
HP 9000 Computer Systems

ALLBASE/SQL Advanced

Application Programming Guide

ABCDE

HP Part No. 36217-90186

Printed in U.S.A. 1994

First Edition

E0494

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1994 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition April 1994 36217-02A.G0.00

iii

ALLBASE/SQL Manuals

Title Part Number

ALLBASE/ISQL Reference Manual 36217-90188

ALLBASE/NET User's Guide 36217-90093

ALLBASE/SQL Advanced Application Programming Guide 36217-90186

ALLBASE/SQL C Application Programming Guide 36217-90014

ALLBASE/SQL COBOL Application Programming Guide 36217-90058

ALLBASE/SQL Database Administration Guide 36217-90005

ALLBASE/SQL FORTRAN Application Programming Guide 36217-90013

ALLBASE/SQL Message Manual 36217-90009

ALLBASE/SQL Pascal Application Programming Guide 36217-90007

ALLBASE/SQL Performance and Monitoring Guidelines 36217-90185

ALLBASE/SQL Reference Manual 36217-90001

HP ALLBASE/QUERY User's Guide 92534-64001

HP PC API User's Guide for ALLBASE/SQL 36217-90187

Up and Running with ALLBASE/SQL 36389-90011

iv

Preface

This ALLBASE/SQL Advanced Application Programming Guide for HP-UX is the �rst
edition of a new manual targeted for experienced ALLBASE/SQL application programmers
using ALLBASE/SQL on HP 9000 systems. It describes product enhancements for
ALLBASE/SQL Release F through the present release. This guide replaces the release speci�c
ALLBASE/SQL application programming bulletins.

This guide does not replace the four ALLBASE/SQL application programming guides written
for C, COBOL, FORTRAN, and Pascal programmers. Indeed, if you are a new user of
ALLBASE/SQL who will be assuming programmer's responsibilities, you should put this
book down immediately and pick up the application programming guide for the language you
use. Until you have read and absorbed your guide, much of the information included in this
advanced guide will be of little use to you. This manual is intended as a source of concepts
and examples for programmers using the newer and often more complex ALLBASE/SQL
coding techniques.

Notable features of this new document relative to the existing ALLBASE/SQL manual set
include the following:

It is language generic. This guide provides information for ALLBASE/SQL programmers as
a group; whereas, each of the language speci�c application programming guides is directed
to programmers of a given language, C, COBOL, FORTRAN, or Pascal. This advanced
guide contains code segments and programs in C, COBOL, FORTRAN, and Pascal. Some
examples are duplicated in more than one language. Other examples are presented in only
one language. Language generic examples are also included.

This advanced guide contains examples based on the sample database environment, often
including message numbers that might be returned to your application. It frequently refers
you to the lanuguage speci�c application programming guides and other manuals in the
ALLBASE/SQL manual set for additional information.

Both additions and changes to functionality are presented. In the case of changes, some
information regarding previous releases can be invalidated. This is speci�cally referenced in
the advanced guide.

v

To facilitate information lookup, one chapter is devoted to each type of functionality. The
index is task as well as reference oriented. The following topics are included in this manual:

Chapter 1, \Using the Preprocessor," presents complete syntax for Full Preprocessing Mode,
Static Conversion Mode, and Syntax Checking Mode.

Chapter 2, \Flagging Non-Standard SQL with the FIPS Flagger," discusses ALLBASE/SQL
agging for the FIPS 127.1 standard.

Chapter 3, \Comparing Static and Dynamic SQL," contrasts static and dynamic SQL
statements and applications.

Chapter 4, \Using Parameter Substitution in Dynamic Statements," introduces and gives
examples for using dynamic parameters.

Chapter 5, \Using Procedures in Application Programs," presents application speci�c
features for coding with procedures.

Chapter 6, \Using Data Integrity Features," compares the use of statement level integrity
(the default) and row level integrity and discusses how to defer constraint error checking,
how to use check constraints in tables and views, and how to use features of the ALTER
TABLE statement.

Chapter 7, \Transaction Management with Multiple DBEnvironment Connections,"
describes functionality that allows multiple, simultaneous connections to one or more
DBEnvironments and use of the SET TIMEOUT statement.

Chapter 8, \COBOL Preprocessor Enhancements," outlines two enhancements for
the COBOL preprocessor: record descriptions for non-bulk queries and host variable
initialization with the VALUE clause.

Chapter 9, \Programming with Indicator Variables in Expressions," discusses the use of
input indicator variables.

Chapter 10, \Analyzing Queries with GENPLAN," describes how to use the ISQL
GENPLAN statement.

Chapter 11, \Using the VALIDATE Statement," introduces the VALIDATE statement for
validating sections prior to runtime.

Chapter 12, \Corrections to the BCDToString Example Program Routine," provides
replacement pages for the BCDToString routine found in the ALLBASE/SQL C Application
Programming Guide and in the ALLBASE/SQL Pascal Application Programming Guide.

Example code is based, for the most part, on the sample database environment, PartsDBE,
which is a part of the ALLBASE/SQL product. (Refer to appendix C in the ALLBASE/SQL
Reference Manual for information about the structure of PartsDBE and for listings of the
sample database.)

We hope you enjoy using the document and that you will send your comments and suggestions
to our attention so that the ALLBASE/SQL Advanced Application Programming Guide can
become even more e�ective.

vi

What's New in this Release

The following table highlights the new or changed functionality in this release, and shows you
where each feature is documented.

New Features in ALLBASE/SQL Release G.0

Feature (Category) Description Documented in . . .

Stored procedures
(Usability)

Provides additional stored
procedure functionality for
application programs. Allows
declaration of a procedure cursor
and fetching of multiple rows
within a procedure to applications.
New statement: ADVANCE.
Changed syntax: CLOSE,
CREATE PROCEDURE,
DECLARE CURSOR,
DESCRIBE, EXECUTE,
EXECUTE PROCEDURE,
FETCH, OPEN.

ALLBASE/SQL Reference Manual, \SQL
Statements" and \Using Procedures" in
\Constraints, Procedures and Rules;"
ALLBASE/SQL Advanced Application
Programming Guide, \Using Procedures in
Application Programs."

Case insensitivity
(Usability)

Adds an optional attribute to the
character and varchar type column
attributes of tables. Allows search
and compare of these columns in a
case insensitive manner. Four new
SQLCore data types are added.
Changed syntax: ALTER TABLE,
CREATE TABLE.

ALLBASE/SQL Reference Manual,
\Comparison Predicate" in \Search
Conditions," CREATE TABLE in \SQL
Statements."

Support for 1023
columns
(Usability)

Increases the maximum number of
columns per table or view to 1023.
Increases maximum sort columns
and parameters in a procedure to
1023.

ALLBASE/SQL Reference Manual,
CREATE TABLE and CREATE VIEW in
\SQL Statements;" ALLBASE/SQL
Database Administration Guide,
\ALLBASE/SQL Limits" appendix.

ISQL HELP
improvements
(Usability)

Gives help for entire command
instead of only the verb.

ALLBASE/ISQL Reference Manual , HELP
in \ISQL Commands."

EXTRACT
command
(Usability)

Extracts modules from the
database and stores them in a
module �le. Allows for creation of
a module �le at any time based on
the current DBEnvironment
without preprocessing. New
command: EXTRACT. Changed
syntax: INSTALL.

ALLBASE/ISQL Reference Manual , \Using
Modules" in \Using ISQL for Database
Tasks," EXTRACT, INSTALL in \ISQL
Commands."

vii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

New SQLGEN
GENERATE
parameters
(Usability)

Generates SQL statements
necessary to recreate modi�ed
access plans for module sections.
New syntax for GENERATE:
DEFAULTSPACE,
MODOPTINFO, PARTITION,
PROCOPTINFO, SPACEAUTH.

ALLBASE/SQL Database Administration
Guide, \SQLGEN Commands" appendix.

Row level locking
(Usability)

Permits multiple transactions to
read and update a table
concurrently because locking is
done at row level. Since the
transaction will obtain more locks,
the bene�ts must be weighed
against the costs. (Previously
documented in an addendum after
F.0 release.)

ALLBASE/SQL Reference Manual ,
\Concurrency Control through Locks and
Isolation Levels;" ALLBASE/SQL Database
Administration Guide, \E�ects of Page and
Row Level Locking" in \Physical Design."

Increased number
of users
(Usability)

Removes the limitation of 240
users supported by pseudotables.
(Maximum is system session
limits: 2000 on HP-UX; 1700 on
MPE/iX.)

ALLBASE/SQL Database Administration
Guide, \ALLBASE/SQL Limits" appendix.

POSIX support
(Usability)

Improves application portability
across MPE/iX and HP-UX.
Enhances the ALLBASE/SQL
preprocessors to run under POSIX
(Portable Operating System
Interface) on MPE/iX.

ALLBASE/SQL Advanced Application
Programming Guide, \POSIX Preprocessor
Invocation" in \Using the Preprocessor."

Application thread
support
(Performance,
Usability)

Provides the use of threads in an
application. Allows
ALLBASE/SQL to be used in an
application threaded environment
on MPE/iX. Application threads
are light weight processes that
share some resources and last for
the duration of a transaction.
Threaded applications reduce the
overhead of context switching and
improve the performance of
OpenTP applications.

ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor."

viii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

High Availability Provides a collection of features to
keep systems available nonstop
including: Partial STORE and
RESTORE, Partial rollforward
recovery, DBEFiles in di�erent
groups (MPE/iX), detaching and
attaching database objects,
CHECKPOINT host variable,
changing log �les, console
messages logged to a �le,
generating fewer log records by
using TRUNCATE TABLE to
delete rows, and new system
catalog information. See the
following features for new and
changed syntax.

ALLBASE/SQL Reference Manual, \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \Maintaining a
Nonstop Production System" in
\Maintenance" chapter and \SQLUtil"
appendix.

Partial rollforward
recovery
(High Availability)

Supports partial rollforward
recovery through PARTIAL option
on SETUPRECOVERY. Used to
recover speci�c DBEFiles while
allowing access to other DBEFiles.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
SETUPRECOVERY PARTIAL in
\SQLUtil" appendix.

Partial STORE
and RESTORE
(High Availability)

Gives more exibility in backup
and recovery strategies by allowing
partial store and restore of
DBEFiles, DBEFileSets or
combinations of both. See \New
and changed SQLUtil commands
for increased availability" later in
this table.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
\SQLUtil" appendix.

DBEFile group
change on MPE/iX
(High Availability)

Manages DBEFiles so they can be
placed in a particular group or on
a particular volume (MPE/iX).
Use either CREATE DBEFILE or
MOVEFILE.

ALLBASE/SQL Reference Manual,
CREATE DBEFile in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter and
MOVEFILE in \SQLUtil" appendix.

Detaching and
attaching database
objects
(High Availability)

Detaches or attaches a DBEFile or
DBEFileSet from the
DBEnvironment. This is useful for
data that is accessed infrequently
such as tables containing historical
data only. New SQLUtil
commands: DETACHFILE,
ATTACHFILE.

ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter and
DETACHFILE, ATTACHFILE in
\SQLUtil" appendix.

ix

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

New and changed
SQLUtil
commands for
increased
availability
(High Availability)

Adds support for high availability
and System Management
Intrinsics. Intended for non-stop,
continuously available operations.
New SQLUtil commands:
ATTACHFILE, CHANGELOG,
DETACHFILE, RESTORE
PARTIAL, STORE PARTIAL,
STOREINFO, STOREONLINE
PARTIAL, WRAPDBE.
Modi�ed SQLUtil commands:
MOVEFILE, RESTORE,
RESTORELOG, SHOWDBE,
SETUPRECOVERY, STORE,
STORELOG, STOREONLINE.

ALLBASE/SQL Database Administration
Guide, \SQLUtil" appendix.

List �les on backup
device
(High Availability)

Lists physical names of �les stored
on backup device with new
SQLUtil command: STOREINFO.

ALLBASE/SQL Database Administration
Guide, \Backup and Recovery" chapter and
STOREINFO in \SQLUtil" appendix.

Log �le
improvements
(High Availability)

Allows changing log �les,
switching of console messages to a
�le, and gives advance warning for
log full. Increased maximum size
of a single DBE log �le to 4
gigabytes. A DBEnvironment can
have up to 34 log �les con�gured.
Changed syntax: CHECKPOINT.
New SQLUtil command:
CHANGELOG.

ALLBASE/SQL Reference Manual ,
CHECKPOINT in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, \Maintaining a Nonstop Production
System" in \Maintenance" chapter,
CHANGELOG in \SQLUtil" appendix, and
\ALLBASE/SQL Limits" appendix.

New SET
SESSION and SET
TRANSACTION
statements
(Standards,
Performance)

Provides additional exibility and
improved performance. Allows
setting and changing transaction
and session attributes.

ALLBASE/SQL Reference Manual , SET
SESSION and SET TRANSACTION in
\SQL Statements."

FIPS agger
(Standards)

Meets Federal Information
Processing Standard (FIPS) 127.1
agger support. Flags
non-standard statement or
extension. Invoked with a agger
option in the preprocessor
command line or the SET
FLAGGER command in ISQL.
Updatability rules are di�erent
when agger is invoked. New
syntax: DECLARE CURSOR,
WHENEVER. Changes to C and
COBOL host variable declaration.

ALLBASE/SQL Reference Manual ,
DECLARE CURSOR in \SQL Commands"
and \Standards Flagging Support"
appendix; ALLBASE/SQL Advanced
Application Programming Guide, \Flagging
Non-Standard SQL with the FIPS Flagger;"
ALLBASE/ISQL Reference Manual , SET in
\ISQL Commands."

x

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Optimizer
enhancement
(Performance)

Uses a more e�cient algorithm
that signi�cantly reduces the time
to generate the access plan.

ALLBASE/SQL Performance and
Monitoring Guidelines, \Optimization" in
\Basic Concepts in ALLBASE/SQL
Performance."

Access plan
modi�cation
(Performance)

Allows modi�cation of access plans
for stored section to optimize
performance. View the plan with
SYSTEM.SETOPTINFO. New
statement: SETOPT.

ALLBASE/SQL Reference Manual,
SETOPT in \SQL Statements;"
ALLBASE/SQL Database Administration
Guide, SYSTEM.SETOPINFO in \System
Catalog."

Syntax added to
disable access plan
optimization
(Performance,
Usability)

Speci�es that the optimization
information in the module �le is
not to be used. Changed syntax:
EXTRACT, INSTALL,
VALIDATE.

ALLBASE/SQL Reference Manual,
VALIDATE in \SQL Statements;
ALLBASE/ISQL Reference Manual ,"
EXTRACT, INSTALL in \ISQL
Commands."

Application
Development
Concurrency
(Performance,
Usability)

Provides enhancements to improve
preprocessing performance when
simultaneously accessed by
multiple users. Page or row level
locking on any system base table
and processing without storing
sections. See the related features
in this table.
New SQL parameter: SET
DEFAULT DBEFileSet. SQL
changed syntax: ALTER TABLE,
GRANT, REVOKE, UPDATE
STATISTICS. ISQL changed
syntax: INSTALL. Changed
SYSTEM and CATALOG view.
New STOREDSECT tables.
Special owners HPRDBSS and
STOREDSECT. Changed syntax
for Full Preprocessing Mode.

ALLBASE/SQL Reference Manual,
\Names" and \SQL Statements;"
ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor;" ALLBASE/ISQL Reference
Manual , \ISQL Commands;"
ALLBASE/SQL Database Administration
Guide, \Database Creation and Security"
and \System Catalog."

System Catalog
tables
(Performance)

Provides greater concurrency by
allowing users to specify table,
page, or row level locking of any
system table owned by
STOREDSECT through the
ALTER TABLE statement.

ALLBASE/SQL Reference Manual,
\Names;" ALLBASE/SQL Database
Administration Guide, \System Catalog."

Preprocessors
(Performance)

Allows optional speci�cation of a
DBEFileSet for storage of sections.
Allows preprocessing without
storing sections in
DBEnvironment.

ALLBASE/SQL Advanced Application
Programming Guide, \Using the
Preprocessor."

xi

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

I/O performance
improvement
(Performance)

Optimizes I/O for initial load,
index build, serial scans, internal
data restructuring, �le activity,
pseudo mapped �les and
temporary �les. See the following
features for new and changed
syntax.

ALLBASE/SQL Reference Manual , \SQL
Statements."

TRUNCATE
TABLE statement
(Performance)

Deletes all rows in a speci�ed table
leaving its structure intact.
Indexes, views, default values,
constraints, rules de�ned on the
table, and all authorizations are
retained. TRUNCATE TABLE is
faster than the DELETE
statement and generates fewer
logs. New statement:
TRUNCATE TABLE.

ALLBASE/SQL Reference Manual ,
TRUNCATE TABLE in \SQL Statements."

New scans
(Performance)

Reads tables with a new parallel
sequential scan. The tables are
partitioned and �les are read in a
round robin fashion to allow OS
prefetch to be more e�ective.
Allows the I/O for a serial scan to
spread across multiple disc drives.

ALLBASE/SQL Performance and
Monitoring Guidelines, \Using Parallel Serial
Scans" in \Guidelines on Query Design."

Load performance
improvement
(Performance)

Improves performance with new
SET and SET SESSION
attributes, a new binary search
algorithm, and deferred allocation
of HASH pages. New attributes
for SET SESSION statement:
FILL, PARALLEL FILL.

ALLBASE/SQL Reference Manual , SET
SESSION in \SQL Statements."

ISQL enhanced to
improve the
performance of
LOADs
(Performance)

Uses new parameters of the ISQL
SET command to set load bu�er
size and message reporting.
Improves load performance.
Choose a procedure, command �le,
or new ISQL command to set
constraints deferred, lock table
exclusively, and set row level DML
atomicity. Changed syntax: SET
(see the following feature).

ALLBASE/ISQL Reference Manual , SET in
\ISQL Commands."

xii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Modi�ed SET
options
(Performance)

Provides better performance for
LOADs and UNLOADs. Specify
bu�er size, status reporting for
LOAD/UNLOAD or exclusive lock
for data table. AUTOSAVE row
limit increased to 2147483647.
New and changed SET options:
LOAD BUFFER, LOAD ECHO,
AUTOLOCK, AUTOSAVE.

ALLBASE/ISQL Reference Manual , SET in
\ISQL Commands;" ALLBASE/SQL
Performance and Monitoring Guidelines,
\Initial Table Loads" in \Guidelines on
Logical and Physical Design."

SQLMON
(Tools)

Monitors the activity of
ALLBASE/SQL DBEnvironment.
Provides information on �le
capacity, locking, I/O, logging,
tables, and indexes. Summarizes
activity for entire DBEnvironment
or focuses on individual sessions,
programs, or database
components. Provides read-only
information.

ALLBASE/SQL Performance and
Monitoring Guidelines, chapters 6-9.

Audit
(Tools)

Provides a series of features to set
up an audit DBEnvironment
which generates audit log records
that you can analyze with the new
SQLAudit utility for security or
administration. Includes the
ability to set up partitions. See
ALLBASE/SQL Database
Administration Guide for
SQLAudit commands. Modi�ed
statements: ALTER TABLE,
CREATE TABLE, START DBE
NEW, START DBE NEWLOG.
New statements: CREATE
PARTITION, DROP
PARTITION, DISABLE AUDIT
LOGGING, ENABLE AUDIT
LOGGING, LOG COMMENT.

ALLBASE/SQL Reference Manual, \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \DBEnvironment
Con�guration and Security" chapter and
\SQLAudit" appendix.

Wrapper
DBEnvironments
(Tools)

Creates a DBEnvironment to wrap
around the log �les orphaned after
a hard crash of DBEnvironment.
New SQLUtil command:
WRAPDBE.

ALLBASE/SQL Reference Manual,
\Wrapper DBEnvironments" in \Using
ALLBASE/SQL;" ALLBASE/SQL Database
Administration Guide, WRAPDBE in
\SQLUtil."

HP PC API is now
bundled with
ALLBASE/SQL.

PC API is an application
programming interface that allows
tools written with either the
GUPTA or the ODBC interface to
access ALLBASE/SQL and
IMAGE/SQL from a PC.

HP PC API User's Guide for
ALLBASE/SQL.

xiii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Increased memory
for MPE/iX
(HP-UX shared
memory allocation
is unchanged)
(Performance)

Increases memory up to 50,000
data bu�er pages and 2,000 run
time control block pages. Increases
the limits signi�cantly allowing
allocation of enough data bu�er
pages to keep the entire
DBEnvironment in memory if
desired for performance.

ALLBASE/SQL Reference Manual ,
STARTDBE, STARTDBE NEW, and
START DBE NEWLOG in \SQL
Statements;" ALLBASE/SQL Database
Administration Guide, \ALLBASE/SQL
Limits" appendix.

ALLBASE/NET
enhancements
(Connectivity,
Performance)

Improves performance of
ALLBASE/NET, allows more
client connections on server
system, and reduces number of
programs on MPE/iX.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

ALLBASE/NET
commands and
options for
MPE/iX
(Connectivity,
Usability)

Adds option ARPA. Adds option
NUMSERVERS to check status of
listeners and number of network
connections. Changed syntax:
ANSTART, ANSTAT, ANSTOP.
Changed NETUtil commands:
ADD ALIAS, CHANGE ALIAS.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET" and \NETUtil Reference."

ALLBASE/NET
and NetWare
(Connectivity)

ALLBASE/NET listener for
NetWare now works with the 3.11
version of Novell's NetWare for
UNIX (HP NetWare/iX).

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

Changed
restrictions for
executing NETUtil
commands for
MPE/iX
(Connectivity,
Usability)

Adds SM or AM (in the speci�ed
account) to MANAGER.SYS for
adding, changing, or deleting users
for MPE/iX.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET."

ARPA is only
TCP/IP interface
for data
communication
through
ALLBASE/NET
beginning with
HP-UX 10.0
(Connectivity)

Remote database access
applications that specify NS will
not work if the client and/or
server machine is an HP 9000
Series 700/800 running HP-UX
10.0 or greater. Server Node Name
entry must be changed from NS
node name to ARPA host name.
For the NETUsers �le, the \Client
Node Name" must be changed
from the NS node name to the
ARPA host name. New NETUtil
commands: MIGRATE USER,
MIGRATE ALIAS.

ALLBASE/NET User's Guide, \Setting up
ALLBASE/NET" and \NETUtil Reference."

xiv

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

xv

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

xvi

Contents

1. Using the Preprocessor
Full Preprocessing Mode . 1-1
Full Preprocessing Mode Syntax Speci�cation 1-1
Full Preprocessing Mode for C Applications 1-1
Full Preprocessing Mode for COBOL Applications 1-2
Full Preprocessing Mode for FORTRAN Applications 1-2
Full Preprocessing Mode for Pascal Applications 1-2

Parameters . 1-2
Description . 1-4
Authorization . 1-5
Example of Full Preprocessing of a C Application 1-7
DBEnvironment Access in Full Preprocessing Mode 1-8
Accessing Multiple DBEnvironments in Full Preprocessing Mode 1-8

Static Conversion Mode . 1-9
Static Conversion Mode Syntax Speci�cation 1-9
Static Conversion Mode for C Applications 1-9
Static Conversion Mode for Pascal Applications 1-9

Parameters . 1-9
Description . 1-10
Authorization . 1-10
Example of Static Conversion Processing of a C Application 1-10
Example of Static Conversion Processing of a Pascal Application 1-10

Syntax Checking Mode . 1-11
Syntax Checking Mode Syntax Speci�cation 1-11
Syntax Checking Mode for C Applications 1-11
Syntax Checking Mode for COBOL Applications 1-11
Syntax Checking Mode for FORTRAN Applications 1-11
Syntax Checking Mode for Pascal Applications 1-11

Parameters . 1-12
Description . 1-12
Authorization . 1-13
Example of Syntax Checking of a C Application 1-13

2. Flagging Non-Standard SQL with the FIPS Flagger
Coding Tips . 2-1
Setting the ANSI Compiler Directive 2-2

Identifying Non-Standard Features 2-2
Understanding Implicit Updatability 2-3
Declaring the SQLCA . 2-3
Secondary References to Non-Standard SQL 2-3
Host Variable Data Type Declarations 2-4
Host Variable Name Length Standards 2-8

Contents-1

3. Comparing Static and Dynamic SQL
Comparing Static and Dynamic Applications 3-2
Coding an Application that can be Either Static or Dynamic 3-2
Converting a Static Application to a Dynamic Application 3-3
Enhancing Performance . 3-3

4. Using Parameter Substitution in Dynamic Statements
Understanding Dynamic Parameters 4-1
Examples in C of Preparing a Statement with Dynamic Parameters 4-2
Examples in COBOL of Preparing a Statement with Dynamic Parameters . 4-2
Examples in FORTRAN of Preparing a Statement with Dynamic Parameters 4-3
Examples in Pascal of Preparing a Statement with Dynamic Parameters . . 4-3

Where to Use Dynamic Parameters 4-4
Restrictions . 4-5

Programming with Dynamic Parameters 4-6
Using Host Variables to Process Dynamic Parameters 4-6
Using Data Structures and a Data Bu�er to Process Dynamic Parameters . 4-7
Using the SQLDA for Input . 4-7
Using the Data Bu�er for Input 4-8
Example in C Using Output and Input Data Bu�ers 4-19

Using a BULK INSERT Statement with Dynamic Parameters 4-26
Example in C Using a BULK INSERT 4-27
Example in COBOL Using a BULK INSERT 4-30
Example in Pascal Using a BULK INSERT 4-34

Using Default Data Types with Dynamic Parameters 4-37
How ALLBASE/SQL Derives a Default Data Type 4-37
Dynamic Parameter Formats . 4-39
Conversion of Actual Data Types to Default Data Types 4-40
Data Overow and Truncation . 4-40

5. Using Procedures in Application Programs
Using Cursors with Procedures . 5-2
Procedures with Multiple Row Result Sets of Di�erent Formats 5-3
Static Processing . 5-3
Dynamic Processing . 5-4

Procedures with no Multiple Row Result Sets 5-6
Static Processing . 5-6
Dynamic Processing . 5-7

Single Format Multiple Row Result Sets 5-7
Example Schema . 5-7
Static Processing . 5-7
Dynamic Processing . 5-7

Using Host Variables to Pass Parameter Values 5-9
Using Dynamic Procedure Parameters 5-11
Returning a Return Status Code . 5-12
Testing SQLCODE and SQLWARN0 on Return from a Procedure 5-13
Checking for All Errors and Warnings 5-14

Returning Output Values . 5-14
Additional Error and Message Handling 5-16
Messages from Failure of the EXECUTE PROCEDURE Statement 5-16
Messages from the Last SQL Statement Executed by the Procedure 5-17

Contents-2

Messages from Errors Caused by the RAISE ERROR Statement 5-18
Messages from the PRINT Statement 5-19

Comparing a Procedure and an Embedded SQL Application 5-20
Why Use a Procedure? . 5-22

6. Using Data Integrity Features
Setting the Error Checking Level . 6-1
Using Table Check Constraints . 6-2
De�ning and Dropping Table Constraints 6-3
Adding a Column to the Recreation Database 6-4
Adding a Constraint to the Recreation Database 6-4
Dropping a Constraint from the Recreation Database 6-4

De�ning and Dropping View Constraints 6-5
Deferring Constraint Error Checking 6-6
Locating Constraint Errors . 6-7
Template for Single Column Unique Constraint Errors 6-7
Template for Multiple Column Unique Constraint Errors 6-7
Template for Single Column Referential Constraint Errors 6-7
Template for Multiple Column Referential Constraint Errors 6-8
Coding with Deferred Constraint Error Checking 6-8

7. Transaction Management with Multiple DBEnvironment Connections
Preprocessing and Installing Applications 7-2
Understanding Timeouts . 7-2
Using Timeouts to Prevent Undetectable Deadlocks and In�nite Waits 7-4
Undetectable Deadlock Prevention 7-4
In�nite Wait Prevention . 7-4

Using Timeouts to Tune Performance 7-5
Example Using Single-transaction Mode with Timeouts 7-5

8. COBOL Preprocessor Enhancements
Record Descriptions For Non-Bulk Queries 8-1
Host Variables Initialized With The VALUE Clause 8-1

9. Programming with Indicator Variables in Expressions

10. Analyzing Queries with GENPLAN

11. Using the VALIDATE Statement

12. Corrections to the BCDToString Example Program Routine
Correcting the C Language Program 12-1
Correcting the Pascal Language Program 12-5

Index

Contents-3

Tables

2-1. ANSI Compiler Directives for Flagging Non-Standard Syntax 2-2
2-2. ALLBASE/SQL Non-Standard Programming Features 2-2
2-3. ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for C . . . 2-4
2-4. ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for COBOL 2-5
2-5. ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for

FORTRAN . 2-6
2-6. ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for Pascal . 2-7
2-7. FIPS 127.1 Compliant Host Variable Name Lengths 2-8
4-1. Where to Use Dynamic Parameters 4-4
4-2. Dynamic Parameter Functionality by Programming Language 4-6
4-3. ALLBASE/SQL Data Type Byte Alignment 4-10
4-4. Setting SQLDA Fields for Output and for Input in C 4-11
4-5. Setting SQLDA Fields for Output and for Input in Pascal 4-13
4-6. Fields in a Format Array Record in C 4-15
4-7. Fields in a Format Array Record in Pascal 4-17
4-8. ALLBASE/SQL Default Data Formats for Dynamic Parameters 4-39
4-9. Actual to Default Data Type Conversion for Dynamic Parameters 4-40
5-1. Using Cursors with Procedures within an Application 5-2
5-2. When Dynamic Parameters are Passed Between an Application and a

Procedure . 5-12

Contents-4

1

Using the Preprocessor

This chapter details complete syntax for each ALLBASE/SQL preprocessing mode, for each
supported programming language (C, COBOL, FORTRAN, and Pascal). Related coding
techniques are also discussed. Main topics include:

Preprocessing in Full Preprocessing Mode.
Preprocessing in Static Conversion Mode.
Preprocessing in Syntax Checking Mode.

For information about preprocessor input and output �les, compiling and linking, example
applications, and other preprocessor topics related to a speci�c language, refer to the
ALLBASE/SQL application programming guide for the language you are using.

Full Preprocessing Mode

Full preprocessing mode includes the following:

Checking SQL syntax.
Creating compilable output �les.
Optionally storing an installable module containing sections in a DBEnvironment. (See the
-N option below.)
Creating a �le that contains an installable copy of the module.

Full Preprocessing Mode Syntax Specification

Full Preprocessing Mode for C Applications

psqlc DBEnvironmentName

2
6666666666666664

-i SourceFileName

-p Modi�edSourceFileName

-o OwnerName

-m ModuleName

-f FlaggerName

-a

-N

-n DBEFileSetName

-d
�
-r
�

-W

3
7777777777777775

| . . . |

Using the Preprocessor 1-1

Full Preprocessing Mode for COBOL Applications

psqlcbl DBEnvironmentName

2
6666666666666664

-i SourceFileName

-p Modi�edSourceFileName

-o OwnerName

-m ModuleName

-f FlaggerName

-a

-N

-n DBEFileSetName

-d
�
-r
�

-W

3
7777777777777775

| . . . |

Full Preprocessing Mode for FORTRAN Applications

psqlfor DBEnvironmentName

2
6666666666666664

-i SourceFileName

-p Modi�edSourceFileName

-o OwnerName

-m ModuleName

-f FlaggerName

-a

-N

-n DBEFileSetName

-d
�
-r
�

-W

3
7777777777777775

| . . . |

Full Preprocessing Mode for Pascal Applications

psqlpas DBEnvironmentName

2
6666666666666664

-i SourceFileName

-p Modi�edSourceFileName

-o OwnerName

-m ModuleName

-f FlaggerName

-a

-N

-n DBEFileSetName

-d
�
-r
�

-W

3
7777777777777775

| . . . |

Parameters

DBEnvironmentName identi�es the DBEnvironment in which a module is to be stored.

-i SourceFileName identi�es the name of the input �le containing the source code to
be preprocessed. If not speci�ed, sqlin is the default.

1-2 Using the Preprocessor

-p
Modi�edSourceFileName

identi�es the name for the modi�ed source code �le. If a name is
not speci�ed, the preprocessor generated code is written to a �le
with the same name as SourceFileName and with an appropriate
�le extension, as follows:

Language File Name Extension

C SourceFileName.c

COBOL SourceFileName.cbl

FORTRAN SourceFileName.f

Pascal SourceFileName.p

-o OwnerName associates the stored module with a DBEUserID, a class name, or
a group name. You can specify an owner name for the module
if you have DBA authority in the DBEnvironment where the
module is created or if you are the current owner of the module.
If not speci�ed, the owner name is your DBEUserID. Any object
names in SourceFileName not quali�ed with an owner name are
quali�ed with this OwnerName.

-m ModuleName assigns a name to the stored module. Module names must follow
the rules governing ALLBASE/SQL basic names as described
in the ALLBASE/SQL Reference Manual . If a module name is
not speci�ed, the preprocessor uses the PROGRAM-ID (for a
C application) or the SourceFileName (for other languages) in
upper case as the module name. This module name is stored in
the module �le, Modi�edSourceFileName.sqlm.

-f FlaggerName is the name of the agger being invoked. At this release
FIPS127.1 is the only valid FlaggerName. FlaggerName is not
case sensitive.

Refer to the \Flagging Non-Standard SQL with the FIPS
Flagger" chapter in this manual.

-a preprocesses the application in ANSI mode. The preprocessor
generates an SQLCA declaration automatically and implicit
updatability is in e�ect.

Refer to the sections \Understanding Implicit Updatability" and
\Declaring the SQLCA" in this manual.

-N indicates that no sections are to be stored in a DBEnvironment
during preprocessing. A module that can be installed in a
DBEnvironment with the ISQL INSTALL command is generated.

This is the only option for which a DBEnviromnent name is not
required. If a DBEnvironment name is speci�ed, a connection
is established, and bind errors and warnings are generated for
missing objects. If no DBEnvironment name is speci�ed, no
connection is made and no bind errors or warnings are generated.

Using the Preprocessor 1-3

-n DBEFileSetName identi�es the DBEFileSet in which a module's static sections are
to be stored.

A DBEFileSetName speci�ed in the preprocessor command line
overrides any explicit speci�cation in the IN DBEFileSetName
clause of any CREATE PROCEDURE, CREATE RULE,
CREATE VIEW, DECLARE CURSOR, or PREPARE statement
within the preprocessed application.

-d deletes any module currently stored in the DBEnvironment by the
ModuleName and OwnerName speci�ed in the command string. If
not speci�ed, any module having these names is not dropped, and
existing RUN authorities for that module are preserved.

-r is speci�ed when the program being preprocessed already has a
stored module and you want to revoke existing RUN authorities
for that module. The -r option cannot be speci�ed unless -d
is also speci�ed. If the -r option is not speci�ed, it is assumed
that all existing RUN authorities for that module are to be
PRESERVED.

-W converts preprocessor generated bind warnings to errors. If -W is
not speci�ed, the default bind warnings will be generated.

Description

Unless you have speci�ed the -N option without specifying a DBEnvironment name, when
the program being preprocessed already has a stored module, be sure to use the -d option,
or else an error will result. Also, be sure that no one is currently executing the module
when you invoke the preprocessor. To avoid conicts, do your preprocessing in single-user
mode during o�-hours.

Unless the -N option is speci�ed without specifying a DBEnvironment name, the
preprocessor starts a DBE session in the DBEnvironment named in the preprocessor
command by issuing a CONNECT TO 'DBEnvironmentName' statement. If the autostart
ag is OFF, the DBE session can be initiated only after a START DBE statement has been
processed (by means of ISQL or an embedded SQL program). Remember that if multiple,
simultaneous users run a program, you should issue the START DBE statement only once.

If the DBEnvironment to be accessed is operating in single-user mode, preprocessing can
occur only when another DBE session for the DBEnvironment does not exist.

When the preprocessor's DBE session begins, ALLBASE/SQL processes a BEGIN WORK
statement. When preprocessing is completed, the preprocessor submits a COMMIT
WORK statement, and any sections created are committed to the system catalog. If
the preprocessor detects an error in the source �le, it processes a ROLLBACK WORK
statement before terminating, and no sections are stored in the DBEnvironment.
Preprocessor warnings do not prevent sections from being stored.

Since any preprocessor DBE session initiates only one transaction, any log �le space used
by the session is not available for re-use until after the session terminates. You can issue a
CHECKPOINT statement in ISQL before preprocessing to review the amount of available
log space. Refer to the ALLBASE/SQL Database Administration Guide for additional
information on log space management, such as using the START DBE NEWLOG statement
to increase the size of the log �le.

1-4 Using the Preprocessor

During preprocessing, system catalog pages accessed for embedded statements are locked. In
multiuser mode, other DBE sessions accessing the same objects may have to wait, so there
is potential for a deadlock. You have several options to use to attempt to avoid a deadlock
situation.

Minimize competing transactions when preprocessing an application.

Ask your DBA to specify the system tables that utilize row level locking. Refer to
the ALLBASE/SQL Database Administration Guide appendix, \Locks Held on the
System Catalog," and to the section \Changing System Table Lock Types" for further
information.

Use the -n DBEFileSetName preprocessor parameter option to maximize transaction
concurrency. This option speci�es the DBEFileSet in which a module's static sections are
to be stored.

For improved runtime performance, use the UPDATE STATISTICS statement in ISQL
before preprocessing for each table accessed in a data manipulation statement when an
index on that table has been added or dropped and when data in the table is often changed.

If you specify an OwnerName or ModuleName in a language other than n-computer
(ASCII), be sure that the language you are using is also the language of the
DBEnvironment in which the module will be stored.

When you invoke the preprocessor with the -f option, your application must contain an
ANSI mode compiler directive in order for the compiler to detect non-standard statements.
The following table lists the appropriate directive for each language:

Language Directive

C cc -Aa

COBOL cob -C ANS85

FORTRAN $OPTION ANSI ON$

Pascal $standard level 'ANSI'$

If implicit updatability is speci�ed (using the -a option), any column in a select list can be
updated or deleted, so long as the FOR UPDATE clause has not been used in the SELECT
statement de�nition. Refer to the later section, \Understanding Implicit Updatability."

If a DBEFileSet is speci�ed and the module owner does not have authority to store
sections in that DBEFileSet, a warning is given and any sections are stored in the default
DBEFileSet instead.

Authorization

To preprocess a program, you need DBA or CONNECT authority for the DBEnvironment
speci�ed in the preprocessor command line. You also need table and view authorities for the
tables and views which the program will access at run time. To store sections in a speci�ed
DBEFileSet, the module owner must have SECTIONSPACE authority on the DBEFileSet.

DBEnvironment CONNECT authority can be explicitly granted. If you have DBECreator
or DBA authority or module OWNER authority, you have CONNECT authority by default.
SECTIONSPACE authority for other than the default DBEFileSet must be explicitly

Using the Preprocessor 1-5

granted by a DBA. If you have DBA authority, you can issue the GRANT statement for any
DBEFileSet.

Table authorities are implicitly speci�ed at the time the table is created and depend on the
table type (PRIVATE, PUBLICREAD, PUBLIC, or PUBLICROW). Once a table has been
created, its implicit authorities can be changed by the table OWNER, the DBECreator, or
another DBA. Table authorities are removed by using the REVOKE statement and are added
by using the GRANT statement.

For example, for a PUBLIC or a PUBLICROW table, you are implicitly granted authority
for any type of table access when the table is created. For a PUBLICREAD table, you must
have explicitly granted authority for any table access except READ access which is an implicit
grant. For a PRIVATE table, there are no implicit grants at table creation time; only the
table OWNER or a DBA can access a PRIVATE table, unless speci�c authorities are granted
to others.

Note, in the case of the sample database, PartsDBE, the creation script REVOKEs all implicit
table authorities, and desired authorities must be explicitly granted.

Note When preprocessing, you cannot name another user as module owner unless
you are a DBA of the DBEnvironment or you are the current module owner.

1-6 Using the Preprocessor

Example of Full Preprocessing of a C Application

MON, JUL 10, 1991, 4:48 PM

$ psqlc ../sampledb/PartsDBE -o joann -m joannpgm -i prog1.sql -d -r

HP36217-02A.E1.00 C Preprocessor/9000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

0 ERRORS 1 WARNINGS
END OF PREPROCESSING.

$ more sqlmsg

MON, JUL 10, 1991, 4:48 PM

HP36217-02A.E1.00 C Preprocessor/9000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

DBEnvironment = ../sampledb/PartsDBE

Module Name = JOANNPGM

****** SELECT PartNumber, PartName, SalesPrice INTO :PartNumber, :PartName,

:SalesPrice WHERE PartNumber = :PartNumber

****** ALLBASE/SQL warnings. (DBERR 10602) |

****** User joann does not have SELECT authority on PurchDB.Parts

(DBERR 2301)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS

END OF PROCESSING

$

Using the Preprocessor 1-7

DBEnvironment Access in Full Preprocessing Mode

When you invoke the preprocessor in full preprocessing mode, and specify an ALLBASE/SQL
DBEnvironment, the preprocessor starts a DBE session for that DBEnvironment when
preprocessing begins and terminates that session when preprocessing is completed.

$ psqlc DBEnvironment -m ModuleName

-i SourceFileName.sql -p ModifiedSourceFileName.c

When the preprocessor terminates its DBEnvironment session, it issues a COMMIT WORK
statement if it encountered no errors. Created sections are stored in the DBEnvironment and
associated with the module name.

ALLBASE/SQL accesses the speci�ed DBEnvironment during preprocessing, even if your
application does not use SQL statements that store sections in this DBEnvironment.
Therefore, unless you specify the -N option, you must specify the name of a valid
DBEnvironment. Note that a DBEnvironment name is not required by other preprocessing
modes.

Accessing Multiple DBEnvironments in Full Preprocessing Mode

In some cases an ALLBASE/SQL program is used with one or more DBEnvironments in
addition to the DBEnvironment accessed at preprocessing time. In these cases, you can
use ISQL to install the installable module created by the preprocessor into each additional
DBEnvironment accessed by your program.

An alternative method of accessing more than one DBEnvironment from the same
program would be to divide the program into separate compilable �les. Each source �le
would access a DBEnvironment. In each �le, start and terminate a DBE session for the
DBEnvironment accessed. Then preprocess and compile each �le separately. When you invoke
the preprocessor, identify the DBEnvironment accessed by the source �le being preprocessed.
After a �le is preprocessed, it must be compiled so that no linking is performed before the
next source �le is preprocessed. When all source �les have been preprocessed and compiled,
link them together to create an executable program. An example of this technique follows:

$ psqlc DBEnvironment1 -i SourceFileName1.sql -p ModifiedSourceFileName1.c

.

.

$ cc -c ModifiedSourceFileName1.c

.

.

$ psqlc DBEnvironment2 -i SourceFileName2.sql -p ModifiedSourceFileName2.c

.

.

$ cc -c ModifiedSourceFileName2.c

.

.

$ cc ModifiedSourceFileName1.o ModifiedSourceFileName2.o -lsql -lcl -lportnls

-o ExecutableFileName

To preprocess a program, or to use an already preprocessed ALLBASE/SQL application
program, you must satisfy the authorization requirements for each DBEnvironment accessed.

1-8 Using the Preprocessor

Static Conversion Mode

The -D preprocessor command line option provides a means of converting static SQL
statements to dynamic statements with little or no change to existing source code. This is
termed static conversion processing and provides the exibility of running an application with
either static processing or dynamic processing. In addition, an already dynamic application
can be preprocessed without having to specify a DBEnvironment name in the command line.

This functionality is available for C and Pascal applications.

The following sections describe how to implement this feature. Note that additional
information and examples regarding static and dynamic processing are found in the language
speci�c ALLBASE/SQL application programming guides and in later sections in this chapter.

Static Conversion Mode Syntax Specification

Use one of the following statements to both check SQL syntax and create output �les that can
be processed by the compiler. All static SQL statements are converted to dynamic statements.
Dynamic SQL statements remain dynamic. No module is created, and no DBEnvironment is
connected to during preprocessing.

Static Conversion Mode for C Applications

psqlc -D

2
664
-i SourceFileName

-p Modi�edSourceFileName.c

-f FlaggerName

-a

3
775| . . . |

Static Conversion Mode for Pascal Applications

psqlpas -D

2
664
-i SourceFileName

-p Modi�edSourceFileName.p

-f FlaggerName

-a

3
775| . . . |

Parameters

-D indicates that all static SQL statements are to be converted to
dynamic statements, dynamic statements remain dynamic, and a
module is not created.

-i SourceFileName identi�es the name of the input �le containing the source code to
be preprocessed. If a SourceFileName is not speci�ed, a �le by
the name of sqlin is assumed.

-p
Modi�edSourceFileName

identi�es the name for the modi�ed source code �le. If a name
is not speci�ed, the preprocessor generated code is written to a
�le with the same name as SourceFileName but with the �le
extension .c for a C application and .p for a Pascal application.

-f FlaggerName is the name of the agger being invoked. At this release
FIPS127.1 is the only valid FlaggerName. FlaggerName is not
case sensitive.

Using the Preprocessor 1-9

Refer to the \Flagging Non-Standard SQL with the FIPS
Flagger" chapter in this manual.

-a preprocesses the application in ANSI mode. The preprocessor
generates an SQLCA declaration automatically and implicit
updatability is in e�ect.

Refer to the sections \Understanding Implicit Updatability" and
\Declaring the SQLCA" in this manual.

Description

The complete set of ALLBASE/SQL syntax can be preprocessed in static conversion mode
with the following execeptions:

Any DECLARE CURSOR statements must be located in an executable portion of the
code. In the C language, for example, you would declare the cursor within curly brackets
following any data declaration statements within a given block. For Pascal, position the
statement within a BEGIN/END block.

Static host variables in the source code (except for those used in a BULK FETCH or
BULK SELECT statement) are converted to dynamic parameters. Therefore, such static
host variables must adhere to the speci�cations for dynamic parameters. For further
information, refer to the \Using Parameter Substitution in Dynamic Statements" chapter
in this document.

When you invoke the preprocessor with the -f option, your application must contain an
ANSI mode compiler directive in order for the compiler to detect non-standard statements.
The following table lists the appropriate directive for each language:

Language Directive

C cc -Aa

COBOL cob -C ANS85

FORTRAN $OPTION ANSI ON$

Pascal $standard level 'ANSI'$

Authorization

At run time, the owner of any unquali�ed object defaults to the user who is running the
application.

Example of Static Conversion Processing of a C Application

psqlc
NNNNNNNN
-D -i ProgramName.sql

Example of Static Conversion Processing of a Pascal Application

psqlpas
NNNNNNNN
-D -i ProgramName.sql

1-10 Using the Preprocessor

Syntax Checking Mode

In syntax checking mode, the preprocessor checks SQL syntax only. This mode can be useful
as you develop the SQL portions of your applications. Preprocessing is quickest in this mode.
In addition, you can start debugging your SQL statements before the DBEnvironment itself is
in place.

Syntax Checking Mode Syntax Specification

Syntax Checking Mode for C Applications

psqlc -s

2
664
-i SourceFileName

-p Modi�edSourceFileName

-f FlaggerName

-a

3
775| . . . |

Syntax Checking Mode for COBOL Applications

psqlcbl -s

2
664
-i SourceFileName

-p Modi�edSourceFileName

-f FlaggerName

-a

3
775| . . . |

Syntax Checking Mode for FORTRAN Applications

psqlfor -s

2
664
-i SourceFileName

-p Modi�edSourceFileName

-f FlaggerName

-a

3
775| . . . |

Syntax Checking Mode for Pascal Applications

psqlpas -s

2
664
-i SourceFileName

-p Modi�edSourceFileName

-f FlaggerName

-a

3
775| . . . |

Using the Preprocessor 1-11

Parameters

-s causes the preprocessor to only check SQL syntax.

-i SourceFileName identi�es the name of the input �le containing the source code to
be preprocessed. If a SourceFileName is not speci�ed, a �le by
the name of sqlin is assumed.

-p
Modi�edSourceFileName

identi�es the name for the modi�ed source code �le. If a name is
not speci�ed, the preprocessor generated code is written to a �le
with the same name as SourceFileName with an appended su�x.

-f FlaggerName is the name of the agger being invoked. At this release
FIPS127.1 is the only valid FlaggerName. FlaggerName is not
case sensitive.

Refer to the \Flagging Non-Standard SQL with the FIPS
Flagger" chapter in this manual.

-a preprocesses the application in ANSI mode. The preprocessor
generates an SQLCA declaration automatically and implicit
updatability is in e�ect.

Refer to the sections \Understanding Implicit Updatability" and
\Declaring the SQLCA" in this manual.

Description

The preprocessor does not access a DBEnvironment when it is run in this mode.

When performing syntax only checking, the preprocessor does not convert embedded
SQL statements into constructs for the programming language being used. Therefore the
modi�ed source code �le does not contain preprocessor generated calls to ALLBASE/SQL
external procedures.

The include and installable module �les are created, but are incomplete.

When you invoke the preprocessor with the -f option, your application must contain an
ANSI mode compiler directive in order for the compiler to detect non-standard statements.
The following table lists the appropriate directive for each language:

Language Directive

C cc -Aa

COBOL cob -C ANS85

FORTRAN $OPTION ANSI ON$

Pascal $standard level 'ANSI'$

1-12 Using the Preprocessor

Authorization

You do not need ALLBASE/SQL authorization when you use the preprocessor to only check
SQL syntax.

Example of Syntax Checking of a C Application

$ psqlc {{-s}} -i mysource

MON, JUL 10, 1991, 4:48 PM

HP36217-02A.E1.00 C Preprocessor/9000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

$ more sqlmsg

MON, JUL 10, 1991, 4:48 PM

HP36217-02A.E1.00 C Preprocessor/9000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

SELCT PartNumber, PartName, SalesPrice

INTO :PartNumber, :PartName :PartNameInd,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

****** ALLBASE/SQL errors. (DBERR 10977)

****** in SQL statement ending in line 128

*** <1001> Syntax error. (DBERR 1001)

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING

The line 128 referenced in sqlmsg is the line in

mysource where the erroneous SQL statement ends.

Using the Preprocessor 1-13

2

Flagging Non-Standard SQL with the FIPS Flagger

The United States government has adopted ANSI X3.135-1989, Database Language SQL,
as the database language to be used by all federal departments and agencies. This SQL
standard, known as Federal Information Processing Standard 127.1 (FIPS 127.1), requires
that all syntax and processing that does not conform to the standard be agged. In general,
agging provides a means of identifying SQL elements that may have to be modi�ed if
an application is to be moved from a nonconforming to a conforming SQL processing
environment. And it aids in writing code that is portable between various SQL databases
(such as tools code).

ALLBASE/SQL provides a FIPS agger option for use when preprocessing. Refer to the
appropriate preprocessing mode, presented earlier in this chapter, for FIPS agger syntax.
This section documents non-conformant features speci�c to embedded SQL programming.
In addition, the \Standards Flagging Support" appendix in the ALLBASE/SQL Reference
Manual lists non-conformant syntax and features, and the ALLBASE/ISQL Reference Manual
discusses setting the FIPS agger in ISQL. The following topics are presented here:

Coding Tips
Setting the ANSI Compiler Directive
Identifying Non-Standard Features
Understanding Implicit Updatability
Declaring the SQLCA
Secondary References to Non-Standard SQL
Host Variable Data Type Declarations
Host Variable Name Length Standards

Coding Tips

It is highly recommended that you �rst preprocess an application without setting the agger
until no ALLBASE/SQL errors are detected. Then preprocess using the agger to determine
if there are non-standard extensions in your code.

Note that for static statements, agger warnings are detected and generated at preprocessing
time. Whereas, warnings for dynamic statements are detected at preprocessing time and
generated at run time.

Flagging Non-Standard SQL with the FIPS Flagger 2-1

Setting the ANSI Compiler Directive

When you invoke the preprocessor with the -f option, your application must contain an ANSI
mode compiler directive in order for the compiler to detect non-standard statements. The
following table lists the appropriate directive for each language:

Table 2-1. ANSI Compiler Directives for Flagging Non-Standard Syntax

Language Directive

C cc -Aa

COBOL cob -C ANS85

FORTRAN $OPTION ANSI ON$

Pascal $standard level 'ANSI'$

Identifying Non-Standard Features

The following table lists ALLBASE/SQL features that do not conform to the FIPS 127.1
standard. These features do not generate a agger warning.

Table 2-2. ALLBASE/SQL Non-Standard Programming Features

Feature Description

updatablility processing Refer to the following section, \Understanding Implicit Updatability."

SQLCA declaration Refer to the following section, \Declaring the SQLCA."

host language comments ALLBASE/SQL allows host language comments within an SQL
statement. The standard allows only SQL comments.

$SQL COPY compiler
directive

ALLBASE/SQL supports the COBOL COPY statement. Refer to the
ALLBASE/SQL COBOL Application Programming Guide for usage
details.

SQLCODE in FORTRAN The standard requires a variable declaration for SQLCOD, and
ALLBASE/SQL supports the standard.

SQLIND This host variable type is not standards compliant. The standard
requires that an indicator variable be declared as any exact numeric
data type of scale zero, and ALLBASE/SQL supports the standard
with the exception of BULK processing.

2-2 Flagging Non-Standard SQL with the FIPS Flagger

Understanding Implicit Updatability

The FIPS 127.1 standard does not allow a FOR UPDATE clause in a DECLARE CURSOR
statement. In this standard, updatability of a cursor rests solely on the cursor de�nition. In
contrast, ALLBASE/SQL default processing (i.e., agging is not in e�ect) of a DECLARE
CURSOR statement having no FOR UPDATE clause is to allow neither update nor delete on
any column in the cursor de�nition.

When the FIPS agger is set and a FOR UPDATE clause is not speci�ed, standard
updatability processing takes e�ect. That is, any column in the cursor's select list can be
updated or deleted. This is known as implicit updatability. When implicit updatability is
in e�ect, a performance impact may be realized as compared to ALLBASE/SQL default
processing, as follows:

An index scan can only be applied to an EQUAL predicate containing an index column. An
index scan is suppressed for a predicate containing a range factor.

More severe locks (intent update) are required. Therefore, if the cursor is to be used only
for reading data, unnecessary locking overhead my be incurred. To alleviate this type of
overhead, a FOR READ ONLY clause can be used when declaring the cursor.

Note that when the FIPS agger is set and a FOR UPDATE clause is used in the cursor
de�nition, a warning message is generated, and ALLBASE/SQL default processing overrides
the semantics of the standard.

Declaring the SQLCA

ALLBASE/SQL default processing requires the SQLCA to be declared within an embedded
program. However, FIPS 127.1 does not. Therefore, when the agger is set, the preprocessor
generates the SQLCA declaration. In this case, if the SQLCA is already declared, as would be
the case in a non-agger environment, a processing error results.

Secondary References to Non-Standard SQL

In certain circumstances(paragraph 9c of FIPS 127.1) you may choose to use a nonstandard
language extension (e.g. a COMPLEX data type for a FORTRAN application). It is required
that the agger detect all direct occurrences of such extensions. However, there is no
requirement to detect secondary references to a non-standard extension. Secondary references
may include variables, parameters, views, or other database identi�ers that do not themselves
violate syntax rules, but refer to an object that is non-standard or contain a non-standard
extension. ALLBASE/SQL does not ag references to non-standard objects. For example, in
the following statement, the use of View1.v1 in another SQL statement would be a secondary
reference to the non-standard object View1 which contains the extension COUNT(*).

CREATE VIEW View1(v1) AS SELECT COUNT(*) FROM Table1;

Flagging Non-Standard SQL with the FIPS Flagger 2-3

Host Variable Data Type Declarations

The following tables list valid ALLBASE/SQL host variable data types for each supported
language. FIPS 127.1 standards compliant data types are indicated with a YES.
ALLBASE/SQL extensions to the standard are indicated with a NO.

Table 2-3. ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for C

ALLBASE/SQL DATA TYPES FIPS 127.1
Compliant?

C DATA DECLARATIONS

CHAR(1) NO char dataname;

CHAR(n) YES char dataname[n+1];

VARCHAR(n) NO char dataname[n+1]; *

SMALLINT YES short dataname; or

NO short int dataname;

INTEGER NO int dataname; or

NO long int dataname; or

YES long dataname;

REAL YES float dataname;

FLOAT(1..24) NO float dataname;

FLOAT(25..53) NO double dataname;

DOUBLE PRECISION YES double dataname;

BINARY NO sqlbinary dataname;

NO sqlbinary dataname[n];

VARBINARY NO sqlvarbinary dataname[m]; **

DECIMAL NO double dataname;

DATE NO char dataname[11];

TIME NO char dataname[9];

DATETIME NO char dataname[24];

INTERVAL NO char dataname[21];

* This declaration is for non-dynamic statements only. Refer to the chapter, \Using Dynamic Operations," in the
ALLBASE/SQL C Application Programming Guide for a description of how to use VARCHAR dynamically.
** See the \BINARY Data" section in the ALLBASE/SQL C Application Programming Guide for the calculation of
m.

2-4 Flagging Non-Standard SQL with the FIPS Flagger

Table 2-4.

ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for COBOL

SQL DATA TYPES FIPS 127.1
Compliant?

COBOL DATA DESCRIPTION ENTRIES

CHAR(n) YES 01 DATA-NAME PIC X(n).

VARCHAR(n) NO 01 GROUP-NAME .
49 LENGTH-NAME PIC S9(9) COMP.

49 VALUE-NAME PIC X(n).

BINARY NO 01 DATA-NAME PIC X(n).

VARBINARY(n) NO 01 GROUP-NAME .
49 LENGTH-NAME PIC S9(9) COMP.

49 VALUE-NAME PIC X(n).

SMALLINT NO 01 DATA-NAME PIC S9(4) COMP.

INTEGER YES 01 DATA-NAME PIC S9(9) COMP.

FLOAT NO 01 DATA-NAME PIC S9(p-s)V9(s) COMP-3.

DECIMAL(p,s) NO 01 DATA-NAME PIC S9(p-s)V9(s) COMP-3. or

YES 01 DATA-NAME PIC S9(p-s)V9(s) [USAGE IS]

DISPLAY [SIGN IS] LEADING SEPARATE [CHARACTER].

DATE NO 01 DATA-NAME PIC X(10). *

TIME NO 01 DATA-NAME PIC X(8). *

DATETIME NO 01 DATA-NAME PIC X(23). *

INTERVAL NO 01 DATA-NAME PIC X(20). *

* Applies to default format speci�cation only.

Flagging Non-Standard SQL with the FIPS Flagger 2-5

Table 2-5.

ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for FORTRAN

SQL DATA TYPES FIPS 127.1
Compliant?

FORTRAN DATA DECLARATIONS

CHAR(1) NO CHARACTER DataName

CHAR(n) YES CHARACTER*n DataName

VARCHAR(n) NO CHARACTER*n DataName *

SMALLINT NO INTEGER*2 DataName

INTEGER YES INTEGER DataName

REAL YES REAL DataName or

NO REAL*4 DataName

FLOAT(1..24) NO REAL DataName or

NO REAL*4 DataName

FLOAT(1..53) NO DOUBLE PRECISION DataName or

NO REAL*8 DataName

DOUBLE PRECISION YES DOUBLE PRECISION DataName or

NO REAL*8 DataName

BINARY NO CHARACTER DataName or

NO CHARACTER*n DataName

VARBINARY NO CHARACTER*n DataName

DECIMAL NO DOUBLE PRECISION DataName or

NO REAL*8 DataName

DATE NO CHARACTER*10 DataName

TIME NO CHARACTER*8 DataName

DATETIME NO CHARACTER*23 DataName

INTERVAL NO CHARACTER*20 DataName

* This declaration is for non-dynamic statements only.

2-6 Flagging Non-Standard SQL with the FIPS Flagger

Table 2-6.

ALLBASE/SQL FIPS 127.1 Compliant Data Type Declarations for Pascal

SQL DATA TYPES FIPS 127.1
Compliant?

PASCAL TYPE DESCRIPTION

CHAR(1) NO DataName : char;

CHAR(n) NO DataName : array [1..n] of char; or

YES DataName : packed array [1..n] of char;

VARCHAR(n) NO DataName : string[n];

BINARY(1) NO DataName : char;

BINARY(n) NO DataName : array [1..n] of char;or

NO DataName : packed array [1..n] of char;

VARBINARY(n) NO DataName : string[n];

SMALLINT NO DataName : smallint;

INTEGER YES DataName : integer;

REAL YES DataName : real;

FLOAT NO DataName : longreal;

DECIMAL NO DataName : longreal;

DATE NO DataName : packed array[1..10] of char; *

TIME NO DataName : packed array[1..8] of char; *

DATETIME NO DataName : packed array[1..23] of char; *

INTERVAL NO DataName : packed array[1..20] of char; *

* Applies to default format speci�cation only.

Flagging Non-Standard SQL with the FIPS Flagger 2-7

Host Variable Name Length Standards

The following table lists the standards compliant length for a host variable name in each
supported language and the maximum ALLBASE/SQL limit.

Table 2-7. FIPS 127.1 Compliant Host Variable Name Lengths

Language FIPS 127.1
Allowed Byte Length

ALLBASE/SQL
Maximum Bytes

C 31 to in�nity 20

COBOL 1 to 30 20

FORTRAN 1 to 32 20

Pascal compiler limit: implementor
de�ned

20

2-8 Flagging Non-Standard SQL with the FIPS Flagger

3

Comparing Static and Dynamic SQL

An ALLBASE/SQL application can contain both static and dynamic SQL statements. A
static statement involves the preparation and storing of a section at preprocessing time
and the execution of that stored section at run time. A dynamic statement involves the
preparation and execution of a section at runtime. Some statements do not require a section,
and they are also classi�ed as dynamic.

Each type of statement has advantages and disadvantages as listed below:

A static statement performs more e�ciently than the equivalent dynamic statement.

In order to execute a static statement, a program module (containing a stored section for
the statement) must be installed in each DBEnvironment in which the statement is to run.
A dynamically preprocessed statement is portable and can be run in any DBEnvironment
without installing a program module.

Dynamic statements may be more complex to code than are static statements.

Note that all objects referenced by a statement, whether it is static or dynamic, must be
present in the DBEnvironment in which the application is running.

The following are dynamic statements:

PREPARE
DECLARE CURSOR when used with a CommandName
DESCRIBE
EXECUTE
EXECUTE IMMEDIATE
FETCH when used with the USING keyword
any statement that does not require a stored section for execution

Any statement that is not coded as a parameter of one of the above statements and requires a
stored section in order to execute is a static statement.

Comparing Static and Dynamic SQL 3-1

Comparing Static and Dynamic Applications

A static application is one that is preprocessed in full preprocessing mode and contains at
least one static SQL statement. This means that a module is generated at preprocessing time,
and this module must be installed in any DBEnvironment in which the application is running.

An application containing only dynamic SQL statements is termed a dynamic application.
Such an application does not require a module. It can be preprocessed in either full
preprocessing mode or in static conversion mode.

Suppose you are coding a user interface to the PurchDB.Parts database. While there is only
one way of creating a static application, there are two ways of creating a dynamic application.
They are as follows:

1. At coding time, by embedding only dynamic statements (as de�ned in the previous
section), you are assured of a dynamic application. Such an application can be
preprocessed in either full preprocessing mode or static conversion mode. With static
conversion mode, a DBEnvironment name need not be speci�ed on the command line.

2. At preprocessing time, by choosing static conversion mode, your resulting application is
dynamic. If your source code contains static statements, they are converted to dynamic
ones. Any dynamic statements are unchanged and remain dynamic.

Coding an Application that can be Either Static or Dynamic

Suppose you are coding a user interface to the PurchDB.Parts database. You know at coding
time that you want the user to have the option of selecting information from each table in the
database environment. You also know the exact format of each select statement. In addition,
you want the user to be able to enter an ad hoc query, one that meets their particular needs
at run time, for any of the tables in the database. The displayed menu might look something
like the following:

Menu to Select Parts Information

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. PARTS 3. ORDERS 5. VENDORS 7. REPORTS

2. INVENTORY 4. ORDER ITEMS 6. SUPPLY PRICE 8. AD HOC QUERY

You could code seven static SELECT statements and a dynamic select statement (for the ad
hoc query). Depending on your requirements, you could preprocess this application in full
preprocessing mode or static conversion mode. Full preprocessing could enhance performance
when users most often choose one of the static SELECT statements. Static conversion
processing would result in a portable application, ideal for use in a distributed database
environment.

3-2 Comparing Static and Dynamic SQL



Converting a Static Application to a Dynamic Application

There are two ways of converting a static application to a dynamic application. One
method is to change the source code to contain the required dynamic SQL statements. (The
ALLBASE/SQL application programming guides provide complete information about coding
with dynamic SQL statements.) The second method is to preprocess the application using
static conversion mode. The following paragraphs discuss use of the second method with an
application originally designed to use full preprocessing mode.

By choosing the -D option at preprocessing time, you avoid having to make major changes to
your existing source code. You also maintain the exibility of preprocessing the source code to
be either static or dynamic simply by changing the preprocessor command line options.

Unlike other preprocessing modes in which any DECLARE CURSOR statements are
commented out, static preprocessing mode converts DECLARE CURSOR statements
to executable code. Therefore, if your existing code contains such a statement in a
non-executable portion of the code, you must move the statement to an executable portion of
the application. In the C language, for example, you would declare the cursor within curly
brackets following any data declaration statements within a given block. For Pascal, position
the statement within a BEGIN/END block.

Another consideration is that host variables used in static statements (except for BULK
FETCH and BULK SELECT statements) must adhere to the restrictions for dynamic
parameters. See the chapter in this document titled \Using Parameter Substitution in
Dynamic Statements" for further details.

Enhancing Performance

By default, ALLBASE/SQL does authorization checks on a dynamic query each time it is
executed. By setting the authorize once per session ag to ON, you insure that authorization
checks on dynamic queries are performed only the �rst time the query is executed during a
given user session.

You can set this ag by means of the SQLUtil ALTDBE command described in the
ALLBASE/SQL Database Administration Guide.

Comparing Static and Dynamic SQL 3-3





4

Using Parameter Substitution in Dynamic Statements

When your application uses dynamic processing, parameter substitution o�ers added exibility
and improved performance. Although you can use this technique in any dynamic processing
application involving prepared sections, it could be most useful for applications where
the same SQL statement type must be re-executed multiple times using a di�erent set of
parameter values each time.

A statement containing dynamic parameters must be dynamically preprocessed at run time
by using the PREPARE statement. The dynamic section created can then be executed as
many times as required within a given transaction with the option of assigning a di�erent set
of dynamic parameter values for each execution and without the overhead of preprocessing
each time input values change.

The following paragraphs de�ne dynamic parameters, discuss implementation methods, and
provide examples. Topics include:

Understanding Dynamic Parameters.
Where to Use Dynamic Parameters.
Programming with Dynamic Parameters.
Using Default Data Types with Dynamic Parameters.

Understanding Dynamic Parameters

A dynamic parameter has the following characteristics:

It is an input value to the database or an input or output parameter to or from a procedure.
It is speci�ed as a question mark within a string in a prepared statement in your
application.
Its datatype is determined based on its use in the prepared statement.
You assign its value at run time via a host variable or a data bu�er array.
It is replaced by its assigned value when the OPEN or EXECUTE statement executes.

For example, the following statement specifying two dynamic parameters could be put into a
string in your program:

UPDATE PurchDB.Parts SET SalesPrice = ? WHERE PartNumber = ?

The string itself can be used as a parameter of the PREPARE statement, or it can be
assigned to a host variable that is a parameter of the PREPARE statement, as shown in the
following sections.

Using Parameter Substitution in Dynamic Statements 4-1



Examples in C of Preparing a Statement with Dynamic Parameters

The following example uses a string as a parameter of the PREPARE statement:

EXEC SQL PREPARE CMD1 FROM 'INSERT INTO PurchDB.Parts (PartNumber,PartName)

VALUES (?,?);';

In the following example, a host variable is used:

In the declare section, declare a character array host variable large enough

to hold the string plus one byte for a delimiting ASCII 0:

EXEC SQL BEGIN DECLARE SECTION;
...

char DynamicCmdLine[81];
...

EXEC SQL END DECLARE SECTION;
...

Assign the string to the host variable:

strcpy(DynamicCmdLine,"INSERT INTO PurchDB.Parts (PartNumber, PartName)");

strcpy(tmpstr, " VALUES (?,?);");

strcat(DynamicCmdLine,tmpstr);

Prepare the statement:

EXEC SQL PREPARE CMD1 FROM :DynamicCmdLine;

Examples in COBOL of Preparing a Statement with Dynamic Parameters

The following example uses a string as a parameter of the PREPARE statement:

EXEC SQL PREPARE CMD1 FROM "INSERT INTO PurchDB.Parts (PartNumbe

- r, PartName") VALUES (?,?);"

END-EXEC.

In the following example, a host variable is used:

In the declare section, declare a host variable large enough to hold the string:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
...

01 DYNAMICCMD PIC X(80).
...

EXEC SQL END DECLARE SECTION END-EXEC.
...

Assign the string to the host variable:

MOVE "INSERT INTO PurchDB.Parts (PartNumber, PartName)" TO TEMP1.

MOVE " VALUES (?,?);" TO TEMP2.

4-2 Using Parameter Substitution in Dynamic Statements



STRING TEMP1 DELIMITED BY SIZE

TEMP2 DELIMITED BY SIZE

INTO DYNAMICCMD.

Prepare the statement:

EXEC SQL PREPARE CMD1 FROM :DYNAMICCMD END-EXEC.

Examples in FORTRAN of Preparing a Statement with Dynamic Parameters

The following example uses a string as a parameter of the PREPARE statement:

EXEC SQL PREPARE CMD1 FROM 'INSERT INTO PurchDB.Parts

1 (PartNumber,PartName) VALUES (?,?);'

In the following example, a host variable is used:

In the declare section, declare a host variable large enough to hold the string:

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 DynamicCommand

EXEC SQL END DECLARE SECTION
...

Assign the string to the host variable:

DynamicCommand = 'INSERT INTO PurchDB.Parts (PartNumber,PartName)

1 VALUES (?,?)'

Prepare the statement:

EXEC SQL PREPARE CMD1 FROM :DynamicCommand

Examples in Pascal of Preparing a Statement with Dynamic Parameters

The following example uses a string as a parameter of the PREPARE statement:

EXEC SQL PREPARE CMD FROM 'INSERT INTO PurchDB.Parts (PartNumber,PartName)

VALUES (?,?);';

Using Parameter Substitution in Dynamic Statements 4-3



In the following example, a host variable is used:

In the declare section, declare a host variable large enough to hold the string:

EXEC SQL BEGIN DECLARE SECTION;
...

DynamicCmdLine:string[80];
...

EXEC SQL END DECLARE SECTION;
...

Assign the string to the host variable:

DynamicCmdLine := 'INSERT INTO PurchDB.Parts (PartNumber, PartName)'+

' VALUES (?,?);';

Prepare the statement:

EXEC SQL PREPARE CMD1 FROM :DynamicCmdLine;

Where to Use Dynamic Parameters

Use a dynamic parameter as you would a constant in an expression in the DML operations
listed below:

Table 4-1. Where to Use Dynamic Parameters

DML Operation Clause

INSERT VALUES

WHERE, HAVING 1

BULK INSERT VALUES

UPDATE SET

WHERE

DELETE WHERE

SELECT WHERE, HAVING

EXECUTE INPUT, OUTPUT

1 In the case of an INSERT statement, dynamic parameters can be used in the WHERE or HAVING clause of a Type 2
INSERT.

See the ALLBASE/SQL Reference Manual chapter, \Expressions," for more information
regarding constants in expressions.

4-4 Using Parameter Substitution in Dynamic Statements



Restrictions

The examples below are shown to clarify the conditions under which dynamic parameters
cannot be used. The following locations are not valid:

In any select list.

In any statement that is not dynamically preprocessed with the PREPARE statement.

As both operands of a single, arithmetic operator or comparison operator. The following
example is not valid:

SELECT * FROM PurchDB.Parts

WHERE SalesPrice > (? * ?)

As the operand of a minus sign or a null predicate. The following examples are not valid:

INSERT INTO PurchDB.OrderItems VALUES (-?,?,?)

UPDATE PurchDB.Parts

SET SalesPrice = ?

WHERE ItemNo = ?

OR (ItemNo IS NULL AND ? IS NULL)

As the entire argument of an aggregate function. The following example is not valid:

SELECT * FROM PurchDB.Orders

GROUP BY PartNumber

HAVING MAX(?) > 543

As the parameter of a NULL predicate. For example, the following is not valid:

SELECT * FROM PurchDB.Parts

WHERE ItemNo = ?

OR (ItemNo IS NULL AND ? IS NULL)

As both the �rst and second expressions of a BETWEEN predicate. The following example
is not valid:

SELECT * FROM PurchDB.Orders

WHERE ? BETWEEN ? AND 100

As both the expression and the �rst parameter of an IN predicate. The following example is
not valid:

SELECT * FROM PurchDB.Orders

WHERE ? IN (?, 4000, 5000, 6000)

Using Parameter Substitution in Dynamic Statements 4-5



Programming with Dynamic Parameters

Depending on the purpose of your application, there is a broad spectrum of scenarios in which
dynamic parameters could be useful. You might know almost all the elements of a statement
at coding time, including the statement type and what dynamic parameters are required. At
the opposite extreme, a program might be required to handle a completely unknown SQL
statement containing dynamic parameters. Generally speaking, the less you know about a
dynamic statement at coding time, the more coding you must do to verify the statement's
content at run time.

The two basic methods of assigning dynamic parameter values involve use of either host
variables or ALLBASE/SQL data structures and a data bu�er. To use host variables, you
must at least know the exact format of your SQL statement, although you need not know the
speci�c data values of dynamic parameters. To use data structures and a data bu�er, you do
not need to know the exact format of your SQL statement.

Table 4-2. Dynamic Parameter Functionality by Programming Language

Language Dynamic Parameter
Data Assignment
via Host Variables

Dynamic Parameter
Data Assignment
via a Data Bu�er

Dynamic Parameters
in a BULK INSERT

Statement

C yes yes yes

COBOL yes no yes (with host variables)

FORTRAN yes no no

Pascal yes yes yes

Host variables are available for C, COBOL, FORTRAN, and Pascal applications. Data bu�ers
are available for C and Pascal applications only. In addition, dynamic parameters within
a BULK INSERT statement require special syntax and are discussed separately. BULK
INSERT functionality is available for C, COBOL, and Pascal applications. The following
subsections discuss each basic coding method:

Using Host Variables to Process Dynamic Parameters.
Using Data Structures and a Data Bu�er to Process Dynamic Parameters
Using a BULK INSERT Statement with Dynamic Parameters.

Using Host Variables to Process Dynamic Parameters

When you know at coding time the data type and format of each dynamic parameter in a
dynamic statement, you have the choice of using either a host variable or a data bu�er to
provide dynamic parameter input at run time. This section details the use of host variables
with non-bulk statements. (The next section discusses the data bu�er technique.) The
functionality described in this section is available for C, COBOL, FORTRAN, and Pascal
programs.

Suppose you are coding an interactive user application. It involves mapping a user's menu
choice to a partially known statement, then prompting for and accepting dynamic parameter
values for data whose format is known at coding time. The following pseudocode illustrates
this scenario.

4-6 Using Parameter Substitution in Dynamic Statements



...

Accept a variable indicating which of a set of statements the user has chosen.

Prepare the dynamic command for this statement:

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PREPARE CMD FROM 'UPDATE PurchDB.Parts SET SalesPrice = ? WHERE PartNumber = ?;'

Prompt the user for values for the SalesPrice and PartNumber columns.

Execute the dynamic command using host variables to provide dynamic parameter

values:

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXECUTE CMD USING :SalesPrice, :PartNumber;

You could now loop back to prompt the user for additional values for SalesPrice

and PartNumber. Note that the dynamic command does not have to be prepared again.

Using Data Structures and a Data Buffer to Process Dynamic Parameters

If at coding time you don't know the data types of all dynamic parameters in the prepared
statement, you must use two ALLBASE/SQL data structures and a data bu�er to obtain the
default data types and pass dynamic parameter input to the database. These data structures
are the same as those used for dynamic output processing:

sqlda type data structure.
sqlfmts type data structure.
data bu�er.

The following discussion points out how to use these structures for input data. Here the
term input data means dynamic parameter data, and output data means select list data.
When a prepared statement is described for both input and output data, you must de�ne one
set of data structures for input data and another set for output data. Refer to the chapter
\Using Dynamic Operations" in the ALLBASE/SQL C Application Programming Guide or
the ALLBASE/SQL Pascal Application Programming Guide for a detailed description and
example of how to use dynamic data structures for output.

Using the SQLDA for Input

To use an SQLDA structure for input, you prepare the dynamic command, then use the
INPUT option with the DESCRIBE statement:

DESCRIBE INPUT DynamicCommand INTO SQLDA

In place of SQLDA, you could name any data structure of type sqlda type.

When the DESCRIBE statement executes, whether for input data or output data, the values
in a given format array must be consistent with the values in its related data bu�er. Refer to
Table 4-6 and Table 4-7 for a detailed description of the format array.

Using Parameter Substitution in Dynamic Statements 4-7



One di�erence between the use of the SQLDA for input data versus output data involves
the Sqln and Sqld �elds. Sqln is set by your program prior to issuing the DESCRIBE
statement and represents the maximum number of 48 byte format array records allowed by
the program. When using the DESCRIBE OUTPUT speci�cation, you tell ALLBASE/SQL
to load each format record with information for each select list item in the currently prepared
statement (if it is a query). Using the DESCRIBE INPUT speci�cation indicates that you
want ALLBASE/SQL to load each format array record with information for each dynamic
parameter in the currently prepared statement. Therefore, following execution of the
DESCRIBE statement, Sqld represents either the number of select list items output or the
number of dynamic parameters input.

When you describe dynamic parameters for input, the Sqlindlen �eld in the format array
always equals two, even if it relates to a table column that does not allow nulls. Therefore,
you must allow two bytes for this �eld in the corresponding input data bu�er. By contrast,
when you describe output for a column that was de�ned as not null, the Sqlindlen �eld is
set to 0 to indicate no bytes are allocated in the corresponding data bu�er for information
relating to null values.

Caution ALLBASE/SQL reads the data bu�er based on its related format array. When
you have described input, be sure the data you load into the data bu�er
corresponds to the information in its related format array.

Note that for both input data and output data you must byte align the data in the data
bu�er. Data alignment for the series 300 and 400 di�ers from that of other systems as shown
in table Table 4-3.

Refer to the \Using Dynamic Operations" chapters in the ALLBASE/SQL C Application
Programming Guide and the ALLBASE/SQL Pascal Application Programming Guide for
further information on byte alignment in the data bu�er.

Using the Data Buffer for Input

When you are describing data for input, it is your program's responsibility to load the data
bu�er with input values for each dynamic parameter based on information in the related
format array. (This is unlike describing data for output, where ALLBASE/SQL loads the
speci�ed data bu�er when data is fetched.) Following is a list of possible coding steps:

1. De�ne any host variables to be used to pass a command string to ALLBASE/SQL via the
PREPARE and DESCRIBE statements.

2. De�ne any necessary sqlda type structures (also called descriptor areas) for holding
information about a given command string. Sqlda type structures are used to
communicate information regarding a speci�c SQL statement between this program and
the database to which it is connected. Information is transferred when the DESCRIBE
statement executes and when the FETCH statement executes.

Remember that the INCLUDE SQLDA statement generates one sqlda type data structure
named sqlda. So, if you need more than one such structure, you must code a declaration
for each.

4-8 Using Parameter Substitution in Dynamic Statements



If you know nothing about an SQL statement until run time, de�ne an sqlda type
structure for output to determine if the statement is a query or not. If it is a query,
ALLBASE/SQL loads the related sqlformat type structure with the format of the query
result (one 48 byte element per select list item). You must also de�ne an sqlda type
structure for input in case the statement contains dynamic parameters. In this case,
ALLBASE/SQL loads the related sqlformat type structure with the format of the
dynamic parameters (one 48 byte element per dynamic parameter).

3. De�ne an sqlformat type structure (also called a format array) for each required data
bu�er.

Information is transferred to the format array when the DESCRIBE statement executes.

4. De�ne any necessary data bu�ers.

Each data bu�er must correspond to an sqlda type structure and an sqlformat type
structure.

If the statement is a query, your program needs a data bu�er to hold the query results
generated by the FETCH statement. If the statement contains dynamic parameters, your
program needs a data bu�er into which it loads the values of those dynamic parameters.
The dynamic parameter values are transmitted to the database by means of an OPEN or
an EXECUTE statement.

5. Use the PREPARE statement to preprocess the dynamic statement.

6. Set the appropriate sqlda type �elds. See Table 4-4 and Table 4-5.

Remember, when you describe input for a non-bulk statement (a statement that processes
just one row), sqlnrow must always be equal to one prior to issuing the OPEN or
EXECUTE statement.

7. Use the DESCRIBE statement (with the optional OUTPUT speci�cation) to determine
the statement type and its format if it is a query. Information goes to the speci�ed
sqlda type and sqlformat type data structures.

You must use DESCRIBE OUTPUT if, at coding time, the composition of your prepared
statement is completely unknown or if you know it is a query but you do not know its
exact format and content.

8. Use the DESCRIBE statement with the INPUT speci�cation to determine the number
of dynamic parameters in the prepared statement and the default data type and
format of each. Your application obtains this information via the speci�ed sqlda type
and sqlformat type data structures. (The \Using Default Data Types with Dynamic
Parameters" section later in this chapter contains detailed information about default data
types and default data formats for dynamic parameters.)

9. Load the input data bu�er with dynamic parameter values based on information provided
by the DESCRIBE INPUT statement.

10. If the prepared statement is a query, use a DECLARE statement to associate it with a
cursor.

Use an OPEN statement to put qualifying rows of the query into the data bu�er you have
de�ned for output. Specify the USING DESCRIPTOR clause of the OPEN statement to
pass in dynamic parameter values.

In a loop, use a FETCH USING DESCRIPTOR statement to process each row.

Using Parameter Substitution in Dynamic Statements 4-9



11. Close the cursor and commit work.

12. If the prepared statement is not a query, use the EXECUTE statement with the USING
clause to pass in dynamic parameter values.

Table 4-3. ALLBASE/SQL Data Type Byte Alignment

Format Array
sqltype Field

Data Type Series 700 and 800
Byte Alignment

Series 300 and 400
Byte Alignment

0 INTEGER 4 2

0 SMALLINT 2 2

1 BINARY 1 1

2 CHAR 1 1

3 VARCHAR 4 2

4 DOUBLE PRECISION 8 2

4 FLOAT (4 bytes) 4 2

4 FLOAT (8 bytes) 8 2

4 REAL 4 2

5 DECIMAL 4 2

5 NUMERIC 4 2

6 TID 4 2

10 DATE 1 1

11 TIME 1 1

12 DATETIME 1 1

13 INTERVAL 1 1

14 VARBINARY 4 2

15 LONG BINARY 1 1

16 LONG VARBINARY 1 1

4-10 Using Parameter Substitution in Dynamic Statements



Table 4-4. Setting SQLDA Fields for Output and for Input in C

Field

Name

Field

Description

C

Data
Type

You Set

Before
DESCRIBE

or AD-
VANCE

You Set

Before
OPEN or

EXECUTE
USING

INPUT

You Set

Before
FETCH or

EXECUTE
USING

OUTPUT

ALLBASE/

SQL
Sets at

DESCRIBE
or AD-

VANCE

ALLBASE/

SQL Sets
at FETCH

or
EXECUTE

USING
OUTPUT

sqldaid reserved char[8]

sqlmproc number of multiple
row result sets inside a
procedure

short IOR

sqloparm number of output
dynamic parameters in
a dynamically
prepared EXECUTE
PROCEDURE
statement

short O

sqln number of format
array elements (for
output, one record per
select list item to a
maximum of 1024; for
input, one record per
dynamic parameter to
a maximum of 255)

int IOR

sqld for output, number of
columns in query
result (0 if non-query
or EXECUTE
PROCEDURE); for
input, number of
input dynamic
parameters in the
prepared statement

int IOR

sqlfmtarr address of format
array

int IOR IOR 2

sqlnrow number of rows in the
data bu�er 1

int I1 O1

sqlrrow number of rows put
into the data bu�er

int O

sqlrowlen number of bytes in
each row

int IOR

sqlbuen number of bytes in the
data bu�er

int I O

sqlrowbuf address of data bu�er int I O

Using Parameter Substitution in Dynamic Statements 4-11



I Used for input.

O Used for output.

R Used for DESCRIBE RESULT and ADVANCE.

1 When you describe for output, use sqlnrow to specify the number of rows to fetch into the data bu�er. When you
describe for input, use sqlnrow to specify the number of rows you have loaded into the data bu�er (Always set to one
for a non-bulk statement.).

2 Data is loaded into the format array when a DESCRIBE or ADVANCE statement executes.

4-12 Using Parameter Substitution in Dynamic Statements



Table 4-5. Setting SQLDA Fields for Output and for Input in Pascal

Field

Name

Field

Description

C

Data
Type

You Set

Before
DESCRIBE

or AD-
VANCE

You Set

Before
OPEN or

EXECUTE
USING

INPUT

You Set

Before
FETCH or

EXECUTE
USING

OUTPUT

ALLBASE/

SQL
Sets at

DESCRIBE
or AD-

VANCE

ALLBASE/

SQL Sets
at FETCH

or
EXECUTE

USING
OUTPUT

sqldaid reserved char[8]

sqlmproc number of multiple
row result sets inside a
procedure

short IOR

sqloparm number of output
dynamic parameters in
a dynamically
prepared EXECUTE
PROCEDURE
statement

smallint O

sqln number of format
array elements (for
output, one record per
select list item to a
maximum of 1024; for
input, one record per
dynamic parameter to
a maximum of 255)

integer IOR

sqld for output, number of
columns in query
result (0 if non-query
or EXECUTE
PROCEDURE); for
input, number of
input dynamic
parameters in the
prepared statement

integer IOR

sqlfmtarr address of format
array

integer IOR IOR 2

sqlnrow number of rows in the
data bu�er 1

integer I1 O1

sqlrrow number of rows put
into the data bu�er

integer O

sqlrowlen number of bytes in
each row

integer IOR

sqlbuen number of bytes in the
data bu�er

integer I O

sqlrowbuf address of data bu�er integer I O

Using Parameter Substitution in Dynamic Statements 4-13



I Used for input.

O Used for output.

R Used for DESCRIBE RESULT and ADVANCE.

1 When you describe for output, use sqlnrow to specify the number of rows to fetch into the data bu�er. When you
describe for input, use sqlnrow to specify the number of rows you have loaded into the data bu�er (Always set to one
for a non-bulk statement.).

2 Data is loaded into the format array when a DESCRIBE or ADVANCE statement executes.

4-14 Using Parameter Substitution in Dynamic Statements



Table 4-6. Fields in a Format Array Record in C

Field Name Meaning of Field C Data Type

sqlnty reserved; always set to 111 short

sqltype data type of column:

0 = SMALLINT or INTEGER

1 = BINARY

2 = CHAR*

3 = VARCHAR*

4 = FLOAT

5 = DECIMAL

8 = NATIVE CHAR *

9 = NATIVE VARCHAR *

10 = DATE*

11 = TIME*

12 = DATETIME*

13 = INTERVAL*

14 = VARBINARY

15 = LONG BINARY

16 = LONG VARBINARY

19 = case insensitive CHAR*

20 = case insensitive VARCHAR*

21 = case insensitive NATIVE CHAR*

22 = case insensitive NATIVE VARCHAR*

* Native CHAR or VARCHAR is what SQLCore uses internally
when a CHAR or VARCHAR column is de�ned with a
LANG = ColumnLanguageName clause. They possess the
same characteristics as the related types CHAR and
VARCHAR, except that data stored in native columns will be
sorted, compared, or truncated using local language rules.
Native, character, and Date/Time types are compatible with
regular character types.

short

sqlprec precision of DECIMAL data short

sqlscale scale of DECIMAL data short

sqltotallen byte sum of sqlvallen, sqlindlen, indicator alignment bytes, and
next data value alignment bytes

int

sqlvallen number of bytes in data value, including a 4-byte pre�x
containing actual length of VARCHAR data

int

sqlindlen number of bytes null indicator occupies in the data bu�er

for output:

0 bytes: column defined NOT NULL

2 bytes: column allows null values

for input: always 2 bytes

int

sqlvof byte o�set of value from the beginning of a row int

Using Parameter Substitution in Dynamic Statements 4-15



Table 4-6. Fields in a Format Array Record in C (continued)

Field Name Meaning of Field C Data Type

sqlnof byte o�set of null indicator from the beginning of a row,
dependent on the value of sqlindlen

int

sqlname de�ned name of column or, for computed expression, EXPR char[20]

4-16 Using Parameter Substitution in Dynamic Statements



Table 4-7. Fields in a Format Array Record in Pascal

Field Name Meaning of Field Pascal Data Type

sqlnty reserved; always set to 111 SmallInt

sqltype data type of column:

0 = SMALLINT or INTEGER

1 = BINARY

2 = CHAR*

3 = VARCHAR*

4 = FLOAT

5 = DECIMAL

8 = NATIVE CHAR *

9 = NATIVE VARCHAR *

10 = DATE*

11 = TIME*

12 = DATETIME*

13 = INTERVAL*

14 = VARBINARY

15 = LONG BINARY

16 = LONG VARBINARY

19 = case insensitive CHAR*

20 = case insensitive VARCHAR*

21 = case insensitive NATIVE CHAR*

22 = case insensitive NATIVE VARCHAR*

* Native CHAR or VARCHAR is what SQLCore uses internally
when a CHAR or VARCHAR column is de�ned with a
LANG = ColumnLanguageName clause. They possess the
same characteristics as the related types CHAR and
VARCHAR, except that data stored in native columns will be
sorted, compared, or truncated using local language rules.
Native, character, and Date/Time types are compatible with
regular character types.

SmallInt

sqlprec precision of DECIMAL data SmallInt

sqlscale scale of DECIMAL data SmallInt

sqltotallen byte sum of sqlvallen, sqlindlen, indicator alignment bytes, and
next data value alignment bytes

Integer

sqlvallen number of bytes in data value, including a 4-byte pre�x
containing actual length of VARCHAR data

Integer

sqlindlen number of bytes null indicator occupies in the data bu�er:

for output:

0 bytes: column defined NOT NULL

2 bytes: column allows null values

for input: always 2 bytes

Integer

sqlvof byte o�set of value from the beginning of a row Integer

Using Parameter Substitution in Dynamic Statements 4-17



Table 4-7. Fields in a Format Array Record in Pascal (continued)

Field Name Meaning of Field Pascal Data Type

sqlnof byte o�set of null indicator from the beginning of a row,
dependent on the value of sqlindlen

Integer

sqlname de�ned name of column or, for computed expression, EXPR Packed Array [1..20]
of char

4-18 Using Parameter Substitution in Dynamic Statements



Example in C Using Output and Input Data Buffers

Suppose you have designed an application that builds a SELECT statement. A user can enter
any valid DBEnvironment name, table name, column name, and a column value to be used as
a �lter in the WHERE clause. The application builds the appropriate query and displays the
query result.

Your application prepares this SELECT statement and describes it for output. It also
describes the statement for input so that ALLBASE/SQL can determine a default data type
and format for the user entered column value. Note that the \Using Default Data Types with
Dynamic Parameters" section later in this chapter contains detailed information about default
data types and default data formats for dynamic parameters.

The following C pseudocode outlines the above scenario with emphasis on ALLBASE/SQL
programming for dynamic parameter substitution. The functionality is available for the C and
Pascal languages.

...

#define NbrFmtRecords 255

#define MaxDataBuff 2500

#define MaxColSize 3996

#define MaxName 20

#define MaxStr 132

#define SQLINT 0

#define SQLCHAR 2

#define OK 0

#define TRUE 1

#define FALSE 0

The ConvertType union structure is used to convert the SearchValue before

it is assigned to DataBu�erIn.

typedef union ct {

char CharData[MaxColSize];

char VarCharData[MaxColSize];

int IntegerData;

short SmallIntData;

float FloatData;

double DecimalData;

} ConvertType;

Host variables are declared as follows:

DynamicCommand contains the dynamic SELECT statement. SQLMessage holds messages

returned by the SQLEXPLAIN statement. SearchValue, entered by the user,

is the value searched for by the SELECT statement.

EXEC SQL BEGIN DECLARE SECTION;

char DynamicCommand[1023];

char SQLMessage[133];

Using Parameter Substitution in Dynamic Statements 4-19



char SearchValue[1024];

EXEC SQL END DECLARE SECTION;

Declare the SQL communications area.

EXEC SQL INCLUDE SQLCA;

The sqldain record contains information about the sqlfmtsin format array and the

DataBu�erIn variable.

sqlda_type sqldain;

The sqldaout record contains information about the sqlfmtsout format array and the

DataBu�erOut variable.

sqlda_type sqldaout;

The sqlfmtsin format array describes the dynamic parameters in the WHERE clause of

the SELECT statement. Each record in the array describes one dynamic parameter.

Since this program speci�es a single dynamic parameter, only the �rst record

in the array, sqlfmtsin[0], will be checked.

sqlformat_type sqlfmtsin[NbrFmtRecords];

The sqlfmtsout format array describes the columns in the select list of the

SELECT statement. Each record in the array describes one column.

sqlformat_type sqlfmtsout[NbrFmtRecords];

DBEName contains the user speci�ed database environment name.

char DBEName[MaxName];

TableName contains the user speci�ed table name of the SELECT statment.

char TableName[MaxName];

ColName contains the user speci�ed column name of the SELECT statment.

char ColName[MaxName];

DataBu�erIn contains the value of the dynamic parameter, in this case the

value of the column in the WHERE clause of the SELECT statement.

char DataBufferIn[MaxDataBuff];

DataBu�erOut contains the row values retrieved by the SELECT statement.

4-20 Using Parameter Substitution in Dynamic Statements



char DataBufferOut[MaxDataBuff];

...

/********************************************************************/

main()

/********************************************************************/

{

Prompt the user for the database environment used in the CONNECT statement.

sprintf (DBEName,"");

sprintf (DynamicCommand,"");

Prompt ("DBEnvironment name",DBEName);

After prompting the user for the table name and the column name, move the

SELECT statement into the DynamicCommand variable. The dynamic parameter,

represented by the question mark, is not speci�ed until after the PREPARE

and DESCRIBE statements.

if (ConnectDBE()) {

Prompt ("Table Name",TableName);

while (strlen(TableName)!=0) {

Prompt ("Column Name",ColName);

sprintf (DynamicCommand,"SELECT * FROM %s WHERE %s = ?;",

TableName, ColName);

Prepare();

Prompt ("Table Name",TableName);

} /* end while */

ReleaseDBE();

} /* end if */

else

printf("\nError: Cannot Connect to %s",DBEName);

} /* End of Main Program */

/********************************************************************/

int Prepare()

/********************************************************************/

{

Before the PREPARE statement, the input and output descriptor �elds must be

set up.

The sqldain.sqln variable is assigned the number of records in the sqlfmtsin

array and the sqldain.sqlfmtarr variable is assigned the address of the

Using Parameter Substitution in Dynamic Statements 4-21



sqlfmtsin array.

sqldain.sqln = NbrFmtRecords;

sqldain.sqlfmtarr = sqlfmtsin;

The sqldaout.sqln variable is assigned the number of records in the sqlfmtsout

array and the sqldaout.sqlfmtarr variable is assigned the address of the

sqlfmtsout array.

sqldaout.sqln = NbrFmtRecords;

sqldaout.sqlfmtarr = sqlfmtsout;

if (BeginTransaction()) {

Prepare the dynamic SELECT statement. At this point the value of the

dynamic parameter is still unde�ned.

EXEC SQL PREPARE CMD1 FROM :DynamicCommand;

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

EndTransaction();

}

else {

The DESCRIBE statement gets information about the statement that was

dynamically preprocessed by the PREPARE statement.

Here dynamic parameter information is obtained:

EXEC SQL DESCRIBE INPUT CMD1 INTO sqldain;

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

EndTransaction();

}

else

Here query result information is obtained:

EXEC SQL DESCRIBE CMD1 INTO sqldaout;

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

EndTransaction();

}

else

Fetch();

4-22 Using Parameter Substitution in Dynamic Statements



}

} /* End if BeginTransaction */

} /* End of Prepare function */

/********************************************************************/

int Fetch()

/********************************************************************/

{

short i;

ConvertType ConvertedSearch;

Declare the cursor for the SELECT statement.

EXEC SQL DECLARE CURSOR1 CURSOR FOR CMD1;

Prompt the user for the search value, which will be assigned to the dynamic

parameter in the WHERE clause of the SELECT statement.

The sqlfmtsin[0].sqlname variable contains the column name in the WHERE

clause of the SELECT statement.

Prompt (sqlfmtsin[0].sqlname,SearchValue);

Set up the input descriptor �elds of the sqldain record before opening the cursor.

The sqldain.sqlnrow variable is assigned the number of rows in DataBu�erIn, that is,

the number of dynamic parameters speci�ed.

sqldain.sqlnrow = 1;

The sqldain.sqlbuen variable is assigned the number of bytes in DataBu�erIn.

sqldain.sqlbuflen = MaxDataBuff;

The sqldain.sqlrowbuf variable is assigned the address of DataBu�erIn.

sqldain.sqlrowbuf = (int) DataBufferIn;

Since the search value entered by the user is a character string, it must be

converted to the format of the column in the WHERE clause of the dynamic

SELECT statement. The SearchValue is �rst assigned to the ConvertedSearch

record, and then assigned to DataBu�erIn.

Check the value of sqlfmtsin[0].sqltype to determine the data type of the column

in the WHERE clause.

Using Parameter Substitution in Dynamic Statements 4-23



if (sqlfmtsin[0].sqltype == SQLINT) {

INT or SMALLINT columns generate the same data type value in sqltype, but

must be distinguished because they have di�erent lengths. If sqlvallen

is equal to the size of an integer variable, then the data type is INT.

if (sqlfmtsin[0].sqlvallen == sizeof(ConvertedSearch.IntegerData))

SQL INT data type.

ConvertedSearch.IntegerData = atoi(SearchValue);

else

Otherwise, the column data type is SMALLINT.

ConvertedSearch.SmallIntData = atoi(SearchValue);

}

else if (sqlfmtsin[0].sqltype == SQLCHAR) {

Otherwise, the column data type is CHAR.

for (i = 0;i < strlen(SearchValue); i++)

ConvertedSearch.CharData[i] = SearchValue[i];

for (i = strlen(SearchValue); i < sqlfmtsin[0].sqlvallen; i++)

ConvertedSearch.CharData[i] = ' ';

}

else

printf ("Error: Conversion routine unavailable for that data type.\n");

Move the ConvertedSearch data to DataBu�erIn.

StrMove (sqlfmtsin[0].sqlvallen,ConvertedSearch.CharData,0,DataBufferIn,0);

Assign zero to the two-byte, null �eld value that must follow the search value

data in DataBu�erIn.

ConvertedSearch.SmallIntData = 0;

StrMove (2,ConvertedSearch.CharData,0,DataBufferIn,sqlfmtsin[0].sqlvallen);

Open the cursor, using the input description record sqldain.

EXEC SQL OPEN CURSOR1 USING SQL DESCRIPTOR sqldain;

if (sqlca.sqlcode != OK)

SQLStatusCheck();

Set up the output descriptor �elds of the sqldaout record before performing the fetch.

The sqldaout.sqlbuen variable is assigned the number of bytes in DataBu�erOut.

sqldaout.sqlbuflen = MaxDataBuff;

The sqldaout.sqlnrow variable is assigned the number of rows in DataBu�erOut,

that is, the number of rows to fetch.

4-24 Using Parameter Substitution in Dynamic Statements



sqldaout.sqlnrow = ((sqldaout.sqlbuflen) / (sqldaout.sqlrowlen));

The sqldaout.sqlrowbuf variable is assigned the address of DataBu�erOut.

sqldaout.sqlrowbuf = (int) DataBufferOut;

Fetch rows into DataBu�erOut until no more rows are found.

do {

EXEC SQL FETCH CURSOR1 USING SQL DESCRIPTOR sqldaout;

if (sqlca.sqlcode == 100)

printf ("Warning: No more rows qualify for this operation\n");

else if (sqlca.sqlcode != 0)

SQLStatusCheck();

else

The DisplaySelect function parses DataBu�erOut and displays the data.

See program cex10a in the ALLBASE/SQL C Application Programming Guide

for a full listing of the DisplaySelect function.

DisplaySelect();

} while (sqlca.sqlcode == 0);

Close the cursor and end the transaction.

EXEC SQL CLOSE CURSOR1;

if (sqlca.sqlcode != OK)

SQLStatusCheck();

EndTransaction();

} /* End of Fetch function */

/********************************************************************/

int StrMove (n,source,subs,dest,subd)

/********************************************************************/

int n, subs, subd;

char source[], dest[];

{

int i = 1;

Move n number of bytes from source, starting at source[subs] to dest,

starting at dest[subd].

Using Parameter Substitution in Dynamic Statements 4-25



while (i++ <= n)

dest[subd++] = source[subs++];

} /* End of StrMove function */

/********************************************************************/

int Prompt (displaystr,inputstr)

/********************************************************************/

char *displaystr, *inputstr;

{

printf("Enter %s: ",displaystr);

gets(inputstr);

} /* End of Prompt function */

...

You could enhance the above pseudocode by coding an application for the following scenario.
After the display, o�er the user these choices:

Enter another value for the same column.
Enter another table name, column name, and column value for the same DBEnvironment.
Exit the application.

Since the column value is passed by means of a dynamic parameter, if the user chooses to
enter another column value for the same column, you can improve performance by reusing the
already prepared stored section for the given SELECT statement.

Each time the user enters another value for the same SELECT statement, your application
does the following:

Loads the new value into the input data bu�er.
Opens the dynamic cursor.
Fetches all qualifying rows.
Closes the cursor.

Using a BULK INSERT Statement with Dynamic Parameters

Suppose you are writing an application that inserts multiple rows of data. At coding time,
you know the format of the BULK INSERT statement, and you know which parameters in the
statement will di�er for each row (the dynamic parameters).

The application must run in many DBEnvironments, and you want it to achieve maximum
performance. For portability, you decide on dynamic statements. For maximum performance,
you decide to use parameter substitution and the BULK INSERT statement. To minimize
your coding time, you use host variables, rather than a data bu�er.

The following pseudocode examples illustrate this scenario for C, COBOL, and Pascal
applications.

4-26 Using Parameter Substitution in Dynamic Statements



Note When host variables are used, EXECUTE statement syntax di�ers for a
BULK INSERT statement and an INSERT statement.

Example in C Using a BULK INSERT
...

boolean OrdersOk;

boolean ConnectDBE();

...

sqlca_type sqlca; /* SQL communication area. */

De�ne a host variable array to hold dynamic parameter values. Be sure each

host variable data type matches (or is compatible with) its ALLBASE/SQL default

data type:

EXEC SQL BEGIN DECLARE SECTION;

struct {

int NewOrderNumber;

int NewVendorNumber;

sqlind NewVendorNumberInd;

char NewOrderDate[11]; /* Add a byte for end of char array. */

sqlind NewOrderDateInd;

} NewOrders[25];

If the dynamic parameter represents data for a column that can contain nulls, and

it is possible that input data will contain null values, be sure to de�ne a null

indicator host variable immediately following the related host variable.

If you are using other than the default values for the starting index and number of

rows in the array, de�ne host variables for these as well:

short StartIndex;

short NumberOfRows; /* Maximum possible rows to bulk insert. */

int OrderNumber; /* Host variables for input data. */

int VendorNumber;

sqlind VendorNumberInd;

char OrderDate[11];

sqlind OrderDateInd;

...

char SQLMessage[133]; /* Add a byte for end of char array. */

EXEC SQL END DECLARE SECTION;

Using Parameter Substitution in Dynamic Statements 4-27



main() { /*Specify main functions. */

if (ConnectDBE()) { /* If the application is successfully */

/* connected to a DBEnvironment, proceed. */

OrdersOk = TRUE;

BeginTransaction();

PrepareIt();

CreateOrders();

InsertNew();

if (OrdersOk) /* If there were no errors in processing, */

CommitWork(); /* data is committed to the database. */

TerminateProgram();

} /* End if. */

} /* End of main program. */
...

Use the PREPARE statement to preprocess the dynamic statement, in this case, from

a string:

int PrepareIt(){

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL PREPARE CMD from 'BULK INSERT INTO PurchDB.Orders VALUES (?,?,?);';

switch (sqlca.sqlcode){ /* Check for processing errors. */

case OK: break;

default: SQLStatusCheck();

RollBackWork();

OrdersOk = FALSE;

} /* End switch. */

} /* End function PrepareIt. */

Load up to 25 rows of new orders for the BULK INSERT. This data could originate

from an interactive user or from a �le:

int CreateOrders()

{

int i = 0; /* Define and initialize an index to move */

/* through array elements. */

NumberOfRows = 25;

StartIndex = 1;

4-28 Using Parameter Substitution in Dynamic Statements



Count rows as they are loaded into the NewOrders array up to a maximum of 25:

for (i = 0; i <= NumberOfRows; i++){

Read a �le record or accept a row of data from the user into

the appropriate host variables.

Load host variable data into the bulk insert array.

NewOrders[i].NewOrderNumber = OrderNumber;

NewOrders[i].NewVendorNumber = VendorNumber;

NewOrders[i].NewVendorNumberInd = VendorNumberInd;
strcpy (NewOrders[i].NewOrderDate,OrderDate);

NewOrders[i].NewOrderDateInd = OrderDateInd;

} /* End for. */

} /* End of function CreateOrders. */

Execute the prepared CMD command specifying the array where data for the BULK

INSERT is located:

int InsertNew(){
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL EXECUTE CMD USING :NewOrders, :StartIndex, :NumberOfRows;

switch (sqlca.sqlcode){ /* Check for processing errors. */

case OK: break;

default: SQLStatusCheck();

RollBackWork();

OrdersOk = FALSE;

} /* End switch. */
} /* End of function InsertNew. */

Using Parameter Substitution in Dynamic Statements 4-29



Example in COBOL Using a BULK INSERT

...

WORKING-STORAGE SECTION.

* SQL communication area. *

EXEC SQL INCLUDE SQLCA END-EXEC.

* Host variables for input data. *

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ORDERNUMBER PIC S9(9) COMP.

01 VENDORNUMBER PIC S9(9) COMP.

01 VENDORNUMBERIND SQLIND.

01 ORDERDATE PIC X(8).

01 ORDERDATEIND SQLIND.

De�ne a host variable array to hold dynamic parameter values. Be sure each

host variable data type matches (or is compatible with) its ALLBASE/SQL default

data type:

01 NEWORDERS.

05 EACH-ROW OCCURS 25 TIMES.

10 NEWORDERNUMBER PIC S9(9) COMP.

10 NEWVENDORNUMBER PIC S9(9) COMP.

10 NEWVENDORNUMBERIND SQLIND.

10 NEWORDERDATE PIC X(8).

10 NEWORDERDATEIND SQLIND.

If the dynamic parameter represents data for a column that can contain nulls, and

it is possible that input data will contain null values, be sure to de�ne a null

indicator host variable immediately following the related host variable.

If you are using other than the default values for the starting index and number of

rows in the array, de�ne host variables for these as well:

01 STARTINDEX PIC S9(4) COMP.

* Maximum possible rows to bulk insert. *

01 NUMBEROFROWS PIC S9(4) COMP.

01 SQLMESSAGE PIC X(132).

EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

A100-MAIN.

4-30 Using Parameter Substitution in Dynamic Statements



PERFORM A200-CONNECT-DBENVIRONMENT THRU A200-EXIT.

PERFORM B100-PREPARE-IT THRU B100-EXIT.

PERFORM C100-CREATE-ORDERS THRU C100-EXIT

UNTIL DONE.

PERFORM D100-BULK-INSERT THRU D100-EXIT.

PERFORM A500-TERMINATE-PROGRAM THRU A500-EXIT.

A100-EXIT.

EXIT.

...

Use the PREPARE statement to preprocess the dynamic statement, in this case, from

a string:

B100-PREPARE-IT.

MOVE 1 to I.

MOVE SPACES TO DONE-FLAG.

MOVE SPACES TO NEWORDERS.

PERFORM A300-BEGIN-TRANSACTION THRU A300-EXIT.

NNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQLNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

PREPARE CMD fromNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
'BULK INSERT INTO PurchDB.Orders VALUES (?, ?, ?);'NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

END-EXEC.

Check for processing errors. Display any messages, and either commit or roll back

the transaction:

IF SQLCODE = OK

PERFORM A400-COMMIT-WORK THRU A400-EXIT

ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A450-ROLLBACK-WORK THRU A450-EXIT.

B100-EXIT.

EXIT.

Load up to 25 rows of new orders for the BULK INSERT. This data could originate

Using Parameter Substitution in Dynamic Statements 4-31



from an interactive user or from a �le (In this case, it is an interactive user.):

C100-CREATE-ORDERS.

DISPLAY ' '.

DISPLAY 'You can specify as many as 25 line items.'.

DISPLAY ' '.

MOVE ' Order Number> ' TO PROMPT-USER

DISPLAY " "

WRITE PROMPT-USER

ACCEPT NEWORDERNUMBER(I)

MOVE ' Vendor Number> ' TO PROMPT-USER

DISPLAY " "

WRITE PROMPT-USER

ACCEPT NEWVENDORNUMBER(I)

MOVE ' Order Date (YYYYMMDD)> ' TO PROMPT-USER

DISPLAY " "

WRITE PROMPT-USER

MOVE SPACES TO NEWORDERDATE(I)

ACCEPT NEWORDERDATE(I)

IF I = 25

MOVE "X" TO DONE-FLAG

GO TO C100-EXIT

ELSE

PERFORM C200-MORE-LINES THRU C200-EXIT.

C100-EXIT.

EXIT.

C200-MORE-LINES.

DISPLAY ' '

MOVE 'Do you want to specify another line item (Y/N)?> '

TO PROMPT-USER

MOVE SPACE TO RESPONSE-ALPHA

DISPLAY " "

WRITE PROMPT-USER

ACCEPT RESPONSE-ALPHA.

IF RESPONSE-ALPHA NOT = "Y"

AND RESPONSE-ALPHA NOT = "y"

MOVE "X" TO DONE-FLAG

GO TO C200-EXIT

4-32 Using Parameter Substitution in Dynamic Statements



ELSE

COMPUTE I = I + 1.

C200-EXIT.

EXIT.

Execute the prepared CMD command specifying the array where data for the BULK INSERT

is located:

D100-BULK-INSERT.

DISPLAY ' '.

MOVE I TO NUMBEROFROWS.

MOVE 1 TO STARTINDEX.

MOVE 1 to I.

DISPLAY 'BULK INSERT INTO PurchDB.OrderItems'.

NNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQLNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

EXECUTE CMD USING :NEWORDERS, :STARTINDEX, :NUMBEROFROWSNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
END-EXEC.

Check for processing errors. Display any messages, and either commit or roll back

the transaction:

IF SQLCODE = OK

PERFORM A400-COMMIT-WORK THRU A400-EXIT

ELSE

PERFORM S100-SQL-STATUS-CHECK THRU S100-EXIT

PERFORM A450-ROLLBACK-WORK THRU A450-EXIT.

D100-EXIT.

EXIT.

...

Using Parameter Substitution in Dynamic Statements 4-33



Example in Pascal Using a BULK INSERT

...

De�ne a host variable array to hold dynamic parameter values. Be sure each

host variable data type matches (or is compatible with) its ALLBASE/SQL default

data type:

EXEC SQL BEGIN DECLARE SECTION;

NewOrders : array[1..25]

of record

NewOrderNumber : integer;

NewVendorNumber : integer;

NewVendorNumberInd : sqlind;

NewOrderDate : packed array[1..10] of char;

NewOrderDateInd : sqlind;

end;

If the dynamic parameter represents data for a column that can contain nulls, and

it is possible that input data will contain null values, be sure to de�ne a null

indicator host variable immediately following the related host variable.

If you are using other than the default values for the starting index and number of

rows in the array, de�ne host variables for these as well:

StartIndex : SmallInt;

NumberOfRows : SmallInt; (* Maximum possible rows to bulk *)

(* insert. *)

OrderNumber : integer; (* Host variables for user input.*)

VendorNumber : integer;

VendorNumberInd : sqlind;

OrderDate : packed array[1..10] of char;

OrderDateInd : sqlind;

...

SQLMessage : packed array[1..132] of char;

EXEC SQL END DECLARE SECTION;

sqlca : SQLCA_type; (* SQL Communication Area *)

OrdersOK : boolean;

...

4-34 Using Parameter Substitution in Dynamic Statements



Use the PREPARE statement to preprocess the dynamic statement, in this case, from

a string:

procedure PrepareIt;

begin

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL PREPARE CMD from 'BULK INSERT INTO PurchDB.Orders VALUES (?,?,?);';

if SQLCA.SQLCODE OK then (* Check for processing errors. *)

begin

SQLStatusCheck;

RollBackWork;

OrdersOK := FALSE;

end;

end; (* End PrepareIt Procedure. *)

Load up to 25 rows of new orders for the BULK INSERT. This data could originate

from an interactive user or from a �le:

procedure CreateOrders;

var

i:integer;

begin

NumberOfRows := 25;

StartIndex := 1;

Count rows as they are loaded into the NewOrders array up to a maximum of 25:

for i := 1 to NumberOfRows do

begin

Read a �le record or accept a row of data from the user into

the appropriate host variables.

Load host variable data into the bulk insert array.

NewOrders[i].NewOrderNumber := OrderNumber;

NewOrders[i].NewVendorNumber := VendorNumber;

NewOrders[i].NewVendorNumberInd := VendorNumberInd;

NewOrders[i].NewOrderDate := OrderDate;

NewOrders[i].NewOrderDateInd := OrderDateInd;

Using Parameter Substitution in Dynamic Statements 4-35



end; (* End for. *)

end; (* End procedure CreateOrders. *)

Execute the prepared CMD command specifying the array where data for the BULK

INSERT is located:

procedure InsertNew;

begin

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL EXECUTE CMD USING :NewOrders, :StartIndex, :NumberOfRows;

if SQLCA.SQLCODE OK then (* Check for processing errors. *)

begin

SQLStatusCheck;

RollBackWork;

OrdersOK := FALSE;

end;

end; (* End of procedure InsertNew. *)

...

begin (* Begin the program. *)

if ConnectDBE then (* If the application is successfully *)

(* connected to a DBEnvironment, proceed. *)

begin

OrdersOK := TRUE;

BeginTransaction;

PrepareIt;

CreateOrders;

InsertNew;

if OrdersOK then (* If there were no errors in processing, *)

CommitWork; (* data is committed to the database. *)

end;

TerminateProgram;

end. (* End the Program. *)

4-36 Using Parameter Substitution in Dynamic Statements



Using Default Data Types with Dynamic Parameters

When the PREPARE statement executes, ALLBASE/SQL assigns a default data type to any
dynamic parameter in the dynamic section that is created. Depending on how you provide
dynamic parameter data to the database, one of the following occurs. If you are using the
DESCRIBE INPUT statement, the default data type information is loaded into the related
format array. If you are using a host variable, the data type of the host variable is compared
to the default, and a conversion is done if possible. (These methods of assigning data are
discussed in the \Programming with with Dynamic Parameters" section in this document.)
The following topics are discussed in this section:

How ALLBASE/SQL Derives a Default Data Type.
Dynamic Parameter Formats.
Conversion of Actual Data Types to Default Data Types.
Data Overow and Truncation.

How ALLBASE/SQL Derives a Default Data Type

The following explains how the default data type of a dynamic parameter is derived by
ALLBASE/SQL:

When the parameter is an operand of an arithmetic operator or a comparison operator,
its data type is assumed to be that of the other operand. In the following example, the
dynamic parameter is assumed to be an integer because SalesPrice is de�ned as an integer
column in the database:

UPDATE PurchDB.Parts

SET SalesPrice = (SalesPrice * ?)

When the parameter is the second and/or third operand in a BETWEEN predicate, its data
type is assumed to be that of the �rst operand. The assumed data type of both dynamic
parameters in the following example is decimal with a precision of six and a scale of two,
because this is the data type of the SalesPrice column in the database.

SELECT * FROM PurchDB.Parts

WHERE SalesPrice BETWEEN ? AND ?

When the parameter is any value in an IN predicate, its data type is assumed to be that
of the expression. In the following example, the dynamic parameters are assumed to be
integers, because OrderNumber is de�ned as an integer in the database:

SELECT * FROM PurchDB.Orders

WHERE OrderNumber IN (?, ?, ?)

When the parameter is the pattern value in a LIKE predicate, it is assumed to be of
character data type. The default length is based on the other operand of the LIKE
predicate. In the following example, the default length of the dynamic parameter is 16 since
PartNumber is de�ned as a 16 byte character column.

SELECT * FROM PurchDB.Parts WHERE PartNumber LIKE ?

When the parameter is a parameter in the SET clause of an UPDATE statement, its data
type is assumed to be that of the update column. The assumed data type of the dynamic
parameter in the following example is decimal with a precision of six and a scale of two,
because this is the column de�nition of SalesPrice in the database.

Using Parameter Substitution in Dynamic Statements 4-37



UPDATE PurchDB.Parts

SET SalesPrice = ?

WHERE PartNumber = '12345'

Used in the VALUES clause of an INSERT statement, its data type is assumed to be that
of the inserted column. In the example below, both dynamic parameters are assumed to be
of character data type because both PartNumber and PartName are de�ned as such in the
database.

INSERT INTO PurchDB.Parts (PartNumber, PartName)

VALUES(?,?)

Note The following examples are syntactically correct but have no or little value
semantically. They illustrate additional places where dynamic parameters can
be used in accord with standard SQL.

When the parameter is the �rst operand in a BETWEEN predicate, its data type is
assumed to be that of the second operand. In the following example, the dynamic
parameter is assumed to be an integer because 1000 is an integer:

SELECT * FROM PurchDB.Orders

WHERE ? BETWEEN 1000 AND 2000

When the parameter is used as the �rst and third operands in a BETWEEN predicate,
its data type is assumed to be that of the second operand. For example, both dynamic
parameters in the following example are assumed to be integer because 1000 is an integer.

SELECT * FROM PurchDB.Orders

WHERE ? BETWEEN 1000 AND ?

When the parameter is the expression in an IN predicate, its data type is assumed to be
that of the �rst value or that of the result column of a subquery. In the following example,
the data type of the dynamic parameter is assumed to be integer, because 30507 is an
integer value.

SELECT DISTINCT * FROM PurchDB.Orders

WHERE ? IN (30507, 30517, 30518)

In the following example, the data type of the dynamic parameter is assumed to be that of
the result column, OrderNumber, which is de�ned in the database as integer.

SELECT * FROM PurchDB.Orders

WHERE ? IN (SELECT OrderNumber FROM PurchDB.Orders

WHERE OrderNumber BETWEEN 1000 AND 2000)

When the parameter is the expression in a quanti�ed predicate, its data type is assumed to
be that of the result column of the subquery. In the following example, the data type of the
dynamic parameter is assumed to be integer, because that is the column de�nition of the
OrderNumber column.

SELECT * FROM PurchDB.Orders

WHERE ? = ANY (SELECT OrderNumber FROM PurchDB.Orders WHERE OrderNumber >= 500)

4-38 Using Parameter Substitution in Dynamic Statements



Note When a dynamic parameter is used in a non-assignment operation and the
default data type is determined to be REAL, ALLBASE/SQL promotes it to
FLOAT for better performance and data accuracy. Therefore, the assumed
data type for a non-assignment operation is never REAL.

Dynamic Parameter Formats

In addition to default data types, dynamic parameters have default data formats as shown in
the table below:

Table 4-8. ALLBASE/SQL Default Data Formats for Dynamic Parameters

Type of Dynamic Parameter ALLBASE/SQL
Default Data Type

ALLBASE/SQL Default Data Format

column value LONG BINARY CHAR(96) - contains the long column
descriptor

column value LONG VARBINARY CHAR(96) - contains the long column
descriptor

column value BINARY(n) BINARY(n)

column value VARBINARY(n) VARBINARY(n)

column value DATE CHAR(10)

column value TIME CHAR(8)

column value DATETIME CHAR(23)

column value INTERVAL CHAR(20)

second argument in an
ADD MONTHS function

INTEGER INTEGER

�rst or second argument in a
TO DATE, TO TIME,
TO DATETIME, or
TO INTERVAL function

CHAR or VARCHAR CHAR(72)

second argument in a
TO CHAR or
TO INTEGER function

CHAR or VARCHAR CHAR(72)

escape character in a LIKE
predicate

CHAR CHAR(2)

RAISE ERROR number INTEGER INTEGER

RAISE ERROR text CHAR CHAR(250)

second or third argument in a
SUBSTRING function

INTEGER INTEGER

Using Parameter Substitution in Dynamic Statements 4-39



Conversion of Actual Data Types to Default Data Types

Your application provides a dynamic parameter value at run time by using either a host
variable or a set of ALLBASE/SQL data structures and a data bu�er. (These coding
techniques are further discussed in the section in this document, \Programming with Dynamic
Parameters.") When this actual data type di�ers from the ALLBASE/SQL default data type,
data conversion takes place from the actual data type to the default data type when either the
OPEN or the EXECUTE statement executes. Conversion occurs as follows:

For assignment operations, if the data types are compatible. (See the ALLBASE/SQL
application programming guides and the ALLBASE/SQL Reference Manual \Data Types"
chapter for further information on data type compatibility.)

For instance, in an INSERT VALUES clause or an UPDATE SET clause, be sure to assign
dynamic parameter data to a program variable having a data type that is compatible with
the ALLBASE/SQL default data type for the dynamic parameter.

For expressions involving a comparison predicate or an arithmetic operator, conversion takes
place from a smaller to a larger or equal data type, as shown in table Table 4-9.

For example, suppose your application speci�es a host variable to hold data for a column
de�ned in a table as VARCHAR with a maximum length of 32. If this host variable can
hold 32 bytes or less of character data, data conversion will take place. By contrast, if you
have de�ned the host variable to hold more than 32 bytes of character data, it is not smaller
than the dynamic parameter default data type, and a run time error will result.

Table 4-9. Actual to Default Data Type Conversion for Dynamic Parameters

Actual Data Type,
Based on Your Application

Default Data Type,
Based on Dynamic Parameter Usage

SMALLINT, INTEGER, DECIMAL, REAL, or FLOAT FLOAT

SMALLINT, INTEGER, or DECIMAL DECIMAL

SMALLINT or INTEGER INTEGER

SMALLINT SMALLINT

CHAR(N ) or VARCHAR(N ) CHAR(N+M ) or VARCHAR(N+M )
where M >= 0 and N > 0

CHAR or VARCHAR Case Insensitive CHAR or VARCHAR

Note that for a non-assignment operation, when the default data type is determined to be
REAL, ALLBASE/SQL promotes it to FLOAT for better performance and data accuracy.
Therefore, the assumed data type for a non-assignment operation is never REAL.

Data Overflow and Truncation

For character data types, no error or warning is given if truncation occurs when an INSERT
or UPDATE statement executes. For numeric data types, when zeroes are dropped from the
left or when any digit is dropped from the fractional part of DECIMAL or FLOAT values, no
error or warning occurs. Otherwise, any overow or underow of numeric values causes an
error.

4-40 Using Parameter Substitution in Dynamic Statements



5

Using Procedures in Application Programs

This chapter describes the use of procedures in application programs. It highlights features
that are available only within application programs and, in particular, methods of passing
information between an application and a procedure. The �nal section compares the use
of application code to procedure code to accomplish the same task. The material in this
chapter assumes familiarity with the more global presentation of procedures found in the
ALLBASE/SQL Reference Manual chapter, \Constraints, Procedures, and Rules."

In the present discussion, the term procedure refers to a database object that you de�ne
with a CREATE PROCEDURE statement. Like an application program, a procedure may
have stored sections associated with it and may execute transaction statements. As in an
application, when a severe error (one having an error code of �4008 or equal to or less than
�14024) is encountered in a procedure, any active transaction is automatically rolled back,
and the procedure continues.

A di�erence between a procedure and an application is that the SQL Communication Area
(SQLCA) and SQLEXPLAIN cannot be used in a procedure. The built-in variable, ::sqlcode
holds the error code for the �rst message in the message bu�er (guaranteed to be the most
severe error). When a procedure ends and control returns to the calling application, the
SQLCODE �eld of the SQLCA can be tested. However, only certain types of procedure errors
cause SQLCODE to be set. (Refer to the later sections, \Testing SQLCODE and SQLWARN0
on Return from a Procedure" and \Additional Error and Message Handling.")

Within a procedure, you can implement a general form of error checking by coding a
WHENEVER SQLERROR STOP statement at the beginning of the procedure. Then
whenever an error is encountered during procedure execution, any active transaction is
rolled back, the procedure is terminated, and control returns to the application. At this
point, SQLCODE contains the error number of the error that caused the WHENEVER
SQLERROR STOP statement to be invoked. (Note that, unlike an application, a severe error
encountered in a procedure having WHENEVER SQLERROR STOP in e�ect does not release
a DBEnvironment.)

When your application requires more speci�c information about procedure errors or other
information concerning procedure execution, when multiple row result set data is passed from
the procedure to the application, and when dynamic parameters are needed to pass data
between the application and the procedure, several features are available as described in the
following sections:

Using Cursors with Procedures.
Using Host Variables to Pass Parameter Values.
Using Dynamic Procedure Parameters.
Returning a Return Status Code.
Testing SQLCODE and SQLWARN0 on Return from a Procedure.
Returning Output Values.
Additional Error and Message Handling.
Comparing a Procedure and an Embedded SQL Application

Using Procedures in Application Programs 5-1



Note, it is recommended that you handle procedure statement errors and warnings within the
procedure.

Using Cursors with Procedures

Two types of cursors are available in ALLBASE/SQL:

A select cursor is one declared for a SELECT statement within either an application or a
procedure. It is a pointer used to indicate the current row in a set of rows retrieved by a
SELECT statement.

A select cursor opened in an application program cannot be accessed within the procedure.
However, a procedure can open and access its own select cursors.

A procedure cursor is one declared for an EXECUTE PROCEDURE statement within an
application. It is a pointer used to indicate the current result set and row in a set of rows
retrieved by a set of SELECT statements in a procedure.

A procedure cursor must be opened and accessed outside of the speci�ed procedure, in an
application program. A given application can open more than one procedure cursor.

When you declare a procedure cursor and use procedure cursor processing statements in your
application, the read functionality of a select cursor declared in an application is provided for
any query with no INTO clause located in the procedure. Results of queries within such a
procedure are available within your application, not within the procedure.

A procedure cursor allows callers to process multiple row result sets from a procedure one row
at a time either statically or dynamically. Access to multiple row result sets from a procedure
is read-only.

Table 5-1 compares the functionality available for a procedure cursor and a select cursor in a
procedure.

Table 5-1. Using Cursors with Procedures within an Application

Cursor Type Available Functionality

Procedure Cursor BULK processing

Passing multiple (or single) row query
results based on procedure queries to
the invoking application

SQLCA error checking

UPDATE or DELETE WHERE
CURRENT

Select Cursor in a
Procedure

Single or multiple row query results

Built-in variable error checking

Refer to Table 4-4 and Table 4-5 in the \Using Parameter Substitution in Dynamic
Statements" chapter in this manual for coding information related to dynamic cursors.

5-2 Using Procedures in Application Programs



Procedures with Multiple Row Result Sets of Different Formats

The following example shows a procedure de�nition followed by an excerpt from an
application program that uses a procedure cursor:

EXEC SQL CREATE PROCEDURE InventoryReport (option INTEGER, qty INTEGER OUTPUT)

AS BEGIN

IF option = 1 THEN

SELECT PartNumber FROM PurchDB.Inventory;

ELSEIF option = 2 THEN

SELECT DISTINCT BinNumber FROM PurchDB.Inventory;

ELSE

SELECT PartNumber, BinNumber, QtyOnHand FROM PurchDB.Inventory;
ENDIF;

SELECT SUM (QtyOnHand) INTO :qty FROM PurchDB.Inventory;

RETURN ::sqlcode;

END;

Static Processing

The following example shows the execution of procedure InventoryReport, retrieving multiple
row result sets:

First, declare and open a cursor for the procedure returning multiple row

result sets.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL DECLARE InvRepCursor CURSOR FOR EXECUTE PROCEDURENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

:ReturnStatus = InventoryReport (:opt, :qty OUTPUT);

You must initialize the input value for :opt before the OPEN cursor call.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL OPEN InvRepCursor;

while (sqlca.sqlcode >= 0) && (sqlca.sqlcode != 200)

{

Advance to the next query result set from the procedure. Any remaining

rows in the current query result set are discarded. Procedure execution

continues with the next statement. Control returns to the caller when

the next multiple row result set statement is executed or the procedure

terminates. The number of columns and format information for the next

query result set is returned in the speci�ed SQLDA. This information

may be used to process the query result set. When the last result set has

been processed, ALLBASE/SQL sets SQLCA.SQLCODE to 200.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL ADVANCE InvRepCursor USING sqldaresult;

if (sqlca.sqlcode == 0 )

{

Using Procedures in Application Programs 5-3



while (sqlca.sqlcode == 0)

{

Fetch one or more rows from the current query result set. Use the

same SQLDA as that speci�ed in the ADVANCE statement. When the

last row in the last result set has been fetched, ALLBASE/SQL

sets SQLCA.SQLCODE to 100. When the last row in the current result

set has been fetched, ALLBASE/SQL automatically advances to the next

result set.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL FETCH InvRepCursor USING sqldaresult;

if (sqlca.sqlcode = 0)

{

Use the number of columns and column format information to process

the query result. A detailed description is found in the "Using

Dynamic Operations" chapters of the ALLBASE/SQL C Application

Programming Guide.

}

}

}

}

The CLOSE statement will cancel processing of any remaining query result

sets. Procedure execution continues with the next statement. No data is

returned, nor does control return to the application for any subsequent

multiple row result set queries executed by the procedure. The return

status, :ReturnStatus, and output parameter, :qty, values are available to

the caller after the CLOSE call.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL CLOSE InvRepCursor;

Dynamic Processing

You need special techniques to handle dynamic EXECUTE PROCEDURE statements. In a
program that accepts both EXECUTE PROCEDURE statements, and other SQL commands,
you should �rst PREPARE the command, then use the DESCRIBE command with the
OUTPUT option.

The following C pseudocode outlines the above scenario with emphasis on ALLBASE/SQL
programming for dynamically executing procedures with multiple row result sets.

Set up a dynamic command with dynamic parameters.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:DynamicCmd = "EXECUTE PROCEDURE ? = InventoryReport (?, ? OUTPUT);";

Assume you don't know the format for the statement. Prepare the statement.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL PREPARE cmd FROM :DynamicCmd;

5-4 Using Procedures in Application Programs



For a dynamic EXECUTE PROCEDURE statement, the DESCRIBE command with the

OUTPUT option sets the sqld �eld of the SQLDA to 0 and sets the sqlmproc

�eld to a non-zero value for a procedure having multiple row result sets.

The sqloparm �eld is set to the number of output parameters (including

return status) in the EXECUTE PROCEDURE statement. The sqlfmtarr of the

sqldaout is set to the data formats for the return status and output

parameters of the procedure, if any. If you know there are no dynamic

parameters in the prepared statement, use the EXECUTE statement to execute

the dynamically preprocessed statement.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL DESCRIBE OUTPUT cmd INTO sqldaout;

For a dynamic EXECUTE PROCEDURE statement, the DESCRIBE command with the

INPUT option sets the sqld �eld of the SQLDA to the number of input

dynamic parameters in the prepared statement.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL DESCRIBE INPUT cmd USING sqldain;

If there are input dynamic parameters, the appropriate data bu�er or host

variables must be loaded with the values for the input dynamic parameters.

Since the sqlmproc �eld is set to a non-zero value, the procedure has

multiple row result sets. You de�ne a procedure CURSOR to move through

the query results sets row by row.

Declare a cursor for the procedure returning multiple row result sets.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL DECLARE InvRepCursor CURSOR FOR cmd;

Place the appropriate values into the SQLDA sqldain. Use the USING

DESCRIPTOR clause of the OPEN statement to identify where the input

dynamic parameter information is located.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL OPEN InvRepCursor USING sqldain;

while (sqlca.sqlcode >= 0) && (sqlca.sqlcode != 200)

{

Use the USING DESCRIPTOR clause of the ADVANCE statement to identify

where to place the query result format information. Advance to the next

query result set from the procedure. Any remaining rows in the previous

query result set are discarded. Procedure execution continues with the

next statement. Control returns to the caller when the next multiple row

result set statement is executed. The number of columns and format

information for the current query result set are returned in the speci�ed

SQLDA. This information may be used to process the query result set.

When the last result set has been processed, ALLBASE/SQL sets

SQLCA.SQLCODE to 200.

Using Procedures in Application Programs 5-5



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL ADVANCE InvRepCursor USING sqldaresult;

if (sqlca.sqlcode != 0)

{

while (sqlca.sqlcode == 0)

{

Fetch as many rows from the current query result set as speci�ed in

SQLDA.sqlnrow. Specify the same SQLDA as speci�ed in the ADVANCE

statement. When the last row in the current result set has been

fetched, ALLBASE/SQL sets SQLCA.SQLCODE to 100.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL FETCH InvRepCursor USING sqldaresult;

if (sqlca.sqlcode == 0)

{

Use number of columns and column format information to process

the query result. A detailed description is found in the "Using

Dynamic Operations" chapters of the ALLBASE/SQL C Application

Programming Guide.

}

}

}

}

The CLOSE statement will cancel processing of any remaining query result

sets. Procedure execution continues with the next statement. No data

is returned, nor does control return to the application for any

subsequent multiple row result set queries executed by the procedure.

Use the SQLDA speci�ed in the DESCRIBE OUTPUT statement to retrieve return

status and output parameter values.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CLOSE InvRepCursor USING sqldaout;

Procedures with no Multiple Row Result Sets

Static Processing

If a procedure is known to contain no multiple row result sets, or the caller does not wish to
retrieve such results, a simple EXECUTE PROCEDURE statement can be issued.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL EXECUTE PROCEDURE :ReturnStatus = InventoryReport (:opt, :qty OUTPUT);

The EXECUTE PROCEDURE statement will return a warning if the procedure contains any
multiple row result sets.

5-6 Using Procedures in Application Programs



Dynamic Processing

In this example, the prepared statement is an EXECUTE PROCEDURE statement

with both INPUT and OUTPUT dynamic parameters. After using DESCRIBE INPUT

and OUTPUT for cmd, it can be executed using input and output SQL

descriptor areas, or input and output host variables.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL EXECUTE cmd USING DESCRIPTOR INPUT sqldain AND OUTPUT sqldaout;

OR

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL EXECUTE cmd USING INPUT :opt, :qty AND OUTPUT :ReturnStatus, :qty;

The EXECUTE PROCEDURE statement will return a warning if the

procedure contains any multiple row result sets.

Single Format Multiple Row Result Sets

Example Schema

The following example de�nes a procedure returning single format multiple row result sets.

CREATE PROCEDURE ReportActivity (Activity CHAR (18))

WITH RESULT CHAR (20) NOT NULL, SMALLINT AS

BEGIN

DECLARE Clubtid TID;

SELECT TID () INTO :Clubtid FROM RecDB.Clubs

WHERE Activity = :Activity;

SELECT ClubName, ClubPhone

FROM RecDB.Clubs

WHERE TID () = :ClubTID;

SELECT MemberName, MemberPhone

FROM RecDB.Members

WHERE Club =

(SELECT ClubName FROM RecDB.Clubs WHERE TID () = :ClubTID);

END;

Static Processing

For static processing, use the DECLARE, OPEN, FETCH, and CLOSE statements to retrieve
rows as usual. The ADVANCE statement is not required.

Dynamic Processing

Prepare a dynamic command with dynamic parameters.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:DynamicCmd = "EXECUTE PROCEDURE ? = ReportActivity (?);";

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PREPARE cmd FROM :DynamicCmd;

Using Procedures in Application Programs 5-7



For a dynamic EXECUTE PROCEDURE statement, the DESCRIBE command with the

OUTPUT option sets the sqld �eld of the SQLDA to 0 and sets the sqlmproc

�eld to a non-zero value for a procedure having multiple row result sets.

The sqloparm �eld is set to the number of output parameters (including

return status) in the EXECUTE PROCEDURE statement. The sqlfmtarr of the

sqldaout is set to the data formats for the return status and output

parameters of the procedure, if any.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL DESCRIBE OUTPUT cmd INTO sqldaout;

For a dynamic EXECUTE PROCEDURE statement, the DESCRIBE command with the

INPUT option sets the sqld �eld of the SQLDA to the number of input

dynamic parameters in the prepared statement.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL DESCRIBE INPUT cmd USING sqldain;

If there are input dynamic parameters, the appropriate data bu�er or host

variables must be loaded with the values for the input dynamic parameters.

If the dynamic command (cmd) is an EXECUTE PROCEDURE statement with single

format multiple row result sets, the DESCRIBE RESULT command returns format

information for the procedure result sets. In contrast, when the procedure

does not have single format multiple row result sets, the sqld �eld of

SQLDA is set to zero.

If the dynamic command is not an EXECUTE PROCEDURE statement, sqlca.sqlcode

is set to a non-zero value.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DESCRIBE RESULT cmd USING sqldaresult;

Declare a cursor for a procedure returning single format multiple row

result sets.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DECLARE RepActCursor CURSOR FOR cmd;

Place the appropriate values into the SQLDA sqldain. Use the USING

DESCRIPTOR clause of the OPEN statement to identify where the input

dynamic parameter information is located.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
OPEN RepActCursor USING sqldain;

while (sqlca.sqlcode >= 0) && (sqlca.sqlcode != 100)

{

Fetch as many rows from the current query result set as speci�ed in

SQLDA.sqlnrow. Specify the same SQLDA as speci�ed in the ADVANCE

statement. When the last row in the current result set has been

5-8 Using Procedures in Application Programs



fetched, ALLBASE/SQL automatically advances to the next result set.

When the last row in the last result set has been fetched, ALLBASE/SQL

sets SQLCA.SQLCODE to 100.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
FETCH RepActCursor USING sqldaresult;

Use number of columns and column format information to process

the query result. A detailed description is found in the "Using

Dynamic Operations" chapters of the ALLBASE/SQL C Application

Programming Guide.

}

The CLOSE statement will cancel processing of any remaining query result

sets. Procedure execution continues with the next statement. No data

is returned, nor does control return to the application for any

subsequent multiple row result set queries executed by the procedure.

Use the SQLDA speci�ed in the DESCRIBE OUTPUT statement to retrieve return

status and output parameter values.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CLOSE RepActCursor USING sqldaout;

Using Host Variables to Pass Parameter Values

You can specify up to 1023 parameters for passing data between an application and a
procedure. You can pass values into a procedure using any SQL expression except a subquery,
an aggregate function, or a LONG column, string, TID or Date/Time function. Refer to the
ALLBASE/SQL Reference Manual \Expressions" chapter for more information. (Built-in
variables cannot be used as parameters, since they are only available within the procedure.)
Input parameter values can be passed using host variables or literal values. For any OUTPUT
parameters, you must use host variables. (In the EXECUTE PROCEDURE clause of a
CREATE RULE statement, you can pass a column name as an input parameter, but column
names are not permitted in procedures invoked through the EXECUTE PROCEDURE
statement.) Note that this section discusses static parameters. Dynamic parameters are
discussed in the following section, \Using Dynamic Procedure Parameters."

The following example shows a procedure de�nition, followed by an excerpt from an
application program that executes the procedure programmatically:

CREATE PROCEDURE ManufDB.Process12

(Operator CHAR(20),

Shift CHAR(20),

FailureType CHAR(10) NOT NULL) AS

BEGIN

INSERT INTO ManufDB.TestMonitor

VALUES (:Operator, CURRENT_DATETIME,

:Shift, :FailureType);

Using Procedures in Application Programs 5-9



IF ::sqlcode = 0 THEN

COMMIT WORK;

RETURN 0;
ELSE

RETURN 1;

ENDIF;

END;

The following example shows the execution of procedure ManufDB.Process12 using host
variables to pass in the values for Operator, Shift, and FailureType:

First, declare host variables. Note that the same names are used

for host variables in the application program that were used in the

parameter de�nitions of the CREATE PROCEDURE statement. While

this is not required, it helps in seeing the relationship between the

procedure and the application program.

C Declarations: COBOL Declarations:

EXEC SQL BEGIN DECLARE SECTION; EXEC SQL BEGIN DECLARE SECTION END-EXEC.

char Operator[21]; 01 OPERATOR PIC X(20).

sqlind OperatorInd; 01 OPERATORIND SQLIND.

char Shift[21]; 01 SHIFT PIC X(20).

sqlind ShiftInd; 01 SHIFTIND SQLIND.

char FailureType[11]; 01 FAILURETYPE PIC X(10).

EXEC SQL END DECLARE SECTION; EXEC SQL END DECLARE SECTION END-EXEC.

5-10 Using Procedures in Application Programs



A routine within the application program obtains values for

Operator, Shift, and FailureType from a user who enters the data.

If either Shift or Operator is null, the corresponding indicator

variable is set to �1.

Next, call the procedure to enter the failure information into the

database:

In C: In COBOL:

EXEC SQL EXECUTE PROCEDURE EXEC SQL EXECUTE PROCEDURE

ManufDB.Process12(:Operator ManufDB.Process12 (:OPERATOR

:OperatorInd, :Shift :OPERATORIND, :SHIFT

:ShiftInd, :FailureType); :SHIFTIND, :FAILURETYPE) END-EXEC.

Each host variable name in the EXECUTE PROCEDURE statement maps in sequential order
to a parameter de�nition in the CREATE PROCEDURE statement. Inside the procedure,
values are referenced by parameter name, not by host variable name. Thus, parameter names
and host variable names need not be the same.

As in the example, you use indicator variables in the parameter list of the EXECUTE
PROCEDURE statement to indicate null values. But inside the procedure, the parameter
itself contains the null value. In order to pass a null operator name to the procedure, you set
the indicator variable OperatorInd to �1 and the content of the host variable Operator is
unde�ned. Inside the procedure, the parameter Operator is set to NULL, and this fact can be
determined through a test:

IF :Operator IS NULL THEN

PRINT 'Parameter is null';

ELSE

PRINT :Operator;

ENDIF;

Using Dynamic Procedure Parameters

You can specify dynamic parameters in a prepared EXECUTE PROCEDURE statement.
Dynamic input parameters are passed from host variables or an SQLDA data bu�er in the
application to procedure parmeters. Dynamic output parameters are passed from procedure
parameters to host variables or an SQLDA data bu�er in the application. Table 5-2 shows
when dynamic parameter values are passed.

Using Procedures in Application Programs 5-11



Table 5-2.

When Dynamic Parameters are Passed Between an Application and a

Procedure

Type of Processing Input Parameter Values Output Parameter Values

Cursor Processing OPEN CLOSE

Non-Cursor Processing EXECUTE PROCEDURE EXECUTE PROCEDURE

The following statement contains three dynamic procedure parameters:

EXECUTE PROCEDURE ? = InventoryReport (?, ? OUTPUT)

Note that a procedure return status is always an output (only) parameter. Any other dynamic
procedure parameter is assumed to be for input only unless OUTPUT or OUTPUT ONLY is
speci�ed.

Refer to the ALLBASE/SQL Reference Manual for complete syntax and to the \Using
Parameter Substitution in Dynamic Statements" chapter in this manual.

Returning a Return Status Code

A return status code is an integer value returned from a procedure not invoked by a rule. You
de�ne the meaning of the code within the procedure. You could use the return status code to
indicate the success or failure of the procedure, the value of SQLCODE, or some other ag.

You must declare an integer host variable in your application to hold the code, and use the
host variable as a part of the EXECUTE PROCEDURE statement. Any legal host variable
name can be used as a return code name. The following example in C uses an integer host
variable named Status:

5-12 Using Procedures in Application Programs



EXEC SQL EXECUTE PROCEDURE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:Status =

Process12(:OpName :OpNameInd, :Shift :ShiftInd, :FailureType);

if(sqlca.sqlcode==0) {

if(Status==0) printf("Failure type entered\n");
else printf("Failure type not entered. INSERT failed\n");

}

A similar example in COBOL uses an integer host variable named RETCODE:

EXEC SQL EXECUTE PROCEDURE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:RETCODE = PROCESS12 (:OPERATOR :OPERATORIND,

:SHIFT :SHIFTIND, :FAILURETYPE) END-EXEC.

IF SQLCODE IS ZERO THEN

IF RETCODE IS ZERO THEN

DISPLAY "FAILURE TYPE ENTERED."

ELSE

DISPLAY "FAILURE TYPE NOT ENTERED. INSERT FAILED."

END-IF

END-IF.

On return from the execution of the procedure, you �rst test SQLCODE, and if it is zero, you
then test the value of the return code. If SQLCODE is not zero, the return code is unde�ned,
since the procedure failed to execute properly.

Testing SQLCODE and SQLWARN0 on Return from a Procedure

Upon return from an EXECUTE PROCEDURE call, the value of SQLCODE indicates
the success of procedure execution itself, not of any individual statement in the procedure.
After returning from an EXECUTE PROCEDURE statement, your application should test
SQLCODE to determine if the proceedure was successful and SQLWARN0 for possible errors,
warnings, and informational messages.

A non-zero SQLCODE is returned from procedure execution in the following situations:

The procedure was not executed at all. Possible reasons are that the procedure was not
found or that the user does not have the appropriate authority.
An error occurred in the procedure when a WHENEVER SQLERROR STOP statement
was active. Such an error causes the procedure to terminate, and the current transaction is
rolled back.
An error occurred in evaluating an IF or WHILE condition or an expression in an
assignment statement. Such an error causes the procedure to terminate, and previously
executed statements are not rolled back (unless a severe error occurred).
An error occurred in copying output values to the user's host variables. For example, a null
value might be returned, but a null indicator variable was not provided in the parameter
list.

In all other cases, SQLCODE is 0 on return from a procedure, including cases in which errors
occurred in a procedure and did not cause the procedure to stop. Messages for any errors from
the last SQL statement executed by the procedure are available on return from the procedure
by testing SQLWARN0 for a value of 'W' and using SQLEXPLAIN.

Using Procedures in Application Programs 5-13



Checking for All Errors and Warnings

The following type of routine is recommended on return from an EXECUTE PROCEDURE
statement in C:

while (sqlca.sqlcode < 0 || sqlca.sqlwarn[0]=='W')

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

}

The following is a similar routine in COBOL:

IF SQLCODE IS NOT ZERO OR SQLWARN0 = "W" THEN

PERFORM M100-DISPLAY-MESSAGE
UNTIL SQLCODE IS ZERO AND SQLWARN0 <> "W".

...

M100-DISPLAY-MESSAGE.

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

DISPLAY SQLMESSAGE.

M100-EXIT.

EXIT.

This routine tests both SQLCODE and SQLWARN0 for the presence of error conditions,
warnings, and messages of all kinds, including those generated by PRINT and RAISE ERROR
statements and resulting from PRINTRULES being set on.

Returning Output Values

You can return data values to an application from a procedure (although not from a
procedure invoked by a rule) by using the OUTPUT option in the parameter list. To do this
you must use the OUTPUT option in both the CREATE PROCEDURE and EXECUTE
PROCEDURE statements. The following example shows the statement that creates such a
procedure:

CREATE PROCEDURE GetName (PartNumber CHAR(16) NOT NULL,

PartName CHAR(30) NOT NULL
NNNNNNNNNNNNNNNNNNNN
OUTPUT ) as

BEGIN
SELECT PartName INTO :PartName

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber);

RETURN ::sqlcode;

END;

5-14 Using Procedures in Application Programs



The following shows how the procedure is invoked from an application program:

Host variables are declared. In this example, the host variable names are

di�erent from the parameter names used in the CREATE PROCEDURE statement.

C Declarations: COBOL Declarations:

EXEC SQL BEGIN DECLARE SECTION; EXEC SQL BEGIN DECLARE SECTION END-EXEC.

char PartNo[16]; 01 PARTNO PIC X(15).

char Part[31]; 01 PART PIC X(30).

int ReturnStatus; 01 RETCODE PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION; EXEC SQL END DECLARE SECTION END-EXEC.

The application prompts for a part number, then calls the

procedure to obtain the part's name from the Parts table, as follows:

In C: In COBOL:

EXEC SQL EXECUTE PROCEDURE EXEC SQL EXECUTE PROCEDURE

:ReturnStatus=GetName :RETCODE = GETNAME (:PARTNO,

(:PartNo, :Part
NNNNNNNNNNNNNNNNNNNN
OUTPUT ); :PART

NNNNNNNNNNNNNNNNNNNN
OUTPUT ) END-EXEC.

if(sqlca.sqlcode==0) IF SQLCODE IS ZERO THEN

if(ReturnStatus==0) IF RETCODE IS ZERO THEN

printf("Name is %s\n", Part); DISPLAY "NAME IS " PART

END-IF.

END-IF.

In the CREATE PROCEDURE statement, two parameters are de�ned and given data types
and sizes: PartNumber and PartName, which is declared for output. In the EXECUTE
PROCEDURE statement, the parameters are passed to the procedure in host variables
:PartNo and :Part, which is marked for OUTPUT. On a successful return from the procedure,
the part name is printed out. (If your application requires an output only parameter, you can
specify the ONLY option to avoid unnecessary initialization of procedure parameters.)

Note Be sure to test SQLCODE �rst and then (if desired) the return status code
before examining the data returned in OUTPUT parameters.

Using Procedures in Application Programs 5-15



Additional Error and Message Handling

The use of procedures in application programming can result in errors and messages at
preprocessing time and at run time. At preprocessing time, syntax errors appear in the
SQLMSG �le. These are like other syntax errors detected by the preprocessor. Here is an
example:

DBEnvironment = PartsDBE

Module Name = RULEPROC

CREATE PROCEDURE PurchDB.RemovePart (PartNum CHAR (16) not null) as begin

delete from purchdb.inventory where PartNumber = :PartNum; delet from

|

*** Error in SQL statement ending in line 33.

*** ALLBASE/SQL statement parser error. (DBERR 10978)

*** Unexpected keyword. (DBERR 1006)

At run time four kinds of messages are generated by procedures. Following an EXECUTE
PROCEDURE statement, your application can check the message bu�er for these types of
messages:

Messages from failure of the EXECUTE PROCEDURE statement.
Any messages from the last SQL statement executed by the procedure. This includes
RAISE ERROR messages.
Messages from any PRINT statement executed by the procedure.
Any PRINTRULES messages generated.

As in an application, the most recent or severe ALLBASE/SQL message catalog number is
stored in the SQLCODE �eld of the SQLCA. (It is the number of the �rst error generated by
a statement or the most severe error, if a more severe error occurs after the �rst.)

Messages from Failure of the EXECUTE PROCEDURE Statement

At run time, the EXECUTE PROCEDURE statement returns an error message if the
procedure does not exist, or if a required parameter is not supplied. SQLCODE contains the
error number, and SQLWARN0 is set to 'W' if there is also a warning.

The following type of error results from an incorrect procedure call:

No value was provided for non-nullable parameter VENDORNUMBER in

procedure PURCHDB.CHECKVENDOR. (DBERR 2234)

5-16 Using Procedures in Application Programs



Messages from the Last SQL Statement Executed by the Procedure

Inside a procedure, each SQL statement after the declaration of local variables is assigned
a statement number, including all the control ow and status statements. Note that the
following do not have statement numbers:

BEGIN
ENDIF
ELSE
ENDWHILE
END

When an SQL statement in a procedure causes the procedure to fail, a message indicating
the statement number is loaded into the message bu�er. This message is available to your
application (by using SQLEXPLAIN) in addition to any other messages in the message bu�er.
The following is an example of such a message:

Error occurred executing procedure PURCHDB.DELVENDOR statement 8. (DBERR 2235)

If a WHENEVER SQLERROR STOP directive is active, an SQL runtime error within the
procedure terminates the procedure, causes a rollback and a return to the calling application
with SQLCODE set to the error number of the statement that failed.

If no WHENEVER SQLERROR STOP directive is active, the procedure continues to
completion if non-severe errors occur. On return from the procedure, SQLCODE is 0, and
SQLWARN0 is set to 'W' if the last SQL statement executed by the procedure generated any
error or warning messages (or if any PRINT or PRINTRULES messages were generated).

Whether or not WHENEVER SQLERROR STOP is in e�ect, on exiting the procedure your
application can display any messages generated by the procedure by using SQLEXPLAIN.

It is recommended that whenever possible you handle errors within a procedure by examining
built-in variables and taking appropriate action. The values returned in built-in variables can
be returned to the calling application through OUTPUT parameters or through the RETURN
statement. Inside the procedure, only the most serious error encountered is available through
the built-in variable ::sqlcode. This value can always be returned to the calling application by
means of the return status code, as in the following examples:

In C: In COBOL:

EXEC SQL :ReturnCode = EXEC SQL :RETCODE =

EXECUTE PROCEDURE EXECUTE PROCEDURE

PurchDB.DelVendor(:VNumber); PURCHDB.DELVENDOR (:VNUMBER) END-EXEC.

if(sqlca.sqlcode==0) { IF SQLCODE IS ZERO THEN

if (ReturnCode != 0) IF RETCODE IS NOT ZERO THEN

printf("SQL ERROR\n"); DISPLAY "SQL ERROR."

} END-IF

END-IF.

Using Procedures in Application Programs 5-17



Inside procedure PurchDB.DelVendor:

DELETE FROM PurchDB.Orders

WHERE VendorNumber = :VendorNumber;

RETURN ::sqlcode;

Messages from Errors Caused by the RAISE ERROR Statement

The RAISE ERROR statement provides a way of specifying your own error message numbers
and text. This is very useful inside procedures that are triggered by rules, and it is also useful
if you wish to build a set of error messages of your own. RAISE ERROR lets you assign an
error number and a message, as in the following example:

RAISE ERROR 7001 MESSAGE 'Vendor number exists in the "Orders" table.';

The number range 7000-7999 is reserved for use by this statement (that is, no ALLBASE/SQL
errors appear in this range). In the previous example, when the RAISE ERROR statement
executes, the number �7001 is placed in the local variable, ::sqlcode, and you can test for
the error within the procedure. After exiting the procedure, SQLCODE is set to �7001 if a
WHENEVER SQLERROR STOP statement is in e�ect.

The following example illustrates the use of a RAISE ERROR statement in an application
that tests for errors following the execution of a procedure by a rule triggered by a DELETE
statement. An error is raised in procedure PurchDB.DelVendor and displayed on return to the
calling application. The calling application includes the following DELETE statement:

DELETE FROM PurchDB.Vendors WHERE VendorNumber = :VendorNumber

The attempted deletion �res rule PurchDB.CheckVendor, which invokes procedure
PurchDB.DelVendor. The procedure allows the deletion to take place only if the vendor
number is not found in other tables. If the vendor number does appear in some other table,
an error results. SQLCODE is set to the number of the raised error, and messages like
the following are returned to the message bu�er, from which they can be displayed with
SQLEXPLAIN by the application that encountered the error:

Vendor number exists in the "Orders" table.

Error occurred executing procedure PURCHDB.DELVENDOR statement 8.

(DBERR 2235)

INSERT/UPDATE/DELETE statement had no effect due to execution errors.

(DBERR 2292)

In the �rst message, the raised error reports that the vendor number exists in the Orders
table. A second message in the bu�er identi�es the location in the procedure of the RAISE
ERROR statement that contained the �rst message. The third message reports the failure of
the DELETE statement that �red the PurchDB.CheckVendors rule, which in turn invoked the
PurchDB.DelVendor procedure.

Note that for an error raised in a procedure called by an application, SQLCODE and
SQLWARN0 are set as described in the previous section, \Messages from Errors Caused by
the RAISE ERROR Statement."

RAISE ERROR is the same as other SQL statements in that within or outside of a procedure
the message bu�er is cleared of other errors before the raised error is stored. (Messages for
PRINT and PRINTRULES remain until the procedure returns to the calling application.)
Therefore, it is most useful for errors that cause the procedure to return in an error state.

5-18 Using Procedures in Application Programs



For more information about RAISE ERROR, refer to the section \User De�ned Messages" in
the \Introduction" section of the ALLBASE/SQL Message Manual .

Messages from the PRINT Statement

Use the PRINT statement to store procedure messages in the SQL message bu�er. PRINT
is useful for presenting informational messages that do not generate an error code in the
procedure and for debugging your procedure. When print messages have been generated,
on return to the calling application, SQLWARN0 is set to 'W' and all such messages can be
retrieved with SQLEXPLAIN.

Here is a C example that uses PRINT statements:

if ::sqlcode = 100 then

print 'Row was not found';

else

print 'Error in SELECT statement';

endif;

On returning from the procedure, use SQLEXPLAIN in a loop to extract all the messages
generated by PRINT during the operation of the procedure:

while (sqlcode != 0 || sqlwarn[0]=='W') {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

}

In COBOL:

IF SQLCODE IS NOT ZERO OR SQLWARN0 = "W" THEN
PERFORM M100-DISPLAY-MESSAGE

UNTIL SQLCODE IS ZERO AND SQLWARN0 <> "W".

...

M100-DISPLAY-MESSAGE.

EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.

DISPLAY SQLMESSAGE.

M100-EXIT.

EXIT.

The above routine displays all warnings and errors, including all messages generated by
PRINT and as a result of rules �ring when PRINTRULES is set on. Note that any message
generated by PRINT or resulting from PRINTRULES being set on is loaded into the message
bu�er each time such a statement executes. Unlike other SQL statement messages, these are
not cleared from the message bu�er until return to the calling application and just before the
next SQL statement executes.

For more information about PRINT, refer to the section \User De�ned Messages" in the
\Introduction" section of the ALLBASE/SQL Message Manual .

Using Procedures in Application Programs 5-19



Comparing a Procedure and an Embedded SQL Application

Imagine a data entry application which either updates prices or adds new parts to the Parts
table in the sample DBEnvironment PartsDBE depending on whether the Part number is
currently in the table. You could code this application using conventional embedded SQL
programming. In that approach, you would declare host variables, then prompt for data, then
access the database:

In C: In COBOL:

EXEC SQL BEGIN DECLARE SECTION; EXEC SQL BEGIN DECLARE SECTION END-EXEC.

char PartNumber[17]; 01 PARTNUMBER PIC X(16).

float SalesPrice; 01 SALESPRICE PIC S9(8)V9(2) COMP-3.

sqlind SalesPriceInd; 01 SALESPRICEIND SQLIND.

float InputPrice; 01 INPUTPRICE PIC S9(8)V9(2) COMP-3.

EXEC SQL END DECLARE SECTION; EXEC SQL END DECLARE SECTION END-EXEC.

Prompt for values for part number and input salesprice,

then test for the existence of the part number in the Parts table.

In C: In COBOL:

EXEC SQL SELECT SalesPrice INTO EXEC SQL SELECT SALESPRICE INTO

:SalesPrice :SalesPriceInd :SALESPRICE :SALESPRICEIND

FROM PurchDB.Parts FROM PURCHDB.PARTS

WHERE PartNumber = :PartNumber; WHERE PARTNUMBER = :PARTNUMBER END-EXEC.

If the part number is in the table, update the price.

In C: In COBOL:

if (sqlcode == 0) { IF SQLCODE IS ZERO THEN

EXEC SQL UPDATE PurchDB.Parts EXEC SQL UPDATE PurchDB.Parts

SET SalesPrice = :InputPrice SET SalesPrice = :InputPrice

WHERE PartNumber = :PartNumber; WHERE PartNumber = :PARTNUMBER END-EXEC.

if(sqlcode != 0) IF SQLCODE IS NOT ZERO THEN

printf("Error on UPDATE\n"); DISPLAY "ERROR ON UPDATE."

} END-IF

END-IF.

5-20 Using Procedures in Application Programs



If the part number is not in the table, add it.

In C: In COBOL:

elseif (sqlcode == 100) { IF SQLCODE IS 100 THEN

EXEC SQL INSERT INTO EXEC SQL INSERT INTO

PurchDB.Parts (PartNumber, PURCHDB.PARTS (PARTNUMBER,SALESPRICE)

SalesPrice) VALUES VALUES (:PARTNUMBER,:INPUTPRICE)

(:PartNumber, :InputPrice); END-EXEC.

if(sqlcode != 0) IF SQLCODE IS NOT ZERO THEN

printf("Error on INSERT\n"); DISPLAY "ERROR ON INSERT."

} END-IF

END-IF.

As an alternative, you could code all this in a procedure, then call the procedure from your
application. Here is the CREATE PROCEDURE statement:

CREATE PROCEDURE NewPrice(PartNumber CHAR(16) NOT NULL,

InputPrice DECIMAL(10,2) NOT NULL) AS

BEGIN

SELECT PartNumber INTO :PartNumber FROM

PurchDB.Parts WHERE PartNumber = :PartNumber;

if ::sqlcode = 0 then /* Row was found, so price is updated */

UPDATE PurchDB.Parts SET SalesPrice = :InputPrice

WHERE PartNumber = :PartNumber;

if ::sqlcode <> 0 then
print 'Error occurred during UPDATE';

endif;

elseif ::sqlcode= 100 then /* Row not found, so insert it */

INSERT INTO PurchDB.Parts (PartNumber, SalesPrice)

VALUES (:PartNumber, :InputPrice);

if ::sqlcode <> 0 then

print 'Error occurred during INSERT';

endif;

else

print 'Error occurred during SELECT';

endif;

return ::sqlcode;

end;

Using Procedures in Application Programs 5-21



The following is the code that would be required in your application to execute the procedure:

Declare host variables.

In C: In COBOL:

EXEC SQL BEGIN DECLARE SECTION EXEC SQL BEGIN DECLARE SECTION END-EXEC.

char Number[17]; 01 NUMBER PIC X(16).

double Price; 01 PRICE PIC S9(8)V9(2) COMP-3.

integer ReturnCode; 01 RETCODE PIC S9(4) COMP.

EXEC SQL END DECLARE SECTION EXEC SQL END DECLARE SECTION END-EXEC.

Prompt for values for part number and input salesprice.

Call the procedure to process the entry.

In C: In COBOL:

EXEC SQL EXECUTE PROCEDURE EXEC SQL EXECUTE PROCEDURE

:ReturnCode = :RETCODE =

NewPrice(:Number, :Price); NEWPRICE (:NUMBER, :PRICE)

END-EXEC.

if(sqlca.sqlcode==0) { IF SQLCODE IS ZERO THEN

if(ReturnCode!=0) IF RETCODE IS NOT ZERO THEN

printf("Error in NewPrice\n"); DISPLAY "ERROR IN NEWPRICE."

} END-IF

END-IF.

The host variables may be passed as parameters, but host variables are not available within
the procedure. You must de�ne parameters to store data that is passed into the procedure.
Parameters PartNumber and SalesPrice are used within the procedure to store the data
passed in from the host variables :Number and :Price. In this example, the two variables are
named di�erently so as to distinguish them. However, you could use the same names for the
parameters as for the host variables, since their scopes do not overlap.

Why Use a Procedure?

The advantage of coding a procedure instead of a segment of application code is that you
can separate the programmatic function (entering a new price) from the need to know the
structure of the database itself. Thus, if the structure of the database should change, it is only
necessary to modify the procedure, not the application code. If the procedure is used by many
di�erent applications, the savings in application maintenance can be considerable.

5-22 Using Procedures in Application Programs



6

Using Data Integrity Features

There are several features involving data integrity which are not discussed in the language
speci�c ALLBASE/SQL application programming guides. This chapter deals with them from
a programming perspective under the following headings:

Setting the Error Checking Level.
Using Table Check Constraints.
De�ning and Dropping Table Constraints.
De�ning and Dropping View Constraints.
Deferring Constraint Error Checking.
Locating Constraint Errors

Most examples are based on the recreation database, RecDB, that is provided as part of the
sample database environment, PartsDBE.

Refer to the ALLBASE/SQL Reference Manual and the ALLBASE/SQL application
programming guides for complete syntax and further discussion of constraint features.

Setting the Error Checking Level

You can choose either statement level or row level error checking. The default is statement
level; either the entire statement succeeds, or none of it succeeds. For example, if there is an
error on the �fteenth row of a twenty-row BULK INSERT statement, the entire statement has
no e�ect and no rows are inserted. When you choose row level error checking, an error on the
�fteenth row results in fourteen rows being inserted into the database. An error message is
returned in both cases.

Row level checking enhances performance but generally requires additional coding on your
part. Statement level checking requires less coding possibly at the expense of additional
overhead during statement execution. Partial changes by a statement are tracked by
ALLBASE/SQL if statement level error checking is in e�ect. This allows the statement to be
undone should errors occur. Statement level checking is the ISO/ANSI SQL standard.

The SET DML ATOMICITY statement can be used to set error checking to row or statement
level at any point in an application. The statement sets the error checking level for all
ALLBASE/SQL statements, including those involving constraints. However, it can be
temporarily overridden for constraint errors only, as described in a later section.

Note that when a transaction terminates (with either a COMMIT WORK statement or by
being rolled back), the error checking level always returns to the default of statement level.

Refer to the \SQL Commands" chapter of the ALLBASE/SQL Reference Manual for the full
syntax of the SET DML ATOMICITY statement.

Using Data Integrity Features 6-1



Using Table Check Constraints

Check constraints check data against a de�ned expression in an INSERT or UPDATE
statement. You can de�ne check constraints on any column of a table or on a view. For
information about view constraints, see the section \De�ning and Dropping View Constraints"
later in this document. Use table check constraints when you want to test a column against
a condition you de�ne rather than against data in the database. This applies only to table
checks since they cannot contain subqueries. (Views using WITH CHECK OPTION can
contain subqueries and are discussed in a separate section below.)

Table check constraints can be de�ned at the table level or the column level. At the table
level, the constraint can reference multiple columns. At the column level, the constraint can
reference only the column on which it is de�ned. The following syntax applies to both table
and column level check constraints:

CHECK (SearchCondition)

The search condition is an expression which must not evaluate to false. If digits and NULLs
are combined in an expression, the result is the unknown boolean value. A true or unknown
value satis�es a table check constraint.

In the following search condition, for example, when ColumnA equals 15, the search condition
is satis�ed because the result of the expression is true:

ColumnA > 10

When ColumnA equals NULL, the search condition is also satis�ed because the result of this
same expression is unknown. However, when ColumnA equals 5, the search condition is false
and a check constraint error would occur (unless constraint checking is currently deferred).

Note that their are restrictions on the search condition of a table check constraint. The \SQL
Commands" chapter of the ALLBASE/SQL Reference Manual lists these restrictions along
with complete syntax for the CREATE TABLE and ALTER TABLE statements.

6-2 Using Data Integrity Features



Defining and Dropping Table Constraints

By using either the CREATE TABLE or the ALTER TABLE statement, you can add any
type of table constraint (check, unique, or referential) on an existing column or a new column
and you can drop any type of constraint.

The following example uses a CREATE TABLE statement to de�ne a table level check
constraint based on the Date and Time columns for the Events table:

CREATE PUBLIC TABLE Events

(Event CHAR(30),

Coordinator CHAR(20),

SponsorClub CHAR(15),

Date DATE DEFAULT CURRENT_DATE,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CHECK (Date >= '1992-02-21' AND Time > '00:00:00') CONSTRAINT DateTimeCheck,

Time TIME,

FOREIGN KEY (Coordinator, SponsorClub)

REFERENCES Members (MemberName, Club) CONSTRAINT Events_FK)

IN RecFS;

Note that you can de�ne a table level constraint at any point in the column de�nition list of a
CREATE TABLE statement.

To de�ne a column level check constraint on the Date column of the Events table, the
CREATE TABLE statement might look like this:

CREATE PUBLIC TABLE Events

(Event CHAR(30),

Coordinator CHAR(20),

SponsorClub CHAR(15),

Date DATE DEFAULT CURRENT_DATE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CHECK (Date >= '1992-02-21') CONSTRAINT DateCheck,

Time TIME,

FOREIGN KEY (Coordinator, SponsorClub)

REFERENCES Members (MemberName, Club) CONSTRAINT Events_FK)

IN RecFS;

The following examples illustrate use of the ALTER TABLE statement to add a column, add
a constraint, and drop a constraint in the Recreation database:

Using Data Integrity Features 6-3



Adding a Column to the Recreation Database

You can use the ALTER TABLE statement to add one or more columns to a table. In the
following example the ClubContact column is added to the Clubs table. The new column will
contain the member name of the person designated as the contact for the club. The column's
value cannot be null.

ALTER TABLE RecDB.ClubsNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
ADD COLUMN ClubContact CHAR(20) NOT NULL

Adding a Constraint to the Recreation Database

With the ALTER TABLE statement, you can add any type of constraint to a table without
having to drop the table and recreate it with the new constraint. In the following example, a
referential constraint is added to the Clubs table. The new constraint ensures that any club
contact name exists as a member name in the Members table.

Note that you must have REFERENCES authority on the Members table to add a constraint

that references a column in the Members table.

ALTER TABLE RecDB.Clubsx
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l
x
l

ADD CONSTRAINT

FOREIGN KEY (ClubContact)

REFERENCES RecDB.Members (MemberName) CONSTRAINT (Contact_PK)

When the ClubContact column of the RecDB.Clubs table is modi�ed, a club con-
tact name that does not appear in the Members table will cause a referential constraint
error.

Note that you cannot add a constraint to a view without dropping the view and recreating it.

Dropping a Constraint from the Recreation Database

A constraint can be dropped from a table without having to drop the table and recreate it.
In the following example, a referential constraint is dropped from the Clubs table. After the
constraint is dropped, future modi�cations to the ClubContact column of the Clubs table will
not involve a check for a corresponding MemberName in the Members table.

ALTER TABLE RecDB.Clubs
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DROP CONSTRAINT Contact_PK

6-4 Using Data Integrity Features



Defining and Dropping View Constraints

In contrast to table constraints, unique and referential constraints cannot be de�ned on a
view. A type of check constraint is available with the CREATE VIEW statement. The WITH
CHECK OPTION ensures that modi�cations made through an updatable view satisfy all
conditions of the view de�nition.

The following example de�nes a view check constraint named DateCheck based on the view
de�nition of the updatable view named RecDB.EventView:

CREATE VIEW RecDB.EventView

(Event,

Date)

AS

SELECT RecDB.Event,

RecDB.Date

FROM RecDB.EventsNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
WHERE Date >= CURRENT_DATENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

WITH CHECK OPTION CONSTRAINT DateCheck

When modi�cations are made through a view de�ned WITH CHECK OPTION, the new
values must be visible in the view de�nition. That is, any attempt to change data through
such a view must satisfy all conditions in the query speci�cation. If this is not so, the view
check is violated, an error is returned, and the statement has no e�ect.

Note that view check constraints are not deferrable, and a SET CHECK DEFERRED
statement does not a�ect them.

Also note that to drop a view check constraint, you must drop the view and recreate it.

Using Data Integrity Features 6-5



Deferring Constraint Error Checking

With the SET CONSTRAINTS statement you can defer constraint error checking for any
constraint type for all or part of a transaction. You can defer constraint error checking at
any time, within or outside of a transaction. Note, however, that both error checking and
constraint error checking are set to their defaults when a transaction ends. Error checking
is set to row level, and constraint error checking is set to immediate when a transaction is
committed or rolled back.

Within a transaction, the SET CONSTRAINTS statement does not succeed if you attempt to
set deferred constraint checking to immediate when constraint errors exist. An error message
is generated indicating that there are one or more constraint errors of a particular constraint
type. Constraint checking remains deferred. If there are unresolved constraint errors, you
can check error codes and choose to correct the the errors and issue a COMMIT WORK
statement, or you can issue a ROLLBACK WORK statement.

You might want to defer constraint checking to avoid errors on referential constraints that will
be resolved by the end of a transaction. Refer to the \Coding with Deferred Constraint Error
Checking" section later in this chapter for an example.

Another use might be to avoid a partially processed SQL statement (due to constraint errors)
within a transaction in which row level error checking is in e�ect. You can defer constraint
checking until just before the end of the transaction. Then set constraints to immediate to
determine if any constraint errors occurred. If errors were detected, you can correct them
before ending the transaction. Refer to the ISQL LOAD command for an example of loading
data with row level error checking and constraint checking deferred.

Refer to the \SQL Commands" chapter of the ALLBASE/SQL Reference Manual for the full
syntax of the SET CONSTRAINTS statement.

6-6 Using Data Integrity Features



Locating Constraint Errors

When your transaction defers constraint checking, you can minimize the possibility of rollback
due to constraint errors by setting constraint checking to IMMEDIATE just before the
COMMIT WORK statement is executed. Then check sqlcode for constraint errors. If errors
were encountered, either prompt the user to make corrections or use the trouble shooting
templates below to locate the errors. Once all errors have been corrected, issue a COMMIT
WORK statement. The \Coding with Deferred Constraint Error Checking" section provides
an additional example. Note that a template could employ either a BULK SELECT or a
BULK FETCH statement.

Template for Single Column Unique Constraint Errors

This template returns the values in rows where a unique value in a single column unique
constraint or unique index is duplicated:

BULK SELECT UniqueColumn

INTO :TemplateArray, :StartIndex, :NumberOfRows

FROM UniqueTable

GROUP BY UniqueColumn

HAVING COUNT (UniqueColumn) > 1

Template for Multiple Column Unique Constraint Errors

This template returns the values in rows where unique values are duplicated in a multiple
column unique constraint or unique index having n columns:

BULK SELECT UniqueColumn1, UniqueColumn2, . . . , UniqueColumnn

INTO :TemplateArray, :StartIndex, :NumberOfRows

FROM UniqueTable

GROUP BY UniqueColumn1, UniqueColumn2, . . . , UniqueColumnn

HAVING COUNT (UniqueColumn1) > 1

AND COUNT (UniqueColumn2) > 1
...

AND COUNT (UniqueColumnn) > 1

Template for Single Column Referential Constraint Errors

This template returns the values in rows where the referencing value in a single referencing
column matches no referenced value:

BULK SELECT ForeignKeyColumn

INTO :TemplateArray, :StartIndex, :NumberOfRows

FROM ForeignKeyTable

WHERE ForeignKeyColumn IS NOT NULL

AND NOT EXISTS (SELECT *

FROM PrimaryKeyTable

WHERE ForeignKeyColumn = PrimaryKeyColumn)

Using Data Integrity Features 6-7



Template for Multiple Column Referential Constraint Errors

This template returns the values in rows where the referencing values in a multiple column
referencial constraint with n columns match no referenced values:

BULK SELECT ForeignKeyColumn1, ForeignKeyColumn2, . . . , ForeignKeyColumnn

INTO :TemplateArray, :StartIndex, :NumberOfRows

FROM ForeignKeyTable

WHERE ForeignKeyColumn1 IS NOT NULL

AND ForeignKeyColumn2 IS NOT NULL
...

AND ForeignKeyColumnn IS NOT NULL

AND NOT EXISTS (SELECT *

FROM PrimaryKeyTable

WHERE ForeignKeyColumn1 = PrimaryKeyColumn1

AND ForeignKeyColumn2 = PrimaryKeyColumn2
...

AND ForeignKeyColumnn = PrimaryKeyColumnn

Coding with Deferred Constraint Error Checking

Suppose the user wants to update information in the Clubs table and in the Members table
of RecDB. The Club column in the Members table references the ClubName column in the
Clubs table, and the ClubContact column in the Clubs table references the MemberName
column in the Members table. It is not possible to update both of these tables in the same
instant, and a referential constraint error could occur if one table is modi�ed and the other
table is still unchanged. In order to resolve these circular referential constraints within the
same transaction, you can defer constraint error checking until the end of the transaction at
which point all constraints are resolved, as in the following example: (Error checking is set to
statement level, the default.)

Execute subroutines to display and prompt for information needed in the Clubs table

and the Members table.

Place user entered data in appropriate host variables.

BEGIN WORK

At this point you want to update the Clubs table. However, ClubContact in the Clubs

table references MemberName in the Members table, and the Members table does not yet

have the appropriate primary key value inserted.

Defer referential error checking to the transaction level so that all constraints

in the transaction can be resolved before constraint errors are checked.

6-8 Using Data Integrity Features



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SET REFERENTIAL CONSTRAINTS DEFERRED

UPDATE RecDB.Clubs

SET ClubName = :NewClubName :ClubNameInd,

ClubPhone = :ClubPhone,

Activity = :Activity,

ClubContact = :ClubContact

WHERE ClubName = :ClubName

These indented statements are shown to illustrate

the warning issued when constraint checking is set

to a state at which it already exists and to show

what constraint errors would stop statement execution

if constraint checking had not been deferred.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SET REFERENTIAL CONSTRAINTS DEFERRED

A warning is issued, since constraints are already deferred.

REFERENTIAL constraints already set to DEFERRED. (DBWARN 2066)

A referential constraint error occurs at this point. If you

set constraints to IMMEDIATE, an error is issued saying that

there are one or more referential constraint errors, but

constraints stay deferred because the SET CONSTRAINTS

IMMEDIATE statement fails when outstanding constraint

errors exist.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SET REFERENTIAL CONSTRAINTS IMMEDIATE

FOREIGN KEY constraint violated. (DBERR 2293)

The sqlcode �eld of the sqlca equals �2293 because no primary

key exists for the foreign key ClubContact. Constraint

checking remains deferred.

Resolve the unsatis�ed constraints by inserting the necessary primary

keys in the Members table.

INSERT INTO RecDB.Members

VALUES MemberName = :MemberName,

Club = :Club,

MemberPhone = :MemberPhone :MemberPhoneInd

Using Data Integrity Features 6-9



Set constraint error checking to IMMEDIATE. If the SET CONSTRAINTS IMMEDIATE

statement succeeds, constraints are set to IMMEDIATE. If the SET CONSTRAINTS

IMMEDIATE statement fails because of constraint errors, constraints remain

deferred. No rollback occurs.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SET REFERENTIAL CONSTRAINTS IMMEDIATE

Check the sqlcode �eld of the sqlca. If constraint errors exist, you could code

statements that locate them, (See the templates in the previous section.) or you could

prompt the user for input to correct the errors.

When all constraint errors are resolved, commit the transaction.

COMMIT WORK

If sqlcode is negative, the transaction is rolled back. Inform the user.

For example, if sqlcode equals �2293, indicating no primary key match, display the

error message and prompt the user to indicate whether or not to insert a new

MemberName/Club primary key in the Members table or a new ClubName primary

key in the Clubs table or to exit the transaction. Execute the appropriate subroutine.

Else, if sqlcode = 0, tell the user the transaction was successfully completed, and

prompt for additional information for the Clubs and Members tables or a return to

the main menu display.

6-10 Using Data Integrity Features



7
Transaction Management with Multiple DBEnvironment
Connections

It is possible to establish a maximum of 32 simultaneous database connections. When your
application must access more than one DBEnvironment, there is no need to release one before
connecting to another. Performance is greatly improved by using this method rather than
connecting to and releasing each DBEnvironment sequentially.

This multi-connect functionality is available in either of two modes. Single transaction
mode allows one transaction at a time to be active in the currently connected set of
DBEnvironments. Multi-transaction mode allows multiple, simultaneous transactions across
the currently connected set of DBEnvironments with a maximum of one active transaction per
connection. The ALLBASE/SQL Reference Manual contains an introductory explanation
in the \Using Multiple Connections and Transactions with Timeouts" section of the \Using
ALLBASE/SQL" chapter. Complete syntax is presented in the \SQL Statements" chapter
under SET CONNECTION and SET MULTITRANSACTION. The present chapter
concentrates on application programming issues.

There are numerous scenarios in which multi-connect functionality could be useful. For
example, a DBEnvironment maintenance application to be run in single-user mode might
use multiple, nested transactions to select data from one DBEnvironment, insert it into
another, then delete the selected data from the original DBEnvironment. Another application
of multi-transaction mode might involve a subroutine that contains a security audit log
transaction. The subroutine is called from within a complex transaction whenever a user
requests access to data in a particular table. Another scenario might be a windows based
application that displays information from several DBEnvironments. This chapter presents
some general considerations and provides a pseudocode example. The following topics are
addressed:

Preprocessing and Installing Applications.
Understanding Timeouts.
Using Timeouts to Prevent Undetectable Deadlocks.
Using Timeouts to Prevent In�nite Waits.
Using Timeouts to Tune Performance.
Example Using Single-transaction Mode with Timeouts.

Note that although multiple DBEnvironment connections are possible, a given transaction
must require resources from just one DBEnvironment.

Transaction Management with Multiple DBEnvironment Connections 7-1



Preprocessing and Installing Applications

The method of preprocessing and installing a static application in a DBEnvironment is
described in detail in the ALLBASE/SQL application programming guides. This section
relates speci�cally to multi-connect applications.

To avoid producing multiple modules for the same application, it is recommended that you
preprocess an application once. Then install the resulting module in every DBEnvironment
accessed by the application.

Be aware that if di�erent users are preprocessing the same application, the owner name of the
resulting module defaults to that of the user doing the preprocessing. Unless you specify the
owner name in the preprocessor command line, a separate module results for each user who
has preprocessed a given application.

Understanding Timeouts

When an application requests a database resource that is unavailable, it is placed on a wait
queue. Database resources that cause applications to be placed on a wait queue include the
following:

Locks The application attempts to lock a database object that has already been
locked in a conicting mode.

Transaction Slots The maximum number of concurrent transactions has been reached
and the application attempts to begin a transaction. Note that
ALLBASE/SQL creates an implicit, brief transaction when the
CONNECT statement is issued.

If the amount of time the application waits is longer than the timeout value, an error occurs
and the transaction is rolled back. The application must check the sqlcode �eld of the sqlca
for timeout error 2825.

The strategy for handling timeout errors depends on the speci�c needs of your application and
on your business procedures. When encountering a timeout error, you may want to inform the
user that a timeout has occurred and then halt execution of the program. Or, you may want
to prompt the user to try again, in case the database resource is now available.

A timeout value can be changed with the following statements:

SET USER TIMEOUT
START DBE
START DBE NEW
START DBE NEWLOG
SQLUtil ALTDBE

The SQLUtil SHOWDBE command displays the timeout values that have been set in
the DBECon �le. (Note that NONE is the default when no timeout value is speci�ed at
DBEnvironment creation time.) Remember, however, that DBECon �le values can be
temporarily overridden with a START DBE or START DBE NEWLOG statement. In such a
case, the DBEnvironment startup parameters currently in e�ect are not reected by issuing a
SHOWDBE command.

7-2 Transaction Management with Multiple DBEnvironment Connections



Locking and transaction management strategies should be considered when setting timeout
values. Refer to the following section \Using Timeouts to Tune Performance" and to the
\Programming for Performance" chapter in the ALLBASE/SQL application programming
guides for more information.

The following example illustrates how you can check for the occurrence of a timeout error:
...

CONNECT TO '../sampledb/PartsDBE'

Check the sqlcode �eld of the sqlca.

If sqlcode equals -2825, the CONNECT has timed out because the maximum

number of transaction slots has been exceeded. Although the application has

not explicitly begun a transaction, ALLBASE/SQL creates an implicit, short-lived

transaction when a CONNECT is issued. Since the application has not yet

executed the SET USER TIMEOUT statement, the timeout value in the DBECon �le

is still in e�ect.

To prevent the application from waiting at all for a database resource,

such as the lock needed for an update, set the timeout value to zero. The

timeout values of other applications are una�ected.

Timeout = 0

SET USER TIMEOUT :Timeout

BEGIN WORK

Check the sqlcode �eld of the sqlca.

If sqlcode equals -2825, the maximum number of transaction slots has been exceeded.

UPDATE PurchDB.Parts

SET SalesPrice = SalesPrice * 1.25

WHERE SalesPrice > 500.00

Check the sqlcode �eld of the sqlca.

If sqlcode equals -2825, another transaction has placed an incompatible lock

on a database object which your transaction wishes to lock for update.

COMMIT WORK

...

Transaction Management with Multiple DBEnvironment Connections 7-3



Using Timeouts to Prevent Undetectable Deadlocks and Infinite
Waits

When multi-transaction mode is in e�ect across multiple DBEnvironments with multiple
applications accessing the same DBEnvironments at the same time, it is possible that a
deadlock that cannot be detected by ALLBASE/SQL could occur. This is known as an
undetectable deadlock. In addition, when multi-transaction mode is used with multiple
connections to the same DBEnvironment, an in�nite wait can occur. To avoid these
situations, be sure your timeout values are set to a value other than NONE. (Note that NONE
is the default when no timeout value is speci�ed at DBEnvironment creation time.)

Undetectable Deadlock Prevention

Suppose your application is simultaneously connected to two DBEnvironments in
multi-transaction mode. At the same time, another user's application is connected to the
same DBEnvironments. At some point as these applications execute, each one has an
active transaction waiting for access to data locked by another transaction in the other
application. It is a classic deadlock, and since the data being waited for spans more than one
DBEnvironment, ALLBASE/SQL cannot detect this deadlock. The two databases will wait
\forever" unless you have set a TIMEOUT value other than NONE for one or both of the
application connections.

Infinite Wait Prevention

An application running in multi-transaction mode with multiple active transactions accessing
data in the same DBEnvironment can encounter undetectable wait conditions. For instance,
the �rst of two such transactions could be holding locks that cannot be released until the
transaction is commited. And the second transaction could require the same locks in order
to complete. The second transaction is waiting for the �rst to commit work, and the �rst
transaction is waiting for the second to return control so that it can commit. Since both
transactions are part of the same process, ALLBASE/SQL cannot detect this situation.
Unless timeouts are set for at least one of these transactions, they could wait in�nitely.

It may not be possible to predict an undetectable wait. Even when the transactions involved
are accessing di�erent tables, the physical proximity of system catalog data could mean that
locks held by transaction one are required by transaction two. This is particularly true in
relation to DDL statements (including the UPDATE STATISTICS statement, even though it
is allowed in DML only mode) and dynamic space expansion.

To prevent an in�nite wait, be sure to set appropriate timeout values and test for the
occurrence of a timeout.

7-4 Transaction Management with Multiple DBEnvironment Connections



Using Timeouts to Tune Performance

The �rst connection that attaches to a DBEnvironment de�nes a set of startup parameters
for the DBEnvironment in shared memory. These parameters remain memory resident until
the last connection to the DBEnvironment is terminated. ALLBASE/SQL associates each
connection with a unique session ID.

When a DBEnvironment connection is initiated with a STARTDBE NEW, SQLUtil ALTDBE,
START DBE, or START DBE NEWLOG statement, any speci�ed or default timeout values
are in e�ect for this and all subsequent connections until there are no active connections
to the DBEnvironment. The exception is the SET USER TIMEOUT statement. When an
application executes this statement, any previously set timeout values are overridden for that
particular session. (Note that an application speci�c timeout value cannot exceed a previously
set DBECon �le maximum timeout value.)

During the execution of a given application, any application speci�c timeout values are
valid for a speci�c DBEnvironment while the application executes, unless overridden by a
subsequent SET USER TIMEOUT statement for the same DBEnvironment.

Example Using Single-transaction Mode with Timeouts

Suppose you want to access three DBEnvironments (PartsDBE, SalesDBE, and
AccountingDBE) to simultaneously display related information from each. Depending on your
coding environment, you could display data from each DBEnvironment in a separate window
or in a speci�c location in the same window. You choose single-transaction mode because just
one transaction at a time must be active.

Since this is a display only application, you decide that all transactions are to be established
with the read committed isolation level. You also decide on appropriate timeout values for
each transaction and how you want to respond to each possible timeout condition. Your goal
is to prevent long waits due to locks held or due to the maximum transaction limit being
reached.

The following pseudocode illustrates this scenario:

De�ne and initialize host variables for DBEnvironment and connection names.

...

Put single-transaction mode in e�ect. Note that although single-transaction mode

is the default, it is good coding practice to specify the transaction mode.

SET MULTITRANSACTION OFF

Transaction Management with Multiple DBEnvironment Connections 7-5



DECLARE SalesCursor

CURSOR FOR

SELECT PartNumber, InvoiceNumber, SalesDate, SalesAmount, CustomerNumber

FROM Owner.Sales

WHERE PartNumber = :PartNumber

AND SalesDate BETWEEN '1991-01-01' AND '1991-06-30'

Connect to three DBEnvironments specifying a connection name for each

connection. Set a timeout value following each current connection.

CONNECT TO :PartsDBE AS :Parts

Note that the following statement sets the Parts connection timeout to the

maximum speci�ed in the DBECon �le. If the maximum is set to NONE (in�nity),

no timeout can occur. Here we'll assume that it is set to 300 seconds.

SET USER TIMEOUT MAXIMUM

CONNECT TO :SalesDBE AS :Sales

SET USER TIMEOUT 30 SECONDS

CONNECT TO :AccountingDBE AS :Accounting

SET USER TIMEOUT 30 SECONDS

Set the current connection to Parts.

SET CONNECTION :Parts

Begin a transaction that accesses PartsDBE. This transaction displays parts data

for a range of part numbers. Here, for clarity, the range is hard coded.

You could, however, use host variables to prompt the user for the lower and upper

limits. Another alternative would be to use dynamic processing, possibly with

dynamic parameters.

BEGIN WORK RC

BULK SELECT PartNumber, PartName, SalesPrice

INTO :PartsArray, :StartIndex, :NumberOfRows

FROM PurchDB.Parts

WHERE PartNumber BETWEEN 20000 AND 21000

Test the sqlcode �eld of the sqlca. If it equals -2825, a timeout has occurred,

and the transaction was rolled back. Display a message and gracefully exit the

application.

Otherwise, end the transaction.

COMMIT WORK

7-6 Transaction Management with Multiple DBEnvironment Connections



Set the current connection to Sales.

SET CONNECTION :Sales

Prompt the user for a part number in the displayed range and accept the response

into a host variable named PartNumber.

OPEN SalesCursor

Begin a second transaction that accesses SalesDBE. This transaction displays sales

data for the �rst six months of 1991 based on the PartNumber entered by the user.

Here, for clarity, the range is hard coded. You could, however, use host variables

to prompt the user for the lower and upper limits of a date range. Another alternative

would be to use dynamic processing, possibly with dynamic parameters.

BEGIN WORK RC

BULK FETCH SalesCursor

INTO :SalesArray, :StartIndex2, :NumberOfRows2

Test the sqlcode �eld of the sqlca. If it equals -2825, a timeout has occurred,

and the transaction was rolled back. Display a message and prompt the user to

try again or exit the application.

If they choose to try again, re-execute the transaction.

If they choose to exit the application, do so gracefully.

If no timeout error (or other error) occurred, continue.

COMMIT WORK

Set the current connection to Accounting.

SET CONNECTION :Accounting

Prompt the user for an invoice number, and accept the response into a host variable

named InvoiceNumber.

Begin a third transaction accessing AccountingDBE. This transaction displays

accounting data for a part number and an invoice number based on the user entered

part number and invoice number. Again you could use dynamic processing, possibly

with dynamic parameters.

BEGIN WORK RC

Transaction Management with Multiple DBEnvironment Connections 7-7



BULK SELECT InvoiceNumber, PartNumber, InvoiceDate, DueDate, DatePaid

INTO :AccountingArray, :StartIndex3, :NumberOfRows3

FROM Owner.Accounting

WHERE InvoiceNumber = :InvoiceNumber

AND PartNumber = :PartNumber

Test the sqlcode �eld of the sqlca. If it equals -2825, a timeout has occurred,

and the transaction was rolled back. Display a message and prompt the user to

try again or exit the application.

If they choose to try again, re-execute the transaction.

If they choose to exit the application, do so gracefully.

If no timeout error (or other error) occurred, continue.

COMMIT WORK

At this point you could loop back to ask the user for either another invoice number

for the same part number, another part number from the range already selected in

the �rst transaction, or a new range of part numbers. Or you could issue the

DISCONNECT ALL statement and exit the application.

7-8 Transaction Management with Multiple DBEnvironment Connections



8

COBOL Preprocessor Enhancements

The following COBOL preprocessor features are not discussed in the ALLBASE/SQL COBOL
Application Programming Guide:

Record Descriptions For Non-Bulk Queries.
Host Variables Initialized With The VALUE Clause.

Record Descriptions For Non-Bulk Queries

Prior to this release, record descriptions were allowed only for host variables referenced in bulk
queries. Host variables used in non-bulk queries can now be grouped together into logical
records. This facilitates data movement, data initialization, and code readability.

Group level identi�ers cannot be referenced in non-bulk queries. In the following example,
PART-RECORD cannot be referenced in a non-bulk query, but PARTNUMBER can be
referenced.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 PART-RECORD.

05 PARTNUMBER PIC X(16).

05 PARTNAME PIC X(30).

05 SALESPRICE PIC S9(8)V99 COMP-3.

05 SALESPRICEIND SQLIND.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

Host Variables Initialized With The VALUE Clause

Host variables can now be initialized with the VALUE clause when they are declared. For
example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 CREDIT-LIMIT PIC S9(7)V99 COMP-3 VALUE 1800.00.

.

.

EXEC SQL END DECLARE SECTION END-EXEC.

COBOL Preprocessor Enhancements 8-1





9

Programming with Indicator Variables in Expressions

Prior to this release, host variable indicator variables could be speci�ed with any output
host variable and with some input host variables, including those used as parameters to a
data/time input function. With this release, you can specify an indicator variable with any
input host variable, and indicators can be present in an expression.

Input host variables and their related input indicator variables can be used to provide column
data in INSERT, UPDATE, and UPDATE WHERE CURRENT statements. Use them
in any WHERE or HAVING clause in which host variables can be used. You cannot use
host variables or indicator variables in a any DDL statement. Refer to the \Host Variables"
chapter in your ALLBASE/SQL application programming guide for further details regarding
host variables.

The indicator variable associated with a host variable determines whether the value in its host
variable is considered to be NULL or to be the value stored in the host variable. This is the
case for both input and output indicator variables.

Suppose you are writing an application that updates the PurchDB.Inventory table in the
DBEnvironment PartsDBE. After selecting a row, you test the QtyOnHand column to see if it
contains a negative value. If it does, you want to set the QtyOnHand to NULL. The following
example shows the use of an output host variable with an output indicator variable to obtain
values by means of a select list and an input host variable with an input indicator variable to
supply values in a SET clause:

BEGIN DECLARE SECTION

Declare the QtyOnHand host variable and the QtyOnHandInd indicator variable.

In this example, they are used for data output and data input.

END DECLARE SECTION

...

SELECT QtyOnHand

INTO
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:QtyOnHand :QtyOnHandInd

FROM PurchDB.Inventory

WHERE PartNumber = :PartNumber

Test the QtyOnHandInd output indicator variable. If it contains a negative

number, the QtyOnHand column is already NULL. If it contains zero or a

positive number, test the QtyOnHand output host variable for a negative

number. If it is negative, update the column value to be null as follows.

Programming with Indicator Variables in Expressions 9-1



Set the QtyOnHandInd input indicator variable equal to -1. No matter what

value is in the QtyOnHand input host variable, the QtyOnHand column is set

to NULL.

UPDATE PurchDB.Inventory

SET QtyOnHand =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:QtyOnHand :QtyOnHandInd

WHERE PartNumber = :PartNumber

...

You can include an indicator host variable in an expression. In the following exam-
ple, if QtyOnHandInd is non-negative, the value of QtyOnHand increases by two (The value of
QtyOnHandInd is unchanged.):

UPDATE PurchDB.Inventory

SET QtyOnHand =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:QtyOnHand :QtyOnHandInd + 2

WHERE PartNumber = :PartNumber

9-2 Programming with Indicator Variables in Expressions



10

Analyzing Queries with GENPLAN

The GENPLAN statement can be useful in determining the way to write a SELECT,
UPDATE, or DELETE statement for maximum performance. By issuing the GENPLAN
statement in ISQL, you can see the optimizer's access plan for a given statement.

Suppose you have written an application containing a query, as in the following example:

SELECT PartName, VendorNumber, UnitPrice

INTO :PartName, :VendorNumber, :UnitPrice

FROM PurchDB.Parts p, PurchDB.SupplyPrice sp

WHERE p.PartNumber = sp.PartNumber

AND p.PartNumber = :PartNumber

You run the application and want to improve its performance. One approach would be to
issue the ISQL GENPLAN statement with parameters for the embedded query. This provides
any scan types and join types for a given statement by query block. You can change the
statement in your application, run the application to check any change in performance, and, if
necessary, again use GENPLAN to determine the speci�c access path.

To convert a statement to GENPLAN format:

Remove the SELECT statement INTO clause.

Remove any null indicator variables from the select statement.

In the GENPLAN statement WITH clause, de�ne any input host variables found in the
SELECT statement WHERE clause. You must ensure that the SQL data type speci�ed
for each variable in the WITH clause is compatible with the data type declared in the
application for the host variable. Refer to ALLBASE/SQL Reference Manual , SQL
Commands chapter, for data type compatibility charts for each supported language.

Your GENPLAN statement for the above query would be as follows (The input host variable
is shaded.):

GENPLAN WITH (
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartNumber char(16) ) FOR

SELECT PartName, VendorNumber, UnitPrice

FROM PurchDB.Parts p, PurchDB.SupplyPrice sp

WHERE p.PartNumber = sp.PartNumber

AND p.PartNumber =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:PartNumber

To display the access plan generated by GENPLAN, issue the following statement within the
same transaction as the GENPLAN statement:

SELECT * FROM System.Plan

The GENPLAN statement can only be used in ISQL. It cannot be used in an application in
a static SQL statement nor in dynamic preprocessing.

Refer to the ALLBASE/SQL Reference Manual for detailed syntax and information regarding
scans and indexes.

Analyzing Queries with GENPLAN 10-1





11

Using the VALIDATE Statement

When you run an application, ALLBASE/SQL automatically and transparently checks each
section for validity before executing it. When a section is found to be invalid, ALLBASE/SQL
revalidates it (if possible), then executes it. You may notice a slight delay as the revalidation
takes place. To avoid the delay of runtime revalidation, you can re-preprocess the program or
use the VALIDATE statement to revalidate the a�ected modules prior to runtime. Complete
syntax for the VALIDATE statement is presented in the ALLBASE/SQL Reference Manual .

You may �nd it appropriate to use the VALIDATE statement after executing an UPDATE
STATISTICS statement, since that statement will invalidate stored sections. If you issue both
statements during a period of low activity for the DBEnvironment, the optimizer will have
current statistics on which to base its calculations, with minimal performance degradation.

The validate statement will not revalidate sections that have never been validated under
the F.0 release, for example, sections that have been migrated from a previous release.
These sections can be revalidated by running the application to execute all its sections. An
alternative is to recreate the module by repreprocessing the application. Thereafter, you can
use the VALIDATE statement.

Using the VALIDATE Statement 11-1





12
Corrections to the BCDToString Example Program
Routine

This chapter corrects the BCDToString routine in the \Using Dynamic Operations" chapter
of the C and Pascal ALLBASE/SQL application programming guides. For each language,
replacement pages are supplied. A�ected lines of the program are highlighted for ease in
noting the changes.

Correcting the C Language Program

The replacement pages for program cex10a in chapter 8 of the \ALLBASE/SQL C
Application Programming Guide" appear on the next three pages. The �rst of the three
contains only the unchanged comments for the routine.

Corrections to the BCDToString Example Program Routine 12-1



/* DataBuffer is the buffer containing retrieved data as a result */

/* of a dynamic SELECT. */

char DataBuffer[MaxDataBuff];

boolean Abort;

struct SQLVarChar {

int Length;

char VarCharCol[MaxColSize];

};

main() /* Beginning of Program */

{

printf("\nC program illustrating dynamic command processing -- cex10a");

printf("\n");

printf("\nEvent List:");

printf("\n CONNECT TO PartsDBE");

printf("\n Prompt for any SQL command");
printf("\n BEGIN WORK");

printf("\n PREPARE");

printf("\n DESCRIBE");

printf("\n If command is a non-query command, EXECUTE it");

printf("\n Otherwise execute the following:");

printf("\n DECLARE CURSOR");

printf("\n OPEN Cursor");

printf("\n FETCH a row");

printf("\n CLOSE Cursor");

printf("\n COMMIT WORK");

printf("\n Repeat the above ten steps");

printf("\n RELEASE PartsDBE\n");

if (ConnectDBE()) { � 4 �
Describe(); � 23 �
ReleaseDBE();

printf("\n");

}

else

printf("\nError: Cannot Connect to PartsDBE");

printf("\n");

} /* End of Main Program */

/* Function BCDToString converts a binary field in the "DataBuffer" */

/* buffer to its ASCII representation. Input parameters are */

/* the Length, Precision and Scale. The input decimal field is passed */

/* via "DataBuffer" and the output String is passed via "result". */

Figure 8-9. Program cex10a: Dynamic Commands of Unknown Format (page 2 of 11)

12-2 Corrections to the BCDToString Example Program Routine



int BCDToString(DataBuffer, Length, Precision, Scale, Result0) � 2 �
char DataBuffer[];

short Length, Precision, Scale;

char Result0[];

{

#define hexd '0123456789ABCDEF'

#define ASCIIZero '0'

#define PlusSign 12

#define MinusSign 13

#define UnSigned 14

#define btod(d,i) ((i&1)?((d[i/2])&0xf):((d[i/2]>>4)&0xf))

int i;

int DecimalPlace;

int PutPos=0;

int DataEnd;

int DataStart;

boolean done;
char space[MaxStr];

char *Result;

Result = space;

DataEnd = (Length*2) - 2;NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DataStart = (DataEnd - Precision) + 1;

for (i = 0; i < MaxStr; i++) Result[i] = '\0';NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DecimalPlace = (Precision-Scale) - 1;

/* convert decimal to character String */

if (DecimalPlace == 0) Result[PutPos++] = '.';

/* convert each Nibble into a character */

for (i = DataStart; i <= DataEnd; i++) {

Result[PutPos] = ASCIIZero + btod(DataBuffer,i);

if (PutPos == DecimalPlace) Result[++PutPos] = '.';

PutPos++;

}

i = 0;

done = FALSE;

while (i<strlen(Result) && Result[i]=='0') ++Result;

if (Result[0] == '\0')

Result[0] = '0';

else {

/* place a zero at the left of the decimal point */

if (Result[0] == '.') StrInsert('0', Result);

Figure 8-9. Program cex10a: Dynamic Commands of Unknown Format (page 3 of 11)

Corrections to the BCDToString Example Program Routine 12-3



/* insert sign */NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
switch (btod(DataBuffer,(DataEnd + 1))) {

case PlusSign: StrInsert(' ', Result);

break;

case MinusSign: StrInsert('-', Result);

break;

default: break;

} /* End switch */

} /* End else */

strcpy(Result0, Result);

} /* End BCDToString */

int getline(linebuff) /*Function to get a line of characters */

char linebuff[80];

{

while (strlen(gets(linebuff)) ==0);

} /* End of function to get a line of characters */

int SQLStatusCheck() /* Function to Display Error Messages */ � 3 �
{

Abort = FALSE;

if (sqlca.sqlcode < DeadLock) Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("\n");

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) {

EXEC SQL COMMIT WORK RELEASE;

DynamicCommand[0] = '/';

DynamicCommand[1] = '\0';

}

} /* End SQLStatusCheck Function */

int ConnectDBE() /* Function to Connect to PartsDBE */

{ � 4 �
boolean Connect;

printf("\nConnect to PartsDBE");

EXEC SQL CONNECT TO 'PartsDBE'; � 37 �

Figure 8-9. Program cex10a: Dynamic Commands of Unknown Format (page 4 of 11)

12-4 Corrections to the BCDToString Example Program Routine



Correcting the Pascal Language Program

The one replacement page for program pasex10a in chapter 10 of the \ALLBASE/SQL Pascal
Application Programming Guide" appears on the next page.

Corrections to the BCDToString Example Program Routine 12-5



Abort : boolean;

$PAGE $

(* Procedure BCDToString converts a decimal field in the "DataBuffer"

* buffer to its decimal presentation. Other input parameters are

* the Length, precision and Scale. The input decimal field is passed

* via "DataBuffer" and the output String is passed via "result".

*)

procedure BCDToString (DataBuffer : BCDType; Length : SmallInt;� 2 �
Precision : SmallInt; Scale : SmallInt;

var Result : String);

const

hexd = '0123456789ABCDEF'; (* Hexadecimal digits #001*)

ASCIIZero = ord('0');

PlusSign = 12;

MinusSign = 13;

UnSigned = 14;

var

i,
DecimalPlace,

PutPos,

DataEnd,

DataStart : Integer;

done : boolean;

begin

DataEnd := (Length*2) - 1;

DataStart := (DataEnd - Precision) + 1;

Result := StrRpt (' ',StrMax(Result));NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DecimalPlace := (Precision-Scale) -1;

(* convert decimal to character String *)

if DecimalPlace = 0 then

begin

Result[1] := '.';

PutPos := 2;

end

else

PutPos := 1;

for i := DataStart to DataEnd do

begin

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 2 of 12)

12-6 Corrections to the BCDToString Example Program Routine



Index

A

adding a column with ALTER TABLE, 6-4
adding a constraint
with ALTER TABLE, 6-4

ALTER TABLE statement
used to add a column, 6-4
used to add a constraint, 6-4
used to drop a constraint, 6-4

ANSI setting
in full preprocessing mode, 1-3
in static conversion mode preprocessing, 1-10
in syntax checking mode preprocessing, 1-12

authorization
authorize once per session ag, 3-3
for full preprocessing mode, 1-5
for static conversion mode preprocessing, 1-10
for syntax checking mode preprocessing, 1-13

authorize once per session ag, 3-3

B

BEGIN WORK
issued by preprocessor, 1-4

built-in variables
use in procedures, 5-17

BULK INSERT statement
use with dynamic parameters, 4-26

bulk processing
and static conversion mode preprocessing,

1-10

C

check constraints
used in a table, 6-2
used in a view, 6-5

CHECKPOINT
before preprocessing, 1-4

circular referential constraints
example of resolving, 6-8

COBOL host variables
initializing with the VALUE clause, 8-1

COBOL record descriptions
for non-bulk queries, 8-1

column
adding, 6-4

COMMIT WORK

issued by preprocessor, 1-4, 1-8
CONNECT
issued by preprocessor, 1-4

conversion
actual to default data types for dynamic

parameters, 4-40
convert bind warnings
in full preprocessing mode, 1-4

CREATE PROCEDURE statement
parameter mapping to EXECUTE

PROCEDURE parameters, 5-11
specifying an OUTPUT parameter, 5-14

cursor
use with procedures, 5-2

D

data bu�er
use with dynamic parameters, 4-8

data integrity
error checking levels, 6-1
introduction to, 6-1
number of rows processed , 6-1
statement level versus row level, 6-1

DBEFileSet authority
when preprocessing, 1-5

DBEFileSetName
in full preprocessing mode, 1-3
overridden in preprocessing, 1-3

DBEnvironment access
and preprocessing, 1-8
during full preprocessing, 1-8
not required during full preprocessing, 1-8

DBEnvironment name
not required during full preprocessing, 1-3

DBE session
in preprocessing, 1-4

debugging
using the PRINT statement for, 5-19

DECLARE CURSOR
and static conversion mode preprocessing,

1-10
DECLARE CURSOR statement
use with static conversion mode preprocessing,

3-3
default data formats
for dynamic parameters, 4-39

Index-1



default data types
use with dynamic parameters, 4-37

deferring constraint error checking
for referential constraints, 6-6
for row level integrity, 6-6
introduction to, 6-6

de�ning a constraint
for a view, 6-5

de�nition
procedure cursor, 5-2
select cursor, 5-2

de�nitions
dynamic application, 3-2
dynamic parameter, 4-1
dynamic statement, 3-1
multi-connect functionality, 7-1
multi-transaction mode, 7-1
procedure, 5-1
row level integrity, 6-1
severe error, 5-1
single transaction mode, 7-1
statement level integrity, 6-1
static application, 3-2
static conversion processing, 1-9
static statement, 3-1

dropping a constraint
for a view, 6-5
with ALTER TABLE, 6-4

dynamic application
de�ned, 3-2
ways to create, 3-2

dynamic parameters
conversion of actual to default data types,

4-40
data bu�er and format array must correspond,

4-8
data in the data bu�er must be byte alligned,

4-8
data overow and truncation, 4-40
default data formats, 4-39
default data types used with, 4-37
de�ned, 4-1
example in COBOL using a BULK INSERT

statemen, 4-30
example in C using a BULK INSERT statemen,

4-27
example in C using data structures and data

bu�ers, 4-19
example in Pascal using a BULK INSERT

statemen, 4-34
input and output, 5-11
introduction to programming with, 4-6
restrictions, 4-5
usage by programming language, 4-6
use with a BULK INSERT statemen, 4-26

use with a data bu�er, 4-8
use with an SQLDA structure, 4-7
use with data structures and a data bu�er,

4-7
use with host variables for non-bulk processing,

4-6
use with the PREPARE statement, 4-1
where to use, 4-4
with cursor processing, 5-11
with EXECUTE PROCEDURE, 5-11

dynamic parameter substitution
introduction to, 4-1

dynamic statement
de�ned, 3-1

E

error checking
default level, 6-1
defaults for integrity constraints, 6-6
deferring for constraint errors and row level

integrity, 6-6
deferring for integrity constraints, 6-6
example for timeouts, 7-3
example of resolving circular constraints, 6-8
in a procedure, 5-16
locating multiple column referential constraint

errors, 6-8
locating multiple column unique constraint

errors, 6-7
locating single column referential constraint

errors, 6-7
locating single column unique constraint errors,

6-7
setting the level, 6-1
statement or row level, 6-1

example
full preprocessing, 1-7
syntax checking mode preprocessing, 1-13

example comparing procedure code to application
code, 5-20

example in C
calling a procedure from an application, 5-11
checking for all errors and warnings on return

from a procedure, 5-14
comparing procedure code to application code,

5-20
executing a procedure that returns an

OUTPUT parameter, 5-15
executing a procedure with a return status

code, 5-13
host variable declaration for a procedure, 5-10
preparing a statement with dynamic

parameters, 4-2
returning a built-in variable from a procedure,

5-17

Index-2



using a BULK INSERT statement with
dynamic parameters, 4-27

using data structures and data bu�ers to
process a prepared statement with dynamic
parameters, 4-19

using the PRINT statement, 5-19
example in COBOL
calling a procedure from an application, 5-11
checking for all errors and warnings on return

from a procedure, 5-14
comparing procedure code to application code,

5-20
executing a procedure that returns an

OUTPUT parameter, 5-15
executing a procedure with a return status

code, 5-13
host variable declaration for a procedure, 5-10
preparing a statement with dynamic

parameters, 4-2
returning a built-in variable from a procedure,

5-17
using a BULK INSERT statement with

dynamic parameters, 4-30
using the PRINT statement, 5-19

example in FORTRAN
preparing a statement with dynamic

parameters, 4-3
example in Pascal
preparing a statement with dynamic

parameters, 4-3
using a BULK INSERT statement with

dynamic parameters, 4-34
example of checking for a timeout error, 7-3
example of creating a procedure, 5-9
example of setting a timeout value, 7-3
example of single-transaction mode with timeouts,

7-5
example of timeouts with multi-connect

functionality, 7-5
example PRINT statement, 5-19
example RAISE ERROR statement, 5-18
EXECUTE PROCEDURE statement
example in an application, 5-11
parameter mapping to CREATE

PROCEDURE parameters, 5-11
passing null values with, 5-11
SQLCODE and SQLWARN0 settings when

procedure does not exist, 5-16
use with a return status code, 5-13

F

FIPS 127.1
de�ned, 2-1

FIPS agger
and declaring the SQLCA, 2-3

and host variable data type declarations, 2-4
and host variable names, 2-8
and implicit updatability, 2-3
and non-standard secondary references, 2-3
coding tips, 2-1
identifying non-standard features, 2-2
introduction to, 2-1
setting the ANSI compiler directive, 2-2

agger setting
in full preprocessing mode, 1-3
in static conversion mode preprocessing, 1-9
in syntax checking mode preprocessing, 1-12

full preprocessing
example, 1-7

full preprocessing mode
introduction to, 1-1
parameters, 1-2
syntax, 1-1

G

GENPLAN statement
converting a query to, 10-1
introduction to, 10-1
used to analyze a query, 10-1
used to tune performance, 10-1

H

host variable data types
and the FIPS agger, 2-4

host variable names
and the FIPS agger, 2-8

host variables
example declaration for a procedure, 5-10
for dynamic input and output parameters,

5-11
to pass parameter values to and from a

procedure, 5-9

I

implicit updatability
and ALLBASE/SQL default updatability,

2-3
and preprocessing, 1-5
and the FIPS agger, 2-3
explained, 2-3

indicator variables
introduction to, 9-1
use in expressions, 9-2

in�nite waits
preventing with timeouts, 7-4

integrity constraints
adding, 6-4
deferring, 6-6
de�ning and dropping for a table, 6-3

Index-3



de�ning and dropping for a view, 6-5
dropping, 6-4
error checking defaults, 6-6
example of resolving circular referential

constraints, 6-8
introduction to, 6-1
locating errors, 6-7
locating multiple column referential constraint

errors, 6-8
locating multiple column unique constraint

errors, 6-7
locating single column referential constraint

errors, 6-7
locatingsingle column unique constraint errors,

6-7
table check, 6-2
view check, 6-5
WITH CHECK OPTION, 6-5

introduction to multi-connect functionality, 7-1
i option
preprocesor syntax checking mode, 1-12

L

link command
in preprocessing, 1-8

locating errors
integrity constraints, 6-7

locks
related to a wait queue, 7-2

log �le space
use during preprocessing, 1-4

M

messages
de�ning procedure error messages with RAISE

ERROR, 5-18
de�ning procedure warning messages with

PRINT, 5-19
handling in a procedure, 5-16

modi�ed source �le name
in full preprocessing mode, 1-3
in static conversion mode preprocessing, 1-9
in syntax checking mode preprocessing, 1-12

module
name, 1-8
revoking RUN authority, 1-4

module dropping
in full preprocessing mode, 1-4

module name
in full preprocessing mode, 1-3

module owner
in full preprocessing mode, 1-3

multi-connect functionality
de�ned, 7-1

example using single-transaction mode with
timeouts, 7-5

introduction to, 7-1
permits one active transaction per connection,

7-1
permits one DBEnvironment per transaction,

7-1
preprocessing and installing applications, 7-2

multiple DBEnvironment access
and preprocessing, 1-8

multi-transaction mode
de�ned, 7-1
preventing in�nite waits, 7-4
preventing undetectable deadlocks, 7-4

N

null values
passing from an application to a procedure,

5-11
number of rows processed
data integrity, 6-1

O

OUTPUT parameter
returning data values from a procedure, 5-14

owner name
in full preprocessing mode, 1-3

P

parameter substitution
introduction to, 4-1

performance
static conversion mode preprocessing, 3-3
tuning using GENPLAN statement, 10-1
tuning using timeouts, 7-5

p option
preprocessor syntax checking mode, 1-12

PREPARE statement
use with dynamic parameters, 4-1

preprocessing
DBEFileSetName overridden, 1-3
introduction to static conversion mode, 1-9
introduction to syntax checking mode, 1-11

preprocessing and installing applications
with multi-connect functionality, 7-2

preprocessing messages generated
for procedures, 5-16

preprocessing session , 1-4
preprocessor
accessing multiple DBEnvironments, 1-8
and CONNECT, 1-4
and DBEFileSet authority, 1-5
and DBEnvironment language, 1-5
and implicit updatability, 1-5

Index-4



and linking, 1-8
and row level locking, 1-5
and START DBE, 1-4
and UPDATE STATISTICS, 1-5
authorization for full preprocessing mode, 1-5
authorization for static conversion mode, 1-10
authorization for syntax checking mode, 1-13
bulk processing in static conversion mode,

1-10
DBE sessions, 1-8
DECLARE CURSOR in static conversion

mode, 1-10
full preprocessing mode, 1-1
full preprocessing options, 1-1
introduction to full preprocessing mode, 1-1
syntax checking mode, 1-11, 1-12

PRINT statement
example in C, 5-19
example in COBOL, 5-19
returning user de�ned warning messages from

a procedure, 5-19
use in debugging, 5-19

procedure cursor
available functionality, 5-2
de�ned, 5-2

procedure parameters
for dynamic parameters, 5-11
using host variables for, 5-9

procedures
checking for all errors and warnings on return

from, 5-14
comparing a procedure to an application

program, 5-20
de�ned, 5-1
error checking in, 5-16
introduction to use in an application program,

5-1
message handling in, 5-16
obtaining the statement number with

SQLEXPLAIN, 5-17
preprocessing messages generated, 5-16
returning a return status code from, 5-12
returning data values in an OUTPUT

parameter, 5-14
runtime messages generated, 5-16
SQLCODE set to non-zero if procedure not

executed, 5-13
SQLCODE set to non-zero when returning

from, 5-13
SQLCODE set to zero, 5-13
SQLWARN0 set to W if error messages were

generated, 5-13
SQLWARN0 set to W if PRINT statement

messages are generated, 5-19
statement numbers assigned, 5-17

using built-in variables in, 5-17
using the RETURN statement for a built-in

variable, 5-18

R

RAISE ERROR statement
example, 5-18
returning user de�ned error messages from a

procedure, 5-18
RecDB database application design
example of resolving circular referential

constraints, 6-8
referential constraints
example of resolving circular constraints, 6-8

restrictions
dynamic parameters, 4-5
static conversion mode preprocessing, 3-3

RETURN statement
to return a built-in variable from a procedure,

5-18
return status code
declaring in an application, 5-12
returning from a procedure, 5-12
unde�ned when SQLCODE is not zero, 5-13

revoking RUN authority
in full preprocessing mode, 1-4

ROLLBACK WORK
issued by preprocessor, 1-4

rollforward logging
and preprocessing, 1-4

row level integrity de�ned, 6-1
RUN authority
in full preprocessing mode, 1-4

runtime messages generated
for procedures, 5-16

S

sample database
authorities, 1-6

secondary references to non-standard objects
and the FIPS agger, 2-3

sections
not stored during full preprocessing, 1-3

select cursor
available functionality, 5-2
de�ned, 5-2

session
in preprocessing, 1-4

SET CONSTRAINTS statement
used to defer constraint error checking, 6-6
used to detect constraint errors, 6-7

SET DML ATOMICITY statement
used to set error checking level, 6-1

severe error
de�ned, 5-1

Index-5



single-transaction mode
example using timeouts, 7-5

single transaction mode
de�ned, 7-1

source �le name
in full preprocessing mode, 1-2
in static conversion mode preprocessing, 1-9
in syntax checking mode preprocessing, 1-12

SQLCA declaration
and the FIPS agger, 2-3

SQLCODE
message catalog number contained following

procedure execution, 5-16
set to non-zero, 5-13
testing on return from a procedure, 5-13

SQLDA
use with dynamic parameters, 4-7

SQLEXPLAIN
using on return from a procedure, 5-17

SQLWARN0
set to W if PRINT statement messages are

generated, 5-19
testing on return from a procedure, 5-13

START DBE
and the preprocessor, 1-4

START DBE NEWLOG
to increase log space, 1-4

statement level integrity
de�ned, 6-1

static application
de�ned, 3-2

static conversion mode preprocessing
authorization, 1-10
DECLARE CURSOR statement usage, 3-3
introduction to, 1-9
parameters, 1-9
performance enhancement, 3-3
restrictions based on dynamic parameters,

3-3
syntax for C, 1-9
syntax for Pascal, 1-9

static conversion processing
de�ned, 1-9

static statement
de�ned, 3-1

syntax checking mode, 1-11
syntax, 1-11

syntax checking mode preprocessing, 1-11
example, 1-13
introduction to, 1-11
parameters, 1-12

syntax for full preprocessing mode, 1-1
syntax for static conversion mode preprocessing,

1-9
system catalog

pages locked during preprocessing, 1-4

T

table check constraints, 6-2
template
to locate multiple column referential constraint

errors, 6-8
to locate multiple column unique constraint

errors, 6-7
to locate single column referential constraint

errors, 6-7
to locate single column unique constraint

errors, 6-7
timeouts
changing a timeout value, 7-2
default timeout value, 7-2
example of checking for a timeout error, 7-3
example of setting a timeout value, 7-3
locking and transaction management strategies,

7-3
related to a wait queue, 7-2
temporarily overriding a timeout value, 7-2
to prevent in�nite waits, 7-4
to prevent undetectable deadlocks, 7-4
to tune performance, 7-5
use with multi-connect functionality, 7-5
using SQLUtil to see DBECon �le timeout

values, 7-2
transaction slots
related to a wait queue, 7-2

U

undetectable deadlocks
possible in multi-transaction mode, 7-4
preventing with timeouts, 7-4

updatability
and the FIPS agger, 2-3
implicit, 2-3

UPDATE STATISTICS
before preprocessing, 1-5

V

VALIDATE statement
introduction to, 11-1
not for sections never validated under F.0

release, 11-1
use following UPDATE STATISTICS

statement, 11-1
view check constraints
de�ning and dropping, 6-5
not deferrable, 6-5

Index-6



W

wait queue
related to locks, 7-2
related to timeouts, 7-2

related to transaction slots, 7-2
WHENEVER SQLERROR STOP statement
e�ect in a procedure, 5-13

WITH CHECK OPTION

used to de�ne a view check constraint, 6-5

Index-7




