovePart (PartNum CHAR(16) NOT NULL)

AS BEGIN

DELETE FROM PurchDB.Inventory WHERE PartNumber = :PartNum;

DELETE FROM PurchDB.SupplyPrice WHERE PartNumber = :PartNum;

END;

For more detailed information, refer to the \Using Procedures" section of the \Constraints,
Procedures, and Rules" chapter in the ALLBASE/SQL Reference Manual and to the \Using
Procedures in Application Programs" chapter in the ALLBASE/SQL Advanced Application
Programming Guide.

Creating a Rule

You can de�ne rules that operate on speci�c tables in a database whenever a particular type
of data manipulation is performed. The following example shows how to create a rule tied to
an update of the PurchDB.Parts table:

CREATE RULE PurchDB.RemovePart

AFTER DELETE FROM PurchDB.Parts

WHERE SUBSTRING(PartNumber,1,4) < > 'XXXX'

EXECUTE PROCEDURE PurchDB.RemovePart (OLD.PartNumber);

5-12 Database Creation and Security

The table on which the rule is de�ned is PurchDB.Parts. The statement type required to
trigger the procedure is the DELETE operation. The condition that must be satis�ed in
addition to the statement type of DELETE is that the �rst four characters in PartNumber
must not be \XXXX." The procedure to be executed is PurchDB.RemovePart.

Creating the Database Security Scheme

In addition to the security provided by the operating system and the security inherent in
special authorities, which you grant at the DBEnvironment level, you can create a security
scheme for individual databases by granting and revoking authorities or by creating view
de�nitions. The next sections describe how to create a database security scheme.

Controlling Table Access with Authorities

You create a security scheme to protect the tables in each database by granting speci�c
authorities to individual DBEUserIDs or groups and revoking them from other DBEUserIDs
or groups. Table 5-1 describes the types of table and view authorities.

Table 5-1. Table and View Authorities

Type Description

ALTER Lets a user or group add columns to a table. ALTER authority does not
apply to views.

DELETE Lets a user or group delete rows from a table or view. DELETE authority
can be granted on any view, but rows cannot be deleted unless the view
meets certain criteria. See the section \Designing Views" in the \Logical
Design" chapter.

INDEX Lets a user or group create and drop indexes for a table. INDEX authority
does not apply to views.

INSERT Lets a user or group insert rows into a table or view. INSERT authority can
be granted on any view, but rows cannot be inserted unless the view meets
certain criteria. See the section \Designing Views" in the \Logical Design"
chapter.

SELECT Lets a user or group look at a table or view and create views on a table or
view.

UPDATE Lets a user or group update all columns in the table or view. UPDATE
authority on speci�c columns lets a user or group update only those
columns. UPDATE authority can be granted on any view, but columns
cannot be updated unless the view meets certain criteria. See the section
\Designing Views" in the \Logical Design" chapter.

REFERENCES Lets a user or group de�ne referential constraints on all columns in the
table. REFERENCES authority on speci�c columns lets a user or group
de�ne referential constraints on only those columns. REFERENCES
authority cannot be granted on views.

The owner of a table or view has all table and view authorities for that table or view.

Database Creation and Security 5-13

Table and view authorities cannot be revoked from the owner of a table or view; however,
ownership can be transferred. When ownership is transferred from a user, that user no longer
has any authorities for the table or view unless they are explicitly granted again. You can
grant all table and view authorities to a user with the ALL option of the GRANT statement:

isql=> GRANT ALL ON PurchDB.Parts TO Peter;

Authorities for Single Users

The following examples grant and revoke table and view authorities for a single DBEUserID:

isql=> GRANT SELECT ON PurchDB.Inventory TO Tom;

isql=> REVOKE SELECT ON PurchDB.Inventory FROM Tom;

Authorities for Groups

You can also assign authorities to groups. Create a group as in the following example:

isql=> CREATE GROUP Purchasing;

Next, add members to the group, as follows:

isql=> ADD AJ@BROWN TO GROUP Purchasing;

Finally, assign the appropriate table authorities to the group:

isql=> GRANT SELECT, INSERT, DELETE, UPDATE

> ON PurchDB.OrderItems TO Purchasing;

Note that the creator of a group does not receive the authorities that are assigned to the
group by other users. A user with authorization through group membership cannot issue the
WITH GRANT OPTION clause of the GRANT statement.

Creating Classes

If you want to create objects that do not have users or groups as owners (and are therefore
controlled solely by the DBA), use class ownership. Choose an appropriate class name, using
the guidelines in the \Logical Design" chapter, then do one of the following to create the class:

create a table or view with the class name as the owner name
preprocess an application with the class name as owner name
transfer ownership of an object to the class name

For example, the sample DBEnvironment contains several tables owned by the class PurchDB.
The table PurchDB.Parts was created with the following statement:

isql=> CREATE TABLE PurchDB.Parts

(PartNumber CHAR(16) NOT NULL,

PartName CHAR(30),

SalesPrice DECIMAL(10,2))

IN WarehFS;

To create a module belonging to a class, specify the class name as the owner by using the -o
option in the preprocessor command line:

$ psqlpas 'PartsDBE' -i Program -o PurchDB

5-14 Database Creation and Security

After creating objects owned by the class, you must grant the speci�c authorities you wish
users or groups to have. Suppose there is a group PurSta�, consisting of DBEUserIDs for
members of the Purchasing Department. You could grant authorities to the group with the
following statements:

isql=> GRANT SELECT, UPDATE ON PurchDB.Parts TO PurStaff;

isql=> GRANT RUN ON PurchDB.Program TO PurStaff;

Revoking Table and View Authorities

When you revoke a user's authority or remove a user from a group, that user can no longer
perform the functions allowed by that authority. However, any other authorities granted to
that user are not a�ected. By removing AJ, who is not a DBA, from the PurSta� group, you
do not a�ect his authorities associated with the Receiving group. Also, you do not a�ect any
authorities that AJ may have granted, as a member of the group, to other users.

Controlling Table Access with Views

The SELECT, INSERT, and DELETE authorities operate at the row level. The UPDATE
authority operates at either the row or column level. To restrict SELECT, INSERT, or
DELETE authority to certain columns, or to restrict UPDATE authority to certain columns
and rows of a table, you can create a view and grant the required authorities on the view.

Assume you have a table containing rows for several departments, but you only want the
manager for a particular department to be able to access data for that department. To
accomplish this you create a view with a WHERE clause de�ning only those rows to be
accessed, and grant authorities on the views to the appropriate managers. The statement to
create the view in Figure 5-1 is:

isql=> CREATE VIEW PurchDB.Dept100

>AS SELECT * FROM PurchDB.Dept WHERE DeptNo=100;

Database Creation and Security 5-15

Figure 5-1. Views Restricting Access

The manager for department 100 is Tom. The statement to grant authorities for department
100 data is:

isql=> GRANT SELECT,INSERT,DELETE,UPDATE

> ON PurchDB.Dept100 TO Tom;

The example in Figure 5-1 restricts access to certain rows, but you can also restrict access
to speci�c columns by eliminating sensitive columns from the view de�nition. For example,
you might wish to eliminate the salary column from a view of a department's personnel.
Remember, however, that if you want to update the base tables through a view, you must
include in the view de�nition all base table columns that were created with the NOT NULL
option. Other restrictions apply to using the INSERT, UPDATE, and DELETE authorities on
views. Refer to \Designing Views" in the \Logical Design" chapter of this guide.

ALLBASE/SQL uses views to restrict access to the system catalog tables. The information
that is used internally is critical to ALLBASE/SQL operations and should never be modi�ed.
Therefore, views are created on the system tables and SELECT authority is initially given to
users with DBA authority. The base tables cannot be accessed by any user.

5-16 Database Creation and Security

Using the GRANT OPTION Clause

A grantable privilege is a privilege obtained as a result of a grant given with the GRANT
OPTION. The DBA, the owner of a table or view, or users with a grantable privilege can
give a grantee a table or view privilege and, if their authority is direct (not through group
membership), the ability to grant that same privilege to other users.

To revoke a grantable privilege from a user and revoke the chain of grants that may have
been created by the user with the grantable privilege, use the REVOKE statement with the
CASCADE option. Because a privilege cannot be revoked from the DBA or owner, cascading
does not continue past that user. Therefore, a DBA or owner should not be included in
the chain of grants. The DBA need not use the CASCADE option; but if it is not used,
and a chain of grants exists, then an orphaned privilege is created. Orphaned privileges are
discussed later in this chapter.

In this example the owner of a table grants grantable privileges to two managers:

Owner :

isql=> GRANT ALL on PurchDB.Parts

>TO Manager1, Manager2 WITH GRANT OPTION;

The managers grant a grantable select privilege to their employees.

Manager1 :

isql=>GRANT SELECT ON PurchDB.Parts

>TO Employee11 WITH GRANT OPTION;

Manager2 :

isql=>GRANT SELECT ON PurchDB.Parts

>TO Employee21 WITH GRANT OPTION;

The employees authorize their co-workers to have and grant SELECT authority:

Employee11 :

isql=>GRANT SELECT ON PurchDB.Parts

TO Employee12 WITH GRANT OPTION;

Employee21 :

isql=>GRANT SELECT ON PurchDB.Parts

TO Employee22 WITH GRANT OPTION;

Figure 5-2 shows the resulting database security scheme.

Database Creation and Security 5-17

Figure 5-2. Example Database Security Scheme

If the table owner wants to revoke privileges from everyone, the procedure is simple:

Owner :

isql=>REVOKE ALL on PurchDB.Parts

> FROM Manager1, Manager2 CASCADE;

However, if Employee21 is a DBA, the cascading stops on that chain at Employee21, and
Employee22 retains the grantable select privileges. Generally, a user would not grant
authority to a DBA or owner, because he or she has it already; however, Employee21 could
have been given DBA authority or had ownership transferred to him or her after the chain of
grants was established.

If a DBA revokes SELECT authority without specifying the CASCADE option from
Employee11, then Employee12 is left with an orphaned privilege.

Orphaned Privileges

An orphaned privilege is one that was received from a grantor who no longer has
authorization to grant or revoke that privilege. Orphaned privileges are created in the
following ways:

When a DBA revokes a privilege, without the CASCADE option, from a user who has
granted privileges to others.

When the DBA uses the BY clause of the GRANT statement to name a grantor who does
not have the privilege to grant or revoke a privilege.

When a member of a group grants a privilege but is then removed from the group.

Note Avoid orphaned privileges. Orphaned privileges make it impossible to use
cascading to revoke a chain of grants.

5-18 Database Creation and Security

An orphaned privilege exists if the grantor is not one of the following:

Owner of the object
A member of a group with OWNER authority
A user with DBA authority
A grantee with the right to grant appropriate authority

The ways to eliminate an orphaned privilege are:

The owner of the object can grant the privilege with the WITH GRANT OPTION clause to
recreate the authorization that was destroyed.

The DBA can grant the privilege with the WITH GRANT OPTION clause and use the BY
option to name a grantor who is authorized to grant and revoke privileges.

Using the WITH GRANT OPTION Clause and Authorization Groups

There are two approaches to granting authorities:

Creating authorization groups. With this approach, authority is granted to an authorization
group where members are added or removed from the group.

Creating a chain of grants. With this approach, the WITH GRANT OPTION clause is used
to grant authorities to individual users or classes, resulting in a chain of grants.

Mixing the two has complex e�ects, and in some cases is not allowed; we suggest that you
do not mix them. For example, if you are using the WITH GRANT OPTION clause in an
environment that uses group authorizations, be aware that removing a member from a group
does not necessarily mean that member no longer has access to a table. The user could have
been granted a privilege from another user via a grantable privilege.

If there are breaks in the chain of grants, it is di�cult to maintain the security scheme.
Breaks can occur in the following ways:

When cascading stops because a DBA or owner is included in the chain of grants.

When an orphaned privilege is created.

If you need to know the state of your security scheme, query the following system views:

SYSTEM.TABAUTH
SYSTEM.COLAUTH
SYSTEM.SPECAUTH
SYSTEM.GROUP
SYSTEM.SPACEAUTH

Database Creation and Security 5-19

Creating a Database Schema

A database is a collection of tables, views, indexes, procedures, and rules which have the same
owner. A schema consists of the owner name, also called the authorization name, and the
following statements, as needed, to de�ne your database:

CREATE TABLE
CREATE VIEW
CREATE INDEX
CREATE PROCEDURE
CREATE RULE
CREATE GROUP
ADD TO GROUP
GRANT

You can de�ne a database by either creating individual objects or using the CREATE
SCHEMA statement to group the de�nitions within one statement. This statement allows
forward and circular reference on referential integrity constraints. You can de�ne the database
within a statement so that database creation is atomic, that is, the database is either complete
or nothing is created.

The appropriate system catalog views, such as SYSTEM.TABLE, SYSTEM.VIEWDEF,
SYSTEM.TABAUTH, are updated to reect the schema you have de�ned. After creating the
schema, you can add, modify, or drop tables, and grant or revoke authorities as necessary.

Loading Tables

The easiest way to insert data into a table is by loading data from a �le through ISQL using
the LOAD command. The �le can be either an EXTERNAL or an INTERNAL �le:

An EXTERNAL �le is a sequential, ASCII, �xed-format �le created either outside of ISQL
or with the EXTERNAL option of the ISQL UNLOAD command. EXTERNAL �les
contain only data and are used when loading initial data into tables, or when restructuring
tables by changing column names, column size, or data type.

An INTERNAL �le is created with the INTERNAL option of the ISQL UNLOAD
command. INTERNAL �les store the data format in a header that contains data and
column descriptors used by ALLBASE/SQL to load data more e�ciently. INTERNAL �les
are used to unload and load tables when restructuring without changing columns. The
column de�nitions of the unloaded and loaded tables do not need to match exactly, since
compatible data types are converted.

For details on table restructuring, refer to the \Maintenance" chapter in this guide. The
syntax for the LOAD command is explained in detail in the ALLBASE/ISQL Reference
Manual .

5-20 Database Creation and Security

Loading from an External File

If you are loading data from a non-ALLBASE/SQL �le, you must use the EXTERNAL option
of the ISQL LOAD command.

To use the LOAD command, you must know the de�nition of the table to be loaded. The
INFO command shows table de�nitions. The following example of the LOAD command loads
data from an HP-UX �le to the PurchDB.OrderItems table:

isql=> LOAD FROM EXTERNAL orderitem

> TO PurchDB.OrderItems

> OrderNumber 1 6

> ItemNumber 9 2

> VendPartNumber 13 8 ?

> PurchasePrice 21 10

> OrderQty 31 4 ?

> ItemDueDate 37 8 ?

> ReceivedQty 47 2 ?

> END

The �rst number after the column name indicates where in the �le the data for that column
starts. The second number tells ISQL the length of the input. The last character is a null
indicator. You must supply a null indicator if the column allows null values. The null
indicator is any single character except a blank, a semicolon, a single or double quote, or the
current ISQL escape character. Do not choose a null indicator that might also represent valid
data. For example if you are loading integers, do not use zero as a null indicator. When a null
indicator is found, a null value is loaded, not the character representing the null indicator. See
the \Data Types" chapter of the ALLBASE/SQL Reference Manual for more information on
null values.

You can also load from an external �le using the description �le option, as in the following
example:

isql=> LOAD FROM EXTERNAL orderitem

> TO PurchDB.OrderItems

> USING orderdescrip;

All PurchDB tables are listed in the \Sample DBEnvironment" appendix in the
ALLBASE/SQL Reference Manual .

An ISQL option exists for loading data from external �les that contain EBCDIC, packed
decimal, and zoned decimal data. Refer to the description of the LOAD command in the
\ISQL Commands" chapter of the ALLBASE/ISQL Reference Manual .

Loading from an Internal File

You can unload an existing table using the INTERNAL option of the ISQL UNLOAD
command, then load the �le into the new table with the INTERNAL option of the LOAD
command. This method is faster than loading an EXTERNAL �le because the data is
already in the necessary format. Use the INTERNAL option to move the data in a table
in one DBEnvironment to a table with identical name, columns, and data types in another
DBEnvironment.

Database Creation and Security 5-21

Loading Tables with Constraints on Them

If a table has already been built with a referential integrity constraint, the LOAD command
will exercise the constraint, testing each value for compliance. In order to speed loading in
non-archive mode, you can use the following statements:

SET DML ATOMICITY AT ROW LEVEL

SET CONSTRAINTS DEFERRED

The SET DML ATOMICITY statement reduces logging overhead for the load operation
when the DBEnvironment is running in non-archive mode to improve performance at load
time. The SET CONSTRAINTS DEFERRED statement suspends integrity checking until a
COMMIT WORK statement is issued, at which time the integrity checking takes place for the
entire table. This approach is recommended.

Loading Tables with Rules Built on Them

If a table has a rule de�ned on it for the INSERT statement type, the rule will �re during load
operations. If you are loading a set of tables that are related by a set of rules, and you know
that the initial data already conforms to the conditions enforced by the rules, you can use the
following statements to improve the performance of the initial table load:

SET DML ATOMICITY AT ROW LEVEL
DISABLE RULES

The SET DML ATOMICITY statement reduces logging overhead for the load operation when
the DBEnvironment is running in non-archive mode to improve performance at load time.
The DISABLE RULES statement turns o� rule checking. You should only use DISABLE
RULES for loads that take place in single-user mode, since the DISABLE RULES statement
a�ects all rules in the DBEnvironment. As soon as the tables have been loaded, you should
issue the following statements:

ENABLE RULES

SET DML ATOMICITY AT STATEMENT LEVEL

As an alternative to disabling rules, you can load the tables �rst, then create the rules that
interrelate them. In any event, if you load data without using the rules, it is your obligation
to make sure the data you are loading conforms to the rules. This is because the operation of
rules is not retroactive; they will only �re on rows inserted after rule �ring is enabled again.

Using Command Files for Loading

Use ISQL command �les to create and test load and unload commands. Once the
DBEnvironment is in operation, use the SQLGEN GENERATE LOAD and GENERATE
UNLOAD commands to create load and unload scripts for you. Refer to the \Maintenance"
chapter in this guide for more information and examples of using the UNLOAD command to
restructure tables.

5-22 Database Creation and Security

6

Backup and Recovery

Backup and recovery are activities that let you reconstruct your DBEnvironments in the event
of database corruption or damage to your system. The type of backup and recovery you can
perform depends in part on whether you choose archive or nonarchive logging for your system.
The following activities are described in the sections that follow:

Choosing an approach to backup and recovery
Understanding log �le types
Choosing full or partial backup procedures
Choosing full or partial recovery procedures
Backup and recovery procedures for nonarchive logging
Backup and recovery procedures for archive logging
Managing log �les
Starting a new log
Monitoring the log with SQLMON
Setting up a wrapper DBEnvironment

Once you have chosen a logging approach for your system, use the appropriate sections below
to carry out these tasks.

Choosing an Approach to Backup and Recovery

When you con�gure the DBEnvironment, it runs with nonarchive logging by default. This
is appropriate for data de�nition and table loading, since nonarchive logging results in more
e�cient loading, and usually there is little or no risk of data corruption.

After data de�nition and before doing the initial backup, you should decide which kind of
backup, recovery, and logging you want to use for production. If you choose nonarchive
logging, you should do a static backup using the SQLUtil STORE command. For archive
logging, you should do a concurrent backup using the SQLUtil STOREONLINE command.

Choosing Nonarchive Logging

If you choose nonarchive logging, you should back up the entire DBEnvironment at frequent
intervals. Then, in the event of a media failure, you can restore the DBEnvironment from
the most recent backup and manually enter all transactions that took place from the time of
backup to the time of the failure. This approach makes sense if you use the DBEnvironment
mainly for read operations, or if you process only a small number of transactions. With
nonarchive logging, you do not back up the log �les.

Backup and Recovery 6-1

Note You cannot use the SQLUtil STOREONLINE command for DBEnvironment
backups if you want to retain nonarchive logging. For backups of the
DBEnvironment in nonarchive logging mode, use only the SQLUtil STORE
command.

Choosing Archive Logging

If you choose archive logging, you create a backup of the entire DBEnvironment at periodic
intervals (say, once a week) and back up the log �les at shorter intervals (say, every day).
In the event of a media failure, you restore the DBEnvironment �rst, and then you can
apply each of the stored log �les in chronological sequence to the restored copy of the
DBEnvironment until you have rolled forward all completed transactions. If you wish, you can
roll forward to a particular time prior to the crash by supplying a timestamp for recovery.

Archive logging a�ords the greatest security for the DBEnvironment. If you choose archive
logging, it is best to place the log on a device that is di�erent from any of the devices that
contain other DBEnvironment �les. For the greatest security, use dual logging with the two
logs on di�erent devices.

Since nonarchive logging is the default, you must explicitly turn archive logging on. The
SQLUtil STOREONLINE command lets you perform the STORE without stopping the
DBEnvironment; and it sets archive logging mode on for all subsequent activity until you
decide to turn it o� with a START DBE NEWLOG statement (omitting the ARCHIVE
option).

Note You should use the STOREONLINE command for DBEnvironment backups
if you want to use archive logging. Although it is possible to recover a
DBEnvironment in archive mode from a backup made with the STORE
command, this is not recommended .

Understanding Log File Types

It is important to understand the di�erent conventions for naming and referring to log �les in
ALLBASE/SQL. This chapter assumes a basic distinction between the log (a logical object)
and the speci�c log �les which the log contains. Information about all the speci�c �les in the
log is stored in the DBECon �le. You use the SHOWLOG command in SQLUtil to examine
the DBECon �le's directory of log �les. SHOWLOG also displays general information about
the log as a whole.

When you con�gure the DBEnvironment, you specify the names of one or two physical �les
(depending on whether you have chosen single or dual logging). These physical �les will
contain log records that are based on the transactions applied in the DBEnvironment. Later,
you use the SQLUtil ADDLOG command to add additional log �les to the DBEnvironment.

6-2 Backup and Recovery

Understanding the LOG FULL Condition

Eventually, log �les can become full, and the result is known as a LOG FULL error condition,
which means that no additional transactions can be logged until log space is provided. When
a LOG FULL condition arises, ALLBASE/SQL rolls back the current transaction and issues
the following error message:

Log Full. (DBERR 14046)

In addition, in most cases other transactions are also rolled back.

Note If a LOG FULL condition occurs while a rollback operation is taking place, all
transactions are rolled back, including transactions that have performed no
updates.

Using Single or Dual Logs

When you create the DBEnvironment, you specify either single or dual logs. In single
logging, ALLBASE/SQL maintains one set of log �les in either archive or nonarchive
mode. The log �le should be placed on a device di�erent from the one containing the
DBEnvironment. For greater security, you can specify dual logging, in which a duplicate set
of log �les is maintained. The second log �le should not be on either the drive containing the
DBEnvironment or the drive containing the �rst log �le. When dual logging is in e�ect, all
the procedures described in this chapter apply to the �les of both logs .

Using Multiple Log Files

To avoid a LOG FULL condition, you can set up a DBEnvironment containing multiple log
�les for archive or nonarchive use, and in single or dual logging mode. When one �le becomes
�lled, ALLBASE/SQL automatically switches to the next available �le.

Log Names and Numbers

Log �les are referred to in di�erent ways, depending on the operation you are attempting to
perform. In some instances, you must refer to a log by its �le name. In other cases, you refer
to the log by its identi�er number.

Log File Names

Use a �le name when you add a new log with the ADDLOG command, when you move it to a
new location with MOVELOG, or when you must rescue it with RESCUELOG. The �le name
is an HP-UX pathname.

Identifier Numbers

Use the identi�er number when you purge a log �le or when (in archive mode only) you store
it. Each log �le you add is given a speci�c identi�er number; in the case of dual logging, the
same identi�er number refers to both �les together.

Backup and Recovery 6-3

Sequence Numbers

ALLBASE/SQL also keeps track of multiple log �les through sequence numbers , which are
stored along with the physical �le names in the DBECon �le. Sequence numbers are also
written onto the tape at the time you issue a STORELOG command (described in a later
section). In the case of dual logging, the same sequence number refers to both �les together.

You never allocate sequence numbers yourself. They are used internally by ALLBASE/SQL to
keep track of the order in which �les are applied during the recovery process. If you attempt
to recover a log �le that has the wrong sequence number, you receive an error message.

Sequence numbers continue incrementing each time you switch into a new log �le. As an
example, suppose the DBEnvironment is con�gured for single logging in archive mode. Log
1 has the �lename DBELog1 , and initially it receives log identi�er number 1 and sequence
number 1. Log 2 has the �lename DBELog2 , and initially it receives log identi�er number 2,
and sequence number 2. When Log 1 runs out of space, ALLBASE/SQL switches to Log 2.
After Log 1 has been backed up and when it no longer has active transactions in it, it becomes
available for reuse. Then, when ALLBASE/SQL switches over to Log 1 again, it receives
sequence number 3, although it still has identi�er number 1, and it is still called DBELog1 .

Using Nonarchive Logs

A nonarchive log behaves like a circular �leset. A circular �leset is a group of �les in which
the �rst one is overwritten when the last one is full. If a nonarchive log �le becomes full,
ALLBASE/SQL �rst issues a checkpoint in an e�ort to reclaim the �le space taken up by
transactions that have already been committed. (A checkpoint is an event that ushes
data and log bu�er contents to disk, and reclaims nonarchive log �le space for reuse.) If
a checkpoint does not reclaim enough space for the current transaction, ALLBASE/SQL
attempts to switch to the next �le (if it is available). A log �le is considered available if it
does not contain any log records for transactions active at the last checkpoint. If the log is
still full, and there is no other log available to switch into, a LOG FULL condition occurs, and
the transaction is rolled back.

Multiple Files in Nonarchive Mode

You can add additional physical log �les to the nonarchive DBEnvironment by means of the
SQLUtil ADDLOG command. You can add log �les without stopping the DBEnvironment.
Each nonarchive �le has a unique log name, which is an HP-UX pathname, and a log
identi�er, which is an integer by which the �le is known internally to ALLBASE/SQL. If you
are using dual logging, there are two HP-UX pathnames, but there is only one identi�er. In
nonarchive logging, you can use multiple log �les to ensure that even a very large transaction
will not cause a LOG FULL condition. You do not back up nonarchive log �les.

Figure 6-1 shows a nonarchive log for a DBEnvironment that is running in multiuser mode,
with di�erent users starting and ending transactions at di�erent times.

6-4 Backup and Recovery

Figure 6-1. Nonarchive Log

The log has three �les|File 1, File 2, and File 3; Files 1 and 2 have been �lled, so
ALLBASE/SQL has already switched to File 3. Assume that transactions 4 and 5 (T4 and
T5) are uncommitted. When File 3 becomes full, ALLBASE/SQL will issue an internal
checkpoint. Assuming there is not enough space left in File 3, ALLBASE/SQL will switch
back to File 1 and continue logging. At the moment shown in the �gure, both File 2 and File
3 contain active transactions.

A nonarchive log �le should be used when you can frequently do a static backup of the
DBEnvironment so that rollforward recovery is not needed to recover in the event of a media
failure. (Static backup is described further in a later section.)

Using Archive Logs

Archive logs are also circular �lesets. The di�erence is that �le space cannot be reclaimed|
even from �les with no active transactions in them|until the �les are backed up. If an
archive log �le becomes full, ALLBASE/SQL attempts to switch to the next �le (if one
is available). It is available if it does not contain log records for any currently active
transactions, and if it has been backed up. If the next �le is not available, a switch is
attempted again after a checkpoint. (A checkpoint is an event that ushes data and log
bu�ers to disk.) If the switch still fails, a LOG FULL condition occurs, and the transaction is
rolled back.

Backup and Recovery 6-5

When more space is needed, add a new log �le with the ADDLOG command. You can also
reclaim log �le space by using STORELOG to back up a log �le when it is full. Then, if there
are no longer any active transactions in the �le, it can be reused. You should monitor archive
log �les periodically with the SHOWLOG command to make sure there is enough space in
them.

When you use archive logging, you must periodically back up the DBEnvironment and the log
�les. The backups may be used in the event of a corruption of the DBEnvironment. Refer to
the section \Backup and Recovery Procedures for Archive Logging" later in this chapter for a
complete description of the procedures for managing archive log �les.

Figure 6-2 shows an archive log as implemented in ALLBASE/SQL.

Figure 6-2. Archive Log

Multiple Files in Archive Mode

Archive log �les are known by three di�erent designations:

Log name
Log identi�er
Log sequence number

The log identi�er is a number that uniquely identi�es the �le in the log directory. The
log name is an HP-UX pathname. If you are using dual logging, there are two HP-UX
pathnames, but there is only one identi�er. The log sequence number is important only
for archive log �les. It identi�es the sequence the �le occupies in the stream of rollforward
recovery from the time the DBEnvironment was created. Sequence numbers are never reset.

6-6 Backup and Recovery

When you use the STOREONLINE command, a new archive point is de�ned and the
sequence number of the log �le containing the �rst active transaction becomes the starting
sequence number for the new archive log. As you cycle through a set of log �les, �lling them
with transactions, then backing them up with STORELOG, the sequence number increments
each time a new log �le is used. Note that the assignment of sequence numbers has nothing
to do with log identi�er numbers or log names, so the same �le may be used again and again
with di�erent sequence numbers.

In archive mode, you can use multiple �les as a way of ensuring that there is always enough
log �le space. For example, when the �rst log �le becomes full, ALLBASE/SQL will switch
automatically to the second, which is given the next higher sequence number. Then, you can
back up the �rst �le, and when all transactions that were in progress in the �rst �le have been
committed or otherwise terminated, the �le becomes available for reuse. A log �le can be
backed up as soon as ALLBASE/SQL has �nished writing to it, but it cannot be purged or
reused until all active transactions in it have been committed or rolled back.

The illustration in Figure 6-3 shows a log with three log �les|DBELog1, DBELog2, and
DBELog3 (identi�er numbers 1, 2, and 3) over a period of several days.

Figure 6-3. Log Switching in Archive Mode

At 5 pm on Monday, DBELog1 is not completely full, so it is not ready for backup. It has
sequence number 1, whereas the two unused �les DBELog2 and DBELog3 both have sequence
number 0. On Tuesday at 5 pm, DBELog1 is full; there are still some active transactions in
it, but it can be backed up using STORELOG. DBELog2 also has active transactions, but
since DBELog2 is not yet full, no backup of DBELog2 is possible yet. On Wednesday, all the
active transactions are in DBELog2, but DBELog2 is not yet full and therefore cannot be
backed up. DBELog1 is now available for reuse, since it was backed up on Tuesday and now

Backup and Recovery 6-7

contains no active transactions. On Thursday, DBELog2 is full, so it is ready for backup using
STORELOG. Furthermore, DBELog3 is now full and ready for backup. Note that active
transactions now \wrap around" into DBELog1, which now has sequence number 4. When
there are no more unused �les available, ALLBASE/SQL will switch back to an earlier one
and reuse it if it has been backed up and if it contains no active transactions. Note also that
the sequence number of DBELog1 is 1 on Monday and 4 on Thursday. The �le names and
identi�er numbers of log �les are recycled, but the sequence numbers are never repeated.

Choosing Full or Partial Backup Procedures

ALLBASE/SQL provides the capability to either back up all the �les in the DBEnvironment
(full backup) or to back up only a subset of the �les in the DBEnvironment (partial backup).
You may choose full or partial backup when using either nonarchive or archive mode logging.
If you choose to do a full backup, you can later do either a full recovery or a partial recovery
from the full backup. If you do a partial backup, you can only do a partial recovery from that
partial backup. The partial recovery can include all or a subset of the �les contained in the
partial backup.

The �rst time you store your DBEnvironment you should do a full backup. On subsequent
stores you should do a full backup if: your entire DBEnvironment is on one drive, the entire
DBEnvironment is changing (being written to) between backups, or if you need to restore the
entire DBEnvironment (in the case of disk failure).

There are several reasons why you may want to do partial backups subsequent to your �rst
full backup.

If you have DBEFiles containing a table that is used infrequently, you may choose to attach
the DBEFiles only when you use the table. Then you can detach DBEFiles when the table is
not in use in order to save space on the system. (As an example, you could have a history �le
that is used only once a month when you transfer old account information from the account
table into the history table. At that time, you use RESTORE PARTIAL to place the �les on
the system, attach the DBEFiles, and then transfer the historical information. Then you do a
STORE PARTIAL or STOREONLINE PARTIAL to store only those �les associated with the
history table, detach the �les and remove them from the system.)

If your entire DBEnvironment is spread across several drives, it may be advantageous to do
partial backups subsequent to your �rst full backup in the following two cases. In the �rst
case, only a subset of the DBEnvironment �les contains tables that are written to between
backups. Then you can do partial backups of the �les that are written to, and rely on the �rst
backup to restore �les that are read only. In the second case, only a subset of the DBEFiles
contains essential data, and another subset of the �les contains nonessential data (or data that
can be derived from the essential data). In that case, you may choose to do a partial backup
that includes the essential data, and then reconstruct the other data in the event of a hard
crash.

Note If you do a STORE PARTIAL or STOREONLINE PARTIAL, it is your
responsibility to store all the DBEFiles that contain tables that will be
written to by your transactions. If you fail to do this, you will later be unable
to restore your DBEnvironment to a consistent state.

6-8 Backup and Recovery

Choosing Full or Partial Recovery Procedures

ALLBASE/SQL also provides the capability to restore all the �les in the DBEnvironment (full
recovery) or to restore only a subset of the �les in the DBEnvironment (partial recovery).

You may choose full or partial recovery when using either nonarchive or archive mode logging.
If a crash occurs in a DBEnvironment that is contained solely on one drive, you must do a full
recovery of the entire DBE (or that portion of the DBEnvironment that you stored because it
was essential data).

If a crash occurs to a DBE that is spread across several drives, regardless of whether you are
using nonarchive or archive logging, the kind of recovery you must do depends on certain
operating system conditions and on which ALLBASE/SQL �les were destroyed in the crash.

The failure conditions on the operating system must be such that you are able to restore only
those �les that were located on the device that failed. Your failure conditions may require
you to restore �les on several or all drives associated with your DBEnvironment. If you
must restore �les on several or all devices, partial recovery is not useful. See your system
administrator for details for your operating system. Be sure that your disaster recovery plan
includes the operating system considerations needed for recovery of your DBEnvironment, not
just the ALLBASE/SQL considerations.

You must do a full recovery if any of the following �les were destroyed in the crash:

Any of the SYSTEM DBEFiles (DBEFile0 or any �les you added to the SYSTEM
DBEFileSet) and/or the DBEConFile which is stored on the same drive as the SYSTEM
DBEFiles.

In the case of single logging, your single log �le; unless, in the case of archive logging, the
�le has never been used, or you have already stored the log �le o�, and the �le has not yet
been reused. (If you are using dual logging, the loss of one leg of the log does not require
you to restore the DBEnvironment. Just repair the damaged device and create a new set of
log �les to restore dual logging.)

If the crash destroyed any other �les than those listed above, you can repair the damaged
drive and then do a partial recovery which only includes the �les that were damaged in the
crash. While the damaged drive is out of operation, you can still operate the remainder of the
DBEnvironment so long as the operating system permits and so long as users only access the
DBEFiles on the undamaged drives. Any attempt to access �les on the damaged drives will
result in the generation of an error message.

Backup and Recovery 6-9

Backup and Recovery Procedures for Nonarchive Logging

This section describes the steps you should follow if you will be using nonarchive logging in
full production after loading your tables. The following are described separately:

Nonarchive backup procedures
Adding �les to a nonarchive log
Nonarchive full recovery procedures
Nonarchive partial recovery procedures

Nonarchive Backup Procedures

If you are using nonarchive logging , you should make either a full or partial static backup of
the DBEnvironment at frequent intervals.

The exact frequency depends on how much the database changes between backups. If there is
very little change, then the need for backup is not as great.

Use the SQLUtil STORE or STORE PARTIAL command to make a backup copy of all or a
subset of the database �les in a DBEnvironment.

The STORE command starts the DBEnvironment for you, thus rolling back any incomplete
transactions. Follow these steps to make a backup copy of the DBEnvironment using SQLUtil
STORE:

1. Stop the DBEnvironment and then exit ISQL.

2. From the directory containing the DBEConFile and the SYSTEM DBEFileSet use the
SQLUtil STORE or STORE PARTIAL command to make a copy of the DBEnvironment
or a subset, including the DBECon �le. You can use the SQLUtil STORE or STORE
PARTIAL command only when the DBEnvironment is stopped.

3. Start the DBEnvironment for production only after the STORE or STORE PARTIAL is
complete.

When you use nonarchive logging, you do not back up log �les since you can not use
nonarchive log �les for rollforward recovery.

Caution If you must use the HP-UX tar or cpio commands to make a backup copy
of the DBEnvironment, you should �rst START the DBEnvironment in
single-user mode to roll back any incomplete transactions. Otherwise you risk
making an inconsistent copy of the DBEnvironment. If you use tar or cpio,
you should also back up the DBECon �le.

Adding Files to the Nonarchive Log

In nonarchive mode, your log �les should be large enough to hold log records for the largest
possible transaction as carried out by the maximum number of concurrent users. A formula
for calculating the required size is given in the \Physical Design" chapter. If you develop a
need for a larger log, you can use the SQLUtil ADDLOG command to provide another �le.
Then, when a transaction �lls up the �rst �le, ALLBASE/SQL will switch to the second one
automatically.

If the need for more �le space is temporary, use the ADDLOG command to add a new �le,
then use the PURGELOG command to remove it when it is no longer needed.

6-10 Backup and Recovery

Nonarchive Full Recovery Procedures

In the event of a soft crash, simply start up the DBEnvironment again using a START DBE
statement or a CONNECT (if AutoStart is enabled). Rollback recovery is automatic. If a
transaction was not complete at the time of the crash, you must reenter it.

In the event of a hard crash (media failure), if you need to restore the entire DBEnvironment
from your backup. Here is the procedure to use once the drive is replaced:

1. Make sure you are in the directory the DBEnvironment DBEConFile and SYSTEM
DBEFileSet were in at the time of the crash.

2. Purge any DBEnvironment �les that remain.

3. Use the SQLUtil RESTORE command to restore the DBECon �le and the DBEnvironment
�les.

4. Issue a START DBE NEWLOG statement to create a new log �le. Specify SINGLE or
DUAL logging, as before.

5. Use the SQLUtil PURGELOG command to purge any old log �les that existed prior to
issuing the START DBE NEWLOG statement. (Be careful not to purge your new log
�les.)

6. Use the ADDLOG command to create additional log �les for the log.

7. Manually reapply the transactions that you had entered since the backup was taken.

8. If appropriate, use the SQLUtil STORE command to back up the DBEnvironment. (See
\Nonarchive Backup Procedures," above.)

Nonarchive Partial Recovery Procedures

In the event of a hard crash of a disk that does not contain either the SYSTEM DBEFileSet
and the DBEConFile, or your single log �le used for single mode logging, you can use the
SQLUtil RESTORE PARTIAL command to do a partial recovery of the DBEnvironment.
You can recover just those DBEFiles that were damaged by the crash. Here is the procedure
to use once the damaged drive is replaced:

1. Make sure you are in the directory from which you made the backup (usually the one
containing the DBEConFile and the SYSTEM DBEFileSet).

2. Use the SQLUtil STOREINFO command to verify the path and �lename of the DBEFiles
you are going to restore (you must use the full path and �lename, just as shown by the
STOREINFO command).

3. Use the SQLUtil RESTORE PARTIAL command to restore the DBEFileSets or DBEFiles
that were damaged. The RESTORE PARTIAL may from a full backup or a partial
backup, as appropriate. (As the log�les must have been intact as a condition for doing a
RESTORE PARTIAL, you should not need to create or add more log �les.)

Backup and Recovery 6-11

Caution All �les that will be used by the transactions to be reapplied must be restored
to their state as of the last backup whether they were damaged or not. This
is because all �les must be synchronized to the same starting point for the
reapplication of transactions to result in a consistent DBEnvironment. This is
true even for transactions which only read data because the data must be in
the same state it was in when the transactions were originally applied.

4. Manually reapply all transactions that were entered since the last backup against the tables
lost in the crash (no transactions need to be entered against the tables that were contained
in undamaged �les).

5. If appropriate, use the SQLUtil STORE or STORE PARTIAL command to make a full or
partial backup of the DBEnvironment before you resume operations.

Backup and Recovery Procedures for Archive Logging

This section describes the steps you should follow if you will be using archive logging in full
production after loading your tables. The following are described separately:

Online backup procedures in archive mode
Static backup procedures in archive mode
Adding �les to the archive log
Archive recovery procedures

Online Backup Procedures in Archive Mode

To use archive logging, follow these steps:

1. Load all your tables using the ISQL LOAD command before making the �rst backup.
Preferably, the loading should be done in nonarchive mode. Refer to the description of the
LOAD command in the \ISQL Commands" chapter of the ALLBASE/ISQL Reference
Manual for suggestions on how to obtain best performance with the LOAD command.

2. Add an appropriate number of log �les to the DBEnvironment using the ADDLOG
command. A minimum of two log �les is necessary.

3. For your initial backup, from the directory that contains the DBEConFile and the
SYSTEM DBEFileSET, use the SQLUtil STOREONLINE command to store a copy of
the DBEnvironment. This command stores the DBEnvironment and initiates archive
logging. If archive logging is already on, it remains on. It is recommended that your initial
backup be a full backup but if you have decided that only a subset of the DBEnvironment
is essential, you can do a STOREONLINE PARTIAL for your �rst backup. Backups
subsequent to your initial backup may use STOREONLINE or STOREONLINE PARTIAL
as appropriate.

4. As soon as possible, use the STORELOG command to store a copy of the log �les that
were written to by active transactions while the STOREONLINE or STOREONLINE
PARTIAL was being done.

6-12 Backup and Recovery

These log �les are necessary for later recovery, since they contain log entries for
transactions that were in process at the time the STOREONLINE command was issued.
The STOREONLINE or STOREONLINE PARTIAL command will indicate the log
sequence numbers for the log �les which need to be stored.

5. When a log �le becomes full, back it up using the STORELOG command. Be sure to label
each log �le backup with the log sequence number and the date of the backup. To check
the size of a log �le, you can use the SHOWLOG command. Once you back up the log �le,
ALLBASE/SQL can use it again. Refer to the section \Managing Log Files," below.

Note The online backup is not usable for rollforward recovery until you have backed
up all log �les that contain transactions that were active during the time the
STOREONLINE command was in progress.

Once you have turned archive logging on, the only way to turn it o� is to de�ne a new log
with the START DBE NEWLOG statement.

Static Full or Partial Backup Procedures in Archive Mode

It is also possible to carry out static backups in archive mode. A static backup is one that
is made with the SQLUtil STORE or STORE PARTIAL command, and it requires you to
STOP the DBEnvironment. The procedure is as follows:

1. Load all your tables using the ISQL LOAD command before making the �rst backup.

2. Stop the DBEnvironment.

3. Add an appropriate number of log �les to the DBEnvironment using the SQLUtil
ADDLOG command. A minimum of two log �les is necessary.

4. Start the DBEnvironment again, and immediately issue a BEGIN ARCHIVE and a
COMMIT ARCHIVE statement. Stop the DBEnvironment again.

5. From the directory containing the DBEConFile and SYSTEM DBEFileSet use the SQLUtil
STORE or STORE PARTIAL command to create a static backup of the DBEnvironment,
including the DBECon �le. Reply Y to the prompt \Do you wish to proceed (y/n)?" It is
recommended that your initial backup be a full backup but if you have decided that only
a subset of the DBEnvironment is essential, you can do a STORE PARTIAL for your �rst
backup. Backups subsequent to your initial backup may use either the SQLUtil STORE or
STORE PARTIAL command, as appropriate.

6. When a log �le becomes full, back up the log �le using the STORELOG command.

Once you have turned archive logging on, the only way to turn it o� is to de�ne a new log
with the START DBE NEWLOG statement, omitting the ARCHIVE option.

Backup and Recovery 6-13

Adding Files to the Archive Log

In archive logging, your log will contain records for all the transactions your system handles
between backups. The frequency of backup depends on the total volume of data being logged.
A formula for calculating the total size is given in the \Physical Design" chapter.

If you develop a need for additional log �les, you can use the SQLUtil ADDLOG command
to provide another �le. Then, when a transaction �lls up the �rst �le, ALLBASE/SQL will
switch to the second one automatically.

In archive logging, the log grows continually, so you must continue providing additional log
�le space until you do another full backup. You can make old log �les available for reuse by
issuing the SQLUtil STORELOG command. Once a �le has been stored this way, it can
be reused with a di�erent sequence number as soon as all the active transactions in it are
complete.

More detailed information about managing archive log �les is found in a separate section
below.

Archive Recovery Procedures

Soft crashes (program aborts or system failures) rarely damage DBEnvironment �les and can
usually be remedied with rollback recovery, which is carried out automatically the next time
the DBEnvironment is started. This does not require any special action on your part. You
simply restart any transactions that were active at the time of the crash.

Media failures, on the other hand, can be very serious and often require you to reconstruct
your DBEnvironment from a backup. This requires rollforward recovery using the log �les
previously stored.

Rollback Recovery

Under normal circumstances, rollback recovery is automatic. When the DBEnvironment
is stopped, either implicitly when the last DBE session terminates or explicitly when the
STOP DBE statement is executed, ALLBASE/SQL writes a checkpoint to the log �le. When
the DBEnvironment is started again, ALLBASE/SQL will perform rollback recovery if any
transactions were still uncommitted at the time the DBEnvironment was stopped.

Rollback recovery is all you need to recover from the most common types of system failures,
such as a soft crash. To recover from a crash that does not damage the DBEnvironment
�les or the log �les, you merely issue a START DBE or CONNECT statement to start the
DBEnvironment. This will automatically use the log �le to roll back any transactions that
were not committed at the time of failure.

Starting the DBEnvironment ensures the following:

All incomplete transactions at the time of failure are rolled back.
All committed transactions are permanently recorded in DBEFiles.
A new checkpoint is taken.

Full Rollforward Recovery

Full rollforward recovery lets you recreate an entire DBEnvironment following a media failure
or logical corruption of DBEnvironment �les. The process depends on the availability of
backed up copies of the DBECon �le, as well as all log �les and DBEFiles.

6-14 Backup and Recovery

Rollforward recovery begins with a restored DBEnvironment. Use the following steps in
SQLUtil:

1. Use the SQLUtil SHOWLOG command (with a connect option of \no") to determine
which log �les were not yet stored at the time of the crash and which show the status
\backup required."

2. Use the RESCUELOG command to store a copy of any log �les that have not been stored
at the time of the crash, including all log �les that contained active transactions (those
�les with a status of \backup required").

3. Use the RESTORE command to restore the DBEnvironment into the same directory from
which it was originally backed up. If any old DBEnvironment �les are present, remove
them �rst. RESTORE restores the DBECon �le and all DBEFiles.

4. Use the SHOWLOG command (with a connect option of \no") to display the log's status
as it was when the DBEnvironment was backed up. Make a note of the First Log Sequence
Number Needed for Recovery.

5. Use the SETUPRECOVERY command to initiate a recovery process. If you wish, you
can specify a time to recover to. SETUPRECOVERY also lets you specify the name
and characteristics of the new log �le for the restored DBEnvironment. The restored
DBEnvironment is automatically in archive mode, since it had previously been stored that
way with a STOREONLINE command.

6. Use RESTORELOG to restore a copy of each log �le to the working directory,

starting with the �le that corresponds to the First Log Sequence Number Needed for
Recovery from Step 4. For each �le you restore, you must specify a new �le name. It
is easiest to maintain an orderly process if the new �le name contains the log sequence
number of the log �le being stored.

7. Use RECOVERLOG to apply each restored log �le to the DBEnvironment. Enter the new
name of the �le as chosen during Step 6. ALLBASE/SQL will check the sequence number
of the �le as you apply it. If the �le is out of sequence, you will see an error message.

Once a log �le is no longer needed for recovery, it is purged automatically.

8. Repeat steps 6 and 7 until you have restored and recovered all the log �les desired.

Note If you have enough space on your system, you can use several RESTORELOG
commands one after the other to restore all the log �les, then several
RECOVERLOG commands one after the other to apply all the log �les to the
DBEnvironment. When restoring and recovering groups of log �les in this
way, it is a good idea to rename each restored �le to a distinct �le name that
indicates the order in which the �le will be applied to the DBEnvironment.
Example:

Log00001

Log00002

Log00003

Log00004

9. After you have recovered all log �les, issue the ENDRECOVERY command to complete
the recovery process. (This step is not needed if you speci�ed a recovery time in the
SETUPRECOVERY command.)

Backup and Recovery 6-15

10. Use the SQLUtil PURGEFILE command to purge any old log �les that remain. Be
careful not to purge the log �le you speci�ed when using the SETUPRECOVERY
command.

11. Use the SQLUtil ADDLOG command to create additional log �les as needed. You
must have at least two �les if you use a dual log and you want ALLBASE/SQL to
automatically switch to a new log �le when the current log �le is full.

12. Exit from SQLUtil, then start the DBEnvironment as you would normally.

Each RESTORELOG and RECOVERLOG step in this process could be carried out with
a di�erent invocation of SQLUtil. Also, rollforward recovery is possible from an earlier
archive backup of the DBEnvironment, ignoring an intervening backup, as long as the logs
are available. Simply apply all the logs in sequence up to the desired recovery time after
restoring the DBEnvironment from the earlier backup. (SHOWLOG will display the First
Log Sequence Number Needed for Recovery.) Rollforward recovery across new logs is also
supported, provided the logs are archive logs.

Partial Rollforward Recovery

Partial rollforward recovery lets you recreate a subset of the DBEnvironment following a
media failure or logical corruption of DBEnvironment �les. The process depends on the
availability of backed up copies of the DBECon �le, as well as all log �les and DBEFiles for
the subset of the DBEnvironment damaged by the failure.

Partial rollforward recovery begins with a DBEnvironment in which the DBEConFile and the
SYSTEM DBEFileSet are intact, and the appropriate log �les are intact or have been properly
stored. Use the following steps in SQLUtil:

1. Use the SQLUtil SHOWLOG command (with a connect option of \no") to determine
which log �les were not yet stored at the time of the crash and which show the status
\backup required."

2. Use the RESCUELOG command to store a copy of any log �les that have not been stored
at the time of the crash, including all log �les that contained active transactions.

3. Use the SQLUtil STOREINFO command to verify the path and �lename of the DBEFiles
you are going to restore (you must use the full path and �lename, just as shown by the
STOREINFO command).

4. Use the SQLUtil DETACHFILE command to detach from the DBEnvironment the �les to
be operated on by the partial rollforward recovery. This prevents users from attempting to
use these �les until you have them rolled forward to the appropriate period in time. You
most roll all the way forward to the moment of the failure (or to the moment the �le was
detached, if the �le is detached.)

5. From the directory from which you stored the DBEnvironment (usually the one containing
the DBEConFile and the SYSTEM DBEFileSet) use the RESTORE PARTIAL command
to restore the appropriate subset of the DBEnvironment into the same directory from
which it was originally backed up. The RESTORE PARTIAL may be from a full backup
or a partial backup, as appropriate. (As the log �les must have been intact as a condition
for doing the RESTORE PARTIAL, you should not need to create or add more log �les.)
If any damaged DBEnvironment �les are still present, remove them �rst. RESTORE
PARTIAL restores the speci�ed DBEFiles.

6-16 Backup and Recovery

6. Use the SHOWLOG command (with a connect option of \no") to display the log's status
as it was when the DBEnvironment was backed up. Make a note of the First Log Sequence
Number Needed for Recovery.

7. Create a new directory that does not contain any DBEConFile or SYSTEM DBEFileSet.

8. From that new directory use the SETUPRECOVERY PARTIAL command to initiate
a recovery process, specifying the name for a temporary DBEnvironment and the
DBEFiles needed for recovery. Rollforward recovery of the damaged �les will be done
using the temporary DBEnvironment so that the original DBEnvironment can remain
in use while the damaged �les are being brought up to the desired state. You must roll
forward all the way to the time of the failure (or the time the �le was detached, if the
�le is detached.) SETUPRECOVERY PARTIAL also creates a default temporary log
�le and DBEFile0 which are automatically removed at the end of the partial recovery
process. The temporary DBEnvironment is automatically in archive mode, since the
original DBEnvironment had previously been stored that way with a STOREONLINE or
STOREONLINE PARTIAL command.

9. Use RESTORELOG to restore a copy of each log �le to the working directory, containing
the temporary DBEnvironment, starting with the �le that corresponds to the First Log
Sequence Number Needed for Recovery from Step 6. For each �le you restore, you must
specify a new �le name. It is easier to maintain an orderly process if the new �le name
contains the log sequence number of the log �le being stored.

10. Use RECOVERLOG to apply each restored log �le to the DBEnvironment. Enter the new
name of the �le as chosen during Step 6. ALLBASE/SQL will check the sequence number
of the �le as you apply it. If the �le is out of sequence, you will see an error message.
Once a log �le is no longer needed for recovery, it is purged automatically.

11. Repeat steps 9 and 10 until you have restored and recovered all the log �les desired.

Note If you have enough space on your system, you can use several RESTORELOG
commands one after the other to restore all the log �les, then several
RECOVERLOG commands one after the other to apply all the log �les to the
DBEnvironment. When restoring and recovering groups of log �les in this
way, it is a good idea to rename each restored �le to a distinct �le name that
indicates the order in which the �le will be applied to the DBEnvironment.
Example:

Log00001

Log00002

Log00003

Log00004

12. After you have recovered all log �les, issue the ENDRECOVERY command to complete
the partial recovery process. (This step is not needed if you speci�ed a recovery time in
the SETUPRECOVERY PARTIAL command.) The ENDRECOVERY command will
remove the temporary DBEnvironment, including the temporary DBEFile0 and log �les,
that were created for the partial recovery process.

13. Use the SQLUtil ADDLOG command to create additional log �les as needed. You must
have at least two �les in each leg of the log if you want ALLBASE/SQL to automatically
switch to a new log �le when the current log �le is full.

Backup and Recovery 6-17

14. Exit from SQLUtil, and move to the directory containing the original DBEnvironment
DBEConFile and SYSTEM DBEFileSET.

Each RESTORELOG and RECOVERLOG step in this process could be carried out with
a di�erent invocation of SQLUtil. Also, rollforward recovery which skips an intervening
backup is possible from an earlier archive backup of the DBEnvironment, as long as all
the logs are available. Simply apply all the logs in sequence up to the desired recovery
time after restoring the DBEnvironment from the earlier backup. (SHOWLOG will
display the First Log Sequence Number Needed for Recovery.) Rollforward recovery across
new logs is also supported, provided the logs are archive logs.

15. Use the SQLUtil ATTACHFILE command to re-attach the fully recovered DBEFile(s) to
the DBEnvironment so they can again be accessed by users. No additional log �les should
be necessary because the original log �les had to be intact as a condition for doing partial
rollforward recovery.

16. Continue using the DBEnvironment as you would normally.

Managing Log Files

The DBA must manage the size, number, and location of ALLBASE/SQL log �les. This
is done by performing the following tasks using a special set of SQLUtil log management
commands:

Monitoring the log with SHOWLOG
Adding log �les with ADDLOG
Storing log �les with STORELOG
Rescuing log �les with RESCUELOG
Purging log �les with PURGELOG
Restoring log �les with RESTORELOG
Moving log �les with MOVELOG

Monitoring the Log with SHOWLOG

Use the SHOWLOG command to display the names of the individual log �les (single or dual)
associated with a DBEnvironment, the archive mode of the log, and the available �le space
remaining.

Displaying Files in the Log

You can use the SHOWLOG command to display the log �le directory either dynamically or
statically. The dynamic SHOWLOG is done if you respond Y to the prompt

Connect? (y/n) (opt):

The default option is a dynamic SHOWLOG.

Normally, you should do a dynamic SHOWLOG so as to display the most current information
about available log space and about the backup status of log �les. You use the static
SHOWLOG only when it is not possible to connect to the DBEnvironment, as after a media
failure.

6-18 Backup and Recovery

Here is an example of a dynamic SHOWLOG:

>> showlog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Connect? (y/n) (opt): y

Archive Mode: ON

Log Sequence Number Containing Most Recent Archive Checkpoint: 1

Current Log Sequence Number: 1

First Log Sequence Number Needed for Recovery: 1

Log Mode is: Single

Number of Free Blocks: 340

First Log Name: DBELog1

First Log File Status: Useable

Log File Size: 250

Log Identifier Is: 1

Log Sequence Number: 1

Log Backup Status: Not Ready for Backup

First Log Name: DBELog2

First Log File Status: Useable

Log File Size: 250

Log Identifier Is: 2

Log Sequence Number: 0

Log Backup Status: Not Ready for Backup

In this example, SHOWLOG displays the following information:

Archive logging is on, and the log mode is single, meaning that only one set of �les is
maintained.
The archive checkpoint|the point at which the last STOREONLINE command began
storing the DBEnvironment|is in the �le with log sequence number 1.
The current log �le is DBELOG1, which has a log sequence number of 1.
If rollforward recovery should become necessary, it would have to start at log sequence
number 1. After subsequent STOREONLINE commands, this sequence number will become
larger.
DBELOG1 and DBELOG2 combined still have a total of 340 free log blocks (pages).
DBELOG1 has not yet been backed up. It is not yet ready for backup, since it is the
current log �le, that is, it is still being written to.
A second log �le, DBELOG2, has been added to the DBEnvironment with the ADDLOG
command. This �le has not been used, so it still has log sequence number 0. It has also not
been backed up, since it does not contain any log records, and thus has never needed to be
backed up.
Note that since the DBEnvironment is in single logging mode, both �les have only a First
Log Name.

Backup and Recovery 6-19

The following is an example of a dynamic SHOWLOG display for a DBEnvironment running
in nonarchive mode with dual logging:

>> showlog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Connect? (y/n) (opt): y

Archive Mode: OFF

Log Sequence Number Containing Most Recent Archive Checkpoint: 0

Current Log Sequence Number: 1

First Log Sequence Number Needed for Recovery: 0

Log Mode is: Dual

Number of Free Block(s): 259

First Log Name: DBELog1

First Log File Status: Useable

Second Log Name: DBELog2

Second Log File Status: Useable

Log File Size: 300

Log Identifier Is: 1

Log Sequence Number: 1

Log Backup Status: Backup Is Not Required

In this example, the Log Sequence Number Containing Most Recent Archive Checkpoint and
the First Log Sequence Number Needed for Recovery are both 0, since archive logging is o�.

Log File Status Types

For a dynamic SHOWLOG, the types of backup status are as follows:

Not Ready for Backup This is the current �le, which is not full yet.

Ready for Backup The �le is full, and the DBE is now using a di�erent �le, so
this one is ready to be stored with STORELOG.

Backup is Done The �le has already been backed up.

Backup is Not Required The log �le does not need to be backed up if the
DBEnvironment is in nonarchive mode, or the DBEnvironment
is in archive mode and this log �le has never been used.

For a static SHOWLOG, the types of backup status are as follows:

Backup is Required The �le has not been backed up yet.

Backup is Done The �le has already been backed up.

Backup is Not Required The DBEnvironment is in nonarchive mode, so the �le does
not need to be backed up.

Displaying Available File Space

You can also use the dynamic SHOWLOG command to display the number of free log blocks
(pages) available for logging. In archive mode, SHOWLOG does not tell how many pages are
available in previously used log �les that have not already been backed up. Until the �les are
backed up, these log pages are not free.

6-20 Backup and Recovery

Using the CHECKPOINT command

For nonarchive log �les, a CHECKPOINT command tells you how many free log �le pages
there are, and it frees log �le pages held by completed transactions. If long transactions tend
to �ll up the log �le, you should increase the log �le size.

For archive log �les, a CHECKPOINT command also tells you how many free log �le pages
there are, and it frees log �le pages in �les that have been stored. CHECKPOINT does not
tell how many pages are available in previously used log �les that have not already been
backed up. Moreover, CHECKPOINT uses more system resources than SHOWLOG, which is
the preferred method for obtaining the number of free pages.

To free log �le pages in archive mode, you must back up some of the log �les using
STORELOG. After backup, these �les become available for reuse as soon as there are no
active transactions in them. As the number of free log pages approaches zero, you should
add log �les, or use STORELOG to make a backup of any non-current log �le, which then
becomes available for reuse.

Adding Log Files with ADDLOG

Using multiple log �les gives you the greatest exibility with logging. In nonarchive mode, you
can add a �le when it is needed for unusually large transactions, and you can recover easily
from a LOG FULL condition without having to shut the DBEnvironment down. In archive
mode, you can achieve continuous DBEnvironment availability by adding a group of log �les,
then developing a schedule of DBEnvironment and log backup.

To expand the capacity of a nonarchive or archive log, use the ADDLOG command, as in the
following example:

>> addlog

DBEnvironment Name: PartsDBE

Maintenance Word:

Enter Log File Name(s) Separated by a Blank? DBELOG2

New Log File Size? 250

Add Log File (y/n)? y

Log file `DBELOG2' was Added.

Log Identifier Is: 2

If you are using dual logging, enter two log �le names separated by a blank. No more than
two names are accepted. The minimum size you can specify for an added log �le is 250 pages.

After you add the �le to the DBEnvironment, it will be used when the current log �le runs
out of space.

Storing Log Files with STORELOG

If you are using archive logging, you must use the STORELOG command to create backups of
each log �le as it �lls up. When a �le's status (shown in the dynamic SHOWLOG display) is
Ready for Backup, you should use the STORELOG command to store a copy of the log. One
method of indicating which �le to store is by entering its Log Identi�er . Here is an example:

Backup and Recovery 6-21

>> storelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Log Identifier (opt): 2

To File Name: /extra/backup2

Store Log File (y/n)? y

Log file 'lgn1' with Sequence Number 2 was stored.

The second method of initiating a log �le backup is to issue a STORELOG command and
press �Return� when you see the prompt for a log identi�er. In this case, STORELOG will back
up the �le with the lowest possible sequence number that has Ready for Backup status in the
dynamic SHOWLOG display. If the STORELOG operation succeeds, the �le will be given the
new backup status Backup is Done.

A third method of initiating a log �le backup is to issue a STORELOG command and enter 0
for the log identi�er. In this case, STORELOG will back up all the �les which are ready for
backup, in the proper sequence by log sequence number, prompting you for �lenames as each
�le is stored. Using this method, all log �les can be stored on one tape.

Important! For each successful STORELOG, label the backup tape with the log �le name,
sequence number, and the date and time of the backup. The sequence number
will let you restore and recover log �les in the correct order in the event that
rollforward recovery is needed.

Rescuing Log Files with RESCUELOG

At certain times, it is necessary to store a copy of a log �le that is not yet ready for backup
with the STORELOG command. One such time is immediately following a media failure.
In this event, STORELOG does not work, since it is impossible to CONNECT to the
DBEnvironment. Use the RESCUELOG command to store a copy of any log �les not yet
backed up at the time of the media failure, as in the following:

>> rescuelog

Log File Name: DBELOG6

Size Of The Log File: 250

To File Name? save6

Rescue Log File (y/n)? y

Log File 'DBELOG6' with Sequence Number 12 Was Rescued.

If the DBECon �le is intact, you can use the static SHOWLOG command after a media
failure to display the sequence numbers of �les with a status of Backup Required . Then you
can store these �les with RESCUELOG.

Restoring Log Files with RESTORELOG

After a media failure, you prepare for rollforward recovery by restoring the DBEnvironment
and the log �les. After using RESTORE to restore the DBECon �le and all DBEFiles, use the
RESTORELOG command to restore each individual log �le. The Rename prompt lets you
enter a new �le name for the log. The input for this prompt is optional, and the default is the
original �le name. Press �Return� to use the original �le name.

6-22 Backup and Recovery

The easiest way to restore and apply log �les is to use the RESTORELOG and the
RECOVERLOG commands one after another for each �le, as in the following example:

>> restorelog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �

Input Device: /dev/tape

Local (y/n) (opt): y

Rename 'lgn1' Log File To: log0001

Restore the Log File (y/n)? y

Log File 'log0001' was Restored.

>> recoverlog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Next Log File To Recover: log0001

Recover Log File (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 2.

When a log �le has been applied to the DBEnvironment as a part of rollforward recovery, it
will be purged by ALLBASE/SQL when it no longer contains active transactions. For that
reason, if doing partial recovery in which your current log �les are undamaged, make sure that
the names given restored log �les while using the RESTORELOG command do not conict
with the names of existing log �les. Otherwise your existing log �les could be purged as
RECOVERLOG completes its work.

(In fact, partial rollforward recovery is best conducted in a directory which is separated from
the one containing your DBEConFile, SYSTEM DBEFileSet, and log �les to avoid undesired
interaction between �les with duplicate names.) Do not attempt to purge logs yourself during
the rollforward recovery process.

Purging Log Files with PURGELOG

The only way to purge an individual log �le that is no longer needed is with the PURGELOG
command. Example:

>> purgelog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word:

Log Identifier: 2

Purge Log File (y/n)? y

Log file(s) Purged.

In the case of dual logging, this command purges both �lenames associated with the log
identi�er.

You can purge a log �le that has been backed up, provided it contains no active transactions.
You can also purge a log �le that has never been used. You cannot use PURGELOG during
the rollforward recovery process. If you wish to purge the DBEnvironment and the entire log,
use the PURGEALL command. To purge the DBE alone, use the PURGEDBE command.

Note You should not remove log �les with the HP-UX rm command, since this
action is not recorded in the DBECon �le. For the same reasons, do not use
the PURGEFILE command to remove a log �le under any circumstances.

Backup and Recovery 6-23

Moving Log Files with MOVELOG

You can move a log �le from one location to another with the SQLUtil MOVELOG command.
Example:

>> movelog

DBEnvironment Name: PartsDBE

Current Log File Name: partslogA3

New Log File Name: newdrive/partslogA3

File moved.

MOVELOG lets you place log �les on a device that is separate from the data and index �les
of the DBEnvironment. Note that when you move a log �le, you specify its �le name; this
means that you can place the di�erent members of a dual log sequence on separate devices if
you choose.

Starting a New Log

Use the START DBE NEWLOG command to create a new log �le with di�erent
characteristics as you open the DBEnvironment. You must be the DBECreator to use this
command.

The START DBE NEWLOG command may be used for the following reasons:

To change the name or size of the current log �le.
To enable or disable dual logging.
To return to nonarchive logging mode from archive mode.

The following procedure is recommended when using START DBE NEWLOG to ensure the
safety of log records and the consistency of the DBEnvironment:

1. Stop the DBEnvironment.

2. If in archive mode, back up log �les as desired using STORELOG and RESCUELOG. (You
don't need to back up the log �les in nonarchive mode because you can not use them for
rollforward recovery.)

3. Perform a START DBE NEWLOG. You should specify �le names di�erent from the old log
names in the NAME = clause.

The following example shows how to start a new log �le for the sample DBEnvironment, using
di�erent log �le names:

isql=> START DBE 'PartsDBE' MULTI NEWLOG

> DUAL LOG,

> TRANSACTION=7

> LOG DBEFILE PartsLg3 AND PartsLg4

> WITH PAGES = 250,

> NAME = 'dir2/DBELog3' AND 'dir3/DBELog4';

The physical �les are created in directories di�erent from that of the DBECon �le.

The new log �le is in nonarchive mode. If you wish, you can start a new log in archive mode
by using the ARCHIVE LOG option in the START DBE NEWLOG command.

6-24 Backup and Recovery

Note If you change from archive mode logging to nonarchive mode logging,
rollforward recovery will be impossible beyond the last archive log �le.

Monitoring the Log with SQLMON

SQLMON is an online diagnostic tool that monitors the activity of an ALLBASE/SQL
DBEnvironment. In addition to providing information about locking, I/O, and �le capacity,
SQLMON displays information about logging activity. SQLMON is documented fully in the
ALLBASE/SQL Performance and Monitoring Guidelines . Table 6-1 summarizes the log
monitoring tasks you can perform with SQLMON.

Table 6-1. SQLMON Log Monitoring Tasks

Task SQLMON
Screens

Fields

Determining Log File Capacity Overview LOG FULL %
Used LgPgs
Max LgPgs

Identifying Log Mode Overview
IO

Archive Mode

Detecting Logging Errors Overview LOG ERRORS

Identifying Size of
Log Bu�er Pool

IO TOTAL LOG BUFFER PAGES

Monitoring Log Bu�er I/O IO
IO Log Session
IO Log Program

LOG BUFF WR
LOG DISK RD
LOG DISK WR

Monitoring Checkpoints IO CHECKPOINTS

Setting up a Wrapper DBEnvironment

Wrapper DBEnvironment functionality is used to recover the audit information in the log
�les orphaned when you cannot connect to a DBEnvironment. Wrapping log �les means
associating the �les with a DBEnvironment. After a DBEnvironment becomes inaccessible, its
log �les are not associated with any DBEnvironment. These orphaned log �les are then also
inaccessible.

You can try to recover the audit information in the log �les with the Audit Tool (the Audit
Tool is described later in this manual). Audit information allows you to group database
information into partitions for processing analyses. Access to wrapped log �les avoids having
a gap in the ongoing record of audit information. The use of archive logging facilitates
wrapper DBEnvironment use, but nonarchive logging does not prevent use of wrapper
DBEnvironments.

Backup and Recovery 6-25

Note Recovery of the database itself is a separate operation. It is recommended
that the log �les be wrapped before you attempt a recovery. The di�erent
types of recovery are described earlier in this chapter.

The following list summarizes the tasks that must be performed to create a wrapper
DBEnvironment:

1. Select usable log �les.

2. Create a new DBEnvironment with START DBE NEW.

3. Wrap the DBEnvironment around the log �les with SQLUtil WRAPDBE command.

These tasks are described in the following sections.

Selecting Valid Log Files with SHOWLOG

The �rst step in setting up a wrapper DBEnvironment is to select the names of log �les
marked Useable. Only the log �les themselves will be wrapped, not the DBECon �le.
However, log �le status information is contained in the DBECon �le, not in the log �les.
Because the DBECon �le will not be wrapped, you must manually determine which log �les
are valid and usable and enter this information when prompted by the SQLUtil WRAPDBE
command in the last step.

If the DBECon �le still exists, the SQLUtil SHOWLOG command can be used to display the
log �les associated with the inaccessible DBEnvironment. (Refer to the section \Selecting Log
Files when the DBECon File is Inaccessible" for guidelines on selecting log �les when the
DBECon �le is unavailable.) The SHOWLOG command has two modes: one that connects
to the DBEnvironment and one that does not. Use the mode that does not connect to the
DBEnvironment because connecting to the DBEnvironment may fail. No authority is needed
for the SHOWLOG command.

Single Logs

For single logging, all log �le names are selected. Suppose that the names for PartsLog1a,
PartsLog 2A, and PartsLog3A are as follows:

PRTSLG1A

PRTSLG3A

PRTSLG2A

The sequence that the log �les are entered is not important to the SQLUtil WRAPDBE
command. When all log �les have been entered, the WRAPDBE command issues a warning if
a log �le is missing in the sequence even though WRAPDBE still allows the DBEnvironment
to be converted to a wrapper DBEnvironment.

If a log �le in the sequence has been purged, you will only be able to retrieve audit log records
as far back in history as the beginning of a log �le with a log sequence number greater than
the purged log �le. For example, if PartsLog2a was missing, you would only be able to
retrieve audit log records from PartsLog3a. You would not be able to retrieve PartsLog1a.

6-26 Backup and Recovery

Dual Logs

Assume that a DBEnvironment using dual logs has a log �le con�guration shown in Table 6-2
below:

Table 6-2. Example Log File Names and Sequence Numbers

First Log Second Log Log Sequence #

PartsLog1a PartsLog1b 2

PartsLog2a PartsLog2b 3

PartsLog3a PartsLog3b 4

During processing, an error occurred on PartsLog2a and the log �le was marked Not Useable.
Since PartsLog2b was still available and considered to be a valid log �le, ALLBASE/SQL
logging to PartsLog2a was discontinued and PartsLog2b became the only log. Therefore, you
would want to select PartsLog2b.

A message appears on the console when the switch takes place. The message is also written
to the console �le which an operator can read later. This switch allows users to continue
accessing the DBEnvironment.

The following example shows a sample SHOWLOG command display for a DBEnvironment
with dual logging:

>> showlog

DBEnvironment Name: PartsDBE

Maintenance Word:

Connect (y/n)? (opt): n

Archive Mode: ON

Log Sequence Number Containing Most Recent Archive Checkpoint: 0

Current Log Sequence Number: 5

First Log Sequence Number Needed for Recovery: 0

Log Mode is: Dual

Number of Free Block(s): 522

First Log Name: PRTSLG1A

First Log File Status: Useable

Second Log Name: PRTSLG1B

Second Log File Status: Useable

Log File Size: 256

Log Identifier Is: 1

Log Sequence Number: 2

Log Backup Status: Ready For Backup

First Log Name: PRTSLG2A

First Log File Status: Not Useable

Second Log Name: PRTSLG2B

Second Log File Status: Useable

Log File Size: 256

Log Identifier Is: 2

Log Sequence Number: 3

Log Backup Status: Ready For Backup

Backup and Recovery 6-27

First Log Name: PRTSLG3A

First Log File Status: Useable

Second Log Name: PRTSLG3B

Second Log File Status: Useable

Log File Size: 300

Log Identifier Is: 3

Log Sequence Number: 4

Log Backup Status: Not Ready For Backup

As shown, PRTSLG2A has a log �le status of Not Useable, indicating that the log �le should
not be used in the wrapper DBEnvironment. PRTSLG2B should be used instead.

Selecting Log Files when the DBECon File is Inaccessible

If single logs are being used, you are safe in using the list of log �les de�ned when the
inaccessible DBEnvironment was de�ned. (Such a list should be made at the time of
DBEnvironment creation.) This is considered safe because when a log �le becomes unusable
with no backup (or dual log) to switch to, work is not allowed on the DBEnvironment and the
DBEnvironment will stop processing (but will not have become inaccessible).

However, if dual logs were used, check the console �le to see which log �les have been marked
Not Useable. The safest log �les to use are those named for Second Log File. One criterion for
making a decision is to check the modi�cation timestamp for the two �les with the operating
system ls -l command (HP-UX) or listf, log�lename, 3 command for MPE/iX. If one of the
�les has a considerably earlier timestamp, the system may have automatically switched to the
Second Log File in the past. Therefore, the First Log File would be incomplete and logging
would have continued on the Second Log File.

(To avoid this uncertainty in the future, you can issue an occasional SHOWLOG command
while the DBEnvironment is running to see whether a log �le has a Not Useable status. A
console message is also issued and written to the console �le when a log �le becomes unusable;
you can go back and check the console �le later. This at least provides a reference point for
later decisions as to which �les are usable in the event of a hard crash.)

Creating a DBEnvironment

The next step is to create a DBEnvironment that will be converted to a wrapper
DBEnvironment. Creating this new DBEnvironment is accomplished with the START DBE
NEW statement. The DBEnvironment should be created in the subdirectory (HP-UX) or
group (MPE/iX) where the log �les reside.

The maximum number of transactions should be set to the same value that was allowed on
the original DBEnvironment. If unknown, this value can be obtained from the DBECon File
with the SQLUtil SHOWDBE command if the DBECon �le still exists. Otherwise, you must
restore the database before issuing the SHOWDBE command.

Any �le names speci�ed in the START DBE NEW command should not be the same
as the log �le names to be wrapped. Since no updates will be allowed on the wrapper
DBEnvironment after it has been converted, options such as the number of data bu�er pages
and log bu�er pages are irrelevant; you can use the default values for these options. However,
the DBEnvironment must be created with the AUDIT NAME, DEFAULT PARTITION,
MAXPARTITIONS, and DATA AUDIT ELEMENTS (and COMMENT PARTITION, if
present) the same as in the inaccessible DBEnvironment. Audit parameters are shaded in the
example below.

6-28 Backup and Recovery

Since this database is used only to retrieve audit log records with the Audit Tool, most DDL
statements are also not needed. Therefore, a DBEFile0 larger than the default size is not
required.

The following example shows such a DBEnvironment:

isql=> START DBE 'WRAPPER' MULTI NEWFFFFFFFFFFFFFFFFFFFFFFFF
AUDIT LOG,

TRANSACTION = 100,

DBEFile0 DBEFILE wrapDBE1

NAME = 'WrapDBE1',

LOG DBEFile TempLog1

NAME = 'TempLog1',FF
AUDIT NAME = 'MyDBE1',FF
DEFAULT PARTITION = 1,FF
MAXPARTITIONS = 10,FF
DATA AUDIT ELEMENTS;

Wrapping the DBEnvironment Around the Log Files

The �nal step actually converts the created DBEnvironment to a wrapper DBEnvironment,
thus associating it with the set of log �les from the inaccessible DBEnvironment. The
SQLUtil WRAPDBE command is used to perform the conversion.

The SQLUtil WRAPDBE command must be used on log �les that are inactive. If the
WRAPDBE command is used on log �les still associated with a DBEnvironment, it is possible
that another user may be able to connect to the database (even though it had been thought to
be inaccessible) and do work that would generate log records while the log �les are associated
with the wrapper DBEnvironment.

You must be a superuser (HP-UX) or system administrator (MPE/iX) or DBECreator of the
original inaccessible DBEnvironment to wrap the created DBEnvironment around the log �les.
An example of using this command is shown below:

>> wrapdbe

DBEnvironment Name: WRAPPER

Maintenance Word: �Return �
Wrapper Mode (log) (opt): LOG

Enter Log File Name (RETURN to finish): PRTSLG1A

Enter Log File Name (RETURN to finish): PRTSLG2B

Enter Log File Name (RETURN to finish): PRTSLG3A

Enter Log File Name (RETURN to finish):

Convert to Wrapper DBEnvironment (y/n): y

The Maintenance Word should also be that of the DBEnvironment created in the third step.
The Wrapper Mode has only one option, log, at this time. If a carriage return is entered,
Wrapper Mode defaults to log.

When entering log �le names, SQLUtil continues prompting for the next log �le name until
you enter a carriage return. The maximum number of log �le names that can be entered is 34.
Though the log �le names can be entered in any order, the complete list should constitute a
correct sequence.

The �nal prompt, Convert to Wrapper DBEnvironment (y/n), allows you to verify that the
DBEnvironment should be converted into a wrapper DBEnvironment. Entering two slashes
(//) at any time returns you to the SQLUtil prompt.

Backup and Recovery 6-29

The WRAPDBE command opens the new DBEnvironment in single user mode to ensure that
no one else is currently accessing the DBEnvironment.

No updates can be made to the DBEnvironment after it has been converted to a wrapper
DBEnvironment but updates can be made before the WRAPDBE command is issued. The
WRAPDBE command removes any log �les associated with the DBEnvironment before being
converted. Only the wrapped log �les are associated with the DBEnvironment after it is
wrapped around them.

After converting the DBEnvironment, the SQLUtil command SHOWDBE displays an
additional line as follows to indicate that the DBEnvironment is a wrapper DBEnvironment:

DBEnvironment Type: WRAPPER

The full display of the SHOWDBE command for a wrapper DBEnvironment is shown at the
end of the next section.

Example of Setting Up a Wrapper DBE

Assume that the inaccessible DBEnvironment had the following structural information
displayed for the SQLUtil SHOWDBE command:

>> showdbe

DBEnvironment Name: PARTSDBE

Maintenance Word: �Return �
Output File Name (opt): �Return �
-> all

DBEnvironment Language: n-computer (HP-UX)

DBECreator ID: 170 (HP-UX)

DBEnvironment Language: NATIVE-3000 (MPE/iX)

AutoStart: ON

Audit Logging Is: ON

Audit Logging Name is: PartsDBE1

Default Partition ID is: 1

Maximum Number of Partitions Is: 10

Comment Partition ID Is: 2

Audit Elements are: CHKPT, DATA, CMNT

User Mode: MULTI

DBEFile0 Name: PartsF0

DDL Enabled: YES

No. of Runtime Control Block Pages: 128

No. of Data Buffer Pages: 200

Data Buffer Pages Memory Resident: NO (MPE/iX)

No. of Log Buffer Pages: 200

Max. Transactions: 100

Maximum Timeout: NONE

Default Timeout: MAXIMUM

Authorize Once per session: OFF

Console File Name: CONSOLE

Assume that the following information is displayed by SHOWLOG:

>> showlog

DBEnvironment Name: PARTSDBE

Maintenance Word:

Connect (y/n)? (opt): n

6-30 Backup and Recovery

Archive Mode: ON

Log Sequence Number Containing Most Recent Archive Checkpoint: 0

Current Log Sequence Number: 5

First Log Sequence Number Needed for Recovery: 0

Log Mode is: Single

Number of Free Block(s): 522

First Log Name: PRTSLG1A

First Log File Status: Useable

Log File Size: 256

Log Identifier Is: 1

Log Sequence Number: 2

Log Backup Status: Ready For Backup

First Log Name: PRTSLG2A

First Log File Status: Useable

Log File Size: 256

Log Identifier Is: 2

Log Sequence Number: 3

Log Backup Status: Ready For Backup

First Log Name: PRTSLG3A

First Log File Status: Useable

Log File Size: 300

Log Identifier Is: 3

Log Sequence Number: 4

Log Backup Status: Not Ready For Backup

First Log Name: PRTSLG4A

First Log File Status: Useable

Log File Size: 300

Log Identifier Is: 4

Log Sequence Number: 0

Log Backup Status: Not Ready For Backup

Backup and Recovery 6-31

7

Maintenance

Maintenance is a composite of activities that let you adjust the DBEnvironment to the
changing needs of your system's users. The following are presented in this chapter:

Using simple and complex maintenance operations
Maintaining the DBEnvironment
Maintaining tables
Dropping and recreating hash structures
Maintaining indexes
Maintaining constraints
Maintaining rules and procedures
Maintaining sets of interrelated objects
Maintaining applications
Maintaining a nonstop production system
Maintaining security
Disabling data de�nition
Judging maintenance expenses
Cleaning up after abnormal termination

For most maintenance operations, you use the data de�nition statements in SQL. For some
maintenance operations, you use SQLUtil and SQLGEN, which are described in the \DBA
Tasks and Tools" chapter, or the ISQL LOAD and UNLOAD commands. Complete command
syntax for SQLUtil and SQLGEN appears in the appendix of this manual. ISQL commands
are described in the ALLBASE/ISQL Reference Manual . To monitor DBEnvironment
performance, you use SQLMON, which is described in the ALLBASE/SQL Performance and
Monitoring Guidelines .

Using Simple and Complex Maintenance Operations

Most maintenance operations are either simple or complex. A simple operation requires only a
single command and can be performed without unloading and reloading tables. The following
commands perform simple operations:

ALTER TABLE
CREATE INDEX or DROP INDEX
ALTER DBEFILE (from INDEX or TABLE to MIXED)
MOVEFILE
DROP or CREATE VIEW
ADD TO GROUP

A complex operation requires a series of commands that remove data from an object before
modifying the object in some way and then reloading it.

Maintenance 7-1

The following tasks require complex operations:

Dropping a DBEFile
Changing a DBEFile from MIXED to INDEX or TABLE
Regrouping data to improve performance
Merging two existing tables
Splitting an existing table into two tables
Merging two columns in a table
Modifying a column in an existing table
Reloading tables to improve index performance

A complex operation generally uses the UNLOAD and LOAD commands in combination with
some other procedure, or else it uses the INSERT statement with a newly created table and
a SELECT statement that speci�es columns in an old table or tables. Many maintenance
tasks can be performed using more than one kind of operation, so you must often decide
which to use in a given case. The next few sections show how to use both simple and complex
operations to carry out a variety of tasks in database maintenance.

Maintaining the DBEnvironment

DBEnvironment maintenance includes the following tasks:

Adjusting startup values
Setting parameters for rule operation
Updating system catalog statistics
Managing DBEFiles and DBEFileSets
Managing log �les (discussed in the \Backup and Recovery" chapter)

You can monitor the DBEnvironment using the system catalog. Then, based on the
changing needs of users, you can adjust DBECon parameters or increase or decrease space in
DBEFileSets and log �les. Refer to the \System Catalog" chapter for a complete description
of each catalog view and its use in monitoring system performance.

Adjusting Startup Values

The DBECon �le contains startup parameters which help the DBA automate DBEnvironment
startup and access procedures. Defaults for many of these values are set when you create
the DBEnvironment using the START DBE NEW statement. You can change many
startup parameters temporarily using the START DBE statement or permanently using the
ALLBASE/SQL tool SQLUtil.

All DBECon parameters except the DBECreator, Maintenance Word, AutoStart, DDL
Enabled, and Authorize Once Per Session parameters can be speci�ed in the START DBE
NEW statement when the DBEnvironment is con�gured. ALLBASE/SQL assigns defaults
to DBECreator, Maintenance Word, AutoStart, DDL Enabled Flag, Archive Mode, Control
Block pages, Log Bu�er Pages, Data Bu�er Pages, and Authorize Once Per Session Flag.

Table 7-1 shows all the parameters and how they can be modi�ed.

7-2 Maintenance

Table 7-1. DBECon Parameters

Parameter Default Modify with Description

Maintenance Word None SQLUtil
SETDBEMAINT

is a password for SQLUtil. De�ning a
maintenance word protects the DBECon �le
from being modi�ed by unauthorized users.
The DBECreator can set and change the
Maintenance Word only with SQLUtil.

DBEnvironment
Language

n-computer Cannot be changed is speci�ed in the LANG= option of the
START DBE NEW statement. Once the
DBEnvironment is con�gured, you cannot
change its language.

DBECreator ID DBEUserid of
the user who
con�gures a
DBEnviron-
ment by using
START DBE
NEW.

SQLUtil
RESTORE

Ensures that there is a DBEUserID that has
irrevocable DBA authority for each
DBEnvironment. In addition, the
DBECreator always has access to the
SQLUtil commands for DBEnvironment
maintenance and security. You can supply a
new DBECreator name when you restore the
DBEnvironment.

AutoStart ON SQLUtil ALTDBE automates DBEnvironment startup. You can
set this parameter only with SQLUtil.

User Mode SINGLE SQLUtil ALTDBE
to change; START
DBE or START
DBE NEWLOG to
override

is SINGLE to allow only one user, and
MULTI to allow multiple users to access the
DBEnvironment simultaneously. A DBA
may want to con�gure the DBEnvironment
in single-user mode until all databases have
been created and all authorization has been
granted. Once the DBEnvironment is ready
for production use, user mode can be
changed to MULTI. User mode can be
changed using SQLUtil or temporarily
overridden with the START DBE statement.

DBEFile0 Name DBEFILE0 SQLUtil
MOVEFILE to
change

is speci�ed in the DBEFILE DBEFILE0
clause of the START DBE NEW statement.
Once the DBEnvironment is con�gured, the
DBEFile0 name or location can be changed
using the SQLUtil MOVEFILE command.
The size cannot be changed.

Archive Mode Disabled SQLUtil
STOREONLINE;
ARCHIVE
parameter in
START DBE
NEWLOG
statement

STOREONLINE enables archive logging for
rollforward recovery. The ARCHIVE
parameter in the START DBE NEWLOG
statement con�gures a new log for a
DBEnvironment that is already using archive
logging.

Maintenance 7-3

Table 7-1. DBECon Parameters (continued)

Parameter Default Modify with Description

DDL Enabled YES SQLUtil ALTDBE enables the use of data de�nition language
(DDL). You can set this parameter with the
SQLUtil ALTDBE command. Disabling
DDL can improve performance signi�cantly,
but it should only be done if your
applications do not do any data de�nition.

Number of
Runtime Control
Block Pages

37 SQLUtil ALTDBE
to change; or SQL
START DBE or
START DBE
NEWLOG to
override

The number of blocks of memory allocated
for DBCore services such as locking and
session management. The maximum is 2000
pages.

Number of Data
Bu�er Pages

100 SQLUtil ALTDBE
to change; START
DBE or START
DBE NEWLOG to
override

are speci�ed in the BUFFER option of the
START DBE NEW statement. You should
make sure that the bu�ers are large enough
to accommodate the number of concurrent
transactions in the DBEnvironment. Data
bu�ers can be a minimum of 15 pages (the
default is 100) there is no maximum. Refer
to \Estimating Shared Memory
Requirements" in the \Physical Design"
chapter for details on determining the
number of bu�er pages.

Number of Log
Bu�er Pages

24 SQLUtil ALTDBE
to change; START
DBE or START
DBE NEWLOG to
override

are speci�ed in the BUFFER option of the
START DBE NEW statement. You should
make sure that the bu�ers are large enough
to accommodate the number of concurrent
transactions in the DBEnvironment. Log
bu�ers can be from 24 (the default) to 1024
pages. Refer to \Estimating Shared Memory
Requirements" in the \Physical Design"
chapter for details on determining the
number of bu�er pages.

Maximum
Transactions

50 SQLUtil ALTDBE
to change; START
DBE or START
DBE NEWLOG to
override

is speci�ed in the TRANSACTIONS option
of the START DBE NEW statement. The
number of concurrent transactions depends
on the number of users that will be
concurrently accessing the DBEnvironment.
The default number of transactions is 50; the
maximum is 240.

Maximum Timeout NONE SQLUtil ALTDBE
to change; START
DBE or START
DBE NEWLOG to
override

is speci�ed in the MAXIMUM TIMEOUT
clause of the START DBE NEW statement.
This value is the maximum permitted
timeout that can be established by a user in
the DBEnvironment.

7-4 Maintenance

Table 7-1. DBECon Parameters (continued)

Parameter Default Modify with Description

Default Timeout MAXIMUM SQLUtil ALTDBE
to change; START
DBE or START
DBE NEWLOG to
override

is speci�ed in the DEFAULT TIMEOUT
clause of the START DBE NEW statement.
This value is the default user timeout value
in the DBEnvironment.

Authorize Once
Per Session

OFF SQLUtil ALTDBE When ON, authorization to run modules or
execute procedures is only done once per
session, on the �rst invocation.

To change any of the DBECon parameters using SQLUtil, you must be the DBECreator
(creator of the DBECon �le) or know the maintenance word. To temporarily override any
of the DBECon parameters using START DBE, you must have DBA authority. To override
using START DBE NEWLOG, you must be the DBECreator.

The START DBE and START DBE NEWLOG statements temporarily override the startup
parameters in the DBECon �le for just the period that the DBEnvironment is open. Note
that the DBECon �le contains some startup parameters that can be modi�ed only through
SQLUtil: Maintenance Word, Autostart, Archive Mode, DDL Enabled, and Authorize Once
per Session. Defaults are provided for all of these except the maintenance word. Refer to the
chapter \DBEnvironment Con�guration and Security," and see the description of ALTDBE
command in the \SQLUtil" appendix for details on changing startup parameters.

Determining Behavior of Rules in a DBEnvironment Session

You can use the following SQL statements to change the behavior of rules in a
DBEnvironment session:

ENABLE RULES and DISABLE RULES
SET PRINTRULES ON or OFF

The e�ects of these statements are global throughout the DBEnvironment; that is, they
a�ect all connected users. The ENABLE RULES and DISABLE RULES statements turn on
and o� the operation of rules in a DBEnvironment. Use DISABLE RULES to perform load
operations when you do not wish rules to be activated, or for testing the operation of rules
and procedures. Use the SET PRINTRULES ON statement to turn on display of the rule's
name as it �res. Use SET PRINTRULES OFF to stop the display of rule names.

By default, PRINTRULES is set OFF, and rule �ring is enabled.

Updating System Catalog Statistics

The UPDATE STATISTICS statement is used to update the system catalog to reect the
current status of the DBEnvironment. The UPDATE STATISTICS statement operates on one
table at a time for the table data, its indexes, the DBEFileSet containing the table, and all
DBEFiles in the DBEFileSet.

Since ALLBASE/SQL uses data from the system catalog to optimize queries, the DBA should
update system catalog statistics after any of the following:

Numerous inserts, updates, or deletes

Maintenance 7-5

Creating or dropping database objects
Restructuring databases

The columns for the following system views are updated for the table speci�ed in the
UPDATE STATISTICS statement:

The DBEFUPAGES column in the SYSTEM.DBEFILE view is updated for every DBEFile
in the DBEFileSet where the table resides. It indicates the number of used pages in each
DBEFile.

The DBEFSUPAGES column in the SYSTEM.DBEFILESET view is updated for
the DBEFileSet where the table resides. It indicates the number of used pages in the
DBEFileSet.

The AVGLEN column in the SYSTEM.COLUMN view is updated for all columns in the
table. It indicates for each column the average length of the values in that column.

The NPAGES and CCOUNT columns in the SYSTEM.INDEX and
SYSTEM.CONSTRAINTINDEX views are updated for each index (including
constraint indexes) created on the table. They indicate how many pages each index
occupies, and how well the data is clustered for each index, respectively.

The NPPAGES, AVGLEN, MAXLEN, NFULL, and NOVERFLOW columns in the
SYSTEM.HASH view are updated if the table is a hash table. NPPAGES indicates how
many primary pages are in use in the table; AVGLEN and MAXLEN indicate the average
and maximum chain length, that is, the number of overow pages it is necessary to traverse
before �nding a row. NFULL is the number of primary pages that are more than half full,
and NOVERFLOW is the total number of overow pages.

The NPAGES, NROWS, AVGLEN, and USTIME columns in the SYSTEM.TABLE view
are updated for that table. NPAGES indicates how many pages the data in the table
occupies. NROWS indicates the number of rows in the table. AVGLEN speci�es the
average row length in the table. USTIME indicates the last time an UPDATE STATISTICS
was performed on the table.

The table owner or a user with DBA authority can update statistics on a table. Users with
DBA authority can update statistics on system views.

The following statement updates statistics for the PurchDB.Parts table:

isql=> UPDATE STATISTICS FOR TABLE PurchDB.Parts;

Note Updating statistics locks system catalog pages, and it also can invalidate
sections stored for preprocessed statements. Since there can be an impact
on performance while the statement is executing, you should use the
UPDATE STATISTICS statement during o� hours, or when accessing the
DBEnvironment in single-user mode.

7-6 Maintenance

Changing System Table Lock Types

Two ALLBASE/SQL special names are supported as owners of the system base tables.
STOREDSECT owns the tables used to store compiled sections and views (the section tables);
HPRDBSS owns all other system tables. By issuing a query on the SYSTEM.TABLE view,
you can see which system tables are owned by HPRDBSS and STOREDSECT. The RTYPE
column indicates each table's lock type (granularity). (Refer to the \System Catalog" chapter
in this manual for a complete description of the SYSTEM.TABLE view.)

If you are a DBA, you can change the lock type of any system base table or user table by
means of the ALTER TABLE statement. A sophisticated understanding of locking strategy
in general (and for the particular DBEnvironment) is required. For details, please refer to
the ALLBASE/SQL Reference Manual chapter, \Concurrency Control through Locks and
Isolation Levels."

As a DBA, you can use the UPDATE STATISTICS statement to insure that system and
user table information is current. Then use SQLMON to detect concurrency problems and, if
necessary, alter table types to change lock granularity. The SQLMON help Facility and the
ALLBASE/SQL Performance and Monitoring Guidelines provide additional information.

Note Locking is a complex subject. It has far reaching e�ects on a DBEnvironment
and possibly on system performance. For example, one possible e�ect of
setting table lock types to PUBLICROW (row level locking) is that memory
requirements may increase.

Managing DBEFiles and DBEFileSets

DBEFiles should be added to a DBEFileSet when you need more space in the DBEFileSet for
the current tables and indexes or when you are going to create another table or index in the
DBEFileSet.

Do the following before you add a new DBEFile:

determine the available space in the DBEFileSet
calculate the number of DBEFile pages needed
determine the DBEFile type needed

Use SQLMON to monitor the space available in a DBEFileset. The Static DBEFile screen
displays the number of pages in use and the maximum number of pages for each DBEFile and
DBEFileset.

If your table and index data are separated into TABLE and INDEX DBEFiles, you must
make sure that each type has enough room for pending inserts and updates. The Static Size
screen in SQLMON lists the number of pages occupied by and the type (TABLE, INDEX, or
MIXED) of each DBEFile.

Maintenance 7-7

Adding a New DBEFile

If you have determined that your DBEFileSet needs another DBEFile, use the following steps
to create the additional DBEFile and add it to the DBEFileSet:

Determine the DBEFile type. Use a TABLE DBEFile if you are adding rows to a table.
Use both TABLE and INDEX DBEFiles if you are adding rows to a table with an index.
Use MIXED DBEFiles if you are not separating table and index data.

Use the formulas in the \Physical Design" chapter for calculating the number of DBEFile
pages needed to store table and index data.

Create the DBEFile using the CREATE DBEFILE statement. You can use the
DEVICE clause to indicate the device on which the DBEFile will reside, as described in
ALLBASE/SQL Reference Manual .

Add the DBEFile to the DBEFileSet using the ADD DBEFILE statement.

Note If you are adding a DBEFile to the SYSTEM DBEFileSet, your transaction
must be the only active transaction. If there are other active transactions,
your transaction will wait until they complete.

Make the changes permanent by using the COMMIT WORK statement.

Note If you use the ROLLBACK WORK statement, or if there is a system failure
after you create the DBEFile and before you commit the transaction, a
physical �le will remain on the operating system without a corresponding
entry in the system catalog. You should use the SQLUtil PURGEFILE
command to remove this �le before attempting to create the DBEFile again.

Changing DBEFile Type

DBEFiles are of type TABLE, INDEX, or MIXED. You can change a �le from one to the
other if necessary.

From TABLE or INDEX to MIXED

If you �nd you are not using indexes very often on some tables, you may want to consolidate
the tables and indexes into DBEFiles of type MIXED. Mixed DBEFiles use space more
e�ciently than separate table and index DBEFiles. To change to type MIXED, you do not
need to unload and empty the tables. You simply use the ALTER DBEFILE statement to
change all DBEFiles to type MIXED. The SQL ALTER DBEFILE statement is a simple
maintenance operation:

isql=> ALTER DBEFILE SomeDBEFile SET TYPE = MIXED;

7-8 Maintenance

From MIXED to TABLE or INDEX

To change DBEFile type from MIXED to either INDEX or TABLE, you must use a complex
operation. For instance, if you want to separate table and index data that is currently stored
in MIXED DBEFiles in order to place tables and indexes on di�erent disk drives, use the
ALTER DBEFILE statement in conjunction with UNLOAD and LOAD, as follows:

Unload all tables in the DBEFileSet with the INTERNAL option. Before unloading, you
may wish to drop indexes on the tables so as to improve performance during the unload
operation. Do not drop the tables.

Delete all rows from all tables in the DBEFileSet.

Use the ALTER DBEFile statement to change some of the DBEFiles to type INDEX and
others to type TABLE.

Load the tables using the INTERNAL option. Recreate indexes if necessary.

Use the SQLUtil MOVEFILE command to locate the DBEFiles on separate devices.

Keep in mind that you should know how much space is required for tables and indexes so that
the appropriate number of DBEFiles are altered to type TABLE and to type INDEX.

Dropping a DBEFile

DBEFiles should be dropped when rows have been deleted from tables and space is no longer
being used. The most signi�cant implication of empty DBEFiles is wasted disk space. You
may also experience slight performance degradation during serial table reads because all
DBEFile pages are read during a serial table read.

Before a DBEFile can be removed from a DBEFileSet, it must be empty. To empty a
DBEFile, you must drop all tables associated with the DBEFileSet that have data in them.
Alternatively, you can delete all the rows in the table without dropping the table itself. This
preserves the table de�nition, but has the drawback of requiring enough log space for all
the data being deleted. If you want to preserve the data, you must unload the tables before
deleting the rows. A DBEFile must be removed from the DBEFileSet with the REMOVE
statement, as follows:

isql=> REMOVE DBEFILE WareDataF1 FROM DBEFILESET WarehFS;

Note If you are removing a DBEFile from the SYSTEM DBEFileSet, your
transaction must be the only active transaction. If there are other active
transactions, your transaction will wait until they complete.

A DBEFile is dropped with the DROP DBEFILE statement. The following example drops the
WareDataF1 DBEFile:

isql=> DROP DBEFILE WareDataF1;

Once you drop the DBEFile, it cannot be used to store data. However, it still resides on the
system as an HP-UX �le.

Maintenance 7-9

Maintaining Tables

Table maintenance can involve the following:

changing a table's locking behavior
dropping tables
adding and deleting columns
\emptying" a table by removing its rows
merging a table with another table
dividing a table into two tables
renaming tables or columns

Note If your tables use integrity constraints, rules, and procedures, the operations
described in the next few sections can have unexpected consequences. For
more information, see the section \Maintaining Sets of Interrelated Objects"
later in this chapter.

Changing a Table's Locking Behavior

You can use the ALTER TABLE statement to change a table's type. You can also optionally
reset the implicit grant of authority to the special user PUBLIC for tables that were created
PUBLIC, PUBLICROW, or PUBLICREAD. When you use the ALTER TABLE statement,
you change the table type permanently. To change it back to its original state, you must
issue another ALTER TABLE statement. (To change locking behavior for the duration of a
transaction, use the LOCK TABLE statement.)

Dropping Tables

Dropping a table from a database is a simple operation. Simply use the DROP TABLE
statement:

isql=> DROP TABLE PurchDB.Parts;

Dropping tables has the following e�ects in addition to the deletion of the table itself:

All indexes de�ned on the table are dropped.

All views de�ned on the table, including views on multiple tables of which the table is one,
are dropped.

All authorities granted to users on the table and associated views are revoked.

All rows in the system catalog pertaining to the table and its columns, indexes, rules, views,
constraints, and authorizations are deleted.

All sections that reference the table are invalidated.

You cannot drop a table that was de�ned with a primary key if another table references
it. You must �rst drop the referencing table or else drop the constraint. Dropping views
invalidates all sections that reference those views; dropping indexes invalidates sections that
reference the tables on which the indexes were created.

When tables and indexes are dropped, the pages that held the data for those objects are not
free to store other data until the transaction is terminated with a COMMIT WORK or a
ROLLBACK WORK statement.

7-10 Maintenance

If you want to delete all of the rows in a table, but want to maintain the table de�nition, issue
the TRUNCATE TABLE statement:

isql=> TRUNCATE TABLE PurchDB.Parts;

Adding Columns

Adding columns is a simple maintenance operation that does not require removing the
existing data from a table. To add one or more columns to a table, use the ALTER TABLE
statement. Refer to the ALLBASE/SQL Reference Manual for syntax. Adding columns has
the following e�ects:

Adding a column to a table will invalidate stored sections of applications that access the
table. In addition, applications that access the table must be updated and re-preprocessed if
they are to reference the new column.

Applications that use a star (*) in their SELECT statement will need to be revised so that
their host variable declarations will accommodate the new columns. They will also need to
be re-preprocessed.

If you have created a view on the table using a star (*) in the SELECT clause, the new
columns will not appear in the view. Views that use the table as a base table must be
deleted and recreated if they are to reference the new columns.

A column added with the ALTER TABLE statement always contains either null values or
default values in existing rows; therefore, a column cannot be added with the NOT NULL
attribute unless you specify a default value.

The following statement adds an integer column called NewColumn1 and a character column
called NewColumn2 to the PurchDB.Parts table:

isql=> ALTER TABLE PurchDB.Parts

> ADD (NewColumn1 INTEGER, NewColumn2 CHAR(50));

Consider creating an index on one or more of the new columns if they are going to be used in
query predicates. Use the UPDATE statement to insert values into the columns in existing
rows.

Optionally, a data integrity constraint can be speci�ed while adding a column in the ALTER
TABLE statement:

isql=> ALTER TABLE RecDB.Clubs

> ADD President CHAR(40)

> REFERENCES RecDB.Members (MemberName);

Deleting Columns

You can delete columns from a table with either complex or simple operations:

Using UNLOAD and LOAD (complex operation)
Using an INSERT INTO statement (complex operation)
Using a view (simple operation)

Maintenance 7-11

The following example shows how to delete columns from a table using the UNLOAD and
LOAD commands:

OldTable currently has �ve columns. ColumnTwo and ColumnFour are to be deleted.
OldTable is unloaded with the following command:

isql=> UNLOAD TO INTERNAL SomeFile

> FROM "SELECT ColumnOne, ColumnThree, ColumnFive

> FROM OldTable

> ORDER BY ColumnOne, ColumnThree, ColumnFive";

Note the ORDER BY clause, which orders the columns by index key to help clustering
when the table is loaded.

OldTable is dropped with the following statement:

isql=> DROP TABLE OldTable;

isql=> COMMIT WORK;

NewTable is created with the following statement:

isql=> CREATE TABLE NewTable (ColumnOne INTEGER,

> ColumnThree INTEGER, ColumnFive INTEGER) IN SomeDBEFileSet;

isql=> COMMIT WORK;

NewTable is loaded with the following command:

isql=> LOAD FROM INTERNAL SomeFile TO NewTable;

isql=> COMMIT WORK;

Remember, when a table is dropped all associated views and indexes are dropped and sections
referencing the table are invalidated.

Columns can also be deleted using the form of the INSERT statement that uses a SELECT
statement. The steps are as follows:

Create the new table:

isql=> CREATE TABLE NewTable (ColumnOne INTEGER, ColumnThree INTEGER,

> ColumnFive INTEGER) IN SomeDBEFileSet;

isql=> COMMIT WORK;

Insert the data from the old table:

isql=> INSERT INTO NewTable SELECT ColumnOne,

> ColumnThree, ColumnFive FROM OldTable;

isql=> COMMIT WORK;

Drop the old table:

isql=> DROP TABLE OldTable;

isql=> COMMIT WORK;

Removing Rows from a Table

You can use TRUNCATE TABLE to delete all the rows of a table, leaving the table's
structure intact. You may, for example, wish to remove all the data from an old table and
then reload the table with similar, new data.

The table de�nition is not removed or modi�ed. All indexes, views, constraints, rules, default
values, and authorizations de�ned for the table are unchanged.

Before you use TRUNCATE TABLE, be sure that the DDL (data de�nition language) ag is
set to YES. If it is not, use the ALTDBE command (SQLUTIL) to set it.

7-12 Maintenance

For example, to delete all the rows from the table PurchDB.Parts, you would enter these
statements:

isql=> TRUNCATE TABLE PurchDB.Parts;

isql=> COMMIT WORK;

You can then reload PurchDB.Parts with the following command:

isql=> LOAD FROM INTERNAL SomeFile TO PurchDB.Parts;

isql=> COMMIT WORK;

For more information on the TRUNCATE TABLE statement, refer to ALLBASE/SQL
Reference Manual .

Merging Tables

You can merge columns in a complex operation. The process is much the same as for deletion,
as shown in the above example. Unload the table with a SELECT statement. Drop the
old table, and create and load a new one with the desired column structure. However, if
you are changing the column name, size, or data type, you must unload and load using the
EXTERNAL option.

The following SELECT speci�es a join operation for an UNLOAD:

isql=> UNLOAD TO INTERNAL SomeFile

> FROM "SELECT ColumnOne, ColumnTwo, ColumnB, ColumnC

> FROM TableOne, TableTwo

> WHERE TableOne.ColumnOne = TableTwo.ColumnA";

If you have applications that use TableOne and TableTwo, you may not want to drop them
because the applications would have to be modi�ed and re-preprocessed. The same table
merge can be accomplished without re-preprocessing by creating a view that joins the two
tables:

isql=> CREATE VIEW NewTable (ColumnOne,ColumnTwo,

> ColumnThree,ColumnFour)

> AS SELECT ColumnOne, ColumnTwo, ColumnB, ColumnC

> FROM TableOne, TableTwo

> WHERE TableOne.ColumnOne = TableTwo.ColumnA;

isql=> COMMIT WORK;

The form of the INSERT statement that uses a SELECT statement can also be used to merge
two tables. Use the second format of the INSERT statement to merge tables as follows:

isql=> INSERT INTO NewTable SELECT ColumnOne, ColumnTwo,

> ColumnB, ColumnC FROM TableOne, TableTwo

> WHERE TableOne.ColumnOne = TableTwo.ColumnA;

isql=> COMMIT WORK;

After creating the new table, you can drop the old one.

After you merge tables in the manner just described, application programs accessing the old
tables will have to be modi�ed and re-preprocessed to access the new table if the old tables
are dropped. As an alternative, you can create two new views, each of which would have the
name and column description of one of the original tables. After creating these views, the old
application programs would work as before after their sections are revalidated.

Maintenance 7-13

Dividing Tables

To divide a table into two tables, you must use a complex operation. For example, you
can unload the tables using two separate UNLOAD commands with appropriate SELECT
statements in the FROM clause. The following scenario divides OldTable into two new tables:

OldTable consists of six columns. It will be divided into TableOne and TableTwo, each of
which will consist of three columns. The following UNLOAD command captures data for
TableOne:

isql=> UNLOAD TO EXTERNAL SomeFile1

> FROM "SELECT ColumnOne, ColumnTwo, ColumnThree

> FROM OldTable";

The following UNLOAD command captures data for TableTwo:

isql=> UNLOAD TO EXTERNAL SomeFile2

> FROM "SELECT ColumnFour, ColumnFive, ColumnSix

> FROM OldTable";

Next, you can drop OldTable and create a view with the characteristics of OldTable
(including name) to avoid the necessity of re-coding applications that access OldTable.

TableOne and TableTwo are created with the following statements:

isql=> CREATE TABLE TableOne (ColumnOne INTEGER,

> ColumnTwo INTEGER, ColumnThree INTEGER) IN SomeDBEFileSet;

isql=> CREATE TABLE TableTwo (ColumnFour INTEGER,

> ColumnFive INTEGER, ColumnSix INTEGER) IN SomeDBEFileSet;

isql=> COMMIT WORK;

Use the LOAD command to load the tables from the proper �les. As long as the column sizes
and data types of the old table are compatible with those of the new table, you can use the
INTERNAL option of the UNLOAD command. If you are going to use an incompatible data
type or size, you must unload and reload the data with the EXTERNAL option. For more
information on the LOAD and UNLOAD commands, refer to the ALLBASE/ISQL Reference
Manual .

Whenever tables are modi�ed, the sections that reference them are marked as invalid. To
avoid having to re-preprocess each program that accesses a modi�ed table, you can create
views that simulate the original tables. If the views have the same owner, name, and column
structure, the sections will remain valid.

Note If you divide a table in two and then create a view that has the same column
de�nition as the original table, you cannot use the view to update both
underlying tables. Instead, updates must be done on the individual tables.

Renaming Tables or Columns

You can rename tables or columns using the RENAME TABLE or RENAME COLUMN
statements. All indexes, columns, default columns, constraints, referential authorization, rules,
and user authorities tables dependent on a renamed table or column will be renamed. All
views dependedent on a renamed table or column will be dropped. A RENAME statement is
not allowed for tables with check constraints.

7-14 Maintenance

Dropping and Recreating Hash Structures

You may wish to modify a hash structure for any of the reasons you need to modify an
ordinary table. In addition, you may need to recreate the hash structure when it is no longer
large enough for the data in the table.

The SQLMON Static Hash screen contains information about each hash structure you
have de�ned. By examining the OVERFLOW CHAIN LNGTH, AVGOVERFLOW, and
MAXOVERFLOW �elds on the Static Hash screen, you can determine the e�ciency of hash
structures.

The AVGOVERFLOW value is the average number of page accesses required to retrieve a
particular row. MAXOVERFLOW is the maximum number of accesses; therefore, it is a worst
case value. For most hash structures, the normal value of AVGOVERFLOW is between 1.05
and 1.10. This means that approximately 5 to 10% of the primary pages have one overow
page. A value of 1.5 means that half the primary pages have one overow page. Use this
information to decide whether unloading and reloading the hash structure might improve
performance.

To alter the hash structure, simply unload the data, then drop the table and recreate it with
the desired modi�cations, including, if necessary, a new number of primary pages. If you
add to the number of primary pages, make sure there are enough empty TABLE or MIXED
DBEFiles in the appropriate DBEFileSet with the required pages available.

Maintaining Indexes

From time to time, an index becomes ine�cient and needs to be modi�ed through
maintenance operations. You can maintain indexes of di�erent kinds by using both simple and
complex operations.

Monitoring Index Space

Indexes on tables that have undergone multiple updates and deletes may use unnecessary
space. As rows are added to indexes, the indexes increase in number of pages and number
of levels. As those rows are updated and (especially) deleted, the pages become sparsely
populated, reducing the amount of used space per index page. To compress the indexes, delete
them and recreate them. Remember, to make the most of clustering indexes, the table must
be unloaded and sorted on the index, and then reloaded after the index is deleted and created
again. To determine the amount of space used by an index, check the INDEX PAGES �eld on
the Static Size screen in SQLMON.

Tables that make heavy use of indexes should be located on a di�erent disk drive than their
indexes. In order to be able to do this you must have the table and index data stored in
separate DBEFiles. This is most easily accomplished using DBEFile types of INDEX and
TABLE to restrict the contents of the DBEFiles.

Tables that are used together frequently should be located on separate drives. Again, the
tables must be stored in separate DBEFiles for this to be possible. The easiest way to ensure
that tables are stored in separate DBEFiles is to create them in separate DBEFileSets. Then
you can use MOVEFILE to move all DBEFiles in one DBEFileSet to a di�erent device.

Maintenance 7-15

Monitoring the Cluster Count

The cluster count of an index indicates how many times ALLBASE/SQL has to access a
di�erent data page to retrieve the next row during an index scan. The greater the cluster
count, the greater the potential for I/O when a query that uses that index is processed.

The CCOUNT column in the SYSTEM.INDEX view shows the cluster count of each index at
the time of the last UPDATE STATISTICS statement. For a given data page, when the value
for each key is di�erent from all previous values on the page, the cluster count is incremented
for the index. After a signi�cant amount of table modi�cation, the cluster count of an index
may increase, which can hinder performance.

The CCOUNT is used by ALLBASE/SQL to determine whether or not to use an index to
retrieve data. The higher the CCOUNT, the less likely ALLBASE/SQL will perform the
query using an index scan. It will instead perform the query using a serial scan or a di�erent
index.

Although indexes are dynamically updated, information in the system views is not. It is
important to execute the UPDATE STATISTICS statement after signi�cant modi�cations
have been made to any table or index in order to update the information, such as CCOUNT,
used by ALLBASE/SQL.

To monitor the cluster count with SQLMON, invoke the Static Cluster screen and compare
the value of the CCOUNT �eld with the values of the TABLE PAGES and TOT TUPLES
�elds. Performance is best when CCOUNT is equal to TABLE PAGES. As CCOUNT
approaches TOT TUPLES, performance degrades.

The cluster count of an index is one measure of its e�ciency. All indexes, clustering and
nonclustering, have a cluster count. For a discussion of the di�erences between clustering and
nonclustering indexes, refer to the \Logical Design" chapter.

Dropping and Recreating an Index

Indexes are dynamically updated when INSERT, UPDATE, or DELETE operations are
performed on a table. To minimize overhead during large inserts, updates, or deletes, you can
delete indexes with large keys and recreate them after the changes are made. This depends, of
course, on table size versus insert, update, or delete size. For example, if you have one million
rows in the table and you are updating one hundred of them, deleting the indexes will cause
more overhead than leaving them intact.

As rows are inserted into a table, the indexes expand in number of pages and in number of
levels. As rows are updated or deleted, the number of index pages may decrease, but the
number of levels remains the same. During deletes, the number of occupied index pages
will decrease as pages are emptied, but those pages not completely emptied will be sparsely
populated causing an unnecessarily high number of index levels. For performance reasons and
storage e�ciency, you should drop and recreate indexes after multiple updates and deletes to a
table.

Temporary indexes can be used by applications to improve performance. Applications
that run on a periodic basis (once a month, for example) can create indexes to use while
they are running and drop the indexes before terminating. (The DDL Enabled ag in the
DBECon �le must be set to YES in order to create and drop temporary indexes.) This way
application data access is optimized at run time and overhead is minimized for updates when
the application is not being run.

7-16 Maintenance

In all cases, you need to weigh the size of the table against the amount of work that is
required to drop and recreate the index. In general, if your tables are extremely large, you
should only drop and create indexes if you are experiencing poor performance or if you
need to load a large amount of data. For smaller tables, you may want to recreate indexes
periodically to ensure optimal performance.

Reloading a Table to Improve Index Performance

Another approach to index maintenance is to unload and reload tables in key order, which can
improve performance. Use the following steps:

Unload the table using the INTERNAL option. Use a SELECT with an ORDER BY on the
index key in the UNLOAD command.

Delete all rows in the table by omitting the WHERE clause in the DELETE statement.

Drop all indexes on the table.

Load the table using the INTERNAL option.

Recreate the indexes.

Do an UPDATE STATISTICS on the table to update system catalog information about the
table and the index.

COMMIT WORK.

Altering the Index Key

You can change an index key at any time without disturbing the table data by dropping
the old index and creating a new index with a di�erent key. However, when you change a
clustering index key, the rows already in the table are not rearranged for clustering. New rows
inserted into the table after the new index is created are clustered according to the new key.
To change the key in a clustering index and rearrange the rows currently in the table, you
must follow the steps illustrated above. In step one, be sure to use an ORDER BY clause that
reects the new clustering key.

Maintaining Constraints

During the life of a database, you may add or drop constraints on tables.

Adding Constraints

To add one or more constraints use the ALTER TABLE statement on an existing table. Refer
to the ALLBASE/SQL Reference Manual for syntax. Adding a constraint may require the
following considerations:

You may want to later control the level at which constraint errors are checked with the SET
CONSTRAINTS statement.

You may need to add constraints to tables or columns.

You should name the constraint for easy reference in case you later need to drop it.

The following statement adds a constraint to table PurchDB.Parts:

Maintenance 7-17

isql=> ALTER TABLE PurchDB.Vendors

> ADD CONSTRAINT CHECK (VendorNumber > 0) CONSTRAINT VndNum;

The added check constraint named VndNum ensures that PartNumber will be greater than
zero.

Dropping Constraints

To drop one or more constraints, use the ALTER TABLE statement on an existing table.
Refer to the ALLBASE/SQL Reference Manual for syntax. Dropping a constraint requires the
following considerations:

In order to drop a constraint, you must know its name. The ConstraintID is the
name you optionally gave the constraint when it was de�ned. If you did not name the
constraint, it has a system-de�ned name. Table and view constraint names are stored in
SYSTEM.CONSTRAINT.

You cannot drop a unique or primary key constraint if there exists a referential constraint
referring to that unique or primary key. The referential constraint must be dropped �rst.

The following statement drops a constraint:

isql=> ALTER TABLE PurchDB.Vendors DROP CONSTRAINT VndNum;

The constraint named VndNum that was added above is dropped from table PurchDB.Parts.

Maintaining Rules and Procedures

The following tasks are used for the maintenance of rules and procedures in a
DBEnvironment:

Granting and Revoking Procedure Authorities
Examining the Inventory of Rules and Procedures
Dropping and Recreating Rules and Procedures
Validating Procedures and Procedure Sections

Granting and Revoking Procedure Authorities

You must grant EXECUTE authority to users who need to execute procedures with the
EXECUTE PROCEDURE statement. The creator of a rule that executes a procedure
must also have EXECUTE authority for the procedure at the time the CREATE RULE
statement is issued. The user of a statement that �res the procedure through a rule need not
have EXECUTE authority for the procedure; EXECUTE authority is implicit in tying the
procedure to an INSERT, UPDATE, or DELETE, for which the user must have authority.

The following example grants EXECUTE authority to the Managers group:

isql=> grant execute on PurchDB.ReportMonitor to Managers;

You can use the REVOKE statement to remove EXECUTE authority, as in the following:

isql=> revoke execute on PurchDB.ReportMonitor from Managers;

In addition, when you create a procedure, you can specify the IN DBEFileSetName clause
to indicate where the procedure's sections are to be stored. Any user storing sections in the

7-18 Maintenance

speci�ed DBEFileSet must have been granted SECTIONSPACE authority to do so, as in the
following grant to a group:

isql=> grant sectionspace on dbefileset DBEFileSet1 to Group1;

You can use the REVOKE statement to remove SECTIONSPACE authority, as in the
following:

sql=> revoke sectionspace on dbefileset DBEFileSet1 from Group1;

Examining the Inventory of Rules and Procedures

Rules, procedures, and their de�nitions are stored in the system catalog. You can display the
current list of procedures with the following query:

isql=> select * from system.procedure;

isql=>

Use a query like the following to display the de�nition of a particular procedure (use the real
procedure name in place of PROCNAME and the real owner name in place of OWNER):

isql=> select segnum, definestring

> from system.proceduredef

> where name = 'PROCNAME' and

> owner = 'OWNER' order by segnum;

To display the current list of rules in the DBEnvironment, use the following query:

isql=> select * from system.rule;

To display the de�nition of a particular rule, use the following query (use the real rule name
in place of RULENAME and the real owner name in place of OWNER):

isql=> select segnum, rulestring

> from system.ruledef

> where rulename = 'RULENAME' and

> owner = 'OWNER' order by segnum;

isql=>

Similar queries can be performed on the SYSTEM.RULECOLUMN, SYSTEM.PARAMETER,
SYSTEM.PARAMDEFAULT, and SYSTEM.PROCAUTH views to obtain more detailed
information.

Dropping and Recreating Rules and Procedures

As business rules change, the rules and procedures de�ned in the DBEnvironment can be
modi�ed. Use the DROP RULE statement to remove a rule that is no longer needed, and
use the DROP PROCEDURE statement to remove a procedure that is no longer needed. If
you use the PRESERVE option with the DROP PROCEDURE statement, the EXECUTE
authorities associated with the procedure remain in the system catalog. Rules that invoke
a particular procedure are not dropped when the procedure is dropped. However, stored
sections that depend on rules which invoke the procedure are marked invalid when you drop
the procedure. Creating or dropping rules has the e�ect of invalidating all sections that
depend on the table on which the rule is based.

Maintenance 7-19

Validating Procedure Sections

When you create a procedure, a section is created for each SQL statement in the procedure
except:

BEGIN WORK OPEN CURSOR WHENEVER

CLOSE CURSOR ROLLBACK WORK

COMMIT WORK SAVEPOINT

When procedure sections become invalid, ALLBASE/SQL will attempt to revalidate each
section as it executes. You can also use the VALIDATE statement to revalidate all the
sections in a procedure at one time. When a procedure is dropped, recreated, and reinvoked,
ALLBASE/SQL must revalidate any invalid sections that execute the procedure or invalid
sections containing rules that may invoke the procedure.

Maintaining Sets of Interrelated Objects

If your databases contain tables that are interrelated through rules and procedures or integrity
constraints, the job of maintaining them may be more di�cult. As you begin to restructure a
database, be sure to study the implications of loading and unloading, dropping and recreating
objects that have relationships to other objects. The following are a few common situations
that can lead to unexpected results:

Dropping a unique constraint also drops the B-tree index that supports the constraint and
deprives the optimizer of one access path to the data in the table.

Attempting to drop a table that is referenced by another table results in an error. You
must drop the constraint that links the two tables, or else drop the referencing table �rst.
To drop the constraint, use the DROP CONSTRAINT clause in the ALTER TABLE
statement, specifying the referencing table.

Dropping a table results in dropping of constraints and rules built on it. If you are
restructuring, and you wish to drop and recreate the table, you must also recreate the rules
and constraints.

Dropping a procedure does not drop rules that invoke the procedure, but it does invalidate
stored sections that depend on invoking the procedure from a rule. The loss of the
procedure will be reported as an error when there is an attempt to revalidate those sections.
If you wish to drop rules associated with a particular procedure, you should do so explicitly
with DROP RULE statements.

A complex chaining set of rules and procedures will be disrupted by the dropping of any
rule or procedure in the chain. If you are using rule chaining, it is your responsibility to
control the inventory of rules and procedures carefully.

7-20 Maintenance

Maintaining Applications

The DBA is involved in maintaining applications as follows:

Monitoring changes that invalidate sections and determining when to re-preprocess or
update applications based on those changes.
Monitoring system catalog space for modules.
Maintaining module related authorities.
Sharing modules between DBEnvironments.
Dropping modules.

Invalidation and Revalidation of Sections

Before changes are made to a DBEnvironment, the impact of those changes on preprocessed
statements should be weighed. The following information will help you be aware of which
changes a�ect preprocessed statements.

In full preprocessing mode, the preprocessor stores a section for each embedded statement
except:

BEGIN DECLARE SECTION BEGIN WORK CLOSE CURSOR

COMMIT WORK CONNECT CREATE SCHEMA

END DECLARE SECTION EXECUTE EXECUTE IMMEDIATE

INCLUDE OPEN CURSOR PREPARE

RELEASE ROLLBACK WORK SAVEPOINT

START DBE STOP DBE TERMINATE USER

The statements listed above either require no authorization to execute or are executed based
on information contained in the compilable preprocessor output �les.

In interactive mode, ALLBASE/SQL stores a section for the following SQL statements:

PREPARE

CREATE VIEW

When a section is stored, ALLBASE/SQL actually stores what are known as an input tree
and a run tree. The input tree consists of the uncompiled statement. The run tree is the
compiled, optimized, executable form of the statement. If a section is valid at run time,
ALLBASE/SQL executes the appropriate run tree when the SQL statement is encountered
in the application program or procedure. If a section is invalid, ALLBASE/SQL determines
whether the objects referenced in the sections exist and whether current authorization criteria
are satis�ed. If an invalid section can be validated, ALLBASE/SQL dynamically recompiles
the input tree to create an executable run tree and executes the statement. If a section
cannot be validated, the statement is not executed, and an error condition is returned to the
program.

Information in the System Catalog on Validity of Sections

The SYSTEM.SECTION view contains information about stored sections. The TYPE column
de�nes the type of SQL statement in the section:

A section for executing the SELECT statement associated with a DECLARE CURSOR
statement is identi�ed by a 1 in the TYPE column.

A section for executing the SELECT statement associated with a CREATE VIEW
statement is identi�ed by a 2 in the TYPE column.

Maintenance 7-21

Sections for all other statements for which the preprocessor stores a section are identi�ed by
a 0 in the TYPE column.

The STYPE column de�nes the section type:

A section that is part of a module is identi�ed by a 0 in the STYPE column.
A section that is part of a procedure is identi�ed by a 1 in the STYPE column.

The VALID column tells whether the section is valid or invalid. If a section is marked invalid,
it is identi�ed by a 0 in the VALID column. If a section is valid, it is identi�ed by a 1. Refer
to the \System Catalog" chapter for a description of all the columns in SYSTEM.SECTION.

The example below illustrates the kind of information in the SYSTEM.SECTION view:

SELECT Name,Owner,Section,Type,Stype,Valid FROM System.Section;

--

NAME |OWNER |SECTION |TYPE |STYPE |VALID

--

TABLE |SYSTEM | 0| 2| 0| 1

COLUMN |SYSTEM | 0| 2| 0| 1

INDEX |SYSTEM | 0| 2| 0| 1

SECTION |SYSTEM | 0| 2| 0| 1

DBEFILESET |SYSTEM | 0| 2| 0| 1

DBEFILE |SYSTEM | 0| 2| 0| 1

SPECAUTH |SYSTEM | 0| 2| 0| 1

TABAUTH |SYSTEM | 0| 2| 0| 1

COLAUTH |SYSTEM | 0| 2| 0| 1

MODAUTH |SYSTEM | 0| 0| 0| 1

GROUP |SYSTEM | 0| 2| 0| 1

PARTINFO |PURCHDB | 0| 2| 0| 0

VENDORSTATISTICS |PURCHDB | 0| 2| 0| 1

CEXP11 |KAREN | 1| 1| 0| 1

CEXP11 |KAREN | 2| 0| 0| 1

FAILURELIST |MANUFDB | 1| 0| 1| 1

--

Number of rows selected is 16.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

The �rst eleven rows in this query result describe some of the sections stored for the system
views. The next two rows describe two views in the sample database: PurchDB.PartInfo and
PurchDB.VendorStatistics. Views are always stored as invalid sections, because the run tree is
always generated at run time when the view is queried.

The remaining rows describe sections associated with preprocessed programs and procedures.
Module CEXP11 contains two sections, one for executing the SELECT statement associated
with a DECLARE CURSOR statement and one for executing a FETCH statement.
Procedure ManufDB.FailureList contains one section, for an INSERT statement. For
more information on preprocessing and cursors, refer to the appropriate ALLBASE/SQL
Application Programming Guide and the ALLBASE/SQL Advanced Application Programming
Guide. For more on procedures, see the ALLBASE/SQL Reference Manual chapter
\Constraints, Procedures, and Rules."

7-22 Maintenance

Monitoring File Space for Modules and Sections

In order to monitor �le space used for program modules and other stored sections, you need to
perform the following tasks:

determine the available �le space periodically
calculate the number of pages needed to store new modules

Note that through the ALTER TABLE, CREATE TABLE, CREATE PROCEDURE,
CREATE RULE, CREATE VIEW, DECLARE CURSOR, and PREPARE statements you
can specify a DBEFileSet for storing sections, table or long column data. If a DBEFileSet is
not speci�ed, the default DBEFileSet is used instead. Refer to the ALLBASE/SQL Reference
Manual syntax for these statements and for the SET DEFAULT DBEFILESET, GRANT and
REVOKE statements for complete information.

Causes for Invalidation of Sections

Sections are stored in modules or procedures. ALLBASE/SQL generates a program module
when an embedded SQL program is preprocessed. Any changes to an object accessed by a
section will cause that section to be invalidated.

For example, if you drop a table, all sections that assume the existence of that table will be
invalidated. To enable ALLBASE/SQL to revalidate the section at run time, the table must
be recreated before the section is executed. Likewise, all sections are marked invalid during
migration of the DBEnvironment. ALLBASE/SQL automatically attempts to revalidate the
sections at run time.

The following statements, if they operate on an object accessed by a given section, will cause
that section to be invalidated:

ADD DBEFILE ALTER TABLE CREATE INDEX

CREATE RULE DROP DBEFILE DROP GROUP

DROP INDEX DROP MODULE DROP PROCEDURE

DROP RULE DROP TABLE DROP VIEW

REMOVE FROM GROUP REVOKE TRANSFER OWNERSHIP

UPDATE STATISTICS

At run time, ALLBASE/SQL will automatically revalidate most of the sections invalidated by
any of the statements listed above. If the sections cannot be revalidated by ALLBASE/SQL,
the source code must be modi�ed to reect the changes in the DBEnvironment.

Avoiding the Need for Re-Preprocessing

ALLBASE/SQL will not automatically re-preprocess a program that has undergone source
code modi�cation. The program must be fully preprocessed with the C, COBOL, FORTRAN,
or Pascal preprocessor. The following statements may require source code changes; each
statement is followed by a suggestion on how to avoid changing the code and re-preprocessing
the program:

ALTER TABLE: Using this statement invalidates stored sections that access the table.
ALLBASE/SQL will revalidate the section if the statements that accessed the table are still
valid following the alteration.

DROP (anything accessed by the section): ALLBASE/SQL will revalidate the section if the
object is recreated before the program is executed. (This does not apply to indexes, which
are not accessed directly by a section.)

Maintenance 7-23

REVOKE (those authorities granted to the module owner): ALLBASE/SQL will revalidate
the section if the required authorities are granted to the module owner before the program
is executed. This will not require source code changes, but may require that the program be
re-preprocessed with a di�erent module owner.

TRANSFER OWNERSHIP (for all objects in the program except modules):
ALLBASE/SQL will revalidate the section if ownership is transferred back to the original
owner, or if the current owner is granted all the required authorities.

The �rst time an invalidated section is executed (when you run a program or execute a
procedure), there may be a decrease in performance while ALLBASE/SQL revalidates the
section. If you want to validate sections before executing them, you can use the VALIDATE
statement.

Determining Available Space for Sections

To determine the space available in a DBEFileSet for stored sections, run SQLMON and go to
Static Size screen. Examine the value of the TABLE PAGES �eld for every table whose owner
is STOREDSECT.

Determining Number of Sections in the DBEnvironment

You can also determine how many sections are currently stored in the DBEnvironment by
querying the SYSTEM.TABLE view. First, update statistics on the SYSTEM.SECTION view
so that the NROWS column in the SYSTEM.TABLE is updated to show the current number
of rows in the SECTION table. The NROWS column for SYSTEM.SECTION shows the
number of sections in the DBEnvironment since the last UPDATE STATISTICS statement.

The query in the example below shows 44 sections stored in the DBEnvironment with a total
of 2 pages occupied by SYSTEM.SECTION:

isql=> SELECT Name, NRows, NPages FROM System.Table WHERE Name='SECTION';

SELECT Name, NRows, NPages FROM System.Table WHERE Name='SECTION';

--

NAME |NROWS |NPAGES

--

SECTION | 44| 2

--

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

Module Related Authorities

Authorities govern who can preprocess, execute, and maintain an application that accesses a
DBEnvironment.

To preprocess an application for the �rst time, you need CONNECT authority for
the DBEnvironment in which the module is to be stored. To preprocess an existing
application, you need OWNER authority for that module and CONNECT authority for its
DBEnvironment.

At run time, the OWNER of the program must have authority to execute all SQL statements
in the application if the program is to successfully execute. Dynamic statements are an
exception. The individual running the program must have the authority to execute a
statement that is dynamically preprocessed.

7-24 Maintenance

An individual lacking OWNER or DBA authority must have RUN authority for the module
and CONNECT authority for the DBEnvironment to be able to run a program that accesses
the DBEnvironment. The DBA or module owner can grant RUN authority to users. Only
users with DBA authority can grant CONNECT authority.

To maintain a program (modifying code or updating RUN authority) you need OWNER
authority for the module or DBA authority. Ownership cannot be transferred, but users with
DBA authority can modify or preprocess the program or grant related authorities.

Sharing Modules Between DBEnvironments

Program development usually entails quite a bit of preprocessing and bug �xing before
a program is ready for production. Therefore, developing an application in a production
DBEnvironment is not a good idea for the following reasons:

Preprocessing a program may reduce concurrency in a multiuser DBEnvironment by holding
locks on the system catalog until preprocessing is �nished.

ALLBASE/SQL treats a preprocessing session as a single transaction which can �ll bu�ers
and log �les quickly.

Preprocessing programs not fully debugged can cause problems for other users in the
DBEnvironment.

The use of a separate DBEnvironment for development is recommended. When a program is
ready to be moved to a production DBEnvironment, you can either re-preprocess the source in
the new DBEnvironment or install the module using the ISQL INSTALL command.

When a C, COBOL, FORTRAN, or Pascal program is preprocessed, the preprocessor creates
a �le in your current working directory called Modi�edSourceFileName.sqlm, which contains a
copy of the module that can be installed in another DBEnvironment.

The INSTALL command installs a module in another DBEnvironment. To use the INSTALL
command, you need to have CONNECT or DBA authority for the DBEnvironment that will
contain the new module. The following example illustrates the use of the INSTALL command:

isql=> CONNECT TO '../sampledb/PartsDBE';

isql=> INSTALL ModifiedSourceFileName.sqlm;

Name of module in this file: Pgmr1.SOMEPROG

Number of sections installed: 6

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

ISQL copies the installable module from the �le named Modi�edSourceFileName.sqlm. During
installation, ALLBASE/SQL marks each section in the module valid or invalid, depending on
the current objects and authorities in PartsDBE.

Maintenance 7-25

Dropping Modules

Before a program can be preprocessed a second time, the previously stored module must be
dropped. To do this, you can use the DROP MODULE statement in ISQL, or you can use the
DROP option of the preprocessor command:

isql=> DROP MODULE CEXP01D;

or

$ psqlpas '../sampledb/PartsDBE' -m cexp01 -d

The DROP MODULE statement assumes that all related RUN authorities are to be dropped
along with the module. Therefore, when using the DROP MODULE statement, use the
PRESERVE option to preserve all related RUN authorities for the new version of the module:

isql=> DROP MODULE CEXP01D PRESERVE;

The preprocessor, on the other hand, assumes that all related RUN authorities are to be
PRESERVED unless revoked with the REVOKE option. Thus you do not need to specify
PRESERVE with the preprocessor:

$ psqlpas '../sampledb/PartsDBE' -m cexp01 -d

The DROP MODULE statement is also useful in conjunction with revised programs whose
modules must be installed in a DBEnvironment di�erent from that on which preprocessing
occurred. Before using the INSTALL command to store the new module, you drop the
existing module using the DROP MODULE statement, preserving or dropping related RUN
authorities as required.

Maintaining a Nonstop Production System

A collection of ALLBASE/SQL features can be used to satisfy needs for nonstop, continuously
available operations. These features consist of ALLBASE/SQL statements and SQLUtil
commands that perform the tasks of database creation, maintenance, and recovery. The
statements and commands involved are described in this section under the following topics:

DBEFiles on Di�erent Devices
Detaching and attaching database �les
CHECKPOINT statement host variable
Console message �le
User-initiated change to a new log �le
System catalog information

Storing DBEFiles on Different Devices

A DBEFile can be de�ned on a particular device by using the DEVICE option to specify
either the volume name or the volume identi�er. For example, to create a DBEFile on device
3, the following command can be used:

CREATE DBEFILE PARTSDBE,

WITH PAGES = 4,

NAME = 'PARTSDBE',

TYPE = TABLE,

DEVICE = 'number3';

7-26 Maintenance

A DBEFile can also be de�ned in a particular group of an account by qualifying the volume
name or the volume identi�er. All DBEFiles for a DBEnvironment must be created in groups
within the same account. If the DBEFile name is not quali�ed by a group name, the �le is
created in the same group as the DBECon �le.

For example, suppose that a DBEnvironment was created in an EMPLOYEES group. (The
DBECon �le would also be created in the EMPLOYEES group.) To create a DBEFile,
SWING, in the PARTTIME group, the following command might be used:

CREATE DBEFILE SWING,

WITH PAGES = 4,

NAME = 'SWING.PARTTIME',

TYPE = TABLE;

ON DEVICE = 'VOL1';

This command would create the DBEFile SWING.PARTTIME in the PARTTIME group on
VOL1.

Detaching and Attaching Database Files

You can detach a DBEFile or DBEFileSet from a DBEnvironment. Detaching a DBEFileSet
is equivalent to detaching all of the DBEFiles in the DBEFileSet. Once a DBEFile is
detached, data in the DBEFile is inaccessible until it is attached again. The SQLUtil
commands, DETACHFILE and ATTACHFILE are used to detach and attach �les.

Detaching DBEFiles from a database is useful for restricting access to parts of a database
while the remaining �les are online and operational. Detaching �les is also useful during �le
level recovery processing when DBEFiles must be detached before such processing.

To detach a DBEFile or DBEFileSet, the SQLUtil command DETACHFILE is used as shown
in the following example of detaching the WareFS DBEFileSet:

isql=>sqlutil

>> detachfile

DBEnvironment Name: PartsDBE

Maintenance Word: MaintenanceWord

Enter DBEFileset Name (return to finish): WareFS

Enter DBEFileset Name (return to finish):

Enter DBEFile name (return to finish):

Do you wish to proceed (y/n)? y

To attach a �le, the SQLUtil command ATTACHFILE is used as shown in the following
example of attaching the WareFS DBEFileSet:

isql=>sqlutil

>> attachfile

DBEnvironment Name: PartsDBE

Maintenance Word: MaintenanceWord

Enter DBEFileset Name (return to finish): WareFS

Enter DBEFileset Name (return to finish):

Enter DBEFile name (return to finish):

Do you wish to proceed (y/n)? y

Maintenance 7-27

Using a Host Variable with the CHECKPOINT Statement

The CHECKPOINT statement returns a host variable that contains the approximate number
of free blocks (NFB) available in the log �le.

The syntax of the CHECKPOINT statement is as follows:

CHECKPOINT [:HostVariable

:LocalVariable

:ProcedureParameter]

Using Console Message Files

Occurrences of certain events causes messages to be written to a console. In an operatorless
environment, these messages can be redirected to a �le that can later be queried.

All messages are written to the console if you enter nothing or CONSOLE. If you want
messages to also be written to a �le, you must enter a �le name other than CONSOLE.

The setenv (C shell) command is used to create a console �le as follows:

setenv HPSQLconsole cnslfile

setenv HPSQLconsole /dir1dir2/console_file_name

setenv HPSQLconsole /tmp/cnslfile

The % (Bourne shell) command is used as follows:

% HPSQLconsole cnslfile

% export HPSQLconsole

If no console �le name is given, no error is issued and no �le is created. The messages are
written to the console instead.

If a relative pathname is speci�ed, the �le is created in a �le relative to where the �rst
START DBE or CONNECT statement is issued. For example, if a START DBE statement is
issued from /dir1/dir2/dir3 after executing the command setenv HPSQLconsole ../../cnsl�le,
messages are written to the �le, /dir1/dir2/dir3/../../cnsl�le. The absolute pathname cannot
be more than 44 characters.

The messages written to the console �le are 80 character ASCII records. They can be read
with any editor. The text of the message is the same whether it is written to the console or
the console �le.

Messages are written to the console �le when the following events occur:

A log �le is full and the system initiates a switch to a new log �le.

A log �le is ready for backup.

A read or write error occurs on a log �le.

7-28 Maintenance

Making Changes to a New Log File

The CHANGELOG command forces a change to a new log �le instead of having to wait for
the system to switch logs when the present log �le becomes full. ALLBASE/SQL changes to a
new log �le only when the current log is full. However, if you want to force a change to a new
log even if the log �le is only 90% full, for example, you can perform a backup on the log �le
at a certain time of day.

The CHANGELOG command returns the sequence number of the current and new log �le, as
follows:

isql=>sqlutil

>>changelog

DBEnvironmentName: PartsDBE

Maintenance Word: MaintenanceWord

Change to a new log (y/n) y

Changed log from Sequence Number 2 to Sequence Number 3.

Now, the log �le with the sequence number 2 can be backed up.

Checking the System Catalog

The system catalog views, SYSTEM.DBEFile and SYSTEM.DBEFILESET, have an
additional column called ATTACHED which indicates whether the DBEFile is attached.

Maintaining Security

As new users are added to your system, you will need to grant authorities to them as
needed. You must also add new users to appropriate groups. Conversely, when users leave
your system, their authorities should be revoked, and they should be removed from all
authorization groups.

Use the GRANT and REVOKE statements to add or remove authorities. These statements
perform simple maintenance operations that do not a�ect table data.

Whenever possible, it is recommended that you grant authorities to groups rather than
individuals. This simpli�es the task of maintenance, since you only need to add or delete
a name rather than granting or revoking an entire set of authorities. You can use simple
maintenance operations to change the characteristics of authorization groups. Use the ADD
and REMOVE statements to add or remove an individual or group. Use the GRANT and
REVOKE statements to change the authorizations given to the group.

Maintenance 7-29

Disabling Data Definition

A strategy for improving performance is to disable all data de�nition operations while your
applications are running. You do this by using SQLUtil to set the DDL Enabled parameter in
the DBECon �le to NO. This is a simple matter if you do all data de�nition in a development
DBEnvironment. In such a case, you can disable DDL in the production DBEnvironment
only. Disabling data de�nition

Allows ALLBASE/SQL to retain sections in memory between transactions. This means that
an application program that re-executes the same sections again and again does not require
ALLBASE/SQL to read the sections in from disk each time. This can signi�cantly improve
performance.

Note ALLBASE/SQL can retain sections in memory between transactions.
However, if DDL is enabled, ALLBASE/SQL checks its system catalog
once per transaction to see if the cached section is still valid. When DDL is
disabled, ALLBASE/SQL does not have to check. Disabling DDL still results
in best performance.

Makes it impossible to perform data de�nition and to lock system catalog pages exclusively.

Does not inhibit the revalidating of sections. If ALLBASE/SQL encounters invalid sections,
they will be revalidated as necessary.

Disables the following statements:

ADD DBEFILE ADD GROUP ADD TO GROUP

ALTER DBEFILE ALTER TABLE CREATE DBEFILE

CREATE DBEFILESET CREATE GROUP CREATE INDEX

CREATE TABLE CREATE VIEW DROP DBEFILE

DROP DBEFILESET DROP GROUP DROP INDEX

DROP TABLE DROP VIEW GRANT

REMOVE FROM GROUP REVOKE START DBE NEWLOG

TRANSFER OWNERSHIP UPDATE STATISTICS

Inhibiting DDL has little e�ect on performance for applications that do not re-use the same
sections.

Judging Maintenance Expenses

Many database maintenance statements (CREATE, DROP, ALTER, and so on) lock system
catalog resources. To maximize concurrency and improve performance, restructuring and
creation should take place in single-user mode during o� hours when the DBEnvironment is
not usually being accessed.

Transactions that update the system catalog should be kept as short as possible. Commands
that create, grant, add, drop, revoke, or update statistics write to the system catalog, which is
locked exclusive at the page level for updates. For example, to improve concurrency, you can
divide a transaction that creates and loads a table into two transactions. The �rst transaction
creates the table and then commits work, thus freeing system catalog pages. The second
transaction loads the table and then commits work.

A chart that shows which SQL statements hold which locks on various system tables is in the
appendix, \Locks Held on the System Catalog by SQL Statements." Keep in mind that lock

7-30 Maintenance

granularity can be set to table, page, or row level. See the \Changing System Table Lock
Types" section in this chapter for more details. If you think you are having locking problems
with the system catalog, refer to that appendix as you review your transactions.

Cleaning Up After Abnormal Termination

In the event of abnormal termination, a DBEnvironment may be left with DBEFiles open
or with locks still in place for speci�c pages. ALLBASE/SQL provides a monitor process
that regularly checks for abnormal termination and cleans up in such cases. If you have
trouble re-connecting to a DBEnvironment, wait a few seconds for the monitor to do its work,
then try again. The monitor process starts automatically the �rst time a user connects to
a DBEnvironment. Whenever cleanup occurs, messages describing the actions taken by the
monitor are sent to the console.

When a multiuser DBCore session terminates abnormally, ALLBASE/SQL creates a �le in the
/tmp directory containing information about the error condition. This �le can be useful when
support engineers debug the problem.

The �le is named

DBDUCBxxxxxx

where xxxxxx is a unique name chosen by the system. This �le can be displayed with utilities
such as more, printed on a line printer, or removed with the rm command.

Maintenance 7-31

8

System Catalog

For each DBEnvironment you con�gure, ALLBASE/SQL automatically builds and maintains
a database known as the system catalog, which contains information about:

Tables and views in the DBEnvironment
Columns in the tables
Indexes on the tables
Constraints, procedures, and rules
DBEFiles and DBEFileSets
Users and their corresponding authorities
Programs that access the DBEnvironment
Current DBEnvironment usage and internal usage

This information is actually stored in a set of base tables owned by the special users
HPRDBSS and STOREDSECT.

The DBA does not share ownership of the system base tables. The base tables of the system
catalog are used by ALLBASE/SQL for tasks such as checking user authority, determining
optimal access paths to data, and locating DBEnvironment objects. To provide user access to
the information in the system catalog, ALLBASE/SQL creates a set of system catalog views
on the base tables when the DBEnvironment is con�gured.

Views owned by SYSTEM and CATALOG

Three distinct groups of system catalog views are created by ALLBASE/SQL:

Views owned by special user SYSTEM
Views owned by special user CATALOG
Pseudotables owned by special user SYSTEM

The SYSTEM views contain information about database objects owned by all users, and
access is restricted to users with DBA authority or SELECT authority on the SYSTEM views.
The DBA can grant SELECT on these views to other users. SYSTEM views are used to
perform administration tasks such as monitoring system usage to improve performance and
monitoring physical storage to determine when to add DBEFiles.

The CATALOG views contain information about database objects owned by a particular user.
These views permit users without DBA authority or SELECT authority on the SYSTEM
views to examine system catalog information for objects to which they have access.

System Catalog 8-1

In addition to system and catalog views, ALLBASE/SQL generates a set of pseudotables.
These contain statistical data, including counts and other runtime information about system
usage. Pseudotables are generated by SQLCore each time they are accessed. They reside in
shared memory, and, although formatted to appear like tables, they are not physically stored
in the system catalog. Pseudotables are owned by SYSTEM, and are accessible only to users
with DBA authority.

Summary of System Catalog Views by Function

Table 8-1 shows the system catalog views arranged according to their function.

Table 8-1. System Catalog Views by Function

Function Name of View Description

User Authority SYSTEM.COLAUTH,
CATALOG.COLAUTH

UPDATE authority on speci�c columns
in a table

SYSTEM.GROUP,
CATALOG.GROUP

Authorization groups

SYSTEM.MODAUTH,
CATALOG.MODAUTH

RUN authority on programs

SYSTEM.PROCAUTH,
CATALOG.PROCAUTH

EXECUTE authority on procedures

SYSTEM.SPACEAUTH,
CATALOG.SPACEAUTH

TABLESPACE and SECTIONSPACE
authority for a DBEFileSet

SYSTEM.SPECAUTH,
CATALOG.SPECAUTH

SPECIAL authorities

SYSTEM.INSTALLAUTH,
CATALOG.INSTALLAUTH

INSTALL authority

SYSTEM.TABAUTH,
CATALOG.TABAUTH

Authorities for operations on tables and
views

Object De�nitions SYSTEM.CHECKDEF,
CATALOG.CHECKDEF

Check constraint de�nitions

SYSTEM.COLDEFAULT,
CATALOG.COLDEFAULT

Defaults for each column

SYSTEM.COLUMN,
CATALOG.COLUMN

Columns in tables and views

SYSTEM.CONSTRAINT,
CATALOG.CONSTRAINT

Constraints de�ned on tables and views

SYSTEM.CONSTRAINTCOL,
CATALOG.CONSTRAINTCOL

Columns with a unique, referential,,
check constraint

SYSTEM.CONSTRAINTINDEX,
CATALOG.CONSTRAINTINDEX

Indexes in constraints

SYSTEM.HASH, CATALOG.HASH Hash structures

8-2 System Catalog

Table 8-1. System Catalog Views by Function (continued)

Function Name of View Description

SYSTEM.INDEX, CATALOG.INDEX Indexes on tables

SYSTEM.PARAMDEFAULT,
CATALOG.PARAMDEFAULT

Defaults for parameters in procedures

SYSTEM.PARAMETER,
CATALOG.PARAMETER

Parameters in procedures

SYSTEM.PROCEDURE,
CATALOG.PROCEDURE

Procedures

SYSTEM.PROCEDUREDEF,
CATALOG.PROCEDUREDEF

Procedure de�nitions

SYSTEM.PROCRESULT,
CATALOG.PROCRESULT

Procedure results

SYSTEM.RULE , CATALOG.RULE Rules

SYSTEM.RULECOLUMN ,
CATALOG.RULECOLUMN

Columns listed for a rule triggered by
the UPDATE statement type

SYSTEM.RULEDEF,
CATALOG.RULEDEF

Rule de�nitions

SYSTEM.SECTION,
CATALOG.SECTION

Sections and views

SYSTEM.TABLE, CATALOG.TABLE Tables and views

SYSTEM.VIEWDEF,
CATALOG.VIEWDEF

View de�nitions

SYSTEM.PARTITION Partition information

Storage
Management

SYSTEM.DBEFILE DBEFiles

SYSTEM.DBEFILESET DBEFileSets

SYSTEM.SPACEDEFAULT Default TABLESPACE and
SECTIONSPACE DBEFileSets

SYSTEM.TEMPSPACE TempSpace names

System Catalog 8-3

Table 8-1. System Catalog Views by Function (continued)

Function Name of View Description

System Usage and
Statistics
(pseudotables)

SYSTEM.ACCOUNT I/O resource currently in use

SYSTEM.CALL Current DBCore calls

SYSTEM.COUNTER Internal system counters

SYSTEM.TRANSACTION Current transactions

SYSTEM.USER Users currently accessing the
DBEnvironment

Using the System Catalog

ALLBASE/SQL creates and initializes the system catalog during DBEnvironment
con�guration. Thereafter, you query the system views and pseudotables to obtain required
information. All view names must be fully quali�ed when querying the system catalog.

As a DBA, you have limited capabilities to access and alter the base system tables owned
by HPRDBSS and STOREDSECT. For example, you cannot read or write directly to these
tables. You cannot issue any of the following statements on the system catalog base tables:

ALTER TABLE (except SetTypeSpeci�cation)

CREATE INDEX

DELETE

DROP INDEX

DROP TABLE

GRANT

INSERT

LOCK TABLE

REVOKE

TRANSFER OWNERSHIP

UPDATE

However, you can issue some statements on the base system tables, which you can use to tune
the DBEnvironment for concurrency and performance. For example, you can

Use ALTER TABLE to change the base system table locking. For example, the DBA may
decide to change the HPRDBSS.SECTION table from PUBLIC to PUBLICROW to help
resolve concurrency problems associated with section validation.

Use UPDATE STATISTICS on the base system tables to provide up-to-date statistics for
the optimizer in optimizing queries on the system catalog views.

Through the SYSTEM.TABLE view, you can see that the HPRDBSS and STOREDSECT
tables exist. However, you cannot see any other information, such as columns and indexes,
about the HPRDBSS and STOREDSECT tables. The de�nitions of the system catalog views
and pseudotables are complete in the system catalog.

8-4 System Catalog

System Catalog Views

System views are like all other views in that statements normally not allowed on views cannot
be executed on the system views. In addition, the following statements, normally allowed on
views, are not allowed on system views:

DELETE

DROP VIEW

GRANT (except SELECT)

INSERT

REVOKE (except SELECT)

TRANSFER OWNERSHIP

UPDATE

You can access the system views with SELECT statements like the following:

isql=> SELECT * FROM System.DBEFile;

isql=> SELECT * FROM System.Table

> WHERE Owner='SYSTEM';

isql=> SELECT IndexName, TableName FROM System.Index

> WHERE Cluster=1;

Because the owner of the system views is SYSTEM, you must fully qualify the names of all
system views.

Partition values are stored in the system catalog. You can verify the attributes of table
partitions by examining the SYSTEM.TABLE and the SYSTEM.PARTITION views.

Using UPDATE STATISTICS on System Views

The UPDATE STATISTICS statement, which is not normally allowed on a view, is accepted
on system views. A user with DBA authority can perform an UPDATE STATISTICS on a
system view. ALLBASE/SQL makes an exception for the system views so that the DBA may
monitor the system catalog for storage use and performance tuning. The following system
views are updated by the UPDATE STATISTICS statement:

SYSTEM.COLUMN SYSTEM.CONSTRAINTINDEX SYSTEM.DBEFILE

SYSTEM.DBEFILESET SYSTEM.HASH SYSTEM.INDEX

SYSTEM.TABLE

You cannot use UPDATE STATISTICS on CATALOG views, and UPDATE STATISTICS
does not update the following pseudotables:

SYSTEM.ACCOUNT SYSTEM.CALL SYSTEM.COUNTER

SYSTEM.TRANSACTION SYSTEM.USER

Initially, only users with DBA authority have SELECT authority on views owned by
SYSTEM. SELECT authority can be granted to non-DBA users. Views can be created on
system views to grant partial access to non-DBA users. If you do not want to restrict access
to system views, you can grant SELECT authority to the special DBEUserID PUBLIC.
However, you also have the option of keeping the contents of the DBEnvironment con�dential.

System Catalog 8-5

Locking of the System Catalog

Many ALLBASE/SQL statements have the e�ect of obtaining locks on parts of the
system catalog. In particular, UPDATE STATISTICS acquires many locks that can a�ect
concurrency. This overhead can a�ect performance considerably. Refer to the appendix,
\Locks Held on the System Catalog by SQL Statements," for a complete list of locks obtained
on the system catalog by ALLBASE/SQL statements.

The rest of this chapter contains the column de�nition for each system view, plus a brief
description of the purpose of the view, and a sample SELECT. The examples contain
the DBEUserIDs, tables, indexes, views, groups, and other objects from the sample
DBEnvironment. The columns of each view are listed in the order in which they are created.

8-6 System Catalog

Storedsect.System

Storedsect.System

STOREDSECT.SYSTEM contains the stored sections for the system DBEFileSet.

Even with DBA authority, you have limited access to STOREDSECT.SYSTEM. You cannot
access the table directly, but you can use ALTER TABLE or UPDATE STATISTICS on it, as
explained in the section \Using the System Catalog" earlier in this chapter.

You can see an entry for STOREDSECT.SYSTEM in SYSTEM.TABLE.

System Catalog 8-7

Storedsect.DBEFileSetName

The tables named STOREDSECT.DBEFileSetName are the stored section tables for
DBEFileSetName .

These tables are created when you issue the statement GRANT SECTIONSPACE ON
DBEFileSet .

Even with DBA authority, you have limited access to the STOREDSECT.DBEFileSetName
tables. You cannot access these tables directly, but you can use ALTER TABLE or UPDATE
STATISTICS on them, as explained in the section \Using the System Catalog" earlier in this
chapter.

You can see entries for the STOREDSECT.DBEFileSetName tables in SYSTEM.TABLE.

8-8 System Catalog

System.Account

System.Account

SYSTEM.ACCOUNT is a pseudotable that contains information about I/O resource
usage by users currently accessing the DBEnvironment. This table is initially empty, and
ALLBASE/SQL updates it whenever a user queries the DBEnvironment, including accessing a
system catalog view.

SYSTEM.ACCOUNT supports an unlimited number of users, transactions, and sessions.

Table 8-2. System.Account

Column Name Type Length Description

USERID CHAR 20 DBEUserID

CID INTEGER 4 Unique connection identi�er

SID INTEGER 4 Unique session identi�er

NPA INTEGER 4 Number of page accesses

NLB INTEGER 4 Number of log bytes written

NTP INTEGER 4 Number of temporary pages allocated

NPP INTEGER 4 Number of permanent pages allocated

Example

SELECT * FROM System.Account;

--------------------+-----------+-----------+-----------+-----------

USERID |CID |SID |NPA |NLB

--------------------+-----------+-----------+-----------+-----------

JOHN | 108| 108| 23| 0

--

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

+-----------+-----------

|NTP |NPP

+-----------+-----------

| 0| 0

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-9

System.Call

SYSTEM.CALL is a pseudotable that contains information about current internal (DBCore)
calls, such as whether a user's process is running, waiting for a lock, waiting for a page to be
freed, and so forth.

You can use SYSTEM.CALL to determine which users are accessing the DBEnvironment.
SYSTEM.CALL supports an unlimited number of users, transactions, and sessions.

Table 8-3. System.Call

Column Name Type Length Description

USERID CHAR 20 DBEUserID

CID INTEGER 4 Unique connection identi�er

SID INTEGER 4 Unique session identi�er

FUNCTION INTEGER 4 Internal function code:

1 start session
2 terminate session
3 begin transaction
4 end transaction
5 abort transaction
6 status
7 relation lock
8 checkpoint
9 open index scan
10 open thread scan
11 open relation scan
12 next
13 close scan
14 fetch TID
15 fetch �rst
16 insert
17 delete
20 de�ne DBEFileSet
19 drop DBEFileSet
20 associate DBEFileSet
21 disassociate DBEFileSet
22 update

8-10 System Catalog

System.Call

Table 8-3. System.Call (continued)

Column Name Type Length Description

FUNCTION
(continued)

INTEGER 4 Description

23 de�ne table
24 drop table
25 alter table
26 create index
27 drop index
28 set index clustering
29 set index uniqueness
30 read counters
31 sort
32 get statistics
33 read account
34 create DBEFile
35 drop DBEFile
43 display parameter
44 display directory data
45 start server
46 terminate server
47 terminate DBCORE
48 start DBCORE
49 open list scan
50 savepoint
51 restore
52 begin archive
53 end archive
54 abort archive
55 change DBEFile type
56 trace on
57 trace o�
58 log memo
59 de�ne parent relationship
60 de�ne child relationship
61 drop parent/child relationship
65 relation to relation
66 rename DBEFile
67 update session info
68 modify scan
69 verify predicate
70 extend DBEFile
71 retrieve single tuple
72 de�ne scratch space
73 drop scratch space
74 add a new log
75 purge an existing log
76 display log info
77 get backup ag status
78 reset backup ag
79 resume recovery
80 terminate recovery
81 reset backup ag
82 version id

System Catalog 8-11

System.Call

Table 8-3. System.Call (continued)

Column Name Type Length Description

FUNCTION
(continued)

INTEGER 4 Description

83 delete a thread
84 quiesce the database
85 unquiesce the database
86 check index
87 open log scan
88 transmit log
89 apply log
90 close log scan
91 get synchronization checkpoint information
92 modify synchronization checkpoint

information
93 alter integrity deferral
94 migrate MARSCH for dynamic space

expansion
95 bind parent/child relationship
96 set timeout
97 increment table version
98 get table version number
99 put section to o�ine heap
100 get section from o�ine heap
101 purge section from o�ine heap
102 open recovery scan
103 close recovery scan
104 fetch from recovery scan
105 get tran info
106 log persistent information
107 forget record
108 detach transaction
109 alter table type
110 add to columns
111 �x DBCore structures through SQLMigrate
112 switchlog
113 parallel scan
114 truncate table
115 alter transaction attributes
116 detach
117 attach
118 open status scan
119 fetch from status scan
120 close status scan

XID INTEGER 4 Unique transaction identi�er

STATUS CHAR 20 Internal status:

30 Running
31 Waiting on LOCK
32 Waiting on LATCH
33 Waiting for PAGE
35 Waiting for SERVICE
36 Waiting (Other)
37 Throttle Wait

8-12 System Catalog

System.Call

Example

SELECT * FROM System.Call;

------------+--------+-----------+-----------+-----------+------------------

USERID |CID |SID |FUNCTION |XID |STATUS

------------+--------+-----------+-----------+-----------+------------------

JOHN | 108| 108| 6|-2091903712|Running

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-13

System.CheckDef

SYSTEM.CHECKDEF contains check constraint de�nitions. Initially, the table is empty.
ALLBASE/SQL updates this table when processing a CREATE TABLE, ALTER TABLE,
DROP TABLE, or TRANSFER OWNERSHIP statement involving a check constraint.

The text of the table check constraint comprising the search condition is stored in this table
for each check constraint along with the constraint owner and constraint name. All other
information about this constraint is in SYSTEM.CONSTRAINT.

SQLGEN also uses this table for recreating a CREATE TABLE statement containing check
constraints.

Table 8-4. System.CheckDef

Column Name Type Length Description

CONSTRAINTNAME CHAR 20 Name of the constraint

OWNER CHAR 20 Owner of the constraint

COLUMNNAME CHAR 20 Column to which the constraint applies

SEGNUM INTEGER 4 Segment number

SEGLEN INTEGER 4 Length of segment in bytes

CONDITIONSTRING CHAR 64 Check constraint string segment

Example

select constraintname, owner, columnname from system.checkdef;

--------------------+--------------------+--------------------

CONSTRAINTNAME |OWNER |COLUMNNAME

--------------------+--------------------+--------------------

SQLCON_00090000200 |PURCHDB |

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

select segnum, seglen, conditionstring from system.checkdef;

-----------+-----------+--

SEGNUM |SEGLEN |CONDITIONSTRING

-----------+-----------+--

1| 14|salesprice > 0

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

8-14 System Catalog

System.Colauth

System.Colauth

SYSTEM.COLAUTH contains records of authorities granted on speci�c columns in a table
or view; it does not contain records of UPDATE authorities granted on an entire table or
view. UPDATE and REFERENCES authorities are the only authorities which can be granted
on speci�c columns. UPDATE and REFERENCES authorities granted on a table or view
basis instead of a column-by-column basis are recorded in SYSTEM.TABAUTH (refer to
SYSTEM.TABAUTH).

ALLBASE/SQL uses SYSTEM.COLAUTH to verify a user's UPDATE authority prior
to executing an UPDATE statement. If the user's UPDATE authority was not found in
SYSTEM.TABAUTH or SYSTEM.COLAUTH, ALLBASE/SQL will issue an error message.

ALLBASE/SQL uses SYSTEM.COLAUTH to verify a user's REFERENCES authority
prior to executing a CREATE TABLE statement containing referential constraint
de�nitions. If the user's REFERENCES authority was not found in SYSTEM.TABAUTH or
SYSTEM.COLAUTH, ALLBASE/SQL will issue an error message.

SYSTEM.COLAUTH is initially empty, and is revised whenever an UPDATE authority
on speci�c columns is granted or revoked. Each row speci�es a particular table (or view)
column on which UPDATE authority has been granted. If no column is entered, the authority
is granted for all of the columns in the table or view. For example, if you grant UPDATE
authority to Peter:

isql=> GRANT UPDATE (BinNumber, QtyOnHand, LastCountDat)

> ON Inventory TO Peter;

SYSTEM.TABAUTH would contain a row with a DBEUserID of Peter, a TableName of
Inventory, a C in the UPDATE column, and a 3 in the NCOL column. SYSTEM.COLAUTH
would contain three entries for DBEUserID Peter; one for each of the three listed columns.

If UPDATE authority was granted without specifying speci�c columns, SYSTEM.TABAUTH
would contain a row with a Y in the update column and SYSTEM.COLAUTH would not
contain any rows.

This view, along with SYSTEM.MODAUTH, SYSTEM.PROCAUTH, SYSTEM.SPECAUTH,
and SYSTEM.TABAUTH, contains the security scheme for the DBEnvironment.

When you create a PUBLIC or PUBLICREAD table, ALLBASE/SQL implicitly grants table
authorities to the special user PUBLIC. In this case, the GRANTOR column contains the
table owner name and the GRANTABLE column contains an N to indicate that privileges
cannot be granted.

System Catalog 8-15

System.Colauth

Table 8-5. System.Colauth

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

TABLENAME CHAR 20 Name of the table or view on which the user or
authorization group has update authority

OWNER CHAR 20 Owner of the table or view on which the user or
authorization group has update authority

COLNAME CHAR 20 Name of a table or view column on which the user
or authorization group has update authority

TYPE CHAR 2 Type of authority the user or group has:

U UPDATE authority

R REFERENCES authority

GRANTOR CHAR 20 Name of the grantor of the privilege described in
this row

GRANTABLE CHAR 2 GRANTABLE privilege on the column:

Y for yes, the user can grant this privilege to
others

N for no, the user cannot grant this privilege
to others

8-16 System Catalog

System.Colauth

Example

SELECT * FROM System.Colauth;

------------+--------------------+--------------------+------------+--------

USERID |TABLENAME |OWNER |COLNAME |TYPE

------------+--------------------+--------------------+------------+--------

KELLY |INVENTORY |PURCHDB |BINNUMBER |U

KELLY |INVENTORY |PURCHDB |QTYONHAND |U

KELLY |INVENTORY |PURCHDB |LASTCOUNTDAT|U

PETER |INVENTORY |PURCHDB |BINNUMBER |U

PETER |INVENTORY |PURCHDB |QTYONHAND |U

PETER |INVENTORY |PURCHDB |LASTCOUNTDAT|U

KAREN |VENDORS |PURCHDB |PHONENUMBER |U

KAREN |VENDORS |PURCHDB |VENDORSTREET|U

KAREN |VENDORS |PURCHDB |VENDORCITY |U

KAREN |VENDORS |PURCHDB |VENDORSTATE |U

KAREN |VENDORS |PURCHDB |VENDORZIPCOD|U

JIM |VENDORS |PURCHDB |PHONENUMBER |U

JIM |VENDORS |PURCHDB |VENDORSTREET|U

JIM |VENDORS |PURCHDB |VENDORCITY |U

JIM |VENDORS |PURCHDB |VENDORSTATE |U

JIM |VENDORS |PURCHDB |VENDORZIPCOD|U

--

Number of rows selected is 16

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+--------------------+---------

|GRANTOR |GRANTABLE

+--------------------+---------

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

|CLEM |N

Number of rows selected is 16

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-17

System.Coldefault

SYSTEM.COLDEFAULT contains detailed information about the default constant
values which have been speci�ed for columns, as indicated in SYSTEM.COLUMN.
While SYSTEM.COLUMN contains a row for each column in each table and view,
SYSTEM.COLDEFAULT only contains a row for each column for which a literal default value
has been speci�ed. Default values of NULL, USER, CURRENT DATE, CURRENT TIME,
or CURRENT DATETIME do not appear in SYSTEM.COLDEFAULT; they are indicated in
SYSTEM.COLUMN by code numbers.

This table is initially empty, and is updated whenever ALLBASE/SQL processes a CREATE
TABLE, DROP TABLE, or TRANSFER OWNERSHIP command in which the column
de�nitions use the DEFAULT Constant clause. The source string containing the default value
speci�cation is stored in segments of up to 64 characters. Only BINARY or CHARACTER
string columns may require more than one 64-byte segment. All other data types can �t in a
64 byte �eld.

Table 8-6. System.Coldefault

Column Name Type Length Description

COLNAME CHAR 20 Name of the column with a default

TABLENAME CHAR 20 Name of the table containing this column

OWNER CHAR 20 Owner of the table

SEGNUM SMALLINT 2 Segment number

SEGLEN SMALLINT 2 Length of segment in bytes

DEFAULTVAL CHAR 64 Literal value string segment

Example

SELECT * FROM System.Column;

--------------------+--------------------+--------------------+------+

COLNAME |TABLENAME |OWNER |SEGNUM|

--------------------+--------------------+--------------------+------+

COMPANY |PARTSOURCE |PURCHDB | 1|

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

------+---

SEGLEN|DEFAULTVAL

------+---

22|Integrated Peripherals

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-18 System Catalog

System.Column

System.Column

SYSTEM.COLUMN contains detailed information about the columns in the tables described
in SYSTEM.TABLE (refer to \SYSTEM.TABLE"). While SYSTEM.TABLE contains a row
for every table and view in the DBEnvironment, SYSTEM.COLUMN contains a row for each
column in each of those tables and views.

Initially, only the columns of the system views are described. ALLBASE/SQL updates this
table when processing an ALTER TABLE, CREATE TABLE, CREATE VIEW, DROP
TABLE, DROP VIEW, TRANSFER OWNERSHIP, or UPDATE STATISTICS statement.

Note that the value for PRECISION is only used for the decimal and oat data types and
SCALE is only used for the decimal data type. For decimal columns, PRECISION has to be a
value between 1 and 15, and the value for SCALE must be between 0 and the corresponding
value for PRECISION. For oating point columns, PRECISION has to be 53 when LENGTH
is 8 and 24 when length is 4.

Note that the DBEFILESET column will only contain a DBEFileSet name for LONG
columns, which can reside in a separate DBEFileSet than the table.

Table 8-7. System.Column

Column Name Type Length Description

COLNAME CHAR 20 Name of the column being described

TABLENAME CHAR 20 Name of the table or view containing this column

OWNER CHAR 20 Owner of the table or view

COLNUM INTEGER 4 Number of the column in the table or view.
Columns are numbered 1, 2, . . . n, and n is kept
in the NUMC column of SYSTEM.TABLE

LENGTH INTEGER 4 Either Maximum length of the column if
TYPECODE is 3 (VARCHAR)

Or Number of bytes in the column for all
other data types

AVGLEN INTEGER 4 Average column length; initially 0. This value is
needed by ALLBASE/SQL.

TYPECODE SMALLINT 2 Data type of the column:

0 INTEGER or SMALLINT (these two are
distinguished by the LENGTH �eld)

1 BINARY
2 CHAR (ASCII only)
3 VARCHAR (ASCII only)
4 FLOAT or REAL (these two are

distinguished by the LENGTH �eld)
5 DECIMAL
6 TID (for ALLBASE/SQL use only)
7 reserved
8 NATIVE CHAR
9 NATIVE VARCHAR

System Catalog 8-19

System.Column

Table 8-7. System.Column (continued)

Column Name Type Length Description

TYPECODE
(continued)

SMALLINT 2 Data type of the column:

10 DATE
11 TIME
12 DATETIME
13 INTERVAL
14 VARBINARY
15 LONG BINARY
16 LONG VARBINARY
19 CASE INSENSITIVE CHAR
20 CASE INSENSITIVE VARCHAR
21 CASE INSENSITIVE NATIVE CHAR
22 CASE INSENSITIVE NATIVE VARCHAR

NULLS SMALLINT 2 Null value indicator:

0 if the column cannot contain null values
1 if the column can contain null values

PRECISION SMALLINT 2 Number of signi�cant decimal or binary digits in
the number (excluding the sign and the decimal
point)

SCALE SMALLINT 2 Number of digits after the decimal point

LANGUAGEID SMALLINT 2 Code for the language of this column. A complete
list of language codes appears in
/usr/lib/nls/con�g. A value of -1 means NOT
APPLICABLE (for numeric type columns or
columns in views)

DEFAULTTYPE SMALLINT 2 Default value type indicator:

0 no default clause speci�ed
1 DEFAULT NULL
2 DEFAULT USER
3 DEFAULT Constant
4 DEFAULT CURRENT DATE
5 DEFAULT CURRENT TIME
6 DEFAULT CURRENT DATETIME

DBEFILESET CHAR 20 Name of the DBEFileSet holding LONG column
data

8-20 System Catalog

System.Column

Example

SELECT * FROM System.Column;

--------------------+--------------------+--------------------+-----------+

COLNAME |TABLENAME |OWNER |COLNUM |

--------------------+--------------------+--------------------+-----------+

PARTNUMBER |PARTS |PURCHDB | 1|

PARTNAME |PARTS |PURCHDB | 2|

SALESPRICE |PARTS |PURCHDB | 3|

PARTNUMBER |SUPPLYPRICE |PURCHDB | 1|

VENDORNUMBER |SUPPLYPRICE |PURCHDB | 2|

VENDORPARTNUMBER |SUPPLYPRICE |PURCHDB | 3|

UNITPRICE |SUPPLYPRICE |PURCHDB | 4|

DELIVERYDAYS |SUPPLYPRICE |PURCHDB | 5|

DISCOUNTQTY |SUPPLYPRICE |PURCHDB | 6|

VENDORNUMBER |VENDORSTATISTICS |PURCHDB | 1|

VENDORNAME |VENDORSTATISTICS |PURCHDB | 2|

ORDERDATE |VENDORSTATISTICS |PURCHDB | 3|

ORDERQUANTITY |VENDORSTATISTICS |PURCHDB | 4|

TOTALPRICE |VENDORSTATISTICS |PURCHDB | 5|

ORDERNUMBER |ORDERS |PURCHDB | 1|

VENDORNUMBER |ORDERS |PURCHDB | 2|

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+-----------+-----------+--------+------+---------+------+-----------------

|LENGTH |AVGLEN |TYPECODE|NULLS |PRECISION|SCALE |LANGUAGEID

+-----------+-----------+--------+------+---------+------------------------

| 16| 16| 2| 0| 0| 0| -1

| 30| 30| 2| 1| 0| 0| 0

| 8| 4| 4| 1| 0| 0| -1

| 16| 16| 2| 0| 0| 0| -1

| 4| 4| 0| 0| 0| 0| -1

| 16| 16| 2| 0| 0| 0| -1

| 8| 8| 4| 1| 0| 0| -1

| 2| 2| 0| 1| 0| 0| -1

| 2| 2| 2| 1| 0| 0| -1

| 4| 4| 0| 0| 0| 0| -1

| 30| 30| 2| 0| 0| 0| 0

| 8| 8| 2| 1| 0| 0| 0

| 2| 2| 0| 1| 0| 0| -1

| 8| 8| 4| 1| 0| 0| -1

| 4| 0| 0| 0| 0| 0| -1

| 4| 0| 0| 0| 0| 0| -1

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

System Catalog 8-21

System.Column

+-----------+---------------------

|DEFAULTTYPE|DBEFILESET

+-----------+---------------------

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

| 0|

--

First 16 rows have been selected.

U[p], d[own], l[eft] , r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-22 System Catalog

System.Constraint

System.Constraint

SYSTEM.CONSTRAINT contains detailed information about the integrity constraints
contained in the database.

Initially, the table is empty. ALLBASE/SQL updates this table when processing a CREATE
TABLE, ALTER TABLE, CREATE VIEW, DROP TABLE, DROP VIEW, or TRANSFER
OWNERSHIP statement involving an integrity constraint.

This table is accessed whenever an INSERT, format II INSERT, UDPATE, or DELETE
is performed on a table to determine if any integrity constraints need to be enforced.
Further checking into SYSTEM.CONSTRAINTCOL is made if a table is found in
SYSTEM.CONSTRAINT, to enforce referential constraints (UNIQUE, PRIMARY KEY,
FOREIGN KEY) on a column-dependent basis.

Table 8-8. System.Constraint

Column Name Type Length Description

CONSTRAINTNAME CHAR 20 Name of the constraint

OWNER CHAR 20 Owner of the table or view

TABLENAME CHAR 20 Name of the table or view

TYPE CHAR 2 Type of constraint:

C table check constraint
P primary key
R referential constraint (foreign key)
U unique constraint (key other than primary)
V view check constraint

INDEXTYPE CHAR 2 Type of index used:

C clustered index
H hash structure
N none speci�ed

NUMC INTEGER 4 Number of columns in the constraint if TYPE is
one of P, R, or U.

REFOWNER CHAR 20 Owner of the key column referenced in a
FOREIGN KEY constraint

REFCONSTRAINT CHAR 20 Constraint name of the key column referenced in
a FOREIGN KEY constraint

DBEFILESET CHAR 20 Name of the DBEFileSet containing the stored
section for a table check constraint (blank if not
applicable)

System Catalog 8-23

System.Constraint

Example

SELECT * FROM System.Constraint;

--------------------+--------------------+--------------------+----+---------

CONSTRAINTNAME |OWNER |TABLENAME |TYPE|INDEXTYPE

--------------------+--------------------+--------------------+----+---------

SQLCON_00000001P00 |PURCHDB |PARTS1 |P |N

CLUBS_PK |RECDB |CLUBS |P |N

MEMBERS_PK |RECDB |MEMBERS |P |N

MEMBERS_FK |RECDB |MEMBERS |R |N

EVENTS_FK |RECDB |EVENTS |R |N

Number of rows selected is 5

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]> r

+-----------+--------------------+--------------------+--------------------

|NUMC |REFOWNER |REFCONSTRAINT |DBEFILESET

+-----------+--------------------+--------------------+--------------------

| 1| | |

| 1| | |

| 2| | |

| 1|RECDB |CLUBS_PK |

| 2|RECDB |MEMBERS_PK |

Number of rows selected is 5

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]> r

8-24 System Catalog

System.Constraintcol

System.Constraintcol

SYSTEM.CONSTRAINTCOL contains information about the columns used in PRIMARY
KEY, UNIQUE, and FOREIGN KEY integrity constraints.

Initially, the table is empty since the system catalog does not use integrity constraints.
ALLBASE/SQL updates this table when processing a CREATE TABLE, DROP TABLE, or
TRANSFER OWNERSHIP statement involving an integrity constraint.

This table is accessed whenever an INSERT, type II INSERT, UPDATE, or DELETE is
performed on a table in the CONSTRAINT table to determine if the constraint needs to be
enforced. It is accessed whenever a REVOKE, REMOVE FROM GROUP, or DROP GROUP
statement is performed to determine whether the constraint columns depend on the current
authorization scheme.

Table 8-9. System.ConstraintCol

Column Name Type Length Description

CONSTRAINTNAME CHAR 20 Name of the constraint containing this column

OWNER CHAR 20 Owner of the constraint

COLUMNNAME CHAR 20 Name of a column used in the constraint

POSITION INTEGER 4 Position of the occurrence of the column in the
constraint, numbered 1, 2, . . . n, where n is the
value of NUMC in the SYSTEM.CONSTRAINT
tuple for this constraint.

Example

SELECT * FROM System.ConstraintCol;

--------------------+--------------------+--------------------+-----------

CONSTRAINTNAME |OWNER |COLUMNNAME |POSITION

--------------------+--------------------+--------------------+-----------

SQLCON_00000001P00 |PURCHDB |PARTNUM | 1

CLUBS_PK |RECDB |CLUBNAME | 1

MEMBERS_PK |RECDB |MEMBERNAME | 1

MEMBERS_PK |RECDB |CLUB | 2

MEMBERS_FK |RECDB |CLUB | 1

EVENTS_FK |RECDB |COORDINATOR | 1

EVENTS_FK |RECDB |SPONSORCLUB | 2

Number of rows selected is 7

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]> r

System Catalog 8-25

System.ConstraintIndex

SYSTEM.CONSTRAINTINDEX contains an entry for each integrity constraint. This view
is initially empty, but is updated whenever ALLBASE/SQL processes a CREATE TABLE,
DROP TABLE, ALTER TABLE TRANSFER OWNERSHIP (of a table), or UPDATE
STATISTICS statement involving an integrity constraint.

8-26 System Catalog

System.ConstraintIndex

Table 8-10. System.ConstraintIndex

Column Name Type Length Description

CONSTRAINTNAME CHAR 20 Name of the unique or referential constraint

TABLENAME CHAR 20 Name of the table on which the index is de�ned

OWNER CHAR 20 Owner of the table on which the index is de�ned

NUMC INTEGER 4 Number of columns in the index

COLNUMS BINARY 32 A vector of 16 SYSTEM.COLUMN entries, each
of type SMALLINT, identifying the column
numbers the index is de�ned over. In ISQL, each
SMALLINT (two-byte) entry is displayed as a
�eld of 4 hexadecimal digits.

NPAGES INTEGER 4 Number of data pages containing the constraint
index

CCOUNT INTEGER 4 Cluster count; indicates how well the data of the
index are sorted:

0 before �rst UPDATE STATISTICS
statement is processed

n e�ciency of clustering: best clustering if
n=NPAGES of table indexed; worst if
n=NROWS of table indexed

CTIME CHAR 16 Time the index was created

UNIQUE SMALLINT 2 Uniqueness indicator:

0 if duplicates are allowed, that is, the index is
not unique

1 if duplicates are not allowed, that is the index is
unique

CLUSTER SMALLINT 2 Clustering indicator:

0 if the index is not a clustering index

1 if the index is the clustering index for the table

COLDIRS BINARY 32 A vector of 16 direction entries, each of type
SMALLINT, indicating the direction of the
corresponding column in the index de�nition. In
ISQL, each SMALLINT (two-byte) entry is
displayed as a �eld of 4 hexadecimal digits.

The following values indicate a speci�c direction:

5 ASC (Ascending)

6 DESC (Descending)

System Catalog 8-27

System.ConstraintIndex

Example

SELECT * FROM System.ConstraintIndex;

--------------------+--------------------+--------------------+-----------

CONSTRAINTNAME |TABLENAME |OWNER |NUMC

--------------------+--------------------+--------------------+-----------

SQLCON_00000001P00 |PARTS1 |PURCHDB | 1

CLUBS_PK |CLUBS |RECDB | 1

MEMBERS_PK |MEMBERS |RECDB | 2

MEMBERS_FK |MEMBERS |RECDB | 1

EVENTS_FK |EVENTS |RECDB | 2

Number of rows selected is 5

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]> r

+--+------------

|COLNUMS |NPAGES

+--+------------

|000100| 0

|000100| 0

|000100| 0

|000200| 0

|000100| 0

--

Number of rows selected is 5

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]> r

+-----------+----------------+------+-------

|CCOUNT |CTIME |UNIQUE|CLUSTER

+-----------+----------------+------+-------

| 0|1990040914185800| 1| 0

| 0|1990040914203800| 1| 0

| 0|1990040914280600| 1| 0

| 0|1990040914280600| 0| 0

| 0|1990040914295500| 0| 0

Number of rows selected is 5

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]> e

+--+

|COLDIRS |

+--+

|000500|

|000500|

|000500|

|000500|

|000500|

|000500|

|000500|

|000500|

|000500|

--

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-28 System Catalog

System.Counter

System.Counter

SYSTEM.COUNTER is a pseudotable that contains internal system counters. While the
statistics are primarily for SQLCore's internal use, you can use these statistics to monitor
DBEnvironment use and make appropriate changes to your DBEnvironment and/or
application programs.

For example, you can use the DEADLOCK counter to determine if the number of deadlocks is
excessive, and the CHECKPTS counter to determine if you need to change the size of the log
�le.

Values in SYSTEM.COUNTER are continually incremented from the time of a START DBE
until you issue the RESET statement, which sets all counter values to 0. The counters are
automatically reset each time the DBE is started.

Some of the rows in this system view are reserved. They are designated as 'UNUSED' when
you select all entries from the table, and can be deleted from your query with the following
statement:

isql=> SELECT * FROM System.Counter

> WHERE NAME <> 'UNUSED';

SYSTEM.COUNTER supports an unlimited number of users, transactions, and sessions.

Table 8-11. System.Counter

Column Name Type Length Description

NAME CHAR 8 Name of counter

VALUE INTEGER 4 Counter value (time values are in milliseconds)

DESCRIPTION CHAR 20 Description of the counter

System Catalog 8-29

System.Counter

Example

SELECT * FROM System.Counter;

--------+-----------+--------------------

NAME |VALUE |DESCRIPTION

--------+-----------+--------------------

TRANSBEG| 6|Transactions begun

TRANSEND| 4|Transactions ended

TRANSABT| 0|Transactions abort

CHECKPTS| 0|Checkpoints

LOCKREQS| 86|Lock requests

SHLTREQS| 69|Shared latch reqs

EXLTREQS| 537|Excl latch reqs

DEADLOCK| 0|Deadlocks

PAGEACCS| 152|Page accesses

PAGEREAD| 30|Page reads

PAGEWRTE| 0|Page writes

LGBLKRD | 17|Log block reads

LGBLKWR | 0|Log block writes

LGRECWR | 0|Log record writes

ERRORLG1| 0|Errors on log ds 1

ERRORLG2| 0|Errors on log ds 2

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> b

--------+-----------+--------------------

NAME |VALUE |DESCRIPTION

--------+-----------+--------------------

UNUSED | 0|------------------

UNUSED | 0|------------------

TIMEOUTS| 0|Expired timeouts

UNUSED | 0|------------------

UNUSED | 0|------------------

UNUSED | 0|------------------

UNUSED | 0|------------------

UNUSED | 0|------------------

RESETS | 1|Number of Resets

DBCALL | 117|DBCORE calls

SHLTWAIT| 0|Share latch waits

EXLTWAIT| 0|Excl latch waits

LOCKWAIT| 0|Lock waits

IO | 79|I/O s

SERVREQS| 0|Service requests

Number of rows selected is 31

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-30 System Catalog

System.DBEFile

System.DBEFile

SYSTEM.DBEFILE contains information about the DBEFiles in the DBEnvironment.
Initially it contains the DBEFiles created when the DBEnvironment is con�gured. A row is
added, updated, or deleted whenever ALLBASE/SQL processes an ADD DBEFILE, ALTER
DBEFILE, CREATE DBEFILE, DROP DBEFILE, or REMOVE DBEFILE statement.

SYSTEM.DBEFILE and SYSTEM.DBEFILESET contain all the information about where
tables are stored.

You can use the following query to determine which DBEFileSet contains a certain DBEFile:

isql=> SELECT DBEFName, DBEFSName FROM System.DBEFile

> WHERE DBEFName='PURCHDF1';

To determine the DBEFiles in a DBEFileSet, use the following query:

isql=> SELECT * FROM System.DBEFile

> WHERE DBEFSName='PURCHFS';

Table 8-12. System.DBEFile

Column Name Type Length Description

DBEFNAME CHAR 20 Name of the DBEFile

DBEFTYPE SMALLINT 2 Type:

90 for mixed

91 for index

92 for data

FILEID CHAR 44 System identi�er for the �le being used for the
DBEFile

DBEFNPAGES INTEGER 4 Number of pages in the DBEFile

DBEFUPAGES INTEGER 4 Number of pages in the DBEFile containing table
and index data, excluding page table pages

DBEFINCRSZ INTEGER 4 Number of pages the DBEFile will be expanded
each time

DBEFIPAGES INTEGER 4 Number of pages in the DBEFile at �le creation
time

DBEFMPAGES INTEGER 4 Maximum number of pages the DBEFile can be
expanded

CTIME CHAR 16 Time of creation: yyyymmddhhmmsstt

DBEFSNAME CHAR 20 Name of the DBEFileSet the DBEFile is
associated with (if any)

DBEFNUMBER INTEGER 4 Number of the DBEFileSet the DBEFile is
associated with

ATTACHED CHARACTER 2 Whether the DBEFile is attached to the
DBEnvironment (Y for yes, N for no)

System Catalog 8-31

System.DBEFile

Example

SELECT * FROM System.DBEFile;

--------------------+--------+--

DBEFNAME |DBEFTYPE|FILEID

--------------------+--------+--

PARTSDBE0 | 90|PartsF0

PURCHDATAF1 | 92|PurchDF1

PURCHINDXF1 | 91|PurchXF1

WAREHDATAF1 | 92|WarehDF1

WAREHINDXF1 | 91|WarehXF1

ORDERDATAF1 | 92|OrderDF1

ORDERINDXF1 | 91|OrderXF1

FILEDATA | 92|FileData

RECDATAF1 | 90|RecDF1

NEWFILE | 90|NewFile

NEWFILE2 | 90|NewFile2

Number of rows selected is 11

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+-----------+-----------+-----------+-----------+-----------

|DBEFNPAGES |DBEFUPAGES |DBEFINCRSZ |DBEFIPAGES |DBEFMPAGES

+-----------+-----------+-----------+-----------+-----------

| 150| 0| 0| 150| 150

| 50| 2| 0| 50| 50

| 50| 4| 0| 50| 50

| 50| 4| 0| 50| 50

| 50| 4| 0| 50| 50

| 50| 3| 0| 50| 50

| 50| 3| 0| 50| 50

| 50| 0| 0| 50| 50

| 50| 7| 0| 50| 50

| 150| 0| 0| 150| 150

| 100| 0| 0| 100| 100

Number of rows selected is 11

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+----------------+---------------

|CTIME |DBEFSNAME

+----------------+---------------

|1990090614175200|SYSTEM

|1990090614192820|PURCHFS

|1990090614193170|PURCHFS

|1990090614194600|WAREHFS

|1990090614195400|WAREHFS

|1990090614200640|ORDERFS

|1990090614200990|ORDERFS

|1991020613192200|SYSTEM

|1993072014054600|RECFS

|1994021415230500|SYSTEM

|1994021415252200|

Number of rows selected is 11

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-32 System Catalog

System.DBEFile

+----------------+---------------

|DBEFNUMBER |ATTACHED

+----------------+---------------

| 0|Y

| 1|Y

| 2|Y

| 3|Y

| 4|Y

| 5|Y

| 6|Y

| 7|Y

| 8|Y

| 9|Y

| 10|Y

Number of rows selected is 11

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-33

System.DBEFileSet

SYSTEM.DBEFILESET contains information about DBEFileSets. This table initially
contains a row for each DBEFileSet created when the DBEnvironment is con�gured. A row is
added, updated, or deleted whenever ALLBASE/SQL processes an ADD DBEFILE, CREATE
DBEFILESET, REMOVE DBEFILE, or DROP DBEFILESET statement.

SYSTEM.DBEFILESET and SYSTEM.DBEFILE contain all the information about where
tables and indexes are stored.

Table 8-13. System.DBEFileSet

Column Name Type Length Description

DBEFSNAME CHAR 20 Name of the DBEFileSet

DBEFSNDBEFILES INTEGER 4 Number of DBEFiles in the DBEFileSet

DBEFSNPAGES INTEGER 4 Number of pages in the DBEFileSet (the sum of
the pages in all associated DBEFiles)

DBEFSUPAGES INTEGER 4 Number of pages in the DBEFileSet containing
table and index data, excluding page table pages
(the sum of the used pages in all associated
DBEFiles)

DBEFSPTPAGES INTEGER 4 Number of page table pages in the DBEFileSet

DBEFSMPAGES INTEGER 4 Total maximum number of pages the DBEFileSet
may be expanded (the sum of all DBEFMPAGES
in System.DBEFile for the associated DBEFile)

CTIME CHAR 16 Time of creation: yyyymmddhhmmsstt

ATTACHED CHAR 2 Attached: Y for yes, N for no

Example

SELECT * FROM System.DBEFileSet ;

--------------------+--------------+-----------+-----------

DBEFSNAME |DBEFSNDBEFILES|DBEFSNPAGES|DBEFSUPAGES

--------------------+--------------+-----------+-----------

SYSTEM | 2| 100| 8

PURCHFS | 2| 100| 6

WAREHFS | 2| 100| 4

ORDERFS | 2| 100| 5

Number of rows selected is 4

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+------------+-----------+----------------+--------

|DBEFSPTPAGES|DBEFSMPAGES|CTIME |ATTACHED

+------------+-----------+----------------+--------

| 4| 100|1990090614175200|Y

| 2| 100|1990090614192370|Y

| 2| 100|1990090614194160|Y

| 2| 100|1990090614200170|Y

Number of rows selected is 4

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-34 System Catalog

System.Group

System.Group

SYSTEM.GROUP contains a row for each user or group that belongs to an authorization
group. Each user, whether an individual user or another authorization group, has an entry
for each authorization group to which he or she is a member. This view is initially empty,
but is updated whenever ALLBASE/SQL processes a CREATE GROUP, ADD TO GROUP,
TRANSFER OWNERSHIP (of a group), REMOVE FROM GROUP, or DROP GROUP
statement.

SYSTEM.GROUP can be used with SYSTEM.COLAUTH, SYSTEM.MODAUTH,
SYSTEM.SPECAUTH, and SYSTEM.TABAUTH to determine authorities granted to
authorization groups.

You can use this table to determine all the members of a particular authorization group or
how many authorization groups to which a particular user belongs. For example, if you want
to know all the users in the Receiving authorization group, enter:

isql=> SELECT UserId FROM System.Group

> WHERE GroupId='RECEIVING';

Table 8-14. System.Group

Column Name Type Length Description

USERID CHAR 20 DBEUserID or authorization group that is a
member of the GROUPID

GROUPID CHAR 20 Authorization group name

OWNER CHAR 20 Owner of the authorization group

NMEMBERS INTEGER 4 Number of members in the authorization group

Example

SELECT * FROM System.Group;

--------------------+--------------------+--------------------+-----------

USERID |GROUPID |OWNER |NMEMBERS

--------------------+--------------------+--------------------+-----------

PURCHMANAGERS |PURCHMANAGERS |JOHN | 3

MARGY |PURCHMANAGERS |JOHN | 0

RON |PURCHMANAGERS |JOHN | 0

SHARON |PURCHMANAGERS |JOHN | 0

PURCHDBMAINT |PURCHDBMAINT |JOHN | 4

ANNIE |PURCHDBMAINT |JOHN | 0

DOUG |PURCHDBMAINT |JOHN | 0

DAVID |PURCHDBMAINT |JOHN | 0

PURCHASING |PURCHASING |JOHN | 5

AJ |PURCHASING |JOHN | 0

JORGE |PURCHASING |JOHN | 0

RAGAA |PURCHASING |JOHN | 0

GREG |PURCHASING |JOHN | 0

KAREN |PURCHASING |JOHN | 0

RECEIVING |RECEIVING |JOHN | 4

AL |RECEIVING |JOHN | 0

First 16 rows have been selected

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-35

System.Hash

SYSTEM.HASH contains an entry for each hash structure you create. This view is initially
empty, but is updated whenever ALLBASE/SQL processes a hash-related CREATE TABLE,
DROP TABLE, TRANSFER OWNERSHIP, or UPDATE STATISTICS statement.

Table 8-15. System.Hash

Column Name Type Length Description

TABLENAME CHAR 20 Name of the table on which the hash is de�ned

OWNER CHAR 20 Owner of the table on which the hash structure is
de�ned

NUMC INTEGER 4 Number of columns in the hash key

COLNUMS BINARY 32 A vector of 16 SYSTEM.COLUMN entries, each
of type SMALLINT, identifying the column
numbers the hash is de�ned over. In ISQL, each
SMALLINT (two-byte) entry is displayed as a
�eld of 4 hexadecimal digits.

PRIMPAGES INTEGER 4 Number of primary pages allocated for the hash
structure

NPPAGES INTEGER 4 Number of primary pages in use, excluding page
table pages

AVGLEN FLOAT 8 Average chain length

MAXLEN INTEGER 4 Maximum chain length

NFULL INTEGER 4 Number of primary pages that are more than half
full

NOVERFLOW INTEGER 4 Number of primary pages with overow pages

UNIQUE SMALLINT 2 Uniqueness indicator; currently always 1

8-36 System Catalog

System.Hash

Example

SELECT * FROM System.Hash;

+--------------------+--------------------+-----------

|TABLENAME |OWNER |NUMC

+--------------------+--------------------+-----------

|VENDORS |PURCHDB | 1

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+--

|COLNUMS

+--

|000100

+--

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+-----------+-----------+----------------+---------

|PRIMPAGES |NPPAGES |AVGLEN |MAXLEN

+-----------+-----------+----------------+---------

| 10| 18| 1.00| 1

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+-----------+-----------+------

|NFULL NOVERFLOW UNIQUE

+-----------+-----------+------

| 0| 0| 1

--

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-37

System.Hash

System.Index

SYSTEM.INDEX contains an entry for each index created by a user on a table. This view
is initially empty, but is updated whenever ALLBASE/SQL processes a CREATE INDEX,
DROP INDEX, DROP TABLE, TRANSFER OWNERSHIP (of a table), or UPDATE
STATISTICS statement.

Table 8-16. System.Index

Column Name Type Length Description

INDEXNAME CHAR 20 Name of the index

TABLENAME CHAR 20 Name of the table on which the index or hash
structure is de�ned

OWNER CHAR 20 Owner of the table on which the index is de�ned

UNIQUE SMALLINT 2 Uniqueness indicator:

0 if duplicates are allowed, that is, the index is
not unique

1 if duplicates are not allowed, that is the index
is unique

CLUSTER SMALLINT 2 Clustering indicator:

0 if the index is not a clustering index
1 if the index is the clustering index for the

table

NUMC INTEGER 4 Number of columns in the index or hash key

COLNUMS BINARY 64 A vector of column numbers, each of type
SMALLINT, identifying the columns the index is
de�ned over. In ISQL, each SMALLINIT
(two-byte) entry is displayed as a �eld of 4
hexadecimal digits.

NPAGES INTEGER 4 Number of index pages containing the index

NLEVELS INTEGER 4 Number of B-tree levels

NLEAVES INTEGER 4 Number of B-tree leaf pages

NDISTINCT INTEGER 4 Number of distinct keys

NFIRST INTEGER 4 Number of distinct �rst column values of the
B-tree key

NPERKEY INTEGER 4 Number of pages per B-tree key

8-38 System Catalog

System.Index

Table 8-16. System.Index (continued)

Column Name Type Length Description

CCOUNT INTEGER 4 Cluster count; indicates how well the data of the
index is sorted

0 before �rst UPDATE STATISTICS
statement is processed

n e�ciency of clustering: best clustering if
n=NPATES of table indexed; worst if
n=NROWS of table indexed

CTIME CHAR 16 Time of creation: yyyymmddhhsstt

COLDIRS BINARY 64 A vector of direction entries, each of type
SMALLINT indicating the direction of the
corresponding column in the index de�nition. In
ISQL, each SMALLINIT (two-byte) entry is
displayed as a �eld of 4 hexadecimal digits.

5 ASC (Ascending)
6 DESC (Descending)

Example

SELECT * FROM System.Index;

--------------------+--------------------+--------------------+------+-----

INDEXNAME |TABLENAME |OWNER |UNIQUE|CLUST

--------------------+--------------------+--------------------+------+-----

PARTNUMINDEX |PARTS |PURCHDB | 1|

PARTTONUMINDEX |SUPPLYPRICE |PURCHDB | 0|

PARTTOVENDINDEX |SUPPLYPRICE |PURCHDB | 0|

VENDPARTINDEX |SUPPLYPRICE |PURCHDB | 1|

VENDORNUMINDEX |VENDORS |PURCHDB | 1|

ORDERNUMINDEX |ORDERS |PURCHDB | 1|

ORDERVENDINDEX |ORDERS |PURCHDB | 0|

ORDERITEMINDEX |ORDERITEMS |PURCHDB | 1|

INVPARTNUMINDEX |INVENTORY |PURCHDB | 1|

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

-+--------------------+------+-------+-----------+-------------------------

|OWNER |UNIQUE|CLUSTER|NUMC |COLNUMS

-+--------------------+------+-------+-----------+-------------------------

|PURCHDB | 1| 0| 1|0001000000000000000000000

|PURCHDB | 0| 1| 1|0001000000000000000000000

|PURCHDB | 0| 0| 1|0002000000000000000000000

|PURCHDB | 1| 0| 1|0003000000000000000000000

|PURCHDB | 1| 0| 1|0001000000000000000000000

|PURCHDB | 1| 1| 1|0001000000000000000000000

|PURCHDB | 0| 0| 1|0002000000000000000000000

|PURCHDB | 1| 1| 2|0001000200000000000000000

|PURCHDB | 1| 0| 1|0001000000000000000000000

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

System Catalog 8-39

System.Index

---------+--+

MC |COLNUMS |

---------+--+

1|000100|

1|000100|

1|000200|

1|000300|

1|000100|

1|000100|

1|000200|

2|0001000200|

1|000100|

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

----------------------------------+-----------+-----------+-----------+----

|NPAGES |NLEVELS |NLEAVES |NDIS

----------------------------------+-----------+-----------+-----------+----

0000000000000000000000000000000000| 1| 0| 1|

0000000000000000000000000000000000| 1| 0| 1|

0000000000000000000000000000000000| 1| 0| 1|

0000000000000000000000000000000000| 1| 0| 1|

0000000000000000000000000000000000| 1| 0| 1|

0000000000000000000000000000000000| 1| 0| 1|

0000000000000000000000000000000000| 1| 0| 1|

0000000000000000000000000000000000| 0| 0| 0|

0000000000000000000000000000000000| 1| 0| 1|

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

------+-----------+-----------+-----------+-----------+-----------+--------

S |NLEVELS |NLEAVES |NDISTINCT |NFIRST |NPERKEY |CCOUNT

------+-----------+-----------+-----------+-----------+-----------+--------

1| 0| 1| 22| 22| 1|

1| 0| 1| 22| 22| 1|

1| 0| 1| 15| 15| 1|

1| 0| 1| 69| 69| 1|

1| 0| 1| 18| 18| 1|

1| 0| 1| 17| 17| 1|

1| 0| 1| 12| 12| 1|

0| 0| 0| 0| 0| 0|

1| 0| 1| 22| 22| 1|

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

--+-----------+-----------+-----------+----------------+-------------------

|NFIRST |NPERKEY |CCOUNT |CTIME |COLDIRS

--+-----------+-----------+-----------+----------------+-------------------

22| 22| 1| 1|1996020600084900|0005000000000000000

22| 22| 1| 1|1996020600085000|0005000000000000000

15| 15| 1| 1|1996020600085000|0005000000000000000

69| 69| 1| 1|1996020600085000|0005000000000000000

18| 18| 1| 1|1996020600085100|0005000000000000000

17| 17| 1| 1|1996020600085100|0005000000000000000

12| 12| 1| 1|1996020600085100|0005000000000000000

0| 0| 0| 0|1996070805153400|0005000500000000000

22| 22| 1| 1|1996020600085200|0005000000000000000

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

8-40 System Catalog

System.Index

---------------+---

TIME |COLDIRS

---------------+---

996020600084900|0005000

996020600085000|0005000

996020600085000|0005000

996020600085000|0005000

996020600085100|0005000

996020600085100|0005000

996020600085100|0005000

996070805153400|00050005000

996020600085200|0005000

Number of rows selected is 9

System Catalog 8-41

System.Installauth

SYSTEM.INSTALLAUTH lists all users and authorization groups that have been granted
INSTALL authority. ALLBASE/SQL updates SYSTEM.INSTALLAUTH when processing
a GRANT INSTALL or REVOKE INSTALL statement, or when dropping a group having
INSTALL authority.

SYSTEM.INSTALLAUTH, SYSTEM.COLAUTH, SYSTEM.MODAUTH,
SYSTEM.PROCAUTH, SYSTEM.SPACEAUTH, SYSTEM.SPACEDEFAULT,
SYSTEM.SPECAUTH, and SYSTEM.TABAUTH, contain the security scheme for the
DBEnvironment.

CATALOG.INSTALLAUTH is identical in format to SYSTEM.INSTALLAUTH; it permits
users without DBA authority or SELECT authority on SYSTEM.INSTALLAUTH to examine
rows to which they have access.

Table 8-17. System.Installauth

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

OWNER CHAR 20 An owner name the USERID is authorized to use.
If blank, the USERID is authorized to use any
owner name.

Example

SELECT * FROM System.Installauth;

--------------------+--------------------

USERID |OWNER

--------------------+--------------------

GEORGE |

CLEM |JOHN

CLEM |SUSAN

Number of rows selected is 3

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-42 System Catalog

System.Modauth

System.Modauth

SYSTEM.MODAUTH contains RUN authorities for application programs. This view,
along with the SYSTEM.COLAUTH, SYSTEM.PROCAUTH, SYSTEM.SPECAUTH, and
SYSTEM.TABAUTH views, contains the authorities for the DBEnvironment.

Table 8-18. System.Modauth

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

NAME CHAR 20 Name of the module for which the user has RUN
authority

OWNER CHAR 20 Owner of the module for which the user has RUN
authority

Example

SELECT * FROM System.Modauth;

--------------------+--------------------+--------------------

USERID |NAME |OWNER

--------------------+--------------------+--------------------

JIM |CEXP06 |JOHN

KAREN |CEXP06 |JOHN

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-43

System.Paramdefault

SYSTEM.PARAMDEFAULT contains information about the default values of parameters
that may be passed to and from procedures.

SYSTEM.PARAMDEFAULT is initially empty, and it is updated whenever ALLBASE/SQL
processes a CREATE PROCEDURE, DROP PROCEDURE, or TRANSFER OWNERSHIP
statement for a procedure that includes default parameter values.

If a TRANSFER OWNERSHIP is done on the procedure, the owner �eld in this view is
updated with the name of the new owner.

For literal default values, the source string containing the default value speci�cation is stored
in segments of up to 64 bytes.

Only BINARY or CHARACTER string columns may require more than one 64 byte segment.
All other data types can �t in a 64 byte �eld.

Table 8-19. System.Paramdefault

Column Name Type Length Description

NAME CHAR 20 Name of the parameter with a default

PROCNAME CHAR 20 Name of the procedure containing this parameter

OWNER CHAR 20 Owner of the procedure

SEGNUM SMALLINT 2 Segment number

SEGLEN SMALLINT 2 Length of segment in bytes

DEFAULTVAL CHAR 64 Literal value string segment

Example

SELECT Name, ProcName, Owner FROM System.Paramdefault;

------------+--------------------+--------------------

NAME |PROCNAME |OWNER

------------+--------------------+--------------------

SHIFTNAME |PROCESS12 |PURCHDB

--

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

SELECT SegNum, SegLen, DefaultVal FROM System.Paramdefault;

------+------+--

SEGNUM|SEGLEN|DEFAULTVAL

------+------+--

1| 3|Day

--

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-44 System Catalog

System.Parameter

System.Parameter

SYSTEM.PARAMETER contains information about parameters that may be passed to and
from procedures. SYSTEM.PARAMETER is initially empty, and it is updated whenever
ALLBASE/SQL processes a CREATE PROCEDURE, DROP PROCEDURE, or TRANSFER
OWNERSHIP statement for a procedure that includes parameters.

If a TRANSFER OWNERSHIP is done on the procedure, the owner �eld in this view is
updated with the name of the new owner.

Table 8-20. System.Parameter

Name Type Length Description

NAME CHAR 20 Name of the parameter

PROCNAME CHAR 20 Name of the procedure

OWNER CHAR 20 Owner of the procedure

NUM INTEGER 4 Number of the parameter within the procedure

LENGTH INTEGER 4 Either Maximum length of the column if
TYPECODE is 3 (VARCHAR), 9
(NATIVE VARCHAR), or 14
(VARBINARY)

Or Number of bytes in the column for all
other data types

TYPECODE SMALLINT 2 Data type of the column:

0 INTEGER or SMALLINT (set by the
LENGTH �eld)

1 BINARY
2 CHAR (ASCII only)
3 VARCHAR (ASCII only)
4 FLOAT or REAL (set by the LENGTH

�eld)
5 DECIMAL
6 TID
7 reserved
8 NATIVE CHAR
9 NATIVE VARCHAR
10 DATE
11 TIME
12 DATETIME
13 INTERVAL
14 VARBINARY

NULLS SMALLINT 2 Null value indicator:

0 if the column cannot contain null values
1 if the column can contain null values

System Catalog 8-45

System.Parameter

Table 8-20. System.Parameter (continued)

Name Type Length Description

PRECISION SMALLINT 2 Number of signi�cant decimal or binary digits in
the number (excluding the sign and the decimal
point)

SCALE SMALLINT 2 Number of digits after the decimal point

LANGUAGEID SMALLINT 2 Code for the language of this column. A complete
list of language codes appears in
/usr/lib/nls/con�g. A value of -1 means not
applicable (for non-character type columns)

DEFAULTTYPE SMALLINT 2 Default value type indicator:

0 no default clause speci�ed
1 DEFAULT NULL
2 DEFAULT USER
3 DEFAULT Constant
4 DEFAULT CURRENT DATE
5 DEFAULT CURRENT TIME
6 DEFAULT CURRENT DATETIME

OUTPUT SMALLINT 2 Parameter type:

0 input
1 input/output
2 output only

Example

select * from system.parameter;

--------------------+--------------------+--------------------+-----------

NAME |PROCNAME |OWNER |NUM

--------------------+--------------------+--------------------+-----------

OPERATOR |PROCESS12 |MANUFDB | 1

SHIFT |PROCESS12 |MANUFDB | 2

FAILURETYPE |PROCESS12 |MANUFDB | 3

PARTNUMBER |DISCOUNTPART |PURCHDB | 1

NAME |REPORTMONITOR |PURCHDB | 1

OWNER |REPORTMONITOR |PURCHDB | 2

TYPE |REPORTMONITOR |PURCHDB | 3

VENDORNUMBER |DELVENDOR |PURCHDB | 1

VENDORNUMBER |CHECKVENDOR |PURCHDB | 1

PARTNUMBER |PROCESS15 |PETERW | 1

PERCENTAGE |DISCOUNTALL |PURCHDB | 1

NROWS |ENTERTEST |PETERW | 1

Number of rows selected is 12

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

8-46 System Catalog

System.Parameter

select length, typecode,nulls,precision from system.parameter;

-----------+--------+------+---------

LENGTH |TYPECODE|NULLS |PRECISION

-----------+--------+------+---------

20| 2| 0| 0

20| 2| 0| 0

10| 2| 0| 0

16| 2| 1| 0

20| 2| 0| 0

20| 2| 0| 0

10| 2| 0| 0

4| 0| 0| 10

4| 0| 0| 10

16| 2| 0| 0

4| 5| 1| 4

4| 0| 1| 10

Number of rows selected is 12

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

select scale, languageid, defaulttype, output from system.parameter;

------+----------+-----------+------

SCALE |LANGUAGEID|DEFAULTTYPE|OUTPUT

------+----------+-----------+------

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

0| 0| 0| 0

2| 0| 0| 0

0| 0| 0| 0

Number of rows selected is 12

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

System Catalog 8-47

System.Partition

The SYSTEM.PARTITION view is used to describe each partition. The base table (which
is HPRDBSS.PARTITION) is locked with an exclusive lock if you execute a CREATE
PARTITION or DROP PARTITION statement. HPRDBSS.PARTITION is locked with
a share lock if you execute a CREATE TABLE statement that speci�es a partition or an
ALTER TABLE statement that modi�es a partition.

The SYSTEM.PARTITION table initially speci�es the DEFAULT partition for all tables, if
they are created when the DBEnvironment is con�gured. A row is added, updated, or deleted
from SYSTEM.PARTITION whenever one of the following occurs:

A CREATE PARTITION or DROP PARTITION statement is processed.

A START DBE NEWLOG statement de�ning or altering the DEFAULT partition is
processed.

A CREATE TABLE or ALTER TABLE statement specifying a partition is processed.

The PARTITION table format is shown in Table 8-21.

Table 8-21. SYSTEM.PARTITION

Column Name Type Length Description

PARTITIONNAME CHAR 20 Name of the Partition

PARTITIONID INTEGER 4 Number of the partition this table is assigned to.
0 if default, �1 if none. This column is not
exposed in the system view, and is used to
minimize table accesses.

8-48 System Catalog

System.Plan

System.Plan

SYSTEM.PLAN is a pseudotable which displays the access plan generated by the optimizer
for a SELECT, UPDATE or DELETE statement processed by the GENPLAN statement.
Information is displayed for only a single statement at a time.

To display an access plan, you must �rst process a statement of the above type with the
GENPLAN statement as in the following example:

isql=> GENPLAN FOR SELECT * FROM Purchdb.Parts;

To display the access plan, issue the following statement within the same transaction:

isql=> SELECT * FROM System.Plan;

Table 8-22. System.Plan

Column Name Type Length Description

QUERYBLOCK INTEGER 4 Queryblock in which operation is executed

STEP INTEGER 4 Sequence within the query block in which
operation is executed at run time

LEVEL INTEGER 4 Level of operation within the run tree

OPERATION CHAR 20 Type of Operation:

merge join
nestedloop join
sort
project
�lter
distinct
distinct sort
group by
or
union
serial scan
index scan
TID scan
hash scan
block scan (block number)

TABLENAME CHAR 20 Table upon which operation is executed

OWNER CHAR 20 Owner of the table

INDEXNAME CHAR 20 Name of index used for operation

System Catalog 8-49

System.Plan

Example

isql=> GENPLAN FOR

> SELECT *

> FROM Purchdb.Parts

> WHERE Partnumber =

> (SELECT Partnumber

> FROM PurchDB.SupplyPrice sp, PurchDB.Vendors v

> WHERE v.VendorName = 'Pro-Litho Inc.'

> AND sp.UnitPrice <= 200.00

> AND sp.VendorNumber = v.VendorNumber);

isql=> SELECT * FROM System.Plan;

SELECT * FROM System.Plan;

-----------+-----------+-----------+--------------------+------------------

QUERYBLOCK |STEP |LEVEL |OPERATION |TABLENAME

-----------+-----------+-----------+--------------------+------------------

1| 1| 3|serial scan |VENDORS

1| 2| 3|serial scan |SUPPLYPRICE

1| 3| 2|nestedloop join |

2| 1| 1|index scan |PARTS

Number of rows selected is 4

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

+--------------------+----------------

|OWNER |INDEXNAME

+--------------------+----------------

|PURCHDB |

|PURCHDB |

| |

|PURCHDB |PARTNUMINDEX

Number of rows selected is 4

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

8-50 System Catalog

System.Procauth

System.Procauth

SYSTEM.PROCAUTH contains EXECUTE authorities for procedures. This view, along
with the SYSTEM.COLAUTH, SYSTEM.MODAUTH, SYSTEM.SPECAUTH, and
SYSTEM.TABAUTH views, contains the security scheme for the DBEnvironment.

SYSTEM.PROCAUTH is initially empty, and it is updated whenever ALLBASE/SQL
processes a GRANT EXECUTE, REVOKE EXECUTE, a TRANSFER OWNERSHIP of a
procedure, or a DROP PROCEDURE (without the PRESERVE option).

Table 8-23. System.Procauth

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

NAME CHAR 20 Name of the procedure for which the user has
EXECUTE authority

OWNER CHAR 20 Owner of the procedure for which the user has
EXECUTE authority

Example

SELECT * FROM System.Procauth;

--------------------+--------------------+--------------------

USERID |NAME |OWNER

--------------------+--------------------+--------------------

JIM |REPORTMONITOR |PURCHDB

KAREN |PROCESS12 |JOHN

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-51

System.Procedure

SYSTEM.PROCEDURE contains information about each procedure created in the
DBEnvironment.

SYSTEM.PROCEDURE is initially empty, and it is updated whenever ALLBASE/SQL
processes a CREATE PROCEDURE, DROP PROCEDURE, or TRANSFER OWNERSHIP
statement on a procedure.

If a TRANSFER OWNERSHIP is done on the procedure, the owner �eld in this view is
updated with the name of the new owner.

Table 8-24. System.Procedure

Name Type Length Description

NAME CHAR 20 Name of the procedure

OWNER CHAR 20 Owner of the procedure

NUMP INTEGER 4 Number of parameters (0 to 1023) to the
procedure

NUMR SMALLINT 2 Number of result columns (0 to 1024) for a
procedure de�ned with a WITH RESULT clause

MULTIRESULT SMALLINT 2 Number of SELECT statements with no INTO
clause in the procedure (0 if there are none)

CTIME CHAR 16 Time of creation: yyyymmddhhmmsstt

LANGUAGEID SMALLINT 2 Code for the language of this procedure. A
complete list of language codes appears in
/usr/lib/nls/con�g

DBEFILESET CHAR 20 Name of the DBEFileSet containing the
procedure's de�nition and stored sections

8-52 System Catalog

System.Procedure

Example

select * from system.procedure;

--------------------+--------------------+-----------+------

NAME |OWNER |NUMP |NUMR

--------------------+--------------------+-----------+------

PROCESS12 |MANUFDB | 3| 2

DISCOUNTPART |PURCHDB | 1| 3

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

select multiresult, ctime, languageid from system.procedure;

-----------+----------------+----------+--------------

MULTIRESULT|CTIME |LANGUAGEID|DBEFILESET

-----------+----------------+----------+--------------

3|1991121010220700| 0|SYSTEM

1|1991121011442200| 0|PURCHFS

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

System Catalog 8-53

System.ProcedureDef

The SYSTEM.PROCEDUREDEF view displays information about procedure de�nitions,
including the text of the procedure itself. The procedure text is stored in a series of segments
of up to 64 bytes, starting with the initial BEGIN and ending with the �nal semicolon. The
procedure de�nition does not include parameter de�nitions, which are stored separately in
SYSTEM.PARAMETER.

SYSTEM.PROCEDUREDEF is initially empty, and it is updated whenever ALLBASE/SQL
processes a CREATE PROCEDURE statement, a DROP PROCEDURE statement, or a
TRANSFER OWNERSHIP statement on a procedure.

When the procedure is dropped, the rows making up the byte string of the procedure
de�nition are deleted. If a TRANSFER OWNERSHIP is done on the procedure, the owner
�eld in this table is updated with the name of the new owner.

Table 8-25. System.ProcedureDef

Column Name Type Length Description

NAME CHAR 20 Name of the procedure

OWNER CHAR 20 Owner of the procedure

QUALIFIER CHAR 20 Owner name to be used to qualify any unquali�ed
objects referenced in the procedure de�nition

SEGNUM INTEGER 4 Segment number

SEGLEN INTEGER 4 Length of segment in bytes (up to 64)

DEFINESTRING CHAR 64 Procedure de�nition byte string segment

Example

SELECT * FROM System.ProcedureDef WHERE NAME = 'REPORTMONITOR';

--------------------+--------------------+--------------------+------

NAME |OWNER |QUALIFIER |SEGNUM

--------------------+--------------------+--------------------+------

REPORTMONITOR |PURCHDB |PURCHDB | 1

REPORTMONITOR |PURCHDB |PURCHDB | 2

First 2 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+------+---

|SEGLEN|DEFINESTRING

+------+---

| 55| begin insert into PurchDB.ReportMonitor values (:Type,

| 45| CURRENT_DATETIME, USER, :Name, :Owner); end;

First 2 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

8-54 System Catalog

System.ProcResult

System.ProcResult

SYSTEM.PROCRESULT contains information about the result columns in procedure result
sets for procedures returning results of a single format. Such procedures are created using the
WITH RESULT clause.

SYSTEM.PROCRESULT is initially empty, and is updated whenever ALLBASE/SQL
processes a CREATE PROCEDURE statement including the WITH RESULT clause, or a
DROP PROCEDURE or TRANSFER OWNERSHIP statement specifying such a procedure.

If a TRANSFER OWNERSHIP is done on the procedure, the owner �eld in this view is
updated with the name of the new owner.

Table 8-26. System.ProcResult

Name Type Length Description

PROCEDURE CHAR 20 Name of the procedure

OWNER CHAR 20 Owner of the procedure

RESULTNUM INTEGER 4 Number of the procedure result column

LENGTH INTEGER 4 Maximum length of the result column if
TYPECODE is 3 (VARCHAR), 9 (NATIVE
VARCHAR), or 14 (VARBINARY) or number of
bytes in the result column for all other data types

TYPECODE SMALLINT 2 Data type of the result column:

0 for INTEGER or SMALLINT (these two are
distinguished by the LENGTH �eld)

1 for BINARY
2 for CHAR (ASCII only)
3 for VARCHAR (ASCII only)
4 for FLOAT or REAL (these two are

distinguished by the LENGTH �eld)
5 for DECIMAL
6 for TID (for ALLBASE/SQL use only)
7 reserved
8 for NATIVE CHAR
9 for NATIVE VARCHAR
10 for DATE
11 for TIME
12 for DATETIME
13 for INTERVAL
14 for VARBINARY
15 for LONG BINARY
16 for LONG VARBINARY

NULLS SMALLINT 2 Nullability:

0 if the result column cannot contain null
values

1 if the result column can contain null values

System Catalog 8-55

System.ProcResult

Table 8-26. System.ProcResult (continued)

Name Type Length Description

PRECISION SMALLINT 2 Number of signi�cant decimal or binary digits in
the number (excluding the sign and the decimal
point)

SCALE SMALLINT 2 Number of digits after the decimal point

LANGUAGEID SMALLINT 2 Code for the language of this column. A complete
list of language codes appears in
/usr/lib/nls/con�g. A value of -1 means not
applicable (for non-character type columns)

Example

select procedure, owner, resultnum, length from system.procresult;

--------------------+--------------------+-----------+-----------

PROCEDURE |OWNER |RESULTNUM |LENGTH

--------------------+--------------------+-----------+-----------

PROCESS12 |MANUFDB | 1| 30

PROCESS12 |MANUFDB | 2| 20

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

select typecode, nulls, precision, scale, languageid from system.procresult;

--------+------+---------+------+----------

TYPECODE|NULLS |PRECISION|SCALE |LANGUAGEID

--------+------+---------+------+----------

0| 0 5| 0| -1

2| 1| 0| 0| 0

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

8-56 System Catalog

System.Rule

System.Rule

SYSTEM.RULE contains detailed information about the rules de�ned for database tables.

Initially, the table is empty. ALLBASE/SQL updates this table when processing a CREATE
RULE, DROP RULE, or TRANSFER OWNERSHIP statement that a�ects a rule.

This table is accessed whenever an INSERT, UPDATE, or DELETE is performed on a table
to determine whether any rules need to be enforced. If there is a rule for the table that is
enforced at UPDATE time, the SYSTEM.RULECOLUMN table is also checked.

Table 8-27. System.Rule

Column Name Type Length Description

RULENAME CHAR 20 Name of the rule

OWNER CHAR 20 Owner of the target table and rule

TABLENAME CHAR 20 Name of the target table

OLDNAME CHAR 20 Old Correlation Name

NEWNAME CHAR 20 New Correlation Name

DELETE CHAR 2 DELETE applicable for this rule
Y Yes
N No

INSERT CHAR 2 INSERT applicable for this rule
Y Yes
N No

UPDATE CHAR 2 UPDATE applicable for this rule
Y Yes on all columns
N No on any columns
C Yes on speci�c columns only

NUMC INTEGER 4 Number of columns applicable for UPDATE on
this rule

CTIME CHAR 16 Time of creation: yyyymmddhhmmsstt

DBEFILESET CHAR 20 Name of the DBEFileSet containing the rule's
de�nition and stored sections

System Catalog 8-57

System.Rule

Example

select rulename, owner, tablename, oldname from system.rule;

--------------------+--------------------+--------------------+-----------------

RULENAME |OWNER |TABLENAME |OLDNAME

--------------------+--------------------+--------------------+-----------------

INSERTREPORT |PURCHDB |REPORTS |OLD

DELETEREPORT |PURCHDB |REPORTS |OLD

UPDATEREPORT |PURCHDB |REPORTS |OLD

CHECKVENDOR |PURCHDB |VENDORS |OLD

First 4 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

select newname, delete, insert, update,numc, ctime from system.rule;

--------------------+------+------+------+-----------+----------------

NEWNAME |DELETE|INSERT|UPDATE|NUMC |CTIME

--------------------+------+------+------+-----------+----------------

NEW |N |Y |N | 0|1991121013511100

NEW |Y |N |N | 0|1991121013511200

NEW |N |N |C | 2|1991121013511200

NEW |Y |N |N | 0|1991121216034600

First 4 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

select dbefileset from system.rule;

DBEFILESET

PURCHFS

PURCHFS

PURCHFS

PURCHFS

First 4 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

8-58 System Catalog

System.RuleColumn

System.RuleColumn

SYSTEM.RULECOLUMN records the columns listed for the UPDATE statement type in the
rule.

Initially, the table is empty, since the system catalog does not use rules. ALLBASE/SQL
updates the table when processing a CREATE RULE, DROP RULE, or TRANSFER
OWNERSHIP involving a rule.

RULENAME and OWNER uniquely identify a particular rule. The table it is de�ned upon
may be deduced by searching the SYSTEM.RULE table for a match on these two columns.
The SYSTEM.RULE view contains the TABLENAME.

Table 8-28. System.RuleColumn

Column Name Type Length Description

RULENAME CHAR 20 Name of the rule

OWNER CHAR 20 Owner of the rule

COLUMNNAME CHAR 20 Name of the column for which an UPDATE
results in �ring the rule

Example

select * from system.rulecolumn;

--------------------+--------------------+--------------------

RULENAME |OWNER |COLUMNNAME

--------------------+--------------------+--------------------

UPDATEREPORT |PURCHDB |REPORTOWNER

UPDATEREPORT |PURCHDB |REPORTNAME

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

System Catalog 8-59

System.RuleDef

SYSTEM.RULEDEF contains character strings that can be used by SQLGEN to generate the
rules associated with a table when recreating a DBEnvironment. SYSTEM.RULEDEF stores
the part of the rule string that begins with the WHERE clause and continues to the end of
the string (not including the �nal semicolon).

SYSTEM.RULEDEF is initially empty, and it is updated whenever ALLBASE/SQL processes
a CREATE RULE, DROP RULE, or TRANSFER OWNERSHIP statement on a rule.

When the rule is dropped, the rows making up the character string of the rule de�nition are
deleted. If a TRANSFER OWNERSHIP is done on the rule, the owner �eld in this table is
updated with the name of the new owner.

Table 8-29. System.RuleDef

Column Name Type Length Description

RULENAME CHAR 20 Name of the rule

OWNER CHAR 20 Owner of the rule

QUALIFIER CHAR 20 Owner name to be used to qualify any unquali�ed
objects referenced in the rule de�nition.

SEGNUM INTEGER 4 Segment Number

SEGLEN INTEGER 4 Length of segment in bytes (up to 64)

RULESTRING CHAR 64 RULE character string segment

Example

select * from system.ruledef;

--------------------+--------------------+--------------------+-----------+

RULENAME |OWNER |QUALIFIER |SEGNUM |

--------------------+--------------------+--------------------+-----------+

INSERTREPORT |PURCHDB |PETERW | 1|

INSERTREPORT |PURCHDB |PETERW | 2|

DELETEREPORT |PURCHDB |PETERW | 1|

DELETEREPORT |PURCHDB |PETERW | 2|

UPDATEREPORT |PURCHDB |PETERW | 1|

UPDATEREPORT |PURCHDB |PETERW | 2|

Number of rows selected is 6

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

8-60 System Catalog

System.RuleDef

isql=> select seglen, rulestring from system.ruledef;

select seglen, rulestring from system.ruledef;

-----------+---

SEGLEN |RULESTRING

-----------+---

57|execute procedure PurchDB.ReportMonitor (NEW.ReportName,

26|NEW.ReportOwner, 'INSERT')

57|execute procedure PurchDB.ReportMonitor (OLD.ReportName,

26|OLD.ReportOwner, 'DELETE')

57|execute procedure PurchDB.ReportMonitor (NEW.ReportName,

26|NEW.ReportOwner, 'UPDATE')

Number of rows selected is 6

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

System Catalog 8-61

System.Section

SYSTEM.SECTION contains information about modules, sections, and views. It initially
contains the de�nitions of the system views, and is updated whenever ALLBASE/SQL
processes a statement that creates, modi�es, or drops an object on which a section depends.

You can use the following query on this table to determine which sections are invalid:

isql=> SELECT OWNER, NAME, STYPE FROM System.Section

> WHERE Valid=0;

Table 8-30. System.Section

Column Name Type Length Description

NAME CHAR 20 Name of the module, procedure, or view

OWNER CHAR 20 Owner of the section or view

DBEFILESET CHAR 20 Name of the DBEFileSet containing the section or
view

SECTION INTEGER 4 Section number:

0 for views
1 to n for sections (numbers are sequentially

assigned)

CTIME CHAR 16 Time of creation: yyyymmddhhmmsstt

TYPE INTEGER 2 Type of SQL statement represented in the section:

0 for sections that are neither views nor
cursors

1 for cursors
2 for views

STYPE INTEGER 2 Type of section:

0 for module section
1 for procedure section

VALID INTEGER 2 Validity indicator:

0 for view or invalid section
1 for procedure

OPTFLAG INTEGER 2 Setopt indicator:

0 optimization plan not speci�ed by SETOPT
1 optimization plan speci�ed by SETOPT

(See System.Setoptinfo)

8-62 System Catalog

System.Section

Example

SELECT * FROM System.Section;

--------------------+--------------------+--------------------+-----------

NAME |OWNER |DBEFILESET |SECTION

--------------------+--------------------+--------------------+-----------

TABLE |SYSTEM |SYSTEM | 0

COLUMN |SYSTEM |SYSTEM | 0

INDEX |SYSTEM |SYSTEM | 0

SECTION |SYSTEM |SYSTEM | 0

DBEFILESET |SYSTEM |SYSTEM | 0

DBEFILE |SYSTEM |SYSTEM | 0

SPECAUTH |SYSTEM |SYSTEM | 0

TABAUTH |SYSTEM |SYSTEM | 0

COLAUTH |SYSTEM |SYSTEM | 0

MODAUTH |SYSTEM |SYSTEM | 0

GROUP |SYSTEM |SYSTEM | 0

PARTINFO |PURCHDB |SYSTEM | 0

VENDORSTATISTICS |PURCHDB |SYSTEM | 0

CEXP06 |JOHN |SYSTEM | 1

CEXP06 |JOHN |SYSTEM | 2

CEXP06 |JOHN |SYSTEM | 3

--

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+----------------+------+------+------

|CTIME |TYPE |STYPE |VALID

+----------------+------+------+------

|1985090614181790| 2| 0| 0

|1985090614182250| 2| 0| 0

|1985090614182800| 2| 0| 0

|1985090614183320| 2| 0| 0

|1985090614183950| 2| 0| 0

|1985090614184680| 2| 0| 0

|1985090614185320| 2| 0| 0

|1985090614190000| 2| 0| 0

|1985090614190470| 2| 0| 0

|1985090614191190| 2| 0| 0

|1985090614191690| 2| 0| 0

|1985100915341710| 2| 0| 0

|1985100915342620| 2| 0| 0

|1985101211291030| 0| 0| 0

|1985101211291510| 0| 0| 0

|1985101211292020| 0| 0| 0

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-63

System.Setoptinfo

The SYSTEM.SETOPTINFO view displays the access optimization plan of a section as
speci�ed by the SETOPT statement. The information is stored in a series of segments of
up to 64 bytes. The access plan in SYSTEM.SETOPTINFO is used by the section if the
OPTFLAG column of SYSTEM.SECTION is set to 1. SYSTEM.SETOPTINFO is initially
empty, and it is updated whenever ALLBASE/SQL processes a SETOPT statement.

Table 8-31. System.Setoptinfo

Column Name Type Length Description

NAME CHAR 20 Name of the section

OWNER CHAR 20 Owner of the section

SECTION INTEGER 4 Section number

TYPE INTEGER 2 Type of section:

0 for module section
1 for procedure section

SEGNUM INTEGER 4 Segment number

SEGLEN INTEGER 4 Segment length (Up to 64)

SETOPTSTRING CHAR 64 SETOPT byte string segment

Example

SELECT * FROM System.Setoptinfo;

--------------------+--------------------+-----------+-----------+

NAME |OWNER |SECTION |TYPE |

--------------------+--------------------+-----------+-----------+

CEX9 |PROGM1 | 1| 0|

CEX9 |PROGM1 | 2| 0|

CEX9 |PROGM1 | 3| 0|

CEX9 |PROGM1 | 4| 0|

CEX9 |PROGM1 | 5| 0|

CEX9 |PROGM1 | 6| 0|

First 6 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

-----------+-----------+-------------------------

SEGNUM |SEGLEN |SETOPTSTRING

-----------+-----------+-------------------------

1| 25|setopt general indexscan;

1| 25|setopt general indexscan;

1| 25|setopt general indexscan;

1| 25|setopt general indexscan;

1| 25|setopt general indexscan;

1| 25|setopt general indexscan;

Number of rows selected is 6

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-64 System Catalog

System.Spaceauth

System.Spaceauth

SYSTEM.SPACEAUTH lists all users and authorization groups for which TABLESPACE or
SECTIONSPACE authority has been granted.

Initially SYSTEM.SPACEAUTH contains a row having the column values PUBLIC,
SYSTEM, Y, Y. That is, all users have TABLESPACE and SECTIONSPACE authority in the
SYSTEM DBEFileSet. A DBA can modify these authorities with further revokes and grants
as desired.

ALLBASE/SQL accesses SYSTEM.SPACEAUTH whenever a user attempts to put a table
or long column or a section (generated by a PREPARE or DECLARE CURSOR statement)
into an explicit DBEFileSet. The owner of the table or section must have TABLESPACE or
SECTIONSPACE authority, respectively, on the DBEFileSet.

Table 8-32. System.Spaceauth

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

DBEFILESET CHAR 20 DBEFileSet name for SECTIONSPACE or
TABLESPACE authority

TABLESPACE CHAR 2 Resource authority:

Y (The user has authority to store table and long
column data in this DBEFileSet.)

N (The user cannot store table and long column
data in this DBEFileSet.)

SECTIONSPACE CHAR 2 Resource authority:

Y (The user has authority to store sections
in this DBEFileSet.)

N (The user cannot store sections in this
DBEFileSet.)

Example

SELECT * FROM System.Spaceauth;

--------------------+----------+----------+------------

USERID |DBEFILESET|TABLESPACE|SECTIONSPACE

--------------------+----------+----------+------------

PUBLIC |SYSTEM |Y |Y

PUBLIC |PURCHFS |Y |Y

PUBLIC |WAREHFS |Y |Y

PUBLIC |ORDERSFS |Y |Y

PUBLIC |FILESFS |Y |Y

PUBLIC |RECFS |Y |Y

--

Number of rows selected is 6

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-65

System.Spacedefault

SYSTEM.SPACEDEFAULT contains the default TABLESPACE and SECTIONSPACE
DBEFileSets for PUBLIC.

Initially SYSTEM.SPACEDEFAULT contains two rows, one having the column values
PUBLIC, SYSTEM, 1 and the other having the column values PUBLIC, SYSTEM, 2. Thus
SYSTEM is the default DBEFileSet for table, long column, and section data for PUBLIC.

ALLBASE/SQL accesses SYSTEM.SPACEDEFAULT whenever a table, long column, rule,
check constraint, procedure, or section (generated by a PREPARE, DECLARE CURSOR, or
CREATE VIEW statement) is created without the IN DBEFileSetName clause.

Table 8-33. System.Spacedefault

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

DBEFILESET CHAR 20 Name of a DBEFileSet

SPACETYPE SMALLINT 2 Type of default DBEFileSet:

1 (SECTIONSPACE)

2 (TABLESPACE)

Example

SELECT * FROM System.Spacedefault;

--------------------+--------------------+---------

USERID |DBEFILESET |SPACETYPE

--------------------+--------------------+---------

PUBLIC |SYSTEM | 1

PUBLIC |SYSTEM | 2

--

Number of rows selected is 2

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-66 System Catalog

System.Specauth

System.Specauth

SYSTEM.SPECAUTH lists all users and authorization groups and the special authorities they
have been granted. Because a user must be granted the special authority CONNECT before
being able to access the DBEnvironment, every user or group that has CONNECT authority
to the DBEnvironment is listed.

ALLBASE/SQL updates SYSTEM.SPECAUTH when processing a GRANT or REVOKE
statement specifying a special authority, or when dropping a group with special authority.

SYSTEM.SPECAUTH, along with SYSTEM.COLAUTH, SYSTEM.INSTALLAUTH,
SYSTEM.MODAUTH, SYSTEM.PROCAUTH, SYSTEM.SPACEAUTH,
SYSTEM.SPACEDEFAULT, and SYSTEM.TABAUTH, contains the security
scheme for the DBEnvironment.

CATALOG.SPECAUTH is identical in format to SYSTEM.SPECAUTH; it permits users
without DBA authority or SELECT authority on SYSTEM.SPECAUTH to examine rows to
which they have access.

Table 8-34. System.Specauth

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

DBA CHAR 2 DBA authority:

Y for yes

N for no

RESOURCE CHAR 2 Resource authority:

Y for yes

N for no

CONNECT CHAR 2 Connect Authority:

Y for yes

N for no

MONITOR CHAR 2 Connect Authority:

Y for yes

N for no

System Catalog 8-67

System.Specauth

Example

SELECT * FROM System.Specauth;

--------------------+---+--------+-------+-------

USERID |DBA|RESOURCE|CONNECT|MONITOR

--------------------+---+--------+-------+-------

HPRDBSS |N |N |N |N

TEMP |N |N |N |N

PUBLIC |N |N |N |N

SYSTEM |N |N |N |N

JOHN |Y |N |N |N

PURCHDBMAINT |N |Y |N |N

PURCH |N |N |Y |N

MICHELE |Y |N |N |N

GEORGE |N |N |Y |Y

--

Number of rows selected is 8

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-68 System Catalog

System.Tabauth

System.Tabauth

SYSTEM.TABAUTH contains the authorities for operations on tables and views. If a user
has been granted authority to operate on only speci�c columns instead of the entire table or
view, you must also use SYSTEM.COLAUTH to determine the actual columns.

This view initially contains entries for the CATALOG views. The view is updated whenever
ALLBASE/SQL processes a GRANT or REVOKE statement containing a table or view
related authority, and when PUBLIC or PUBLICREAD tables are created. It is also updated
when a DROP TABLE, DROP VIEW, or table-related TRANSFER OWNERSHIP statement
is processed.

SYSTEM.TABAUTH, along with SYSTEM.COLAUTH, SYSTEM.MODAUTH,
SYSTEM.PROCAUTH, and SYSTEM.SPECAUTH, contains the security scheme for the
DBEnvironment. ALLBASE/SQL veri�es a user's authority in SYSTEM.TABAUTH if
the appropriate authority was not contained in SYSTEM.SPECAUTH. If the UPDATE or
REFERENCES column contains a C, ALLBASE/SQL veri�es the user's UPDATE authority
in SYSTEM.COLAUTH.

When you create a PUBLIC or PUBLICREAD table, ALLBASE/SQL implicitly grants table
authorities to the special user PUBLIC. In this case, the GRANTOR column contains the
table owner name and the GRANTABLE column contains an N to indicate that privileges
cannot be granted.

Table 8-35. System.Tabauth

Column Name Type Length Description

USERID CHAR 20 Authorized DBEUserID or authorization group

NAME CHAR 20 Name of the table or view on which the user has
one or more authorities

OWNER CHAR 20 Owner of the table or view on which the user has
one or more authorities

NCOL INTEGER 4 Number of columns the user has update authority
on (0 if the UPDATE column contains a Y)

NRCOL INTEGER 4 Number of columns the user has references
authority on (0 if the REFERENCES column
contains a Y or N)

SELECT CHAR 2 SELECT authority on the table or view:

Y for yes
N for no

INSERT CHAR 2 INSERT authority on the table or view:

Y for yes
N for no

UPDATE CHAR 2 UPDATE authority on the table or view:

Y for yes on all columns
N for no on all columns
C for yes on speci�c columns only

System Catalog 8-69

System.Tabauth

Table 8-35. System.Tabauth (continued)

Column Name Type Length Description

DELETE CHAR 2 DELETE authority on the table or view:

Y for yes
N for no

ALTER CHAR 2 ALTER authority on the table (for adding
columns):

Y for yes
N for no

INDEX CHAR 2 INDEX authority on the table (for creating
indexes):

Y for yes
N for no or for a view

REFERENCES CHAR 2 REFERENCES authority on the table (for
creating referential constraints that refer to this
table):

Y for yes on all columns
N for no on all columns or for a view
C for yes on speci�c columns only

GRANTOR CHAR 20 Name of the grantor of the privileges described in
this row or blank if column privileges have
di�ering grantabilities

GRANTABLE CHAR 2 GRANTABLE privilege on the table or view:

Y for yes, the user can grant these privileges
to others

N for no, the user cannot grant these
privileges to others

blank if column privileges have di�ering
grantabilities

8-70 System Catalog

System.Tabauth

Example

SELECT * FROM System.Tabauth;

--------------------+--------------------+--------------------+-----------

USERID |NAME |OWNER |NCOL

--------------------+--------------------+--------------------+-----------

PUBLIC |PARTS |PURCHDB | 0

PUBLIC |INVENTORY |PURCHDB | 0

PUBLIC |SUPPLYPRICE |PURCHDB | 0

PUBLIC |VENDORS |PURCHDB | 0

PUBLIC |ORDERS |PURCHDB | 0

PUBLIC |ORDERITEMS |PURCHDB | 0

PUBLIC |MESSAGE |PURCHDB | 0

--

Number of rows selected is 7

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+-----------+------+------+------+------+-----+-----+----------+-------

|NRCOL |SELECT|INSERT|UPDATE|DELETE|ALTER|INDEX|REFERENCES|GRANTOR

+-----------+------+------+------+------+-----+-----+----------+-------

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

| 0|Y |Y |Y |Y |Y |Y |N |PURCHDB

Number of rows selected is 7

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>r

+---------

|GRANTABLE

+---------

|N

|N

|N

|N

|N

|N

|N

|N

--

First 7 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-71

System.Table

SYSTEM.TABLE contains a record of each table and view in the DBEnvironment including
one for itself and one for each of the other system views. The columns for the tables and
views contained in this table are described in SYSTEM.COLUMN.

Table 8-36. System.Table

Column Name Type Length Description

NAME CHAR 20 Name of the table or view

OWNER CHAR 20 Owner of the table or view

DBEFILESET CHAR 20 Name of the DBEFileSet containing the table or
view

TYPE SMALLINT 2 Type of object:

0 for table

1 for view

RTYPE SMALLINT 2 Locking mode for the table:

0 for view
1 for PUBLICREAD table
2 for PRIVATE table
3 for PUBLIC table
4 for temporary table
5 for PUBLICROW table

NUMC INTEGER 4 Number of columns in the table or view

NUMI INTEGER 4 The number of indexes (including HASH and
constraint structures) on a table; 0 for a view

NUMIC INTEGER 4 The number of constraints on the table or view

NUMR 4 The number or rules on the table or view

NPAGES INTEGER 4 Number of data pages containing the table; 0 for
all views except system views

NROWS INTEGER 4 Number of rows in a table; 0 for all views except
system views

AVGLEN INTEGER 4 Average row length of the table; 0 for all views
except system views

CTIME CHAR 16 Time of creation: yyyymmddhhmmsstt

USTIME CHAR 16 Time of the most recent execution of the
UPDATE STATISTICS statement

LANGUAGEID SMALLINT 2 Code for the language of this table. A complete
list of language codes appears in
/usr/lib/nls/con�g. A value of -1 means NOT
APPLICABLE (that is, the entry is a view, not a
table)

8-72 System Catalog

System.Table

Table 8-36. System.Table (continued)

Column Name Type Length Description

PARTITION CHAR 20 Name of the partition containing the table:

NONE for a view
DEFAULT if not speci�ed

Example

SELECT * FROM System.Table;

--------------------+--------------------+--------------------+------

NAME |OWNER |DBEFILESET |TYPE

--------------------+--------------------+--------------------+------

COUNTER |SYSTEM |SYSTEM | 0

USER |SYSTEM |SYSTEM | 0

TRANSACTION |SYSTEM |SYSTEM | 0

CALL |SYSTEM |SYSTEM | 0

ACCOUNT |SYSTEM |SYSTEM | 0

TABLE |SYSTEM |SYSTEM | 1

COLUMN |SYSTEM |SYSTEM | 1

INDEX |SYSTEM |SYSTEM | 1

SECTION |SYSTEM |SYSTEM | 1

DBEFILESET |SYSTEM |SYSTEM | 1

DBEFILE |SYSTEM |SYSTEM | 1

SPECAUTH |SYSTEM |SYSTEM | 1

TABAUTH |SYSTEM |SYSTEM | 1

COLAUTH |SYSTEM |SYSTEM | 1

MODAUTH |SYSTEM |SYSTEM | 1

GROUP |SYSTEM |SYSTEM | 1

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+------+-----------+-----------+-----------+-----------+-----------

|RTYPE |NUMC |NUMI |NUMIC |NUMR |NPAGES

+------+-----------+-----------+-----------+-----------+-----------

| 3| 3| 0| 0| 0| 0

| 3| 2| 0| 0| 0| 0

| 3| 4| 0| 0| 0| 0

| 3| 5| 0| 0| 0| 0

| 3| 6| 0| 0| 0| 0

| 0| 12| 0| 0| 0| 2

| 0| 10| 0| 0| 0| 9

| 0| 10| 0| 0| 0| 1

| 0| 7| 0| 0| 0| 2

| 0| 5| 0| 0| 0| 1

| 0| 7| 0| 0| 0| 1

| 0| 4| 0| 0| 0| 1

| 0| 10| 0| 0| 0| 1

| 0| 4| 0| 0| 0| 0

| 0| 3| 0| 0| 0| 0

| 0| 4| 0| 0| 0| 1

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

System Catalog 8-73

System.Table

+----------+-----------+----------------+----------------+----------

|NROWS |AVGLEN |CTIME |USTIME |LANGUAGEID

+----------+-----------+----------------+----------------+----------

| 0| 32|1985090614175200|Not done yet | 0

| 0| 24|1985090614175200|Not done yet | 0

| 0| 32|1985090614175200|Not done yet | 0

| 0| 52|1985090614175200|Not done yet | 0

| 0| 40|1985090614175200|Not done yet | 0

| 39| 140|1985090614181790|1985101613380630| -1

| 258| 108|1985090614182250|1985101613351330| -1

| 9| 160|1985090614182800|1985101613362650| -1

| 44| 128|1985090614183320|1985101613365940| -1

| 4| 68|1985090614183950|1985101613355530| -1

| 9| 122|1985090614184680|1985101613354100| -1

| 10| 26|1985090614185320|1985101613373740| -1

| 7| 84|1985090614190000|1985101613375100| -1

| 0| 0|1985090614190470|1985101613345170| -1

| 0| 0|1985090614191190|1985101613364530| -1

| 38| 64|1985090614191690|1985101613361280| -1

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

+-------------------

|PARTITION

+-------------------

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

|NONE

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

8-74 System Catalog

System.TempSpace

System.TempSpace

SYSTEM.TEMPSPACE contains information about TempSpace names. This view is initially
empty, but is updated whenever ALLBASE/SQL processes a CREATE TEMPSPACE or
DROP TEMPSPACE. You can use this view to determine the de�ned TempSpaces.

isql=> SELECT * from SYSTEM.TEMPSPACE;

Table 8-37. System.TempSpace

Column Name Type Length Description

TEMPSNAME CHAR 20 Name of the TempSpace

LOCATION CHAR 35 System identi�er for the directory being used for
TempSpace �les

MAXFILEPAGES INTEGER 4 Maximum number of pages per �le opened in the
TempSpace

CTIME CHAR 16 Time of creation: yyyymmddhhmmsstt

Example

select * from system.tempspace;

--------------------+--

TEMPSNAME |LOCATION

--------------------+--

MJTMPSP |/misc/mjdir/tmp

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > r

+------------+----------------

|MAXFILEPAGES|CTIME

+------------+----------------

| 128|1990041216384500

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

System Catalog 8-75

System.TempSpace

System.Transaction

SYSTEM.TRANSACTION is a pseudotable that records the transactions of users currently
accessing the DBEnvironment.

SYSTEM.TRANSACTION supports an unlimited number of users, transactions, and sessions.

Table 8-38. System.Transaction

Column Name Type Length Description

USERID CHAR 20 DBEUserID of the user who started the
transaction

CID INTEGER 4 Unique connection identi�er

SID INTEGER 4 Unique session identi�er

XID INTEGER 4 Unique transaction identi�er

PRIORITY INTEGER 4 Transaction priority:

0 (highest) - 255 (lowest)

ISOLATION LEVEL CHAR 2 Transaction isolation level:

RR (Repeatable Read, Serializable)

CS (Cursor Stability)

RU (Read Uncommitted)

RC (Read Committed)

LABEL CHAR 8 Transaction label string

Example

SELECT * FROM System.Transaction;

--------------------+-----------+-----------+-----------+-----------

USERID |CID |SID |XID |PRIORITY

--------------------+-----------+-----------+-----------+-----------

JOHN | 108| 108| 11320| 127

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

--------------------+---------

ISOLATION LEVEL |LABEL

--------------------+---------

RC +Xact2

Number of rows selected is 1

8-76 System Catalog

System.User

System.User

SYSTEM.USER is a pseudotable that contains a row for each user currently accessing the
DBEnvironment.

Table 8-39. System.User

Column Name Type Length Description

USERID CHAR 20 DBEUserID

CID INTEGER 4 Unique connection identi�er

SID INTEGER 4 Unique session identi�er

Example

SELECT * FROM System.User;

--------------------+-----------+-----------

USERID |CID |SID

--------------------+-----------+-----------

JOHN | 108| 108

Number of rows selected is 1

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> e

System Catalog 8-77

System.ViewDef

The SYSTEM.VIEWDEF view displays information about view de�nitions, including the
SELECT part of each CREATE VIEW statement used to create a view. The SELECT is
stored in a series of segments of up to 64 bytes.

SYSTEM.VIEWDEF is initially empty, and it is updated whenever ALLBASE/SQL processes
a CREATE VIEW statement, a DROP VIEW statement, or a TRANSFER OWNERSHIP
statement on a view. System views are not included in SYSTEM.VIEWDEF.

When the view is dropped, the rows making up the byte string of the SELECT portion are
deleted. If a TRANSFER OWNERSHIP is done on the view, the owner �eld in this table is
updated with the name of the new owner.

Table 8-40. System.ViewDef

Column Name Type Length Description

VIEWNAME CHAR 20 Name of the view

OWNER CHAR 20 Owner of the view

QUALIFIER CHAR 20 Owner name to be used to qualify any unquali�ed
objects referenced in the SELECT byte string

SEGNUM INTEGER 4 Segment Number

SEGLEN INTEGER 4 Length of segment in bytes (up to 64)

SELECTSTRING CHAR 64 SELECT byte string segment

Example

SELECT * FROM System.ViewDef WHERE VIEWNAME = 'VENDORSTATISTICS';

--------------------+--------------------+--------------------+------

VIEWNAME |OWNER |QUALIFIER |SEGNUM

--------------------+--------------------+--------------------+------

VENDORSTATISTICS |PURCHDB |PURCHDB | 1

VENDORSTATISTICS |PURCHDB |PURCHDB | 2

VENDORSTATISTICS |PURCHDB |PURCHDB | 3

VENDORSTATISTICS |PURCHDB |PURCHDB | 4

VENDORSTATISTICS |PURCHDB |PURCHDB | 5

First 5 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

+------+---

|SEGLEN|SELECTSTRING

+------+---

| 64| SELECT PurchDB.Vendors.VendorNumber,PurchDB.Vendors.VendorName

| 51|, OrderDate,OrderQty,OrderQty*PurchasePrice FROM

| 58|PurchDB.Vendors,PurchDB.Orders,PurchDB.OrderItems WHERE

| 63|PurchDB.Vendors.VendorNumber=PurchDB.Orders.VendorNumber AND

| 60|PurchDB.Orders.OrderNumber=PurchDB.OrderItems.OrderNumber;

First 5 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]> r

8-78 System Catalog

A

ALLBASE/SQL Limits

The tables below present logical and physical system limits for ALLBASE/SQL. The values
show the maximums permitted by the ALLBASE/SQL software. In practice, lower maximums
may be imposed by the operating system or hardware environment in which ALLBASE/SQL
is installed. In addition, ALLBASE/SQL uses some space per page for internal data
structures. This leaves less than a complete page available to the user for tuple data and
header storage. Refer to the \Logical Design" and \Physical Design" chapters for methods of
determining the amount of space available to the user.

Page size is 4096 bytes, except for log pages, which are 512 bytes.

Table A-1. System Control Limits

Name of Limit Value

Multiuser DBEnvironments per system No limit

Single-user DBEnvironments per system No limit

Number of concurrent sessions Limited by Runtime Control Block Allocation

Number of concurrent transactions 2 to 240 (when 240 are active, additional
transactions are placed in a wait queue)

Number of concurrent connections per user 1 to 32

Number of concurrent users No limit

Timeout value 1 to 2,147,483,647 seconds
or 1 to 35,791,394 minutes

Table A-2. Logical Data Limits

Name of Limit Value

Tables per DBE 231 - 1

Maximum columns per table 1023

Bytes per row (NumberOfColumns+1)*2+SumOfColumnLengths <= 4000 (for
the VARCHAR data type, ColumnLength equals
ColumnValueLength)

Bytes per column 3996

Bytes per long column 231 - 1

Views per DBE 231 - 1

Maximum columns per view 1023

Maximum parameters per
procedure

1023

Maximum result columns per
procedure

1024

ALLBASE/SQL Limits A-1

Table A-2. Logical Data Limits (continued)

Name of Limit Value

Indexes per DBEnvironment 231 - 1

Maximum columns per B-tree
index or hash

16

Maximum columns per virtual
index (PCR)

15

Maximum B-tree or hash key size (NumberofKeyColumns + 2)*2 + SumofColumnLengths +8 <=
1024

Maximum virtual index (PCR)
key size

(NumberofKeyColumns + 3)*2 + SumofColumnLengths +10 <=
1024

Maximum sort columns 1023

Maximum sort tuple size (NumberOfSortColumns + 1)*2 + SumOfSortColumnLengths
<=4000 (for the VARCHAR data type, ColumnLength equals
ColumnValueLength)

Table A-3. Space Management Limits

Name of Limit Value

Tables per statement (including tables underlying views) 31

Query blocks per query 16

Data and index page size 4096 bytes

Log page size 512 bytes

Pages per DBEFile (except DBEFile0) 2 to 219 - 1

Pages per DBEFile0 (one per DBEnvironment) 150 to 219 - 1

DBEFiles per DBEnvironment 32767

Pages per DBEFileSet (when there is only one) (32767)(219 - 1)

Pages per DBEnvironment (all DBEFiles combined) (32767)(219 - 1)

Log size (pages) 250 to 222 - 1

Maximum size of a single log �le 4 gigabytes

Maximum number of log �les 34

Maximum size of log �le space 136 gigabytes

Number of data bu�er pages 15 to the limit of shared memory

Number of log bu�er pages 24 to 1024

Number of runtime control block pages 17 to 2000

ISQL command size 32K bytes

Maximum levels of nesting for ISQL STARTs per user 10

SQL command size 32K bytes

Number of pages per �le opened in a TempSpace
(MaxFilePages)

128 to 524284

A-2 ALLBASE/SQL Limits

B

Authorities Required by ALLBASE/SQL Statements

This appendix lists the authorities required for each ALLBASE/SQL statement. Note
that you do not have to have all of the authorities that are marked to perform an activity,
you only need one of them. For more information, refer to the \Database Creation and
Security" chapter and to the \DBEnvironment Con�guration and Security" chapter. The
ALLBASE/SQL Reference Manual contains complete descriptions of each statement.

Table B-1. Authorities Required By ALLBASE/SQL Statements

Statement Authority Required

ADD DBEFILE DBA

ADD TO GROUP DBA or OWNER

ADVANCE None

ALTER DBEFILE DBA

ALTER TABLE DBA, OWNER, or ALTER

BEGIN None

BEGIN ARCHIVE DBA

BEGIN DECLARE SECTION None

BEGIN WORK None

CHECKPOINT DBA

CLOSE None

COMMIT ARCHIVE DBA

COMMIT WORK None

CONNECT DBA or CONNECT

CREATE DBEFILE DBA

CREATE DBEFILESET DBA

CREATE GROUP DBA or RESOURCE

CREATE INDEX DBA, OWNER, or INDEX

CREATE PARTITION DBA

CREATE PROCEDURE DBA or RESOURCE (and appropriate authorities on objects
referenced by the procedure)

CREATE RULE OWNER for the table and OWNER or EXECUTE for the
procedure; or DBA

CREATE SCHEMA DBA or RESOURCE

CREATE TABLE DBA or RESOURCE

CREATE TEMPSPACE DBA or RESOURCE

CREATE VIEW DBA, OWNER, or SELECT (on relevant columns)

Authorities Required by ALLBASE/SQL Statements B-1

Table B-1. Authorities Required By ALLBASE/SQL Statements (continued)

Statement Authority Required

DECLARE CURSOR For a select cursor: DBA, OWNER, or SELECT (on relevant
columns) and UPDATE (for an updatable cursor). For a procedure
cursor: DBA or OWNER or EXECUTE (for the procedure).

DECLARE variable None

DELETE DBA, OWNER, or DELETE

DELETE WHERE CURRENT DBA, OWNER, or DELETE

DESCRIBE Same as for a SELECT or EXECUTE PROCEDURE that is
described; otherwise, none

DISABLE AUDIT LOGGING DBA

DISABLE RULES DBA

DISCONNECT None

DROP DBEFILE DBA

DROP DBEFILESET DBA

DROP GROUP DBA or OWNER

DROP INDEX DBA, OWNER, or INDEX

DROP MODULE DBA or OWNER

DROP PARTITION DBA

DROP PROCEDURE DBA or OWNER

DROP RULE DBA or OWNER

DROP TABLE DBA or OWNER

DROP TEMPSPACE DBA or OWNER

DROP VIEW DBA or OWNER

ENABLE AUDIT LOGGING DBA

ENABLE RULES DBA

END DECLARE SECTION None

EXECUTE (Interactive) DBA, RESOURCE, or OWNER

EXECUTE (Programmatic) Same as for statement being executed

EXECUTE IMMEDIATE Same as for statement being executed

EXECUTE PROCEDURE OWNER or EXECUTE for the procedure; or DBA

Execute an SQL program RUN

FETCH None

GENPLAN Same as for statement being analyzed

GOTO None

GRANT (Special) DBA

GRANT (Table, View, RUN,
EXECUTE)

DBA, OWNER, or user with grantable privilege (on tables and
views)

GRANT WITH GRANT
OPTION

Direct DBA, direct OWNER, or user with grantable privilege

GRANT BY DBA

IF None

INCLUDE None

INSERT DBA, OWNER, or INSERT

B-2 Authorities Required by ALLBASE/SQL Statements

Table B-1. Authorities Required By ALLBASE/SQL Statements (continued)

Statement Authority Required

Labeled Statement None

LOCK TABLE DBA, OWNER, or SELECT

OPEN For a select cursor: DBA, OWNER, or SELECT (on relevant
columns) and UPDATE (for an updatable cursor). For a procedure
cursor: DBA or OWNER or EXECUTE (for the procedure).

PREPARE Same as for statement being prepared

PRINT None

RAISE ERROR None

REFETCH None

RELEASE None

REMOVE DBEFILE DBA

REMOVE FROM GROUP DBA or OWNER

RESET DBA

RETURN

REVOKE (Special) DBA

REVOKE (Table, View, RUN,
EXECUTE

DBA, OWNER, or grantable privilege; only DBA if table or view
and if no CASCADE and chain of grants exists

ROLLBACK WORK None

SAVEPOINT None

SELECT DBA, OWNER, or SELECT

SET CONNECTION None

SET CONSTRAINTS None

SET DEFAULT DBEFILESET DBA

SET DML ATOMICITY None

SET MULTITRANSACTION None

SETOPT None

SET PRINTRULES DBA

SET SESSION None

SET TRANSACTION

SET USER TIMEOUT None

SQLEXPLAIN None

START DBE DBA

START DBE NEW DBA

START DBE NEWLOG DBA and DBECreator status

STOP DBE DBA

TERMINATE USER DBA

TRANSFER OWNERSHIP DBA or OWNER

TRUNCATE TABLE DBA or OWNER

UPDATE DBA, OWNER, or UPDATE

UPDATE STATISTICS DBA or OWNER

UPDATE WHERE CURRENT DBA, OWNER, or UPDATE

Authorities Required by ALLBASE/SQL Statements B-3

Table B-1. Authorities Required By ALLBASE/SQL Statements (continued)

Statement Authority Required

VALIDATE DBA or OWNER; RUN on module, or EXECUTE on procedure

WHENEVER None

WHILE None

B-4 Authorities Required by ALLBASE/SQL Statements

C

SQL Syntax Summary

ADD DBEFILE

ADD DBEFILE DBEFileName TO DBEFILESET DBEFileSetName

ADD TO GROUP

ADD

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�
TO GROUP TargetGroupName

ADVANCE

ADVANCE CursorName

�
USING

�
SQL

�
DESCRIPTOR

�
SQLDA

AreaName

��

ALTER DBEFILE

ALTER DBEFILE DBEFileName SET TYPE =

8<
:

TABLE

INDEX

MIXED

9=
;

ALTER TABLE

ALTER TABLE
�
Owner.

�
TableName

8>>>><
>>>>:

AddColumnSpeci�cation

AddConstraintSpeci�cation

DropConstraintSpeci�cation

SetTypeSpeci�cation

SetPartitionSpeci�cation

9>>>>=
>>>>;

AddColumnSpecification

ADD

�
(ColumnDe�nition

�
, . . .

�
)

Column De�nition

� �
CLUSTERING ON CONSTRAINT

�
ConstraintID

� �

SQL Syntax Summary C-1

AddConstraintSpecification

ADD CONSTRAINT (

8<
:
UniqueConstraint

ReferentialConstraint

CheckConstraint

9=
;
�
, . . .

�
)

�
CLUSTERING ON CONSTRAINT

�
ConstraintID1

� �

DropConstraintSpecification

DROP CONSTRAINT

�
(ConstraintID

�
, . . .

�
)

ConstraintID

�

SetTypeSpecification

SET TYPE

8>><
>>:

PRIVATE

PUBLICREAD

PUBLIC

PUBLICROW

9>>=
>>;
�
RESET AUTHORITY

PRESERVE AUTHORITY

�

SetPartitionSpecification

SET PARTITION

8<
:
PartitionName

DEFAULT

NONE

9=
;

Assignment (=)

�
:LocalVariable

:ProcedureParameter

�
= Expression;

BEGIN

BEGIN
�
statement;

��
. . .

�
END;

BEGIN ARCHIVE

BEGIN ARCHIVE

BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

BEGIN WORK

BEGIN WORK
�
Priority

�
2
664
RR

CS

RC

RU

3
775
�
LABEL

�
'LabelString'

:HostVariable

����
PARALLEL

NO

�
FILL

�

C-2 SQL Syntax Summary

CHECKPOINT

CHECKPOINT

2
4 :HostVariable

:LocalVariable

:ProcedureParameter

3
5

CLOSE

CLOSE CursorName

2
4 USING

8<
:
�
SQL

�
DESCRIPTOR

�
SQLDA

AreaName

�

:HostVariable
� �

INDICATOR
�
:Indicator

��
, . . .

�
9=
;
3
5

COMMIT ARCHIVE

COMMIT ARCHIVE

COMMIT WORK

COMMIT WORK
�
RELEASE

�

CONNECT

CONNECT TO

�
'DBEnvironmentName'

:HostVariable1

��
AS

�
'ConnectionName'

:HostVariable2

��
�
USER

�
'UserID'

:HostVariable3

��
USING :HostVariable4

� �

CREATE DBEFILE

CREATE DBEFILE DBEFilename WITH PAGES = DBEFileSize, NAME = 'SystemFileName'�
, INCREMENT = DBEFileIncrSize

�
, MAXPAGES = DBEFileMaxSize

� �
2
4 ,TYPE =

8<
:

TABLE

INDEX

MIXED

9=
;
3
5

CREATE DBEFILESET

CREATE DBEFILESET DBEFileSetName

CREATE GROUP

CREATE GROUP
�
Owner.

�
GroupName

SQL Syntax Summary C-3

CREATE INDEX

CREATE
�
UNIQUE

��
CLUSTERING

�
INDEX

�
Owner.

�
IndexName ON�

Owner.
�
TableName (

�
ColumnName

�
ASC

DESC

���
, . . .

�
)

CREATE PARTITION

CREATE PARTITION PartitionName WITH ID = PartitionNumber

CREATE PROCEDURE

CREATE PROCEDURE
�
Owner.

�
ProcedureName

�
LANG = ProcLangName

�
�
(ParameterDeclaration

�
, ParameterDeclaration

��
. . .

�
)
�

�
WITH RESULT ResultDeclaration

�
, ResultDeclaration

��
. . .

� �
AS BEGIN

�
ProcedureStatement

��
. . .

�
END

�
IN DBEFileSetName

�

ParameterDeclaration

ParameterName ParameterType
�
LANG = ParameterLanguage

�
�
DEFAULT DefaultValue

��
NOT NULL

��
OUTPUT

�
ONLY

� �

ResultDeclaration

ResultType
�
LANG = ResultLanguage

��
NOT NULL

�

CREATE RULE

CREATE RULE
�
Owner.

�
RuleName

AFTER StatementType
�
, . . .

�
8>><
>>:

ON

OF

FROM

INTO

9>>=
>>;
�
Owner

�
.TableName

�
REFERENCING

�
OLD AS OldCorrelationName

NEW AS NewCorrelationName

��
. . .

� � �
WHERE FiringCondition

�
EXECUTE PROCEDURE

�
OwnerName.

�
ProcedureName

�
(ParameterValue

�
, . . .

�
)
�

�
IN DBEFileSetName

�

CREATE SCHEMA

CREATE SCHEMA AUTHORIZATION AuthorizationName

2
666666666664

TableDe�nition

ViewDe�nition

IndexDe�nition

ProcedureDe�nition

RuleDe�nition

CreateGroup

AddToGroup

GrantStatement

3
777777777775

�
. . .

�

C-4 SQL Syntax Summary

CREATE TABLE

CREATE

2
664
PRIVATE

PUBLICREAD

PUBLIC

PUBLICROW

3
775TABLE

�
Owner.

�
TableName

�
LANG = TableLanguageName

�

(

8>><
>>:

ColumnDe�nition

UniqueConstraint

ReferentialConstraint

CheckConstraint

9>>=
>>;
�
, . . .

�
)

2
4 UNIQUE HASH ON (HashColumnName

�
, . . .

�
) PAGES = PrimaryPages

HASH ON CONSTRAINT
�
ConstraintID

�
PAGES = PrimaryPages

CLUSTERING ON CONSTRAINT
�
ConstraintID

�
3
5

2
4 IN PARTITION

8<
:
PartitionName

DEFAULT

NONE

9=
;
3
5

�
IN DBEFileSetName1

�

Column Definition

ColumnName

�
ColumnDataType

LongColumnType
�
IN DBEFileSetName2

�
�

�
LANG = ColumnLanguageName

�
� �

NOT
�
CASE SENSITIVE

�
2
664 DEFAULT

8>><
>>:

Constant

USER

NULL

CurrentFunction

9>>=
>>;

3
775

2
6666666664

NOT NULL

��
UNIQUE

PRIMARY KEY

��
CONSTRAINT ConstraintID

� �

REFERENCES RefTableName
�
(RefColumnName)

��
CONSTRAINT ConstraintID

�
�
. . .

�

CHECK (SearchCondition)
�
CONSTRAINT ConstraintID

�
�
IN DBEFileSetName3

�

3
7777777775

�
. . .

�

Unique Constraint (Table Level)

�
UNIQUE

PRIMARY KEY

�
(ColumnName

�
, . . .

�
)
�
CONSTRAINT ConstraintID

�

Referential Constraint (Table Level)

FOREIGN KEY (FKColumnName
�
, . . .

�
)

REFERENCES RefTableName
�
(RefColumnName

�
, . . .

�
)
� �

CONSTRAINT ConstraintID
�

SQL Syntax Summary C-5

Check Constraint (Table Level)

CHECK (SearchCondition)
�
CONSTRAINT ConstraintID

� �
IN DBEFileSetName3

�

CREATE TEMPSPACE

CREATE TEMPSPACE TempSpaceName
WITH

�
MAXFILEPAGES = MaxTempFileSize,

�
LOCATION ='PhysicalLocation'

CREATE VIEW

CREATE VIEW
�
Owner.

�
ViewName

�
(ColumnName

�
, . . .

�
)
�

AS QueryExpression
�
IN DBEFileSetName

�
�
WITH CHECK OPTION

�
CONSTRAINT ConstraintID

� �

DECLARE CURSOR

DECLARE CursorName
�
IN DBEFileSetName

�
CURSOR FOR8>><

>>:

�
QueryExpression

SelectStatementName

��
FOR UPDATE OF

�
ColumnName

	�
, . . .

�
FOR READ ONLY

�

ExecuteProcedureStatement

ExecuteStatementName

9>>=
>>;

DECLARE Variable

DECLARE
�
LocalVariable

	�
, . . .

�
VariableType

�
LANG = VariableLangName

�
2
4 DEFAULT

8<
:
Constant

NULL

CurrentFunction

9=
;
3
5� NOT NULL

�

DELETE

DELETE
�
WITH AUTOCOMMIT

�
FROM

��
Owner.

�
TableName�

Owner.
�
ViewName

��
WHERE SearchCondition

�

DELETE WHERE CURRENT

DELETE FROM

��
Owner.

�
TableName�

Owner.
�
ViewName

�
WHERE CURRENT OF CursorName

DESCRIBE

DESCRIBE

2
4 OUTPUT

INPUT

RESULT

3
5StatementName

�
INTO

� �
SQL

�
DESCRIPTOR

�
USING

�
SQL

�
DESCRIPTOR

��
SQLDA

AreaName

�

C-6 SQL Syntax Summary

DISABLE AUDIT LOGGING

DISABLE AUDIT LOGGING

DISABLE RULES

DISABLE RULES

DISCONNECT

DISCONNECT

8>>>><
>>>>:

'ConnectionName'

'DBEnvironmentName'

:HostVariable

ALL

CURRENT

9>>>>=
>>>>;

DROP DBEFILE

DROP DBEFILE DBEFileName

DROP DBEFILESET

DROP DBEFILESET DBEFileSetName

DROP GROUP

DROP GROUP GroupName

DROP INDEX

DROP INDEX
�
Owner.

�
IndexName

�
FROM

�
Owner.

�
TableName

�

DROP MODULE

DROP MODULE
�
Owner.

�
ModuleName

�
PRESERVE

�

DROP PARTITION

DROP PARTITION PartitionName

DROP PROCEDURE

DROP PROCEDURE
�
Owner.

�
ProcedureName

�
PRESERVE

�

SQL Syntax Summary C-7

DROP RULE

DROP RULE
�
Owner.

�
RuleName

�
FROM TABLE

�
Owner.

�
TableName

�

DROP TABLE

DROP TABLE
�
Owner.

�
TableName

DROP TEMPSPACE

DROP TEMPSPACE TempSpaceName

DROP VIEW

DROP VIEW
�
Owner.

�
ViewName

ENABLE AUDIT LOGGING

ENABLE AUDIT LOGGING

ENABLE RULES

ENABLE RULES

END DECLARE SECTION

END DECLARE SECTION

EXECUTE

EXECUTE

�
StatementName�
Owner.

�
ModuleName

�
(SectionNumber)

�
�

2
6666666666666664

USING

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

�
SQL

�
DESCRIPTOR

8>>>>>><
>>>>>>:

�
INPUT

��SQLDA

AreaName1

�
�
AND OUTPUT

�
SQLDA

AreaName2

��

OUTPUT

�
SQLDA

AreaName

�

9>>>>>>=
>>>>>>;

�
INPUT

�
HostVariableSpeci�cation1�

AND OUTPUT HostVariableSpeci�cation2
�

OUTPUT HostVariableSpeci�cation

:Bu�er
�
,:StartIndex

�
, :NumberOfRows

� �

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

3
7777777777777775

HostVariableSpecification

:HostVariableName
� �

INDICATOR
�
:IndicatorVariable

��
, . . .

�

C-8 SQL Syntax Summary

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE

�
'String'

:HostVariable

�

EXECUTE PROCEDURE

EXECUTE PROCEDURE
�
:ReturnStatusVariable =

��
Owner.

�
ProcedureName�

(
�
ActualParameter

��
,
�
ActualParameter

� ��
. . .

�
)
�

ActualParameter

�
ParameterName =

�
ParameterValue

�
OUTPUT

�
ONLY

� �

FETCH

�
BULK

�
FETCH CursorName

8>><
>>:

INTO HostVariableSpeci�cation

USING

8<
:
�
SQL

�
DESCRIPTOR

�
SQLDA

AreaName

�

HostVariableSpeci�cation

9=
;

9>>=
>>;

BULK HostVariableSpecification

:Bu�er
�
,:StartIndex

�
,:NumberOfRows

� �

Non-BULK HostVariableSpecification

�
:HostVariable

� �
INDICATOR

�
:Indicator

� 	�
, . . .

�

GENPLAN

GENPLAN
�
WITH (HostVariableDe�nition)

�
FOR8<

:
SQLStatement

MODULE SECTION
�
Owner.

�
ModuleName(SectionName)

PROCEDURE SECTION
�
Owner.

�
ProcedureName(SectionName)

9=
;

GOTO

�
GOTO

GO TO

��
Label

Integer

�

SQL Syntax Summary C-9

GRANT

GRANT

8>>>>>>>>>>><
>>>>>>>>>>>:

ALL
�
PRIVILEGES

�
8>>>>>>>>><
>>>>>>>>>:

SELECT

INSERT

DELETE

ALTER

INDEX

UPDATE
�
(
�
ColumnName

	�
, . . .

�
)
�

REFERENCES
�
(
�
ColumnName

	�
, . . .

�
)
�

9>>>>>>>>>=
>>>>>>>>>;

|, . . . |

9>>>>>>>>>>>=
>>>>>>>>>>>;

ON

��
Owner.

�
TableName�

Owner.
�
ViewName

�
TO

8>><
>>:

DBEUserID

GroupName

ClassName

PUBLIC

9>>=
>>;
�
, . . .

� �
WITH GRANT OPTION

�

�
BY

�
DBEUserID

ClassName

��

Grant RUN or EXECUTE Authority

GRANT

�
RUN ON

�
Owner.

�
ModuleName

EXECUTE ON PROCEDURE
�
Owner.

�
ProcedureName

�
TO

8>><
>>:

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�

PUBLIC

9>>=
>>;

Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority

GRANT

8>>>><
>>>>:

CONNECT

DBA

INSTALL
�
AS OwnerID

�
MONITOR

RESOURCE

9>>>>=
>>>>;
TO

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�

Grant DBEFileSet Authority

GRANT

�
SECTIONSPACE

TABLESPACE

��
, . . .

�
ON DBEFILESET DBEFileSetName TO

8>><
>>:

DBEUserID

GroupName

ClassName

PUBLIC

9>>=
>>;
�
, . . .

�

IF

IF Condition THEN
�
Statement;

�
. . .

� �
�
ELSEIF Condition THEN

�
Statement;

�
. . .

� � �
�
ELSE

�
Statement;

�
. . .

� � �
ENDIF;

C-10 SQL Syntax Summary

INCLUDE

INCLUDE

�
SQLCA

� �
IS
�
EXTERNAL

�
SQLDA

�

INSERT - 1

�
BULK

�
INSERT INTO

��
Owner.

�
TableName�

Owner.
�
ViewName

�
�
(
�
ColumnName

	�
, . . .

�
)
�

VALUES (

8<
:
SingleRowValues

BulkValues

?

9=
;)

SingleRowValues8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

NULL

USER

:HostVariable
� �

INDICATOR
�
:IndicatorVariable

�
?

:LocalVariable

:ProcedureParameter

::Built-inVariable

ConversionFunction

CurrentFunction�
+

-

�8<
:
Integer

Float

Decimal

9=
;

'CharacterString'

0xHexadecimalString

'LongColumnIOString'

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

�
, . . .

�

LongColumnIOString

<

��
PathName/

�
FileName

% SharedMemoryAddress

�
2
6666664

8<
:

>

>>

>!

9=
;
�
PathName/

�
8<
:
FileName

CharString$

CharString$CharString

9=
;

> %

�
SharedMemoryAddress

$

�

3
7777775

BulkValues

:Bu�er
�
,:StartIndex

�
, :NumberOfRows

� �

SQL Syntax Summary C-11

Dynamic Parameter Substitution

(?
�
, . . .

�
)

INSERT - 2

INSERT INTO

��
Owner.

�
TableName�

Owner.
�
ViewName

��
(ColumnName

�
, . . .

�
)
�

QueryExpression

Labeled Statement

Label: Statement

LOCK TABLE

LOCK TABLE
�
Owner.

�
TableName IN

�
SHARE

�
UPDATE

�
EXCLUSIVE

�
MODE

LOG COMMENT

LOG COMMENT

8>>>><
>>>>:

'String'

:HostVariable

:ProcedureParameter

:ProcedureLocalVariable

?

9>>>>=
>>>>;

OPEN

OPEN CursorName

�
KEEP CURSOR

�
WITH LOCKS

WITH NOLOCKS

� �
2
4 USING

8<
:
�
SQL

�
DESCRIPTOR

�
SQLDA

AreaName

�

HostVariableName
� �

INDICATOR
�
:IndicatorVariable

��
, . . .

�
9=
;
3
5

PREPARE

PREPARE
�
REPEAT

�� StatementName�
Owner.

�
ModuleName

�
(SectionNumber)

�
�

�
IN DBEFileSetName

�
FROM

�
'String'

:HostVariable

�

PRINT

PRINT

8>><
>>:

'Constant'

:LocalVariable

:Parameter

::Built-inVariable

9>>=
>>;
;

C-12 SQL Syntax Summary

RAISE ERROR

RAISE ERROR
�
ErrorNumber

��
MESSAGE ErrorText

�

REFETCH

REFETCH CursorName INTO
�
:HostVariable

� �
INDICATOR

�
:Indicator

� 	�
, . . .

�

RELEASE

RELEASE

REMOVE DBEFILE

REMOVE DBEFILE DBEFileName FROM DBEFILESET DBEFileSetName

REMOVE FROM GROUP

REMOVE

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�
FROM GROUP

�
Owner.

�
TargetGroupName

RENAME COLUMN

RENAME COLUMN
�
Owner.

�
TableName.ColumnName TO NewColumnName

RENAME TABLE

RENAME TABLE
�
Owner.

�
TableName TO NewTableName

RESET

RESET

8<
:

SYSTEM.ACCOUNT

�
FOR USER

�
*

DBEUserID

��

SYSTEM.COUNTER

9=
;

RETURN

RETURN
�
ReturnStatus

�
;

SQL Syntax Summary C-13

REVOKE

Revoke Table or View Authority

REVOKE

8>>>>>>>>>>><
>>>>>>>>>>>:

ALL
�
PRIVILEGES

�
2
6666666664

SELECT

INSERT

DELETE

ALTER

INDEX

UPDATE
�
(
�
ColumnName

	�
, . . .

�
)
�

REFERENCES
�
(
�
ColumnName

	�
, . . .

�
)
�

3
7777777775
|, . . . |

9>>>>>>>>>>>=
>>>>>>>>>>>;

ON

��
Owner.

�
TableName�

Owner.
�
ViewName

�
FROM

8>><
>>:

DBEUserID

GroupName

ClassName

PUBLIC

9>>=
>>;
�
, . . .

��
CASCADE

�

Revoke RUN or EXECUTE or Authority

REVOKE

�
RUN ON

�
Owner.

�
ModuleName

EXECUTE ON PROCEDURE
�
Owner.

�
ProcedureName

�
FROM

8>><
>>:

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�

PUBLIC

9>>=
>>;

Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority

REVOKE

8>>>><
>>>>:

CONNECT

DBA

INSTALL
�
AS OwnerID

�
MONITOR

RESOURCE

9>>>>=
>>>>;
FROM

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�

SQL Syntax|Revoke DBEFileSet Authority

REVOKE

�
SECTIONSPACE

TABLESPACE

�
|, . . . | ON DBEFILESET DBEFileSetName FROM

8>><
>>:

8<
:
DBEUserID

GroupName

ClassName

9=
;
�
, . . .

�

PUBLIC

9>>=
>>;

C-14 SQL Syntax Summary

ROLLBACK WORK

ROLLBACK WORK

2
66664
TO

8>><
>>:

SavePointNumber

:HostVariable

:LocalVariable

:ProcedureParameter

9>>=
>>;

RELEASE

3
77775

SAVEPOINT

SAVEPOINT

2
4 :HostVariable

:LocalVariable

:ProcedureParameter

3
5

SELECT

Select Statement Level

�
BULK

�
QueryExpression

�
ORDER BY

�
ColumnID

�
ASC

DESC

���
, . . .

� �

Subquery Level

(QueryExpression)

Query Expression Level

�
QueryBlock

(QueryExpression)

��
UNION

�
ALL

��QueryBlock

(QueryExpression)

���
. . .

�

Query Block Level

SELECT

�
ALL

DISTINCT

�
SelectList

�
INTO HostVariableSpeci�cation

�
FROM FromSpec

�
, . . .

�
�
WHERE SearchCondition1

�
�
GROUP BY GroupColumnList

�
�
HAVING SearchCondition2

�

SelectList

8>>>>>><
>>>>>>:

*�
Owner.

�
Table.*

CorrelationName.*

Expression� �
Owner.

�
Table.

�
ColumnName

CorrelationName.ColumnName

9>>>>>>=
>>>>>>;

�
, . . .

�

SQL Syntax Summary C-15

HostVariableSpecification|With BULK Option

:Bu�er
�
,:StartIndex

�
,:NumberOfRows

� �

HostVariableSpecification|Without BULK Option

�
:HostVariable

� �
INDICATOR

�
:Indicator

� 	�
, . . .

�

FromSpec

8>>>>>>>>>>><
>>>>>>>>>>>:

TableSpec

(FromSpec)

FromSpec NATURAL

2
4 INNER

LEFT
�
OUTER

�
RIGHT

�
OUTER

�
3
5JOIN

�
TableSpec

(FromSpec)

�

FromSpec

2
4 INNER

LEFT
�
OUTER

�
RIGHT

�
OUTER

�
3
5JOIN

�
TableSpec

(FromSpec)

��
ON SearchCondition3

USING (ColumnList)

�

9>>>>>>>>>>>=
>>>>>>>>>>>;

TableSpec

�
Owner.

�
TableName

�
CorrelationName

�

SET CONNECTION

SET CONNECTION

�
'ConnectionName'

:HostVariable

�

SET CONSTRAINTS

SET ConstraintType
�
, . . .

�
CONSTRAINTS

�
DEFERRED

IMMEDIATE

�

SET DEFAULT DBEFILESET

SET DEFAULT

�
SECTIONSPACE

TABLESPACE

�
TO DBEFILESET DBEFileSetName FOR PUBLIC

SET DML ATOMICITY

SET DML ATOMICITY AT

�
ROW

STATEMENT

�
LEVEL

SET MULTITRANSACTION

SET MULTITRANSACTION

�
ON

OFF

�

C-16 SQL Syntax Summary

SETOPT

SETOPT

8>>>><
>>>>:

CLEAR

GENERAL

�
ScanAccess

JoinAlgorithm

��
, . . .

�

BEGIN

�
GENERAL

�
ScanAccess

JoinAlgorithm

���
; . . .

�
END

9>>>>=
>>>>;

Scan Access

�
NO
�
8>><
>>:

SERIALSCAN

INDEXSCAN

HASHSCAN

SORTINDEX

9>>=
>>;

Join Algorithm

�
NO
�
8>><
>>:

NESTEDLOOP

NLJ

SORTMERGE

SMJ

9>>=
>>;

SET PRINTRULES

SET PRINTRULES

�
ON

OFF

�

SQL Syntax Summary C-17

SET SESSION

SET SESSION

8>>><
>>>:

ISOLATION LEVEL

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

RR

CS

RC

RU

REPEATABLE READ

SERIALIZABLE

CURSOR STABILITY

READ COMMITTED

READ UNCOMMITTED

:HostVariable1

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

PRIORITY

�
Priority

:HostVariable2

�

LABEL

�
'LabelString'

:HostVariable3

�

ConstraintType
�
, . . .

�
CONSTRAINTS

�
DEFERRED

IMMEDIATE

�

DML ATOMICITY AT

�
STATEMENT

ROW

�
LEVEL

ON

�
TIMEOUT

DEADLOCK

�
ROLLBACK

�
QUERY

TRANSACTION

�

USER TIMEOUT
�
TO
�

8>>>>>><
>>>>>>:

DEFAULT

MAXIMUM

TimeoutValue

��
SECONDS

MINUTES

��

:HostVariable4

��
SECONDS

MINUTES

��

9>>>>>>=
>>>>>>;

TERMINATION AT

8>><
>>:

SESSION

TRANSACTION

QUERY

RESTRICTED

9>>=
>>;
LEVEL

��
PARALLEL

NO

��
FILL

9>>>=
>>>;

�
, . . .

�

C-18 SQL Syntax Summary

SET TRANSACTION

SET TRANSACTION

8>><
>>:

ISOLATION LEVEL

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

RR

CS

RC

RU

REPEATABLE READ

SERIALIZABLE

CURSOR STABILITY

READ COMMITTED

READ UNCOMMITTED

:HostVariable1

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

PRIORITY

�
Priority

:HostVariable2

�

LABEL

�
'LabelString'

:HostVariable3

�

ConstraintType
�
, . . .

�
CONSTRAINTS

�
DEFERRED

IMMEDIATE

�

DML ATOMICITY AT

�
STATEMENT

ROW

�
LEVEL

ON

�
TIMEOUT

DEADLOCK

�
ROLLBACK

�
QUERY

TRANSACTION

�

USER TIMEOUT
�
TO
�

8>>>>>><
>>>>>>:

DEFAULT

MAXIMUM

TimeoutValue

��
SECONDS

MINUTES

��

:HostVariable4

��
SECONDS

MINUTES

��

9>>>>>>=
>>>>>>;

TERMINATION AT

8>><
>>:

SESSION

TRANSACTION

QUERY

RESTRICTED

9>>=
>>;
LEVEL

9>>=
>>;

�
, . . .

�

SET USER TIMEOUT

SET USER TIMEOUT
�
TO
�
8>><
>>:

�
TimeoutValue

:HostVariable

��
SECONDS

MINUTES

�

DEFAULT

MAXIMUM

9>>=
>>;

SQLEXPLAIN

SQLEXPLAIN :HostVariable

SQL Syntax Summary C-19

START DBE

START DBE 'DBEnvironmentName'
�
AS ConnectionName'

��
MULTI

�
2
66666666666664

BUFFER = (DataBu�erPages, LogBu�erPages)

TRANSACTION = MaxTransactions

MAXIMUM TIMEOUT =

8<
:
TimeoutValue

�
SECONDS

MINUTES

�

NONE

9=
;

DEFAULT TIMEOUT =

8<
:
TimeoutValue

�
SECONDS

MINUTES

�

MAXIMUM

9=
;

RUN BLOCK = ControlBlockPages

3
77777777777775

|, . . . |

START DBE NEW

START DBE 'DBEnvironmentName'
�
AS 'ConnectionName'

��
MULTI

�
NEW2

664

�
DUAL

AUDIT

�
| . . . | LOG

BUFFER = (DataBu�erPages, LogBu�erPages)

LANG = LanguageName

TRANSACTION = MaxTransactions

MAXIMUM TIMEOUT =

8<
:
TimeoutValue

�
SECONDS

MINUTES

�

NONE

9=
;

DEFAULT TIMEOUT =

8<
:
TimeoutValue

�
SECONDS

MINUTES

�

MAXIMUM

9=
;

RUN BLOCK = ControlBlockPages

DEFAULT PARTITION =

�
DefaultPartitionNumber

NONE

�

COMMENT PARTITION =

8<
:
CommentPartitionNumber

DEFAULT

NONE

9=
;

MAXPARTITIONS = MaximumNumberOfPartitions

AUDIT NAME = 'AuditName'8>>>>>>>>><
>>>>>>>>>:

COMMENT

DATA

DEFINITION

STORAGE

AUTHORIZATION

SECTION

ALL

9>>>>>>>>>=
>>>>>>>>>;

| . . . | AUDIT ELEMENTS

DBEFile0De�nition

DBELogDe�nition

3
775

|, . . . |

C-20 SQL Syntax Summary

DBEFile0Definition

DBEFILE0 DBEFILE DBEFile0ID
WITH PAGES = DBEFile0Size,
NAME = 'SystemFileName1'

DBELogDefinition

LOG DBEFILE DBELog1ID
�
AND DBELog2ID

�
WITH PAGES = DBELogSize,
NAME = 'SystemFileName2'

�
AND 'SystemFileName3'

�

START DBE NEWLOG

START DBE 'DBEnvironmentName'
�
AS 'ConnectionName'

��
MULTI

�
NEWLOG2

6664

8<
:

ARCHIVE

DUAL

AUDIT

9=
;| . . . | LOG

BUFFER = (DataBu�erPages, LogBu�erPages)

TRANSACTION = MaxTransactions

MAXIMUM TIMEOUT =

8<
:
TimeoutValue

�
SECONDS

MINUTES

�

NONE

9=
;

DEFAULT TIMEOUT =

8<
:
TimeoutValue

�
SECONDS

MINUTES

�

MAXIMUM

9=
;

RUN BLOCK = ControlBlockPages

DEFAULT PARTITION =

�
DefaultPartitionNumber

NONE

�

COMMENT PARTITION =

8<
:
CommentPartitionNumber

DEFAULT

NONE

9=
;

MAXPARTITIONS = MaximumNumberOfPartitions

AUDIT NAME = 'AuditName'8>>>>>>>>><
>>>>>>>>>:

COMMENT

DATA

DEFINITION

STORAGE

AUTHORIZATION

SECTION

ALL

9>>>>>>>>>=
>>>>>>>>>;

| . . . | AUDIT ELEMENTS

3
7775

|, . . . | NewLogDe�nition

NewLogDefinition

LOG DBEFILE DBELog1ID
�
AND DBELog2ID

�
WITH PAGES = DBELogSize,
NAME = 'SystemFileName1'

�
AND 'SystemFileName2'

�

SQL Syntax Summary C-21

STOP DBE

STOP DBE

TERMINATE QUERY

TERMINATE QUERY FOR

�
CID ConnectionID

XID TransactionID

�

TERMINATE TRANSACTION

TERMINATE TRANSACTION FOR

�
CID ConnectionID

XID TransactionID

�

TERMINATE USER

TERMINATE USER

8<
:
DBEUserID

SessionID

CID ConnectionID

9=
;

TRANSFER OWNERSHIP

TRANSFER OWNERSHIP OF

8>><
>>:

�
TABLE

��
Owner.

�
TableName�

VIEW
��
Owner.

�
ViewName

PROCEDURE
�
Owner.

�
ProcedureName

GROUP GroupName

9>>=
>>;
TO NewOwnerName

TRUNCATE TABLE

TRUNCATE TABLE
�
Owner.

�
TableName

UPDATE

UPDATE

��
Owner.

�
TableName�

Owner.
�
ViewName

�

SET

8<
:ColumnName =

8<
:
Expression

'LongColumnIOString'

NULL

9=
;
9=
;
�
, . . .

�
�
WHERE SearchCondition

�

C-22 SQL Syntax Summary

LongColumnIOString

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
<

��
PathName/

�
FileName

% SharedMemoryAddress

��

2
6666664

8<
:

>

>>

>!

9=
;
�
PathName/

�
8<
:
FileName

CharString$

CharString$CharString

9=
;

> %

�
SharedMemoryAddress

$

�

3
7777775

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

| . . . |

UPDATE STATISTICS

UPDATE STATISTICS FOR TABLE

��
Owner.

�
TableName

SYSTEM.SystemViewName

�

UPDATE WHERE CURRENT

UPDATE

��
Owner.

�
TableName�

Owner.
�
ViewName

�

SET

8<
:ColumnName =

8<
:
Expression

'LongColumnIOString'

NULL

9=
;
9=
;
�
, . . .

�

WHERE CURRENT OF CursorName

LongColumnIOString

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�
<

��
PathName/

�
FileName

% SharedMemoryAddress

��

2
6666664

8<
:

>

>>

>!

9=
;
�
PathName/

�
8<
:
FileName

CharString$

CharString$CharString

9=
;

> %

�
SharedMemoryAddress

$

�

3
7777775

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

| . . . |

SQL Syntax Summary C-23

VALIDATE

VALIDATE

�
FORCE

DROP SETOPTINFO

�
8>>>>>>>>>>><
>>>>>>>>>>>:

MODULE

�� �
Owner.

�
ModuleName

	�
, . . .

�
�
SECTION

�
Owner.

�
ModuleName (Section Number)

	�
, . . .

�
�

PROCEDURE

�� �
Owner.

�
ProcedureName

	�
, . . .

�
�
SECTION

�
Owner.

�
ProcedureName (Section Number)

	�
, . . .

�
�

ALL

�
MODULES

PROCEDURES

��
WITH AUTOCOMMIT

�

9>>>>>>>>>>>=
>>>>>>>>>>>;

WHENEVER

WHENEVER

8<
:

SQLERROR

SQLWARNING

NOT FOUND

9=
;

8>><
>>:

STOP

CONTINUE

GOTO
�
:
�
Label

GO TO
�
:
�
Label

9>>=
>>;

WHILE

WHILE Condition DO
�
Statement;

�
. . .

� �
ENDWHILE;

C-24 SQL Syntax Summary

D

ISQL Syntax Summary

ISQL is the interactive interface to ALLBASE/SQL. Some, but not all, ALLBASE/SQL
statements can be entered interactively as ISQL commands.

CHANGE

C
�
HANGE

�
Delimiter OldString Delimiter NewString Delimiter

�
@
�

DO

DO

�
CommandNumber

CommandString

�

EDIT

ED
�
IT
��
FileName

�

END

EN
�
D
�

ERASE

ER
�
ASE

�
FileName

EXIT

EX
�
IT
�

EXTRACT

EXTRACT

8<
:

MODULE
�
Owner.

�
ModuleName

�
, . . .

�
SECTION

�
Owner.

�
ModuleName(SectionNumber)

�
, . . .

�
ALL MODULES

9=
;�

NO SETOPTINFO
�
INTO FileName

ISQL Syntax Summary D-1

HELP

HE
�
LP
�
8<
:

@

SQLStatement

ISQLCommand

9=
;
2
4 D
�
ESCRIPTION

�
S
�
YNTAX

�
E
�
AMPLE

�
3
5

HOLD

HO
�
LD
�� SQLStatement

ISQLCommand

��
EscapeCharacter;

�
SQLStatement

ISQLCommand

���
. . .

�

INFO

IN
�
FO
�� �Owner. �TableName�

Owner.
�
ViewName

�

INPUT

INP
�
UT
�� �Owner. �TableName�

Owner.
�
ViewName

�
(ColumnName

�
,ColumnName

��
. . .

�
)�

(Value
�
,Value

��
. . .

�
)

�
ROLLBACK WORK

COMMIT WORK

���
. . .

�
E
�
ND
�

INSTALL

IN
�
STALL

�
FileName

�
DROP

��
IN DBEFileSetName

��
NO OPTINFO

�

LIST FILE

LI
�
ST
�
F
�
ILE

�
FileName

LIST HISTORY

LI
�
ST
�
H
�
ISTORY

��CommandNumber

@

�

LIST INSTALL

LI
�
ST
�
I
�
NSTALL

�
FileName

D-2 ISQL Syntax Summary

LIST SET

LI
�
ST
�
S
�
ET
��Option

@

�

LOAD

LO
�
AD
��
P
�
ARTIAL

� �
FROM

�
E
�
XTERNAL

�
I
�
NTERNAL

�
�
InputFileName

�
AT StartingRow

�
�
FOR NumberOfRows

�
TO

��
Owner.

�
TableName�

Owner.
�
ViewName

� �
ExternalInputSpec

USING DescriptionFileName

�
�
Y
�
ES
�
PatternLocation Pattern

N
�
O
�

�

ExternalInputSpec

�
ColumnName StartingLocation Length

�
NullIndicator

�
�
FormatType

�
��

. . .
�
E
�
ND
�

RECALL

REC
�
ALL

�
8<
:

C
�
URRENT

�
F
�
ILE

�
FileName

H
�
ISTORY

�
CommandNumber

9=
;

REDO

RED
�
O
��CommandNumber

CommandString

�

Subcommands

B Break

D Delete

E Exit

H Help

I Insert

L List

R Replace

X Execute

+[n] Forward n

-[n] Backward n

�Return� Next Line

ISQL Syntax Summary D-3

RENAME

REN
�
AME

�
OldFileName NewFileName

SELECTSTATEMENT

SelectStatement;
�
PA
�
USE

�
;
��
BrowseOption;

��
. . .

�
E
�
ND
�

SET

SE
�
T
�
Option OptionValue

Options and Values

AUTOC[OMMIT] ON | OFF

AUTOL[OCK] ON | OFF

AUTOS[AVE] NumberofRows

C[ONTINUE] ON | OFF

CONV[ERT] ASCII | EBCDIC | OFF

EC[HO] ON | OFF

ECHO_[ALL] ON | OFF

EDITOR EditorName

ES[CAPE] Character

EXIT[_ON_DBERR] ON | OFF

EXIT_ON_DBWARN ON | OFF

FL[AGGER] FlaggerName

F[RACTION] Length

N[ULL] [Character]

OU[TPUT] FileName

OW[NER] OwnerName

LOAD_B[UFFER] Bu�erSize

PA[GEWIDTH] PageWidth

PR[OMPT] PromptString

SQLGEN

SQLG
�
EN
�

SQLUTIL

SQLU
�
TIL

�

D-4 ISQL Syntax Summary

START

STA
�
RT
��
CommandFileName

��
(Value

�
,Value

��
. . .

�
)
�

STORE

STO
�
RE
�
FileName

�
R
�
EPLACE

� �

SYSTEM

�
SY
�
STEM

�
!

��
HP-UXCommand

�

UNLOAD

U
�
NLOAD

�
TO

�
E
�
XTERNAL

�
I
�
NTERNAL

�
�
OutputFileName

FROM

8<
:
�
Owner.

�
TableName�

Owner.
�
ViewName

"SelectCommand"

9=
;ExternalOutputSpec

ExternalOutputSpec

DescriptionFileName

�
OutputLength

�
FractionLength

�
�
NullIndicator

�
��

. . .
�

ISQL Syntax Summary D-5

E

Locks Held on the System Catalog by SQL Statements

This appendix shows the locks that you can obtain on the tables in the system catalog. This
appendix may be useful in determining the source of repeated locking problems. For more
information, refer to the chapter \Concurrency Control Through Locks and Isolation Levels"
in the ALLBASE/SQL Reference Manual .

If an SQL statement listed in Table E-2 (which appears later in this chapter) is embedded in
a procedure or a preprocessed application and a section is stored for the statement, system
catalog pages will also be locked as follows:

At INSTALL time (in ISQL), preprocess time, or CREATE PROCEDURE time (ISQL):
exclusive page locks on SYSTEM.SECTION.

At run time or EXECUTE PROCEDURE time: shared page locks on SYSTEM.SECTION.
If the section is found to be invalid at run time, all pages accessed for a PREPARE
statement could be locked in addition to the pages normally locked for the statement
contained in the section.

At VALIDATE time: exclusive page locks on SYSTEM.SECTION pages containing invalid
sections.

As an example, consider an UPDATE statement embedded in an application program.
When you preprocess the application, a page in the SYSTEM.SECTION table is locked
exclusively as the new section is added. When you run the application, the EXECUTE
statement implicitly runs as the stored section executes. EXECUTE obtains share locks on
pages in SYSTEM.SECTION. If the section becomes invalid and then you run the application
again, the PREPARE statement implicitly runs, obtaining an exclusive lock on pages in
SYSTEM.SECTION; then the EXECUTE statement implicitly runs as the stored section
executes.

Some of the system catalog views overlap with each other, because they are based on the same
underlying table. The following groups of system views overlap in such a way that a lock on
one member of the group e�ectively is a lock on all the members of the group:

Views containing de�nitions, based on the table HPRDBSS.VIEWDEF:
SYSTEM.VIEWDEF
SYSTEM.CHECKDEF
SYSTEM.RULEDEF
SYSTEM.PROCEDUREDEF

Views with index information, based on the table HPRDBSS.INDEX:
SYSTEM.INDEX
SYSTEM.HASH
SYSTEM.CONSTRAINTINDEX

Views containing defaults, based on the table HPRDBSS.COLDEFAULT:
SYSTEM.COLDEFAULT
SYSTEM.PARAMDEFAULT

Locks Held on the System Catalog by SQL Statements E-1

Views containing �le de�nitions, based on the table HPRDBSS.DBEFILE:
SYSTEM.DBEFILE
SYSTEM.TEMPSPACE

Views containing authorizations, based on the table HPRDBSS.MODAUTH:
SYSTEM.MODAUTH
SYSTEM.PROCAUTH

Table E-1 lists the base tables from which the system catalog views are derived.

Table E-1. Mapping the System Views to the Base System Tables

View Name Table Name

SYSTEM.CHECKDEF HPRDBSS.VIEWDEF

SYSTEM.COLAUTH HPRDBSS.COLAUTH

SYSTEM.COLDEFAULT HPRDBSS.COLDEFAULT

SYSTEM.COLUMN HPRDBSS.COLUMN

SYSTEM.CONSTRAINT HPRDBSS.CONSTRAINT

SYSTEM.CONSTRAINTCOL HPRDBSS.CONSTRAINTCOL

SYSTEM.CONSTRAINTINDEX HPRDBSS.INDEX

SYSTEM.DBEFILE HPRDBSS.DBEFILE

SYSTEM.DBEFILESET HPRDBSS.DBEFILESET

SYSTEM.GROUP HPRDBSS.GROUP

SYSTEM.HASH HPRDBSS.INDEX

SYSTEM.INDEX HPRDBSS.INDEX

SYSTEM.INSTALLAUTH HPRDBSS.MODAUTH

SYSTEM.MODAUTH HPRDBSS.MODAUTH

SYSTEM.PARAMDEFAULT HPRDBSS.COLDEFAULT

SYSTEM.PARAMETER HPRDBSS.PARAMETER

SYSTEM.PARTITION HPRDBSS.PARTITION

SYSTEM.PROCAUTH HPRDBSS.MODAUTH

SYSTEM.PROCEDURE HPRDBSS.PROCEDURE

SYSTEM.PROCEDUREDEF HPRDBSS.VIEWDEF

SYSTEM.PROCRESULT HPRDBSS.PROCRESULT

SYSTEM.RULE HPRDBSS.RULE

SYSTEM.RULECOLUMN HPRDBSS.RULECOLUMN

SYSTEM.RULEDEF HPRDBSS.VIEWDEF

SYSTEM.SECTION HPRDBSS.SECTION

SYSTEM.SETOPTINFO HPRDBSS.SETOPTINFO

SYSTEM.SPACEAUTH HPRDBSS.SPACEAUTH

SYSTEM.SPACEDEFAULT HPRDBSS.SPACEDEFAULT

SYSTEM.SPECAUTH HPRDBSS.SPECAUTH

SYSTEM.TABAUTH HPRDBSS.TABAUTH

SYSTEM.TABLE HPRDBSS.TABLE

SYSTEM.TEMPSPACE HPRDBSS.DBEFILE

SYSTEM.VIEWDEF HPRDBSS.VIEWDEF

E-2 Locks Held on the System Catalog by SQL Statements

Locks on the system catalog are held to the end of the transaction, no matter what isolation
level is used, to ensure the integrity of database objects while they are being used.

Whenever the HPRDBSS.SECTION table is locked, similar locks are placed on a
STOREDSECT.DBEFileSetName table.

Some statements by their nature incorporate one or more other SQL statements. When a
statement from the following list includes other SQL statements, locks may also be obtained
for each statement incorporated:

CREATE PROCEDURE (most SQL statements)
CREATE SCHEMA (data de�nition statements)
CREATE VIEW (SELECT statement)
DECLARE CURSOR (SELECT statement or EXECUTE PROCEDURE statement)
EXECUTE IMMEDIATE (most SQL statements)
EXECUTE (most SQL statements, when not valid)
GENPLAN (SELECT, UPDATE, or DELETE statements)
PREPARE (most SQL statements)
VALIDATE (SQL statements contained in stored sections or procedures)

The following group of statements used only within procedures do not obtain locks:

Assignment
BEGIN . . . END
DECLARE Variable
GOTO
IF . . . THEN . . . ELSE . . . ENDIF
Labeled Statement
PRINT
RETURN
WHILE . . . DO . . . ENDWHILE

Note The information in this appendix is general in nature, and it shows worst case
locking for a particular SQL statement. Not all locks are necessarily requested
in all instances.

Locks Held on the System Catalog by SQL Statements E-3

Table E-2. Locks Held on the System Catalog by SQL Statements

SQL Statement System Table Type of Lock

ADD DBEFILE HPRDBSS.DBEFILE Exclusive

HPRDBSS.DBEFILESET Exclusive

HPRDBSS.SPECAUTH Shared

ADD TO GROUP HPRDBSS.GROUP Exclusive

HPRDBSS.SPECAUTH Shared

ADVANCE HPRDBSS.SECTION Shared

Same as statement in procedure if
not valid

Same as statement in procedure if
not valid

HPRDBSS.SPECAUTH Shared

ALTER DBEFILE HPRDBSS.DBEFILE Exclusive

HPRDBSS.DBEFILESET Shared

HPRDBSS.SPECAUTH Shared

ALTER TABLE HPRDBSS.CHECKDEF Exclusive

HPRDBSS.COLUMN Exclusive

HPRDBSS.COLDEFAULT Exclusive

HPRDBSS.CONSTRAINT Exclusive

HPRDBSS.CONSTRAINTCOL Exclusive

HPRDBSS.CONSTRAINTINDEX Exclusive

HPRDBSS.DBEFILESET Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABLE Exclusive

BEGIN ARCHIVE HPRDBSS.SPECAUTH Shared

BEGIN DECLARE
SECTION

BEGIN WORK

CHECKPOINT HPRDBSS.SPECAUTH Shared

CLOSE HPRDBSS.SECTION Shared

(select cursor)

CLOSE HPRDBSS.SECTION Shared

(procedure cursor) Same as statement in procedure if
not valid

Same as statement in procedure if
not valid

COMMIT ARCHIVE HPRDBSS.SPECAUTH Shared

COMMIT WORK

CONNECT HPRDBSS.GROUP Shared

HPRDBSS.SPECAUTH Shared

CREATE DBEFILE HPRDBSS.DBEFILE Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TEMPSPACE Shared

CREATE DBEFILESET HPRDBSS.DBEFILESET Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.SPECAUTH Shared

E-4 Locks Held on the System Catalog by SQL Statements

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

CREATE GROUP HPRDBSS.COLAUTH Shared

HPRDBSS.GROUP Exclusive

HPRDBSS.MODAUTH Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Shared

CREATE INDEX HPRDBSS.COLUMN Shared

HPRDBSS.GROUP Shared

HPRDBSS.INDEX Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Exclusive

CREATE PROCEDURE HPRDBSS.GROUP Shared

HPRDBSS.PROCEDURE Exclusive

HPRDBSS.PROCEDUREDEF Exclusive

HPRDBSS.PARAMDEFAULT Exclusive

HPRDBSS.PARAMETER Exclusive

HPRDBSS.PROCRESULT Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

Views accessed by SQL statements
in the procedure

Same as for SQL statements in the
procedure

CREATE RULE HPRDBSS.COLUMN Shared

HPRDBSS.GROUP Shared

HPRDBSS.RULE Exclusive

HPRDBSS.RULECOLUMN Exclusive

HPRDBSS.RULEDEF Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABLE Exclusive

CREATE SCHEMA HPRDBSS.COLAUTH Shared

HPRDBSS.GROUP Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Shared

Views accessed by data de�nition
statements in the schema

Same as for data de�nition
statements in the schema

Locks Held on the System Catalog by SQL Statements E-5

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

CREATE TABLE HPRDBSS.CHECKDEF Exclusive

HPRDBSS.COLAUTH Shared

HPRDBSS.COLDEFAULT Exclusive

HPRDBSS.COLUMN Exclusive

HPRDBSS.CONSTRAINT Exclusive

HPRDBSS.CONSTRAINTCOL Exclusive

HPRDBSS.CONSTRAINTINDEX Exclusive

HPRDBSS.DBEFILESET Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.HASH Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Exclusive (for PUBLIC or
PUBLICREAD tables)

HPRDBSS.TABLE Exclusive and Shared

CREATE TEMPSPACE HPRDBSS.DBEFILESET Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TEMPSPACE Exclusive

CREATE VIEW HPRDBSS.COLUMN Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABLE Exclusive

HPRDBSS.VIEWDEF Exclusive

Same as for SELECT Same as for SELECT

DECLARE CURSOR Same as for SELECT or
EXECUTE PROCEDURE

Same as for SELECT or
EXECUTE PROCEDURE

DELETE HPRDBSS.COLUMN Shared

HPRDBSS.CONSTRAINT Shared

HPRDBSS.CONSTRAINTINDEX Shared

HPRDBSS.DBEFILESET Shared

HPRDBSS.GROUP Shared

HPRDBSS.HASH Shared

HPRDBSS.INDEX Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.PROCEDURE Shared

HPRDBSS.RULE Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

E-6 Locks Held on the System Catalog by SQL Statements

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

DELETE WHERE HPRDBSS.COLUMN Shared

CURRENT HPRDBSS.CONSTRAINT Shared

HPRDBSS.CONSTRAINTINDEX Shared

HPRDBSS.DBEFILESET Shared

HPRDBSS.GROUP Shared

HPRDBSS.INDEX Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.PROCEDURE Shared

HPRDBSS.RULE Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

DESCRIBE HPRDBSS.DBEFILESET Shared

HPRDBSS.GROUP Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

Same as for statement being
DESCRIBED

Same as for statement being
DESCRIBED

DROP DBEFILE HPRDBSS.DBEFILE Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TEMPSPACE Exclusive

DROP DBEFILESET HPRDBSS.DBEFILESET Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

DROP GROUP HPRDBSS.COLAUTH Exclusive

HPRDBSS.CONSTRAINTCOL Exclusive

HPRDBSS.GROUP Exclusive

HPRDBSS.MODAUTH Exclusive

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Exclusive

HPRDBSS.TABAUTH Exclusive

HPRDBSS.TABLE Shared

Locks Held on the System Catalog by SQL Statements E-7

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

DROP INDEX HPRDBSS.GROUP Shared

HPRDBSS.INDEX Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Exclusive

DROP MODULE HPRDBSS.GROUP Shared

HPRDBSS.MODAUTH Exclusive

HPRDBSS.SECTION Exclusive

DROP PROCEDURE HPRDBSS.GROUP Shared

HPRDBSS.MODAUTH Exclusive

HPRDBSS.PARAMETER Exclusive

HPRDBSS.PARAMDEFAULT Exclusive

HPRDBSS.PROCEDURE Exclusive

HPRDBSS.PROCEDUREDEF Exclusive

HPRDBSS.PROCRESULT Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

DROP RULE HPRDBSS.GROUP Shared

HPRDBSS.RULE Exclusive

HPRDBSS.RULECOLUMN Exclusive

HPRDBSS.RULEDEF Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABLE Exclusive

DROP TABLE HPRDBSS.COLAUTH Exclusive

HPRDBSS.COLUMN Exclusive

HPRDBSS.CONSTRAINT Exclusive and Shared

HPRDBSS.CONSTRAINTCOL Exclusive

HPRDBSS.CONSTRAINTINDEX Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.HASH Exclusive

HPRDBSS.INDEX Exclusive

HPRDBSS.RULE Exclusive

HPRDBSS.RULECOLUMN Exclusive

HPRDBSS.RULEDEF Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Exclusive

HPRDBSS.TABLE Exclusive

HPRDBSS.VIEWDEF Exclusive

E-8 Locks Held on the System Catalog by SQL Statements

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

DROP TEMPSPACE HPRDBSS.DBEFILESET Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TEMPSPACE Exclusive

DROP VIEW HPRDBSS.COLAUTH Exclusive

HPRDBSS.COLUMN Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Exclusive

HPRDBSS.TABLE Exclusive

HPRDBSS.VIEWDEF Exclusive

END DECLARE SECTION

EXECUTE HPRDBSS.GROUP Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

Views accessed by SQL statements
executed if not valid

Same as for statements executed if
not valid

EXECUTE IMMEDIATE Views accessed by SQL statements
executed

Same as for statements executed

FETCH

EXECUTE PROCEDURE HPRDBSS.MODAUTH Shared

HPRDBSS.PARAMDEFAULT Shared

HPRDBSS.PARAMETER Shared

HPRDBSS.PROCEDURE Shared

HPRDBSS.PROCRESULT Shared

HPRDBSS.SECTION Shared

Same as statement in procedure if
not valid

Same as statement in procedure if
not valid

GENPLAN HPRDBSS.PLAN Exclusive

Same as SELECT Same as SELECT

GRANT Table Authority HPRDBSS.COLAUTH Exclusive

GRANT UPDATE HPRDBSS.GROUP Shared

GRANT REFERENCES HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Exclusive

HPRDBSS.TABLE Shared

GRANT RUN HPRDBSS.GROUP Shared

GRANT EXECUTE HPRDBSS.MODAUTH Exclusive

GRANT INSTALL HPRDBSS.SPECAUTH Shared

Locks Held on the System Catalog by SQL Statements E-9

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

GRANT Special Authorities HPRDBSS.SPECAUTH Exclusive

HPRDBSS.GROUP Shared

GRANT SECTIONSPACE HPRDBSS.SPACEAUTH Exclusive

GRANT TABLESPACE HPRDBSS.SPECAUTH Shared

HPRDBSS.GROUP Shared

INCLUDE

INSERT HPRDBSS.COLUMN Shared

HPRDBSS.COLDEFAULT Shared

HPRDBSS.CONSTRAINT Shared

HPRDBSS.CONSTRAINTINDEX Shared

HPRDBSS.DBEFILESET Shared

HPRDBSS.GROUP Shared

HPRDBSS.HASH Shared

HPRDBSS.INDEX Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.PROCEDURE Shared

HPRDBSS.RULE Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Shared

LOCK TABLE HPRDBSS.GROUP Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Shared

OPEN HPRDBSS.GROUP Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

Same as for SELECT or
EXECUTE PROCEDURE in
DECLARE CURSOR statement

Same as for SELECT or
EXECUTE PROCEDURE in
DECLARE CURSOR statement

PREPARE (Permanent HPRDBSS.DBEFILESET Shared

sections created with ISQL) HPRDBSS.GROUP Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

Views accessed for SQL
statements prepared

Same as for statements prepared

PREPARE (Temporary HPRDBSS.DBEFILESET Shared

sections created in HPRDBSS.GROUP Shared

applications) HPRDBSS.SPECAUTH Shared

Views accessed for statements
PREPAREd

Same as for statements prepared

E-10 Locks Held on the System Catalog by SQL Statements

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

RAISE ERROR

REFETCH

RELEASE

REMOVE DBEFILE HPRDBSS.DBEFILE Exclusive

HPRDBSS.DBEFILESET Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TEMPSPACE Exclusive

REMOVE FROM GROUP HPRDBSS.CONSTRAINTCOL Shared

HPRDBSS.GROUP Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Exclusive

RESET HPRDBSS.SPECAUTH Shared

REVOKE Table Authority HPRDBSS.COLAUTH Exclusive

REVOKE UPDATE HPRDBSS.CONSTRAINTCOL Shared

REVOKE REFERENCES HPRDBSS.GROUP Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.TABAUTH Exclusive

HPRDBSS.TABLE Shared

REVOKE EXECUTE HPRDBSS.GROUP Shared

REVOKE RUN HPRDBSS.MODAUTH Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Shared

REVOKE Special HPRDBSS.CONSTRAINTCOL Shared

Authorities HPRDBSS.GROUP Shared

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Exclusive

ROLLBACK WORK

SAVEPOINT

SELECT HPRDBSS.COLUMN Shared

HPRDBSS.DBEFILESET Shared

HPRDBSS.GROUP Shared

HPRDBSS.SECTION Shared in user programs; none in
ISQL

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Shared

If table has index: HPRDBSS.CONSTRAINTINDEX Shared

HPRDBSS.HASH Shared

HPRDBSS.INDEX Shared

SQLEXPLAIN

Locks Held on the System Catalog by SQL Statements E-11

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

START DBE HPRDBSS.SPECAUTH Shared (Exclusive the �rst time
the statement is used after the
DBECreator has changed
following a restore)

HPRDBSS.GROUP Shared

START DBE NEW System catalog is being created

START DBE NEWLOG HPRDBSS.SPECAUTH Shared

START DBE NEWLOG HPRDBSS.SPECAUTH Shared

(After migration) HPRDBSS.COLUMN Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.TABLE Exclusive

STOP DBE HPRDBSS.SPECAUTH Shared

TERMINATE USER HPRDBSS.SPECAUTH Shared

TRANSFER OWNERSHIP HPRDBSS.GROUP Shared

(PROCEDURE) HPRDBSS.PARAMDEFAULT Exclusive

HPRDBSS.PARAMETER Exclusive

HPRDBSS.MODAUTH Exclusive

HPRDBSS.PROCEDURE Exclusive

HPRDBSS.PROCEDUREDEF Exclusive

HPRDBSS.PROCRESULT Exclusive

HPRDBSS.SECTION Exclusive

HPRDBSS.SPECAUTH Exclusive

TRANSFER OWNERSHIP HPRDBSS.CHECKDEF Exclusive

(TABLE) HPRDBSS.CONSTRAINT Exclusive

HPRDBSS.CONSTRAINTCOL Exclusive

HPRDBSS.COLAUTH Exclusive

HPRDBSS.COLUMN Exclusive

HPRDBSS.CONSTRAINTINDEX Exclusive

HPRDBSS.GROUP Shared

HPRDBSS.HASH Exclusive

HPRDBSS.INDEX Exclusive

HPRDBSS.RULE Exclusive

HPRDBSS.RULECOLUMN Exclusive

HPRDBSS.RULEDEF Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Exclusive

HPRDBSS.TABLE Exclusive

TRANSFER OWNERSHIP HPRDBSS.CONSTRAINT Exclusive

(VIEW) HPRDBSS.COLAUTH Exclusive

HPRDBSS.COLUMN Exclusive

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Exclusive

HPRDBSS.TABLE Exclusive

HPRDBSS.VIEWDEF Exclusive

E-12 Locks Held on the System Catalog by SQL Statements

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

TRANSFER OWNERSHIP HPRDBSS.GROUP Exclusive

(GROUP) HPRDBSS.SPECAUTH Shared

UPDATE HPRDBSS.COLAUTH Shared

HPRDBSS.COLUMN Shared

HPRDBSS.CONSTRAINT Shared

HPRDBSS.CONSTRAINTINDEX Shared

HPRDBSS.DBEFILESET Shared

HPRDBSS.GROUP Shared

HPRDBSS.HASH Shared

HPRDBSS.INDEX Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.PROCEDURE Shared

HPRDBSS.RULE Shared

HPRDBSS.RULECOLUMN Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Shared

UPDATE STATISTICS HPRDBSS.COLUMN Exclusive

HPRDBSS.CONSTRAINT Shared

HPRDBSS.CONSTRAINTINDEX Exclusive

HPRDBSS.DBEFILE Exclusive

HPRDBSS.DBEFILESET Exclusive

HPRDBSS.HASH Exclusive

HPRDBSS.INDEX Exclusive

HPRDBSS.TABLE Exclusive

HPRDBSS.TEMPSPACE Exclusive

UPDATE WHERE HPRDBSS.COLAUTH Shared

CURRENT HPRDBSS.COLUMN Shared

HPRDBSS.CONSTRAINT Shared

HPRDBSS.DBEFILESET Shared

HPRDBSS.GROUP Shared

HPRDBSS.INDEX Shared

HPRDBSS.MODAUTH Shared

HPRDBSS.PROCEDURE Shared

HPRDBSS.RULE Shared

HPRDBSS.RULECOLUMN Shared

HPRDBSS.SECTION Shared

HPRDBSS.SPECAUTH Shared

HPRDBSS.TABAUTH Shared

HPRDBSS.TABLE Shared

Locks Held on the System Catalog by SQL Statements E-13

Table E-2.

Locks Held on the System Catalog by SQL Statements (continued)

SQL Statement System Table Type of Lock

VALIDATE MODULE or HPRDBSS.MODAUTH Shared

VALIDATE PROCEDURE HPRDBSS.PROCEDURE Exclusive

HPRDBSS.SECTION Exclusive

Views accessed for the SQL
statements in the sections being
validated

Same as for sections being
validated

WHENEVER

E-14 Locks Held on the System Catalog by SQL Statements

F

SQLUtil

The following pages contain SQLUtil command syntax. A discussion of how to use SQLUtil is
in the \DBA Tasks and Tools" chapter.

Note As in other ALLBASE/SQL utilities, you can use a semicolon following any
SQLUtil command. The semicolon is not required, however.

SQLUtil F-1

ADDLOG

Adds a new log �le to the DBEnvironment.

Scope

SQLUtil Only

SQLUtil Syntax

>> ADDLOG

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Enter Log File Name(s) Separated by a Blank? LogFileName1

�
LogFileName2

�
New Log File Size? FileSize

Add Log File (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of a DBEnvironment.

MaintenanceWord is the maintenance word.

LogFileName1,
LogFileName2

is the physical (HP-UX) name of the log �le that is to be added.
LogFileName2 is included only if you are using dual logging.

FileSize is the size of the new log �le.

Description

This command starts a DBEnvironment session, and lets you add one new log �le. The
DBEnvironment can be in use when this command is executed.

Each time ALLBASE/SQL switches to a new log �le, a checkpoint is taken. Therefore, the
size and number of log �les can control the frequency of checkpoints. If you repeatedly see a
Log Full message, add a new log �le of the appropriate size.

In nonarchive logging mode, add as many log �les as you need (one at a time, with separate
ADDLOG commands) for a total size that can accommodate your largest transaction
carried out by the maximum number of concurrent users.

In archive logging mode, add as many log �les as you need (one at a time, with separate
ADDLOG commands) to permit an ongoing cycle of STORELOG operations which make
log �les available.

ADDLOG prompts for the names of �les to be added. You may enter a single log �le name
or, in the case of dual logging, you may enter two �le names. ADDLOG will not accept
more than two �le names on a single line.

The maximum number of log �les in a DBEnvironment is 34. Since one log is created
when you start the DBEnvironment, the maximum number of log �les you can add to a
DBEnvironment is 33.

F-2 SQLUtil

ADDLOG

Authorization

You must be the DBECreator or superuser or provide the correct maintenance word to use
this command.

Example

>> addlog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Enter Log File Name(s) Separated by a Blank? lgn1

New Log File Size? 300

Add Log File (y/n)? y

Log file 'lgn1' was Added.

Log Identifier Is: 2

SQLUtil F-3

ALTDBE

Changes the startup parameters for a DBEnvironment.

Scope

SQLUtil Only

SQLUtil Syntax

>> ALTDBE

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
AutoStart Mode (on/off) (opt): AutoStartMode
User Mode (single/multi) (opt): UserMode
DDL Enabled (y/n) (opt): DDLEnabled
No. of Runtime Control Block Pages (opt): ControlBlockPages
No. of Data Buffer Pages (opt): DataBu�erPages
No. of Log Buffer Pages (opt): LogBu�erPages
Max. Transactions (opt): MaxTransactions

Maximum Timeout (opt):

2
4MaximumTimeout

�
SECONDS

MINUTES

�

NONE

3
5

Default Timeout (opt):

2
4DefaultTimeout

�
SECONDS

MINUTES

�

MAXIMUM

3
5

Authorize Once per Session (on/off) (opt): AuthorizeOnce

Alter DBEnvironment Startup Parameters (y/n)?

�
Y
�
es
�

N
�
o
�
�

Note You must stop the DBEnvironment before you can issue the ALTDBE
command.

Parameters

DBEnvironmentName is the name of the DBEnvironment whose startup parameters are
to be altered.

MaintenanceWord is the maintenance word of the DBEnvironment.

AutoStartMode is ON to enable auto starting of a multiuser DBEnvironment
session when a CONNECT command is given. It is OFF to
disable this feature. The default is ON.

UserMode is SINGLE to specify that the DBEnvironment should be started
in single-user mode when AutoStart is enabled. It is MULTI to
specify multiuser operation. The default is determined by the
value you supply in the START DBE NEW command. If you do
not supply a value, the default is SINGLE.

F-4 SQLUtil

ALTDBE

DDLEnabled is YES to enable data de�nition language (DDL), or NO to
disable DDL. The default is YES.

ControlBlockPages is the number of 4096-byte pages to allocate to the pool of shared
memory used by DBCore services in a multi-user DBEnvironment.

DataBu�erPages is the number of 4096-byte data bu�er pages for holding data
from tables and indexes during program execution.

MemoryResidentEnabled is YES to specify that data bu�er pages will remain resident in
memory. It is NO to specify that data bu�er pages will not be
memory resident (they will be swapped in and out of memory as
needed by ALLBASE/SQL). The default is NO.

LogBu�erPages is the number of 512-byte log bu�ers for holding log records
during program execution.

MaxTransactions is the maximum number of concurrent transactions to be
supported.

MaximumTimeout is an integer literal greater than zero. If the MaximumTimeout
is not quali�ed by MINUTES, SECONDS is assumed. If
MaximumTimeout is set to NONE, no timeouts are assumed. The
default is NONE.

DefaultTimeout is an integer literal greater than zero. If the DefaultTimeout
is not quali�ed by MINUTES, SECONDS is assumed. If
DefaultTimeout is set to MAXIMUM, its value is the same as
MaximumTimeout. The default value of DefaultTimeout is also
MaximumTimeout.

AuthorizeOnce is set ON to permit users of ISV (independent software vendor)
toolsets to obtain improved performance with dynamic queries.
If you have preprocessed an application with the -D option, or
if you are using an ISV toolset, set this ag ON if you want
authorization checks on your dynamic queries to be performed
only the �rst time the query is executed during the user session.
Set OFF if you want ALLBASE/SQL to do authorization checks
on a dynamic query each time it is executed. The default is OFF.

Description

The ALTDBE command updates the parameters required for DBEnvironment startup. You
are prompted for new values for the parameters one by one; entering a � Return � retains the
old value.

Startup parameters have been initially de�ned by a START DBE NEW command which
creates the DBEnvironment and stores these parameters in the DBECon �le. These
parameters will be used when the DBEnvironment is accessed by either a START DBE or a
CONNECT command.

This command can only be executed when the DBEnvironment is not in use.

You cannot change archive mode with ALTDBE. Refer to the section \Choosing an
Approach to Backup and Recovery" in the \Backup and Recovery" chapter.

SQLUtil F-5

ALTDBE

Note Scripts using the ALTDBE command that were prepared for use with releases
of ALLBASE/SQL prior to F.0 will not work with this release unless you edit
them to include responses for the default and maximum user timeout, and the
authorize once per session ag. Scripts using ALTDBE that were prepared for
use with releases of ALLBASE/SQL prior to E.1 will not work unless you edit
them to remove the response for archive mode and include responses for the
default and maximum user timeout, and the authorize once per session ag.

Authorization

You must provide the correct maintenance word, be the superuser, or be the DBECreator to
use this command.

Example

>> altdbe

DBEnvironment Name: PartsDBE

Maintenance Word: MaintWd

AutoStart Mode (on/off) (opt): on

User Mode (opt): multi

DDL Enabled (y/n) (opt): yes

No. of Runtime Control Block Pages (opt): 37

No. of Data Buffer Pages (opt): 100

No. of Log Buffer Pages (opt): 24

Max. Transactions (opt): 5

Maximum Timeout (opt): 10

Default Timeout (opt): 5

Authorize Once per Session (opt): on

Alter DBEnvironment Startup Parameters (y/n)? yes

DBEnvironment startup parameters altered.

F-6 SQLUtil

ATTACHFILE

ATTACHFILE

Attaches previously detached DBEFileSets and DBEFiles to the DBEnvironment and makes
them available for normal access.

Scope

SQLUtil Only

SQLUtil Syntax

>> ATTACHFILE

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Enter DBEFileSet name or Carriage Return to Finish: DBEFileSetName
Enter DBEFileSet name or Carriage Return to Finish:

Enter DBEFile name or Carriage Return to Finish: SystemFileName
Enter DBEFile name or Carriage Return to Finish:

Do you wish to attach (y/n)

�
y
�
es
�

n
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment associated with the
DBEFileSets and DBEFiles to be attached. The DBEnvironment
may be either an absolute pathname or a pathname relative to
your current working directory.

MaintenanceWord is the maintenance word.

DBEFileSetName is the name of the DBEFileSet to be attached. You may enter a
list of DBEFileSets, one name per line, with a carriage return to
terminate the list. You may enter a carriage return by itself if no
DBEFileSets are to be attached.

SystemFileName is the physical name of the DBEFile to be attached. You may
enter a list of DBEFiles, one name per line, with a null line to
terminate the list, or a carriage return by itself if no DBEFiles are
to be added.

Description

Attaching a DBEFileset makes all the DBEFiles in the DBEFileSet available for database
access.

Attaching explicitly named DBEFiles makes those speci�c �les available for database access.

You can determine whether a DBEFile is ATTACHED or DETACHED by looking at the
column \ATTACHED" in the system views SYSTEM.DBEFILE or CATALOG.DBEFILE,
or the \Static DBEFile" screen of SQLMON.

Also refer to the SQLUtil DETACHFILE command.

SQLUtil F-7

ATTACHFILE

Authorization

You must be the DBECreator, be a superuser, or you must supply the correct maintenance
word to use this command.

Example

>> attachfile

DBEnvironment Name: PartsDBE

Enter DBEFileset name or Carriage Return to Finish): WarehFS

Enter DBEFileset name or Carriage Return to Finish):

Enter DBEFile name or Carriage Return to Finish: OrderDF1

Enter DBEFile name or Carriage Return to Finish:

Do you wish to attach (y/n)? y

File(s) Attached.

F-8 SQLUtil

CHANGELOG

CHANGELOG

Causes the DBEnvironment to change to the next log �le.

Scope

SQLUtil Only

SQLUtil Syntax

>> CHANGELOG

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord

Change to a new log (y/n)?

�
y
�
es
�

n
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment with which the log �les are
associated. The DBEnvironment name may be entered either as
an absolute pathname or as a pathname relative to your current
working directory.

MaintenanceWord is the maintenance word.

Description

The CHANGELOG command causes ALLBASE/SQL to switch from the currently active
log �le to the next available log �le, if one exists.

Once you switch to the next available log �le, you can back up the last used log �le.

The CHANGELOG command also displays the sequence numbers of the log �le active just
prior to the change as well as the log �le active after the change.

Authorization

You must be the DBECreator, the superuser, or you must supply the correct maintenance
word to use this command.

Example

>> changelog

DBEnvironment Name: PartsDBE

Maintenance Word: MaintenanceWord

Change to new log (y/n)? y

Changed log from Sequence Number 2 to Sequence Number 3.

SQLUtil F-9

CHKPTHLP

This command helps to ush the data in parallel to the CHECKPOINT command in ISQL.

Scope

SQLUtil Only

SQLUtil Syntax

>> CHKPTHLP

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Enter the number of buffers to be skipped: NumberofBu�ers

Continue (y/n)?:

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of a DBEnvironment.

MaintenanceWord is the maintenance word.

NumberofBu�ers is the number of bu�ers to be skipped. (Expected to be in the
range of 100 to 400,000.)

Description

This can only be used in HP-UX and not in MPE.

Flushes the data in parallel to the CHECKPOINT statement given in ISQL session and
should be given only after invoking CHECKPOINT in ISQL. It reduces the time needed by
ushing the data in a parallel manner.

Can be called in many sessions of SQLUtil in parallel when the CHECKPOINT statement is
used in another session of ISQL to reduce the time required to take checkpoints when there
are large numbers of bu�ers to be ushed.

There is an option to skip the number of bu�ers.

Authorization

You must be the DBECreator, the superuser, or supply the correct maintenance word to use
this command.

Example

>> chkpthlp

DBEnvironment Name: tst

Maintenance Word: �Return�
Enter the number of buffers to be skipped: 1000

Continue? (y/n)?: Y

Chkpthlp successful

>>

F-10 SQLUtil

DETACHFILE

DETACHFILE

Detaches DBEFileSets and DBEFiles from the DBEnvironment and makes them unavailable
for normal access.

Scope

SQLUtil Only

SQLUtil Syntax

>> DETACHFILE

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Enter DBEFileSet name or Carriage Return to Finish: DBEFileSetName
Enter DBEFileSet name or Carriage Return to Finish:

Enter DBEFile name or Carriage Return to Finish: SystemFileName
Enter DBEFile name or Carriage Return to Finish:

Do you wish to detach (y/n)?

�
y
�
es
�

n
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment from which the DBEFileSets
or DBEFiles are to be detached. The DBEnvironment name may
be entered either as an absolute pathname or as a pathname
relative to your current working directory.

MaintenanceWord is the maintenance word.

DBEFilesetName is the name of the DBEFileset to be detached. You may enter a
list of DBEFileSets, one name per line, followed by a null line to
terminate the list.

SystemFileName is the physical name of the DBEFile to be detached. You may
enter a list of DBEFiles, one name per line, followed by a null line
to terminate the list.

Description

DBEFileSets and DBEFiles may be detached for partial recovery operations, security
reasons, or because they are infrequently used.

If you detach a DBEFileset, all the DBEFiles in the DBEFileset are detached.

You cannot detach the SYSTEM DBEFileSet, DBEFile0, or any other DBEFiles that you
have added to the SYSTEM DBEFileSet to expand its size.

You can determine if a DBEFile is attached or detached by looking at the column
\ATTACHED" in the system views SYSTEM.DBEFILE and CATALOG.DBEFILE, or the
\Static DBEFile" screen of SQLMON.

Also see the SQLUtil ATTACHFILE command.

SQLUtil F-11

DETACHFILE

Authorization

You must be the DBECreator, a superuser, or you must supply the correct maintenance word
to use this command.

Example

>> detachfile

DBEnvironment Name: PartsDBE

Maintenance Word: MaintenanceWord

Enter DBEFileset name or Carriage Return to Finish: WarehFS

Enter DBEFileset name or Carriage Return to Finish:

Enter DBEFile name or Carriage Return to Finish: OrderDF1

Enter DBEFile name or Carriage Return to Finish:

Do you wish to proceed (y/n)? y

F-12 SQLUtil

ENDRECOVERY

ENDRECOVERY

Ends a rollforward recovery process that was started with SETUPRECOVERY.

Scope

SQLUtil Only

SQLUtil Syntax

>> ENDRECOVERY

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord

End Recovery (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of a DBEnvironment.

MaintenanceWord is the maintenance word.

Description

This command starts a DBEnvironment session, and terminates a rollforward recovery
process after all relevant log �les have been applied in sequence.

Rollforward recovery uses four commands:

SETUPRECOVERY|initiates the process.
RESTORELOG|restores a log �le from a backup.
RECOVERLOG|issued by you for each log �le being applied to the DBEnvironment.
ENDRECOVERY|ends the rollforward recovery process.

You normally apply SETUPRECOVERY once. You can specify a RecoverTime as the
end point for recovery. You then use RESTORELOG to restore each backup log �le to
the system in sequence number order, and you use RECOVERLOG once for each log �le
that you have restored, to apply it to the DBEnvironment. ALLBASE/SQL will recover
the transactions in the �le up to the RecoverTime you speci�ed, or up to the end of the
�le. You use ENDRECOVERY once after recovering all the log �les you wish to apply
to the DBEnvironment. Normally, you do not use ENDRECOVERY if you speci�ed a
RecoverTime in the SETUPRECOVERY command.

ENDRECOVERY will result in an error if you have not recovered enough �les to make the
DBEnvironment consistent. If you used STOREONLINE to do an online backup of the
DBEnvironment, you must recover starting from the First Log Sequence Number Needed for
Recovery up to and including the �le that was active at the time the last STOREONLINE
command completed. If you did a static backup of the DBEnvironment, you can recover as
little or as much of the log as you desire once you have restored the most recent copy of the
DBEnvironment.

SQLUtil F-13

ENDRECOVERY

Authorization

You must be the superuser, DBECreator or supply the correct maintenance word to use this
command.

Example

>> setuprecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Recover to: (mm/dd/yy/hh/mm/ss) (opt): �Return�
New Log Mode (Single/Dual) (opt): single

Enter New Log File Name(s) Separated by a Blank: newlg1

New Log File Size: 250

Setup Recovery (y/n)? y

Recovery Has Been Set Up.

Next Log Sequence Number is 1.

>> restorelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Input Device: /dev/tape

Local (y/n) (opt): y

Restore the Log File (y/n)? y

Log File 'lgn1' was Restored.

Rename 'lgn1' Log File To: newlog

Log File 'lgn1' was Renamed to 'newlog'.

>> recoverlog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Next Log File To Recover: newlog

Recover Log (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 2.

>> endrecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
End Recovery (y/n)? y

Recovery Has Terminated.

F-14 SQLUtil

EXIT

EXIT

Terminates SQLUtil execution.

Scope

SQLUtil Only

SQLUtil Syntax

>> E
�
XIT

�

Description

This command terminates the SQLUtil session and returns the user to the point from which
SQLUtil was invoked.

This command can be abbreviated to E.

Example

>> exit

SQLUtil F-15

HELP

Displays and describes all SQLUtil commands.

Scope

SQLUtil Only

SQLUtil Syntax

>> HELP

Command Name (opt): CommandName

Parameters

CommandName is the name of an SQLUtil command.

Description

If you do not specify a command name, the HELP command lists the names of all valid
SQLUtil commands.

If a command name is speci�ed, the correct syntax and an explanation for that command is
displayed.

You must enter // to leave the HELP command.

Example

>> HELP

The following SQLUtil commands are available:

ADDLOG ALTDBE ENDRECOVERY EXIT HELP

MOVEFILE MOVELOG PURGEALL PURGEDBE PURGEFILE

PURGELOG QUIT RECOVERLOG RESCUELOG RESTORE

RESTORELOG SET SETDBEMAINT SETUPRECOVERY SHOWDBE

SHOWLOG SHOWSET STORE STORELOG STOREONLINE

ATTACHFILE DETACHFILE STOREINFO CHANGELOG CHKPTHLP

For more information on any one of the functions, enter the command name

at the prompt. Carriage return <cr> displays a brief description of

each command. Type // to leave SQLUtil HELP.

Command Name (opt): �Return�

F-16 SQLUtil

HELP

Command Summary:

ADDLOG Adds a new log file to a DBEnvironment.

ALTDBE Changes the startup parameters for a DBEnvironment.

ENDRECOVERY Terminates rollforward recovery procedure.

EXIT Terminates SQLUtil execution.

HELP Displays and describes all SQLUtil commands.

MOVEFILE Moves any DBEFile file across devices.

MOVELOG Moves a log file across devices.

PURGEALL Purges the DBEnvironment and all associated DBEFiles

including the DBELog files.

PURGEDBE Purges an existing DBEnvironment and all associated

DBEFiles except the DBELog files.

PURGEFILE Purges any DBEFile.

PURGELOG Purges a log file from a DBEnvironment.

QUIT Terminates SQLUtil execution.

RECOVERLOG Recovers a log file in rollforward recovery.

RESCUELOG Copies a log file to tape(s) or serial disk(s) when a

database can not be restarted.

RESTORE Copies a DBEnvironment to disk from tape(s) or serial

disk(s) created by using the SQLUtil STORE command.

RESTORELOG Copies a log file to disk from tape(s) or

serial disk(s) created by using the SQLUTIL STORELOG

command.

SET Sets a parameter for a command option. Current parameters

supported are ECHO_ALL, EXIT_ON_DBERR, and BACKUP.

SETDBEMAINT Sets or alters the maintenance word of a DBEnvironment.

SETUPRECOVERY Sets up a DBEnvironment to perform a rollforward recovery.

This is the first step of rollforward recovery.

SHOWDBE Shows the information related to a DBEnvironment.

SHOWLOG Shows the information related to log(s) files associated

with a DBEnvironment.

SHOWSET Displays the value of a command option parameter. Current

parameters supported are ECHO_ALL, EXIT_ON_DBERR, and BACKUP.

STORE Copies a DBEnvironment to tape(s).

STORELOG Copies a single log file to tape(s).

STOREONLINE Copies a DBEnvironment to tape(s) ONLINE.

ATTACHFILE Attaches DBEfileset/DBEfile name with DBEnvironment.

DETACHFILE Detaches DBEfileset/DBEfile name with DBEnvironment.

STOREINFO Displays files stored on a backup device.

CHANGELOG Causes the DBEnvironment to change to the next log file.

CHKPTHLP Helps checkpoint command to be done in parallel.

Command Name (opt): movefile

>> MOVEFILE

DBEnvironment Name: DBEnvironmentName

Current File Name: CurrentFileName

New File Name: NewFileName

Moves DBEFiles across devices.

Command Name (opt): //

>>

SQLUtil F-17

MOVEFILE

Moves any DBEFile across devices.

Scope

SQLUtil Only

SQLUtil Syntax

>> MOVEFILE

DBEnvironment Name: DBEnvironmentName
Current File Name: CurrentFileName
New File Name: NewFileName

Parameters

DBEnvironmentName is the name of the DBEnvironment with which the �le you are
changing is associated. The DBEnvironment name may be
entered either as an absolute pathname or as a pathname relative
to your current working directory.

CurrentFileName is the current pathname of the �le to be moved. This may be
either an absolute pathname or a pathname relative to that of the
DBECon �le of the DBEnvironment name you have entered.

NewFileName is the new pathname for the �le. This may be either an absolute
pathname or a pathname relative to that of the DBECon �le.

Description

The MOVEFILE command prompts for the �le's current pathname and new pathname,
and then moves the �le to its new location. This lets you either rename a �le or change
directories in order to place the �le on a di�erent device. Your hpdb must be able to write
to the new directory. To write to the new directory, set the �le permissions of the directory
where the DBEnvironment resides to 755, change the directory's ownership to hpdb, and set
the group id to bin.

You can use MOVEFILE only with DBEFiles. To move log �les, you must use the
MOVELOG command. You cannot move a DBECon �le with MOVEFILE.

The MOVEFILE command can only be executed when the DBEnvironment is not in use.

Authorization

You must either be the DBECreator or the superuser to use this command.

F-18 SQLUtil

MOVEFILE

Example

>> movefile

DBEnvironment Name: ../sampledb/PartsDBE

Current File Name: PartsIdx1

New File Name: /mnt/allbase/PartsIdx1

File moved.

SQLUtil F-19

MOVELOG

Moves a log �le from one location to another.

Scope

SQLUtil Only

SQLUtil Syntax

>> MOVELOG

DBEnvironment Name: DBEnvironmentName
Current Log File Name: CurrentFileName
New Log File Name: NewFileName

Parameters

DBEnvironmentName is the name of the DBEnvironment associated with the �le you
are changing. The DBEnvironment name may be entered either
as an absolute pathname or as a pathname relative to your
current working directory.

CurrentFileName is the current pathname of the log �le to be moved. This may be
either an absolute pathname or a pathname relative to that of the
DBECon �le of the DBEnvironment name you have entered.

NewFileName is the new pathname for the log �le. This may be either an
absolute pathname or a pathname relative to that of the DBECon
�le.

Description

The MOVELOG command prompts for the current pathname and the new pathname of the
�le, and then changes the �le to the new pathname. This lets you either rename a log �le
or change directories in order to place the log �le on a di�erent device. Your hpdb must
be able to write to the new directory. This is accomplished by having the �le permissions
of the directory where the DBEnvironment resides set to mode 755, having the directory
owned by hpdb, and having a group id of bin.

The DBEnvironment may not be in use while this command is executed.

Authorization

You must be the DBECreator or superuser to use this command.

F-20 SQLUtil

MOVELOG

Example

>> movelog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Current Log File Name: lgn1

New Log File Name: /safe/lgn1

File Moved.

SQLUtil F-21

PURGEALL

Purges an existing DBEnvironment|including the DBECon �le, DBEFiles, and all associated
log �les.

Scope

SQLUtil Only

SQLUtil Syntax

>> PURGEALL

DBEnvironment Name: DBEnvironmentName

Purge DBEnvironment and Log Files (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment to be purged.

Description

The PURGEALL command purges an existing DBEnvironment. When a DBEnvironment
is purged with this command, the DBECon �le, the log �les, and all DBEFiles related to
the DBEnvironment are purged. In order to prevent a user from accidentally purging the
DBEnvironment, a YES response to the con�rmation prompt is required.

If you previously purged either the �le DBEFile0 or the log �le(s), the DBEnvironment
cannot be purged with the PURGEALL command. In such a case, you would need to use
PURGEFILE to remove each �le separately.

PURGEALL will not purge log �les which were in existence prior to the most recent
START DBE NEWLOG statement. To remove these log �les you must use the SQLUtil
PURGEFILE command.

This command can only be executed when the DBEnvironment is not in use.

This command di�ers from the PURGEDBE command, which does not purge log �les.

Authorization

You must be the DBECreator or superuser to use the PURGEALL command.

Example

>> PURGEALL

DBEnvironment Name: PartsDBE

Purge DBEnvironment and Log Files (y/n)? yes

DBEnvironment purged.

F-22 SQLUtil

PURGEDBE

PURGEDBE

Purges an existing DBEnvironment|including the DBECon �le and all associated DBEFiles
except the log �les.

Scope

SQLUtil Only

SQLUtil Syntax

>> PURGEDBE

DBEnvironment Name: DBEnvironmentName

Purge DBEnvironment (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment to be purged.

Description

The PURGEDBE command purges an existing DBEnvironment. When a DBEnvironment
is purged, the DBECon �le and all DBEFiles related to the DBEnvironment are purged.
The log �les are not purged.

Note PURGEDBE does not purge the log �les because the log �les may be used
for a subsequent rollforward recovery. The user must use the PURGEFILE
command to purge the log �le(s).

In order to prevent a user from accidentally purging the DBEnvironment, a YES response to
the con�rmation prompt is required.

This command can only be executed when the DBEnvironment is not in use.

If you previously purged either the �le DBEFile0 or the log �le(s), the DBEnvironment
cannot be purged with the PURGEDBE command.

Authorization

You must be the DBECreator or superuser to use this command.

Example

>> purgedbe

DBEnvironment Name: PartsDBE

Purge DBEnvironment (y/n)? yes

DBEnvironment purged.

SQLUtil F-23

PURGEFILE

Purges any DBEFile or DBECon �le.

Scope

SQLUtil Only

SQLUtil Syntax

>> PURGEFILE

DBEFile Name: DBEFileName

Purge DBEFile (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEFileName is the physical �le name of the DBEFile or DBECon �le to be
purged. The �le name may be either an absolute pathname or a
pathname relative to your current working directory.

Description

The PURGEFILE command can be used to purge any DBEFile or DBECon �le. The �le
will not be purged if it is in use.

PURGEFILE should be used after using START DBE NEWLOG to purge any log �les that
existed prior to issuing the START DBE NEWLOG statement.

After completing the ENDRECOVERY step of partial rollforward recovery, PURGEFILE
should be used to purge the directory which contained the temporary DBEnvironment of all
log �les used for the partial rollforward recovery process.

Do not use PURGEFILE to try to purge a log �le following a STORELOG command. Be
sure to use PURGELOG instead.

Warning The DROP DBEFILE command automatically removes the physical file

associated with the DBEFile when it executes. Therefore, you should not purge

the physical file associated with a DBEFile before using the DROP DBEFILE

statement. If you do, an entry for the physical file which you will not be able to

remove will still remain in the system catalog even though the physical file no

longer exists.

If you purged either the �le DBEFile0 or the log �le(s), you will not be able to purge the
DBEnvironment using PURGEDBE.

F-24 SQLUtil

PURGEFILE

Authorization

You must be the superuser to execute this command.

Example

>> purgefile

DBEFile Name: PartsXF1

Purge DBEFile (y/n)? yes

File purged.

SQLUtil F-25

PURGELOG

Purges a log �le that is not needed.

Scope

SQLUtil Only

SQLUtil Syntax

>> PURGELOG

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Log Identifier: LogIdenti�er

Purge Log File (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment with which the �le you are
changing is associated. The DBEnvironment name may be
entered either as an absolute pathname or as a pathname relative
to your current working directory.

MaintenanceWord is the maintenance word.

LogIdenti�er is the log identi�er number assigned to the �le you wish to purge.

Description

This command lets you remove a log �le provided it does not contain any active
transactions and has either been backed up or else never used. In the case of dual logging,
both physical �les corresponding to the identi�er number are deleted.

If you try to purge a log �le that is either in use or that has not been backed up, you will
receive an error message.

The DBEnvironment may be in use while this command is executed.

Authorization

You must be the DBECreator or the superuser to be able to purge a log �le.

Example

>> purgelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Log Identifier: 2

Purge Log File (y/n)? y

F-26 SQLUtil

QUIT

QUIT

Terminates SQLUtil execution.

Scope

SQLUtil Only

SQLUtil Syntax

>> Q
�
UIT

�

Description

This command terminates the SQLUtil session and returns you to the point from which
SQLUtil was invoked.
This command can be abbreviated to Q.

Example

>> quit

SQLUtil F-27

RECOVERLOG

Applies the transactions from a speci�c log �le or multiple log �les during rollforward
recovery.

Scope

SQLUtil Only

SQLUtil Syntax

>> RECOVERLOG

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Next Log File to Recover: LogFileName

Recover Log File (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment with which the �le(s) you
are recovering is associated. The DBEnvironment name may be
entered either as an absolute pathname or as a pathname relative
to your current working directory.

MaintenanceWord is the maintenance word.

LogFileName is the name of the �le being recovered. This may be either an
absolute pathname or a pathname relative to that of the DBECon
�le.

Description

This command starts a DBEnvironment session, then lets you apply individual log �les
for rollforward recovery after a DBEnvironment and its log �les have been restored.
Rollforward recovery uses four commands:

SETUPRECOVERY or SETUPRECOVERY PARTIAL, which initiates the process.
RESTORELOG, which restores a log �le from a backup.
RECOVERLOG, which you issue for each log �le being applied to the DBEnvironment.
ENDRECOVERY, which ends the rollforward recovery process.

You normally apply SETUPRECOVERY or SETUPRECOVERY PARTIAL once. For
SETUPRECOVERY you can specify a RecoverTime as the end point for recovery. For
SETUPRECOVERY PARTIAL you must roll forward to the point of the failure. You then
use RESTORELOG to restore each backup log �le to the system in sequence number order,
and you use RECOVERLOG once for each log �le that you have restored, to apply it to
the DBEnvironment. ALLBASE/SQL will recover the transactions in the �le up to the
RecoverTime you speci�ed, or up to the end of the �le.

You use ENDRECOVERY once after recovering all the log �les you wish to apply to
the DBEnvironment. Normally, you do not use ENDRECOVERY if you speci�ed a
RecoverTime in the SETUPRECOVERY command.

F-28 SQLUtil

RECOVERLOG

At the completion of each RECOVERLOG command, the next possible log sequence
number is displayed.

If you speci�ed a RecoverTime in the SETUPRECOVERY command, the following message
appears when you reach the speci�ed time stamp:

Time Stamp Reached.

When you see this message, recovery is complete. In this case, you do not use the
ENDRECOVERY command.

ENDRECOVERY will result in an error if you have not recovered enough �les to make
the DBEnvironment consistent. If you used STOREONLINE to do an online backup
of the DBEnvironment, you must recover starting from the First Log Sequence Number
Needed for Recovery up to and including the log �le that was active at the time the last
STOREONLINE command completed. If you did a static backup of the DBEnvironment,
you can recover as little or as much of the log as you desire once you have restored the most
recent copy of the DBEnvironment.

Authorization

To use this command, you must be the DBECreator or supply the correct maintenance word.

Example

>> setuprecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Recover to: (mm/dd/yy/hh/mm/ss) (opt): �Return�
New Log Mode (Single/Dual) (opt): single

Enter New Log File Name(s) Separated by a Blank: newlg1

New Log File Size: 250

Setup Recovery (y/n)? y

Recovery Has Been Set Up.

Next Log Sequence Number is 1.

>> restorelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Input Device: /dev/tape

Local (y/n) (opt): y

Rename 'lgn1' Log File To: newlog

Restore the Log File (y/n)? y

Log File 'newlog' was Restored.

>> recoverlog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Next Log File To Recover: newlog

Recover Log File (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 2.

SQLUtil F-29

RECOVERLOG

>> endrecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
End Recovery (y/n)? y

Recovery Has Terminated.

F-30 SQLUtil

RESCUELOG

RESCUELOG

Stores a copy of a log �le without accessing the DBECon �le. You use this command to store
a log �le that cannot be stored using STORELOG.

Scope

SQLUtil Only

SQLUtil Syntax

>> RESCUELOG

Log File Name: LogFileName
Size Of The Log File: LogFileSize
To File Name? StoreFile

Rescue Log File(y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

LogFileName is the name of the log �le that is to be rescued (that is, stored).

LogFileSize is the size in 512-byte pages of the log �le that is to be rescued.

StoreFile is the pathname of the store �le. For tape �les, this is an
absolute pathname. For disk store �les, the pathname may be an
absolute pathname or a pathname relative to the current working
directory. The maximum length of a pathname is 44 bytes.

Description

This command lets you store a log �le. It is normally used only with �les that cannot be
stored with STORELOG.

Normally, this command would only be used following the corruption of DBEnvironment
�les through a media failure or some other serious problem. If you are unable to connect to
the DBEnvironment, use a static SHOWLOG to display log �les that have not been stored,
then use RESCUELOG to store them.

If more than one tape volume is required to store the �le, a request will be displayed on the
console. The next tape can then be mounted.

Authorization

Any user may execute this command.

SQLUtil F-31

RESCUELOG

Example

>> rescuelog

Log File Name: DBELOG6

Size Of The Log File: 250

To File Name? /extra/lgn1

Rescue Log File(y/n)? y

Log file 'DBELOG6' with Sequence Number 12 was rescued.

F-32 SQLUtil

RESTORE

RESTORE

Copies an entire DBEnvironment to disk from tape or from disk �les created by using the
SQLUtil STORE or STOREONLINE command.

Scope

SQLUtil Only

SQLUtil Syntax

>> RESTORE

DBEnvironment Name: DBEnvironmentName
From File Name: StoreFileName
New DBECreator Name: NewDBECreatorName

Restore DBEnvironment (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment to be restored. The
DBEnvironment name may be either an absolute pathname or a
pathname relative to your current working directory; however, the
pathname must be entered exactly as it was entered when the
DBEnvironment was stored.

StoreFileName is the name of the �le or tape device where the stored
DBEnvironment resides. This �lename may be either an absolute
pathname or a pathname relative to your current working
directory.

NewDBECreatorName is the name of the user assigned as the DBECreator of the
DBEnvironment being restored. This prompt appears only if
the user performing the RESTORE is the superuser, and it
continues to appear until the superuser enters either a valid
DBECreatorName or // to quit.

Description

This command allows you to restore the DBECon �le and all DBEFiles of a
DBEnvironment that was saved with the SQLUtil STOREONLINE or STORE command.

When using RESTORE PARTIAL you must be in the same directory from which the
DBEFiles were stored. This is usually the directory containing the DBECon �le and the
SYSTEM DBEFileSet.

If the user restoring the DBEnvironment is the superuser, the user is prompted for a
new DBECreator name for the DBEnvironment. The entered name is checked against
the password �le on the system for validity. If the entered name is not valid, an error
message appears and the prompt for a new DBECreator name will reappear until either
a valid user name or // is entered. If the user restoring the DBEnvironment is not the
superuser, no prompt appears for a new DBECreator name. The current DBECreator of the
DBEnvironment being restored will remain the DBECreator in the new DBECon �le.

SQLUtil F-33

RESTORE

If a DBEnvironment with the same name already exists in the same directory, the user must
use the PURGEDBE command to purge it before RESTORE will successfully execute.

If the HP-UX directory structure of the DBEnvironment does not exist on the system to
which the DBEnvironment is being restored, it will be created. If the directory structure
does already exist, the user hpdb must have write permission to the directory. This is
accomplished by having the �le permissions of the directory where the DBEnvironment will
reside set to mode 755, having hpdb as owner, and having a group id of bin.

Authorization

Anyone can restore a DBEnvironment. But only the superuser can change the DBECreator
name.

Example

>> restore

DBEnvironment Name: PartsDBE

From File Name: /dev/rmt1

Restore DBEnvironment (y/n)? y

DBEnvironment restored.

F-34 SQLUtil

RESTORELOG

RESTORELOG

Restores a log �le that had been previously backed up with the STORELOG command.

Scope

SQLUtil Only

SQLUtil Syntax

>> RESTORELOG

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Input Device: DeviceName

Local (y/n) (opt):

�
Y
�
es
�

N
�
o
�
�

Rename LogFileName Log File To:
�
NewName

�
Restore the Log File (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment to which the log �les are being
restored.

MaintenanceWord is the maintenance word.

DeviceName is the name of the tape or other backup device from which you
are restoring the log �le.

Local speci�es whether the log is to be restored to the local directory or
to the directory from which it was originally stored. Reply Y for
the local directory.

NewName is the new name you are specifying for the log �le after you
restore it. The default is the same as the �le name speci�ed.

It is easier to restore the log �les in proper order if you specify a
new name which contains the log sequence number of the log �le
as part of the new �le name.

Description

This command lets you restore one or more previously stored archive log �les. If only one
log �le was stored with a given invocation of STORELOG, one log �le will be restored. If
multiple log �les were stored with a single invocation of STORELOG, all log �les stored
with that invocation will be restored.

ALLBASE/SQL prompts for a new �le name for each �le before restoring the �le. To avoid
name conicts, rename using distinct �le names that reect the log sequence numbers.

Rollforward recovery uses four commands:

SETUPRECOVERY or SETUPRECOVERY PARTIAL|initiates the process.

SQLUtil F-35

RESTORELOG

RESTORELOG|restores one or more log �les from a backup.
RECOVERLOG|issued by you for each log �le being applied to the DBEnvironment.
ENDRECOVERY|ends the rollforward recovery process.

You normally apply SETUPRECOVERY or SETUPRECOVERY PARTIAL once. When
using SETUPRECOVERY you can specify a RecoverTime as the end point for recovery.
For SETUPRECOVERY PARTIAL you must recover all the way up to the time of the
failure. You then use RESTORELOG to restore each backup log �le to the system in
sequence number order, and you use RECOVERLOG once for each log �le that you have
restored, to apply it to the DBEnvironment. ALLBASE/SQL will recover the transactions
in the �le up to the RecoverTime you speci�ed, or up to the end of the �le.

Use ENDRECOVERY once after recovering all the log �les you wish to apply to
the DBEnvironment. Normally, you do not use ENDRECOVERY if you speci�ed a
RecoverTime in the SETUPRECOVERY command.

ENDRECOVERY will result in an error if you have not recovered enough �les to make the
DBEnvironment consistent. If you used STOREONLINE to do an online backup of the
DBEnvironment, you must recover starting from the First Log Sequence Number Needed for
Recovery up to and including the �le that was active at the time the last STOREONLINE
command completed. If you did a static backup of the DBEnvironment, you can recover as
little or as much of the log as you desire once you have restored the most recent copy of the
DBEnvironment.

Normally, this command is used when recovering a DBEnvironment, in which case the
DBEnvironment is not in use while the command is executed.

Authorization

Any user may execute this command.

Examples

Recovery of singly stored log �le

>> setuprecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Recover to: (mm/dd/yy/hh/mm/ss) (opt): �Return�
New Log Mode (Single/Dual) (opt): single

Enter New Log File Name(s) Separated by a Blank: newlg1

New Log File Size: 250

Setup Recovery (y/n)? y

Recovery Has Been Set Up.

Next Log Sequence Number is 1.

>> restorelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Input Device: /dev/rmt/0h

Local (y/n) (opt): y

Rename 'lgn1' Log File To: lsn001

Restore the Log File (y/n)? y

Log File 'lsn001' was Restored.

F-36 SQLUtil

RESTORELOG

>> recoverlog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Next Log File To Recover: lsn001

Recover Log File (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 2.

>> endrecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
End Recovery (y/n)? y

Recovery Has Terminated.

Recovery of multiple log �les stored with single invocation of STORELOG

>> setuprecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Recover to: (mm/dd/yy/hh/mm/ss) (opt): �Return�
New Log Mode (Single/Dual) (opt): single

Enter New Log File Name(s) Separated by a Blank: newlg1

New Log File Size: 250

Setup Recovery (y/n)? y

Recovery Has Been Set Up.

Next Log Sequence Number is 1.

>> restorelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Input Device: /dev/rmt/0h

Local (y/n) (opt): y

Rename lgn1 Log File To: lsn001

Rename lgn2 Log File To: lsn002

Restore the Log File (y/n)? y

Log File 'lsn001' was Restored.

Log File 'lsn002' was Restored.

>> recoverlog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Next Log File To Recover: lsn001

Recover Log File (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 2.

>> recoverlog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Next Log File To Recover: lsn002

Recover Log File (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 3.

SQLUtil F-37

RESTORELOG

>> endrecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
End Recovery (y/n)? y

Recovery Has Terminated.

F-38 SQLUtil

RESTORE PARTIAL

RESTORE PARTIAL

Copies a subset of a DBEnvironment to disk from tape or from disk �les that were created
using the SQLUtil STORE, STOREONLINE, STORE PARTIAL, or STOREONLINE
PARTIAL commands.

Scope

SQLUtil Only

SQLUtil Syntax - RESTORE PARTIAL

>> RESTORE PARTIAL
�
Position Option

�
DBEnvironment Name: DBEnvironmentName
From File Name: StoreFileName
Enter File to Restore or Carriage Return to Finish: SystemFileName
Enter File to Restore or Carriage Return to Finish:

Parameters

PositionOption indicates the position on the backup device from which to begin
the restore operation. Valid only when the backup option has
been set to OMNIBACK.

DBEnvironmentName is the name of the DBEnvironment to be restored. The
DBEnvironment name may be entered either as an absolute
pathname or as a pathname relative to your current working
directory.

StoreFileName is the name of the �le or tape device where the stored
DBEnvironment �les reside. This �lename may be either an
absolute pathname or a pathname relative to your current
working directory.

SystemFileName is the physical name of the DBEFile to be restored. You may
enter a list of �le names, one name per line, with a null line to
terminate the list. Use the STOREINFO command to get the
names of the �les stored.

Description

This command allows you to restore all, or a subset of, the DBEFiles previously stored with
the SQLUtil STORE, STOREONLINE, STORE PARTIAL or STOREONLINE PARTIAL
command.

DBEFiles must be restored individually, on a �le by �le basis; you cannot specify a
DBEFileSET name to be restored.

When using RESTORE PARTIAL, if a DBEFile with the same name already exists in the
same directory, use the PURGEFILE command to purge it before restoring it.

When using RESTORE PARTIAL you must be in the same directory from which the
DBEFiles were stored. This is usually the directory containing the DBECon �le and the
SYSTEM DBEFileSet.

SQLUtil F-39

RESTORE PARTIAL

The directory to which the �les are being restored must have write permission for hpdb.
This is accomplished by having the �le permissions of the directory where the DBEFiles will
reside set to mode 755, with hpdb as owner, and having a group id of bin.

The PositionOption is valid only when the backup option has been set to OMNIBACK;
otherwise, it is ignored. Refer to the OMNIBACK User's Guide for the exact speci�cation
of a PositionOption.

Authorization

Anyone can execute the RESTORE PARTIAL command.

Example

>> restore partial

DBEnvironmentName: PartsDBE

From File Name: /dev/rmt/0h

Enter File to Restore or Carriage Return to Finish: OrderDF1

Enter File to Restore or Carriage Return to Finish: OrderXF1

Enter File to Restore or Carriage Return to Finish:

DBEnvironment restored.

F-40 SQLUtil

SET

SET

The SET command lets you specify the following operating parameters for SQLUtil:
BACKUP, EXIT ON DBERR, and ECHO ALL.

Scope

SQLUtil only.

SQLUtil Syntax

>> SET

2
6666666664

BACKUP
�
ALLBASE

�

ECHO_ALL

�
ON

OFF

�

EXIT_ON_DBERR

�
ON

OFF

�

3
7777777775

Parameters

BACKUP ALLBASE Speci�es the use of the default ALLBASE/SQL backup software.
This is the default setting.

ECHO_ALL Causes SQLUtil to echo all input. The initial default setting is
OFF.

EXIT_ON_DBERR Causes SQLUtil to terminate immediately when a DBERR is
encountered. The initial default setting is OFF.

Description

Issuing a SET BACKUP command sets the backup type to the default, that is, ALLBASE.

Note Support for OMNIBACK was removed from ALLBASE/SQL.

When the ECHO ALL command option is ON, batch user input is echoed to the standard
output. The initial default setting is OFF.

Setting the EXIT ON DBERR to ON causes immediate termination of SQLUtil when an
ALLBASE/SQL error is encountered.

See the \DBA Tasks and Tools" chapter of this manual for information on checking the exit
status when SQLUtil terminates.

Issuing a SET command without parameters displays the current settings, exactly as in the
SHOWSET command.

SQLUtil F-41

SET

Authorization

Anyone can use this command.

Example

>> set echo_all on

>> set exit_on_dberr on

set exit_on_dberr on

>> set backup ALLBASE

set backup ALLBASE

>> SET

set

ECHO_ALL : ON

EXIT_ON_DBERR : ON

BACKUP:

ALLBASE : ON

>>

F-42 SQLUtil

SETDBEMAINT

SETDBEMAINT

Sets or alters the maintenance word of a DBEnvironment.

Scope

SQLUtil Only

SQLUtil Syntax

>> SETDBEMAINT

DBEnvironment Name: DBEnvironmentName
Current Maintenance Word: OldMaintenanceWord
New Maintenance Word: NewMaintenanceWord
Retype New Maintenance Word: NewMaintenanceWord

Parameters

DBEnvironmentName is the name of a DBEnvironment.

OldMaintenanceWord is the old maintenance word. This is written to the terminal
screen.

NewMaintenanceWord is the new maintenance word. What you type is not echoed to the
terminal screen. You are prompted to enter the new maintenance
word a second time for veri�cation.

Description

This command allows you to set or change the DBEnvironment maintenance word. The
current maintenance word will be displayed after the DBEnvironment name has been given.
You are asked to enter the new maintenance word twice to ensure it is entered correctly.

The DBEnvironment cannot be in use while this command is executed.

Authorization

You must be the DBECreator or the superuser to use this command.

Example

>> setdbemaint

DBEnvironment Name: PartsDBE

Current Maintenance Word: OldMaintWd

New Maintenance Word: NewMaintWd

Retype New Maintenance Word: NewMaintWd

Maintenance word changed.

SQLUtil F-43

SETUPRECOVERY

Initiates a process of full rollforward recovery.

Scope

SQLUtil Only

SQLUtil Syntax

>> SETUPRECOVERY

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Recover To (mm/dd/y/hh/mm/ss) (opt): RecoverTime
New Log Mode (Single/Dual) (opt): NewLogMode
Enter New Log File Name(s) Separated By A Blank: NewLogFile1

�
NewLogFile2

�
New Log File Size (opt): NewLogSize

Setup Recovery (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment you are recovering. The
DBEnvironment name may be entered either as an absolute
pathname or as a pathname relative to your current working
directory.

MaintenanceWord is the maintenance word.

RecoverTime is the time up to which you want to recover the DBEnvironment.

NewLogMode is either Single or Dual. This applies to the new log, not to the
one from which recovery is carried out.

NewLogFile1 and
NewLogFile2

are the names you are specifying for the new log. Use both names
for dual logging. Files are created in the same directory as the
DBECon �le unless you specify a complete pathname.

NewLogSize is the size of the new log in 512-byte pages.

Description

This command starts a DBEnvironment session and lets you begin the process of
rollforward recovery after a DBEnvironment and its log �les have been restored.

Rollforward recovery uses four commands:

SETUPRECOVERY or SETUPRECOVERY PARTIAL|initiates the process.
RESTORELOG|restores one or more log �les from a backup.
RECOVERLOG|issued by you for each log �le being applied to the DBEnvironment.
ENDRECOVERY|ends the rollforward recovery process.

SETUPRECOVERY should be done from the directory from which the DBEnvironment
was originally stored (usually the directory containing the DBECon �le and SYSTEM
DBEFileSet).

F-44 SQLUtil

SETUPRECOVERY

You normally apply SETUPRECOVERY or SETUPRECOVERY PARTIAL once. For
SETUPRECOVERY you can specify a RecoverTime as the end point for recovery. For
SETUPRECOVERY PARTIAL you must recover all the way forward to the point of failure.
You then use RESTORELOG to restore each backup log �le to the system in sequence
number order, and you use RECOVERLOG once for each log �le that you have restored, to
apply it to the DBEnvironment. ALLBASE/SQL will recover the transactions in the �le up
to the RecoverTime you speci�ed or up to the end of the �le.

You use ENDRECOVERY once after recovering all the log �les you wish to apply to
the DBEnvironment. Normally, you do not use ENDRECOVERY if you speci�ed a
RecoverTime in the SETUPRECOVERY command.

ENDRECOVERY will result in an error if you have not recovered enough �les to make the
DBEnvironment consistent. If you used STOREONLINE to do an online backup of the
DBEnvironment, you must recover starting from the First Log Sequence Number Needed for
Recovery up to and including the �le that was active at the time the last STOREONLINE
command completed. If you did a static backup of the DBEnvironment, you can recover as
little or as much of the log as you desire once you have restored the most recent copy of the
DBEnvironment.

Authorization

You must be the superuser, DBECreator or supply the correct maintenance word to use this
command.

Example

>> setuprecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Recover to: (mm/dd/yy/hh/mm/ss) (opt): �Return�
New Log Mode (Single/Dual) (opt): single

Enter New Log File Name(s) Separated by a Blank: newlg1

New Log File Size: 250

Setup Recovery (y/n)? y

Recovery Has Been Set Up.

Next Log Sequence Number is 1.

>> restorelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Input Device: /dev/tape

Local (y/n) (opt): y

Rename 'lgn1' Log File To: newlog

Restore the Log File (y/n)? y

Log File 'newlog' was Restored.

>> recoverlog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Next Log File To Recover: newlog

Recover Log File (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 2.

SQLUtil F-45

SETUPRECOVERY

>> endrecovery

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
End Recovery (y/n)? y

Recovery Has Terminated.

F-46 SQLUtil

SETUPRECOVERY PARTIAL

SETUPRECOVERY PARTIAL

This command initiates a process of partial rollforward recovery. When SETUPRECOVERY
PARTIAL is used, a temporary DBEnvironment is created for the rollforward recovery
process.

Scope

SQLUtil Only

SQLUtil Syntax - SETUPRECOVERY PARTIAL

>> SETUPRECOVERY PARTIAL

New DBEnvironment Name: TempDBEnvironmentName
Maintenance Word: Maintenance Word
Enter DBEFileName or Carriage Return to Finish: SystemFileName
Enter DBEFileName or Carriage Return to Finish:

Setup Recovery (y/n)?

�
y
�
es
�

n
�
o
�
�

Parameters

TempDBEnvironment-
Name

is the name of the temporary DBEnvironment you are using to
perform a partial rollforward recovery.

MaintenanceWord is the maintenance word for the temporary DBEnvironment.

SystemFileName is the physical name of the DBEFile to be recovered. You will be
prompted for a list of �le names one name per line. Enter a blank
line with a carriage return to terminate the list.

Description

The SETUPRECOVERY PARTIAL command starts a DBEnvironment session and lets you
begin the process of partial rollforward recovery on an existing DBEnvironment. This allows
you to do rollforward recovery on a subset of the DBEnvironment while the intact portion
of the DBEnvironment remains in use.

DBEFiles must be speci�ed individually on a �le by �le basis; you cannot specify a
DBEFileSet name to be restored.

Partial rollforward recovery uses four commands:

SETUPRECOVERY PARTIAL|initiates the process.
RESTORELOG|restores one or more log �les from a backup.
RECOVERLOG|issued by you for each log �le being applied to the DBEnvironment.
ENDRECOVERY|ends the rollforward recovery process.

You normally apply SETUPRECOVERY PARTIAL once. When using SETUPRECOVERY
PARTIAL you must roll forward all the way to the point of the failure. You then use
RESTORELOG to restore each backup log �le to the system in sequence number order, and
you use RECOVERLOG once for each log �le that you have restored, to apply it to the
DBEnvironment. ALLBASE/SQL will recover the transactions in the �le up to the end of
the �le.

SQLUtil F-47

SETUPRECOVERY PARTIAL

You use ENDRECOVERY once after recovering all the log �les you wish to apply to the
DBEnvironment.

ENDRECOVERY will result in an error if you have not recovered enough �les to make the
DBEnvironment consistent. If you did a static backup of the DBEnvironment, you must
still recover up to the moment of the failure if doing a partial rollforward recovery. You
must be sure to recover all �les that will be acted upon by the rollforward process in order
to maintain a consistent database. (This includes �les that were undamaged by the failure,
but will still be acted upon by recovery. All �les touched by recovered transactions must be
recovered from the last static backup.)

When performing SETUPRECOVERY PARTIAL you should be in a directory which
is di�erent from the directory which contains the existing DBECon �le and SYSTEM
DBEFileSet because a new, temporary DBECon �le and SYSTEM DBEFileSet are created
for the partial rollforward recovery process. This also isolates the log �les used for the
partial recovery process so there can be no accidental interaction between the active log �les
and those used for the recovery process.

When you are performing a SETUPRECOVERY PARTIAL, the DBEnvironmentName
must be di�erent from the original DBEnvironmentName.

If a maintenance word is speci�ed in a SETUPRECOVERY PARTIAL, it is stored in
the temporary DBEnvironment. Later the maintenance word can be used to execute the
RECOVERLOG and the ENDRECOVERY commands.

The temporary DBEnvironment created for a partial rollforward process is purged when
the recovery is completed as are the temporary DBECon �le and temporary SYSTEM
DBEFiles. However, the log �les applied during the partial recovery process must be
explicitly removed using the SQLUtil PURGEFILE command after the ENDRECOVERY
command has been executed.

Authorization

You must be the superuser, DBECreator or you must supply the correct maintenance word to
use this command.

Example of Partial Recovery

From the directory containing the DBECon �le and the SYSTEM DBEFileSet, use the the
SQLUtil DETACHFILE command to detach all DBEFiles that will be acted upon by the
partial roll forward recovery process.

Move to a new directory which does not contain any DBECon �le or SYSTEM DBEFileSet to
carry out the remainder of the partial roll forward recovery process.

>> setuprecovery partial

DBEnvironment Name: tmpdbe

Maintenance Word: MaintenanceWord

Enter File to Restore or Carriage Return to Finish: ../PurchDF1

Enter File to Restore or Carriage Return to Finish: ../PurchXF1

Enter File to Restore or Carriage Return to Finish:

Setup Recovery (y/n): y

Recovery Has Been Setup.

Next Log Sequence Number is 2.

F-48 SQLUtil

SETUPRECOVERY PARTIAL

>> restorelog

DBEnvironment Name: tmpdbe

Maintenance Word: MaintenanceWord

Input Device: /dev/rmt/0h

Local (y/n) (opt): y

Rename partslogA1 Log File To: lsn002

Restore the Log File (y/n)? y

Log File 'lsn002' was Restored.

>> recoverlog

DBEnvironment Name: tmpdbe

Maintenance Word: MaintenanceWord

Next Log File To Recover: lsn002

Recover Log File (y/n)? y

Log File Recovered.

Next Possible Log Sequence Number is 3.

Repeat the restorelog/recoverlog sequence until all log �les have been applied up to the time
of the failure.

>> endrecovery

DBEnvironment Name: tmpdbe

Maintenance Word: MaintenanceWord

End Recovery (y/n)? y

Recovery Has Terminated.

Remove the log �les that remain after the partial recovery process from the directory which
contained the temporary DBEnvironment. Return to the directory which contains the original
DBEnvironment and use the SQLUtil ATTACHFILE command to attach all DBEFiles that
were detached prior to the partial roll forward recovery process.

SQLUtil F-49

SHOWDBE

Shows the information related to a DBEnvironment.

Scope

SQLUtil Only

SQLUtil Syntax

>> SHOWDBE

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Output File Name (opt): OutputFileName

Parameters

DBEnvironmentName is the name of a DBEnvironment.

MaintenanceWord is the maintenance word.

OutputFileName is the name of the output �le to which the output from this
command should be directed. The default is the terminal.

Description

This command shows information about the speci�ed DBEnvironment.

Once this command is executed, the user will be prompted for subsequent SHOWDBE
commands.

The DBEnvironment may be in use while this command is executed.

Authorization

Any user may execute this command. However, the DBEnvironment maintenance word
will not be displayed unless the user is the DBECreator or superuser or supplies the correct
maintenance word.

F-50 SQLUtil

SHOWDBE

Example

>> showdbe

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Output File Name (opt): �Return �
-> startparms

DBEnvironment Language: n-computer

DBECreator ID: 170

AutoStart: ON

Audit Logging Is: ON

Audit Logging Name is: Wrapper1

Default Partition ID is: 1

Maximum Number of Partitions Is: 10

Comment Partition ID Is: 2

Audit Elements Are: CHKPT, DATA, CMNT

User Mode: MULTI

DBEFile0 Name: PartsF0

DDL Enabled: YES

No. of Runtime Control Block Pages: 128

No. of Data Buffer Pages: 200

No. of Log Buffer Pages: 200

Max. Transactions: 100

Maximum Timeout: NONE

Default Timeout: MAXIMUM

Authorize Once per session: OFF

-> quit

SQLUtil F-51

SHOWDBE-ALL

Shows information about the DBEnvironment.

Scope

SQLUtil SHOWDBE Command

Syntax

-> ALL

Description

This command shows information contained in the DBECon �le.

Authorization

Any user may execute this command. However, the DBEnvironment maintenance word
will not be displayed unless the user is the DBECreator or superuser or supplies the correct
maintenance word.

Example

The values speci�ed in START DBE NEW and START DBE NEWLOG statements for audit
databases are stored in the DBECon �le. The SQLUtil SHOWDBE command can be used to
verify the parameters of a DBEnvironment. For example, when you enter the SHOWDBE
command after creation of a DBEnvironment, you might see the following:

isql=> sqlutil

>> showdbe

DBEnvironment Name; DBE1

Maintenance Word: �Return �
Output File Name (opt): �Return �
->

-> all

Maintenance word:

DBEnvironment Language: (n-computer)

DBECreator ID: 6723

AutoStart: ON

Audit Logging Is: ON

Audit Logging ID is: MYDBE1

Default Partition ID Is: 1

Maximum number of Partitions Is: 10

User Mode: MULTI

DBEFile0 Name: MyDBE1

DDL Enabled: YES

No. of Runtime Control Block Pages: 128

No. of Data Buffer Pages: 200

No. of Log Buffer Pages: 200

Max. Transactions: 30

Maximum Timeout: NONE

Default Timeout: MAXIMUM

Authorize Once per Session: OFF

F-52 SQLUtil

SHOWDBE-EXIT

SHOWDBE-EXIT

Terminates SHOWDBE execution.

Scope

SQLUtil SHOWDBE Command

Syntax

-> E
�
XIT

�

Description

This command can be abbreviated to E.

Authorization

Anyone can use this command.

Example

>> showdbe

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Output File Name (opt): �Return �
-> .

.

.

.

-> exit

SQLUtil F-53

SHOWDBE-HELP

Displays and describes all SHOWDBE commands.

Scope

SQLUtil SHOWDBE Command

SQLUtil Syntax

-> HELP

Command Name (opt): CommandName

Parameters

CommandName is the name of a SHOWDBE command.

Description

If you do not specify a CommandName, the HELP command lists the names of all valid
SHOWDBE commands and their descriptions.

If a CommandName is speci�ed, the correct syntax and an explanation for that command is
displayed.

You must enter // to leave the SHOWDBE HELP command.

Authorization

Anyone can use this command.

F-54 SQLUtil

SHOWDBE-HELP

Example

>> showdbe

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Output File Name (opt): �Return �
-> help

The following functions are available:

ALL EXIT HELP LANG MAINT QUIT STARTPARMS

For more information on any one of the functions, enter the command

name at the prompt. Carriage return <cr> displays a brief

description of each command. Type '//' to leave SHOWDBE HELP.

Command Name (opt): �Return �

Command Summary:

ALL Shows all the information of the DBEnvironment.

EXIT Terminates SHOWDBE execution.

HELP Displays and describes all SHOWDBE commands.

LANG Shows the language of the DBEnvironment.

MAINT Shows the DBEnvironment maintenance word.

STARTPARMS Shows the startup parameters of the DBEnvironment.

QUIT Terminates SHOWDBE execution.

Command Name (opt): maint

-> MAINT

Shows the DBEnvironment maintenance word.

Command Name (opt): //

-> quit

SQLUtil F-55

SHOWDBE-LANG

Shows the DBEnvironment language.

Scope

SQLUtil SHOWDBE Command

SQLUtil Syntax

-> LANG

Description

This command displays the name of the DBEnvironment language.

Authorization

Anyone can use this command.

Example

>> showdbe

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Output File Name (opt): �Return �
-> lang

DBEnvironment Language: n-computer

-> quit

F-56 SQLUtil

SHOWDBE-MAINT

SHOWDBE-MAINT

Shows the DBEnvironment maintenance word.

Scope

SQLUtil SHOWDBE Command

SQLUtil Syntax

-> MAINT

Description

This command displays the DBEnvironment maintenance word.

Authorization

You must be the DBECreator or superuser or supply the correct maintenance word.

Example

>> showdbe

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Output File Name (opt): �Return �
-> maint

Maintenance Word: MaintWd

-> quit

SQLUtil F-57

SHOWDBE-QUIT

Terminates SHOWDBE execution.

Scope

SQLUtil SHOWDBE Command

Syntax

-> Q
�
UIT

�

Description

This command can be abbreviated to Q.

Authorization

Anyone can use this command.

Example

>> showdbe

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: MaintWd

Output File Name (opt): �Return �
-> .

.

.

.

-> quit

F-58 SQLUtil

SHOWDBE-STARTPARMS

SHOWDBE-STARTPARMS

Shows the startup parameters of the DBEnvironment.

Scope

SQLUtil SHOWDBE Command

SQLUtil Syntax

-> STARTPARMS

Description

This command shows the startup parameters of the DBEnvironment.

Authorization

Any user may execute this command.

Example

>> showdbe

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: MaintWd

Output File Name (opt): �Return �
-> startparms

DBEnvironment Language: n-computer

DBECreator ID: 170

AutoStart Mode: ON

User Mode: MULTI

DBEFile0 Name: PartsF0

DDL Enabled: YES

No. of Runtime Control Block Pages: 37

No. of Data Buffer Pages: 100

No. of Log Buffer Pages: 24

Max. Transactions: 5

Maximum Timeout: NONE

Default Timeout: MAXIMUM

Authorize Once per session: OFF

-> quit

SQLUtil F-59

SHOWLOG

Displays information about the log �les associated with the DBEnvironment.

Scope

SQLUtil Only

SQLUtil Syntax

>> SHOWLOG

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord

Connect? (y/n) (opt):

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of a DBEnvironment.

MaintenanceWord is the maintenance word.

Description

This command lets you display the log �le status within the DBEnvironment.

Use SHOWLOG to display general information about the log as a whole and speci�c
information about individual log �les.

The normal response to the prompt Connect? is Y, since connecting to the DBEnvironment
will result in display of current status information. If you are not connected, SQLUtil does a
static SHOWLOG, which examines only the log entries in the DBECon �le, and does not
report the number of free log pages available or tell whether the �le is ready for backup.
Static SHOWLOG is used immediately after restoring a DBEnvironment following a media
failure, or in other cases when you cannot CONNECT to the DBEnvironment. The default
response to the Connect? prompt is Y.

SHOWLOG displays the following general information about the log as a whole:

Archive Mode ON or OFF. ON means that you are using archive logging.

Log Sequence Number
Containing Most Recent

Archive Checkpoint

Indicates the log �le that was active at the time the last
STOREONLINE command was issued. This information is
useful to HP support engineering personnel when you are
using archive logging. If archive mode is OFF, this number is
0.

Current Sequence Number Indicates the log �le that has most recently been written to
or switched into.

First Log Sequence Number

Needed for Recovery

Indicates the log �le from which you should start the
rollforward recovery process if it is needed. This information
is useful only when you are using archive logging. If archive
mode is OFF, this number is 0.

F-60 SQLUtil

SHOWLOG

Log Mode SINGLE or DUAL, indicating single log �les or dual log �les.

Number of Free Log Blocks Indicates the total amount of log �le space available in
512-byte blocks.

SHOWLOG displays the following speci�c information about each log �le:

First Log Name, Second Log
Name

Indicates the �le name of the log �le.

First Log File Status,
Second Log File Status

Shows the usability status of each �le.

Log File Size Indicates the number of pages in the log �le. If you choose
an odd number of log �le pages in the START DBE NEW,
START DBE NEWLOG statements or in the ADDLOG
command, the number is rounded up to an even number,
which is displayed here.

Log Identifier A number that identi�es a speci�c log �le that has been
added to the DBEnvironment. If you are using dual logging,
one identi�er number identi�es both �les in the pair. Log
identi�er numbers are reused when log �les are purged and
others are added.

Log Sequence Number A number that identi�es a speci�c log �le in an archive log
sequence. Log sequence numbers are never reused.

Log Backup Status Backup status of the �le. The type of status shown
depends on whether you have speci�ed a dynamic or static
SHOWLOG. These are shown below.

For a dynamic SHOWLOG, the types of backup status are as follows:

Not Ready for Backup This is the current �le, which is not full yet.

Ready for Backup The �le is full, and the DBE is now using a di�erent �le, so
this one is ready to be stored with STORELOG.

Backup is Done The �le has already been backed up.

Backup is Not Required The DBEnvironment is in nonarchive mode, so the �le does
not need to be backed up.

For a static SHOWLOG, the types of backup status are as follows:

Backup is Required The �le has not been backed up yet.

Backup is Done The �le has already been backed up.

Backup is Not Required The DBEnvironment is in nonarchive mode, so the �le does
not need to be backed up.

For archive logging, SHOWLOG displays information about the log �les needed for
rollforward recovery. You begin rollforward recovery with a SETUPRECOVERY command,
then you use RESTORELOG and RECOVERLOG for each log �le that is to be applied,
starting with the First Log Sequence Number Needed for Recovery.

The DBEnvironment can be in use when this command is executed.

SQLUtil F-61

SHOWLOG

Authorization

You must be the DBECreator, the superuser, or supply the correct maintenance word to use
this command.

Examples

Dynamic SHOWLOG with archive logging

>> showlog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Connect (y/n) (opt): y

Archive Mode: ON

Log Sequence Number Containing Most Recent Archive Checkpoint: 1

Current Log Sequence Number: 1

First Log Sequence Number Needed for Recovery: 1

Log Mode is: Dual

Number of Free Block(s): 340

First Log Name: PARTSLG1

First Log File Status: Useable

Second Log Name: PARTSLG2

Second Log File Status: Useable

Log File Size: 256

Log Identifier Is: 1

Log Sequence Number: 1

Log Backup Status: Not Ready for Backup

Static SHOWLOG with nonarchive logging

>> showlog

DBEnvironment Name: ../sampledb/PartsDBE

Maintenance Word: �Return �
Connect (y/n) (opt): n

Archive Mode: OFF

Log Sequence Number Containing Most Recent Archive Checkpoint: 0

Current Log Sequence Number: 1

First Log Sequence Number Needed for Recovery: 0

Log Mode is: Dual

Number of Free Log Blocks: N/A

First Log Name: PARTSLG1

First Log File Status: Useable

Second Log Name: PARTSLG2

Second Log File Status: Useable

Log File Size: 256

Log Identifier Is: 1

Log Sequence Number: 1

Log Backup Status: Backup Is Not Required

F-62 SQLUtil

SHOWSET

SHOWSET

Displays the setting of a parameter established with the SET command.

Scope

SQLUtil only.

SQLUtil Syntax

>> SHOWSET

2
4 BACKUP

ECHO_ALL

EXIT_ON_DBERR

3
5

Parameters

BACKUP is the name of the Backup setting established with the SET
command. The only possible parameter is ALLBASE.

ECHO_ALL is the ECHO ALL setting established with the SET command.
Possible values are ON or OFF.

EXIT_ON_DBERR is the EXIT ON DBERR setting established with the SET
command. Possible values are ON or OFF.

Description

The SHOWSET command displays the current value of the BACKUP, ECHO ALL, or
EXIT ON DBERR setting.

If you issue the SHOWSET command without specifying an additional parameter, SQLUtil
displays settings for all parameters that are set with the SET command.

Example

>> set echo_all on

>> showset echo_all

showset echo_all

ECHO_ALL : ON

>> set backup ALLBASE

set backup ALLBASE

>> showset backup

showset backup

ALLBASE : ON

>>

SQLUtil F-63

STORE

Makes a static backup of a DBEnvironment on tape or serial disk.

Scope

SQLUtil

SQLUtil Syntax

>> STORE

Do you wish to proceed (y/n)?:

�
Y
�
es
�

N
�
o
�
�

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
To File Name: StoreFileName

Parameters

DBEnvironmentName is the name of the DBEnvironment to be stored. The
DBEnvironment name can be an absolute pathname or a
pathname relative to your current working directory; however,
the name must be entered exactly the same way when the
DBEnvironment is restored.

MaintenanceWord is the maintenance word.

StoreFileName is the absolute pathname of the backup �le. Relative pathnames
are not allowed. The maximum length of a pathname is 44 bytes.

Description

STORE performs a static backup of a DBEnvironment. You use it primarily when
nonarchive logging is in use. If you are logging in archive mode, you normally use
STOREONLINE to perform a backup.

When using the STORE command you should be in the directory which contains the
DBECon �le and the SYSTEM DBEFileSet. If you must later restore the DBEnvironment,
you must be in the same directory from which you originated the STORE.

If you are using STORE for backups in archive mode, please refer to the section entitled
\Static Backup Procedures in Archive Mode" in the \Backup and Recovery" chapter of this
guide for a complete description of the procedure.

This command allows the user to create a backup copy of the DBECon �le and all DBEFiles
of a DBEnvironment. Note that log �les are not stored. If more than one volume is required
to store the DBEnvironment, a request will be displayed on the console. The next tape can
then be mounted.

The DBEnvironment cannot be in use while this command is executed.

F-64 SQLUtil

STORE

Authorization

You must be the DBECreator or superuser or supply the correct maintenance word to use this
command.

Example

Invoke SQLUtil.

>> store

Do you wish to proceed (y/n)?: Y

DBEnvironment Name: PartsDBE

Maintenance Word: MaintWd

To File Name: MyFile

DBEnvironment stored.

SQLUtil F-65

STOREINFO

This command lists the physical name and size of all the �les backed up on a speci�ed tape or
disk �le.

Scope

SQLUtil Only

SQLUtil Syntax

>> STOREINFO

From File Name: StoreFileName

Parameters

StoreFileName is the name of the tape device or serial disk.

Description

The STOREINFO command lists the names of the DBEFiles and the size of each in pages
stored on the speci�ed device.

The STOREINFO command should be used from the same directory from which the
STORE or STOREONLINE command was issued. This is usually the directory containing
the DBECon �le and the SYSTEM DBEFileSet.

If the backup was created using a full STORE or STOREONLINE, the DBECon �le will be
shown as one of the listed �les. If the backup was created using a STORE PARTIAL or
STOREONLINE PARTIAL, the DBECon �le is not stored and will not be shown in the list
of stored �les.

If the DBEFiles have been moved to a directory di�erent from the one containing the
DBECon �le and the SYSTEM DBEFileSet, the fully quali�ed �le name will be shown by
STOREINFO. When you later restore the �les, you must be in the directory from which
the �les were stored (usually the directory containing the DBECon �le and SYSTEM
DBEFileSet) and the �le name used for the restore process must be exactly as shown by the
STOREINFO command.

Authorization

Anyone can list the physical names of �les on the archive.

F-66 SQLUtil

STOREINFO

Example

>> STOREINFO

From File Name: /dev/rmt/0h

DBEfile Name: PartsDBE

Size: 0

DBEfile Name: PartsF0

Size: 150

DBEfile Name: PurchDF1

Size: 50

DBEfile Name: PurchFX1

Size: 50

DBEfile Name: driveB/WarehDF1

Size: 50

DBEfile Name: driveC/WarehXF1

Size: 50

DBEfile Name: OrderDF1

Size: 50

DBEfile Name: FileData

Size: 50

DBEfile Name: RecDF1

Size: 50

SQLUtil F-67

STORELOG

Stores a copy of an archive log �le that is ready for backup.

Scope

SQLUtil Only

SQLUtil Syntax

>> STORELOG

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
Log Identifier (opt): LogIdenti�er
To File Name? FileName

Store Log File (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment with which the �le you are
storing is associated. The DBEnvironment name may be entered
either as an absolute pathname or as a pathname relative to your
current working directory.

MaintenanceWord is the maintenance word.

LogIdenti�er is the log identi�er number of the log �le to be stored. Use the
SHOWLOG command to display this number.

FileName is the absolute pathname of the store �le. Relative pathnames are
not allowed. The maximum length of a pathname is 44 bytes.

Description

This command lets you store an archive log �le. The �le to be stored must not be the
current log �le, and it must have the backup status of Ready for Backup in a dynamic
SHOWLOG display.

If you specify the log identi�er number for a log �le that is Ready for Backup, only the
speci�ed log �le will be stored.

If you omit the LogIdenti�er , ALLBASE/SQL will store only the log �le with the lowest
sequence number that is storable|that is, has the lowest log sequence number and has
Ready for Backup status in a dynamic SHOWLOG display.

If you specify a log identi�er number of 0, every log �le which currently has the status
Ready for Backup will be automatically stored to the same tape or disk device in order of
increasing log sequence number. This allows you to store multiple log �les to a single tape
or disk device.

If the LogIdenti�er number you enter corresponds to a log �le that is in use, the store will
not take place.

F-68 SQLUtil

STORELOG

If more than one volume is required to store the log �le, a request will be displayed on the
console. The next tape can then be mounted.

For each successful STORELOG, label the backup tape with the log �le name, sequence
number, and the date and time of the backup. The sequence number will let you restore
and recover log �les in the correct order in the event that rollforward recovery is needed.

The DBEnvironment may be in use while this command is executed.

Multiple log support with STORELOG and RESTORELOG is not supported on the
OMNIBACK backup tool.

Authorization

You must be the DBECreator or superuser or supply the correct maintenance word to use this
command.

Example

STORELOG of single speci�ed log �le

>> storelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Log Identifier (opt): 2

To File Name? /dev/rmt/0h

Store Log File (y/n)? y

Log file 'lgn1' with Sequence Number 11 was stored.

STORELOG using a log identi�er of 0 to store multiple log �les to the same device

>> storelog

DBEnvironment Name: PartsDBE

Maintenance Word: �Return �
Log Identifier (opt): 0

To File Name? /dev/rmt/0h

Store Log File (y/n)? y

Log file 'ptslogA2' with Sequence Number 5 was stored.

Log file 'ptslogA1' with Sequence Number 6 was stored.

Log file 'ptslogA3' with Sequence Number 7 was stored.

Log file 'ptslogA5' with Sequence Number 8 was stored.

SQLUtil F-69

STOREONLINE

Backs up a DBEnvironment to tape or serial disk and enables archive logging if it is not
already in e�ect.

Scope

SQLUtil

SQLUtil Syntax

>> STOREONLINE

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
To File Name: StoreFileName

Parameters

DBEnvironmentName is the name of the DBEnvironment to be stored. The
DBEnvironment name can be an absolute pathname or a
pathname relative to your current working directory; however,
the name must be entered exactly the same way when the
DBEnvironment is restored.

MaintenanceWord is the maintenance word.

StoreFileName is the absolute pathname of the backup tape or disk �le. Relative
pathnames are not allowed. The maximum length of a pathname
is 44 bytes.

Description

STOREONLINE allows the user to create a backup copy of the DBECon �le and all
DBEFiles of a DBEnvironment. Note that log �les are not stored. If more than one volume
is required to store the DBEnvironment, a request will be displayed on the console. The
next tape can then be mounted.

When you execute STOREONLINE you should be in the directory which contains the
DBECon �le and the SYSTEM DBEFileSet. If you must later restore the DBEnvironment,
you must be in the same directory from which the DBEnvironment was stored.

You issue the STOREONLINE command when the DBEnvironment is in normal use. If
archive logging has not previously been in e�ect, this command enables it.

The following message appears after the STOREONLINE is complete:

DBEnvironment stored.

F-70 SQLUtil

STOREONLINE

Caution In order for an online backup to be of use for rollforward recovery, all
logs containing transactions that were active during the execution of the
STOREONLINE command must be available at recovery time. Without all
the logs, the backup is worthless. This means that after the STOREONLINE
command completes, you should do a STORELOG as soon as possible on
any log �les that contained active transactions during the time you did the
STOREONLINE.

The range of sequence numbers of the log �les containing transactions
active during the STOREONLINE process is indicated at the completion
of STOREONLINE. Both the beginning and ending archive log sequence
numbers are displayed. You must store all log �les in that range to be able to
do roll forward recovery, later.

If there is a media failure involving the device containing the log �les active
during the STOREONLINE, and if the failure occurs before the �les have
been backed up, the DBEnvironment backup will not be usable. For the
greatest protection, use dual logging with the dual �les on di�erent disk
drives.

Authorization

You must be the DBECreator or superuser or supply the correct maintenance word to use this
command.

Example

>> storeonline

DBEnvironment Name: PartsDBE

Maintenance Word: MaintWd

To File Name: /dev/rmt/0h

DBEnvironment stored.

Begin Archive Log Sequence Number 2

End Archive Log Sequence Number 3

SQLUtil F-71

STOREONLINE PARTIAL

Backs up part of a DBEnvironment to tape or serial disk and enables archive logging if it is
not already in e�ect.

Scope

SQLUtil

SQLUtil Syntax - STOREONLINE PARTIAL

>> STOREONLINE PARTIAL

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
To File Name: StoreFileName
Enter DBEFileset name or Carriage Return to Finish: DBEFilesetName
Enter DBEFileset name or Carriage Return to Finish:

Enter DBEFile name or Carriage Return to Finish: SystemFileName
Enter DBEFile name or Carriage Return to Finish:

Parameters

DBEnvironmentName is the name of the DBEnvironment containing the subset to be
stored. The DBEnvironment name can be an absolute pathname
or a pathname relative to your current working directory;
however, the name must be entered exactly the same way when
the DBEnvironment is restored.

MaintenanceWord is the maintenance word.

StoreFileName is the absolute pathname of the backup �le. Relative pathnames
are not allowed. The maximum length of a pathname is 44 bytes.

DBEFilesetName is name of the DBEFileset to store. You may enter a list of
DBEFileSets one name per line, followed by a blank line with a
carriage return to terminate the list.

SystemFileName is the physical name of the DBEFile to store. You may enter a
list of DBEFiles one name per line, followed by a blank line with
a carriage return to terminate the list.

Description

STOREONLINE PARTIAL allows you to create a backup copy of a subset of the DBEFiles
of a DBEnvironment. Note that DBECon �le and the log �les are not stored. If more than
one volume is required to store the DBEnvironment, a request will be displayed on the
console. The next tape can then be mounted.

When you execute STOREONLINE PARTIAL you should be in the same directory
which contains the DBECon �le and SYSTEM DBEFileSet. If you must later restore the
DBEnvironment, you must be in the same directory from which it was stored.

If a DBEFileset name is speci�ed in STOREONLINE PARTIAL, all the DBEFiles in the
DBEFileset are stored.

F-72 SQLUtil

STOREONLINE PARTIAL

To obtain the SystemFileName of a DBEFile, you can execute a statement that speci�es the
logical �le name. Suppose a DBEFile was created with the following statement:

CREATE DBEFILE OrderDataF1

WITH PAGES = 50,

NAME = 'OrderDF1',

TYPE = TABLE;

The STOREONLINE PARTIAL command requests the physical �le name
(SystemFileName), but if it is not remembered, the following statement using the logical �le
name will display the physical �le name:

SELECT FILEID

FROM SYSTEM.DBEFILE

WHERE DBEFNAME = 'OrderDataF1';

The FILEID column gives the SystemFileName for the DBEFile.

Issue the STOREONLINE PARTIAL command when the DBEnvironment is in normal use.
If archive logging has not previously been in e�ect, this command enables it.

The following message appears after the STOREONLINE PARTIAL is complete:

DBEnvironment stored.

Begin Archive Log Sequence Number Number

End Archive Log Sequence Number Number

Caution In order for an online backup to be of use for rollforward recovery, all
logs containing transactions that were active during the execution of
the STOREONLINE PARTIAL command must be available at recovery
time. Without all the logs, the backup is worthless. This means that after
the STOREONLINE PARTIAL command completes, you should do a
STORELOG as soon as possible on any log �les that contained transactions
active during the time you did the STOREONLINE.

The range of sequence numbers of the log �les containing transactions active
during the STOREONLINE PARTIAL process is indicated at the completion
of STOREONLINE PARTIAL. Both beginning and ending archive log
sequence numbers are displayed. You must store all log �les in that range to
be able to do roll forward recovery, later.

If there is a media failure involving the device containing the log �les, and if
the failure occurs before the �les have been backed up, the DBEnvironment
backup will not be usable. For the greatest protection, use dual logging with
the dual �les on di�erent disk drives.

Authorization

You must be the DBECreator, superuser, or you must supply the correct maintenance word to
use this command.

SQLUtil F-73

STOREONLINE PARTIAL

Example

>> storeonline partial

DBEnvironment Name: PartsDBE

Maintenance Word: MaintenanceWord

To File Name: /dev/rmt/0h

Enter DBEFileset name or Carriage Return to Finish: WarehFS

Enter DBEFileset name or Carriage Return to Finish:

Enter DBEFile name or Carriage Return to Finish: OrderDF1

Enter DBEFile name or Carriage Return to Finish:

DBEnvironment Stored

Begin Archive Log Sequence Number 2

End Archive Log Sequence Number 3

F-74 SQLUtil

STORE PARTIAL

STORE PARTIAL

Makes a static backup of part of a DBEnvironment on tape or disk.

Scope

SQLUtil only.

SQLUtil Syntax - STORE PARTIAL

>> STORE PARTIAL Do you wish to proceed (y/n)?:

�
y
�
es
�

n
�
o
�
�

DBEnvironment Name: DBEnvironmentName
Maintenance Word: MaintenanceWord
To File Name: StoreFileName
Enter DBEFileset name or Carriage Return to Finish: DBEFileSetName
Enter DBEFileset name or Carriage Return to Finish:

Enter DBEFile name or Carriage Return to Finish: SystemFileName
Enter DBEFile name or Carriage Return to Finish:

Start backup (y/n)?

�
y
�
es
�

n
�
o
�
�

Parameters

DBEnvironmentName is the name of the DBEnvironment containing the subset to be
stored. The DBEnvironment name can be an absolute pathname
or a pathname relative to your current working directory;
however, the name must be entered exactly the same way when
the DBEnvironment is restored.

MaintenanceWord is the maintenance word.

StoreFileName is the absolute pathname of the backup �le. Relative pathnames
are not allowed. The maximum length of a pathname is 44 bytes.

DBEFilesetName is the name of the DBEFileset to store. You may enter a list of
DBEFileSets one name per line, followed with a blank line with a
carriage return to terminate the list.

SystemFileName is the physical name of the DBEFile to store. You may enter a
list of DBEFiles one name per line, followed with a blank line
with a carriage return to terminate the list.

Description

STORE performs a static backup of a subset of a DBEnvironment. You use it primarily
when nonarchive logging is in use. If you are logging in archive mode, you normally use
STOREONLINE PARTIAL to perform a partial backup.

When using the STORE PARTIAL command you should be in the directory which contains
the DBECon �le and the SYSTEM DBEFileSet. If you must later do a partial recovery of
the DBEnvironment you must be in the same directory from which the STORE PARTIAL
was made.

SQLUtil F-75

STORE PARTIAL

If you are using STORE for backups in archive mode, please refer to the section entitled
\Static Backup Procedures in Archive Mode" in the \Backup and Recovery" chapter of this
guide for a complete description of the procedure.

This command allows the user to create a backup copy of a speci�ed subset of the DBEFiles
of a DBEnvironment. Note that the DBECon �le and log �les are not stored. If more than
one volume is required to store the DBEnvironment �les, a request will be displayed on the
console. The next tape can then be mounted.

If a DBEFileSet is speci�ed in a PARTIAL backup, all the DBEFiles in the DBEFileset will
be stored.

To obtain the SystemFileName of a DBEFile, you can execute a statement that speci�es the
logical �le name. Suppose a DBEFile was created with the following statement:

CREATE DBEFILE OrderDataF1

WITH PAGES = 50,

NAME = 'OrderDF1',

TYPE = TABLE;

The STORE PARTIAL command requests the physical �le name (SystemFileName), but
if it is not remembered, the following statement using the logical �le name will display the
physical �le name:

SELECT FILEID

FROM SYSTEM.DBEFILE

WHERE DBEFNAME = 'OrderDataF1';

The FILEID column gives the SystemFileName for the DBEFile.

The DBEnvironment cannot be in use while this command is executed.

Authorization

You must be the DBECreator, superuser, or supply the correct maintenance word to use this
command.

Example

Invoke SQLUtil

>> store partial

Do you wish to proceed (y/n)?: Y

DBEnvironment Name: PartsDBE

Maintenance Word: MaintenanceWord

To File Name: /dev/rmt/0h

Enter DBEFileset name or Carriage Return to Finish: WarehFS

Enter DBEFileset name or Carriage Return to Finish:

Enter DBEFile name or Carriage Return to Finish: OrderDF1

Enter DBEFile name or Carriage Return to Finish:

DBEnvironment stored.

F-76 SQLUtil

SYSTEM

SYSTEM

Escape temporarily to the operating system.

Scope

SQLUtil Only

SQLUtil Syntax

>> SYSTEM

Parameters

CommandName is the name of an operating system command.

Description

Use the exit command to return to SQLUtil from the HP-UX shell.

Example

>> system

$ ll

total 5586

-rw-rw-r-- 1 guest guest 10626 Jul 12 11:06 +invfile

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderDF1

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderXF1

.

.

.

$ exit

>>

SQLUtil F-77

WRAPDBE

Associates a new DBEnvironment with the log �les of an inaccessible DBEnvironment. It
wraps the new DBEnvironment around orphaned log �les.

Scope

SQLUtil Only

SQLUtil Syntax

>> WRAPDBE

WrapperDBEnvironment Name: WrapperDBEnvironmentName
Maintenance Word: MaintenanceWord
Wrapper Mode (log) (opt): Log

Enter Log File Name(s) Separated by a Blank? (RETURN to finish): LogFileName1
Enter Log File Name(s) Separated by a Blank? (RETURN to finish):

Convert to Wrapper DBEnvironment? (y/n)?

�
Y
�
es
�

N
�
o
�
�

Parameters

DBEnvironmentName is the name of a Wrapper DBEnvironment. Must
be the name of an empty DBEnvironment previously
created to wrap around the log �les.

MaintenanceWord is the maintenance word. Must be the maintenance
word of the DBEnvironment.

Wrapper Mode is the mode. Log is the default and only mode
presently allowed.

LogFileName1 physical name of a log �le that is to be wrapped.

Convert to Wrapper DBEnvironment converts the empty DBEnvironment to a wrapper
DBEnvironment or gives you the opportunity to exit
this command without wrapping a DBEnvironment
around the orphaned log �le(s).

Description

This command wraps a DBEnvironment around log �les orphaned after a hard crash of a
DBEnvironment.

The DBEnvironment can be empty or it can have tables on which updates have been
performed.

No updates can be made to the DBEnvironment after it has been converted to a wrapper
DBEnvironment with this command. Any updates must be performed before this command
is issued.

The log �les around which the DBEnvironment is to be wrapped must be valid and must be
marked as usable log �les before this command is used. Refer to the section of this manual
that describes wrapper DBEnvironment use.

F-78 SQLUtil

WRAPDBE

The log �les entered should constitute a correct log �le sequence list with no sequence
numbers missing. If the DBEnvironment that crashed has dual log �les, then log �le names
can be taken from either of the dual log �les, as long as they constitute a proper sequence.
The proper list of log �les must be determined before using the WRAPDBE command.

The DBEnvironment to be wrapped around the orphaned log �les must be created before
the WRAPDBE command is used. The DBEnvironment is created with the START DBE
NEW statement. Refer to the \Setting up a Wrapper DBEnvironment" section of the
\Backup and Recovery" chapter of this manual.

WRAPDBE prompts for the names of �les around which the WrapperDBE is to be
wrapped. WRAPDBE does not accept more than one �le name on a single line.

Any log �les associated with the wrapper DBEnvironment before it is converted are
removed. Only the wrapped log �les are associated with the DBEnvironment after the
WRAPDBE command is executed.

For more information, refer to the \Backup and Recovery" chapter.

Authorization

You must be the superuser (HP-UX) or system administrator (MPE/iX) or DBECreator of
the original inaccessible DBEnvironment to use this command.

Example

>> WRAPDBE

DBEnvironment Name: WRAPDBE1

Maintenance Word: �Return �
Wrapper Mode (log) (opt): log

Enter Log File Name Separated by a Blank? (RETURN to finish): LGN1

Enter Log File Name Separated by a Blank? (RETURN to finish):

Convert to Wrapper DBEnvironment (y/n)? y

SQLUtil F-79

G

SQLGEN

The following pages contain the SQLGEN command syntax. Refer to the \DBA Tasks and
Tools" chapter for a discussion of how to use SQLGEN.

SQLGEN G-1

EDITOR

Invokes the current editor.

Scope

SQLGEN Only

SQLGEN Syntax

>> ED
�
ITOR

��
Filename

�

Parameters

FileName identi�es the �le you want to edit. Name quali�cation follows HP-UX
conventions:

[pathname/]filename

Unless you specify a full pathname, SQLGEN assumes any pathname
you specify is relative to your current working directory.

Description

EDITOR is used to invoke the current editor. The default editor is /usr/bin/vi. (Use the
SET EDITOR command to rede�ne the current editor.)

Example

>> ed startup

connect to 'ptstdb'

create dbefileset fset0;

create dbefileset fset1;

create dbefileset fset2;

. .

. .

. .

"startup" 254 lines, 10954 characters

:q

>>

G-2 SQLGEN

EXIT

EXIT

Terminates SQLGEN.

Scope

SQLGEN Only

SQLGEN Syntax

>> E
�
XIT

�

Description

EXIT is used to end SQLGEN execution. If the DBE session has not been terminated prior
to using the EXIT command, then an automatic RELEASE occurs before exiting SQLGEN.

Example

>> EXIT

DBEnvironment has been RELEASED.

%

SQLGEN G-3

GENERATE ALL

Generates the SQL commands necessary to recreate an entire DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
ALL

Schema file Name or '//' to STOP command >> SchemaFileName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

Description

GENERATE ALL generates a set of commands that can be used to migrate all the objects
of a DBEnvironment.

GENERATE ALL does not generate the CREATE SCHEMA statement.

GENERATE ALL calls all the GENERATE commands except GENERATE LOAD and
GENERATE STATISTICS. All objects are selected for each GENERATE command.

The commands are called in the following order:

1. GENERATE DBE
2. GENERATE DBEFILES
3. GENERATE SPECAUTH
4. GENERATE DEFAULTSPACE
5. GENERATE TEMPSPACES
6. GENERATE GROUPS
7. GENERATE PARTITION
8. GENERATE TABLES
9. GENERATE SPECAUTH
10. GENERATE TABAUTH
11. GENERATE INDEXES
12. GENERATE VIEWAUTH
13. GENERATE VIEWS
14. GENERATE PROCEDURES
15. GENERATE PROCAUTH
16. GENERATE RULES
17. GENERATE MODOPTINFO
18. GENERATE PROCOPTINFO
19. GENERATE MODAUTH
20. GENERATE INSTALLAUTH

G-4 SQLGEN

GENERATE ALL

This is a description of each command:

GENERATE DBE builds the commands necessary to start DBE new for a DBEnvironment.

GENERATE
DBEFILES

builds ALLBASE/SQL commands to recreate one or more of the
DBEFileSets and associated DBEFiles of the DBEnvironment.

GENERATE

SPACEAUTH

builds ALLBASE/SQL commands to grant SECTIONSPACE and
TABLESPACE authority.

GENERATE

DEFAULTSPACE

builds ALLBASE/SQL commands to set the default SECTIONSPACE
and TABLESPACE to certain DBEFileSet.

GENERATE

TEMPSPACES

builds ALLBASE/SQL commands to recreate one or more of the
TEMPSPACEs of the DBEnvironment.

GENERATE GROUPS builds SQL commands to recreate all the groups of the DBEnvironment.
It generates CREATE GROUP as well as commands to add users/groups
to a group.

GENERATE

PARTITION

builds ALLBASE/SQL commands to recreate one or more of the
PARTITIONs of the DBEnvironment.

GENERATE TABLES builds CREATE TABLE commands to recreate one or more tables of
the DBEnvironment. You can also recreate associated indexes and table
authorities for speci�ed tables.

GENERATE

SPECAUTH

builds ALLBASE/SQL commands to recreate DBA, CONNECT and
RESOURCEauthorities for a DBEnvironment.

GENERATE

TABAUTH

builds ALLBASE/SQL commands to recreate authorities for one or more
tables of the DBEnvironment.

GENERATE

INDEXES

builds SQL commands to recreate one or more indexes of the
DBEnvironment.

GENERATE

VIEWAUTH

builds ALLBASE/SQL commands to recreate authorities for one or more
views of the DBEnvironment.

GENERATE VIEWS builds CREATE VIEW commands to recreate one or more views of the
DBEnvironment.

GENERATE

PROCEDURES

builds CREATE PROCEDURE commands to recreate one or more
procedures of the DBEnvironment.

GENERATE

PROCAUTH

builds GRANT EXECUTE commands to allow you to recreate authorities
for one or more procedures stored in the DBEnvironment.

GENERATE RULES builds SQL commands to recreate one or more rules of the
DBEnvironment.

GENERATE

MODOPTINFO

builds ALLBASE/SQL commands to generate modi�ed access plans of
sections belonging to certain modules.

GENERATE

PROCOPTINFO

builds ALLBASE/SQL commands to generate modi�ed access plans of
sections belonging to certain procedures.

GENERATE

MODAUTH

builds GRANT RUN commands to allow you to recreate authorities for
one or more modules stored in the DBEnvironment.

SQLGEN G-5

GENERATE ALL

GENERATE

INSTALLAUTH

builds GRANT INSTALL commands to recreate all Module Authorities in
the DBEnvironment

Example

>> gen all

ALLBASE/SQL Command Generator for ALL

Schema File Name or '//' to STOP command >> partschm

Generating command to START DBE PARTSDBE

Generating command to CREATE DBEFILESET ORDERFS

Generating command to CREATE DBEFILESET PURCHFS

. .

. .

Generating command(s) for DBEFILE ORDERDATAF1

Generating command(s) for DBEFILE ORDERINDXF1

. .

. .

Generating CREATE GROUP AJ.ACCOUNTSPAYABLE

Generating CREATE GROUP AJ.DBEUSERS

. .

. .

Generating ADD JIM TO GROUP ACCOUNTSPAYABLE

Generating ADD KAREN TO GROUP ACCOUNTSPAYABLE

. .

. .

Generating CREATE TABLE PURCHDB.INVENTORY

Generating CREATE TABLE PURCHDB.ORDERITEMS

. .

. .

Generating CREATE INDEX on PURCHDB.INVENTORY

Generating CREATE INDEX on PURCHDB.ORDERITEMS

. .

. .

Generating Authority for PURCHDB.INVENTORY

Generating Authority for PURCHDB.ORDERITEMS

. .

. .

Generating Special Authority for AJ

Generating Special Authority for JOHN

. .

. .

>>

G-6 SQLGEN

GENERATE ALL

Schema File Produced

START DBE 'PARTSDBE' MULTI NEW

DUAL LOG,

BUFFER = (100, 24),

TRANSACTION = 5,

DBEFILE0 DBEFILE PARTSDBE0

WITH PAGES = 150,

NAME = 'PARTSF0',

LOG DBEFILE DBELOG1 AND DBELOG2

WITH PAGES = 256,

NAME = 'PARTSLG1'

AND 'PARTSLG2';

CREATE DBEFILESET ORDERFS;

CREATE DBEFILESET PURCHFS;

CREATE DBEFILESET RECFS;

CREATE DBEFILESET WAREHFS;

CREATE DBEFILE ORDERDATAF1

WITH PAGES = 50, NAME = 'ORDERDF1',

TYPE = TABLE;

ADD DBEFILE ORDERDATAF1 TO DBEFILESET ORDERFS;

CREATE DBEFILE ORDERINDXF1

WITH PAGES = 50, NAME = 'ORDERXF1',

TYPE = INDEX;

ADD DBEFILE ORDERINDXF1 TO DBEFILESET ORDERFS;

. .

. .

COMMIT WORK;

CREATE GROUP AJ.ACCOUNTSPAYABLE;

CREATE GROUP AJ.DBEUSERS;

. .

. .

ADD JIM TO GROUP ACCOUNTSPAYABLE;

ADD KAREN TO GROUP ACCOUNTSPAYABLE;

. .

. .

SQLGEN G-7

GENERATE ALL

COMMIT WORK;

CREATE PUBLIC TABLE PURCHDB.INVENTORY

(PARTNUMBER CHAR(16) NOT NULL,

BINNUMBER SMALLINT NOT NULL,

QTYONHAND SMALLINT,

LASTCOUNTDATE CHAR(8),

COUNTCYCLE SMALLINT,

ADJUSTMENTQTY SMALLINT,

REORDERQTY SMALLINT,

REORDERPOINT SMALLINT) IN WAREHFS;

. .

. .

COMMIT WORK;

CREATE UNIQUE INDEX INVPARTNUMINDEX

ON PURCHDB.INVENTORY

(PARTNUMBER);

. .

. .

COMMIT WORK;

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.INVENTORY TO DBEUSERS;

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.INVENTORY TO PURCHASING;

. .

. .

COMMIT WORK;

GRANT DBA TO AJ;

GRANT DBA TO JOHN;

COMMIT WORK;

G-8 SQLGEN

GENERATE DBE

GENERATE DBE

Generates the SQL command to START DBE NEW for a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
DBE

Schema File Name or '//' to STOP command >> SchemaFileName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated command.

Description

The GENERATE DBE command builds the START DBE NEW command necessary to
START the new DBEnvironment. Note that since the logical log DBEFile names are not
stored in the system catalog, SQLGEN cannot know what these names are. Consequently,
the names DBELOG1 and, if dual logging is in e�ect, DBELOG2 are used.

No COMMIT WORK is generated for this command.

Example

>> gen dbe

ALLBASE/SQL Command Generator for DBE

Schema File Name or '//' to STOP command >> dbepart

Generating command to START DBE PARTSDBE

>>

Schema File Produced

START DBE 'PARTSDBE' MULTI NEW

DUAL LOG,

BUFFER = (100, 24),

TRANSACTION = 5,

DBEFILE0 DBEFILE PARTSDBE0

WITH PAGES = 150,

NAME = 'PARTSF0',

LOG DBEFILE DBELOG1 AND DBELOG2

WITH PAGES = 256,

NAME = 'PARTSLG1'

AND 'PARTSLG2';

SQLGEN G-9

GENERATE DBEFILES

Generates SQL commands to recreate one or more DBEFileSets and associated DBEFiles.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
DBEFILE

�
S
�

Schema File Name or '//' to STOP command >> SchemaFileName
DBEFileSet Name >> DBEFileSetName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

DBEFileSetName is the name of the DBEFileSet for which you wish to
GENERATE commands.

Description

GENERATE DBEFILES builds commands to recreate DBEFileSets. It then builds
commands to recreate DBEFiles and to associate these DBEFiles with their respective
DBEFileSets.

When @ is entered, commands for all DBEFileSets and DBEFiles are generated, including
DBEFiles which have not been added to a DBEFileSet.

When generating the SYSTEM DBEFileSet, commands to CREATE DBEFILESET and
build DBEFILE0 are not generated since these commands are issued by START DBE NEW
when the DBEnvironment is recreated.

Example

>> gen dbefile

ALLBASE/SQL Command Generator for DBEFiles

Schema File Name or '//' to STOP command >> dbefpart

Please enter DBEFileSet Names. Type @ for all, ? for a list of

DBEFileSet names, or RETURN to quit.

DBEFileSet Name >> WarehFS

Generating command to CREATE DBEFILESET WAREHFS

Generating command(s) for DBEFILE WAREHDATAF1

Generating command(s) for DBEFILE WAREHINDXF1

DBEFileSet Name >> �Return �
>>

G-10 SQLGEN

GENERATE DBEFILES

Schema File Produced

CREATE DBEFILESET WAREHFS;

CREATE DBEFILE WAREHDATAF1

WITH PAGES = 50, NAME = 'WAREHDF1',

TYPE = TABLE;

ADD DBEFILE WAREHDATAF1 TO DBEFILESET WAREHFS;

CREATE DBEFILE WAREHINDXF1

WITH PAGES = 50, NAME = 'WAREHXF1',

TYPE = INDEX;

ADD DBEFILE WAREHINDXF1 TO DBEFILESET WAREHFS;

COMMIT WORK;

SQLGEN G-11

GENERATE DEFAULTSPACE

Generates SQL commands necessary to recreate the default DBEFileSet for section or table
space.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
DEFAULTSPACE

Schema File Name or '//' to STOP command >> SchemaFileName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

Example

>> DEFAULTSPACE

ALLBASE/SQL Command Generator for Default DBEFileset

Schema File Name or '//' to STOP command >> DEFAULTS

Generating command to SET DEFAULT TABLESPACE to DBEFileSet SYSTEM

Generating command to SET DEFAULT SECTIONSPACE to DBEFileSet PURCHFS

>>

Schema File Produced

SET DEFAULT TABLESPACE TO DBEFILESET SYSTEM

FOR PUBLIC;

SET DEFAULT SECTIONSPACE TO DBEFILESET PURCHFS

FOR PUBLIC;

COMMIT WORK;

G-12 SQLGEN

GENERATE GROUPS

GENERATE GROUPS

Generates SQL commands necessary to recreate the groups of a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
GROUP

�
S
�

Schema File Name or '//' to STOP command >> SchemaFileName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

Description

GENERATE GROUPS builds the commands necessary to recreate all the groups of a
DBEnvironment. It generates CREATE GROUP as well as commands to add users/groups
to a group.

Example

>> generate group

ALLBASE/SQL Command Generator for Groups

Schema File Name or '//' to STOP command >> grpparts

Generating CREATE GROUP AJ.ACCOUNTSPAYABLE

. .

. .

Generating ADD JIM TO GROUP ACCOUNTSPAYABLE

Generating ADD KAREN TO GROUP ACCOUNTSPAYABLE

. .

. .

>>

Schema File Produced

CREATE GROUP AJ.ACCOUNTSPAYABLE;

CREATE GROUP AJ.DBEUSERS;

CREATE GROUP AJ.PURCH;

. .

. .

. .

ADD JIM TO GROUP ACCOUNTSPAYABLE;

ADD KAREN TO GROUP ACCOUNTSPAYABLE;

SQLGEN G-13

GENERATE GROUPS

ADD STACEY TO GROUP ACCOUNTSPAYABLE;

. .

. .

. .

COMMIT WORK;

G-14 SQLGEN

GENERATE INDEXES

GENERATE INDEXES

Generates the SQL commands necessary to recreate indexes for one or more tables of the
DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
INDEX

�
ES
�

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Table Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Table Name for Owner OwnerName >> TableName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

OwnerName is the name of the Owner for whom you want to GENERATE
INDEXES.

NO or YES respond YES to specify certain tables for the named owner;
respond NO to select all table names for the owner.

TableName is the name of a table for which you wish to GENERATE
INDEXES.

Example

>> generate indexes

ALLBASE/SQL Command Generator for INDEXES

Schema File Name or '//' to STOP command >> indxpart

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> @

Do you wish to specify Table Names for each Owner (n/y)? n

Generating CREATE INDEX on PURCHDB.INVENTORY

Generating CREATE INDEX on PURCHDB.ORDERITEMS

. .

>>

SQLGEN G-15

GENERATE INDEXES

Schema File Produced

CREATE UNIQUE INDEX INVPARTNUMINDEX

ON PURCHDB.INVENTORY

(PARTNUMBER);

CREATE CLUSTERING INDEX ORDERITEMINDEX

ON PURCHDB.ORDERITEMS

(ORDERNUMBER);

CREATE CLUSTERING INDEX ORDERNUMINDEX

ON PURCHDB.ORDERS

(ORDERNUMBER);

. .

. .

. .

COMMIT WORK;

G-16 SQLGEN

GENERATE INSTALLAUTH

GENERATE INSTALLAUTH

Generates GRANT INSTALL commands necessary to recreate all the Module Authorities in
the DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
INSTALLAUTH

Schema File Name or '//' to STOP command >> SchemaFileName
User Name >> UserName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated command.

User Name is the user name for the modules for whom you are granting
authority.

Description

GENERATE INSTALLAUTH builds GRANT INSTALL commands to recreate all Module
Authorities in the DBEnvironment.

Authorities can be granted for the modules of one or more users of the DBEnvironment.

Example

>> generate installauth

ALLBASE/SQL Command Generator for INSTALL Authority

Schema File Name or '//' to STOP command >> INSTPART

Please enter User Names. Type @ for all, ? for a list of

User Names, or RETURN to quit.

User Name >>@

Generating Install Authorities for JIM@FRANCIS

Generating Install Authorities for KAREN@RIZZO

. .

. .

>>

Schema File Produced

GRANT INSTALL

TO JIM@FRANCIS;

GRANT INSTALL

TO KAREN@RIZZO;

COMMIT WORK;

SQLGEN G-17

GENERATE LOAD

Generates schema �les to UNLOAD and LOAD one or more tables in a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
LOAD

Unload Schema File Name or '//' to STOP command >> UnloadSchemaFile
Load Schema File Name or '//' to STOP command >> LoadSchemaFile
Prefix for Unloaded Data File Names >> UNLDPre�x

UPDATE STATISTICS after Loading (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Internal or External Format (Int/Ext) >>

�
INT

�
ERNAL

�
EXT

�
ERNAL

�
�

NULL Indicator (?) >> NullIndicator
Prefix for DESCRIPTION File Names >> DESCPre�x
Owner Name >> OwnerName

Do you wish to specify Table Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Table Name for Owner OwnerName >> TableName

Parameters

UnloadSchemaFile is the name of the schema �le where SQLGEN places the
commands that UNLOAD the data into data �les.

LoadSchemaFile is the name of the schema �le where SQLGEN places the
commands that LOAD the data back into tables.

UNLDPre�x is the pre�x used to name �les containing the unloaded data
(max: 11 bytes).

NO or YES respond NO if no UPDATE is desired; respond YES to UPDATE
STATISTICS after the LOAD.

INTERNAL or EXTERNAL indicates the format you want the UNLOAD/LOAD to use.

NULLIndicator is the symbol you choose to use for the NULL indicator. The
default is a question mark (external format only).

DESCPre�x is the pre�x used to name description �les (external format only;
max: 11 bytes).

OwnerName is the name of the owner whose tables you wish to
LOAD/UNLOAD.

NO or YES respond NO to select all table names for the owner; respond YES to
specify certain tables for the named owner.

TableName is the name of a table you wish to UNLOAD/LOAD.

G-18 SQLGEN

GENERATE LOAD

Description

GENERATE LOAD builds two command �les. One contains commands for unloading data
from selected tables into �les. The other contains commands for loading the data in the �les
back into tables.

EXTERNAL or INTERNAL format can be selected and used. Optionally, you can
UPDATE STATISTICS after the LOAD.

LOAD EXTERNAL requires a pre�x for naming description �les and a NULL indicator.

Example

>> load

ALLBASE/SQL Command Generator for LOAD

Unload Schema File Name or '//' to STOP command >>puruld

Load Schema File Name or '//' to STOP command >> purld

Prefix for Unloaded Data File Names >> purch

UPDATE STATISTICS after Loading (n/y)? yes

Internal Format or External Format (Int/Ext) >> int

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> purchdb

Do you wish to specify Table Names for each Owner(n/y)? n

Generating [Int] commands for PURCHDB.INVENTORY

Generating [Int] commands for PURCHDB.ORDERITEMS

. .

Owner Name >> �Return �
>>

UNLOAD Schema File Produced

UNLOAD TO INTERNAL purch1 FROM PURCHDB.INVENTORY;

UNLOAD TO INTERNAL purch2 FROM PURCHDB.ORDERITEMS;

UNLOAD TO INTERNAL purch3 FROM PURCHDB.ORDERS;

. .

COMMIT WORK;

LOAD Schema File Produced

SET AUTOCOMMIT ON;

LOAD FROM INTERNAL purch1 TO PURCHDB.INVENTORY;

UPDATE STATISTICS FOR TABLE PURCHDB.INVENTORY;

LOAD FROM INTERNAL purch2 TO PURCHDB.ORDERITEMS;

UPDATE STATISTICS FOR TABLE PURCHDB.ORDERITEMS;

. .

COMMIT WORK;

SQLGEN G-19

GENERATE MODAUTH

Generates SQL commands necessary to recreate module authorities for one or more owners of
a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
MODAUTH

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

OwnerName is the owner of the modules for which you are granting authority.

Description

GENERATE MODAUTH builds GRANT RUN commands to recreate authorities for
modules stored in a DBEnvironment.

Authorities can be granted for the modules of one or more owners of the DBEnvironment.

Example

>> generate modauth

ALLBASE/SQL Command Generator for Module Authority

Schema File Name or '//' to STOP command >> modapart

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> @

Generating GRANT RUN on PURCHMANAGERS.REPORTPROG

. .

. .

>>

G-20 SQLGEN

GENERATE MODAUTH

Schema File Produced

GRANT RUN ON PURCHMANAGERS.REPORTPROG

TO PURCHDBMAINT;

GRANT RUN ON PURCHMANAGERS.UPDATEPROG

TO PURCHDBMAINT;

. .

. .

. .

COMMIT WORK;

SQLGEN G-21

GENERATE MODOPTINFO

Generates SQL commands necessary to recreate modi�ed access plans for module sections.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
MODOPTINFO

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Module Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Module Name for Owner OwnerName >> ModuleName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

OwnerName is the name of the owner for whom you wish to generate modi�ed
access plans.

NO or YES respond NO to specify all module names for the owner; respond
YES to specify certain module names for the owner.

ModuleName is the name of a module for which you wish to generate modi�ed
access plans.

Example

>> MODOPTINFO

ALLBASE/SQL Command Generator for Module Setoptinfo

Schema File Name or '//' to STOP command >> MOPTINFO

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> PURCHDB

Do you wish to specify Module Names for each Owner (n/y)? n

Generating command to SETOPT for Module PURCHDB.MOD1

Generating command to SETOPT for Module PURCHDB.MOD2

Owner Name >> �Return�

G-22 SQLGEN

GENERATE MODOPTINFO

Schema File Produced

SETOPT GENERAL INDEXSCAN;

VALIDATE MODULE SECTION

PURCHDB.MOD1(1);

SETOPT GENERAL INDEXSCAN;

VALIDATE MODULE SECTION

PURCHDB.MOD1(2);

SETOPT GENERAL INDEXSCAN;

VALIDATE MODULE SECTION

PURCHDB.MOD2(1);

SETOPT CLEAR;

COMMIT WORK;

SQLGEN G-23

GENERATE PARTITION

Generates SQL commands necessary to recreate DBEnvironment partitions.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
PARTITION

Schema File Name or '//' to STOP command >> SchemaFileName
PARTITION Name >> PartitionName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

PartitionName is the name of the partition to be recreated.

Example

>> PARTITION

ALLBASE/SQL Command Generator for Partitions

Schema File Name or '//' to STOP command >> PARTNS

Please enter PARTITION Names. Type @ for all, ? for a list of

PARTITION Names, or RETURN to quit.

PARTITION Name >> CAVENDOR

Generating command to CREATE PARTITION CAVENDOR

PARTITION Name >> �Return�

Schema File Produced

CREATE PARTITION CAVENDOR

WITH ID = 12;

COMMIT WORK;

G-24 SQLGEN

GENERATE PROCAUTH

GENERATE PROCAUTH

Generates SQL statements necessary to recreate authorities for one or more procedures in a
DBEnvironment.

Scope

SQLGEN only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
PROCAUTH

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Procedure Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Procedure Name for Owner OwnerName >> ProcedureName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places generated
commands.

OwnerName is the name of the owner of the procedure whose authorities you
wish to generate.

NO or YES respond NO to select all procedures for the owner; respond YES to
select certain procedures for the owner.

ProcedureName is the name of a procedure whose authorities you wish to
generate.

Description

GENERATE PROCAUTH builds GRANT EXECUTE ON PROCEDURE statements to
recreate authorities for one or more procedures in a DBEnvironment.

SQLGEN G-25

GENERATE PROCAUTH

Example

>> gen procauth

ALLBASE/SQL Command Generator for Procedure Authority

Schema File Name or '//' to STOP command >> procpart

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> PurchDB

Do you wish to specify Procedure Names for each Owner (n/y)? n

Generating GRANT EXECUTE ON PROCEDURE PURCHDB.PROCESS12

Generating GRANT EXECUTE ON PROCEDURE PURCHDB.REPORTMONITOR

Owner Name >> �Return�

>>

Schema File Produced

/* This file was created with a user language environment of */

/* n-computer */

GRANT EXECUTE ON PROCEDURE PURCHDB.PROCESS12

TO MANAGERS;

GRANT EXECUTE ON PROCEDURE PURCHDB.REPORTMONITOR

TO JACK;

COMMIT WORK;

G-26 SQLGEN

GENERATE PROCEDURES

GENERATE PROCEDURES

Generates SQL statements to recreate one or more procedures in a DBEnvironment.

Scope

SQLGEN only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
PROCEDURE

�
S
�

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Procedure Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Procedure Name for Owner OwnerName >> ProcedureName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places generated
commands.

OwnerName is the name of the owner whose procedures you wish to generate.

NO or YES respond NO to select all procedures for the owner; respond YES to
select certain procedures for the owner.

ProcedureName is the name of a procedure you wish to generate.

Description

GENERATE PROCEDURES builds CREATE PROCEDURE commands to recreate one or
more procedures in the DBEnvironment.

SQLGEN G-27

GENERATE PROCEDURES

Example

>> gen procedures

ALLBASE/SQL Command Generator for Procedures

Schema File Name or '//' to STOP command >> partsch

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> PurchDB

Do you wish to specify Procedure Names for each Owner (n/y)? n

Generating command to CREATE PROCEDURE PURCHDB.DISCOUNTPART

Generating command to CREATE PROCEDURE PURCHDB.REPORTMONITOR

Owner Name >> �Return�

>>

Schema File Produced

/* This file was created with a user language environment of */

/* NATIVE-3000 */

CREATE PROCEDURE PURCHDB.DISCOUNTPART

(PARTNUMBER CHAR 16)) AS

begin declare SalesPrice decimal(10,2); declare Discount

decimal(10,2); select SalesPrice into :SalesPrice from

PurchDB.Parts where PartNumber = :PartNumber; if :SalesPrice >

100. then :Discount = .80*:SalesPrice; insert into

PurchDB.Discounts values (:PartNumber, :Discount); endif; end;

CREATE PROCEDURE PURCHDB.REPORTMONITOR

(NAME CHAR(20) NOT NULL,

OWNER CHAR(20) NOT NULL,

TYPE CHAR(10) NOT NULL) AS

begin insert into PurchDB.ReportMonitor values (:Type,

CURRENT_DATETIME, USER, :Name, :Owner); end;

COMMIT WORK;

G-28 SQLGEN

GENERATE PROCOPTINFO

GENERATE PROCOPTINFO

Generates SQL commands necessary to recreate modi�ed access plans for procedure sections.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
PROCOPTINFO

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Procedure Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Procedure Name for Owner OwnerName >> ProcedureName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

OwnerName is the name of the owner for whom you wish to generate modi�ed
access plans.

NO or YES respond NO to specify all procedure names for the owner; respond
YES to specify certain procedure names for the owner.

ProcedureName is the name of a procedure for which you wish to generate
modi�ed access plans.

Example

>> PROCOPTINFO

ALLBASE/SQL Command Generator for Procedure Setoptinfo

Schema File Name or '//' to STOP command >> POPTINFO

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> PURCHDB

Do you wish to specify Procedure Names for each Owner (n/y)? n

Generating command to SETOPT for Procedure PURCHDB.PROC1

Generating command to SETOPT for Procedure PURCHDB.PROC2

Owner Name >> �Return�

SQLGEN G-29

GENERATE PROCOPTINFO

Schema File Produced

SETOPT GENERAL SERIALSCAN;

VALIDATE PROCEDURE SECTION

PURCHDB.PROC1(1);

SETOPT GENERAL SERIALSCAN;

VALIDATE PROCEDURE SECTION

PURCHDB.PROC2(1);

SETOPT CLEAR;

COMMIT WORK;

G-30 SQLGEN

GENERATE RULES

GENERATE RULES

Generates SQL commands to recreate one or more rules in a DBEnvironment.

Scope

SQLGEN only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
RULE

�
S
�

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Rule Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Rule Name for Owner OwnerName >> RuleName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places generated
commands.

OwnerName is the name of the owner whose rules you wish to generate.

NO or YES respond NO to select all rules for the owner; respond YES to select
certain rules for the owner.

RuleName is the name of a rule you wish to generate.

Description

GENERATE RULES builds CREATE RULE commands to recreate one or more rules in
the DBEnvironment.

Example

>> generate rules

ALLBASE/SQL Command Generator for Rules

Schema File Name or '//' to STOP command >> partrschema

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> PurchDB

Do you wish to specify Rule Names for each Owner (n/y)? n

Generating command to CREATE RULE PURCHDB.INSERTREPORT

Generating command to CREATE RULE PURCHDB.UPDATEREPORT

Generating command to CREATE RULE PURCHDB.DELETEREPORT

Owner Name >> �Return�

>>

SQLGEN G-31

GENERATE RULES

Schema File Produced

/* This file was created with a user language environment of */

/* n-computer */

CREATE RULE PURCHDB.INSERTREPORT

AFTER INSERT

ON PURCHDB.REPORTS

execute procedure PurchDB.ReportMonitor (NEW.ReportName,

NEW.ReportOwner, 'INSERT');

CREATE RULE PURCHDB.UPDATEREPORT

AFTER UPDATE(REPORTOWNER,REPORTNAME)

ON PURCHDB.REPORTS

execute procedure PurchDB.ReportMonitor (NEW.ReportName,

NEW.ReportOwner, 'UPDATE');

CREATE RULE PURCHDB.DELETEREPORT

AFTER UPDATE

ON PURCHDB.REPORTS

execute procedure PurchDB.ReportMonitor (OLD.ReportName,

OLD.ReportOwner, 'DELETE');

COMMIT WORK;

G-32 SQLGEN

GENERATE SPACEAUTH

GENERATE SPACEAUTH

Generates SQL commands necessary to recreate authorities for section or table space.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
SPACEAUTH

Schema File Name or '//' to STOP command >> SchemaFileName
DBEFileSetName >> DBEFileSetName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

DBEFileSetName is the name of the DBEFileSet for which section or table space
authorities have been granted.

Example

>> SPACEAUTH

ALLBASE/SQL Command Generator for SPACEAUTH

Schema File Name or '//' to STOP command >> SPAUTH

Please enter DBEFileSet Names. Type @ for all, ? for a list of

DBEFileSet Names, or RETURN to quit.

DBEFileSet Name >> PURCHFS

Generating command to GRANT SPACE AUTHORITY ON DBEFileSet PURCHFS

DBEFileSet Name >> �Return�

Schema File Produced

GRANT TABLESPACE ON DBEFILESET PURCHFS

TO PUBLIC;

GRANT SECTIONSPACE ON DBEFILESET PURCHFS

TO PUBLIC;

COMMIT WORK;

SQLGEN G-33

GENERATE SPECAUTH

Generates SQL commands necessary to recreate all special authorities for a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
SPECAUTH

Schema File Name or '//' to STOP command >> SchemaFileName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

Description

GENERATE SPECAUTH builds commands to recreate DBA, CONNECT, and
RESOURCE authorities for a DBEnvironment.

Example

>> generate specauth

ALLBASE/SQL Command Generator for Special Authority

Schema File Name or '//' to STOP command >> speapart

Generating Special Authority for AJ

Generating Special Authority for JOHN

. .

. .

. .

>>

Schema File Produced

GRANT DBA TO AJ;

GRANT DBA TO JOHN;

.

.

.

COMMIT WORK;

G-34 SQLGEN

GENERATE STATISTICS

GENERATE STATISTICS

Generates SQL commands necessary to UPDATE STATISTICS for one or more tables of a
DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
STAT

�
ISTICS

�
Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Table Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Table Name for Owner OwnerName >> TableName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

OwnerName is the name of the owner for whom you want to UPDATE
STATISTICS.

NO or YES respond NO to select all table names for the owner; respond YES to
specify certain tables for the owner.

TableName is the name of a table for which you wish to UPDATE
STATISTICS.

Example

>> generate statistics

ALLBASE/SQL Command Generator for Statistics

Schema File Name or '//' to STOP command >> statpart

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> purchdb

Do you wish to specify Table Names for each Owner (n/y)? n

Generating UPDATE STATISTICS for PURCHDB.INVENTORY

Generating UPDATE STATISTICS for PURCHDB.ORDERITEMS

. .

. .

. .

Owner Name >> �Return �

>>

SQLGEN G-35

GENERATE STATISTICS

Schema File Produced

UPDATE STATISTICS FOR TABLE PURCHDB.INVENTORY;

UPDATE STATISTICS FOR TABLE PURCHDB.ORDERITEMS;

UPDATE STATISTICS FOR TABLE PURCHDB.ORDERS;

UPDATE STATISTICS FOR TABLE PURCHDB.PARTS;

UPDATE STATISTICS FOR TABLE PURCHDB.SUPPLYPRICE;

UPDATE STATISTICS FOR TABLE PURCHDB.VENDORS;

COMMIT WORK;

G-36 SQLGEN

GENERATE TABAUTH

GENERATE TABAUTH

Generates SQL commands necessary to recreate authorities for one or more tables of a
DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
TABAUTH

Schema File Name or '//'to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify Table Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Table Name for Owner OwnerName >> TableName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places generated
commands.

OwnerName is the name of the owner for whom you wish to generate table
authorities.

NO or YES respond NO to select all table names for the owner; respond YES to
select certain table names for the owner.

TableName is the name of a table for which you wish to generate authorities.

Example

>> generate tabauth

ALLBASE/SQL Command Generator for Table Authority

Schema File Name or '//' to STOP command >> tabapart

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> @

Do you wish to specify Table Names for each Owner (n/y)? n

Generating Authority for PURCHDB.INVENTORY

Generating Authority for PURCHDB.ORDERITEMS

. .

. .

>>

SQLGEN G-37

GENERATE TABAUTH

Schema File Produced

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.INVENTORY TO DBEUSERS;

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.INVENTORY TO PURCHASING;

GRANT ALL

ON PURCHDB.INVENTORY TO PURCHDBMAINT;

. .

. .

. .

COMMIT WORK;

G-38 SQLGEN

GENERATE TABLES

GENERATE TABLES

Generates SQL commands to recreate one or more tables of a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
TABLE

�
S
�

Schema File Name or '//' to STOP command >> SchemaFileName

Do you wish to generate associated Indexes (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Do you wish to generate associated Table Authority (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Owner Name >> OwnerName

Do you wish to specify Table Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Table Name >> TableName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places generated
commands.

NO or YES respond NO if you do not want to generate associated indexes;
respond YES if you want to generate associated indexes.

NO or YES respond NO if you do not want to generate associated authorities;
respond YES if you want to generate associated authorities.

OwnerName is the name of the owner whose tables you wish to generate.

NO or YES respond NO to select all table names for the owner; respond YES to
select certain table names for the owner.

TableName is the name of a table you wish to generate.

Description

GENERATE TABLE builds CREATE TABLE commands to recreate one or more tables
of the DBEnvironment. You can also recreate associated indexes and authorities for the
speci�ed tables.

If a referential constraint exists, the referential constraint clause is omitted from the
CREATE TABLE command and included in a subsequent ALTER TABLE command.

SQLGEN G-39

GENERATE TABLES

Example

>> generate tables

ALLBASE/SQL Command Generator for Tables

Schema File Name or '//' to STOP command >> partsch

Do you wish to generate associated Indexes (n/y)? y

Do you wish to generate associated Table Authority (n/y)? y

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> purchdb

Do you wish to specify Table Names for each Owner (n/y)? y

Enter Table Names for Owner PURCHDB

Type @ for all, ? for a list of Table Names, or RETURN to quit.

Table Name for Owner PURCHDB >> inventory

Generating CREATE TABLE PURCHBD.INVENTORY

Generating CREATE INDEX on PURCHDB.INVENTORY

Generating Authority for PURCHDB.INVENTORY

Table Name for Owner PURCHDB >> �Return �

Owner Name >> �Return �

>>

G-40 SQLGEN

GENERATE TABLES

Schema File Produced

CREATE PUBLIC TABLE PURCHDB.INVENTORY

(PARTNUMBER CHAR(16) NOT NULL,

BINNUMBER SMALLINT NOT NULL,

QTYONHAND SMALLINT,

LASTCOUNTDATE CHAR(8),

COUNTCYCLE SMALLINT,

ADJUSTMENTQTY SMALLINT,

REORDERQTY SMALLINT,

REORDERPOINT SMALLINT) IN WAREHFS;

CREATE UNIQUE INDEX INVPARTNUMINDEX

ON PURCHDB.INVENTORY

(PARTNUMBER);

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.INVENTORY TO DBEUSERS;

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.INVENTORY TO PURCHASING;

GRANT ALL

ON PURCHDB.INVENTORY TO PURCHDBMAINT;

GRANT SELECT

ON PURCHDB.INVENTORY TO PURCHMANAGERS;

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.INVENTORY TO WAREHOUSE;

REVOKE ALL

ON PURCHDB.INVENTORY FROM PUBLIC;

COMMIT WORK;

SQLGEN G-41

GENERATE TEMPSPACES

Generates SQL commands to recreate one or more tempspaces in a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
TEMPSPACE

�
S
�

Schema File Name or '//' to STOP command >> SchemaFileName
TEMPSPACE Name >> TempSpaceName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places generated
commands.

TempSpaceName is the name of the tempspace you wish to generate.

Description

GENERATE TEMPSPACES builds CREATE TEMPSPACE commands to recreate one or
more temporary spaces in the DBEnvironment.

Example

>> generate tempspace

ALLBASE/SQL Command Generator for Temp Space

Schema File Name or '//' to STOP command >> temps

Please enter TEMPSPACE Names. Type @ for all, ? for a list of

TEMPSPACE Names, or RETURN to quit.

TEMPSPACE Name >> @

Generating command to CREATE TEMPSPACE TEMPSPACE1

>>

Schema File Produced

/* This file was created with a user language environment of */

/* n-computer */

CREATE TEMPSPACE TEMPSPACE1

WITH MAXFILEPAGES = 1000,

LOCATION = '/tmp';

COMMIT WORK;

~

G-42 SQLGEN

GENERATE VIEWAUTH

GENERATE VIEWAUTH

Generates SQL commands necessary to recreate authorities for one or more views of a
DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
VIEWAUTH

Schema File Name or '//' to STOP command >> SchemaFileName
Owner Name >> OwnerName

Do you wish to specify View Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

View Name for Owner OwnerName >> ViewName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places the
generated commands.

OwnerName is the name of the owner for whom you wish to generate view
authorities.

NO or YES respond NO to specify all view names for the owner; respond YES

to specify certain view names for the owner.

ViewName is the name of a view for which you wish to generate authorities.

Example

>> generate viewauth

ALLBASE/SQL Command Generator for View Authority

Schema File Name or '//' to STOP command >> viewpart

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> purchdb

Do you wish to specify View Names for each Owner (n/y)? n

Generating Authority for PURCHDB.PARTINFO

Generating Authority for PURCHDB.VENDORSTATISTICS

Owner Name >> �Return �

>>

SQLGEN G-43

GENERATE VIEWAUTH

Schema File Produced

GRANT SELECT

ON PURCHDB.PARTINFO TO DBEUSERS;

GRANT SELECT

ON PURCHDB.PARTINFO TO PURCHDBMAINT;

GRANT SELECT

ON PURCHDB.PARTINFO TO PURCHMANAGERS;

. .

. .

. .

COMMIT WORK;

G-44 SQLGEN

GENERATE VIEWS

GENERATE VIEWS

Generates SQL commands to recreate one or more views in a DBEnvironment.

Scope

SQLGEN Only

SQLGEN Syntax

>>
�
GEN

�
ERATE

� �
VIEW

�
S
�

Schema File Name or '//' to STOP command >> SchemaFileName

Do you wish to generate associated View Authority (n/y)?

�
N
�
O
�

Y
�
ES
�
�

Owner Name >> OwnerName

Do you wish to specify View Names for each Owner (n/y)?

�
N
�
O
�

Y
�
ES
�
�

View Name for Owner OwnerName >> ViewName

Parameters

SchemaFileName is the name of the schema �le where SQLGEN places generated
commands.

NO or YES respond NO if you do not want to generate associated authorities;
respond YES if you want to generate associated authorities.

OwnerName is the name of the owner whose views you wish to generate.

NO or YES respond NO to select all view names for the owner; respond YES to
select certain view names for the owner.

ViewName is the name of a view you wish to generate.

Description

GENERATE VIEWS builds CREATE VIEW commands to recreate one or more views in
the DBEnvironment. You can also recreate associated authorities for the speci�ed views.

Example

>> generate views

ALLBASE/SQL Command Generator for Views

Schema File Name or '//' to STOP command >> partvsch

Do you wish to generate associated View Authority (n/y)? y

Please enter Owner Names. Type @ for all, ? for a list of

Owner Names, or RETURN to quit.

Owner Name >> purchdb

Do you wish to specify View Names for each Owner (n/y)? y

Enter View Names for Owner PURCHDB

SQLGEN G-45

GENERATE VIEWS

Type @ for all, ? for a list of View Names, or RETURN to quit.

View Name for Owner PURCHDB >> vendorstatistics

Generating CREATE VIEW PURCHDB.VENDORSTATISTICS

Generating Authority for PURCHDB.VENDORSTATISTICS

View Name for Owner PURCHDB >> �Return �

Owner Name >> �Return �

>>

Schema File Produced

SET OWNER PURCHDB;

CREATE VIEW PURCHDB.VENDORSTATISTICS

(VENDORNUMBER,

VENDORNAME,

ORDERDATE,

ORDERQUANTITY,

TOTALPRICE) AS

SELECT PurchDB.Vendors.VendorNumber,PurchDB.Vendors.VendorName

, OrderDate, OrderQty, OrderQty*PurchasePrice FROM

PurchDB.Vendors, PurchDB.Orders, PurchDB.OrderItems WHERE

PurchDB.Vendors.VendorNumber = PurchDB.Orders.VendorNumber AND

PurchDB.Orders.OrderNumber = PurchDB.OrderItems.OrderNumber;

GRANT SELECT

ON PURCHDB.VENDORSTATISTICS TO PURCHMANAGERS;

GRANT SELECT

ON PURCHDB.VENDORSTATISTICS TO PURCHDBMAINT;

GRANT SELECT

ON PURCHDB.VENDORSTATISTICS TO TOM;

GRANT SELECT,

INSERT,

DELETE,

UPDATE

ON PURCHDB.VENDORSTATISTICS TO DBEUSERS;

G-46 SQLGEN

HELP

HELP

Displays and describes all SQLGEN commands.

Scope

SQLGEN Only

SQLGEN Syntax

>>H
�
ELP

��CommandName

Keyword

�

Parameters

CommandName is the name of the command for which you want HELP.

Keyword is the name of a keyword for which you want HELP. Keywords
include GENERAL, MAIN, OBJECT, and SUMMARY.

Description

HELP with no parameters can be used to obtain general information about SQLGEN.

HELP followed by a command name provides speci�c help for that command. In addition,
help is also available for the following keywords:

GENERAL - provides general information about SQLGEN.
MAIN - provides command syntax and a summary of the HELP facility.
OBJECT - provides information about entering object names.
SUMMARY - provides a summary of all SQLGEN commands.

Example

>> help exit

SYNTAX >> E[XIT]

OPERATION EXIT terminates SQLGEN execution. If the DBE session

has not been ended before entering EXIT, an automatic

RELEASE occurs before exiting SQLGEN.

EXAMPLE >> EXIT

DBEnvironment has been RELEASED.

END OF PROGRAM

%

SQLGEN G-47

RELEASE

Terminates the DBE session.

Scope

SQLGEN Only

SQLGEN Syntax

>>RELEASE

Description

RELEASE terminates the DBE session. You must use this command before issuing
a STARTDBE for another DBEnvironment. When you exit SQLGEN, RELEASE is
automatically invoked if the DBEnvironment session has not been terminated.

Example

>> release

The DBEnvironment has been RELEASED.

>>

G-48 SQLGEN

SET ECHO ALL OFF

SET ECHO ALL OFF

Sets SQLGEN so as not to echo batch user input to the standard output.

Scope

SQLGEN Only

SQLGEN Syntax

>> SET ECHO_ALL OFF

Description

After you issue this command, batch user input is not echoed to the standard output.

Example

>> set echo_all off

SQLGEN G-49

SET ECHO ALL ON

Sets SQLGEN to echo batch user input to the standard output.

Scope

SQLGEN Only

SQLGEN Syntax

>> SET ECHO_ALL ON

Description

By default, or after you issue this command, batch user input is echoed to the standard
output.

Example

>> set echo_all on

G-50 SQLGEN

SET EDITOR

SET EDITOR

De�nes the editor invoked when the EDITOR command is used.

Scope

SQLGEN Only

SQLGEN Syntax

>> SE
�
T
�
ED
�
ITOR

�

Description

SET EDITOR is used to de�ne the editor used by the EDITOR command (see Example 1
below). In addition to entering a SET EDITOR command, it is also possible to SET the
EDITOR with a command argument when you run SQLGEN. The name of the editor must
meet operating system naming conventions and must be preceded by -e on the command line
(see example below). The default editor is /usr/bin/vi.

Example 1

>> set editor

Current Editor: /usr/bin/vi

Enter Editor Name, or '//' to keep current Editor

Editor >> ex

Current Editor: ex

>>

Example 2

sqlgen -e ex

SQLGEN G-51

SET EXIT ON DBERR OFF

Causes SQLGEN in batch mode to continue when an SQL error is encountered.

Scope

SQLGEN Only

SQLGEN Syntax

>> SET EXIT_ON_DBERR OFF

Description

See the \DBA Tasks and Tools" chapter of this manual for information on checking the exit
status when SQLGEN terminates.

Example

>> set exit_on_dberr off

G-52 SQLGEN

SET EXIT ON DBERR ON

SET EXIT ON DBERR ON

Causes SQLGEN in batch operation to terminate immediately when an SQL error is
encountered.

Scope

SQLGEN Only

SQLGEN Syntax

>> SET EXIT_ON_DBERR ON

Description

See the \DBA Tasks and Tools" chapter of this manual for information on checking the exit
status when SQLGEN terminates.

By default, SQLGEN does not terminate when an SQL error is encountered.

Example

>> set exit_on_dberr on

SQLGEN G-53

SET SCHEMA

De�nes the schema �le name to be used by the generate commands.

Scope

SQLGEN Only

SQLGEN Syntax

>> SE
�
T
�
SCH

�
EMA

�
Schema File Name or '//' to STOP command >> SchemaFileName

Parameters

SchemaFileName is the name of the schema �le you wish to de�ne.

Description

With SET SCHEMA you can de�ne a schema �le name before entering generate commands.
The generate commands issued subsequently do not prompt for a schema �le name. Instead
they place commands into the schema �le you have de�ned. This allows you to automatically
place all generated commands in one schema �le if you wish. Commands are appended to the
end of the �le as they are generated.

Example

>> set schema

Current Schema File: schema1

Enter Schema File Name, RETURN to reset, or '//' to keep current name.

Schema File Name or "//" to STOP command >> schema2

Current Schema File: schema2

>>

Note Because special schema �les are required by the GENERATE LOAD
command, you cannot use the SET SCHEMA command to de�ne schema �le
names for the the GENERATE LOAD command.

G-54 SQLGEN

STARTDBE

STARTDBE

Starts the DBE session for SQLGEN execution.

Scope

SQLGEN Only

SQLGEN Syntax

>> START
�
DBE

��
DBEnvironmentName

�

Parameters

DBEnvironmentName is the name of the DBEnvironment to which you wish to connect.

Description

STARTDBE connects to the DBEnvironment and then checks to see if you have DBA
authority for the DBEnvironment. If you do not, the DBEnvironment is released, since
you cannot use SQLGEN to generate commands unless you have DBA authority. It is
recommended that the DBEnvironment be shut down prior to issuing the STARTDBE
command to ensure that system catalogs are not being modi�ed during SQLGEN execution.
Note that the DBEnvironment name can be entered as a parameter of the STARTDBE
command or SQLGEN will prompt for the DBEnvironment name, as in the following example.

Example

>> startdbe

DBEnvironment Name >> ../sampledb/PartsDBE

DBEnvironment successfully started.

>>

SQLGEN G-55

!

Escape temporarily to the operating system and (optionally) execute a single operating system
command.

Scope

SQLGEN Only

SQLGEN Syntax

>> !
�
CommandName

�
;

Parameters

CommandName is the name of an HP-UX operating system command.

Description

If you include a command name, control returns to SQLGEN as soon as the command has
been executed.

If you omit the command name, use the exit command to return to SQLGEN from the
HP-UX shell.

Example

>> !ll;

total 5586

-rw-rw-r-- 1 guest guest 10626 Jul 12 11:06 +invfile

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderDF1

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderXF1

.

.

.

>>

G-56 SQLGEN

H

SQLMigrate

The following pages present SQLMigrate command syntax. A discussion of how to use
SQLMigrate appears in the \DBA Tasks and Tools" chapter.

SQLMigrate H-1

ADD DBEFILE

Associates a DBEFILE with the SYSTEM DBEFileSet.

Scope

SQLMigrate Only

SQLMigrate Syntax

ADD DBEFILE DBEFileName TO DBEFILESET SYSTEM;

Parameters

DBEFileName is the name of a DBEFile previously de�ned and created by the CREATE
DBEFILE command.

Description

When adding space to the SYSTEM DBEFileset, the �rst step is to CREATE a new
DBEFile. The second step is to add the DBEFile to the SYSTEM DBEFileSet.

Note that the DBEFile can be added only to the SYSTEM DBEFileSet.

When this command is executed, you are modifying the DBEnvironment. Whenever you
modify the DBEnvironment with the CREATE DBEFILE, ADD DBEFILE, or MIGRATE
commands, a START DBE NEWLOG statement must be executed before you will be able
to connect to the DBEnvironment. The MIGRATE command automatically executes
a START DBE NEWLOG statement unless a SET NEWLOG OFF command has been
issued.

Example

SQLMIGRATE=> create dbefile ThisDBEFile with pages=1000, name='ThisFile';

SQLMIGRATE=> add dbefile ThisDBEFile to dbefileset SYSTEM;

H-2 SQLMigrate

CREATE DBEFILE

CREATE DBEFILE

De�nes and creates a DBEFile of TYPE MIXED.

Scope

SQLMigrate Only

SQLMigrate Syntax

CREATE DBEFILE DBEFileName WITH PAGES = DBEFileSize, NAME ='SystemFileName';

Parameters

DBEFileName is the name to be assigned to the new DBEFile. Two DBEFiles in one
DBEnvironment cannot have the same name. The maximum length for the
DBEFile name is 20 bytes.

DBEFileSize speci�es the number of 4096-byte pages in the new DBEFile.

SystemFile-
Name

identi�es how the DBEFile is known to HP-UX. This system �le name is
in the format [Pathname/]FileName. The DBEFile is created relative to
the directory where the DBECon �le resides unless an absolute pathname is
speci�ed. The maximum length for the SystemFileName is 44 bytes.

Description

When a DBEFile is created through SQLMigrate, the TYPE is MIXED. MIXED means
that data and index pages can be stored in the new DBEFile.

When adding space to the SYSTEM DBEFileset, the �rst step is to CREATE a new
DBEFile. The second step is to add the DBEFile to the SYSTEM DBEFileSet.

When this command is executed, you are modifying the DBEnvironment. Whenever you
modify the DBEnvironment with the CREATE DBEFILE, ADD DBEFILE, or MIGRATE
commands, a START DBE NEWLOG statement must be executed before you will be able
to connect to the DBEnvironment. The MIGRATE command automatically executes
a START DBE NEWLOG statement unless a SET NEWLOG OFF command has been
issued.

Before using this command, you must issue either a PREVIEW or SHOW
'DBEnvironmentName' VERSION command to indicate which DBEnvironment is to receive
the new DBEFile.

After using this command, use the ADD DBEFILE command to add the newly created
DBEFile to the SYSTEM DBEFileSet.

Example

SQLMIGRATE=> create dbefile ThisDBEFile with pages = 5, name ='ThisFile';

SQLMIGRATE=> add dbefile ThisDBEFile to dbefileset SYSTEM;

SQLMigrate H-3

EXIT

Terminates SQLMigrate execution.

Scope

SQLMigrate Only

SQLMigrate Syntax

EXIT;

Description

This command terminates the SQLMigrate session and returns you to the operating system.

Example

SQLMIGRATE=> exit;

%

H-4 SQLMigrate

HELP

HELP

Displays SQLMigrate commands and descriptions.

Scope

SQLMigrate Only

SQLMigrate Syntax

HELP;

Description

If you type HELP without parameters, a list of SQLMigrate commands is displayed.

If you type HELP followed by a command name, then the syntax, an explanation of the
command, and an example are returned.

Example

SQLMIGRATE=> help;

The SQLMIGRATE commands are:

ADD MIGRATE REPAIR

CREATE PREVIEW SET

EXIT QUIT SHOW

Help is available on any of the above commands by typing HELP followed

by the command name (Example - HELP MIGRATE;).

For more information, please refer to the SQLMigrate section of the

ALLBASE/SQL Database Administration Guide.

SQLMIGRATE=> help add;

ADD DBEFILE DBEFileName to DBEFILESET SYSTEM;

This command associates a DBEFile to the SYSTEM DBEFileSet.

When adding space to the SYSTEM DBEFileSet, the first step is to

create a new DBEFILE. The second step is to ADD the DBEFILE to the

SYSTEM DBEFILESET.

EXAMPLE: ADD DBEFile ThisDBEFile to DBEFILESET SYSTEM;

SQLMIGRATE=>

SQLMigrate H-5

MIGRATE

Modi�es a DBEnvironment to make it compatible with a di�erent release of ALLBASE/SQL
software.

Scope

SQLMigrate Only

SQLMigrate Syntax

MIGRATE 'DBEnvironmentName'

�
FORWARD

�
TO 'Version'

�
BACKWARD TO 'Version'

�
;

Parameters

DBEnviron-
mentName

identi�es the DBEnvironment to be migrated. Any pathname you specify,
unless absolute, is assumed to be relative to your current working directory.

Version indicates the version to which you want to migrate your DBEnvironment.
Version is optional in forward migration. The default is to migrate the
DBEnvironment to the most recent version supported by SQLMigrate.
Version must be indicated for backward migration. Use the SHOW
VERSIONS command to determine the value that may be entered as the
version parameter to migrate a DBEnvironment to the desired release of
ALLBASE/SQL software.

Description

SQLMigrate cannot be used remotely.

The following message is always displayed:

All stored sections have been invalidated.

Stored sections will be revalidated transparently when they are executed.

Production should be faster if revalidation is done before that time.

Revalidation can be accomplished by preprocessing the application programs

that contain the stored sections.

When a forward migration completes, SQLMigrate automatically issues a START DBE
NEWLOG statement, unless NEWLOG has been set to OFF. You cannot connect to
the DBEnvironment until the START DBE NEWLOG statement has been successfully
performed.

At the end of a backward migration, you must perform the START DBE NEWLOG
statement with ISQL. SQLMigrate does not automatically issue the statement.

H-6 SQLMigrate

MIGRATE

System catalog views often change during migration. If authorities have been granted
or user views have been de�ned on system catalog views, then create a schema �le with
SQLGEN before the migration. See the GENERATE VIEWAUTH and GENERATE
VIEWS commands in the SQLGEN appendix of this manual for more information.

For detailed instructions on how to perform a migration, see \Using SQLMigrate" in the
\DBA Tasks and Tools" chapter of this manual.

Authorization

You must be the DBECreator or superuser to use the MIGRATE command.

Example 1

In the example below, a forward migration is shown.

SQLMIGRATE=> migrate 'PartsDBE' forward;

WARNING - Before continuing, please verify that a

complete backup of the DBEnvironment exists. (DBWARN 20550)

Do you want to continue (yes,[no]) ? yes

MIGRATE BEGINNING (TUE, AUG 17, 1993, 10:16 AM)

All stored sections have been invalidated.

Stored sections will be revalidated transparently when they are executed.

Production should be faster if revalidation is done before that time.

Revalidation can be accomplished by preprocessing the application programs

that contain the stored sections.

At the end of this processing, the following message is issued:

MIGRATE SUCCEEDED with 1 WARNING(s) (TUE, AUG 17, 1993, 10:17 AM)

SQLMigrate automatically issues a START DBE NEWLOG command and echoes it to the
screen:

START DBE NEWLOG BEGINNING (TUE, AUG 17, 1993, 10:17 AM)

START DBE 'PartsDBE' MULTI NEWLOG

DUAL LOG,

BUFFER = (100,24),

TRANSACTION = 5,

MAXIMUM TIMEOUT = NONE,

DEFAULT TIMEOUT = MAXIMUM,

RUN BLOCK = 37

LOG DBEFILE log1 AND log2 WITH PAGES = 256,

NAME = 'PartsLG1'

AND 'PartsLG2';

START DBE NEWLOG SUCCEEDED (TUE, AUG 17, 1993, 10:17 AM)

The DBEnvironment is ready to be accessed! If you desire archive mode

logging, you must run SQLUTIL and issue a STOREONLINE command.

SQLMIGRATE=>

SQLMigrate H-7

MIGRATE

The previous message applies if you have TurboSTORE software on your system. If you do
not have TurboSTORE, refer to the section \Static Backup Procedures in Archive Mode" in
the \Backup and Recovery" chapter of this guide.

Example 2

In the example that follows a backward migration is shown.

SQLMIGRATE=> migrate 'PartsDBE' backward to 'F';

WARNING - Before continuing, please verify that a complete backup of

the DBEnvironment exists. (DBWARN 20550)

Do you want to continue (yes,[no]) ? yes

MIGRATE BEGINNING (TUE, AUG 17, 1993, 10:27 AM)

All stored sections have been invalidated.

Stored sections will be revalidated transparently when they are executed.

Production should be faster if revalidation is done before that time.

Revalidation can be accomplished by preprocessing the application programs

that contain the stored sections.

WARNING - Views and stored sections created under later releases of

ALLBASE/SQL may not function correctly under the target version

of ALLBASE/SQL. (DBWARN 20580)

Please drop all views created under later releases, and recreate them.

Also drop all stored sections created under later releases, and either

1) INSTALL backup installable module files that were created under the

target version of ALLBASE/SQL, or

2) Preprocess programs again to obtain stored sections that are compatible

with the target version of ALLBASE/SQL.

At the end of this processing, the following message is issued:

MIGRATE SUCCEEDED with 2 WARNING(s) (TUE, AUG 17, 1993, 10:27 AM)

During backward migration, SQLMigrate does not automatically execute a START DBE
NEWLOG statement.

Please note that you will not be able to use this DBEnvironment until

you have run ISQL and issued a START DBE NEWLOG command. This action will

create a new log file that is compatible with the target release. If you

desire archive mode logging, you must run SQLUTIL and issue a STOREONLINE

command after the START DBE NEWLOG command.

SQLMIGRATE=>

The previous message applies if you have TurboSTORE software on your system. If you do
not have TurboSTORE, refer to the section, \Static Backup Procedures in Archive Mode," in
the \Backup and Recovery" chapter of this guide.

H-8 SQLMigrate

PREVIEW

PREVIEW

Checks for errors that might occur during the migration of the DBEnvironment that would
cause the migration to fail. PREVIEW checks for as many errors as it can before a migration,
but it does not perform a \test migration." It is still possible for the migration to fail after a
preview, but usually this would only occur if the DBEnvironment is corrupt.

Scope

SQLMigrate Only

SQLMigrate Syntax

PREVIEW 'DBEnvironmentName'

�
FORWARD

�
TO 'Version'

�
BACKWARD TO'Version'

�
;

Parameters

DBEnviron-
mentName

identi�es the DBEnvironment to be previewed. Any pathname you specify,
unless absolute, is assumed to be relative to your current working directory.

Version indicates the version number to which you want to migrate your
DBEnvironment. Version is optional in a forward preview. The default is to
preview the DBEnvironment against the most recent version supported by
SQLMigrate. Version must be indicated for a backward preview. Use the
SHOW VERSIONS command to determine the value that may be entered as
the version parameter to PREVIEW the migration of a DBEnvironment to
the desired release of ALLBASE/SQL software.

Description

The amount of free pages left in the SYSTEM DBEFileSet is calculated. If migration
cannot be accomplished because there is not enough space, an error is returned along with
an estimate of the additional number of pages needed.

The PREVIEW BACKWARD command checks for database objects which contain
functionality that is not supported under an old release. If they are detected, a warning
message is issued that the database objects will be dropped during the migration process.
You may want to save your table by issuing an ISQL UNLOAD command before migrating
your DBEnvironment.

The PREVIEW command is not a read only operation. If the PREVIEW command fails it
may leave the DBEnvironment in an inconsistent state. Should the PREVIEW command
fail, the DBEnvironment backup must be restored before the DBEnvironment can be
accessed.

Authorization

You must be the DBECreator or superuser to use the PREVIEW command.

SQLMigrate H-9

PREVIEW

Example 1

In the example below, a forward preview is shown. The warning is always given as a reminder
to back up your DBEnvironment. The error indicates that there is not enough space for the
migration to occur.

SQLMIGRATE=> preview 'PartsDBE' forward to 'G';.

PREVIEW BEGINNING (TUE, AUG 17, 1993, 10:12 AM)

WARNING - Before continuing, please verify that a complete backup of

the DBEnvironment exists. (DBWARN 20550)

Do you want to continue (yes,[no]) ? yes

ERROR - Insufficient space in the SYSTEM DBEFileset. (DBERR 22540)

DBEFile(s) containing 38 pages need to be added to the SYSTEM

DBEFileset before attempting the migration.

Use SQLMIGRATE to first CREATE a DBEFile, and then to ADD it to the

SYSTEM DBEFileSet. If you are concerned about the amount of additional

space being added, CREATE multiple small DBEFiles, rather than one large

one. After the migration is complete, perform an UPDATE STATISTICS on

SYSTEM.TABLE. Review SYSTEM.DBEFILE to determine the empty DBEFiles in

the SYSTEM DBEFileset, and remove them. Remember to leave about 20% of

the pages free for the temporary processing needs of ALLBASE/SQL.

PREVIEW FAILED with 1 ERROR(s) (TUE, AUG 17, 1993, 10:13 AM)

An attempt to MIGRATE this DBEnvironment will fail, and leave the

DBEnvironment in an inconsistent state. Please take corrective action

before attempting the migration.

SQLMIGRATE=>

At this point you will want to add space to the SYSTEM DBEFileSet. This procedure is
shown here:

SQLMIGRATE=> CREATE DBEFILE partsfile3 WITH PAGES = 40, NAME =`prtfile3';

The DBEFile was SUCCESSFULLY CREATED in <PartsDBE>.

SQLMIGRATE=> ADD DBEFILE partsfile3 TO DBEFILESET SYSTEM;

The DBEFile was SUCCESSFULLY ADDED in <PartsDBE>.

SQLMIGRATE=>

Issue the PREVIEW command again to make sure that no other errors will be encountered
during the migration:

SQLMIGRATE=> preview 'PartsDBE' forward to 'G';

PREVIEW BEGINNING (TUE, AUG 17, 1993, 10:13 AM)

WARNING - Before continuing, please verify that a complete backup of

the DBEnvironment exists. (DBWARN 20550)

Do you want to continue (yes,[no]) ? yes

PREVIEW SUCCEEDED with 1 WARNING(s) (TUE, AUG 17, 1993, 10:13 AM)

The proposed migration should be successful.

H-10 SQLMigrate

PREVIEW

SQLMIGRATE=>

Example 2

In the example below, a warning is issued that a particular table will be dropped because
the column types were only supported under the current release of ALLBASE/SQL. This
table was de�ned under the current release of ALLBASE/SQL and it took advantage of
enhancements that exist only under the current release. Remember that the columns that are
supported under the new release cannot be loaded into the old DBEnvironment. You should
either omit them when the unload is performed or edit the unload �le appropriately.

SQLMIGRATE=> preview 'PartsDBE' backward to 'F';

PREVIEW BEGINNING (TUE, AUG 17, 1993, 1:23 PM)

WARNING - Before continuing, please verify that a complete backup of

the DBEnvironment exists. (DBWARN 20550)

Do you want to continue (yes,[no]) ? yes

WARNING - Table PURCHDB.PARTS contains the following columns which are not

supported under the target version of ALLBASE/SQL (DBWARN

22530):

NONCASE

This table will be dropped during the migration.

Please NOTE that any other tables in your DBEnvironment that have

REFERENTIAL CONSTRAINTS on this table will also be dropped during

the migration. Please verify that a complete backup of this

DBEnvironment exists to insure that table(s) are not lost.

WARNING - View PURCHDB.PARTINFO is defined on a table or view that will be

dropped during the migration (DBWARN 22700). This view will

also be dropped. The SELECTSTRING from SYSTEM.VIEWDEF for this

view is:

SELECT PurchDB.SupplyPrice.PartNumber, PurchDB.Parts.PartName,

PurchDB.SupplyPrice.VendorNumber, PurchDB.Vendors.VendorName,

PurchDB.Supplyprice.VendPartNumber,

PurchDB.SupplyPrice.UnitPrice, PurchDB.SupplyPrice.DiscountQty

FROM PurchDB.Parts, PurchDB.SupplyPrice, PurchDB.Vendors WHERE

PurchDB.SupplyPrice.PartNumber = PurchDB.Parts.PartNumber AND

PurchDB.SupplyPrice.VendorNumber = PurchDB.Vendors.VendorNumber;

PREVIEW SUCCEEDED with 3 WARNING(s) (TUE, AUG 17, 1993, 1:23 PM)

The proposed migration should be successful.

SQLMIGRATE=>

SQLMigrate H-11

QUIT

Terminates SQLMigrate execution.

Scope

SQLMigrate Only

SQLMigrate Syntax

QUIT;

Description

This command terminates the SQLMigrate session and returns you to the operating system.

Example

SQLMIGRATE=> quit;

%

H-12 SQLMigrate

REPAIR

REPAIR

Checks for and repairs migration corruption that may have been caused by a previous release
of ALLBASE/SQL. You should only issue the REPAIR command when asked to do so so by a
quali�ed Hewlett-Packard representative.

Scope

SQLMigrate Only

SQLMigrate Syntax

REPAIR 'DBEnvironmentName';

Parameters

DBEnvironmentName identi�es the DBEnvironment to be repaired. Any pathname you
specify, unless absolute, is assumed to be relative to your current
working directory.

Description

This command will check for and repair migration corruption that may have been caused
by a previous release of SQLMigrate. Migration corruption occurs when a release of
SQLMigrate has a defect, so it does not modify a DBEnvironment correctly when the
MIGRATE command is issued.

The REPAIR command may only be used when no other user is accessing the
DBEnvironment.

At the end of the REPAIR command, one of the following two messages will be issued:

REPAIR SUCCEEDED: No migration corruption has been detected.

REPAIR SUCCEEDED: Migration corruption has been detected and repaired.

Example

SQLMIGRATE=> repair 'PartsDBE';

REPAIRED: The INDEX base table has been corrected.

REPAIRED: The VIEWDEF base table has been corrected.

REPAIR SUCCEEDED: Migration corruption has been detected and repaired.

SQLMIGRATE=>

SQLMigrate H-13

SET

Sets operational options.

Scope

SQLMigrate Only

SQLMigrate Syntax

SET Option OptionValue;

Parameters

Option OptionValue identi�es the option and a value for it. The available option and
values are:

AUTO_NO ON Initial setting is OFF

If ON, there is no need to answer interactive SQLMigrate
questions. Sets all answers to NO.

AUTO_NO OFF If OFF, all interactive SQLMigrate questions must be answered.

BACKUP_MADE ON Initial setting is OFF

If ON, there is no need to answer interactive SQLMigrate
questions about backup.

BACKUP_MADE OFF If OFF, all interactive SQLMigrate questions about backup must
be answered.

ECHO_ALL ON Initial setting is OFF.

If ON, batch user input is echoed to standard out.

ECHO_ALL OFF If OFF, batch user input is not echoed.

EXIT_ON_DBERR ON Initial setting is OFF.

If ON, SQLMigrate terminates immediately if an SQL error is
encountered.

EXIT_ON_DBERR OFF If OFF, SQLMigrate does not immediately terminate if an SQL
error is encountered.

NEWLOG ON Initial setting is ON

If ON, SQLMigrate automatically issues a START DBE NEWLOG
statement after the MIGRATE FORWARD command has �nished
executing.

NEWLOG OFF If OFF, you must exit from SQLMigrate, run ISQL, and issue
a START DBE NEWLOG statement. You cannot use your
DBEnvironment after it has been migrated until the START DBE
NEWLOG statement executes successfully.

H-14 SQLMigrate

SET

VERBOSE ON Initial setting is ON

If ON, detailed error and warning messages are displayed.
Suggested actions are often given along with the message.

VERBOSE OFF If OFF, error and warning messages are short.

Description

The options AUTO NO and BACKUP MADE can be used when using a batch job to
migrate one or more DBEnvironments. When backups have been made and BACKUP MADE
is set to ON and AUTO NO is set to ON, only unexpected situations will cause migration to
fail. Review the job listing to make sure all DBEnvironments were migrated.

Example 1

In the following example, the message returned is detailed because VERBOSE is set to ON.

SQLMIGRATE=> set verbose on;

SQLMIGRATE=> preview 'PartsDBE' forward;

ERROR - Insufficient space in the SYSTEM DBEFileSet (DBERR 22540).

DBEFile(s) containing 5 pages need to be added to the SYSTEM

DBEFileSet before attempting migration.

If you are concerned about the amount of additional space being added,

CREATE multiple small DBEFiles, rather than one large one. After the

migration is complete, perform an UPDATE STATISTICS on SYSTEM.TABLE.

Review SYSTEM.DBEFILE to determine the empty DBEFiles in the SYSTEM

DBEFileSet, and remove them. Remember to leave about 20% of the pages

free for the temporary processing needs of HP SQL.

Example 2

In the following example, the message is shorter because VERBOSE is set to OFF.

SQLMIGRATE=> set verbose off;

SQLMIGRATE=> migrate 'PartsDBE' forward;

ERROR - Insufficient space in the SYSTEM DBEFileSet (DBERR 22540).

DBEFile(s) containing 5 pages needs to be added to the SYSTEM

DBEFileSet before attempting the migration.

SQLMIGRATE=>

SQLMigrate H-15

SHOW 'DBEnvironmentName' VERSION

Displays the current version number and startup parameters of the DBEnvironment speci�ed
in the command.

Scope

SQLMigrate Only

SQLMigrate Syntax

SHOW 'DBEnvironmentName' VERSION;

Parameters

DBEnviron-
mentName

identi�es the DBEnvironment to be previewed. Any pathname you specify,
unless absolute, is assumed to be relative to your current working directory.

Description

In addition to the version number, the DBECreator's id and current startup parameters
are displayed. It is critical that an entry exists in /etc/passwd with a userid equal to the
DBECreator id to ensure that SQLMigrate runs successfully.

Example

In the example below, the version of the DBEnvironment is F:

SQLMIGRATE=> show 'PartsDBE' version;

VERSION RELEASE

F HP36217-02A.F

DBEnvironment Creator Id = 9026

CURRENT STARTUP PARAMETERS:

SINGLE USER MODE

DUAL LOG,

BUFFER = (50,50)

TRANSACTION = 2

MAXIMUM TIMEOUT = 3600 SECONDS,

DEFAULT TIMEOUT = 30 SECONDS,

RUN BLOCK = 37

LOG DBEFILE log1 AND log2 WITH PAGES = 250,

NAME = 'tstdbe1'

AND 'tstdbe12';

SQLMIGRATE=>

H-16 SQLMigrate

SHOW VERSIONS

SHOW VERSIONS

Displays the DBEnvironment versions and corresponding target releases of ALLBASE/SQL
supported by the current release of SQLMigrate.

Scope

SQLMigrate Only

SQLMigrate Syntax

SHOW VERSIONS;

Description

This command lists the DBEnvironment version and corresponding ALLBASE/SQL release
numbers which work with SQLMigrate.

Example

The following example shows supported target DBEnvironment versions and corresponding
ALLBASE/SQL releases on the HP-UX Series 800.

SQLMIGRATE=> show versions;

VERSION RELEASE

E HP36217-02A.E

F HP36217-02A.F

G HP36217-02A.G

SQLMigrate H-17

!

Escape temporarily to the operating system and execute a single operating system command.

Scope

SQLMigrate Only

SQLMigrate Syntax

! CommandName;

Parameters

CommandName Name of an HP-UX operating system command.

Description

Control returns to SQLMigrate as soon as the command has been executed.

If the command name was sh, csh, or ksh, use the exit command to return to SQLMigrate
from the shell.

Example

SQLMIGRATE=> !ll;

total 5586

-rw-rw-r-- 1 guest guest 10626 Jul 12 11:06 +invfile

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderDF1

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderXF1

.

.

.

SQLMIGRATE=> !sh;

$ ll

total 5586

-rw-rw-r-- 1 guest guest 10626 Jul 12 11:06 +invfile

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderDF1

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderXF1

.

.

.

$ exit

SQLMIGRATE=>

H-18 SQLMigrate

I

SQLAudit

The following pages describe the syntax of the SQLAudit commands. You can �nd a
discussion of how to use SQLAudit in the \DBA Tasks and Tools" chapter.

SQLAudit I-1

AUDIT

This command processes committed transactions for appropriate audit log records and places
the results in a �le for user viewing.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> AUDIT

Beginning Audit Point File >> BEGINFILE

Ending Audit Point File >> ENDFILE

Results File to be generated >> RESULTFILE

Do you wish to specify Partition Numbers (n/y) >>

�
n
�
o
�

y
�
es
�
�

Partition Number >>

8>>>>>>>>><
>>>>>>>>>:

?

@

PartNumber

DEF
�
INITION

�
AUTH

�
ORIZATION

�
STOR

�
AGE

�
SECT

�
ION

�

9>>>>>>>>>=
>>>>>>>>>;

Parameters

BeginFile is the name of the �le containing the beginning audit point
information. If only a carriage return is entered, SQLAudit tries
to �nd the �rst committed transaction for each partition speci�ed.

EndFile is the name of the �le containing the ending audit point
information. If a carriage return is entered, SQLAudit uses the
current audit point information for the DBEnvironment.

ResultFile is the name of the �le that will be generated. This �le contains
the output of the AUDIT command in a user-readable format. If
a carriage return is entered, SQLAudit sends the generated results
to the standard output. If the �le speci�ed already exists, you will
be prompted to either purge, overwrite, or append the existing
�le.

NO or YES respond NO to select all partitions; respond YES if you wish to
specify your own list of partitions.

? displays a list of partitions having committed transactions.

@ selects all partitions.

PartNumber is the number for a partition that you wish to audit.

I-2 SQLAudit

AUDIT

Description

The default is to process audit log records (for all partitions) generated between the
beginning and ending audit points. This makes the list of partitions to be audited equal
to the number of partitions that had transactions committed between the beginning and
ending audit points.

You may specify a set of partitions to be audited if you want to narrow down the number of
records to process. When a list of partitions is speci�ed, only transactions changing data in
the given set of partitions are audited.

When specifying a list of partitions, only one partition is allowed per input line. At any
time you can enter an at sign (@) at the prompt to select all partitions. Entering a question
mark displays a list of partitions that have committed transactions. Entering a carriage
return ends the Partition Number prompt.

Partitions must be speci�ed by number for user de�ned partitions. Examples of user de�ned
partitions are DEFAULT PARTITION, COMMENT PARTITION, and partitions created
through the CREATE PARTITION command.

System de�ned partitions such as DEFINITION, AUTHORIZATION, STORAGE, and
SECTION (created through the START DBE command) are speci�ed by name. These
partitions are de�ned when the user speci�es AUDIT ELEMENTS of DEFINITION,
AUTHORIZATION, STORAGE, or SECTION in the START DBE command.

If no beginning audit point is speci�ed, SQLAudit attempts to process transactions starting
from the beginning of log history. When this happens, if SQLAudit is unable to �nd the
�rst transaction that has changed a given partition, a warning is returned and the partition
is removed from the list of partitions to be processed.

If no ending audit point is speci�ed, SQLAudit determines the audit point information as of
the last log record written and uses this for the ending audit point.

If no result �le is speci�ed, SQLAudit automatically sends all generated results of the audit
to standard output.

If an error occurs while writing records to the result �le, SQLAudit creates a �le to hold
the generated audit point information. This recovery �le can be used just like any other
audit point �le (for example, as the beginning audit point �le), except for use with the
LOCK AUDITPOINT command. This audit point information can be particularly useful if
errors such as FILE SYSTEM FULL are encountered while writing to the result �le. The
default name of this �le is SQLAUREC but can be changed through the command SET
RECOVERFILE. If SQLAudit needs to create this �le, an error will occur if the �le already
exists.

Authorization

DBA authorization is required in order to use this command.

SQLAudit I-3

AUDIT

Example

SQLAudit >> AUDIT

Beginning Audit Point File >> STARTPT

Ending Audit Point File >> STOPPT

Result File to be generated >> RESULTS

Do you wish to specify Partition Numbers (n/y) >> yes

Please enter Partition Numbers or System Partition Names. Type @ for all,

? for a list of Partitions, or RETURN to finish. Valid System

Names are DEF[INITION], AUTH[ORIZATION], STOR[AGE], and SEC[TION].

Partition Number >> 1

Partition Number >> 2

Partition Number >>

Generating Results ...

Records Audited: 10000 Records Generated: 10000

Records Audited: 20000 Records Generated: 20000

Records Audited: 24523 Records Generated: 24523

Finished Generating Results.

SQLAudit >>

The result �le generated is in the format of ASCII records that can be viewed by the user. An
example of such a �le is shown below:

***** SQLAUDIT: GENERATING RESULTS *****

Creator: DBAUSER Creation Time: 1993-05-11 14:22:16.531

BEGIN

INSERT (2) USER1.TABLE1 (123, 'test data', NULL, 1.23)

UPDATE (2) USER1.TABLE1 (123, 'test data', NULL, 1.23) ((3) 0x0000123C)

COMMIT User: USER1 Audit Name: MDBE1 Label: TRANS1

Time: 1993-05-11 10:15:00.123

BEGIN

DELETE (2) USER1.TABLE1 (123, 'test data', 0x0000123C, 1.23)

COMMIT User: USER1 Audit Name: MDBE1 Label: TRANS2

Time: 1993-05-11 10:15:01.455

End of File

I-4 SQLAudit

EDITOR

EDITOR

Invokes the currently set editor.

Scope

SQLAudit only.

SQLAudit Syntax

SQLAudit >> ED
�
ITOR

��
FileName

�

Parameters

FileName identi�es the �le you want to edit.

Description

This command invokes the currently set editor from within SQLAudit. The default editor is
/usr/bin/vi. Use the SET EDITOR command to rede�ne the current editor.

Authorization

Anyone can issue the EDITOR command.

Example

SQLAudit >> editor results

***** SQLAUDIT: GENERATED RESULTS *****

BEGIN

INSERT (2) ...

UPDATE (1) ...

.

.

:q

SQLAudit >>

SQLAudit I-5

EXIT

Exits from SQLAudit.

Scope

SQLAudit only.

SQLAudit Syntax

SQLAudit >> E
�
XIT

�

Description

This command terminates SQLAudit execution.

This command is equivalent to the QUIT command.

If you have not terminated the DBEnvironment session (through the SET
DBENVIRONMENT OFF command), SQLAudit automatically terminates the DBE session
before exiting.

Authorization

Anyone can issue the EXIT command.

Example

SQLAudit >> EXIT

$

I-6 SQLAudit

GET AUDITPOINT

GET AUDITPOINT

Determines the current audit point information and places it in a �le.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> GE
�
T
�
AUDIT

�
POINT

�
Audit Point File >> FileName

Lock Log for Audit Point (n/y) >>

�
n
�
o
�

y
�
es
�
�

Display Audit Point Information (n/y) >>

�
n
�
o
�

y
�
es
�
�

Parameters

FileName is the name of the audit point �le to be created. If the �le already
exists, you are prompted whether to purge and overwrite the �le.

NO or YES respond NO if you do not want to lock the log �les; respond YES
if you do want to lock the log �les with the current audit point
information.

NO or YES respond NO if you do not want to view the audit information;
respond YES if you do want to view the current audit
information.

Description

This command is used to retrieve the current audit point information and place it into a
�le. This command can be used while the DBEnvironment is in use.

Audit information is retrieved for all partitions in the DBEnvironment that have had
transactions committed. Identifying information is also placed in the audit point �le.

When the �le is created, the �le permissions are set to restrict access to other users. In
other words the �le is created such that it is readable only by the user who created it. If the
DBA who created the �le wishes to allow others to access the �le, it will be up to the DBA
to change the �les' permissions.

If desired, you can lock the log �les according to the current audit point information. If
locked, all transactions committed after this command are protected from being overwritten
until the lock is changed or removed. Log locks can be changed through the commands
GET AUDITPOINT and LOCK AUDITPOINT. Log locks can be removed through the
command UNLOCK AUDITPOINT, or using the SQL command START DBE NEWLOG.

If you specify that the log �les are to be locked, any previously de�ned log locks are
replaced by the new audit point log lock. In other words, only one audit point can be locked
in the log �les at any one time.

SQLAudit I-7

GET AUDITPOINT

You must be connected to the DBEnvironment to use this command. If you have not
connected to the DBE (using the SET DBENVIRONMENT command), SQLAudit issues a
warning and automatically issues the SET DBENVIRONMENT command.

Authorization

You must have DBA authorization in order to use this command.

Example

SQLAudit >> get auditpoint

Audit Point File >> STARTPT

Lock Log for Current Audit Point (n/y) >> yes

Display Current Audit Point Information (n/y) >> no

SQLAudit >>

Refer to the SHOW AUDITPOINT command for an example of the display of current audit
point information.

I-8 SQLAudit

HELP

HELP

Displays the help text of an SQLAudit command.

Scope

SQLAudit only.

SQLAudit Syntax

>> H
�
ELP

��
CommandName or Keyword

�

Parameter

CommandName is the name of the command whose syntax you want displayed.

Keyword is the name of the subject you want displayed. Valid keywords are
MAIN, SUMMARY, and GENERAL.

Description

If a CommandName or Keyword is included, SQLAudit displays the help text and returns
you to the SQLAudit prompt.

If HELP is entered by itself, SQLAudit displays the MAIN help screen and prompts you for
the CommandName or Keyword for which you want additional help.

Typing // at any time returns you to the SQLAudit prompt.

Authorization

Anyone can issue the HELP command.

Example

SQLAudit >> HELP GET AUDITPOINT

SYNTAX GE[T] AUDIT[POINT]

OPERATION GET AUDITPOINT will determine the current audit point

information from the DBEnvironment and place it in a file

for the user. This audit point file can then be used by

other SQLAudit commands (such as AUDIT or LOCK AUDITPOINT).

EXAMPLE SQLAudit >> GET AUDITPOINT

Audit Point File >> STARTPT

Lock Log for Audit Point (n/y) >> NO

Display Audit Point Information (n/y) >> NO

SQLAudit >>

SQLAudit I-9

LOCK AUDITPOINT

Locks the log �les according to transaction information contained in an audit point �le.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> LO
�
CK
�
AUDIT

�
POINT

�
Audit Point File >> FileName

Display Audit Point Information (n/y) >>

�
n
�
o
�

y
�
es
�
�

Lock Log for Audit Point (n/y) >>

�
n
�
o
�

y
�
es
�
�

Parameters

FileName is the name of the �le containing audit point information. This
�le must have been previously created by the command GET
AUDITPOINT.

NO or YES respond NO if you do not want to display audit point information;
respond YES to con�rm that you do want to display audit point
information.

NO or YES respond NO if you do not want to lock the log �les; respond YES
to con�rm that you do want to lock the log �les.

Description

This command is used to lock the audit point (determined from the audit point �le) in
the DBEnvironment log �les. When this happens, all transactions committed after the
audit point are protected from being overwritten until the log lock is changed or removed.
Log locks can be changed through the commands GET AUDITPOINT and LOCK
AUDITPOINT. Log locks can be removed through the command UNLOCK AUDITPOINT,
or using the SQL command START DBE NEWLOG.

This command automatically replaces any currently held lock on the log �les. Only one log
lock can exist on the DBEnvironment log �les at any one time.

If the lock cannot be acquired (for example, if you have speci�ed an audit point that is no
longer valid), the old log lock remains.

You must be connected to the DBEnvironment to use this command. If you have not
connected to the DBE (using the SET DBENVIRONMENT command), SQLAudit issues a
warning and automatically issues the SET DBENVIRONMENT command.

I-10 SQLAudit

LOCK AUDITPOINT

Authorization

You must have DBA authorization in order to use this command.

Example

SQLAudit >> lock auditpoint

Audit Point File >> STARTPT

Display Audit Point Information (n/y) >> no

Lock Log for Audit Point (n/y) >> yes

SQLAudit I-11

MODIFY AUDITPOINT

Modi�es the current audit point information for the DBEnvironment.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> MOD
�
IFY

�
AUDIT

�
POINT

�
Audit Point File >> FileName

Partition Number >>

8>>>>>>>>><
>>>>>>>>>:

?

@

PartNumber

DEF
�
INITION

�
AUTH

�
ORIZATION

�
STOR

�
AGE

�
SECT

�
ION

�

9>>>>>>>>>=
>>>>>>>>>;

Modify Current Audit Point Information (n/y) >>

�
n
�
o
�

y
�
es
�
�

Parameters

FileName is the name of the audit point �le containing unloaded SCR (or
transaction) information. This �le would have been created by
running SQLAudit on the master DBEnvironment. If no audit
point �lename is entered, SQLAudit will delete transaction (SCR)
information for the speci�ed list of partitions.

PartNumber is the number for a partition for which you wish to modify the
transaction information.

NO or YES respond NO if you do not want to modify the current audit point
information in the DBE; respond YES if you do want to modify
the current audit point information in the DBE.

Description

This command should only be used for ALLBASE/REPLICATE DBEnvironments, and
it should only be necessary during hard resynchronization of a given set of partitions.
This command should not be necessary for audit only DBEnvironments that are not using
ALLBASE/REPLICATE.

This command is used to modify the current audit point information to reect new
transaction information for the speci�ed set of partitions. This command can be used in
two di�erent ways. The �rst way it can be used is to replace the transaction information
for the given set of partitions with new transaction information from the audit point �le
entered. The second way it can be used is to delete transaction information for a given set
of partitions. This command can be used while the DBEnvironment is in use.

I-12 SQLAudit

MODIFY AUDITPOINT

If the user enters an audit point �lename, SQLAudit will replace the DBEnvironment
transaction (SCR) information with information from the audit point �le (for the given
set of partitions). This �le is assumed to have been created by running SQLAudit against
the master DBEnvironment (using the GET AUDITPOINT command). If no transaction
information is found in the audit point �le for a speci�ed partition, the transaction
information for the partition will be deleted from the DBEnvironment. The audit point
information from the �le will be used to list the current set of partitions.

If the user did not enter an audit point �lename, SQLAudit will delete all transaction
information for the user speci�ed list of partitions. If no audit point �lename is entered (the
user just pressed RETURN), SQLAudit will retrieve the current audit point information
from the DBEnvironment. This audit point information will be used to list the current set
of partitions.

You must be connected to the DBEnvironment to use this command. If you have not
connected to the DBE (using the SET DBENVIRONMENT command), SQLAudit will
issue a warning and automatically issue the SET DBENVIRONMENT command on your
behalf.

Authorization

You must have DBA authorization in order to use this command.

Example

SQLAudit >> modify auditpoint

Audit Point File >> MasterPt

System Partitions are DEF[INITION], AUTH[ORIZATION], STOR[AGE] or SECT[ION].

Please enter Partition Numbers or System Partitions. Type @ for all,

? for a list of Partitions, or RETURN to quit.

Partition Number >> 1

Partition Number >> 2

Partition Number >>

Modify Current Audit Point Information (n/y) >> yes

Current audit point information has been modified.

SQLAudit >>

SQLAudit >> modify auditpoint

Audit Point File >>

Audit point information will be deleted for the specified partitions.

System Partitions are DEF[INITION], AUTH[ORIZATION], STOR[AGE] or SECT[ION].

Please enter Partition Numbers or System Partitions. Type @ for all,

? for a list of Partitions, or RETURN to quit.

Partition Number >> 3

Partition Number >>

Modify Current Audit Point Information (n/y) >> yes

Current audit point information has been modified.

SQLAudit >>

SQLAudit I-13

QUIT

Quits and exits from SQLAudit.

Scope

SQLAudit only.

SQLAudit Syntax

SQLAudit >> Q
�
UIT

�

Description

This command terminates SQLAudit execution.

This command is equivalent to the EXIT command.

If you have not terminated the DBEnvironment session (through the SET
DBENVIRONMENT OFF command), SQLAudit automatically terminates the DBE session
before quitting.

Authorization

Anyone can issue the QUIT command.

Example

SQLAudit >> QUIT

$

I-14 SQLAudit

SET

SET

Displays current values of SQLAudit options.

Scope

SQLAudit only.

SQLAudit Syntax

SQLAudit >> SE
�
T
�

Description

This command displays the current values for SQLAudit options.

Authorization

Anyone can issue the SET command.

Example

SQLAudit >> SET

ECHO_[ALL] OFF

ED[ITOR] /usr/bin/vi

EXIT[_ON_DBERR] OFF

DBEN[VIRONMENT] OFF

REC[OVERFILE] SQLAUREC

SQLAudit >>

SQLAudit I-15

SET DBENVIRONMENT

Establishes or releases the connection to the DBEnvironment.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> SE
�
T
�
DBEN

�
VIRONMENT

�� DBEnvironmentName

OFF

�

SQLAudit >> SE
�
T
�
DBEN

�
VIRONMENT

�
DBEnvironment Name >>

�
DBEnvironmentName

OFF

�

Parameters

DBEnvironmentName speci�es the name of the DBEnvironment with which you wish to
establish a connection.

OFF terminates (or releases) your connection to the DBEnvironment.

Description

This command is used to establish or release a connection with the DBEnvironment.

DBEnvironmentName or OFF can be entered as part of the command line, or they can be
entered in prompt mode.

When OFF is speci�ed, the current DBEnvironment (if set) is released, terminating the
database session. You may issue the SET DBENVIRONMENT command to connect to a
second DBEnvironment without issuing a SET DBEN OFF in between the two commands.
In this case, SQLAUDIT automatically releases the �rst DBEnvironment before connecting
to the second. When you exit SQLAudit without specifying a SET DBEN OFF, the current
DBEnvironment is automatically released.

Authorization

Only CONNECT authority is required to issue this command. However, no auditing can be
performed unless you also have DBA authority.

Example

SQLAudit >> set dben PartsDBE

SQLAudit >> set dbenvironment

DBEnvironment Name >> OFF

SQLAudit >>

I-16 SQLAudit

SET ECHO ALL

SET ECHO ALL

Enables or disables echoing of user input to the standard output �le.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> SE
�
T
�
ECHO_

�
ALL

��OFF

ON

�

SQLAudit >> SE
�
T
�
ECHO_

�
ALL

�
Option setting (OFF/ON) >>

�
OFF

ON

�

Parameters

OFF or ON respond OFF to disable echoing your input to the standard
output; respond ON to enable echoing your input to the standard
output.

Description

This command is used to enable or disable echoing of user input to the standard output �le.
This option is primarily useful in executing commands from a batch script or job stream.

OFF or ON can be entered as part of the command line, or they can be entered in prompt
mode.

The default setting for this option is OFF (user input will not be echoed to the standard
output �le).

Authorization

No authorization is required to use this command.

Example

SQLAudit >> set echo_all on

SQLAudit >> set echo_all

Option setting (OFF/ON) >> off

SQLAudit >>

SQLAudit I-17

SET EDITOR

De�nes the current editor.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> SE
�
T
�
ED
�
ITOR

�
EditorName

SQLAudit >> SE
�
T
�
ED
�
ITOR

�
Editor Name or // to STOP command >> EditorName

Parameters

EditorName Name of the editor which you wish to use.

Description

This command is used to de�ne the current editor to be used by SQLAudit. The current
editor can then be invoked by using the EDITOR command.

The default setting for this option is /usr/bin/vi.

Authorization

No authorization is required to use this command.

Example

SQLAudit >> set editor /bin/ed

SQLAudit >> set editor

Current Editor: /bin/ed

Enter Editor Name or '//' to keep current Editor

Editor Name or '//' to STOP command >> /usr/bin/vi

Current Editor: /usr/bin/vi

SQLAudit >>

I-18 SQLAudit

SET EXIT ON DBERR

SET EXIT ON DBERR

Allows you to terminate or continue execution when a database error occurs.

Scope

SQLAudit only.

SQLAudit Syntax

SE
�
T
�
EXIT

�
_ON_DBERR

��OFF

ON

�

SE
�
T
�
EXIT

�
_ON_DBERR

�
Option setting (OFF/ON) >>

�
OFF

ON

�

Description

When EXIT ON DBERR is set to ON, SQLAudit terminates execution when a database
error is encountered.

When EXIT ON DBERR is set to OFF, SQLAudit continues execution when a database
error is encountered.

The default setting for this option is OFF (continue execution if a database error occurs).

Authorization

Anyone can issue the SET EXIT ON DBERR command.

Example

SQLAudit >> set exit_on_dberr on

SQLAudit >> set exit_on_dberr

Option Setting (OFF/ON) >> on

SQLAudit >>

SQLAudit I-19

SET RECOVERFILE

De�nes the recovery �le name which can be used by the AUDIT command.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> SE
�
T
�
REC

�
OVERFILE

�
FileName

SQLAudit >> SE
�
T
�
REC

�
OVERFILE

�
Recovery File Name or '//' to STOP command >> FileName

Parameters

FileName is the name of the recovery �le the AUDIT command is to use.
Enter FileName in all uppercase letters, so that you can see the
�le within SQLAudit.

Description

This command is used to de�ne the name of the recovery �le to be used by the AUDIT
command. This �le will only be created if the AUDIT command encounters an error
while writing to the results �le. When this �le is created, SQLAudit places audit point
information in the �le to reect the set of transactions that have been audited.

If the �le already exists at the time that the AUDIT command attempts to create it, an
error occurs and the �le is not created.

The default �le name setting for this option is SQLAUREC.

Authorization

No authorization is required to use this command.

Example

SQLAudit >> set recoverfile /tmp/RECFILE

SQLAudit >> set recoverfile

Current Recovery File: /tmp/RECFILE

Enter Recovery File Name or '//' to keep current name

Recovery File Name or '//' to STOP command >> /tmp/SQLAUREC

Current Recovery File: /tmp/SQLAUREC

SQLAudit >>

I-20 SQLAudit

SHOW AUDITPOINT

SHOW AUDITPOINT

Displays information contained in an audit point �le.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> SHOW AUDIT
�
POINT

�
Audit Point File >> FileName

Parameters

FileName is the name of the �le containing audit point information. This
�le must have been previously created by the command GET
AUDITPOINT.

Description

This command is used to display the audit point information contained within the indicated
�le.

Authorization

No authorization is required to use this command, though you must have read access to the
audit point �le.

Example

SQLAudit >> show auditpoint

Audit Point File >> ENDPT

Creator Name: dbauser

Transactions Lockpoint: Log Sequence No (184) Page No (837)

DBEnvironment Lockpoint: Log Sequence No (176) Page No (551)

No. of Partition Instances: 7

Audit Partition Global Newlog Local

Name Number CommitID Timestamp CommitID

------- ---------- ---------------- ---------------- ----------------

DBEONE SECT 0000015E00000A21 2C31F1BE00055B15 0000015E00000A21

DBEONE AUTH 0000000C00000085 2C31F1BE00055B15 0000000C00000085

DBEONE STOR 0000004700000150 2C31F1BE00055B15 0000004700000150

DBEONE DEF 000001620001A789 2C31F1BE00055B15 000001620001A789

DBEONE 3 000001620001D218 2C31F1BE00055B15 000001620001D218

DBEONE 4 000001620001D218 2C31F1BE00055B15 000001620001D218

DBEONE 5 000001620001D218 2C31F1BE00055B15 000001620001D218

SQLAudit >>

SQLAudit I-21

UNLOCK AUDITPOINT

Removes the current log lock on the DBEnvironment log �les.

Scope

SQLAudit Only

SQLAudit Syntax

SQLAudit >> UNLOCK AUDIT
�
POINT

�
Unlock Log Files (n/y) >>

�
n
�
o
�

y
�
es
�
�

Parameters

NO or YES respond NO if you want to keep the log �les locked; respond YES
to con�rm removing the lock on the log �les.

Description

This command is used to unlock or remove any currently held lock on the DBEnvironment
log �les. The lock must have been previously de�ned by the command GET AUDITPOINT
or LOCK AUDITPOINT.

When the log lock is removed (unlocked), transactions are no longer protected from being
overwritten by database transactions.

You must be connected to the DBEnvironment to use this command. If you have not
connected to the DBE (using the SET DBENVIRONMENT command), SQLAudit will
issue a warning and automatically issue the SET DBENVIRONMENT command on your
behalf.

Authorization

You must have DBA authorization in order to use this command.

Example

SQLAudit >> unlock auditpoint

Unlock Log Files (n/y) >> yes

I-22 SQLAudit

J

Using HP-UX Raw Files for DBEFiles and Logs

Raw �les in HP-UX are disk �les that are not bu�ered by the operating system. You can use
HP-UX raw �les instead of conventional HP-UX �les wherever ALLBASE/SQL requires you
to specify a physical �lename for a DBEFile or log �le. Under some circumstances, the use of
raw �les can result in improved performance.

This discussion of raw �les presents some background on the HP-UX �le system before
showing you how to set up speci�c disk sections for use as raw �les in ALLBASE/SQL data
de�nition. The following topics are presented:

Comparing Raw Files with HP-UX Bu�ered Files
Setting up Raw Files
Calculating Disk Space Needed for the File
Identifying Available Disk Sections
Preparing Raw Files for Exclusive Use by ALLBASE/SQL

Restoring Data or Moving Data to Raw Files
Cleaning up Raw Files
Tuning the ALLBASE/SQL Bu�er Cache
Examples of Using Raw Files
Expandable Raw Files

Caution The use of raw �les carries with it the risk of corrupting an HP-UX �le
system. For this reason, you should not attempt to use raw �les unless you
possess a high level of technical understanding of HP-UX �le concepts.
You should also cooperate closely with a knowledgeable HP-UX system
administrator so as to avoid damage to your DBEnvironment �les or to the
HP-UX system.

Comparing Raw Files with HP-UX Buffered Files

An ordinary user �le in HP-UX resides in a mounted �le system. For each �le in the mounted
system, the operating system creates an entry in a directory and then maps the entry to one
or more speci�c physical disk locations associated with the mounted system. These locations
are bu�ered by HP-UX, so that data moves in block mode in and out of the system bu�ers on
its way to and from the locations on the physical disk device.

In the case of ALLBASE/SQL DBEFiles and log �les, data must actually pass through two
sets of bu�ers: the HP-UX bu�er cache, and the ALLBASE/SQL bu�er cache. Such double
bu�ering can result in a large quantity of memory-to-memory copying.

Some of this in-memory copy activity can be saved by eliminating system bu�ering through
using raw �les. A raw �le in HP-UX is a section of disk space that is accessed in character
mode, that is, without any bu�ering by the operating system and without using the HP-UX

Using HP-UX Raw Files for DBEFiles and Logs J-1

�le management system. The advantage of using raw �les is that you can obtain faster access
to the data; the disadvantage is that you must maintain the physical disk space yourself, since
raw �les do not belong to a �le system known to HP-UX.

Reading from and Writing to Disk in Block and Character Mode

How does HP-UX access the disk in block mode? It does so through the directory of a
mounted �le system. When a �le system is mounted|either at boot time or later, through
the use of a mount command|HP-UX places an entry in the /etc/mnttab �le showing which
disk section the �le system occupies. An example is shown here:

/dev/dsk/c2d0s2 /users hfs rw 0 1 642096483

This entry shows that the mounted �le system for directory /users is mapped to a special �le
called /dev/dsk/c2d0s2, which means section 2 (s2) on drive 2 (c2d0). (Further explanation of
disk sections appears later.)

Based on the mapping shown in /etc/mnttab, the HP-UX system reads from or writes to a �le
in the special device directory /dev/dsk. This directory contains entries for all the speci�c
disk sections that can be accessed in block mode. A separate entry is included for each section
of every disk con�gured in your system. The entry from the /dev/dsk directory corresponding
to section 2 on disk 2 is shown here:

brw-r----- 1 root sys 0 0x000202 Jan 12 1989 c2d0s2

If the system were to write to the �le /dev/dsk/c2d0s2, it would be accessing section 2 on
logical disk 2|that is, it would be accessing the mounted �le system identi�ed with the
directory /users. Only the operating system can access entries in /dev/dsk.

How do you access the disk using raw I/O? You do so by reading from or writing to a �le in
the special device directory /dev/rdsk. Like /dev/dsk, this directory contains entries for all
the speci�c disk sections that can be accessed. You use /dev/rdsk to access these sections in
raw (character) mode. A separate entry is included for each section of every disk con�gured in
your system. The entry from the /dev/rdsk directory corresponding to section 2 on disk 4 is
shown here:

crw-r----- 1 root sys 4 0x000402 Jan 12 1989 c4d0s2

If you were to write to the �le /dev/rdsk/c4d0s2, you would be performing raw �le access
to section 2 on logical disk 4. In ALLBASE/SQL, you would use '/dev/rdsk/c4d0s2' as the
physical �lename in the NAME= clause of a command that creates a log �le or DBEFile. Of
course, you would only use a section for raw �le access that was not assigned to a �le system
or reserved for system use.

Setting up Raw Files

To use raw �les, you need to:

Calculate the disk space needed for the �le.
Identify what disk sections are available for use as raw �les.
Select a disk section of appropriate size.

The next paragraphs describe each of these steps.

J-2 Using HP-UX Raw Files for DBEFiles and Logs

Note You must take care not to choose a disk location that is already being used for
something else. If a section is not con�gured as swap space or as a �le system,
and if it is not already being used in character mode, it is a candidate for use
as a raw �le by ALLBASE/SQL.

Calculating Disk Space Needed for the File

In ALLBASE/SQL, �le space is calculated in pages|512-byte pages for log �les, and
4096-byte pages for DBEFiles that contain table or index data. Since the sizes of disk sections
are given in bytes, you should follow the directions for calculating �le size as presented in the
ALLBASE/SQL Database Administration Guide, then convert the results into bytes. For
example, if you need a log �le with 15,000 pages, the section required would be at least 512
* 15,000 or 7,680,000 bytes. For a data �le of 500 pages, you would need a section of at least
4096 * 500 = 2,048,000 bytes.

Identifying the Drive Model

The layout and size of sections on a disk depends on the particular model of the drive. The
HP-UX system administrator should make a note of the model numbers of the drives that are
installed. If no record exists, you can look on the nameplate of the disk drive itself. In some
cases, the model number may also be recorded in the �le /etc/checklist.

Identifying Available Disk Sections

The usage of disk devices is determined by a partitioning scheme described in the �le
/etc/newcon�g/disktab on your system. This �le contains a disk section diagram together
with separate entries for di�erent types of disk devices.

Using HP-UX Raw Files for DBEFiles and Logs J-3

Disk Section Diagrams. Each disk is divided into sections, as shown in the following diagrams,
which are similar to those in the �le /etc/newcon�g/disktab:

#

A. With disks SMALLER than ~ 350MB the following layout applies:

#

6 ^ ^

---------------------- | --- |

0 15 | 7 ^ |

------------ | | |

--------- ^ | | |

1 14 | v | |

------------------ | -------- | | 2

10 | ^ | |

------------------ | | | |

3 ^ | 13 | | |

----------- | | | 11 | 12 |

4 ^ | 8 | | | |

------ | 9 | | | | |

5 v v v v v v

#

#

B. With disks GREATER than ~ 350MB the following layout applies:

#

6 ^ ^

---------------------- | --- |

0 15 | 7 ^ |

--------- | | |

------------- | | |

1 14 ^ v | |

------------------ | -------- | | 2

10 | ^ | |

------------------ | | | |

3 ^ | 13 | | |

----------- | | | 11 | 12 |

4 ^ | 8 | | | |

------ | 9 | | | | |

5 v v v v v v

#

Diagrams A and B differ only with respect to sections 0, 1, 14, and 15.

The diagrams indicate the overlapping of sections with arrows such as the following:

^

|

|

v

Horizontal lines indicate di�erent ways of dividing up the space on a disk. Thus the top two
lines are the boundaries for section 6, while the top and bottom lines are the boundaries for
section 2. Every number in the diagram corresponds to a disk section; numbers that line
up above and below one another on the vertical axis indicate adjacent and non-overlapping
sections on the disk.

For example, sections 6 and 0 are adjacent and non-overlapping on HP drives. This means
that all the space in section 6 is completely separate from the space in section 0. Thus, you
could use section 6 and section 0 as separate raw �les. On the other hand, sections 4 and 9
overlap, which means that some of the space in section 9 is the same as the space in section 4;
therefore, you could use one or the other section as a raw �le, but not both.

J-4 Using HP-UX Raw Files for DBEFiles and Logs

Caution Overlapping is possible for sections that are not on the same vertical axis in
the diagram. For example, s0 and s14 overlap on devices smaller than 350
MB (diagram A), but not on others. Similarly, s1 and s15 overlap on devices
larger than 350 MB (diagram B), but not on others. Consult your system
administrator before selecting sections for use as raw �les.

Section Sizes for Specific Disk Models

The �le /etc/newcon�g/disktab contains separate entries for the di�erent devices that can be
con�gured on your system. For example, if you have a 7937 drive, its section breakdown is
shown under the heading \hp7937." Here is an example of an entry for a 7937:

hp7937|hp79370:\

:ty=winchester:ns#30:nt#13:nc#1396:rm#3600:\

:s0#24280:b0#8192:f0#1024:\

:s1#48560:b1#8192:f1#1024:\

:s2#558051:b2#8192:f2#1024:\

:s3#29298:b3#8192:f3#1024:\

:s4#107426:b4#8192:f4#1024:\

:s5#216664:b5#8192:f5#1024:\

:s6#1998:b6#8192:f6#1024:\

:s7#75152:b7#8192:f7#1024:\

:s8#353778:b8#8192:f8#1024:\

:s9#324196:b9#8192:f9#1024:\

:s10#129024:b10#8192:f10#1024:\

:s11#482898:b11#8192:f11#1024:\

:s12#556052:b12#8192:f12#1024:\

:s13#507282:b13#8192:f13#1024:\

:s14#24280:b14#8192:f14#1024:\

:s15#48560:b15#8192:f15#1024:

The �rst line of the entry describes the general characteristics of the device:

ty=winchester: - Winchester disk
ns#30 - number of sectors per track (30)
nt#13 - number of tracks per cylinder (13)
nc#1396 - number of cylinders on the disk (1396)
rm#3600 - number of revolutions per minute (3600)

The other lines describe the sizes of speci�c disk sections numbered 0 through 15 which can be
referenced as raw disk locations. (Not all devices have all sections; some entries omit speci�c
sections or groups of sections.) With s0 as an example, the values are as follows:

s0#24280 - number of fragments of space available in section 0 (24280)
b0#8192 - number of bytes in a block in section 0 (8192)
f0#1024 - number of bytes in a fragment in section 0 (1024)

The size of a sector is de�ned by the system parameter DEV BSIZE (found in
/usr/include/sys/param.h), which is 1024 bytes on HP-UX 8.0 systems. Thus section 0
contains 24280 X 1024 bytes = 24.8 megabytes.

Each section number in the section diagram corresponds to a speci�c amount of disk space
as shown in the entry for the device model number. To determine the amount of space
occupied by a speci�c section on a speci�c drive, look up the drive by model number in
/etc/newcon�g/disktab. As shown in the entry for the 7937 drive, section s7 contains 75152
1K sectors, section s9 contains 324196 1K sectors, and so on. Note that the diagram is not
drawn to scale; in fact, s7 and s11 are quite di�erent in size, though they look the same in the
diagram. Figure J-1 shows an example of the section breakdown for a 7937 drive.

Using HP-UX Raw Files for DBEFiles and Logs J-5

Figure J-1. Section Breakdown for HP 7397 Drive

The �gure is actually the same as section diagram B, with the sections drawn to scale, and
the size of each section (in 1024-byte fragments) indicated.

Note You should create a similar �gure for your speci�c drive model as an aid in
selecting an appropriate section size for your raw �les.

As shown in the �gure, sections often overlap one another. Thus the same disk locations
occupied by s0, s1, and s6 are all occupied by s7. This means that you could address section
7 and section 11 as separate raw �les, but you could not address sections 6 and 7 as separate
�les, since 6 and 7 overlap. If the disk is known as c0d0, and if you decided to use sections 6
and 7 as two separate raw �les /dev/rdsk/c0d0s7 and /dev/rdsk/c0d0s6, they would overwrite
each other.

J-6 Using HP-UX Raw Files for DBEFiles and Logs

Identifying Disk Sections in Use. You can consult two �les on your system for information
about which sections are available for use as raw �les: /etc/checklist and /etc/mnttab. The
�le /etc/checklist contains information about disk sections that are mounted or activated as
swap space at boot time. Here is an example:

/dev/dsk/c0d0s10 / hfs rw 0 1 # root directory #7937

/dev/dsk/c0d0s0 /tmp hfs rw 0 2 # /tmp directory #7937

/dev/dsk/c0d0s8 /usr hfs rw 0 3 # /usr directory #7937

/dev/dsk/c0d0s1 /swap swap rw 0 0 # swap area #7937

/dev/dsk/c1d0s7 /swap1 swap rw 0 1 # swap area drive1 #7937

/dev/dsk/c1d0s8 /mnt hfs rw 0 3 # /mnt directory #7937

/dev/dsk/c1d0s10 /extra hfs rw 0 2 # /extra directory #7937

/dev/dsk/c2d0s2 /users hfs rw 0 1 # /users drive2 #7937

/dev/dsk/c3d0s2 /users2 hfs rw 0 1 # /users2 drive3 #7937

In this example, the con�gured disk sections are shown on the left. Each line maps a special
device name (the leftmost entry) with an HP-UX directory (the second entry). The special
device names correspond to speci�c sections on particular disk drives. Note that all the
sections are in the /dev/dsk directory, not the /dev/rdsk directory. This is because the entries
are all for block mode access. When the section is used for raw I/O, its name includes the
/dev/rdsk/ path pre�x instead of /dev/dsk/.

The system in the example has local �le systems (hfs) or swap space (swap) mounted on 4
drives (c0d0, c1d0, c2d0, and c3d0), which are all 7937s. The drive designations are created
when each drive is installed. The last entry, for instance, refers to a �le system mounted
on section 2 of drive 3 (c3d0s2) and accessed in block mode through the HP-UX directory
/users2.

The /etc/mnttab �le describes the sections that are in use by all currently mounted �le
systems. This �le does not include swap space, but it does include �le systems that were
not mounted at boot time. Here is an example (for the same system that was shown in the
specimen /etc/checklist �le):

/dev/dsk/c0d0s10 / hfs defaults 0 1 657267509

/dev/dsk/c3d0s2 /users2 hfs rw 0 1 657267512

/dev/dsk/c2d0s2 /users hfs rw 0 1 657267512

/dev/dsk/c1d0s10 /extra hfs rw 0 2 657267513

/dev/dsk/c1d0s8 /mnt hfs rw 0 3 657267514

/dev/dsk/c0d0s8 /usr hfs rw 0 3 657267514

/dev/dsk/c0d0s0 /tmp hfs rw 0 2 657267514

Naturally, you would never use raw access to a disk section that is listed in /etc/checklist or
/etc/mnttab, since that section is already in use for a �le system or for swap space.

Caution It is possible to create a �le system using speci�c disk sections and then
leave it unmounted, so that the sections do not appear in the /etc/mnttab or
/etc/checklist �les. There is no way to determine whether sections on disk are
occupied by a �le system that is not mounted. Be sure to consult your system
administrator to make sure the sections you are going to use are free of �le
systems|mounted or unmounted|and are not in use as swap space.

Preparing Raw Devices for Exclusive Use by ALLBASE/SQL

To set up a raw device �le, you must:

Determine the required size of the �le.
Choose a raw section that is large enough.
Change the ownership of the section to hpdb so that other users cannot access it directly.

Using HP-UX Raw Files for DBEFiles and Logs J-7

After doing this, use the selected raw �le just as you would a normal �le in an
ALLBASE/SQL �le creation (NAME=) clause.

Determining the Required Size of the File. Calculate the size of the raw �le you will need using
the formulas in the \Physical Design" chapter. Remember that the page size for DBEFiles is
4096 bytes, and the page size for log �les is 512 bytes.

Choosing a Raw Section. With a size determined, select a raw device section that is large
enough for your needs and not already con�gured as a �le system, swap area, or other raw �le.
Your HP-UX system administrator can assist in determining which sections are available for
use. You should create the DBEFile with a size that is close to the limit of the raw section
size, since the remainder of the section will remain unused. In other words, if you currently
need 8 MB (about 1900 pages), and the raw section accommodates 10 MB, create the �le with
PAGES=2400 to make the space available for use at a later time.

Changing the Ownership and Access Mode of Raw Sections. After choosing an appropriate
raw device, you must change its ownership to hpdb, and you must change the �le access mode
to 600 to permit only the owner to read and write. You must be superuser to make these
changes. If you have chosen /dev/rdsk/c3d0s7, for example, you would use the following
commands:

chown hpdb /dev/rdsk/c3d0s7

chmod 600 /dev/rdsk/c3d0s7

Altering ownership and changing access mode assures that no other user can access
the speci�c section you have identi�ed as a raw �le. After doing this, ask the system
administrator to place a comment in /etc/checklist listing the section you have taken over,
together with its new ownership.

Warning More than one raw device name can point to the same physical device

and section. Thus, changing the protections on one device file (e.g.,

/dev/rdsk/c3d0s7) does not prevent someone from accessing the same disk

fragments via another device file (e.g., /dev/rdsk/c3d0s0 or /dev/rdsk/testpack).

If the raw section you choose overlaps with another raw section that is currently

in use by the system or by another application, that section will be overwritten,

and if it is overwritten, the original contents will not be recoverable. Moreover,

there is no error or warning message; the file corruption may be silent.

Once you change the ownership to hpdb, other users will not be able to access

the section. Note, however, that another user could still access an overlapping
section. Thus, changing ownership and access mode does not remove

the danger of corrupting a file system. So always check with the system

administrator first!

Cleaning up Raw Files

If you decide to discontinue using a raw device, use the SQLUtil PURGEFILE command to
reinitialize it. This command will not remove the special device from the /dev/rdsk directory,
but it will erase the �le's contents and make it free for reuse. If you wish, you can return the
raw device to the available pool by changing the ownership and access mode back to their
original values. The HP-UX system administrator should also change the comment about this
section in /etc/checklist to indicate that the section is available.

J-8 Using HP-UX Raw Files for DBEFiles and Logs

Caution You should not use the HP-UX rm command to remove the �le as you would
to remove a �le from a mounted �le system. If you use rm, the disk section
will be unavailable for any further use through this raw device �le.

Restoring Data or Moving Data to Raw Files

You can use the SQLUTIL RESTORE, RESTORELOG, MOVEFILE, and MOVELOG
commands with raw devices, provided the raw device is large enough. In case the �le is not
large enough, you will receive an error message from ALLBASE/SQL. If you are restoring to a
di�erent system, be sure the new system has the same disk con�guration as the old one. You
must restore to a device of the same type as the one from which the backup was taken and
one which is con�gured in the same way.

Tuning the ALLBASE/SQL Buffer Cache

For best ALLBASE/SQL performance with raw �les, you should tune the ALLBASE/SQL
bu�er cache. Use the SQLUtil ALTDBE command to choose a number of data and log
bu�er pages that is large enough for the transactions you will be processing. Refer to the
ALLBASE/SQL Performance and Monitoring Guidelines for detailed information about
calculating bu�er sizes.

Examples of Using Raw Files

This section gives examples of the use of raw �les.

Creating a Log with Raw Files

Assume you wish to use a raw data �le as a log �le. Based on calculations from the DBA
Guide, you �nd you need about 96,000 512-byte pages (49,152,000 bytes or 48000 fragments)
of space.

Choosing the Raw Section

Your system uses 7937 drives, and the /etc/checklist �le contains the following entries:

/dev/dsk/c0d0s0 / hfs rw 0 0 # root disk # 7937

/dev/dsk/c0d0s1 /swap swap rw 0 0 # swap area # 7937

/dev/dsk/c0d0s3 /tmp hfs rw 0 1 # /tmp directory # 7937

/dev/dsk/c0d0s9 /extra hfs rw 0 2 # /usr directory # 7937

/dev/dsk/c0d0s10 /mnt hfs rw 0 4 # /mnt directory # 7937

/dev/dsk/c1d0s7 /swap1 swap rw 0 0 # swap area drive1 # 7937

/dev/dsk/c1d0s11 /usr hfs rw 0 1 # extra space drive1 # 7937

/dev/dsk/c2d0s13 /users hfs rw 0 1 # /users drive2 # 7937

From the entry for the 7937 in /etc/newcon�g/disktab, we see two sections of about the right
size that would be good candidates for use as raw �les:

s1 - 48560 fragments (97120 pages)
s15 - 48560 fragments (97120 pages)

Let's test both of these potential sections for each of the three drives on the system (c0, c1,
and c2). First, let's try s1: c0d0s1 is already in use on drive 0 as swap space; c1d0s1 is not in

Using HP-UX Raw Files for DBEFiles and Logs J-9

use on drive 1, but it overlaps with c1d0s7, which is in use as swap space; c2d0s1 overlaps
with c2d0s13 on drive2. So s1 is not available.

How about s15? c0d0s15 overlaps with c0d0s1 on drive 0, and c1d0s15 on drive 1 overlaps
with c1d0s7. But c2d0s15 on drive 2 does not overlap with c2d0s13, so c2d0s15 is available for
use as a raw �le.

Creating a Log

You can use a raw �le to de�ne a log in the SQL START DBE or START DBE NEWLOG
commands, and in the SQLUtil ADDLOG and SETUPRECOVERY commands. Assume you
need a 96,000-page log.

Creating a Database Object

Use the raw �le in your data de�nition command. The following example shows the creation
of a hash structure using 12140 pages. Start with the BEGIN WORK command:

BEGIN WORK;

Then create the DBEFile, as follows.

CREATE DBEFILE AcctHash WITH PAGES=12140,

NAME= '/dev/rdsk/c2d0s15', TYPE=TABLE;

Then add the �le to a DBEFileSet and create a table with hashing:

ADD DBEFILE AcctHash TO DBEFILESET CustAccts;

CREATE PUBLIC TABLE Receiving.Customer

(AccountNo INTEGER NOT NULL,

Name CHAR(60),

Balance DECIMAL (10,2))

UNIQUE HASH ON (AccountNo) PAGES=12140

IN CustAccts;

COMMIT WORK;

Notice that the CREATE DBEFILE and CREATE TABLE commands are parts of the
same transaction. This ensures that no other use will be made of the raw �le space in the
DBEFileSet before the hash structure is created.

Expandable Raw Files

If you create an expandable DBEFile using an HP-UX raw device, be sure to specify a
DBEFileMaxSize , and make certain that, after rounding, it does not exceed the capacity of
the raw section you have chosen.

The following example shows a raw �le created using a 7937 drive mounted as logical device 2,
section 15:

CREATE DBEFILE DBEFile1 WITH PAGES=2100, NAME='/dev/rdsk/c2d0s15',

INCREMENT=1000, MAXPAGES=11750, TYPE=TABLE

Because this section contains 48,560 fragments, or 12,140 data pages, the maximum after
rounding cannot exceed 12,140 pages. In the example, MAXPAGES is set to 11,750, which is
rounded up and recorded in the system catalog as 12,000 pages (the next higher multiple of
INCREMENT size).

J-10 Using HP-UX Raw Files for DBEFiles and Logs

Note If you speci�ed a maximum of more than 12,000, say, 12,100, the value would
be rounded up and stored as 13,000 in the system catalog. This could cause
the �le to exceed the section size and overwrite data on the succeeding disk
section. Be sure the value you select for MAXPAGES does not exceed the
section size after rounding .

Caution Failure to specify a DBEFileMaxSize in the MAXPAGES clause when creating
an expandable DBEFile on a raw device can result in expansion of the �le
beyond the section you have chosen, with potential destruction of mounted �le
systems. Be sure to consult a knowledgeable HP-UX system administrator for
assistance in con�guring expandable DBEFiles on raw devices.

For More Information

Additional information about raw �les can be found in the following places:

/etc/newcon�g/disktab �le on your system.
/etc/checklist �le on your system.
/etc/mnttab �le on your system.
man pages for disktab(4), checklist(4), mnttab(4), mknod(1m), newfs(1m), mount(1m).

Using HP-UX Raw Files for DBEFiles and Logs J-11

Index

Special characters

*
implications for ALTER TABLE, 7-11

A

accessing a DBEnvironment, 2-28
access mode
change for DBEFiles, F-7, F-18
single user and multiuser, 1-6

access plan
displayed in SYSTEM.PLAN view, 8-49

ADD DBEFILE
example, 4-16
expanding DBEFileSet with, 7-8
in SQLMigrate, H-2
syntax, 4-15
when to use, 7-7

adding
column, 7-11
constraint, 7-17

ADDLOG
command creating log �le, 4-12
command in SQLUtil, 4-12
syntax, F-2

ADD TO GROUP
example, 4-18
syntax, 4-19

AliasDB �le, 1-33
ALLBASE/NET
connecting to remote databases, 4-29

ALLBASE/SQL command size, A-1
ALTDBE
syntax, F-4

ALTER authority
explained, 5-13

ALTER DBEFILE, 7-8
ALTER TABLE, 7-10
example, 7-11
when to use, 7-11

applications
dynamic recompile, 7-21
maintenance, 7-21
modifying, 7-21
stored sections in, 7-21
validation of sections, 7-21

archive checkpoint record
creating with COMMIT ARCHIVE, 6-14
de�ned, 1-8

archive logging
calculating log �le size, 3-24
explained, 6-2
wrapperDBE, 6-25

archive mode
setting in DBECon �le, 7-2

assigning a default DBEFileSet, 4-14
assigning pages
to data bu�er, 3-30, 4-26
to DBEFiles, 3-13
to log bu�er, 3-30, 4-26
to runtime control block bu�er, 3-28

ATTACHFILE
attaching a �le, 7-27
SQLUtil, 7-27
syntax, F-7

attribute
as a column in a table, 2-10
de�ned, 2-2

audit
elements changing, 4-11
elements parameter, 4-10
functionality, 4-10
information wrapperDBE, 6-25
logging in e�ect, 4-12
logging parameter, 4-10
log record, 4-10
name parameter, 4-10
parameter, 4-12
parameters for wrapperDBE, 6-28
syntax, I-2
tool wrapperDBE, 6-25

audit DBE
creating, 4-10, 4-11
example, 4-11
parameter, 4-10

audit tool
exit from SQLAudit, I-6
exit on error, I-19
generate audit information, I-2
get current audit point, I-7
help command, I-9
invoke editor from SQLAudit, I-5

Index-1

lock current audit point, I-10
modify current audit point, I-12
quit SQLAudit, I-14
set, I-15
set connect to DBEnvironment, I-16
set echo command, I-17
set editor command, I-18
set recover�le command, I-20
show current audit point, I-21
unlock audit point, I-22

authority
basic types, 2-22
de�ned, 2-22
EXECUTE in SYSTEM.PROCAUTH, 8-51
for SQL statements, B-1
grantable privilege, 5-17
granting, 4-23
in SYSTEM.TABAUTH, 8-69
module related, 7-24
OWNER, 2-24
REFERENCES in SYSTEM.COLAUTH,

8-15
revoking, 4-23
RUN in SYSTEM.MODAUTH, 8-43
space, 2-25
special, 2-23
special in SYSTEM.SPACEAUTH, 8-65
special in SYSTEM.SPACEDEFAULT, 8-66
SPECIAL in SYSTEM.SPECAUTH, 8-67
table and view, 5-13
TABLE in SYSTEM.TABAUTH, 8-69
UPDATE in SYSTEM.COLAUTH, 8-15
veri�cation, 4-23

authorization group
as owner, 2-24
characteristics, 2-25
CONNECT authority for, 4-21
delegating management of, 4-21
determining membership, 2-26
entries in SYSTEM.GROUP, 8-35
indirect member, 2-26
invalid chain, 2-26
management, 4-18
resource authority for, 4-22

authorize once per session
changing in SQLUtil, 7-2
in DBECon �le, 7-2
setting with SQLUtil, F-4
startup value, 4-3

autostart mode
and user mode, 4-24
changing in SQLUtil, 7-2, F-4
de�ned, 4-24
displaying with SQLUtil, F-52, F-59
procedures, 4-25

setting in DBECon �le, 7-2

B

backup
creating with SQLUtil STORE, F-64
creating with SQLUtil STOREONLINE, F-70
displaying type set in SQLUtil, F-63
of DBEnvironment, 6-10
online procedures with archive logging, 6-12
overview, 6-1
procedures with nonarchive logging, 6-10
SET BACKUP in SQLUtil, F-41
SQLUtil STORE, 6-10
SQLUtil STOREONLINE PARTIAL, F-72
SQLUtil STORE PARTIAL, F-75

backward migration, 1-21
base table
in the system catalog, 8-1
view underlying, 2-13

BEGIN ARCHIVE
with archive log �les, 1-8

BINARY
de�ning columns as, 2-11
storage requirements, 3-4

B-tree, 2-15, 3-6
bu�er
data, 3-27
log, 3-27
runtime control block, 3-27

C

calculations
database storage, 3-1
directory overhead for tables, 3-6
disk space for indexes, 3-6
disk space for raw �les, J-3
disk space for tables, 3-3
index key length, 2-17, 3-6
number of index leaf pages, 3-8
number of index non-leaf pages, 3-8
number of overhead index pages, 3-9
pages per table, 3-5
page table page for tables, 3-6
row length, 2-12, 3-4
rows per data page, 3-5
rows per index leaf page, 3-7
rows per index non-leaf page, 3-7
size of nonarchive log �les, 3-24
total number of index pages, 3-9

catalog
system, 1-5

CATALOG
reserved user, 8-1
views owned by, 8-1

CCOUNT

Index-2

in maintaining indexes, 7-16
CHANGELOG
changing log �le, 7-28
SQLUtil, 7-28
syntax, F-9

changing
a table's lock mode, 7-10
audit elements, 4-11
log �le with CHANGELOG, 7-28
system table lock type, 7-7

CHAR
de�ning columns as, 2-11
storage requirements, 3-4

check constraint
DBEFileSet speci�cation, 5-6
entries in SYSTEM.CHECKDEF, 8-14
entries in SYSTEM.CONSTRAINT, 8-23

checkpoint
and log �le space, 6-4
archive checkpoint record, 1-8
using to monitor log �le usage, 3-21

CHECKPOINT
host variable, 7-27
parameter, 7-27
SQLUtil, 7-27

CHECKPOINTHELP
syntax, F-10

class
as owner, 2-24
created implicitly, 2-27
creating, 5-14
de�ning, 2-27
di�erences from DBEUserID and group, 2-27
guidelines for creating, 2-28

cleanup
with monitor, 7-31

cluster count
in maintaining indexes, 7-16

clustering index
changing a key, 7-17
creating, 2-18
de�ned, 2-17
design, 2-18
guidelines for, 2-18
when to create, 2-18

collision of two keys, 2-19
column
adding, 7-11
de�ning data types for, 2-10
de�nition, 2-10
de�nitions stored in the system catalog, 8-18,

8-19
deleting, 7-11
maximum length, 2-8
maximum number of, 2-8

minimum number, 5-4
naming, 2-10
null values for, 2-12
renaming, 7-14
size, 2-12
UPDATE authority in system catalog, 8-15

command �les
creating with SQLGEN, 1-14
in loading tables, 5-22
uses for, 1-13

comment partition parameter, 4-10
COMMIT ARCHIVE
with archive log �les, 1-8

complex operations
in maintenance, 7-1

compound key
when to use, 2-17

concurrency
in creating tables, 5-1

concurrent
connections maximum, A-1
sessions maximum, A-1
transactions, 3-24
transactions maximum, A-1

CONNECT authority
de�ned, 2-23
delegating, 4-21
for modules, 7-24
granting, 4-20
listed in SYSTEM.SPECAUTH, 8-67
revoking, 4-21

connecting
example, 4-25
starting a DBE session by, 4-24
to the DBEnvironment, 1-6

console log �le
wrapperDBE, 6-27, 6-28

console message �le
messages, 7-28

constraint
adding to table, 7-17
creating tables with, 5-5
dropping from table, 7-18
e�ects on loading tables, 5-22
entries in SYSTEM.CHECKDEF, 8-14
entries in SYSTEM.CONSTRAINT, 8-23

CREATE DBEFILE
deviceid, 7-26
example, 4-15
group name, 7-26
in SQLMigrate, H-3
syntax, 4-14

CREATE DBEFILESET
e�ect on SYSTEM.DBEFILE, 8-31
example, 4-13

Index-3

syntax, 4-13
CREATE GROUP
example, 4-18
syntax, 4-19

CREATE INDEX
example, 5-11
syntax, 5-11

CREATE SCHEMA
de�ning a database with, 5-20

CREATE TABLE
basic syntax, 5-1

CREATE TEMPSPACE
example, 3-26
to create sort space, 3-26

CREATE VIEW
example, 5-10, 5-15
syntax, 5-9

creating
audit DBE, 4-10, 4-11
indexes, 5-11
log �le, 4-12
partition, 5-8

creating objects
authorization groups, 4-18
databases, 5-1
DBEFiles, 4-14
DBEFileSets, 4-13
DBEnvironments, 4-2
de�ning a database schema, 5-20
expandable DBEFiles, 4-16
hash structures, 5-10
indexes, 5-11
log �les, 4-5
procedures, 5-12
rules, 5-12
security scheme, 4-18
security schemes, 5-13
tables, 5-1
views, 5-9

current language, 1-32

D

data
access with views, 2-14
conversion and performance, 2-11
independence, 2-13
normalizing, 2-4
redundancy, 2-4
statistical, 8-5

database
logical design, 2-1
objects, 2-24
physical design, 3-1
sample tables, 2-10
schema for, 5-20

storage calculation, 3-1
database administrator (DBA)
de�ned, 1-1

database design
logical, 2-1
physical, 3-1

data bu�er
changing number of pages, F-4
displaying number of pages, F-59
pages displaying with SQLUtil, F-52
setting in DBECon �le, 7-2
setting number of pages in SQLUtil, 7-2
shared memory for, 3-27
size, 3-30, A-1

data de�nition
disabling, 7-30
disabling in DBECon �le, 7-2
disabling in SQLUtil, 7-2
enabling in DBECon �le, 7-2
overview, 2-1

data �le
raw �le as, J-10

data types
BINARY, 2-11
CHAR, 2-11
DATE, 2-11
DATETIME, 2-11
DECIMAL, 2-11
FLOAT, 2-11
in de�ning columns, 2-10
INTEGER, 2-11
INTERVAL, 2-11
REAL, 2-11
SMALLINT, 2-11
storage requirements, 3-4
TIME, 2-11
VARBINARY, 2-11
VARCHAR, 2-11

DATE
de�ning columns as, 2-11
storage requirements, 3-4

DATETIME
de�ning columns as, 2-11
storage requirements, 3-4

DBA authority, 2-29
de�ned, 2-23
for SYSTEM views, 8-1
statements requiring, 4-20
uses of, 4-19

DBA (database administrator)
de�ned, 1-1

DBA tasks
database creation and security, 5-1
logical design, 2-1
physical design, 3-1

Index-4

DBCore
and SYSTEM.CALL pseudotable, 8-10
control block bu�er pages, 3-28

DBE
audit parameter, 4-10
creating audit, 4-10

DBECon �le
adjusting values in, 7-2
backup, 6-10, 6-14
creating parameters with START DBE NEW,

4-2
DBEnvironment language, 4-3
DDL Enabled ag, 4-3, F-4
default options, 4-26
element in a DBEnvironment, 1-5
example, 4-4, 4-7
in a new DBEnvironment, 4-4
purging, F-22, F-23
SHOWDBE-ALL, F-52
timeout value, 4-3
wrapperDBE, 6-26, 6-28

DBECon �le parameters, 7-2
DBECreator
and DBECon �le, 4-3
and restoring, F-33
and restoring partial, F-39
and START DBE NEWLOG, 6-24
changing in SQLUtil, 7-2
de�ned, 1-1
setting in DBECon �le, 7-2
speci�ed in the DBECon �le, 4-4

DBEFile
access, F-11
access mode change, F-7, F-18
adding to DBEFileSets, 3-13, 4-15
allocating expandable DBEFile space, 4-16
altering the type of, 7-8
calculating data rows per page, 3-5
calculating number of directory pages, 3-5
creating, 4-14
de�ned, 3-2
device change, F-7, F-9, F-18
dropping, 7-9
element in a DBEnvironment, 1-2, 1-4
entries in SYSTEM.DBEFILESET, 8-34
estimating size, 3-13
listed in SYSTEM.DBEFILE, 8-31
maximum size, A-1
naming, 4-14
on di�erent disk drives, 3-12
pages, 2-12, 3-13, 4-14
per DBEnvironment, A-1
purging, F-22, F-23, F-24
size, 3-13
size in pages, 3-2

type, 3-2, 3-11, 4-14
type index, 3-11
type, mixed, 3-2, 3-11
types, 3-11
type table, 3-11
using raw �le as, J-2
when to add, 7-7

DBEFile0, 3-17
DBEFILE clause, 3-17
default name, 3-17
default size, 3-17
displaying name with SQLUtil, F-52, F-59
element in a DBEnvironment, 1-5
in a new DBEnvironment, 4-4
purging, F-22, F-23, F-24
setting in DBECon �le, 7-2

DBEFileSet, 3-2
access, F-11
adding DBEFiles to, 4-15
authority in SYSTEM.SPACEDEFAULT,

8-66
creating, 4-13
DBEFiles in, 3-2
default, 4-14
element in a DBEnvironment, 1-3
entries in SYSTEM.DBEFILESET, 8-34
for check constraints, 5-6
for long columns, 5-6
for tables, 5-6
granting authority, 4-23
listed in SYSTEM.DBEFILE, 8-31
maximum size, A-1
organizing tables in, 3-9
placing tables and indexes in, 3-20
revoking authority, 4-23
system, 3-17
SYSTEM, 3-9, 3-17, 4-4
tables, 3-10

DBELOG1, 3-23
DBELOG2, 3-23
DBEnvironment, 2-28
access, 2-28
backup, 6-10
con�guration, 3-21, 4-1, 4-2
creating separate, 2-29
elements, 1-4
elements created at con�guration, 4-3
elements illustrated, 1-5
maintenance, 7-2
migration of, 1-12
naming, F-4
recovery, 6-14
recreating with SQLGEN, 1-14
sample, 2-29
starting, 4-25

Index-5

starting with SQLGEN, G-55
startup parameters, F-59
stopping, 4-27
storage requirements, 3-1

DBE session, 4-24
starting, 4-24, 4-25, 4-27
terminating, 4-27

DBEUserID, 4-23
as owner, 2-24, 5-3
reserved users, 8-1

DBEUserIDs
reserved, 2-25

DDL enabled ag
setting in DBECon �le, 7-2

DDL Enabled ag
changing, F-4
changing in SQLUtil, 7-2
disabling data de�nition, 7-30
startup value, 4-3

DDL statements
wrapperDBE, 6-28

deadlock
monitoring with SYSTEM.COUNTER, 8-29

DECIMAL
de�ning columns as, 2-11
storage requirements, 3-4

default
column values specifying, 5-5
DBEFileSet assigning, 4-14
partition parameter, 4-10
timeout setting in DBECon �le, 7-2
user timeout changing in SQLUtil, 7-2

deferred constraints
used when loading tables, 5-22

de�nition
of audit functionality, 4-10
of objects in system catalog, 3-18

DELETE authority
and views, 5-15
explained, 5-13

deleting
column, 7-11
table, 7-11

description �le option
example, 5-21

DETACHFILE
detaching a �le, 7-27
SQLUtil, 7-27
syntax, F-11

device change for DBEFiles, F-7, F-18
deviceid
CREATE DBEFILE, 7-26

direct grantable privilege
and WITH GRANT option, 5-17

directory

calculations for overhead, 3-6
of log �les, 6-2
setting up for a DBEnvironment, 4-1

disk space
for DBEFile0, 3-17
for indexes, 3-6
for log �le, 3-23
for system catalog, 3-17
for tables, 3-3
modules, 7-23
monitoring use, 7-7

display DBE attributes
SHOWDBE, F-50

double quotes, 5-7
DROP DBEFILE, 7-9
before purging, F-24
example, 7-9

DROP GROUP
syntax, 4-19

DROP MODULE, 7-26
dropping
constraint, 7-18
DBEFiles, 7-9
indexes, 7-16
modules, 7-26
partition, 5-8
rules and procedures, 7-19
sections, 3-18
side e�ects of dropping constraints, 7-20
tables, 7-10

DROP TABLE, 7-10
dual �le
logging type, 6-3

dual logging, 3-23
enabling, disabling, 6-24
specifying for DBE, 4-5

dynamic statements, 7-24

E

ECHO ALL
SET in SQLGEN, G-49
SET in SQLUtil, F-41

editor
syntax, I-5

EDITOR
SQLGEN, G-2

ENDRECOVERY
syntax, F-13

entity
as a database table, 2-10
de�ned, 2-2

error code
-4008, 3-29

example
audit DBE, 4-11

Index-6

partition, 5-8
EXECUTE authority
entries in SYSTEM.PROCAUTH, 8-51
granting, 4-23

EXIT
from SQLAudit, I-6
from SQLGEN, G-3
from SQLMigrate, H-4
from SQLUtil, F-15

EXIT ON DBERR
SET in SQLUtil, F-41

EXIT ON DBERR OFF
SET in SQLGEN, G-52

exit on error
SQLAudit, I-19

exit status
checking, 1-30
setting, 1-30

expandable DBEFiles
creating, 4-16

expanding
log �le, 6-24
system DBEFileSet, 3-18

EXTERNAL load
loading tables, 5-21

F

�rst normal form
de�ned, 2-4

FLOAT
de�ning columns as, 2-11
storage requirements, 3-4

formula
directory overhead for tables, 3-6
index key length, 3-6, A-1
indexkey length, 2-17
nonarchive log �le size, 3-24
number of index leaf pages, 3-8
number of index non-leaf pages, 3-8
number of overhead index leaf, 3-9
pages per table, 3-5
row length, 2-12, 3-4, A-1
rows per data page, 3-5
rows per index leaf page, 3-7
rows per index non-leaf page, 3-7
total number of index pages, 3-9

forward migration, 1-19
functional dependency, 2-6

G

GENERATE ALL, G-4
generate audit information
audit tool, I-2

GENERATE DBE, G-9
GENERATE DBEFILES, G-10

GENERATE DEFAULTSPACE, G-12
GENERATE GROUPS, G-13
GENERATE INDEXES, G-15
GENERATE INSTALLAUTH, G-17
GENERATE LOAD, G-18
GENERATE MODAUTH, G-20
GENERATE MODOPTINFO, G-22
GENERATE PARTITION, G-24
GENERATE PROCAUTH, G-25
GENERATE PROCEDURES, G-27
GENERATE PROCOPTINFO, G-29
GENERATE RULES, G-31
GENERATE SPACEAUTH, G-33
GENERATE SPECAUTH, G-34
GENERATE STATISTICS, G-35
GENERATE TABAUTH, G-37
GENERATE TABLES, G-39
GENERATE TEMPSPACES, G-42
GENERATE VIEWAUTH, G-43
GENERATE VIEWS, G-45
GENPLAN
and SYSTEM.PLAN, 8-49

get current audit point, I-7
GRANT
EXECUTE authority, 4-23
RUN authority, 4-23
SELECT ON, 5-14

grantable privilege
explained, 5-17

granting
procedure authorities, 7-18
SECTIONSPACE authority, 4-23
TABLESPACE authority, 4-23
to PUBLIC, 5-2

group
assigning authorities to, 5-14
created explicitly, 2-27
entries in SYSTEM.GROUP, 8-35
name CREATE DBEFILE, 7-26

H

hard crash, 1-8
recovery from, 6-14

hash structure
creating tables as, 5-10
design, 2-19
disk space for, 3-14
entries in SYSTEM.HASH, 8-36

HELP
in SQLMigrate, H-5
SQLAudit, I-9
SQLGEN, G-47
SQLUtil, F-16

host variable

Index-7

CHECKPOINT, 7-27
HPRDBSS
as owner of system tables, 7-7
reserved user, 8-1

I

identi�er numbers
for log �les, 6-3

implicit locking
private, 5-2
public, 5-2
publicread, 5-2

index
altering the key, 7-17
as type of DBEFile, 3-2
authority, 5-13
calculating key length, 3-6
calculating rows per leaf page, 3-7
calculating rows per non-leaf page, 3-7
cluster count, 7-16
clustering, 2-17
clustering design, 2-18
compound key, 2-16
creating, 5-11
DBEFile, 3-11
design, 2-15, 2-17
disk space for, 3-6
dropping, 7-10
dropping and recreating, 7-16
entries in SYSTEM.CONSTRAINTINDEX,

8-26
entries in SYSTEM.HASH, 8-36
entries in SYSTEM.INSTALLAUTH, 8-42
for joins, 2-17
key, 2-16, 7-17
key length, 2-16, 3-6, A-1
maximum key length, A-1
maximum per DBEnvironment, A-1
name, 5-11
number of leaf pages, 3-8
number of non-leaf pages, 3-8
number of overhead pages, 3-9
organizing in DBEFileSets, 3-9
simple key, 2-16
stored in mixed DBEFile, 3-11
temporary, 7-16
total number of pages, 3-9
unique, 2-17
unique design, 2-18
updating, 7-15

INDEX authority
explained, 5-13

indicator variable
for null values, 2-12

in e�ect, audit logging, 4-12

INFO command
displaying column de�nitions with, 5-7

initial table loads
in database creation, 5-20

input tree, 3-19, 7-21
INSERT, 7-13
INSERT authority
and views, 5-15
explained, 5-13

INSTALL
example, 7-25
transferring modules with, 7-25

INTEGER
ide�ning columns as, 2-11
storage requirements, 3-4

integrity constraint
creating tables with, 5-5
design, 2-21
disk space for, 3-17
entries in SYSTEM.CONSTRAINT, 8-23
entries in SYSTEM.CONSTRAINTCOL, 8-25
entries in SYSTEM.CONSTRAINTINDEX,

8-26
intermediate levels of a tree, 2-15
INTERNAL load
loading tables, 5-21

INTERVAL
de�ning columns as, 2-11
storage requirements, 3-4

invalidation
application program sections, 7-21, 7-22, 7-23
statements causing, 7-23

invoke editor from SQLAudit
audit tool, I-5

ISQL
command size, A-1
overview, 1-13
syntax summary, D-1

J

join, 2-8
maximum tables per, A-1
used to create a view, 5-9

K

key
calculation of length, 3-6
changing, in a clustering index, 7-17
compound, 2-16, 2-17
creating an index on primary, 2-17
de�ned, 2-2
determining for index, 2-16
simple, 2-16

Index-8

L

LANG clause
in CREATE TABLE, 5-4

language
current language, 1-32
DBECon �le setting, 7-2
DBEnvironment and current, 4-6
displaying the DBE's, F-56
in de�ning tables or columns, 5-4
native language support, 1-32
setting and resetting, 1-32

LANGUAGEID
in SYSTEM.COLUMN, 8-19
in SYSTEM.TABLE, 8-72

LANG variable
setting and resetting, 1-32

leaf level of a tree, 2-15
limits
in ALLBASE/SQL, A-1
table of maximum, A-1

list archived �les
STOREINFO, F-66

LOAD
example, 5-21
external, 7-14
EXTERNAL option, 5-21
GENERATE LOAD, G-18
in deleting columns, 7-11
in maintenance operations, 7-2
INTERNAL option, 5-21
loading tables from �les, 5-20

lock current audit point, I-10
locking
in table creation, 5-3
of system catalog by UPDATE STATISTICS,

7-6
on the system catalog, E-1
PUBLIC, 2-22, 4-20
publicread, 5-2
strategy in CREATE TABLE, 5-1
system catalog, 7-25

LOCK TABLE
override automatic locking, 5-3

lock type of system tables
changing, 7-7

log bu�er
changing number of pages, F-5
displaying number of pages, F-52, F-59
setting in DBECon �le, 7-2
setting number of pages in SQLUtil, 7-2
shared memory for, 3-27
size, 3-30, A-1
written to log �le, 3-30

LOG DBEFILE clause, 3-23

log �le, 1-33
adding with ADDLOG, 6-21
adding with ADDLOG:syntax, F-2
ADDLOG command, 4-12
archive logging, 1-8
backup, 6-14
changing dual logging, 6-24
changing the name, 6-24
changing the size, 6-24
creating, 4-5, 4-12
creating a new, 6-24
creating new with START DBE NEWLOG,

6-24
default name, 3-23
default size, 3-23
de�ned, 1-7
di�erent from DBEFiles, 3-2, 3-20
disk space for, 3-23
displaying information with SHOWLOG, 4-9,

6-18, F-60
dual, in wrapperDBE, 6-26
dual logging, 3-23
element in a DBEnvironment, 1-5
estimating size for, 3-24
inactive, in wrapperDBE, 6-29
in a new DBEnvironment, 4-4
listed in log directory, 6-2
log records, 3-21
moving with MOVELOG, 6-24
not usable, 6-27
number of, wrapperDBE, 6-29
purging, F-22, F-23
purging with PURGELOG, 6-23, F-26
raw �le as, J-9
recovering with RECOVERLOG, 6-22
rescuing with RESCUELOG, 6-22, F-31
restoring with RESTORELOG, 6-22, F-35
single, in wrapperDBE, 6-26
size, 4-12, A-1
size in pages, 3-20
SQLUtil, 4-12
storing with STORELOG, 6-21
switching, 3-22, 6-3
usable, in wrapperDBE, 6-26
wrapperDBE, 6-25, F-78
writeahead logging, 1-7

log�le
change for DBEnvironment, F-9
name(s) in DBECon �le, 7-2
name stored in DBECon �le, 7-2

LOG FULL
understanding the condition, 6-3

logging
archive explained, 6-2
enabling archive logging, 4-5

Index-9

�le names and numbers, 6-3
�le sequence numbers, 6-4
LOG FULL condition, 6-3
managing log �les, 6-18
nonarchive explained, 6-1
single or dual log �les, 6-3
specifying dual logging, 4-5
understanding log �le types, 6-2
using multiple �les, 6-3
using nonarchive logs, 6-4, 6-5

logical design, 2-1
log pages, 3-24
log records, 3-21, 3-30
audit, 4-10
written to the log �le, 1-8

LONG BINARY
storage requirements, 3-4

long column
DBEFileSet speci�cation, 5-6

LONG VARBINARY
storage requirements, 3-4

M

maintenance
adding a column, 7-11
adding a constraint to a table, 7-17
adding DBEFiles to DBEFileSets, 7-8
applications, 7-21
changing a table's lock mode, 7-10
changing DBEFile type, 7-8
cleanup with monitor, 7-31
DBECon File, 7-2
DBEnvironment, 7-2
deleting a column, 7-11
deleting table rows, 7-10
disk space, 3-9
dividing tables, 7-14
dropping a constraint from a table, 7-18
dropping a DBEFile, 7-9
dropping and recreating hash structures, 7-15
dropping and recreating indexes, 7-16
dropping and recreating procedures, 7-19
dropping and recreating rules, 7-19
dropping a table, 7-10
dropping modules, 7-26
enabling and disabling data de�nition, 7-30
granting and revoking procedure authorities,

7-18
indexes, 7-15
merging tables, 7-13
reloading tables, 7-17
revalidating procedure sections, 7-20
rules and procedures, 7-18
security schemes, 7-29
setting SQLUtil maintenance word, F-57

system catalog statistics, 7-5
tables, 7-10
updating groups, 7-29
using simple and complex operations, 7-1

maintenance word
adjusting parameter in DBECon �le, 7-2
changing in SQLUtil, 7-2
changing with SQLUtil, F-4
setting, F-43, F-57
setting in DBECon �le, 7-2

maximum
table of limits, A-1
timeout value in DBECon �le, 7-2
transactions in DBECon �le, 7-2
transactions in SQLUtil, 7-2
user timeout in SQLUtil, 7-2

maximum transactions
changing with SQLUtil, F-5
displaying with SQLUtil, F-52, F-59

maxpartitions parameter, 4-10
media failure
recovery from, 6-14

messages
console message �le, 7-28

MIGRATE
in SQLMigrate, H-6

migration
backward, 1-21
forward, 1-19
of DBEnvironments, 1-12
steps in, 1-19

mixed
as type of DBEFile, 3-2

modify current audit point, I-12
module
and SYSTEM.SECTION view, 8-62
and SYSTEM.SETOPTINFO view, 8-64
de�nition of, 7-23
disk space for, 7-23
dropping, 7-26
installing, 7-25
pages needed to store, 3-19
validation of, 7-22, 7-23

monitor for cleanup, 7-31
monitoring performance
with SQLMON, 1-23

MOVEFILE, 3-12
syntax, F-18

MOVELOG
syntax, F-20

multiple �les
in logging, 6-3

multiuser mode
changing to, 7-2
DBE session, 1-6

Index-10

setting in DBECon �le, 7-2

N

naming
double quotes, 4-13

native language
current language, 1-32
DBEnvironment and current, 4-6
defaults, 1-32
displaying the DBE's, F-56
in creating tables, 5-4
in DBECon �le, 4-6
in de�ning columns, 5-5
overview, 1-32
setting and resetting, 1-32
shown in SYSTEM.COLUMN, 8-19
shown in SYSTEM.TABLE, 8-72

n-computer
de�ned, 1-32

NETUsers �le, 1-33
NETUtil
purpose, 1-33

nonarchive logging
and backing up database �les, 6-10, 6-12
calculating log �le size, 3-24
calculating number of pages, 3-24
explained, 6-1
size, 3-24

nonreplicate DBE
SQLMigrate, 1-18

normal forms
in database design, 2-4

normalization, 2-5, 2-9
de�ned, 2-4
�rst normal form, 2-4

NOT NULL, 2-12
not usable log �les
wrapperDBE, 6-27

null indicator
in loading from �les, 5-21

null values, 2-12

O

objects
statements that create, 3-18

OMNIBACK
not supported, F-41

once per session ag in DBECon �le, 7-2
online backup
procedures in archive mode, 6-12

orphaned log �les
wrapperDBE, 6-25

orphaned privilege
de�ned, 5-18
elimination of, 5-19

overow page, 2-19
owner
and OWNER authority, 2-24
class, 2-24
creating classes, 5-14
de�ning classes, 2-27
in SYSTEM.TABLE, 5-7
of system section tables, 7-7
of system tables, 7-7
of tables, 5-3

OWNER authority
de�ned, 2-23
for modules, 7-24

P

pages
and clustering indexes, 2-18
assigning to DBEFiles, 3-13
calculating data rows per page, 3-5
calculating pages per table, 3-5
calculating rows per index leaf page, 3-7
calculating rows per index non-leaf page, 3-7
e�cient use of, 3-4
in DBEFiles, 3-2
in log �les, 3-20
in START DBE NEW, 3-17
number of index leaf pages, 3-8
number of index non-leaf pages, 3-8
number of overhead index pages, 3-9
temporary, 3-26
total number of index pages, 3-9

page table page, 3-6
calculations for tables, 3-6

parameter
audit, 4-12
audit elements, 4-10
audit log, 4-10
audit name, 4-10
CHECKPOINT, 7-27
comment partition, 4-10
default partition, 4-10
maxpartitions, 4-10
replicate, 1-14

parameters
changing with SQLUtil, F-4
displaying with SQLUtil, F-52
in DBECon �le, 7-5
startup, 4-2
startup in SQLUtil, F-59

parameters in procedures
default values in SYSTEM.PARAMDEFAULT,

8-44
entries in SYSTEM.PARAMETER, 8-45

partition

Index-11

creating, 5-8
dropping, 5-8
example, 5-8
table, 5-8, 8-5

PCR (Parent-child relationship)
explained, 3-17

performance
and deleting indexes, 7-16
e�ect on, from using mixed DBEFiles, 3-11
improving, by grouping tables, 3-9
improving, with clustering indexes, 2-18
improving with index on join column, 2-17
monitoring with SQLMON, 1-23

physical design, 3-1
physical object, 2-14
preprocessing, 7-23, 7-25
drop, 7-23

PREVIEW
in SQLMigrate, H-9

primary key
creating an index on, 2-17
creating unique constraints with, 5-5

printing
of rules, 7-5

priority
in transactions, 8-76

private, 5-2
procedure
creating, 5-12
dropping and recreating, 7-19
entries for parameters in

SYSTEM.PARAMETER, 8-45
entries in SYSTEM.PARAMDEFAULT, 8-44
entries in SYSTEM.PROCEDURE, 8-52
entries in SYSTEM.PROCRESULT, 8-55
examining in the system catalog, 7-19
EXECUTE

authority in SYSTEM.PROCAUTH,
8-51

GENERATE PROCAUTH command, G-25
GENERATE PROCEDURES command, G-27
maintaining, 7-18
stored sections in, 7-21

pseudotables
de�ned, 8-1
functions, 8-2
STOREDSECT.SYSTEM, 8-7
SYSTEM.ACCOUNT, 8-9
SYSTEM.CALL, 8-10
SYSTEM.COUNTER, 8-29
SYSTEM.PLAN, 8-49
SYSTEM.TRANSACTION, 8-76
SYSTEM.USER, 8-77

PUBLIC
granting authorities to, 2-22

grant to, 5-2
special DBEUserID, 8-5

PURGEALL
syntax, F-22

PURGEDBE
syntax, F-23

PURGEFILE, 6-24, 7-9
syntax, F-24

PURGELOG
syntax, F-26

Q

query
and SYSTEM.PLAN view, 8-49

query optimization, 2-15
quit
syntax, I-14

QUIT
in SQLMigrate, H-12
in SQLUtil, F-27

quit from SQLAudit
audit tool, I-14

QUIT (SHOWDBE)
description, F-58

R

raw �les
compared with bu�ered �les, J-1
setting up, J-2
using in ALLBASE/SQL, J-1

REAL
de�ning columns as, 2-11
storage requirements, 3-4

recompile dynamically, 7-21
RECOVERLOG
syntax, F-28

recovery
in archive mode, 6-14
in nonarchive mode, 6-11
overview, 6-1
rollback, 6-14

recreating
indexes, 7-16
rules and procedures, 7-19

REFERENCES authority
explained, 5-13
listed in SYSTEM.COLAUTH, 8-15

REFERENCES clause
de�ning referential constraints with, 5-5

referential constraint
creating tables with, 5-5
entries in SYSTEM.CONSTRAINT, 8-23
entries in SYSTEM.CONSTRAINTCOL, 8-25
entries in SYSTEM.CONSTRAINTINDEX,

8-26

Index-12

RELEASE, 4-24
SQLGEN, G-48
terminating a DBE session with, 4-27

remote databases
accessing, 4-29

REMOVE DBEFILE
example, 7-9

REMOVE FROM GROUP
example, 4-22
syntax, 4-19

removing all rows
TRUNCATE TABLE statement, 7-29

renaming
columns, 7-14
tables, 7-14

REPAIR
in SQLMigrate, H-13

repeating data groups
removing in normalization, 2-5

replicate
DBE using SQLmigrate, 1-18
parameter, 1-14

re-preprocessing, 7-23
avoiding, 7-23

RESCUELOG
syntax, F-31

reserved users
CATALOG, 8-1
HPRDBSS, 8-1
PUBLIC, 2-22, 4-20
SYSTEM, 8-1
TEMP, 2-25

resource authority
listed in SYSTEM.SPACEAUTH, 8-65

RESOURCE authority, 4-22
de�ned, 2-23

RESTORE
syntax, F-33

RESTORELOG
syntax, F-35

RESTORE PARTIAL
syntax, F-39

restoring
data with RESTORE, 6-11, 6-15, 6-16
logs with RESTORELOG, 6-15, 6-17

restoring data
to raw �les, J-9

restoring logs
to raw �les, J-9

revalidate
procedure sections, 7-20

revalidating
application program sections, 7-21
sections, 7-23

REVOKE, 7-23

CONNECT authority, 4-20
example, 4-23
EXECUTE authority, 4-23
RESOURCE authority, 4-22
SELECT ON, 5-14

revoking
procedure authorities, 7-18
SECTIONSPACE authority, 4-23
TABLESPACE authority, 4-23

rollback recovery
explained, 6-14

rollforward
wrapperDBE, 6-25

rollforward recovery
archive log �les, 1-8
explained, 6-14, 6-16

root level of a tree, 2-15
row
calculating length, 3-4
calculating rows per page, 3-5
formula for length, 2-12
length, 3-4
maximum length, 2-8

rule
columns in the system catalog, 8-59
creating, 5-12
determining behavior in a DBEnvironment,

7-5
dropping and recreating, 7-19
e�ects on loading tables, 5-22
entries in SYSTEM.RULE, 8-57
examining in the system catalog, 7-19
maintaining, 7-18

RUN authority
for modules, 7-24
granting, 4-23
in system catalog, 8-43

runtime control blocks
setting in DBECon �le, 7-2
setting number in SQLUtil, 7-2
shared memory for, 3-27, 3-28

run tree, 3-19, 7-21

S

sample DBEnvironment
contents of, 2-29
tables, 2-10

schema
database, 5-20
SQLGEN, 1-14

schema �le
creating with SQLGEN, G-54

search item, 2-16, 2-17
second normal form
de�ned, 2-5

Index-13

section
and SYSTEM.SECTION view, 8-62
and SYSTEM.SETOPTINFO view, 8-64
and UPDATE STATISTICS, 7-6
calculating space, 3-19
default DBEFileSet, 4-14
disk space for, 3-19
invalidating, 7-10, 7-14, 7-21, 7-22, 7-23
revalidating, 7-23
statements that do not create, 7-21
stored in catalog, 3-19
types, 7-21
valid, 7-21
valid and invalid, 7-21
validating and invalidating, 7-21

SECTIONSPACE authority
de�ned, 2-25
granting, 4-23
revoking, 4-23

SECTIONSPACE default DBEFileSet, 4-14
security
creating DBEnvironment security scheme,

4-18
management, 2-22
specifying when creating a table, 5-1

SELECT authority
and views, 5-15
explained, 5-13

selectlist, 5-9
semicolon
used in SQLUtil, 1-13

sequence number
for log �les, 6-4
wrapperDBE, 6-26, 6-29

sequential search, 2-16
set
connect to DBEnvironment, I-16
recover�le, I-20
SQLAudit, I-15

SET, H-14
SET BACKUP
in SQLUtil, F-41

SET CONSTRAINTS DEFERRED
used when loading tables, 5-22

SETDBEMAINT
syntax, F-43

SET DBEnvironment
SQLAudit, I-16

SET DML ATOMICITY
used when loading tables, 5-22

SET ECHO ALL
in SQLAudit, I-17
in SQLUtil, F-41

SET ECHO ALL OFF
syntax, G-49

SET ECHO ALL ON
syntax, G-50

SET EDITOR
SQLAudit, I-18
SQLGEN, G-51

SET EXIT DBERR
syntax, I-19

SET EXIT ON DBERR OFF
syntax, G-52

SET EXIT ON DBERR ON
syntax, G-53

SETOPT
and SYSTEM.SETOPTINFO view, 8-64

SET RECOVERFILE
SQLAudit, I-20

SET SCHEMA
SQLGEN, G-54

SETUPRECOVERY
syntax, F-44

SETUPRECOVERY PARTIAL
set up rollforward, F-47
syntax, F-47

set up rollforward
SETUPRECOVERY PARTIAL, F-47

shared memory
data bu�er, 3-30
estimating requirements, 3-27
for log bu�er, 3-30
requirements for bu�ers, 3-27
runtime control block bu�er, 3-28
transactions, 3-35

SHOW AUDITPOINT
syntax, I-21

SHOWDBE, 4-7
ALL-syntax, F-52
display DBE attributes, F-50
EXIT-syntax, F-53
HELP-syntax, F-54
LANG-syntax, F-56
MAINT-syntax, F-57
QUIT-syntax, F-58
STARTPARMS-syntax, F-59
syntax, F-50
wrapperDBE, 6-28, 6-30

SHOW 'DBEnvironmentName' VERSION, H-16
in SQLMigrate, H-16

SHOWLOG
syntax, F-60
using to monitor log �le usage, 6-18
wrapperDBE, 6-26

SHOWSET
in SQLUtil, F-63

SHOW VERSIONS
in SQLMigrate, H-17

simple key, 2-16

Index-14

simple operations
in maintenance, 7-1

single �le
logging type, 6-3

single user mode
and starting a DBE session, 4-26
changing to, 7-2
DBE session, 1-6
setting in DBECon �le, 7-2

size of log �le, 4-12
SMALLINT
de�ning columns as, 2-11
storage requirements, 3-4

soft crash, 1-8
and rollback recovery, 6-14

sort ordering, 2-17
special authority
DBA authority, 4-19
listed in SYSTEM.SPACEAUTH, 8-65
listed in SYSTEM.SPACEDEFAULT, 8-66
listed in SYSTEM.SPECAUTH, 8-67

SQLAudit
overview, 1-24

SQLAudit commands
audit[point], I-2
editor, I-5
exit, I-6
get audit[point], I-7
help, I-9
lock audit[point], I-10
modify audit[point], I-12
quit, I-14
set, I-15
set DBEnvironment, I-16
set echo, I-17
set editor, I-18
set exit dberr, I-19
set recover�le, I-20
show audit[point], I-21
unlock audit[point], I-22

SQLCore
and null values, 2-12
and pseudotables, 8-1
system statistics used by, 8-29

SQLGEN
command summary, 1-15
introduction, 1-14
schema, 1-14
schema �les, 1-16
starting up, 1-15

SQLGEN commands
EDITOR, G-2
EXIT, G-3
GENERATE ALL, G-4
GENERATE DBE, G-9

GENERATE DBEFILES, G-10
GENERATE DEFAULTSPACE, G-12
GENERATE GROUPS, G-13
GENERATE INDEXES, G-15
GENERATE INSTALLAUTH, G-17
GENERATE LOAD, G-18
GENERATE MODAUTH, G-20
GENERATE MODOPTINFO, G-22
GENERATE PARTITION, G-24
GENERATE PROCAUTH, G-25
GENERATE PROCEDURES, G-27
GENERATE PROCOPTINFO, G-29
GENERATE RULES, G-31
GENERATE SPACEAUTH, G-33
GENERATE SPECAUTH, G-34
GENERATE STATISTICS, G-35
GENERATE TABAUTH, G-37
GENERATE TABLES, G-39
GENERATE TEMPSPACES, G-42
GENERATE VIEWAUTH, G-43
GENERATE VIEWS, G-45
HELP, G-47
RELEASE, G-48
SET ECHO ALL OFF, G-49
SET ECHO ALL ON, G-50
SET EDITOR, G-51
SET EXIT ON DBERR OFF, G-52
SET EXIT ON DBERR ON, G-53
SET SCHEMA, G-54
STARTDBE, G-55

SQLINSTL
overview, 1-22

SQLMigrate
nonreplicate DBE, 1-18
overview, 1-18
replicate DBE, 1-18
starting up, 1-18

SQLMigrate commands
ADD DBEFile, H-2, H-3
EXIT, H-4
HELP, H-5
MIGRATE, H-6
PREVIEW, H-9
QUIT, H-12
REPAIR, H-13
SHOW 'DBEnvironmentName' VERSION,

H-16
SHOW VERSIONS, H-17

SQLMON
available DBEFileset space, 7-7
cluster count, 7-16
examining DBEFilesets, 4-13
hash structures, 7-15
index space, 7-15
monitoring the log, 6-25

Index-15

overview, 1-23
stored sections, 7-24
table information, 5-7

SQL statements
authorities required for, B-1
locks obtained by, E-1
syntax summary, C-1

SQLUtil
ATTACHFILE, 7-27
CHANGELOG, 7-28
CHECKPOINT, 7-27
DETACHFILE, 7-27
example, 4-7
log �le, 4-12
overview, 1-13
starting up, 1-14

SQLUtil commands
ADDLOG, 4-12, F-2
ALTDBE, F-4
ATTACHFILE, F-7
CHANGELOG, F-9
CHECKPOINTHELP, F-10
DETACHFILE, F-11
ENDRECOVERY, F-13
EXIT, F-15
HELP, F-16
MOVEFILE, F-18
MOVELOG, F-20
PURGEALL, F-22
PURGEDBE, F-23
PURGEFILE, F-24
PURGELOG, F-26
QUIT, F-27
RECOVERLOG, F-28
RESCUELOG, F-31
RESTORE, F-33
RESTORELOG, F-35
RESTORE PARTIAL, F-39
SET, F-41
SETDBEMAINT, F-43
SETUPRECOVERY, F-44
SETUPRECOVERY PARTIAL, F-47
SHOWDBE, F-50
SHOWDBE-ALL, F-52
SHOWDBE-EXIT, F-53
SHOWDBE-HELP, F-54
SHOWDBE-LANG, F-56
SHOWDBE-MAINT, F-57
SHOWDBE-QUIT, F-58
SHOWDBE-STARTPARMS, F-59
SHOWLOG, F-60
SHOWSET, F-63
STORE, F-64
STOREINFO, F-66
STORELOG, F-68

STOREONLINE, F-70
STOREONLINE PARTIAL, F-72
STORE PARTIAL, F-75
WRAPDBE, F-78

SQLVer, 1-23
START
in ISQL, 1-13

START DBE, 4-24
example, 4-26
single user, 4-26
startup parameters, 4-26
syntax, 4-26, F-5

STARTDBE
SQLGEN, G-55

START DBE NEW
and dual log �les, 3-23
con�guring a DBE, 4-2
creating a log �le, 4-5
elements created, 4-3
example, 3-17, 4-3
wrapperDBE, 6-28

START DBE NEWLOG
changing dual logging, 6-24
creating a new log �le, 6-24
example, 6-24

starting DBE sessions
with CONNECT, 1-6
with START DBE, 1-6

startup parameter, 4-2
adjusting in DBECon �le, 7-2
changing with SQLUtil, F-4
DBEnvironment, F-59
default, 4-3
defaults, 7-2
in DBECon �le, 4-2

statements
dynamic, 7-24

static backup
in archive mode, 6-13
with nonarchive logging, 6-10

statistical data
updating, 8-5

STOP DBE, 4-24
terminating DBE sessions, 4-27

storage requirements
for speci�c data types, 3-4
overview, 3-1

STORE
SQLUtil, F-64

STOREDSECT
as owner of system section tables, 7-7
reserved user, 8-1

stored section
and validation, 7-21
when stored, 3-19

Index-16

STOREDSECT.SYSTEM
de�ned, 8-7

STOREINFO
list archived �les, F-66
syntax, F-66

STORELOG
syntax, F-68

STOREONLINE
SQLUtil, F-70

STOREONLINE PARTIAL
SQLUtil, F-72

STORE PARTIAL
SQLUtil, F-75

syntax
WRAPDBE command, F-78

syntax summary
ISQL, D-1
SQL statements, C-1

SYSTEM
reserved user, 8-1

SYSTEM.ACCOUNT
column de�nition and description, 8-9

SYSTEM.CALL
column de�nition and description, 8-10

system catalog
after con�guration, 4-4
allocating disk space, 3-17
CATALOG views, 8-1
complete information and tables, 8-1
disk space for, 3-17
element in a DBEnvironment, 1-5
examining, 4-8
example, 4-8
locks, 7-25
locks obtained by SQL statements, E-1
locks on, 7-30
monitoring space, 7-2
owners HPRDBSS, CATALOG, and SYSTEM,

8-1
pseudotable functions, 8-2
pseudotables, 8-1
purging, F-22, F-23
rule columns, 8-59
rules, 8-57
sizeo, 3-18
statements that add to, 3-18
SYSTEM views, 8-1
updating, 7-5
view constraint information store in, 5-9
view de�nitions stored in, 5-9

SYSTEM.CHECKDEF
column de�nition and description, 8-14
view constraint information stored in, 5-9

SYSTEM.COLAUTH
column de�nition and description, 8-15

SYSTEM.COLDEFAULT
column de�nition and description, 8-18

SYSTEM.COLUMN
a�ected by UPDATE STATISTICS, 7-5
column de�nition and description, 8-19
querying, 5-7

SYSTEM.CONSTRAINT
column de�nition and description, 8-23
view constraint de�nitions stored in, 5-9

SYSTEM.CONSTRAINTCOL
column de�nition and description, 8-25

SYSTEM.CONSTRAINTINDEX
column de�nition and description, 8-26

SYSTEM.COUNTER
column de�nition and description, 8-29

SYSTEM.DBEFILE
a�ected by UPDATE STATISTICS, 7-5
characteristics of �les stored in, 4-15
column de�nition and description, 8-31
DBEFileSet names stored in, 4-16
names of �les stored in, 4-14

SYSTEM.DBEFILESET
a�ected by UPDATE STATISTICS, 7-5
column de�nition and description, 8-34
names stored in, 4-13

SYSTEM DBEFileSet
adding space to, 7-2
de�ned, 3-17
determining space in, 3-20
in a new DBEnvironment, 4-4

SYSTEM.GROUP
column de�nition and description, 8-35

SYSTEM.HASH
column de�nition and description, 8-36

SYSTEM.INDEX
a�ected by UPDATE STATISTICS, 7-5
and cluster count, 7-16
column de�nition and description, 8-38

SYSTEM.INSTALLAUTH
column de�nition and description, 8-42

SYSTEM.MODAUTH
column de�nition and description, 8-43

SYSTEM.PARAMDEFAULT
column de�nition and description, 8-44

SYSTEM.PARAMETER
column de�nition and description, 8-45

SYSTEM.PLAN
column de�nition and description, 8-49

SYSTEM.PROCAUTH
column de�nition and description, 8-51

SYSTEM.PROCEDURE
column de�nition and description, 8-52

SYSTEM.PROCEDUREDEF
column de�nition and description, 8-54

SYSTEM.PROCRESULT

Index-17

column de�nition and description, 8-55
SYSTEM.RULE
column de�nition and description, 8-57

SYSTEM.RULECOLUMN
column de�nition and description, 8-59

SYSTEM.SECTION
column de�nition and description, 8-62
monitoring stored sections in, 7-22
view de�nitions stored in, 5-9

SYSTEM.SETOPTINFO
column de�nition and description, 8-64

SYSTEM.SPACEAUTH
column de�nition and description, 8-65

SYSTEM.SPACEDEFAULT
column de�nition and description, 8-66

SYSTEM.SPECAUTH
column de�nition and description, 8-67

SYSTEM.TABAUTH
column de�nition and description, 8-69

SYSTEM.TABLE
a�ected by UPDATE STATISTICS, 7-5
column de�nition and description, 8-72
examining table de�nitions in, 5-7
querying, 5-7
view de�nitions stored in, 5-9

system table, 8-5
lock type changing, 7-7

SYSTEM.TEMPSPACE
column de�nition and description, 8-75

SYSTEM.TRANSACTION
column de�nition and description, 8-76

SYSTEM.USER
column de�nition and description, 8-77
monitoring, to show current users, 4-28

SYSTEM.VIEWDEF
column de�nition and description, 8-78

system views
containing security data, 5-19
in the system catalog, 8-1
listed, 4-8
restricting catalog access, 5-16

T

table
adding a column to, 7-11
adding constraint to, 7-17
as type of DBEFile, 3-2
authorities, 5-13
changing lock mode, 7-10
creating, 5-1
DBEFile, 3-11
DBEFileSet, 3-10
DBEFileSet speci�cation, 5-6
default DBEFileSet, 4-14
deleting a column to, 7-11

deleting all rows, 7-10
design, 2-7
disk space for, 3-3
dividing, 7-14
double quotes, 5-3
dropping, 7-10
dropping constraint from, 7-18
examining de�nitions, 5-7
for sample database, 2-10
implicit locking, 5-2
implied security, 5-2
in DBEFileSet, 3-3, 5-6
loading, 5-20
loading external �les, 5-21
loading internal �le, 5-21
locking, 5-2, 5-3
maximum column length, A-1
maximum columns per, A-1
maximum per DBEnvironment, A-1
merging columns, 7-13
name, 5-3
organizing in DBEFileSets, 3-9
owner, 5-3
partition, 5-8, 8-5
private, 5-2
public, 5-2
publicread, 5-2
renaming, 7-14
restrictions, 2-8
revoking authority for, 5-15
separate disk drives, 3-10
stored in mixed DBEFile, 3-11
system, 8-5
unloading, 7-12

TABLESPACE authority
de�ned, 2-25
granting, 4-23
revoking, 4-23

TABLESPACE default DBEFileSet, 4-14
tasks
adding a column, 7-11
adding a constraint to a table, 7-17
adding DBEFiles to DBEFileSets, 7-8
adding log �les with ADDLOG, 6-21
backup and recovery, 6-1
backup in nonarchive mode, 6-10
changing a table's lock mode, 7-10
changing DBEFile type, 7-8
cleanup after abnormal termination, 7-31
creating a DBEnvironments, 4-2
creating a hash structure, 5-10
creating a new log �le, 6-24
creating an index, 5-11
creating a procedure, 5-12
creating a rule, 5-12

Index-18

creating a table, 5-1
creating a view, 5-9
creating DBEFiles and DBEFileSets, 4-13
creating DBEnvironment security scheme,

4-18
creating log �les, 4-5
creating logical and physical objects, 1-2
creating the database security scheme, 5-13
de�ning a database schema, 5-20
deleting a column, 7-11
deleting table rows, 7-10
displaying log �le information with

SHOWLOG, 6-18
dividing tables, 7-14
dropping a constraint from a table, 7-18
dropping a DBEFile, 7-9
dropping and recreating hash structures, 7-15
dropping and recreating indexes, 7-16
dropping and recreating procedures, 7-19
dropping and recreating rules, 7-19
dropping a table, 7-10
dropping modules, 7-26
enabling and disabling data de�nition, 7-30
enabling and disabling rule operation, 7-5
examining the system catalog, 4-8
granting and revoking procedure authorities,

7-18
indexes, 7-15
loading tables, 5-20
maintaining applications, 7-21
maintaining rules and procedures, 7-18
maintenance, 7-1
managing log �les, 6-18
merging tables, 7-13
moving log �les with MOVELOG, 6-24
online backup in archive mode, 6-12
purging log �les with PURGELOG, 6-23
recovering log �les with RECOVERLOG,

6-22
recovery in nonarchive mode, 6-11
reloading tables, 7-17
rescuing log �les with RESCUELOG, 6-22
restoring log �les with RESTORELOG, 6-22
revalidating procedure sections, 7-20
revoking table authorites, 5-15
rollforward recovery in archive mode, 6-14,

6-16
setting up the DBEnvironment directory, 4-1
starting and stopping DBE sessions, 1-6
static backup in archive mode, 6-13
storing log �les with STORELOG, 6-21
updating groups, 7-29
updating system catalog statistics, 7-5

temporary index
and performance, 7-16

tempspace
creating, 3-26

TERMINATE QUERY, 4-28
TERMINATE TRANSACTION, 4-28
TERMINATE USER, 4-28
terminating a DBE session
using RELEASE, 4-27
using STOP DBE, 4-27
using TERMINATE USER, 4-28

third normal form, 2-6
TIME
de�ning columns as, 2-11
storage requirements, 3-4

timeout value
and DBECon �le, 4-3
changing in SQLUtil, 7-2
default in DBECon �le, 7-2
maximum, A-1
maximum in DBECon �le, 7-2

transaction
changing maximum in SQLUtil, 7-2
concurrent, 3-24
de�ned, 1-10
estimating number, 3-35
implicitly begun, 3-21
priority, 8-76
setting maximum number of, 7-2
shared memory for block bu�er, 3-27
SYSTEM.TRANSACTION, 8-76

transfer ownership
and CONNECT authority, 4-21

TRANSFER OWNERSHIP, 7-23
syntax, 4-19

transitive dependency, 2-6
TRUNCATE TABLE, 7-10
removing all rows, 7-29

tuple header, 2-11
types of DBEFile
table and mixed, 3-11

U

unavailable DBECon �le
wrapperDBE, 6-28

unique constraint
creating, 5-5
entries in SYSTEM.CONSTRAINT, 8-23
entries in SYSTEM.CONSTRAINTCOL, 8-25
entries in SYSTEM.CONSTRAINTINDEX,

8-26
unique index
de�ned, 2-17
design, 2-18
guidelines for, 2-18

UNLOAD
creating �les from tables, 5-20

Index-19

for restructuring, 7-12
GENERATE LOAD, G-18
in deleting columns, 7-11
in maintenance operations, 7-2
internal, 7-13

unlock audit point
audit tool, I-22

UPDATE authority
and views, 5-15
explained, 5-13
listed in SYSTEM.COLAUTH, 8-15

updates
wrapperDBE, 6-28, 6-30

UPDATE STATISTICS
example, 7-6
invalidating sections, 7-23
on system views, 8-5
overview, 7-5
updating cluster count, 7-16
when to use, 7-5

usable log �les
wrapperDBE, 6-26

user mode
adjusting parameter in DBECon �le, 7-2
changing with SQLUtil, 7-2, F-4
displaying with SQLUtil, F-52, F-59
setting in DBECon �le, 7-2

user timeout value
changing in SQLUtil, 7-2
setting in DBECon �le, 7-2

V

VALIDATE, 7-22, 7-23
revalidating procedure sections, 7-20

validating
application program sections, 7-21
modules, 7-24

VARBINARY
de�ning columns as, 2-11
storage requirements, 3-4

VARCHAR
de�ning columns as, 2-11
storage requirements, 3-4

version checker, 1-23
view
and SYSTEM.SECTION, 8-62
as a stored section, 5-9
authorities, 5-13
creating:view, 5-9
data access, 2-14

design, 2-13
dropping, 7-10
granting authorities for, 5-16
maximum base tables per, A-1
maximum columns per, A-1
maximum per DBEnvironment, A-1
name, 5-9
owner, 5-9
restructuring with, 7-13
revoking authority for, 5-15
security applications, 5-15
WITH CHECK OPTION, 5-9

virtual table, 2-13

W

WITH CHECK OPTION
view, 5-9

WITH GRANT OPTION clause
examples, 5-17

WRAPDBE
syntax, F-78
wrapperDBE, 6-26, 6-29

wrapperDBE
archive logging, 6-25
audit information, 6-25
audit parameters, 6-28
audit tool, 6-25
command mode, 6-29
console log �le, 6-27, 6-28
DBECon �le, 6-26, 6-28
DDL statements, 6-28
dual log �les, 6-26
inactive log �les, 6-29
log �les, 6-25, F-78
log �les, number of, 6-29
not usable log �les, 6-27
orphaned log �les, 6-25
roll forward, 6-25
sequence number, 6-26, 6-29
SHOWDBE command, 6-28, 6-30
SHOWLOG command, 6-26
single log �les, 6-26
START DBE NEW, 6-28
unavailable DBECon �le, 6-28
updates, 6-28, 6-30
usable log �les, 6-26
WRAPDBE command, 6-26, 6-29

writeahead logging

explained, 1-7

Index-20

