
HP 9000 Computer Systems

ALLBASE/SQL

Performance and Monitoring Guidelines

ABCDE

HP Part No. 36217-90185

Printed in U.S.A. April 1994

First Edition

E0494

Copyright c
 1987, 1988, 1989, 1991, 1992, 1993, 1994 by Hewlett-Packard Company.

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or �tness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

This is the �rst edition of the ALLBASE/SQL Performance and Monitoring Guidelines . It
is compatible with release G.0 of ALLBASE/SQL. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one correspondence between
product releases and document editions. Prior to release G.0, chapters one through �ve were
published as the ALLBASE/SQL Performance Guidelines . Because four new chapters were
added to document SQLMON, this manual is now called the ALLBASE/SQL Performance
and Monitoring Guidelines .

ALLBASE/SQL Documents

The following table lists all manuals in the ALLBASE/SQL document set:

Title Part Number

ALLBASE/ISQL Reference Manual 36217-90188

ALLBASE/NET User's Guide 36217-90093

ALLBASE/SQL Advanced Application Programming Guide 36217-90186

ALLBASE/SQL C Application Programming Guide 36217-90014

ALLBASE/SQL COBOL Application Programming Guide 36217-90058

ALLBASE/SQL Database Administration Guide 36217-90005

ALLBASE/SQL FORTRAN Application Programming Guide 36217-90013

ALLBASE/SQL Message Manual 36217-90009

ALLBASE/SQL Pascal Application Programming Guide 36217-90007

ALLBASE/SQL Performance and Monitoring Guidelines 36217-90185

ALLBASE/SQL Reference Manual 36217-90001

HP ALLBASE/QUERY User's Guide 92534-64001

HP PC API User's Guide for ALLBASE/SQL 36217-90187

Up and Running with ALLBASE/SQL 36389-90011

iii

Preface

This book presents a series of guidelines for use in monitoring and tuning the performance of
your ALLBASE/SQL G.0 system. These guidelines are applicable for the HP-UX 9.0 release.
The chapters in this book are listed below:

Chapter 1, \Basic Concepts in ALLBASE/SQL Performance" describes some very basic
concepts to help you understand how to tune performance.

Chapter 2, \Guidelines on Logical and Physical Design" describes how your database design
and �le storage a�ect performance.

Chapter 3, \Guidelines on Query Design" shows how to write queries for best performance.

Chapter 4, \Guidelines on Transaction Design" describes techniques for obtaining the
greatest concurrency.

Chapter 5, \Guidelines on System Administration" describes how to improve performance in
the areas of database, network, and operating system administration.

Chapter 6, \Getting Started With SQLMON" describes the basic operations of SQLMON,
the performance monitoring tool.

Chapter 7, \Troubleshooting with SQLMON" provides examples on how to use SQLMON
to troubleshoot ALLBASE/SQL performance situations.

Chapter 8, \SQLMON Screen Reference" documents all of the SQLMON screens in
alphabetical order.

Chapter 9, \SQLMON Command Reference" describes each of the SQLMON commands,
with syntax and examples.

Appendix A, \Design for a High-Performance Interactive Table Editor," sketches an
approach to table editing that avoids concurrency problems and promotes high performance
through the use of BULK operations.

You can �nd additional basic information relating to database performance in the following
chapters in the ALLBASE/SQL document set:

\Logical Design" and \Physical Design" in the ALLBASE/SQL Database Administration
Guide.
\Concurrency Control" in the ALLBASE/SQL Reference Manual .
\Transaction Management with Multiple DBEnvironment Connections" in the
ALLBASE/SQL Advanced Application Programming Guide.
\Processing with Cursors" in the ALLBASE/SQL application programming guide for your
programming language.

iv

What's New in This Release

The following table highlights the new or changed functionality in this release, and shows you
where each feature is documented.

New Features in ALLBASE/SQL Release G.0

Feature (Category) Description Documented in . . .

Stored procedures
(Usability)

Provides additional stored
procedure functionality for
application programs. Allows
declaration of a procedure cursor
and fetching of multiple rows
within a procedure to applications.
New statement: ADVANCE.
Changed syntax: CLOSE,
CREATE PROCEDURE,
DECLARE CURSOR,
DESCRIBE, EXECUTE,
EXECUTE PROCEDURE,
FETCH, OPEN.

ALLBASE/SQL Reference Manual, \SQL
Statements" and \Using Procedures" in
\Constraints, Procedures and Rules;"
ALLBASE/SQL Advanced Application
Programming Guide, \Using Procedures in
Application Programs."

Case insensitivity
(Usability)

Adds an optional attribute to the
character and varchar type column
attributes of tables. Allows search
and compare of these columns in a
case insensitive manner. Four new
SQLCore data types are added.
Changed syntax: ALTER TABLE,
CREATE TABLE.

ALLBASE/SQL Reference Manual,
\Comparison Predicate" in \Search
Conditions," CREATE TABLE in \SQL
Statements."

Support for 1023
columns
(Usability)

Increases the maximum number of
columns per table or view to 1023.
Increases maximum sort columns
and parameters in a procedure to
1023.

ALLBASE/SQL Reference Manual,
CREATE TABLE and CREATE VIEW in
\SQL Statements;" ALLBASE/SQL
Database Administration Guide,
\ALLBASE/SQL Limits" appendix.

ISQL HELP
improvements
(Usability)

Gives help for entire command
instead of only the verb.

ALLBASE/ISQL Reference Manual, HELP
in \ISQL Commands."

EXTRACT
command
(Usability)

Extracts modules from the
database and stores them in a
module �le. Allows for creation of
a module �le at any time based on
the current DBEnvironment
without preprocessing. New
command: EXTRACT. Changed
syntax: INSTALL.

ALLBASE/ISQL Reference Manual, \Using
Modules" in \Using ISQL for Database
Tasks," EXTRACT, INSTALL in \ISQL
Commands."

v

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

New SQLGEN
GENERATE
parameters
(Usability)

Generates SQL statements
necessary to recreate modi�ed
access plans for module sections.
New syntax for GENERATE:
DEFAULTSPACE,
MODOPTINFO, PARTITION,
PROCOPTINFO, SPACEAUTH.

ALLBASE/SQL Database Administration
Guide, \SQLGEN Commands" appendix.

Row level locking
(Usability)

Permits multiple transactions to
read and update a table
concurrently because locking is
done at row level. Since the
transaction will obtain more locks,
the bene�ts must be weighed
against the costs. (Previously
documented in an addendum after
F.0 release.)

ALLBASE/SQL Reference Manual ,
\Concurrency Control through Locks and
Isolation Levels;" ALLBASE/SQL Database
Administration Guide, \E�ects of Page and
Row Level Locking" in \Physical Design."

Increased number
of users
(Usability)

Removes the limitation of 240
users supported by pseudotables.
(Maximum is system session
limits: 2000 on HP-UX; 1700 on
MPE/iX.)

ALLBASE/SQL Database Administration
Guide, \ALLBASE/SQL Limits" appendix.

POSIX support
(Usability)

Improves application portability
across MPE/iX and HP-UX.
Enhances the ALLBASE/SQL
preprocessors to run under POSIX
(Portable Operating System
Interface) on MPE/iX.

ALLBASE/SQL Advanced Application
Programming Guide, \POSIX Preprocessor
Invocation" in \Using the Preprocessor."

Application thread
support
(Performance,
Usability)

Provides the use of threads in an
application. Allows
ALLBASE/SQL to be used in an
application threaded environment
on MPE/iX. Application threads
are light weight processes that
share some resources and last for
the duration of a transaction.
Threaded applications reduce the
overhead of context switching and
improve the performance of
OpenTP applications.

ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor."

vi

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

High Availability Provides a collection of features to
keep systems available nonstop
including: Partial STORE and
RESTORE, Partial rollforward
recovery, DBEFiles in di�erent
groups (MPE/iX), detaching and
attaching database objects,
CHECKPOINT host variable,
changing log �les, console
messages logged to a �le,
generating fewer log records by
using TRUNCATE TABLE to
delete rows, and new system
catalog information. See the
following features for new and
changed syntax.

ALLBASE/SQL Reference Manual, \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \Maintaining a
Nonstop Production System" in
\Maintenance" chapter and \SQLUtil"
appendix.

Partial rollforward
recovery
(High Availability)

Supports partial rollforward
recovery through PARTIAL option
on SETUPRECOVERY. Used to
recover speci�c DBEFiles while
allowing access to other DBEFiles.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
SETUPRECOVERY PARTIAL in
\SQLUtil" appendix.

Partial STORE
and RESTORE
(High Availability)

Gives more
exibility in backup
and recovery strategies by allowing
partial store and restore of
DBEFiles, DBEFileSets or
combinations of both. See \New
and changed SQLUtil commands
for increased availability" later in
this table.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
\SQLUtil" appendix.

DBEFile group
change on MPE/iX
(High Availability)

Manages DBEFiles so they can be
placed in a particular group or on
a particular volume (MPE/iX).
Use either CREATE DBEFILE or
MOVEFILE.

ALLBASE/SQL Reference Manual,
CREATE DBEFile in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter and
MOVEFILE in \SQLUtil" appendix.

Detaching and
attaching database
objects
(High Availability)

Detaches or attaches a DBEFile or
DBEFileSet from the
DBEnvironment. This is useful for
data that is accessed infrequently
such as tables containing historical
data only. New SQLUtil
commands: DETACHFILE,
ATTACHFILE.

ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter and
DETACHFILE, ATTACHFILE in
\SQLUtil" appendix.

vii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

New and changed
SQLUtil
commands for
increased
availability
(High Availability)

Adds support for high availability
and System Management
Intrinsics. Intended for non-stop,
continuously available operations.
New SQLUtil commands:
ATTACHFILE, CHANGELOG,
DETACHFILE, RESTORE
PARTIAL, STORE PARTIAL,
STOREINFO, STOREONLINE
PARTIAL, WRAPDBE.
Modi�ed SQLUtil commands:
MOVEFILE, RESTORE,
RESTORELOG, SHOWDBE,
SETUPRECOVERY, STORE,
STORELOG, STOREONLINE.

ALLBASE/SQL Database Administration
Guide, \SQLUtil" appendix.

List �les on backup
device
(High Availability)

Lists physical names of �les stored
on backup device with new
SQLUtil command: STOREINFO.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
STOREINFO in \SQLUtil" appendix.

Log �le
improvements
(High Availability)

Allows changing log �les,
switching of console messages to a
�le, and gives advance warning for
log full. Increased maximum size
of a single DBE log �le to 4
gigabytes. A DBEnvironment can
have up to 34 log �les con�gured.
Changed syntax: CHECKPOINT.
New SQLUtil command:
CHANGELOG.

ALLBASE/SQL Reference Manual ,
CHECKPOINT in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter,
CHANGELOG in \SQLUtil" appendix, and
\ALLBASE/SQL Limits" appendix.

New SET
SESSION and SET
TRANSACTION
statements
(Standards,
Performance)

Provides additional
exibility and
improved performance. Allows
setting and changing transaction
and session attributes.

ALLBASE/SQL Reference Manual , SET
SESSION and SET TRANSACTION in
\SQL Statements."

FIPS
agger
(Standards)

Meets Federal Information
Processing Standard (FIPS) 127.1

agger support. Flags
non-standard statement or
extension. Invoked with a
agger
option in the preprocessor
command line or the SET
FLAGGER command in ISQL.
Updatability rules are di�erent
when
agger is invoked. New
syntax: DECLARE CURSOR,
WHENEVER. Changes to C and
COBOL host variable declaration.

ALLBASE/SQL Reference Manual ,
DECLARE CURSOR in \SQL Commands"
and \Standards Flagging Support"
appendix; ALLBASE/SQL Advanced
Application Programming Guide, \Flagging
Non-Standard SQL with the FIPS Flagger;"
ALLBASE/ISQL Reference Manual , SET in
\ISQL Commands."

viii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Optimizer
enhancement
(Performance)

Uses a more e�cient algorithm
that signi�cantly reduces the time
to generate the access plan.

ALLBASE/SQL Performance and
Monitoring Guidelines, \Optimization" in
\Basic Concepts in ALLBASE/SQL
Performance."

Access plan
modi�cation
(Performance)

Allows modi�cation of access plans
for stored section to optimize
performance. View the plan with
SYSTEM.SETOPTINFO. New
statement: SETOPT.

ALLBASE/SQL Reference Manual,
SETOPT in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, SYSTEM.SETOPINFO in \System
Catalog."

Syntax added to
disable access plan
optimization
(Performance,
Usability)

Speci�es that the optimization
information in the module �le is
not to be used. Changed syntax:
EXTRACT, INSTALL,
VALIDATE.

ALLBASE/SQL Reference Manual,
VALIDATE in \SQL Statements;
ALLBASE/ISQL Reference Manual,"
EXTRACT, INSTALL in \ISQL
Commands."

Application
Development
Concurrency
(Performance,
Usability)

Provides enhancements to improve
preprocessing performance when
simultaneously accessed by
multiple users. Page or row level
locking on any system base table
and processing without storing
sections. See the related features
in this table.
New SQL parameter: SET
DEFAULT DBEFileSet. SQL
changed syntax: ALTER TABLE,
GRANT, REVOKE, UPDATE
STATISTICS. ISQL changed
syntax: INSTALL. Changed
SYSTEM and CATALOG view.
New STOREDSECT tables.
Special owners HPRDBSS and
STOREDSECT. Changed syntax
for Full Preprocessing Mode.

ALLBASE/SQL Reference Manual,
\Names" and \SQL Statements;"
ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor;" ALLBASE/ISQL Reference
Manual, \ISQL Commands;"
ALLBASE/SQL Database Administration
Guide, \Database Creation and Security"
and \System Catalog."

System Catalog
tables
(Performance)

Provides greater concurrency by
allowing users to specify table,
page, or row level locking of any
system table owned by
STOREDSECT through the
ALTER TABLE statement.

ALLBASE/SQL Reference Manual,
\Names;" ALLBASE/SQL Database
Administration Guide, \System Catalog."

Preprocessors
(Performance)

Allows optional speci�cation of a
DBEFileSet for storage of sections.
Allows preprocessing without
storing sections in
DBEnvironment.

ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor."

ix

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

I/O performance
improvement
(Performance)

Optimizes I/O for initial load,
index build, serial scans, internal
data restructuring, �le activity,
pseudo mapped �les and
temporary �les. See the following
features for new and changed
syntax.

ALLBASE/SQL Reference Manual , \SQL
Statements."

TRUNCATE
TABLE statement
(Performance)

Deletes all rows in a speci�ed table
leaving its structure intact.
Indexes, views, default values,
constraints, rules de�ned on the
table, and all authorizations are
retained. TRUNCATE TABLE is
faster than the DELETE
statement and generates fewer
logs. New statement:
TRUNCATE TABLE.

ALLBASE/SQL Reference Manual ,
TRUNCATE TABLE in \SQL Statements."

New scans
(Performance)

Reads tables with a new parallel
sequential scan. The tables are
partitioned and �les are read in a
round robin fashion to allow OS
prefetch to be more e�ective.
Allows the I/O for a serial scan to
spread across multiple disc drives.

ALLBASE/SQL Performance and
Monitoring Guidelines, \Using Parallel Serial
Scans" in \Guidelines on Query Design."

Load performance
improvement
(Performance)

Improves performance with new
SET and SET SESSION
attributes, a new binary search
algorithm, and deferred allocation
of HASH pages. New attributes
for SET SESSION statement:
FILL, PARALLEL FILL.

ALLBASE/SQL Reference Manual , SET
SESSION in \SQL Statements."

ISQL enhanced to
improve the
performance of
LOADs
(Performance)

Uses new parameters of the ISQL
SET command to set load bu�er
size and message reporting.
Improves load performance.
Choose a procedure, command �le,
or new ISQL command to set
constraints deferred, lock table
exclusively, and set row level DML
atomicity. Changed syntax: SET
(see the following feature).

ALLBASE/ISQL Reference Manual , SET in
\ISQL Commands."

x

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Modi�ed SET
options
(Performance)

Provides better performance for
LOADs and UNLOADs. Specify
bu�er size, status reporting for
LOAD/UNLOAD or exclusive lock
for data table. AUTOSAVE row
limit increased to 2147483647.
New and changed SET options:
LOAD BUFFER, LOAD ECHO,
AUTOLOCK, AUTOSAVE.

ALLBASE/ISQL Reference Manual, SET in
\ISQL Commands;" ALLBASE/SQL
Performance and Monitoring Guidelines,
\Initial Table Loads" in \Guidelines on
Logical and Physical Design."

SQLMON
(Tools)

Monitors the activity of
ALLBASE/SQL DBEnvironment.
Provides information on �le
capacity, locking, I/O, logging,
tables, and indexes. Summarizes
activity for entire DBEnvironment
or focuses on individual sessions,
programs, or database
components. Provides read-only
information.

ALLBASE/SQL Performance and
Monitoring Guidelines, chapters 6-9.

Audit
(Tools)

Provides a series of features to set
up an audit DBEnvironment
which generates audit log records
that you can analyze with the new
SQLAudit utility for security or
administration. Includes the
ability to set up partitions. See
ALLBASE/SQL Database
Administration Guide for
SQLAudit commands. Modi�ed
statements: ALTER TABLE,
CREATE TABLE, START DBE
NEW, START DBE NEWLOG.
New statements: CREATE
PARTITION, DROP
PARTITION, DISABLE AUDIT
LOGGING, ENABLE AUDIT
LOGGING, LOG COMMENT.

ALLBASE/SQL Reference Manual, \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \DBEnvironment
Con�guration and Security" chapter and
\SQLAudit" appendix.

Wrapper
DBEnvironments
(Tools)

Creates a DBEnvironment to wrap
around the log �les orphaned after
a hard crash of DBEnvironment.
New SQLUtil command:
WRAPDBE.

ALLBASE/SQL Reference Manual,
\Wrapper DBEnvironments" in \Using
ALLBASE/SQL;" ALLBASE/SQL Database
Administration Guide, WRAPDBE in
\SQLUtil."

HP PC API is now
bundled with
ALLBASE/SQL.

PC API is an application
programming interface that allows
tools written with either the
GUPTA or the ODBC interface to
access ALLBASE/SQL and
IMAGE/SQL from a PC.

HP PC API User's Guide for
ALLBASE/SQL.

xi

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Increased memory
for MPE/iX
(HP-UX shared
memory allocation
is unchanged)
(Performance)

Increases memory up to 50,000
data bu�er pages and 2,000 run
time control block pages. Increases
the limits signi�cantly allowing
allocation of enough data bu�er
pages to keep the entire
DBEnvironment in memory if
desired for performance.

ALLBASE/SQL Reference Manual ,
STARTDBE, STARTDBE NEW, and
START DBE NEWLOG in \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \ALLBASE/SQL
Limits" appendix.

ALLBASE/NET
enhancements
(Connectivity,
Performance)

Improves performance of
ALLBASE/NET, allows more
client connections on server
system, and reduces number of
programs on MPE/iX.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

ALLBASE/NET
commands and
options for
MPE/iX
(Connectivity,
Usability)

Adds option ARPA. Adds option
NUMSERVERS to check status of
listeners and number of network
connections. Changed syntax:
ANSTART, ANSTAT, ANSTOP.
Changed NETUtil commands:
ADD ALIAS, CHANGE ALIAS.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET" and \NETUtil Reference."

ALLBASE/NET
and NetWare
(Connectivity)

ALLBASE/NET listener for
NetWare now works with the 3.11
version of Novell's NetWare for
UNIX (HP NetWare/iX).

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

Changed
restrictions for
executing NETUtil
commands for
MPE/iX
(Connectivity,
Usability)

Adds SM or AM (in the speci�ed
account) to MANAGER.SYS for
adding, changing, or deleting users
for MPE/iX.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

ARPA is only
TCP/IP interface
for data
communication
through
ALLBASE/NET
beginning with
HP-UX 10.0
(Connectivity)

Remote database access
applications that specify NS will
not work if the client and/or
server machine is an HP 9000
Series 700/800 running HP-UX
10.0 or greater. Server Node Name
entry must be changed from NS
node name to ARPA host name.
For the NETUsers �le, the \Client
Node Name" must be changed
from the NS node name to the
ARPA host name. New NETUtil
commands: MIGRATE USER,
MIGRATE ALIAS.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET" and \NETUtil Reference."

xii

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

xiii

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�C �CTRL� followed by an uppercase character indicates a control
character. For example, �CTRL�Y means that you press the control
key and the Y key simultaneously.

xiv

Contents

1. Basic Concepts in ALLBASE/SQL Performance
DBEFile Organization . 1-1
Page Organization . 1-1
Page Table Pages . 1-2
Rows of Data on Pages . 1-2
Structure of a Page . 1-2
Storage of Table Data on DBEFile Pages 1-3
Slot Table . 1-4

Indirect Rows . 1-5
Hash Storage . 1-5
Page Compression . 1-6
Storage of Index Data on DBEFile Pages 1-6
How Indexes are Used . 1-7
How PCRs are Stored . 1-9
Page Splitting . 1-9

Data Bu�ering . 1-10
System Catalog . 1-14
Directory Caching . 1-15

Log File Organization . 1-15
Log Bu�ering . 1-16
No-Log Pages . 1-16

Locking and Latching . 1-17
Locks . 1-17
Latches . 1-17
Pins . 1-18
Sequence of Events in Locking Data 1-18

Sorting . 1-18
Optimization . 1-19
How Optimization is Done . 1-19
Table Size . 1-19
Selectivity . 1-20
Index Size . 1-20
Cluster Count . 1-20

Using GENPLAN . 1-20
Using SETOPT . 1-20

Sections and Validation . 1-21
Section Caching . 1-21
Validation . 1-21

Contents-1

2. Guidelines on Logical and Physical Design
Logical Data Design . 2-1
Normalization Issues . 2-1
Denormalizing Tables that are Consistently Joined 2-2
Horizontal Partitioning . 2-3
Vertical Partitioning . 2-3

Including Calculated Data in Tables 2-4
B-Tree Index Design . 2-4
Choosing Keys . 2-4
Building Indexes on Large Tables 2-5
Maintaining Indexes . 2-6

Clustering Indexes . 2-6
Using Clustering Indexes . 2-7
Monitoring the Cluster Count 2-7
Reclustering a Table . 2-8
Using Hash Structures . 2-8

Choosing Appropriate Index Types 2-9
Updating Statistics . 2-10

Authorization Design . 2-10
Using a Duplicate Database . 2-10

Physical Data Design . 2-11
Creating DBEFileSets . 2-11
Avoiding the SYSTEM DBEFileSet for User Data 2-11
Placing Large Tables in Separate DBEFileSets 2-12
Gathering Small Tables into DBEFileSets 2-12

Creating DBEFiles . 2-13
Avoiding Extra DBEFile Space 2-13

Creating Tables . 2-13
Avoiding NULL and Variable Length Data 2-14
Using INTEGER Rather than SMALLINT Data 2-14

Initial Table Loads . 2-15
Unloading Data . 2-16
Unloading and Reloading to Remove Indirect Rows 2-16
Unloading and Reloading to Remove Over
ow Pages 2-16
Tips on Deletions from Tables . 2-17

3. Guidelines on Query Design
Avoiding Serial Scans Through Query Design 3-1
Arithmetic Expressions . 3-1
Columns from One Table on Both Sides of the Relational Operator 3-2
Data Conversions . 3-2
Predicates with INTEGER = DECIMAL(n,0) Factors 3-4

Using Subqueries . 3-4
When Not to Use DISTINCT in Subqueries 3-6

Using UNION . 3-6
Avoiding Conversions . 3-6
De�ning Indexes for UNION Queries 3-7

Using MIN/MAX Functions in Predicates 3-7
Using OR Predicates . 3-8
How OR Predicates are Optimized 3-8
Choosing an Index for OR Factors 3-8

Contents-2

Using Predicates with LIKE . 3-9
Using Predicates with BETWEEN 3-10
Using Fetch Unique Scans . 3-10
Updating Key Columns . 3-10
Avoiding User Propagation of Filters 3-11
Using TID Scans . 3-11
Using Parallel Serial Scans . 3-12
Using the BULK Option . 3-12
Analyzing Queries with GENPLAN 3-12
Modifying the Access Optimization Plan with SETOPT 3-13

4. Guidelines on Transaction Design
General Tips on Managing Transactions 4-1
Using Short Transactions and Savepoints 4-2

Controlling Locking . 4-2
Using CS, RC, and RU Isolation Levels 4-3
Using Row Level Locking . 4-4
Bene�ts of Row Level Locking . 4-4
Shared Memory Considerations . 4-4
Page Locking on PUBLICROW Tables 4-5

Using KEEP CURSOR . 4-6
Removing Non-Database Processing from Transactions 4-6
Using Procedures and Rules . 4-7
Tuning Performance of Dynamic Statements 4-7
Using Dynamic Parameters . 4-7
Using Semi-Permanent Sections . 4-8

5. Guidelines on System Administration
DBA Guidelines . 5-1
Validating Your Applications Before Run Time 5-1
Developing Application Programs 5-2
Balancing System Load . 5-2
Placing Concurrently Used Objects on Di�erent Drives 5-2

Calculating Shared Memory Allocation 5-3
Choosing a Number of Data Bu�er Pages 5-3
Keeping a Small Group of Pages in Memory 5-4
Basic Example . 5-5
First Threshold for Performance Gain 5-6
Second Threshold for Performance Gain 5-8
Cautions . 5-9
An Empirical Approach . 5-9

Choosing the Size of the Runtime Control Block 5-9
Choosing a Number of Log Bu�er Pages 5-10
Choosing the Number and Size of Log Files 5-10
Nonarchive Log Guidelines . 5-10
Archive Log Guidelines . 5-11

Sorting Operations . 5-11
Creating Temporary Spaces . 5-11
Tips for Using Temporary Spaces 5-12
Disk Space for Sorting . 5-12
Controlling the Use of Temporary Space 5-12

Contents-3

Memory Utilization in Sorting 5-13
Performance Hints for Large Sorts 5-13
Join Methods . 5-13
Temporary Space in the SYSTEM DBEFileSet 5-13
Section Caching and Directory Caching 5-13

Setting Limits for Section Caching 5-14
Using Multiconnect Functionality 5-14
Using Timeouts to Tune Performance 5-14

Network Guidelines . 5-15
HP-UX System Guidelines . 5-15
Using HP-UX Raw Files for DBEFiles and Logs 5-16

6. Getting Started With SQLMON
Introduction . 6-1
Starting SQLMON . 6-1
Leaving SQLMON . 6-2
Specifying the DBEnvironment . 6-2
Invoking SQLMON Screens . 6-3
Leaving an SQLMON Screen . 6-7
Navigating SQLMON Subsystems . 6-7
Setting SQLMON Variables . 6-9
Accessing Online Help . 6-10
Invoking the Help Facility . 6-10
Leaving the Help Facility . 6-10
Issuing Help Commands . 6-10

Creating Batch Reports . 6-12
Overhead Generated by SQLMON 6-12
Monitoring Tasks . 6-13

7. Troubleshooting with SQLMON
Overview Subsystem . 7-1
Transaction Limit Reached . 7-1
Lock Contention . 7-2
Memory Limit Reached . 7-2
High Data Bu�er Miss Rate . 7-3
Log Full Condition . 7-3

IO Subsystem . 7-4
Insu�cient Data Bu�er Space . 7-4
Insu�cient Log Bu�er Space . 7-5

Load Subsystem . 7-7
Transaction Delays . 7-7
Rollbacks . 7-7
Lock Contention . 7-8

Lock Subsystem . 7-9
Lock Waits . 7-9
Overview Session Screen . 7-9
Lock Session Screen . 7-9
Lock Impede Screen . 7-10

Deadlocks . 7-11
Step 1 Open Four Windows . 7-11
Step 2 Set Up the Freeze . 7-11

Contents-4

Step 3 Create a Deadlock . 7-12
Step 4 Examine the Locks with SQLMON 7-13
Step 5 Release the Frozen Session 7-14

Lock Allocation Failures . 7-14
Step 1 Open Three Windows . 7-14
Step 2 Set Up the Freeze . 7-15
Step 3 Generate the Error . 7-15
Step 4 Investigate the Session with SQLMON 7-15
Step 5 Release the Frozen Session 7-16

Freezing DBEnvironment Sessions 7-16
Releasing DBEnvironment Sessions 7-17

SampleIO Subsystem . 7-18
Using the SET SAMPLING Command 7-18
Using the SET DISPLAYSAMPLES Command 7-20
A Sample Batch Job . 7-20
Understanding the Internals of Sampling 7-22

Static Subsystem . 7-23
Full DBEFileSets . 7-23
Poorly Clustered Indexes . 7-23
Indirect Rows . 7-24
Hash Over
ow Pages . 7-24

8. SQLMON Screen Reference
IO Screen . 8-2
IO Data Program Screen . 8-4
IO Data Session Screen . 8-6
IO Log Program Screen . 8-8
IO Log Session Screen . 8-10
Load Screen . 8-12
Load Program Screen . 8-14
Load Session Screen . 8-16
Lock Screen . 8-18
Lock Impede Screen . 8-20
Lock Memory Screen . 8-23
Lock Object Screen . 8-25
Lock Session Screen . 8-28
Lock TabSummary Screen . 8-31
Overview Screen . 8-34
Overview Program Screen . 8-36
Overview Session Screen . 8-38
SampleIO Screen . 8-40
SampleIO Indexes Screen . 8-42
SampleIO Objects Screen . 8-44
SampleIO TabIndex Screen . 8-46
SampleIO Tables Screen . 8-48
Static Screen . 8-50
Static Cluster Screen . 8-51
Static DBEFile Screen . 8-53
Static Hash Screen . 8-55
Static Indirect Screen . 8-57
Static Size Screen . 8-59

Contents-5

9. SQLMON Command Reference
EXIT . 9-2
HELP . 9-3
QUIT . 9-5
SET . 9-6
SET CYCLE . 9-7
SET DBECONNECT . 9-8
SET DBEFILESET . 9-9
SET DBEINITPROG . 9-10
SET DBENVIRONMENT . 9-11
SET DISPLAYSAMPLES . 9-12
SET ECHO . 9-14
SET LOCKFILTER . 9-15
SET LOCKOBJECT . 9-18
SET LOCKTABFILTER . 9-20
SET MENU . 9-21
SET OUTPUT . 9-22
SET REFRESH . 9-24
SET SAMPLING . 9-25
SET SORTIODATA . 9-26
SET SORTIOLOG . 9-27
SET SORTLOAD . 9-28
SET SORTLOCK . 9-29
SET SORTSAMPLEIO . 9-30
SET TOP . 9-31
SET USERTIMEOUT . 9-32
! . 9-33

A. Design for a High-Performance Interactive Table Editor
Example Table . A-1
User Interface . A-1
Internal Algorithms . A-2
SELECT . A-2
DELETE . A-2
UPDATE . A-2

Index

Contents-6

Figures

6-1. SQLMON Road Map . 6-8
7-1. Deadlock Example . 7-12

Tables

6-1. SQLMON Screens . 6-4
6-2. Abbreviated Screen Commands . 6-6
6-3. SQLMON Help Commands . 6-11
6-4. Monitoring Disk Usage . 6-14
6-5. Monitoring Memory Usage . 6-14
6-6. Monitoring Tables . 6-15
6-7. Monitoring Hash Structures . 6-15
6-8. Monitoring Indexes and Referential Constraints 6-16
6-9. Monitoring Transactions . 6-17
6-10. Monitoring Sessions . 6-18
6-11. Monitoring I/O for Data . 6-19
6-12. Monitoring I/O for Logging . 6-19
6-13. Additional Monitoring for Logging 6-19
6-14. Monitoring Locking . 6-20

Contents-7

1

Basic Concepts in ALLBASE/SQL Performance

Before presenting speci�c tips and tricks for tuning your DBEnvironments, this chapter
presents some information about how data is passed about in ALLBASE/SQL among �les,
bu�ers, applications, and other elements in a typical large-scale production environment. The
following topics are included:

DBEFile organization.
Data Bu�ering.
System Catalog.
Log File Organization.
Log Bu�ering.
Locking and Latching.
Sorting.
Optimization.
Sections and Validation.

Before reading on, you may wish to review the material found in the \Physical Design"
chapter of the ALLBASE/SQL Database Administration Guide and the \Concurrency
Control" chapter of the ALLBASE/SQL Reference Manual .

DBEFile Organization

Many performance issues depend on understanding the structure of ALLBASE/SQL
DBEFiles. DBEFiles are disk �les that store data and indexes for both user and system
tables. The following paragraphs outline the structure of DBEFiles and the format of data
they contain.

Page Organization

Data is read from and written to DBEFiles in 4096-byte blocks known as pages. Each page
read from or written to disk constitutes one I/O operation. The number of I/Os for a
given query is an important measure of performance. When you create a DBEFile for the
DBEnvironment, you specify its size as a number of pages, and the size is recorded in the
system catalog.

Basic Concepts in ALLBASE/SQL Performance 1-1

Page Table Pages

The �rst page in a DBEFile is known as a page table page, so called because it contains a
table of the contents of the following 252 pages in the �le. Before each group of 252 data or
index pages, a new page table page is included. Page table pages are composed of entries
that indicate whether the following pages are allocated, full, free, or in some other state.
These pages are accessed during serial scans, and they are modi�ed when data is added to or
dropped from a table.

Page table page entries are 16 bytes long; each page table page contains one entry for each of
the following 252 pages. The page table page also contains a 48-byte header and a 16-byte
trailer at the end for a total of 4096 bytes, as the following diagram shows:

Rows of Data on Pages

Data from tables and indexes is stored on DBEFile pages as rows or tuples. A given page
can store data for only one table or index, though the DBEFile as a whole can contain pages
for many di�erent objects. A DBEFile of type TABLE can only contain data for tables, and
a DBEFile of type INDEX can only contain index data. A DBEFile of type MIXED may
include pages for both tables and indexes. A page table page entry indicates which object has
data stored on that particular page.

Structure of a Page

Understanding how data is arranged on these pages can assist you in deciding how to reduce
the number of I/Os required for particular database operations. Since table data and index
data are stored somewhat di�erently, the two types of storage are presented in separate
sections that follow.

1-2 Basic Concepts in ALLBASE/SQL Performance

Storage of Table Data on DBEFile Pages

Tuples from user tables are stored on DBEFile pages as in the following diagram.

The tuples in a TABLE DBEFile are rows from user tables. The tuple header contains
descriptive information about the columns in a tuple, and the tuple body contains the actual
data.

The format of a tuple header is as follows:

The tuple header contains the following �elds:

Length of the header (2 bytes)
A 2-byte column descriptor for each column in the tuple. Each column descriptor has bits
that indicate the following:
Whether or not the column contains a null value.
Data type of the column.
Byte o�set to the end of the column within the tuple.

The total length of a tuple header is given by the formula:

Length = 2 � (NCols+ 1)

where NCols is the number of columns in the tuple.

At the beginning of the data area on a page, following the page header and before the �rst
tuple on the page, there is a tuple header which contains information about the �rst tuple.
This header is also known as the shared header because it can be shared with other tuples on
the page. For all tuples other than the �rst one, a header is only stored with the tuple body if
it is di�erent from the shared header.

To illustrate the use of the shared header, suppose that a page holds 100 rows of 4 columns
each. In this case, header data requires 10 bytes per tuple. If each header were di�erent from
the shared header, the total space used on the page by all tuple headers would be 1000 bytes.
But if all 100 rows used the same header, then header data would only occupy a total of 10
bytes, leaving more room for tuples.

Basic Concepts in ALLBASE/SQL Performance 1-3

A page with a shared tuple header looks like the following:

A
ag is set in the slot table to indicate whether or not the shared tuple header is used by
a particular row. The slot table is further described below. Each tuple can be uniquely
identi�ed by a tuple ID (TID), which has the following format:

For individual rows, the TID is usually expressed as three numbers separated by colons
(example: 10:5:8), where the �rst number is the DBEFile number; the second is the page
number; and the third is the slot number. Version numbers are not used for identifying rows
of data, but they are used in identifying other objects in the DBEnvironment, such as tables.
The DBEFile number and page number indicate the �le page in which the tuple is found. The
slot number, further described below, indicates an o�set on the page where the row is located.

Slot Table

At the end of the page is a slot table, which contains an entry for each tuple on the page.
When ALLBASE/SQL uses a TID, the slot number found in the last �eld in the TID is an
index into this table. Each slot table entry has the following format:

Each entry is 16 bits long; the �rst four bits are
ags (FL), and the remaining 12 bits are the
byte o�set to the tuple within the page, counting from the beginning of the page. There is
a maximum of 256 entries in a slot table, which means that a maximum of 256 rows can be
stored on a page.

1-4 Basic Concepts in ALLBASE/SQL Performance

Indirect Rows

An indirect row is created when a row's length increases during an update, and the page that
currently holds the row does not have enough space to store the new information. In cases like
this, the updated row is stored on another page, and the original page is updated with the
TID of the new row on the new page. An indirect row can only be accessed by �rst fetching
one page to �nd the address of the row and then fetching a second page to obtain the row
itself.

An indirect row may be created in any of the following circumstances:

A variable length data �eld is updated with a longer value than the one previously stored.
A NULL column is updated to contain a non-null value.
An ALTER TABLE statement adds a column to a table and supplies a default value that
must be added to each row.

To determine the percentage of indirect rows, run SQLMON and examine the TABLE
INDIRECT ROW �eld of the Static Indirect screen.

Hash Storage

Hash structures in ALLBASE/SQL are tables that you de�ne to be hashed according to a
speci�c key at the time you create them. In addition to the key, you specify a number of
primary pages, which become the hashed locations of the data in the DBEFile or DBEFiles
holding the table. Rows are inserted based on the value in the hash key; a row is said to hash
to a speci�c page, which means that the primary page location is calculated from the value of
the key, which must be unique. A search array is maintained on each page. This structure
contains slot numbers in key order. ALLBASE/SQL does a binary search using this array to
arrive at a speci�c row quickly. When a row is inserted, the array is updated.

If there is not enough room for an inserted row on a hash page, the row is placed on an
over
ow page. Over
ow pages are linked to the primary page and to one another using the
NXT and PRV pointers on the page. A large number of over
ow pages means slower access to
data. To avoid this, choose a good hash key with a uniform distribution of values within the
table. Evenly distributed key values result in hashing to an evenly distributed set of pages. A
key with a skewed distribution of values would result in hashing to a skewed set of pages. If
the hash key does not have a uniform distribution, then the time required to access some rows
will be much slower than the time required to access other rows.

Basic Concepts in ALLBASE/SQL Performance 1-5

Except for the search array and the NXT and PRV pointers, the format of a hash data page is
similar to that of an ordinary data DBEFile page, as shown in the following diagram:

To get information about the hash structures of a DBEnvironment, run SQLMON and go to
the Static Hash screen.

Page Compression

When a row of data is inserted on a DBEFile page, it enters the region known as the free area
on the page. The free area is all the space that is marked as available for data. When a row
is deleted, its space does not immediately return to the free area. Thus, additional inserts
following a deletion will �rst �ll up all the space in the free area on the page. If the free area
becomes full at insert or update time, the space left over from deletions is returned to the
page's free area. This process is known as page compression.

Storage of Index Data on DBEFile Pages

Index entries are stored just as data entries are, with the following exceptions:

Index pages are either leaf pages or non-leaf pages.
Leaf pages actually point to rows on DBEFile pages. Each leaf page tuple contains a key
value and the TID of a data row containing that key.
Non-leaf pages contain tuples with key values and pointers to other non-leaf pages or to leaf
pages.

1-6 Basic Concepts in ALLBASE/SQL Performance

A leaf index page for a common type of index looks like the following:

The NXT and PRV �elds point to the next and previous leaf pages in the index. These
pointers make an index scan in key order extremely fast. The shared header describes the
tuple's length and characteristics. The tuple body on an index leaf page has two parts: a key
and a data TID. The key is the actual index key value as it appears in the table, and the data
TID is the address of the row pointed to by this index entry.

To monitor the indexes of a DBEnvironment, run SQLMON and go to the SampleIO Indexes
and Static Cluster screens.

How Indexes are Used

The basic index structure in ALLBASE/SQL is a B-tree or balanced tree. The B-tree consists
of a root page and a number of non-leaf and leaf pages. Typically, the root page points to a
non-leaf page that contains entries for particular ranges of key values, and each non-leaf page
points to still other pages containing entries for progressively narrower ranges of values. The
lowest level in the tree is called the leaf page, which contains pointers to (TIDs of) speci�c
rows in DBEFiles.

Basic Concepts in ALLBASE/SQL Performance 1-7

The following diagram shows how a B-tree provides access to data. After deciding to use a
particular index, ALLBASE/SQL accesses the root page (1). Then it reads non-leaf pages
(2) until it obtains a leaf page (3) which contains the TID of a qualifying row. Finally, it
accesses the data page containing the row (4). Assume that the values of C1 in the following
are percentages between 1 and 100:

1-8 Basic Concepts in ALLBASE/SQL Performance

How PCRs are Stored

A PCR (parent-child relationship) is a special kind of B-tree that supports a referential
relationship between two tables|the parent table and the child table. This kind of index has
entries that point to the rows in the referring table and di�erent entries that point to the rows
in the table referred to. The table referred to must also have a unique index de�ned on it.

In the leaf pages of a PCR, an entry for the parent table (that is, the table referred to)
precedes the entries for child tables (tables referring to the parent). Keys are distinguished by
adding a 0 to the end of a parent key, and a 1 to the end of a child key.

The leaf index page in a PCR would have tuples like the following:

Page Splitting

As rows are inserted into a table, index entries are also inserted into the B-tree. As the pages
of a B-tree �ll up, new branches of the tree are created through a process known as page
splitting. In page splitting, two new index pages are allocated, and the index entries on the
old page are copied to the new pages|half the entries to each new page; then the new entry
is inserted, and the old page is freed for reuse. The process is shown for a typical case in the
following �gure. (1) shows a portion of an index before splitting; (2) shows the index after
splitting.

Basic Concepts in ALLBASE/SQL Performance 1-9

When the key value being inserted is greater than the largest value already in the index or
smaller than the lowest value, page splitting is one-way. This means that only one new page
is allocated, and half the entries from the old page are moved to it, after which the new key
value is added to the new page. In the previous example, an attempt to insert a value of 110
on a full leaf page where the highest value is 100 would result in one-way page splitting.

Data Buffering

ALLBASE/SQL uses a system of bu�ers to provide access to data and index pages by
concurrent transactions. Three sets of bu�ers actually are used:

Operating system bu�ers.
ALLBASE/SQL data bu�er pool, shared by all processes accessing the same
DBEnvironment.
ALLBASE/SQL scan bu�er (or tuple bu�er)|one per user process.

In what follows, the emphasis is on the latter two items, which are components of
ALLBASE/SQL. Because the ALLBASE/SQL data bu�er pool resides in shared memory,
many users can access the same pages in memory. For example, if many users need to access
information from the same system catalog pages, these pages do not need to be read into the
bu�er every time a transaction needs them. Provided there is enough bu�er space, pages
may remain in ALLBASE/SQL shared memory for long periods. A page that has not been

1-10 Basic Concepts in ALLBASE/SQL Performance

modi�ed at all or a page that has been modi�ed and written to disk is considered clean, while
a page that has been modi�ed but not written out to disk is considered dirty.

If there is not enough empty space in the bu�er, dirty pages are swapped out, that is, written
back to disk, and clean pages are overwritten, on the basis of a least recently used (LRU)
algorithm.

As the following �gure shows, pages
ow through the operating system's bu�ers into the
shared ALLBASE/SQL data bu�er. Then individual tuples from data pages are read into
the tuple bu�er associated with an application program. In the �gure, D indicates user data
pages, I indicates user index pages, S indicates system catalog pages. The illustration shows
primarily the movement of data pages, but index pages move in and out of the data bu�er in
the same way.

Basic Concepts in ALLBASE/SQL Performance 1-11

1-12 Basic Concepts in ALLBASE/SQL Performance

From the scan bu�er, the application fetches data into host variables, as in the following:

Individual rows are fetched (or groups of rows are BULK fetched) into host variables or arrays
declared within the application program.

It is important to understand that each layer of bu�ering requires additional copying of data
from one place to another. More signi�cantly for performance, the movement of data from
DBEFiles into the operating system's bu�er pool and back requires I/O. The movement of
pages between the operating system bu�ers and the ALLBASE/SQL data bu�er also may
require additional I/O.

When your applications read large numbers of data pages, they may displace other pages
which are still in the bu�er, though they are not being used. Dirty pages in the bu�er are
swapped to disk, and new pages are read in.

To maximize performance, you should de�ne a large enough data bu�er for your speci�c
queries, and you should attempt to eliminate as much swapping to disk as possible. This topic
is discussed fully in the \System Administration" chapter.

For more information about bu�ering, refer to the chapter on \Concurrency Control through
Locks and Isolation Levels" in the ALLBASE/SQL Reference Manual . To monitor data bu�er
I/O, invoke the IO screen in SQLMON.

Basic Concepts in ALLBASE/SQL Performance 1-13

System Catalog

The system catalog in ALLBASE/SQL is a database of runtime code and system information
used by SQLCore to carry out internal operations. Like other databases, the system catalog
is a set of tables. The base tables underlying SYSTEM views are owned by special user
HPRDBSS, and they are located in the SYSTEM DBEFileSet.

The runtime code in the system catalog consists of stored sections for application programs,
procedures, and views, together with validity information and authorization data. At run
time, code is fetched from the system catalog and stored in the user's memory heap. You can
examine the informational part of the system catalog by doing queries on a set of views owned
by SYSTEM or CATALOG.

The system catalog is accessed in two ways: by user queries and by internal access. When
you perform a query on the system catalog, locks are obtained and released just as in any
other query in your transactions, and subject to the same isolation levels. However, when
ALLBASE/SQL accesses the system catalog internally on your behalf, it uses the Repeatable
Read (RR) isolation level. For example, if you issue the query

SELECT * FROM PurchDB.Parts

at the RU isolation level, no locks are obtained by your transaction on the Parts table.
Internally, ALLBASE/SQL acquires share locks at the RR isolation level on several system
tables as it performs the query. Even though you may have selected RU, ALLBASE/SQL still
reads the system catalog on your behalf at the RR level.

Note The locking of system catalog resources is di�erent for dynamic statements
than it is for statements in preprocessed applications. Consider the following
query:

SELECT * FROM SYSTEM.TABLE

If you issue this query in a preprocessed application at the RU isolation level,
your transaction does not obtain any locks on the SYSTEM.TABLE view
or the base table HPRDBSS.TABLE at run time, provided the section that
incorporates the query is valid. In a dynamic statement (including a query
issued within ISQL), ALLBASE/SQL has to read HPRDBSS.TABLE to
obtain information about SYSTEM.TABLE, so it therefore applies share locks
on your transaction's behalf.

For more information about the locks that are applied on system catalog
resources, refer to the appendix \Locks Held on the System Catalog by SQL
Statements," in the ALLBASE/SQL Database Administration Guide.

What e�ect does internal locking of the system catalog have on performance? If a transaction
is doing data de�nition, it obtains exclusive locks on system tables. This prevents other
system access from taking place until the data de�nition transaction is �nished. You can
prevent data de�nition from taking place and thereby prevent lock waits and deadlocks on
the system catalog by disabling data de�nition. You do this by using the SQLUtil ALTDBE
command to set the DDL Enabled
ag to NO in the DBECon �le.

1-14 Basic Concepts in ALLBASE/SQL Performance

Note Setting the DDL Enabled
ag to NO does not disable section validation, which
obtains exclusive locks on the system catalog.

Directory Caching

When DDL is disabled (DDL Enabled set to NO), certain system catalog information is
cached in shared memory where it is available for quick access.

Log File Organization

The ALLBASE/SQL log is organized as a series of 512-byte pages. Logs are written and
read in page-size blocks. Within ALLBASE/SQL, information that is logged is written out
as a series of log records, which contain enough information to reconstruct the state of the
database that existed before a user's transaction started. In general, only data change (write)
operations are logged, since read operations do not a�ect the structure of the database.
Changes to data, index, and system catalog pages all are logged. A log record may span many
log pages.

A log may be used in archive or nonarchive mode. In nonarchive mode, the log maintains
a record of all data change operations by transactions that were uncommitted at the time
of the last checkpoint; and it maintains a record of all data change operations since the
last checkpoint. In archive mode, the log maintains a record of all data change operations,
whether from committed or uncommitted transactions. Both nonarchive and archive logs
allow transactions to be rolled back. An archive log also allows you to reapply transactions
after restoring a DBEnvironment following a hard crash.

Log records from all concurrent transactions are stored in sequential log records in the log
bu�er. When you issue a COMMIT WORK, when the log bu�er becomes full, or when
a CHECKPOINT statement is issued, the contents of the log bu�er are written to a disk
�le. (Changed data bu�er pages are also written to disk at checkpoint time.) In the case of
nonarchive logging, a checkpoint may make log �le space available for use by new log records.

The log itself consists of one or more �les of di�erent sizes. Initially, a log is con�gured
in the START DBE NEW or START DBE NEWLOG statement as a single or dual
�le. Subsequently, you can add additional �les (two at a time in dual logging) with the
SQLUtil ADDLOG command. Adding log �les allows log switching. When one log �lls up,
ALLBASE/SQL can immediately switch to the next �le with no pause except to close the
�rst �le and open the second. If no �le is available for log switching, and if no space can be
reclaimed with a checkpoint, a LOG FULL condition will occur when the end of the log �le is
reached. LOG FULL causes your transaction to be rolled back.

A directory of log �les is kept in the DBECon �le; you can view this directory by using the
SQLUtil SHOWLOG command. To examine the current capacity of the log �les, invoke the
Overview screen in SQLMON.

Basic Concepts in ALLBASE/SQL Performance 1-15

Log Buffering

For operations involving a change to data, ALLBASE/SQL writes log records to a log
�le, so that these operations can be rolled back if necessary or reapplied in the event of a
system failure. In logging, the transaction enters log records into the log bu�er, which is
periodically
ushed (written to disk). The log bu�er pool consists of a number of 512-byte
pages con�gured with the START DBE statement or with the SQLUtil ALTDBE command.

Regardless of log type, the log bu�er pool is used as the collection point for log records. The
maximum log bu�er size is 1024 pages, but 120 pages is generally recommended. For detailed
information about creating and manipulating log �les, refer to the \Backup and Recovery"
chapter in the ALLBASE/SQL Database Administration Guide. To monitor logging I/O, or to
check the maximum size of the log bu�er, run SQLMON and invoke the IO screen.

No-Log Pages

Some operations that change data in a DBEnvironment allocate new pages for insertion in a
DBEFile. These new pages are often called no-log pages. The use of no-log pages provides
a performance bene�t in non-archive mode. In non-archive mode, no-log pages are not
logged; only a log record is created for the allocation of the page. If the operation must be
rolled back, then the page can simply be de-allocated. If a savepoint is de�ned following the
allocation of a no-log page, the page is marked for logging, since rollback of a no-log page is
an all-or-nothing operation; that is, the page could be deallocated, but not partially un�lled.
Since the content of a no-log page is not logged, the page is forced to disk at COMMIT
WORK time.

No-log pages include the following:

Pages allocated at INSERT time in non-archive logging. When you are inserting rows, your
transaction obtains an exclusive lock on the page being allocated, so other transactions
cannot write on that page. Thus it is possible to log only the allocation of the page, not the
data being inserted by your transaction.

Pages allocated at CREATE INDEX time during non-archive logging.

Pages allocated in a B-tree split during non-archive logging, if your transaction has obtained
an exclusive lock on the table. If you must insert a large number of rows into a table that
already has an index de�ned on it, B-tree index pages will split as they begin to �ll up.
If your transaction has locked the table in exclusive mode, it is only necessary to log the
allocation of new pages in non-archive mode. In the event of a rollback, those pages can
simply be deallocated.

This behavior of no-log pages makes it possible to save considerable logging activity in
non-archive mode for LOAD and INSERT operations that lock the table in exclusive mode.
However, there may be an increase in I/O activity as pages are forced to disk at COMMIT
WORK time.

No-log pages are not created in archive mode. In archive mode, all changes to the
DBEnvironment are logged.

1-16 Basic Concepts in ALLBASE/SQL Performance

Locking and Latching

Concurrent access to database objects, bu�ers, and other shared elements in a
DBEnvironment is regulated by means of three kinds of controls within ALLBASE/SQL:

Locks.
Latches.
Pins.

Locks regulate access to tables, pages, and rows of data when di�erent users contend for
them. Latches regulate system access to in-memory resources such as bu�ers, ensuring that
one bu�er operation is complete before another is allowed to proceed. Pins are used to keep
resources in memory instead of allowing ALLBASE/SQL to swap them out by the LRU (least
recently used) algorithm.

Detailed information about concurrency control, including locking, appears in the chapter
\Concurrency Control through Locks and Isolation Levels" in the ALLBASE/SQL Reference
Manual . To monitor locking activity, run SQLMON and go to the Load and Lock screens.

The following paragraphs highlight some speci�c performance-related issues.

Locks

A lock is a logical object that is created in memory whenever a user or the ALLBASE/SQL
system accesses data at the RC, CS, or RR isolation levels. Physically, a lock is represented
in the ALLBASE/SQL runtime control block as a 92-byte lock control block. Individual
transactions issue lock requests for the speci�c objects that are required for data access.
ALLBASE/SQL then either grants the request or places the transaction on a wait queue,
requiring the transaction to wait until a lock is released.

ALLBASE/SQL maintains a speci�c area in shared memory for deadlock detection. As a
lock request is registered, it is compared with existing locks and with other requests in the
wait queue, and if a deadlock is discovered, the transaction with the lowest priority (highest
priority number as assigned in the BEGIN WORK statement) is rolled back.

Each table, page, or row that is locked receives its own lock control block. For example, if you
are using a large PUBLICROW table and locking individual rows, the transaction may require
the allocation of many separate 92-byte control blocks. Space for control blocks is con�gured
for the DBEnvironment as a whole when you specify a number of runtime control block pages.
ALLBASE/SQL also uses these pages for other types of control blocks, but lock management
is the single largest user of the runtime control block.

Latches

A latch regulates access to a data structure in memory. Latches are generally held for a very
short period of time. An example is a memory-to-memory copy of a data page. While the
copy takes place, it is important that no other transaction is allowed to alter the content of
the data structure. The most commonly latched objects in ALLBASE/SQL are bu�er pages,
though other data structures are also latched. ALLBASE/SQL latches both data and log
pages. For the log bu�er, latching is the only mechanism used to regulate concurrent access.
Log records are not locked.

Like locks, latches are also represented in shared memory as control blocks, but these are not
allocated following a user's request; instead, they are allocated when the DBEnvironment

Basic Concepts in ALLBASE/SQL Performance 1-17

starts up. Latches are more e�cient than locks, because deadlocks are not automatically
detected in latching. Instead, deadlocks are avoided. Unlike locking, latching does not require
the overhead necessary for deadlock detection.

Pins

A pin is similar to a latch, but its purpose is more specialized. A pin freezes a data structure
(such as a page) in ALLBASE/SQL shared memory so that it cannot be overwritten while
it is being read or written by a transaction. Multiple transactions can pin the same data
structure. So long as one pin is still in place, the structure cannot be overwritten. After a
read or write is complete, the data structure is unpinned.

Sequence of Events in Locking Data

Once a lock request is granted, a data page is pinned to a bu�er frame in ALLBASE/SQL
memory, then the page is latched while data is accessed by a transaction. When the access
is complete, the latch is released, and the pin is released. The lock may be released or held,
depending on the kind of lock and the isolation level of the transaction. In the case of updates
and repeatable reads, locks are held until the transaction ends with a COMMIT WORK or
ROLLBACK WORK statement.

Sorting

Allbase/SQL uses sorting in several ways:

When creating an index on a table that contains data.
When processing a query that contains an ORDER BY, DISTINCT, UNION, or GROUP
BY clause.
When processing a join query with the sort/merge join algorithm.

Sorting operations require both disk space and CPU time, so they often raise performance
issues. Space for sorting may be required in temporary �les which can be in the current group
or directory or in TempSpaces you de�ne for the purpose. You can avoid the use of temporary
�les at run time by creating an index on the sort key. In many cases, the index can be used to
carry out the sort.

Space is also needed for the temporary storage of sort output. This space is allocated in
the SYSTEM DBEFileSet, which must have enough TABLE or MIXED DBEFile space to
accomodate each query result.

Performance issues in sorting are discussed in more detail in the section \Sorting Operations"
in the \Guidelines on System Administration" chapter.

1-18 Basic Concepts in ALLBASE/SQL Performance

Optimization

Optimization is the process by which ALLBASE/SQL �nds the most appropriate access
path to data for the execution of a particular SQL statement. An access path is one of the
following ways of getting at data:

Sequential scan|reading the entire table.
Index scan|using a B-tree or PCR to access particular rows or the entire table.
Hash scan|accessing a hash page directly, then �nding the row on that page or on an
over
ow page.
TID scan|accessing a single row directly using its page address or TID.

Usually the most appropriate path is the one requiring the fewest I/O operations needed to
read requested data.

Optimization also includes decisions about join order, join method (nested loop or
sort/merge), and sort operations (indexed or not).

How Optimization is Done

Optimization is primarily done on the basis of elements in the WHERE clause of an SQL
statement. The WHERE clause may contain one or many components, known as factors,
which limit the amount of data that will be manipulated by the statement. Information about
these factors can potentially be used to improve the performance of a query. The following
example has two EQUAL factors:

SELECT * FROM T1 WHERE C1 = 'Jones' AND C2 = 123534

Assume that C1 is de�ned as CHAR(40) NOT NULL and C2 is de�ned as INTEGER NOT
NULL.

To retrieve the data, the query processor must scan the table to retrieve the rows in which C1
is Jones and C2 is 123534. There are several ways of doing this:

Scan the entire table, choosing only the rows that meet both criteria.
Scan the table for rows that satisfy the criterion for C1 and then eliminate the rows that do
not satisfy the criterion for C2.
Scan the table for rows that satisfy the criterion for C2 and then eliminate the rows that do
not satisfy the criterion for C1.

Assuming there are B-tree indexes on both columns, what would the best approach be? In
order to answer this, we need to consider several variables:

Size of the table.
Selectivity of each index.
Index cluster count of each index.
Sizes of the two indexes.

Table Size

If the table occupies only 3 pages in the DBEFile, the most that would be required to access
the data without using an index is 3 I/Os (plus some I/Os to access system information; we
ignore this hereafter). If the index occupies only 2 pages, the same query might need to access
as few as 5 pages, but it could conceivably access many more than this, if the cluster count is
high. There is clearly no advantage in using an index in this case.

Basic Concepts in ALLBASE/SQL Performance 1-19

As the size of the table increases, the use of an index may become more advantageous.
Assume that the table has 10,000 pages, that data is stored in sorted order and that key
values are found on 100 data pages. In this case, 10,000 I/Os would be needed to do the query
with a serial scan. If a B-tree index on the table has 3 levels and if key values are found on
two index leaves and 100 data pages, then only 104 I/Os would be needed for the same query.
The index scan clearly makes sense now.

Selectivity

How can the optimizer tell whether to use a B-tree index on C1 or on C2, assuming that both
exist? Index predicate selectivity and cluster count are the most important factors; the size
of the index and the characteristics of the key also determine the choice. As an example of
selectivity, suppose the index on C1 resulted in the selection of 200 rows, but the index on
C2 resulted in 2000. Other things being equal, the optimizer would select C1 as the index
with the higher selectivity, that is, the index that retrieves the smallest number of rows for its
predicate.

Index Size

An index on C1 would be considerably larger than one on C2. Since key values of C1 are 40
bytes, and key values in C2 are 4 bytes, the B-tree on C1 would be ten times the size of the
B-tree on C2, and the number of I/Os needed to retrieve the same number of key values using
C1 would be ten times the number needed for the index on C2. In this case, if selectivity is
the same, the optimizer would choose C2.

Cluster Count

The cluster count of an index indicates the number of times ALLBASE/SQL has to access a
di�erent data page to retrieve the next row during an index scan. Assume the table is sorted
in the order of keys in C1. In this case, the cluster count for a B-tree on C1 would be equal to
the number of pages on which rows are found. Let's say this is 100 pages for C1. Assume the
same selectivity for C2, but random distribution of key values over the pages of the DBEFile
in which data is stored. Each row retrieved with C2 would require a new I/O, and the cluster
count could be closer to the number of rows in the table. In the present case, C1 is chosen.
Cluster count is described in more detail in the \Guidelines on Logical and Physical Design"
chapter. To monitor the cluster count, run SQLMON and go to the Static Cluster screen.

The optimizer makes all its choices in a similar fashion, weighing the relative cost of each scan
plan and eventually choosing the most appropriate one.

Using GENPLAN

You can observe the result of the optimizer's work by using the SQL GENPLAN statement
followed by a query on the system catalog pseudotable SYSTEM.PLAN. See the \Analyzing
Queries with GENPLAN" section in the \Guidelines on Query Design" chapter for more
information.

Using SETOPT

To override the access plan chosen by the optimizer, use the SETOPT statement. For more
information, See the SETOPT section in the ALLBASE/SQL Reference Manual .

1-20 Basic Concepts in ALLBASE/SQL Performance

Sections and Validation

A section is a stored representation of an access path chosen by the optimizer. Sections are
created by SQLCore when you do the following:

Preprocess an application using the ALLBASE/SQL preprocessors.
Issue a statement in ISQL.
Use dynamic operations in an application. Such operations are built using the PREPARE
and EXECUTE statements.
Issue a CREATE PROCEDURE statement.

Sections are one of three types, depending on how you create them:

Permanent sections, stored in the system catalog.
Semi-permanent sections, deleted from memory after your session ends.
Temporary sections, deleted from memory after your transaction ends.

Permanent sections are stored for non-dynamic statements you include in preprocessed
applications. These sections are located in a system table called HPRDBSS.STOREDSECT,
and their names are listed in the SYSTEM.SECTION view. You cannot access
HPRDBSS.STOREDSECT, since it is an ALLBASE/SQL internal table.

Section Caching

Reading sections into memory from the system catalog at run time can cause a lot of I/O
activity. Section caching allows sections to remain in memory between transactions. By
default, up to 12 sections can be cached. Refer to the \System Administration" chapter for
information about changing these defaults.

Validation

A section becomes invalid when something it depends on is no longer as it was when the
section was originally marked valid. For example, a section containing a query on a particular
table will be marked invalid if an index on that table is dropped, or when the UPDATE
STATISTICS statement is used on the table.

A status of VALID means the section contains an appropriate access path for getting to data;
a status of INVALID means the access path may no longer be appropriate.

When a section becomes invalid, it must be revalidated before it can be used again. SQLCore
attempts to validate application program sections at run time. If a necessary section
cannot be revalidated, an error results. During revalidation, exclusive locks are obtained
on the system catalog base tables HPRDBSS.SECTION, HPRDBSS.STOREDSECT, and
HPRDBSS.DEPENDENCY.

You can use the VALIDATE statement to revalidate sections singly or in groups at any time,
such as after issuing the UPDATE STATISTICS statement. For best performance, issue all
the UPDATE STATISTICS statements �rst, then issue all the VALIDATE statements. This
ensures that you only invalidate and revalidate a section once, even if it is dependent on
several tables.

Basic Concepts in ALLBASE/SQL Performance 1-21

2

Guidelines on Logical and Physical Design

This chapter shows how to adjust the logical and physical design of your databases for best
performance. Additional general information on this subject appears in the \Logical Design"
and \Physical Design" chapters of the ALLBASE/SQL Database Administration Guide. Refer
also to the \Guidelines on System Administration" chapter below.

Logical Data Design

Logical data design concerns normalization of data, followed by the creation of tables, views,
indexes, and authorization schemes. When designing logical objects in ALLBASE/SQL, know
your queries beforehand . The following paragraphs present ways of adjusting your design to
arrive at the best performance for the functionality you need to implement. The following
topics are discussed:

Normalization Issues.
Including Calculated Data in Tables.
B-Tree Index Design.
Clustering Indexes.
Choosing Appropriate Index Types.
Authorization Design.
Using a Duplicate Database.

Normalization Issues

Normalization results in tables with a relatively small number of columns, and a minimum
amount of redundancy within a given table. In general, this yields an e�cient design,
but there are some drawbacks. The following table shows some of the pros and cons of
normalization.

Pros and Cons of Normalization

Normalization Pros Normalization Cons

Less or no data redundancy Relatively larger number of
table accesses (for joins)

Relatively more e�cient use of
storage space

Additional indexes (PCRs)
required to maintain referential
integrity.

Reduced data maintenance,
since you don't need to update
as many occurrences of a value

Increased overhead for
processing more join queries.

Guidelines on Logical and Physical Design 2-1

Here are some tips:

In general, design your tables to be in third normal form so that updates can be carried out
against the smallest number of tuples.

Avoid overnormalization of tables in logical design. If two reasonably static tables are joined
frequently, consider making them into one table.

For example, consider the following two tables in third normal form:

| employee | department | Table A

|___________|______________|

| department | location | Table B

|_____________|________________|

If you have a continual need to �nd the location of the employee, you might consider
combining the two tables. In this case, you will incur extra maintenance if the location of the
department changes, since it now appears in every tuple of Table C:

__

| employee | department | location | Table C

|___________|______________|_______________|

When should you not combine tables, but stick with third normal form? Retain the third
normal form for tables in which you must maintain several rows of data which are fully
dependent on one particular key:

| custno | address | state | zip | phone | Table D

|________|_________|_________|______|_________|

| custno | orderno | orderdate | | Table E

|________|_________|___________|______________|

Since Table E may contain many orders for each customer number, the amount of redundancy
would be unacceptable if you were to include Table D's columns in each row of Table E.

Combining tables can also increase the concurrency between batch processes and on-line
activities, since there is less contention for I/O resources within the system.

Denormalizing Tables that are Consistently Joined

Look for tables that are consistently being joined, and consider combining tables or
duplicating some columns to prevent the need for the join. Considerations:

Not all joins are expensive. If join columns are supported with unique indexes, the cost of
doing a join is not really an issue.

Only consider denormalizing when there is a performance problem that can be attributed to
the join.

Assess the impact of denormalizing on the performance of other processes that use the
tables. Consider how often each process occurs, and tune for the most used processes.

2-2 Guidelines on Logical and Physical Design

Duplicate data wastes storage space and can cause update problems.

Tables that are combined in denormalization should have a 1:1 relationship with each other.
The combining should not result in an excessive row length or an excessive number of
indexes.

Tables should have the fewest indexes possible.

Horizontal Partitioning

Large tables that contain historical data may be good candidates for division into two tables
with the same column de�nition. To identify potential candidates for horizontal partitioning,
review all your queries, looking for table scans with a low number of rows returned. Review
other processes which would be impacted by dividing the table in two. Note especially the
impact on processes which need all rows. Tune for the most critical or most frequently used
processes.

As an example, consider a table containing daily stock prices. If the current year's prices are
the only ones that are accessed frequently in looking up prices, then earlier data can be moved
to a di�erent table. Suppose the table is created as follows:

CREATE PUBLIC TABLE SECURITIES

(NAME CHAR(10),

DATE DATE,

PRICE DECIMAL (6,2))

You can de�ne a di�erent table with the same column de�nition for the historical data:

CREATE PUBLIC TABLE PRE1992

(NAME CHAR(10),

DATE DATE,

PRICE DECIMAL (6,2))

Then use a Type 2 INSERT to transfer the rows:

INSERT INTO PRE1992 SELECT *

FROM SECURITIES

WHERE DATE < '1992-01-01'

Finally, delete the 1992 data from the Securities table:

DELETE FROM SECURITIES
WHERE DATE < '1992-01-01'

Vertical Partitioning

If some columns are infrequently used or if they require special security, consider moving them
to their own table. Be sure to include the primary key values with every partition.

Vertical partitioning will make the rows smaller and more e�cient to process (since there will
be more rows per page). A disadvantage of having more rows per page is the potential of
reducing concurrency because of page level locking. The use of row level locking may help
o�set this disadvantage.

Guidelines on Logical and Physical Design 2-3

Including Calculated Data in Tables

You can include calculated data in tables instead of performing calculations when data is
retrieved. In this case, the overhead of the calculation occurs at INSERT or UPDATE time
rather than at query time. Stored procedures are a useful way of recalculating whenever data
values change. Some calculations can be done using ALLBASE/SQL functions such as SUM,
MIN, AVG, etc.

You can create a view to return the results of a calculation, but this may degrade performance
in some cases. Speci�cally, do not create views that contain aggregate functions or GROUP
BY clauses. For better performance, de�ne the view without aggregates or GROUP BY
clauses and then apply the aggregation and grouping to the SELECT done on the view.

B-Tree Index Design

The use of indexes a�ects performance directly, since an index scan is generally faster than a
serial scan under the following conditions:

When only a small fraction of the rows in a table will be retrieved.

When a large number of rows must be sorted.

Indexes are fast for retrievals, but slow for inserts, deletes, and some updates. You should
consider the following questions when designing indexes:

How often will an index be used in data retrieval? in joins?

How often will an index be used in place of sorting? DBCore sorts data on columns
associated with a GROUP BY, ORDER BY, DISTINCT, or UNION.

How often will there be inserts, updates, or deletes to indexed columns?

If you are using unique or primary key constraints, ALLBASE/SQL automatically creates
unique indexes which can be used for data retrieval. If you are using referential constraints,
ALLBASE/SQL creates a PCR (parent-child relationship), which is an index on the two
tables in the referential relationship. These may be less e�cient than an index you create
yourself.

Choosing Keys

Create indexes on columns that frequently appear in an ORDER BY or a GROUP BY
clause, or in the select list of a SELECT DISTINCT statement.

For frequently performed joins, try to ensure that at least one side of each predicate in
the WHERE clause has an index. For example, if you are joining the SupplyPrice table
with the OrderItems table in the sample DBEnvironment (PartsDBE), you can improve
performance by creating indexes on the common column, VendPartNumber, in both tables.

Create indexes on columns frequently involved in a LIKE predicate. In such cases, be sure
the literal string in the LIKE predicate does not begin with a wildcard character.

Do not create indexes on columns containing YES/NO or other columns that can have only
a few values (for example, day of the week).

Always identify the primary and foreign keys in each entity before creating tables. This
immediately identi�es which indexes to create and which columns to specify as PRIMARY
KEY or FOREIGN KEY columns.

2-4 Guidelines on Logical and Physical Design

INTEGER and CHAR columns are more suitable as index keys than DECIMAL or DATE.
INTEGER keys are best for extremely large tables (gigarows). Order of e�ciency:

INTEGER

FLOAT

CHAR

DECIMAL

DATE

Index keys greater than 20 bytes are not recommended.

Consider creating an index of concatenated keys for WHERE clauses that contain AND's
along with an EQUAL predicate (=).

Create separate indexes on the columns on each side of an OR in a WHERE clause when
the columns are from a single table.

If you use compound indexes, be sure to use at least the �rst column of the compound index
in your WHERE clauses.

Building Indexes on Large Tables

Indexes for large tables require special consideration:

When creating an index for a very large table, be sure there is enough disk space for the
index DBEFiles and for temporary sort space used while building the index. Make sure the
directory has plenty of space, and make sure the index DBEFiles are large enough. See
\Using TempSpaces" in the chapter \Guidelines on System Administration" for information
on creating TempSpaces.

When de�ning multiple indexes on very large tables (more than 3 million rows), use the
following procedure in the speci�ed order:

1. Create DBEFileSet.
2. Create DBEFiles for data (type = TABLE).
3. Create table.
4. Load data into table.
5. Create one DBEFile (type = INDEX) large enough to hold the �rst index plus su�cient

additional space for growth.
6. Create the �rst index.
7. Create one DBEFile to hold the next index.
8. Create the next index.
9. Repeat the previous two steps until all indexes are created.

Since the algorithm used when creating an index uses the last DBEFile de�ned, each index
will now reside in its own DBEFile. (Caution: do not create a TABLE type DBEFile in the
middle of the process of de�ning indexes, since this will cause the search for a DBEFile to
start at the beginning instead of using the last DBEFile de�ned.)

If you use this process, page splits on indexes will point forward in the same DBEFile,
resulting in better performance for inserts (though not for retrievals) on very large tables.

For special applications, indexes can be added or dropped at any time. In these cases,
consider how much data is involved, and estimate the time and resources needed to drop
and recreate.

Guidelines on Logical and Physical Design 2-5

Creating a B-tree index after loading data into the table causes minimal logging. In this
case, key data is sorted and then loaded into index pages without page splitting. The result
is faster index creation and a more compact index than when creating the index before
loading data.

Tables and indexes for which the most I/O is performed should be placed on the fastest
available disk. If a choice must be made, place the index (not the table) on the fastest disk.
Use the SQLUtil MOVEFILE command to place DBEFiles on di�erent devices.

Maintaining Indexes

Periodic review of indexes ensures the greatest e�ciency. Use the following recommendations:

Review all indexes for usage, considering all queries (including ad hoc queries). Drop all
indexes that are not used.

Review available data about process usage, looking for table scans that return only
minimum amounts of data. Consider creating an index.

B-tree indexes grow in depth as rows are inserted; that is, the number of intermediate
levels between root page and leaf page increases. However, as rows are deleted, the depth
of the B-tree does not decrease. If many additions and deletions have been done, consider
dropping and recreating the indexes.

If update time is more critical than retrieval time, consider dropping indexes.

Be sure to keep the number of indexes small on update-intensive tables.

Use SQLMON to monitor index usage. The SampleIO Indexes screen indicates which
indexes are used the most. The Static Size screen displays the size of each index, and the
Static Cluster screen displays an index's cluster count.

Clustering Indexes

Applications which frequently access rows in index order will have better performance if
the rows are physically stored on disk in index order. Performance is better because I/O is
minimized. For example, a query that needs to read all rows that have a certain value will be
faster if all those rows reside on one page, instead of on many pages.

To automatically maintain table data in index order, ALLBASE/SQL allows B-tree indexes
and referential constraints to be de�ned as clustering when they are created. When a
clustering index has been de�ned on a table, rows added to the table are placed physically
near other rows with similar key values whenever there is space available on the page. If space
cannot be found on the desired page, then the next row is inserted onto the �rst page in the
DBEFileSet that has space.

A clustering index does a good job of maintaining index order when the number of insertions
is approximately equal to, or less than, the number of deletions on the table. Under these
conditions, space for a newly inserted row will usually be found on a page having rows with
similar keys. But when the number of insertions is greater than the number of deletions, space
will usually not be found on the desired page for the row. In this case, time and I/O will be
wasted in calculating, locating, and examining the desired page even though the row must be
inserted in some other page in the DBEFileSet. Thus, you pay the price at INSERT time for
the attempt to optimize the placement of the row using a clustering index.

2-6 Guidelines on Logical and Physical Design

If space does not usually exist on table pages, then a clustering index should not be de�ned
on the table, even if your applications frequently access the data in index order. You should
use a non-clustering index instead, and manually maintain the table data in index order. You
do this by monitoring the cluster count of the index, and performing UNLOAD operations
followed by sorting and reloading. This process is explained more full later in this chapter, in
the sections \Monitoring the Cluster Count" and \Reclustering a Table."

Using Clustering Indexes

Consider using a clustering index when accessing a subset of rows with the same key value or
when retrieving a sequential range (including an ORDER BY, GROUP BY, DISTINCT, or
UNION). Note the following:

Clustering indexes are more expensive than non-clustering indexes for inserts and index
column updates.

You can create empty spaces on data pages by adding \dummy" rows during the initial
table load and later deleting them. This process is known as \sparsing" the table.

You may have only one clustering index per table.

If a table rarely has rows deleted from it, and if it frequently has rows added to it, then you
should not de�ne a clustering index. Extra time (and I/O) will be wasted when rows are
inserted in looking for free space for the row.

If you decide to use clustering, sort your data before loading the table. Create the clustering
index after sorting data and loading the table.

Monitoring the Cluster Count

To measure how well clustered a B-tree index is (whether it is de�ned as clustering or
non-clustering), ALLBASE/SQL uses the cluster count value, which is stored in the CCOUNT
�eld of SYSTEM.INDEX or SYSTEM.CONSTRAINTINDEX when you do an UPDATE
STATISTICS. The CCOUNT is the number of data page accesses that were made during the
scan. The CCOUNT is increased by one each time the next row is not stored on the same
page as the last row seen. The same page can be accessed multiple times if the data is not
physically stored in index order. The best case is when the CCOUNT value is equal to the
number of pages in the table. If the CCOUNT is higher than this value, then more I/O than
is minimally necessary might be required for an index scan over the entire table. The worst
case is when the CCOUNT value equals the number of rows in the table.

To monitor the cluster count with SQLMON, invoke the Static Cluster screen and examine
the CCOUNT, TOT ROWS, and UNLOAD/LOAD SUGGESTD �elds.

You can also query the system catalog to examine the cluster count for all B-tree indexes:

SELECT T1.INDEXNAME, T1.OWNER, T1.TABLENAME,

T1.CCOUNT, T2.NROWS, T2.NPAGES

FROM SYSTEM.INDEX T1, SYSTEM.TABLE T2

WHERE T1.OWNER = T2.OWNER

AND T1.TABLENAME = T2.NAME;

Use the following query to examine the cluster count for all unique or referential constraints:

Guidelines on Logical and Physical Design 2-7

SELECT T1.CONSTRAINTNAME, T1.OWNER, T1.TABLENAME,

T1.CCOUNT, T2.NROWS, T2.NPAGES

FROM SYSTEM.CONSTRAINTINDEX T1, SYSTEM.TABLE T2
WHERE T1.OWNER = T2.OWNER

AND T1.TABLENAME = T2.NAME;

You should use this command after doing an UPDATE STATISTICS on the tables of interest
to make sure the cluster count is up-to-date. For indexes used in sorting or for retrieving large
numbers of rows, the cluster count is especially important. A low cluster count may indicate
good performance. Note that a clustering index does not necessarily result in a good cluster
count.

Reclustering a Table

If the UNLOAD/LOAD SUGGESTED value of the SQLMON Static Cluster screen is high, or
if the CCOUNT in SYSTEM.INDEX or SYSTEM.CONSTRAINTINDEX grows to twice the
number of pages in a table, you should recluster the table.

You may be able to improve performance by reclustering the table using the following
procedure:

1. Unload the data from the table using the INTERNAL option. Use a SELECT with an
ORDER BY on the index key so that data is unloaded in sorted order.

2. Drop any referential constraints that exist on other tables referring to the unloaded table.
3. Drop the table. This will also drop all B-tree indexes that have been de�ned on the table.
4. Issue a COMMIT WORK statement. This makes the space occupied by the table and its

related indexes and constraints available for reuse.
5. Issue the CREATE TABLE statement to recreate the table. Do not specify any

constraints.
6. Load the data back into the table using the INTERNAL option.
7. Use the CREATE INDEX statement to recreate the clustering index, or use the ALTER

TABLE statement to ADD a clustering constraint. Note that only one clustering index or
constraint can be de�ned on a given table.

8. Use the ALTER TABLE statement to add any other constraints that should be de�ned
for the table.

9. Recreate any other B-tree indexes or referential constraints that may have been dropped.
10. Do an UPDATE STATISTICS to update the system catalog information about the table

and its indexes and constraints.
11. Issue a COMMIT WORK statement.

Using Hash Structures

For some tables, hashing o�ers better performance than B-tree indexes. Hashing works best
with a fairly uniform distribution of key values, spreading the corresponding rows evenly over
the number of pages available. A key with a skewed distribution will attempt to place all rows
on a correspondingly skewed set of pages. The worst key results in hash values that cluster
tightly in a narrow range of primary pages, leaving others empty.

You must de�ne the hash at the same time you create the table. The hash key must be unique.
Considerations:

Hash retrieval is faster than B-tree retrieval unless there is a bad over
ow situation. The
larger the number of over
ow pages, the slower the access to the average tuple.

You may also de�ne B-tree indexes on a hash table.

2-8 Guidelines on Logical and Physical Design

An insert to a hash structure must perform a separate calculation to arrive at the correct
page for each row of data. An ordinary non-indexed insert must �nd an available page in
the DBEFileSet, and �nding this page may require several I/Os; but once the location for
new inserts is determined, ordinary inserts are less expensive than hash inserts. B-tree
inserts are more expensive than either hash or non-indexed inserts.

You cannot update the hash key column directly; instead, you must delete and re-insert the
row.

You cannot drop a hash index without dropping the table itself.

Smaller rows mean more rows per page, which means less chance for over
ow when several
rows hash to the same page.

The DBEFile or DBEFiles for the hash must be empty at the time you create the table, and
there must be at least enough DBEFile space to hold all primary pages. You should add an
appropriate number of pages (say, 30%) for growth and over
ow. To determine how much
empty space a DBEFile has, run SQLMON and go to the Static DBEFile screen.

Use a prime number for the number of primary pages. An odd number is almost as good.

Single-column integer values provide better hashing than multi-column or character indexes.

You can use hashing to spread rows evenly among the pages of a small table for the greatest
page-level concurrency.

Do not load a hash table in key-sorted order. Doing so may result in a performance penalty.

If the number of over
ow pages grows too large, you can unload and reload the table. See
\Unloading and Reloading to Remove Over
ow Pages" later in this chapter.

Choosing Appropriate Index Types

It is important to consider whether a B-tree index is an appropriate choice for a given table.
The larger the table and the lower the level of update activity, the greater the bene�t of
a B-tree index. A B-tree never hurts a read-only application. Indeed, B-tree indexes are
usually de�ned to improve the read access requirements of an application. B-tree indexes
can, however, degrade the performance of an application that updates the table on which the
B-tree is de�ned because whenever a row is inserted or deleted, the B-tree index must also be
updated. In addition, if the application updates a key column in any row, then the B-tree
index must also be updated.

The needs of the applications that access a table must carefully be considered before a B-tree
index is de�ned on the table. If the mix of transactions involving the table is primarily
read-intensive, then a B-tree index can be de�ned to improve performance. If the mix is
primarily update-intensive, then consider the following:

If rows are frequently inserted and/or deleted, then hashing should probably be used instead
of a B-tree index. Hashed tables do not require a second update, as B-tree indexes do.
However, hashed tables may require more manual maintenance for optimal performance.
Such maintenance may involve occasional unloading and reloading of data.

If updates are made to the key columns in the row, then performance degradation cannot
be avoided: a B-tree index will automatically be updated; and an update on the hash key
requires that the old row be deleted and the new row inserted in two separate operations.
You might consider changing the hash key or index key to a less volatile set of columns if
this is possible.

Guidelines on Logical and Physical Design 2-9

Updating Statistics

In order for the optimizer to make the best choice among available indexes, use the UPDATE
STATISTICS statement on tables after creating indexes and after doing many inserts or
deletes. After updating statistics, use the VALIDATE statement to revalidate any stored
sections that were invalidated by the UPDATE STATISTICS statement. While revalidation
is taking place, performance may be impaired due to obtaining exclusive locks on the system
catalog. To avoid concurrency problems, use the VALIDATE statement after using the
UPDATE STATISTICS statement. Preferably, you should use both statements during periods
of low activity.

Note If you do not update statistics at appropriate times, the optimizer cannot
choose the appropriate access path to data. In order to avoid performance
degradation, be sure your statistics are up-to-date. You can query
SYSTEM.TABLE to determine the time the last UPDATE STATISTICS was
done for a given table. The following example shows the latest US time for
PurchDB.Parts:

SELECT NAME, OWNER, USTIME

FROM SYSTEM.TABLE

WHERE NAME = 'PARTS'

AND OWNER = 'PURCHDB'

Authorization Design

The creation of authorization schemes can also a�ect performance, since ALLBASE/SQL
has to look up authorizations before carrying out speci�c commands. The more complex the
authorization scheme, the more system table pages must be read by the query processor. The
only authorization veri�ed at run time for non-dynamic queries is RUN authority. Therefore,
it helps to keep a simple hierarchy for RUN authorization. In general, user group hierarchies
should be kept simple (one or two levels) unless it is absolutely necessary to use more.
If the user running an application is the owner of the module or has DBA authority, the
authorization check is faster.

The overhead of authorization checking is higher for dynamic queries. This is because the �rst
execution of a dynamic query in a transaction requires the query to be re-authorized. It is
therefore all the more important to keep the authorization hierarchy simple.

In designing authorization schemes, you need to weigh the needs of security and ease of
maintenance against your requirements for performance.

Using a Duplicate Database

To avoid lock contention, some database designers create a main database for updating and a
duplicate or subset database for reporting. Data can be transferred periodically from the main
database to the duplicate in batch mode.

2-10 Guidelines on Logical and Physical Design

Physical Data Design

Physical data design means the arrangement of data inside tables, which reside in DBEFiles,
and the arrangement of DBEFiles in DBEFileSets. This section includes the following topics:

Creating DBEFileSets.
Creating DBEFiles.
Creating Tables.
Initial Table Loads.
Unloading Data.
Unloading and Reloading to Avoid Indirect Rows.
Unloading and Reloading to Remove Over
ow Pages.
Tips on Deletions from Tables.

Additional information relating to physical design is found in the section \Load Balancing" in
the chapter \Guidelines on System Administration." You may also �nd it useful to review the
\Physical Design" chapter in the ALLBASE/SQL Database Administration Guide.

Creating DBEFileSets

DBEFileSets are logical groupings of DBEFiles. DBEFileSets are also the logical home of
tables, which are always created in a particular DBEFileSet. The following guidelines o�er
suggestions on how to distribute tables among DBEFileSets.

Avoiding the SYSTEM DBEFileSet for User Data

Although you can create user-de�ned tables in the SYSTEM DBEFileSet, it is recommended
that you create new DBEFileSets to keep user data separate from system catalog data to
facilitate maintenance and performance tuning. Here are the reasons why:

System catalog data is accessed frequently. If user data is kept in the SYSTEM
DBEFileSet, then the pages used for system data become intermingled with the pages used
for user data. If ALLBASE/SQL needs to access a system page that physically resides near
the end of the DBEFileSet, then it must �rst look through all the page table pages that
come before it. The average time to access a particular system page increases because of the
extra data stored within the DBEFileSet.

Sometimes ALLBASE/SQL uses pages in the SYSTEM DBEFileSet for temporary space.
If this space is not available, processing will terminate in an unsuccessful state. Mixing
user and system data makes it more likely that temporary space will not be available when
needed. See the section \Temporary Space in SYSTEM" in the chapter \Guidelines on
System Administration."

Grouping tables in separate DBEFileSets allows you to identify the space requirements for
particular tables. If you store all tables in the SYSTEM DBEFileSet and the DBEFileSet
runs out of space, it will be di�cult to tell how fast each table is growing. It will also be
harder to determine which table's update or insert operation caused the system to run out
of space.

In particular, you should avoid creating hash structures in the SYSTEM DBEFileSet.

Guidelines on Logical and Physical Design 2-11

Placing Large Tables in Separate DBEFileSets

You should place tables larger than 1000 pages in their own DBEFileSets. When more than
one table is stored in the DBEFileSet, the pages of DBEFiles in the DBEFileSet become a
mixture of pages from the di�erent tables. In doing a sequential scan, if ALLBASE/SQL
needs to access a data page that physically resides near the end of the DBEFileSet, it must
�rst look through all the page table pages that come before it. The average time to access a
data page thus increases because of the extra data stored within the DBEFileSet. The time
increases severely when several large tables are stored in the DBEFileSet. To determine the
size of a DBEFileSet, run SQLMON and go to the Static DBEFile screen.

Maintenance functions such as UPDATE STATISTICS also will take longer if many large
tables are stored in a single DBEFileSet. Therefore, create a separate DBEFileSet for each
table or group of tables that you want to maintain separately.

Gathering Small Tables into DBEFileSets

For smaller tables, there may be a performance advantage in grouping them together into
DBEFiles of 1000 pages or less. When each small table occupies its own DBEFileSet, you can
expect some of the following performance problems:

I/O might increase, for several reasons:

Each page table page has little information on it. More pages would have to be read in
from disk because the data physically resides on more separate pages.

Because each page table page has little information on it, it will not stay in the data
bu�er pool. Pages with more information have more locality of reference and are more
likely to remain in the bu�er pool (thus reducing real I/O).

If the data bu�er pool were large enough, the actual increased I/O might be negligible.

Each DBEFileSet requires at least one DBEFile, which is an actual operating system
�le. Opening a �le to read from it is a slow operation. Putting each table into its own
DBEFileSet increases the number of �les, and therefore increases the average time needed to
access the data in these tables.

Operating systems have limits on the number of �les that can be open simultaneously. To
avoid exceeding the limit, successive close and open �le operations may be required, which
will degrade performance. ALLBASE/SQL imposes its own limit of 50 �les that may be
open simultaneously.

The operating system must search for the correct �le descriptor, which may take longer with
more �les open.

Disk space usage would increase, since many virtually empty page table pages would exist.

When small tables are placed in a single DBEFileSet, disk space is used e�ciently and I/O
is minimized. For example, if you have �fty tables that average 5 pages, they will all �t
comfortably into a single DBEFile and use only one page table page.

2-12 Guidelines on Logical and Physical Design

Creating DBEFiles

DBEFiles are the physical repositories of ALLBASE/SQL data on the operating system. Since
you have great
exibility in de�ning DBEFile types, sizes, and assignment to DBEFileSets,
your choices often a�ect the overall performance of your system. Here are some suggestions
for creating DBEFiles:

Create DBEFiles in sizes that are multiples of 253 pages to minimize the space used by page
table pages. Each 253-page segment contains one page table page plus 252 pages of data
following the page table page.

Create separate TABLE and INDEX DBEFiles, especially for large tables, so that they can
be placed on separate disks to improve I/O performance.

Create a MIXED DBEFile in its own DBEFileSet for a small table (less than 1000 pages)
with a single index. (In this case, data and index rows will be on alternating pages, which
will result in faster processing and better space utilization).

Use dynamic DBEFile expansion to avoid running out of DBEFile space at run time. In
the CREATE DBEFILE statement, specify the initial size, the maximum size, and the
increment size.

Use raw �les to shorten the I/O path length and eliminate operating system bu�ering of
database pages. This feature is appropriate only for large DBEFiles containing large tables
accessed randomly. Standard I/O is more appropriate for small DBEFiles or DBEFiles that
are frequently accessed sequentially.

For information on raw �les, refer to the appendix \Using HP-UX Raw Files for DBEFiles and
Logs" in the ALLBASE/SQL Database Administration Guide.

Avoiding Extra DBEFile Space

When sequential scans are made frequently for queries involving tables in a particular
DBEFileSet, extra space should be minimized. When sequential scans are made, every page
table page in the DBEFileSet is read to determine if pages might qualify for the query. When
a large amount of extra space exists, then extra I/O is required to fetch the page table pages
for empty DBEFile space. One way to minimize the extra space in your DBEFiles is by
specifying dynamic space expansion in the CREATE DBEFILE statement.

Creating Tables

Here are some general suggestions on table creation:

Create PUBLIC and PUBLICROW tables for maximum concurrency. PUBLICREAD can
improve performance by reducing internal page locking. Use PRIVATE for special purposes.
Note that PRIVATE is the default; usually, you want to specify something else.

Choose data types which suit the programming language so as to avoid data conversions.

Native language (NLS) users should be aware that indexes and predicates that use USASCII
(n-computer or C) columns perform faster than indexes and predicates that use native
language columns. If there is a choice, use USASCII for index columns in your tables, create
indexes on USASCII columns, and use USASCII columns in your predicates.

Integer values can be 5 - 15% more e�cient than packed decimal values.

Guidelines on Logical and Physical Design 2-13

When adding a column with ALTER TABLE and adding a default value, every row in the
table is immediately updated to add the new value. This causes all rows to become indirect
rows. It may be better to unload data, drop and recreate the table with the new column
and default, then reload the data.

If a column is to be used consistently in the WHERE clause, it should have an index.

Wherever possible, load data for non-hash tables in sorted order. This is essential for tables
with clustering indexes. If a multi-column index exists, the order of its columns should be
the same as the order of the columns in the load �le. Hash tables should not be loaded in
sorted order.

Consider combining tables that are constantly joined together. It is a good idea to revisit
normalization issues when actually creating tables.

For large tables, place data and indexes on separate disks using the SQLUtil MOVEFILE
command. In general, spread the load of database and log �les over your disks, and keep
data and log �les on separate devices. Refer to the section \Load Balancing" in the
\Guidelines on System Administration" chapter for more information.

Avoiding NULL and Variable Length Data

Avoid NULLs and variable length data types (VARCHAR and VARBINARY) for the
following reasons:

Nulls always require additional CPU to check for null values. Using NOT NULL can save
as much as 5% in CPU because of the overhead of checking for nulls.

Use of NULL and VARCHAR or VARBINARY may cause wasted space due to the
inability to use a shared tuple header. (A separate header must be stored for each tuple
that has a di�erent size.) However, the use of nulls or variable length columns may
actually save space if there are only a few such rows per page. If the di�erence between
the maximum size of the row and average size of data stored in the row is greater than
the size of the header, then use of NULL or variable size columns may be more e�cient.

Updating a NULL, VARCHAR, or VARBINARY column may cause the data to move
to a di�erent page, leaving an indirect tuple behind and increasing the number of I/Os
required to access the data tuple.

You can create a table with default values instead of nulls so that when columns are
updated they will not have to move to another page because of tuple size increase.

Use an appropriate (not an unreasonably long) length for variable length columns. The
maximum length can a�ect the performance of BULK SELECT and cursor operations.

Indexes whose keys will be updated should never include NULL columns as keys, and rarely
should they include VARCHAR or VARBINARY columns. Variable length keys can cause
long index chains and rearranging when index values are updated.

Using INTEGER Rather than SMALLINT Data

Since SQLCore only performs 4-byte arithmetic, all SMALLINT values are automatically
converted to INTEGERs before processing by SQLCore. These conversions do not a�ect the
optimizer's choice of a scan plan, but they may be costly in CPU for very large databases. To
avoid the conversion, consider de�ning your SMALLINT columns as INTEGER columns. The
drawback, of course, is that INTEGERs require twice as much storage space as SMALLINTs.

2-14 Guidelines on Logical and Physical Design

Initial Table Loads

For optimal performance, use the following ISQL commands before starting the load
operation:

SET LOAD_BUFFER

Use this statement to enlarge the load bu�er beyond the default size of 16,384 bytes.

SET AUTOLOCK ON

Avoid lock contention by locking the table in exclusive mode when the load is performed.
For PUBLIC and PUBLICROW tables, locking the table in exclusive mode avoids the
overhead of obtaining locks as pages of data are added to the table. If you are loading a
table that has an index de�ned on it, locking the table in exclusive mode also provides
optimal logging.

SET AUTOCOMMIT ON and SET AUTOSAVE

Together these commands cause the number of rows speci�ed with AUTOSAVE to
be automatically committed when the load bu�er is full. Should the load operation
subsequently fail, you can insert the remaining rows with the LOAD PARTIAL command.

SET SESSION DML ATOMICITY AT ROW LEVEL

Setting the DML atomicity to row level guarantees that savepoints will not be generated
during a load, reducing logging overhead when running in non-archive mode.

SET SESSION UNIQUE, REFERENTIAL, CHECK CONSTRAINTS DEFERRED

By deferring constraints, you avoid problems caused by the order in which dependent values
are inserted into a table when foreign or primary key constraints exist. Constraint checking
is deferred until the end of the load operation.

You may wish to load a table �rst, then add constraints to it using the ALTER TABLE
statement. When the constraint is added, the data in the table is checked for consistency,
and if inconsistent data if found, an error is generated. In this case, it is your responsibility
to remove the inconsistent tuples before attempting to add the constraint.

Deferring constraints and setting atomicity to the row level together have the e�ect of
reducing logging overhead greatly in non-archive mode because of the use of no-log pages.
However, logging is still performed for the allocation of new pages, and the non-archive log
�le must be large enough to include a record for each page.

Additional tips for improving load performance:

For subsequent unload and load operations, use the INTERNAL option of the ISQL
UNLOAD and LOAD commands. LOAD INTERNAL is 3-5 times faster than LOAD
EXTERNAL.

Using archive logging during loading requires additional log �le space, but it actually
requires fewer I/Os than nonarchive logging. However, the saving of I/Os must be weighed
against the time required to back up log �les so they can be reused.

Set the number of log bu�ers to at least 120 while loading.

Set data bu�er pages to 200 to reduce the size of the linked list and the expense of
maintaining it.

Add indexes after data is loaded. For clustering indexes, sort the data before the load.

Guidelines on Logical and Physical Design 2-15

If you wish to use rules tied to INSERT operations, create the rules after loading the
table. Otherwise, the operation of the rule will degrade the performance of the load.
Note, however, that the operation of the rule is not retroactive, so you must ensure the
consistency of your data at the time the rule is created.

Unloading Data

UNLOAD operations are subject to the following performance considerations:

To recluster data to improve the cluster count, unload the table with an ORDER BY clause,
delete all rows from the table, then reload the data in the new sorted order. This process is
described more thoroughly earlier in this chapter under \Reclustering a Table." Also, see
the next item.

For large tables, you can UNLOAD INTERNAL to tape. The tape must be labeled. It is
important to use a blocking factor that is as close to 16K bytes as possible, since ISQL uses
16K byte chunks. If your block size is less than 16K, the unload and load will take longer
and use more tape.

For UNLOAD operations on large amounts of data that you intend to sort, consider
unloading the data �rst and then sorting with an external utility rather than using the
ORDER BY as part of the UNLOAD. In this case, you need to use UNLOAD EXTERNAL.

Unloading and Reloading to Remove Indirect Rows

The existence of indirect rows increases the amount of I/O that must be performed to obtain
data. Indirect rows also consume more disk space, since they frequently are not able to
use the shared tuple header. Therefore, indirect rows should be avoided. Use the following
procedure to remove indirect rows from a table:

1. Unload the data from the table using the INTERNAL option.
2. Drop any referential constraints on other tables that refer to the unloaded table.
3. Drop the table. This will also drop any B-tree indexes that have been de�ned on the table.
4. Issue the CREATE TABLE statement to recreate the table. Do not include constraints.
5. Issue the COMMIT WORK statement to reclaim space.
6. Load the data back into the table using the INTERNAL option.
7. Use the CREATE INDEX statement to recreate any B-tree indexes that may have been

dropped, and use the ALTER TABLE statement to add back constraints (including
referential constraints) that may have been dropped.

8. Do an UPDATE STATISTICS for the table to update system catalog information about
the table and its indexes and constraints.

9. Issue the COMMIT WORK statement.

Unloading and Reloading to Remove Overflow Pages

Since many key values can hash to the same page address, it is possible for a page in a hash
structure to become full. When this happens, a new row must be inserted on an over
ow
page. Over
ow pages increase the amount of I/O that must be performed to obtain table
data. The larger the number of over
ow pages, the slower the average access to any tuple.

Observe the AVGLEN column in SYSTEM.HASH or the AVGOVERFLOW �eld of the
SQLMON Static Hash screen to see the average number of page accesses required to retrieve
a particular row. As the number of over
ow pages increases, so will this number. Increasing

2-16 Guidelines on Logical and Physical Design

the capacity of the table should reduce AVGLEN, and thus improve performance. Use the
following procedure:

1. Unload the data from the table using the INTERNAL option.
2. Drop any referential constraints on other tables that refer to the unloaded table.
3. Drop the table. This will also drop any B-tree indexes that have been de�ned on the

table.
4. Issue a COMMIT WORK statement. This makes the space occupied by the table and its

related indexes and constraints available for reuse.
5. If necessary, create additional TABLE or MIXED DBEFiles and add them to the

DBEFileSet that will contain the rede�ned table.
6. Issue the CREATE TABLE statement, specifying a larger number of primary pages than

when you previously created the table. The CREATE TABLE statement should not
include any constraints.

7. Load the data back into the table using the INTERNAL option.
8. Use the CREATE INDEX statement to recreate any B-tree indexes that may have been

dropped, and use the ALTER TABLE statement to add back constraints (including
referential constraints) that may have been dropped.

9. Issue an UPDATE STATISTICS statement for the table to update system catalog
information about the table and its indexes and constraints.

10. Issue the COMMIT WORK statement.

Tips on Deletions from Tables

When deleting all rows from a table, it is more e�cient to use the TRUNCATE TABLE
statement instead of the DELETE statement. On a large table, the DELETE statement
may cause the log to run out of space, whereas the TRUNCATE TABLE statement incurs
minimal logging.

The performance of the TRUNCATE TABLE statement degrades when the table is hashed.
Dropping the table and recreating it may be faster than using the TRUNCATE TABLE
statement.

If the table speci�ed by the TRUNCATE TABLE statement is included in a referential
constraint, it may be more e�cient to drop the constraint, issue the TRUNCATE TABLE
statement, and readd the constraint.

Guidelines on Logical and Physical Design 2-17

3

Guidelines on Query Design

Careful query design is of primary importance for performance. In most queries, the most
e�cient retrieval of data occurs when an index is used. By default, the ALLBASE/SQL
query optimizer decides whether to use an index or not, and if so, it decides which one to use.
However, you can override the query optimizer's choice with the SETOPT statement. Also,
through careful query design, you can ensure that the optimizer is able to choose an available
index. Topics included in this chapter are as follows:

Avoiding Serial Scans Through Query Design.
Using Subqueries.
Using UNION.
Using MIN/MAX Functions in Predicates.
Using OR Predicates.
Using Predicates with LIKE.
Using Predicates with BETWEEN.
Using Fetch Unique Scans.
Updating Key Columns.
Avoiding User Propagation of Filters.
Using TID Scans.
Using Parallel Serial Scans.
Using the BULK Option.
Analyzing Queries with GENPLAN.
Modifying the Access Optimization Plan with SETOPT

Avoiding Serial Scans Through Query Design

To design e�cient ALLBASE/SQL queries, you should keep in mind the conditions which
force the optimizer to perform serial scans rather than faster index scans. Since certain classes
of predicates cannot be evaluated using an index scan, you should avoid using such predicates
in queries on large tables.

Arithmetic Expressions

An index scan cannot be used to evaluate a predicate that contains an arithmetic expression.
For example, ALLBASE/SQL performs a serial scan for the following query:

Guidelines on Query Design 3-1

SELECT W

FROM T1

WHERE X = Y + Z - W

The following approach avoids the problem by assigning the result of the computation to a
host variable which is then used in the predicate:

HostVar = Y + X - W

SELECT W

FROM T1

WHERE X = :HostVar

Columns from One Table on Both Sides of the Relational Operator

An index scan cannot be used to evaluate a predicate with columns from the same table on
either side of a relational operator. For example, ALLBASE/SQL performs a serial scan for
the following query:

SELECT W

FROM T1

WHERE T1.X = T1.Y

Data Conversions

Conversion takes place in the predicates of queries. For example, in the predicate WHERE
X = Y, a type conversion takes place whenever X and Y are not of the same data type.
In general, you should avoid data type conversion, since it may mean that the optimizer
will choose not to use an index. Avoiding conversions is partly a matter of table design|in
de�ning columns with compatible data types|and partly a matter of query design. Therefore,
it is important to understand the queries that will be used with the database before creating the
tables .

For best results, columns constantly compared in the WHERE clause should be of the same
data type and size; thus DECIMAL types should have the same precision and scale.

You can ensure that the optimizer is able to choose an available index by making sure that
data conversion in your predicates is of an acceptable type, that is, that data types are
compatible. In some cases, conversions are required which may result in the loss of signi�cant
information. In these cases, an index is not used. The following conversions do not result in
the loss of signi�cant information, because the data elements in them are compatible:

1. CHARACTER to CHARACTER or VARCHAR
2. VARCHAR to CHARACTER or VARCHAR
3. INTEGER to DECIMAL(p,s) where (p-s) >= 10
4. INTEGER to FLOAT
5. SMALLINT to INTEGER
6. SMALLINT to DECIMAL(p,s) where (p-s) >= 5
7. SMALLINT to FLOAT
8. DECIMAL to FLOAT
9. DECIMAL(p1,s1) to DECIMAL(p2,s2) where s2 >= s1 and (p2-s2) >= (p1-s1)
10. DATE, TIME, DATETIME, or INTERVAL to CHARACTER or VARCHAR
11. CHARACTER or VARCHAR to DATE, TIME, DATETIME, or INTERVAL

3-2 Guidelines on Query Design

In comparisons that result in conversions from INTEGER or SMALLINT constants or host
variables to DECIMAL, an index may be used if the number of places to the left of the
decimal point in the DECIMAL type (i.e., p-s) can accomodate the largest value yielded
by the INTEGER (or SMALLINT). For example, a SMALLINT value is compatible with
a DECIMAL (10,2), but an INTEGER value is not compatible with a DECIMAL (10,2).
Comparisons that result in conversions between an INTEGER or SMALLINT column and a
DECIMAL expression can only use an index if the following are true:

The DECIMAL scale is 0 and

The DECIMAL precision is

less than 10 for an INTEGER or

less than 5 for a SMALLINT

In the case of DECIMAL �elds, the scale of both DECIMAL elements plays a role in
determining whether or not an index can be used. For example, in converting between two
DECIMAL elements, ALLBASE/SQL does use an index if the scale of the comparison value is
greater than the scale of the column data type.

In the following query, an index can be used because both sides of the conversion are decimal,
and the right side (comparison value) is convertible to the left (column data type) without loss
of signi�cant information:

decimal
(7,2)

SELECT W ---------------------

FROM T1 | x | y | z | w |

WHERE X = 25.0 ---------------------

| | | | |

| | | | |

| | | | |

Table T1

In this example, the left side (p2,s2) is DECIMAL (7,2) and the right side (p1,s1) is (3,1). We
see that s2 is greater than s1 and p2 - s2 (5) is greater than p1 - s1 (2).

To retrieve data from an established database, you might need to compare columns in the
WHERE clause that contain di�erent data types. But there are several ways to help the
optimizer by doing your own data conversion. For example, you can express an INTEGER
constant as a DECIMAL when it is to be compared with a DECIMAL. In the following,
assume that X is decimal:

Instead of SELECT W FROM T1 use SELECT W FROM T1

WHERE X = 25 WHERE X = 25.0

Guidelines on Query Design 3-3

Predicates with INTEGER = DECIMAL(n,0) Factors

Factors of the form Integer = Decimal (n,0) can be optimized by ALLBASE/SQL provided n
is less than or equal to 10. Factors of the form Smallint = Decimal (n,0) can be optimized
provided n is less than or equal to 5. In the following, an index may be chosen, since the
decimal scale is zero and the precision is within the appropriate bounds. Assume that X is an
integer:

SELECT W FROM T1

WHERE X = 45.

Using Subqueries

You can nest queries within the predicates of other queries. This makes it easier to express
complex queries, and it makes it possible to formulate queries in several di�erent ways. Thus
you can create di�erent queries which return the same rows but which do so with vastly
di�erent performance. In the following discussion, queries 1, 2, and 3 are all equivalent.

Most subqueries can also be expressed in an equivalent join form. For example, assuming that
the PartNumber column in PurchDB.Parts is unique, the query:

(1) SELECT * FROM PurchDB.SupplyPrice

WHERE PartNumber IN (SELECT PartNumber from PurchDB.Parts

WHERE PartName = 'Cache Memory Unit')

can also be written:

(2) SELECT PurchDB.SupplyPrice.*

FROM PurchDB.SupplyPrice, PurchDB.Parts

WHERE PurchDB.SupplyPrice.PartNumber = PurchDB.Parts.PartNumber

AND PurchDB.Parts.PartName = 'Cache Memory Unit'

Both queries return the same information. In general, while the subquery is more easily
understood and easier to formulate, the join actually improves performance because it
gives the optimizer more e�cient choices of how to execute the query. There are two types
of subqueries: correlated and non-correlated. A correlated subquery is one in which the
subquery makes reference to one or more columns of an outer query. For example,

(3) SELECT * FROM PurchDB.SupplyPrice

WHERE EXISTS (SELECT PartNumber

FROM PurchDB.Parts

WHERE PartName = 'Cache Memory Unit'

AND PartNumber = PurchDB.SupplyPrice.PartNumber)

This is a correlated subquery, since the subquery makes reference to PartNumber from the
outer query. In this case, the subquery must be executed for each row returned from the
outer query. For the above query, since the SupplyPrice table has 69 rows in it, there must
be one scan on the outer query and 69 scans on the inner query for a total of 70 scans. The
equivalent join shown in query (2) can be executed using a sort/merge technique, which takes
two sorts and two scans.

It should be noted that the predicate WHERE PartNumber IN of query (1) is internally the
same as the predicate WHERE EXISTS in query (3). All quanti�ed predicates involving

3-4 Guidelines on Query Design

subqueries get transformed into EXISTS predicates internally. Therefore the nested query
using the IN predicate also takes 70 scans.

In general, non-correlated subqueries are faster than joins, and correlated subqueries are
slower than joins. You should know whether the subquery will return a single row or not
so as to take advantage of the speed of non-correlated subqueries. Since we know that each
part in the Parts table is unique, there is no reason why we could not express query (1) as
a non-correlated subquery by simply replacing the IN with an equal sign (=). Then the
subquery does not depend on the outer query and the subquery can be executed only once. In
this case, there is one scan for the outer query and one scan for the subquery for a total of two
scans. This is even faster than the sort/merge join since there is no sorting involved.

One exception to the rule that correlated subqueries are slower than an equivalent join is
when the equivalent join involves an aggregate. For example, consider the following query,
which is transformed into a correlated subquery internally by the query processor:

SELECT VendorNumber, PartNumber, DiscountQty

FROM PurchDB.SupplyPrice

WHERE DiscountQty < ALL (SELECT DiscountQty

FROM PurchDB.SupplyPrice

WHERE VendorNumber = 9010)

becomes

SELECT VendorNumber, PartNumber, DiscountQty

FROM PurchDB.SupplyPrice sp1

WHERE NOT EXISTS (SELECT DiscountQty

FROM PurchDB.SupplyPrice sp2

WHERE VendorNumber =9010

AND sp2.DiscountQty <= sp1.DiscountQty)

The equivalent join would require the use of an aggregate, and would therefore be slower:

SELECT sp1.VendorNumber, sp1.PartNumber, sp1.DiscountQty

FROM PurchDB.SupplyPrice sp1, PurchDB.SupplyPrice sp2
WHERE sp2.VendorNumber = 9010

GROUP BY sp1.VendorNumber, sp1.PartNumber, sp1.DiscountQty

HAVING sp1.DiscountQty < MIN(sp2.DiscountQty)

In this case, because of the complexity of the query, the subquery is a better choice than the
join. The best solution, however, is an equivalent non-correlated subquery:

SELECT VendorNumber, PartNumber,

DiscountQty from PurchDB.SupplyPrice

WHERE DiscountQty < (SELECT MIN(DiscountQty)

FROM PurchDB.SupplyPrice

WHERE VendorNumber = 9010)

Guidelines on Query Design 3-5

When Not to Use DISTINCT in Subqueries

In general, you should avoid using the DISTINCT keyword in subqueries. DISTINCT does
not change the query result and, in fact, hinders performance.

The following two queries return the same result:

(4) SELECT * FROM T1 WHERE C1 IN (SELECT DISTINCT C2 FROM T2);

(5) SELECT * FROM T1 WHERE C1 IN (SELECT C2 FROM T2);

ALLBASE/SQL transforms IN predicates and also other quanti�ed predicates where the
subquery can return multiple values to make them similar to an EXISTS predicate. Therefore,
queries (4) and (5) would be transformed to the two following queries:

(6) SELECT * FROM T1 WHERE EXISTS (SELECT DISTINCT C2 FROM T2

WHERE T1.C1 = T2.C2);

(7) SELECT * FROM T1 WHERE EXISTS (SELECT C2 FROM T2

WHERE T1.C1 = T2.C2);

These transformed queries are correlated in nature, meaning that the subquery result depends
on values of the outer query. This means that the subquery needs to be reevaluated for each
row of the outer query. Therefore, the performance of the subquery is critical.

When you use the DISTINCT keyword, the subquery must do a complete scan of the table,
sort the values, eliminate duplicates, and then return TRUE if any rows are returned.
Without the DISTINCT keyword, the subquery can scan until it �nds the �rst qualifying row,
return the row, return TRUE, and then terminate. As you can see, subqueries without the
DISTINCT keyword are faster.

Using UNION

When using UNION in your queries, make sure you avoid data conversions, and be sure to
de�ne indexes on appropriate columns.

Avoiding Conversions

SQLCore checks the data types of each select list in a UNION query, and determines the
result data type. For all select lists that have data types di�erent than the result data type, a
conversion is carried out if the types are compatible. Refer to the description of the SELECT
statement in the \SQL Statements" chapter of the ALLBASE/SQL Reference Manual for a
table showing the kinds of conversions.

3-6 Guidelines on Query Design

The following example requires conversions:

CREATE TABLE T1 (Item CHAR(40), Price SMALLINT)

CREATE TABLE T2 (Item CHAR(40), Price INTEGER)
CREATE TABLE T3 (Item CHAR(40), Price DECIMAL(10,2)

CREATE TABLE T4 (Item CHAR(40), Price FLOAT)

SELECT Item, Price

FROM T1

UNION

SELECT Item, Price

from T2

UNION

SELECT Item, Price

FROM T3

UNION

SELECT Item, Price

FROM T4

Since the result data type in this UNION is FLOAT, sources 1, 2, and 3 require conversion to
FLOAT, which is the largest common denominator type. Now if all columns were of the same
type|for example, FLOAT|no conversions would be required and the performance of such a
query would be faster than the conversion example.

Defining Indexes for UNION Queries

Each source SELECT in a UNION query is optimized individually, and SQLCore tries to pick
the best access method for each source. Therefore, you should create indexes on all sources, if
possible, to maximize performance. The result of the UNION is not optimized.

If you know that there are no duplicate rows generated by the query, or if you do not need to
exclude duplicate rows from the result, the UNION ALL form is faster than UNION, because
it does not sort the query result.

Using MIN/MAX Functions in Predicates

An index scan may be used for a query containing a single MIN() or MAX() function in
the select list if an index exists on the column the function is applied to, and if the function
is applied to the �rst column in the index. The index scan is considered for queries with
or without predicates, including MIN() or MAX() on a join column in a nested loop join,
provided the MIN() or MAX() is applied to a column in the outermost table.

An index scan plan for MIN() or MAX() cannot be considered for queries in which there is
an expression, an ORDER BY or GROUP BY clause, or where tables are joined using the
sort/merge join method.

Guidelines on Query Design 3-7

Using OR Predicates

An index scan may be used for a query that has an OR predicate.

How OR Predicates are Optimized

Most predicates involving OR factors are transformed to conjunctive normal form to make the
choice of an index scan during optimization more likely. In addition, the optimization of OR
predicates involves internally ANDing additional factors to the predicate you supply in order
to eliminate duplicates. Conjunctive normal form expresses a predicate as the conjunction of
factors rather than the disjunction of factors. For example, if a predicate has the following
elements:

(c1=10 AND c2=20) OR (c1=10 AND c3=30)

there are two factors in disjunctive normal form. ALLBASE/SQL transforms the predicate as
follows:

(c1=10 OR c1=10) AND (c2=20 OR c1=10) AND
(c1=10 OR c3=30) AND (c2=20 OR c3=30)

Now there are 4 factors in conjunctive normal form.

The transformation of a predicate into conjunctive normal form increases the number of
factors in the predicate. This can result in exceeding the maximum number of factors
in a predicate (currently 256). You can avoid this problem by writing your predicates in
conjunctive normal form yourself, as in the following:

(c1=10) AND (c2=20 OR c3=30)

The only exception to this rule is a predicate containing OR and BETWEEN, as in the
following:

(c1 BETWEEN 10 AND 20) OR (c2 BETWEEN 30 AND 40)

Each BETWEEN predicate is actually a conjunction of two range predicates:

(c1 >= 10 AND c1 <= 20) OR (c2 >= 30 AND c2 <= 40)

Such a predicate is not in conjunctive normal form. However, in this case, you should not
rewrite the predicate in conjunctive normal form, nor does ALLBASE/SQL transform the
predicate. Both range predicates from a BETWEEN predicate can be used in a single index
scan. Therefore, ALLBASE/SQL can make best use of this predicate when it is in the original
form.

Choosing an Index for OR Factors

For index scan plans to be chosen for an OR factor (for example, c1=10 OR c2=20), the
following conditions must be met:

All columns involved in the OR factor must come from a single table.

Each column involved in the OR factor must have an index de�ned on it.

The OR factor must require no data type conversions that result in the loss of signi�cant
information.

Based on these conditions, here are some suggestions for query and index design:

3-8 Guidelines on Query Design

If a query predicate includes only OR factors (all columns in one OR factor from a single
table), it is a good idea to de�ne a multicolumn index on all columns involved.

If a query predicate includes both OR factors and simple EQUAL factors (for example,
(c1=10 OR c2=20) AND c3=30), the EQUAL factor (c3=30) may yield a cheaper plan
than the OR factor. In such cases, it is a good idea to ensure that there is an index on the
columns involved in the EQUAL factor.

To ensure that no unacceptable data type conversions are required, columns and expressions
being compared in the factors should be of compatible data types. For example, if c1 is a
column of type integer and c2 is a column of type decimal (2,1), the following predicate
would require unacceptable data type conversions, and therefore index scan plans may not
be chosen:

(c1=1.0 OR c2=2.00)

The following predicate would not require any unacceptable data type conversions, and
therefore index scan plans might be chosen:

(c1=1 OR c2=2.0)

Using Predicates with LIKE

An index scan may be used for a query with a LIKE predicate. However, there are situations
in which a table scan is a better choice for good performance. For example, for LIKE pattern
values that start with a wildcard, ALLBASE/SQL needs to scan the whole relation. In this
case, a table scan is usually the optimal scan to use. Here are some suggestions for the use of
LIKE in predicates:

For a multicolumn index to be chosen by the optimizer, the LIKE predicate must be on the
�rst column in the index if only one column is used. For example, a predicate that includes
LIKE C1 might bene�t from an index de�ned on C1,C2 but it would not bene�t from an
index de�ned on C2,C1.

Avoid using a LIKE pattern (value or host variable) that starts with a wildcard, since the
entire table must be scanned in this case.

For a LIKE predicate on a column that contains clustered data, the performance is
improved dramatically when an index is used. Since the data is clustered together, no extra
I/O is needed to search for the next tuple.

Avoid using NOT LIKE, since an index plan is not generated for a NOT LIKE predicate.

For LIKE predicates, an index can only be used if all previous columns in the index have
values supplied in the predicate. For example, if a multicolumn index exists on (C1, C2, C3)
in a table, the following predicate may result in the choice of an index scan:

WHERE C1 = 12 AND C2 = :HostVar AND C3 LIKE 'J%'

However, assuming the same three-column index, the following would not result in the
choice of an index scan:

WHERE C1 = 12 AND C3 LIKE 'J%'

Predicates containing LIKE are only optimized if the language of the column is n-computer.

Guidelines on Query Design 3-9

Using Predicates with BETWEEN

For the BETWEEN clause, the optimizer makes the decision depending on the following
(among other things):

The range of the BETWEEN.
The range of the HIGH and LOW values of the index column(s).

For example, if the range in the BETWEEN predicate is very wide relative to the HIGH
and LOW values stored in the index, the optimizer expects a large number of rows to be
returned and is therefore more likely to choose a serial scan. (Note that the optimizer assumes
a uniform distribution of values.) In the case of BETWEEN predicates with host variables,
the actual range of values cannot be known until run time, so the optimizer uses default
selectivity values.

Using Fetch Unique Scans

Fetch Unique is a special faster kind of index scan method which is automatically used when a
predicate meets the following criteria:

There is exactly one EQUAL factor for each key column.
All factors must be exactly matching with a unique index.
No non-unique index columns occur in the WHERE clause.
The factors in the WHERE clause are ANDed together.
There are no indicator variables in the WHERE clause.
Data retrieval is done with a singleton SELECT, not a cursor. (A singleton operation is one
in which only a single row quali�es.)

Providing a non-cursor SQL SELECT, UPDATE, or DELETE meets these criteria, it uses a
Fetch Unique scan.

Updating Key Columns

Ordinarily, you can update columns with the bene�t of an indexed scan. When you want to
update the key column or columns on which an index is based, the index scan is only be used
in some circumstances. In general, the optimizer chooses an indexed update if there is an
EQUAL predicate, as in the following examples:

UPDATE T1 SET c1 = c1 + 10 WHERE c1 = 20

UPDATE T1 SET c1 = 20 WHERE c1 = 10

However, the optimizer chooses a table scan in updating the key column if the EQUAL
predicate is combined with an OR factor:

UPDATE T1 SET c1 = c1 + 10 WHERE c1 = 10 OR c1 = 20

The optimizer also chooses a table scan in updating the key column if there is anything other
than EQUAL (for example, GREATER THAN) in the predicate involving the index column:

UPDATE T1 SET C1 = C1 + 10 WHERE C1 >= 20

3-10 Guidelines on Query Design

Avoiding User Propagation of Filters

A �lter is an element in a predicate that reduces the size of the query result by eliminating a
category of result rows. Consider the following join query fragment:

... WHERE table1.col1 = table2.col2

AND table1.col1 <= 200

Note that, logically, table2.col2 has to be <= 200 as well; that is, it is subject to the same
�lter as table1.col1. ALLBASE/SQL propagates such �lters from one joined table to the other
joined tables without your explicitly doing so. Thus the above query is translated internally
into:

... WHERE table1.col1 = table2.col2

AND table1.col1 <= 200

AND table2.col2 <= 200

This internal translation is done for all equal-joins on multiple tables. Both range predicates
(<, <=, >, >=) and the equals predicate (=) are propagated. The result is a performance
improvement on equal-joined queries when there are one or more range or equal predicate
�lters on one or more of the tables.

Since the optimizer does not check for duplicates in �lters, you should not explicitly propagate
�lters in writing the queries. If you do, SQLCore processes the same �lter twice. This causes
performance to deteriorate without adding anything signi�cant.

Using TID Scans

When the tuple ID (TID) is known, you can access a particular row without using an index.
Use the TID() function in a SELECT statement to provide TIDs for later use in manipulating
an individual row.

The TID scan provides the fastest possible data access when you need to access a single
row in a singleton SELECT, or in a non-cursor UPDATE or DELETE statement. Cursor
operations do not bene�t from the use of the TID() function.

Guidelines on Query Design 3-11

Using Parallel Serial Scans

When you need to sequentially read a large table, you can improve performance by using a
parallel serial scan. The ALLBASE/SQL optimizer uses a parallel serial scan when it is able
to prefetch pages from multiple disk drives in parallel. A parallel serial scan is useful only for
large tables that must be read sequentially. It is not bene�cial for small tables or for tables
that are accessed only by an index.

To take advantage of a parallel serial scan, the following conditions must be met:

The DBEFileset containing the table must contain multiple DBEFiles.

The DBEFiles containing the table must be placed on separate disk drives. You can specify
the disk drive with the DEVICE clause of the CREATE DBEFILE statement. If the
DBEFile has already been created, you can use the SQLUtil MOVEFILE command.

The DBEFiles cannot be raw because the �le system's prefetching must not be bypassed.

The DBEFiles must not contain pages from other tables or index pages from the same table.
Put other tables in di�erent DBEFilesets. Use separate INDEX and TABLE DBE�les for
the index and data pages of the table.

Using the BULK Option

Using the BULK feature in embedded SQL with the INSERT, SELECT and FETCH
statements can reduce the number of SQLCore calls. Even though it uses a large internal
bu�er to process queries, ALLBASE/SQL makes a separate call to SQLCore for each row in
a simple SELECT or FETCH. If the BULK option is used, ALLBASE/SQL needs a smaller
number of calls to SQLCore, thus reducing overhead. Since BULK operations can be 2 to 10
times faster than their non-BULK counterparts, you should use them wherever possible. Note
that you cannot employ UPDATE WHERE CURRENT or DELETE WHERE CURRENT
statements when using BULK operations.

When using the BULK option, declare an array as close as possible to 12K bytes or a multiple
of 12K bytes, since this is the size of SQLCore's tuple bu�er.

Analyzing Queries with GENPLAN

The GENPLAN statement can be useful in determining the way to write a SELECT,
UPDATE, or DELETE statement for maximum performance. GENPLAN lets you see the
optimizer's access plan for one ALLBASE/SQL statement at a time. Issue the GENPLAN
statement in ISQL, then simply do a SELECT on the temporary table SYSTEM.PLAN within
the same transaction. A knowledgeable user may be able to use this information to formulate
queries di�erently, make other design changes to improve performance, or use the SETOPT
statement to override the optimizer's access plan.

Whenever users have a performance concern about a query, they can use the GENPLAN
statement to generate the access plan for the query and display the plan information by doing
a SELECT on the temporary table SYSTEM.PLAN. By using GENPLAN and SELECT
statements, users can easily investigate the performance question.

3-12 Guidelines on Query Design

Refer to the ALLBASE/SQL Advanced Application Programming Guide chapter, \Analyzing
Queries with GENPLAN," and the ALLBASE/SQL Reference Manual for more information
about the GENPLAN statement.

Modifying the Access Optimization Plan with SETOPT

By default, the ALLBASE/SQL optimizer chooses the access plan for queries. You can specify
the access plan with the SETOPT statement. For example, you can specify the use of either
serial, index, or hash access for a particular statement. See the \SETOPT" section in the
ALLBASE/SQL Reference Manual for more information.

Guidelines on Query Design 3-13

4

Guidelines on Transaction Design

Transaction design is important for performance because it determines the type and duration
of locks held by your applications. By selecting appropriate lock types, and by avoiding
unnecessary locking, you can improve performance. Topics in this chapter include the
following:

General Tips on Managing Transactions.
Controlling Locking.
Using Isolation Levels.
Using Row Level Locking.
Using KEEP CURSOR.
Removing Non-Database Processing.
Using Procedures and Rules.
Tuning Performance of Dynamic Statements.

General Tips on Managing Transactions

Non-cursor SELECT involves less overhead than FETCH with a cursor. Use SELECT or
BULK SELECT if you have a choice.

Use the KEEP CURSOR option with the OPEN statement to permit frequent release
of locks during long cursor operations. A combination of Cursor Stability and KEEP
CURSOR can improve concurrency by letting you scan and update a large table without
holding locks for the duration of the entire scan. (Do not forget to use the COMMIT
WORK statement immediately following an OPEN for a kept cursor.)

Use DML only mode (i.e., DDL Enabled set to NO through SQLUtil) to improve
concurrency on access to system catalog tables.

Try to perform data de�nition in single-user mode as much as possible. Data de�nition
involves such activities as CREATE, DROP, ALTER, UPDATE STATISTICS, GRANT,
and REVOKE. It is advisable to perform these operations outside of a production
application if at all possible, since these operations place exclusive locks on the system
catalog tables. These locks, like all other exclusive locks, are held for the duration of the
transaction, and will reduce concurrency as other users attempt to access the system catalog
tables. For more information on system catalog locks, refer to the appendix, \Locks Held on
the System Catalog," in the ALLBASE/SQL Database Administration Guide.

Guidelines on Transaction Design 4-1

Using Short Transactions and Savepoints

At the end of a transaction, the COMMIT WORK statement makes changes permanent
to disk, which causes I/O. Short transactions free locks and bu�ers more frequently, which
improves concurrency, but they also increase log I/O (the increase is slight, since the use
of group commits in logging dilutes the e�ect of increased log I/O in this case). Longer
transactions minimize I/O, but they hold locks longer and thus reduce concurrency. In
general, you should keep your transactions as short as possible to improve the performance of
the DBEnvironment.

A savepoint, created in a transaction with a SAVEPOINT statement, marks a place you
can roll back to in the transaction, releasing locks that were obtained since you issued the
statement. Savepoints can be used to reduce the number of transactions that must be
resubmitted because part of the transaction was unsuccessful.

Note Whether or not you use savepoints, the entire transaction is rolled back in the
event of a deadlock.

Controlling Locking

ALLBASE/SQL supports a variety of lock granularities, lock types, and isolation levels to
enable a transaction to lock only what is necessary to keep other transactions from interfering
with its work. For a complete general discussion of locking and concurrency issues, refer to the
chapter \Concurrency Control through Locks and Isolation Levels" in the ALLBASE/SQL
Reference Manual . This section concentrates primarily on locks and performance. To monitor
lock activity, run SQLMON and access the screens in the Load and Lock subsystems.

Locking degrades performance in two ways:

A transaction must wait if the object it needs is already locked in an incompatible mode by
some other transaction.

Deadlocks sometimes occur.

An application that is well tuned for performance has a low rate of deadlock and a high
rate of concurrency. In reality, however, a tradeo� is usually necessary. A low deadlock rate
is often achieved by limiting the number of users attempting to obtain a lock by locking
at a coarse level of granularity (for example, the table level rather than the page level).
This strategy tends to increase the wait time for the lock (thereby reducing concurrency).
Conversely, a short wait time for locks is usually achieved by locking at a �ner level of
granularity (for example, the page level rather than the table level). This strategy tends to
increase the number of deadlocks.

When any ALLBASE/SQL statement is executed, page locks are acquired on one or more
system tables (that is, tables owned by the special user HPRDBSS). Page locks and row
locks are also acquired on certain ALLBASE/SQL internal tables (that is, tables owned by
DBCore). You cannot directly change the locking behavior of these tables.

When ALLBASE/SQL statements that reference a user table are executed, row, page, and
table locks of di�erent kinds may be obtained on the table. You can help control what kind of
locks are obtained and how long they are held by one of the following strategies:

4-2 Guidelines on Transaction Design

You can modify the implicit locking structure of the table by changing the table type with
the ALTER TABLE statement.

You can use the LOCK TABLE statement to override the implicit lock mode for a given
transaction.

Instead of RR, you can use the CS (Cursor Stability), RC (Read Committed), and RU
(Read Uncommitted) isolation levels to reduce the duration of certain locks in a transaction.

These strategies can help promote improved concurrency and reduced deadlocks.

Using CS, RC, and RU Isolation Levels

You can improve concurrency by using the Cursor Stability (CS) or Read Committed (RC)
isolation levels with the BEGIN WORK statement. The e�ect of these options is to release
shared locks before the transaction ends, whereas Repeatable Read (RR) holds them until the
end of the current transaction. Read Uncommmitted (RU) promotes still greater concurrency
by not obtaining any locks on user tables for read operations. The greatest bene�t is obtained
with RU if all your applications are using it. This allows a minimum of locking in the system,
and a minimum of waiting for other locks to be released.

Use appropriate isolation levels for the kind of read/write operations you are performing:

Use Cursor Stability for long serial reads with occasional updates. Cursor Stability will
increase concurrency during serial reads. It also improves the throughput for a single writer
waiting on multiple readers. When using Cursor Stability in a transaction, row and page
level READ locks are released behind you as you move through a table.

Use Read Committed for read-only operations in which it is important to access committed
data. Read Committed releases locks as soon as data is read.

Use Read Uncommitted for read-only operations in which it is not important that all the
data you read has been committed. Read Uncommitted does not obtain locks, so it permits
you to read dirty pages, that is, pages that may be in the process of being updated by some
other transaction. RU operations are known as dirty reads.

Users of CS, RC, and RU should be aware of the following:

Regardless of isolation level, write operations (INSERT, UPDATE, DELETE) obtain
exclusive locks, which are not released until the end of the transaction.

Despite the choice of a di�erent isolation level, system catalog pages are still locked at the
RR level. Therefore, deadlocks and lock waits involving system catalog pages are possible if
your applications use DDL (data de�nition language).

All isolation levels work with sorted query results and with Type 2 INSERT statements. For
more information, see the chapter \Concurrency Control Through Locks and Isolation Levels"
in the ALLBASE/SQL Reference Manual . Also see the description of the BEGIN WORK
statement in the \SQL Statements" chapter of the ALLBASE/SQL Reference Manual .

Guidelines on Transaction Design 4-3

Using Row Level Locking

Row level locking provides the �nest level of lock granularity, where only the row that is read
or updated is locked. By locking the row alone, ALLBASE/SQL allows other concurrent
transactions to access other rows on the same page. This is in contrast with page level
locking, where an entire page containing the row is locked, with the result that concurrent
transactions accessing the same page must wait until the lock is released.

You enable row level locking for a speci�c table by de�ning the table to be of type
PUBLICROW in the CREATE TABLE statement. For PUBLICROW tables,
ALLBASE/SQL uses row rather than page level locking. A table may also be changed to
PUBLICROW by using the ALTER TABLE statement, as in the following example:

ALTER TABLE PurchDB.Parts SET TYPE = PUBLICROW

Benefits of Row Level Locking

In general, row level locking can be used to reduce or eliminate the frequency and length of
lock waits on hot spots. Hot spots are data storage areas, such as pages, that are accessed
frequently by concurrent transactions. By locking at a �ner level of granularity, the overall
throughput of the system can be increased by reducing lock waits.

Small tables are good candidates for row level locking. This is especially true if the row
size is small, and many rows �t on the same page, and if the table is frequently accessed by
concurrent transactions.

Large tables with hot spots may also be good candidates for row level locking. An example
is a history table in which small portions of the table, such as the most recent history, are
read and updated frequently by concurrent transactions, even though most of rest of the table
remains untouched. In such cases, use row level locking with caution, especially if the table
may be used by some transactions in serial scans.

Hot spots that develop at either end of an index are not alleviated by row level locking. This
situation can arise if there is a series of inserts or deletes of keys at either end by concurrent
transactions. For example, problems can occur on inserting successive rows containing
CURRENT DATETIME into a table with an index on the DATETIME column. Hot spots
arise because key inserts and deletes lock the data pointed to by the neighbor index entry to
enforce repeatable read and constraints.

Shared Memory Considerations

A locked table, page, or row is represented in shared memory by means of a lock object.
Lock objects are stored in lock control blocks in shared memory. The greater the number
of lock objects, the more control blocks are required in shared memory. If a page is locked,
then all rows on the page are implicitly locked. In this case, only one lock object is needed
to represent the lock in memory. However, if rows are locked in a page, then a separate lock
object is needed for every row on the page.

Use row level locking carefully. In allocating a row level lock, ALLBASE/SQL will place an
intention lock on the table, another intention lock on the page, and the requested lock on the
row. Thus row locking uses more CPU than table or page level locking and is less e�cient.
Row locking also generally uses more runtime control block pages than page and table locking.
For these reasons, you should avoid using row level locking if the entire table will be scanned
using an index.

4-4 Guidelines on Transaction Design

As an example, consider a table having 100 pages containing 100 rows each. A scan of the
whole table will acquire 100*100 row locks for row locking, in addition to 100 intention locks
on the pages and an intention lock on the table, for a total of 10,101 lock objects. With page
level locking, the total is only 101 lock objects.

A table that is a good candidate for row level locking is one in which the following are true:

Rows are small. If each row takes up a page, then page level locking has about the same
e�ect as row level locking, but page level locking is more e�cient.

There will be concurrent write operations or concurrent read and write operations. If
there will only be concurrent read operations, then the table should be PUBLICREAD. If
only one transaction will access the table at a time, then the table should be PRIVATE or
PUBLICREAD.

A relatively small number of rows will be locked. This is true in the following cases:

The number of rows in the table is small.

The number of rows in the table is large, but all transactions are trying to access the
same small number of rows.

The overall table size is small compared to the number of concurrent transactions that
are expected to access the table. High concurrency becomes more critical when more
transactions are trying to access the same data.

If a large number of rows will be locked, then more shared memory and CPU will be
required to manipulate the lock objects than with page level locking.

As an example, if 240 concurrent transactions randomly access a table which contains 20
pages and if each page contains 200 tuples, then the table is a good candidate for row level
locking. If the table contained only one tuple per page, or if only read operations were
expected, or if the table were 20,000 pages in size, then the table would not be a good
candidate for row level locking.

Page Locking on PUBLICROW Tables

Sometimes during updates, ALLBASE/SQL needs to acquire locks on pages instead of rows
even if the table is a PUBLICROW table. The following are examples:

When a new page must be allocated before inserting a new row.

When a page must be deallocated after deleting the last tuple on a page.

When a page must be compressed to reclaim freed space.

Page locks are also acquired when the transaction is performing a serial scan on the table at
the Repeatable Read (RR) isolation level.

Guidelines on Transaction Design 4-5

Using KEEP CURSOR

After you specify KEEP CURSOR in an OPEN statement, a COMMIT WORK does not close
the cursor, as it normally does. Instead, COMMIT WORK keeps the cursor open and begins
a new transaction while maintaining the cursor position. This makes it possible to update
tuples in a large active set, releasing locks as the cursor moves from page to page, instead of
requiring you to reopen and manually reposition the cursor before the next FETCH.

Locks on the page of data corresponding to the current cursor position are either held (the
default) or released, depending on whether you specify WITH LOCKS or WITH NOLOCKS.
The KEEP CURSOR option retains the current isolation level (RR, CS, or RC) that
you have speci�ed in the BEGIN WORK statement. Moreover, the exact pattern of lock
retention and release for cursors opened using KEEP CURSOR WITH LOCKS depends on
the current isolation level. With the RC and RU isolation levels, no locks are maintained
across transactions because locks are released at the end of the FETCH. Therefore, KEEP
CURSOR WITH LOCKS has no e�ect on locks at the RC or RU isolation levels. Also, the
WITH LOCKS option releases exclusive (X) locks on user tables at COMMIT WORK time
in transactions using RC and RU. Remember that system catalog tables are locked at the RR
isolation level; exclusive locks on these tables are retained until the CLOSE cursor statement
that is immediately followed by a COMMIT WORK. For more information and examples,
refer to the chapter \Processing with Cursors" in the appropriate ALLBASE/SQL Application
Programming Guide.

Removing Non-Database Processing from Transactions

Transactions a�ect performance because they hold locks until they are terminated with a
COMMIT WORK or ROLLBACK WORK statement. If the transaction contains processing
that could actually be performed outside the transaction, this processing takes time, which
means that locks may be held longer than needed, which reduces concurrency and degrades
performance. Such extra processing should be removed from the transaction.

Whenever possible, avoid holding locks around terminal reads. As a general rule, all
user input should be retrieved before the start of the transaction. This helps to keep the
transaction as short in duration as possible, and it has the following advantages:

Locks are not held around user prompts, thus avoiding application \hangs."

The result of the transaction can be viewed and used by other users sooner, thus improving
throughput.

When user input must be accepted during a transaction, you can use ALLBASE/SQL features
that help avoid excessive locking. In cursor operations, you can use KEEP CURSOR WITH
NOLOCKS when reading data. For cursor or non-cursor operations, you can use the RC
or RU isolation level. When using these options, you can use the REFETCH statement to
acquire locks and revalidate data before updating tuples.

4-6 Guidelines on Transaction Design

Using Procedures and Rules

Stored procedures, used independently or invoked by rules, can improve performance in the
DBEnvironment. For applications that access a local DBEnvironment, combining multiple
SQL statements and logic in a stored procedure can improve performance by reducing the
overhead of multiple calls to SQLCore.

For applications that operate on a remote DBEnvironment or in a client/server environment,
each call to SQLCore must travel across the network. In this environment, the use of stored
procedures can dramatically reduce network tra�c and thus improve performance.

It is generally better to place conditions in the FiringCondition of a rule rather than including
them as conditional statements within the procedure invoked by the rule, to minimize
the overhead of procedure execution. The speci�cation of a FiringCondition minimizes
overhead by avoiding unnecessary procedure calls. For each row a�ected by the statement,
the FiringCondition is tested, and the procedure is invoked only when the FiringCondition is
satis�ed. Thus, the speci�cation of a FiringCondition can improve the performance of data
manipulation operations on the table on which the rule is de�ned.

Since a procedure executed by a rule may itself execute statements that �re rules, the
developer should carefully analyze the relationships among rules and the procedures invoked
by rules to ensure that the performance implications on data manipulation statements that
�re a chain of rules are well understood.

Tuning Performance of Dynamic Statements

A given ALLBASE/SQL statement can be processed either statically or dynamically. At
run time, a dynamic statement must be preprocessed before executing; therefore, a static
section may o�er better performance. However, dynamic processing is often desirable for
reasons of portability or
exibility. (For a comparison of the two types of statements, see
the \Comparing Static and Dynamic Statements" section of the ALLBASE/SQL Advanced
Application Programming Guide.)

When your application must execute a dynamic statement more than once, you can achieve
improved performance by using dynamic parameters or semi-permanent sections.

Using Dynamic Parameters

When your application uses dynamic processing, parameter substitution o�ers added
exibility
and improved performance. Although you can use this technique in any dynamic processing
application involving prepared sections, it could be most useful for applications where the
same SQL statement type must be re-executed multiple times using a di�erent set of actual
parameter values each time.

A statement containing dynamic parameters must be dynamically preprocessed at run time
by using the PREPARE statement. The dynamic section created by PREPARE can then be
executed as many times as required with the option of assigning a di�erent set of dynamic
parameter values for each execution without the overhead of preprocessing each time input
values change.

Guidelines on Transaction Design 4-7

For example, the following UPDATE statement specifying two dynamic parameters could
be put into either a string or a host variable (in this case a string) in your program, then
prepared and executed:

PREPARE Cmd FROM

'UPDATE PurchDB.Parts SET SalesPrice = ? WHERE PartNumber = ?;'

Execute the dynamic command using host variables

to provide dynamic parameter values:

EXECUTE Cmd USING :SalesPrice, :PartNumber

You could now loop back to provide di�erent values

for SalesPrice and PartNumber. Note that the dynamic

command does not have to be prepared again.

When your application will be inserting multiple rows of data, you might be able to use a
BULK INSERT statement containing dynamic parameters to provide e�cient performance.

The chapter \Using Parameter Substitution in Dynamic Statements" in the ALLBASE/SQL
Advanced Application Programming Guide contains further information including detailed code
examples.

Using Semi-Permanent Sections

Semi-permanent sections improve performance when your application executes dynamic
queries more than once. Unlike temporary sections, semi-permanent sections are retained
in memory when the current transaction ends. Semi-permanent sections are deleted from
memory only when the DBEnvironment session ends. Semi-permanent sections, like
temporary sections, are not stored in the DBEnvironment. When using semi-permanent
sections, set the Authorize Once per Session
ag to ON with the SQLUtil ALTDBE
command:

>> ALTDBE

DBEnvironment Name: PartsDBE

.

.

.

Authorize Once per Session (on/off) (opt):on

Alter DBEnvironment Startup Parameters (y/n)?y

>>

To make a section semi-permanent, include the REPEAT clause in the PREPARE statement.
In the following example, the section containing the UPDATE statement is semi-permanent:

PREPARE REPEAT Cmd FROM

'UPDATE PurchDB.Parts SET SalesPrice = 100.00 WHERE PartNumber = ''1124-P-02'''

4-8 Guidelines on Transaction Design

5

Guidelines on System Administration

System administration includes both DBA functions for ALLBASE/SQL and system
administrator functions for HP-UX. Careful coordination between these roles is important in
performance tuning. This chapter includes information on

DBA guidelines
Network guidelines
HP-UX system guidelines

DBA Guidelines

Several aspects of database administration a�ect performance. To improve performance in
these areas, you need DBA authority.

Validating Your Applications Before Run Time

When you run an application, ALLBASE/SQL �rst checks each section for validity before
executing it. Then, ALLBASE/SQL revalidates invalid sections (if possible) before executing
them.

You may notice a slight delay as the sections are being revalidated. Revalidating sections can
reduce concurrency, because it involves updating system catalog tables. For each update,
ALLBASE/SQL must obtain an exclusive page lock on the system catalog tables. The locks
are retained until the transaction is committed.

To improve performance, you can revalidate your applications before run time by either:

Preprocessing the program again.

Using the VALIDATE statement on the a�ected sections. For the complete syntax of the
VALIDATE statement, refer to the ALLBASE/SQL Reference Manual .

You should also be careful when you use the UPDATE STATISTICS statement, because it
invalidates sections. For best performance, after the initial statistics for a table have been
established, use UPDATE STATISTICS only during periods of low DBEnvironment activity.
Then, after you use UPDATE STATISTICS, use VALIDATE to revalidate modules and
procedures.

You may want to use VALIDATE after executing an UPDATE STATISTICS statement
or any DDL statement, since these statements invalidate stored sections. If you issue such
statements during a period of low activity for the DBEnvironment (at night, for example), the
DBEnvironment experiences minimal performance degradation.

Guidelines on System Administration 5-1

Developing Application Programs

The following tips relate to preprocessing of application programs:

Use separate development and production DBEnvironments, because during development,
frequent re-preprocessing of applications locks system catalog pages for extended periods.
You can later use the ISQL INSTALL command to move �nished modules into your
production DBEnvironments. The INSTALL command locks the same system catalog pages
as the preprocessor, but it only does so a single time.

Avoid using DDL when running in multiuser mode, since DDL places exclusive locks on
system catalog resources and can reduce throughput signi�cantly. (DDL includes the
UPDATE STATISTICS and CREATE INDEX statements, among other statements.) You
can also restrict DDL to single-user applications that run during o�-peak hours. When you
are not using DDL, you can set the DDL Enabled
ag to NO to achieve signi�cantly higher
throughput in a multiuser environment.

Use section caching. Note that the �rst connect to a DBEnvironment is slower when DDL is
disabled, since extra caching is being done. See the section \Section Caching and Directory
Caching" in this chapter for more information.

Use the TERMINATE USER statement to abort a user program or ISQL session, if
necessary. DBCore does a set critical while accessing the DBEnvironment, and it only
allows a program to abort at certain strategic points. If DBCore is �lling the tuple bu�er, it
completes this operation before allowing a break. TERMINATE USER allows the program
to abort immediately.

Balancing System Load

Balancing system load is an e�ort to spread out I/O in your system among the available
disk devices for the most e�cient operation. Large systems can bene�t signi�cantly from an
analysis of system load, followed by reallocating the DBEFiles for speci�c DBEFileSets or
within a DBEFileSet. In general, the DBEFiles on which the most I/O is performed should be
stored on the fastest devices available.

For best performance, separate data DBEFiles, index DBEFiles, and log �les across the
available disks on your system. Speci�cally, make sure to:

Store log �les on separate devices from data DBEFiles to improve performance and ensure
against a possible head crash. For the same reason, store dual log �les on di�erent devices.

Move DBEFiles to di�erent devices with the SQLUtil MOVEFILE command (for DBEFiles)
and the SQLUtil MOVELOG command (for log �les).

Separate index DBEFiles on large tables from their data DBEFiles. You can use the
SQLUtil MOVEFILE command to move the index DBEFile. For small tables, this
technique probably yields a less noticeable performance gain.

Placing Concurrently Used Objects on Different Drives

If two database objects are used concurrently, you should store them on di�erent disk drives
to minimize disk head contention.

This includes any two tables that show I/O at the same time, any two B-tree indexes that
show I/O at the same time, or a table that shows I/O at the same time as the B-tree index
de�ned on it. To monitor I/O, run SQLMON and access the SampleIO subsystem. When you

5-2 Guidelines on System Administration

access objects simultaneously, the disk heads may move back and forth between the objects.
This movement slows access to data. To avoid this problem, use the SQLUtil MOVEFILE
command to place the competing objects on di�erent drives.

Remember that the mapping of database objects to DBEFiles is not one-to-one, and that
MOVEFILE moves DBEFiles, not DBEFileSets. In order to achieve the goal of placing
di�erent objects on di�erent drives, you must ensure that they are in di�erent DBEFiles.
Therefore, it is useful to create separate INDEX and TABLE DBEFiles, and to de�ne a
di�erent DBEFileSet for each table or index that may need to be separate from other objects.

Calculating Shared Memory Allocation

As you adjust the various con�gurable parameters in ALLBASE/SQL, be sure you do not
exceed the amount of shared memory available on your system. You can use the following
formula to derive an approximate �gure (in kilobytes) for the total shared memory used:

SM = (4.2*DBP) + (0.5*LBP) + (0.16*NTXN) + (4.1*CBP)

where

SM = Total Shared Memory in kilobytes

DBP = Data Buffer Pages [15 - the limit of shared memory]

LBP = LogBufferPages [24-1024; default 24]

NTXN = Number of Concurrent Transactions [No limit]

CBP = Control Block Pages [17-800; default 37]

The result of this equation must be within the amount of shared memory you have available.
This equation also gives an idea of the relative e�ect of changing di�erent parameters on the
total shared memory size.

For the default parameters, you can use

SM = 4.2*DBP + 164

And for the maximum parameters, you can use

SM = 4.2*DBP + 3830

These equations will help you arrive at a �rst approximation of the amount of shared memory
that has been used.

Choosing a Number of Data Buffer Pages

Data bu�ers are used to cache data pages touched by ALLBASE/SQL. Up to the limit
of bu�er space, a data page is retained in memory until the space it occupies is needed
for another page that is on disk. You can set the number of data bu�er pages your
DBEnvironment uses. The minimum number of data bu�er pages is 15, and the default
number is 100. The maximum is determined by the amount of shared memory available. How
many data bu�er pages should you allocate? There is no explicit equation to �nd the ideal
bu�er pool size. The following general suggestions may help, though this is not an exhaustive
list:

Total shared memory should not exceed free real memory available on the system. Available
real memory can be determined only at run time, since it depends on the total number of
processes on the system and on the type of application programs running on the system.
The DBA may be able to make estimates. Excessive shared memory causes page faults.

Guidelines on System Administration 5-3

You never get a performance bene�t by de�ning more page space than stays in real
memory. If the data bu�ers force paging of virtual space, having too many bu�ers degrades
performance. Shared memory only holds bu�ers temporarily, since real bu�ering occurs
in the operating system. Try to use a large bu�er pool within the limits of the �rst two
suggestions. However, a larger pool usually slows down checkpoints if the fraction of dirty
pages remains the same. There is a trade-o� between checkpoint time and response time.

When possible, the bu�er pool should accomodate all pages that are accessed frequently. If
a small table or index is frequently accessed, then the bu�er pool should accomodate all its
pages, if possible.

If users are accessing a table without much locality of reference (that is, with almost
random access) and if the total size of the table is much larger than any practical bu�er
pool size, then increasing the size of the bu�er pool is not helpful. For example, if a table
is 100 MBytes large, then a 2000-page bu�er pool does not work much better than a
1000-page pool.

When there is a high hit ratio, increasing the number of bu�er pages can help performance.
For example, if the table has a 2000-page index that is used frequently, then a 2000-page
bu�er pool performs better than a 1000-page pool.

When should you increase the number of bu�er pages? If the set of applications does not have
locality of data and index pages, it may not matter how many data bu�ers there are. Once
you have enough data bu�er pages, performance is not very sensitive to adding more.

Keeping a Small Group of Pages in Memory

How do you keep a small, frequently used group of pages in memory consistently? The trick is
to cause other pages to be swapped out �rst. ALLBASE/SQL employs a least recently used
(LRU) algorithm to discard older pages and make room for new pages. To keep a special
group of pages in memory, you must have other pages in memory as well that can age past
the pages in the special group. If you use a large enough number of pages outside the special
group, each page will age to the point of being least recently used before any of the special
group is swapped out.

Use the following suggestions to determine how many data bu�er pages is enough:

Examine the performance-crucial transactions. (Usually there are only a few that are
sensitive or dominate performance). Look at the tables that are used in these transactions.

INSERT actions tend to cluster at the end of a table, so if there is insert activity, add a
bu�er page for each active user (that is, the instantaneously active count).

If a table or index is small enough to �t in real memory and is heavily accessed, add the
number of pages in the table or index.

If an index is large, but the number of high level index pages is small and the table is
heavily accessed, add a number of pages corresponding to the number of index levels
above the leaf level.

If a table is too big to �t in real memory and the access is random, add a bu�er page for
aging for each transaction before the small table is accessed. This allows for LRU.

Estimate the table access pattern in your transactions. If small tables are accessed in 50%
of them or more, you should gain by having a large enough bu�er pool to hold the small
tables.

5-4 Guidelines on System Administration

The right number of bu�ers is approximately the number needed to hold the small tables
and the aged pages of the large tables.

Basic Example

For this example, assume that a sample application

updates a small table
updates a large table
inserts to a third table

Assume that the tables for the sample occupy the following space in DBEFiles:

The small table and its index use 50 pages: one root index page, 10 leaf index pages, and 39
data pages.
The large table uses 50,000 pages: one root index page, 100 second-level index pages, 11,899
leaf index pages, and 38,000 data pages.

Also assume that:

Each insert into the third table requires 40 bytes, and the pages of the third table �ll up
about every 100 transactions.
There are about 10 active transactions in the database at any instant.

At a given instant, the bu�er pool looks like this:

Source Oper-
ation

Pages Already
In Data Bu�er

Pages Requiring
Physical I/O

Small table Update 11 (index root and leaf)

10 (data) 40

Large table Update 1 (index root)

10 (second-level index pages active
per transaction)

100 (total index second-level
pages)

10 (leaf pages active per
transaction)

12,000 (total index leaf pages)

10 (data pages active per
transaction)

50,000 (total data pages)

Third table Insert 10 (data pages active per
transaction)

Total in cache 62

Guidelines on System Administration 5-5

Based on the numbers of pages given above, and assuming the default number of data bu�er
pages (100), the application will require an average of 7 I/Os per transaction, as shown in the
following table:

Source Operation Number of I/Os

Small table Read data 1

Write data 1

Large table Read second-level index 1

Read leaf index 1

Read data 1

Write data 1

Third table Write data .01

Commit Write log 1

Total 7.01

There is a 25% chance that a random access to the small table will want a page that is
already in the bu�er pool. There is a 10% chance that the large index second-level page is
already in the bu�er pool. These reduce the I/O count to about 6.4 instead of 7, as shown in
the following table:

Source Operation Number of I/Os

Small table Read data .75

Write data .75

Large table Read second-level index .9

Read leaf index 1

Read data 1

Write data 1

Third table Write data .01

Commit Write log 1

Total 6.41

First Threshold for Performance Gain

System performance improves if you add more data bu�ers. The �rst threshold of
performance gain is when there are enough data bu�ers to prevent the pages of the small table
from being swapped out. This will happen only if the small table's pages never become least
recently used.

Suppose that we want 62 pages to stay in memory from the previous calculation, and that we
will insert about 10 pages. In each transaction, accessing the large table will require touching
a root page, two more index pages, and a data page. If the two nonroot index pages and the
data page are read each time, we touch three pages that are new.

5-6 Guidelines on System Administration

We need enough pages in memory so that pages from the large table are less recently used
than pages from the small table. A minimal estimate would be 120 pages; a more comfortable
estimate would allow 160 pages. Using the 120-page minimum, the bu�er pool would look like
this:

Source Oper-
ation

Pages Already
In Data Bu�er

Pages Requiring
Physical I/O

Small table Update 11 (index root and leaf)

40 (all pages in bu�er)

Large table Update 1 (index root)

40 (second-level index pages|
active and \aging")

100 (total index second-level
pages)

40 (leaf pages|active and
\aging")

12,000 (total index leaf pages)

40 (data pages|active and
\aging")

50,000 (total data pages)

Third table Insert 10 (data pages active per
transaction)

Total in cache 182

Here is the resultant pattern of I/Os:

Source Operation Number of I/Os

Small table Read data 0

Write data 0 (deferred until checkpoint)

Large table Read second-level index .9

Read leaf index 1

Read data 1

Write data 1

Third table Write data .01

Commit Write log 1

Total 4.91

Guidelines on System Administration 5-7

Second Threshold for Performance Gain

The next performance gain comes from �tting all the pages from the second level of the large
table's index into the data bu�er cache. There are 100 pages in the second-level index, so the
bu�er pool in this scenario looks like the following:

Source Oper-
ation

Pages Already
In Data Bu�er

Pages Requiring
Physical I/O

Small table Update 11 (index root and leaf)

40

Large table Update 1 (index root)

100 (second-level index pages)

100 (leaf pages|active and
\aging")

12,000 (total index leaf pages)

100 (data pages|active and
\aging")

50,000 (total data pages)

Third table Insert 10 (data pages active per
transaction)

Total in cache 362

Here is the resultant pattern of I/Os:

Source Operation Number of I/Os

Small table Read data 0

Write data 0 (deferred until checkpoint)

Large table Read second-level index 0

Read leaf index 1

Read data 1

Write data 1

Third table Write data .01

Commit Write log 1

Total 4.01

This analysis predicts one plateau of performance at about 180-200 pages in the bu�er pool, a
second plateau at about 360-400 pages. The next plateau would require something like 25,000
pages, which is impractical for most installations.

In practice, there is little penalty for extra pages, so use a generous allocation (that is, at least
200 or 400 pages), if you can a�ord to.

Note The previous calculations assume only the pages involved in one transaction
type involving a small and a large table. If you have other transactions
contending for the database, be sure to allow adequate bu�er space for them
too.

5-8 Guidelines on System Administration

Cautions

The size of the page pool combined with other demands on memory should not exceed
available real memory.

Checkpoints may take longer if the bu�er pool is larger. A checkpoint writes to disk
all dirty pages in the bu�er pool. If there is a consistent fraction of dirty pages, the
checkpoint takes longer with a large bu�er pool. However, if the large bu�er pool is �lled
with read-only data, the checkpoint may not take much longer. A rough estimate can be
obtained by looking at the bu�er pool size derived in the analysis above.

An Empirical Approach

Using SQLMON, you can observe the data bu�er miss rate and adjust the number of data
bu�er pages accordingly. Start by allocating the largest number of data bu�er pages you are
willing to reserve for ALLBASE/SQL. This number should be less than the following:

(Total Size Virtual Memory) - (Number of Log Buffer Pages) * 0.5K

- (Number of Run-Time Control Block Pages) * 4K

- 45K

As you observe the data bu�er miss rate on SQLMON's IO screen, gradually reduce the
number of data bu�er pages until the miss rate increases sharply. Allocate just enough data
bu�er pages to avoid the sharp increase of the data bu�er miss rate. Since the load on your
system probably varies, you should monitor the data bu�er miss rate at di�erent times
throughout the day.

Choosing the Size of the Runtime Control Block

The runtime control block is an area of shared memory containing global, runtime information
for the DBEnvironment. ALLBASE/SQL allocates control blocks from the runtime control
block. Lock management is the single greatest user of control blocks. Each table, page, or row
lock acquired needs one control block. As the granularity of the lock decreases, the number of
locks required is likely to increase.

For example, locking an entire table with row level locking requires more locks than locking
the table with the LOCK TABLE statement. The following table lists the maximum number
of locks that can be associated with table, page, and row-level locking:

Granularity Maximum Number of Locks

Table 1

Page (number of pages in table) + 1

Row (number of pages in table) + (number of rows in table) + 1

An application that manages locks well is less likely to deplete the amount of shared memory
available. If the runtime control block is too small, ALLBASE/SQL is unable to allocate
the necessary control blocks, an error is returned, and the transaction is rolled back. If the
runtime control block is too large, other processes on the system may not have adequate
access to memory.

Guidelines on System Administration 5-9

To allocate pages for the runtime control block, you can use the START DBE statement or
the ALTDBE command. To monitor the usage of the runtime control block, start SQLMON
and go to the Overview screen, as described in the chapter \Getting Started with SQLMON."

Choosing a Number of Log Buffer Pages

The number of log bu�ers is independent of the number of data bu�ers. The log bu�er pages
are only 512 bytes (in contrast with the data bu�er pages, which are 4096 bytes). If the log
bu�er pool becomes full before any transaction completes, then at least two I/Os are needed
to complete the transaction.

You should provide enough log bu�ers to allow all active transactions to have log space.
Additional bu�ers do not help performance, but adding pages probably doesn't hurt either.
To monitor the I/O incurred by logging, run SQLMON and access the IO screen.

For example, suppose that a user is making changes to a sample database and that

Before and after images of the changed data cause about 600 bytes to be logged.
The insert is 100 bytes.
We allow 100 bytes for log overhead.

The �gures listed above total 800 bytes. You can then round up to 1024 bytes, or 2 512-byte
pages. This implies that 20 log bu�er pages should be su�cient for 10 transactions. If there
are occasional bursts of more than the average, 40 or 50 pages might be a good idea.

Choosing the Number and Size of Log Files

ALLBASE/SQL gives you great
exibility in choosing the number and size of log �les. The
following suggestions may be useful in making choices for your system.

Nonarchive Log Guidelines

The size of nonarchive log �les determines the frequency of automatic system checkpoints,
and it therefore determines rollback recovery time. The total size of the log (all �les taken
together) determines the largest transaction that can be accomodated in the DBEnvironment.

Some guidelines for determining the size of the nonarchive log are listed below:

Total log space should be large enough to accomodate changes from the largest transaction.
Otherwise, large transactions may abort. To determine the amount of log �le space
available, run SQLMON and go to the Overview screen.

ALLBASE/SQL performs an automatic checkpoint each time a log �le becomes full. By
choosing a speci�c �le size, you can force a checkpoint to take place at speci�c intervals,
thereby controlling the amount of time required for rollback recovery.

In general, a large log �le is good for nonarchive logging. However, a checkpoint can cause
signi�cant loading to be put on the system when the log �le is large. When a checkpoint
occurs, all data pages relating to the transactions currently held in the log �le must be
forced to disk if they have not already been swapped out. If you use very large log �les, the
checkpoint process can
ood the I/O subsystem and cause interference with other higher
priority processing. If such
ooding occurs, use a smaller log �le or use the CHECKPOINT
statement to force a checkpoint at regular intervals.

The transaction that runs out of log space triggers a checkpoint, and this causes all
transactions to wait until the bu�ers are
ushed.

5-10 Guidelines on System Administration

When you use a large log bu�er size, you avoid frequent
ushing of the bu�er to disk.

Large nonarchive log �les can reduce the number of system checkpoints. To display the
number of system checkpoints, run SQLMON and examine the IO screen. If you observe a
large number of checkpoints and log bu�er writes on the IO screen, you should increase the
size of the nonarchive log �les.

Checkpoints should be postponed as far as possible, as long as rollback recovery time is
within limits. The reason is that checkpoints
ush dirty pages, and this prevents the saving
of writes in those cases where the same page gets updated frequently. Also, checkpoints
increase disk contention.

Archive Log Guidelines

The transaction that runs out of log space triggers a checkpoint, and this causes the
transaction to wait until the bu�ers are
ushed. Other transactions may continue if logging
is in archive mode.

In archive mode, use at least two log �les, so that one can be backed up while the other is
being used.

In archive mode, use large log �les to minimize the frequency of log backups and
checkpoints.

Sorting Operations

The sort method in ALLBASE/SQL is memory-intensive, using the tournament sort algorithm
for sorting and merging. It sorts in two phases:

Run generation: It reads the input rows, sorts them in the tournament tree, and generates
runs. (A run is a list of sorted tuples.) The number of runs generated depends on the input
data and on the sort memory size. For large sort operations, the sorted runs (intermediate
results) may be written to scratch �les created dynamically in temporary spaces you de�ne
and purged after sorting is completed. If all input tuples �t in sort memory, then the merge
phase is completely avoided, and no scratch �les are used.

Merge phase: In the second phase, the sorted runs are merged. The merge width depends
on the size of the sort memory. If the number of generated runs is less than the merge
width, only one merge is done. Otherwise, several merge passes may be necessary.

Creating Temporary Spaces

Use the CREATE TEMPSPACE statement to create a directory that will contain temporary
space for scratch �les. ALLBASE/SQL needs scratch �les to store the intermediate results
of sorting and creating indexes. You should create at least one temporary space in the
DBEnvironment you are working in. If you do not create a temporary space, ALLBASE/SQL
opens scratch �les in the /tmp directory.

The CREATE TEMPSPACE statement itself does not use any disk space, and
ALLBASE/SQL does not create any scratch �les when you issue the CREATE TEMPSPACE
statement. Instead, they are dynamically created and purged during sort operations. When
you de�ne a temporary space, the amount of available disk space may change dynamically as
ALLBASE/SQL creates and purges scratch �les.

Guidelines on System Administration 5-11

By default, the number of pages used for each temporary space �le is 256. The total amount
of space used is all that is available in the directory /tmp.

Tips for Using Temporary Spaces

If you do large sorts or create large indexes, use CREATE TEMPSPACE to de�ne
temporary spaces. Be sure to specify a MaxTempFileSize large enough for your needs.

Create one temporary space for each disk partition that is available for scratch �les.

ALLBASE/SQL opens a new scratch �le after reaching the limit speci�ed in the CREATE
TEMPSPACE statement. If the sort is large and the default is small, ALLBASE/SQL may
have to open many small scratch �les. To avoid this, specify a large MaxTempFileSize
value. For small sorts, ALLBASE/SQL does not create large scratch �les even if
MaxTempFileSize is large; hence, it is safe to specify MaxTempFileSize generously.

If you de�ne more than one temporary space in the DBEnvironment, ALLBASE/SQL opens
scratch �les by rotation in each temporary space.

When doing large sorts, choose a MaxTempFileSize value that is large enough to prevent
too many scratch �les from being created. The number of �les a process can open, including
scratch �les and other �les, is limited by a value set in the kernel �le. You can con�gure the
limit, and its default value is 60. If ALLBASE/SQL reaches the limit, it returns DBERR
3061 and an HP-UX �le system error. If you see DBERR 3061, drop your temporary spaces
and recreate them with larger MaxTempFileSize values.

Disk Space for Sorting

All intermediate sort results are written to scratch �les, not to any DBEFileSet in the
DBEnvironment. Sorting may require 100% to 200% of the input data size in temporary disk
�les for intermediate results. If a join and an ORDER BY are both involved, the amount
could be as much as 300%. However, scratch �les are purged as soon as the sort operation is
�nished.

Final sort output for queries with GROUP BY, ORDER BY or DISTINCT is written to
the SYSTEM DBEFileSet, requiring space worth 100% of the sorted output. For CREATE
INDEX, the �nal output is directly written to the DBEFileSet containing the index, requiring
space worth the size of the index.

The disk space required for sort operations is summarized below:

CREATE INDEX: 100-200% of the size of the input key data in temporary �les and 100%
in the INDEX DBEFileSet.

DML statements using a sort: 100-300% of the size of the input data in temporay �les and
100% in the SYSTEM DBEFileSet.

Controlling the Use of Temporary Space

The order in which you carry out database operations may determine the amount of
temporary space required. For example, if you create a large table, load it, then create an
index, you will probably use scratch �le space for sorting. However, if you create the table,
then create the index, then load the data, you will not use scratch �les. In the second case,
the load is 3 to 10 times slower because ALLBASE/SQL creates index entries during loading.
However, if you load unsorted data, the size of the index is about 50% larger.

5-12 Guidelines on System Administration

Memory Utilization in Sorting

Sorting is memory-intensive, and the amount of memory required is estimated from the
number of input tuples. The number of input tuples is in turn estimated from table statistics.
Therefore, it is important to have up-to-date statistics when you execute ORDER BY,
GROUP BY, or CREATE INDEX statements, especially on large tables.

Performance Hints for Large Sorts

Issue the UPDATE STATISTICS statement after loading a large table and before issuing
the CREATE INDEX statement. After you issue CREATE INDEX, issue another UPDATE
STATISTICS statement to get the correct statistics for the index.

Make sure that you have allocated enough temporary space to hold the scratch �les.

Join Methods

ALLBASE/SQL uses two join methods: nested loop join and sort/merge join. Nested loop
joins are usually much faster than sort/merge joins. By default, the optimizer chooses a
join method depending on the query and the statistics in the system catalog for the tables
involved. To override the join method the optimizer chooses, you can use the SETOPT
statement.

The nested loop method scans the second table once for each qualifying row in the �rst table.
If the scan on the second table is a serial scan (rather than an index scan), the nested loop
join can require considerable I/O and CPU time when the table is larger than the bu�er
cache. However, a nested loop join may be the best approach for joins involving small tables.

A sort/merge join has two phases: the sort phase and the merge/join phase.

The sort phase: If the scan on the table is an index scan on the joined column (that is,
there is a join on col1 and the index being picked is also on col1 or on col1, col2), then the
sort can be skipped, since the returned tuples from the scan are already sorted.

The merge/join phase: Multiple tables are merged or joined without scanning a table
repeatedly, as in a nested loop join. This saves a signi�cant amount of I/O and CPU time,
especially for large tables.

A sort/merge join can help with tables that have indexes that are larger than the bu�er cache
size.

Temporary Space in the SYSTEM DBEFileSet

Query results from queries using ORDER BY and GROUP BY clauses are stored in
temporary pages in the SYSTEM DBEFileSet. Be sure to include enough TABLE or MIXED
DBEFile space in SYSTEM to accomodate your largest sorted query. As your system catalog
grows, you should monitor the DBEFile space in SYSTEM occasionally (after doing an
UPDATE STATISTICS on at least one system view) to make sure enough temporary space is
still available. As needed, add DBEFiles to SYSTEM to supply temporary pages.

Section Caching and Directory Caching

Section caching holds a number of sections in memory between transactions so that they do
not need to be read again for the next execution. ALLBASE/SQL can keep up to 12 sections
in memory. Section caching is more e�cient when DDL Enabled is set to NO. Directory
caching stores in memory the DBCore directory, which contains the locations of tables and

Guidelines on System Administration 5-13

indexes. Directory caching is turned on when you set the DDL Enabled
ag to NO by using
ALTDBE in SQLUtil.

Section caching is subject to the following rules:

When there are 12 or fewer sections in memory, the system does not try to delete any
permanent sections at the end of a transaction.

When there are more than 12 sections in memory, the system deletes only those sections
that are not opened. Sections are considered opened if they are cursor sections and have
been opened by the OPEN CursorName statement.

The system does not delete dynamic sections, even if the cache limit is exceeded.

The system can keep more than 12 (or 4) sections in memory, if all of them are opened
cursors. The only limit is the amount of user heap space available.

This feature is helpful for an application that executes the same sections repeatedly, especially
if it has a small number of sections.

Setting Limits for Section Caching

By default, ALLBASE/SQL allocates shared memory for up to 12 sections. You can increase
this number by setting the environment variable HPSQLsectcache to any value from 4 to 128.

Using Multiconnect Functionality

It is possible to establish a maximum of 32 simultaneous database connections. When your
application must access more than one DBEnvironment, there is no need to release one before
connecting to another. Performance is greatly improved by using this method rather than
connecting to and releasing each DBEnvironment individually.

For more detailed information, refer to the chapter \Transaction Management with Multiple
DBEnvironment Connections" in the ALLBASE/SQL Advanced Application Programming
Guide and the section \Using Multiple Connections and Transactions with Timeouts" in the
ALLBASE/SQL Reference Manual chapter \Using ALLBASE/SQL."

Using Timeouts to Tune Performance

When an application requests a database resource that is unavailable, the application is
placed on a wait queue. If the application waits longer than the timeout value speci�ed for its
DBEnvironment connection, an error occurs, and the transaction is rolled back. Your strategy
for specifying timeout values and handling timeout errors depends on the speci�c needs of
your application and on your business procedures. By default, the timeout value is in�nite.

For example, a transaction may require resources that are locked by a second transaction
that requires a great deal of execution time. In this case, you could specify a reasonable
amount of time for the �rst transaction to wait before a timeout occurs. Such a strategy
might be essential in a distributed environment. For more detailed information, refer to
the chapter \Transaction Management with Multiple DBEnvironment Connections" in the
ALLBASE/SQL Advanced Application Programming Guide and the section \Setting Timeout
Values" in the ALLBASE/SQL Reference Manual chapter \Using ALLBASE/SQL."

5-14 Guidelines on System Administration

Network Guidelines

If you are using ALLBASE/SQL in a network, you should structure your applications with
remote access in mind.

Remote database access is faster when you send BULK requests to the remote
DBEnvironment. For example, if you use the simple FETCH statement on a cursor opened
on a remote database, the network must process each successive FETCH as a separate
request for data. But if you use BULK FETCH, you make only one request, for a larger
number of rows. In your application, use a bu�er size that is close to the size of the actual
data retrieved.

Use stored procedures to reduce network tra�c between applications and the
DBEnvironment. Refer to the section \Using Rules and Procedures" in the chapter
\Guidelines for Transaction Design."

HP-UX System Guidelines

This section presents some pointers about parameters in the HP-UX operating system that
can a�ect the performance of ALLBASE/SQL.

Use an HP-UX bu�er cache that is at least as large as the default cache size (10% of
physical memory). Use more than the default for large tables or indexed joins.

Put swap space on a spindle di�erent from DBEnvironment �les and log �les, especially for
large multiuser operations. Increase the size of swap space if you are running more than 32
users.

Use a �le blocking factor of at least 4K. Serial scans may bene�t from a blocking factor of
8K or larger.

Use a larger interval for the sleep time for hpdbdaemon than the default of 30 seconds. The
daemon is a process that wakes up every 30 seconds and connects to the DBEnvironment to
determine whether there have been any abnormal terminations. If there have been abnormal
terminations, the daemon cleans up by releasing locks and other system resources. If your
system rarely experiences abnormal terminations, you can avoid the overhead of having
daemons repeatedly connect to and release the DBEnvironment by increasing the sleep
time. You should experiment with di�erent intervals; a value of 60 seconds reduces the
overhead by half. Remember, however, that increasing the sleep time also increases the time
before cleanup takes place.

You can set the daemon's sleep time with the C shell setenv command, as follows:

setenv hpdbdmonsl n

where the integer n is a number of seconds.

Use the formula described under \Choosing the Number of Data Bu�er Pages" to help
determine the maximum number of data bu�er pages to use on series 800 systems, where
the maximum is limited by the size of swap space.

You can use the HP-UX nice command to adjust the priority of executing processes. Refer
to the manual page for nice.

Guidelines on System Administration 5-15

Using HP-UX Raw Files for DBEFiles and Logs

Using raw �les in HP-UX bypasses the operating system's normal bu�ering process.
Considerable performance bene�ts can be derived from using raw �les for logs and for
DBEFiles when the primary data access method is random. However, there may be a
performance penalty for sequential access to DBEFiles, since the �le system's prefetching is
bypassed.

In HP-UX, you can create raw DBEFiles and log �les by specifying the pathname of a raw
device in the CREATE DBEFILE statement or in the LOG DBEFILE clause of the START
DBE NEW and START DBE NEWLOG statements.

For more information about raw �les, refer to the appendix \Using HP-UX Raw Files for
DBEFiles and Logs" in the ALLBASE/SQL Database Administration Guide.

5-16 Guidelines on System Administration

6

Getting Started With SQLMON

This chapter describes the basic operations of SQLMON. You will learn how to start the
program, exit the program, display screens, modify SQLMON variables, and access online
help. The last section in this chapter, \Monitoring Tasks," explains which screens and �elds
to check as you use SQLMON.

Introduction

SQLMON is an online diagnostic tool that monitors the activity of a DBEnvironment.
SQLMON screens provide information on �le capacity, locking, I/O, logging, tables, and
indexes. They summarize activity for the entire DBEnvironment, or focus on individual
sessions, programs, or database components. SQLMON is a read-only utility, and cannot
modify any aspect of the DBEnvironment.

SQLMON can serve as

a tool for learning about your DBEnvironment

a development tool for application programmers

a monitoring tool for tuning your DBEnvironment

a troubleshooting tool for detecting performance problems

Starting SQLMON

To run SQLMON, log on as superuser or as DBECreator, and issue the following command:

% sqlmon

After displaying a banner and several menus, SQLMON displays a prompt that shows that
you are in the Overview subsystem:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW =>

Getting Started With SQLMON 6-1

SQLMON has six subsystems, named Overview, IO, Load, Lock, SampleIO, and Static.
The SQLMON prompts identify the current subsystem. All of the prompts listed below are
subsystem prompts:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW =>

SQLMONITOR
NNNNNNNN
IO =>

SQLMONITOR
NNNNNNNNNNNNNN
LOAD =>

SQLMONITOR
NNNNNNNNNNNNNN
LOCK =>

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO =>

SQLMONITOR
NNNNNNNNNNNNNNNNNNNN
STATIC =>

From a subsystem prompt, you can access SQLMON screens, issue SQLMON commands, or
exit the program.

Leaving SQLMON

To exit SQLMON, enter either the EXIT or QUIT command at any subsystem prompt:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => EXIT

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => QUIT

If you are actively displaying a screen, you must press Return to leave the screen before you
enter EXIT or QUIT. For more information, refer to the section \Leaving SQLMON Screens."

If you are using the help facility, you must enter //, EXIT, or QUIT to leave the help facility
and then EXIT or QUIT again to leave SQLMON. For more information, refer to the section
\Accessing Online Help" later in this chapter.

Specifying the DBEnvironment

Before you invoke an SQLMON screen, you must specify the DBEnvironment to be
monitored. For example, to specify the PartsDBE DBEnvironment, you would enter:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBENV PartsDBE

6-2 Getting Started With SQLMON

Invoking SQLMON Screens

To access an SQLMON screen, type the name of the screen at a subsystem prompt. For
example, to invoke the Overview screen, issue the following command:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => OVERVIEW

The commands are not case sensitive, and you can abbreviate them. For example, you can
also access the Overview screen with this command:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => o

The abbreviated commands are context sensitive and vary according to the current subsystem.
For example, to access the Lock Memory screen from the Lock subsystem, you can use either
of the following commands:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => m

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => /loc m

But to access the Lock Memory screen from another subsystem, you must use the longer
abbreviation:

SQLMONITOR
NNNNNNNN
IO => /loc m

Getting Started With SQLMON 6-3

Table 6-1 lists the SQLMON screens by subsystem.

Table 6-1. SQLMON Screens

Subsystem Screen Name Description

IO IO Performance information on the data and log bu�er pools.

IO Data Program Data bu�er pool information for each program being run by
sessions attached to the DBEnvironment.

IO Data Session Data bu�er pool information for each session attached to the
DBEnvironment.

IO Log Program Log bu�er pool information for each program being run by
sessions attached to the DBEnvironment.

IO Log Session Log bu�er pool information for each session attached to the
DBEnvironment.

Load Load Information useful in measuring the throughput e�ciency of
the DBEnvironment.

Load Program Transaction throughput information for each program being
run by sessions attached to the DBEnvironment.

Load Session Transaction throughput information for each session attached
to the DBEnvironment.

Lock Lock Lock activity data for the entire DBEnvironment.

Lock Impede Locks granted to a particular session that are causing other
sessions to wait.

Lock Memory Number of locks allocated at each granularity to each session.

Lock Object Sessions in the lock queue for particular locks.

Lock Session Lock activity data for a single session.

Lock TabSummary Number of locks allocated at each granularity level for each
table.

6-4 Getting Started With SQLMON

Table 6-1. SQLMON Screens (continued)

Subsystem Screen Name Description

Overview Overview Important aspects of the DBEnvironment's performance, such
as the data bu�er pool miss rate and the amount of available
runtime control block space.

Overview Program Session information for each program.

Overview Session Information about all sessions connected to the
DBEnvironment.

SampleIO SampleIO DBEFile I/O information.

SampleIO Objects I/O information for database objects in the data bu�er pool.

SampleIO Tables I/O information for tables in a DBEFileSet.

SampleIO Indexes Index and referential constraint

SampleIO Tabindex I/O information about a single table, and its indexes and
referential constraints.

Static Static Information about indexes, referential constraints, and hashing
for each table contained in a DBEFileSet.

Static Cluster Information about the clustering of indexes and referential
constraints in a DBEFileSet.

Static DBEFile File capacity and fullness data for each DBEFile in a
DBEFileSet.

Static Hash Over
ow chain information for hashed tables.

Static Indirect Information about the indirect rows in each table of a
DBEFileSet.

Static Size Information about the size of database objects in a DBEFileSet.

Getting Started With SQLMON 6-5

Table 6-2 summarizes the abbreviated commands used to invoke SQLMON screens. You can
also issue the commands in the \Di�erent Subsystem" column from the same subsystem.

Table 6-2. Abbreviated Screen Commands

Screen Name
Abbreviated Command

Di�erent Subsystem Same Subsystem

IO /i i

IO Data Program /i d p d p

IO Data Session /i d s d s

IO Log Program /i l p l p

IO Log Session /i l s l s

Load /loa l

Load Program /loa p p

Load Session /loa s s

Lock /loc l

Lock Impede /loc i i

Lock Memory /loc m m

Lock Object /loc o o

Lock Session /loc s s

Lock TabSummary /loc t t

Overview /o o

Overview Program /o p p

Overview Session /o s s

SampleIO /sa s

SampleIO Objects /sa o o

SampleIO Tables /sa tabl tabl

SampleIO Indexes /sa i i

SampleIO Tabindex /sa tabi tabi

Static /st st

Static Cluster /st c c

Static DBEFile /st d d

Static Hash /st h h

Static Indirect /st i i

Static Size /st si si

6-6 Getting Started With SQLMON

Leaving an SQLMON Screen

To exit an SQLMON screen, press Return. If the subsystem prompt does not appear
immediately, the cycle option is probably set to a value other than OFF. Therefore, the screen
is displayed for a certain number of refresh cycles, instead of disappearing immediately.

To reset the cycle option to OFF, enter

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET CYCLE OFF

Once you return to the subsystem prompt, you can access another screen, issue an SQLMON
command, or exit the program.

Navigating SQLMON Subsystems

SQLMON has six subsystems, which are listed below:

Overview, which shows general performance information

IO, which provides information on data and log bu�er activity

Load, which displays transaction throughput data

Lock, which shows locking activity

SampleIO, which provides information on DBEFile, table, and index I/O

Static, which describes indexes, tables, DBEFiles, and constraints

The name of a screen identi�es the subsystem to which it belongs. Each subsystem has a
primary screen, with the same name as the subsystem, and secondary screens, whose names
begin with the subsystem name.

When you access a screen, you automatically move to the subsystem that screen belongs to.

Getting Started With SQLMON 6-7

Figure 6-1 shows how the SQLMON screens and subsystems are organized.

Figure 6-1. SQLMON Road Map

6-8 Getting Started With SQLMON

Setting SQLMON Variables

You can modify SQLMON environment variables using the SET commands. For example,
the following command sorts rows on a screen according to the value in the screen's second
column:

SQLMONITOR
NNNNNNNN
IO => SET SORTIODATA 2

If you omit the last parameter (the number after SORTIODATA), SQLMON issues a prompt:

SQLMONITOR
NNNNNNNN
IO => SET SORTIODATA

<0=OFF,1=BUFF ACCESS,2=DATA DISK RD,3=DATA DISK WR,4=MISS RATE>: 2

You can execute a SET command only from a subsystem prompt. If you issue a SET
command at the help prompt, SQLMON displays help text for the command but does not
execute the command.

To view the current variable settings, issue SET with no parameters:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET

C[YCLE] OFF

DBEF[ILESET] OFF

DBEN[VIRONMENT] PartsDBE

DBEC[ONNECT] ON

DBEI[NITPROG] ON

E[CHO] OFF

LOCKF[ILTER] SU/TPR/GWC/SXRsxr6v/1

LOCKO[BJECT] ALL

LOCKT[ABFILTER] OFF

M[ENU] ON

OUTP[UT] OFF

R[EFRESH] 10

SA[MPLING] ON

DI[SPLAYSAMPLES] OFF

SORTIOD[ATA] 3

SORTIOL[OG] OFF

SORTLOA[D] 3

SORTLOC[K] 5

SORTS[AMPLEIO] 3

T[OP] OFF

U[SERTIMEOUT] 5

Each variable displayed in the previous example has a corresponding SET command. For
more information on the SET commands, see the chapter \SQLMON Command Reference."

Getting Started With SQLMON 6-9

Accessing Online Help

SQLMON provides extensive online help, with descriptions of screens, �elds, subsystems,
and commands, as well as performance tuning hints. The help facility is context sensitive;
for example, if you request tuning information from within the Lock subsystem, you see only
tuning hints related to locking issues.

Invoking the Help Facility

To invoke the SQLMON help facility, issue the following command from a subsystem prompt:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => help

By default, SQLMON displays help information for the screen you last accessed. To override
the default, you can specify the screen name on the command line. For example, to get help
information on the IO screen from the Overview subsystem, enter

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => help io

Leaving the Help Facility

To leave the help facility, enter any of the following commands to return to the subsystem
prompt:

SQLMONITOR
NNN
HELP OVERVIEW => //

SQLMONITOR
NNN
HELP OVERVIEW => EXIT

SQLMONITOR
NNN
HELP OVERVIEW => QUIT

Once you return to the subsystem prompt, you can access SQLMON screens, issue SQLMON
commands, or exit the program.

Issuing Help Commands

When you enter the help facility, it displays the help prompt for the current screen:

SQLMONITOR
NNN
HELP OVERVIEW =>

Let's assume that you have just visited the Lock Memory screen. The easiest way to get help
on the screen is to enter the command HELP from the prompt:

SQLMONITOR [LOCK] => help

You would then see information about using the Lock Memory screen, and then return to the
help prompt, which looks like this:

SQLMONITOR [HELP LOCK MEMORY] =>

Notice that the name of the screen is displayed in the help prompt, not just the name of the
Lock subsystem.

To see a description of each �eld that appears on the Lock Memory screen, enter

SQLMONITOR [HELP LOCK MEMORY] => help

You can then type additional commands to get more information:

6-10 Getting Started With SQLMON

SQLMONITOR [HELP LOCK MEMORY] => control

SQLMONITOR [HELP LOCK MEMORY] => tune

When you want to leave the help facility, type //, EXIT, or QUIT:

SQLMONITOR [HELP LOCK MEMORY] => //

SQLMONITOR [LOCK] =>

You can also add options to the HELP command when you enter the help facility. For
example, after you visit the Static DBEFile screen, you can enter the following command to
display a description of each �eld on the screen:

SQLMONITOR [STATIC] => help info

Then, to leave the help facility and return to the screens, enter

SQLMONITOR [HELP STATIC DBEFILE] => //

SQLMONITOR [STATIC] =>

Table 6-3 summarizes the parameters you can add to the HELP command.

Table 6-3. SQLMON Help Commands

Help Command Description

ScreenName Generates help text for the screen you specify.

CONTROL Describes the SET commands that a�ect the current screen.

INFO Describes each �eld belonging to the current screen.

SUBSYSTEM Describes each of the screens in the subsystem.

TUNE Generates a list of topics on database performance tuning.

TUNE TuneNumber Provides detailed information on the tuning topic designated by
TuneNumber .

MAIN Displays general information on SQLMON.

SetCommand Describes the SetCommand you specify.

The HELP command is documented fully in the chapter \SQLMON Command Reference."

Getting Started With SQLMON 6-11

Creating Batch Reports

To generate a batch report containing SQLMON screen displays, create a �le of SQLMON
commands that will be used as input to SQLMON. The command �le must include a SET
CYCLE command to stop the display of the screens after some number of refresh intervals,
and a SET OUTPUT command to specify the name of the �le to which output will be sent.

For example, you can copy the Static screen to an output �le named Report1. To do so, use a
text editor to create a �le named BatchIn, and add the following SQLMON commands to it:

SET ECHO ON

SET DBENVIRONMENT PartsDBE

SET CYCLE 1

SET OUTPUT Report1

STATIC

EXIT

Before you run SQLMON, remove any earlier versions of Report1:

% rm Report1

Run SQLMON, using BatchIn as input and redirecting output to /dev/null to prevent the
screens from appearing on standard output:

% sqlmon < BatchIn > /dev/null

When SQLMON �nishes executing, you can print Report1 to create a hard copy of the Static
screen:

% lp Report1

Overhead Generated by SQLMON

In most cases, SQLMON has little impact on system performance. However, be careful when
you use the SampleIO subsystem, because it can generate enough overhead to impact the
performance of other DBEnvironment sessions.

Be careful also when you use the Static subsystem. The Static subsystem di�ers from the
other SQLMON subsystems, because it establishes a connection with the DBEnvironment.
When you leave the Static subsystem for another subsystem, the connection closes.

SQLMON obtains information on the primary screen in the subsystem, the Static screen,
when you issue a SET DBENVIRONMENT command. System performance should not be
a�ected when you access the Static screen.

However, when you access other screens in the Static subsystem, SQLMON issues commands
that are similar to the UPDATE STATISTICS statement. These commands perform serial
scans on each DBEFileSet, which can be very time consuming (however, the commands do
not update statistics in the system catalog or invalidate stored sections). SQLMON does not
acquire locks on user tables during this processing.

To improve performance, you can issue the command

SET DBEFILESET !!DBEFileSetName!!

6-12 Getting Started With SQLMON

which improves performance, because

SQLMON obtains information only about the objects in DBEFileSetName , thereby
reducing the number of serial scans that must be performed

Serial scans are performed only once on DBEFileSetName. Serial scans occur the �rst time
you access a screen other than the primary screen in the subsystem, not when you issue the
SET DBEFILESET command. When you access another screen in the subsystem, you view
information obtained during the original scans.

If the DBEFILESET variable is OFF, SQLMON performs scans on each DBEFileSet each
time that you access a screen in the Static subsystem.

Monitoring Tasks

This section summarizes the monitoring tasks you can perform with SQLMON, giving the
appropriate SQLMON screens and �elds for each task. The tasks fall into the following
categories:

disk usage
memory usage
tables
hash structures
indexes and referential constraints
transactions
sessions
I/O
logging
locking

For example, if you are interested in checking the size of a DBEFile, look at the tasks listed
in Table 6-4. To perform the task, go to the screen listed in the Screens column and the
�elds listed in the Fields column. If you need more information on a screen's �elds, see the
corresponding section in the \SQLMON Screen Reference" chapter.

Getting Started With SQLMON 6-13

Table 6-4. Monitoring Disk Usage

Task Screens Fields

Determining log �le capacity Overview LOG FULL %
Used LgPgs
Max LgPgs

Determining DBEFile capacity
in a DBEFileSet

Static DBEFile DBEFILE
DBEFILE FULLNESS %
USED PAGES
MAX PAGES

Identifying DBEFile storage
restrictions

Static DBEFile DBEFILE
TYP
BD

Determining DBEFileSet capacity Static DBEFile DBEFILESET
DBEFILESET FULLNESS %
FSUSED PAGES
FSMAX PAGES

Determining the size of database
objects in a DBEFileSet

Static Size DBEFILESET
OWNER.TABLE
TABLE PAGES
INDEX PAGES
TOTAL PAGES

Identifying detached DBEFiles Static DBEFile DBEFILESET FULLNESS
DBEFILE FULLNESS

Table 6-5. Monitoring Memory Usage

Task Screens Fields

Identifying the size of
the data bu�er pool

IO TOTAL DATA BUFFER PAGES

Identifying the size of
the log bu�er pool

IO TOTAL LOG BUFFER PAGES

Determining the size of the
runtime control block

Overview RUNTIME CB %
Used Pages
Max Pages

Resolving memory problems Lock Memory
Lock TabSummary

all �elds
(hint: type HELP LOCK MEMORY
TUNE 4 for more information)

6-14 Getting Started With SQLMON

Table 6-6. Monitoring Tables

Task Screens Fields

Identifying tables in a DBEFileSet Static DBEFILESET
OWNER.TABLE

Identifying tables stored in
TurboIMAGE data sets

Static OWNER.TABLE
IMAGE

Determining a table type Static OWNER.TABLE
TYPE

Determining the number of indexes and
referential constraints on a table

Static OWNER.TABLE
NUM INDEXES

Determining the size of a table Static Size
Static Cluster

OWNER.TABLE
TABLE PAGES

Determining the number of rows
in a table

Static Indirect
Static Cluster

OWNER.TABLE
TOTAL ROWS

Determining the percentage of
indirect rows in a table

Static Indirect OWNER.TABLE
TABLE INDIRECT ROW %

Comparing the number of locks
by table

Lock TabSummary OWNER.TABLE
G
TOTAL LOCKS

Identifying the locks on a table Lock OWNER.TABLE
G
PAGE/ROW ID
LOCK QUEUE
(hint: use SET LOCKTABFILTER)

Monitoring table I/O SampleIO Tables
SampleIO TabIndex

OWNER.TABLE
SWAPIN
SWAPOUT
TOTALIO

Identifying the tables currently
residing in the data bu�er pool

SampleIO Objects OWNER.TABLE
CURRENT PGS

Table 6-7. Monitoring Hash Structures

Task Screens Fields

Identifying hashed tables in a
DBEFileSet

Static DBEFILESET
OWNER.TABLE
HASH

Identifying hashed tables in a
DBEFileSet

Static Hash DBEFILESET
OWNER.TABLE
(hint: only hashed tables are displayed)

Monitoring primary pages Static Hash PRIMPAGES
PRIMDATA
PRIMOVERF

Monitoring over
ow pages Static Hash OVERPAGES
OVERFLOW CHAIN LNGTH
MAXOVERFLOW
AVGOVERFLOW

Identifying DBEFiles that are
bound to hashed tables

Static DBEFile DBEFILE
BD

Getting Started With SQLMON 6-15

Table 6-8. Monitoring Indexes and Referential Constraints

Task Screens Fields

Identifying the indexes and referential
constraints on a table or in a
DBEFileSet

Static Size
Static Cluster

DBEFILESET
OWNER.TABLE

Determining the number of indexes and
referential constraints on a table
or in a DBEFileSet

Static DBEFILESET
OWNER.TABLE
NUM INDEXES

Determining the size of an index or a
referential constraint

Static Size OWNER.TABLE
INDEX PAGES

Identifying locks on a referential
constraint

Lock OWNER.TABLE/CONSTRAINT
G
PAGE/ROW ID
LOCK QUEUE
(use SET LOCKTABFILTER)

Monitoring index and referential
constraint I/O

SampleIO Indexes
SampleIO TabIndex

OWNER.TABLE[/INDEX,CONSTRAINT]
SWAPIN
SWAPOUT
TOTALIO

Identifying the indexes and referential
constraints currently residing
in the data bu�er pool

SampleIO Objects OWNER.TABLE[/INDEX,CONSTRAINT]
CURRENT PGS

Determining the e�ciency of index scan
over an index or referential constraint

Static Cluster CCOUNT
UNLOAD/LOAD SUGGESTED %

6-16 Getting Started With SQLMON

Table 6-9. Monitoring Transactions

Task Screens Fields

Determining the transaction identi�er Overview Program
Overview Session
Lock Session
Lock Object
Lock Impede
Lock TabSummary

XID

Determining the isolation level Overview Program
Overview Session
Lock Session
Lock Object
Lock Impede
Lock TabSummary

ISO

Determining the transaction priority Overview Program
Overview Session
Lock Session
Lock Object
Lock Impede
Lock TabSummary

PRI

Determining the transaction label Overview Program
Overview Session
Lock Session
Lock Object
Lock Impede
Lock TabSummary

LABEL

Determining the maximum number of
active transactions

Overview
Load

MAX XACT

Determining the current number of
active transactions

Overview
Load

ACTIVE XACT

Determining the number of active
transactions waiting for a lock

Overview
Load

IMPEDE XACT

Determining the number of transactions
waiting for a transaction slot

Load THROTTLE WT

Monitoring throughput Load
Load Session
Load Program

BEGIN WORK
COMMIT WORK
ROLLBK WORK
DEADLOCK

Getting Started With SQLMON 6-17

Table 6-10. Monitoring Sessions

Task Screens Fields

Determining the number of sessions Overview
Overview Session
Overview Program
IO
IO Data Session
IO Data Program
IO Log Session
IO Log Program
Load
Load Session
Load Program

SESSIONS

Determining the process identi�er
of a session

Overview Session PID
LOGIN NAME
PROGRAM NAME

Determining the transaction
information of a session

Overview Session
Lock Session
Lock Impede
Lock TabSummary

XID
ISO
PRI
LABEL

Identifying the program being run
by a session

Overview Program
Lock Session
Lock Impede
Lock TabSummary

PID
LOGIN NAME
PROGRAM NAME

Identifying the sessions running a
particular program

Overview Program PID
LOGIN NAME
PROGRAM NAME

Identifying all waiting sessions Overview Session
Overview Program

PID
LOGIN NAME
STATUS

Monitoring session lock activity Lock Session All �elds

Monitoring session data bu�er I/O IO Data Session
IO Data Program

All �elds

Monitoring session log bu�er I/O IO Log Session
IO Log Program

All �elds

Comparing session throughput Load
Load Session
Load Program

BEGIN WORK
COMMIT WORK
ROLLBK WORK
DEADLOCKS

6-18 Getting Started With SQLMON

Table 6-11. Monitoring I/O for Data

Task Screens Fields

Identifying the size of
the data bu�er pool

IO TOTAL DATA BUFFER PAGES

Monitoring data bu�er I/O IO
IO Data Session
IO Data Program

BUFF ACCESS
DATA DISK RD
DATA DISK WR
MISS RATE

Monitoring DBEFile I/O SampleIO DBEFILE
SWAPIN
SWAPOUT
TOTALIO

Monitoring table I/O SampleIO Tables
SampleIO TabIndex

OWNER.TABLE
SWAPIN
SWAPOUT
TOTALIO

Monitoring index and referential
constraint I/O

SampleIO Indexes
SampleIO TabIndex

INDEX,CONSTRAINT
SWAPIN
SWAPOUT
TOTALIO

Determining the number of data bu�er
pages occupied by an object

SampleIO Object CURRENT PGS

Determining the percentage of indirect
rows in a table

Static Indirect OWNER.TABLE
TABLE INDIRECT ROW %

Determining the e�ciency of an
index scan over an index or
referential constraint

Static Cluster CCOUNT
UNLOAD/LOAD SUGGESTED %

Table 6-12. Monitoring I/O for Logging

Task Screens Fields

Identifying the size of
the log bu�er pool

IO TOTAL LOG BUFFER PAGES

Monitoring log bu�er I/O IO
IO Log Session
IO Log Program

LOG BUFF WR
LOG DISK RD
LOG DISK WR

Monitoring checkpoints IO CHECKPOINTS

Table 6-13. Additional Monitoring for Logging

Task Screens Fields

Determining log �le capacity Overview LOG FULL %
Used LgPgs
Max LgPgs

Identifying log mode Overview
IO

Archive Mode

Detecting logging errors Overview LOG ERRORS

Getting Started With SQLMON 6-19

Table 6-14. Monitoring Locking

Task Screens Fields

Determining the size of a
runtime control block

Overview RUNTIME CB %
Used Pages
Max Pages

Monitoring DBEnvironment lock
activity

Load LOCK REQTS
LOCK WAITS
LOCK WAIT %

Comparing the number of locks
by table

Lock TabSummary OWNER.TABLE
G
TOTAL LOCKS

Comparing the number of locks
by session

Lock Memory TABLE
PAGE
ROW
TOTAL
MAXTOTAL

Identifying locks on a table or
referential constraint

Lock OWNER.TABLE[/CONSTRAINT]
G
PAGE/ROW ID
LOCK QUEUE
(hint: use SET LOCKTABFILTER)

Determining the number of sessions
that are accessing a particular lock

Lock LOCK QUEUE

Determining the number of transactions
that are waiting for locks

Overview
Load

IMPEDE XACT

Determining the isolation level
of a transaction

Overview Program
Overview Session
Lock Impede
Lock Object
Lock TabSummary
Lock Session

XID
ISO
PRI
LABEL

Identifying locks for which sessions
are waiting

Lock all �elds
(hint: use SET LOCKFILTER)

Identifying sessions that have
obtained a particular lock

Lock Object GWC
MOD
PID

Identifying sessions that are waiting
to obtain (or to convert) a
particular lock

Lock Object GWC
MOD
NEW
PID

Identifying lock activity for
a particular session

Lock Session all �elds

Identifying locks obtained by a
particular session that are
causing other sessions to wait

Lock Impede all �elds

Detecting deadlocks Load
Load Session
Load Program

DEADLOCKS

Resolving deadlocks Lock
Lock Object
Lock Impede

all �elds
(hint: type HELP LOCK TUNE 13
for more information)

6-20 Getting Started With SQLMON

7

Troubleshooting with SQLMON

This chapter provides examples on how to troubleshoot performance problems with each of
SQLMON's subsystems:

Overview
IO
Load
Lock
SampleIO
Static

Overview Subsystem

You can use the Overview subsystem to determine the overall cause of a performance problem,
and then go to another subsystem for detailed information. For example, with the Overview
screen you can detect

transaction limit reached
lock contention
memory limit reached
high data bu�er miss rate
log full condition

Transaction Limit Reached

If a session attempts to begin a transaction, but the number of active transactions is at the
maximum, the session must wait until a transaction slot becomes available. How long the
session waits depends on the timeout value in e�ect for the session. In the example that
follows, the ISQL session times out because it cannot begin a new transaction:

isql=> SET USER TIMEOUT 3;

isql=> BEGIN WORK;

Timeout expired (3 seconds). (DBERR 2825)

The following screen shows that the transaction limit, MAX XACT, and the number of active
transactions, ACTIVE XACT, are both 5.

d a

c b

Troubleshooting with SQLMON 7-1

Therefore, you may need to raise the transaction limit. Use the Load subsystem for more
information.

Lock Contention

The next screen shows that there are 5 active transactions (ACTIVE XACT) and 4 impeded
transactions (IMPEDE XACT). This means that 4 out of 5 transactions are waiting to acquire
a lock.

d a

c b

We also see that 25% of all lock requests are not granted immediately because other sessions
hold incompatible locks.

d a

c b

This DBEnvironment de�nitely has a locking problem. You should use the Lock subsystem to
get more information.

Memory Limit Reached

The runtime control block is an area of shared memory containing global runtime information
for the DBEnviroment. All ALLBASE/SQL control blocks are allocated from the runtime
control block, and the majority of control blocks are used for lock management. For more
information, see the section \Shared Memory Considerations" in the chapter \Guidelines on
Transaction Design."

In the next screen, the runtime control block is 95% full.

You can either

increase its size using the SQLUtil ALTDBE command. However, you must stop the
DBEnvironment before you can issue this command.

use the Lock Memory screen to identify the sessions that have the greatest number of locks.

d a

c b

7-2 Troubleshooting with SQLMON

After you have identi�ed the sessions that have the most locks, use the Lock TabSummary
screen to identify the programs each session is running and the tables that have the greatest
number of locks. You may wish to change some PUBLICROW tables to PUBLIC to reduce
the memory overhead associated with them.

High Data Buffer Miss Rate

If the value of the DATA BUFFER MISS RATE �eld on the Overview screen is high,
DBEnvironment performance degrades due to increased I/O. You can use the IO subsystem to
identify the sessions and programs that are contributing to the data bu�er miss rate.

Log Full Condition

You can monitor log �le capacity by checking the LOG FULL �eld on the Overview screen. In
the example that follows, the archive log is 99% full.

d a

c b

If you enter the following UPDATE statement to update the PurchDB.SupplyPrice table, it
fails because the log is so full:

isql=> UPDATE PurchDB.SupplyPrice SET UnitPrice = UnitPrice * 1.2;

Log full. (DBERR 14046)

INSERT/UPDATE/DELETE statement had no effect due to execution errors.

(DBERR 2292)

Number of rows processed is 0

You can avoid this problem by using the Overview screen to monitor log �le capacity and
by adding log �les before the logs are full. See the chapter \Backup and Recovery" in the
ALLBASE/SQL Database Administration Guide for instructions.

Troubleshooting with SQLMON 7-3

IO Subsystem

Slow DBEnvironment performance is often caused by I/O activity. Use the IO subsystem to
determine if the DBEnvironment has insu�cient data bu�er space or insu�cient log bu�er
space.

Note You should use the Static subsystem to remove indirect rows, eliminate
over
ow chains from hashed tables, and recluster appropriate indexes before
you use the IO subsystem to tune I/O.

Most of the information displayed on the IO screens is for logical I/O, not physical I/O.
Logical I/O means that ALLBASE/SQL requests that the operating system read or write a
page.

If ALLBASE/SQL requests to read a page, and if the page is in the operating system's bu�er
pool, no physical I/O occurs. If ALLBASE/SQL requests to write to a page, the operating
system may record the write in its bu�er pool to avoid physical I/O, unless ALLBASE/SQL
forces it to write the page to disk. ALLBASE/SQL forces the operating system to write the
page to disk when log disk writes occur. This ensures the integrity of the database in case of a
system crash.

To minimize log disk writes, you can use the IO screens to tune the size of the
ALLBASE/SQL bu�er pools. Speci�cally, you would use the IO screen, the IO Log Program
screen, or the IO Log Session screen and then adjust the the LOG DISK WR �eld, as
described in the chapter \SQLMON Screen Reference."

To further improve I/O performance, you should also use performance tuning tools on the
operating system.

Insufficient Data Buffer Space

A high data bu�er miss rate leads to increased I/O and slower performance. If
ALLBASE/SQL requests a page that is not in the data bu�er pool, then the operating system
must fetch the page, either from the operating system bu�er pool or by a physical disk read.

If the data bu�er miss rate of your DBEnvironment seems high, try increasing the number
of data bu�er pages. For more information, see \Choosing a Number of Data Bu�er Pages"
in the chapter \Guidelines on System Administration." On the IO screen that follows, the
average data bu�er miss rate is 33% and the maximum is 60%.

d a

c b

7-4 Troubleshooting with SQLMON

The BUFF ACCESS, DATA DISK RD, and DATA DISK WR �elds of the IO screen provide
more information on data bu�er I/O activity. The following screen shows that on average
BUFF ACCESS is 3, which means that 3 page requests are made to the data bu�er pool every
10.0 seconds.

d a

c b

You can also see that on average, DATA DISK RD is 1, which means that 1 of the 3 pages
does not reside in the pool. That page may need to be read from disk, resulting in physical
I/O.

To determine which sessions are engaged in data bu�er I/O, access the IO Data Session
screen. In the example screen that follows, PID 27344 has issued the highest number of page
requests (BUFF ACCESS), but PID 27332 has the highest data bu�er miss rate.

d a

c b

Insufficient Log Buffer Space

Log �les are required to recover data in the event of a system crash, but the I/O incurred by
logging can reduce the performance of your DBEnvironment. You can use the IO screen to
monitor log bu�er I/O. If the log bu�er I/O seems excessive, try increasing the number of log
bu�er pages. For more information, see \Choosing a Number of Data Bu�er Pages" in the
chapter, \Guidelines on System Administration." Limiting the number of checkpoints issued
can also reduce logging I/O.

To monitor the amount of log bu�er I/O activity, check the �elds shown in the following IO
screen.

d a

c b

Troubleshooting with SQLMON 7-5

To determine which sessions are performing log bu�er I/O, check the IO Log Session screen.
In the following example, PID 6167 is responsible for all of the log bu�er I/O activity.

d a

c b

7-6 Troubleshooting with SQLMON

Load Subsystem

The Load subsystem is useful in troubleshooting throughput problems. This section describes
how to handle transaction delays, rollbacks, and lock contention.

Transaction Delays

The ACTIVE XACT, IMPEDE XACT, and THROTTLE WT �elds on the Load screen help
identify the source of transaction delays. In the following screen, these �elds indicate two
problems.

d a

c b

The �rst problem is that the transaction limit has been reached. The transaction limit (MAX
XACT) for the DBEnvironment is 5.0. The average number of active transactions (ACTIVE
XACT) is also 5.0. When the transaction limit is reached, other sessions that attempt to
begin a transaction are placed in the throttle wait queue. These sessions must wait until a
transaction slot becomes free. Notice that on average one session is waiting in the throttle
wait queue. You can increase the transaction limit by using

The START DBE statement.

The SQLUtil ALTDBE command. (However, remember that you must stop the
DBEnvironment before you use this command.)

The second problem is that other sessions hold incompatible locks. The current value of
IMPEDE XACT is 1, which means that one active transaction is waiting to acquire a lock.
On average, IMPEDE XACT is 3 and ACTIVE XACT is 5, which means that 3 out of 5
transactions are waiting.

This DBEnvironment de�nitely has a locking problem. At this point, you should use the Lock
subsystem to obtain more information.

Rollbacks

In a DBEnvironment with high throughput, transactions are completed quickly and
successfully. The following screen shows that on average, 2 transactions are started and
completed every 10.0 seconds.

Troubleshooting with SQLMON 7-7

d a

c b

On average, ROLLBK WORK is 0, which means that typically no transactions are rolled
back. However, during the last refresh cycle of the LOAD screen, �ve transactions were rolled
back.

To �nd out which sessions are rolling back transactions, access the Load Session screen. On
the following screen, PID 26556 is responsible for most of the rolled back transactions.

d a

c b

You can see from the screen that the SET SORTLOAD 3 command has sorted the sessions in
descending order according to ROLLBK WORK activity.

Lock Contention

The Load screen also provides an overall view of the amount of lock contention in the
DBEnvironment. In the example that follows, 25% of the lock requests are forced to wait. For
detailed information on locking, you should use the screens in the Lock subsystem.

d a

c b

7-8 Troubleshooting with SQLMON

Lock Subsystem

Use the Lock subsystem to troubleshoot performance bottlenecks caused by lock contention.
This section describes how to handle lock waits, deadlocks, and lock allocation failures.

Lock Waits

If an end user complains of a hung session, perhaps his or her session is actually waiting for
a lock. A session will wait for a lock if another session has already acquired an incompatible
lock on the same object. For more information on lock waits, see the chapter \Concurrency
Control through Locks and Isolation Levels" in the ALLBASE/SQL Database Administration
Guide.

For example, we can use SQLMON to �nd out why the session of the user logged
on as BNORTON appears to be hung. Since the user is connected to the PartsDBE
DBEnvironment, issue the following command:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBENV PartsDBE

To make the screens easier to read, set the lock �lter to limit the lock information displayed
to locks for which at least one session is waiting (W) and locks that are being converted to a
stronger mode (C):

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET LOCKFILTER //WC//

Overview Session Screen

Invoke the Overview Session screen to obtain the PIDs of all database sessions connected to
the DBEnvironment:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /o s

From the following screen, we can see that the BNORTON login has a PID of 26180 and a
wait status.

d a

c b

Lock Session Screen

To get locking information for PID 26180, access the Lock Session screen:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc s

PID: 26180

The value of the GWC �eld in the following screen veri�es that the database session that
appears to be hung is actually waiting to convert a lock. The WAITS FOR column identi�es
PID 6167 as the session that is causing PID 26180 to wait.

Troubleshooting with SQLMON 7-9

d a

c b

Now you can invoke the Lock Session screen for PID 6167, which has acquired a lock on
the PurchDB.Vendors table. To make the screen easier to read, limit the lock information
displayed to the PurchDB.Vendors table. Change the lock �lter so that all locks are displayed.

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKTABFILTER PurchDB.Vendors

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKFILTER ////

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => /loc s 6167

d a

c b

Lock Impede Screen

To identify all sessions that are impeded by PID 6167, invoke the Lock Impede screen:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => i

PID: 6167

The following screen reveals that the lock held by PID 6167 is causing a number of other
sessions, including PID 26180, to wait.

d a

c b

To solve this problem, you should investigate PID 6167. The Lock Session screen reveals
that PID 6167 is running ISQL, and is run by the user logged on as DGREEN. If PID 6167
does not immediately end the transaction holding the incompatible lock, you should consider
executing the ISQL statement TERMINATE USER. If the transaction has been marked with
a label, you can clearly identify the part of the program the user is running. PID 6167 is
executing a repeatable read (RR) transaction.

7-10 Troubleshooting with SQLMON

A better solution might be to change the transaction's isolation level. The XID �eld displays
a system-generated integer that uniquely identi�es the transaction, but it does not identify
the SQL statements that have been executed. The LABEL �eld displays an 8-character
string that the application program de�nes in the BEGIN WORK or SET TRANSACTION
statements. If the application program uses the LABEL �eld carefully, it will be easy for you
to debug all the transactions in your application programs.

Deadlocks

A deadlock occurs when two transactions are each waiting for a database object which the
other has locked. ALLBASE/SQL automatically detects deadlocks and resolves them by
rolling back one of the transactions. For a detailed discussion on deadlocks, see the chapter
\Concurrency Control through Locks and Isolation Levels" in the ALLBASE/SQL Database
Administration Guide.

To examine the locks that cause a deadlock, you must freeze one of the sessions before
ALLBASE/SQL rolls it back and releases its locks. The steps in the following example show
how to create a deadlock, freeze a session, and use SQLMON to examine the deadlocked
session's locks. To perform these steps, you will need access to a Sample DBEnvironment and
the ability to create at least four windows on your workstation or PC. For instructions on
setting up the Sample DBEnvironment, see the chapter \Practice with ALLBASE/SQL Using
PartsDBE" in Up and Running with ALLBASE/SQL.

Step 1 Open Four Windows

Use the windows as follows:

Window 1 The �rst ISQL session that is deadlocked.

Window 2 The second deadlocked ISQL session. Since this session will be rolled back by
ALLBASE/SQL, it is the one you want to freeze.

Window 3 An SQLMON session for examining the locks held by the deadlocked sessions.

Window 4 The window used to create the �le that releases the session in window 2.

Step 2 Set Up the Freeze

In window 2, set the DBCORERR environment variable to 1024 before running ISQL. If you
are using the C shell, issue the following command:

% setenv DBCORERR 1024

Korn shell and Bourne shell users should use the following commands:

% DBCORERR=1024

% export DBCORERR

When troubleshooting a production system, set the DBCORERR environment variable for all
sessions that might be involved in the deadlock, since it is di�cult to predict which session
will be rolled back. See the section \Freezing DBEnvironment Sessions" in this chapter for
more information on setting the DBCORERR environment variable.

Troubleshooting with SQLMON 7-11

Step 3 Create a Deadlock

Run ISQL in windows 1 and 2, and issue the following statements:

Window 1 CONNECT TO PartsDBE

Window 2 CONNECT TO PartsDBE

Window 1 UPDATE PurchDB.Parts SET SalesPrice = 1.2 * SalesPrice

Window 2 SELECT * FROM PurchDB.SupplyPrice

Window 2 Exit from the ISQL browser but do not commit work.

Window 1 UPDATE PurchDB.SupplyPrice SET UnitPrice = 1.2 * UnitPrice

Window 2 SELECT * FROM PurchDB.Parts

When you complete step g, you see a message in window 2:

*****PID=4727******RC=1024 : Wed Mar 31 14:08:07 1993

This message indicates that the DBEnvironment session having PID 4727 (that is, the session
running in window 2) is frozen on DBCORE error 1024, which means that a deadlock has
been detected. Under these circumstances, ALLBASE/SQL does not roll back the session
until you release it. This will be described in \Step 5 Release the Frozen Session".

The deadlock is illustrated in Figure 7-1.

Figure 7-1. Deadlock Example

PID 4687 is running in window 1, and PID 4727 is running in window 2. The solid lines
represent locks that have been granted, and the dashed lines represent sessions that have been
waiting to acquire locks. The letter S designates a share lock, and the number 6 represents a
share plus intent exclusive (SIX) lock. This lock information is displayed by the SQLMON
screens accessed in the next step.

7-12 Troubleshooting with SQLMON

Step 4 Examine the Locks with SQLMON

In window 3, run SQLMON and set the DBEnvironment to PartsDBE. Issue the SET
LOCKFILTER command to limit the lock information displayed to sessions that are waiting
to acquire or convert locks.

% sqlmon

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBENV PartsDBE

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET LOCKFILTER //WC//

Invoke the Lock screen to see which tables have been locked:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /lock

d a

c b

In the Lock screen, you can see the PurchDB.Parts and PurchDB.SupplyPrice tables. There
are two locks on each table: a share plus intent exclusive (6) lock, and a share (S) lock. The
characters displayed in inverse video represent locks held by sessions that are waiting.

To identify the PID of each session in the lock queue of each of the objects shown above,
access the Lock Object screen:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => o

In the following screen, PID 4687 has been granted (G) a share plus intent exclusive (6)
lock on the PurchDB.Parts table. PID 4727 is waiting to acquire a share (S) lock on
PurchDB.Parts. A share (S) lock has been granted to PID 4727 on the PurchDB.SupplyPrice
table, and PID 4687 is waiting to acquire a share plus intent exclusive (6) lock on
PurchDB.SupplyPrice.

d a

c b

Troubleshooting with SQLMON 7-13

Use the Lock Impede screen to verify that the sessions are deadlocked. To identify which
sessions are impeded by PID 4687, invoke the Lock Impede screen as follows:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => i

PID: 4687

In the following screen, PID 4727 is listed in the WAITING column. PID 4727 is waiting for
PID 4687 to release the lock it holds on PurchDB.Parts.

d a

c b

If you specify PID 4727, you see the following screen.

d a

c b

Note that PID 4687 is waiting for PID 4727 to release the lock on the table
PurchDB.Supplyprice. These two sessions are indeed deadlocked.

Step 5 Release the Frozen Session

In window 4, edit a �le named /tmp/SQLunfrz.ALL and enter the deadlock error number,
1024, on the �rst line. When you save the �le, the session is released, and a message such as
the following is displayed in window 2:

***** UNFREEZING PID=4727******RC=1024 : Wed Mar 31 14:54:38 1993

Deadlock detected. (DBERR 14024)

Lock Allocation Failures

If a session requests a lock when space is not available in the runtime control block, a
lock allocation error (DBERR 4008) occurs. In the example that follows, the session that
encounters DBERR 4008 is frozen, allowing you to examine the locks with SQLMON.

Step 1 Open Three Windows

To perform the steps in this example, your workstation or PC must have a windows
environment. The windows will be used as follows:

Window 1 The DBEnvironment session that encounters the lock allocation failure

Window 2 An SQLMON session

Window 3 The window used to create the �le that releases the session in window 1

7-14 Troubleshooting with SQLMON

Step 2 Set Up the Freeze

In window 1, set the DBCORERR environment variable to 1035. If you are using the C shell,
issue the following command:

% setenv DBCORERR 1035

Korn shell and Bourne shell users should use the following commands:

% DBCORERR=1035

% export DBCORERR

Step 3 Generate the Error

In window 1, run the application that encounters the lock allocation failure. When DBCORE
detects the failure, it freezes the session and displays a message such as the following on
standard output:

*****PID=17325******RC=1035 : Wed Apr 7 11:09:57 1993

Step 4 Investigate the Session with SQLMON

In window 2, run SQLMON, set the DBEnvironment option, and invoke the Overview screen:

% sqlmon

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBENV DBEnvironmentName

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => o

The Overview screen shown below indicates that the runtime control block space is nearly full
and no more control blocks can be allocated.

d a

c b

Access the Lock Memory screen as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc m

In the screen that follows, PID 17325 has a total of 324 locks. Most of the locks are held on
rows, because the table in this example was created with the PUBLICROW type. To solve
this problem, you should either alter the table to PUBLIC to avoid numerous row level locks,
or allocate additional runtime control block pages.

Leslie-Anne says that a new screen is needed

Troubleshooting with SQLMON 7-15

d a

c b

Step 5 Release the Frozen Session

In window 3, edit a �le named /tmp/SQLunfrz.ALL and enter the lock allocation failure error
number, 1035, on the �rst line. When you save the �le, the session is released, and a message
such as the following appears in window 1:

***** UNFREEZING PID=17325******RC=1035 : Wed Apr 7 11:29:26 1993

ALLBASE/SQL shared memory lock allocation failed in DBCore. (DBERR 4008)

Freezing DBEnvironment Sessions

ALLBASE/SQL allows you to freeze a session whenever it encounters a certain DBCORE
error. While the session is frozen, you can use SQLMON to examine the session's locks.

To freeze a session, set the DBCORERR environment variable to one or more DBCORE error
numbers. When the session encounters the errors you specify, it freezes. For example, to
freeze a session that encounters either DBCORE error 1024 (deadlock) or 1035 (lock allocation
failure), set DBCORERR from the C shell as follows:

% setenv DBCORERR "1024 1035"

Korn shell and Bourne shell users should use the following commands:

% DBCORERR="1024 1035"

% export DBCORERR

If you set DBCORERR to a negative number, a session freezes if it encounters an error whose
number is greater than the absolute value of DBCORERR. For example, if DBCORERR is set
to -4000, the session freezes if it encounters a DBCORE error greater than 4000.

When a session freezes, a message appears on standard output. The PID identi�es the frozen
session, and the RC �eld designates the DBCORE error number:

*****PID=18250******RC=1024 : Mon Mar 22 11:14:53 1993

DBCORE is a set of internal ALLBASE/SQL routines. DBCORE errors have di�erent
error numbers than DBERR errors. For example, the DBCORE error number for detecting
deadlocks is 1024, but the DBERR number is 14024. When setting the DBCORERR
environment variable, be sure to use the DBCORE error number, not the DBERR error
number.

7-16 Troubleshooting with SQLMON

Releasing DBEnvironment Sessions

To release a session, use a text editor to enter DBCORE error numbers in a �le. When you
save the �le, the frozen session resumes execution. The DBCORE error numbers in the �le
must correspond to the value of the DBCORERR environment variable. To release a session
on any DBCORE error number, enter an ASCII zero in the �le.

The �le can contain one or more lines, and each line can contain one or more numbers. You
can name the �le as follows:

SQLunfrz Releases only those sessions running from the subdirectory containing
this �le.

/tmp/SQLunfrz.xxx Releases only the session whose PID is speci�ed in xxx . For
example, if the PID is 8895, the name of the �le should be
/tmp/SQLunfrz.8895.

/tmp/SQLunfrz.ALL Releases only the frozen sessions that qualify, according to the error
numbers entered in the �le.

For example, to release any session that froze because it encountered either DBCORE error
1024 or 1035, use an editor to create a �le named /tmp/SQLunfrz.ALL, and add the following
lines to it:

1024

1035

When ALLBASE/SQL releases a session, it displays a message on standard output like the
one below:

***** UNFREEZING PID=18250******RC=1024 : Mon Mar 22 11:16:59 1993

Troubleshooting with SQLMON 7-17

SampleIO Subsystem

The SampleIO subsystem is useful for balancing the I/O load of a DBEnvironment. The
SampleIO screens display the amount of data bu�er swapping activity for DBEFiles, tables,
indexes, and referential constraints. For more information, refer to the section \Load
Balancing" in the chapter \Guidelines on System Administration."

You should use the IO subsystem to tune the size of the data bu�er pool before you use the
SampleIO subsystem to balance load.

Note Use the SampleIO subsystem sparingly, because it signi�cantly increases CPU
usage.

Using the SET SAMPLING Command

The SET SAMPLING command enables or disables sampling of the data bu�er pool.
Sampling only occurs if SAMPLING is ON and you access a SampleIO screen. The counters
on the SampleIO screens are set to 0 when you issue SET DBENVIRONMENT, and are then
incremented as sampling occurs. The counters only re
ect activity that was \seen" during
sampling. The counters are cumulative; they represent the total activity observed over all
samples taken since you issued SET DBENVIRONMENT.

By default, SQLMON does not display SampleIO screens during sampling. Instead, it
displays a scale that allows you to determine the amount of sampling that has occurred. For
example, if you issue the SET REFRESH 10 and SET CYCLE 5 commands and then invoke a
SampleIO screen, SQLMON displays the following:

SQLMONITOR SAMPLEIO => /sa

SAMPLING = ON

REFRESH = 10 (One set of samples will be taken every 10 seconds).

CYCLE = 5 (A total of 5 sets of samples will be taken, then you

will automatically return to the SQLMONITOR prompt).

1020304050
12345678901234567890123456789012345678901234567890

The command SET REFRESH 10 means that SQLMON will take one set of samples every 10
seconds, and SET CYCLE 5 means that SQLMON will take 5 sets of samples and then return
to the prompt.

The scale includes the following elements:

1. The current value of the SAMPLING variable. When you see a refresh scale, SAMPLING
is ON, because this scale is never printed if SAMPLING is OFF. To view the results
of previous sampling, issue the command SET SAMPLING OFF and then invoke the
SampleIO screen you want to see.

2. The current value of the REFRESH variable, which determines the number of seconds that
SQLMON pauses between each refresh cycle.

3. The current value of the CYCLE variable, which determines the number of refresh cycles
that occur before you return to the SQLMON prompt. If CYCLE is OFF, you must press
Return to exit sampling and return to the prompt.

7-18 Troubleshooting with SQLMON

4. SQLMON displays a period each time a refresh cycle completes.

In the example above, SQLMON displays a period every 10 seconds, because REFRESH is set
to 10. It displays 5 periods, because CYCLE is 5. SQLMON takes a total of 125 samples,
which is 5 refresh cycles X 25 samples each.

After SQLMON has completed the sampling, issue the command SET SAMPLING OFF. If
you are using SQLMON interactively, and if CYCLE has a value other than OFF, you should
also issue SET CYCLE OFF. Then, you can invoke the SampleIO screens in which you are
interested.

For example, the following screen lists the amount of I/O for each DBEFile.

d a

c b

PartsDBE0, which exists in the SYSTEM DBEFileSet and contains the system catalog, has
the most read I/O activity. The only DBEFiles with write I/O activity are PurchDataF1 and
PartsDBE0.

DBEFiles provide storage for objects that exist within a DBEFileSet. I/O occurs for a
DBEFile whenever I/O occurs for the tables, indexes, or referential constraints within the
DBEFileSet. You can use the SampleIO screen to determine which DBEFiles (and therefore
which DBEFileSets) have the most I/O.

In the SampleIO screen above, we see that objects in the PurchFS DBEFileSet are showing
slightly more I/O activity than objects in the WarehFS DBEFileSet. You can use the
SampleIO Tables, SampleIO Indexes, and SampleIO TabIndex screens to obtain I/O
information about the individual objects in these DBEFileSets.

In the following screen, we see that PurchDB.SupplyPrice is the table with the most activity
in the PurchFS DBEFileSet, and is responsible for the write I/O activity that we saw on the
SampleIO screen.

d a

c b

PurchDB.Parts shows the most activity in the WarehFS DBEFileSet. The next example
shows that an index on PurchDB.Parts is also undergoing I/O.

Troubleshooting with SQLMON 7-19

d a

c b

Using the SET DISPLAYSAMPLES Command

If you want to display screens in the SampleIO subsystem during sampling, instead of seeing
the refresh scale shown above, you can do so by issuing a SET DISPLAYSAMPLES ON
command. When DISPLAYSAMPLES is ON, the screen is refreshed after each set of samples
is obtained, that is, after each refresh cycle.

When DISPLAYSAMPLES is OFF, you see a refresh scale instead of the screen, and a
period is displayed each time a refresh cycle completes. Because SQLMON does not display
screen images, a smaller amount of output is created when sampling occurs, which might be
especially desirable for batch jobs. In addition, SQLMON needs less CPU time, because some
processing to sort and format the information displayed on the screen is avoided.

When SAMPLING is OFF, the SET DISPLAYSAMPLES command has no e�ect.

A Sample Batch Job

For example, you can use the following script within an SQLMON batch job to obtain
SampleIO statistics for the day on a particular DBEnvironment.

/set dbenv MyDBE

/set menu off

#

###

SAMPLING is ON by default, so the following command is not really

necessary.

###

/set sampling on

#

###

Do not generate screens while sampling. This reduces the output

generated by this job, and also reduces the amount of CPU SQLMON

consumes when it gathers statistics. DISPLAYSAMPLES is OFF by default,

so the following command is not really necessary.

###

/set displaysamples off

#

7-20 Troubleshooting with SQLMON

###

Take samples every 10 minutes for 8 hours:

###
Take 1 set of 25 samples every 10 minutes (10 min x 60 sec/min = 600 sec)

/set refresh 600

#

Take 48 sets of samples (8 hours = 480 min x (1 cyc/10 min) = 48 cyc)

/set cycle 48

#

###

Now perform the sampling. It does not matter which SampleIO screen is

used. The following command causes the SampleIO screen to be

visited 48 times (a 10-minute pause occurs between each visit).

###

/sampleio

#

###

Now print a report. When SAMPLING is OFF, each screen is painted

without taking additional samples of the data buffer pool. We simply

view the statistics that were obtained as a result of all of the

previous sampling.

#

If you set the REFRESH variable to a large value for sampling, it's

good practice to reset it to a lower (normal) value when turning

sampling off. It's also good practice to reset the CYCLE variable.

###

/set sampling off

/set refresh 10

/set cycle 1

###

The following commands cause tables and indexes from all DBEFileSets
to be included in the report. They will be printed in descending order

according to the total amount of I/O that was observed during sampling.

###

/set dbefileset off

/set sortsamp 3

/set output myfile

/set

/sa

/sa tables

/sa indexes

/sa tabi owner.table1

/sa tabi owner.table2

/exit

Once you enter this script, you can use the HP-UX at command to execute the job at a
particular time.

Troubleshooting with SQLMON 7-21

Understanding the Internals of Sampling

SampleIO statistics are generated entirely by SQLMON. In other words, the data is not
obtained by simply reading from some existing table where these statistics are maintained.
The more often you perform sampling, the more complete the I/O statistics become. However,
SQLMON uses CPU time whenever it takes samples. The larger the number of samples
SQLMON takes, the larger the amount of CPU time it consumes. Furthermore, SQLMON
needs more CPU time to examine large data bu�er pools than small data bu�er pools.

When SAMPLING is ON, SQLMON takes 25 \snapshots" of the data bu�er pool during each
refresh cycle. SQLMON pauses between successive snapshots. The length of the pause is the
refresh rate divided by 25.

As SQLMON takes each snapshot, it keeps track of the pages that are currently in the data
bu�er pool and the pages that were in the data bu�er pool during the last snapshot. The
SWAPIN, SWAPOUT, and TOTALIO counters are then incremented to re
ect the changes.

The SWAPIN value represents read I/O. The SWAPIN value will be incremented by 1 if

A page is in the pool now, but it was not in the pool during the last snapshot.

A page was in the pool last time, but it was dirty then and it is clean now. The page was
swapped out to disk and then swapped back in again.

A page was in the pool last time, but it was occupying a di�erent bu�er page location than
it is now.

The SWAPOUT value represents write I/O. The SWAPOUT value will be incremented by 1 if

A page is in the pool now, but it was not in the pool during the last snapshot. The page is
also dirty (if it is not dirty, the SWAPOUT value is not modi�ed).

A page was in the pool last time, but it was clean then and is dirty now.

If the page was dirty during the last snapshot, and it is still dirty, the SWAPOUT column
is not modi�ed. When a dirty page stays in the bu�er pool for a long time without being
swapped out, ALLBASE/SQL is using the information well without paying a high I/O price.

The TOTAL value represents total I/O, and is obtained by adding the SWAPIN and
SWAPOUT values.

7-22 Troubleshooting with SQLMON

Static Subsystem

The Static subsystem allows you to troubleshoot full DBEFileSets, poorly clustered indexes,
indirect rows, and hash over
ow pages.

Full DBEFileSets

A transaction fails if it attempts to insert a row into a table whose DBEFileSet is full. To
prevent this, you should monitor DBEFileSet capacity on a regular basis. The Static DBEFile
screen displays the capacity of each DBEFile and DBEFileSet in a DBEnvironment. In the
following Static DBEFile screen, the InvoiceFS DBEFileSet is 92% full. It contains only 12
pages and should be expanded.

d a

c b

You can plan for capacity by monitoring the growth of DBEFileSets and the database objects
contained within them.

Poorly Clustered Indexes

A poorly clustered index forces ALLBASE/SQL to access more physical pages during index
scans. Performance degrades because I/O increases. Applications that frequently access rows
in index order perform better if the rows are physically stored together on disk in index order.

To check the clustering of an index, go to the Static Cluster screen. In the following example,
the CCOUNT of the InvoiceIndex is approximately equal to the number of rows in the table,
which indicates that the data is poorly clustered.

d a

c b

If this index is used frequently to access rows, you should unload the PurchDB.Invoice table
in sorted order and reload it with ISQL. For more information, see the section \Clustering
Indexes" in the chapter \Guidelines on Logical and Physical Design."

Troubleshooting with SQLMON 7-23

Indirect Rows

Avoid indirect rows, because they waste disk space and increase the amount of I/O needed to
access data. Use the Static Indirect screen to detect the presence of indirect rows. On the
screen that follows, the PurchDB.Invoice table has 12% indirect rows. For instructions on
how to remove indirect rows, see \Unloading and Reloading to Remove Indirect Rows" in the
chapter \Guidelines on Logical and Physical Design."

d a

c b

Hash Overflow Pages

As the number of hash over
ow pages grows, the amount of I/O necessary to obtain table
data increases. To monitor the over
ow pages of a hash structure, access the Static Hash
screen. In the next example, the PurchDB.Invoice table has seven over
ow pages, and should
be unloaded and reloaded to improve performance.

d a

c b

For instructions, see \Unloading and Reloading to Remove Over
ow Pages" in the chapter
\Guidelines on Logical and Physical Design."

7-24 Troubleshooting with SQLMON

8

SQLMON Screen Reference

This chapter describes each of the SQLMON screens in alphabetical order.

You will �nd a table listing each of the SQLMON screens in the chapter \Getting Started
with SQLMON." For complete descriptions of the SQLMON commands, refer to the chapter
\SQLMON Command Reference."

SQLMON Screen Reference 8-1

IO Screen

This screen provides I/O information on the data and log bu�er pools.

d a

c b

To invoke the IO screen, use the i command from the IO subsystem or the /i command from
other subsystems.

When you issue the SET DBENVIRONMENT command, the counters on this screen are set
to zero.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

per sec The scale used to identify the length of the inverse video bars and the
data in the CUR, AVG, and MAX columns. In the example above, the
MAX frequency of BUFF ACCESS is 20 per 1.0 second.

BUFF ACCESS The number of page requests issued to the data bu�er pool.

DATA DISK RD The number of pages that are not in the data bu�er pool at request time.
The operating system must fetch these pages, either from the operating
system bu�er pool or by a physical disk read.

DATA DISK WR The number of dirty pages from the data bu�er pool that were logically
written to disk.

LOG BUFF WR The number of records written to the log bu�er pool.

LOG DISK RD The number of log pages fetched from disk. Unless you have used
rollforward recovery, this value is zero. The operating system performs a
physical read only if the log page is not found in the operating system
bu�er pool.

8-2 SQLMON Screen Reference

IO Screen

LOG DISK WR The number of log pages written from the log bu�er pool to disk. The
operating system performs a physical write for each log bu�er write.

CHECKPOINTS The number of checkpoints taken. Checkpoints are performed
automatically, when the nonarchive log becomes full, or when you issue a
CHECKPOINT command.

DATA BUFFER

MISS RATE

The percentage of pages that are not in the data bu�er pool at request
time. The percentage is calculated as follows:

DATA BUFFER MISS RATE = (DATA DISK RD / BUFF ACCESS) * 100

TOTAL DATA

BUFFER PAGES

The number of data bu�er pages con�gured. To change the number of
data bu�er pages, issue the START DBE statement or the SQLUtil
ALTDBE command.

TOTAL LOG

BUFFER PAGES

The number of log bu�er pages con�gured. To change the number of log
bu�er pages, issue the START DBE statement or the SQLUtil ALTDBE
command.

ARCHIVE MODE Either ON or OFF, to indicate archive or nonarchive logging.

Display Conventions

The characters displayed in the horizontal bars have special meanings, as explained in the
following table.

Legend

Symbol Corresponding Number Description

! CUR Represents activity that has occurred
during the most recent refresh interval.

* AVG Designates the average amount of
activity that has occurred since
SQLMON has been attached to the
DBEnvironment.

$ AVG and CUR Indicates that the average value and the
value of the most recent refresh interval
are the same.

NN
Full bright inverse video MAX Designates the maximum amount of

activity that has occurred since
SQLMON has been attached to the
DBEnvironment.

Related SET Commands

Use the SET REFRESH command to modify the refresh rate of the screen.

SQLMON Screen Reference 8-3

IO Data Program Screen

This screen provides I/O data bu�er pool information for each program being run by sessions
attached to the DBEnvironment.

d a

c b

To invoke the IO Data Program screen, use the d p command from the IO subsystem or the
/i d p command from other subsystems.

When you invoke this screen, its counters are set to zero.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

SORTIODATA An indicator of how the programs are sorted. The programs are sorted in
descending order by the value in the column marked with the asterisk.
In the example above, the programs are sorted by the DATA DISK WR
values. For more information, see the SET SORTIODATA command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

BUFF ACCESS The number of page requests the session has issued to the data bu�er
pool.

DATA DISK RD The number of pages that are not in the data bu�er pool at request time.
The operating system must fetch these pages, either from the operating
system bu�er pool or by a physical disk read.

DATA DISK WR The number of dirty pages from the data bu�er pool that have been
logically written to disk.

8-4 SQLMON Screen Reference

IO Data Program Screen

MISS RATE The percentage of pages that are not in the data bu�er pool, calculated as
follows:

MISS RATE = (DATA DISK RD / BUFF ACCESS) * 100

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment.

All of the sessions running a program are listed beneath the PROGRAM
NAME.

AVERAGE For a given column, the average amount of work performed by the
processes in the list.

Each program has a list of processes beneath it. Each process has a line
of information, which shows percentages in each column. The line shows
the exact percentages of work each process performs, in each column. The
AVERAGE �eld, however, shows the average amount of work each process
performs.

For example, in the above screen, process 18371, which is running the
program ISQL, is responsible for 76% of the BUFF ACCESS activity in
the DBEnvironment. Process 18381 is responsible for 24% of the BUFF
ACCESS activity. On average, each process is responsible for 50% of the
BUFF ACCESS activity.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 10

SET SORTIODATA Sorts the programs in descending order according
to the value of the speci�ed column.

SET SORTIODATA 1

SET TOP Limits the number of programs displayed. SET TOP 5

SQLMON Screen Reference 8-5

IO Data Session Screen

This screen provides data bu�er pool I/O information for each session attached to the
DBEnvironment.

d a

c b

To invoke the IO Data Session screen, use the d s command from the IO subsystem, or use
the /i d s command from other subsystems.

When you invoke this screen, its counters are set to zero.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

SORTIODATA An indicator of how the sessions are sorted. The sessions are sorted in
descending order by the value in the column indicated by the asterisk. In
the above example, sessions are sorted by their DATA DISK WR values.
For more information, see the SET SORTIODATA command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

BUFF ACCESS The number of page requests the session has issued to the data bu�er
pool.

DATA DISK RD The number of pages that are not in the data bu�er pool at request time.
The operating system must fetch these pages, either from the operating
system bu�er pool or by a physical disk read.

DATA DISK WR The number of dirty pages from the data bu�er pool that were logically
written to disk.

8-6 SQLMON Screen Reference

IO Data Session Screen

MISS RATE The percentage of pages that are not in the data bu�er pool at request
time. The percentage is calculated as follows:

MISS RATE = (DATA DISK RD / BUFF ACCESS) * 100

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SORTIODATA Sorts sessions in descending order according to the
value of the speci�ed column.

SET SORTIODATA 2

SET TOP Limits the number of sessions displayed. SET TOP 10

SQLMON Screen Reference 8-7

IO Log Program Screen

This screen provides log bu�er pool I/O information for each program being run by sessions
attached to the DBEnvironment.

d a

c b

To invoke the IO Log Program Screen, use the l p command from the IO subsystem or the /i
l p command from other subsystems.

When you invoke this screen, its counters are set to zero.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

SORTIOLOG An indicator of how the programs are sorted. In the above example,
the programs are sorted by program name, because the SORTIOLOG
variable is set to o�. Otherwise, the programs are sorted by the value in
the column indicated by the asterisk. For more information, see the SET
SORTIOLOG command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

LOG BUFF WR The number of records written by the session to the log bu�er pool.

LOG DISK RD The number of log pages fetched from disk. Unless the system has
performed a rollforward recovery, this value is zero. The operating system
performs a physical read only if the log page is not found in the operating
system bu�er pool.

LOG DISK WR The number of log pages written from the log bu�er pool to disk. To
ensure data integrity in case of a system crash, ALLBASE/SQL instructs
the operating system to perform a physical write for each log bu�er write.

8-8 SQLMON Screen Reference

IO Log Program Screen

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment. All of the sessions
running a program are listed beneath the PROGRAM NAME.

AVERAGE For a given column, the average amount of work performed by the
processes in the list.

Each program has a list of processes beneath it. Each process has a line
of information, which shows percentages in each column. The line shows
the exact percentages of work each process performs, in each column. The
AVERAGE �eld, however, shows the average amount of work each process
performs.

(For example, in the screen above, process 18371 performs 97% of the
LOG BUFF WR activity that occurs in the DBEnvironment.)

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SORTIOLOG Sorts programs in descending order according to
the value of the speci�ed column.

SET SORTIOLOG 2

SET TOP Limits the number of programs displayed. SET TOP 10

SQLMON Screen Reference 8-9

IO Log Session Screen

This screen provides log bu�er pool I/O information for each session attached to the
DBEnvironment.

d a

c b

To invoke the IO Log Session screen, use the l s command from the IO subsystem or the /i l

s command from other subsystems.

When you invoke this screen, its counters are set to zero.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

SORTIOLOG An indicator of how the sessions are sorted. In the above example, the
sessions are sorted by PID, because the SORTIOLOG variable is set
to OFF. Otherwise, the sessions are sorted by the value in the column
indicated by the asterisk. For more information, see the description of the
SET SORTIOLOG command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

LOG BUFF WR The number of records written by the session to the log bu�er pool.

LOG DISK RD The number of log pages fetched from disk. Unless the system has
performed a rollforward recovery, this value is zero. The operating
system reads a log page from disk only if it cannot �nd a log page in the
operating system bu�er pool.

LOG DISK WR The number of log pages written from the log bu�er pool to disk. To
ensure data integrity, ALLBASE/SQL instructs the operating system to
write to disk each time it writes to the log bu�er.

8-10 SQLMON Screen Reference

IO Log Session Screen

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SORTIOLOG Sorts sessions in descending order according to the
value of the speci�ed column.

SET SORTIOLOG 2

SET TOP Limits the number of sessions displayed. SET TOP 10

SQLMON Screen Reference 8-11

Load Screen

This screen provides information useful in measuring the transaction throughput e�ciency of
the DBEnvironment.

d a

c b

To invoke the Load screen, use the l command from the Load subsystem or the /loa
command from other subsystems.

When you issue the SET DBENVIRONMENT command, the counters on this screen are set
to zero. See the section \Display Conventions" on the next page for a description of the CUR,
AVG, and MAX headings.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

MAX XACT The maximum number of transactions. The maximum number that may
be active at one time appears at the far right of the scale. The �rst three
numbers on the scale are 1/4, 1/2, and 3/4 of the maximum.

ACTIVE XACT The number of transactions that have started but have not terminated
(that is, a BEGIN WORK statement has completed, but a COMMIT
WORK statement has not yet begun).

IMPEDE XACT The number of active transactions blocked because they are waiting for a
lock owned by another session. Compare the IMPEDE XACT value with
the ACTIVE XACT and SESSIONS values to determine the amount of
lock contention.

THROTTLE WT The number of sessions that are waiting for their BEGIN WORK
statements to complete. These sessions are in the throttle wait queue.

8-12 SQLMON Screen Reference

Load Screen

per sec The scale used to identify the length of the inverse video bars and the
data in the CUR, AVG, and MAX columns. In the above example, the
MAX frequency of LOCK REQSTS is 40 per 1.0 second.

BEGIN WORK The number of BEGIN WORK commands being processed. This number
includes both explicit BEGIN WORK commands that sessions issue and
BEGIN WORK commands that ALLBASE/SQL generates.

COMMIT WORK The number of COMMIT WORK commands being processed.

ROLLBK WORK The number of ROLLBACK WORK commands being processed. This
number includes both the ROLLBACK WORK commands the session
issues and the ROLLBACK WORK commands ALLBASE/SQL issues
against the session to resolve deadlocks.

DEADLOCKS The number of deadlocks being encountered.

LOCK REQTS The number of lock requests being processed.

LOCK WAITS The number of lock requests postponed because another session held an
incompatible lock.

LOCK WAIT % The percentage of lock requests postponed because another session held an
incompatible lock.

Display Conventions

Characters displayed in the horizontal bars have special meanings, as explained in the
following table:

Legend

Symbol Corresponding Number Description

! CUR Represents activity that has occurred
during the most recent refresh interval.

* AVG Designates the average amount of
activity that has occurred since
SQLMON has been attached to the
DBEnvironment.

$ AVG and CUR Indicates that the average value is the
same as the value of the most recent
refresh interval.

NN
Full bright inverse video MAX Designates the maximum amount of

activity that has occurred since
SQLMON has been attached to the
DBEnvironment.

Related SET Commands

Use the SET REFRESH command to modify the refresh rate of the screen.

SQLMON Screen Reference 8-13

Load Program Screen

This screen provides transaction throughput information for each program being run by
sessions attached to the DBEnvironment.

d a

c b

To invoke the Load Program screen, use the p command from the Load subsystem or the /loa
p command from other subsystems.

When you invoke this screen, its counters are set to zero.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

SORTLOAD An indicator of how the programs are sorted. The programs are sorted in
descending order by the value in the column indicated by the asterisk. In
the example above, the programs are sorted by ROLLBK WORK values.
For more information, see the SET SORTLOAD command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

BEGIN WORK The number of BEGIN WORK commands the session has completed,
including those that sessions issue explicitly and those that
ALLBASE/SQL issues.

COMMIT WORK The number of COMMIT WORK commands the session has completed.

ROLLBK WORK The number of ROLLBACK WORK commands the session has
completed. This number includes both the ROLLBACK WORK
commands the session issued and the ROLLBACK WORK commands
ALLBASE/SQL issued against the session to resolve deadlocks.

DEADLOCKS The number of times the session was deadlocked and then rolled back.

8-14 SQLMON Screen Reference

Load Program Screen

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment. All of the sessions
running a program are listed beneath PROGRAM NAME.

AVERAGE For a given column, the average amount of work performed by the
processes in the list.

Each program has a list of processes beneath it. Each process has a line
of information to the right of its ID. The line shows the exact percentages
of work each process performs, in each column. The AVERAGE �eld,
however, shows the average amount of work each process performs.

(For example, in the screen above, process 18371 performs 94% of the
BEGIN WORK activity that occurs in the DBEnvironment.)

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SORTLOAD Sorts programs in descending order according to
the value of the speci�ed column.

SET SORTLOAD 2

SET TOP Limits the number of programs displayed. SET TOP 5

SQLMON Screen Reference 8-15

Load Session Screen

This screen provides transaction throughput information for each session attached to the
DBEnvironment.

d a

c b

To invoke the Load Session screen, use the s command from the Load subsystem or the /loa
s command from other subsystems.

When you invoke this screen, its counters are set to zero.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

SORTLOAD An indicator of how the sessions are sorted. The sessions are sorted in
descending order by the value in the column marked with the asterisk. In
the example above, sessions are sorted by their ROLLBK WORK values.
For more information, see the SET SORTLOAD command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

BEGIN WORK The number of BEGIN WORK commands the session has completed,
including those that that sessions issued explicitly and those that
ALLBASE/SQL issued.

COMMIT WORK The number of COMMIT WORK commands the session has completed.

ROLLBK WORK The number of ROLLBACK WORK commands the session has
completed. This number includes the ROLLBACK WORK commands the
session issued and the ROLLBACK WORK commands ALLBASE/SQL
issued against the session to resolve deadlocks.

DEADLOCKS The number of times the session was deadlocked and then rolled back.

8-16 SQLMON Screen Reference

Load Session Screen

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SORTLOAD Sorts sessions in descending order according to the
value of the speci�ed column.

SET SORTLOAD 2

SET TOP Limits the number of sessions displayed. SET TOP 10

SQLMON Screen Reference 8-17

Lock Screen

This screen displays lock activity data for the entire DBEnvironment.

d a

c b

To invoke the Lock screen, use the l command from the Lock subsystem or the /loc
command from other subsystems.

Field Definitions

REFRESH The screen refresh rate, in seconds.

LOCKFILTER The current setting of the LOCKFILTER variable, which determines the
type of lock information that appears on the screen.

For more information, see the SET LOCKFILTER command.

G The granularity of the lock, either table (T), page (P), or row (R).

OWNER.TABLE

[/CONSTRAINT]

The name of the table or referential constraint that is locked.

PAGE/ROW ID The identi�er of the page or row that is locked. If the lock is a table lock,
this �eld is blank.

LOCK QUEUE A list of characters. Each character represents a lock that a
DBEnvironment session has requested. If a character appears in inverse
video, the session is waiting for a lock. If a character appears without
inverse video, the lock has been granted. If a character is in inverse video
and underlined, the session is converting the lock to a stronger mode.

8-18 SQLMON Screen Reference

Lock Screen

The character indicates the mode of the lock, as listed below:

S Share
X Exclusive
s Intent share
x Intent exclusive
6 Share + intent exclusive
R Recovery exclusive
r Recovery intent exclusive
v Recovery share + intent exclusive

When a session is waiting to acquire or convert a lock, the character
indicates the lock mode the session is attempting to acquire.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of
the screen.

SET REFRESH 5

SET LOCKFILTER Filters the lock information
provided.

SET LOCKFILTER /U/TP/W/SXx/5

SET LOCKTABFILTER Filters lock information by
object name.

SET LOCKTABFILTER
PurchDB.Orders

SQLMON Screen Reference 8-19

Lock Impede Screen

This screen identi�es the locks granted to a particular session that are causing other sessions
to wait.

d a

c b

To invoke the Lock Impede screen, use the i command from the Lock subsystem or the /loc
i command from other subsystems.

When you invoke the screen, you must specify the process identi�cation number of a session.
You can specify the process identi�cation number on the command line, like this:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc i 18381

You can also specify the number in response to an SQLMON prompt, for example:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc i

PID: 18381

The information in the NEW and WAITING �elds, which is displayed in inverse video, applies
to the sessions that are waiting for locks. The other �elds on the screen apply to the session
identi�ed by the �eld in the upper left corner.

Field Definitions

REFRESH The screen refresh rate, in seconds.

PID The HP-UX process identi�cation number of the DBEnvironment session
you speci�ed when you invoked this screen.

8-20 SQLMON Screen Reference

Lock Impede Screen

STATUS The status of the DBCore call the session has made. This �eld is
equivalent to the STATUS column of the SYSTEM.CALL pseudotable.
The possible values are listed below:

Running DBCore is processing a call from a session.

Waiting for
resource

The session has made a DBCore call, but is waiting until
it can acquire a resource that is currently unavailable.
The resource can be LOCK, LATCH, BUFFER,
THROTTLE, or XACT.

Idle DBCore is not processing a call.

XID The transaction identi�er, equivalent to the XID column of the
SYSTEM.TRANSACTION pseudotable.

ISO The isolation level, equivalent to the ISOLATION LEVEL column of the
SYSTEM.TRANSACTION pseudotable. See the \Concurrency Control
through Locks and Isolation Levels" chapter in the ALLBASE/SQL
Reference Manual for more information.

LOGIN NAME The HP-UX login name for the DBEnvironment session.

LABEL The transaction label, equivalent to the LABEL column of the
SYSTEM.TRANSACTION pseudotable. To assign a label to a
transaction, use a BEGIN WORK or a SET TRANSACTION statement.

PRI The transaction priority, equivalent to the PRIORITY column of the
SYSTEM.TRANSACTION pseudotable. The lowest transaction priority
is 255, and the highest is 0.

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment.

G The granularity of the lock, either table (T), page (P), or row (R).

OWNER.TABLE

[/CONSTRAINT]

The name of the table or referential constraint that is locked.

PAGE/ROW ID The identi�er of the page or row that is locked. If the lock is a table lock,
this �eld is blank.

GWC The status of the lock, always set to G to indicate that the lock has been
granted to the session indicated by the PID �eld in the upper left corner
of the screen.

MOD The mode of lock that has been granted, as follows:

S Share
X Exclusive
s Intent share
x Intent exclusive
6 Share + intent exclusive
R Recovery exclusive
r Recovery intent exclusive
v Recovery share + intent exclusive

NEW The lock mode the waiting session is attempting to acquire. If the lock
has been granted, this �eld is blank.

SQLMON Screen Reference 8-21

Lock Impede Screen

WAITING The HP-UX process identi�er for the DBEnvironment session that is
waiting because an incompatible lock has been granted to the session
identi�ed by the PID �eld in the upper left corner of the screen.

Related SET Commands

Use the SET REFRESH command to modify the refresh rate of the screen.

8-22 SQLMON Screen Reference

Lock Memory Screen

Lock Memory Screen

This screen lists the number of locks allocated to each session according to the lock
granularity.

d a

c b

To invoke the Lock Memory screen, use the m command from the Lock subsystem or the /loc
m command from other subsystems.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

SORTLOCK An indicator of how the sessions are sorted. The sessions are sorted in
descending order by the value in the column indicated by the asterisk. In
the example above, the sessions are sorted by MAXTOTAL values. For
more information, see the description of the SET SORTLOCK command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

TABLE The number of table locks allocated to the session. This number includes
locks that have been granted, locks the session is waiting to acquire, and
locks the session is waiting to convert.

PAGE The number of page locks allocated to the session. This number includes
locks that have been granted, locks the session is waiting to acquire, and
locks the session is waiting to convert.

ROW The number of row locks allocated to the session. This number includes
locks that have been granted, locks the session is waiting to acquire, and
locks the session is waiting to convert.

SQLMON Screen Reference 8-23

Lock Memory Screen

TOTAL The total number of locks allocated to the session, calculated as follows:

TOTAL = TABLE + PAGE + ROW

MAXTOTAL The maximum number of TOTAL locks allocated to the session since it
was attached to the DBEnvironment.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SORTLOCK Sorts sessions in descending order according to the
value of the speci�ed column.

SET SORTLOCK 2

SET TOP Limits the number of sessions displayed. SET TOP 10

8-24 SQLMON Screen Reference

Lock Object Screen

Lock Object Screen

This screen identi�es the sessions in the lock queue for a particular table, page, or row.

d a

c b

To invoke the Lock Object screen, use the o command from the Lock subsystem or the /loc o
command from other subsystems.

By default, the LOCKOBJECT variable is set to ALL. Therefore, by default, the LOCK
OBJECT screen displays all the lock objects that qualify under the LOCKFILTER and
LOCKTABFILTER variables.

If LOCKOBJECT is set to OFF, you must specify a lock or ALL when you invoke the Lock
Object screen. For example, to view information about all the quali�ed locks, you can enter

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc o ALL

To view information about a single lock on a table, you must provide the table name:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc o PurchDB.Parts

If the lock is on a page or row, you must provide the table name and the page or row id,
separating the two �elds with a slash:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc o PurchDB.Parts/0:1:5:28

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc o PurchDB.Parts/0 1 5 28

As shown in the last two examples, you can use either spaces or colons to delimit the numbers
in the page or row id.

SQLMON Screen Reference 8-25

Lock Object Screen

Field Definitions

REFRESH The screen refresh rate, in seconds.

LOCKFILTER If the lock object is ALL, the current setting of the LOCKFILTER
variable. The LOCKFILTER variable determines the type of lock
information that is provided.

For more information, see the description of the SET LOCKFILTER
command.

G The granularity of the lock, either table (T), page (P), or row (R).

OWNER.TABLE

[/CONSTRAINT]

The name of the table or referential constraint that is locked.

PAGE/ROW ID The identi�er of the page or row that is locked. If the lock object is a
table, this �eld is blank.

GWC The lock status, either granted (G), waiting (W), or converting (C) to a
stronger mode.

MOD The mode of lock that has been granted, as listed below:

S Share
X Exclusive
s Intent share
x Intent exclusive
6 Share + intent exclusive
R Recovery exclusive
r Recovery intent exclusive
v Recovery share + intent exclusive

If the session is waiting for a lock, this �eld is blank. If the session is
converting a lock, this �eld displays the old value.

NEW The lock mode the waiting session is attempting to acquire. If the lock
has been granted, this �eld is blank.

PID The HP-UX process identi�cation number.

LOGIN NAME The HP-UX login.

XID The transaction identi�er, equivalent to the XID column of the
SYSTEM.TRANSACTION pseudotable.

ISO The isolation level, equivalent to the ISOLATION LEVEL column of the
SYSTEM.TRANSACTION pseudotable. See the \Concurrency Control
through Locks and Isolation Levels" chapter in the ALLBASE/SQL
Reference Manual for more information.

PRI The transaction priority, equivalent to the PRIORITY column of the
SYSTEM.TRANSACTION pseudotable. The lowest transaction priority
is 255 and the highest is 0.

LABEL The transaction label, equivalent to the LABEL column of the
SYSTEM.TRANSACTION pseudotable. To assign a label to a
transaction, use a BEGIN WORK or a SET TRANSACTION statement.

8-26 SQLMON Screen Reference

Lock Object Screen

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment.

Display Conventions

Sessions waiting for locks appear on the screen in inverse video. If the session is converting
the lock to a stronger mode, the �elds are in inverse video and underlined. The absence of
inverse video and underlining indicates that the lock has been granted.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET LOCKOBJECT Speci�es the lock object displayed.
When set to ALL, the screen displays
all lock objects that qualify under the
LOCKFILTER and LOCKTABFILTER
variables.

SET LOCKOBJECT
PurchDB.Parts

SET LOCKFILTER Filters the lock information provided. SET LOCKFILTER
/U/TP/W/SXx/5

SET LOCKTABFILTER Filters lock information by object name. SET LOCKTABFILTER
PurchDB.Orders

SQLMON Screen Reference 8-27

Lock Session Screen

This screen displays lock activity data for a single session.

d a

c b

To invoke the Lock Session screen, use the s command from the Lock subsystem or the /loc s
command from other subsystems.

You must specify the session's process identi�cation number when you invoke the screen.
You can specify a process identi�cation number on the command line or in response to an
SQLMON prompt:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc s 18827

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc s

PID: 18827

Field Definitions

REFRESH The screen refresh rate, in seconds.

LOCKFILTER The current setting of the LOCKFILTER variable, which determines the
type of lock information that is provided.

For more information, see the description of the SET LOCKFILTER
command.

PID The HP-UX process identi�cation number of the DBEnvironment session.

8-28 SQLMON Screen Reference

Lock Session Screen

STATUS The status of the DBCore call the session has made. This �eld is
equivalent to the STATUS column of the SYSTEM.CALL pseudotable.
The possible values are listed below:

Running DBCore is processing a call from a session.

Waiting for
resource

The session has made a DBCore call, but is waiting until
it can acquire a resource that is currently unavailable.
The resource can be LOCK, LATCH, BUFFER,
THROTTLE, or XACT.

Idle DBCore is not processing a call.

XID The transaction identi�er, equivalent to the XID column of the
SYSTEM.TRANSACTION pseudotable.

ISO The isolation level, equivalent to the ISOLATION LEVEL column of the
SYSTEM.TRANSACTION pseudotable. For more information, see the
chapter \Concurrency Control through Locks and Isolation Levels" in the
ALLBASE/SQL Reference Manual .

LOGIN NAME The HP-UX login name of the DBEnvironment session.

LABEL The transaction label, equivalent to the LABEL column of the
SYSTEM.TRANSACTION pseudotable. To assign a label to a
transaction, use either a BEGIN WORK or a SET TRANSACTION
statement.

PRI The transaction priority, equivalent to the PRIORITY column of the
SYSTEM.TRANSACTION pseudotable. The lowest transaction priority
is 255, and the highest is 0.

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment.

G The granularity of the lock, either table (T), page (P), or row (R).

OWNER.TABLE

[/CONSTRAINT]

The name of the table or referential constraint that is locked.

PAGE/ROW ID The identi�er of the page or row that is locked. If the lock object is a
table, this �eld is blank.

GWC The status of the lock, either granted (G), waiting (W), or converting (C) to
a stronger mode.

MOD The mode of lock that has been granted, as listed below:

S Share
X Exclusive
s Intent share
x Intent exclusive
6 Share + intent exclusive
R Recovery exclusive
r Recovery intent exclusive
v Recovery share + intent exclusive

If the session is waiting for a lock, this �eld is blank. If the session is
converting a lock, the old value is displayed.

SQLMON Screen Reference 8-29

Lock Session Screen

NEW The lock mode the waiting session is attempting to acquire, just as listed
under MOD. If the lock has been granted, this �eld is blank.

WAITS FOR The process identi�er of a session that has access to the lock that the
current session is waiting for. Other sessions might also have access to the
lock. For a complete list of the sessions in the lock queue, you can access
the Lock Object screen.

Display Conventions

If the session appears in inverse video, it is waiting for a lock. If the session appears in inverse
video and underlined, it is converting a lock to a stronger mode. If the session appears
without inverse video or underlining, the lock has been granted.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET LOCKFILTER Filters the lock information provided. SET LOCKFILTER
/U/TP/W/SXx/5

SET LOCKTABFILTER Filters lock information by object name. SET LOCKTABFILTER
PurchDB.Orders

8-30 SQLMON Screen Reference

Lock TabSummary Screen

Lock TabSummary Screen

This screen displays summarized information about the locks a session holds. The locks are
grouped by granularity, that is, by table locks, page locks, and row locks. You can display lock
information for a single session or for all sessions connected to the DBEnvironment.

d a

c b

To invoke the Lock screen, use the t command from the Lock subsystem or the /loc t

command from other subsystems.

When you invoke the screen, you must specify either a process identi�cation number or the
keyword ALL, as shown in these examples:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc t all

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => t 18827

The keyword ALL designates all sessions that are connected to the DBEnvironment.

You can also specify the process identi�cation number in response to a prompt generated by
SQLMON, for example:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /loc t

PID [or ALL]: 18827

SQLMON Screen Reference 8-31

Lock TabSummary Screen

Field Definitions

REFRESH The screen refresh rate, in seconds.

PID The HP-UX process identi�cation number you speci�ed when you invoked
the screen. If you speci�ed ALL when you invoked the screen, the value of
PID is ALL.

STATUS The status of the DBCore call the session has made. This �eld is
equivalent to the STATUS column of the SYSTEM.CALL pseudotable.
The possible values are listed below:

Running DBCore is processing a call from a session.

Waiting for
resource

The session has made a DBCore call, but is waiting until
it can acquire a resource that is currently unavailable.
The resource can be LOCK, LATCH, BUFFER,
THROTTLE, or XACT.

Idle DBCore is not processing a call.

If the value of PID is ALL, this �eld is not displayed.

XID The transaction identi�er, equivalent to the XID column of the
SYSTEM.TRANSACTION pseudotable. If the value of PID is ALL, this
�eld is not displayed.

ISO The isolation level, equivalent to the ISOLATION LEVEL column of the
SYSTEM.TRANSACTION pseudotable. If the value of PID is ALL, this
�eld does not appear.

For more information, see the chapter \Concurrency Control through
Locks and Isolation Levels" in the ALLBASE/SQL Reference Manual .

LOGIN NAME The HP-UX login name for the DBEnvironment session you speci�ed
when you invoked the screen. If the value of PID is ALL, this �eld is not
displayed.

LABEL The transaction label, equivalent to the LABEL column of the
SYSTEM.TRANSACTION pseudotable. To assign a label to a
transaction, use either the BEGIN WORK or SET TRANSACTION
statement. If the value of PID is ALL, this �eld is not displayed.

PRI The transaction priority, equivalent to the PRIORITY column of the
SYSTEM.TRANSACTION pseudo-table. The lowest transaction priority
is 255 and the highest is 0. If the value of PID is ALL, this �eld is not
displayed.

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment.

If the value of PID is ALL, this �eld is not displayed.

TOTAL LOCKS The total number of lock control blocks.

G The granularity of the lock control blocks, either table (T), page (P), or
row (R).

8-32 SQLMON Screen Reference

Lock TabSummary Screen

OWNER.TABLE

[/CONSTRAINT]

The name of the table or referential constraint that is locked.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET TOP Limits the number of objects displayed
at each granularity level.

SET TOP 10

SQLMON Screen Reference 8-33

Overview Screen

This screen displays important aspects of the DBEnvironment's performance, such as the data
bu�er pool miss rate and the amount of available runtime control block space.

d a

c b

To invoke the Overview screen, enter the o command from the Overview subsystem or the /o
command from other subsystems.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

MAX XACT A scale showing the number of transactions that can be active at one
time. The maximum appears at the far right of the scale, and the �rst
three numbers on the scale are 1/4, 1/2, and 3/4 of the maximum.

ACTIVE XACT The number of transactions that have started but have not terminated
(that is, a BEGIN WORK statement has completed but a COMMIT
WORK statement has not yet begun.)

IMPEDE XACT The number of active transactions that are blocked because they are
waiting for a lock owned by another session. To determine the amount of
lock contention, compare the IMPEDE XACT value with the ACTIVE
XACT and SESSIONS values.

DATA BUFFER

MISS RATE

The percentage of pages that are not in the data bu�er pool at request
time. The operating system must fetch these pages, either from the
operating system bu�er pool or by a physical disk read.

LOCK WAIT % The percentage of lock requests postponed because another session held an
incompatible lock.

8-34 SQLMON Screen Reference

Overview Screen

RUNTIME CB % The percentage of runtime control block space that is occupied, calculated
as follows:

RUNTIME CB % = (Used Pages / Max Pages) * 100

Each runtime control block page holds 4096 bytes. Lock management is
the single greatest user of runtime control block space.

Used Pages The number of runtime control block pages in use.

Max Pages The maximum number of runtime control block pages. The
ControlBlockPages parameter that you specify in the START DBE,
START DBE NEW, or START DBE NEWLOG statements is used
to calculate MAX PAGES. MAX PAGES is usually smaller than
ControlBlockPages, and if ControlBlockPages is too small, MAX PAGES
is set to a certain minimum value.

LOG FULL % The percentage of log �le space that is occupied, as calculated by the
following formula:

LOG FULL % = (Used LgPgs / Max LgPgs) * 100

A log page contains 512 bytes.

Used LgPgs The number of log pages that have been written.

Max LgPgs The maximum number of log pages. To change this value, issue either the
SQL START DBE or the SQLUtil ALTDBE command.

Archive Mode Either ON or OFF, to indicate archive or nonarchive logging.

LOG ERRORS The entire LOG ERRORS bar is displayed in inverse video whenever an
internal log counter is set to a nonzero value. Two internal log counters
are used, one for each log �le. With single logging, the log �le is corrupt
if a log error occurs. With dual logging, the logs are corrupt only if
errors occur when writing to both log �les. To prevent data loss, you
should immediately store the DBEnvironment whenever a log error is
encountered.

Display Conventions

The numbers listed on the right side of the screen are also represented graphically with
half-brightness inverse video bars. The exclamation point represents activity that has occurred
during the most recent refresh interval.

Related SET Commands

Use the SET REFRESH command to modify the refresh rate of the screen.

SQLMON Screen Reference 8-35

Overview Program Screen

This screen displays session information for each program.

d a

c b

To invoke the Overview Program screen, use the p command from the Overview subsystem or
the /o p command from other subsystems.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

PID The HP-UX process identi�cation number of the DBEnvironment session.

LOGIN NAME The HP-UX login name of the DBEnvironment session.

STATUS The status of the DBCore call the session has made. This �eld is
equivalent to the STATUS column of the SYSTEM.CALL pseudotable.
The possible values are listed below:

Running DBCore is processing a call from a session.

Waiting for
resource

The session has made a DBCore call, but is waiting until
it can acquire a resource that is currently unavailable.
The resource can be LOCK, LATCH, BUFFER,
THROTTLE, or XACT.

Idle DBCore is not processing a call.

XID The transaction identi�er, equivalent to the XID column of the
SYSTEM.TRANSACTION pseudotable.

ISO The isolation level, equivalent to the ISOLATION LEVEL column of the
SYSTEM.TRANSACTION pseudotable. For more information, see the

8-36 SQLMON Screen Reference

Overview Program Screen

chapter \Concurrency Control through Locks and Isolation Levels" in the
ALLBASE/SQL Reference Manual .

PRI The transaction priority, equivalent to the PRIORITY column of the
SYSTEM.TRANSACTION pseudotable. The lowest transaction priority
is 255, and the highest is 0.

LABEL The transaction label, equivalent to the LABEL column of the
SYSTEM.TRANSACTION pseudotable. To assign a label to a
transaction, use a BEGIN WORK statement or a SET TRANSACTION
statement.

PROGRAM NAME The name of the program being run, usually the parent process of the
process actually connected to the DBEnvironment. All of the sessions
running a program are listed beneath the PROGRAM NAME.

Display Conventions

When a session is displayed in inverse video, it is waiting for a resource, probably a lock.

Related SET Commands

Use the SET REFRESH command to modify the refresh rate of the screen.

SQLMON Screen Reference 8-37

Overview Session Screen

This screen identi�es all sessions connected to the DBEnvironment.

d a

c b

To invoke the Overview Session screen, use the s command from the Overview subsystem or
the /o s command from other subsystems.

Field Definitions

REFRESH The screen refresh rate, in seconds.

SESSIONS The number of DBEnvironment sessions.

PID The HP-UX process identi�cation number for the DBEnvironment session.

LOGIN NAME The HP-UX login name for the DBEnvironment session.

STATUS The status of the DBCore call the session has made. This �eld is
equivalent to the STATUS column of the SYSTEM.CALL pseudotable.
The possible values are listed below:

Running DBCore is processing a call from a session.

Waiting for
resource

The session has made a DBCore call, but is waiting until
it can acquire a resource that is currently unavailable.
The resource can be LOCK, LATCH, BUFFER,
THROTTLE, or XACT.

Idle DBCore is not processing a call.

XID The transaction identi�er, equivalent to the XID column of the
SYSTEM.TRANSACTION pseudotable.

ISO The isolation level, equivalent to the ISOLATION LEVEL column of the
SYSTEM.TRANSACTION pseudotable. See the chapter \Concurrency

8-38 SQLMON Screen Reference

Overview Session Screen

Control through Locks and Isolation Levels" in the ALLBASE/SQL
Reference Manual .

PRI The transaction priority, equivalent to the PRIORITY column of the
SYSTEM.TRANSACTION pseudotable. The lowest transaction priority
is 255, and the highest is 0.

LABEL The transaction label, equivalent to the LABEL column of the
SYSTEM.TRANSACTION pseudotable. To assign a label to a
transaction, use a BEGIN WORK or a SET TRANSACTION statement.

Display Conventions

When a session is displayed in inverse video, the session is waiting for a resource, probably a
lock.

Related SET Commands

Use the SET REFRESH command to modify the refresh rate of the screen.

SQLMON Screen Reference 8-39

SampleIO Screen

This screen displays DBEFile I/O information.

d a

c b

To invoke the SampleIO screen, use the s command from the SampleIO subsystem or the
/sa command from other subsystems. For more information about using the SAMPLEIO
subsystem, see the chapter \Troubleshooting with SQLMON."

Field Definitions

REFRESH The screen refresh rate, in seconds.

SORTSAMPLEIO An indicator of how the DBEFiles are sorted. The DBEFiles are sorted
in descending order by the value in the column indicated by the asterisk.
In the example above, the DBEFiles are sorted by the TOTALIO values.
For more information, see the description of the SET SORTSAMPLEIO
command.

DBEFILESET The name of the DBEFileSet to which the DBEFile has been added.

DBEFILE The name of the DBEFile belonging to the DBEFileSet.

SWAPIN An approximation of read I/O for the DBEFile.

SWAPOUT An approximation of write I/O for the DBEFile.

TOTALIO The sum of the SWAPIN and SWAPOUT values. This value
approximates the total I/O.

8-40 SQLMON Screen Reference

SampleIO Screen

Display Conventions

When the DISPLAYSAMPLES variable is set to ON, a row displayed in inverse video
indicates that DBEFile I/O has occurred during the most recent refresh interval.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET DISPLAYSAMPLES Determines whether a SampleIO
screen is displayed when samples
are collected.

SET DISPLAYSAMPLES ON

SET REFRESH Controls the refresh rate of the
screen.

SET REFRESH 5

SET SAMPLING Enables sampling of the data
bu�er pool.

SET SAMPLING ON

SET SORTSAMPLEIO Sorts DBEFiles in descending
order according to the value of the
speci�ed column.

SET SORTSAMPLEIO 3

SET TOP Limits the number of DBEFiles
displayed.

SET TOP 10

SQLMON Screen Reference 8-41

SampleIO Indexes Screen

This screen provides index and referential constraint I/O information.

d a

c b

To invoke the SampleIO Indexes screen, use the i command from the SampleIO subsystem
or the /sa i command from other subsystems. For more information about using the
SAMPLEIO subsystem, see the chapter \Troubleshooting with SQLMON."

Field Definitions

REFRESH The screen refresh rate, in seconds.

DBEFILESET The name of the DBEFileSet. The indexes and referential constraints
contained within a DBEFileSet are listed below the DBEFileSet name.

SORTSAMPLEIO An indicator of how the indexes and referential constraints are sorted.
The indexes and referential constraints are sorted in descending order by
the value in the column indicated by the asterisk. In the above example,
the indexes and referential constraints are sorted by TOTALIO values.
For more information, see the description of the SET SORTSAMPLEIO
command.

OWNER.TABLE The name of the table upon which the index or referential constraint is
de�ned.

INDEX,

CONSTRAINT

The name of the index or referential constraint.

SWAPIN An approximation of read I/O for the index or referential constraint.

SWAPOUT An approximation of write I/O for the index or referential constraint.

TOTALIO The sum of the SWAPIN and SWAPOUT values. This value
approximates total I/O.

8-42 SQLMON Screen Reference

SampleIO Indexes Screen

Display Conventions

When the DISPLAYSAMPLES variable is set to ON, a row displayed in inverse video
indicates that index I/O has occurred during the most recent refresh interval.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET DBEFILESET Limits the objects displayed to
those in the DBEFileSet speci�ed.

SET DBEFILESET PurchFS

SET DISPLAYSAMPLES Determines whether a SampleIO
screen is displayed when samples
are collected.

SET DISPLAYSAMPLES ON

SET REFRESH Controls the refresh rate of the
screen.

SET REFRESH 5

SET SAMPLING Enables sampling of the data
bu�er pool.

SET SAMPLING ON

SET SORTSAMPLEIO Sorts objects in descending order
according to the value of the
speci�ed column.

SET SORTSAMPLEIO 3

SET TOP Limits the number of objects
displayed.

SET TOP 2

SQLMON Screen Reference 8-43

SampleIO Objects Screen

This screen lists the database objects currently residing in the data bu�er pool.

d a

c b

To invoke the SampleIO Objects screen, use the o command from the SampleIO subsystem
or the /sa o command from other subsystems. For more information about the SampleIO
subsystem, see the chapter \Troubleshooting with SQLMON."

Field Definitions

REFRESH The screen refresh rate, in seconds.

DBEFILESET The name of the DBEFileSet. The database objects within the
DBEFileSet are listed below the DBEFileSet name.

OWNER.TABLE

[/INDEX,

CONSTRAINT]

The name of the database object residing in the data bu�er pool. A
database object can be a table, index, referential constraint, or page
table page. Because temporary tables and page table pages do not
have names, their tuple identi�ers are listed instead. Long column data
is stored in internal ALLBASE/SQL tables which have no entries in
SYSTEM.TABLE. To construct a name for long column tables, SQLMON
appends the column number to the table name.

CURRENT PGS The number of pages in the data bu�er pool that the database object
currently occupies.

TOTALIO An approximation of total I/O for the object since the SET
DBENVIRONMENT command was issued. The characters ??? appear
when no I/O data is available for the object.

8-44 SQLMON Screen Reference

SampleIO Objects Screen

Related SET Commands

The SET commands in the following table a�ect this screen:

Command Description Example

SET DBEFILESET Limits the objects displayed to those
contained in the DBEFileSet speci�ed.

SET DBEFILESET PurchFS

SET DISPLAYSAMPLES Determines whether a SampleIO screen
is displayed when samples are collected.

SET DISPLAYSAMPLES
ON

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SAMPLING Enables sampling of the data bu�er
pool.

SET SAMPLING ON

SQLMON Screen Reference 8-45

SampleIO TabIndex Screen

This screen displays I/O information about a speci�c table, its indexes, and its referential
constraints.

d a

c b

To invoke the SampleIO TabIndex screen, use the tabi command from the SampleIO
subsystem or the /sa tabi command from other subsystems.

You must specify a table name when invoking the SampleIO TabIndex screen, either on the
command line or at an SQLMON prompt:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /sa tabi PurchDB.Vendors

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => /sa tabi

OWNER.TABLE: PurchDB.Vendors

Field Definitions

REFRESH The screen refresh rate, in seconds.

SORTSAMPLEIO An indicator of how the indexes and referential constraints are sorted.
The indexes and referential constraints are sorted in descending order by
the value in the column indicated by the asterisk. In the above example,
the indexes and referential constraints are sorted by TOTALIO values.
For more information, see the SET SORTSAMPLEIO command.

OWNER.TABLE The name of the table.

INDEX,

CONSTRAINT

The index or referential constraint name.

8-46 SQLMON Screen Reference

SampleIO TabIndex Screen

SWAPIN An approximation of read I/O for the object since the SET
DBENVIRONMENT command was issued.

SWAPOUT An approximation of write I/O for the object since the SET
DBENVIRONMENT command was issued.

TOTALIO The sum of the SWAPIN and SWAPOUT values. This value
approximates total I/O.

Display Conventions

When the DISPLAYSAMPLES variable is set to ON, a value displayed in inverse video
indicates that I/O on the database object has occurred during the most recent refresh interval.

Related SET Commands

The SET commands in the following table a�ect this screen:

Command Description Example

SET DISPLAYSAMPLES Determines whether a SampleIO screen
is displayed when samples are collected.

SET DISPLAYSAMPLES
ON

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SAMPLING Enables sampling of the data bu�er
pool.

SET SAMPLING ON

SET SORTSAMPLEIO Sorts objects in descending order
according to the value of the speci�ed
column.

SET SORTSAMPLEIO 2

SET TOP Limits the number of objects displayed. SET TOP 4

SQLMON Screen Reference 8-47

SampleIO Tables Screen

This screen provides table I/O information.

d a

c b

To invoke the SampleIO Tables screen, use the tabl command from the SampleIO subsystem
or the /sa tabl command from other subsystems. For more information about using the
SampleIO subsystem, see the chapter \Troubleshooting with SQLMON."

Field Definitions

REFRESH The screen refresh rate, in seconds.

DBEFILESET The name of the DBEFileSet. The tables contained within the
DBEFileSet are listed below the DBEFileSet name.

SORTSAMPLEIO An indicator of how the tables are sorted. The tables are sorted in
descending order by the value in the column indicated by the asterisk.
In the example above, the tables are sorted by the TOTALIO values.
For more information, see the description of the SET SORTSAMPLEIO
command.

OWNER.TABLE The table name. Long column data is stored in internal ALLBASE/SQL
tables which have no entries in SYSTEM.TABLE. To construct a name for
these tables, SQLMON appends the column number of the long column
to the table name. For example, the PURCHDB.REPORTS(3) entry
represents the table that holds the long column data of the third column
of the PURCHDB.REPORTS table.

SWAPIN An approximation of read I/O for the table since the SET
DBENVIRONMENT command was issued.

SWAPOUT An approximation of write I/O for the table since the SET
DBENVIRONMENT command was issued.

8-48 SQLMON Screen Reference

SampleIO Tables Screen

TOTALIO The sum of the SWAPIN and SWAPOUT values. This value
approximates the total I/O.

Display Conventions

When the DISPLAYSAMPLES variable is set to ON, a value displayed in inverse video
indicates that table I/O has occurred during the most recent refresh interval.

Related SET Commands

The SET commands in the following table a�ect this screen.

Command Description Example

SET DBEFILESET Limits the tables displayed to those
contained in the DBEFileSet speci�ed.

SET DBEFILESET PurchFS

SET DISPLAYSAMPLES Determines whether a SampleIO screen
is displayed when samples are collected.

SET DISPLAYSAMPLES
ON

SET REFRESH Controls the refresh rate of the screen. SET REFRESH 5

SET SAMPLING Enables sampling of the data bu�er
pool.

SET SAMPLING ON

SET SORTSAMPLEIO Sorts tables in descending order
according to the value of the speci�ed
column.

SET SORTSAMPLEIO 3

SET TOP Limits the number of tables displayed. SET TOP 10

SQLMON Screen Reference 8-49

Static Screen

This screen lists information about indexes, referential constraints, and hash structures for
each table contained in a DBEFileSet.

d a

c b

To invoke the Static screen, use the st command from the Static subsystem or the /st
command from other subsystems.

Field Definitions

DBEFILESET The name of the DBEFileSet.

HASH? An asterisk in this �eld indicates a hashed table. A table is hashed if the
UNIQUE HASH ON or HASH ON CONSTRAINT clauses are included in
the CREATE TABLE statement.

IMAGE? An asterisk in this �eld indicates that the table is stored in a
TurboIMAGE data set instead of in ALLBASE/SQL DBEFileSets.

NUMIDX The number of indexes and referential constraints de�ned on the table.

TYPE The table type, as de�ned by the CREATE TABLE statement. You can
use the ALTER TABLE statement to change the table type.

OWNER.TABLE The names of the tables contained within the DBEFileSet. Long
column data is stored in internal ALLBASE/SQL tables which have
no entries in SYSTEM.TABLE. To construct a name for these tables,
SQLMON appends the column number of the long column to the table
name. For example, the PURCHDB.REPORTS(3) entry represents
the table that holds the long column data of the third column of the
PURCHDB.REPORTS table.

8-50 SQLMON Screen Reference

Static Cluster Screen

Static Cluster Screen

This screen provides information about the clustering of indexes and referential constraints in
a DBEFileSet.

d a

c b

To invoke the Static Cluster screen, use the c command from the Static subsystem or the /st
c command from other subsystems.

Field Definitions

DBEFILESET The name of the DBEFileSet.

The keyword DETACHED means that the DBEFileSet is detached. The
keywords DETACHED DBEFILES mean that the DBEFileSet is attached,
but some of the DBEFiles within it are detached.

OWNER.TABLE The name of each table in the DBEFileSet that has an index or referential
constraint de�ned upon it. Indexes and referential constraints are listed
below the table name, and are preceded by the following labels:

(INDEX) A nonclustering index, created by using the CREATE
INDEX statement or by specifying a unique constraint.

(INDEX*) A clustering index, created by using the CREATE
CLUSTERING INDEX statement or by specifying
a unique constraint with the CLUSTERING ON
CONSTRAINT clause in the CREATE TABLE
statement.

(CONST) A nonclustering PCR (parent-child relationship), created
by de�ning a referential constraint.

SQLMON Screen Reference 8-51

Static Cluster Screen

(CONST*) A clustering PCR (parent-child relationship), created by
de�ning a referential constraint with the CLUSTERING
ON CONSTRAINT clause in the CREATE TABLE
statement.

TABLE PAGES The number of pages containing data for the table.

TOTAL ROWS The total number of rows in the table.

UNLOAD/LOAD

SUGGESTED %

The percentage of rows in the table that are not physically stored in index
order, calculated as follows:

((CCOUNT - TABLE PAGES) / (TOTAL ROWS - TABLE PAGES)) * 100

When the index is well clustered, CCOUNT equals TABLE PAGES, and
the percentage is equal to zero. As the clustering of the index degrades,
CCOUNT approaches TOTAL ROWS, and the percentage increases.

Performance is best when CCOUNT is equal to TABLE PAGES. As
CCOUNT approaches TOTAL ROWS, performance degrades. When the
percentage is high, additional I/O is required to perform an index scan
over the table. To improve performance, UNLOAD the data in sorted
order and LOAD it back in again with ISQL.

CCOUNT The total number of pages touched when a complete scan of the table is
made in index order. CCOUNT is incremented each time the next row to
be accessed is on a di�erent page than the previous row. If the data is not
physically stored in index order, the same page is touched more than once.

Display Conventions

The full bright, inverse video bars represent a value of 100%. The actual percentage is
indicated by the half bright, inverse video bars, which are delimited on the right with
exclamation points.

Related SET Commands

Use the SET DBEFILESET command to improve performance and display only those tables
contained in a particular DBEFileSet.

8-52 SQLMON Screen Reference

Static DBEFile Screen

Static DBEFile Screen

This screen lists the �le capacity of each DBEFile in a DBEFileSet.

d a

c b

To invoke the Static DBEFile screen, use the d command from the Static subsystem or the
/st d command from other subsystems.

Field Definitions

DBEFILESET The name of the DBEFileSet.

The keyword DETACHED means that the DBEFileSet is detached. The
keywords DETACHED DBEFILES mean that the DBEFileSet is attached,
but some of the DBEFiles within it are detached.

DBEFILESET

FULLNESS %

The percentage of �le space in use in the DBEFileSet, calculated as
follows:

DBEFILESET FULLNESS % = (FSUSED PAGES / FSMAX PAGES) * 100

FSUSED PAGES The number of pages in use in the DBEFileSet. This value is equivalent to
the value of the DBEFSUPAGES column of SYSTEM.DBEFILESET plus
the number of page table pages in the DBEFileSet. A used page might
not be full.

FSMAX PAGES The maximum number of pages in the DBEFileSet. This value is equal to
the DBEFSMPAGES column of SYSTEM.DBEFILESET.

DBEFILE The name of the DBEFile contained in the DBEFileSet. If the DBEFile
has been detached with the SQLUtil DETACHFILE command, the
keyword DETACHED appears.

SQLMON Screen Reference 8-53

Static DBEFile Screen

TYP The type of the DBEFile, as listed below:

TBL Table data pages, including hash structures and long column
data

IDX Index or referential constraint pages

MIX Mixed, indicating either table data, index, or referential
constraint pages

BD Whether a DBEFile is bound, indicated by an asterisk. When a table is
de�ned as hashed, a group of primary pages from up to 16 DBEFiles is
allocated for it. The DBEFiles are bound, that is, they are unavailable for
any other table, index, or referential constraint. You can only insert data
for the hashed table itself into these DBEFiles. The last bound DBEFile
might have unused space, which ALLBASE/SQL can use for over
ow
pages for the hash structure.

DBEFILE

FULLNESS %

The percentage of �le space in use in the DBEFile, calculated as follows:

DBEFILE FULLNESS % = (USED PAGES / MAX PAGES) * 100

USED PAGES The number of pages in use in the DBEFile. This value is equivalent to
the DBEFUPAGES column of SYSTEM.DBEFILE plus the number of
page table pages in the DBEFile.

MAX PAGES The maximum number of pages in the DBEFile. This value is equivalent
to the DBEFMPAGES column of SYSTEM.DBEFILE and is speci�ed
with the CREATE DBEFILE statement.

Display Conventions

The full bright, inverse video bars represent the total amount of �le space. The quantity of
space occupied is indicated by the half bright, inverse video bars, which are delimited on the
right with exclamation points.

Related SET Commands

Use the SET DBEFILESET command to improve performance and display only those tables
contained in a particular DBEFileSet.

8-54 SQLMON Screen Reference

Static Hash Screen

Static Hash Screen

This screen provides information about the primary and over
ow pages of hashed tables.

d a

c b

To invoke the Static Hash screen, use the h command from the Static subsystem or the /st h
command from other subsystems.

Field Definitions

DBEFILESET The name of the DBEFileSet.

The keyword DETACHED means that the DBEFileSet is detached. The
keywords DETACHED DBEFILES mean that the DBEFileSet is attached,
but some of the DBEFiles within it are detached.

OWNER.TABLE The name of each hashed table in the DBEFileSet.

PRIMPAGES The number of primary pages allocated for the hash structure. This
value is equivalent to the PRIMPAGES column of SYSTEM.HASH and
is speci�ed by the UNIQUE HASH clause of the CREATE TABLE
statement.

PRIMDATA The number of primary pages that currently contain table data. This
value is equivalent to the NPAGES column of SYSTEM.HASH.

PRIMOVERF The number of primary pages containing table data that have over
ow
pages. This value is equivalent to the NOVERFLOW column of
SYSTEM.HASH.

OVERPAGES The number of over
ow pages allocated for the hash structure.

SQLMON Screen Reference 8-55

Static Hash Screen

OVERFLOW CHAIN

LNGTH

The maximum and average lengths of the over
ow chains, displayed
graphically. The maximum length is represented by full bright, inverse
video bars. The average length is indicated by half bright, inverse video
bars and is delimited on the right with an asterisk.

MAXOVERFLOW The length of the longest over
ow chain in the table. This value is one
less than the MAXLEN column of the SYSTEM.HASH pseudotable,
because MAXLEN includes the primary page in the chain length.

AVGOVERFLOW The average length of the over
ow chains, calculated as follows:

AVGOVERFLOW = round (OVERPAGES / PRIMOVERF)

Related SET Commands

Use the SET DBEFILESET command to improve performance and to display only those
tables contained in a particular DBEFileSet.

8-56 SQLMON Screen Reference

Static Indirect Screen

Static Indirect Screen

This screen displays information about the indirect rows in each table of a DBEFileSet.

d a

c b

To invoke the Static Indirect screen, use the i command from the Static subsystem or the /s
i command from other subsystems.

Field Definitions

DBEFILESET The name of the DBEFileSet.

The keyword DETACHED means that the DBEFileSet is detached. The
keywords DETACHED DBEFILES mean that the DBEFileSet is attached,
but some of the DBEFiles within it are detached.

OWNER.TABLE The name of each table in the DBEFileSet. Long column data is stored in
internal ALLBASE/SQL tables that have no entries in SYSTEM.TABLE.
To construct a name for these tables, SQLMON appends the column
number of the long column to the table name For example, the
PURCHDB.REPORTS(3) entry represents the table that holds the long
column data of the third column of the PURCHDB.REPORTS table.

TABLE INDIRECT

ROW %

The percentage of indirect rows within the table. To access an indirect
row, ALLBASE/SQL must perform two page fetches. The �rst fetch
obtains the row's address, and the second fetch acquires the row itself.
Indirect rows degrade performance by increasing the amount of I/O.

TOTAL ROWS The total number of rows in the table. This value is equivalent to the
NROWS column of SYSTEM.TABLE.

SQLMON Screen Reference 8-57

Static Indirect Screen

Related SET Commands

Use the SET DBEFILESET command to improve performance and to display only those
tables contained in a particular DBEFileSet.

8-58 SQLMON Screen Reference

Static Size Screen

Static Size Screen

This screen provides information about the size of tables, indexes, and referential constraints
in a DBEFileSet.

d a

c b

To invoke the Static Size screen, use the s command from the Static subsystem or the /st s

command from other subsystems.

Field Definitions

DBEFILESET The name of the DBEFileSet.

The keyword DETACHED means that the DBEFileSet is detached. The
keywords DETACHED DBEFILES mean that the DBEFileSet is attached,
but one or more of the DBEFiles within it are detached.

TEMPORARY PAGES A label that appears just after the DBEFileSet name and indicates that
the DBEFileSet has temporary pages. Temporary pages are usually
allocated from the SYSTEM DBEFileSet, and are used primarily for
sorting table data.

PAGE TABLE

PAGES

The number of page table pages in the DBEFileSet. A page table page is
an internal ALLBASE/SQL directory that holds information on up to 252
pages in a DBEFile. Every DBEFile contains at least one page table page.

DBEFILESET

FULLNESS %

The percentage of �le space in use in the DBEFileSet, calculated as
follows:

DBEFILESET FULLNESS % = (FSUSED PAGES / FSMAX PAGES) * 100

FSMAX PAGES is the maximum number of pages in the DBEFileSet.

SQLMON Screen Reference 8-59

Static Size Screen

FSUSED PAGES The number of pages in use in the DBEFileSet. This value includes all
pages used for table data, indexes, referential constraints, page table
pages, and temporary pages.

OWNER.TABLE The names of the tables contained within the DBEFileSet. Indexes and
referential constraints are listed below the table name, and are preceded
by the following labels:

(INDEX) A nonclustering index, created with the CREATE INDEX
statement or by specifying a unique constraint.

(INDEX*) A clustering index, created with the CREATE
CLUSTERING INDEX statement or by specifying
a unique constraint with the CLUSTERING ON
CONSTRAINT clause in the CREATE TABLE
statement.

(CONST) A nonclustering PCR (parent-child relationship), created
by de�ning a referential constraint.

(CONST*) A clustering PCR (parent-child relationship), created by
de�ning a referential constraint with the CLUSTERING
ON CONSTRAINT clause in the CREATE TABLE
statement.

ALLBASE/SQL stores long column data in internal tables which have
no entries in SYSTEM.TABLE. To construct a name for these tables,
SQLMON appends the column number of the long column to the table
name. For example, the PURCHDB.REPORTS(3) entry represents
the table that holds the long column data of the third column of the
PURCHDB.REPORTS table.

TABLE PAGES The number of pages allocated for the table.

INDEX PAGES The number of pages allocated for the index or referential constraint.

TOTAL PAGES The total number of pages allocated for the table and all indexes and
referential constraints de�ned upon it.

Display Conventions

The full bright, inverse video bars represent the total amount of �le space in the DBEFileSet.
The quantity of space occupied is indicated by the half bright, inverse video bars, which are
delimited on the right with exclamation points.

Related SET Commands

Use the SET DBEFILESET command to improve performance and to display only those
tables contained in a particular DBEFileSet.

8-60 SQLMON Screen Reference

9

SQLMON Command Reference

This chapter describes the SQLMON commands and gives syntax and examples for each.
Within this chapter, the commands are arranged alphabetically. You will �nd a table
summarizing the commands at the end of the chapter.

You can execute these commands from an SQLMON subsystem prompt, but not from within
the help facility or from an SQLMON screen. In general, the commands are not case sensitive;
however, some of them contain case sensitive parameters.

SQLMON Command Reference 9-1

EXIT

Leaves SQLMON

Scope

SQLMON Only

SQLMON Syntax

E
�
XIT

�

Description

This command is equivalent to the QUIT command.

Example

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => EXIT

9-2 SQLMON Command Reference

HELP

HELP

Invokes the SQLMON online help facility

Scope

SQLMON Only

SQLMON Syntax

�
H
�
ELP

�
?

�
2
6666664

�
ScreenName

�
2
664
CONTROL

INFO

SUBSYSTEM

TUNE
�
Number

�

3
775

MAIN

SetCommand

3
7777775

Parameters

ScreenName Displays help text for ScreenName.

CONTROL Displays information about the SET commands a�ecting the
current screen.

INFO Describes each �eld on the current screen.

SUBSYSTEM Describes the subsystem.

TUNE Displays a list of performance tuning topics relevant to
ScreenName.

Number Provides detailed information on the tuning topic designated by
Number .

MAIN Displays general information about SQLMON.

SetCommand Describes SetCommand .

Description

The help information is context sensitive. For example, if you specify TUNE from the Lock
subsystem, SQLMON displays tuning hints about locks.

You remain in the help facility after SQLMON displays the information you requested.

You can enter any of the parameters from the Help prompt. For example, if you enter

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
HELP LOCK = info

SQLMON displays information about each �eld on the Lock screen.

To leave the help facility, you can enter any of the following commands:

//

EXIT

QUIT

SQLMON Command Reference 9-3

HELP

Examples

To invoke the help facility for the last screen displayed, issue the HELP command without
options, as in

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => HELP

You can use a question mark instead of the HELP command, as in:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => ?

To get general information on SQLMON from within the help facility, use the following
command:

SQLMONITOR HELP
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => MAIN

In the last example, you do not need to enter the keyword HELP, since you are already in the
help facility.

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => HELP MAIN

The following command displays information about the �elds on the IO screen:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => HELP IO INFO

To get help on the SET DBENVIRONMENT command, you can issue:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => HELP SET DBENV

To exit the help facility and return to the subsystem prompt, you would issue

SQLMONITOR HELP
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => EXIT

9-4 SQLMON Command Reference

QUIT

QUIT

Leaves SQLMON

Scope

SQLMON Only

SQLMON Syntax

Q
�
UIT

�

Description

This command is equivalent to the EXIT command.

Examples

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => QUIT

SQLMON Command Reference 9-5

SET

Displays the current settings of the SQLMON variables

Scope

SQLMON Only

SQLMON Syntax

SET

Description

Each setting corresponds to a SET command. For example, the CYCLE setting is speci�ed
by the SET CYCLE command.

Example

To view the current settings, issue the SET command, as in

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET

SQLMON responds with a list of the current settings, like this one:

C[YCLE] OFF

DBEF[ILESET] OFF

DBEN[VIRONMENT] PartsDBE

DBEC[ONNECT] ON

DBEI[NITPROG] ON

E[CHO] OFF

LOCKF[ILTER] SU/TPR/GWC/SXRsxr6v/1

LOCKO[BJECT] OFF

LOCKT[ABFILTER] OFF

M[ENU] ON

OUTP[UT] OFF

R[EFRESH] 10

SA[MPLING] ON

DI[SPLAYSAMPLES] OFF

SORTIOD[ATA] 3

SORTIOL[OG] OFF

SORTLOA[D] 3

SORTLOC[K] 5

SORTS[AMPLEIO] 3

T[OP] OFF

U[SERTIMEOUT] 5

9-6 SQLMON Command Reference

SET CYCLE

SET CYCLE

Speci�es the number of refresh cycles for which screens are displayed

Scope

SQLMON Only

SQLMON Syntax

SET C
�
YCLE

��NumCycles
OFF

�

Parameters

NumCycles Speci�es that SQLMON displays screens for NumCycles - 1
refresh cycles before returning you to the prompt. An integer
value.

OFF Speci�es that SQLMON displays screens until you press Return.
The logical equivalent of a NumCycles value of in�nity. The
default value.

Description

This command is useful in batch jobs. If you use SQLMON interactively, you can set
NumCycles to OFF and then exit screens by pressing Return.

See \Creating Batch Reports" in the chapter \Getting Started with SQLMON."

Examples

When you issue the following command, SQLMON displays a screen once and refreshes it
twice:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET CYCLE 3

If you omit the integer after SET CYCLE, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET CYCLE

NUMBER OF CYCLES <OFF=INFINITY>: 3

SQLMON Command Reference 9-7

SET DBECONNECT

Modi�es the behavior of the SET DBENVIRONMENT command

Scope

SQLMON Only

SQLMON Syntax

SET DBEC
�
ONNECT

�� ON
OFF

�

Parameters

ON When you issue SET DBENVIRONMENT, SQLMON connects to
the DBEnvironment and accesses the system catalog. The default
value.

OFF When you issue SET DBENVIRONMENT, SQLMON does not
connect to the DBEnvironment or access the system catalog.

Description

Use SET DBECONNECT OFF if the prompt does not return after you issue SET
DBENVIRONMENT. SET DBENVIRONMENT might execute inde�nitely if the
DBEnvironment has a locking problem.

If SET DBENVIRONMENT executes inde�nitely, do the following:

Use the HP-UX kill command to terminate SQLMON.

Run SQLMON again.

Issue SET DBECONNECT OFF.

Issue SET DBENVIRONMENT.

Use the screens in the Lock subsystem, because the DBEnvironment probably has a lock
problem.

Example

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBECONNECT OFF

If you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBECONNECT

ON/OFF: OFF

9-8 SQLMON Command Reference

SET DBEFILESET

SET DBEFILESET

Determines which DBEFileSets are included on a screen

Scope

SQLMON Only

SQLMON Syntax

SET DBEF
�
ILESET

��DBEFileSetName
OFF

�

Parameters

DBEFileSetName Displays information only on DBEFileSetName.

OFF Displays information on all DBEFileSets.

Description

SET DBEFILESET a�ects the following screens:

SampleIO
SampleIO Indexes
SampleIO Objects
SampleIO Tables
Static Cluster
Static DBEFile
Static Hash
Static Indirect
Static Size

When you are interested in a single DBEFileSet, you can use the SET DBEFILESET
command to remove unwanted information and make the screens easier to read.

You can use the SET DBEFILESET command in the Static subsystem to improve
SQLMON's performance. When you access a screen in the Static subsystem, SQLMON
performs multiple serial scans on each DBEFileSet, which can be very time-consuming.
However, when you specify a DBEFileSet with SET DBEFILESET, SQLMON scans only
the DBEFileSet you name.

Examples

In the following example, the information displayed is limited to the OrderFS �leset:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNN
STATIC => SET DBEF OrderFS

If you omit the DBEFileSetName, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNN
STATIC => SET DBEFILESET

DBEFILESET NAME <or OFF>: OrderFS

SQLMON Command Reference 9-9

SET DBEINITPROG

Modi�es the behavior of the SET DBENVIRONMENT command

Scope

SQLMON Only

SQLMON Syntax

SET DBEI
�
NITPROG

�� ON
OFF

�

Parameters

ON SQLMON gathers program information for each session when you
issue SET DBENVIRONMENT. The default value.

OFF SQLMON defers gathering program information for each session
until you invoke a screen that displays the information.

Description

If SET DBENVIRONMENT pauses for too long to gather program information, issue
the command SET DBEINITPROG OFF. SET DBENVIRONMENT might pause if it is
gathering information for a large number of sessions.

Example

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBEINITPROG OFF

If you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBEINITPROG

ON/OFF: OFF

9-10 SQLMON Command Reference

SET DBENVIRONMENT

SET DBENVIRONMENT

Speci�es which DBEnvironment SQLMON monitors

Scope

SQLMON Only

SQLMON Syntax

SET DBEN
�
VIRONMENT

��DBEnvironmentName � MAINT=MaintenanceWord
�

OFF

�

Parameters

DBEnvironmentName The name of the DBEnvironment to be monitored.
DBEnvironmentName is case sensitive.

MaintenanceWord The maintenance word of the DBEnvironment, required if you are
not the DBEnvironment creator or superuser.

OFF The default value, indicating that no DBEnvironment has been
speci�ed.

Description

You cannot display an SQLMON screen until you issue SET DBENVIRONMENT.

SQLMON can monitor just one DBEnvironment at a time.

The SET DBECONNECT and SET DBEINITPROG commands a�ect the behavior of the
SET DBENVIRONMENT command.

Examples

The following example shows how to monitor the PartsDBE DBEnvironment:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBENV PartsDBE

If you omit the DBEnvironment name or the maintenance word, SQLMON prompts for them,
as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET DBENVIRONMENT

DBENVIRONMENT NAME <or OFF>: PartsDBE

MAINTENANCE WORD:

SQLMON Command Reference 9-11

SET DISPLAYSAMPLES

Determines whether a SampleIO screen or a sampling scale is displayed when samples are
collected from the data bu�er pool

Scope

SQLMON Only

SQLMON Syntax

SET DI
�
SPLAYSAMPLES

��ON
OFF

�

Parameters

ON When SAMPLING is ON and you access a SampleIO screen,
SQLMON displays the screen for the number of refresh cycles that
you have set with SET CYCLE.

OFF When SAMPLING is ON and you access a SampleIO screen,
SQLMON displays a scale instead of the screen. Each time
SQLMON completes a refresh cycle, it displays a period beneath
the scale. The default value.

Description

If SAMPLING is OFF and you access a Sample IO screen, SQLMON displays the screen
showing activity since the last SET DBENVIRONMENT command.

The following is an example scale:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO => /sa

SAMPLING = ON

REFRESH = 10 (One set of samples will be taken every 10 seconds).

CYCLE = 5 (A total of 5 sets of samples will be taken, then you

will automatically return to the SQLMONITOR prompt).

1020304050
12345678901234567890123456789012345678901234567890

.....

The scale is only printed when SAMPLING is ON, DISPLAYSAMPLES is OFF, and you
access a SampleIO subsystem screen. The scale helps you to identify the number of samples
that have been taken.

The REFRESH variable determines the number of seconds that SQLMON pauses for each
refresh cycle. The data bu�er pool is sampled 25 times during each refresh cycle.

9-12 SQLMON Command Reference

SET DISPLAYSAMPLES

The CYCLE variable determines the number of refresh cycles that will be executed before
returning to the SQLMON prompt. If CYCLE is OFF, you must press return to break out
of the sampling loop:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO => /sa

SAMPLING = ON

REFRESH = 10 (One set of samples will be taken every 10 seconds).

CYCLE = OFF (No limit has been set for the number of samples to

be taken. You must press RETURN when you wish to

return to the SQLMONITOR prompt.)

1020304050

12345678901234567890123456789012345678901234567890

...........RETURN

Examples

To view screens in the SampleIO subsystem, �rst issue the following command:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO => SET DISPLAYSAMPLES ON

You can then invoke the screen you wish to display.

If you omit the last parameter, SQLMON prompts you for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO => SET DISPLAYSAMPLES

ON/OFF: ON

SQLMON Command Reference 9-13

SET ECHO

Echoes commands to standard output

Scope

SQLMON Only

SQLMON Syntax

SET E
�
CHO

�� ON
OFF

�

Parameters

ON Causes your input to appear on standard output.

OFF Does not cause your input to appear on standard output. The
default value.

Description

When ECHO is set to ON, SQLMON displays on standard output all of the commands you
enter.

SET ECHO is primarily used in batch jobs.

See \Creating Batch Reports" in the chapter \Getting Started with SQLMON."

Examples

After you enter the following command, SQLMON commands you enter appear on standard
output:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET ECHO ON

You can also use SET ECHO in a batch �le to display the commands in the �le as they
execute. In the example, the Static screen is copied to an output �le named Report1:

SET ECHO ON

SET DBENVIRONMENT PartsDBE

SET CYCLE 1

SET OUTPUT Report1

STATIC

EXIT

f you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET ECHO

ON/OFF: ON

9-14 SQLMON Command Reference

SET LOCKFILTER

SET LOCKFILTER

Filters lock information so that only certain information is displayed

Scope

SQLMON Only

SQLMON Syntax

SET LOCKF
�
ILTER

� �
TableType

��
. . .

�
/
�
Granularity

��
. . .

�
/
�
LockStatus

��
. . .

�
/
�
LockMode

��
. . .

�
/
�
QueueLength

��
. . .

�

Parameters

TableType Displays only the locks related to the table types you specify. The
allowed values are

S System tables, those tables whose owner is HPRDBSS,
DBCORE, or STOREDSECT

U User tables, those tables that are not system tables

Granularity Limits the display of locks according to the granularity of the lock
object. The allowed values are

T Table
P Page
R Row

LockStatus Displays the locks that have the status you specify. The allowed
values are

G Locks that have been granted
W Locks for which at least one session is waiting
C Locks that are being converted to a stronger mode

LockMode Limits the display of locks according to the mode of the lock. The
allowed values are

S Share
X Exclusive
s Intent share
x Intent exclusive
6 Share + intent exclusive
R Recovery exclusive
r Recovery intent exclusive
v Recovery share + intent exclusive

This parameter is case sensitive.

QueueLength Represents the number of sessions in the lock object queue.

SQLMON Command Reference 9-15

SET LOCKFILTER

Description

SET LOCKFILTER a�ects only the Lock, Lock Object, and Lock Session screens.

The default value for LOCKFILTER is

SU/TPR/GWC/SXRsxr6v/1

This value causes all locks to be displayed.

You must use all four delimiting slashes in the parameter list, but you can omit any or all
of the parameters. If you omit all of the parameters, you set the lock �lter to the default
value. If you omit some of the parameters, the settings for the missing parameters are
unchanged.

Examples

To set the lock �lter to the default value, you would enter

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKFILTER ////

To display only those locks for which one or more sessions are waiting, enter

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKFILTER //WC//

The next example displays only those locks that

are for user tables
are table locks or page locks
are held by sessions that are waiting to acquire or convert locks
are either exclusive, intent exclusive, or share plus intent exclusive

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKFILTER U/TP/WC/Xx6/1

Since you can enter the characters within a �lter parameter in any order, the two commands
in the following example are equivalent:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKFILTER ///SX6/

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKFILTER ///6SX/

9-16 SQLMON Command Reference

SET LOCKFILTER

If you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKFILTER

PRESS <RETURN> TO SELECT ALL ITEMS FOR EACH PROMPT

TABLES <(S)ystem (U)ser > : U

GRANULARITY <(T)able (P)age (R)Row > : T P

LOCK STATUS <(G)ranted (W)aiting (C)onverting > : W

LOCK MODES <(S)Share (X)Exclusive (R)ecovry Excl

(s)IS (x)IX (r)RIX

(6)SIX (v)RSIX > :

QUEUE LENGTH <integer value greater than 0 > : 2

The current setting for the LOCKFILTER is:

TABLES : (U)SER

GRANULARITY : (T)ABLE (P)AGE

LOCK STATUS : (W)AITING

LOCK MODES : (S)SHARE (X)EXCLUSIVE (R)ECOVRY EXCL

(s)IS (x)IX (r)RIX

(6)SIX (v)RSIX
QUEUE LENGTH : 2

SQLMON Command Reference 9-17

SET LOCKOBJECT

Speci�es the objects that are displayed on the Lock Object screen

Scope

SQLMON Only

SQLMON Syntax

SET LOCKO
�
BJECT

�
2
4Owner.Table

�
/Constraint

��
/PageRowID

�
ALL

OFF

3
5

Parameters

Owner.Table Displays only table lock information about Owner.Table.

Constraint Displays only constraint lock information about Constraint .

PageRowID Displays only page lock or row lock information about the page or
row you specify. PageRowID consists of four digits delimited by
either blanks or colons, as in the following examples:

0 1 5 20

0:1:5:20

ALL Displays all of the lock objects that qualify under LOCKFILTER
and LOCKTABFILTER. The default value.

OFF Causes SQLMON to prompt you for the locked object when you
invoke the Lock Object screen.

Description

This command a�ects only the Lock Object Screen.

If LOCKOBJECT is set to OFF, SQLMON prompts you for parameters when you invoke
the Lock Object screen.

9-18 SQLMON Command Reference

SET LOCKOBJECT

Examples

To display only the sessions that are requesting a table level lock on PurchDB.Parts, you
would enter

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKOBJECT PurchDB.Parts

If you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKOBJECT

OWNER.TABLE[/CONSTRAINT]: PurchDB.Parts

PAGE/ROW ID: 0 1 5 20

To display only the lock information for the Members FK referential constraint, enter

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKOBJECT RecDB.Members/Members_FK

SQLMON Command Reference 9-19

SET LOCKTABFILTER

Filters lock information according to the object speci�ed

Scope

SQLMON Only

SQLMON Syntax

SET LOCKT
�
ABFILTER

��Owner.Table�/Constraint �
OFF

�

Parameters

Owner.Table Displays only table lock information about Owner.Table.

Constraint Displays only constraint lock information about Constraint .

OFF Default value.

Description

This command a�ects the following screens:

Lock
Lock Object
Lock Session

Example

Only the locks associated with the PurchDB.Parts table are displayed:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKTABFILTER PurchDB.Parts

SQLMON prompts for the parameters when they are omitted, as follows:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKTABFILTER

OWNER.TABLE[/CONSTRAINT]: PurchDB.Parts

Display only those locks associated with the Members FK referential constraint:

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET LOCKTABFILTER RecDB.Members/Members_FK

9-20 SQLMON Command Reference

SET MENU

SET MENU

Controls the display of SQLMON menus

Scope

SQLMON Only

SQLMON Syntax

SET M
�
ENU

��ON
OFF

�

Parameters

ON Displays menus at the SQLMON prompt. The default value.

OFF Does not display menus.

Description

Expert users may want to set the menu option to OFF.

When MENU is ON, SQLMON displays menus such as the following:

SQLMONITOR SUBSYSTEMS (and abbreviations):

OVERVIEW IO LOAD LOCK SAMPLEIO STATIC

/o /i /loa /loc /sa /st

CURRENT SUBSYSTEM SCREENS:

OVERVIEW SESSION PROGRAM

o s p

Examples

To turn o� the menus, issue the following command:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET MENU OFF

If you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET MENU

ON/OFF: ON

SQLMON Command Reference 9-21

SET OUTPUT

Saves SQLMON screen images in a �le

Scope

SQLMON Only

SQLMON Syntax

SET OUTP
�
UT

��SystemFileName
OFF

�

Parameters

SystemFileName Echoes the screens that SQLMON displays on standard output to
SystemFileName.

OFF Does not echo screens to a �le. The default value.

Description

If you issue a SET OUTPUT command with a �lename, and if the �le does not exist,
SQLMON creates it.

If you issue a SET OUTPUT command with a �lename, and if the �le exists, SQLMON
asks you if you want to overwrite it.

SQLMON appends information to the �le until you issue SET OUTPUT OFF or terminate
the SQLMON session.

For more information, see the \Examples" section or the section \Creating Batch Reports"
in the chapter \Getting Started with SQLMON."

Examples

If you issue the commands

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET OUTPUT Myfile

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => OVERVIEW

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => OVERVIEW SESSION

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET OUTPUT OFF

SQLMON creates My�le and adds images of both the Overview and Overview Session screens
to the �le.

If you then issue the commands

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET OUTPUT Myfile

System Filename already exists. Overwrite? yes

9-22 SQLMON Command Reference

SET OUTPUT

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => LOCK

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => LOCK OBJECT

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET OUTPUT OFF

SQLMON overwrites My�le and then appends images of the Lock and Lock Object screens to
the �le.

To prevent accidental data loss, SQLMON prompts you before it overwrites the �le, as in

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET OUTPUT Myfile

SystemFileName already exists. Overwrite? ([NO],YES) no

SystemFileName not overwritten.

If you omit the last parameter, SQLMON prompts for it, as in

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET OUTPUT

SystemFileName <or OFF>: OFF

SQLMON Command Reference 9-23

SET REFRESH

Determines the refresh rate of the SQLMON screens

Scope

SQLMON Only

SQLMON Syntax

SET R
�
EFRESH

��Seconds
OFF

�

Parameters

Seconds The number of seconds SQLMON waits before it resamples data
and refreshes a screen. The default value is 10.

Description

This command a�ects all screens, except those in the Static subsystem.

Examples

To refresh a screen every �ve seconds, issue the following command:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET REFRESH 5

If you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET REFRESH

NUMBER OF SECONDS: 3

9-24 SQLMON Command Reference

SET SAMPLING

SET SAMPLING

Enables sampling of the data bu�er pool

Scope

SQLMON Only

SQLMON Syntax

SET SA
�
MPLING

�� ON
OFF

�

Parameters

ON Speci�es that SQLMON samples the data bu�er pool each time a
SampleIO subsystem screen is refreshed. The default value.

OFF Speci�es that SQLMON does not sample the data bu�er pool.
Improves the performance of SQLMON.

Description

It is recommended that you issue SET SAMPLING ON, perform sampling, issue SET
SAMPLING OFF, and then access the SampleIO screens to view the results. You may �nd
it easier to use the SampleIO screens when sampling is not being performed, because CPU
utilization is smaller.

SQLMON samples the data bu�er pool only when SAMPLING is ON and you access a
SampleIO screen. In that case, SQLMON samples the data bu�er pool 25 times during each
refresh cycle.

The SWAPIN, SWAPOUT, and TOTALIO counters on the SampleIO screens are
incremented to re
ect activity during sampling. The counters are initialized to 0 when you
issue SET DBENVIRONMENT. For more information, see the chapter \Troubleshooting
with SQLMON."

When sampling is ON, the DISPLAYSAMPLES variable determines whether you see a scale
or a screen when samples are collected. For more information, see the command page for
SET DISPLAYSAMPLES.

sequence. First, to turn on sampling, enter

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO => SET SAMPLING ON

SQLMON Command Reference 9-25

SET SORTIODATA

De�nes how items are sorted on the IO Data Program and IO Data Session screens

Scope

SQLMON Only

SQLMON Syntax

SET SORTIOD
�
ATA

�� SortColumn
OFF

�

Parameters

SortColumn The column by which items are sorted. SortColumn is an integer
from 0 to 4 that represents a column on the screen, as follows:

0 same as OFF
1 BUFF ACCESS
2 DATA DISK RD
3 DATA DISK WR (default)
4 MISS RATE

The items are sorted in descending order according to the values
in the column.

OFF Sorts the items by program name and PID on the IO Data
Program screen and by PID on the IO Data Session screen.

Description

This command a�ects only the IO Data Program and IO Data Session screens.

On each of these screens, an asterisk appears beside the sort column number.

For more information on the IO Data Program and IO Data Session screens, see the chapter
\SQLMON Screen Reference."

Examples

To sort the items on the IO Data Program and IO Data Session screens according to the
values in the DATA DISK RD column, enter

SQLMONITOR
NNNNNNNN
IO => SET SORTIODATA 2

If you omit the last parameter, SQLMON prompts for it, as follows:

SQLMONITOR
NNNNNNNN
IO => SET SORTIODATA

<0=OFF,1=BUFF ACCESS,2=DATA DISK RD,3=DATA DISK WR,4=MISS RATE>: 2

9-26 SQLMON Command Reference

SET SORTIOLOG

SET SORTIOLOG

De�nes how items are sorted on the IO Log Program and IO Log Session screens

Scope

SQLMON Only

SQLMON Syntax

SET SORTIOL
�
OG
�� SortColumn

OFF

�

Parameters

SortColumn The column by which items are sorted. SortColumn is an integer
from 0 to 3 that represents a column on the screen, as follows:

0 same as OFF
1 LOG BUFF WR
2 LOG DISK RD
3 LOG DISK WR (default)

The items are sorted in descending order according to the values
in the column.

OFF Sorts the items by program name and PID on the IO Log
Program screen and by PID on the IO Log Session screen.

Description

This command a�ects only the IO Log Program and IO Log Session screens.

On each of these screens, an asterisk appears beside the sort column number.

For more information on the IO Log Program and IO Log Session screens, see the chapter
\SQLMON Screen Reference."

Examples

To sort the items on the IO Log Program and IO Log Session screens according to the value
in the LOG DISK RD column, enter

SQLMONITOR
NNNNNNNN
IO => SET SORTIOLOG 2

If you omit the last parameter, SQLMON prompts for it, as in

SQLMONITOR
NNNNNNNN
IO => SET SORTIOLOG

<0=OFF,1=LOG BUFF WR,2=LOG DISK RD,3=LOG DISK WR>: 2

SQLMON Command Reference 9-27

SET SORTLOAD

De�nes how items are sorted on the Load Program and Load Session screens

Scope

SQLMON Only

SQLMON Syntax

SET SORTL
�
OAD

�� SortColumn
OFF

�

Parameters

SortColumn The column by which items are sorted. SortColumn is an integer
from 0 to 4 that represents a column on the screen, as follows:

0 same as OFF
1 BEGIN WORK
2 COMMIT WORK
3 ROLLBK WORK (default)
4 DEADLOCKS

The items are sorted in descending order according to the values
in the column.

OFF Sorts the items by program name and PID on the Load Program
screen and by PID on the Load Session screen.

Description

This command a�ects only the Load Program and Load Session screens.

On each of these screens, an asterisk appears beside the sort column number.

For more information on the Load Program and Load Session screens, see the chapter
\SQLMON Screen Reference."

Examples

To sort the items on the Load Program and Load Session screens according to the value in the
COMMIT WORK column, you can enter

SQLMONITOR
NNNNNNNNNNNNNN
LOAD => SET SORTLOAD 2

If you omit the last parameter, SQLMON prompts for it, as in:

SQLMONITOR
NNNNNNNNNNNNNN
LOAD => SET SORTLOAD

<0=OFF,1=BEGIN WORK,2=COMMIT WORK,3=ROLLBK WORK,4=DEADLOCKS>: 2

9-28 SQLMON Command Reference

SET SORTLOCK

SET SORTLOCK

De�nes how sessions are sorted on the Lock Memory screen

Scope

SQLMON Only

SQLMON Syntax

SET SORTL
�
OAD

�� SortColumn
OFF

�

Parameters

SortColumn The column by which items are sorted. SortColumn is an integer
from 0 to 5 that represents a column on the screen, as follows:

0 same as OFF
1 TABLE
2 PAGE
3 ROW
4 TOTAL
5 MAXTOTAL (default)

The items are sorted in descending order according to the values
in the column.

OFF Sorts the items by PID.

Description

This command a�ects only the Lock Memory screen.

On the screen, an asterisk appears beside the sort column number.

For more information on the Lock Memory screen, see the chapter \SQLMON Screen
Reference."

Examples

To sort the sessions on the Lock Memory screen according to the value in the ROW column,
you can enter

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET SORTLOCK 3

If you omit the last parameter, SQLMON prompts for it, as in

SQLMONITOR
NNNNNNNNNNNNNN
LOCK => SET SORTLOCK

<0=OFF,1=TABLE,2=PAGE,3=ROW,4=TOTAL,5=MAXTOTAL>: 3

SQLMON Command Reference 9-29

SET SORTSAMPLEIO

De�nes how items are sorted on the SampleIO subsystem screens

Scope

SQLMON Only

SQLMON Syntax

SET SORTS
�
AMPLIO

�� SortColumn
OFF

�

Parameters

SortColumn The column by which items are sorted. SortColumn is an integer
from 0 to 3 that represents a column on the screen, as follows:

0 same as OFF
1 SWAPIN
2 SWAPOUT
3 TOTALIO (default)

The items are sorted in descending order according to the values
in the column.

OFF Sorts the items by object name.

Description

This command a�ects the SampleIO, SampleIO Indexes, SampleIO TabIndex, and
SampleIOTables screens.

On the screens, an asterisk appears beside the sort column number.

For more information on the SampleIO screens, see the descriptions of each screen in the
chapter \SQLMON Screen Reference."

Examples

To sort the items on the SampleIO subsystem screens according to the value in the
SWAPOUT column, enter

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO => SET SORTSAMPLEIO 2

If you omit the last parameter, SQLMON prompts for it, as in

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
SAMPLEIO => SET SORTSAMPLEIO

<0=OFF,1=SWAPIN,2=SWAPOUT,3=TOTALIO>: 2

9-30 SQLMON Command Reference

SET TOP

SET TOP

Determines the number of items displayed on a screen

Scope

SQLMON Only

SQLMON Syntax

SET T
�
OP
��NumItems

OFF

�

Parameters

NumItems The number of items to display. An integer value.

OFF All items. The default value.

Description

This command a�ects the following screens:

IO Data Program
IO Data Session
IO Log Program
IO Log Session
Load Program
Load Session
SampleIO
SampleIO Indexes
SampleIO TabIndex
SampleIO Tables

Examples

To display the top ten items (sorted according to a de�ned value), you can enter

SQLMONITOR
NNNNNNNN
IO => SET TOP 10

The items on the screens are sorted according to the value of a sort command, as listed below:

For the IO Data Program and IO Data Session screens, SET SORTIODATA
For the IO Log Program and IO Log Session screens, SET SORTIOLOG
For the Load Program and Load Session screens, SET SORTLOAD
For the screens in the SampleIO subsystem, SET SORTSAMPLEIO
For the Lock Memory screen, SET SORTLOCK

For more information on the commands listed above, see their command pages in this chapter.

If you omit the last parameter, SQLMON prompts for it, as in

SQLMONITOR
NNNNNNNN
IO => SET TOP

NUMBER OF ITEMS TO DISPLAY <OFF=ALL>: 5

SQLMON Command Reference 9-31

SET USERTIMEOUT

Speci�es how long SQLMON waits for a database resource that is unavailable

Scope

SQLMON Only

SQLMON Syntax

SET U
�
SERTIMEOUT

�� Seconds
OFF

�

Parameters

Seconds The number of seconds SQLMON waits. Seconds is an integer
value greater than or equal to 0. The value 0 is equivalent to
OFF. The default value is 5.

OFF Speci�es that SQLMON does not wait.

Description

The resources SQLMON might wait for include transaction slots and locks, as explained
below:

Transaction
Slots

If you issue SET DBENVIRONMENT and DBECONNECT is ON,
SQLMON connects to the DBEnvironment and creates a transaction. If
the transaction limit is reached, SQLMON waits for a transaction slot for
Seconds seconds.

Locks If SQLMON tries to lock an object that is already locked in a con
icting
mode, SQLMON waits until the lock is granted or until Seconds seconds
pass.

If SQLMON cannot obtain the resource in the allotted time, it displays an error message.

Examples

To have SQLMON wait 10 seconds for a database resource, enter

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET USERTIMEOUT 10

If you omit the last parameter, SQLMON prompts for it, as in

SQLMONITOR
NNNNNNNNNNNNNNNNNNNNNNNNNN
OVERVIEW => SET USERTIMEOUT

NUMBER OF SECONDS: 10

9-32 SQLMON Command Reference

!

!

Escapes temporarily to the operating system and (optionally) executes a single operating
system command.

Scope

SQLMON Only

SQLMON Syntax

>> !
�
CommandName

�
;

Parameters

CommandName is the name of an HP-UX operating system command.

Description

If you include a command name, control returns to SQLMON as soon as the command has
been executed.

If you omit the command name, use the exit command to return to SQLMON from the
HP-UX shell.

Example

>> !ll;

total 5586

-rw-rw-r-- 1 guest guest 10626 Jul 12 11:06 +invfile

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderDF1

-rw------- 1 hpdb guest 204800 Apr 20 15:20 OrderXF1

.

.

.

>>

SQLMON Command Reference 9-33

A

Design for a High-Performance Interactive Table Editor

The following design shows how you can create interactive table editing for your applications
while maintaining high concurrency using standard ALLBASE/SQL. The editor described
supports very fast scrolling and very high concurrency by not holding any locks while terminal
I/O takes place. High performance also derives from the use of BULK commands.

Example Table

The table described in the design is a Personnel table for all the employees in a company. The
table consists of the Employee ID as the primary key, as well as Department Number and an
Information �eld.

User Interface

The user interface consists of a main form which is a single table. The rows of the table
contain all the �elds of the employee record. All the �elds are protected (i.e., display-only).
Seven function keys are de�ned:

NNNNNNNNNNNNNNNNNNNN
SELECT , which causes display of a popup form asking for the department number. This

popup form itself has two function keys:
NNNNNNNN
OK and

NNNNNNNNNNNNNNNNNNNN
CANCEL .

NNNNNNNNNNNNNNNNNNNN
CANCEL cancels the SELECT

and makes the popup form disappear.
NNNNNNNN
OK selects the employees in the speci�ed department

and displays the rows in the main form after the popup form disappears.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CURSOR_UP and

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CURSOR_DOWN , which position the cursor on the desired row in the table.

NNNNNNNNNNNNNNNNNNNNNNN
PAGE_UP and

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PAGE_DOWN , which position the display table on the previous or next page of

rows.
NNNNNNNNNNNNNNNNNNNN
DELETE , which deletes the current row. The row disappears from the table, and all the
following rows are shifted up by one. A new row �lls in the bottom of the table on the
screen.
NNNNNNNNNNNNNNNNNNNN
UPDATE , which causes display of a popup form asking for the new values for the row. The

popup form itself has two function keys:
NNNNNNNN
OK and

NNNNNNNNNNNNNNNNNNNN
CANCEL .

NNNNNNNNNNNNNNNNNNNN
CANCEL cancels the UPDATE

and makes the popup form disappear.
NNNNNNNN
OK updates the employee speci�ed and displays the

rows in the main form after the popup form disappears. If the department number has not
been changed, the new value of the row is displayed under the cursor; otherwise, the screen
is handled as in the case of deletions.

Design for a High-Performance Interactive Table Editor A-1

Internal Algorithms

When the editor starts, it opens a �le called the scroll �le. It also allocates a 12K data bu�er.

SELECT

When a SELECT is executed, the editor pulls in data from the table with BULK FETCH
statements, 12K bytes at a time. If more than one BULK FETCH is needed, it appends the
data from the previous FETCH to the scroll �le. After the last FETCH in a sequence of
FETCH statements, the data is appended to the scroll �le, and the �rst 12K of data is read
back into the data bu�er. If all the data �ts in the bu�er, the scroll �le is not used at all.
Before control returns to the user, the transaction is ended.

The window pointer is then set to the �rst row in the bu�er, and the �rst set of rows is
displayed. Cursor positioning and page scrolling, since they are handled completely by the
editor without accessing the database, are very fast.

DELETE

When a DELETE is executed, the tuple is fetched from the table based on its old primary key
value. If the tuple is not found, then the following message is returned:

Tuple Does Not Exist

The row is marked as deleted in the memory bu�er, and the table is redisplayed starting from
the window pointer. All rows marked as deleted are skipped by the display manager.

If the tuple to be deleted is still found in the table, it is compared against the old value of the
tuple. If they are identical, the tuple is deleted from the table, the row is marked as deleted in
the memory bu�er, and the table is redisplayed starting from the window pointer.

If the tuple in the database has changed, then the following message is returned:

Tuple Has Changed

The tuple's value in the bu�er is updated, and the table is redisplayed starting from the
window pointer.

In all three cases, the transaction is ended before control returns to the user. Locks are
obtained and released before additional terminal I/O is requested.

UPDATE

When an UPDATE is executed, the tuple is fetched from the table based on its old primary
key value. If the tuple is not found, then the following message is returned:

Tuple Does Not Exist

The row is marked as deleted in the memory bu�er, and the table is redisplayed starting from
the window pointer.

If the tuple is found, it is compared against the old value of the tuple. If they are identical,
the tuple is updated, the tuple's value in the bu�er is updated, and the table is redisplayed
starting from the window bu�er.

If the tuple in the database has changed, then the following message is returned:

A-2 Design for a High-Performance Interactive Table Editor

Tuple Has Changed

The tuple's value in the bu�er is updated, and the table is redisplayed starting from the
window pointer.

In all three cases, the transaction is ended before control returns to the user.

Caution A dirty bit is kept for the whole data bu�er. The bit is set when the contents
of the bu�er is modi�ed (that is, becomes \dirty"). If set, the current contents
have to be written to the scroll �le before a new 12K block is read from it.

Design for a High-Performance Interactive Table Editor A-3

Index

A

aborting programs
with TERMINATE USER, 5-2

administration
DBA guidelines, 5-1
HP-UX guidelines, 5-15
system, 5-1

aging
in data bu�er calculations, 5-4

arithmetic expressions
causing serial scans, 3-1

authorization
e�ect on performance, 2-10

B

balancing load
by separating �les, 5-2

batch reports
with SQLMON, 6-12

BEGIN WORK
monitoring, 8-13

BETWEEN
optimization of, 3-10

B-tree
and indexes, 1-7

bu�er
calculating size of log bu�er, 5-10
log data, 1-16
monitoring I/O, 8-2
types used by ALLBASE/SQL, 1-10

BULK option
in queries, 3-12

C

caching
of directory information, 1-15
of sections and DBCore directory, 5-13
stored sections, 1-21

calculations
overhead, 2-4

checkpoints
monitoring, 8-3

cluster count
and indexes, 2-7
de�ned, 1-20

clustering indexes
monitoring, 8-51
using, 2-6

COMMIT WORK
and log bu�er, 1-15
causing I/O, 4-2
monitoring, 8-13

compatibility
of data types, 3-2

compression
of data pages, 1-6

concurrency
improving, 2-13

conjunctive normal form
in OR optimization, 3-8

constraint
PCR, 1-9

conversion
avoiding in UNION operations, 3-6
of data, 3-2
SMALLINT to INTEGER, 2-14

correlated subqueries
e�ect on performance, 3-4

cursor stability (CS)
using, 4-3

D

data
conversion, 2-13, 3-2, 3-7
logical design, 2-1
physical design, 2-11

data bu�er
high miss rate, 7-3
insu�cient space, 7-4
miss rate, 8-34
swapping, 7-19

data bu�er pages
adjusting with SQLMON, 5-9
calculating number of, 5-3
monitoring I/O, 8-2
monitoring objects, 8-44
monitoring swapping, 8-40
used by ALLBASE/SQL, 1-10

data de�nition
reduces concurrency, 4-1

data storage

Index-1

data page compression, 1-6
DBA guidelines
for system administration, 5-1

DBCORERR
deadlock, 7-11
lock allocation failure, 7-15

DBEFile
de�ned, 2-13
monitoring capacity, 8-53
organization, 1-1

DBEFileSet
de�ned, 2-11
determining contents, 8-50
full, 7-23

DBEnvironment
specifying in SQLMON, 6-2

DDL Enabled
ag
and directory caching, 1-15
improving concurrency, 4-1
setting to NO, 5-2

deadlock
and savepoints, 4-2
caused by locking, 4-2
detection, 1-17
example in SQLMON, 7-11
monitoring, 8-13

default value
adding column with, 2-13

deletions
tips on, 2-17

design
logical, 2-1
of queries, 3-1
physical, 2-11

detached �les
identifying, 6-14

directory caching
de�ned, 5-13
when DDL Enabled is set to NO, 1-15

dirty reads
de�ned, 4-3

disjunctive normal form
in OR optimization, 3-8

disk space
increasing usage, 2-12
monitoring, 6-13
used for sorting, 5-12

display options
setting for SQLMON, 6-9

dynamic statements
performance of , 4-7

E

echoing
SQLMON batch input, 9-14

editor
high performance, for tables, A-1

EXIT, 9-2

F

factor
in optimization, 1-19

�le
load balancing, 5-2
monitoring capacity, 8-53
opening, 2-12
raw, 2-13
running out of space, 2-13
saving space, 2-13

�ltering SQLMON information
DBEFileSets, 9-9
lock mode, 9-15
lock object, 9-18
number of items displayed, 9-31

�lters
avoiding propagation by user, 3-11

format
data page, 1-1
DBEFile, 1-1
page table page, 1-2
rows of user data on data pages, 1-3
TID, 1-4
tuple header, 1-3

freezing
to examine deadlock, 7-11
to examine lock allocation failure, 7-15

G

GENPLAN
analyzing queries with, 3-12
using to observe the optimizer's choices, 1-20

H

hanging
SQLMON session, 9-8

hashing
and TRUNCATE TABLE, 2-17
compared to B-tree index, 2-9
monitoring over
ow pages, 7-24
monitoring tasks, 6-15
removing over
ow pages, 2-16
Static Hash Screen, 8-55
storage on DBEFile pages, 1-5
using, 2-8

HELP, 9-3
host variables

Index-2

and scan bu�er, 1-13
hot spots
de�ned, 4-4

HP-UX
setting parameters for, 5-15

I

IMAGE database
storage of table, 8-50

index
BETWEEN predicates, 3-10
B-tree compared to hashing, 2-8, 2-9
B-tree splits and logging, 1-16
clustering, 2-6
design of, 2-4
LIKE predicates, 3-9
maintaining, 2-6
MIN/MAX predicates, 3-7
monitoring clustering, 8-51
monitoring I/O, 8-42
monitoring tasks, 6-16
NULL values, 2-14
OR predicates, 3-8
page splitting, 1-9
placement on disks, 5-2
poorly clustered, 7-23
storage on DBEFile pages, 1-6
table size, 1-19
to improve I/O, 2-13
UNION queries, 3-7
USASCII columns, 2-13
when needed, 2-14

indirect row
avoiding, 7-24
de�ned, 1-5
monitoring, 8-57
unloading and reloading to avoid, 2-16

INSTALL
after preprocessing, 5-2

I/O
balancing load of, 7-18
caused by COMMIT WORK, 4-2
data bu�ers, 1-10
empty DBEFile space, 2-13
fastest available disk, 2-6

ooding with checkpoints, 5-10
improving, 2-13
incurred by inserts, 2-9
log bu�ers, 5-10
minimizing disk contention, 5-2
monitoring bu�ers, 8-2
monitoring data I/O, 6-18
monitoring for DBEFile, 8-40
monitoring for indexes, 8-42
monitoring for logging, 8-8

monitoring for program, 8-4
monitoring for sessions, 8-6
monitoring for tables, 8-48
monitoring logging I/O, 6-19
nested loop joins, 5-13
shortening I/O path, 2-13
small tables, 2-12
system bu�er pool, 1-13
wasted, 2-6

IO Data Program Screen, 8-4
IO Data Session Screen, 8-6
IO Log Program Screen, 8-8
IO Log Session Screen, 8-10
IO Screen, 8-2
IO subsystem, 7-4
isolation level
determining, 6-17
improving concurrency with, 4-3
KEEP CURSOR, 4-6
locking of system catalog, 1-14
locks, 1-17
sorted query results, 4-3
types of, 4-1

J

joins
avoiding, 2-14
compared with subqueries, 3-4
denormalizing instead of, 2-2
nested loop, 1-19, 5-13
optimization of, 1-19
sort/merge, 1-18, 1-19, 5-13

K

KEEP CURSOR
use of, 4-1, 4-6

key columns
updating, 3-10

L

latch
use of, 1-17

leaf pages
storage, 1-6

LIKE
optimization of, 3-9

LOAD
hashed table, 2-9
initial, 2-15
non-hash table, 2-14
to avoid indirect rows, 2-16
to improve cluster count, 2-1
to recluster indexes, 2-8
to remove over
ow pages, 2-16

Index-3

load balancing
explained, 5-2

Load Program Screen, 8-14
Load Screen, 8-12
Load Session Screen, 8-16
Load subsystem, 7-7
Lock Impede Screen, 8-20
locking
allocation failures, 7-14
and deadlocks, 7-11
avoiding contention, 2-10
cause of waits, 8-20
causing delays, 7-9
causing transaction delays, 7-7
contention, 7-2
�ltering information, 9-15
for KEEP CURSOR, 4-6
in
uenced by data de�nition, 4-1
monitoring contention, 7-8
monitoring tasks, 6-19
on the system catalog, 1-14
overview, 1-17
requests, 8-13
row level, 4-4
selecting types of, 4-1
sequence of events, 1-18
SQLMON screens, 8-18{33
subsystem in SQLMON, 7-9
wait %, 8-34
waits, 8-13

Lock Memory Screen, 8-23
lock object
de�ned, 4-4

Lock Object Screen, 8-25
Lock Screen, 8-18
Lock Session Screen, 8-28
Lock subsystem, 7-9
Lock TabSummary Screen, 8-31
logging
archive mode on IO screen, 8-3
choosing number and size of �les, 5-10
choosing number of bu�er pages, 5-10
de�nition of log, 1-15
�le capacity, 7-3
�le placement on disks, 5-2
insu�cient bu�er space, 7-5
monitoring errors, 8-35
monitoring �le space, 8-35
monitoring I/O, 8-2
monitoring program I/O, 8-8
monitoring session I/O, 8-10
monitoring tasks, 6-19
using raw �les, 5-16

LRU (least recently used) algorithm
in calculating data bu�er pages, 5-4

M

memory
available real, 5-9
latches, 1-17
limit reached, 7-2
locks, 1-17
monitoring usage , 6-14
row level locks, 4-4
shared, calculating, 5-3
used in sorting, 5-13

menus
displaying in SQLMON, 9-21

MIN/MAX
optimization of, 3-7

monitoring
with SQLMON , 6-13

multiconnect
using, 5-14

N

nested loop join
explained, 5-13

network use
guidelines for, 5-15

NLS data
USASCII columns, 2-13

non-correlated subqueries
e�ect on performance, 3-4

non-leaf pages
storage, 1-6

normalization
in logical design, 2-1
pros and cons, 2-1

NULL values
avoiding, 2-14
indirect rows, 1-5
tuple migration, 2-14

O

operating system bu�er
used by ALLBASE/SQL, 1-10

optimization
BETWEEN predicates, 3-10
LIKE predicates, 3-9
MIN/MAX predicates, 3-7
OR predicates, 3-8
overview, 1-19
updates of key columns, 3-10

optimizer
choice of join method, 5-13
observing results with GENPLAN, 1-20
overriding with SETOPT, 1-20

OR

Index-4

optimization of, 3-8
organization
DBEFile, 1-1
page, 1-1

output
of SQLMON, 9-22

overhead
generated by SQLMON, 6-12

overnormalization
avoiding, 2-1

Overview Program Screen, 8-36
Overview Screen, 8-34
Overview Session Screen, 8-38
Overview subsystem, 7-1

P

page
clean, 1-11
compression, 1-6
dirty, 1-11, 4-3
in DBEFiles, 1-1
no-log, 1-16
over
ow , 1-5

page splitting
of B-tree indexes, 1-9

page table page
de�ned, 1-2
in DBEFiles, 2-13

parallel serial scans
advantages of, 3-12

PCR
de�ned, 1-9

performance
basic concepts, 1-1
summary of topics, 2-1

pin
use of, 1-18

predicate
BETWEEN, 3-10
LIKE, 3-9
MIN/MAX, 3-7
OR, 3-8

preprocessing
with a development DBE, 5-2

procedures
and rules, 4-7

program
monitoring data I/O, 8-4
monitoring load, 8-14
monitoring logging I/O, 8-8
monitoring status, 8-36

propagation of �lters
avoiding, 3-11

PUBLIC ROW
overview, 4-4

Q

queries
design of, 3-1
importance in design, 2-1

R

raw �les
and I/O, 2-13
using, 5-16

read committed (RC)
using, 4-3

read uncommitted (RU)
using, 4-3

referential constraint
and index design, 2-4
and TRUNCATE TABLE, 2-17
enforced with a PCR, 1-9
monitoring clustering, 8-51
monitoring I/O, 8-42
monitoring tasks, 6-16

REFETCH statement
and RC or RU, 4-6

refresh
setting cycle , 9-7
setting rate, 9-24

revalidation
avoiding at run time, 5-1

ROLLBACK WORK
and transactions, 7-7
monitoring, 8-13

row
how stored on DBEFile page, 1-2

row level locking
overview, 4-4

rules
and procedures, 4-7

runtime control blocks
choosing size of, 5-9
latches, 1-17
locks, 1-17
monitoring, 8-35
row level locking, 4-4
running out of, 7-2

S

SampleIO Indexes Screen, 8-42
SampleIO Objects Screen, 8-44
SampleIO Screen, 8-40
SampleIO subsystem, 7-18
SampleIO TabIndex Screen, 8-46
SampleIO Tables Screen, 8-48
sampling
setting display, 9-12

Index-5

setting with SQLMON, 9-25
savepoint
de�ned, 4-2

scan bu�er
di�erent from data bu�er, 1-10

scan type
avoiding serial scans, 3-1
overview of choices for optimization, 1-19
using parallel serial scans, 3-12

screens
invoking in SQLMON, 6-3

section caching
de�ned, 5-13

sections
de�ned, 1-21
semi-permanent, 4-8

SELECT
compared to FETCH with cursor, 4-1
design of, 3-1

session
monitoring data I/O, 8-6
monitoring load, 8-16
monitoring locks, 8-28, 8-34
monitoring logging I/O, 8-10
monitoring status, 8-38
monitoring tasks, 6-17

SET, 9-6
SET CYCLE, 9-7
SET DBECONNECT, 9-8
SET DBEFILESET, 9-9
SET DBEINITPROG, 9-10
SET DBENVIRONMENT, 9-11
SET DISPLAYSAMPLES, 9-12
SET ECHO, 9-14
SET LOCKFILTER, 9-15
SET LOCKOBJECT, 9-18
SET LOCKTABFILTER, 9-20
SET MENU, 9-21
SETOPT
modifying access optimization plan with, 3-13
using to override the optimizer's choices, 1-20
using to specify join method, 5-13

SET OUTPUT, 9-22
SET REFRESH, 9-24
SET SAMPLING, 9-25
SET SORTIODATA, 9-26
SET SORTIOLOG, 9-27
SET SORTLOAD, 9-28
SET SORTLOCK, 9-29
SET SORTSAMPLEIO, 9-30
SET TOP, 9-31
SET USERTIMEOUT, 9-32
shared memory
calculating, 5-3

shared tuple header

explained, 1-3
size of objects
monitoring, 8-59

slot table
de�ned, 1-4

sorting
large sorts, 5-13
methods used in ALLBASE/SQL, 5-11
overview, 1-18

sort/merge join
explained, 5-13

SQLMON
batch reports, 6-12
de�ned, 6-1
leaving, 6-2
monitoring tasks , 6-13
online help, 6-10
screen command summary, 6-6
starting, 6-1
troubleshooting with, 7-1

SQLMON Commands
EXIT, 9-2
HELP, 9-3
SET, 9-6
SET CYCLE, 9-7
SET DBECONNECT, 9-8
SET DBEFILESET, 9-9
SET DBEINITPROG, 9-10
SET DBENVIRONMENT, 9-11
SET DISPLAYSAMPLES, 9-12
SET ECHO, 9-14
SET LOCKFILTER, 9-15
SET LOCKOBJECT, 9-18
SET LOCKTABFILTER, 9-20
SET MENU, 9-21
SET OUTPUT, 9-22
SET REFRESH, 9-24
SET SAMPLING, 9-25
SET SORTIODATA, 9-26
SET SORTIOLOG, 9-27
SET SORTLOAD, 9-28
SET SORTLOCK, 9-29
SET SORTSAMPLEIO, 9-30
SET TOP, 9-31
SET USERTIMEOUT, 9-32

SQLMON Screens
IO, 8-2
IO Data Program, 8-4
IO Data Session, 8-6
IO Log Program , 8-8
IO Log Session , 8-10
Load, 8-12
Load Program, 8-14
Load Session, 8-16
Lock, 8-18

Index-6

Lock Impede, 8-20
Lock Memory, 8-23
Lock Object, 8-25
Lock Session, 8-28
Overview, 8-34
Overview Program, 8-36
Overview Session, 8-38
SampleIO, 8-40
SampleIO Indexes, 8-42
SampleIO Objects, 8-44
SampleIO TabIndex, 8-46
SampleIO Tables, 8-48
Static, 8-50
Static Cluster, 8-51
Static DBEFile, 8-53
Static Hash, 8-55
Static Indirect, 8-57
Static Size, 8-59
summary, 6-4

Static Cluster Screen, 8-51
Static DBEFile Screen, 8-53
Static Hash Screen, 8-55
Static Indirect Screen, 8-57
Static Screen, 8-50
Static Size Screen, 8-59
Static subsystem, 7-23
storage
B-tree indexes, 1-6
hash tables, 1-5
log data, 1-15
user table data on DBEFile pages, 1-3

subqueries
compared with joins, 3-4

subsystem
IO, 7-4
Load, 7-7
Lock, 7-9
navigating in SQLMON, 6-7
Overview, 7-1
SampleIO, 7-18
Static, 7-23

swapping
monitoring, 8-40
pages, 1-11

system administration
DBA guidelines, 5-1
HP-UX guidelines, 5-15
network guidelines, 5-15

system catalog
de�ned, 1-14
DML only mode, 4-1
page locks on, 4-2
query results, 5-12, 5-13
sorting, 5-12
user data in, 2-11

SYSTEM.INDEX
monitoring for cluster count, 2-7

T

table
and DBEFileSets, 2-12
checking type, 8-50
indexes for large tables, 2-5
monitoring I/O, 8-48
monitoring locks, 8-31
monitoring tasks, 6-14
partitioning large tables, 2-3
size and row level locking, 4-4
storage on DBEFile pages, 1-3
suggestions on creation, 2-13
temporary, 8-44

table editor
design for, A-1

temporary space
controlling, 5-12
in sorting, 1-18, 5-11
reported by SQLMON, 8-59
used in system catalog, 5-13

terminal reads
avoiding locks around, 4-6, A-2

TERMINATE USER
use of, 5-2

throttle wait queue
monitoring, 8-12

throughput
monitoring, 8-12

TID
and indexes, 1-7
de�ned, 1-4
on SampleIO Objects screen, 8-44
use of TID scans, 3-11

timeout
and transaction limit, 7-1
setting for SQLMON, 9-32
using, 5-14

transaction
delays, 7-7
design of, 4-1
impeded, 8-12
limit reached, 7-1
maximum number of, 7-7
monitoring tasks, 6-16
monitoring with Load Screen, 8-12
monitoring with Overview Screen, 8-34
using short transactions, 4-2

troubleshooting
with SQLMON, 7-1

TRUNCATE TABLE
use of, 2-17

tuning hints, 9-3

Index-7

tuple
how stored on DBEFile page, 1-2

tuple body
explained, 1-3

tuple bu�er
di�erent from data bu�er, 1-10

tuple header
explained, 1-3

TurboIMAGE
storage of table, 8-50

types of data
compatibility of data types, 3-2

U

UNION
and indexes, 3-6
avoiding conversions with, 3-6

UNLOAD
to avoid indirect rows, 2-16
to improve cluster count, 2-8
to remove over
ow pages, 2-16

UPDATE STATISTICS

cluster count, 2-7
indexes, 2-10
invalidating sections, 1-21
large tables, 2-12
VALIDATE, 2-10

V

VALIDATE
and UPDATE STATISTICS, 2-10

validation
avoiding at run time, 5-1
explained, 1-21
stored sections, 1-21

VARCHAR data
and tuple migration, 2-14

variable length data
avoiding, 2-14

W

wait queue
monitoring, 8-12

timeouts, 5-14

Index-8

