
900 Series HP 3000 Computer Systems

ALLBASE/SQL Pascal

Application Programming Guide

ABCDE

HP Part No. 36216-90007

Printed in U.S.A. 1992

Fourth Edition

E1092

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1987, 1988, 1989, 1990, 1991, 1992 by Hewlett-Packard

Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition December 1987 36216-02A.01.00
Second Edition October 1988 36216-02A.12.00
Third Edition October 1989 36216-02A.20.00
Fourth Edition October 1992 36216-02A.E1.00

iii

iv

Preface

ALLBASE/SQL is a relational database management system for use on the HP 3000 Series
900 computer. ALLBASE/SQL (Structured Query Language) is the language you use to
de�ne and maintain data in an ALLBASE/SQL DBEnvironment. This manual presents the
techniques of embedding ALLBASE/SQL within Pascal language source code.

This manual is intended as a learning tool and a reference guide for Pascal programmers. It
presumes the reader has a working knowledge of Pascal, the MPE/iX operating system, and
ALLBASE/SQL relational database concepts.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series
of forward-compatible operating systems for the HP 3000 line of computers. In HP
documentation and in talking with HP 3000 users, you will encounter references to MPE XL,
the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written
for MPE XL will run without change under MPE/iX. You can continue to use MPE XL
system documentation, although it may not refer to features added to the operating system to
support POSIX (for example, hierarchical directories).

This manual contains both basic and in-depth information about embedding ALLBASE/SQL.
Topics are discussed in separate chapters, as follows:

Chapter 1, \Getting Started with ALLBASE/SQL Pascal Programming," is an introduction
to ALLBASE/SQL programming which includes information on developing, using, and
maintaining programs on the MPE XL operating system.
Chapter 2, \Using the ALLBASE/SQL Pascal Preprocessor," explains the ALLBASE/SQL
preprocessor and how to invoke it.
Chapter 3, \Embedding SQL Commands," gives rules for how and where to embed SQL
commands.
Chapter 4, \Host Variables," describes how to de�ne and use variables to transfer data
between your Pascal program and an ALLBASE/SQL DBEnvironment.
Chapter 5, \Runtime Status Checking and the SQLCA," de�nes ways to monitor and
handle successful and unsuccessful SQL command execution.

Chapter 6, \Overview of Data Manipulation," is an overview of data manipulation and the
technniques for executing data manipulation commands.
Chapter 7, \Simple Data Manipulation," explains how to operate on one row at a time.
Chapter 8, \Processing with Cursors," shows how to process a multiple row query result one
row at a time.
Chapter 9, \BULK Table Processing," examines the processing of multiple rows at a time.
Chapter 10, \Using Dynamic Operations," describes the use of ALLBASE/SQL commands
that are preprocessed at runtime.
Chapter 11, \Programming with Constraints," compares the use of statement level integrity
and row level integrity and discusses the use of integrity constraints.
Chapter 12, \Programming with LONG Columns," discusses the LONG BINARY and
LONG VARBINARY data types.
Chapter 13, \Programming with ALLBASE/SQL Functions," contains descriptions of SQL
functions, including date/time functions and the TID function.

Most of the examples are based on the tables, views, and other objects in the sample
database, PartsDBE. For complete information about PartsDBE, refer to the ALLBASE/SQL
Reference Manual , appendix C.

v

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vi

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

vii

Contents

1. Getting Started with ALLBASE/SQL Pascal Programming
ALLBASE/SQL Pascal Programs . 1-2
Program Structure . 1-3
DBEnvironment Access . 1-4
Authorization . 1-5
File Referencing . 1-5

Native Language Support . 1-7
The ALLBASE/SQL Pascal Preprocessor 1-9
E�ect of Preprocessing on Source Code 1-10
E�ect of Preprocessing on DBEnvironments 1-11
The Stored Section . 1-12
Purpose of Sections . 1-12
Section Validity . 1-13

Compiling and Linking the Program 1-14
ALLBASE/SQL Program Execution 1-15
Installing the Program Module . 1-16
Granting Required Owner Authorization 1-16
Granting Program User Authorization 1-17
Running the Program . 1-17

Maintaining ALLBASE/SQL Programs 1-19
Updating Application Programs 1-19
Changing Program-Related Authorization 1-20
Obsoleting Programs . 1-20

2. Using the ALLBASE/SQL Pascal Preprocessor
The Preprocessor and Program Development 2-1
Preprocessor Modes . 2-4
Preprocessor Input and Output . 2-5
Source File . 2-8
Output File Attributes . 2-16
Preprocessor Modi�ed Source File 2-16
Preprocessor-Generated Include Files 2-25
ALLBASE/SQL Message File . 2-31
Installable Module File . 2-33
Stored Sections . 2-34

Invoking the Pascal Preprocessor . 2-37
Syntax Checking Mode . 2-38
Full Preprocessing Mode . 2-40
Using the Preprocessor UDCs . 2-43

Running the Preprocessor in Job Mode 2-47
Preprocessing Errors . 2-48
Preprocessor or DBEnvironment Termination 2-48

Contents-1

Preprocessor Invocation Errors . 2-48
SQLIN Errors . 2-49
DBEnvironment Errors . 2-49

3. Embedding SQL Commands
General Rules for Embedding SQL 3-7
Location of SQL Commands . 3-7
Pre�x and Su�x . 3-7
Punctuation . 3-7
Pascal Comments . 3-8
ALLBASE/SQL Comments . 3-8

Declaring the SQLCA . 3-8
Declaring Host Variables . 3-9
Starting a DBE Session . 3-10
De�ning Transactions . 3-11
Implicit Status Checking . 3-12
Terminating a DBE Session . 3-12
De�ning and Manipulating Data . 3-13
Data De�nition . 3-13
Data Manipulation . 3-13

Explicit Status Checking . 3-14
Obtaining ALLBASE/SQL Messages 3-15

4. Host Variables
Using Host Variables . 4-1
Host Variable Names . 4-2
Input and Output Host Variables 4-3
Indicator Variables . 4-3
Bulk Processing Variables . 4-5

Declaring Host Variables . 4-6
Creating Declaration Sections . 4-6
Declaring Variables for Data Types 4-8
CHAR Data . 4-8
VARCHAR Data . 4-8
SMALLINT Data . 4-8
INTEGER Data . 4-8
FLOAT Data . 4-9
Floating Point Data Compatibility 4-10

BINARY Data . 4-10
Binary Data Compatibility . 4-10
Using the LONG Phrase with Binary Data Types 4-10

DECIMAL Data . 4-11
DATE, TIME, DATETIME, and INTERVAL Data 4-11

Using Default Data Values . 4-11
Coding Considerations . 4-12
When the DEFAULT Clause Cannot be Used 4-12

Declaring Variables for Compatibility 4-13
String Data Conversion . 4-18
String Data Truncation . 4-18
Numeric Data Conversion . 4-19

Declaring Variables for Program Elements 4-20

Contents-2

SQLCA Array . 4-20
Dynamic Processing Arrays . 4-21
Bulk Processing Arrays . 4-22
Indicator Variables . 4-22
Dynamic Commands . 4-22
Savepoint Numbers . 4-23
Messages from the Message Catalog 4-23
DBEnvironment Name . 4-24

5. Runtime Status Checking and the SQLCA
Purposes of Status Checking . 5-2
Handling Runtime Errors and Warnings 5-2
Maintaining Data Consistency . 5-2
Checking the Most Recently Executed Command 5-3

Using the SQLCA . 5-3
SQLCODE . 5-6
SQLERRD[3] . 5-8
SQLCA.SQLWARN[0] . 5-9
SQLCA.SQLWARN[1] . 5-10
SQLCA.SQLWARN[2] . 5-11
SQLCA.SQLWARN[3] . 5-11
SQLCA.SQLWARN[6] . 5-12

Approaches to Status Checking . 5-13
Implicit Status Checking Techniques 5-13
Program Illustrating Implicit and Explicit Status Checking 5-16
Explicit Status Checking Techniques 5-23
Handling Deadlock and Shared Memory Problems 5-29
Determining Number of Rows Processed 5-29
INSERT, UPDATE, and DELETE Operations 5-30
BULK Operations . 5-31

Detecting End of Scan . 5-34
Determining When More Than One Row Qual�es 5-35
Detecting Log Full Condition . 5-36
Handling Out of Space Conditions 5-36
Checking for Authorizations . 5-37

6. Overview Of Data Manipulation
The Query . 6-2
The SELECT Command . 6-2
Selecting from Multiple Tables . 6-5
Selecting Using Views . 6-8

Simple Data Manipulation . 6-10
Introducing the Cursor . 6-11
Sequential Table Processing . 6-16
Bulk Table Processing . 6-18
Dynamic Operations . 6-20

Contents-3

7. Simple Data Manipulation
SQL Commands . 7-1
The SELECT Command . 7-1
The INSERT Command . 7-4
The UPDATE Command . 7-5
The DELETE Command . 7-6

Transaction Management for Simple Operations 7-7
Program Using Simple DML Operations 7-9
Procedure Select . 7-9
Procedure Update . 7-10
Procedure Delete . 7-10
Procedure Insert . 7-11

8. Processing with Cursors
SQL Cursor Commands . 8-1
DECLARE CURSOR . 8-2
OPEN . 8-3
FETCH . 8-3
UPDATE WHERE CURRENT . 8-4
DELETE WHERE CURRENT . 8-7
CLOSE . 8-8

Transaction Management for Cursor Operations 8-9
Using KEEP CURSOR . 8-10
KEEP CURSOR and Isolation Levels 8-10
KEEP CURSOR and Declaring for Update 8-11
OPEN Command Without KEEP CURSOR 8-11
OPEN Command Using KEEP CURSOR WITH LOCKS and CS Isolation

Level . 8-12
OPEN Command Using KEEP CURSOR WITH NOLOCKS 8-13
KEEP CURSOR and BEGIN WORK 8-14
KEEP CURSOR and COMMIT WORK 8-15
KEEP CURSOR and ROLLBACK WORK 8-15
KEEP CURSOR and Aborted Transactions 8-15
Writing Keep Cursor Applications 8-15

Examples . 8-17
Common StatusCheck Procedure 8-17
Single Cursor WITH LOCKS . 8-19
Multiple Cursors and Cursor Stability 8-21
Avoiding Locks on Terminal Reads 8-23

Program Using UPDATE WHERE CURRENT 8-26
Procedure FetchUpdate . 8-26
Procedure DisplayUpdate . 8-27

Contents-4

9. Bulk Table Processing
Variables Used in BULK Processing 9-1
SQL Bulk Commands . 9-3
BULK SELECT . 9-3
BULK FETCH . 9-7
BULK INSERT . 9-9

Transaction Management for BULK Operations 9-11
Program Using BULK INSERT . 9-11

10. Using Dynamic Operations
Review of Preprocessing Events . 10-1
Di�erences between Dynamic and Non-Dynamic Preprocessing 10-2
Permanently Stored vs. Temporary Sections 10-2
Examples of Non-Dynamic and Dynamic SQL Statements 10-4
Why Use Dynamic Preprocessing? 10-5

Passing Dynamic Commands to ALLBASE/SQL 10-5
Understanding the Types of Dynamic Operations 10-6
Preprocessing of Dynamic Non-Queries 10-6
Using EXECUTE IMMEDIATE 10-6
Using PREPARE and EXECUTE 10-8

Preprocessing of Dynamic Queries . 10-8
Dynamically Updating and Deleting Data 10-10
Setting Up the SQLDA . 10-11
Setting Up the Format Array . 10-13
Setting up the Data Bu�er . 10-15
Setting up a Bu�er for Query Results of Unknown Format 10-15
Setting up a Bu�er for Query Results of Known Format 10-15

Using the Dynamic Query Data Structures 10-16
Parsing the Data Bu�er . 10-19

Preprocessing Dynamic Commands That May or May Not Be Queries 10-21
Programs Using Dynamic Command Operations 10-23
Sample Program Using Dynamic Commands of Unknown Format 10-23
Sample Program Using Dynamic Queries of Known Format 10-42

11. Programming With Constraints
Comparing Statement Level and Row Level Integrity 11-1
Using Unique and Referential Integrity Constraints 11-2
Designing an Application Using Statement Level Integrity Checks 11-3
Insert a Member in the Recreation Database 11-5
Update an Event in the Recreation Database 11-6
Delete a Club in the Recreation Database 11-7
Delete an Event in the Recreation Database 11-7

Contents-5

12. Programming with LONG Columns
General Concepts . 12-2
Restrictions . 12-4
De�ning LONG Columns with a CREATE TABLE or ALTER TABLE

Command . 12-4
De�ning Input and Output with the LONG Column I/O String 12-5
Putting Data into a LONG Column with a INSERT Command 12-6
Insert Using Host Variables for LONG Column I/O Strings 12-6

Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH
Command . 12-7
Using the LONG Column Descriptor 12-7
Parsing LONG Column Descriptors 12-8

Using LONG Columns with a SELECT Command 12-9
Using LONG Columns with a Dynamic FETCH Command 12-9

Changing a LONG Column with an UPDATE [WHERE CURRENT] Command 12-9
Removing LONG Column Data with a DELETE [WHERE CURRENT]

Command . 12-10
Coding Considerations . 12-10
File versus Random Heap Space 12-10
File Naming Conventions . 12-10
Considering Multiple Users . 12-11
Deciding How Much Space to Allocate and Where 12-11

13. Programming with ALLBASE/SQL Functions
Programming with Date/Time Functions 13-1
Where Date/Time Functions Can Be Used 13-2
De�ning and Using Host Variables with Date/Time Functions 13-2
Using Date/Time Input Functions 13-3
Examples of TO DATETIME, TO DATE, TO TIME, and

TO INTERVAL Functions 13-4
Example Using the INSERT Command 13-4
Example Using the UPDATE Command 13-5
Example Using the SELECT Command 13-6
Example Using the DELETE Command 13-6

Using Date/Time Output Functions 13-7
Example TO CHAR Function 13-7
Example TO INTEGER Function 13-8

Using the Date/Time ADD MONTHS Function 13-9
Example ADD MONTHS Function 13-9
Coding Considerations . 13-9

Program Example for Date/Time Data 13-10
Programming with TID Data Access 13-19
Understanding TID Function Input and Output 13-19
Using the TID Function in a Select List 13-19
Using the TID Function in a WHERE Clause 13-20
Declaring TID Host Variables 13-20
Understanding the SQLTID Data Format 13-20

Transaction Management with TID Access 13-21
Comparing TID Access to Other Types of Data Access 13-21
Verifying Data that is Accessed by TID 13-22
Considering Interactive User Applications 13-22

Contents-6

Coding Strategies . 13-23
Reducing Commit Overhead for Multiple Updates with TID Access 13-24

Index

Contents-7

Figures

1-1. Creating an ALLBASE/SQL Pascal Application Program 1-1
1-2. Preprocess-Time Events . 1-9
1-3. Compile-Time and Linking-Time Events 1-14
1-4. Runtime Events . 1-18
2-1. Developing a Pascal ALLBASE/SQL Program 2-2
2-2. Developing a Pascal ALLBASE/SQL Program with Subprograms 2-3
2-3. Pascal Preprocessor Input and Output 2-6
2-4. Compiling Preprocessor Output . 2-7
2-5. Interactive Runtime Dialog of Program PASEX2 2-10
2-6. Program PASEX2: Using Simple Select 2-11
2-7. Modi�ed Source File for Program PASEX2 2-18
2-8. Sample Constant Include File . 2-26
2-9. Sample Type Include File . 2-26
2-10. Sample Variable Include File . 2-27
2-11. Sample External Procedures Include File 2-28
2-12. Sample SQLMSG Showing Errors 2-32
2-13. Sample SQLMSG Showing Warning 2-33
2-14. Information in SYSTEM.SECTION on Stored Sections 2-36
2-15. UDC for Preprocessing SQLIN . 2-44
2-16. UDC for Preprocessing, Compiling, and Preparing SQLIN 2-45
2-17. Sample UDC Invocation . 2-46
2-18. Sample Preprocessing Job �le . 2-47
4-1. Host Variable Declarations . 4-7
4-2. Declaring Host Variables for Single-Row Query Result 4-16
4-3. Declaring Host Variables for Multiple-Row Query Result 4-17
4-4. Declaring Host Variables for Dynamic Commands 4-22
4-5. Declaring Host Variables for Savepoint Numbers 4-23
4-6. Declaring Host Variables for Message Catalog Messages 4-23
4-7. Declaring Host Variables for DBEnvironment Names 4-24
5-1. Implicitly Invoking Status-Checking Routines 5-17
5-2. Explicitly Invoking Status-Checking Procedure 5-24
5-3. Using SQLERRD[3] After a BULK SELECT Operation 5-32
6-1. Sample Query Joining Multiple Tables 6-6
6-2. E�ect of SQL Commands on Cursor and Active Sets 6-15
7-1. Flow Chart of Program pasex7 . 7-12
7-2. Runtime Dialog of Program pasex7 7-14
7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT . . . 7-17
8-1. Cursor Operation without the KEEP CURSOR Feature 8-11
8-2. Cursor Operation Using KEEP CURSOR WITH LOCKS 8-12
8-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS 8-14
8-4. Flow Chart of Program pasex8 . 8-28
8-5. Runtime Dialog of Program pasex8 8-29

Contents-8

8-6. Program pasex8: Using UPDATE WHERE CURRENT 8-31
9-1. Flow Chart of Program pasex9 . 9-14
9-2. Runtime Dialog of Program pasex9 9-15
9-3. Program pasex9: Using BULK INSERT 9-17
10-1. Creation and Use of a Program that has a Stored Module 10-3
10-2. Creation and Use of a Program that has No Stored Module 10-4
10-3. Procedure Hosting Dynamic Non-Query Commands 10-7
10-4. Dynamic Query Data Structures and Data Assignment 10-9
10-5. Format of the Data Bu�er . 10-18
10-6. Parsing the Data Bu�er in Program pasex10a 10-20
10-7. Flow Chart of Program pasex10a 10-26
10-8. Runtime Dialog of Program pasex10a 10-28
10-9. Program pasex10a: Dynamic Commands of Unknown Format 10-30
10-10. Flow Chart of Program pasex10b 10-45
10-11. Runtime Dialog of Program pasex10b 10-47
10-12. Program pasex10b: Dynamic Queries of Known Format 10-48
11-1. Constraints Enforced on the Recreation Database 11-4
12-1. Flow of LONG Column Data and Related Information to the Database . . 12-3
12-2. Flow of LONG Column Data and Related Information from the Database . 12-3
13-1. Sample Program Converting Column from CHAR to DATE 13-11
13-2. Using RC and RR Transactions with BULK SELECT, SELECT, and

UPDATE . 13-23
13-3. Using TID Access to Reduce Commit Overhead 13-25

Contents-9

Tables

4-1. Data Type Declarations . 4-9
4-2. ALLBASE/SQL Floating Point Column Speci�cations 4-10
4-3. Pascal Data Type Equivalency and Compatibility 4-14
4-4. Program Element Declarations . 4-20
5-1. SQLCA Status Checking Fields . 5-5
6-1. How Data Manipulation Commands May Be Used 6-2
10-1. SQLDA Fields . 10-12
10-2. Fields in a Format Array Record 10-14
11-1. Commands Used with Integrity Constraints 11-2
11-2. Constraint Test Matrix . 11-3
12-1. Commands You Can Use with LONG Columns 12-1
12-2. LONG Column Descriptor . 12-8
13-1. Where to Use Date/Time Functions 13-2
13-2. Host Variable Data Type Compatibility for Date/Time Functions 13-3
13-3. Sample of User Requested Formats for Date/Time Data 13-4
13-4. SQLTID Data Internal Format . 13-21

Contents-10

1
Getting Started with ALLBASE/SQL Pascal
Programming

The steps in creating a Pascal application program that accesses an ALLBASE/SQL relational
database environment (DBEnvironment) are summarized in Figure 1-1.

Figure 1-1. Creating an ALLBASE/SQL Pascal Application Program

Getting Started with ALLBASE/SQL Pascal Programming 1-1

Using your favorite editor, you create Pascal source code. The source code is a compilable
Pascal program or subprogram that contains SQL commands. The SQL commands contained
within the Pascal program are said to be embedded. Refer to the ALLBASE/SQL Reference
Manual for SQL terminology and usage rules.

Before compiling the source code, you preprocess it with the ALLBASE/SQL Pascal
preprocessor. Preprocessing performs the following tasks:

Checks the syntax of the SQL commands.

Stores a module in the system catalog of the DBEnvironment to be accessed at run time.
A module consists of ALLBASE/SQL instructions for executing SQL commands in your
program.

Creates an installable module �le. This �le contains a copy of the module stored in the
DBEnvironment at preprocessing time. You can use this �le to install the module into
another DBEnvironment in order to run the application program in that DBEnvironment.

Generates Pascal constructs for executing the SQL commands and comments out the SQL
commands. Non-SQL constructs are ignored. This modi�ed version of your source code is
placed into a �le created by the preprocessor, referred to as a modi�ed source code �le.

Creates four include �les, which contain variable declarations, constant declarations, type
declarations, and external procedure declarations that the preprocessor-generated Pascal
constructs use.

You use the Pascal compiler and system linker to create the executable program from the
modi�ed source code �le and the four include �les. The executable program automatically
makes the appropriate database accesses at run time in the DBEnvironment where the related
module is stored.

ALLBASE/SQL Pascal Programs

To write a Pascal application that uses an ALLBASE/SQL database, you embed SQL
commands in the Pascal source wherever you want the program to do the following tasks:

Start or terminate a DBEnvironment session, either in single user mode or multi-user mode.

Start or terminate a transaction.

Retrieve rows from or change data in tables in a database.

Create or drop objects, such as indexes or views.

You also embed special SQL commands known as preprocessor directives. The Pascal
preprocessor uses these directives to do the following tasks:

Identify Pascal variables referenced in SQL commands, known as host variables.

Set up a data structure known as the SQL Communications Area (SQLCA) in the main
program, for communicating the status of executed SQL commands to your program.

Optionally automate program ow based on SQLCA information.

Generate error handling code.

1-2 Getting Started with ALLBASE/SQL Pascal Programming

Set up a special variable known as the SQL Description Area (SQLDA) in the main
program or subprogram, for handling dynamically preprocessed SELECT commands.

Identify cursor declarations.

Program Structure

The following skeleton program illustrates the relationship between Pascal constructs and
embedded SQL commands in an application program. SQL commands may appear in a
program at locations indicated by shading.

(* PROGRAM HEADING *)

program ProgramName (input, output);
...

(* PROGRAM DECLARATION PART *)

varNNN
SQLCA DeclarationNNN
SQLDA Declaration

NN
Host Variable Declarations

...

(* PROGRAM STATEMENT PART *)

begin
...

Pascal statements and
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SQL Commands

...

end.

The global area of a subprogram cannot contain host variable declarations. Only Level 1
procedures in a subprogram can contain host variable declarations, but you can use the host
variables in procedures at other levels.

To delimit SQL commands for the preprocessor, you begin each command with EXEC SQL
and end each command with a semicolon.

EXEC SQL BEGIN WORK;

Most SQL commands appear within Pascal procedures where you establish DBEnvironment
access and manipulate data in a database.

Getting Started with ALLBASE/SQL Pascal Programming 1-3

DBEnvironment Access

You must always specify a DBEnvironment at preprocessing time. The preprocessor needs
to access the DBEnvironment you specify in the INFO string. It does so in order to store a
module containing permanent sections used by your application program at run time. In this
example, the environment is PartsDBE which is in the group and account GroupDB.AcctDB.

:RUN PSQLPAS.PUB.SYS; INFO = 'PartsDBE.GroupDB.AcctDB'

Your application program needs to access the DBEnvironment to perform its work. The
CONNECT command starts a DBEnvironment session for a speci�c environment. The
RELEASE statement terminates that session.

begin

.

.

.

EXEC SQL CONNECT TO 'PartsDBE.GroupDB.AcctDB';
.

.

.

EXEC SQL RELEASE;

end.

At run time, the program starts a DBE session in PartsDBE.GroupDB.AcctDB, where a
module for the program has been stored.

A program can accept a DBEnvironment name from the program user and dynamically
preprocess the SQL command that starts a DBEnvironment session. Refer to Chapter 10 for
more information on dynamically connecting to a database and refer to Chapter 4 for more
information on using a host variable to connect to a database.

No matter how you access a DBEnvironment (dynamic or stored sections), you must always
specify a DBEnvironment name when you preprocess.

In some cases an ALLBASE/SQL program is used with one or more DBEnvironments in
addition to the DBEnvironment accessed at preprocessing time. In these cases, you use
ISQL to install the installable module created by the preprocessor into each additional
DBEnvironment accessed by your program. You can also preprocess the same application
repeatedly with di�erent DBEnvironments. See Chapter 2 for information on the installable
module.

An alternative method of accessing more than one DBEnvironment from the same program
would be to separate the program into separate compilable �les. Each source �le would access
a DBEnvironment. In each �le you start and terminate a DBE session for the DBEnvironment
accessed. You then preprocess and compile each �le separately. When you invoke the
preprocessor, you identify the DBEnvironment accessed by the source �le being preprocessed.
After each separate source �le is preprocessed, it must be compiled without linking. When
all source �les have been preprocessed and compiled, you link them to create the executable
program.

Note that a program which accesses more than one DBEnvironment must access them one
after another. Such program design may adversely a�ect performance and requires special
consideration.

1-4 Getting Started with ALLBASE/SQL Pascal Programming

To preprocess or to use an already preprocessed ALLBASE/SQL application program, you
must satisfy the authorization requirements for each DBEnvironment accessed.

Authorization

ALLBASE/SQL authorization governs who can preprocess, execute, and maintain a program
that accesses an ALLBASE/SQL DBEnvironment.

To preprocess a program for the �rst time, you need CONNECT or DBA authority in the
DBEnvironment your program accesses. When you preprocess a program, ALLBASE/SQL
stores a module for that program in the DBEnvironment's system catalog and identi�es your
User@Account as the owner of that module. Subsequently, if you have OWNER or DBA
authority, you can re-preprocess the program.

To run a program accessing an ALLBASE/SQL DBEnvironment, you need the following
authorities to start the DBE session in the program:

If the program uses a CONNECT command to start a DBE session, you need CONNECT
authority and RUN or module OWNER authority to run the program.

If the program uses a START DBE command to start the DBE session, you need DBA
authority to run the program.

At run time, any SQL command in the program is executed only if the OWNER of the
module has the authorization to execute the command at run time, and the individual
running the program has RUN authority to the program. However, any dynamic command is
executed only if the userid of the user running the program has the authority to execute the
entered command at run time. A dynamic command is an SQL command entered by the user
at run time.

Maintaining an ALLBASE/SQL program includes such activities as modifying a program in
production use and keeping runtime authorizations current as program users change. For
these activities, you need OWNER authority for the module or DBA authority. More on this
topic appears later in this chapter under \Maintaining ALLBASE/SQL Programs."

File Referencing

When you create a DBEnvironment, a Database Environment Con�guration (DBECon)
�le is created. The �le name of this DBECon �le is stored in the DBECon �le itself. In all
subsequent references to �les, you may use either a fully quali�ed �le name or a �le name
relative to that of the DBECon �le.

For example, if a DBEnvironment was created with the following command:

START DBE 'PARTSDBE' NEW

and the user was currently in the SQL group of the DBSUPPORT account, the �le name
PARTSDBE.SQL.DBSUPPORT would be stored in the DBECon �le. If the user were
subsequently to create a DBEFile with the command:

CREATE DBEFILE ORDERS WITH PAGES=50, NAME='ORDERSFS'

Getting Started with ALLBASE/SQL Pascal Programming 1-5

the ORDERSFS �le is created in the same group and account as the DBECon �le and would
be ORDERSFS.SQL.DBSUPPORT. If however, the user were to create a DBEFile with the
command:

CREATE DBEFILE ORDERS WITH PAGES=50, NAME='ORDERSFS.SHIPPING.DBSUPPORT'

the name stored in the DBECon �le would be ignored while creating this �le. The user would
need to fully qualify this �le name each time the �le is referenced. Fully quali�ed �le names,
enclosed in quotes, are restricted to a maximum length of 36 bytes. The maximum length of
unquoted �le names is 8 bytes. DBEnvironment names are restricted to a maximum length of
128 bytes.

In addition, if the DBEnvironment you want the preprocessor to access resides in a group and
account other than your current group and account, you will have to qualify the name of the
DBEnvironment.

For example, if the DBEnvironment you want the preprocessor to access resides in the SQL
group of account DBSUPPORT, you would invoke the preprocessor as follows:

$ RUN PSQLPAS.PUB.SYS;INFO = 'SOMEDBE.SQL.DBSUPPORT'

1-6 Getting Started with ALLBASE/SQL Pascal Programming

Native Language Support

ALLBASE/SQL lets you manipulate databases in a number of native languages in addition
to the default language, known as NATIVE-3000. You can use either 8-bit or 16-bit character
data, as appropriate for the language you select. In addition, you can always include ASCII
data in any database, since ASCII is a subset of each supported character set. The collating
sequence for sorting and comparisons is that of the native language selected.

You can use native language characters in the following places, including the following places:

Character literals.
Host variables for CHAR or VARCHAR data (but not variable names).
ALLBASE/SQL names.
WHERE and VALUES clauses.

If your system has the proper message �les installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select, and it displays dates and time according
to local customs. In addition, ISQL accepts responses to its prompts in the native language
selected. However, regardless of the native language used, the syntax of ISQL and SQL
commands|including punctuation|remains in ASCII.

Note that MPE XL does not support native language �le names nor DBEnvironment names.

In order to use a native language other than the default, you must do the following:

1. Make sure your I/O devices support the character set you wish to use.

2. Set the MPE job control word NLUSERLANG to the number (LangNum) of the native
language you wish to use. Use the following MPE XL command:

SETJCW NLUSERLANG = LangNum

This language then becomes the current language. (If NLUSERLANG is not set, the
current language is NATIVE-3000.)

Getting Started with ALLBASE/SQL Pascal Programming 1-7

3. Use the LANG = LanguageName option of the START DBE NEW command to specify
the language when you create a DBEnvironment.

Run the MPE XL utility program NLUTIL.PUB.SYS to determine which native languages
are supported on your system. Here is a list of some supported languages, preceded by the
LangNum for each:

0 NATIVE-3000 9 ITALIAN 52 ARABICW

1 AMERICAN 10 NORWEGIAN 61 GREEK

2 C-FRENCH 11 PORTUGUESE 71 HEBREW

3 DANISH 12 SPANISH 81 TURKISH

4 DUTCH 13 SWEDISH 201 CHINESE-S

5 ENGLISH 14 ICELANDIC 211 CHINESE-T

6 FINNISH 41 KATAKANA 221 JAPANESE

7 FRENCH 51 ARABIC 231 KOREAN

8 GERMAN

Resetting NLUSERLANG while you are connected to a DBEnvironment has no e�ect on the
current DBE session.

1-8 Getting Started with ALLBASE/SQL Pascal Programming

The ALLBASE/SQL Pascal Preprocessor

The preprocessor ignores Pascal constructs in your source code, but generates Pascal
constructs, based on the embedded SQL commands in your code. Figure 1-2 summarizes the
four main preprocess-time events:

Syntax checking of SQL commands and host variable declarations.

Creation of compilable �les: one modi�ed source code �le and four include �les.

Creation of an installable module.

Storage of a module in the system catalog.

Figure 1-2. Preprocess-Time Events

Getting Started with ALLBASE/SQL Pascal Programming 1-9

Effect of Preprocessing on Source Code

The Pascal preprocessor scans the source code for SQL commands. If the syntax of an SQL
command is valid, the preprocessor converts the command into compilable Pascal constructs
that call ALLBASE/SQL external procedures at run time. During preprocessing, for example,
ALLBASE/SQL converts the following SQL command:

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

The preprocessor produces the following converted modi�ed source code constructs:

$Skip_Text ON$

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

$Skip_Text OFF$

begin

SQLTEMPV.REC1.PartNumber1 := PartNumber;

SQLXFET(waddress(SQLCA),SQLOWNER,SQLMODNAME,1,waddress(SQLTEMPV),

16,64,TRUE);

if SQLCA.SQLCODE = 0 then

begin

PartNumber := SQLTEMPV.REC2.PartNumber1;

PartName := SQLTEMPV.REC2.PartName2;

if SQLTEMPV.REC2.SalesPriceInd4 >= 0 then

SalesPrice := SQLTEMPV.REC2.SalesPrice3;

SalesPriceInd := SQLTEMPV.REC2.SalesPriceInd4;

end

else

begin

end;

end;

The embedded SELECT command has been converted into a Pascal comment, and Pascal
constructs that enable ALLBASE/SQL to execute the SELECT command at run time have
been inserted. The names that appear in the inserted Pascal code identify variables used by
the ALLBASE/SQL external procedures; in this example, the names identify variables used by
the SQLXFET external procedure. Some of these variables are derived from host variables.
As shown in the embedded SELECT command above, you precede a host variable with a
colon when you use it in SQL commands:

:PartNumber

Type declarations used by preprocessor generated code are de�ned and initialized in the
include �les the preprocessor creates:

1-10 Getting Started with ALLBASE/SQL Pascal Programming

SQLCONST, a �le that de�nes ALLBASE/SQL constants.

SQLTYPE, a �le that de�nes ALLBASE/SQL type declarations.

SQLVAR, a �le that de�nes variables declared in a main program. For a subprogram,
from one to 100 SQLVARn �les are generated, one for each declare section; for example,
SQLVAR1.

SQLEXTN, a �le that contains ALLBASE/SQL's external procedure declarations.

The preprocessor inserts $INCLUDE directives that reference these �les in the Declaration
part of the modi�ed source code:

$Include 'sqlconst'$

$Include 'sqltype'$

$Include 'sqlvar'$ (or $Include 'sqlvarn'$)

$Include 'sqlextn'$

The chapter, \Using the ALLBASE/SQL Pascal Preprocessor," explains how the SQLEXTN
�le is derived.

Caution Never modify either the constructs inserted by the preprocessor or the include
�les the preprocessor creates. Changes to preprocessor generated information
could damage your DBEnvironment or your system.

Effect of Preprocessing on DBEnvironments

When you invoke the preprocessor, you name an ALLBASE/SQL DBEnvironment. The
preprocessor starts a DBE session for that DBEnvironment when preprocessing begins and
terminates that session when preprocessing is completed.

When the preprocessor encounters a syntactically correct SQL command, it usually creates
a section and stores it in the system catalog of the DBEnvironment being accessed. An
ALLBASE/SQL section is a group of stored ALLBASE/SQL instructions for executing one
SQL command.

All sections created during a preprocessing session constitute a module. The preprocessor
derives the name of the module from the program heading unless you supply a di�erent name
when you invoke the preprocessor:

:RUN PSQLPAS.PUB.SYS; INFO = 'DBEnvironmentName(MODULE(ModuleName))'

The main program and the subprograms that comprise an application must each have a
unique name. And no two modules should have the same name.

When the preprocessor terminates its DBEnvironment session, it issues a COMMIT WORK
command if it encountered no errors. Created sections are stored in the system catalog and
associated with the module name.

Getting Started with ALLBASE/SQL Pascal Programming 1-11

The Stored Section

A section consists of ALLBASE/SQL instructions for executing an SQL command. Not every
SQL command requires a section. For each SQL command that does require a section, the
preprocessor creates the section and assigns to it a unique reference number. In the following
generated code, SQLSECNUM contains the number of the stored section.

CALL SQLXFE(SQLTRNE,SQLOWN,SQLMDN,SQLSECNUM,SQLTMP, SQLINLEN,SQLOUTLEN)

Purpose of Sections

A section serves the following two purposes:

1. Access validation: Before executing a stored section at run time, ALLBASE/SQL ensures
that any objects referenced exist and that runtime authorization criteria are satis�ed.

2. Access optimization: If ALLBASE/SQL has more than one way to access data, it
determines the most e�cient method and creates the section based on that method.
Indexes, for example, can expedite the performance of some queries.

By creating and storing sections at preprocessing time rather than at run time, runtime
performance is improved.

1-12 Getting Started with ALLBASE/SQL Pascal Programming

Section Validity

A section is assigned one of two states at preprocessing time: valid or invalid. A section is
valid when access validation criteria are satis�ed. If the SQL command references objects
that exist at preprocessing time and the individual doing the preprocessing is authorized to
issue the command, the stored section is marked as valid. A section is invalid when access
validation criteria are not satis�ed. If the SQL command references an object that does not
exist at preprocessing time or if the individual doing the preprocessing is not authorized
to issue the command, the stored section is marked as invalid. After being stored by the
preprocessor, a valid section is marked as invalid when such activities as the following occur:

Changes in authorities of the module's owner.

Alterations to tables accessed by the program.

Deletions or creations of indexes.

Updating a table's statistics.

At run time, ALLBASE/SQL executes valid sections and attempts to validate any section
marked as invalid. If an invalid section can be validated, as when an altered table does not
a�ect the results of a query, ALLBASE/SQL marks the section as valid and executes it. If
an invalid section cannot be validated, as when a table reference is invalid because the table
owner name has changed, ALLBASE/SQL returns an error indication to the application
program.

When a section is validated at run time, it remains in the valid state until an event that
invalidates it occurs. The program execution during which validation occurs is slightly slower
than program executions following validation.

Getting Started with ALLBASE/SQL Pascal Programming 1-13

Compiling and Linking the Program

Figure 1-3 summarizes the steps in creating an executable ALLBASE/SQL Pascal program
from the �les created by the Pascal preprocessor.

Figure 1-3. Compile-Time and Linking-Time Events

You submit to the Pascal compiler a modi�ed source code �le and related include �les created
by the preprocessor. The compiler then generates an object code module. To convert object
code modules into an executable program, link them after compilation by invoking the linker.
This step creates an executable program �le.

In the following example, an executable program named SomeProg is created after a module
named Pgmr1@AcctDB.SomeMod is stored by the Pascal preprocessor in a DBEnvironment
named SomeDBE.GroupDB.AcctDB. The program is in the GroupP group.

1-14 Getting Started with ALLBASE/SQL Pascal Programming

:HELLO PGMR1.AcctDB,GroupP

.

.
:RUN PSQLPAS.PUB.SYS; INFO = 'SomeDBE.GroupDB (MODULE(SOMEMOD))'

.

.

:PASXLLK ModifiedSourceCodeFile,SOMEPROG,$NULL

ALLBASE/SQL Program Execution

When an ALLBASE/SQL program is �rst created, it can only be executed by the module
OWNER or a DBA. In addition, it can only operate on the DBEnvironment used at
preprocessing time if a module was generated. If no module was generated because the SQL
commands embedded in the program are only commands for which no sections are created,
the program can be run against any DBEnvironment.

The program created in the previous example can be executed as follows by Pgmr1.AcctDB:

:RUN SOMEPROG.GroupP.AcctDB

To make the program executable by other users in other DBEnvironments, you must perform
the following steps:

Load the executable program �le onto the machine where the production DBEnvironment
resides.

Install any related module in the production DBEnvironment.

Ensure necessary module owner authorities exist.

Grant required authorities to program users.

Getting Started with ALLBASE/SQL Pascal Programming 1-15

Installing the Program Module

When the preprocessor stores a module in a DBEnvironment, it also creates a �le containing
a copy of the module, which can be installed into another DBEnvironment. You use the
INSTALL command in ISQL to install the module in another DBEnvironment. In this
example, the module is installed in the SomeDBE environment which is in the same group and
account as the PartsDBE environment:

isql=> CONNECT TO 'SomeDBE.GroupDB.AcctDB';

isql=> INSTALL SOMEMOD.GroupP.AcctDB;

Name of module in this file: Pgmr1@AcctDB.SOMEMOD

Number of sections installed: 6

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

ISQL copies the module from the installable module �le named SOMEMOD.GroupP.AcctDB
into a DBEnvironment named SomeDBE.GroupDB.AcctDB. During installation,
ALLBASE/SQL marks each section in the module valid or invalid, depending on the current
objects and authorities in SomeDBE.GroupDB.AcctDB.

To use the INSTALL command, you need to be able to start a DBE session in the
DBEnvironment that is to contain the new module. If you are replacing a module with a new
one of the same name, make sure no other users are accessing the module. To avoid problems,
install modules while connected to the DBEnvironment in single-user mode.

Granting Required Owner Authorization

At run time, embedded SQL commands are executed only if the original module owner has
the authority to execute them. Therefore, you need to grant required authorities to the
module owner in the production DBEnvironment.

If module Pgmr1@AcctDB.SomeMod contains a SELECT command for table PurchDB.Parts,
the following grant would ensure valid owner authorization:

isql=> GRANT SELECT ON PurchDB.Parts to Pgmr1@AcctDB;

If Pgmr1@AcctDB had DBA authority, he could have assigned ownership of the module to
another owner at preprocessing time by using the OWNER parameter:

:RUN PSQLPAS.PUB.SYS;INFO='SomeDBE.GroupDB.AcctDB &

(MODULE(SOMEMOD) OWNER (PURCHDB))'

In this case, ownership belongs to a class, PurchDB. Only an individual with DBA authority
can maintain this program, and runtime authorization would be established as follows:

isql=> GRANT SELECT ON PurchDB.Parts TO PurchDB;

1-16 Getting Started with ALLBASE/SQL Pascal Programming

Granting Program User Authorization

In order to execute an ALLBASE/SQL application program you must be able to start any
DBE session initiated in the program. You must also have one of the following authorities in
the DBEnvironment accessed by the program:

RUN

module OWNER

DBA

A DBA must grant the authority to start a DBE session. In most cases, application programs
start a DBE session with the CONNECT command, so CONNECT authorization is su�cient:

isql=> CONNECT TO 'SomeDBE.GroupDB.AcctDB';

isql=> GRANT CONNECT TO SomeUser@SomeAcct;

isql=> COMMIT WORK;

If you have module OWNER or DBA authority, you can grant RUN authority:

isql=> CONNECT TO 'SomeDBE.GroupDB.AcctDB';

isql=> GRANT RUN ON Pgmr1@AcctDB.SomeMod TO SomeUser@SomeAcct;

isql=> COMMIT WORK;

Now SomeUser@SomeAcct can run program SomeProg.GroupP.AcctDB:

:HELLO SomeUser.SomeAcct

.

.

.

:RUN SomeProg.GroupP.AcctDB

If the program executes subprograms that contain SQL commands, you must also GRANT
RUN authority to each subprogram module.

Running the Program

At run time, two �le equations may be required|one for the ALLBASE/SQL message catalog
and one for the DBEnvironment to be accessed by the program.

If the program contains the SQLEXPLAIN command, the ALLBASE/SQL message catalog
must be available at run time. SQLEXPLAIN obtains warning and error messages from
SQLCTxxx.PUB.SYS, where xxx is the numeric indicator for the current native language. If
SQLCTxxx.PUB.SYS is installed in a di�erent group or account on your system, you must use
a �le equation to specify its location.

If the program contains a CONNECT or START DBE command that uses a back referenced
DBEnvironmentName, submit a FILE command to identify the DBEnvironment to be
accessed by the program at run time:

EXEC SQL CONNECT TO '*DBE';

This command initiates a DBE session in the DBEnvironment

identi�ed at run time as follows:

:FILE DBE=SomeDBE.SomeGrp.SomeAcct

Getting Started with ALLBASE/SQL Pascal Programming 1-17

Once the ALLBASE/SQL message catalog and appropriate DBEnvironment are identi�ed, the
program can be run:

:RUN SomeProg.GroupP.AcctDB

You must specify the name of an executable program �le as SomeProg. Do not specify a
module name in the RUN command.

At run time, an ALLBASE/SQL program interacts with the DBEnvironment as illustrated in
Figure 1-4.

Figure 1-4. Runtime Events

1-18 Getting Started with ALLBASE/SQL Pascal Programming

All the Pascal constructs inserted by the preprocessor and the stored sections automatically
handle database operations, including providing the application program with status
information after each SQL command is executed. SQL commands that have a stored section
are executed if the section is valid at run time or can be validated by ALLBASE/SQL at run
time.

SQL commands that are not known until run time can also be processed by an application
program. These SQL commands, known as dynamic commands, are entered by the user at
run time rather than embedded in the source code at programming time. ALLBASE/SQL
converts these commands into executable ALLBASE/SQL instructions at run time rather
than at preprocessing time. Sections and other instructions created for dynamic data
manipulation commands are deleted at the end of the transaction.

Maintaining ALLBASE/SQL Programs

After ALLBASE/SQL Pascal programs are in production use, changes in applications,
personnel, or databases may necessitate doing the following tasks:

Updating application programs.

Changing program-related authorizations.

Obsoleting application programs.

Updating Application Programs

Minor modi�cations to programs in use can often be made right on the production machine
and production DBEnvironment, during hours in which the production DBEnvironment use is
minimal. Major program modi�cations, because they are more time-consuming, are usually
made on a development machine and development DBEnvironment.

In either case, the OWNER of the program's module or a DBA preprocesses the revised
program and replaces the old module with a new one. Existing RUN authorities can be either
preserved or revoked. Dropping old modules and preserving or revoking RUN authorities can
be done either by using the DROP MODULE command in ISQL or when you invoke the
preprocessor.

The PRESERVE option of the DROP MODULE command retains any existing RUN
authorities for the module when it is deleted from the system catalog as in the following
example:

isql=> DROP MODULE MyMod PRESERVE;

While in ISQL, to delete a module and any existing RUN authorities for it, simply omit the
PRESERVE option.

You can also drop a module and any existing run authorities for it at preprocessing time:

:RUN PSQLPAS.PUB.SYS;INFO='SomeDBE (MODULE(MyMod) DROP)'

This invocation line drops the module named MyMod, but retains any related RUN
authorities. To revoke the RUN authorities, you would specify the REVOKE option in the
INFO string.

Getting Started with ALLBASE/SQL Pascal Programming 1-19

The DROP MODULE command is also useful in conjunction with revised programs whose
modules must be installed in a DBEnvironment di�erent from that on which preprocessing
occurred. Before using the INSTALL command to store the new module, you drop the
existing module using the DROP MODULE command, preserving or dropping related RUN
authorization as required.

Changing Program-Related Authorization

Once a program is in production use, you may need to grant and revoke RUN and CONNECT
authority as program users revoking CONNECT authority in the following example requires
DBA authorization:

isql=> REVOKE CONNECT FROM Old@User;

Revoking RUN authority as shown below requires either module OWNER or DBA authority:

isql=> REVOKE CONNECT FROM Old@User;

Revoking RUN authority requires either module OWNER or DBA authority:

isql=> REVOKE RUN ON Pgmr1@Pascal.SomeMod FROM Old@User;

Obsoleting Programs

When an application program becomes obsolete, you use the DROP MODULE command to
both remove the module from any DBEnvironment where it is stored and revoke any related
RUN authorities:

isql=> DROP MODULE MyMod;

Related RUN authorities are automatically revoked when you do not use the PRESERVE
option of this command.

1-20 Getting Started with ALLBASE/SQL Pascal Programming

2

Using the ALLBASE/SQL Pascal Preprocessor

You use the preprocessor to develop Pascal application programs that access an
ALLBASE/SQL DBEnvironment.

The Preprocessor and Program Development

Pascal ALLBASE/SQL application programs have the same stages of development as any
application program. They originate as Pascal source code �les that are subsequently
compiled with the Pascal compiler and linked by the system linker to create an executable
program �le. The development of ALLBASE/SQL programs, however, requires that you
preprocess those portions of the program that contain SQL commands before compilation.

In the case illustrated in Figure 2-1, the ALLBASE/SQL Pascal program consists of one
source �le and, optionally, one or more include �les. The preprocessor merges any user include
�le into the source program, and preprocesses it. The result is a modi�ed source code �le and
several preprocessor-generated include �les. These preprocessor include �les contain all of the
de�nitions of variables used by any Pascal statements in the modi�ed source code �le. These
two �les are then compiled to produce an object code �le, and linked to produce an executable
program �le, in the same manner as any other Pascal program.

Using the ALLBASE/SQL Pascal Preprocessor 2-1

Figure 2-1. Developing a Pascal ALLBASE/SQL Program

Note The parts of Figure 2-2 shown with diagonal lines show subprogram
processing.

In other cases, the ALLBASE/SQL application program might consist of a main program
and one or more subprograms in separate �les. In these cases, only source �les containing
embedded SQL code need to be preprocessed, as illustrated in Figure 2-2. However, each
program �le which contains embedded SQL code must be preprocessed and compiled before
the next program �le is preprocessed. Separately preprocessed program �les that are not
immediately compiled will write over each other's preprocessor created include �les and
consequently create an error when compiled. You invoke the Pascal compiler as many times as
necessary to create the desired number of object code modules. The �les output by the Pascal
preprocessor are treated just as any other compiler input �les at compile time.

2-2 Using the ALLBASE/SQL Pascal Preprocessor

Figure 2-2. Developing a Pascal ALLBASE/SQL Program with Subprograms

Using the ALLBASE/SQL Pascal Preprocessor 2-3

During any invocation, the Pascal preprocessor can access only one DBEnvironment.
Therefore programs that access multiple DBEnvironments must be divided into multiple
subprograms, each of which accesses only one DBEnvironment. Subprograms that access
the same DBEnvironment may be preprocessed and compiled separately or jointly. The
preprocessor stores a module in each DBEnvironment accessed for each preprocessor
invocation.

You can also create separate subprograms that all access the same DBEnvironment. Each
subprogram may again be preprocessed and compiled separately or jointly. In this case, the
preprocessor stores multiple modules in one DBEnvironment. Each module consists of sections
with each section representing one SQL command.

The criteria governing the division of an application program into subprograms is very
application-dependent. As in the development of any application program, factors such
as program size, program complexity, expected recompilation frequency, and number of
programmers a�ect how a program is subdivided. In the case of ALLBASE/SQL Pascal
application programs, the only additional factors are as follows:

All code containing embedded SQL commands must be preprocessed.

The preprocessor can access only one DBEnvironment at a time.

Each separately preprocessed program or subprogram that accesses the same
DBEnvironment must have a unique OwnerName.ModuleName. The module name defaults
to the program or subroutine name if the user does not provide one. The owner name
defaults to the user's logon if the user does not provide one.

The preprocessor can process only one �le per invocation.

Each preprocessed subprogram must be compiled before the next subprogram is
preprocessed.

User include �les cannot contain duplicate host variable type declarations sections.

Preprocessor Modes

You can use the preprocessor in the following two modes:

1. Syntax checking mode, which only checks your SQL syntax.

2. Full preprocessing mode, which includes SQL syntax checking, creating compilable output,
storing a module in a DBEnvironment, and creating a �le that contains an installable copy
of the stored module.

As you develop the SQL portions of your Pascal programs, syntax checking mode is quite
useful. Preprocessing is quicker in this mode than in full preprocessing mode. In addition, you
can start debugging your SQL commands before the DBEnvironment itself is in place.

How to run the preprocessor in both modes is described later in this chapter under \Invoking
the Pascal Preprocessor."

2-4 Using the ALLBASE/SQL Pascal Preprocessor

Preprocessor Input and Output

Regardless of the mode you use, the following �les must be available when you invoke the
Pascal preprocessor, as shown in Figure 2-3:

source �le: a �le containing the Pascal ALLBASE/SQL program or subprogram with
embedded SQL commands for one DBEnvironment. The �le must be a �xed length ASCII
�le, numbered or unnumbered. The formal �le designator for this input �le is:

SQLIN

ALLBASE/SQL message catalog: a �le containing preprocessor messages and
ALLBASE/SQL error and warning messages. The formal �le designator for the message
catalog is as follows, with xxx being the numeric representation for the current native
language:

SQLCTxxx.PUB.SYS

When you run the preprocessor in full preprocessing mode, also ensure that the
DBEnvironment accessed by the program is available.

As Figure 2-4 points out, the Pascal preprocessor creates the following output �les:

modi�ed source �le: a �le containing a modi�ed version of the source �le. The formal �le
designator for this �le is:

SQLOUT

After you use the preprocessor in full preprocessing mode, you use SQLOUT and the
following include �les as input �les for the Pascal compiler, as shown in Figure 2-4.

include �les: include �les containing de�nitions of constants, types, variables, and external
procedures used by Pascal constructs the preprocessor inserts into SQLOUT. The formal �le
designators for these �les are, respectively:

SQLCONST

SQLTYPE

SQLVAR (or SQLVARn for subprograms)

SQLEXTN

ALLBASE/SQL message �le: a �le containing the preprocessor banner, warning messages,
and other messages. The formal �le designator for this �le is:

SQLMSG

installable module �le: a �le containing a copy of the module created by the preprocessor.
The formal �le designator for this �le is:

SQLMOD

When you run the preprocessor in full preprocessing mode, the preprocessor also stores a
module in the DBEnvironment accessed by your program. The module is used at run time to
execute DBEnvironment operations.

If the source �le is in a language other than ASCII, the modi�ed source �le, and all generated
�les will have names in the native language and extensions in ASCII.

Using the ALLBASE/SQL Pascal Preprocessor 2-5

Figure 2-3. Pascal Preprocessor Input and Output

2-6 Using the ALLBASE/SQL Pascal Preprocessor

Figure 2-4. Compiling Preprocessor Output

If you want to preprocess several ALLBASE/SQL application programs in the same group
and account and compile and link the programs later, or you plan to compile a preprocessed
program during a future session, you should do the following for each program:

Before running the preprocessor, equate SQLIN to the name of the �le containing the
application you want to preprocess:

:FILE SQLIN = InFile

After running the preprocessor, save and rename the output �les if you do not want them
overwritten. For example:

Using the ALLBASE/SQL Pascal Preprocessor 2-7

:SAVE SQLOUT

:RENAME SQLOUT, OutFile

:SAVE SQLMOD

:RENAME SQLMOD, ModFile

:SAVE SQLVAR

:RENAME SQLVAR, VarFile

:SAVE SQLTYPE

:RENAME SQLTYPE, TypeFile

:SAVE SQLEXTN

:RENAME SQLEXTN, ExtnFile

:SAVE SQLCONST

:RENAME SQLCONST, ConstFile

When you are ready to compile the program, you must equate the include �le names to their
standard ALLBASE/SQL names. See \Preprocessor Generated Include Files" in this section
for more information.

Source File

The source �le must be a �le that contains at a minimum the following constructs:

(* PROGRAM HEADING *)

Program ProgramName(input, output);

begin

AnyStatement;

end.

When parsing the source �le, the Pascal preprocessor ignores Pascal statements and most
Pascal compiler directives in it. Only the following information is parsed by the Pascal
preprocessor:

The Pascal compiler directives $Skip Text ON$, $Skip Text OFF$, $Set, $If, $Else, $Endif,
and $Include.

The program name. Unless you specify a module name in the preprocessor invocation line,
the preprocessor uses the program name as the name for the module it stores. The name
may optionally have the su�x .sql to distinguish it from non-SQL programs. A module
name can contain as many as 20 bytes and must follow the rules governing ALLBASE/SQL
basic names (given in the ALLBASE/SQL Reference Manual).

2-8 Using the ALLBASE/SQL Pascal Preprocessor

Constructs found after pre�x EXEC SQL. These constructs follow the rules given in the
chapter, \Embedding SQL Commands," for how and where to embed these constructs.

Constructs found between the BEGIN DECLARE SECTION and END DECLARE
SECTION commands. These commands delimit a declare section which contains Pascal
data declarations for the host variables used in the program. Both main and subprograms
that contain SQL commands, regardless of whether or not they contain host variables, must
include the BEGIN DECLARE SECTION and the END DECLARE SECTION commands
in order to create the modi�ed source code �le, SQLOUT. Host variables are described in
Chapter 4.

The runtime dialog for a sample program that selects and displays data is shown in Figure
2-5. Figure 2-6 illustrates an SQLIN �le of the sample program using the following SQL
commands:

INCLUDE SQLCA

BEGIN DECLARE SECTION

END DECLARE SECTION

WHENEVER

CONNECT

BEGIN WORK

SELECT

COMMIT WORK

SQLEXPLAIN

As the following interactive sample dialog illustrates, the program begins a DBE session for
PartsDBE, the sample DBEnvironment. It prompts the user for a part number, then displays
information about the part from the table PurchDB.Parts. Warning and error conditions are
handled with WHENEVER and SQLEXPLAIN commands with the exception of explicit error
checking after the SELECT command. The program continues to prompt for a part number
until the user enters a slash (/) or a serious error is encountered.

Using the ALLBASE/SQL Pascal Preprocessor 2-9

:RUN PASEX2P

Program to SELECT specified rows from the Parts Table - PASEX2

Event List:

Connect to PartsDBE

Begin Work

SELECT specified row from Parts Table

until user enters "/"

Commit Work

Disconnect from PartsDBE

Connect to PartsDBE

Enter Part Number within Parts Table or "/" to STOP> 1243-P-01

Begin Work

SELECT PartNumber, PartName, SalesPrice

Row not found!

Commit Work

Enter Part Number within Parts Table or "/" to STOP> 1323-D-01

Begin Work

SELECT PartNumber, PartName, SalesPrice

Part Number: 1323-D-01

Part Name: Floppy Diskette Drive

Sales Price: 200.00

Commit Work

Enter Part Number within Parts Table or "/" to STOP> 1823-PT-01

Begin Work

SELECT PartNumber, PartName, SalesPrice

Part Number: 1823-PT-01

Part Name: Graphics Printer

Sales Price: 450.00

Commit Work

Enter Part Number within Parts Table or "/" to STOP> /

Release PartsDBE

Terminating Program

Figure 2-5. Interactive Runtime Dialog of Program PASEX2

2-10 Using the ALLBASE/SQL Pascal Preprocessor

$Heap_Dispose ON$

$Heap_Compact ON$

Standard_Level 'HP_Pascal$

(* *)

(* This program illustrates the use of SQL's SELECT command to *)

(* retrieve one row or tuple at a time. *)

(* BEGIN WORK is executed before the SELECT and a COMMIT WORK *)

(* after the SELECT. An indicator variable is also used for *)

(* SalesPrice. *)

(* *)

Program pasex2(input, output);

label

1000,

9999;

const
OK = 0;

NotFound = 100;

DeadLock = -14024;

var

EXEC SQL INCLUDE SQLCA; (* SQL Communication Area *)

(* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION;

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

SalesPrice : longreal;

SalesPriceInd : SQLIND;

SQLMessage : packed array[1..132] of char;

EXEC SQL END DECLARE SECTION;

(* End Host Variable Declarations *)

Abort : boolean;

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

Forward;

(* Directive to set SQL Whenever error checking *)

$PAGE $

EXEC SQL WHENEVER SQLERROR GOTO 1000;

Figure 2-6. Program PASEX2: Using Simple Select

Using the ALLBASE/SQL Pascal Preprocessor 2-11

procedure ConnectDBE; (* Procedure to Connect to PartsDBE *)

begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE';

end; (* End of ConnectDBE Procedure *)

procedure BeginTransaction; (* Procedure to Begin Work *)

begin

writeln;

writeln('Begin Work');

EXEC SQL BEGIN WORK;

end; (* End BeginTransaction Procedure *)

procedure EndTransaction; (* Procedure to Commit Work *)

begin

writeln('Commit Work');

EXEC SQL COMMIT WORK;

end; (* End EndTransaction Procedure *)

(* Directive to reset SQL Whenever error checking *)

EXEC SQL WHENEVER SQLERROR CONTINUE;

procedure TerminateProgram; (* Procedure to Release PartsDBE *)

begin

writeln('Release PartsDBE');

EXEC SQL COMMIT WORK RELEASE;

writeln;

writeln('Terminating Program');

Goto 9999; (* Goto exit point of main program *)

end; (* End TerminateProgram Procedure *)

$PAGE $

Figure 2-6. Program PASEX2: Using Simple Select (page 2 of 5)

2-12 Using the ALLBASE/SQL Pascal Preprocessor

procedure DisplayRow; (* Procedure to Display Parts Table Rows *)

begin

writeln;

writeln('Part Number: ', PartNumber);

writeln('Part Name: ', PartName);

if SalesPriceInd < 0 then

writeln('Sales Price is NULL')

else

writeln('Sales Price: ', SalesPrice:10:2);

end; (* End of DisplayRow *)

$PAGE $

procedure SelectData; (* Procedure to Query Parts Table *)

begin

repeat

writeln;

prompt('Enter Part Number within Parts Table or "/" to STOP> ');

readln(PartNumber);

writeln;

if PartNumber[1] <> '/' then

begin

BeginTransaction;

writeln('SELECT PartNumber, PartName, SalesPrice');

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

if SQLCA.SQLWARN[0] in ['W','w'] then

begin

write('SQL WARNING has occurred. The following row');

writeln('of data may not be valid.');

end;

Figure 2-6. Program PASEX2: Using Simple Select (page 3 of 5)

Using the ALLBASE/SQL Pascal Preprocessor 2-13

case SQLCA.SQLCODE of

OK : DisplayRow;

NotFound : begin

writeln;

writeln('Row not found!');

end;

otherwise begin

SQLStatusCheck;

end;

end; (* case *)

EndTransaction;

end; (* End if *)

until PartNumber[1] = '/';

end; (* End of SelectData Procedure *)

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

begin

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then

begin

TerminateProgram;

end;

end; (* End SQLStatusCheck Procedure *)

$PAGE $

Figure 2-6. Program PASEX2: Using Simple Select (page 4 of 5)

2-14 Using the ALLBASE/SQL Pascal Preprocessor

begin (* Beginning of Program *)

write('Program to SELECT specified rows from ');

writeln('the Parts Table - PASEX2');

writeln;

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' Begin Work');

writeln(' SELECT specified row from Parts Table');

writeln(' until user enters "/" ');

writeln(' Commit Work');

writeln(' Disconnect from PartsDBE');

writeln;

ConnectDBE;

SelectData;

TerminateProgram;

(* Whenever Routine - Serious DBE Error *)

(* SQL Whenever SQLError Entry Point *)

1000:

(* Begin *)

SQLStatusCheck;

TerminateProgram;

(* End *)

(* Exit Point for the main program *)

9999:

end. (* End of Program *)

Figure 2-6. Program PASEX2: Using Simple Select (page 5 of 5)

Using the ALLBASE/SQL Pascal Preprocessor 2-15

Output File Attributes

The Pascal preprocessor output �les are temporary �les. When the SQLIN illustrated in
Figure 2-6 is preprocessed, the attributes of the output �les created are as follows:

:listftemp,2

TEMPORARY FILES FOR SOMEUSER.SOMEACCT,SOMEGRP

ACCOUNT= SOMEACCT GROUP= SOMEGRP

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX
SQLCONST 80B FA 3 2048 16 256 1 8 (TEMP)

SQLEXTN 80B FA 135 2048 16 256 26 8 (TEMP)

SQLMOD 250W FB 3 1023 1 304 10 8 (TEMP)

SQLMSG 80B FA 23 1023 16 128 1 8 (TEMP)

SQLOUT 80B FA 308 10000 16 256 32 8 (TEMP)

SQLTYPE 80B FA 61 2048 16 256 26 8 (TEMP)

SQLVAR 80B FA 7 2048 16 256 26 8 (TEMP)

:

Preprocessor Modified Source File

As the Pascal preprocessor parses the source �le (SQLIN), it copies lines from the source
�le and any �le(s) included from it into the modi�ed source �le (SQLOUT), comments out
embedded SQL commands, and inserts information around each embedded SQL command.

In both preprocessing modes, the Pascal preprocessor:

Inserts a $Skip Text ON$ and a $Skip Text OFF$ compiler directive around the embedded
SQL command to comment out the SQL command.

Inserts $INCLUDE Pascal compiler directives within the declaration section. These
directives reference the four preprocessor generated include �les: SQLCONST, SQLTYPE,
SQLVAR, and SQLEXTN. SQLCONST and SQLTYPE are included after the program
header. SQLVAR and SQLEXTN are included at the end of the global declaration part of a
main program.

Keeps comments that follow an embedded command. These comments appear after the
preprocessor generated code associated with the command. Note, for example, that the
comment following the INCLUDE SQLCA command in the source �le is in the same
column, but on a di�erent line, in the modi�ed source �le.

In full preprocessing mode, the preprocessor also:

Generates a Pascal declaration for the SQLCA and the SQLDA in the SQLTYPE include
�le.

2-16 Using the ALLBASE/SQL Pascal Preprocessor

Generates Pascal statements providing conditional instructions following SQL commands
encountered after one of the following SQL commands: WHENEVER SQLERROR,
WHENEVER SQLWARNING, and WHENEVER NOT FOUND.

Generates Pascal statements that call ALLBASE/SQL external procedures at run time.
These calls reference the module stored by the preprocessor in the DBEnvironment for
execution at run time. Parameters used by these external calls are de�ned in SQLVAR,
SQLCONST, and SQLTYPE.

Caution Although you can access SQLOUT, SQLVAR, SQLVARn, SQLTYPE,
SQLCONST, and SQLEXTN �les with an editor, you should never change the
information generated by the Pascal preprocessor. Your DBEnvironment could
be damaged at run time if preprocessor-generated constructs are altered.

If you change non-preprocessor-generated constructs in SQLOUT, make the changes to
SQLIN, re-preprocess SQLIN, and re-compile the output �les before putting the application
program into production.

The following modi�ed source �le is the result of preprocessing program pasex2 (shown
previously). In the listing, the boundaries of code that has been changed or added by the
preprocessor is shaded for easy reference.

Using the ALLBASE/SQL Pascal Preprocessor 2-17

$set 'XOPEN_SQLCA=false'$

$Heap_Dispose ON$

$Heap_Compact ON$

$Standard_Level 'HP_Pascal'$

(* *)

(* This program illustrates the use of SQL's SELECT command to *)

(* retrieve one row or tuple at a time. *)

(* BEGIN WORK is executed before the SELECT and a COMMIT WORK *)

(* after the SELECT. An indicator variable is also used for *)

(* SalesPrice. *)

(* *)

Program pasex2(input, output);

label

1000,

9999;

NNN
$include 'sqlconst'$NNN
$include 'sqltype'$

const
OK = 0;

NotFound = 100;

DeadLock = -14024;

var

NNN
$SKIP_TEXT ON$

EXEC SQL INCLUDE SQLCA;NNN
$SKIP_TEXT OFF$

SQLCA : SQLCA_TYPE;

(* Begin Host Variable Declarations *)

NNN
$SKIP_TEXT ON$

EXEC SQL Begin Declare Section;NNN
$SKIP_TEXT OFF$

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

SalesPrice : longreal;

SalesPriceInd : SQLIND;

SQLMessage : packed array[1..132] of char;

NNN
$SKIP_TEXT ON$

EXEC SQL End Declare Section;NNN
$SKIP_TEXT OFF$

Figure 2-7. Modified Source File for Program PASEX2

2-18 Using the ALLBASE/SQL Pascal Preprocessor

(* End Host Variable Declarations *)

Abort : boolean;

NNN
$include 'sqlvar'$NNN
$include 'sqlextn'$

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

Forward;

$PAGE $

(* Directive to set SQL Whenever error checking *)

NN
$SKIP_TEXT ON$

EXEC SQL Whenever SqlError goto 1000;NNN
$SKIP_TEXT OFF$

Procedure ConnectDBE; (* Procedure to Connect to PartsDBE *)

begin

writeln('Connect to PartsDBE');

NNN
$SKIP_TEXT ON$

EXEC SQL CONNECT TO 'PartsDBE';

$SKIP_TEXT OFF$

begin

SQLVAR1 := '00AE00005061727473444245202020202020202020202020202020202020'

'20'

'20'

'20'

'202020202020202020202020';

SQLXCON(waddress(SQLCA), SQLVAR1);

if SQLCA.SQLCODE < 0 then

goto 1000;NNNNNNNNNNNNNN
end;

end; (* End of ConnectDBE Procedure *)

Procedure BeginTransaction; (* Procedure to Begin Work *)

begin

writeln;

writeln('Begin Work');

Figure 2-7. Modified Source File for Program PASEX2 (page 2 of 7)

Using the ALLBASE/SQL Pascal Preprocessor 2-19

x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�

$SKIP_TEXT ON$

EXEC SQL BEGIN WORK;

$SKIP_TEXT OFF$

begin

SQLVAR2 := '00A6007F00110061';

SQLXCON(waddress(SQLCA), SQLVAR2);

if SQLCA.SQLCODE < 0 then

goto 1000;NNNNNNNNNNNNNN
end;

end; (* End BeginTransaction Procedure *)

procedure EndTransaction; (* Procedure to Commit Work *)

begin

writeln('Commit Work');

NN
$SKIP_TEXT ON$

EXEC SQL COMMIT WORK;

$SKIP_TEXT OFF$

begin

SQLVAR3 := '00A10000';
SQLXCON(waddress(SQLCA), SQLVAR3);

if SQLCA.SQLCODE < 0 then

goto 1000;NNNNNNNNNNNNNN
end;

end; (* End EndTransaction Procedure *)

(* Directive to reset SQL Whenever error checking *)

NNN
$SKIP_TEXT ON$

EXEC SQL WHENEVER SQLERROR CONTINUE;NNN
$SKIP_TEXT OFF$

procedure TerminateProgram; (* Procedure to Release PartsDBE *)

begin

writeln('Release PartsDBE');

NN
$SKIP_TEXT ON$

EXEC SQL COMMIT WORK RELEASE;

$SKIP_TEXT OFF$

begin

begin

SQLVAR4 := '00A10000';

SQLXCON(waddress(SQLCA), SQLVAR4);NNNNNNNNNNNNNN
end;

Figure 2-7. Modified Source File for Program PASEX2 (page 3 of 7)

2-20 Using the ALLBASE/SQL Pascal Preprocessor

NNNNNNNNNNNNNNNNN
begin

SQLVAR5 := '00B2000020FFFFFFFF';

SQLXCON(waddress(SQLCA), SQLVAR5);NNNNNNNNNNNNNN
end;

end;

writeln;

writeln('Terminating Program');

Goto 9999; (* Goto exit point of main program *)

end; (* End TerminateProgram Procedure *)

$PAGE $

procedure DisplayRow; (* Procedure to Display Parts Table Rows *)

begin

writeln;

writeln('Part Number: ', PartNumber);
writeln('Part Name: ', PartName);

if SalesPriceInd < 0 then

writeln('Sales Price is NULL')

else

writeln('Sales Price: ', SalesPrice:10:2);

end; (* End of DisplayRow *)

$PAGE $

procedure SelectData; (* Procedure to Query Parts Table *)

begin

repeat

writeln;

prompt('Enter Part Number within Parts Table or "/" to STOP> ');

readln(PartNumber);

writeln;

if PartNumber[1] '/' then

begin

BeginTransaction;

writeln('SELECT PartNumber, PartName, SalesPrice');

Figure 2-7. Modified Source File for Program PASEX2 (page 4 of 7)

Using the ALLBASE/SQL Pascal Preprocessor 2-21

NN
$SKIP_TEXT ON$

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

$SKIP_TEXT OFF$

begin

SQLTEMPV.REC1.PartNumber1 := PartNumber;

SQLXFET(waddress(SQLCA),SQLOWNER,SQLMODNAME,1,waddress(SQLTEMPV),

16,64,TRUE);

if SQLCA.SQLCODE = 0 then

begin

PartNumber := SQLTEMPV.REC2.PartNumber1;

PartName := SQLTEMPV.REC2.PartName2;

if SQLTEMPV.REC2.SalesPriceInd4 >= 0 then

SalesPrice := SQLTEMPV.REC2.SalesPrice3;

SalesPriceInd := SQLTEMPV.REC2.SalesPriceInd4;
end

else

begin

end;NNNNNNNNNNNNNN
end;

if SQLCA.SQLWARN[0] in ['W','w'] then

begin

write('SQL WARNING has occurred. The following row');

writeln('of data may not be valid.');

end;

case SQLCA.SQLCODE of

OK : DisplayRow;

NotFound : begin

writeln;

writeln('Row not found!');

end;

otherwise begin

SQLStatusCheck;

end;

end; (* case *)

EndTransaction;

end; (* End if *)

until PartNumber[1] = '/';

end; (* End of SelectData Procedure *)

Figure 2-7. Modified Source File for Program PASEX2 (page 5 of 7)

2-22 Using the ALLBASE/SQL Pascal Preprocessor

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

begin

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

repeat

NN
$SKIP_TEXT ON$

EXEC SQL SQLEXPLAIN :SQLMessage;

$SKIP_TEXT OFF$

begin

SQLXPLN(waddress(SQLCA),waddress(SQLTEMPV.REC4),132,0);

SQLMessage := '';

strmove(132,SQLTEMPV.REC4,1,SQLMessage, 1);NNNNNNNNNNNNNN
end;

writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then

begin

TerminateProgram;

end;

end; (* End SQLStatusCheck Procedure *)

$PAGE $

begin (* Beginning of Program *)

write('Program to SELECT specified rows from ');

writeln('the Parts Table - PASEX2');

writeln;

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' Begin Work');

writeln(' SELECT specified row from Parts Table');

writeln(' until user enters "/" ');

writeln(' Commit Work');

writeln(' Disconnect from PartsDBE');

writeln;

ConnectDBE;

SelectData;

TerminateProgram;

(* Whenever Routine - Serious DBE Error *)

(* SQL Whenever SQLError Entry Point *)

Figure 2-7. Modified Source File for Program PASEX2 (page 6 of 7)

Using the ALLBASE/SQL Pascal Preprocessor 2-23

1000:

(* Begin *)

SQLStatusCheck;

TerminateProgram;

(* End *)

(* Exit Point for the main program *)

9999:

end. (* End of Program *)

Figure 2-7. Modified Source File for Program PASEX2 (page 7 of 7)

2-24 Using the ALLBASE/SQL Pascal Preprocessor

Preprocessor-Generated Include Files

SQLCONST, SQLTYPE, SQLVAR, SQLVARn, and SQLEXTN are preprocessor generated
include �les which contain declarations for constants, types, variables, and external procedures
for the preprocessor generated statements in SQLOUT. Figure 2-8 through Figure 2-11
illustrate, respectively, the SQLCONST, SQLTYPE, SQLVAR, and SQLEXTN �les that
correspond to the SQLOUT �le in Figure 2-7. Note that the preprocessor inserts the
following four Pascal compiler directives to reference SQLCONST, SQLTYPE, SQLVAR, and
SQLEXTN:

$INCLUDE 'sqlconst'$

$INCLUDE 'sqltype'$

.

.
$INCLUDE 'sqlvar'$

$INCLUDE 'sqlextn'$

These four directives are always inserted into the global declaration part of a main program.
For each declare section in a subprogram, an SQLVARn include �le is generated and the
compiler directive $INCLUDE 'sqlvarn'$ is inserted in the local declaration part. The value of
n is from 01 through 99.

Even if you use �le equations to redirect the include �les, the preprocessor still inserts the
same $INCLUDE directives. Therefore when you compile preprocessor output, ensure that the
preprocess-time �le equations are in e�ect so the correct include �les are compiled:

:FILE SQLCONST=MYCONST

:FILE SQLTYPE=MYTYPE

:FILE SQLVAR=MYVAR

:FILE SQLEXTN=MYEXTN

:FILE SQLIN=MYPROG

:FILE SQLOUT=MYSQLPRG

. Then the Pascal preprocessor is invoked

. in full preprocessing mode. Later, when the

. Pascal compiler is invoked, the following

�le equations must be in e�ect:

:FILE SQLCONST=MYCONST

:FILE SQLTYPE=MYTYPE

:FILE SQLVAR=MYVAR

:FILE SQLEXTN=MYEXTN

:PASCAL MYSQLPRG, $NEWPASS, $NULL

For each SQLVARn �le of a subprogram specify:

:FILE SQLVARn=MYVARn

and the reverse after preprocessing.

Using the ALLBASE/SQL Pascal Preprocessor 2-25

const

SQLOWNER = 'SOMEUSER@SOMEACCT ';

SQLMODNAME = 'PASEX2 ';

Figure 2-8. Sample Constant Include File

type

ownername_type = string[20];

modulename_type = string[20];

smallint = shortint;

SQLIND = shortint;

SQLREC1 = record

PartNumber1 : packed array [1..16] of char;

end;

SQLREC2 = record

PartNumber1 : packed array [1..16] of char;

PartName2 : packed array [1..30] of char;

SalesPrice3 : longreal;

SalesPriceInd4 : sqlind;

end;

SQLREC3 = record

DUMMY1, DUMMY2 : SQLREC2

end;

SQLREC4 = packed array[1..132] of char;

SQLCASES = 0..4;

SQLCA_TYPE = record

SQLCAID : packed array [1..8] of char;

SQLCABC : integer;

SQLCODE : integer;

SQLERRM : string[255];

SQLERRP : packed array [1..8] of char;

SQLERRD : array [1..6] of integer;
$if 'XOPEN_SQLCA'$

SQLWARN0, SQLWARN1, SQLWARN2,

SQLWARN3, SQLWARN4, SQLWARN5,

SQLWARN6, SQLWARN7 : char;

$else$

SQLWARN : packed array [0..7] of char;

$endif$

SQLEXT : packed array [1..8] of char;

end;

Figure 2-9. Sample Type Include File

2-26 Using the ALLBASE/SQL Pascal Preprocessor

SQLFORMAT_TYPE = packed record

SQLNTY, SQLTYPE, SQLPREC, SQLSCALE : smallint;

SQLTOTALLEN, SQLVALLEN, SQLINDLEN : integer;

SQLVOF, SQLNOF : integer;

SQLNAME : packed array [1..20] of char;

end;

SQLDA_TYPE = record

SQLDAID : packed array [1..8] of char;

SQLDABC : integer;

SQLN : integer;

SQLD : integer;

SQLFMTARR : integer;

SQLNROW : integer;

SQLRROW : integer;

SQLROWLEN : integer;

SQLBUFLEN : integer;

SQLROWBUF : integer;

end;
SQLTEMPV_TYPE_P = @SQLTEMPV_TYPE;

SQLTEMPV_TYPE = record case SQLCASES of

0 : (dummy : integer);

1: (REC1 : SQLREC1);

2: (REC2 : SQLREC2);

3: (REC3 : SQLREC3);

4: (REC4 : SQLREC4);

end;

Figure 2-9. Sample Type Include File (page 2 of 2)

var

SQLVAR1 : string[264];

SQLVAR2 : string[16];
SQLVAR3 : string[8];

SQLVAR4 : string[8];

SQLVAR5 : string[56];

SQLTEMPV : SQLTEMPV_TYPE;

Figure 2-10. Sample Variable Include File

Using the ALLBASE/SQL Pascal Preprocessor 2-27

procedure SQLXBFE

(SQLCAP : integer;

owner : ownername_type;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;

outarray : integer;

entrysize : integer;

nentry : integer;

firstrow : integer;

nrow : integer); external;

procedure SQLXBIN

(SQLCAP : integer;

owner : ownername_type;

xmodule : modulename_type;

section : integer;

inarray : integer;
entrysize : integer;

nentry : integer;

firstrow : integer;

nrow : integer); external;

procedure SQLXCNH

(SQLCAP : integer;

msgstrp : integer;

xstrlen : integer;

isvarchar : integer); external;

procedure SQLXCON

(SQLCAP : integer;

var stmt : string); external;

procedure SQLXDDU

(SQLCAP : integer;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;

var stmt : string); external;

procedure SQLXDEX

(SQLCAP : integer;

SQLDAP : integer;

xmodule : modulename_type;

section : integer); external;

procedure SQLXDFE

(SQLCAP : integer;

SQLDAP : integer;

xmodule : modulename_type;
section : integer); external;

Figure 2-11. Sample External Procedures Include File

2-28 Using the ALLBASE/SQL Pascal Preprocessor

procedure SQLXDOPK

(SQLCAP : integer;

SQLDAP : integer;

owner : ownername_type;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;

kpcval : integer); external;

procedure SQLXDSB

(SQLCAP : integer;

SQLDAP : integer;

xmodule : modulename_type;

section : integer;

ifinput : integer); external;

procedure SQLXEXI

(SQLCAP : integer;

queryptr : integer;
querysize : integer); external;

procedure SQLXEXU

(SQLCAP : integer;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;

var formats : string;

nhv : integer;

nentry : integer;

firstrow : integer;

nrow : integer); external;

procedure SQLXFET

(SQLCAP : integer;

owner : ownername_type;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;

outparms : integer;

isselect : boolean); external;

procedure SQLXIDU

(SQLCAP : integer;

owner : ownername_type;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;
isbulk : boolean); external;

Figure 2-11. Sample External Procedures Include File (page 2 of 3)

Using the ALLBASE/SQL Pascal Preprocessor 2-29

procedure SQLXOPK

(SQLCAP : integer;

owner : ownername_type;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;

kpcval : integer); external;

procedure SQLXOPU

(SQLCAP : integer;

owner : ownername_type;

xmodule : modulename_type;

section : integer;

parms : integer;

inparms : integer;

var formats : string;

nhv : integer;

kpcval : integer); external;
procedure SQLXPLN

(SQLCAP : integer;

msgstrp : integer;

xstrlen : integer;

isvarchar : integer); external;

procedure SQLXPRE

(SQLCAP : integer;

queryptr : integer;

querysize : integer;

xmodule : modulename_type;

section : integer); external;

procedure SQLXSECT

(SQLCAP : integer;

owner : ownername_type;

modul : modulename_type;

section : integer); external;

procedure SQLXSTP

(SQLCAP : integer); external;

procedure SQLXSVPT

(SQLCAP : integer;

xstrlen : integer;

var hexstr : string;

svptrec : integer); external;

Figure 2-11. Sample External Procedures Include File (page 3 of 3)

2-30 Using the ALLBASE/SQL Pascal Preprocessor

ALLBASE/SQL Message File

Messages placed in the ALLBASE/SQL message �le (SQLMSG) come from the
ALLBASE/SQL message catalog. The formal �le designator for the message catalog is:

SQLCTxxx .PUB.SYS

where xxx is the numerical value for the current language. If this catalog cannot be opened,
ALLBASE/SQL looks for the default NATIVE-3000 message catalog:

SQLCT000.PUB.SYS

If the default catalog cannot be opened, ALLBASE/SQL returns an error message saying
that the catalog �le is not available. If the NATIVE-3000 catalog is available, the user sees a
warning message indicating that the default catalog is being used. SQLMSG messages contain
four parts:

1. A banner:

WED, OCT 25, 1991, 1:38 PM

HP36216-02A.E1.00 PASCAL Preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

2. A summary of the preprocessor invocation conditions:

SQLIN = PASEX2.SomeGrp.SomeAcct

DBEnvironment = PartsDBE

Module Name = PASEX2

3. Warnings and errors encountered during preprocessing:

32 SalesPriceInd : SQLID;

|

****** Unsupported type syntax for host variable. (DBERR 10933)

SELECT PartNumber, PartName, SalesPrice INTO :Partnumber, :PartName,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE ParNumber =

:PartNumber;

****** ALLBSE/SQL errors (DBERR 10952)

****** in SQL statement ending in line 127

*** ALLBASE/SQL alignment error on column 3 in buffer 5. (DBERR 4200)

There are errors. No sections stored.

Using the ALLBASE/SQL Pascal Preprocessor 2-31

4. A summary of the results of preprocessing:

2 ERRORS 0 WARNINGS

END OF PREPROCESSING.

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

When you equate SQLMSG to $STDLIST, all these messages appear at the terminal during a
session or in the job stream listing. When SQLMSG is not equated to $STDLIST, parts 1 and
4 are still sent to $STDLIST, and all parts appear in the �le equated to SQLMSG:

:FILE SQLMSG=MyMsg;Rec=-80,16,f,ASCII

:FILE SQLIN=PASEX2

:RUN PSQLPAS.PUB.SYS;INFO="PartsDBE"

WED, JUL 22, 1991, 1:38 PM

HP36216-02A.E1.00 PASCAL Preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

2 ERRORS 0 WARNINGS

END OF PREPROCESSING.

If you want to keep the message �le, you should save the �le you equate to SQLMSG. It is
created as a temporary �le.

As illustrated in Figure 2-12, a line number is often provided in SQLMSG. This line number
references the line in SQLIN containing the command in question. A message accompanied
by a number may also appear. You can refer to the ALLBASE/SQL Message Manual for
additional information on the exception condition when these numbered messages appear.

:EDITOR

HP32201A.07.00 EDIT/3000 FRI, OCT 27, 1991, 10:20 AM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

29 SalesPriceInd : SQLID;

|

****** Unsupported type syntax for host variable. (DBERR 10933)

There are errors. No sections stored.

.

.

2 ERRORS 0 WARNINGS

END OF PREPROCESSING

Figure 2-12. Sample SQLMSG Showing Errors

2-32 Using the ALLBASE/SQL Pascal Preprocessor

As Figure 2-13 illustrates, the preprocessor can terminate with a warning message. Although
a section is stored for the semantically incorrect command, the section is marked as invalid
and will not execute at run time if it cannot be validated.

:EDITOR

HP32201A.07.00 EDIT/3000 FRI, OCT 27 1991, 10:20 AM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

SQLIN = PASEX2.SOMEGRP.SOMEACCT

DBEnvironment = PartsDBE

Module Name = PASEX2

SELECT PartNumber, PartName, SalesPrice INTO :Partnumber, :PartName,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE ParNumber =

:PartNumber;

|

****** HP SQL warnings (DBWARN 10602)

****** in SQL statement ending in line 125

*** Column PARNUMBER not found. (DBERR 2211)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS
END OF PREPROCESSING.

Figure 2-13. Sample SQLMSG Showing Warning

Installable Module File

When the Pascal preprocessor stores a module in the system catalog of a DBEnvironment
at preprocessing time, it places a copy of the module in an installable module �le. The
name of this �le by default is SQLMOD. If at preprocessing time SQLMOD already exists,
it is overwritten with the new module. The module in this �le can be installed into a
DBEnvironment di�erent from the DBEnvironment accessed at preprocessing time by using
the INSTALL command in ISQL:

:RUN PSQLPAS.PUB.SYS;INFO = "DBEnvironmentName&

(MODULE (InstalledModuleName) DROP)"

If you want to preserve the SQLMOD �le after preprocessing, you rename SQLMOD so it is
not over written the next time the preprocessor is invoked to preprocess the same source code:

:SAVE SQLMOD

:RENAME SQLMOD, MYMOD

Using the ALLBASE/SQL Pascal Preprocessor 2-33

Before invoking ISQL to install this module �le, you may have to transport it and its related
application program �le to the machine containing the target DBEnvironment. After all the
�les are restored on the target machine, you invoke ISQL on the machine containing the target
DBEnvironment.

:ISQL

In order to install the module, you need CONNECT or DBA authority in the target
DBEnvironment:

isql=> CONNECT TO 'PARTSDBE.SomeGrp.SomeAcct';

isql=> INSTALL;

File name> MYMOD.SOMEGRP.SOMEACCT;

Name of module in this file: SomeUser@SomeAcct.PASEX2

Number of sections installed: 1

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

isql=>

Stored Sections

In full preprocessing mode, the preprocessor stores a section for each embedded SQL
command except:

BEGIN DECLARE SECTION INCLUDE

BEGIN WORK OPEN

CLOSE PREPARE

COMMIT WORK RELEASE

CONNECT ROLLBACK WORK

DECLARE CURSOR SAVEPOINT

DELETE WHERE CURRENT START DBE

DESCRIBE STOP DBE

END DECLARE SECTION SQLEXPLAIN

EXECUTE TERMINATE USER

EXECUTE IMMEDIATE UPDATE WHERE CURRENT

FETCH WHENEVER

The commands listed above either require no authorization to execute or are executed
based on information contained in the compilable preprocessor output �les. Note that if the
DELETE WHERE CURRENT or UPDATE WHERE CURRENT command is dynamically
preprocessed, a section does exist in the module.

When the preprocessor stores a section, it actually stores what is known as an input tree and
a run tree. The input tree consists of an uncompiled command. The run tree is the compiled,
executable form of the command.

2-34 Using the ALLBASE/SQL Pascal Preprocessor

If at run time a section is valid, ALLBASE/SQL executes the appropriate run tree when
the SQL command is encountered in the application program. If a section is invalid,
ALLBASE/SQL determines whether the objects referenced in the sections exist and whether
current authorization criteria are satis�ed. When an invalid section can be validated,
ALLBASE/SQL dynamically recompiles the input tree to create an executable run tree and
executes the command. When a section cannot be validated, the command is not executed,
and an error condition is returned to the program.

ALLBASE/SQL creates the following three types of sections:

1. Sections for executing the SELECT command associated with a DECLARE CURSOR
command.

2. Sections for executing the SELECT command associated with a CREATE VIEW
command.

3. Sections for all other commands for which the preprocessor stores a section.

Figure 2-14 illustrates the kind of information in the system catalog that describes each type
of stored section. The query result illustrated was extracted from the system view named
SYSTEM.SECTION by using ISQL. The columns in Figure 2-14 have the following meanings:

NAME: This column contains the name of the module to which a section belongs. You
specify a module name when you invoke the preprocessor; the module name is by default
the program name from the Pascal program. If you are supplying a module name in a
language other than NATIVE-3000 (ASCII), be sure it is in the same language as that of
the DBEnvironment.

OWNER: This column identi�es the owner of the module. You specify an owner
name when you invoke the preprocessor; the owner name is by default the logon
UserName@AccountName associated with the preprocessing session. If you are supplying
an owner name in a language other than NATIVE-3000 (ASCII), be sure it is in the same
language as that of the DBEnvironment.

DBEFILESET: This column indicates the DBEFileSet with which DBEFiles housing the
section are associated.

SECTION: This column gives the section number. Each section associated with a module
is assigned a number by the preprocessor as it parses the related SQL command at
preprocessing time.

TYPE: This column identi�es the type of section:

1 = SELECT associated with a cursor

2 = SELECT defining a view

0 = All other sections

VALID: This column identi�es whether a section is valid or invalid:

0 = invalid

1 = valid

Using the ALLBASE/SQL Pascal Preprocessor 2-35

isql=> SELECT NAME,OWNER,DBEFILESET,SECTION,TYPE,VALID FROM SYSTEM.SECTION;

SELECT NAME,OWNER,DBEFILESET,SECTION,TYPE,VALID FROM SYSTEM.SECTION;

NAME |OWNER |DBEFILESET |SECTION |TYPE |VALID

TABLE |SYSTEM |SYSTEM | 0| 2| 0

COLUMN |SYSTEM |SYSTEM | 0| 2| 0

INDEX |SYSTEM |SYSTEM | 0| 2| 0

SECTION |SYSTEM |SYSTEM | 0| 2| 0

DBEFILESET |SYSTEM |SYSTEM | 0| 2| 0

DBEFILE |SYSTEM |SYSTEM | 0| 2| 0

SPECAUTH |SYSTEM |SYSTEM | 0| 2| 0

TABAUTH |SYSTEM |SYSTEM | 0| 2| 0

COLAUTH |SYSTEM |SYSTEM | 0| 2| 0

MODAUTH |SYSTEM |SYSTEM | 0| 2| 0

GROUP |SYSTEM |SYSTEM | 0| 2| 0

VIEWDEF |SYSTEM |SYSTEM | 0| 2| 0
HASH |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINT |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINTCOL |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINTINDEX |SYSTEM |SYSTEM | 0| 2| 0

COLDEFAULT |SYSTEM |SYSTEM | 0| 2| 0

TEMPSPACE |SYSTEM |SYSTEM | 0| 2| 0

PARTINFO |PURCHDB |SYSTEM | 0| 2| 0

VENDORSTATISTICS |PURCHDB |SYSTEM | 0| 2| 0

PASEX2 |KAREN@THOMAS |SYSTEM | 1| 0| 1

EXP11 |KAREN@THOMAS |SYSTEM | 1| 1| 1

EXP11 |KAREN@THOMAS |SYSTEM | 2| 0| 1

--

Number of rows selected is 16.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

Figure 2-14. Information in SYSTEM.SECTION on Stored Sections

2-36 Using the ALLBASE/SQL Pascal Preprocessor

The �rst eleven selected rows in this query result describe the sections stored for the system
views. The next two rows describe the two views in the sample database: PurchDB.PartInfo
and PurchDB.VendorStatistics. Views are always stored as invalid sections, because the run
tree is always generated at run time.

The remaining rows describe sections associated with two preprocessed programs. PASEX2
contains only one section, for executing the SELECT command in the program illustrated in
Figure 2-6. EXP11 contains two sections, one for executing the SELECT command associated
with a DECLARE CURSOR command and one for executing a FETCH command.

Stored sections remain in the system catalog until they are deleted with the DROP MODULE
command or by invoking the preprocessor with the DROP option:

isql=> DROP MODULE PASEX2;

or

:RUN PSQLPAS.PUB.SYS;INFO="PartsDBE (MODULE(PASEX2) DROP)"

Stored sections are marked invalid when any of the following occur:

The UPDATE STATISTICS command is executed.

Tables accessed in the program are dropped, altered, or assigned new owners.

Indexes or DBEFileSets related to tables accessed in the program are changed.

Module owner authorization changes occur that a�ect the execution of embedded
commands.

When an invalid section is validated at run time, the validated section is committed when
the program issues a COMMIT WORK command. If a COMMIT WORK command is not
executed, ALLBASE/SQL must revalidate the section again the next time the program is
executed. For this reason, you should embed COMMIT WORK commands even following
SELECT commands, since the COMMIT WORK command may be needed even when data is
not changed by a program.

Invoking the Pascal Preprocessor

The Pascal preprocessor can be invoked to perform either of the following steps:

Only check the syntax of embedded SQL commands.

Check the syntax of embedded SQL commands, create compilable output, store a module in
a DBEnvironment, and create an installable module.

This section describes the RUN command you use for either of these purposes. It also
describes how to use the UDC's provided with ALLBASE/SQL for invoking the preprocessor
and how to run the preprocessor in job mode.

Using the ALLBASE/SQL Pascal Preprocessor 2-37

Syntax Checking Mode

You use the following RUN command to only check the syntax of the SQL commands
embedded in a �le equated to SQLIN.

Syntax

:RUN PSQLPAS.PUB.SYS;INFO="(SYNTAX)"

Description

1. The preprocessor does not access a DBEnvironment when it is run in this mode.

2. When performing only syntax checking, the preprocessor does not convert the SQL
commands into Pascal constructs. Therefore SQLOUT does not contain any preprocessor
generated calls to ALLBASE/SQL external procedures.

3. SQLCONST, SQLTYPE, SQLVAR (or SQLVARn), SQLEXTN, and SQLMOD are created,
but incomplete.

Authorization

You do not need ALLBASE/SQL authorization when you use the preprocessor to only check
SQL syntax. In other words, the system tables that store who has DBA, RESOURCE, and
OWNER privileges on tables are not checked.

2-38 Using the ALLBASE/SQL Pascal Preprocessor

Syntax Checking Mode

Example

:FILE SQLMSG=Mymsg;Rec=-80,16,f,ASCII

:FILE SQLIN=PASEX2

:RUN PSQLPAS.PUB.SYS;INFO="(SYNTAX)"

FRI, OCT 27, 1991, 9:32 AM

HP36216-02A.E1.00 PASCAL Preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

:EDITOR

HP32201A.07.00 EDIT/3000 FRI, OCT 27, 1991, 9:35 AM

(C) HEWLETT-PACKARD CO. 1990

/T MyMsg;L ALL UNN

FILE UNNUMBERED
...

SQLIN = CEX2.SOMEGROUP.SOMEACCT

SELCT PartNumber, PartName, SalesPrice INTO :PartNumber, :PartName,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE PartNumber =

:PartNumber;

****** ALLBASE/SQL errors. (DBERR 10977)

****** in SQL statement ending in line 125

*** Syntax error. (DBERR 1001)

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

/

The line 125 referenced in SQLMSG is the line in

SQLIN where the erroneous SQL command ends.

Using the ALLBASE/SQL Pascal Preprocessor 2-39

Syntax Checking Mode

Full Preprocessing Mode

Syntax

:RUN PSQLCOB.PUB.SYS;INFO= "DBEnvironmentName [(

8>>>><
>>>>:

MODULE(ModuleName)

OWNER (OwnerName)8<
:

DROP

�
PRESERVE

REVOKE

�

NODROP

9=
;

9>>>>=
>>>>;

|...|]"

Parameters

DBEnvironmentName identi�es the DBEnvironment in which a module is to be stored.
You may use a backreference to a �le de�ned in a �le equation for
this parameter.

ModuleName assigns a name to the stored module. Module names must follow
the rules governing ALLBASE/SQL basic names as described in
the ALLBASE/SQL Reference Manual . If a module name is not
speci�ed, the preprocessor uses the program name as the module
name.

OwnerName associates the stored module with a User@Account, a ClassName,
or a GroupName. You can specify an owner name for the module
only if you have DBA authority in the DBEnvironment where the
module is to be stored. If not speci�ed, the owner name is your
logon User@Account. Any object names in SQLIN not quali�ed
with an owner name are quali�ed with the OwnerName speci�ed by
the preprocessor.

DROP deletes any module currently stored in the DBEnvironment by the
ModuleName and OwnerName speci�ed in the INFO string.

NODROP terminates preprocessing if any module currently exists in the
DBEnvironment by the ModuleName and OwnerName speci�ed in
the INFO string. If not speci�ed, NODROP is assumed.

PRESERVE is speci�ed when the program being preprocessed already has a
stored module and you want to preserve existing RUN authorities
for that module. If not speci�ed, PRESERVE is assumed.
PRESERVE cannot be speci�ed unless DROP is also speci�ed.

REVOKE is speci�ed when the program being preprocessed already has a
stored module and you want to revoke existing RUN authorities for
that module. REVOKE cannot be speci�ed unless DROP is also
speci�ed.

2-40 Using the ALLBASE/SQL Pascal Preprocessor

Full Preprocessing Mode

Description

1. Before invoking the preprocessor in this mode when the program being preprocessed
already has a stored module, ensure that the earlier version of the program is not being
executed.

2. The preprocessor starts a DBE session in the DBEnvironment named in the RUN
command by issuing a CONNECT command. If the autostart ag is OFF, the DBE session
can be initiated only after a START DBE command has been processed.

3. If the DBEnvironment to be accessed is operating in single-user mode, preprocessing can
occur only when another DBE session for the DBEnvironment does not exist.

4. When the preprocessor's DBE session begins, ALLBASE/SQL processes a BEGIN WORK
command. When preprocessing is completed, the preprocessor submits a COMMIT
WORK command, and any sections created are committed to the system catalog. If the
preprocessor detects an error in SQLIN, it processes a ROLLBACK WORK command
before terminating, and no sections are stored in the DBEnvironment. Preprocessor
warnings do not prevent sections from being stored.

5. Since all preprocessor DBE sessions initiate only one transaction, any log �le space used
by the session is not available for re-use until after the session terminates. If rollforward
logging is not in e�ect, you can issue the CHECKPOINT command in ISQL before
preprocessing to increase the amount of available log space. Refer to the ALLBASE/SQL
Database Administration Guide for additional information on log space management,
such as using the START DBE NEWLOG command to increase the size of the log and
recovering log space when rollforward logging is in e�ect.

6. During preprocessing, system catalog pages accessed for embedded commands are
locked. In multi-user mode, other DBE sessions accessing the same objects must wait,
and the potential for a deadlock exists. Therefore minimize competing transactions
when preprocessing an application program. Refer to the ALLBASE/SQL Database
Administration Guide for information on operations that lock system catalog pages.

7. For improved runtime performance, use ISQL to submit the UPDATE STATISTICS
command before preprocessing for each table accessed in a data manipulation command
when an index on that table has been added or dropped and when data in the table is
often changed.

Authorization

To preprocess a program for the �rst time in this mode, you need CONNECT or DBA
authority in the DBEnvironment the program accesses. After a stored module exists, you need
module OWNER or DBA authority in the DBEnvironment.

Using the ALLBASE/SQL Pascal Preprocessor 2-41

Full Preprocessing Mode

Example

:FILE SQLIN=PASEX2

:RUN PSQLPAS.PUB.SYS;INFO=&

"PartsDBE (MODULE(PASEX2) OWNER(OwnerP@SomeAcct) REVOKE DROP)"

FRI, OCT 27, 1991, 10:15 AM

HP36216-02A.E1.00 PASCAL Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,
1989,1990,1991. ALL RIGHTS RESERVED.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING.

END OF PROGRAM

:EDITOR

HP32201A.07.00 EDIT/3000 FRI, OCT 27, 1991, 10:17 AM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

SQLIN = PASEX2.SOMEGRP.SOMEACCT

DBEnvironment = PartsDBE

Module Name = PASEX2

SELECT PartNumber, PartName, SalesPrice INTO :Partnumber, :PartName,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE PartNumber =

:PartNumber;

|

****** HP SQL warnings (DBWARN 10602)

****** in SQL statement ending in line 125

*** User OwnerP@SomeAcct does not have SELECT authority...

(DBERR 2301)

1 Sections stored in DBEnvironment.
0 ERRORS 1 WARNINGS

END OF PREPROCESSING.

/

2-42 Using the ALLBASE/SQL Pascal Preprocessor

Using the Preprocessor UDCs

Using the Preprocessor UDCs

Two UDCs for invoking the PASCAL preprocessor are provided with ALLBASE/SQL in the
HPSQLUDC.PUB.SYS �le:

PPAS, illustrated in Figure 2-15, invokes the preprocessor in full preprocessing mode. You
specify the source �le name, a DBEnvironment name, and a name for SQLMSG (if you do
not want preprocessor messages to go to $STDLIST). See Figure 2-16.

:PPAS SourceFileName,DBEnvironment

The PPAS UDC uses the following preprocessor parameters:

ModuleName is the name of the source �le.

OwnerName is the logon User@Account.

PRESERVE and DROP are in e�ect.

PPPAS, illustrated in Figure 2-16, invokes the preprocessor in full preprocessing mode,
then invokes the PASCAL compiler if preprocessing is successful, and then the linker if
compilation is successful.

To use this UDC, you specify the source �le name, a DBEnvironment name, and an
executable �le name. You can specify a name for SQLMSG if you do not want preprocessor
messages to go to $STDLIST:

:PPPAS SourceFileName, DBEnvironmentName, ExecutableFileName

This UDC uses the following preprocessor INFO string parameters:

ModuleName is the source �le name.

OwnerName is the logon User@Account.

PRESERVE and DROP are in e�ect.

Note If you make your own version of the UDCs, do not modify the record
attributes for any of the preprocessor output �les. Only modify the �le limit
(disc=FileLimit) if required. Because the UDCs purge the preprocessor
message �le, if messages are sent to $STDLIST, an error message appears
when you use the UDCs, but preprocessing continues.

Using the ALLBASE/SQL Pascal Preprocessor 2-43

Using the Preprocessor UDCs

PPAS srcfile,dbefile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

purge sqlconst

purge sqltype

purge sqlextn

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary
file sqlvar; disc=2048,32; rec=-80,16,f,ascii

file sqlconst; disc=2048,32; rec=-80,16,f,ascii

file sqltype; disc=2048,32; rec=-80,16,f,ascii

file sqlextn; disc=2048,32; rec=-80,16,f,ascii

continue

run psqlpas.pub.sys;info="!dbefile (drop)"

reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

reset sqlconst

reset sqltype

reset sqlextn

Figure 2-15. UDC for Preprocessing SQLIN

2-44 Using the ALLBASE/SQL Pascal Preprocessor

Using the Preprocessor UDCs

PPPAS srcfile,dbefile,pgmfile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

purge sqlconst

purge sqltype

purge sqlextn

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary
file sqlvar; disc=2048,32; rec=-80,16,f,ascii

file sqlconst; disc=2048,32; rec=-80,16,f,ascii

file sqltype; disc=2048,32; rec=-80,16,f,ascii

file sqlextn; disc=2048,32; rec=-80,16,f,ascii

continue

run psqlpas.pub.sys;info="!dbefile (drop)"

if jcw <= warn then

continue

pasxllk sqlout,!pgmfile,$null

endif

reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

reset sqlconst

Figure 2-16. UDC for Preprocessing, Compiling, and Preparing SQLIN

Using the ALLBASE/SQL Pascal Preprocessor 2-45

Using the Preprocessor UDCs

The example in Figure 2-17 illustrates the use of PPPAS on an SQLIN that could be
successfully preprocessed, but failed to compile because a Pascal error exists in the �le.

:PPPAS pasex2,PartsDBE,pasex2p

FRI, AUG 7, 1990, 3:43 PM

36216-02A.E1.00 PASCAL Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

SQLIN = PASEX2.SomeGrp.SomeAcct

DBEnvironment = PartsDBE

Module Name = PASEX2

1 Sections stored in DBEnvironment.

0 ERRORS 0 WARNINGS

END OF PREPROCESSING

END OF PROGRAM

PAGE 1 HEWLETT-PACKARD HP (part no.) PASCAL/3000(C)

HEWLETT-PACKARD

CO. ...

81 286.000 1 writln('Begin Work');

^

**** ERROR # 1 IDENTIFIER NOT DEFINED (014)

NUMBER OF ERRORS = 1 NUMBER OF WARNINGS = 0

PROCESSOR TIME 0: 0:13 ELAPSED TIME 0: 0:25

NUMBER OF LINES = 455 LINES/MINUTE = 2100.0

pascalxl.pub.sys;parm=7;info=" "

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

COMPILE STEP FAILED, NO LINK WAS DONE.

Figure 2-17. Sample UDC Invocation

2-46 Using the ALLBASE/SQL Pascal Preprocessor

Running the Preprocessor in Job Mode

You can preprocess Pascal ALLBASE/SQL programs in job mode. Figure 2-18 illustrates a
job �le that uses the PPPAS UDC to preprocess several sample programs.

!JOB JIM,MGR.HPDB,Pascal;OUTCLASS=,1
:pppas exp01,PartsDBE,exp01p

:pppas exp01a,PartsDBE,exp01ap

:pppas exp02,PartsDBE,exp02p

.

.

.

:pppas exp50,PartsDBE,exp50p

!TELL JIM,MGR.HPDB; Pascal Preprocessing is complete!

!EOJ

Figure 2-18. Sample Preprocessing Job file

Using the ALLBASE/SQL Pascal Preprocessor 2-47

Preprocessing Errors

Several types of errors can occur while you are using the Pascal preprocessor, for example:

Unexpected preprocessor or DBEnvironment termination.
Preprocessor invocation errors.
Source �le errors.
DBEnvironment errors.

Preprocessor or DBEnvironment Termination

Whenever the Pascal preprocessor stops running unexpectedly while you are using it in full
preprocessing mode, sections stored during the preprocessor's DBE session are automatically
dropped when the DBEnvironment is next started up. Unexpected preprocessor session
termination occurs, for example, when a DBA issues a STOP DBE command during a
preprocessor DBE session.

Preprocessor Invocation Errors

If the ALLBASE/SQL message catalog is not available when the preprocessor is invoked,
preprocessing terminates with the following error message in the �le SQLMSG:

Message catalog not available - see System Administrator (DBERR 10008)

:

If no source �le name is entered, and a �le named SQLIN cannot be found, preprocessing
terminates with the following error message in the �le SQLMSG:

File open error. (DBERR 10907)

SQLIN

ERRORS Processing terminated prematurely. (DBERR 10923)

:

In addition, the invocation line may name a DBEnvironment that does not exist or contains
erroneous syntax:

DBEnvironment = DBEnvironmentName

****** Cannot connect to DBEnvironmentName. (DBERR 10953)

*** DBECon Error - FSERR (170000). (DBERR 3078)

ERRORS Processing terminated prematurely. (DBERR 10923)

:

2-48 Using the ALLBASE/SQL Pascal Preprocessor

SQLIN Errors

When the Pascal preprocessor encounters errors when parsing the source �le, messages are
placed in SQLMSG. Refer to the discussion earlier in this chapter under \SQLMSG" for
additional information on this category of errors.

DBEnvironment Errors

Some errors can be caused because of the following:

DBEnvironment is not started yet.

Resources are insu�cient.

Deadlock has occurred.

Refer to the ALLBASE/SQL Database Administration Guide for information on handling
DBEnvironment errors.

Using the ALLBASE/SQL Pascal Preprocessor 2-49

3

Embedding SQL Commands

In every ALLBASE/SQL Pascal program, you embed SQL commands in the declaration
section and the procedure section of your program to:

�1� Declare the SQL Communications Area (SQLCA).

�2� Declare host variables.

�3� Start a DBE session by connecting to the DBEnvironment.

�4� �5� De�ne transactions.

�6� Implicitly check the status of SQL command execution.

�7� Terminate the DBE session.

�8� De�ne or manipulate data in the DBEnvironment.

�9� Explicitly check the status of SQL command execution.

�10� Obtain error and warning messages from the ALLBASE/SQL message
catalog.

The program listing shown in Figure 3-1 illustrates where in a main program you can embed
SQL commands to accomplish the activities listed above. In a subprogram, host variable
declarations cannot be in the global declaration part.

This chapter is a high-level road map to the logical and physical aspects of embedding SQL
commands in a program. It addresses the reasons for embedding commands to perform the
above activities. It also gives general rules for how and where to embed SQL commands for
these activities. First however, it shows a program containing commands for the basic SQL
functions listed above. Then it describes the general rules that apply when you embed any
SQL command, referring to the numbered statements in the program.

Embedding SQL Commands 3-1

$Heap_Dispose ON$

$Heap_Compact ON$

Standard_Level 'HP_Pascal$

(* *)

(* This program illustrates the use of SQL's SELECT command to *)

(* retrieve one row or tuple at a time. *)

(* BEGIN WORK is executed before the SELECT and a COMMIT WORK *)

(* after the SELECT. An indicator variable is also used for *)

(* SalesPrice. *)

(* *)

Program pasex2(input, output);

label

1000,

9999;

const
OK = 0;

NotFound = 100;

DeadLock = -14024;

var

EXEC SQL INCLUDE SQLCA; (* SQL Communication Area *) �1�

(* Begin Host Variable Declarations *)

EXEC SQL Begin Declare Section; �2�
PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

SalesPrice : longreal;

SalesPriceInd : SQLIND;

SQLMessage : packed array[1..132] of char;

EXEC SQL End Declare Section;

(* End Host Variable Declarations *)

Abort : boolean;

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

Forward;

(* Directive to set SQL Whenever error checking *)

$PAGE $

EXEC SQL Whenever SqlError GOTO 1000;

Figure 3-1. Sample Program pasex2

3-2 Embedding SQL Commands

Procedure ConnectDBE; (* Procedure to Connect to PartsDBE *)

begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE'; �3�

end; (* End of ConnectDBE Procedure *)

Procedure BeginTransaction; (* Procedure to Begin Work *)

begin

writeln;

writeln('Begin Work');

EXEC SQL BEGIN WORK; �4�

end; (* End BeginTransaction Procedure *)

procedure EndTransaction; (* Procedure to Commit Work *)

begin

writeln('Commit Work');

EXEC SQL COMMIT WORK; �5�

end; (* End EndTransaction Procedure *)

(* Directive to reset SQL Whenever error checking *)

EXEC SQL Whenever SqlError CONTINUE; �6�

procedure TerminateProgram; (* Procedure to Release PartsDBE *)

begin

writeln('Release PartsDBE');

EXEC SQL COMMIT WORK RELEASE; �7�

writeln;

writeln('Terminating Program');

Goto 9999; (* Goto exit point of main program *)

end; (* End TerminateProgram Procedure *)

$PAGE $

Figure 3-1. Sample Program pasex2 (page 2 of 5)

Embedding SQL Commands 3-3

procedure DisplayRow; (* Procedure to Display Parts Table Rows *)

begin

writeln;

writeln('Part Number: ', PartNumber);

writeln('Part Name: ', PartName);

if SalesPriceInd < 0 then

writeln('Sales Price is NULL')

else

writeln('Sales Price: ', SalesPrice:10:2);

end; (* End of DisplayRow *)

$PAGE $

procedure SelectData; (* Procedure to Query Parts Table *)

begin

repeat

writeln;

prompt('Enter Part Number within Parts Table or "/" to STOP> ');

readln(PartNumber);

writeln;

if PartNumber[1] '/' then

begin

BeginTransaction;

writeln('SELECT PartNumber, PartName, SalesPrice');

EXEC SQL SELECT PartNumber, PartName, SalesPrice �8�
INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

if SQLCA.SQLWARN[0] in ['W','w'] then

begin

write('SQL WARNING has occurred. The following row');

writeln('of data may not be valid.');

end;

Figure 3-1. Sample Program pasex2 (page 3 of 5)

3-4 Embedding SQL Commands

case SQLCA.SQLCODE of �9�
OK : DisplayRow;

NotFound : begin

writeln;

writeln('Row not found!');

end;

end;

otherwise begin

SQLStatusCheck;

end;

end; (* case *)

EndTransaction;

end; (* End if *)

until PartNumber[1] = '/';

end; (* End of SelectData Procedure *)

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

begin

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage; �10�
writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then

begin

TerminateProgram;

end;

end; (* End SQLStatusCheck Procedure *)

Figure 3-1. Sample Program pasex2 (page 4 of 5)

Embedding SQL Commands 3-5

begin (* Beginning of Program *)

write('Program to SELECT specified rows from ');

writeln('the Parts Table - PASEX2');

writeln;

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' Begin Work');

writeln(' SELECT specified row from Parts Table');

writeln(' until user enters "/" ');

writeln(' Commit Work');

writeln(' Disconnect from PartsDBE');

writeln;

ConnectDBE;

SelectData;

TerminateProgram;

(* Whenever Routine - Serious DBE Error *)

(* SQL Whenever SQLError Entry Point *)

1000:

(* Begin *)

SQLStatusCheck;

TerminateProgram;

(* End *)

(* Exit Point for the main program *)

9999:

end. (* End of Program *)

Figure 3-1. Sample Program pasex2 (page 5 of 5)

3-6 Embedding SQL Commands

General Rules for Embedding SQL

Embedded SQL commands must appear in certain locations within the Pascal program. Each
embedded SQL command must be accompanied by a pre�x and followed by a semicolon.
Comments may be placed within an embedded command, and non-numeric literals in
embedded commands may be continued from one line to another.

An embedded SQL command has no maximum length. A dynamic SQL command can be no
longer than 2048 bytes as a literal string, but the maximum size of the host variable is 32,762.

Location of SQL Commands

SQL commands must be put into the following speci�c areas:

BEGIN DECLARE SECTION and END DECLARE SECTION may appear in any
declaration section in a main program. In a subprogram, these commands cannot appear in
the global declaration section.

INCLUDE SQLCA should be in the global declaration section of the main program.
INCLUDE SQLDA should be in the global declaration of any main or in a declaration
section of a procedure.

All other SQL commands may appear in any statement part.

Prefix and Suffix

Precede each SQL command with the pre�x EXEC SQL and terminate each SQL command
with a semicolon (;). The entire pre�x, EXEC SQL, must be speci�ed on one line. For
example, the following examples are legal:

EXEC SQL SELECT PartName INTO :PartName

FROM Purchdb.Parts WHERE PartNumber = :PartNumber;

EXEC SQL SELECT PartName

INTO :PartName

FROM Purchdb.Parts

WHERE PartNumber = :PartNumber;

However, the following is not legal:

EXEC

SQL SELECT PartName INTO :PartName

FROM Purchdb.Parts WHERE PartNumber = :PartNumber;

Punctuation

SQL commands are always terminated with a semicolon (;).

Embedding SQL Commands 3-7

Pascal Comments

You may insert Pascal comment lines within or between embedded SQL commands. A
comment begins with { and closes with } or begins with (* and closes with *), as follows:

EXEC SQL SELECT PartNumber, PartName

{ put the data into the following host variables }

INTO :PartNumber, :PartName

(* find the data in the following table *)

FROM Purchdb.Parts

{ retrieve only data that satisfies this search condition *)

WHERE PartNumber = :PartNumber;

(* end of command }

ALLBASE/SQL Comments

SQL comments can be inserted in any line of an SQL statement, except the last line, by
pre�xing the comment character with at least one space followed by two hyphens followed by
one space:

EXEC SQL SELECT * FROM PurchDB.Parts
NNNNNNNNNNNNNN
-- This code selects Parts Table values

WHERE SalesPrice > 500.0;

The comment terminates at the end of the current line. (The decimal point in the 500
improves performance when being compared to SalesPrice, which also has a decimal; no data
type conversion is necessary.)

Declaring the SQLCA

The SQL Communication Area (SQLCA) is an ALLBASE/SQL data structure that contains
current information about a program's DBE session.

Every ALLBASE/SQL Pascal main program must contain an SQLCA declaration in the
global declaration part. The SQLCA should be a VAR parameter in a subprogram to which
the main program passes the SQLCA.

As shown in Figure 3-1 at �1�, you can declare the SQLCA by using the INCLUDE SQLCA
command:

EXEC SQL INCLUDE SQLCA;

3-8 Embedding SQL Commands

When the preprocessor parses this command, it inserts the following type de�nition into the
modi�ed source code �le:

SQLCA: SQLCA_TYPE;

You can also declare the SQLCA explicitly as follows:

SQLCA: SQLCA_TYPE;

The Pascal preprocessor generates a complete Pascal declaration for the SQLCA in
SQLTYPE. The following seven �elds in the SQLCA record are available for programmers to
use:

SQLCODE

SQLERRD[3] SQLWARN[2]

SQLWARN[0] SQLWARN[3]

SQLWARN[1] SQLWARN[6]

Some values ALLBASE/SQL places into these �elds indicate warning and error conditions
that resulted when the immediately preceding SQL command was executed. Other values
simply provide information attendant to normal command execution but are programmatically
useful. For example, when you submit an UPDATE command, the number of rows updated
is placed in SQLERRD [3]. If this value is greater than one, the program may want to advise
the user of that condition and process a ROLLBACK WORK or COMMIT WORK command
based on the user's response.

Examples discussed later in this chapter under \Implicit Status Checking" and \Explicit
Status Checking" illustrate how the program in Figure 3-1 uses some of the SQLCA �elds to
determine the success or failure of SQL command execution.

Declaring Host Variables

Variables used in SQL commands in an executable section are known as host variables. All
host variables used in a program must be declared in a declaration part. In a subprogram, the
host variables must be declared in the declaration section of any level of a procedure|but not
in the global declaration part. The host variable declarations must appear between the two
following SQL commands:

EXEC SQL BEGIN DECLARE SECTION;

.

. Host variables are declared here

. in Pascal data declarations.

EXEC SQL END DECLARE SECTION;

In Figure 3-1, host variable declarations start at �2�.

Embedding SQL Commands 3-9

You can put only one such declaration section in a program, and all host variables must be
declared between the BEGIN/END DECLARE SECTION commands in a declaration part.

The SELECT command shown at �8� in Figure 3-1 uses three host variables for data, one for
each of the columns in the PurchDB.Parts table. When used in an embedded SQL command,
host variables are preceded with a colon, as follows:NNNNN

: PartNumberNNNNN
: PartNameNNNNN
: SalesPrice

For detailed information regarding host variables, see the chapter, \Host Variables."

Starting a DBE Session

As at �3� in Figure 3-1, in most application programs you embed the CONNECT command to
start a DBE session in a program:

EXEC SQL CONNECT TO 'PartsDBE';

If autostart mode is ON at run time, this command starts a DBE session. If autostart mode
is OFF, a DBA must issue a START DBE command before the program can be executed.
Regardless of the autostart mode in e�ect, the program user must have CONNECT and RUN
authority for this command to execute.

You can embed the START DBE command in a program to start a DBE session if the owner
of the program has DBA authority. However, only one copy of the program can be executed
at a time, by a user with DBA authority. For single-user DBEnvironments, this constraint
poses no problem. In a multiuser environment, however, once a DBEnvironment is started,
only the CONNECT command can be used to initiate additional DBE sessions.

Place the DBE session initiation command in an executable section of your program such that
it executes at run time before all other SQL commands except the WHENEVER command.

3-10 Embedding SQL Commands

Defining Transactions

You de�ne transactions in an executable section to control what changes are committed to a
DBEnvironment and when they are committed.

A transaction consists of all the SQL commands that are executed between a BEGIN WORK
command and either a COMMIT WORK command or a ROLLBACK WORK command.
When a COMMIT WORK command is successfully executed, all operations performed
within the transaction are permanent in the DBEnvironment. When a ROLLBACK WORK
command is executed, none of the changes remain in the DBEnvironment.

The number and duration of transactions in an application program depend on the following
factors:

Concurrency: Concurrent DBE sessions may compete for data and index locks and bu�ers.

Update activities: Applications that are update intensive should issue COMMIT WORK
commands more frequently to avoid data re-entry in the event of a failure.

Data consistency: Program changes to a table that are meaningful only if changes are
made to another table should be committed or undone at the same time to ensure the data
remains consistent.

For detailed information regarding transaction management, see the document, \Performance
Guidelines".

The commands at �4� and �5� in Figure 3-1 start and end a transaction that consists of a single
execution of the SELECT command in procedure SelectData.

The BEGIN WORK command in procedure BeginTransaction is optional, but recommended.
If you omit a BEGIN WORK command, ALLBASE/SQL automatically issues a BEGIN
WORK on your behalf before executing the �rst SQL command that requires that a
transaction be in progress. However, such an implicit BEGIN WORK always has the default
isolation level of Repeatable Read (RR). If you need to increase concurrency with a di�erent
isolation level, use an explicit BEGIN WORK command.

The COMMIT WORK command in procedure EndTransaction terminates the transaction
after each execution of the SELECT command. Because the program does no DBEnvironment
updates, this command is used to terminate the transaction even if an error is encountered. In
programs that update data in a DBEnvironment, a ROLLBACK WORK command could be
used to undo the e�ects of any database changes that occurred during a transaction before the
error occurred.

Embedding SQL Commands 3-11

Implicit Status Checking

You can use the WHENEVER command, as at �6� in Figure 3-1, to have ALLBASE/SQL
examine SQLCA values and cause a speci�c action to be taken. The WHENEVER command
is a preprocessor directive that speci�es the action to be taken if an error or warning condition
occurs during each execution of the SQL command:

EXEC SQL WHENEVER SQLERROR CONTINUE;

| |

| |

| |

| the action

|

the condition

Each WHENEVER command a�ects all ALLBASE/SQL commands that follow it in the
source listing until another WHENEVER command is encountered.

If execution of the COMMIT WORK RELEASE command at �7� or the SELECT command
at �8� causes an error condition, ALLBASE/SQL takes no special action. This occurs because
the WHENEVER command shown above precedes the COMMIT WORK RELEASE and
SELECT commands in the source listing.

The WHENEVER SQLERROR command at �6� turns o� the implicit status checking of the
WHENEVER SQLERROR command that appears earlier in the source listing:

EXEC SQL WHENEVER SQLERROR goto 1000;

This WHENEVER command speci�es where to pass control when an error occurs during
execution of the CONNECT, BEGIN WORK, or COMMIT WORK commands.

Although you can use a WHENEVER command to have ALLBASE/SQL examine the values
in certain �elds of the SQLCA, you can also examine the values yourself, as discussed under
\Explicit Status Checking" later in this chapter.

Terminating a DBE Session

As illustrated at �7� in Figure 3-1, you can terminate a DBE session with the RELEASE
option of the COMMIT WORK command. The program in Figure 3-1 terminates its DBE
session whenever the following conditions occurs:

The user enters a slash (/) in response to the prompt in procedure SelectData.

The program encounters an error serious enough to set Abort to TRUE in procedure
SqlStatusCheck.

The program encounters an error when processing the CONNECT, BEGIN WORK, or
COMMIT WORK commands.

3-12 Embedding SQL Commands

Defining and Manipulating Data

You embed data de�nition and data manipulation commands in statement parts.

Data Definition

You can embed the following SQL commands to create objects or change existing objects:

ALTER DBEFILE CREATE INDEX DROP GROUP

ALTER TABLE CREATE TABLE DROP INDEX

CREATE DBEFILE CREATE VIEW DROP MODULE

CREATE DBEFILESET DROP DBEFILE DROP TABLE

CREATE GROUP DROP DBEFILESET DROP VIEW

Data de�nition commands are useful for such activities as creating temporary tables or views
to simplify data manipulation or creating an index that improves the program's performance:

EXEC SQL CREATE INDEX PartNameINDEX

ON Purchdb.Parts (PartName);

The index created with this command expedites data access operations based on partial key
values:

EXEC SQL SELECT PartName

INTO :PartName

FROM Purchdb.Parts

WHERE PartName LIKE :PartialKey;

Data Manipulation

SQL has the following four basic data manipulation commands:

SELECT - Retrieves data.

INSERT - Adds rows.

DELETE - Deletes rows.

UPDATE - Changes column values.

These four commands can be used for various types of data manipulation operations:

Simple data manipulation: operations that retrieve a single row, insert a single row, or
delete or update a limited number of rows.

Sequential table processing: operations that use a cursor to operate on a row at a time
within a set of rows. A cursor is a pointer the program advances through the set of rows.

Bulk operations: operations that manipulate multiple rows with a single execution of a data
manipulation command.

Dynamic operations: operations speci�ed by the user at run time.

In all non-dynamic data manipulation operations, you use host variables to pass data back
and forth between your program and the DBEnvironment. Host variables can be used in the
data manipulation commands wherever the syntax in the ALLBASE/SQL Reference Manual
allows them.

Embedding SQL Commands 3-13

The SELECT command shown at �8� in Figure 3-1 retrieves the row from PurchDB.Parts
that contains a part number matching the value in the host variable named in the WHERE
clause (PartNumber). The three values in the row retrieved are stored in three host variables
named in the INTO clause (PartNumber, PartName, and SalesPrice). An indicator variable
(SalesPriceInd) is also used in the INTO clause, to ag the existence of a null value in column
SalesPrice:

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice
NN
:SalesPriceIND

FROM Purchdb.Parts

WHERE PartNumber = :PartNumber;

You can also use host variables in non-SQL statements; in this case, omit the colon:NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SalesPrice := Response;

EXEC SQL SELECT COUNT(PartNumber)

INTO :PartCount

FROM Purchdb.Parts

WHERE SalesPrice > :SalesPrice;

All host variables used in procedures must be declared in a declaration part, as discussed
earlier in this chapter under \Declaring Host Variables".

Explicit Status Checking

In explicit status checking, shown at �9� in Figure 3-1, you explicitly examine an SQLCA
�eld for a particular value, then perform an operation if the value exists. In this, example,
the SQLCA �eld named SQLCODE is examined to determine whether it contains one of the
following values:

0, indicating no error occurred.

100, indicating no rows quali�ed for the SELECT operation.

-10002, indicating more than one row quali�ed for the SELECT operation.

If SQLCODE contains any other value, procedure SQLStatusCheck is executed. Values less
than -14024 indicate errors serious enough to warrant terminating the program.

3-14 Embedding SQL Commands

Obtaining ALLBASE/SQL Messages

As shown at �10� in Figure 3-1, you use the SQLEXPLAIN command to obtain a message from
the ALLBASE/SQL message catalog that describes the condition related to certain SQLCA
values:

EXEC SQL SQLEXPLAIN :SQLMessage;

ALLBASE/SQL puts a message from the ALLBASE/SQL message catalog into the host
variable named SQLMessage, and the program displays the message.

Sometimes more than one message may be needed to completely describe how an
SQL command executed. To retrieve all messages, the program in Figure 3-1 executes
SQLEXPLAIN until SQLCODE is equal to zero. ALLBASE/SQL sets SQLCODE to zero
when no more messages are available.

You can use SQLEXPLAIN in conjunction with either implicit or explicit status checking.
Procedure SQLStatusCheck is also executed from the routine labelled 1000, which is used in
conjunction with the �rst WHENEVER command in the program.

The default message catalog is SQLCT000.PUB.SYS. For native language users, the catalog
is SQLCTxxx.PUB.SYS, where xxx is the numerical value for the current language. (See the
\Native Language Support" section in the chapter \Getting Started with ALLBASE/SQL
Programming in Pascal" for information about how to determine the number for the current
language.) If this catalog is not available, ALLBASE/SQL issues a warning and uses the
default catalog instead.

Embedding SQL Commands 3-15

4

Host Variables

Host variables are variables used in SQL commands in the executable section. They are used
to pass the following information between an application program and ALLBASE/SQL:

Data values.

Null value indicators.

String truncation indicators.

Bulk processing rows to process.

Dynamic commands.

Savepoint numbers.

Messages from the ALLBASE/SQL message catalog.

DBEnvironment names.

All host variables used in the executable section of a program or subprogram are declared
in the declaration section. The declarations must be compatible with ALLBASE/SQL data
types. The type declaration entries must also satisfy certain preprocessor criteria.

This chapter identi�es where in the procedure section you can use host variables and then
discusses how to write type declarations that complement the way host variables are used.

Using Host Variables

Host variables are used in SQL commands as follows:

To pass data values with the following data manipulation commands:

SELECT

INSERT

DELETE

UPDATE

DECLARE
FETCH

REFETCH

UPDATE WHERE CURRENT

Host Variables 4-1

To hold null value indicators in these data manipulation commands:

SELECT

INSERT

FETCH

REFETCH

UPDATE

UPDATE WHERE CURRENT

In queries to indicate string truncation and the string length before truncation.

To identify the starting row and the number of rows to process in the INTO clause of the
following commands:

BULK SELECT

BULK INSERT

To pass dynamic commands at run time with the following commands:

PREPARE

EXECUTE IMMEDIATE

To hold savepoint numbers, which are used in the following commands:

SAVEPOINT

ROLLBACK WORK TO :savepoint

To hold messages from the ALLBASE/SQL message catalog, obtained by using the
SQLEXPLAIN command.

To hold a DBEnvironment name in the CONNECT command.

Later in this section are examples illustrating where, in the commands itemized above, the
SQL syntax supports host variables.

Host Variable Names

ALLBASE/SQL host variable names in Pascal programs must:

Contain from 1 to 30 bytes.

Conform to the rules for ALLBASE/SQL basic names.

Contain characters chosen from the following set: the 26 letters of the ASCII alphabet, the
10 decimal digits, a hyphen (-), or valid characters for any native language you are using.

Begin the name with an alphabetic character. However, avoid any user-de�ned names
beginning with the pre�x, SQL, as this can create a conict with ALLBASE/SQL-generated
names.

Not begin or end with a hyphen.

Not be the same as any ALLBASE/SQL or Pascal reserved word.

In all SQL commands containing host variable syntax, the host variable name must be
preceded by a colon:

:HostVariableName

4-2 Host Variables

Input and Output Host Variables

Host variables can be used for input or for output:

Input host variables provide data for ALLBASE/SQL.

Output host variables contain data from ALLBASE/SQL.

Be sure to initialize an input host variable before using it. When using cursor operations with
the SELECT command, initialize the input host variables contained in the select list and
WHERE clause before you execute the OPEN command.

In the following SELECT command, the INTO clause contains two output host variables:
PartNumber and PartName. ALLBASE/SQL puts data from the PurchDB.Parts table into
these host variables. The WHERE clause contains one input host variable, PartNumber.
ALLBASE/SQL reads data from this host variable to determine which row to retrieve.

EXEC SQL SELECT PartNumber, PartName

INTO :PartNumber,

:PartName

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

In this example, the host variable, PartNumber, is used for both input and output.

Indicator Variables

A special type of host variable called an indicator variable, is used in SELECT, FETCH,
UPDATE, UPDATE WHERE CURRENT, and INSERT commands to identify null values
and in SELECT and FETCH commands to identify truncated output strings.

An indicator variable must appear in an SQL command immediately after the host variable
whose data it describes. The host variable and its associated indicator variable are not
separated by a comma. In SELECT and FETCH commands, an indicator variable is
an output host variable containing one of the following indicators, which describe data
ALLBASE/SQL returns:

0 value is not null

-1 value is null

>0 string value is truncated; number indicates data length

before truncation.

Host Variables 4-3

In the INSERT, UPDATE, and UPDATE WHERE CURRENT commands, an indicator
variable is an input host variable. The value you put in the indicator variable tells
ALLBASE/SQL when to insert a null value in a column:

>=0 value is not null

<0 value is null

The following SELECT command uses an indicator variable, PartNameInd, for data from the
PartName column. When this column contains a null value, ALLBASE/SQL puts a -1 into
PartNameInd:

EXEC SQL SELECT PartNumber, PartName

INTO :PartNumber,

:PartName
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:PartNameInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

Any column not de�ned with the NOT NULL attribute may contain null values. In the
PurchDB.Parts table, ALLBASE/SQL prevents the PartNumber column from containing null
values, because it was de�ned as NOT NULL. In the other two columns, however, null values
are allowed:

CREATE PUBLIC TABLE PurchDB.Parts

(PartNumber CHAR(16)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NOT NULL,

PartName CHAR(30),

SalesPrice DECIMAL(10,2));

Null values have certain properties that you need to remember when manipulating data that
may be null. For example, ALLBASE/SQL ignores columns or rows containing null values
when evaluating an aggregate function (except that COUNT (*) includes all null values).
Refer to the ALLBASE/SQL Reference Manual for a complete account of the properties of
null values.

Be sure to use an indicator variable in the SELECT and FETCH commands whenever
columns accessed may contain null values. A runtime error results if ALLBASE/SQL
retrieves a null value and the program contains no indicator variable.

An indicator variable will also detect truncated strings in the SELECT and FETCH
commands. In the SELECT command illustrated above, PartNameInd contains a value
>0 when a part name is too long for the host variable declared to hold it. The value in
PartNameInd indicates the actual length of the string before truncation.

4-4 Host Variables

Bulk Processing Variables

Bulk processing variables can be used with the BULK option of the SELECT or the INSERT
command.

When used with the BULK SELECT command, two input host variables may be named
following the array name in the INTO clause to specify how ALLBASE/SQL should store the
query result in the array:

INTO :ArrayName [,:StartIndex [,:NumberOfRows]]

The StartIndex value denotes at which array element the query result should start. The
NumberOfRows value is the maximum, total number of rows ALLBASE/SQL should put into
the array:

EXEC SQL BULK SELECT PurchasePrice * :Discount,

OrderQty,

OrderNumber

INTO :OrdersArray,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:FirstRow,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:TotalRows

FROM PurchDB.OrderItems

WHERE OrderNumber

BETWEEN :LowValue AND :HighValue

GROUP BY OrderQty, OrderNumber;

ALLBASE/SQL puts the entire query result, or the number of rows speci�ed in TotalRows,
whichever is less, into the array named OrdersArray, starting at the array subscript stored in
FirstRow. If neither of these input host variables is speci�ed, ALLBASE/SQL stores as many
rows as the array can hold, starting at OrdersArray[1]. If FirstRow plus TotalRows is greater
than the size of the array, a runtime error occurs and the program aborts.

Bulk processing variables may be used with the BULK INSERT command to direct
ALLBASE/SQL to insert only certain rows from the input array:

EXEC SQL BULK INSERT INTO PurchDB.Orders
VALUES (:OrdersArray,

:FirstRow,

:TotalRows);

If a starting index or total number of rows is not speci�ed, ALLBASE/SQL inserts, starting at
the beginning of the array, as many rows as there are elements in the array.

Host Variables 4-5

Declaring Host Variables

In the declaration section, you declare all host variables you use in any executable section of
your program.

Creating Declaration Sections

Host variables may be declared in either a global or local declaration section of a main
program, but only in a local declaration section of a subprogram and only in a Level 1
procedure. You can reference the host variables in any level procedure. These declarations can
appear in the main source code �le and/or in any �les included by this �le. At run time, the
scope of a host variable is the same as that of any other Pascal variables declared in the same
declaration section. At preprocessing time, however, all host variable declarations are treated
as global declarations.

In any declaration section, you declare host variables in what is known as a declaration
section. A declaration section consists of the SQL command BEGIN DECLARE SECTION,
one or more variable declarations, and the SQL command END DECLARE SECTION,
as shown in Figure 4-1. More than one declaration section may appear in any declaration
section. The same host variable name cannot appear in more than one declaration section.

Each host variable is declared by using a Pascal type description. The declaration contains
the same components as any Pascal variable declaration:

EXEC SQL BEGIN DECLARE SECTION;

OrderNumber : integer;

| |

| |

| a data type

|

a data name

EXEC SQL END DECLARE SECTION;

The data name must be the same as the corresponding host variable name in the statement
section. The data type must satisfy ALLBASE/SQL data type and Pascal preprocessor
requirements.

4-6 Host Variables

Program EXAMPLE (input, output);

var

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

.

. Declarations for global host variables.

.

EXEC SQL END DECLARE SECTION;

.

.

.

PROCEDURE QUERY;

var

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

.

. Declarations for local host variables.

.

EXEC SQL END DECLARE SECTION;

.

.

.

begin

.

.

.

end;

.

.

.

begin

.

.

.

end.

Figure 4-1. Host Variable Declarations

Host Variables 4-7

Declaring Variables for Data Types

Table 4-1 summarizes the syntax of data type descriptions for host variables holding each
type of ALLBASE/SQL data. It also illustrates how to declare indicator variables, arrays for
holding multiple rows, and host variables that hold dynamic commands, savepoint numbers,
message catalog messages, and DBEnvironment names. Only the type descriptions shown in
Table 4-1 are supported by the Pascal preprocessor. The preprocessor does not, for example,
support user de�ned types.

You can also declare program variables that are not host variables within a declaration
section. All variables that appear in a declaration section, however, must have Pascal data
types illustrated in Table 4-1.

CHAR Data

You can insert strings ranging from 1 to 3996 characters into a CHAR column.

When ALLBASE/SQL assigns data to a char host variable, it adds blanks if necessary on the
right of the string to �ll up the accepting variable.

VARCHAR Data

VARCHAR strings can range from 1 to 3996 characters. ALLBASE/SQL stores only the
actual value of the string, not any trailing blanks.

The string data type in Pascal is equivalent to the VARCHAR data type in ALLBASE/SQL.
The string data type in Pascal stores the actual length of the string in a four-byte �eld
preceding the string itself. The VendorRemarks column in the PurchDB.Vendors table is
de�ned as VARCHAR(60). It is therefore declared as follows:

VendorRemarks : string[60];

On output, you can use the Pascal strlen function to determine the actual length of
data ALLBASE/SQL assigns to an output host variable declared as a string. On input,
ALLBASE/SQL automatically stores only the actual value of the string.

SMALLINT Data

Values can range from -32768 to +32767 in a column de�ned as SMALLINT. When the Pascal
preprocessor detects a host variable declared as SmallInt, it de�nes the host variable as follows
in SQLTYPE:

type

SmallInt = shortint;

INTEGER Data

Values can range from -2,147,483,648 to +2,147,483,647 in a column de�ned as INTEGER.

4-8 Host Variables

Table 4-1. Data Type Declarations

SQL DATA TYPES PASCAL TYPE DESCRIPTION

CHAR(1) DataName : char;

CHAR(n) DataName : array [1..n] of char; or DataName : packed

array [1..n] of char;

VARCHAR(n) DataName : string[n];

BINARY(1) DataName : char;

BINARY(n) DataName : array [1..n] of char; or DataName : packed

array [1..n] of char;

VARBINARY(n) DataName : string[n];

SMALLINT DataName : smallint;

INTEGER DataName : integer;

REAL DataName : real;

FLOAT DataName : longreal;

DECIMAL DataName : longreal;

DATE DataName : packed array[1..10] of char; 1

TIME DataName : packed array[1..8] of char; 1

DATETIME DataName : packed array[1..23] of char; 1

INTERVAL DataName : packed array[1..20] of char; 1

1 Applies to default format speci�cation only.

FLOAT Data

ALLBASE/SQL o�ers the option of specifying the precision of oating point data. You
have the choice of a 4-byte or an 8-byte oating point number. The keywords REAL and
FLOAT(1) through FLOAT(24) speci�cations map to a 4-byte oat. The FLOAT(25) through
FLOAT(53) and DOUBLE PRECISION speci�cations map to an 8-byte oat.

The REAL data type could be useful when the number you are dealing with is very small, and
you do not require a great deal of precision. However, it is subject to overow and underow
errors if the value goes outside its range. It is also subject to greater rounding errors than
double precision. With the DOUBLE PRECISION (8-byte oat) data type, you can achieve
signi�cantly higher precision and have available a larger range of values.

By using the CREATE TABLE or ALTER TABLE command, you can de�ne a oating point
column by using a keyword from the following table. See the ALLBASE/SQL Reference
Manual for complete syntax speci�cations.

Host Variables 4-9

Table 4-2. ALLBASE/SQL Floating Point Column Specifications

Possible Keywords Range of Possible Values Stored In
and

Boundary
Aligned On

REAL
or
FLOAT(n)
where
n = 1 through 24

�3.402823 E+38 through �1.175495 E�38
and

1.175495 E�38 through 3.402823 E+38
and
0

4 bytes

DOUBLE PRECISION
or
FLOAT
or
FLOAT(n)
where
n = 25 through 53

�1.79769313486231 E+308 through �2.22507385850721 E�308
and

+2.22507385850721 E�308 through +1.79769313486231 E+308
and
0

8 bytes

Floating Point Data Compatibility. Floating point data types are compatible with each
other and with other ALLBASE/SQL numeric data types (DECIMAL, INTEGER, and
SMALLINT). All arithmetic operations and comparisons and aggregate functions are
supported.

BINARY Data

As with other data types, use the CREATE TABLE or ALTER TABLE command to de�ne a
BINARY or VARBINARY column. Up to 3996 bytes can be stored in such a column.

BINARY data is stored as a �xed length of left-justi�ed bytes. It is zero padded up to
the �xed length you have speci�ed. VARBINARY data is stored as a variable length of
left-justi�ed bytes. You specify the maximum possible length. (Note that CHAR and
VARCHAR data is stored in a similar manner except that CHAR data is blank padded.)

Binary Data Compatibility. BINARY and VARBINARY data types are compatible with each
other and with CHAR and VARCHAR data types. They can be used with all comparison
operators and the aggregate functions MIN and MAX, but arithmetic operations are not
allowed.

Using the LONG Phrase with Binary Data Types. If the amount of data in a given column of a
row can exceed 3996 bytes, it must be de�ned as a LONG column. Use the CREATE TABLE
or ALTER TABLE command to specify the column as either LONG BINARY or LONG
VARBINARY.

LONG BINARY and LONG VARBINARY data is stored in the database just as BINARY
and VARBINARY data, except that its maximum possible length is practically unlimited.

Use LONG VARBINARY when saving space is your main consideration. However, LONG
BINARY o�ers faster data access.

4-10 Host Variables

LONG BINARY and LONG VARBINARY data types are compatible with each other, but not
with other data types. Also, the concept of inputting and accessing LONG column data di�ers
from that of other data types. Refer to the ALLBASE/SQL Reference Manual for detailed
syntax and to the chapter \Programming with LONG Columns" for information about using
LONG column data.

DECIMAL Data

The DECIMAL data type is not supported in Pascal, but it is compatible with a Pascal
longreal data type. If you use the DECIMAL data type in a dynamically preprocessed
PREPARE statement with an output data bu�er or in BULK operations, you must code
Pascal statements yourself to convert Binary Coded Decimal (BCD) representation to
character representation. If you use an input bu�er with dynamic preprocessing, you must
also write code that converts the character representation to BCD format before the data
is placed in the input bu�er. An example of Pascal code to do this conversion is shown in
Procedure BCDToString in the sample program pasex10a, Figure 10-9.

When you use DECIMAL values in arithmetic operations and certain aggregate functions, the
precision and scale of the result are functions of the precisions and scales of the values in the
operation. Refer to the ALLBASE/SQL Reference Manual for a complete account of how to
calculate the precision and scale of DECIMAL results.

DATE, TIME, DATETIME, and INTERVAL Data

EXEC SQL BEGIN DECLARE SECTION;

BatchStamp : packed array[1..23] of char; (* DATETIME DATA TYPE *)

TestDate : packed array[1..10] of char; (* DATE DATA TYPE *)

TestDateInd : SqlInd;

TestStart : packed array[1..8] of char; (* TIME DATA TYPE *)

TestStartInd : SqlInd;

LabTime : packed array[1..20] of char; (* INTERVAL DATA TYPE *)

LabTimeInd : SqlInd;

EXEC SQL END DECLARE SECTION;

(* DECLARE and OPEN CURSOR C1 here. Nulls not allowed for BatchStamp. *)

EXEC SQL FETCH C1

INTO :BatchStamp,

:TestDate :TestDateInd,

:TestStart :TestStartInd,

:LabTime :LabTimeInd;

Using Default Data Values

You can choose a default value other than NULL when you create or alter a table by using
the DEFAULT speci�cation. Then when data is inserted, and a given column is not in the
insert list, the speci�ed default value is inserted. Or when you alter a table, adding a column
to existing rows, every occurrence of the column is initialized to the default value.

When a table or column is de�ned with the DEFAULT speci�cation, you will not get an error
if a column de�ned as NOT NULL is not speci�ed in the insert list of an INSERT command.
Without the DEFAULT speci�cation, if a column is de�ned as NOT NULL, it must have some
value inserted into it. However, if the column is de�ned with the DEFAULT speci�cation, it

Host Variables 4-11

satis�es both the requirement that it be NOT NULL and have some value, in this case, the
default value (unless the DEFAULT value is NULL). If a column not in an insert list does
allow a NULL, then a NULL is inserted instead of the default value.

Your default speci�cation options are as follows:

NULL.
USER (this indicates the current DBEUserID).
A constant.
The result of the CURRENT DATE function.
The result of the CURRENT TIME function.
The result of the CURRENT DATETIME function.

Complete syntax for the CREATE TABLE and ALTER TABLE commands as well as
de�nitions of the above options are found in the ALLBASE/SQL Reference Manual .

In e�ect, by choosing any option other than NULL, you assure the column's value to be NOT
NULL and of a particular format, unless and until you use the UPDATE command to enter
another value.

In the following example, the OrderNumber column defaults to the constant 5, and it is
possible to insert a NULL value into the column:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DEFAULT 5,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

However, suppose you want to de�ne a column default and specify that the column cannot be
null. In the next example, the OrderNumber column defaults to the constant 5, and it is not
possible to insert a NULL value into this column:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNN
DEFAULT 5 NOT NULL,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

Coding Considerations

Any default value must be compatible with the data type of its corresponding column. For
example, when the default is an integer constant, the column for which it is the default must
be created with an ALLBASE/SQL data type of INTEGER, REAL, or FLOAT.

In your application, you input or access data for which column defaults have been de�ned
just as you would data for which defaults are not de�ned. In this chapter, refer to the
section \Declaring Variables for Data Types" for information on using the data types in your
program. Also refer to the section \Declaring Variables for Compatibility" for information
relating to compatibility.

When the DEFAULT Clause Cannot be Used

You can specify a default value for any ALLBASE/SQL column except those de�ned as
LONG BINARY or LONG VARBINARY. For information on these data types, see the
section in this chapter titled \Using the LONG Phrase with Binary Data Types."

4-12 Host Variables

With the CREATE TABLE command, you can use either a DEFAULT NULL speci�cation
or the NOT NULL speci�cation. An error results if both are speci�ed for a column as in
the next example:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NN
DEFAULT NULL NOT NULL,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

Declaring Variables for Compatibility

Under the following conditions, ALLBASE/SQL performs data type conversion when
executing SQL commands containing host variables:

When the data types of values transferred between your program and a DBEnvironment do
not match.

When data of one type is moved to a host variable of a di�erent type.

When values of di�erent types appear in the same expression.

Data types for which type conversion can be performed are called compatible data types.
Table 4-3 summarizes data type-host variable compatibility. It also points out which data
type combinations are incompatible and which data type combinations are equivalent, i.e.,
require no type conversion. E describes an equivalent situation, C a compatible situation, and
I an incompatible situation.

Host Variables 4-13

Table 4-3. Pascal Data Type Equivalency and Compatibility

ALLBASE/

SQL

DATA

TYPES

CHAR STRING SMALLINT INTEGER LONGREAL PACKED ARRAY

OF CHAR

CHAR E C I I I E

VARCHAR C E I I I C

BINARY C C I I I C

VARBINARY C C I I I C

DATE E C I I I I

TIME E C I I I I

DATETIME E C I I I I

INTERVAL E C I I I I

SMALLINT I I E C C I

INTEGER I I C E C I

DECIMAL I I C C C I

REAL I I C C E I

FLOAT I I C C E I

4-14 Host Variables

As the following example illustrates, the INFO command available in ISQL provides
the information you need to declare host variables compatible with or equivalent to
ALLBASE/SQL data types. It also provides the information you need to determine whether
an indicator variable is needed to handle null values.

isql=> INFO PurchDB.OrderItems;

Column Name Data Type (length) Nulls Allowed

ORDERNUMBER Integer NO

ITEMNUMBER Integer NO

VENDPARTNUMBER Char (16) YES

PURCHASEPRICE Decimal (10,2) NO

ORDERQTY Smallint YES

ITEMDUEDATE Char (8) YES

RECEIVEDQTY Smallint YES

The example identi�ed in Figure 4-2 produces a single-row query result. The declare
section contains data types equivalent to or compatible with the data types in the
PurchDB.OrderItems table:

OrderNumber is an integer variable because the column whose data it holds is INTEGER.

PurchasePrice is declared as a LONGREAL variable because it holds a DECIMAL column.

Discount is declared as a LONGREAL variable because it is used in an arithmetic
expression with a DECIMAL column.

OrderQty is declared as a SmallInt variable because it holds the SMALLINT result of a
SMALLINT column, OrderQty.

OrderQtyInd is an indicator variable, necessary because the resulting OrderQty can contain
null values. Note in the INFO example above that this column allows null values.

Host Variables 4-15

var

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

.

.

.

Discount : longreal;

PurchasePrice : longreal;

OrderQty : SmallInt;

OrderQtyInd : SqlInd;

OrderNumber : integer;

.

.

.

EXEC SQL END DECLARE SECTION;
.

.

.

begin

.

.

.

EXEC SQL SELECT PurchasePrice * :Discount,

OrderQty,

INTO :PurchasePrice,

:OrderQty :OrderQtyInd

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber

Figure 4-2. Declaring Host Variables for Single-Row Query Result

The example identi�ed in Figure 4-3 is similar to that in Figure 4-2. This query, however, is a
BULK query, which may return a multiple-row query result. It also incorporates a HAVING
clause. Here are some points to notice:

OrdersArray is the name of the array for storing the query result. It can hold up to 26
rows. Each row in the array has the same format as that in the single-row query result just
discussed.

FirstRow and TotalRows are declared as SmallInt variables, since their maximum value is
the size of the array, in this case, 26.

GroupCriterion is an integer variable because its value is compared in the HAVING clause
with the result of a COUNT function, which is always an INTEGER value.

4-16 Host Variables

Program EXAMPLE (input, output);

.

.

.

var

EXEC SQL BEGIN DECLARE SECTION;

.

.

.

Discount : longreal;

OrdersArray : packed array[1..26] of packed record

PurchasePrice : longreal;

OrderQty : SmallInt;

OrderQtyInd : SqlInd;

OrderNumber : integer;

end;

FirstRow : SmallInt;
TotalRows : SmallInt;

LowValue : integer;

HighValue : integer;

GroupCriterion : integer;

EXEC SQL END DECLARE SECTION;

.

.

.

begin

.

.

.

EXEC SQL BULK SELECT PurchasePrice * :Discount,

OrderQty,

OrderNumber

INTO :OrdersArray,

:FirstRow,

:TotalRows

FROM PurchDB.OrderItems

WHERE OrderNumber

BETWEEN :LowValue AND :HighValue

GROUP BY OrderQty, OrderNumber

HAVING COUNT(ItemNumber) > :GroupCriterion;

Figure 4-3. Declaring Host Variables for Multiple-Row Query Result

Host Variables 4-17

String Data Conversion

When ALLBASE/SQL moves VARCHAR data to a packed array of CHAR variable of a
larger size, it pads the string on the right with spaces to �ll up the host variable. When
ALLBASE/SQL stores the value in a string host variable into a CHAR column, it pads the
value on the right with spaces to �ll up the column.

String Data Truncation

If the target host variable used in a SELECT or FETCH operation is too small to hold an
entire string, the string is truncated. You can use an indicator variable to determine the
actual length of the string before truncation:

EXEC SQL BEGIN DECLARE SECTION.

LittleString : packed array[1..n] of char;

LittleStringInd : SqlInd;

.

.

.

EXEC SQL END DECLARE SECTION.

.

.

.

begin

.

.

.

EXEC SQL SELECT BigString

INTO :LittleString :LittleStringInd;

.

.

.

When the value in column BigString is too long to �t in host variable LittleString,
ALLBASE/SQL puts the actual byte length of the string into indicator variable
LittleStringInd.

If a column is too small to hold a string in an INSERT or an UPDATE operation, the string is
truncated and stored, but ALLBASE/SQL gives no error or warning indication.

It is possible to store native language data in a character column de�ned as ASCII. It is the
programmer's responsibility to verify the language de�nition of the column that is to receive
the data. If the character column is de�ned for a native language, truncation always occurs on
a proper character boundary for that language.

4-18 Host Variables

Numeric Data Conversion

When you use numeric data of di�erent types in an expression or comparison operation, data
types with less precision are converted into data types of greater precision. The result has
the greater precision. ALLBASE/SQL numeric types available in Pascal have the following
precedence, from highest to lowest:

1. FLOAT

2. DECIMAL

3. INTEGER

4. SMALLINT

The following example illustrates numeric type conversion:

EXEC SQL BEGIN DECLARE SECTION;

Discount : integer;

MaxPurchasePrice : integer;

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

begin

.

.

.

EXEC SQL SELECT MAX(PurchasePrice) * :Discount

INTO :MaxPurchasePrice

FROM PurchDB.OrderItems;

The select list of the query illustrated contains an aggregate function, MAX. The argument
of the function is the PurchasePrice column, de�ned in the PartsDBE DBEnvironment
as DECIMAL(10,2). Therefore the result of the function is DECIMAL. Since the host
variable named Discount is declared as an integer, a data type compatible with DECIMAL,
ALLBASE/SQL converts the value in Discount to a DECIMAL quantity having a precision of
10 and a scale of 0.

After multiplication, data conversion occurs again before the DECIMAL result is stored in the
integer host variable MaxPurchasePrice . In this case, the fractional part of the DECIMAL
value is truncated.

Refer to the ALLBASE/SQL Reference Manual for additional information on how type
conversion can cause truncation and overow of numeric values.

Host Variables 4-19

Declaring Variables for Program Elements

The following section discusses how to declare elements speci�c to ALLBASE/SQL programs.
Table 4-4 provides the syntax of these special elements.

Table 4-4. Program Element Declarations

PROGRAM ELEMENT PASCAL TYPE DESCRIPTION

Indicator variable IndVarName : SqlInd;

Array of n rows ArrayName : packed or unpacked array

[1..n] of packed or unpacked record

Data values Column1Name : Valid data type;

Column2Name : Valid data type;

Indicator variable IndVarName : SqlInd;

StartIndex StartIndexName : smallint or

StartIndexName : integer;

NumberOfRows NumRowsName : smallint or

NumRowsName : integer;

Dynamic commands CommandName : packed array[1..n] of char; or

CommandName : string[n];

Savepoint numbers SavepointName : smallint; or

SavepointName ; integer;

Message catalog messages MessageName : packed array[1..n] of char; or

MessageName : string[n];

DBEnvironment name DBEName : packed array[1..n] of char; or

DBEName : string[n];

SQLCA Array

Every ALLBASE/SQL Pascal main program must have the SQL Communications Area
(SQLCA) declared in the global declaration part. You can use the INCLUDE command to
declare the SQLCA:

EXEC SQL INCLUDE SQLCA;

When the preprocessor parses this command, it inserts the following type de�nition into the
modi�ed source �le:

sqlca: Sqlca_Type:

Optionally, you can use this type de�nition in the global declaration part of your source �le
instead of using the INCLUDE command to declare the sqlca.

Refer to the chapter, \Runtime Status Checking and the SQLCA," for further information
regarding the sqlca.

4-20 Host Variables

Dynamic Processing Arrays

For programs which accept dynamic queries, you include three special declarations in a
declaration part:

EXEC SQL INCLUDE SQLDA;

This command causes the preprocessor to declare the SQLDA as

type SQLDA TYPE, de�ned in the preprocessor-generated type

declaration include �le.

SQLFmts : array [1..MaxFmtArray] of SQLFormat_type;

This declaration identi�es the format array and its size.

MaxFmtArray is a constant representing the maximum number

of columns you expect in the query result. SQLFORMAT TYPE

is de�ned in the type declaration include �le.

DataBuffer : packed array [1..MaxDataBuff] or char;

This declaration identi�es a data bu�er and its size.

MaxDataBu� is a constant representing the maximum number

of bytes you will need to hold the number of rows you

request in the SqlNRow �eld of the SQLDA.

See the chapter on \Using Dynamic Operations" for more information.

Host Variables 4-21

Bulk Processing Arrays

When you declare a structure array for holding the results of a BULK SELECT or BULK
FETCH operation, ensure that you declare the �elds in the same order as in the select list.
(For single-row query results, however, the order of declaration does not have to match the
select list order.) In addition, each indicator variable �eld must be declared in the declaration
of the structure array immediately after the host variable �eld it describes. And if used, the
bulk processing indicator variables (starting index and number of rows) are referenced in
order, immediately following the reference to your array name. Refer back again to Figure 4-3
for an example.

Indicator Variables

Each indicator variable �eld used in a BULK SELECT must be declared immediately
following the host variable �eld it describes, as shown in Figure 4-3. Figure 4-2 shows the
indicator variable optionally declared immediately following the host variable �eld. If a
column allows nulls, a null indicator must be declared for it.

Dynamic Commands

The maximum size for the host variables used to hold dynamic commands is 32,762 bytes.
However, in Figure 4-4, the host variable is declared to hold the maximum size of dynamic
command: 2048 bytes.

var
.

.

.

EXEC SQL BEGIN DECLARE SECTION;

.

.

.

Dynamic Command : string[2048];

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

begin

.

.

.

EXEC SQL PREPARE CommandOnTheFly

FROM :DynamicCommand ;

Figure 4-4. Declaring Host Variables for Dynamic Commands

4-22 Host Variables

Savepoint Numbers

Savepoint numbers are positive numbers ranging from 1 to 2,147,483,647. A host variable for
holding a savepoint number should be declared as an integer.

...

EXEC SQL BEGIN DECLARE SECTION;

Savepoint1 : integer;...
EXEC SQL END DECLARE SECTION;...

EXEC SQL SAVEPOINT :Savepoint1;...
EXEC SQL ROLLBACK WORK TO :Savepoint1;

Figure 4-5. Declaring Host Variables for Savepoint Numbers

Messages from the Message Catalog

The maximum size of a message catalog message is 256 bytes. Figure 4-6 illustrates how a
host variable for holding a message might be declared.

Program EXAMPLE (input, output);...
var

EXEC SQL BEGIN DECLARE SECTION;

SQLMessage :string[256] ;...
EXEC SQL END DECLARE SECTION;...
begin...
EXEC SQL SQLEXPLAIN :SQLMessage ;

writeln (SQLMessage);

Figure 4-6. Declaring Host Variables for Message Catalog Messages

Host Variables 4-23

DBEnvironment Name

The maximum pathname (either relative or absolute) of a DBECon �le is 128 bytes. The
DBECon �le name is the same as the DBEnvironment name. The name you store in this host
variable does not have to be delimited by single quotation marks.

var

EXEC SQL BEGIN DECLARE SECTION;

.

.

.

SomDBE : string[128];

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

begin

prompt ('Enter DBEnvironment name> ');
readln (SomeDBE);

EXEC SQL CONNECT to :SomeDBE;

Figure 4-7. Declaring Host Variables for DBEnvironment Names

This host variable can be declared as a string or as a character array. In the example, it is
declared as a character array large enough to hold the absolute �le name of any DBECon �le.

4-24 Host Variables

5

Runtime Status Checking and the SQLCA

This chapter examines the need for runtime status checking. It describes the SQLCA and
the conditions under which its data items are set by ALLBASE/SQL. It also gives several
examples of implicit and explicit status checking, some of which use SQLEXPLAIN to display
a status message. Examples of handling speci�c status checking tasks are included under
\Approaches to Status Checking."

When an SQL command is executed, ALLBASE/SQL returns information describing how the
command executed. This information signals one or more of the following status conditions:

The command was successfully executed.

The command could not be executed because an error condition occurred, but the current
transaction will continue.

No rows quali�ed for a data manipulation operation.

A speci�c number of rows were placed into output host variables.

A speci�c number of rows quali�ed for an INSERT, UPDATE, or DELETE operation.

The command was executed, but a warning condition resulted.

The command was executed, but a character string was truncated.

The command was executed, but a null value was eliminated from an aggregate function.

The command could not be executed because the number of variables in a SELECT or
FETCH statement is unequal to the number of columns in the table being operated on.
This applies to dynamic processing only.

The command could not be executed because an error condition necessitated rolling back
the current transaction.

Based on this runtime status information, a program can COMMIT WORK, ROLLBACK
WORK, continue, terminate, display a message, or perform some other appropriate activity.

You can use the WHENEVER command to perform implicit status checking. This means
that ALLBASE/SQL checks the SQLCODE and SQLWARN0 values for you, then takes an
action based on information you provide in the WHENEVER command.

You can write Pascal code that explicitly examines one or more of the seven SQLCA
elements, then proceeds on the basis of their values. This kind of status checking is called
explicit status checking.

You can use a combination of both implicit and explicit status checking.

In conjunction with status checking of any kind, you can use the SQLEXPLAIN command.
This command retrieves a message from the ALLBASE/SQL message catalog that describes
an error or warning condition.

Runtime Status Checking and the SQLCA 5-1

When several errors or warnings occur, you can use SQLEXPLAIN to retrieve messages for all
of them. Messages are available to your program with the most sever error appearing �rst.
When ALLBASE/SQL rolls back the current transaction, the message indicating the roll back
will be the �rst message, since it is the most severe. An example of this scenario is presented
later in this chapter under \SQLCODE." Refer to the ALLBASE/SQL Message Manual for
an explanation of all error and warning messages.

Purposes of Status Checking

Status checking is performed primarily for the following reasons:

To gracefully handle runtime error and warning conditions.

To maintain data consistency.

To return information about the most recently executed command.

Handling Runtime Errors and Warnings

A program is said to be robust if it anticipates common runtime errors and handles them
gracefully. In online applications, robust programs may allow the user to decide what to do
when an error occurs rather than just terminating. This approach is useful, for example, when
a deadlock occurs.

If a deadlock occurs, SQLCODE is set to -14024 and an SQLEXPLAIN call retrieves the
following message:

Deadlock detected. (DBERR 14024)

ALLBASE/SQL rolls back the transaction containing the SQL command that caused the
deadlock. You may want to either give the user the option of restarting the transaction,
automatically re-execute the transaction a �nite number of times before notifying the user of
the deadlock, or re-execute the transaction until the deadlock is resolved.

Maintaining Data Consistency

Two or more data values, rows, or tables are said to be consistent if they agree in some way.
Changes to such interdependent values are either committed or rolled back at the same
time in order to retain data consistency. In other words, the set of operations that form a
transaction are considered as an atomic operation; either all or none of the operations are
performed on the database. Status checking in this case determines whether to commit or roll
back work.

5-2 Runtime Status Checking and the SQLCA

For example, in the sample database, PartsDBE, each order is de�ned by rows in two tables:
one row in the PurchDB.Orders table and one or more rows in the PurchDB.OrderItems
table. A transaction that deletes orders from the database has to delete all the rows for
a speci�c order from both tables to maintain data consistency. A program containing
such a transaction should commit work to the database only if it is able to delete the
row from the PurchDB.Orders table and delete all the rows for the same order from the
PurchDB.OrderItems table:

EXEC SQL BEGIN WORK;

EXEC SQL DELETE FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber;

If this command succeeds, the program submits the following command.

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderNumber = :OrderNumber;

If this command succeeds, the program submits a COMMIT WORK command.

If this command does not succeed, the program submits a ROLLBACK WORK

command to ensure that all rows related to the order are deleted at

the same time.

Checking the Most Recently Executed Command

Depending on which ALLBASE/SQL command was most recently executed, you can make
checks to insure that the command executed in a manner appropriate to the program's
context. The following section, \Using the SQLCA," gives explanations based on each SQLCA
element. Later in this chapter, the section \Explicit Status Checking Techniques" provides
examples based on speci�c programming tasks.

Using the SQLCA

The SQLCA is used for communicating information between the application program and
ALLBASE/SQL. SQL places information in the SQLCA each time it is called. Since there is
no guarantee that information from one call to SQL will be present after the next call to SQL,
any information needed from the SQLCA must be obtained after each call to ALLBASE/SQL.

Every ALLBASE/SQL Pascal main program must have the SQLCA declared in the global
declaration section. You can use the INCLUDE command to declare the SQLCA:

EXEC SQL INCLUDE SQLCA;

When the Pascal preprocessor parses this command, it inserts the following type de�nition
into the modi�ed source �le:

sqlca: Sqlca_Type

Runtime Status Checking and the SQLCA 5-3

You can also use this type de�nition in the global declaration section of your source �le
instead of using the INCLUDE command to declare the SQLCA.

The Pascal preprocessor generates the following record declaration for sqlca type in the
type include �le. This portion of the type include �le contains some conditional statements.
The entire type include �le can be found in the chapter, \Using the ALLBASE/SQL Pascal
Preprocessor." (It is recommended that you initialize the SqlcaId element to blanks, one time,
before the �rst SQL statement in your program.)

SQLCA_TYPE = record

SQLCAID : packed array [1..8] of char;

SQLCABC : integer;

SQLCODE : integer;

SQLERRM : string[255];

SQLERRP : packed array [1..8] of char;

SQLERRD : array [1..6] of integer;

$if 'XOPEN_SQLCA'$

SQLWARN0, SQLWARN1, SQLWARN2,

SQLWARN3, SQLWARN4, SQLWARN5,

SQLWARN6, SQLWARN7 : char;

$else$

SQLWARN : packed array [0..7] of char;

$endif$

SQLEXT : packed array [1..8] of char;

end;

The following elements in this record are available for you to use in status checking. The other
elements are reserved for use by ALLBASE/SQL only.

SQLCA.SQLCODE or SQLCODE

SQLCA.SQLERRD[3]

SQLCA.SQLWARN[0] or SQLCA.SQLWARN0

SQLCA.SQLWARN[1] or SQLCA.SQLWARN1
SQLCA.SQLWARN[2] or SQLCA.SQLWARN2

SQLCA.SQLWARN[3] or SQLCA.SQLWARN3

SQLCA.SQLWARN[6] or SQLCA.SQLWARN6

In conformance with XOPEN standards, SQLCODE can be used to address this particular
element, and each SQLWARN element can be addressed without the use of square brackets.
If you choose to use XOPEN standards addressing, you must include the following compiler
directive in your source code:

$ SET `XOPEN_SQLCA=TRUE'$

(Note, use this compiler directive only if you are using XOPEN standards addressing.)

The SQLCA must be passed whenever you call a subprogram that executes SQL commands.
The recommended method of doing so is to declare the SQLCA globally in the main program.
This is true even though your main program contains no other SQL statement. The SQLCA
must be a VAR parameter to these subprograms in order to save space and attain the best
performance.

5-4 Runtime Status Checking and the SQLCA

Table 5-1. SQLCA Status Checking Fields

FIELD NAME SET TO CONDITION

SQLCA.SQLCODE
or SQLCODE

0

Less than 0

100

No error occurred during command
execution

Error, command not executed

No rows qualify for DML operation
(does not apply to dynamic commands)

SQLCA.SQLERRD[3] Number of rows put
into output host

variables

Number of rows
processed

0

0

Data retrieval operation

Data change operation

Error in single row data change
operation

SQLCODE equals 100

SQLCA.SQLWARN[0]
or SQLCA.SQLWARN0

W Warning, command not properly
executed

SQLCA.SQLWARN[1]
or SQLCA.SQLWARN1

W At least one character string value
was truncated when being stored in
a host variable

SQLCA.SQLWARN[2]
or SQLCA.SQLWARN2

W At least one null value was eliminated
from the argument set of an aggregrate
function

SQLCA.SQLWARN[3]
or SQLCA.SQLWARN3

W For dynamic commands only, when the
number of host variables in a SELECT
or FETCH is unequal to the number of
columns in the table being operated on

SQLCA.SQLWARN[6]
or SQLCA.SQLWARN6

W The current transaction was rolled back

Runtime Status Checking and the SQLCA 5-5

SQLCODE

SQLCODE can contain one of the following values:

0, when an SQL command executes without generating a warning or error condition.

A negative number, when an SQL command cannot be executed because an error condition
exists.

100, when no row quali�es for one of the following commands, but no error condition exists:

SELECT FETCH

INSERT BULK FETCH

UPDATE (non-dynamic execution only) UPDATE WHERE CURRENT

DELETE (non-dynamic execution only) DELETE WHERE CURRENT

BULK SELECT

Note that when you prepare and execute UPDATE or DELETE commands and no rows
qualify for the operation, SQLCODE is not set to 100. You can use SQLCA.SQLERRD[3] to
detect this condition, as discussed later in this chapter.

Negative SQLCODE values are the same as the numbers associated with their corresponding
messages in the ALLBASE/SQL message catalog. For example, the error message associated
with an SQLCODE of -2613 is:

Precision digits lost in decimal operation MULTIPLY. (DBERR 2613)

SQLCODE is set by all SQL commands except the following directives:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

WHENEVER

When SQLCODE is -4008, -14024, or a greater negative value than -14024, ALLBASE/SQL
automatically rolls back the current transaction. When this condition occurs, ALLBASE/SQL
also sets SQLWARN[6] to W. Refer to the discussion later in this chapter on SQLWARN[6] for
more on this topic.

More than one SQLCODE is returned when more than one error occurs. For example, if you
attempt to execute the following SQL command, two negative SQLCODE values result:

EXEC SQL ADD PUBLIC, GROUP1 TO GROUP GROUP1;

The following SQLCODES associated with the two errors are:

-2308, which indicates the reserved name PUBLIC is invalid.

-2318, which indicates you cannot add a group to itself.

5-6 Runtime Status Checking and the SQLCA

To obtain all SQLCODEs associated with the execution of an SQL command, you execute the
SQLEXPLAIN command until SQLCODE is 0:

if SQLCA.SQLCODE = 100 then
writeln('No rows qualified for this operation.');

else

if SQLCA.SQLCODE < 0 then SQLStatusCheck;

.

.

.

procedure SQLStatusCheck;

begin

repeat

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

end;

The procedure named SQLStatusCheck is executed when SQLCODE is a negative number.
Before executing SQLEXPLAIN for the �rst time, the program has access to the �rst
SQLCODE returned. Each time SQLEXPLAIN is executed subsequently, the next SQLCODE
becomes available to the program, and so on until SQLCODE equals 0.

This example explicitly tests the value of SQLCODE twice: �rst to determine whether it is
equal to 100, then to determine whether it is <0. If the value 100 exists, no error will have
occurred and the program will display the message, \No rows qualify for this operation."

It is necessary for the program to display its own message in this case because SQLEXPLAIN
messages are available to your program only when SQLCODE contains a negative number or
when SQLWARN[0] contains a W.

The SQLCODE is also used in implicit status checking in the following situations:

ALLBASE/SQL tests for the condition SQLCODE less than 0 when you use the
SQLERROR option of the WHENEVER command.

ALLBASE/SQL tests for the condition SQLCODE equal to 100 when you use the NOT
FOUND option of the WHENEVER command.

In the following situation, when ALLBASE/SQL detects a negative SQLCODE, the code
routine at label 2000 is executed. When ALLBASE/SQL detects an SQLCODE of 100, the
code routine at label 4000 is executed instead, as follows:

EXEC SQL WHENEVER SQLERROR GOTO 2000;

EXEC SQL WHENEVER NOT FOUND GOTO 4000;

WHENEVER commands remain in e�ect for all SQL commands that appear physically after
them in the source program until another WHENEVER command for the same condition
occurs.

The scope of WHENEVER commands is fully explained later in this chapter under \Implicit
Status Checking Techniques."

Runtime Status Checking and the SQLCA 5-7

SQLERRD[3]

SQLERRD[3] can contain one of the following values:

0, when SQLCODE is 100 or when one of the following commands causes an error
condition:

INSERT

UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

If an error occurs during execution of INSERT, UPDATE, or DELETE, one or more
rows may have been processed prior to the error. In these cases, you may want to either
COMMIT WORK or ROLLBACK WORK, depending on the application. For example, if
all or no rows should be updated for logical data consistency, use ROLLBACK WORK.
However, if logical data consistency is not an issue, COMMIT WORK may minimize
re-preprocessing time.

A positive number, when SQLCODE is 0. In this case, the positive number provides
information about the number of rows processed in the following data manipulation
commands:

The number of rows inserted, updated, or deleted in one of the following operations:

BULK INSERT

INSERT

UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The number of rows put into output host variables when one of the following commands is
executed:

SELECT

BULK SELECT

FETCH

BULK FETCH

A positive number when SQLCODE is less than 0. In this case, SQLERRD[3] indicates the
number of rows that were successfully retrieved or inserted prior to the error condition:

BULK SELECT

BULK FETCH

BULK INSERT

As in the case of INSERT, UPDATE, and DELETE, mentioned above, you can use either a
COMMIT WORK or ROLLBACK WORK command, as appropriate.

5-8 Runtime Status Checking and the SQLCA

SQLCA.SQLWARN[0]

A W in SQLWARN[0] in conjunction with a 0 in SQLCODE indicates that the SQL command
just executed caused a warning condition.

Warning conditions ag unusual but not necessarily important conditions. For example, if a
program attempts to submit an SQL command that grants an already existing authority, a
message such as the following would be retrieved when SQLEXPLAIN is executed:

User peg already has DBA authorization. (DBWARN 2006)

In the case of the following warning, the situation may or may not indicate a problem:

A transaction in progress was aborted. (DBWARN 2010)

This warning occurs when a program submits a RELEASE command without �rst
terminating a transaction with a COMMIT WORK or ROLLBACK WORK. If the
transaction did not perform any UPDATE, INSERT, or DELETE operations, this situation
will not cause work to be lost. If the transaction did perform UPDATE, INSERT, or
DELETE operations, the database changes are rolled back when the RELEASE command is
processed.

You retrieve the appropriate warning message by using SQLEXPLAIN. Note that you cannot
explicitly test sqlwarn[0] the way you can test SQLCODE, since sqlwarn[0] always contains W
when a warning occurs.

An error and a warning condition may exist at the same time. In this event, SQLCODE is set
to a negative number, and sqlwarn[0] is set to W. Messages describing all the warnings and
errors can be displayed as follows:

if SQLCA.SQLCODE <> 0 then
repeat

DisplayMessage;

until SQLCA.SQLCODE = 0;

.

.

.

procedure DisplayMessage;

begin

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SQLEXPLAIN :StatusMessage;

writeln(StatusMessage);

end;

If multiple warnings but no errors result when ALLBASE/SQL processes a command,
SQLWARN[0] is set to W and remains set until the last warning message has been retrieved
by SQLEXPLAIN or another SQL command is executed. In the following example,
DisplayWarning is executed when this condition exists.

Runtime Status Checking and the SQLCA 5-9

if ((SQLCA.SQLCODE = 0) and (SQLCA.SQLWARN[0] = 'W')) then

repeat

DisplayWarning;
until SQLCA.SQLWARN[0] <> 'W';

.

.

.

procedure DisplayWarning;

begin

EXEC SQL SQLEXPLAIN :StatusMessage;

writeln(StatusMessage);

end;

When you use the SQLWARNING option of the WHENEVER command, ALLBASE/SQL
checks for a W in SQLWARN[0]. You can use the WHENEVER command to do implicit
status checking (equivalent to that done explicitly above) as follows:

EXEC SQL WHENEVER SQLWARNING GOTO 3000;

EXEC SQL WHENEVER SQLERROR GOTO 2000;

SQLCA.SQLWARN[1]

A W in sqlwarn[1] indicates truncation of at least one character string value when the string
was stored in a host variable. Any associated indicator variable is set to the value of the string
length before truncation, for example:

For example:

EXEC SQL SELECT PartNumber,

PartName

INTO :PartNumber

:PartName :PartNameInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

If PartName was declared as a character array of 20 bytes, and the PartName column in the
PurchDB.Parts table has a length of 30 bytes, then SQL performs the following tasks:

SQLWARN[1] is set to W.

PartNameInd is set to 30 (the length of PartName in the table).

SQLCODE is set to 0.

SQLEXPLAIN retrieves the message:

Character string truncation during storage in host variable.

(DBWARN 2040)

5-10 Runtime Status Checking and the SQLCA

SQLCA.SQLWARN[2]

A W in sqlwarn[2] indicates that at least one null value was eliminated from the argument set
of an aggregrate function.

For example:

EXEC SQL SELECT MAX(OrderQty)

INTO :MaxOrderQty

FROM PurchDB.OrderItems;

If any OrderQty values are null:

SQLWARN[2] is set to W.

SQLCODE is set to 0.

SQLEXPLAIN retrieves the message:

NULL values eliminated from the argument of an aggregate

function. (DBWARN 2041)

SQLCA.SQLWARN[3]

A W in sqlwarn[3] indicates that the number of columns speci�ed in a dynamic SELECT
or FETCH statement is unequal to the number of columns indicated in the sqld �eld of the
SQLDA. Under normal circumstances, this error does not occur, because the DESCRIBE
command sets the sqld �eld correctly. Look at this example:

EXEC SQL PREPARE DynamicCommand from 'SELECT PartNumber, PartName

FROM PurchDB.Parts;';

EXEC SQL DESCRIBE DynamicCommand INTO SQLDA; /*SQLDA.SQLD is always set

at DESCRIBE by ALLBASE/SQL.*/

EXEC SQL DECLARE DynamicCursor FOR DynamicCommand;

EXEC SQL OPEN DynamicCursor;

/* Set up the SQLDA for a fetch. */

begin

with SQLDA do

begin

SqlBufLen := sizeof(DataBuffer);

SqlNRow := SqlBufLen DIV SqlRowLen;

SqlRowBuf := waddress(DataBuffer);

Sqld := 1; /* Oops! sqlda.sqld is incorrectly reset by the program. */

/* You should NEVER do this. */

/* Only ALLBASE/SQL should set this field. */

end;

end;

.

/* Do the fetch. */

EXEC SQL FETCH DynamicCursor USING DESCRIPTOR SQLDA;

Runtime Status Checking and the SQLCA 5-11

The FETCH will fail and ALLBASE/SQL performs the following tasks:

SQLWARN[3] is set to W.

SQLCODE is set to -2762.

SQLEXPLAIN retrieves the message:

Select list has ! items and host variable buffer has !.

(DBERR 2762)

SQLCA.SQLWARN[6]

When an error occurs that causes ALLBASE/SQL to roll back the current transaction,
SQLWARN[6] is set to W. ALLBASE/SQL automatically rolls back transactions when
SQLCODE is equal to -4008, or equal to or less than -14024.

When such errors occur, ALLBASE/SQL does the following:

Sets SQLWARN[6] to W.

Sets SQLWARN[0] to W.

Sets SQLCODE to a negative number.

If you want to terminate your program any time ALLBASE/SQL has to roll back the current
transaction, you can just test sqlwarn[6].

if SQLCA.SQLCODE < 0 then

if SQLCA.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SQLWARN[6] = 'W' then

begin

SQLStatusCheck;

TerminateProgram;

end

else

SQLStatusCheck;

In this example, the program executes procedure SQLStatusCheck when an error occurs. The
program terminates whenever ALLBASE/SQL has rolled back a transaction, but continues if
an error has occurred but was not serious enough to cause transaction roll back.

5-12 Runtime Status Checking and the SQLCA

Approaches to Status Checking

This section presents examples of how to use implicit and explicit status checking and to
notify program users of the results of status checking.

Implicit status checking is useful when control to handle warnings and errors can be passed to
one prede�ned point in the program. Explicit status checking is useful when you want to test
for speci�c SQLCA values before passing control to one of several locations in your program.

Error and warning conditions detected by either type of status checking can be conveyed to
the program user in various ways:

SQLEXPLAIN can be used one or more times after an SQL command is processed to
retrieve warning and error messages from the ALLBASE/SQL message catalog. (The
ALLBASE/SQL message catalog contains messages for every negative SQLCODE and for
every condition that sets SQLWARN0.)

Your own messages can be displayed when a certain condition occurs.

You can choose not to display a message; for example, if a condition exists that is irrelevant
to the program user or when an error is handled internally by the program.

Implicit Status Checking Techniques

The WHENEVER command has two components: a condition and an action. The command
syntax format is:

EXEC SQL WHENEVER Condition Action;

There are three possible WHENEVER conditions:

SQLERROR

If WHENEVER SQLERROR is in e�ect, ALLBASE/SQL checks for a negative SQLCODE
after processing any SQL command except:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

SQLEXPLAIN

WHENEVER

SQLWARNING

If WHENEVER SQLWARNING is in e�ect, ALLBASE/SQL checks for a W in SQLWARN0
after processing any SQL command except:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

SQLEXPLAIN

WHENEVER

Runtime Status Checking and the SQLCA 5-13

NOT FOUND

If WHENEVER NOT FOUND is in e�ect, ALLBASE/SQL checks for the value 100 in
SQLCODE after processing a SELECT or FETCH command.

A WHENEVER command for each of these conditions can be in e�ect at the same time.

There are three possible WHENEVER actions:

STOP

If WHENEVER Condition STOP is in e�ect, ALLBASE/SQL rolls back the current
transaction and terminates the DBE session and the program when the condition exists.

CONTINUE

If WHENEVER Condition CONTINUE is in e�ect, program execution continues when the
condition exists. Any earlier WHENEVER command for the same condition is cancelled.

GOTO LineLabel.

If WHENEVER Condition GOTO LineLabel is in e�ect, the code routine located at that
alpha-numeric line label is executed when the condition exists. The line label must appear
in the code block where the GOTO is executed. GOTO and GO TO forms of this action
have exactly the same e�ect.

Any action may be speci�ed for any condition.

The WHENEVER command causes the preprocessor to generate status-checking and
status-handling code for each SQL command that comes after it physically in the program
until another WHENEVER command for the same condition is found. In the following
program sequence, for example, the WHENEVER command in Procedure1 is in e�ect for
SQLCommand1, but not for SQLCommand2, even though SQLCommand1 is executed �rst at
run time:

.

.

.

procedure Procedure2;
begin

EXEC SQL SQLCommand2;

end;

procedure Procedure1;

begin

EXEC SQL WHENEVER SQLERROR GOTO 2000;

EXEC SQL SQLCommand1;

end;

.

.

.

Procedure1;

Procedure2;

5-14 Runtime Status Checking and the SQLCA

The code that the preprocessor generates depends on the condition and action in a
WHENEVER command. In the previous example, the preprocessor inserts a test for a
negative SQLCODE and a sentence that invokes the code at Line Label 2000, as follows:

$Skip_Text ON$

EXEC SQL WHENEVER SQLERROR GOTO 2000;

$Skip_Text OFF$

.

$Skip_Text ON$

EXEC SQL SQLCommand1;

$Skip_Text OFF$

Statements for executing SQLCommand1 appear here

if SQLCA.SQLCODE < 0 then

goto 2000;

As the previous example illustrates, you can pass control to an exception-handling paragraph
with a WHENEVER command, but you use a GOTO statement with a numeric line label,
rather than a procedure name. Therefore after the exception-handling paragraph is executed,
control cannot automatically return to the paragraph which invoked it. You must use another
GOTO to explicitly pass control to a speci�c point in your program:

(* WHENEVER Routine -- SQL Error *)

2000:

if SQLCA.SQLCODE < -14024 then

TerminateProgram;

else

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);
until SQLCA.SQLCODE = 0;NNNNNNNNNNNNNNNNN
GOTO 500; (* Goto Restart/Reentry point of main program *)

This exception-handling routine explicitly checks the �rst SQLCODE returned. The program
terminates, or it continues from the Restart/Reentry point after all warning and error
messages are displayed. Note that a GOTO statement was required in this paragraph in order
to allow the program to continue. Using a GOTO statement may be impractical when you
want execution to continue from di�erent places in the program, depending on the part of the
program that provoked the error. This situation is discussed under \Explicit Status Checking
Techniques" later in the chapter.

Runtime Status Checking and the SQLCA 5-15

Program Illustrating Implicit and Explicit Status Checking

The program in Figure 5-1 contains �ve WHENEVER commands to demonstrate implicit
status checking. It also uses two explicit status checking routines.

The WHENEVER command numbered 1 handles errors associated with the following
commands:

CONNECT

BEGIN WORK

COMMIT WORK

The WHENEVER command numbered 2 turns o� the �rst WHENEVER command.

The WHENEVER commands numbered 3 through 5 handle warnings and errors associated
with the SELECT command.

The code routine located at Label 1000 is executed when an error occurs during the
processing of session related and transaction related commands. The program terminates after
displaying all available error messages. If a warning condition occurs during the execution of
these commands, the warning condition is ignored, because the WHENEVER SQLWARNING
CONTINUE command is in e�ect by default.

The code routine located at Label 2000 is executed when an error occurs during the
processing of the SELECT command. Procedure SQLStatusCheck is executed.

SQLStatusCheck explicitly examines SQLCODE to determine whether a deadlock or shared
memory problem occurred (SQLCODE = -14024 or -4008) or whether the error was serious
enough to warrant terminating the program (SQLCODE < -14024), for example:

If a deadlock or shared memory problem occurred, the program attempts to execute the
SelectData procedure as many as three times before notifying the user of the situation.

If SQLCODE contains a value less than -14024, the program terminates after all available
warnings and error messages from the ALLBASE/SQL message catalog have been displayed.

In the case of any other errors, the program displays all available messages, then prompts for
another part number.

The code routine located at Label 3000 is executed when only a warning condition results
during execution of the SELECT command. This code routine displays a message and the row
of data retrieved.

The NOT FOUND condition that may be associated with the SELECT command is handled
by the code routine located at Label 4000. This code routine displays the message \Row not
found!", then passes control to EndTransaction. SQLEXPLAIN does not provide a message
for the NOT FOUND condition, so the program must provide one.

5-16 Runtime Status Checking and the SQLCA

$Heap_Dispose ON$

$Heap_Compact ON$

Standard_Level 'HP_Pascal$

(* *)

(* This program illustrates the use of SQL's SELECT command to *)

(* retrieve one row or tuple at a time. *)

(* Same as pasex2 with added status checking and deadlock routines *)

(* *)

Program pasex5(input, output);

label

500,

1000,

2000,

3000,

4000,

9999;
const

OK = 0;

NotFound = 100;

DeadLock = -14024;

NoMemory = -4008;

TryLimit = 3;

var

EXEC SQL INCLUDE SQLCA;

(* Begin Host Variable Declarations *)

EXEC SQL Begin Declare Section;

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

SalesPrice : longreal;

SalesPriceInd : SQLIND;

SQLMessage : packed array[1..132] of char;

EXEC SQL End Declare Section;

(* End Host Variable Declarations *)

Abort : boolean;

SQLCommandDone : boolean;

TryCounter : integer;

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

Forward;

$PAGE $

Figure 5-1. Implicitly Invoking Status-Checking Routines

Runtime Status Checking and the SQLCA 5-17

(* Directive to set SQL Whenever error checking *)

EXEC SQL Whenever SqlError goto 1000; �1�

Procedure ConnectDBE; (* Procedure to Connect to PartsDBE *)

begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE';

end; (* End of ConnectDBE Procedure *)

Procedure BeginTransaction; (* Procedure to Begin Work *)

begin

writeln;

writeln('Begin Work');

EXEC SQL BEGIN WORK;

end; (* End BeginTransaction Procedure *)

procedure EndTransaction; (* Procedure to Commit Work *)

begin

writeln;

writeln('Commit Work');

EXEC SQL COMMIT WORK;

end; (* End EndTransaction Procedure *)

(* Directive to reset SQL Whenever error checking *)

EXEC SQL Whenever SqlError CONTINUE; �2�

procedure TerminateProgram; (* Procedure to Release PartsDBE *)

begin

writeln('Release PartsDBE');

EXEC SQL COMMIT WORK RELEASE;

writeln;

writeln('Terminating Program');

Goto 9999; (* Goto exit point for main program *)

end; (* End TerminateProgram Procedure *)
$PAGE $

Figure 5-1. Implicitly Invoking Status-Checking Routines (page 2 of 6)

5-18 Runtime Status Checking and the SQLCA

procedure DisplayRow; (* Procedure to Display Parts Table Rows *)

begin

writeln;

writeln('Part Number: ', PartNumber);

writeln('Part Name: ', PartName);

if SalesPriceInd < 0 then

writeln('Sales Price is NULL')

else

writeln('Sales Price: ', SalesPrice:10:2);

end; (* End of DisplayRow *)

$PAGE $

(* Directives to set SQL Whenever error checking *)

EXEC SQL Whenever SqlError goto 2000; �3�

EXEC SQL Whenever SqlWarning goto 3000; �4�

EXEC SQL Whenever Not Found goto 4000; �5�

$PAGE $

procedure SelectData; (* Procedure to Query Parts Table *)

begin

repeat

if SQLCommandDone then

begin

writeln;

prompt('Enter Part Number within Parts Table or "/" to STOP> ');

readln(PartNumber);

writeln;

TryCounter := 0;

end;

if PartNumber[1] '/' then

begin

BeginTransaction;

TryCounter := TryCounter + 1;

writeln('SELECT PartNumber, PartName, SalesPrice');

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

Figure 5-1. Implicitly Invoking Status-Checking Routines (page 3 of 6)

Runtime Status Checking and the SQLCA 5-19

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

(* If no errors occur set command done flag and display row *)

SQLCommandDone := TRUE;

DisplayRow;

EndTransaction;

end; (* End if *)

until PartNumber[1] = '/';

end; (* End of SelectData Procedure *)

$PAGE $

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

begin

if ((SQLCA.SQLCODE = DeadLock) or (SQLCA.SQLCODE = NoMemory) then

begin
if TryCounter = TryLimit then

begin

SQLCommandDone := TRUE;

writeln('Transaction incomplete. You may want to try again.');

end

else

SQLCommandDone := FALSE;

end

else

begin

Abort := FALSE;

if SQLCA.SQLWARN[6] = 'W' then Abort := TRUE;

end;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then TerminateProgram;

end; (* End SQLStatusCheck Procedure *)

$PAGE $

begin (* Beginning of Program *)

Figure 5-1. Implicitly Invoking Status-Checking Routines (page 4 of 6)

5-20 Runtime Status Checking and the SQLCA

write('Program to SELECT specified rows from ');

writeln('the Parts Table - PASEX5');

writeln;

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' Begin Work');

writeln(' SELECT specified row from Parts Table');

writeln(' until user enters "/" ');

writeln(' Commit Work');

writeln(' Disconnect from PartsDBE');

writeln;

ConnectDBE;

(* Initialize command done flag to true *)

SQLCommandDone := True;

(* Restart/Reentry point for Main Program *)

500:

SelectData;

TerminateProgram;

(* Whenever Routine - Serious DBE Error *)

(* SQL Whenever SQLError Entry Point 1 *)

1000:

(* Begin *)

SQLStatusCheck;

TerminateProgram;

(* End *)

$PAGE $

(* Whenever Routine - SQL Error *)

(* SQL Whenever SQLError Entry Point 2 *)

2000:

(* Begin *)

SQLStatusCheck;

Goto 500; (* Goto Restart/Reentry point of main program *)

(* End *)

Figure 5-1. Implicitly Invoking Status-Checking Routines (page 5 of 6)

Runtime Status Checking and the SQLCA 5-21

(* Whenever Routine - SQL Warning *)

(* SQL Whenever SQL Warning Entry Point *)

3000:

(* Begin *)

writeln('SQL WARNING has occurred. The following row');

writeln('of data may not be valid.');

DisplayRow;

EndTransaction;

SQLCommandDone := True;

Goto 500; (* Goto Restart/Reentry point of main program *)

(* End *)

(* Whenever Routine - Not Found Error *)

(* SQL Whenever Not Found Entry Point *)

4000:

(* Begin *)
writeln;

writeln('Row not found!');

EndTransaction;

SQLCommandDone := True;

Goto 500; (* Goto Restart/Reentry point of main program *)

(* End *)

(* Exit Point for main program *)

9999:

end. (* End of Program *)

Figure 5-1. Implicitly Invoking Status-Checking Routines (page 6 of 6)

5-22 Runtime Status Checking and the SQLCA

Explicit Status Checking Techniques

With explcit error handling, you invoke a function after explicitly checking sqlca values rather
than using the WHENEVER command. The program in Figure 5-1 has already illustrated
several uses of explicit error handling to do the following:

Isolate errors so critical that they caused ALLBASE/SQL to roll back the current
transaction.

Control the number of times SQLEXPLAIN is executed.

Detect when more than one row quali�es for a simple SELECT operation.

The example in Figure 5-1 illustrates how implicit routines can sometimes reduce the amount
of status checking code. As the number of SQL operations in a program increases, however,
the likelihood of needing to return to di�erent locations in the program after execution of such
a routine increases.

The example shown in Figure 5-2 contains four data manipulation operations: INSERT,
UPDATE, DELETE, and SELECT. Each of these operations is executed from its own
procedure.

As in the program in Figure 5-1, one procedure is used for explicit status checking:
SQLStatusCheck. Unlike the program in Figure 5-1, however, this procedure is invoked
after an explicit test of SQLCODE is made immediately following each data manipulation
operation.

Because the status checking is included in a procedure rather than a routine following the
embedded SQL command, control returns to the point in the program where SQLStatusCheck
is invoked.

Runtime Status Checking and the SQLCA 5-23

const

OK = 0;

NotFound = 100;

MultipleRows = -10002;

DeadLock = -14024;

NoMemory = -4008;

TryLimit = 3;

.

.

.

procedure SelectActivity;

begin

This procedure prompts for a number that indicates whether the

user wants to SELECT, UPDATE, DELETE, or INSERT rows, then invokes

a procedure that accomplishes the selected activity. The DONE

ag is set when the user enters a slash.

end;

.

.

.

procedure InsertData;

begin

Statements that accept data from the user appear here.

EXEC SQL INSERT

INTO PurchDB.Parts (PartNumber,

PartName,

SalesPrice)

VALUES (:PartNumber,

:PartName,

:SalesPrice);

if SQLCA.SQLCODE <> OK then SQLStatusCheck;

.

.

.

end;

Figure 5-2. Explicitly Invoking Status-Checking Procedure

5-24 Runtime Status Checking and the SQLCA

procedure UpdateData;

begin

This procedure veri�es that the row(s) to be changed exist, then

invokes procedure DisplayUpdate to accept new data from the user.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

case SQLCA.SQLCODE of

OK : begin

DisplayUpdate;

end;

NotFound : begin

writeln;

writeln('Row not found!');

end;

MultipleRows : begin

writeln;

writeln('Row not found!');

end;

otherwise : begin

SQLStatusCheck;

end;

end;
...

end;
...

procedure DisplayUpdate;

begin

Code that prompts the user for new data appears here.

EXEC SQL UPDATE PurchDB.Parts

SET PartName = :PartName,

SalesPrice = :SalesPrice,

WHERE PartNumber = :PartNumber;

if SQLCA.SQLCODE <> 0 then SQLStatusCheck;

.

.

.

end;

Figure 5-2. Explicitly Invoking Status-Checking Procedure (page 2 of 5)

Runtime Status Checking and the SQLCA 5-25

procedure DeleteData;

begin

This procedure veri�es that the row(s) to be deleted exist, then

invokes procedure DisplayDelete to delete the tow(s)

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

case SQLCA.SQLCODE of

OK : begin

DisplayDelete;

end;

NotFound : begin

writeln;

writeln('Row not found!');

end;

MultipleRows : begin

writeln;

writeln('Row not found!');

end;

OtherWise : begin

SQLStatusCheck;

end;

end;
...

end;
...

procedure DisplayDelete;

begin

Statements that verify that the deletion should actually occur

appear here.

EXEC SQL DELETE FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

if SQLCA.SQLCODE <> 0 then SQLStatusCheck;
...

end;

Figure 5-2. Explicitly Invoking Status-Checking Procedure (page 3 of 5)

5-26 Runtime Status Checking and the SQLCA

procedure SelectData;

begin

Statements that prompt for a partnumber appear here.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

case SQLCA.SQLCODE of

OK : begin

DisplayRow;

end;

NotFound : begin

writeln;

writeln('Row not found!');

end;

MultipleRows : begin

writeln;

writeln('Row not found!');

end;

otherwise : begin

SQLStatusCheck;

end;

end;

.

.

.

end;

.

.

.

Figure 5-2. Explicitly Invoking Status-Checking Procedure (page 4 of 5)

Runtime Status Checking and the SQLCA 5-27

procedure SQLStatusCheck;

begin

if ((SQLCA.SQLCODE = DeadLock) or (SQLCA.SQLCODE = NoMemory) then

begin

if TryCounter = TryLimit then

begin

SQLCommandDone := TRUE;

writeln('Transaction incomplete. You may want to try again.');

end

else

SQLCommandDone := FALSE;

end

else

begin

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then TerminateProgram;

end;

end; (* End SQLStatusCheck Procedure *)

Figure 5-2. Explicitly Invoking Status-Checking Procedure (page 5 of 5)

5-28 Runtime Status Checking and the SQLCA

Handling Deadlock and Shared Memory Problems

A deadlock exists when two transactions need data that the other transaction already has
locked. When a deadlock occurs, ALLBASE/SQL rolls back the transaction with the larger
priority number. If two deadlocked transactions have the same priority, ALLBASE/SQL rolls
back the newer transaction.

An SQLCODE of -14024 indicates that a deadlock has occurred:

Deadlock detected. (DBERR 14024)

An SQLCODE of -4008 indicates that ALLBASE/SQL does not have access to the amount of
shared memory required to execute a command:

ALLBASE/SQL shared memory allocation failed in DBCORE. (DBERR 4008)

One way of handling deadlocks and shared memory problems is shown in the previous
example, Figure 5-2. A SELECT command is executed, and, if an error occurs, function
SQLStatusCheck is executed. If the �rst error detected was a deadlock or a shared memory
problem, the SELECT command is automatically re-executed as many as three times before
the user is noti�ed of the situation. If other errors occurred before the deadlock or shared
memory problem, the transaction is not automatically re-applied. If an error with an
SQLCODE less than -14024 occurred, the program is terminated after the error messages are
displayed.

Determining Number of Rows Processed

SQLERRD[3] is useful in the following ways:

To determine how many rows were processed in one of the following operations when the
operation could be executed without error:

SELECT

INSERT

UPDATE

DELETE

and Cursor operations:

FETCH

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The SQLERRD[3] value can be used in these cases only when SQLCODE does not contain
a negative number. When SQLCODE is 0, SQLERRD[3] is always equal to 1 for SELECT,
FETCH, UPDATE WHERE CURRENT, and DELETE WHERE CURRENT operations.
SQLERRD[3] may be greater than 1 if more than one row quali�es for an INSERT,
UPDATE, or DELETE operation. When SQLCODE is 100, SQLERRD[3] is 0.

To determine how many rows were processed in one of the BULK operations:

BULK SELECT

BULK FETCH

BULK INSERT

Runtime Status Checking and the SQLCA 5-29

In this case, you also need to test SQLCODE to determine whether the operation executed
without error. If SQLCODE is negative, SQLERRD[3] contains the number of rows that
could be successfully retrieved or inserted before an error occurred. If SQLCODE is 0,
SQLERRD[3] contains the total number of rows that ALLBASE/SQL put into or took from
the host variable array. If, in a BULK SELECT operation, more rows qualify than the array
can accommodate, SQLCODE will be 0.

Examples appear on the following pages.

INSERT, UPDATE, and DELETE Operations. The example in Figure 5-2 could be modi�ed to
display the number of rows inserted, updated, or deleted by using SQLERRD[3]. In the case
of the update operation, for example, the actual number of rows updated could be displayed
after the UPDATE command is executed:

.

.

.

procedure DisplayUpdate;

begin

Code that prompts the user for new data appears here.

EXEC SQL UPDATE PurchDB.Parts

SET PartName = :PartName,

SalesPrice = :SalesPrice,

WHERE PartNumber = :PartNumber;

case SQLCA.SQLCODE of

OK : begin

NumberOfRows :=
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SQLERRD[3];

writeln('The number of rows updated was: ' NumberOfRows);

end;

OtherWise : begin

writeln('No rows could be updated!');

SQLStatusCheck;

end;

end;

until Done;

end;

If the UPDATE command is successfully executed, SQLCODE is 0 and SQLERRD[3] contains
the number of rows updated. If the UPDATE command cannot be successfully executed,
SQLCODE contains a negative number and SQLERRD[3] contains a 0.

5-30 Runtime Status Checking and the SQLCA

BULK Operations. When using the BULK SELECT, BULK FETCH, or BULK INSERT
commands, you can use the SQLERRD[3] value several ways:

If the command executes without error, to determine the number of rows retrieved into an
output host variable array or inserted from an input host variable array.

If the command causes an error condition, to determine the number of rows that could be
successfully put into or taken out of the host variable array before the error occurred.

In the code identi�ed as �1� in Figure 5-3, the value in SQLERRD[3] is displayed when only
some of the qualifying rows could be retrieved before an error occurred.

In the code identi�ed as �2�, the value in SQLERRD[3] is compared with the maximum array
size to determine whether more rows might have quali�ed than the program could display.
You could also use a cursor and execute the FETCH command until SQLCODE=100.

In the code identi�ed as �3�, the value in SQLERRD[3] is used to control the number of times
procedure DisplayRow is executed.

Runtime Status Checking and the SQLCA 5-31

const

OK = 0;

NotFound = 100;

MaximumRows = 200;

var

(*Begin Host Variable Declarations *)

EXEC SQL Begin Declare Section;

PartsTable : packed array[1..200] of

packed record

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

SalesPrice : longreal;

end;

SQLMessage : packed array[1..132] of char;

EXEC SQL End Declare Section;

(* End Host Variable Declarations *)

SQLCA : SQLCA_type; (* SQL Communication Area *)

I : integer;

NumberOfRows : integer;

procedure BulkSelect;

begin

EXEC SQL BULK SELECT PartNumber,

PartName,

SalesPrice

INTO :PartsTable

FROM PurchDB.Parts;

case SQLCA.SQLCODE of

OK : DisplayTable;

NotFound : begin

writeln;

writeln('No rows qualify for this operation!');

end;

OtherWise : begin

NumberOfRows := SQLERRD[3]; �1�
writeln('Only ' NumberOfRows 'rows were retrieved ');

writeln(' before an error occurred!');

DisplayTable;

SQLStatusCheck;

end;

end;

Figure 5-3. Using SQLERRD[3] After a BULK SELECT Operation

5-32 Runtime Status Checking and the SQLCA

.

.

.

procedure DisplayTable;

begin

if SQLERRD[3] = MaximumRows then �2�
begin

writeln;

writeln('WARNING: There may be additional rows that qualify!');

end;

The column headings are displayed here.

for I := 1 to SQLERRD[3] do

DisplayRow; �3�
writeln;

end;

procedure DisplayRow;

begin

writeln(PartNumber(I), '|');

writeln(PartName(I), '|');

writeln(SalesPrice(I), '|');

end;

Figure 5-3. Using SQLERRD[3] After a BULK SELECT Operation (page 2 of 2)

Runtime Status Checking and the SQLCA 5-33

Detecting End of Scan

Previous examples in this chapter have illustrated how an SQLCODE of 100 can be detected
and handled for data manipulation commands that do not use a cursor. When a cursor is
being used, this SQLCODE value is used to determine when all rows in an active set have
been fetched:

procedure FetchRow;

begin

EXEC SQL FETCH CURSOR1

INTO :PartNumber,

:PartName,

:SalesPrice;

case SQLCA.
NNNNNNNNNNNNNNNNNNNNNNN
SQLCODE of

OK : DisplayRow;

NotFound : begin

DoneFetch := TRUE;

writeln;

writeln('Row not found or no more rows.');

end;

OtherWise : begin

SQLStatusCheck;

end;

end;

end;

.

.

.

EXEC SQL OPEN CURSOR1;

.

.

.

repeat

FetchRow

until DoneFetch := TRUE;

In this example, the active set is de�ned when the OPEN command is executed. The cursor
is then positioned before the �rst row of the active set. When the FETCH command is
executed, the �rst row in the active set is placed into the program's host variables, then
displayed. The FETCH command retrieves one row at a time into the host variables until
the last row in the active set has been retrieved; the next attempt to FETCH after the last
row from the active set has been fetched sets SQLCODE to NotFound (de�ned as 100 in the
declaration part). If no rows qualify for the active set, SQLCODE is NotFound the �rst time
procedure FetchRow is executed.

5-34 Runtime Status Checking and the SQLCA

Determining When More Than One Row Qualfies

If more than one row quali�es for a non-BULK SELECT or FETCH operation,
ALLBASE/SQL sets SQLCODE to -10002. In the following example, when SQLCODE is
MultipleRows (de�ned as -10002 in the declaration part) a status checking procedure is not
invoked, but a warning message is displayed:

procedure UpdateData;

begin

This procedure veri�es that the row(s) to be changed exist, then invokes

procedure DisplayUpdate to accept new data from the user.

EXEC SQL SELECT OrderNumber, ItemNumber, OrderQty

INTO :OrderNumber,

:ItemNumber,

:OrderQty

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber;

case SQLCA.SQLCODE of

OK : DisplayUpdate;

NotFound : begin

writeln;

writeln('Row not found.');

end;NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
MultipleRows : begin

writeln;

writeln('WARNING: More than one row qualifies');

DisplayUpdate;

end;

OtherWise : begin

SQLStatusCheck;

end;

end;

end;

Runtime Status Checking and the SQLCA 5-35

Detecting Log Full Condition

When the log �le is full, log space must be reclaimed before ALLBASE/SQL can process any
additional transactions. Your program can detect the situation, and it can be corrected by the
DBA.

SQLEXPLAIN retrieves the following message:

Log full. (DBERR 14046)

In the following example, SQLCODE is checked for a log full condition. If the condition
is true, ALLBASE/SQL has rolled back the current transaction. The program issues a
COMMIT WORK command, the SQLStatusCheck function routine is executed to display any
error or warning messages, and the program is terminated.

if SQLCA.
NNNNNNNNNNNNNNNNNNNNNNN
SQLCODE = -14046 then

begin

CommitWork;

SQLStatusCheck;

TerminateProgram;

end;

Handling Out of Space Conditions

It is possible that data or index space may be exhausted in a DBEFileSet. This could happen
as rows are being added or an index is being created or when executing queries which require
that data be sorted. Your program can detect the problem, and the DBA must add index or
data space to the appropriate DBEFileSet.

SQLEXPLAIN retrieves the following message:

Data or Index space exhausted in DBEFileSet. (DBERR 2502)

In the following example, SQLCODE is checked for an out of space condition. If the condition
is true, the program rolls back the transaction to an appropriate savepoint. The program
issues a COMMIT WORK command, the SQLStatusCheck routine is executed to display any
messages, and the program is terminated.

if SQLCA.
NNNNNNNNNNNNNNNNNNNNNNN
SQLCODE = -2502 then

begin

RollbackWork;

CommitWork;

TerminateProgram;

end;

5-36 Runtime Status Checking and the SQLCA

Checking for Authorizations

When the DBEUserID related to an ALLBASE/SQL command does not have the authority to
execute the command, the following message is retreived by SQLEXPLAIN:

User ! does not have ! authorization. (DBERR 2300)

In the following example, SQLCODE is checked to determine if the user has proper connect
authority. If the condition is true, the SQLStatusCheck routine is executed to display any
messages, and the program is terminated.

EXEC SQL CONNECT TO 'PartsDBE';

if SQLCA.
NNNNNNNNNNNNNNNNNNNNNNN
SQLCODE = -2300 then

begin

SQLStatusCheck;

TerminateProgram;

end; (* End if *)

Runtime Status Checking and the SQLCA 5-37

6

Overview Of Data Manipulation

To manipulate data in an ALLBASE/SQL DBEnvironment, you use one of the following SQL
commands:

SELECT: To retrieve one or more rows from one or more tables.

INSERT: To insert one or more rows into a single table.

DELETE: To delete one or more rows from a single table.

UPDATE: To change the value of one or more columns in one or more rows in a single
table.

Four techniques exist for using these commands in a program:

In simple data manipulation, you retrieve or insert a single row or you delete or update one
or more rows based on a speci�c criterion.

In sequential table processing, you operate on a set of rows, one row at a time, using a
cursor. A cursor is a pointer that identi�es one row in the set of rows, called the active set.
You move through the active set, retrieving a row at a time and optionally updating or
deleting it.

In BULK table processing, you manipulate multiple rows at a time using a host variable
declared as an array. You can retrieve rows from a table into the host variable or insert data
from the host variable into rows of a table. A cursor can, but need not, be used for some
BULK operations.

In dynamic operations, you preprocess SQL commands at run time. For example, a program
might accept data manipulation commands from a user. A cursor is used to handle dynamic
SELECT operations.

Overview Of Data Manipulation 6-1

Table 6-1 summarizes which data manipulation commands can be used in each technique.
Note that the FETCH command is included in this table, since it must be used when you
manipulate data using a cursor.

Table 6-1. How Data Manipulation Commands May Be Used

TYPE OF
OPERATION

SELECT FETCH INSERT DELETE UPDATE DELETE
WHERE

CURRENT

UPDATE
WHERE

CURRENT

Simple X X X X

Sequential X X X X

BULK X X X

Dynamic X X X X X

The remainder of this chapter briey examines each of the four data manipulation techniques
(each technique is discussed in detail in Chapters 7 through 10) and introduces the use of a
cursor for data manipulation. First, however, this chapter addresses the query, a description
of data you want to retrieve. Queries are fundamental to ALLBASE/SQL data manipulation
because some of the elements of a query are also used to describe and limit data when you
update or delete it. In addition, it is common programming practice to retrieve and display
rows prior to changing or deleting them.

The Query

A query is a SELECT command that describes to ALLBASE/SQL the data you
want retrieved. You can retrieve all or only certain data from a table. You can have
ALLBASE/SQL group or order the rows you retrieve or perform certain calculations or
comparisons before presenting data to your program. You can retrieve data from multiple
tables. You can also retrieve data using views or combinations of tables and views.

The SELECT Command

The SELECT command identi�es the columns and rows you want in your query result as well
as the tables and views to use for data access. The columns are identi�ed in the select list.
The rows are identi�ed in several clauses (GROUP BY, HAVING, and ORDER BY). The
tables and views to access are identi�ed in the FROM clause. Data thus speci�ed is returned
into host variables named in the INTO clause, as the following syntax shows:

EXEC SQL SELECT SelectList

INTO HostVariables

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

ORDER BY ColumnID;

6-2 Overview Of Data Manipulation

To retrieve all data from a table, the SELECT command need specify only the following:

EXEC SQL BULK SELECT
NNNNN
*

INTO :MyArray

FROM PurchDB.Parts;

Although the shorthand notation * can be used in the select list to indicate you want all
columns from one or more tables or views, it is better programming practice to explicitly
name columns. Then, if the tables or views referenced are altered, your program will still
retrieve only the data its host variables are designed to accommodate:

EXEC SQL BULK SELECT PartNumber,

PartName,

SalesPrice
INTO :MyArray

FROM PurchDB.Parts;

The SELECT command has several clauses you can use to format the data retrieved from any
table:

The WHERE clause speci�es a search condition. A search condition consists of one or more
predicates. A predicate is a test each row must pass before it is returned to your program.

The GROUP BY clause and the HAVING clause tell how to group rows retrieved before
applying any aggregate function in the select list to each group of rows.

The ORDER BY clause causes ALLBASE/SQL to return rows in ascending or descending
order, based on the value in one or more columns.

The following SELECT command contains a WHERE clause that limits rows returned to
those not containing a salesprice; the predicate used in the WHERE clause is known as the
null predicate:

EXEC SQL BULK SELECT PartName,

SalesPrice

INTO :MyArray

FROM PurchDB.Parts

WHERE SalesPrice
NNNNNNNNNNNNNNNNNNNNNNNNNN
IS NULL;

In the UPDATE and DELETE commands, you may need a WHERE clause to limit the rows
ALLBASE/SQL changes or deletes. In the following case, the sales price of parts priced lower
than $1000 is increased 10 percent; the WHERE clause in this case illustrates the comparison
predicate:

EXEC SQL UPDATE PurchDB.Parts

SET SalesPrice = SalesPrice * 1.1

WHERE SalesPrice < 1000.00;

The ALLBASE/SQL Reference Manual details the syntax and semantics for these and other
predicates.

Overview Of Data Manipulation 6-3

When you use an aggregate function in the select list, you can use the GROUP BY clause
to indicate how ALLBASE/SQL should group rows before applying the function. You can
also use the HAVING clause to limit the groups to only those satisfying certain criteria. The
following SELECT command will produce a query result containing two columns: a sales price
and a number indicating how many parts have that price:

EXEC SQL BULK SELECT SalesPrice,

COUNT(PartNumber)

INTO :MyArray

FROM PurchDB.Parts

GROUP BY SalesPriceNNNNNNNNNNNNNNNNNNNN
HAVING AVG(SalesPrice) > 1500.00;

The GROUP BY clause in this example causes ALLBASE/SQL to group all parts with the
same sales price together. The HAVING clause causes ALLBASE/SQL to ignore any group
having an average sales price less than or equal to $1500.00. Once the groups have been
de�ned, ALLBASE/SQL applies the aggregate function COUNT to each group.

Null values in a GROUP BY column constitute their own group. Therefore, a query result
having a null value in the column used to group rows would contain a separate row for each
null value.

An aggregate function is one example of an ALLBASE/SQL expression. An expression
speci�es a value. An expression can be used in several places in the SELECT command as
well as in the other data manipulation commands. Refer to the ALLBASE/SQL Reference
Manual for the syntax and semantics of expressions, as well as the e�ect of null values on
them.

The rows in the query result obtained with the preceding query could be returned in a
speci�c order by using the ORDER BY clause. In the following case, the rows are returned in
descending sales price order:

EXEC SQL BULK SELECT SalesPrice,

COUNT(PartNumber)

INTO :MyArray

FROM PurchDB.Parts

GROUP BY SalesPrice

HAVING AVG(SalesPrice) > 1500.00NNNNNNNNNNNNNNNNNNNNNNNNNN
ORDER BY SalesPrice DESC;

The examples shown so far have all included the BULK option and a host variable array,
because the query results would most likely contain more than one row. Besides the BULK
table processing technique, the sequential table processing technique could also be used to
handle multiple-row query results. Later in this chapter you'll �nd examples of both these
techniques, as well as examples illustrating simple data manipulation, in which only one row
query results are expected.

6-4 Overview Of Data Manipulation

Selecting from Multiple Tables

To retrieve data from more than one table or view, the query describes to ALLBASE/SQL
how to join the tables before deriving the query result in the following places:

In the FROM clause, you identify the tables and views to be joined.

In the WHERE clause, you specify a join condition. A join condition de�nes the
condition(s) under which rows should be joined.

To obtain a query result consisting of the name of each part and its quantity-on-hand, you
need data from two tables in the sample database: PurchDB.Parts and PurchDB.Inventory.
The join condition in this case is that you want ALLBASE/SQL to join rows in these tables
that have the same part number:

EXEC SQL BULK SELECT PartName,

QtyOnHand

INTO :MyArrayNN
FROM PurchDB.Parts,NNN

PurchDB.Inventory

WHERE PurchDB.Parts.PartNumber =

PurchDB.Inventory.PartNumber;

Whenever two or more columns in a query have the same name but belong to di�erent tables,
you avoid ambiguity by qualifying the column names with table names. Because the columns
speci�ed in the join condition shown above have the same name (PartNumber) in both tables,
they are fully quali�ed with table names (PurchDB.Parts and PurchDB.Inventory). If one of
the columns named PartNumber were named PartNum, the WHERE clause could be written
as follows:

WHERE PartNumber = PartNum

ALLBASE/SQL creates a row for the query result whenever the PartNumber value in one
table matches that in the second table. As illustrated in Figure 6-1, any row containing a null
PartNumber is excluded from the join, as are rows that have a PartNumber value in one table,
but not the other.

Overview Of Data Manipulation 6-5

Figure 6-1. Sample Query Joining Multiple Tables

You can also join a table to itself. This type of join is useful when you want to identify values
within one table that have certain relationships.

6-6 Overview Of Data Manipulation

The PurchDB.SupplyPrice table contains the unit price, delivery time, and other data for
every vendor that supplies any part. Most parts are supplied by more than one vendor, and
prices vary with vendor. You can join the PurchDB.SupplyPrice table to itself in order to
identify for which parts the di�erence among vendor prices is greater than $50. The query and
its result would appear as follows:

EXEC SQL BULK SELECT X.PartNumber,

X.VendorNumber,

X.UnitPrice,

Y.VendorNumber,

Y.UnitPrice

INTO :MyArray

FROM
NN
PurchDB.SupplyPrice X,NNN
PurchDB.SupplyPrice Y

WHERE X.PartNumber = Y.PartNumber AND

X.UnitPrice > (Y.UnitPrice + 50.00);

----------------+------------+--------------+------------+--------------

PARTNUMBER |VENDORNUMBER|UNITPRICE |VENDORNUMBER|UNITPRICE

----------------+------------+--------------+------------+--------------

1123-P-01 | 9007| 550.00| 9002| 450.00

1123-P-01 | 9012| 525.00| 9002| 450.00

1123-P-01 | 9007| 550.00| 9008| 475.00

1123-P-01 | 9007| 550.00| 9003| 475.00

1433-M-01 | 9007| 700.00| 9003| 645.00

1623-TD-01 | 9011| 1800.00| 9015| 1650.00

|_________________________|

|

These vendors charge at least $50

more for a part than the vendors

identi�ed in the next two columns.

To obtain such a query result, ALLBASE/SQL joins one copy of the table with another copy
of the table, using the join condition speci�ed in the WHERE clause:

You name each copy of the table in the FROM clause by using a correlation name. In this
example, the correlations names are X and Y. Then you use the correlation name to qualify
column names in the select list and other clauses in the query.

The join condition in this example speci�es that for each part number, the query result
should contain a row only when the price of the part from vendor to vendor di�ers by more
than $50.

Join variables can be used in any query as a shorthand way of referring to a table, but they
must be used in queries that join a table to itself so that ALLBASE/SQL can distinguish
between the two copies of the table.

Overview Of Data Manipulation 6-7

Selecting Using Views

Views are used to restrict data visibility as well as to simplify data access:

Data visibility can be limited using views by de�ning them such that only certain columns
and/or rows are accessible through them.

Data access can be simpli�ed using views by creating views based on joins or containing
columns that are derived from expressions or aggregate functions.

The sample database has a view called PurchDB.VendorStatistics, de�ned as follows:

CREATE VIEW
NN
PurchDB.VendorStatistics

(VendorNumber,

VendorName,

OrderDate,

OrderQuantity,

TotalPrice)

AS

SELECT PurchDB.Vendors.VendorNumber,

PurchDB.Vendors.VendorName,

OrderDate,

OrderQty,

OrderQty * PurchasePrice

FROM PurchDB.Vendors,

PurchDB.Orders,

PurchDB.OrderItems

WHERE PurchDB.Vendors.VendorNumber =

PurchDB.Orders.VendorNumber

AND PurchDB.OrderItems.OrderNumber =
PurchDB.OrderItems.OrderNumber

This view combines information from three base tables to provide a summary of data on
existing orders with each vendor. One of the columns in the view consists of a computed
expression: the total cost of an item on order with the vendor.

Note that the select list of the SELECT command de�ning this view contains some quali�ed
and some unquali�ed column names. Columns OrderDate, OrderQty, and PurchasePrice need
not be quali�ed, because these names are unique among the column names in the three tables
joined in this view. In the WHERE clause, however, both join conditions must contain fully
quali�ed column names, since the columns are named the same in each of the joined tables.

You can use a view in a query without restriction. In the FROM clause, you identify the view
as you would identify a table. When you reference columns belonging to the view, you use
the column names used in the view de�nition. In the view above, for example, the column
containing quantity-on-order is called OrderQuantity, not OrderQty as it is in the base table
(PurchDB.OrderItems).

6-8 Overview Of Data Manipulation

The VendorStatistics view can be used to quickly determine the total dollar amount of orders
existing for each vendor. Because the view de�nition contains all the details for deriving this
information, the query based on this view is quite simple:

EXEC SQL BULK SELECT VendorNumber,

SUM(TotalPrice)

INTO :MyArray

FROM
NN
PurchDB.VendorStatistics

GROUP BY VendorNumber;

The query result appears as follows:

------------+----------------------

VENDORNUMBER|(EXPR)

------------+----------------------

9001| 31300.00

9002| 6555.00

9003| 6325.00

9004| 2850.00

9006| 2010.00

9008| 12460.00

9009| 7750.00

9010| 9180.00

9012| 12280.00

9013| 8270.00

9014| 2000.00

9015| 17550.00

Although you can use views in queries without restriction, you can use only some views to
insert, update, or delete rows:

You cannot INSERT, UPDATE, or DELETE using a view if the view de�nition contains
one of the following:

Join operation.
Aggregate function.
DISTINCT option.
GROUP BY clause.
ORDER BY clause.
UNION.

You cannot INSERT using a view if any column of the view is computed in an arithmetic
expression.

The PurchDB.VendorStatistics view cannot be used for any INSERT, UPDATE, or DELETE
operation because it is based on a three table join and contains a column (TotalPrice) derived
from a multiplication operation.

Overview Of Data Manipulation 6-9

Simple Data Manipulation

In simple data manipulation, you retrieve or insert single rows or update one or more rows
based on a speci�c criterion. In most cases, the simple data manipulation technique is used to
support the random retrieval and/or change of speci�c rows.

In the following example, if the user wants to perform a DELETE operation, the program
performs the operation only if a single row quali�es. If no rows qualify or if more than one
row quali�es, the program displays a message. Note that the host variables in this case are
designed to accommodate only a single row. In addition, two of the columns may contain null
values, so an indicator variable is used for these columns:

var

EXEC SQL BEGIN DECLARE SECTION;

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

PartNameInd :
NNNNNNNNNNNNNNNNNNNNNNN
sqlInd;

SalesPrice : longreal;

SalesPriceInd :
NNNNNNNNNNNNNNNNNNNNNNN
sqlInd;

EXEC SQL END DECLARE SECTION;

.

.

.

procedure DoQuery;

begin

This procedure accepts a part number from the user,

then executes a query to determine whether one or

more rows containing that value actually exists.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName :PartNameInd,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

case SQLCA.SQLCODE of

0 : DisplayDelete;

100 : writeln('Row not found!');

-10002 : writeln('WARNING: More than one row qualifies!');

otherwise : SqlStatusCheck;

end;

.

.

.

6-10 Overview Of Data Manipulation

procedure DisplayDelete;

The qualifying row is displayed for the user to

verify that it should be deleted before the following

command is executed:

EXEC SQL DELETE FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

The chapter, \Simple Data Manipulation," provides more details about simple data
manipulation.

Introducing the Cursor

You use a cursor to manage a query result that may contain more than one row when you
want to make all the qualifying rows available to the program user. Cursors are used in
sequential table processing, BULK table processing, and dynamic SELECT operations, as
shown later in this chapter.

Like the cursor on a terminal screen, an ALLBASE/SQL cursor is a position indicator. It does
not, however, point to a column. Rather, it points to one row in an active set. An active set
is a query result obtained when a SELECT command associated with a cursor (de�ned in a
DECLARE CURSOR command) is executed (using the OPEN CURSOR command).

Each cursor used in a program must be declared before it is used. You use the DECLARE
CURSOR command to declare a cursor. The DECLARE CURSOR command names the
cursor and associates it with a particular SELECT command:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
DECLARE Cursor1NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CURSOR FORNNNNNNNNNNNNNNNNNNNN
SELECT PartName,

SalesPrice

FROM PurchDB.Parts

WHERE PartNumber BETWEEN :LowValue AND :HighValue

ORDER BY PartName;

All cursor names within one program must be unique. You use a cursor name when you
perform data manipulation operations using the cursor.

Any reference to a cursor must be within a preprocessed unit, that is, a preprocessed �le.
For example, you cannot have a DECLARE CURSOR statement in a main program and
open the cursor in a subprogram or the reverse of this rule, unless the main program and the
subprogram are in the same �le.

The SELECT command in the cursor declaration does not specify any output host variables.
The SELECT command can, however, contain input host variables, as in the WHERE clause
of the cursor declaration above.

Overview Of Data Manipulation 6-11

Rows in the active set are returned to output host variables when the FETCH command is
executed:

EXEC SQL
NNNNNNNNNNNNNN
OPEN Cursor1;

.

. The OPEN command allocates internal

. bu�er space for the active set

.

.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[BULK] FETCH Cursor1 INTO OutputHostVariables;

The FETCH command delivers one row or

(if the BULK option is used)

multiple rows of the active set into output

host variables

If a serial scan will be used to retrieve the active set, ALLBASE/SQL locks the table(s) when
the OPEN command is executed. If an index scan will be used, locks are placed when rows
are fetched.

Both the OPEN and the FETCH commands position the cursor, as follows:

The OPEN command positions the cursor before the �rst row of the active set.

The e�ect of the FETCH command on the cursor depends on whether the BULK option is
used.

If the BULK option is not used, the FETCH command advances the cursor to the next row
of the active set and delivers that row to the output host variables.

If the BULK option is used, the FETCH command delivers as many rows as the output host
variables (declared as an array) can accommodate and advances the cursor to the last row
delivered.

The row at which the cursor points at any one time is called the current row. When a row is a
current row, you can delete it as follows:

EXEC SQL DELETE FROM PurchDB.Parts

WHERE
NNN
CURRENT OF Cursor1;

When you delete the current row, the cursor remains between the row deleted and the next
row in the active set until you execute the FETCH command again:

EXEC SQL
NN
FETCH Cursor1

INTO :PartName :PartNameInd,

:SalesPrice :SalesPriceInd;

6-12 Overview Of Data Manipulation

When a row is a current row you can update it if the cursor declaration contains a FOR
UPDATE OF clause naming the column(s) you want to change. The following cursor,
for example, can be used to update the SalesPrice column of the current row by using the
WHERE CURRENT OF option in the UPDATE command:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
DECLARE Cursor2NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CURSOR FORNNNNNNNNNNNNNNNNNNNN
SELECT PartName, SalesPrice

FROM PurchDB.Parts

WHERE PartNumber BETWEEN :LowValue AND :HighValueNNN
FOR UPDATE OF SalesPrice;

.

. Because the DECLARE CURSOR command is not

. executed at run time, no status checking

. code needs to appear here.

.

EXEC SQL OPEN Cursor2;

.

. The program fetches and displays one row at a time.

. The OPEN command allocates internal

. bu�er space for the active set,

. but no rows are fetched until the FETCH

. command is executed.

.

EXEC SQL FETCH Cursor2

INTO :PartName :PartNameInd,

:SalesPrice :SalesPriceInd;

.

. If the program user wants to change the SalesPrice

. of the row displayed (the current row), the UPDATE

. command is executed. The new SalesPrice entered by

the user is stored in an input host variable named

. NewSalesPrice.

.

EXEC SQL UPDATE PurchDB.Parts

SET SalesPrice = :NewSalesPrice

WHERE
NNN
CURRENT OF Cursor2;

After the UPDATE command is executed, the updated

row remains the current row until the FETCH command

is executed again.

Overview Of Data Manipulation 6-13

The restrictions that govern deletions and updates using a view also govern deletions and
updates using a cursor. You cannot delete or update a row using a cursor if the cursor
declaration contains any of the following:

Join operation.

Aggregate function.

DISTINCT option.

GROUP BY clause.

UNION statement.

ORDER BY statement.

After the last row in the active set has been fetched, the cursor is positioned after the last
row fetched and the value in SQLCODE is equal to 100. Therefore, to retrieve all rows in the
active set, you execute the FETCH command until SQLCA.SQLCODE is not 0:

while SQLCA.SQLCODE = 0 do

begin

EXEC SQL FETCH Cursor3
INTO :PartNumber,

:PartName :PartNameInd,

:SalesPrice :SalesPriceInd;

case SQLCA.SQLCODE of

0 : DisplayRow;

100 : writeln('Row not found or no more rows!');

otherwise : SqlStatusCheck;

end;

end;

When you are �nished operating on an active set, you use the CLOSE command:

EXEC SQL CLOSE Cursor3;

When you close a cursor, the active set becomes unde�ned and you cannot use the cursor
again unless you issue an OPEN command to reopen it. The COMMIT WORK and
ROLLBACK WORK commands also close any open cursors, automatically.

Figure 6-2 summarizes the e�ect of the cursor related commands on the position of the cursor
and on the active set. All the commands shown, plus the DECLARE CURSOR command,
must be included within one preprocessed unit (main program or subprogram).

6-14 Overview Of Data Manipulation

Figure 6-2. Effect of SQL Commands on Cursor and Active Sets

Overview Of Data Manipulation 6-15

Sequential Table Processing

In sequential table processing, you process an active set by fetching a row at a time and
optionally deleting or updating it. Sequential table processing is useful when the likelihood
of row changes throughout a set of rows is high and when a program user does not need to
review multiple rows to decide whether to change a speci�c row.

In the following example, rows for parts having the same SalesPrice are displayed one at a
time. The program user can delete a displayed row or change its SalesPrice. Note that the
host variable declarations are identical to those for the simple data manipulation example,
since only one row at a time is fetched. Rows are fetched as long as SQLCODE is 0, as shown
in the following example:

const

OK = 0;

NotFound = 100;

var

EXEC SQL BEGIN DECLARE SECTION;

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

PartNameInd : sqlInd;

SalesPrice : longreal;

SalesPriceInd : sqlInd;

EXEC SQL END DECLARE SECTION;
...

procedure GetActiveSet;

begin

The cursor declared allows the user to change the SalesPrice of

the current row. It can also be used to delete the current row.

EXEC SQL DECLARE PriceCursor

CURSOR FOR

SELECT PartNumber, PartName, SalesPrice

FROM PurchDB.Parts

WHERE SalesPrice = :SalesPrice

FOR UPDATE OF SalesPrice;

.

. The program accepts a salesprice value from the user.

.

EXEC SQL OPEN PriceCursor;

if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

ReleaseDBE;

end

else

GetRow;

end;

6-16 Overview Of Data Manipulation

procedure GetRow;

begin

while SQLCA.SQLCODE = OK do

begin

EXEC SQL FETCH PriceCursor

INTO :PartNumber,

:PartName :PartNameInd,

:SalesPrice :SalesPriceInd;

case SQLCA.SQLCODE of

OK : DisplayRow

NotFound : writeln('No more rows!');

otherwise : SqlStatusCheck;

end;

end;

procedure DisplayRow;

begin

Each row fetched is displayed. Depending on the user's response

to a program prompt, the row may be deleted or its SalesPrice

value changed.

if response[1] = 'D' then

begin

EXEC SQL DELETE FROM PurchDB.Parts

WHERE CURRENT OF PriceCursor;

.

. Status checking code appears here.

.

end;

if response[1] = 'U' then

begin

.

. A new SalesPrice is accepted.

.

EXEC SQL UPDATE PurchDB.Parts

SET SalesPrice = :SalesPrice

WHERE CURRENT OF PriceCursor;

.

. Status checking code appears here.

.

end;

Sequential table processing is discussed in more detail in the chapter, \Processing with
Cursors."

Overview Of Data Manipulation 6-17

Bulk Table Processing

BULK table processing o�ers a way to retrieve or insert multiple rows with the execution of a
single SQL command. Three commands can be used in this fashion:

You can use the BULK SELECT command when you know in advance the maximum
number of rows in a multiple-row query result, as when the query result will contain a row
for each month of the year or day of the week. This command minimizes the time a table
is locked for the retrieval operation, because the program can execute the BULK SELECT
command, then immediately terminate the transaction, even before displaying any rows.

You can use the BULK FETCH command to handle multiple-row query results of
unpredictable maximum length. This use of a cursor is most suitable for display only
applications, such as programs that let a user browse through a query result, so many rows
at a time.

You can use the BULK INSERT command to insert multiple rows into a table. Like the
BULK SELECT command, this command is e�cient for concurrency, because any exclusive
lock acquired to insert rows need be held only until the BULK INSERT command is
executed.

In each of these three commands, the host variables that hold rows are in an array, as
illustrated in the following example. The example shows how you can use a cursor to retrieve
and display ten rows at a time from the active set. The host variable named StartIndex is set
to 1 so that the �rst row in each group of rows fetched is stored in the �rst element of the
PartsTable array. The host variable named NumberOfRows controls the maximum number
of rows returned with each execution of the BULK FETCH command. StartIndex and
NumberOfRows are set before the �rst BULK FETCH is executed.

const

OK = 0;

NotFound = 100;

MaximumRows = 10;

var

EXEC SQL BEGIN DECLARE SECTION;

PartsTable : packed array[1..10] of

packed record

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

PartNameInd : sqlInd;

StartIndex : integer;

NumberOfRows : integer;

EXEC SQL END DECLARE SECTION;...
procedure DeclareCursor;

begin

6-18 Overview Of Data Manipulation

EXEC SQL DECLARE PartsCursor

CURSOR FOR

SELECT PartNumber, PartName

FROM PurchDB.Parts;
...

function OpenCursor: boolean;

begin

EXEC SQL OPEN PartsCursor;

if SQLCA.SQLCODE <> OK then

begin

OpenCursor := FALSE;

SqlStatusCheck;

ReleaseDBE;

end

else

OpenCursor := TRUE;

end;
...

procedure GetRows;

begin

if OpenCursor then

begin

StartIndex := 1;

NumberOfRows := MaximumRows;

while SQLCA.SQLCODE = OK do

begin

EXEC SQL BULK FETCH PartsCursor

INTO :PartsTable,

:StartIndex,

:NumberOfRows;

As many as ten rows are put into the PartsTable

array. If the FETCH command executes without

error the value in SQLERRD(3) indicates the

number of rows returned to PartsTable.

case SQLCA.SQLCODE of

OK : for i := 1 to sqlca.sqlerrd(3) do

writeln(Partnumber,'|',PartName);

NotFound : writeln ('No more rows qualify!');

otherwise : SqlStatusCheck;

end; (*case*)

end; (*do*)

end; (*if*)

BULK table processing is discussed in additional detail in the chapter, \Bulk Table
Processing."

Overview Of Data Manipulation 6-19

Dynamic Operations

Dynamic operations o�er a way to execute SQL commands that cannot be completely
de�ned until run time. You accept part or all of an SQL command that can be dynamically
preprocessed from the user, then use one of the following techniques to preprocess and execute
the command:

If the dynamic command is not a query, you can use the PREPARE command to preprocess
it, then execute it later during the same transaction using the EXECUTE command.
Alternatively, you can use the EXECUTE IMMEDIATE command to preprocess and
execute the dynamic command in one step.

If the dynamic command is a query, you use special data structures plus the following
SQL commands to handle the dynamic command: PREPARE, DESCRIBE, DECLARE
CURSOR, OPEN, FETCH, and CLOSE.

To determine whether a dynamic command is a query, you use the DESCRIBE command
after preparing the dynamic command:

The program accepts an SQL command from the user and stores

it in a host variable named DynamicCommand.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
PREPARE DynamCommand FROM :DynamicCommand;

After the command is prepared, the DESCRIBE command is used

to determine whether the prepared command is a SELECT command.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNN
DESCRIBE DynamCommand INTO SQLDA;

The SQLDA.SQLD �eld of the SQLDA is examined to determine

whether the dynamic command is a query.

if SQLDA.SQLD = 0 then (*the command is not a query*)

begin

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
EXECUTE DynamCommand;

.

.

.

else if SQLDA.SQLD > 0 then (*the command is a query*)

.

.

.

A non-query can be executed with the EXECUTE

command, but a query requires special handling.

Dynamic queries require special handling because you may not know in advance what a query
result will look like. The number and type of columns, the existence of null values, the column
names . . . this and other information may need to be obtained by the program at run time
because it is not known at programming time.

6-20 Overview Of Data Manipulation

To obtain the information needed to parse any query result at run time, you use three special
data structures in your program: the SQLDA, a format array, and a data bu�er:

The SQLDA (SQL Description Area) and the format array contain information about
the query result. These data structures have the format described in the chapter, \Host
Variables."

The data bu�er holds one or more rows fetched from the query result. Its format is also
described in the chapter, \Host Variables."

The following example summarizes how you declare and use these data structures:

const

OK = 0;

Notfound = 100;

NbrFmtRecords = 255; (*maximum number of columns*)

MaxDataBuff = 1600; (*maximum number of bytes the program*)

(*allows in each fetch; 1600 bytes *)

(*accommodates the display of 20*)

(*80-character lines*)

var

EXEC SQL BEGIN DECLARE SECTION;

DynamicCommand : String[1024] (*maximum length of*)

(*a dynamic command*)

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLDA;

(*declaration of SQLDA*)

SQLFmts : array[1..NbrFmtRecords] of SqlFormat_Type;

(*declaration of format array*)

DataBuffer : packed array[1..MaxDataBuff] of char;

(*declaration of data bu�er*)
...

procedure ExecuteDynamCmd;

begin

with SQLDA do (*You must set two SQLDA �elds before DESCRIBE*)

begin

Sqln := NbrFmtRecords; (*number of records in format array*)

SqlFmtArr := waddress(SQLFmts); (*address of format array*)

end;

.

. The program accepts a dynamic command.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
PREPARE DYNAMCOMMAND FROM :DYNAMICCOMMAND;

.

. Status checking is done.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNN
DESCRIBE DYNAMCOMMAND INTO SQLDA;

Overview Of Data Manipulation 6-21

if SQLDA.SQLD = 0 (*dynamic command is not a query*)

.

. The program executes the dynamic command.

.

else if SQLDA.SQLD > 0 then (*dynamic command is a query*)

begin

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
DECLARE DYNAMCURSOR

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CURSOR FOR DYNAMCOMMAND;

EXEC SQL OPEN DYNAMCURSOR;

.

. If SQLCODE is 0, rows in the query result can be

fetched. First, however, you must set three

SQLDA �elds.

with SQLDA do

begin

SqlBufLen := sizeof(DataBuffer); (*bytes in data bu�er*)

SqlNRow := SqlBufLen DIV SqlRowLen;

(*number of rows to fetch into data bu�er*)

SqlRowBuf := waddress(DataBuffer); (*address of data bu�er*)

end;

while SQLCA.SQLCODE = OK do

begin

EXEC SQL
NNNNNNNNNNNNNNNNN
FETCH DYNAMCURSOR

NN
USING DESCRIPTOR SQLDA;

if SQLCA.SQLCODE <> OK then

begin

if SQLCA.SQLCODE = NotFound then

writeln('No more rows qualify.')

else

SQLStatusCheck;

end;

else

DisplaySelect;

end;
...

procedure DisplaySelect;

This procedure parses the data bu�er and displays

rows fetched. For each column in each row of the

query result, various �elds in the format array

are used to identify where data values are located

in the data bu�er as well as the data type of

these values and null value information.

Techniques for parsing the data bu�er and more examples of dynamic preprocessing are in the
chapter, \Using Dynamic Operations."

6-22 Overview Of Data Manipulation

7

Simple Data Manipulation

Simple data manipulation is a programming technique used to SELECT or INSERT a single
row. It can also be used to INSERT, DELETE, or UPDATE one or more rows based on a
speci�c criterion. These types of data manipulation operations are considered simple because
they can be done with SQL data manipulation commands that:

Do not contain the BULK option; therefore the host variables used are not arrays, and data
references are simpli�ed.

Are not executed in conjunction with a cursor; therefore additional SQL commands such as
FETCH and OPEN are not required.

Are not dynamically preprocessed; and therefore, additional arrays and SQL commands are
not required to execute them.

This chapter reviews how to use the SELECT, INSERT, DELETE, and UPDATE
commands for simple data manipulation. It then briey examines transaction management
considerations. For further discussion of transaction management, refer to the
ALLBASE/SQL Reference Manual .

A program illustrating simple data manipulation is found at the end of the chapter.

SQL Commands

The SQL commands used for simple data manipulation are:

SELECT

INSERT

DELETE

UPDATE

Refer to the ALLBASE/SQL Reference Manual for the complete syntax and semantics of
these commands.

The SELECT Command

In simple data manipulation, you use the SELECT command to retrieve a single row, i.e., a
one-row query result. The syntax of the SELECT command that describes a one-row query
result is:

SELECT SelectList

INTO HostVariables

FROM TableNames

WHERE SearchCondition

Simple Data Manipulation 7-1

Note that the GROUP BY, HAVING, and ORDER BY clauses are not necessary, since these
clauses usually describe multiple-row query results.

You may omit the WHERE clause from certain queries when the select list contains only
aggregate functions:

EXEC SQL SELECT AVG(SalesPrice)

INTO :AvgSalesPrice

FROM PurchDB.Parts;

A WHERE clause may be used, however, to qualify the rows over which the aggregate
function is applied:

EXEC SQL SELECT AVG(SalesPrice)

INTO :AvgSalesPrice

FROM PurchDB.PartsNNNNNNNNNNNNNNNNN
WHERE SalesPrice > :SalesPrice;

If the select list does not contain aggregate functions, a WHERE clause is used to restrict the
query result to a single row:

EXEC SQL SELECT PartName, SalesPrice

INTO :PartName, :SalesPrice

FROM PurchDB.Parts

WHERE
NNN
PartNumber = :PartNumber;

Because the host variables that hold query results for a simple SELECT command are not
arrays of records, they can hold only a single row. A runtime error occurs when multiple rows
qualify for a simple SELECT command. You can test for an SQLCODE value of -10002 to
detect this condition:

const

MultipleRows = -10002;

.

.

.

procedure GetRow;

.

.

.

The SELECT command is executed here.

if SQLCA.
NN
SQLCODE = MultipleRows then

writeln('WARNING: More than one row qualifies.');

When multiple rows qualify but the receiving host variables are not in an array of records and
the BULK option is not speci�ed, none of the rows are returned.

When a column named in the WHERE clause has a unique index on it, you can omit testing
for multiple-row query results if the column was de�ned NOT NULL. A unique index prevents
the key column(s) from having duplicate values. The following index, for example, ensures
that only one row will exist for any part number in PurchDB.Parts:

CREATE UNIQUE INDEX PartNumIndex

ON PurchDB.Parts (PartNumber)

7-2 Simple Data Manipulation

If a key column of a unique index can contain a null value, the unique index ensures that no
more than one null value can exist for that column.

Another method of qualifying the rows you want to select is to use the LIKE speci�cation to
search for a particular character string pattern.

For example, suppose you want to search for all VendorRemarks that contain a reference to
6%. Since the percent sign (%) happens to be one of the wildcard characters for the LIKE
speci�cation, you could use the following SELECT statement specifying the exclamation point
(!) as your escape character.

SELECT * FROM PurchDB.Vendors

WHERE VendorRemarks LIKE '%6!%%' ESCAPE '!'

The �rst and last percent sign characters are the wildcard characters. The next to the last
percent sign, preceded by an exclamation point, is the percent sign that you want to escape,
so that it is actually used in the search pattern for the LIKE clause.

The character following an escape character must be either a wildcard character or the escape
character itself. Complete syntax is presented in the ALLBASE/SQL Reference Manual .

It is useful to execute the SELECT command before executing the INSERT, DELETE, or
UPDATE commands in the following situations:

When an application updates or deletes rows, the SELECT command can retrieve the
target data for user veri�cation before the data is changed. This technique minimizes
inadvertent data changes:

The program accepts a part number from the user into a host variable

named PartNumber, then retrieves a row for that part.

EXEC SQL SELECT PartNumber, BinNumber

INTO :PartNumber, :BinNumber

FROM PurchDB.Inventory

WHERE PartNumber = :PartNumber;

The row is displayed, and the user is asked if the bin number is

to be changed. If not, the user is prompted for another part number.

If so, the user is prompted for the new bin number, which is accepted into

the host variable named BINNUMBER. Then the UPDATE

command is executed:

EXEC SQL UPDATE PurchDB.Inventory

SET BinNumber = :BinNumber

WHERE PartNumber = :PartNumber;

To prohibit the multiple-row changes possible if multiple rows qualify for an UPDATE
or DELETE operation, an application can use the SELECT command. If multiple rows
qualify for the SELECT operation, the UPDATE or DELETE would not be executed.
Alternatively, the user could be advised that multiple rows would be a�ected and given a
choice about whether to perform the change:

The program prompts the user for an order number and a vendor part

number in preparation for allowing the user to change the vendor part number.

Simple Data Manipulation 7-3

The following SELECT command determines whether more than one line item

exists on the order for the speci�ed vendor part number:

EXEC SQL SELECT ItemNumber

INTO :ItemNumber

FROM PurchDB.OrderItemsNNN
WHERE OrderNumber = :OrderNumberNNN

AND VendPartNumber = :VendPartNumber;

When more than one row quali�es for this query, the program lets the

user decide whether to proceed with the update operation.

When an application lets the user INSERT a row that must contain a value higher than an
existing value, the SELECT command can identify the highest existing value:

EXEC SQL SELECT
NNNNNNNNNNN
MAX (OrderNumber)

INTO :MaxOrderNumber

FROM PurchDB.Orders;

The program can increment the maximum order number by one, then provide

the user with the new number and prompt for information describing the new order.

The INSERT Command

In simple data manipulation, you use INSERT command syntax to either insert a single row
or copy one or more rows into a table from another table.

Use the following syntax of the INSERT command to insert a single row:

INSERT INTO TableName

(ColumnNames)

VALUES (DataValues)

You can omit ColumnNames when you provide values for all columns in the target table:

EXEC SQL INSERT INTO PurchDB.Parts

VALUES (:PartNumber,

:PartName :PartNameInd,

:SalesPrice :SalesPriceInd);

Remember that when you do include ColumnNames but do not name all the columns in the
target table, ALLBASE/SQL attempts to insert a null value into each unnamed column. If an
unnamed column was de�ned as NOT NULL, the INSERT command fails.

7-4 Simple Data Manipulation

To copy one or more rows from one or more tables to another table, use the following syntax
of the INSERT command:

INSERT INTO TableName

(ColumnNames)

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

Note that the SELECT command embedded in this INSERT command cannot contain
an INTO or ORDER BY clause. In addition, any host variables used must be within the
WHERE or HAVING clauses:

The following example copies historical data for �lled orders into PurchDB.OldOrders, then
deletes rows for these orders from PurchDB.Orders, keeping that table minimal in size. The
INSERT command copies rows from PurchDB.Orders to PurchDB.OldOrders.

EXEC SQL INSERT INTO PurchDB.OldOrders

(OldOrder, OldVendor, OldDate)

SELECT OrderNumber, VendorNumber, OrderDate

FROM PurchDB.Orders

WHERE OrderNumber = :OrderNumber;

Then the DELETE command deletes rows from PurchDB.Orders:

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderNumber: = OrderNumber;

The UPDATE Command

In simple data manipulation, you use this syntax of the UPDATE command to change data in
one or more columns:

UPDATE TableName

SET Columname = ColumnValue

[,...]

WHERE SearchCondition

As in the case of the DELETE command, if you omit the WHERE clause, the value of any
column speci�ed is changed in all rows of the table.

If the WHERE clause is speci�ed, all rows satisfying the search condition are changed:

EXEC SQL UPDATE PurchDB.Vendors
SET ContactName = :ContactName :ContactNameInd,

VendorStreet = :VendorStreet,

VendorCity = :VendorCity,

VendorState = :VendorState,

VendorZipCode = :VendorZipCode

WHERE VendorNumber = :VendorNumber;

Simple Data Manipulation 7-5

In this example, column ContactName can contain a null value. To insert a null value,
the program must assign a number less than 0 to the indicator variable for this column,
ContactNameInd:

The program prompts the user for new values

prompt ('Enter Vendor Street> ');

readln (VendorStreet);

prompt ('Enter Vendor City> ');

readln (VendorCity);

prompt ('Enter Vendor State> ');

readln (VendorState);

prompt ('Enter Vendor Zip Code> ');

readln (VendorZipCode);

prompt ('Enter Contact Name (0 for null)> ');

readln (ContactName);

If the user enters a 0 to assign a null value to column ContactName,

the program assigns a -1 to the indicator variable; otherwise, the program

assigns a 0 to this variable:

if ContactName = '0' then

ContactNameInd := -1

else

ContactNameInd := 0;

The DELETE Command

In simple data manipulation, you use the DELETE command to delete one or more rows from
a table, as shown in the following syntax:

DELETE FROM TableName

WHERE SearchCondition

The WHERE clause speci�es a SearchCondition rows must meet to be deleted, for example:

EXEC SQL DELETE FROM PurchDB.OrdersNNN
WHERE OrderDate < :OrderDate;

If the WHERE clause is omitted, all rows in the table are deleted.

7-6 Simple Data Manipulation

Transaction Management for Simple Operations

The major objectives of transaction management are to minimize the contention for locks
and to ensure logical data consistency. Minimizing lock contention implies short transactions
and/or locking small, unique parts of a database. Logical data consistency implies keeping
data manipulations that should all occur or all not occur within a single transaction. De�ning
your transactions should always be made with these two objectives in mind. For in depth
transaction management information, refer to the ALLBASE/SQL Reference Manual .

Most simple data manipulation applications are for random operations on a minimal number
of related rows that satisfy very speci�c criteria. To minimize lock contention, you should
begin a new transaction each time these criteria change. For example, if an application
displays order information for random orders, delimit each new query with a BEGIN WORK
and a COMMIT WORK command:

The program accepts an order number from the user.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
BEGIN WORK;

EXEC SQL SELECT OrderNumber,

VendorNumber,

OrderDate

INTO :OrderNumber,

:VendorNumber :VendorNumberInd,

:OrderDate :OrderDateInd

FROM PurchDB.Orders

WHERE OrderNumber = :OrderNumber;

Error checking is done here.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
COMMIT WORK;

The program displays the row, then prompts for another order number.

Because SELECT commands are often executed prior to a related UPDATE, DELETE, or
INSERT command, you must decide whether to make each command a separate transaction
or combine commands within one transaction. And you must decide which isolation level to
use to attain your desired data consistency and to minumize possible lock contention.

If, for example, you combine SELECT and DELETE operations within one transaction,
when the DELETE command is executed, the row deleted is guaranteed to be the same row
retrieved and displayed for the user. However, if the program user goes to lunch between
SELECT and DELETE commands, and the default isolation level (RR) is in e�ect, no other
users can modify the page or table locked by the SELECT command until the transaction
terminates.

If you put the SELECT and DELETE operations in separate transactions, another
transaction may change the target row(s) before the DELETE command is executed.
Therefore, the user may delete a row di�erent from that originally intended. One way to
handle this situation is as follows:

Simple Data Manipulation 7-7

EXEC SQL BEGIN WORK;

The SELECT command is executed and the query result displayed.

EXEC SQL COMMIT WORK;

The program user requests that the row be deleted.

EXEC SQL BEGIN WORK;

The SELECT command is re-executed, and the program compares the original

query result with the new one. If the query results match, the DELETE

command is executed.

EXEC SQL COMMIT WORK;

If the new query result does not match the original query result,

the program re-executes the SELECT command to display the query result.

In the case of some multi-command transactions, you must execute multiple data
manipulation commands within a single transaction for the sake of logical data consistency:

In the following example the DELETE and INSERT commands are used in place of the
UPDATE command to insert null values into the target table.

EXEC SQL BEGIN WORK;

The DELETE command is executed.

If the DELETE command fails, the transaction can be terminated as follows:

EXEC SQL COMMIT WORK;

If the DELETE command succeeds, the INSERT command is executed.

If the INSERT command fails, the transaction is terminated as follows:

EXEC SQL ROLLBACK WORK;

If the INSERT command succeeds, the transaction is terminated as follows:

EXEC SQL COMMIT WORK;

Logical data consistency is also an issue when an UPDATE, INSERT, or DELETE command
may operate on multiple rows. If one of these commands fails after only some of the target
rows have been operated on, you must use a ROLLBACK WORK command to ensure that
any row changes made before the failure are undone:

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderDate < :OrderDate;

if SQLCA.SQLCODE <> OK then EXEC SQL
NN
ROLLBACK WORK;

7-8 Simple Data Manipulation

Program Using Simple DML Operations

The ow chart shown in Figure 7-1 summarizes the functionality of program pasex7.
This program uses the four simple data manipulation commands to operate on the
PurchDB.Vendors table. Program pasex7 uses a function menu to determine whether to
execute one or more SELECT, UPDATE, DELETE, or INSERT operations. Each execution
of a simple data manipulation command is done in a separate transaction.

The runtime dialog for program pasex7 appears in Figure 7-2, and the source code in Figure
7-3.

Function ConnectDBE starts a DBE session �48�. This function executes the CONNECT
command �2� for the sample DBEnvironment, PartsDBE.

The next operation performed depends on the number entered in response to this menu �49�:

The program terminates if 0 is entered.

Procedure Select is executed if 1 is entered.

Procedure Update is executed if 2 is entered.

Procedure Delete is executed if 3 is entered.

Procedure Insert is executed if 4 is entered.

Procedure Select

Procedure Select �9� prompts for a vendor number or a 0 �10�. If a 0 is entered, the function
menu is re-displayed. If a vendor number is entered, procedure BeginTransaction is executed
�11� to issue the BEGIN WORK command �4�. Then a SELECT command is executed to
retrieve all data for the vendor speci�ed from PurchDB.Vendors �12�. The SQLCA.SQLCODE
returned is examined to determine the next action:

If no rows qualify for the SELECT operation, a message �14� is displayed and the
transaction terminated �16�. Procedure CommitWork terminates the transaction by
executing the COMMIT WORK command �5�. The user is then re-prompted for a vendor
number or a 0.

If more than one row quali�es for the SELECT operation, a di�erent message is displayed
and procedure CommitWork �5� terminates the transaction by executing the COMMIT
WORK command. The user is then re-prompted for a vendor number or a zero.

If the SELECT command execution results in an error condition, procedure SqlStatusCheck
is executed �15�. This procedure executes SQLEXPLAIN �1� to display all error messages.
Then the transaction is terminated �16� and the user re-prompted for a vendor number or a
0.

If the SELECT command can be successfully executed, procedure DisplayRow �13� is
executed to display the row. This procedure examines the null indicators for each of the
three potentially null columns (ContactName, PhoneNumber, and VendorRemarks). If any
null indicator contains a value less than 0 �8�, a message indicating that the value is null is
displayed. After the row is completely displayed, the transaction is terminated �16� and the
user re-prompted for a vendor number or a 0.

Simple Data Manipulation 7-9

Procedure Update

Procedure Update �22� lets the user UPDATE the value of a column only if it contains a null
value. The procedure prompts for a vendor number or a 0 �23�. If a 0 is entered, the function
menu is re-displayed. If a vendor number is entered, procedure BeginTransaction is executed
�24�. Then a SELECT command is executed to retrieve data from PurchDB.Vendors for the
vendor speci�ed �25�. The SQLCA.SQLCODE returned is examined to determine the next
action:

If no rows qualify for the SELECT operation, a message �27� is displayed and the
transaction is terminated �29�. The user is then re-prompted for a vendor number or a 0.

If more than one row quali�es for the SELECT operation, a di�erent message is displayed
and procedure CommitWork �5� terminates the transaction by executing the COMMIT
WORK command. The user is then re-prompted for a vendor number or a zero.

If the SELECT command execution results in an error condition, procedure SqlStatusCheck
is executed �28�. Then the transaction is terminated �29� and the user re-prompted for a
vendor number or a 0.

If the SELECT command can be successfully executed, procedure DisplayUpdate �26� is
executed. This procedure executes procedure DisplayRow to display the row retrieved �17�.
Function AnyNulls is then executed to determine whether the row contains any null values.
This boolean function evaluates to TRUE if the indicator variable for any of the three
potentially null columns contains a non-zero value �6�.

If function AnyNulls evaluates to FALSE, a message is displayed �7� and the transaction is
terminated �29�; the user is then re-prompted for a vendor number or a 0.

If function AnyNulls evaluates to TRUE, the null indicators are examined to determine
which of them contain a negative value �18�. A negative null indicator means the column
contains a null value, and the user is prompted for a new value �19�. If the user enters a 0,
the program assigns a -1 to the null indicator �20� so that when the UPDATE command
�21� is executed, a null value is assigned to that column. If a non-zero value is entered, the
program assigns a 0 to the null indicator so that the value speci�ed is assigned to that
column. After the UPDATE �21� command is executed, the transaction is terminated �29�
and the user re-prompted for a vendor number or a 0.

Procedure Delete

Procedure Delete �33� lets the user DELETE one row. The procedure prompts for a vendor
number or a 0 �34�. If a 0 is entered, the function menu is re-displayed. If a vendor number
is entered, procedure BeginTransaction is executed �35�. Then a SELECT command is
executed to retrieve all data for the vendor speci�ed from PurchDB.Vendors �36�. The
SQLCA.SQLCODE returned is examined to determine the next action:

If no rows qualify for the SELECT operation, a message �38� is displayed and the
transaction is terminated �40�. The user is then re-prompted for a vendor number or a 0.

If more than one row quali�es for the SELECT operation, a di�erent message is displayed
and procedure CommitWork �5� terminates the transaction by executing the COMMIT
WORK command. The user is then re-prompted for a vendor number or a zero.

7-10 Simple Data Manipulation

If the SELECT command execution results in an error condition, procedure SqlStatusCheck
is executed �39�. Then the transaction is terminated �40� and the user re-prompted for a
vendor number or a 0.

If the SELECT command can be successfully executed, procedure DisplayDelete �37� is
executed. This procedure executes procedure DisplayRow to display the row retrieved
�30�. Then the user is asked whether she wants to actually delete the row �31�. If not, the
transaction is terminated �40� and the user re-prompted for a vendor number or a 0. If so,
the DELETE command �32� is executed before the transaction is terminated �40� and the
user re-prompted.

Procedure Insert

Procedure Insert �41� lets the user INSERT one row. The procedure prompts for a vendor
number or a 0 �42�. If a 0 is entered, the function menu is re-displayed. If a vendor number is
entered, the user is prompted for values for each column. The user can enter a 0 to specify a
null value for potentially null columns �43�; to assign a null value, the program assigns a -1 to
the appropriate null indicator �44�. After a transaction is started �45�, an INSERT command
�46� is used to insert a row containing the speci�ed values. After the INSERT operation, the
transaction is terminated �47�, and the user re-prompted for a vendor number or a 0.

When the user enters a 0 in response to the function menu display, the program terminates
by executing procedure TerminateProgram �50�. This procedure executes the RELEASE
command �3�.

Simple Data Manipulation 7-11

Figure 7-1. Flow Chart of Program pasex7

7-12 Simple Data Manipulation

Flow Chart of Program pasex7 (page 2 of 2)

Simple Data Manipulation 7-13

Program for Simple Data Manipulation of Vendors Table - pasex7

Connect to PartsDBE

1 SELECT rows from PurchDB.Vendors table

2 UPDATE rows with null values in PurchDB.Vendors table

3 DELETE rows from PuchDB.Vendors table

4 INSERT rows into PurchDB.Vendors table

Enter choice or 0 to stop> 4

*** Procedure to INSERT rows into PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Enter Vendor Name> Wolfe Works

Enter Contact Name (0 for null)> Stanley Wolfe

Enter Phone Number (0 for null)> 408 975 6061

Enter Vendor Street> 7614 Canine Way

Enter Vendor City> San Jose

Enter Vendor State> CA

Enter Vendor Zip Code> 90016

Enter Vendor Remarks (0 for null)> 0

Begin Work

INSERT row into PurchDB.Vendors

Commit Work

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 1

Figure 7-2. Runtime Dialog of Program pasex7

7-14 Simple Data Manipulation

*** Procedure to SELECT rows from PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks is NULL

Commit Work

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 2

*** Procedure to UPDATE rows in PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks is NULL

Enter new VendorRemarks (0 for null)> can expedite shipments

Commit Work

Figure 7-2. Runtime Dialog of Program pasex7 (page 2 of 3)

Simple Data Manipulation 7-15

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 3

*** Procedure to DELETE rows from PurchDB.Vendors ***

Enter Vendor Number or 0 for MENU> 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works
ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks: can expedite shipments

Is it OK to DELETE this row (N/Y)? > Y

DELETE row from PurchDB.Vendors

Commit Work

Enter Vendor Number or 0 for MENU> 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP> 0

Figure 7-2. Runtime Dialog of Program pasex7 (page 3 of 3)

7-16 Simple Data Manipulation

$Heap_dispose ON$

$Heap_Compact ON$

Standard_level 'HP_Pascal$

(* *)

(* This program illustrates simple data manipulation. It uses the *)

(* UPDATE command with indicator variables to update any row in *)

(* Vendors Table that contains null values. It also uses *)

(* indicator variables in conjunction with SELECT and INSERT. The *)

(* DELETE command is also illustrated. *)

(* *)

Program pasex7(input,output);

const

OK = 0;

NotFound = 100;

DeadLock = -14024;

var

(* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION;

VendorNumber : integer;

VendorName : packed array[1..30] of char;

ContactName : packed array[1..30] of char;

ContactNameInd : SqlInd;

PhoneNumber : packed array[1..15] of char;

PhoneNumberInd : SqlInd;

VendorStreet : packed array[1..30] of char;

VendorCity : packed array[1..20] of char;

VendorState : packed array[1..2] of char;

VendorZipCode : packed array[1..10] of char;

VendorRemarks : string[60];

VendorRemarksInd : SqlInd;

SQLMessage : packed array[1..132] of char;

EXEC SQL END DECLARE SECTION;

(* End Host Variable Declarations *)

SQLCA : SQLCA_type; (* SQL Communication Area *)

Abort : boolean;

Response : integer;

Response1 : packed array[1..3] of char;

procedure TerminateProgram; forward;

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

begin

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT

Simple Data Manipulation 7-17

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage; �1�
writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then TerminateProgram;

end; (* End SQLStatusCheck Procedure *)

$PAGE $

function ConnectDBE: boolean; (* Function to Connect to PartsDBE *)

begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE'; �2�

ConnectDBE := TRUE;

if SQLCA.SQLCODE <> OK then

begin

ConnectDBE := FALSE;

SQLStatusCheck;

end; (* End if *)

end; (* End of ConnectDBE Function *)

procedure TerminateProgram; (* Procedure to Release from PartsDBE *)

begin

EXEC SQL RELEASE; �3�

end; (* End of TerminateProgramProcedure *)

$PAGE $

procedure BeginTransaction; (* procedure to BEGIN WORK *)

begin

writeln('Begin Work');

EXEC SQL BEGIN WORK; �4�
if SQLCA.SQLCODE <> OK then

begin

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 2 of 12)

7-18 Simple Data Manipulation

SQLStatusCheck;

TerminateProgram;

end;

end; (* End BeginTransaction procedure *)

procedure CommitWork; (* Procedure to Commit Work *)

begin

writeln('Commit Work');

EXEC SQL COMMIT WORK; �5�
if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

TerminateProgram;

end;

end; (* End CommitWork Procedure *)

function AnyNulls: boolean; (* Function to test row for null value(s) *)

begin

AnyNulls := TRUE;

if (ContactNameInd = 0) and �6�
(PhoneNumberInd = 0) and

(VendorRemarksInd = 0)

then (* all columns that might be null contain non-null values *)

begin

writeln(' No null values exist for this vendor'); �7�
AnyNulls := FALSE;

end;

end; (* End of Null Function *)

procedure DisplayRow; (* Procedure to Display Vendors Table Rows *)

begin

writeln;

writeln(' VendorNumber: ', VendorNumber);

writeln(' VendorName: ', VendorName);

if ContactNameInd <0 then �8�
writeln(' ContactName is NULL')

else
writeln(' ContactName: ', ContactName);

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 3 of 12)

Simple Data Manipulation 7-19

if PhoneNumberInd <0 then

writeln(' PhoneNumber is NULL')

else

writeln(' PhoneNumber: ', PhoneNumber);

writeln(' VendorStreet: ', VendorStreet);

writeln(' VendorCity: ', VendorCity);

writeln(' VendorState: ', VendorState);

writeln(' VendorZipCode: ', VendorZipCode);

if VendorRemarksInd <0 then

writeln(' VendorRemarks is NULL')

else

writeln(' VendorRemarks: ', VendorRemarks);

writeln;

end; (* End of DisplayRow *)

$PAGE $

procedure Select; (* procedure to select row from Vendors Table *)�9�

begin

writeln;

writeln(' *** Procedure to SELECT rows from PurchDB.Vendors *** ');

writeln;

repeat

writeln;

prompt('Enter Vendor Number <> or 0 for MENU> '); �10�
readln(VendorNumber);

writeln;

if VendorNumber 0 then

begin

BeginTransaction; �11�
writeln('SELECT * from PurchDB.Vendors');

EXEC SQL SELECT VendorNumber, �12�
VendorName,

ContactName,

PhoneNumber,

VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 4 of 12)

7-20 Simple Data Manipulation

INTO :VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,

:VendorCity,

:VendorState,

:VendorZipCode,

:VendorRemarks :VendorRemarksInd

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

case SQLCA.SQLCODE of

OK : DisplayRow; �13�
NotFound : begin

writeln;

writeln('Row not found!'); �14�
end;

otherwise begin

SqlStatusCheck; �15�
end;

end; (* end case *)

CommitWork; �16�
end; (* end if response *)

until VendorNumber = 0;

end; (* end Select Procedure *)

procedure DisplayUpdate; (* procedure to display and update row *)

begin

DisplayRow; �17�
if AnyNulls then

begin

if ContactNameInd < 0 then �18�
begin

writeln;

prompt('Enter new ContactName (0 for NULL)> '); �19�
readln(ContactName);

end;

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 5 of 12)

Simple Data Manipulation 7-21

if PhoneNumberInd < 0 then

begin

writeln;

prompt('Enter new PhoneNumber (0 for NULL)> ');

readln(PhoneNumber);

end;

if VendorRemarksInd < 0 then

begin

writeln;

prompt('Enter new VendorRemarks (0 for NULL)> ');

readln(VendorRemarks);

end;

if ContactName = '0' then �20�
ContactNameInd := -1

else

ContactNameInd := 0;

if PhoneNumber = '0' then

PhoneNumberInd := -1

else

PhoneNumberInd := 0;

if VendorRemarks = '0' then

VendorRemarksInd := -1

else

VendorRemarksInd := 0;

EXEC SQL UPDATE PurchDB.Vendors �21�
SET ContactName = :ContactName :ContactNameId,

PhoneNumber = :PhoneNumber :PhoneNumberInd,

VendorRemarks = :VendorRemarks :VendorRemarksInd

WHERE VendorNumber = :VendorNumber;

if SQLCA.SQLCODE <> OK then SqlStatusCheck;

end; (* end if AnyNulls *)

end; (* end of DisplayUpdate procedure *)

$PAGE $

procedure Update; (* Update a row within the Vendors Table *) �22�

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 6 of 12)

7-22 Simple Data Manipulation

begin

writeln;

writeln(' *** Procedure to UPDATE rows in PurchDB.Vendors *** ');

writeln;

repeat

writeln;

prompt('Enter Vendor Number or 0 for MENU> '); �23�
readln(VendorNumber);

writeln;

if VendorNumber <> 0 then

begin

BeginTransaction; �24�
writeln ('SELECT * from PurchDB.Vendors');

EXEC SQL SELECT VendorNumber, �25�
VendorName,
ContactName,

PhoneNumber,

VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks

INTO :VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,

:VendorCity,

:VendorState,

:VendorZipCode,

:VendorRemarks :VendorRemarksInd

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

case SQLCA.SQLCODE of

OK : begin

DisplayUpdate; �26�
end;

NotFound : begin

writeln;

writeln('Row not found!'); �27�
end;

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 7 of 12)

Simple Data Manipulation 7-23

otherwise begin

SQLStatusCheck; �28�
end;

end; (* case *)

CommitWork; �29�

end; (* end if response *)

until VendorNumber = 0;

end; (* End of Update Procedure *)

$PAGE $

procedure DisplayDelete; (* procedure to display and delete a row *)

begin

DisplayRow; �30�

prompt('Is it OK to DELETE this row (N/Y)? > '); �31�
readln(Response1);

writeln;

if response1[1] in ['Y','y'] then

begin

writeln;

writeln('DELETE row from PurchDB.Vendors');

EXEC SQL DELETE FROM PurchDB.Vendors �32�
WHERE VendorNumber = :VendorNumber;

if SQLCA.SQLCODE <> OK then SqlStatusCheck;

end;

end; (* end procedure DisplayDelete *)

procedure Delete; �33�
(* procedure to delete a row from PurchDB.Vendors *)

begin

writeln;

writeln(' *** Procedure to DELETE rows from PurchDB.Vendors *** ');

writeln;

repeat

writeln;

prompt('Enter Vendor Number or 0 for MENU> '); �34�
readln(VendorNumber);

writeln;

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 8 of 12)

7-24 Simple Data Manipulation

if VendorNumber <> 0 then

begin

BeginTransaction; �35�
writeln('SELECT * from PurchDB.Vendors');

EXEC SQL SELECT VendorNumber, �36�
VendorName,

ContactName,

PhoneNumber,

VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks

INTO :VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,
:VendorCity,

:VendorState,

:VendorZipCode,

:VendorRemarks :VendorRemarksInd

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

case SQLCA.SQLCODE of

OK : DisplayDelete; �37�
NotFound : begin

writeln;

writeln('Row not found!'); �38�
end;

otherwise begin

SqlStatusCheck; �39�
end;

end; (* end case *)

CommitWork; �40�
end; (* end if response *)

until VendorNumber = 0;

end; (* end Delete procedure *)

procedure Insert; �41�
(* procedure to insert a row into PurchDB.Vendors *)

begin

writeln;
writeln(' *** Procedure to INSERT rows into PurchDB.Vendors *** ');

writeln;

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 9 of 12)

Simple Data Manipulation 7-25

repeat

writeln;

prompt('Enter Vendor Number or 0 for MENU> '); �42�
readln(VendorNumber);

writeln;

if VendorNumber <> 0 then

begin

writeln;

prompt('Enter Vendor Name> ');

readln(VendorName);

writeln;

writeln;

prompt('Enter Contact Name (0 for null)> '); �43�
readln(ContactName);

if ContactName = '0' then
ContactNameInd := -1 �44�

else

ContactNameInd := 0;

writeln;

prompt('Enter Phone Number (0 for null)> ');

readln(PhoneNumber);

if PhoneNumber = '0' then

PhoneNumberInd := -1

else

PhoneNumberInd := 0;

writeln;

prompt('Enter Vendor Street> ');

readln(VendorStreet);

writeln;

prompt('Enter Vendor City> ');

readln(VendorCity);

writeln;

prompt('Enter Vendor State> ');

readln(VendorState);

writeln;

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 10 of 12)

7-26 Simple Data Manipulation

prompt('Enter Vendor Zip Code> ');

readln(VendorZipCode);

writeln;

prompt('Enter Vendor Remarks (0 for null)> ');

readln(VendorRemarks);

if VendorRemarks = '0' then

VendorRemarksInd := -1

else

VendorRemarksInd := 0;

BeginTransaction; �45�
writeln('INSERT row into PurchDB.Vendors');

EXEC SQL INSERT �46�
INTO PurchDB.Vendors

(VendorNumber,

VendorName,

ContactName,

PhoneNumber,
VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks)

VALUES (:VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,

:VendorCity,

:VendorState,

:VendorZipCode,

:VendorRemarks :VendorRemarksInd);

if SQLCA.SQLCODE <> OK then SqlStatusCheck;

CommitWork; �47�
end; (* end if response *)

until VendorNumber = 0;

end; (* end of insert procedure *)

begin (* Beginning of Program *)

writeln('Program for Simple Data Manipulation of Vendors Table - pasex7');

writeln;

if ConnectDBE then �48�
begin

repeat

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 11 of 12)

Simple Data Manipulation 7-27

writeln;

writeln(' 1 . . . SELECT rows from PurchDB.Vendors table');

writeln(' 2 . . . UPDATE rows with null values in PurchDB.Vendors table

writeln(' 3 . . . DELETE rows from PurchDB.Vendors table');

writeln(' 4 . . . INSERT rows into PurchDB.Vendors table');

writeln;

prompt('Enter choice or 0 to STOP> ');

readln(Response);

writeln;

if Response <> 0 then

begin

case Response of �49�
1 : Select;

2 : Update;

3 : Delete;

4 : Insert;

otherwise writeln('Enter 0-4 only, please');

end; (* end case *)

end; (* end if Response *)

until Response = 0;

TerminateProgram; �50�
end (* end if connect *)

else

writeln('Cannot connect to PartsDBE');

end. (* end of program *)

Figure 7-3. Program pasex7: Using SELECT, UPDATE, DELETE and INSERT (page 12 of 12)

7-28 Simple Data Manipulation

8

Processing with Cursors

Processing with cursors gives you the option of operating on a multiple-row query result,
one row at a time. The query result is referred to as an active set. You use a pointer called
a cursor to move through the active set, retrieving a row at a time into host variables and
optionally updating or deleting the row. Reporting applications may �nd this technique
useful. Update applications such as those that periodically operate on tables not being
concurrently accessed (e.g., inventory adjustments) may also �nd this technique useful.

This chapter presents:

SQL Cursor Commands.

Transaction Management for Cursor Operations (Further discussion of transaction
management is found in the ALLBASE/SQL Reference Manual .

Sample Program Using Cursor Operations.

The emphasis in this chapter is on FETCHing one row at a time. For an example of using the
FETCH command with the BULK option, see the \BULK FETCH" section of Chapter 9.

SQL Cursor Commands

The following ALLBASE/SQL commands are used in cursor processing:

DECLARE CURSOR de�nes a cursor and associates it with a query.

OPEN de�nes the active set.

FETCH retrieves one row of the active set into host variables; when a row resides in host
variables it is known as the current row. When a row is current and the active set is a
query result derived from a single table, you can use one of the following two commands to
change the row.

UPDATE WHERE CURRENT updates the current row.

DELETE WHERE CURRENT deletes the current row.

CLOSE terminates access to the active set and frees up ALLBASE/SQL bu�er space used
to handle the cursor.

For a given cursor, the commands listed above (with the exception of DECLARE CURSOR)
should be contained within the same transaction. Refer to the ALLBASE/SQL Reference
Manual for the complete syntax and semantics of these commands.

Processing with Cursors 8-1

DECLARE CURSOR

The DECLARE CURSOR command syntax names a cursor and associates with it a particular
SELECT command:

DECLARE CursorName

[IN DBEFileSetName]

CURSOR FOR

SelectCommand

[FOR UPDATE OF ColumnName [,ColumnName...]

This command does not retrieve rows from a table.

In the physical order of your source program statements, the DECLARE CURSOR command
must precede any command that references the cursor; for example, the OPEN command.

Note that the DECLARE CURSOR command has two optional clauses:

The IN clause de�nes the DBEFileSet in which the section generated by the preprocessor for
this command is stored. If no IN clause is speci�ed, �le space in the SYSTEM DBEFileSet
is used.

The FOR UPDATE OF clause is used when you use the UPDATE WHERE CURRENT
command to update a current row. This command may o�er the simplest way to update a
current row, but it imposes certain restrictions on the SelectCommand. Updating a current
row is fully discussed later in this chapter under \UPDATE WHERE CURRENT."

The SELECT command syntax for cursor declarations that do not include the FOR UPDATE
clause can consist of any of the SELECT command clauses except the INTO clause:

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnNames

HAVING SearchCondition2

ORDER BY ColumnIdenti�ers

A SELECT command associated with a cursor does not name output host variables, but
may name input host variables in the select list, the WHERE clause, or the HAVING clause.
In the following example, the rows qualifying for the query result will be those with a
COUNTCYCLE matching that speci�ed by the user in input host variable COUNTCYCLE :

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
DECLARE InventoryNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CURSOR FORNNNNNNNNNNNNNNNNNNNN
SELECT PartNumber,

BinNumber,

QtyOnHand,

AdjustmentQty

FROM PurchDB.Inventory

WHERE CountCycle = :CountCycle

ORDER BY BinNumber;

8-2 Processing with Cursors

When performing cursor processing, the ORDER BY clause may be useful. In the previous
example, the rows in the query result will be in order by ascending bin number, to help the
program user, who will be moving from bin to bin, taking a physical inventory.

The DECLARE CURSOR command is actually a preprocessor directive. When the Pascal
preprocessor parses this command, it stores a section in the target DBEnvironment. At run
time, the section is not executed when the DECLARE CURSOR command is encountered,
but when the OPEN command is executed. Because the DECLARE CURSOR command
is not executed at run time, you do not need to perform status checking in your program
following this command.

OPEN

The OPEN command examines any input host variables, determines the active set, and
allocates internal bu�er space for the active set. (See the \Using KEEP CURSOR" section of
this chapter for more information.) The syntax is as follows:

OPEN CursorName
�
KEEP CURSOR

�� WITH LOCKS

WITH NOLOCKS

�

The following command opens the cursor de�ned earlier:

EXEC SQL OPEN Inventory;

Once the active set is de�ned, the FETCH command will retrieve data from it, one row at a
time.

You can use the KEEP CURSOR WITH NOLOCKS option for a cursor that involves
sorting, whether through the use of a DISTINCT, GROUP BY, or ORDER BY clause, or
as the result of a union or a join operation. However, for kept cursors involving sorting,
ALLBASE/SQL does not ensure data integrity. See the ALLBASE/SQL Reference Manual
for more information on ensuring data integrity.

FETCH

The FETCH command de�nes a current row and delivers the row into output host variables
with the following syntax:

FETCH CursorName INTO OutputHostVariables

Remember to include indicator variables when one or more columns in the query result may
contain a null value:

EXEC SQL
NNNNNNNNNNNNNNNNN
FETCH InventoryNNNNNNNNNNNNNN
INTO :PartNumber,

:BinNumber,

:QtyOnHand :QtyOnHandInd,

:AdjustmentQty :AdjustmentQtyInd;

The �rst time you execute the FETCH command, the �rst row in the query result becomes
the current row. With each subsequent execution of the FETCH command, each succeeding
row in the query result becomes current. After the last row in the query result has been
fetched, ALLBASE/SQL sets SQLCODE to 100. ALLBASE/SQL also sets SQLCODE to 100

Processing with Cursors 8-3

if no rows qualify for the active set. You should test for an SQLCODE value of 100 after each
execution of the FETCH command to determine whether to re-execute this command:

var
...

DoFetch : boolean;
...

procedure GetARow;

begin

do

Fetch := TRUE;

while DoFetch = TRUE do

The FETCH command appears here.

case SQLCA.SQLCODE of

0 : DisplayRow;

100 : begin

DoFetch := FALSE;

CloseCursor;

CommitWork;

end;

otherwise begin

DoFetch := FALSE;

SqlStatusCheck;

CloseCursor;

RollBackWork;

end;

end;

When a row is current, you can update it by using the UPDATE WHERE CURRENT
command or delete it by using the DELETE WHERE CURRENT command.

UPDATE WHERE CURRENT

This command can be used to update the current row when the SELECT command
associated with the cursor does not contain one of the following:

A DISTINCT clause in the select list.
An aggregate function in the select list.
A FROM clause with more than one table.
An ORDER BY clause.
A GROUP BY clause.

The UPDATE WHERE CURRENT command syntax identi�es the active set to be updated
by naming the cursor and the column(s) to be updated.

8-4 Processing with Cursors

UPDATE TableName

SET ColumnName = ColumnValue

[,...]

WHERE CURRENT OF CursorName

Any columns you name in this command must also have been named in a FOR UPDATE
clause in the related DECLARE CURSOR command:

EXEC SQL DECLARE
NNN
AdjustQtyOnHand

CURSOR FOR

SELECT PartNumber,

BinNumber,

QtyOnHand,

AdjustmentQty

FROM PurchDB.Inventory

WHERE QtyOnHand IS NOT NULL

AND AdjustmentQty IS NOT NULLNN
FOR UPDATE OF QtyOnHand,NN

AdjustmentQty;

EXEC SQL OPEN AdjustQtyOnHand;

The output host variables do not need to include indicator variables,

because the SELECT command associated with the cursor eliminates any rows

having null values from the active set:

EXEC SQL FETCH
NNN
AdjustQtyOnHand

INTO :PartNumber,

:BinNumber,

:QtyOnHand,

:AdjustmentQty;

.

.

.

EXEC SQL
NNNNNNNNNNNNNNNNNNNN
UPDATE PurchDB.Inventory

SET
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
QtyOnHand = :QtyOnHand + :AdjustmentQty,NNN
AdjustmentQty = 0NN

WHERE CURRENT OF AdjustQtyOnHand;

In this example, the order of the rows in the query result is not important. Therefore the
SELECT command associated with cursor ADJUSTQTYONHAND does not need to contain
an ORDER BY clause and the UPDATE WHERE CURRENT command can be used.

Processing with Cursors 8-5

In cases where order is important and the ORDER BY clause must be used, you can use the
UPDATE command with the WHERE clause to update values in the current row as well as
any other rows that qualify for the search condition.

EXEC SQL
NNN
DECLARE Inventory

CURSOR FOR

SELECT PartNumber,

BinNumber,

QtyOnHand,

AdjustmentQty

FROM PurchDB.Inventory

WHERE CountCycle = :CountCycle

ORDER BY BinNumber;

.

.

.

EXEC SQL
NN
FETCH Inventory

INTO :PartNumber,

:BinNumber,

:QtyOnHand :QtyOnHandInd,

:AdjustmentQty :AdjustmentQtyInd;

The program displays the current row. If the QtyOnHand value is not

null, the program prompts the user for an adjustment quantity. Adjustment

quantity is the di�erence between the quantity actually in the bin and

the QtyOnHand in the row displayed. If the QtyOnHand value is null, the

program prompts the user for both QtyOnHand and AdjustmentQty. Any value

entered is used in the following UPDATE command:

EXEC SQL
NNNNNNNNNNNNNNNNNNNN
UPDATE PurchDB.Inventory

SET QtyOnHand = :QtyOnHand :QtyOnHandInd,

AdjustmentQty = :AdjustmentQty :AdjustmentQtyIndNNNNNNNNNNNNNNNNN
WHERE PartNumber = :PartNumber

AND BinNumber = :BinNumber;

After either the UPDATE WHERE CURRENT or the UPDATE command is executed, the
current row remains the same until the FETCH command is re-executed.

If you want to execute UPDATE commands inside the FETCH loop, remember that more
than one row in the active set may qualify for the UPDATE operation, as when the WHERE
clause in the UPDATE command does not specify a unique key. When more than one row
quali�es for the UPDATE, you may not see a changed row unless you CLOSE and re-OPEN
the cursor. To avoid this problem, either ensure your UPDATE commands change only one
row (the current row) or perform the UPDATE operations outside the FETCH loop.

8-6 Processing with Cursors

DELETE WHERE CURRENT

This command can be used to delete the current row when the SELECT command associated
with the cursor does not contain one of the following:

A DISTINCT clause in the select list.
An aggregate function in the select list.
A FROM clause with more than one table.
An ORDER BY clause.
A GROUP BY clause.

The DELETE WHERE CURRENT command has a very simple syntax:

DELETE FROM TableName

WHERE CURRENT OF CursorName

The DELETE WHERE CURRENT command can be used in conjunction with a cursor
declared with or without the FOR UPDATE clause:

The program displays the current row and asks the user whether to update

or delete it. If the user wants to delete the row, the following command

is executed.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DELETE FROM PurchDB.InventoryNN
WHERE CURRENT OF AdjustQtyOnHand

Even though the SELECT command associated with cursor INVENTORY names only some
of the columns in table PURCHDB.INVENTORY, the entire current row is deleted.

After the DELETE WHERE CURRENT command is executed, there is no current row. You
must re-execute the FETCH command to obtain another current row.

As in the case of the UPDATE WHERE CURRENT command, if the SELECT command
associated with the cursor contains an ORDER BY clause or other components listed earlier,
you can use the DELETE command with the WHERE clause to delete a row:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DELETE FROM PurchDB.InventoryNNNNNNNNNNNNNNNNN

WHERE PartNumber = :PartNumber

AND BinNumber = :BinNumber

If you use the DELETE command to delete a row while using a cursor to examine an active
set, remember that more than one row will be deleted if multiple rows satisfy the conditions
speci�ed in the WHERE clause of the DELETE command. In addition, the row that is
current when the DELETE command is executed remains the current row until the FETCH
command is re-executed.

Processing with Cursors 8-7

CLOSE

When you no longer want to operate on the active set, use the CLOSE command with the
following syntax:

CLOSE CursorName

The CLOSE command frees up ALLBASE/SQL internal bu�ers used to handle cursor
operations. This command does not release any locks obtained since the cursor was opened; to
release locks, you must terminate the transaction with a COMMIT WORK or a ROLLBACK
WORK:

The program opens a cursor and operates on the active set. After the last

row has been operated on, the cursor is closed:

EXEC SQL CLOSE Inventory;

Additional SQL commands are executed, then the transaction is terminated:

EXEC SQL COMMIT WORK;

When a transaction terminates, any cursors opened during that transaction are automatically
closed, unless you ar using the KEEP CURSOR option of the OPEN command. To avoid
possible confusion, it is good programming practice to always use the CLOSE command
followed by a COMMIT WORK to explicitly close any open cursors before ending a
transaction. Refer to the \Using KEEP CURSOR" section of this chapter for more
information on closing a kept cursor.

8-8 Processing with Cursors

Transaction Management for Cursor Operations

The time at which ALLBASE/SQL obtains locks during cursor processing depends on
whether ALLBASE/SQL uses an index scan or a sequential scan to retrieve the query result.

When a cursor is based on a SELECT command for which ALLBASE/SQL can use an index
scan, locks are obtained when the FETCH command is executed. In the following example, an
index scan can be used, because the predicate is optimizable and an index exists on column
ORDERNUMBER:

EXEC SQL DECLARE OrderReview

CURSOR FOR

SELECT OrderNumber,

ItemNumber,

OrderQty,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber;

When the cursor is based on a SELECT command for which ALLBASE/SQL will use a
sequential scan, locks are obtained when the OPEN command is executed. A sequential scan
would be used in conjunction with the following cursor:

EXEC SQL DECLARE OrderReview

CURSOR FOR

SELECT OrderNumber,
ItemNumber

OrderQty,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber > :OrderNumber;

The scope and strength of any lock obtained depends in part on the automatic locking mode
of the target table(s). If the lock obtained is a shared lock, as for PUBLIC or PUBLICREAD
tables, ALLBASE/SQL elevates the lock to an exclusive lock when you update or delete a row
in the active set.

The use of lock types, lock granularities, and isolation levels is discussed in the
ALLBASE/SQL Reference Manual .

As mentioned in the previous section, when a transaction terminates, any cursors opened
during that transaction are either automatically closed, or they remain open if you are using
the KEEP CURSOR option of the OPEN command. To avoid possible confusion, it is good
programming practice to always use the CLOSE command to explicitly close any open cursors
before ending a transaction with the COMMIT WORK or ROLLBACK WORK command.

When the transaction terminates, any changes made to the active set during the transaction
are either all committed or all rolled back, depending on how you terminate the transaction.

Processing with Cursors 8-9

Using KEEP CURSOR

Cursor operations in an application program let you manipulate data in an active set
associated with a SELECT command. The cursor is a pointer to a row in the active set. The
KEEP CURSOR option of the OPEN command lets you maintain the cursor position in an
active set beyond transaction boundaries. This means you can scan and update a large table
without holding locks for the duration of the entire scan. You can also design transactions
that avoid holding any locks around terminal reads. In general, use the KEEP CURSOR
option when you wish to release locks periodically in long or complicated transactions.

After you specify KEEP CURSOR in an OPEN command, a COMMIT WORK does not close
the cursor, as it normally does. Instead, COMMIT WORK releases all locks not associated
with the kept cursor and begins a new transaction while maintaining the current (kept) cursor
position. This makes it possible to update tuples in a large active set, releasing locks as the
cursor moves from page to page, instead of requiring you to reopen and manually reposition
the cursor before the next FETCH.

Locks held on pages corresponding to the current kept cursor are either held until after the
transaction ends (the default) or released depending on whether you specify WITH LOCKS or
WITH NOLOCKS. (Pages held include data and system pages.)

If you use the KEEP CURSOR WITH NOLOCKS option for a cursor that involves sorting,
whether through the use of a DISTINCT, GROUP BY, or ORDER BY clause, or as the result
of a union or a join operation, ALLBASE/SQL does not ensure data integrity.

It is your responsibility to ensure data integrity by verifying the continued existence of a row
before updating it or using it as the basis for updating some other table. For an updatable
cursor, you can use either the REFETCH or SELECT command to verify the continued
existence of a row. For a cursor that is non-updatable, you must use the SELECT command.

A warning (DBWARN 2056) regarding the kept cursor on a sort with no locks is generated.
You must check for this warning if you want to detect the execution of this type of cursor
operation.

KEEP CURSOR and Isolation Levels

The KEEP CURSOR option retains the current isolation level that you have speci�ed in the
BEGIN WORK command. Moreover, the exact pattern of lock retention and release for
cursors opened using KEEP CURSOR WITH LOCKS depends on the current isolation level,
for example:

With the CS isolation level, KEEP CURSOR maintains locks until the next FETCH is
completed. See Figure 8-2.

With the RC isolation level, KEEP CURSOR maintains locks only until the current
FETCH is completed; no locks are maintained across transactions. Therefore, KEEP
CURSOR WITH LOCKS does not retain locks at the RC isolation level.

For additional information on isolation levels, refer to the ALLBASE/SQL Reference Manual .

8-10 Processing with Cursors

KEEP CURSOR and Declaring for Update

When you DECLARE a cursor for UPDATE, SIX locks are obtained at the page level
rather than share locks. There is less concurrency and less chance of deadlock because lock
promotion is unnecessary. Although concurrency is reduced, throughput is often improved due
to the reduction in deadlock recovery overhead.

OPEN Command Without KEEP CURSOR

Figure 8-1 shows the operation of cursors when you do not select the KEEP CURSOR option.

Figure 8-1. Cursor Operation without the KEEP CURSOR Feature

After the cursor is opened, successive FETCH commands advance the cursor position. Any
exclusive locks acquired along the way are retained until the transaction ends. If you have
selected the Cursor Stability option in the BEGIN WORK command, locks on pages that
have not been updated are released when the cursor moves to a tuple on a new data page.
Exclusive locks are not released until a COMMIT WORK, which also closes the cursor.

Processing with Cursors 8-11

OPEN Command Using KEEP CURSOR WITH LOCKS and CS Isolation Level

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, locks associated with the cursor are not released.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state,
release all locks associated with the cursor, and prevent a new implicit BEGIN WORK.

Figure 8-2 shows the e�ect of the KEEP CURSOR WITH LOCKS.

Figure 8-2. Cursor Operation Using KEEP CURSOR WITH LOCKS

8-12 Processing with Cursors

OPEN Command Using KEEP CURSOR WITH NOLOCKS

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, all locks associated with the cursor are released. This
means that another transaction may delete or modify the next tuple in the active set before
you have the chance to FETCH it.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state and
prevent a new implicit BEGIN WORK.

When using KEEP CURSOR WITH NOLOCKS, be aware that data at the cursor position
may be lost before the next FETCH:

If another transaction deletes the current row, ALLBASE/SQL will return the next row.
No error message is displayed.

If another transaction deletes the table being accessed, the user will see the following
message: TABLE NOT FOUND (DBERR 137)

Figure 8-3 shows the e�ect of KEEP CURSOR WITH NOLOCKS.

Processing with Cursors 8-13

Figure 8-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS

KEEP CURSOR and BEGIN WORK

ALLBASE/SQL automatically begins a transaction whenever you issue a command if a
transaction is not already in progress. Thus, although you can code an explicit BEGIN
WORK to start transactions, it is not necessary to do so unless you wish to specify an
isolation level other than RR.

With KEEP CURSOR, an implicit BEGIN WORK follows immediately after you perform
a COMMIT WORK, so if you do an explicit BEGIN WORK, ALLBASE/SQL returns an
error message stating that a transaction is already in progress. If this problem should arise,
re-code to eliminate the BEGIN WORK from the loop.

8-14 Processing with Cursors

KEEP CURSOR and COMMIT WORK

When the KEEP CURSOR option of the OPEN command is activated for a cursor,
COMMIT WORK may or may not release locks associated with the cursor depending on
the setting of the WITH LOCKS/WITH NOLOCKS option.

COMMIT WORK does not close cursors opened with the KEEP CURSOR option.
COMMIT WORK does end the previous implicit transaction and starts an implicit
transaction with the same isolation level as that speci�ed with the BEGIN WORK
command.

Remember that COMMIT WORK will still close all cursors opened without the KEEP
CURSOR option.

KEEP CURSOR and ROLLBACK WORK

When the KEEP CURSOR option is activated for an opened cursor, all locks are released
when you ROLLBACK WORK, whether or not you have speci�ed WITH LOCKS or WITH
NOLOCKS. The position of the cursor is restored to what it was at the beginning of the
transaction being rolled back. The current transaction is ended and a new transaction is
implicitly started with the same isolation level as speci�ed in the BEGIN WORK command.

Remember that ROLLBACK WORK closes all cursors that you opened during the current
transaction, unless the cursor was opened with the KEEP CURSOR option and its position
saved with a COMMIT WORK immediately following the the OPEN command.

When a cursor is opened with the KEEP CURSOR option, ROLLBACK WORK TO
SavePoint is not allowed.

KEEP CURSOR and Aborted Transactions

When a transaction is aborted by ALLBASE/SQL, the cursor position is retained, and a
new transaction begins, as with ROLLBACK WORK.

Remember that when a transaction aborts all cursors that you opened during the current
transaction are closed unless the cursor was opened with the KEEP CURSOR option and
its position saved with a COMMIT WORK immediately following the the OPEN command.

The use of multiple cursors may require frequent examination of several system catalog
tables. This means acquiring exclusive locks, which creates the potential for deadlock.
However, the behavior of aborted transactions with KEEP CURSOR lets you create
automatic deadlock handling routines. Simply repeat the operation until deadlock does not
occur. The technique is shown under \Examples," below.

Writing Keep Cursor Applications

The next pages show a skeleton outline of a KEEP CURSOR application. Speci�c code
examples appear in the following pages.

Processing with Cursors 8-15

Because of the potential for deadlock, you must be careful to test for that condition frequently
in applications using KEEP CURSOR. An aborted transaction results when a deadlock
is encountered. (There is no need to test for deadlock following a COMMIT WORK or a
BEGIN WORK command.) Use the following steps to create your code:

1. Declare all cursors to be used in the application.

2. Use a loop to test for a deadlock condition as you open all cursors that will use the
KEEP CURSOR option. Start the loop with a BEGIN WORK statement that speci�es
the isolation level, then include a separate test for non-deadlock errors for each OPEN
statement. Create an S100-SQL-STATUS-CHECK routine to display all error messages and
RELEASE the DBEnvironment in the event of fatal errors. See the \Examples" section
below.

3. Use the COMMIT WORK command. If you do not COMMIT at this point, an aborted
transaction will roll back all the OPEN statements, and you will lose the cursor positions.
The COMMIT starts a new transaction and keeps the cursor positions.

4. Use a loop to scan your data until all rows have been processed, as follows.

First, open any non-kept cursors. Do not include a COMMIT WORK after opening the
non-kept cursors. If a deadlock is detected and the transaction aborted, the program
reapplies the transaction.

Next, execute any FETCH, UPDATE WHERE CURRENT, or DELETE WHERE
CURRENT commands. Be sure to test for unexpected errors and branch to
S100-SQL-STATUS-CHECK to display messages and RELEASE in the event of a
non-deadlock error. Again, if a deadlock is detected and the transaction aborted, the
program reapplies the transaction.

At the end of the loop, include a COMMIT WORK. This will commit your data to the
database, and it will close any non-kept cursors opened so far in the program. It will also
start a new transaction and maintain the cursor position of all kept cursors.

Place any terminal or �le I/O after this COMMIT, in order to prevent duplicate
messages from appearing in the event of a rollback because of deadlock.

5. Once the program is �nished scanning the tables, you should close all kept cursors within a
�nal loop which tests for a deadlock condition. Once again, test for unexpected errors and
branch to S100-SQL-STATUS-CHECK if necessary.

6. Execute a �nal COMMIT WORK to release the KEEP state.

8-16 Processing with Cursors

Examples

This code is intended as a guide; you will want to customize it for your speci�c needs.

The code illustrates status checking techniques with emphasis on deadlock detection. The
following four generalized code segments are presented:

Using status checking routine in conjunction with the other code segments.

Using a single kept cursor with locks.

Using multiple cursors and cursor stability.

Avoiding locks on terminal reads.

Common StatusCheck Procedure

PROCEDURE SQLStatusCheck;
BEGIN

CASE SQLCA.SQLCODE OF

(**)

(* Deadlock did not occur; Set DeadLockFree to TRUE *)

(**)

0: DeadLockFree := TRUE;

(**)

(* Deadlock occurred; set DeadLockFree to FALSE. *)

(* Exit status checking routine without displaying a message. *)

(**)

-14024: BEGIN

DeadLockFree := FALSE;

(**)

(* If your program monopolizes CPU time by repeatedly *)

(* reapplying a transaction, you could include a call *)

(* to the XL PAUSE intrinsic at this point. *)

(**)

END;

(**)

(* No more rows found; Set EndOfScan-Flag to EndOfScan. *)

(* Exit status checking routine without displaying a message. *)

(**)

100: EndOfScan := TRUE;

Processing with Cursors 8-17

(**)

(* For other fatal errors: *)

(* PERFORM S200-SQLEXPLAIN to display messages *)
(* RELEASE the DBE *)

(* Stop the program *)

(* *)

(* Some errors which could be considered fatal are: *)

(* -3040 DBA issued a STOP DBE command *)

(* -3043 DBA issued a terminate user command *)

(* -14046 log full error *)

(* -14047 system clock/timestamp error *)

(* -14074 DBCore internal error *)

(* -14075 DBCore internal error *)

(* -15048 DBCore internal error *)

(**)

OTHERWISE

REPEAT

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

UNTIL SQLCA.SQLCODE = 0;

EXEC SQL RELEASE;

halt;

END; (* CASE Statement *)

END; (* Procedure SQLStatusCheck *)

8-18 Processing with Cursors

Single Cursor WITH LOCKS

(**)

(* Declare cursor C1. *)

(**)

EXEC SQL DECLARE C1 CURSOR FOR

SELECT PartName, SalesPrice FROM PurchDB.Parts

WHERE SalesPrice > 500.00;

(**)

(* Open cursor C1 using KEEP CURSOR WITH LOCKS option, *)

(* testing for deadlocks. *)

(**)

DeadLockFree := FALSE;

REPEAT

EXEC SQL OPEN C1 KEEP CURSOR WITH LOCKS;

SQLStatusCheck;

UNTIL DeadLockFree;

(**)

(* COMMIT WORK in order to preserve initial cursor position. *)

(**)

EXEC SQL COMMIT WORK;

SQLStatusCheck;

(**)

(* BULK FETCH qualifying rows from the Parts table using *)

(* cursor C1 until there is no more data, testing for *)

(* deadlocks. *)

(**)

EndOfScan := FALSE;

REPEAT

DeadLockFree := FALSE;

REPEAT

EXEC SQL BULK FETCH C1 INTO :PriceList, 1, 20;

SQLStatusCheck;

UNTIL DeadLockFree OR EndOfScan;

IF DeadLockFree

BEGIN

(**)

(* Execute COMMIT WORK to release all page locks held by *)

(* cursor C1 except the current page. *)

(**)

EXEC SQL COMMIT WORK;

SQLStatusCheck;

Processing with Cursors 8-19

(**)

(* Display qualifying rows. SQLERRD[3] contains the actual *)

(* number of qualified rows. BUFFEREND contains the maximum *)
(* number of rows declared in the buffer which receives data *)

(* from the BULK FETCH command. *)

(**)

IF SQLERRD[3] > BUFFEREND THEN

NUMROWS := BUFFEREND

ELSE

NUMROWS := SQLERRD[3];

FOR i := 1 TO NUMROWS DO

BEGIN

writeln(' Part Name: ',PriceList[i].PartName);

writeln(' Sales Price: ',PriceList[i].SalesPrice);

writeln;

END;

END;

UNTIL EndOfScan;

(**)

(* CLOSE cursor C1, testing for deadlocks. *)

(**)

DeadLockFree := FALSE;

REPEAT

EXEC SQL CLOSE C1;

SQLStatusCheck;

UNTIL DeadLockFree;

(**)

(* Execute final COMMIT WORK to release all locks held by *)
(* cursor C1. *)

(**)

EXEC SQL COMMIT WORK;

SQLStatusCheck;

8-20 Processing with Cursors

Multiple Cursors and Cursor Stability

(**)

(* Declare cursor C1 and cursor C2. *)

(**)

EXEC SQL DECLARE C1 CURSOR FOR

SELECT BranchNo FROM Tellers WHERE TellerNo > 15000

FOR UPDATE OF Status;

EXEC SQL DECLARE C2 CURSOR FOR

SELECT BranchNo FROM Branches

FOR UPDATE OF Credit;

(**)

(* Open cursor C1 using KEEP CURSOR WITH LOCKS option, *)

(* testing for deadlocks. Use an explicit BEGIN WORK CS *)

(* command in the loop to ensure that ALLBASE/SQL will use *)

(* the CURSOR STABILITY isolation level if a deadlock occurs. *)

(**)

DeadLockFree := FALSE;

REPEAT

EXEC SQL BEGIN WORK CS;

IF SQLCA.SQLCODE = 0 THEN

EXEC SQL OPEN C1 KEEP CURSOR WITH LOCKS;

SQLStatusCheck;

UNTIL DeadLockFree;

(**)

(* COMMIT WORK in order to preserve initial cursor position. *)

(**)

EXEC SQL COMMIT WORK;

SQLStatusCheck;

(**)

(* FETCH and UPDATE data in qualifying rows of the Tellers *)

(* table and Branches table using cursors C1 and C2 until *)

(* no more rows are found. *)
(**)

EndOfScan := FALSE;

REPEAT

(**)

(* FETCH data from Tellers table using cursor C1. *)

(**)

EXEC SQL FETCH C1 INTO :HostBranchNo1;

(**)

(* OPEN cursor C2 (without the KEEP CURSOR option). *)

(**)

Processing with Cursors 8-21

IF SQLCODE = 0 THEN

BEGIN

EXEC SQL OPEN C2;
(**)

(* For each qualifying row in the Tellers table: *)

(* FETCH and UPDATE rows in the Branches table using cursor *)

(* C2 until no more rows are found, testing for deadlocks. *)

(**)

IF SQLCODE = 0 THEN

BEGIN

DeadLockFree := TRUE;

(**)

(* FETCH data from the Branches table using cursor C2. *)

(**)

REPEAT

EXEC SQL FETCH C2 INTO :HostBranchNo2;

(**)

(* Update Branches table if: *)

(* FETCH was successful (SQLCODE = 0), and *)

(* Teller.BranchNo = Branches.BranchNo *)

(**)

IF SQLCODE 0 THEN

SQLStatusCheck

ELSE

IF HostBranchNo1 = HostBranchNo2 THEN

BEGIN

EXEC SQL UPDATE Branches

SET Credit = Credit * 0.005

WHERE CURRENT OF C2;
SQLStatusCheck;

END;

UNTIL EndOfScan OR NOT DeadLockFree;

IF EndOfScan THEN

BEGIN

EndOfScan := FALSE;

EXEC SQL CLOSE C2;

(**)

(* After successfully completing the FETCH and UPDATE of data *)

(* in qualifying rows of the Branches table using cursor C2, *)

(* UPDATE the Tellers table using cursor C1. *)

(**)

IF SQLCODE = 0 THEN

BEGIN

EXEC SQL UPDATE TELLERS

SET Status = :NewStatus

WHERE CURRENT OF C1;

8-22 Processing with Cursors

(**)

(* Execute COMMIT WORK to: *)

(* Save UPDATEs to Branches table using cursor C2 *)
(* Release all page locks held by cursor C2 *)

(* Save UPDATES to Tellers table using cursor C1 *)

(* Release pages locked by cursor C1 except current page *)

(**)

IF SQLCODE = 0 THEN

EXEC SQL COMMIT WORK;

END;

END;

END;

END;

SQLStatusCheck;

UNTIL EndOfScan;

(**)

(* CLOSE cursor C1, testing for deadlocks. *)

(**)

DeadLockFree := FALSE;

REPEAT

EXEC SQL CLOSE C1;

SQLStatusCheck;

UNTIL DeadLockFree;

(**)

(* Execute final COMMIT WORK to release all locks held by *)

(* cursor C1. *)

(**)
EXEC SQL COMMIT WORK;

SQLStatusCheck;

Avoiding Locks on Terminal Reads

(**)

(* Declare cursor C1. *)

(**)

EXEC SQL DECLARE C1 CURSOR FOR

SELECT PartName, SalesPrice FROM PurchDB.Parts;

(**)

(* Open cursor C1 using KEEP CURSOR WITH NOLOCKS option, *)

(* testing for deadlocks. *)

(**)
DeadLockFree := FALSE;

REPEAT

EXEC SQL OPEN C1 KEEP CURSOR WITH NOLOCKS;

SQLStatusCheck;

UNTIL DeadLockFree;

Processing with Cursors 8-23

(**)

(* COMMIT WORK in order to preserve initial cursor position. *)
(**)

EXEC SQL COMMIT WORK;

SQLStatusCheck;

(**)

(* FETCH and DISPLAY data in qualifying rows of the Parts *)

(* table using cursors C1 until no more rows are found, *)

(* testing for deadlocks. *)

(**)

EndOfScan := FALSE;

REPEAT

(**)

(* FETCH data from the Parts table using cursor C1, testing *)

(* for deadlocks. *)

(**)

DeadLockFree := FALSE;

REPEAT

EXEC SQL FETCH C1 INTO :PartNumber, :PresentPrice;

SQLStatusCheck;

UNTIL DeadlockFree;

(**)

(* Execute COMMIT WORK to release all page locks held by *)

(* cursor C1. *)

(**)

EXEC SQL COMMIT WORK;

SQLStatusCheck;
(**)

(* Display values from Parts.PartNumber and Parts.SalesPrice, *)

(* and prompt user for a new sales price. *)

(**)

writeln(' Part Number: ',PartNumber);

writeln(' Sales Price: ',PresentPrice);

prompt ('Enter new sales price: ');

readln (NewPrice);

(**)

(* Re-select data from the Parts table and verify that the *)

(* SalesPrice has not changed. If unchanged, update the row *)

(* with the value in NewPrice. *)

(**)

DeadLockFree := FALSE;

REPEAT

8-24 Processing with Cursors

(**)

(* Re-select data from the Parts table. *)

(**)
EXEC SQL SELECT SalesPrice INTO :SalesPrice

FROM PurchDB.Parts WHERE PartNumber = :PartNumber;

SQLStatusCheck;

IF EndOfScan THEN

writeln('Part number no longer in database. Not updated')

ELSE

IF SalesPrice NOT = PresentPrice

writeln('Current price has changed. Not updated')

ELSE

(**)

(* If Parts.SalesPrice has not changed, update the qualifying *)

(* row with the value in NewPrice. *)

(**)

BEGIN

EXEC SQL UPDATE PurchDB.Parts

SET SalesPrice = :NewPrice

WHERE PartNumber = :PartNumber;

SQLStatusCheck;

END;

UNTIL DeadLockFree;

UNTIL EndOfScan;

(**)

(* CLOSE cursor C1, testing for deadlocks. *)

(**)
DeadLockFree := FALSE;

REPEAT

EXEC SQL CLOSE C1;

SQLStatusCheck;

UNTIL DeadLockFree;

(**)

(* Execute final COMMIT WORK to release all locks held by *)

(* cursor C1. *)

(**)

EXEC SQL COMMIT WORK;

SQLStatusCheck;

Processing with Cursors 8-25

Program Using UPDATE WHERE CURRENT

The ow chart in Figure 8-4 summarizes the functionality of program pasex8. This
program uses a cursor and the UPDATE WHERE CURRENT command to update column
ReceivedQty in table PurchDB.OrderItems. The runtime dialog for pasex8 appears in Figure
8-5, and the source code in Figure 8-6.

The program �rst executes procedure DeclareCursor �26�, which contains the DECLARE
CURSOR command �7�. This command is a preprocessor directive and is not executed at
run time. At run time, procedure DeclareCursor only displays the message, Declare Cursor.
The DECLARE CURSOR command de�nes a cursor named OrderReview. The cursor is
associated with a SELECT command that retrieves the following columns for all rows in
table PurchDB.OrderItems having a speci�c order number but no null values in column
VendPartNumber:

OrderNumber (defined NOT NULL)

ItemNumber (defined NOT NULL)

VendPartNumber

ReceivedQty

Cursor OrderReview has a FOR UPDATE clause naming column ReceivedQty to allow the
user to change the value in this column.

To establish a DBE session, program pasex8 executes function ConnectDBE �27�.
This function evaluates to TRUE when the CONNECT command �1� for the sample
DBEnvironment, PartsDBE, is successfully executed.

The program then executes procedure FetchUpdate until the Done ag is set to TRUE �28�.

Procedure FetchUpdate

Procedure FetchUpdate prompts for an order number or a 0 �17�. When the user enters a 0,
the Done ag is set to TRUE �25�, and the program terminates. When the user enters an
order number, the program begins a transaction by executing procedure BeginTransaction �18�,
which executes the BEGIN WORK command �3�.

Cursor OrderReview is then opened by invoking function OpenCursor �19�. This function,
which executes the OPEN command �8�, evaluates to TRUE when the command is successful.

A row at a time is retrieved and optionally updated until the DoFetch ag is set to FALSE
�20�. This ag becomes false when:

The FETCH command fails; this command fails when no rows qualify for the active set,
when the last row has already been fetched, or when ALLBASE/SQL cannot execute this
command for some other reason.

The program user wants to stop reviewing rows from the active set.

The FETCH command �21� names an indicator variable for ReceivedQty, the only column in
the query result that may contain a null value. If the FETCH command is successful, the
program executes procedure DisplayUpdate �22� to display the current row and optionally
update it.

8-26 Processing with Cursors

Procedure DisplayUpdate

Procedure DisplayUpdate executes procedure DisplayRow �10� to display the current row. The
user is asked whether he wants to update the current ReceivedQty value �11�. If so, the user is
prompted for a new value. The value accepted is used in an UPDATE WHERE CURRENT
command �12�. If the user entered a 0, a null value is assigned to this column.

The program then asks whether to FETCH another row �13�. If so, the FETCH command is
re-executed. If not, the program asks whether the user wants to make permanent any updates
he may have made in the active set �14�. To keep any row changes, the program executes
procedure CommitWork �16�, which executes the COMMIT WORK command �4�. To undo
any row changes, the program executes procedure RollBackWork �15�, which executes the
ROLLBACK WORK command �5�.

The COMMIT WORK command is also executed when ALLBASE/SQL sets
SQLCA.SQLCODE to 100 following execution of the FETCH command �23�.
SQLCA.SQLCODE is set to 100 when no rows qualify for the active set or when the last
row has already been fetched. If the FETCH command fails for some other reason, the
ROLLBACK WORK command is executed instead �24�.

Before any COMMIT WORK or ROLLBACK WORK command is executed, cursor
OrderReview is closed �9�. Although the cursor is automatically closed whenever a transaction
is terminated, it is good programming practice to use the CLOSE command to close open
cursors prior to terminating transactions.

When the program user enters a 0 in response to the order number prompt �17�, the program
terminates by executing procedure TerminateProgram �29�, which executes the RELEASE
command �2�.

Explicit status checking is used throughout this program. After each embedded SQL
command is executed, SQLCA.SQLCode is checked. If SQLCode is less than 0, the program
executes procdure SQLStatusCheck, which executes the SQLEXPLAIN command.

Processing with Cursors 8-27

Figure 8-4. Flow Chart of Program pasex8

8-28 Processing with Cursors

Program to UPDATE OrderItems Table via a CURSOR - pasex8

Event List:

Connect to PartsDBE

Prompt for Order Number

Begin Work

Open Cursor

FETCH a row

Display the retrieved row

Prompt for new Received Quantity

Update row within OrderItems table

FETCH the next row, if any, with the same Order Number

Repeat the above five steps until there are no more rows

Close Cursor

End Transaction

Repeat the above eleven steps until user enters 0

Release PartsDBE

Declare Cursor

Connect to PartsDBE

Enter OrderNumber or 0 to STOP > 30520

Begin Work

Open Cursor

OrderNumber: 30520

ItemNumber: 1

VendPartNumber: 9375

ReceivedQty 9

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > y

OrderNumber: 30520

ItemNumber: 2

VendPartNumber: 9105

ReceivedQty is 3

Figure 8-5. Runtime Dialog of Program pasex8

Processing with Cursors 8-29

Do you want to change ReceivedQty (Y/N)? > y

Enter New ReceivedQty (0 for NULL)> 15

Update PurchDB.OrderItems Table

Do you want to see another row (Y/N)? > y

OrderNumber: 30520

ItemNumber: 3

VendPartNumber: 9135

ReceivedQty 3

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > y

Row not found or no more rows

Want to save your changes (Y/N)? > y

Close Cursor

Commit Work

1 row(s) changed.

Enter OrderNumber or 0 to STOP > 30510

Begin Work

Open Cursor

OrderNumber: 30510

ItemNumber: 1

VendPartNumber: 1001

ReceivedQty 3

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > n

Close Cursor

Commit Work

Enter OrderNumber or 0 to STOP > 0

Figure 8-5. Runtime Dialog of Program pasex8 (page 2 of 2)

8-30 Processing with Cursors

$Heap_Dispose ON$

$Heap_Compact ON$

Standard_Level 'HP_Pascal$

(* *)

(* This program illustrates the use of UPDATE WHERE CURRENT *)

(* with a Cursor to update a single row at a time. *)

(* *)

Program pasex8(input, output);

const

OK = 0;

NotFound = 100;

DeadLock = -14024;

var

(* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION;
OrderNumber : integer;

ItemNumber : integer;

VendPartNumber : packed array [1..16] of char;

ReceivedQty : SmallInt;

ReceivedQtyInd : SqlInd;

SQLMessage : packed array[1..132] of char;

EXEC SQL END DECLARE SECTION;

(* End Host Variable Declarations *)

SQLCA : SQLCA_type; (* SQL Communication Area *)

Abort : boolean;

Done : boolean;

DoFetch : boolean;

Response : packed array [1..3] of char;

RowCounter : integer;

procedure TerminateProgram; forward;

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

begin

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

Figure 8-6. Program pasex8: Using UPDATE WHERE CURRENT

Processing with Cursors 8-31

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then TerminateProgram;

end; (* End SQLStatusCheck Procedure *)

$PAGE $

function ConnectDBE: boolean; (* Function to Connect to PartsDBE *)

begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE'; �1�

ConnectDBE := TRUE;

if SQLCA.SQLCODE OK then

begin

ConnectDBE := FALSE;

SQLStatusCheck;

end; (* End if *)

end; (* End of ConnectDBE Function *)

procedure TerminateProgram; (* Procedure to Release PartsDBE *)

begin

EXEC SQL RELEASE; �2�

Done := TRUE;

end; (* End TerminateProgram Procedure *)

$PAGE $

procedure BeginTransaction; (* Procedure to Begin Work *)

begin

writeln;

writeln('Begin Work');

EXEC SQL BEGIN WORK; �3�
if SQLCA.SQLCODE OK then

begin

SQLStatusCheck;

TerminateProgram;

end;

end; (* End BeginTransaction Procedure *)

Figure 8-6. Program pasex8: Using UPDATE WHERE CURRENT (page 2 of 7)

8-32 Processing with Cursors

procedure CommitWork; (* Procedure to Commit Work *)

begin

writeln('Commit Work');

EXEC SQL COMMIT WORK; �4�
if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

TerminateProgram;

end;

end; (* End CommitWork Procedure *)

procedure RollBackWork; (* Procedure to RollBack Work *)

begin

writeln('Rollback Work');
EXEC SQL ROLLBACK WORK; �5�
if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

TerminateProgram;

end;

end; (* End RollBackWork Procedure *)

procedure DisplayRow; (* Procedure to Display OrderItems Rows *) �6�
begin

writeln;

writeln(' OrderNumber: ', OrderNumber);

writeln(' ItemNumber: ', ItemNumber);

writeln(' VendPartNumber: ', VendPartNumber);

if ReceivedQtyInd < 0 then

writeln(' ReceivedQty is NULL')

else

writeln(' ReceivedQty ', ReceivedQty);

end; (* End of DisplayRow *)

$PAGE $

Figure 8-6. Program pasex8: Using UPDATE WHERE CURRENT (page 3 of 7)

Processing with Cursors 8-33

procedure DeclareCursor;

begin

writeln('Declare Cursor');

EXEC SQL DECLARE OrderReview �7�
CURSOR FOR

SELECT OrderNumber,

ItemNumber,

VendPartNumber,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber

AND VendPartNumber IS NOT NULL

FOR UPDATE OF ReceivedQty;

end; (* End of DeclareCursor Procedure *)

function OpenCursor: boolean; (* Function to Open Cursor *)

begin

writeln('Open Cursor');
EXEC SQL OPEN OrderReview; �8�
if SQLCA.SQLCODE OK then

begin

OpenCursor := FALSE;

SQLStatusCheck;

RollBackWork;

end

else

OpenCursor := TRUE;

end; (* End OpenCursor Function *)

procedure CloseCursor; (* Procedure to Close Cursor *)

begin

writeln;

writeln('Close Cursor');

EXEC SQL CLOSE OrderReview; �9�
if SQLCA.SQLCODE <> OK then

begin

SQLStatusCheck;

TerminateProgram;

end;

end; (* End CloseCursor Procedure *)

$PAGE $

procedure DisplayUpdate; (* Display & Update row in Parts Table *)

begin
DisplayRow; �10�
writeln;

Figure 8-6. Program pasex8: Using UPDATE WHERE CURRENT (page 4 of 7)

8-34 Processing with Cursors

prompt('Do you want to change ReceivedQty (Y/N)? > '); �11�
readln(Response);

if Response[1] in ['Y','y'] then

begin

writeln;

prompt('Enter New ReceivedQty (0 for NULL)> ');

readln(ReceivedQty);

writeln('Update PurchDB.OrderItems Table');

if ReceivedQty = 0 then ReceivedQtyInd := -1

else ReceivedQtyInd := 0;

EXEC SQL UPDATE PurchDB.OrderItems

SET ReceivedQty = :ReceivedQty :ReceivedQtyInd �12�
WHERE CURRENT OF OrderReview;

if SQLCA.SQLCODE <> OK then SqlStatusCheck

else RowCounter := RowCounter+1;

end;

writeln;

prompt('Do you want to see another row (Y/N)? > '); �13�
readln(Response);

if Response[1] in ['N','n'] then

begin

if RowCounter > 0 then

begin

writeln;

prompt('Do you want to save any changes you made (Y/N)?> '); �14�
readln(Response);

begin

CloseCursor;

RollBackWork; �15�
DoFetch := FALSE;

end

else

begin

CloseCursor;

CommitWork; �16�
writeln(RowCounter, ' row(s) changed.');

DoFetch := FALSE;

end;

end; (* end if RowCounter *)

if RowCounter = 0 then

begin

CloseCursor;

CommitWork;

DoFetch := FALSE;

end;

end;
end; (* End of DisplayUpdate Procedure *)

$PAGE$

Figure 8-6. Program pasex8: Using UPDATE WHERE CURRENT (page 5 of 7)

Processing with Cursors 8-35

procedure FetchUpdate;

begin

RowCounter := 0;

writeln;

prompt('Enter OrderNumber or 0 to STOP > '); �17�
readln(OrderNumber);

if OrderNumber <> 0 then

begin

BeginTransaction; �18�

if OpenCursor then �19�
begin

DoFetch := TRUE;

while DoFetch = TRUE do �20�
begin

EXEC SQL FETCH OrderReview �21�
INTO :OrderNumber,

:ItemNumber,
:VendPartNumber,

:ReceivedQty :ReceivedQtyInd;

case SQLCA.SQLCODE of

OK : DisplayUpdate; �22�
NotFound : begin

DoFetch := FALSE;

writeln;

writeln('Row not found or no more rows');

if RowCounter > 0 then

begin

prompt('Want to save your changes (Y/N)? > ');

readln(Response);

if Response[1] in ['N','n'] then

begin

CloseCursor;

RollBackWork;

end

else

begin

CloseCursor;

CommitWork; �23�
writeln(RowCounter ,' row(s) changed.');

end;

end;

if RowCounter = 0 then

begin

CloseCursor;

CommitWork;
end;

Figure 8-6. Program pasex8: Using UPDATE WHERE CURRENT (page 6 of 7)

8-36 Processing with Cursors

end;

otherwise begin

DoFetch := FALSE;

SqlStatusCheck;

CloseCursor;

RollbackWork; �24�
end;

end; (* case *)

end; (* while *)

end; (* if OpenCursor *)

end (* end if OrderNumber *)

else

Done := TRUE; �25�
end; (* End of FetchUpdate Procedure *)

$PAGE $

begin (* Beginning of Program *)

writeln('Program to UPDATE OrderItems Table via a CURSOR - pasex8');
writeln;

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' Prompt for Order Number');

writeln(' Begin Work');

writeln(' Open Cursor');

writeln(' FETCH a row');

writeln(' Display the retrieved row');

writeln(' Prompt for new Received Quantity');

writeln(' Update row within OrderItems table');

writeln(' FETCH the next row, if any, with the same Order Number');

writeln(' Repeat the above five steps until there are no more rows');

writeln(' Close Cursor');

writeln(' End Transaction');

writeln(' Repeat the above eleven steps until user enters 0');

writeln(' Release PartsDBE');

writeln;

DeclareCursor; �26�

if ConnectDBE then �27�
begin

Done := FALSE;

repeat �28�
FetchUpdate

until Done;

end;

TerminateProgram; �29�

end. (* End of Program *)

Figure 8-6. Program pasex8: Using UPDATE WHERE CURRENT (page 7 of 7)

Processing with Cursors 8-37

9

Bulk Table Processing

BULK table processing is the programming technique you use to SELECT, FETCH, or
INSERT multiple rows at a time. This chapter describes the following aspects of BULK
processing:

Variables Used in BULK Processing.

SQL BULK Commands.

Transaction Management for BULK Operations.

Program Using BULK Processing.

Variables Used in BULK Processing

Rows are retrieved into or inserted from host variables declared as an array of records.
Any column that may contain a null value must have an indicator variable immediately
following the declaration for the column in the array. For example, the indicator variable for
Column2Name is Column2IndVar, as shown in the following syntax:

ArrayName : packed or unpacked array [1..n]

of packed record

Column1Name : Valid data type;

Column2Name : Valid data type;NNN
Col2IndVar : SqlInd;

...

ColumnName : Valid data type;

end;

You reference the name of the array in the BULK SQL command:

Bulk Table Processing 9-1

EXEC SQL BEGIN DECLARE SECTION;NN
PartsArray : packed array[1..25]

of packed record
PartNumber : packed array [1..16] of char;

PartName : packed array [1..30] of char;

PartNameInd : SqlInd;

end;

SalesPrice : longreal;...
EXEC SQL BULK SELECT PartNumber, PartName

INTO
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:PartsArray

FROM PurchDB.Parts

WHERE SalesPrice < :SalesPrice;

Two additional host variables may be speci�ed in conjunction with the array:

A StartIndex variable: a SMALLINT or INTEGER variable that speci�es an array
subscript. The subscript identi�es where in the array ALLBASE/SQL should store the
�rst row in a group of rows retrieved. In the case of an INSERT operation, the subscript
identi�es where in the array the �rst row to be inserted is stored. If not speci�ed, the
assumed subscript is one.

A NumberOfRows variable: a SMALLINT or INTEGER variable that indicates to
ALLBASE/SQL how many rows to transfer into or take from the array, starting at the
array record designated by StartIndex. If not speci�ed for an INSERT operation, the
assumed number of rows is the number of records in the array from the StartIndex to the
end of the array. If not speci�ed for a SELECT operation, the assumed number of rows is
the smaller of two values: the number of records in the array or the number of rows in the
query result. NumberOfRows can be speci�ed only if you specify the StartIndex variable.

In the BULK SELECT example shown earlier, these two variables would be declared and
referenced as follows:

EXEC SQL BEGIN DECLARE SECTION;

PartsArray : packed array[1..25]

of packed record

PartNumber : packed array [1..16] of char;

PartName : packed array [1..30] of char;

PartNameInd : SqlInd;

end;

SalesPrice : longreal;NNN
StartIndex : SmallInt;NNN
NumberOfRows : SmallInt;
...
EXEC SQL BULK SELECT PartNumber, PartName

INTO :PartArray,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:StartIndex,NNN
:NumberOfRows

FROM PurchDB.Parts

WHERE SalesPrice < :SalesPrice;

9-2 Bulk Table Processing

Note that StartIndex and NumberOfRows must be referenced in that order and immediately
following the array reference.

SQL Bulk Commands

The SQL commands used for BULK table processing are:

BULK SELECT

BULK FETCH

BULK INSERT

BULK SELECT

The BULK SELECT command is useful when the maximum number of rows in the query
result is known at programming time and when the query result is not too large. For example,
this command might be used in an application that retrieves a query result containing a row
for each month of the year.

The syntax of the BULK SELECT command is:

BULK SELECT SelectList

INTO ArrayName [,StartIndex [,NumberOfRows]]

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

ORDER BY ColumnID

Remember, the WHERE, GROUP BY, HAVING, and ORDER BY clauses are optional. Note
that the order of the select list items must match the order of the corresponding host variables
in the array.

In the following example, parts are counted at one of three frequencies or cycles: 30, 60, or 90
days. The host variable array needs to contain only three records, since the query result will
never exceed three rows.

EXEC SQL BEGIN DECLARE SECTION;NNN
PartsPerCycle : packed array[1..3]

of packed record

CountCycle : SmallInt;

PartCount : integer;

end;

.

.

.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
BULK SELECT CountCycle, COUNT(PartNumber)NNNNNNNNNNNNNN

INTO :PartsPerCycleNNNNNNNNNNNNNN
FROM PurchDB.Inventory;

The query result is a three row table that describes how many parts are counted per count
cycle.

Bulk Table Processing 9-3

Multiple query results can be retrieved into the same host variable array by using StartIndex
and NumberOfRows values and executing a BULK SELECT command multiple times:

EXEC SQL BEGIN DECLARE SECTION;

PartsPerCycle : packed array[1..15]

of packed record

CountCycle : SmallInt;

PartCount : integer;

end;NN
StartIndex : SmallInt;NN
NumberOfRows : SmallInt;

LowBinNumber : packed array [1..16] of char;

HighBinNumber : packed array [1..16] of char;

.

.

.

EXEC SQL END DECLARE SECTION;

LessThanFive : boolean;

.

.

.

procedure DisplayRows;

var

i : integer;

begin

for i = 1 to (
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
StartIndex - 1) do

with PartsPerCycle[i] do

begin

writeln('CountCycle: ', Countcycle);

writeln('PartCount: ', PartCount);

end; (* end for *)

end; (* end of procedure DisplayRows *)

.

.

.

Several variables are initialized:

StartIndex := 1;

NumberOfRows := 3;

LessThanFive := TRUE;

while LessThanFive = TRUE do

9-4 Bulk Table Processing

begin

The user is prompted for a range of bin numbers or a 0. If bin numbers

are entered, they are used in a BETWEEN predicate in the BULK SELECT command.

This WHILE loop can be executed as many as �ve times, at which time

the array would be �lled.

prompt('Enter a low bin number or 0 to STOP> ');

readln(LowBinNumber);

if LowBinNumber <> 0 then

begin

prompt('Enter a high bin number> ');

readln(HighBinNumber);

EXEC SQL BULK SELECT CountCycle, COUNT(PartNumber)

INTO :PartsPerCycle,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:StartIndex,NNN
:NumberOfRows

FROM PurchDB.Inventory

WHERE BinNumber

BETWEEN :LowBinNumber AND :HighBinNumber;

StartIndex := StartIndex + 3;

if StartIndex = 16 then

LessThanFive := FALSE;

end (* if LowBinNumber *)

else

LessThanFive := FALSE;

end; (* while *)

The �nal StartIndex value can be used to display the �nal contents of

the host variable array.

if StartIndex > 1 then DisplayRows;

Bulk Table Processing 9-5

The following example illustrates the use of SQLERRD(3) to display rows stored in the
host variable array. It also checks SQLCODE in conjunction with SQLERRD(3), to
determine whether or not the BULK SELECT executed without error and whether there
may be additional quali�ed rows for which there was not room in the array. In each case, an
appropriate message is displayed.

procedure DisplayRows;

var

i : integer;

begin

for i := 1 to SQLCA.SQLERRD[3] do

with OrdersArray[i] do

begin

writeln ('OrderNumber: ', OrderNumber);

writeln ('VendorNumber: ', VendorNumber);

end;

end; (* end of procedure DisplayRows *)
...

The variable MaximumRows is set to the number of records in the host variable array.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
MaximumRows := 25;
...

EXEC SQL BULK SELECT OrderNumber, VendorNumber

INTO :OrdersArray

FROM PurchDB.Orders;

case SQLCA.SQLCODE of

0 : begin

if SQLCA.SQLERRD[3] =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
MaximumRows then

begin

write('There may be additional rows ');

writeln('that cannot be displayed.');

DisplayRows;

end;

100 : writeln('No rows were found.');

otherwise begin

if SQLCA.SQLERRD[3] > 0 then

begin

write('The following rows were retrieved ');

writeln('before an error occurred:');

DisplayRows;

end;

SqlStatusCheck;

end;

end;

9-6 Bulk Table Processing

BULK FETCH

The BULK FETCH command is useful for reporting applications that operate on large query
results whose maximim size is unknown at programming time. The syntax of the BULK
FETCH command is:

BULK FETCH CursorName

INTO ArrayName [,StartIndex [,NumberOfRows]]

You use this command in conjunction with the following cursor commands:

DECLARE CURSOR: de�nes a cursor and associates with it a query. The cursor
declaration should not contain a FOR UPDATE clause, however, because the BULK
FETCH command is designed to be used for active set retrieval only. The order of
the select list items in the embedded SELECT command must match the order of the
corresponding host variables in the host variable array.

OPEN: de�nes the active set.

BULK FETCH: delivers rows into the host variable array and advances the cursor to the
last row delivered. If a single execution of this command does not retrieve the entire active
set, you re-execute it to retrieve subsequent rows in the active set.

CLOSE: releases ALLBASE/SQL internal bu�ers used to handle cursor operations.

To retrieve all the rows in an active set larger than the host variable array, you can test for a
value of 100 in SQLCODE to determine when you have fetched the last row in the active set:

EXEC SQL BEGIN DECLARE SECTION;
...

SupplierBuffer : packed array[1..20]

of packed record

PartNumber : packed array[1..16] of char;

VendorName : packed array[1..30] of char;

DeliveryDays : SmallInt;

DeliveryDaysInd : SqlInd;

end;

EXEC SQL END DECLARE SECTION;

DoFetch : boolean;

Response : packed array[1..3] of char;
...

procedure DisplayRows;

var

i : integer;

begin

for i := 1 to SQLCA.SQLERRD[3] do

with SupplierBuffer[i] do

begin

The values in each row returned by the BULK FETCH command are displayed here.

end;

Bulk Table Processing 9-7

if SQLCA.SQLCODE = 0 then

begin

prompt('Do you want to see additional rows? (YES/NO)> ');
readln('Response');

if Response[1] in [N','n'] then DoFetch := FALSE;

end;

end; (* end of DisplayRows procedure *)...
EXEC SQL DECLARE SupplierInfo

CURSOR FOR

SELECT PartNumber,

VendorName,

DeliveryDays

FROM PurchDB.Vendors,

PurchDB.SupplyPrice

WHERE PurchDB.Vendors.VendorNumber =

PurchDB.SupplyPrice.Vendornumber

ORDER BY PartNumber;

EXEC SQL OPEN SupplierInfo;

DoFetch = TRUE;

while DoFetch = TRUE do

begin

EXEC SQL BULK FETCH SupplierInfo

INTO SupplierBuffer;

case SQLCA.SQLCODE of

0 : DisplayRows;NNNNNNNNNNN
100 : begin

writeln('No rows were found');

DoFetch := FALSE;

end;
otherwise begin

DisplayRows;

SqlStatusCheck;

DoFetch := FALSE;

end;

end; (* end case *)

EXEC SQL CLOSE SupplierInfo;

Each time the BULK FETCH command is executed, the CURRENT row is the last row put
by ALLBASE/SQL into the host variable array. When the last row in the active set has been
fetched, ALLBASE/SQL sets SQLCODE to 100 the next time the BULK FETCH command
is executed.

9-8 Bulk Table Processing

BULK INSERT

The BULK INSERT command is useful for multiple-row insert operations. The syntax of the
BULK INSERT command is:

BULK INSERT INTO TableName

(ColumnNames)

VALUES (ArrayName [,StartIndex [,NumberOfRows]]

As in the case of the simple INSERT command you can omit ColumnNames when you provide
values for all columns in the target table. ALLBASE/SQL attempts to assign a null value to
any unnamed column.

In the following example, a user is prompted for multiple rows. When the host variable array
is full and/or when the user is �nished specifying values, the BULK INSERT command is
executed:

EXEC SQL BEGIN DECLARE SECTION;
...

NewParts : packed array[1..20]

of packed record

PartNumber : packed array[1..16] of char;

PartName : packed array[1..30] of char;

PartNameInd : SqlInd;

SalesPrice : longreal;

SalesPriceInd : SqlInd;

end;

StartIndex : SmallInt;

NumberOfRows : SmallInt;

EXEC SQL END DECLARE SECTION;

DoneEntry : boolean;

Response : packed array[1..4] of char;
...

procedure BulkInsert;

EXEC SQL BULK INSERT INTO PurchDB.Parts

(PartNumber,

PartName,

SalesPrice)

VALUES (:NewParts,

:StartIndex,

:NumberOfRows);

.

.

.

end; (* end of procedure BulkInsert *)

procedure PartEntry;

Bulk Table Processing 9-9

The user is prompted for three column values, and the values are assigned to the

appropriate record in the host variable array; then the array row counter

(NumberOfRows)is incremented and the user asked whether the user wants to specify

another line item.

NumberOfRows := NumberOfRows + 1;

prompt('Do you want to specify another line item (Y/N)?> ');

readln(Response);

if Response[1] in ['N','n'] then

begin

DoneEntry := TRUE;

BulkInsert;

end

else

begin

if NumberOfRows = 20 then

begin

BulkInsert;

NumberOfRows := 0;

end

else

BulkInsert;

end; (* end else *)

end; (* end of procedure PartEntry *)

.

.

.

StartIndex := 1;

NumberOfRows := 0;

DoneEntry := FALSE;

repeat PartEntry until DoneEntry;

9-10 Bulk Table Processing

Transaction Management for BULK Operations

Bulk processing, by using only one ALLBASE/SQL command to operate on multiple rows,
provides a way of minimizing the time page or table locks are held. Locks are only held while
moving rows between database tables and an array de�ned by the program, and operations
can be done while holding data in that array without holding locks against the database.

Because the BULK FETCH command may need to be executed several times before an entire
active set is retrieved, locks obtained to execute this command may be held longer than locks
needed to execute the other BULK commands. Therefore this command is most useful for
applications running when multi-user DBEnvironment access is minimal or when concurrent
transactions do not need to update the table that is the target of the BULK FETCH.

Transaction management is further discussed in the ALLBASE/SQL Reference Manual .

Program Using BULK INSERT

The ow chart in Figure 9-1 summarizes the functionality of program pasex9. This program
creates orders in the sample DBEnvironment, PartsDBE. Each order is placed with a speci�c
vendor, to obtain one or more parts supplied by that vendor.

The order header consists of data from a row in table PurchDB.Orders:

OrderNumber (de�ned NOT NULL)
VendorNumber
OrderDate

An order usually also consists of one or more line items, represented by one or more rows in
table PurchDB.OrderItems:

OrderNumber (de�ned NOT NULL)
ItemNumber (de�ned NOT NULL)
VendPartNumber
PurchasePrice (de�ned NOT NULL)
OrderQty
ItemDueDate
ReceivedQty

Program pasex9 uses a simple INSERT command to create the order header and, optionally, a
BULK INSERT command to insert line items.

The runtime dialog for pasex9 appears in Figure 9-2, and the source code in Figure 9-3.

To establish a DBE session, pasex9 executes function ConnectDBE � 54 �. This function
evaluates to TRUE when the CONNECT command � 5 � is successfully executed.

The program then executes procedure CreateOrder until the Done ag is set to TRUE � 55 �.

Procedure CreateOrder prompts for a vendor number or a 0 (� 48 �). When the user enters
a 0, Done is set to TRUE � 53 � and the program terminates. When the user enters a vendor
number, pasex9:

Bulk Table Processing 9-11

Validates the number entered.

Creates an order header if the vendor number is valid.

Optionally inserts line items if the order header has been successfully created; the part
number for each line item is validated to ensure the vendor actually supplies the part.

Displays the order created.

To validate the vendor number, procedure ValidateVendor is executed � 49 �. Procedure
ValidateVendor starts a transaction by invoking procedure BeginTransaction � 9 �, which
executes the BEGIN WORK command � 6 �. Then a SELECT command � 10 � is processed
to determine whether the vendor number exists in column VendorNumber of table
PurchDB.Vendors:

If the number exists in table PurchDB.Vendors, the vendor number is valid. Flag VendorOK
is set to TRUE, and the transaction is terminated by invoking procedure CommitWork
� 11 �. CommitWork executes the COMMIT WORK command � 7 �.

If the vendor number is not found, COMMIT WORK is executed and a message displayed
to inform the user that the number entered is invalid � 12 �. Several ags are set to FALSE
so that when control returns to procedure CreateOrder, the user is again prompted for a
vendor number.

If the SELECT command fails, procedure SQLStatusCheck is invoked � 13 � to display any
error messages � 4 �. Then the COMMIT WORK command is executed, and the appropriate
ags set to FALSE.

If the vendor number is valid, pasex9 invokes procedure CreateHeader to create the order
header � 50 �. The order header consists of a row containing the vendor number entered, plus
two values computed by the program: OrderNumber and OrderDate.

Procedure CreateHeader starts a transaction � 34 �, then obtains an exclusive lock on table
PurchDB.Orders � 35 �. Exclusive access to this table ensures that when the row is inserted,
no row having the same number will have been inserted by another transaction. The unique
index that exists on column OrderNumber prevents duplicate order numbers in table
PurchDB.Orders. Therefore an INSERT operation fails if it attempts to insert a row having
an order number with a value already in column OrderNumber.

In this case, the exclusive lock does not threaten concurrency. No operations conducted
between the time the lock is obtained and the time it is released involve operator intervention:

Procedure CreateHeader invokes procedure ComputeOrderNumber � 36 � to compute the
order number and the order date.

Procedure ComputeOrderNumber executes a SELECT command to retrieve the highest
order number in PurchDB.Orders � 30 �. The number retrieved is incremented by one � 31 �
to assign a number to the order.

Procedure ComputeOrderNumber then executes procedure SystemDate � 32 �. This
procedure uses the Pascal function CALENDAR � 2 � to retrieve the current date. The date
retrieved is converted into YYYYMMDD format, the format in which dates are stored in
the sample DBEnvironment. sample DBEnvironment.

Procedure ComputeOrderNumber then executes procedure InsertRow � 33 �. This procedure
executes a simple INSERT command � 22 � to insert a row into PurchDB.Orders. If the
INSERT command succeeds, the transaction is terminated with a COMMIT WORK
command, and the HeaderOK ag is set to TRUE � 24 �. If the INSERT command fails,

9-12 Bulk Table Processing

the transaction is terminated with COMMIT WORK, but the HeaderOK ag is set to
FALSE � 23 � so that the user is prompted for another vendor number when control returns
to procedure CreateOrder.

To create line items, procedure CreateOrder executes procedure CreateOrderItems until the
DoneItems ag is set to TRUE � 51 �. Procedure CreateOrderItems asks the user whether she
wants to specify line items � 44 �.

If the user wants to create line items, CreateOrderItems executes procedure ItemEntry until
the DoneItems ag is set to TRUE � 46 �, then executes procedure BulkInsert � 47 �:

ItemEntry assigns values to host variable array OrderItems � 1 �; each record in the array
corresponds to one line item, or row in PurchDB.OrderItems. The procedure �rst assigns
the order number and a line number to each row � 37 �, beginning at one. ItemEntry
then prompts for a vendor part number � 38 �, which is validated by invoking procedure
ValidatePart � 39 �.

ValidatePart starts a transaction � 14 �. Then it executes a SELECT command � 15 � to
determine whether the part number entered matches any part number known to be supplied
by the vendor. If the part number is valid, the COMMIT WORK command is executed
� 16 � and the PartOK ag set to TRUE. If the part number is invalid, COMMIT WORK
is executed � 17 �, and the user informed that the vendor does not supply any part having
the number speci�ed; then the PartOK ag is set to FALSE so that the user is prompted for
another part number when control returns to procedure ItemEntry.

If the part number is valid, procedure ItemEntry completes the line item. It prompts
for values to assign to columns PurchasePrice, OrderQty, and ItemDueDate � 40 �. The
procedure then assigns a negative value to the indicator variable for column ReceivedQty
� 41 � in preparation for inserting a null value into this column.

ItemEntry terminates when the user indicates that she does not want to specify any more
line items � 42 � or when the host variable array is full � 43 �.

Procedure BulkInsert starts a transaction � 25 �, then executes the BULK INSERT
command � 27 �. The line items in array OrderItems are inserted into table
PurchDB.OrderItems, starting with the �rst record and continuing for as many records
as there were line items speci�ed � 26 �. If the BULK INSERT command succeeds, the
COMMIT WORK command is executed � 29 � and the ItemsOK ag set to TRUE. If the
BULK INSERT command fails, procedure RollBackWork is executed � 28 � to process the
ROLLBACK WORK command � 8 � so that any rows inserted prior to the failure are rolled
back.

If the user does not want to create line items, procedure CreateOrderItems displays the order
header by invoking procedure DisplayHeader � 45 �. DisplayHeader displays the row inserted
earlier in PurchDB.Orders � 18 �.

If line items were inserted into PurchDB.OrderItems, procedure DisplayOrder is invoked � 52 �
to display the order created. DisplayOrder invokes procedure DisplayHeader � 20 � to display
the order header. Then it executes procedure DisplayItems � 21 � to display each row inserted
into PurchDB.OrderItems. DisplayItems displays values from array OrderItems � 19 �.

When the program user enters a 0 in response to the vendor number prompt, the program
terminates by executing procedure TerminateProgram � 56 �, which executes the RELEASE
command � 3 �.

Bulk Table Processing 9-13

Figure 9-1. Flow Chart of Program pasex9

9-14 Bulk Table Processing

Program to Create an Order - pasex9

Event List:

Connect to PartsDBE

Prompt for VendorNumber

Validate VendorNumber

INSERT a row into PurchDB.Orders

Prompt for line items

Validate VendPartNumber for each line item

BULK INSERT rows into PurchDB.OrderItems

Repeat the above six steps until the user enters 0

Release PartsDBE

Connect to PartsDBE

Enter VendorNumber or 0 to STOP> 9015

Begin Work

Validating VendorNumber
Commit Work

Begin Work

Calculating OrderNumber

Calculating OrderDate

INSERT INTO PurchDB.Orders

Commit Work

Do you want to specify line items (Y/N)?> y

You can specify as many as 25 line items.

Enter data for ItemNumber 1:

VendPartNumber> 9040

Begin Work

Validating VendPartNumber

Commit Work

PurchasePrice> 1500

OrderQty> 5

ItemDueDate (YYYYMMDD)> 19870630

Do you want to specify another line item (Y/N)?> y

You can specify as many as 25 line items.

Enter data for ItemNumber 2:
VendPartNumber> 9055

Figure 9-2. Runtime Dialog of Program pasex9

Bulk Table Processing 9-15

Begin Work

Validating VendPartNumber

Commit Work

The vendor has no part with the number you specified.

You can specify as many as 25 line items.

Enter data for ItemNumber 2:

VendPartNumber> 9050

Begin Work

Validating VendPartNumber

Commit Work

PurchasePrice> 345

OrderQty> 2

ItemDueDate (YYYYMMDD)> 19870801

Do you want to specify another line item (Y/N)?> n

Begin Work

BULK INSERT INTO PurchDB. OrderItems

Commit Work

The following order has been created:

OrderNumber: 30524

VendorNumber: 9015

OrderDate: 19870603

ItemNumber: 1

VendPartNumber: 9040

PurchasePrice: 1500.00

OrderQty: 5

ItemDueDate: 19870630

ReceivedQty: NULL

ItemNumber: 2

VendPartNumber: 9050

PurchasePrice: 345.00

OrderQty: 2

ItemDueDate: 19870801

ReceivedQty: NULL

Enter VendorNumber or 0 to STOP> 0

Figure 9-2. Runtime Dialog of Program pasex9 (page 2 of 2)

9-16 Bulk Table Processing

$Heap_Dispose ON$

$Heap_Compact ON$

Standard_Level 'HP_Pascal$

(* *)

(* This program illustrates the use of BULK INSERT *)

(* to insert multiple rows at a time. *)

(* *)

Program pasex9(input, output);

const

OK = 0;

NotFound = 100;

DeadLock = -14024;

type

TimeType = packed array[1..8] of char;

calendrec = packed record

year: 0..127;

day : 0..511;

end;

calend_type = record

case integer of

0: (i : smallint);

1: (yydd : calendrec);

end;

jultype = array[0..12] of integer;

const

jultable = jultype[0,31,59,90,120,151,181,212,243,273,304,334,365];

ljultable = jultype[1,31,60,91,121,152,182,213,244,274,305,335,366];

CodeYear = 70;

var

(* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION;

OrderNumber1 : integer;

VendorNumber : integer;

OrderDate : packed array[1..8] of char;

Figure 9-3. Program pasex9: Using BULK INSERT

Bulk Table Processing 9-17

PartSpecified : packed array[1..16] of char;

MaxOrderNumber : integer;

OrderItems : packed array[1..25] � 1 �
of packed record

OrderNumber2 : integer;

ItemNumber : integer;

VendPartNumber : packed array [1..16] of char;

PurchasePrice : longreal;

OrderQty : SmallInt;

ItemDueDate : packed array[1..8] of char;

ReceivedQty : SmallInt;

ReceivedQtyInd : SqlInd;

end;

StartIndex : SmallInt;

NumberOfRows : SmallInt;

SQLMessage : packed array[1..132] of char;

EXEC SQL END DECLARE SECTION;

(* End Host Variable Declarations *)

SQLCA : SQLCA_type; (* SQL Communication Area *)

Done : boolean;

DoneItems : boolean;

VendorOK : boolean;

HeaderOK : boolean;

PartOK : boolean;

ItemsOK : boolean;

Abort : boolean;

Response : packed array [1..4] of char;

counter1 : integer;

counter2 : integer;

calend : calend_type;

i,j : integer;

leap : boolean;

cent,

yr : integer;

(* Intrinsic to get today's date from the system *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 2 of 12)

9-18 Bulk Table Processing

function CALENDAR: SmallInt; INTRINSIC; (* Get today's date from system *)

procedure SystemDate;

begin

calend.i := CALENDAR; � 2 �
if calend.yydd.year < CodeYear then (* compute century *)

cent := 20

else cent := 19;

(* convert year to ASCII by adding decimal 48 *)

OrderDate[1] := chr(48 + cent div 10);

OrderDate[2] := chr(48 + cent mod 10);

(* compute year, as indicated, so a test for leap year can be made *)

yr := cent * 100 + calend.yydd.year;

(* most significant year digit *)

OrderDate[3] := chr(48 + calend.yydd.year div 10);

(* least significant year digit *)
OrderDate[4] := chr(48 + calend.yydd.year mod 10);

i := 1;

leap := true;

if (yr mod 4) <> 0 then

leap := false

else

if (yr mod 400) = 0 then

leap := false;

if leap then (* i = month of year, j = day of month *)

begin

while calend.yydd.day > ljultable[i] do

i := i + 1;

j := (calend.yydd.day -ljultable[i - 1])

end

else

begin

while calend.yydd.day > jultable[i] do

i := i + 1;

j := (calend.yydd.day - jultable[i - 1])

end;

(* convert month of year to ASCII *)

OrderDate[5] := chr(48 + i div 10); (* most significant digit *)

OrderDate[6] := chr(48 + i mod 10); (* least significant digit *)

(* convert day of month to ASCII *)

OrderDate[7] := chr(48 + j div 10); (* most significant digit *)

OrderDate[8] := chr(48 + j mod 10); (* least significant digit *)

end; (* SystemDate procedure *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 3 of 12)

Bulk Table Processing 9-19

procedure TerminateProgram; (* Procedure to Release PartsDBE *)

begin

EXEC SQL RELEASE; � 3 �

Done := TRUE;

end; (* End TerminateProgram Procedure *)

$PAGE $

procedure SQLStatusCheck; (*Procedure to Display Error Messages*) � 4 �
begin

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);
until SQLCA.SQLCODE = 0;

if Abort then TerminateProgram;

end; (* End SQLStatusCheck Procedure *)

$PAGE $

function ConnectDBE: boolean; (* Function to Connect to PartsDBE *)

begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE'; � 5 �

ConnectDBE := TRUE;

if SQLCA.SQLCODE <> OK then

begin

ConnectDBE := FALSE;

SQLStatusCheck;

end; (* End if *)

end; (* End of ConnectDBE Function *)

procedure BeginTransaction; (* Procedure to Begin Work *)

begin

EXEC SQL BEGIN WORK; � 6 �
if SQLCA.SQLCODE <> OK then

begin

SQLStatusCheck;

TerminateProgram;
end;

end; (* End BeginTransaction Procedure *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 4 of 12)

9-20 Bulk Table Processing

procedure CommitWork; (* Procedure to Commit Work *)

begin

writeln('Commit Work');

EXEC SQL COMMIT WORK; � 7 �
if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

TerminateProgram;

end;

end; (* End CommitWork Procedure *)

procedure RollBackWork; (* Procedure to RollBack Work *)

begin

writeln('Rollback Work');

EXEC SQL ROLLBACK WORK; � 8 �
if SQLCA.SQLCODE <> OK then

begin
SqlStatusCheck;

TerminateProgram;

end;

end; (* End RollBackWork Procedure *)

procedure ValidateVendor;(* procedure that ensures vendor number is valid*)

begin

writeln;

writeln('Begin Work');

writeln('Validating VendorNumber');

BeginTransaction; � 9 �

EXEC SQL SELECT VendorNumber � 10 �
INTO :VendorNumber

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

case SQLCA.SQLCODE of

OK : begin

CommitWork; � 11 �
VendorOK := TRUE;

end;

NotFound : begin

CommitWork; � 12 �
writeln;

writeln('No vendor has the VendorNumber you specified.')

VendorOK := FALSE;

HeaderOK := FALSE;

ItemsOK := FALSE;
end;

Figure 9-3. Program pasex9: Using BULK INSERT (page 5 of 12)

Bulk Table Processing 9-21

Otherwise begin

SQLStatusCheck; � 13 �
CommitWork;

VendorOK := FALSE;

HeaderOK := FALSE;

ItemsOK := FALSE;

end;

end; (* case *)

end; (* End of Procedure ValidateVendor *)

procedure ValidatePart; (*procedure to ensure vendor part number is valid*)

var

i : integer;

begin

writeln;

writeln('Begin Work');

writeln('Validating VendPartNumber');

BeginTransaction; � 14 �

i := counter1;

PartSpecified := OrderItems[i].VendPartNumber;

EXEC SQL SELECT VendPartNumber � 15 �
INTO :PartSpecified

FROM PurchDB.SupplyPrice

WHERE VendorNumber = :VendorNumber

AND VendPartNumber = :PartSpecified;

case SQLCA.SQLCODE of

OK : begin

CommitWork; � 16 �
PartOK := TRUE;

end;

NotFound : begin

CommitWork; � 17 �
writeln;

write('The vendor has no part with the number ');

writeln('you specified.');

PartOK := FALSE;

end;

Otherwise begin

SQLStatusCheck;

CommitWork;

PartOK := FALSE;

end;

end; (* case *)
end; (* End of Procedure ValidatePart *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 6 of 12)

9-22 Bulk Table Processing

procedure DisplayHeader; (* Procedure to display row from PurchDB.Orders

begin

writeln;

writeln('The following order has been created:');

writeln;

writeln(' OrderNumber: ' ,OrderNumber1); � 18 �
writeln(' VendorNumber: ' ,VendorNumber);

writeln(' OrderDate: ' ,OrderDate);

end; (* End of Procedure DisplayHeader *)

procedure DisplayItems;(*Procedure to Display Rows from PurchDB.OrderItems*)

var

j : integer;

begin

j := counter2;
writeln;

writeln(' ItemNumber: ' ,OrderItems[j].ItemNumber); � 19 �
writeln(' VendPartNumber: ' ,OrderItems[j].VendPartNumber);

writeln(' PurchasePrice: ' ,OrderItems[j].PurchasePrice:10:2);

writeln(' OrderQty: ' ,OrderItems[j].OrderQty);

writeln(' ItemDueDate: ' ,OrderItems[j].ItemDueDate);

writeln(' ReceivedQty: is NULL');

counter2 := j + 1;

end; (* End of Procedure DisplayItems *)

procedure DisplayOrder; (* Procedure to Display Order Created *)

var

i : integer;

j : integer;

begin

DisplayHeader; � 20 �

writeln;

i := counter1;

counter2 := 1;

for j := 1 to i do DisplayItems; � 21 �

end; (* End of Procedure DisplayOrder *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 7 of 12)

Bulk Table Processing 9-23

procedure InsertRow; (* procedure to insert row in PurchDB.Orders *)

begin

writeln('INSERT INTO PurchDB.Orders');

EXEC SQL INSERT INTO PurchDB.Orders � 22 �
(OrderNumber,

VendorNumber,

OrderDate)

VALUES (:OrderNumber1,

:VendorNumber,

:OrderDate);

if SQLCA.SQLCODE <> 0 then

begin

SqlStatusCheck; � 23 �
CommitWork;

HeaderOK := FALSE;

end

else
begin

CommitWork; � 24 �
HeaderOK := TRUE;

end;

end; (* End of Procedure InsertRow *)

procedure BulkInsert; (* procedure to BULK INSERT into PurchDB.OrderItems

begin

writeln;

writeln('Begin Work');

BeginTransaction; � 25 �

NumberOfRows := counter1; � 26 �
StartIndex := 1;

writeln('BULK INSERT INTO PurchDB. OrderItems');

EXEC SQL BULK INSERT INTO PurchDB.OrderItems � 27 �
(OrderNumber,

ItemNumber,

VendPartNumber,

PurchasePrice,

OrderQty,

ItemDueDate,

ReceivedQty)

VALUES (:OrderItems,

:StartIndex,
:NumberOfRows);

Figure 9-3. Program pasex9: Using BULK INSERT (page 8 of 12)

9-24 Bulk Table Processing

if SQLCA.SQLCODE <> 0 then

begin

SQLStatusCheck;

RollBackWork; � 28 �
ItemsOK := FALSE;

end

else

begin

CommitWork; � 29 �
ItemsOK := TRUE;

end;

end; (* End of Procedure BulkInsert *)

procedure ComputeOrderNumber; (* procedure to assign number to order *)

begin

EXEC SQL SELECT MAX(OrderNumber) � 30 �
INTO :MaxOrderNumber

FROM PurchDB.Orders;

if SQLCA.SQLCODE <> 0 then
begin

SQLStatusCheck;

CommitWork;

HeaderOK := FALSE;

end

else

begin

writeln('Calculating OrderNumber');

OrderNumber1 := MaxOrderNumber + 1; � 31 �
writeln('Calculating OrderDate');

SystemDate; � 32 �

InsertRow; � 33 �
end;

end; (* End of ComputeOrderNumber Procedure *)

procedure CreateHeader; (* procedure to create order header *)

begin

writeln;

writeln('Begin Work');

BeginTransaction; � 34 �

EXEC SQL LOCK TABLE PurchDB.Orders IN EXCLUSIVE MODE; � 35 �
if SQLCA.SQLCODE <> OK then

begin

SQLStatusCheck;

CommitWork;

HeaderOK := FALSE;

end

Figure 9-3. Program pasex9: Using BULK INSERT (page 9 of 12)

Bulk Table Processing 9-25

else

ComputeOrderNumber; � 36 �
end; (* End of CreateHeader Procedure *)

procedure ItemEntry; (* procedure to put line items into OrderItems array

var

i : integer;

begin

i := counter1;

OrderItems[i].OrderNumber2 := OrderNumber1; � 37 �
OrderItems[i].ItemNumber := i;

writeln;

writeln('You can specify as many as 25 line items.');

writeln;

writeln('Enter data for ItemNumber ',OrderItems[i].ItemNumber:2 ,':');

writeln;

prompt(' VendPartNumber> '); � 38 �
readln(OrderItems[i].VendPartNumber);

ValidatePart; � 39 �
if PartOK then

begin

writeln;

prompt(' PurchasePrice> '); � 40 �
readln(OrderItems[i].PurchasePrice);

prompt(' OrderQty> ');

readln(OrderItems[i].OrderQty);

prompt(' ItemDueDate (YYYYMMDD)> ');

readln(OrderItems[i].ItemDueDate);

OrderItems[i].ReceivedQtyInd := -1; � 41 �
if i < 25 then

begin

writeln;

prompt('Do you want to specify another line item (Y/N)?> '); � 42 �
readln(Response);

if Response[1] in ['N','n'] then

DoneItems := TRUE

else

counter1 := i + 1;

end (* end if i < 25 *)

else

DoneItems := TRUE; (* host variable array is full *) � 43 �
end; (* end if PartOK *)

end; (* End of Procedure ItemEntry *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 10 of 12)

9-26 Bulk Table Processing

procedure CreateOrderItems; (* procedure to create line items *)

begin

writeln;

prompt('Do you want to specify line items (Y/N)?> '); � 44 �
readln(Response);

if Response[1] in ['N','n'] then

begin

DoneItems := TRUE;

ItemsOK := FALSE;

DisplayHeader; � 45 �
end

else

begin

counter1 := 1;

repeat � 46 �
ItemEntry

until DoneItems;

BulkInsert; � 47 �
end;

end; (* End of procedure CreateOrderItems *)

procedure CreateOrder; (* Procedure to create an order *)

begin

writeln;

prompt('Enter VendorNumber or 0 to STOP> '); � 48 �
readln(VendorNumber);

if VendorNumber <> 0 then

begin

ValidateVendor; � 49 �

if VendorOK then CreateHeader; � 50 �
if HeaderOK then

begin

DoneItems := FALSE;

while DoneItems = FALSE do � 51 �
begin

CreateOrderItems;

end; (* while *)

end; (* if HeaderOK *)

if ItemsOK then DisplayOrder; � 52 �
end (* end if VendorNumber *)

else
Done := TRUE; � 53 �

end; (* end of CreateOrder Procedure *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 11 of 12)

Bulk Table Processing 9-27

$PAGE $

begin (* Beginning of Program *)

writeln('Program to Create an Order - PASEX9');

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' Prompt for VendorNumber');

writeln(' Validate VendorNumber');

writeln(' INSERT a row into PurchDB.Orders');

writeln(' Prompt for line items');

writeln(' Validate VendPartNumber for each line item');

writeln(' BULK INSERT rows into PurchDB.OrderItems');

writeln(' Repeat the above six steps until the user enters 0');

writeln(' Release PartsDBE');

writeln;

if ConnectDBE then � 54 �

begin

Done := FALSE;

repeat

CreateOrder � 55 �
until Done;

end;

TerminateProgram; � 56 �

end. (* End of Program *)

Figure 9-3. Program pasex9: Using BULK INSERT (page 12 of 12)

9-28 Bulk Table Processing

10

Using Dynamic Operations

Dynamic operations are used to execute SQL commands that are not preprocessed until run
time. Such commands, known as dynamic SQL commands, are submitted to ALLBASE/SQL
through several special SQL statements: PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE.

This chapter contrasts dynamic with non-dynamic operations and introduces the techniques
used to handle dynamic operations from a program. It then focuses on dynamic non-queries
and queries. The following topics are considered:

Review of Preprocessing Events.
Di�erences between Dynamic and Non-Dynamic Preprocessing.
Preprocessing of Dynamic Non-Queries.
Preprocessing of Dynamic Queries.
Preprocessing of Dynamic Commands That May or May Not be Queries.
Programs Using Dynamic Command Operations.

Review of Preprocessing Events

All embedded SQL statements must be preprocessed before they can be executed.
Preprocessing may be done by running the Pascal preprocessor during application
development, or it may be done for dynamic commands when the program is run.
Preprocessing does the following:

Checks syntax: The syntax of SQL commands and host variable declarations must be
correct.

Veri�es the existence of objects: Any object named in an SQL command must exist.

Optimizes data access: If the statement accesses data, the fastest way to access the data
must be determined.

Checks authorizations: Both the program owner and the executor must have the required
authorities.

Creates sections: ALLBASE/SQL creates sections for SQL commands when this is
appropriate. At run time, the section is executed.

These preprocessing events take place for all non-dynamic SQL commands when you run the
ALLBASE/SQL preprocessor. Non-dynamic commands are fully de�ned in the source code
and are preprocessed before run time. So far, most of the examples in this manual have shown
non-dynamic preprocessing.

ALLBASE/SQL completes the preprocessing of dynamic commands at run time, in an event
known as dynamic preprocessing. Any SQL command except the following, which do not
require sections for execution, can be preprocessed at run time:

Using Dynamic Operations 10-1

BEGIN DECLARE SECTION FETCH

CLOSE CURSOR INCLUDE

DECLARE CURSOR OPEN CURSOR
DELETE WHERE CURRENT PREPARE

DESCRIBE SQLEXPLAIN

END DECLARE SECTION UPDATE WHERE CURRENT

EXECUTE WHENEVER

EXECUTE IMMEDIATE

Dynamic commands that are not queries can be preprocessed at run time using the
PREPARE and EXECUTE statements or the EXECUTE IMMEDIATE statement. Dynamic
queries are preprocessed using the PREPARE and DESCRIBE commands in conjunction with
the SQLDA or SQL Description Area (SQLDA). These statements and data structures, used
with a cursor, are described further in a later section.

Differences between Dynamic and Non-Dynamic Preprocessing

The authorization checking and section creation activities for non-dynamic and dynamic
ALLBASE/SQL commands di�er in the following ways:

Authorization checking. A non-dynamic command is executed if the owner of the program
module has the proper authority at run time. A dynamic command is executed if the
program executor has the proper authority at run time.

Section creation. Any section created for a non-dynamic command becomes part of a
module permanently stored in a DBEnvironment by the Pascal preprocessor. The module
remains in that system catalog until you execute the DROP MODULE command or invoke
the preprocessor with the DROP option. Any section created for a dynamic command is
temporary. The section is created at run time, temporarily stored, then deleted at the end
of the transaction in which it was created.

Permanently Stored vs. Temporary Sections

In some instances, you could code the same SQL statement as either dynamic or non-dynamic,
depending on whether you wanted to store permanent sections. A program that has
permanently stored sections associated with it can be executed only against DBEnvironments
containing those sections. Figure 10-1 illustrates how you create and use such programs. Note
that the sections can be permanently stored either by the preprocessor or by using the ISQL
INSTALL command.

10-2 Using Dynamic Operations

Figure 10-1. Creation and Use of a Program that has a Stored Module

Programs that contain only SQL commands that do not have permanently stored sections can
be executed against any DBEnvironment without the prerequisite of storing a module in the
DBEnvironment. Figure 10-2 illustrates how you create and use programs in this category.
Note that the program must still be preprocessed in order to create compilable �les and
generate ALLBASE/SQL external procedure calls.

Using Dynamic Operations 10-3

Figure 10-2. Creation and Use of a Program that has No Stored Module

Examples of Non-Dynamic and Dynamic SQL Statements

The following example shows an embedded SQL statement that is coded so as to generate a
stored section before run time:

EXEC SQL UPDATE STATISTICS FOR TABLE PurchDB.Parts;

When you run the preprocessor on a source �le containing this statement, a permanent section
will be stored in the appropriate DBEnvironment.

The following example shows an SQL statement that is coded so as to generate a temporary
section at run time:

DynamicCommand := 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
PREPARE MyCommand FROM :DynamicCommand;

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
EXECUTE MyCommand;

10-4 Using Dynamic Operations

In this case, the SQL statement is stored in a host variable which is passed to ALLBASE/SQL
in the PREPARE statement at run time. A temporary section is then created and executed,
and the section is not stored in the DBEnvironment.

Why Use Dynamic Preprocessing?

In some cases, it may not be desirable to preprocess an SQL command before run time:

You may need to code an application that permits ad hoc queries requiring that SQL
commands be entered by the user at run time. (ISQL is an example of an ad hoc query
facility in which the command the user will submit is completely unknown at programming
time.)

You may need more specialized applications requiring SQL commands that are de�ned
partly at programming time and partly by the user at run time. An application may, for
example, perform UPDATE STATISTICS operations on tables the user speci�es at run
time.

You may wish to run an application on di�erent DBEnvironments at di�erent times without
the need to permanently store sections in those DBEnvironments.

You may wish to code only one dynamic command (a CONNECT, for instance) and then
preprocess or install the same application in several di�erent DBEnvironments.

Passing Dynamic Commands to ALLBASE/SQL

A dynamic command is passed to ALLBASE/SQL either as a string literal or as a host
variable containing a string. It must be terminated with a semicolon. The maximum length
for such a string is 2048 bytes.

To pass a dynamic command that can be completely de�ned at programming time, you can
use a delimited string:

EXEC SQLNNNNNNNNNNNNNNNNNNNNNNN
PREPARE MyCommand FROM 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

or

EXEC SQLNNN
EXECUTE IMMEDIATE 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

Using Dynamic Operations 10-5

To pass a dynamic command that cannot be completely de�ned at programming time, you use
a host variable declared as an array of char:

DynamicHostVar : packed array[2048] of char;
.

.

EXECUTE IMMEDIATE :DynamicHostVar;

Understanding the Types of Dynamic Operations

Dynamic operations in ALLBASE/SQL are of two major types:

Dynamic Non-Queries: dynamic operations that do not retrieve rows from the database.
Note that dynamic non-queries either do or do not require the use of sections at execution
time. For example, a CONNECT does not require a section, but a DELETE does.

Dynamic Queries: dynamic operations that do retrieve rows. Note that dynamic queries
may have a query result whose format is known to you at programming time, or they may
have a query result whose format is unknown. Dynamic queries always use sections at
execution time.

It is sometimes necessary to de�ne dynamic data structures that can accomodate either
non-queries or queries at run time. An example is shown later in this chapter in program
pas10a (Figures 10-7, 10-8, 10-9).

The following paragraphs examine each type of dynamic operation and present information on
how to determine whether or not a dynamic command is a query.

Preprocessing of Dynamic Non-Queries

There are two methods for dynamic preprocessing of a non-query:

Using EXECUTE IMMEDIATE.
Using PREPARE and EXECUTE.

The �rst method can be used with any non-query; the second is only for those non-query
commands that use sections at execution time.

Using EXECUTE IMMEDIATE

If you know in advance that a dynamic command will not be a query, you can dynamically
preprocess and execute the command in one step, using the EXECUTE IMMEDIATE
command. Figure 10-3 illustrates a procedure hosting a dynamic UPDATE STATISTICS
command that can be handled in this fashion.

Procedure UpdateStatistics � 1 � prompts the user for a table name � 2 �. The table name
entered is assigned to the host variable CmdLine � 3 � to complete the UPDATE STATISTICS
command. After the command is prepared and executed � 4 �, the transaction is terminated
with a COMMIT WORK command � 5 � or a ROLLBACK WORK command � 6 �, depending
on the value in SQLCA.SQLCODE. Terminating the transaction before accepting another

10-6 Using Dynamic Operations

table name and re-executing the UPDATE STATISTICS command releases any locks obtained
and improves concurrency.

If you do not know in advance whether a dynamic command will be a query or a non-query,
you must use the PREPARE command to dynamically preprocess the command, the
DESCRIBE command to distinguish between queries and non-queries, and the EXECUTE
or EXECUTE IMMEDIATE command to execute the dynamic non-query. The program
examined later in this chapter under \Program Using Dynamic Commands of Unknown
Format" illustrates how to handle this situation.

.

.

.

var

EXEC SQL BEGIN DECLARE SECTION;

CmdLine : String[100];

EXEC SQL END DECLARE SECTION;

TableName : String[50];

.

.

.

procedure UpdateStatistics; � 1 �
begin

repeat

prompt('Enter name of table or / to terminate > '); � 2 �
readln(TableName);

if TableName[1] <> '/' then

begin

CmdLine := 'UPDATE STATISTICS FOR TABLE ' + TableName + ';'; � 3 �

EXEC SQL EXECUTE IMMEDIATE :CmdLine; � 4 �

if SQLCA.SQLCODE = 0 then

EXEC SQL COMMIT WORK; � 5 �
else

EXEC SQL ROLLBACK WORK; � 6 �

end; (* end of if TableName *)

until TableName[1] = '/';

end; (* end of UpdateStatistics procedure *)

.

.

.

Figure 10-3. Procedure Hosting Dynamic Non-Query Commands

Using Dynamic Operations 10-7

Using PREPARE and EXECUTE

Use PREPARE command syntax to create and store a temporary section for the dynamic
command:

PREPARE CommandName FROM CommandSource

Because the PREPARE command operates only on sections, it can be used to dynamically
preprocess only SQL commands executed by using sections. The DBE session management
and transaction management commands can only be dynamically preprocessed by using
EXECUTE IMMEDIATE.

With PREPARE, ALLBASE/SQL creates a temporary section for the command that you can
execute one or more times in the same transaction by using the EXECUTE command:

EXEC SQL PREPARE MyNonQuery FROM :DynamicCommand;

for i := 1 to MaxIterations do

EXEC SQL EXECUTE MyNonQuery;

As soon as you process a COMMIT WORK or ROLLBACK WORK command, the temporary
section is deleted.

Preprocessing of Dynamic Queries

Processing of dynamic queries requires setting up a bu�er to receive the query result and
extracting the items you want from the bu�er. For these operations, you use three special
data structures:

SQL Description Area (SQLDA). The SQLDA is a record used to pass information on the
location and contents of the other two dynamic data structures, the format array and the
data bu�er. You set some �elds in the SQLDA and pass them to ALLBASE/SQL; and
ALLBASE/SQL passes values back to you in other �elds.

SQL Format Array. The format array is an array of records with one record for each select
list item (column). The attributes of a column in the query result are described in a format
array record. When you do not know the format of a query result at programming time,
you use format array information to identify where in the data bu�er to �nd each column
value and how to interpret it.

Data Bu�er. The data bu�er is an array for holding rows in a query result.
ALLBASE/SQL puts rows into the data bu�er each time you execute the FETCH
command.

Figure 10-4 summarizes the relationships among the special data structures and when data is
assigned to them. Note that status checking information for each SQL command can be found
in the sqlca data structure. See the chapter \Runtime Status Checking and the SQLCA" for
more details.

10-8 Using Dynamic Operations

Figure 10-4. Dynamic Query Data Structures and Data Assignment

Though some speci�c details di�er depending on the query type, in general you handle all
types of dynamic queries as follows:

A host variable (a string) is de�ned to hold the SELECT statement to be used by the
PREPARE command.

The PREPARE command dynamically preprocesses the query. ALLBASE/SQL de�nes a
temporary section, which includes a run tree for the SELECT command speci�ed in the
PREPARE command:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
PREPARE MyQuery FROM :DynamicCommand;

The DESCRIBE command makes available to your program information about each column
in a query result:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNN
DESCRIBE MyQuery INTO SQLDA

The DECLARE CURSOR command maps the temporary section to a cursor so that the
other cursor manipulation commands can be used:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNN
DECLARE DynamicCursor CURSOR FOR MyQuery;

The OPEN command allocates ALLBASE/SQL bu�er space for holding qualifying rows and
de�nes the active set:

EXEC SQL
NNNNNNNNNNNNNN
OPEN DynamicCursor;

The FETCH command evaluates any predicates in the query and transfers rows from the
ALLBASE/SQL bu�er into host variables:

EXEC SQL
NNNNNNNNNNNNNNNNN
FETCH DynamicCursor USING DESCRIPTOR SQLDA;

Using Dynamic Operations 10-9

The USING DESCRIPTOR clause indicates to ALLBASE/SQL that rows should be
formatted in accord with a format array identi�ed in the SQLDA and returned to a data
bu�er identi�ed in the SQLDA. The SQLDA, the format array, and the data bu�er are
discussed later in this chapter under \Using the Dynamic Query Data Structures."

Although you can fetch multiple rows with each execution of the FETCH command, you
do not specify the BULK option when fetching rows that qualify for dynamic queries.
Instead, you set a �eld in the SQLDA as shown later in this chapter to communicate
to ALLBASE/SQL how many rows to fetch. You can repeatedly execute the FETCH
command until ALLBASE/SQL sets sqlca.sqlcode to 100.

The CLOSE command closes the cursor and frees previously allocated bu�er space:

EXEC SQL
NNNNNNNNNNNNNNNNN
CLOSE DynamicCursor;

The COMMIT WORK and ROLLBACK WORK commands also close any open cursors,
unless you are using the KEEP CURSOR option of the OPEN command (see the chapter
\Processing with Cursors"). In addition, these commands release locks obtained to execute
the dynamic query. Therefore, to improve concurrency when repeatedly preparing dynamic
queries, issue one of these commands before executing the PREPARE command for the
second and each subsequent time.

Dynamically Updating and Deleting Data

You have the option of dynamically updating or deleting a row in conjunction with a dynamic
FETCH statement. Any dynamic UPDATE WHERE CURRENT or DELETE WHERE
CURRENT statement must be hard coded in your program just as you would code it for a
non-dynamic FETCH statement. The statements cannot be de�ned at run time and prepared.

Whether your SELECT statement is completely user speci�ed at run time, supplied by your
program based on related user input, or completely de�ned by your program, here are some
things to keep in mind:

If you are using a dynamic cursor to update, be sure your SELECT statement contains a
FOR UPDATE OF clause.

An UPDATE WHERE CURRENT command must map to an appropriate SELECT
statement. Be sure all of the columns you might possibly want to update are speci�ed in
the FOR UPDATE OF clause.

For example, if the host variable or string from which you prepare contains the following
statement, you can use the UPDATE WHERE CURRENT command to change the content
of all the columns in qualifying rows of PurchDB.Parts.

SELECT PartNumber FROM PurchDB.Parts

WHERE PartNumber BETWEEN 9000 AND 9999

FOR UPDATE OF PartNumber, PartName, SalesPrice

However, if your prepared command is based on a host variable or string containing the
following statement, you will only be able to use UPDATE WHERE CURRENT to change
column SalesPrice in any qualifying rows of PurchDB.Parts.

SELECT PartNumber FROM PurchDB.Parts

WHERE PartNumber BETWEEN 9000 AND 9999

FOR UPDATE OF SalesPrice

10-10 Using Dynamic Operations

Your error checking strategy might include routines to parse user input for an acceptable
SELECT statement and/or routines to test speci�c sqlca �eld values and invoke
SQLEXPLAIN. This error checking strategy may need to be modi�ed, if the syntax of the
SELECT statement has changed for a particular ALLBASE/SQL release.

Setting Up the SQLDA

You use the INCLUDE command to declare the SQLDA in the declaration section of your
program:

EXEC SQL INCLUDE SQLDA;

When the Pascal preprocessor parses this command, it inserts a type declaration for this data
structure into the modi�ed source code �le:

$Skip_Text ON$

EXEC SQL INCLUDE SQLDA;

$Skip_Text OFF$

sqlda: Sqlda_Type;

Alternatively, you can include the above type declaration in your source �le and omit the
INCLUDE command.

The Sqlda Type record is de�ned as follows in the full preprocessor generated include �le
named SQLTYPE:

Sqlda_Type = Record

SqldaId : Packed Array[1..8] of Char; reserved for ALLBASE/SQL

Sqldabc : Integer; reserved for ALLBASE/SQL

Sqln : Integer; number of format array records

Sqld : Integer; number of columns

SqlFmtArr: Integer; format array address

SqlNRow : Integer; number of rows to FETCH

SqlRRow : Integer; number of rows fetched

SqlRowLen: Integer; bytes in each row

SqlBufLen: Integer; bytes in data bu�er

SqlRowBuf: Integer; data bu�er address

end;

Using Dynamic Operations 10-11

Values are assigned to SQLDA �elds by you or by ALLBASE/SQL, as summarized in Table
10-1.

Table 10-1. SQLDA Fields

FIELD
NAME

FIELD
DESCRIPTION

Pascal
DATA
TYPE

YOU SET
BEFORE
DESCRIBE

YOU
SET

BEFORE
FETCH

ALLBASE/
SQL

SETS AT
DESCRIBE

ALLBASE/
SQL

SETS AT
FETCH

sqldaid reserved Packed Array
[1..8] of char

sqldabc reserved Integer

sqln number of format
array records (one
record (column)
per select list item)

Integer X

sqld number of columns
in query result (0
if non-query)

Integer X

sqlfmtarr address of format
array

Integer X

sqlnrow number of rows to
FETCH into the
data bu�er

Integer X

sqlrrow number of rows
put into the data
bu�er

Integer X

sqlrowlen number of bytes in
each row

Integer X

sqlbuen number of bytes in
the data bu�er

Integer X

sqlrowbuf address of data
bu�er

SmallInt X

10-12 Using Dynamic Operations

Setting Up the Format Array

You declare the format array as an array of records having the type SqlFormat Type:

var

SqlFmts : Array[1..NbrFmtRecords] of SqlFormat_Type;

Set the number of records in the format array (NbrFmtRecords in this example) to the largest
number of select list items you expect. If you do not know this value at programming time,
you can allow for as many as 1024 records, since 1024 is the maximum number of columns any
query result can contain, as follows:

const

NbrFmtRecords = 1024;

On the other hand, if you know at programming time the maximum number of columns to
expect, you may be able to declare a smaller format array:

const

NbrFmtRecords = 6;

The de�nition for the type SqlFormat Type appears in the full preprocessor generated type
include �le:

SqlFormat_Type = Packed Record

SqLnty, SqlType, SqlPrec, SqlScale: SmallInt;

SqlTotalLen, SqlValLen, SqlIndLen: integer;

SqlVof, SqlNof: integer;

SqlName: Packed Array [1..20] of Char;

end;

Each record in the format array describes one of the columns in the query result. The �rst
record describes the �rst column, the second record describes the second column, and so forth.
Table 10-2 explains the meaning of each �eld in a format array record. Under \MEANING
OF FIELD" for the sqltype �eld in the table, DATE, TIME, DATETIME, and INTERVAL
each have di�erent code numbers, but they all are formatted with an sqltype of code 2,
CHAR, externally.

Using Dynamic Operations 10-13

Table 10-2. Fields in a Format Array Record

FIELD
NAME

MEANING OF FIELD Pascal DATA TYPE

sqlnty reserved; always set to 111 SmallInt

sqltype data type of column:

0 = SMALLINT or INTEGER

1 = BINARY*

2 = CHAR*

3 = VARCHAR*

4 = FLOAT

5 = DECIMAL y

8 = NATIVE CHAR *

9 = NATIVE VARCHAR *

10 = DATE*

11 = TIME*

12 = DATETIME*

13 = INTERVAL*

14 = VARBINARY*

15 = LONG BINARY *

16 = LONG VARBINARY*

* Native CHAR or VARCHAR is what SQLCore uses internally
when a CHAR or VARCHAR column is de�ned with a
LANG = ColumnLanguageName clause. They possess the
same characteristics as the related types CHAR and
VARCHAR, except that data stored in native columns will be
sorted, compared, or truncated using local language rules.
Native, character, and Date/Time types are compatible with
regular character types.
y When you use the DECIMAL data type with BULK
processing or with format array record in dynamic processing,
you must convert the DECIMAL value to its ASCII
representation. Refer to the routine BCDToString in the
program cex10a later in this chapter.

SmallInt

sqlprec precision of DECIMAL data SmallInt

sqlscale scale of DECIMAL data SmallInt

sqltotallen byte sum of sqlvallen, sqlindlen, indicator alignment bytes, and
next data value alignment bytes

Integer

sqlvallen number of bytes in data value, including a 4-byte pre�x
containing actual length of VARCHAR data

Integer

sqlindlen number of bytes null indicator occupies in the data bu�er:

0 bytes: column defined NOT NULL

2 bytes: column allows null values

SmallInt

sqlvof byte o�set of value from the beginning of a row Integer

sqlnof byte o�set of null indicator from the beginning of a row,
dependent on the value of sqlindlen

Integer

sqlname de�ned name of column or, for computed expression, EXPR Packed Array [1..20]
of char

10-14 Using Dynamic Operations

Setting up the Data Buffer

You use di�erent approaches to setting up the data bu�er depending on whether your
dynamic query result has an unknown format or a known format. If the query result has an
unknown format, you may not know the number of columns or their data types. If the query
result has a known format, you know in advance the number of columns in the query result
and the data type of each column.

Setting up a Buffer for Query Results of Unknown Format

For query results of unknown format, you declare the data bu�er as a character array:

const

MaxDataBuff = 2500;
.

.

.

var

DataBuffer : packed array[1..MaxDataBuff] of char;

The data bu�er must be large enough to hold all the rows ALLBASE/SQL retrieves each time
you execute the FETCH command, i.e., the number of rows you specify in SQLDA.SqlNRow.
The data bu�er de�ned above can hold as many as 2500 bytes of data.

Although the data bu�er above can hold 2500 bytes, it would not be able to hold 2500 bytes
of column values if any of the values were null and/or VARCHAR:

If a column can contain null values, ALLBASE/SQL appends a 2-byte su�x to the data
value when it puts the data into the data bu�er. This su�x, referred to as a null indicator,
contains a 0 when the data value is not null and a negative number when the value is null.
You use the sqlindlen �eld of the format array record to determine whether ALLBASE/SQL
returned this su�x with the data.

When ALLBASE/SQL puts VARCHAR data into the data bu�er, it pre�xes the data with
4 bytes containing the actual length of the VARCHAR string. You use the sqltype �eld
of the format array record to identify VARCHAR values. This �eld is set to 3 when data
returned to the data bu�er has this pre�x.

You can use the SQLDA.SqlRowLen value to compute how many rows will �t into the data
bu�er. Dividing SQLDA.SqlRowLen into SQLDA.SqlBufLen gives you the number of rows,
including any VARCHAR pre�xes and null indicator su�xes accompanying data values in the
row:

SqlNRow := SqlBufLen DIV SqlRowLen

The data bu�er declaration shown above is an array of char, because the format of the query
result is unknown at programming time.

Setting up a Buffer for Query Results of Known Format

When you know the query result format in advance, you can declare a data bu�er as an array
of records having the expected format. When a column can contain null values, you must
declare a 2-byte indicator variable, immediately following the variable for that column. The
indicator variable will hold the 2-byte su�x ALLBASE/SQL returns with the data value. In
the following example, Column3Ind is an indicator variable for Column3.

Using Dynamic Operations 10-15

DataBuffer : Packed Array[1..MaxDataBuff] of Packed Record

Column1 : String[20]; (* for VARCHAR data *)

Column2 : SmallInt;
Column3 : Integer;

Column3Ind : SmallInt; (* indicator variable *)

Column4 : Packed Array[1..60] of Char; (* for CHAR data *)

End;

When a column contains a VARCHAR data type, you use a string data type for the variable
length data, as shown above. The string data type includes a 4-byte pre�x for the length of
the data.

The data types you declare for a query result of known format need not be equivalent to
the data types of their corresponding columns, but they should be compatible. (DATE,
TIME, DATETIME, and INTERVAL values are treated like CHAR values.) Refer to the
ALLBASE/SQL Reference Manual for the rules governing data type compatibility and
conversion for complete information on this topic. The ALLBASE/SQL Reference Manual
also addresses type conversion that may occur when a select list item is an expression
containing data of di�erent types. When you expect truncation, the column must allow nulls
in order to detect the truncation.

Using the Dynamic Query Data Structures

You use the SQLDA, the format array, and the data bu�er in the following sequence of
operations:

Include the SQLDA at the beginning of your program with an INCLUDE statement:

EXEC SQL INCLUDE SQLDA;

Declare a data bu�er to hold the query result. This may be structured or not, depending on
whether you know the format of the query result in advance. The following is unstructured:

const

MaxDataBuff = 2500;

.

.

.

var

DataBuffer : packed array[1..MaxDataBuff] of char;

When the select list is known, you can de�ne the data bu�er as an array of records having
the expected format:

var

DataBuffer: packed array[1..MaxNbrRows] of packed record

column1 : Column1DataType;

column2 : Column2DataType;

end;

Declare a format array as sqlformat type. This type is de�ned for you in the preprocessor
generated type include �le. The number of records in the format array in this example is
1024, which allows for the maximum size query result of 1024 columns.

10-16 Using Dynamic Operations

const

NbrFmtRecords = 1024; (*columns expected*)

var
(*SQLFmts is the format array*)

SQLFmts : array[1..NbrFmtRecords] of SQLFormat_Type;

Use a host variable for the SELECT command, and pass it to ALLBASE/SQL in the
PREPARE command:

EXEC SQL BEGIN DECLARE SECTION;

DynamicCommand : string[1024];

EXEC SQL END DECLARE SECTION;

.

.

.

EXEC SQL PREPARE Cmd1 FROM :DynamicCommand;

Initialize two SQLDA �elds, sqln and sqlfmtarr. sqln is set to the number of records of the
format array, and sqlfmtarr is set to its address.

with SQLDA do

begin

sqln := NbrFmtRecords; (* columns expected*)

sqlfmtarr := waddress(SQLFmts); (* format array address*)

end;

Execute the DESCRIBE command:

EXEC SQL DESCRIBE Cmd1 INTO SQLDA;

During the execution of the DESCRIBE command, ALLBASE/SQL returns to the format
array and to the SQLDA the information you need later to parse and handle the query
result. You use format array information to parse the data bu�er when you do not know in
advance the format of a query result.

Note When you know the format of the query result in advance, you can de�ne a
data bu�er having the format you expect, and you do not need to use format
array information to parse it. However, you still need to declare the format
array.

Declare and open a cursor for the prepared query:

EXEC SQL DECLARE Cursor1 CURSOR FOR Cmd1;

EXEC SQL OPEN Cursor1;

Before retrieving rows into the data bu�er, initialize three SQLDA �elds. These �elds
identify your data bu�er and specify how many rows you want retrieved into the data bu�er
each time the FETCH command is executed:

with SQLDA do

begin

sqlbuflen := sizeof(DataBuffer); (* bytes in data buffer *)

sqlrowbuf := waddress(DataBuffer); (* data buffer address *)

sqlnrow := sqlbuflen DIV sqlrowlen; (* number of rows to FETCH *)

end;

Using Dynamic Operations 10-17

Execute the FETCH command. ALLBASE/SQL packs the data bu�er with as many
rows from the active set as you speci�ed in SQLDA.SqlNRow. ALLBASE/SQL puts the
�rst select list value into the data bu�er, starting at the �rst byte of the format array
and including any VARCHAR pre�xes, ALLBASE/SQL null indicators for columns that
can contain null values, and any alignment bytes provided by the Pascal compiler. Then
ALLBASE/SQL writes the second through last select list values for the �rst row. If the
query result contains another row, the �rst through last select list values in that row are
written to the data bu�er. Data values are thus concatenated in the data bu�er until
the last row has been fetched. When the last row in the active set has been fetched,
ALLBASE/SQL sets SQLCA.SQLCODE to 100.

In Figure 10-5, two columns are selected from the vendors table in the sample database.
Column VendorNumber is de�ned in the table as an INTEGER that cannot contain a null
value. Column VendorRemarks is de�ned in the table as a VARCHAR that can contain
a null value. Since the VendorRemarks column can contain a null value, a two byte null
indicator needs to be provided immediately following this VARCHAR data column. Note
the two byte �ller that completes the VendorRemarks column de�nition. It is needed by
the compiler for byte alignment purposes; data is aligned on 4 byte boundaries. The �gure
illustrates the relationships between column de�nitions and the layout of data in the data
bu�er.

Figure 10-5. Format of the Data Buffer

10-18 Using Dynamic Operations

Note that the number of rows to retrieve with each execution of the FETCH command
is speci�ed in SQLDA.SqlNRow. As shown in the above example, you can calculate the
number of rows that will �t into the data bu�er by dividing the row length (in bytes)
into the number of bytes in the data bu�er. Sqlrowlen, one of the SQLDA �elds set by
ALLBASE/SQL when you execute the DESCRIBE command, contains the number of bytes
in each row.

while SQLCA.SQLCODE = 0 do

begin

EXEC SQL FETCH Cursor1 USING DESCRIPTOR SQLDA;

DisplayRow;

end;

If the query result is of unknown format, parse rows out of the data bu�er after each
execution of the FETCH command. The technique for parsing is shown in detail in the next
section.

Parsing the Data Buffer

The technique for parsing the data bu�er and assigning its contents to variables of appropriate
types is illustrated in function DisplaySelect of program pasex10a. The listing is found in
Figure 10-9 in the following section, \Program pasex10a: Dynamic Commands of Unknown
Format." Essentially, you initialize an o�set variable for the data bu�er, then execute a loop
for each row retrieved with the FETCH statement. For each column in the loop, you do the
following:

Check for null values, taking appropriate action when one is found.

Examine the data type and length of the data element itself, assigning it to an appropriate
variable of the corresponding size. A dynamically preprocessed PREPARE statement with
an output data bu�er requires you code Pascal statements yourself to convert Binary Coded
Decimal (BCD) representation to character representation. If you use an input bu�er with
dynamic preprocessing, you must write code that converts the character representation to
BCD format before the data is placed in the input bu�er.

Increment the o�set variable by the value of SQLDA.SqlRowLen (the length of a complete
row).

The following diagram summarizes the arithmetic used to parse the data bu�er in function
DisplaySelect in program pasex10a. The data bu�er shown is for the �rst query executed in
the dialog in Figure 10-6.

Using Dynamic Operations 10-19

Figure 10-6. Parsing the Data Buffer in Program pasex10a

Program pasex10a uses the following assignment to set the start of a row:

CurrentOffset := CurrentOffset + SqlRowLen;

To �nd a null indicator, the program uses the following assignment:

NullIndOffset := CurrentOffset + SqlNOf;

To move a data value into a variant record, pasex10a uses the following statement:

StrMove(SqlValLen, DataBuffer,

CurrentOffset + SqlVOf, OneColumn.CharData, 1);

10-20 Using Dynamic Operations

Preprocessing Dynamic Commands That May or May Not Be Queries

You need special techniques to handle dynamic commands which may be either queries or
non-queries. In a program that accepts both query and non-query SQL commands, you
�rst PREPARE the command, then use the DESCRIBE command in conjunction with
the SQLDA, the data structure that lets you identify whether a command is a query. The
PREPARE command must appear physically in your source program before the EXECUTE or
DECLARE CURSOR command that uses the name you assign to the dynamic command in
the PREPARE command.

The sqld �eld of the SQLDA is set to 0 if the dynamic command is not a query and to a
positive integer if it is a query. The SQLDA data structure is used in any program that may
host a dynamic query.

In the following example, if the command is not a query, you branch to NonQuery and use the
EXECUTE or EXECUTE IMMEDIATE command to execute it. If it is a query, you branch
to Query, where you declare a cursor, open it, then use FETCH to retrieve qualifying rows.

EXEC SQL PREPARE ThisCommand FROM :DynamicCommand;

EXEC SQL DESCRIBE ThisCommand INTO SQLDA;

The SQLDA.SQLD �eld of the SQLDA is set to 0 if the dynamic command

is not a query and to a positive integer if it is a query. The

SQLDA is a special data structure used in any program that may host

a dynamic query. The data structure is fully de�ned in this

section under "Setting Up the SQLDA."

if SQLDA.SQLD = 0 then NonQuery;

The command is not a query and the EXECUTE or

EXECUTE IMMEDIATE command is used to execute it.

else if SQLDA.SQLD > 0 then Query;

The command is a query and a cursor is used

to retrieve qualifying rows.

To handle a command entirely unknown at programming time, you accept the command into
the host variable. In the following example, an SQL command is accepted into a host variable
named DynamicCommand, which is declared large enough to accommodate the largest
expected dynamic command. User input is accepted into DynamicClause and concatenated in
DynamicCommand until the user enters a semicolon.

Using Dynamic Operations 10-21

var

EXEC SQL BEGIN DECLARE SECTION;

DynamicCommand := String[1024];
EXEC SQL END DECLARE SECTION;

DynamicClause := String[80];

Pos := SmallInt;

.

.

writeln ('Enter an SQL command or clause > ');

writeln;

DynamicCommand := '';

repeat

prompt('> ');

readln(DynamicClause);

if DynamicClause <> '/' then

begin

DynamicCommand := DynamicCommand + ' ' + DynamicClause;

Pos := StrPos(DynamicClause, ';');

if Pos <> 0 then DynamicClause := '/';

end

else

DynamicCommand := '/';

until DynamicClause = '/';

.

.

EXEC SQL PREPARE SQLCommand FROM :DynamicCommand;

10-22 Using Dynamic Operations

Programs Using Dynamic Command Operations

The rest of this chapter contains sample programs that illustrate the use of dynamic
preprocessing techniques for commands. There are two complete programs:

Program pasex10a, which contains statements for executing any dynamic command
(non-query or query with unknown format).

Program pasex10b, which contains statements for executing dynamic queries of known
format.

For each program, there is a description of the code, a display of the runtime dialog with user
input, and a listing.

Sample Program Using Dynamic Commands of Unknown Format

Programs that host queries having query result formats unknown at programming time must
use format array information to parse the data bu�er. Figure 10-7 illustrates the logic for one
such program, pasex10a. The runtime dialog and source code for this program are shown in
Figure 10-8 and Figure 10-9, respectively.

Program pasex10a starts a DBE session � 37 � in the sample database in function ConnectDBE
� 4 �, then executes the procedure named Describe � 23 �. This procedure:

Initializes the two SQLDA �elds � 24 � that must be set before executing the DESCRIBE
command: SQLDA.SQLN (the number of elements in the format array) and
SQLDA.SQLFMTARR (the address of the format array). The number of elements in the
format array is de�ned in the constant NbrFmtRecords, set to 1024 in this program to
accommodate the maximum number of columns in any query result.

Calls procedure GetCommand � 25 � and processes commands accepted from the user in that
procedure until the user enters a slash (/).

Procedure GetCommand � 21 � accepts SQL commands into the host variable named
DynamicCommand. Since the maximum allowable dynamic command is 1024 bytes, including
the semicolon, this variable is declared (� 1 �) as String[1024]. GetCommand concatenates
multiple lines of user input by accepting each line into a local variable, DynamicClause and
adding it to the contents of DynamicCommand until the user enters a semicolon; the string
function STRPOS is used to detect this character.

After SQL command entry is complete, control returns to procedure Describe � 23 �, which:

Starts a transaction, in function BeginTransaction � 6 �.

Executes the PREPARE � 26 � and DESCRIBE � 27 � commands.

Examines the SQLDA.SQLD �eld (number of columns in query result) to determine
whether the dynamic command is a query � 28 �. If this value is 0, the command is
not a query and procedure NonQuery � 29 � is invoked to execute the command. If the
SQLDA.SQLD value is not 0, procedure Query � 30 � is invoked to execute the command.

Note that the FORWARD directive � 22 � is used for procedures NonQuery and Query, just
prior to Describe. These procedures cannot be fully declared until after procedure Describe.
You must name a dynamic command (in the PREPARE command) before you reference it
(in the EXECUTE or DECLARE CURSOR commands). In this program, the PREPARE
command is executed in procedure Describe, which calls both NonQuery and Query.

Using Dynamic Operations 10-23

Procedure Query:

Displays the number of columns in the query result, by using the value ALLBASE/SQL
assigned to SQLDA.SQLD when the DESCRIBE command was executed � 31 �.

Declares and opens a cursor for the dynamic query � 32 �.

Initializes the three SQLDA �elds that must be set before executing the FETCH command
� 33 �: SQLDA.SQLBUFLEN (the size of the data bu�er), SQLDA.NROW (the number
of rows to put into the data bu�er with each FETCH), and SQLDA.SQLROWBUF (the
address of the data bu�er).

Note that to set SQLDA.NROW, the program divides the row length into the data bu�er
size to determine how many rows can �t into the data bu�er � 34 �.

Executes the FETCH command � 35 � and calls procedure Display Select � 36 � until the
last row in the active set has been fetched. When no more rows are available to fetch,
ALLBASE/SQL sets SQLCA.SQLCODE to 100, de�ned as a constant named EOF in this
program.

Procedure DisplaySelect � 8 � parses the data bu�er after ea operation and displays rows:

The procedure keeps track of the beginning of each row by using a local variable,
CurrentO�set, as a pointer. CurrentO�set is initialized to 1 � 10 � at the beginning of
procedure DisplaySelect.

Column headings are written from the SQLName �eld of each format array record � 11 �.
The loop that displays the headings uses the SQLDA.SQLD value (the number of columns
in the query result) as the �nal value of a format array record counter (x).

The �rst through last column values in each row are examined and displayed in a loop. The
loop uses the SQLDA.SQLRROW value (the number of rows fetched) as the �nal value of
a row counter � 12 �. The loop also uses the SQLDA.SQLD value (the number of select list
items) as the �nal value of a column counter � 13 �.

The SqlIndLen �eld of each column's format array record is examined � 14 � to determine
whether a null value might exist.

If a column can contain null values, SqlIndLen is greater than zero, and the procedure
must examine the indicator variable to determine whether a value is null. A local variable,
NullIndO�set, is used to keep track of the �rst byte of the current indicator variable � 15 �.

Any null indicator can be located by adding the current value of SqlNOf to the current
value of CurrentO�set. SqlNOf is the format array record �eld that contains the byte o�set
of a null indicator from the beginning of a row. Recall that CurrentO�set keeps track of the
beginning of a row.

The Pascal ORD function and NullIndO�set are used to determine whether the indicator
variable contains zeros � 16 �. If it does, the value is null, and the procedure displays the
message Column is NULL � 17 �.

If a value is not null, it is moved � 18 � from the data bu�er to OneColumn.CharData. The
starting location of a value in the STRMOVE procedure is computed by adding the current
value of SqlVOf to the current value of CurrentO�set. SqlVOf is the format array record
�eld that contains the byte o�set of a value from the beginning of a row. The number
of bytes to move is the value stored in SqlValLen. OneColumn.CharData is one of the
variations of a variant record, GenericColumnType � 9 �.

10-24 Using Dynamic Operations

GenericColumnType is used to write data values. This variant record has a record de�nition
describing a format for writing data of each of the ALLBASE/SQL data types. The
record variation used depends on the value of SqlType � 19 �, the format array record �eld
describing the data type of a select list item. In the case of DECIMAL data, a function
named BCDToString � 2 � converts the binary coded decimal (BCD) information in the data
bu�er into ASCII format for display purposes.

After each value in a row is displayed, CurrentO�set is incremented by SQLDA.SqlRowLen
� 20 � to point to the beginning of the next row.

When the dynamic command has been completely processed, procedure Query calls the
EndTransaction procedure � 7 � to process a COMMIT command. Thus each dynamic query
hosted by this program is executed in a separate transaction.

To determine whether each SQL command executed successfully, the program examines the
value of SQLCA.SQLCODE after SQL commands are executed. Procedure SQLStatusCheck
� 3 � is invoked to display one or more messages from the ALLBASE/SQL message catalog.
Any other action taken depends on the SQL command:

If the CONNECT command fails, function ConnectDBE � 4 � sets the ConnectDBE ag to
FALSE, then calls procedure SQLStatusCheck. Then the program terminates.

If the BEGIN WORK command fails, function BeginTransaction � 6 �calls SQLStatusCheck
to display messages, then calls ReleaseDBE � 5 � to end the DBE session. The program then
terminates because procedure Describe � 23 � sets DynamicCommand to a slash.

If other SQL commands fail, procedure SQLStatusCheck terminates the program whenever
the error is serious enough to return an SQLCA.SQLCODE less than -14024.

Using Dynamic Operations 10-25

Figure 10-7. Flow Chart of Program pasex10a

10-26 Using Dynamic Operations

Figure 10-7. Flow Chart of Program pasex10a (page 2 of 2)

Using Dynamic Operations 10-27

Pascal program illustrating dynamic command processing.

Event List:

Connect to PartsDBE

Prompt for any SQL command

Begin Work

Prepare

Describe

If command is a non-query command, EXECUTE it

Otherwise execute the following:

Declare

Open

Fetch

Close

Commit Work

Repeat the above ten steps

Release PartsDBE

Connect to PartsDBE

Connect to PartsDBE

You may enter any SQL command or "/" to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon (;).

Enter SQL command/clause >

> SELECT * FROM PURCHDB.PARTS WHERE SALESPRICE = 2000;

Begin Work

Prepare

Describe

Query SQL command.

Number of columns: 3

PARTNUMBER | PARTNAME | SALESPRICE |

1343-D-01 | Winchester Drive | 2000.00 |

Row not found or no more rows

Commit Work

You may enter any SQL command or "/" to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon (;).

Figure 10-8. Runtime Dialog of Program pasex10a

10-28 Using Dynamic Operations

Enter SQL command/clause >

> DELETE FROM PURCHDB.PARTS WHERE PARTNUMBER = '1343-D-01';

Begin Work

Prepare

Describe

Non Query SQL command.

Execute

Non-Query Command Executed Successfully.

Commit Work

You may enter any SQL command or "/" to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon (;).

Enter SQL command/clause >

> SELECT * FROM PURCHDB.PARTS WHERE SALESPRICE = 2000;

Begin Work

Prepare

Describe

Query SQL command.

Number of columns: 3

Row not found or no more rows

Commit Work

You may enter any SQL command or "/" to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon (;).

Enter SQL command/clause >

> /

Release PartsDBE

Figure 10-8. Runtime Dialog of Program pasex10a (page 2 of 2)

Using Dynamic Operations 10-29

$Heap_Dispose ON$

$Heap_Compact ON$

Standard_Level 'HP_Pascal$

(* *)

(* This program illustrates dynamic preprocessing of SQL commands *)

(* including SELECT commands using the DESCRIBE command. *)

(* *)

Program pasex10a (input, output);

type

(* Nibbles and BCDType are data types needed for decimal type *)

Nibbles = 0..15;

BCDType = packed array [1..20] of Nibbles;

Const

NotFound = 100;

OK = 0;
DeadLock = -14024;

(* NbrFmtRecords is number of columns expected in a dynamic SELECT. *)

NbrFmtRecords = 1024;

EOF = 100;

MaxDataBuff = 2500;

Var

(* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION;

SQLMessage : packed array[1..132] of char;

(* DynamicCommand is a String that will hold the dynamic command. *)

DynamicCommand : String[1024]; � 1 �
EXEC SQL END DECLARE SECTION;

(* End Host Variable Declarations *)

EXEC SQL INCLUDE SQLCA;

(* SQLDA is the SQL DESCRIBE Area used by the DESCRIBE command. *)

EXEC SQL INCLUDE SQLDA;

(* Each record in SQLFmts will hold information about each column

* in a dynamic SELECT. *)

SQLFmts : array[1..NbrFmtRecords] of SqlFormat_Type;

(* DataBuffer is the buffer containing retrieved data as a result

* of a dynamic SELECT. *)

DataBuffer : packed array[1..MaxDataBuff] of char;

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format

10-30 Using Dynamic Operations

Abort : boolean;

$PAGE $

(* Procedure BCDToString converts a decimal field in the "DataBuffer"

* buffer to its decimal presentation. Other input parameters are

* the Length, precision and Scale. The input decimal field is passed

* via "DataBuffer" and the output String is passed via "result".

*)

procedure BCDToString (DataBuffer : BCDType; Length : SmallInt; � 2 �
Precision : SmallInt; Scale : SmallInt;

var Result : String);

const

hexd = '0123456789ABCDEF'; (* Hexadecimal digits #001*)

ASCIIZero = ord('0');

PlusSign = 12;

MinusSign = 13;

UnSigned = 14;

var

i,
DecimalPlace,

PutPos,

DataEnd,

DataStart : Integer;

done : boolean;

begin

DataEnd := (Length*2) - 1;

DataStart := (DataEnd - Precision) + 1;

Result := StrRpt (' ',StrMax(Result));

DecimalPlace := Precision-Scale;

(* convert decimal to character String *)

if DecimalPlace = 0 then

begin

Result[1] := '.';

PutPos := 2;

end

else

PutPos := 1;

for i := DataStart to DataEnd do

begin

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 2 of 12)

Using Dynamic Operations 10-31

(* convert each Nibble into a character *)

Result[PutPos] := chr(ASCIIZero + DataBuffer[i]);

if PutPos = DecimalPlace then

begin

PutPos := succ(PutPos);

Result[PutPos] := '.';

end;

PutPos := succ(PutPos);

end;

$PAGE $

(* convert leading zeroes to spaces *)

Result := StrLTrim(StrRTrim(Result));

i := 1;

done := False;

while (i <= StrLen(Result)) AND (not done) do

if Result[i] <> '0' then

done := True

else
begin

Result[i] := ' ';

i := succ(i);

end;

(* trim spaces from result *)

Result := StrLTrim(Result);

if Result = '' then

Result := '0'

else

begin

if Result[1] = '.' then

(* place a zero at the left of the decimal point *)

StrInsert('0', Result, 1);

(* insert sign *)

case DataBuffer[DataEnd + 1] of

PlusSign : StrInsert(' ', Result, 1);

MinusSign: StrInsert('-', Result, 1);

end; (*case*)

end; (*else*)

end; (*BCDToString*)

$PAGE $

procedure SQLStatusCheck; (*Procedure to Display Error Messages*) � 3 �
begin

Abort := FALSE;

if SQLCA.SQLCODE < DeadLock then Abort := TRUE;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);
until SQLCA.SQLCODE = 0;

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 3 of 12)

10-32 Using Dynamic Operations

if Abort then

begin

EXEC SQL COMMIT WORK RELEASE;

halt;

end;

end; (* End SQLStatusCheck Procedure *)

function ConnectDBE: boolean;(* Function to Connect to PartsDBE *) � 4 �
begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE';

ConnectDBE := TRUE;

if SQLCA.SQLCODE <> OK then

begin

ConnectDBE := FALSE;

SQLStatusCheck;
end; (* End if *)

end; (* End of ConnectDBE Function *)

procedure ReleaseDBE; (* Procedure to Release PartsDBE *) � 5 �
begin

writeln('Release PartsDBE');

EXEC SQL RELEASE;

if SQLCA.SQLCODE <> OK then SQLStatusCheck;

end; (* End ReleaseDBE Function *)

$PAGE $

function BeginTransaction: boolean; (* Function to Begin Work *) � 6 �
begin

writeln;

writeln('Begin Work');

EXEC SQL BEGIN WORK;

if SQLCA.SQLCODE <> OK then

begin

BeginTransaction := FALSE;

SQLStatusCheck;

ReleaseDBE;

end

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 4 of 12)

Using Dynamic Operations 10-33

else

BeginTransaction := TRUE;

end; (* End BeginTransaction Function *)

procedure EndTransaction; (* Procedure to Commit Work *) � 7 �
begin

writeln;

writeln('Commit Work');

EXEC SQL COMMIT WORK;

if SQLCA.SQLCODE <> OK then SQLStatusCheck;

end; (* End Transaction Procedure *)

$PAGE $

(* Procedure DisplaySelect deblocks the result of the dynamic

* SELECT in "DataBuffer". *)

procedure DisplaySelect; � 8 �
const

MaxColSize = 3996;

type

GenericColumnType = record � 9 �
case SmallInt of

0 : (CharData : packed array[1..MaxColSize] of char);

1 : (VarCharData : String[MaxColSize]);

2 : (IntegerData : Integer);

3 : (SmallIntData : SmallInt);

4 : (FloatData : LongReal);

5 : (DecimalData : BCDType);

end;

var

CurrentOffset : SmallInt;

NullIndOffset : SmallInt;

OneColumn : GenericColumnType;

DecString : string[20];

IsNull : Boolean;

n,i,j,x : SmallInt; (* local loop counters *)

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 5 of 12)

10-34 Using Dynamic Operations

$PAGE $

begin

CurrentOffset := 1; � 10 �

for x := 1 to SQLDA.Sqld do (* display column names *)

with SQLFmts[x] do

begin

if SqlType = 5 then { Decimal data }

n := SqlValLen*2

else

n := SqlValLen;

if SqlValLen < strlen(SqlName) then

write(SqlName:n) � 11 �
else

write(SqlName);

if strlen(SqlName) < SqlValLen then

for j := strlen(SqlName) to SqlValLen - 1
do write(' ');

write(' | ');

end;

writeln;

for n:= 1 to SQLDA.SqlRRow do (* for each FETCHed row *) � 12 �
begin

for i:=1 to SQLDA.Sqld do (* for each column in a FETCHed row *) � 13 �
with SQLFmts[i] do

begin

(* Check to see if this column has the value NULL. This is done *)

(* by checking the NULL indicator in the buffer. This indicator *)

(* appears after the data value for this column. *)

IsNull := False;

if SqlIndLen > 0 then � 14 �
begin

NullIndOffset := CurrentOffset + SqlNOf; � 15 �

if (ord(DataBuffer[NullIndOffset]) = 0) � 16 �
AND (ord(DataBuffer[NullIndOffset+1]) = 0) then

IsNull := False

else

IsNull := True;

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 6 of 12)

Using Dynamic Operations 10-35

end; (* end if SQLIndLen > 0 .. *)

if IsNull then

write('Column is NULL | ') � 17 �
else

begin

(* Bring down the actual value of this column. *)

StrMove(SqlValLen, DataBuffer, � 18 �
CurrentOffset + SqlVOf, OneColumn.CharData, 1);

$PAGE $

case SqlType of � 19 �
0: (* Integer number *)

case SqlValLen of

2: write(OneColumn.SmallIntData, ' | ');

4: write(OneColumn.IntegerData, ' | ');

end;
2: (* fixed-length character *)

begin

for j := 1 to SqlValLen do

write(OneColumn.CharData[j]);

write(' | ');

end;

3: (* variable-length char *)

begin

write(OneColumn.VarCharData, ' | ');

end;

4: (* floating point *)

begin

write(OneColumn.FloatData, ' | ');

end;

5: (* Packed decimal *)

begin

BCDToString(OneColumn.DecimalData, SqlValLen,

SqlPrec, SqlScale, DecString);

write(DecString:SqlValLen*2, ' | ');

end;

end; (* case statement *)

end; (* if IsNull *)

end; (* for i/with SQLFmts[i] ... *)

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 7 of 12)

10-36 Using Dynamic Operations

CurrentOffset := CurrentOffset + SQLDA.SqlRowLen; � 20 �

writeln;

end; (* for n := ... *)

writeln;

end; (* end of DisplaySelect *)

$PAGE $

procedure GetCommand; � 21 �

var

DynamicClause : String[80];

Pos : SmallInt;

begin

writeln;

writeln('You may enter any SQL command or "/" to STOP the program.');

writeln('The command can be continued on the next line. The command');

writeln('must be terminated with a semicolon (;).');

writeln;

writeln('Enter SQL command/clause >');

writeln;

DynamicCommand := '';

repeat

prompt('> ');

readln(DynamicClause);

if DynamicClause <> '/' then

begin

DynamicCommand := DynamicCommand + ' ' + DynamicClause;

Pos := StrPos(DynamicClause, ';');

if Pos <> 0 then DynamicClause := '/';

end

else

DynamicCommand := '/';

until DynamicClause = '/'; (* end repeat *)

end; (* end of GetCommand procedure *)

$PAGE $

procedure NonQuery;forward; � 22 �
procedure Query;forward;

procedure Describe; (* Describe Procedure *) � 23 �

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 8 of 12)

Using Dynamic Operations 10-37

begin

with SQLDA do (* set up SQLDA fields *)

begin

Sqln := NbrFmtRecords; (* number of columns expected *) � 24 �
SqlFmtArr := waddress(SQLFmts);

end;

repeat

GetCommand; � 25 �

if DynamicCommand <> '/' then

begin

if BeginTransaction then

begin

writeln('Prepare');

EXEC SQL PREPARE CMD1 FROM :DynamicCommand; � 26 �
if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

EndTransaction;

end

else

begin

writeln('Describe');

EXEC SQL DESCRIBE CMD1 INTO SQLDA; � 27 �
if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

EndTransaction;

end

else

begin

if SQLDA.Sqld = 0 then NonQuery � 28 �
else Query;

end; (* end if SQLCA.SQLCODE <> OK after DESCRIBE *)

end; (* end if SQLDA.SQLCODE <> OK after PREPARE *)

end (* end if BeginTransaction *)

else (* BeginTransaction failed; force *)

DynamicCommand := '/'; (* logical end to Describe proc.*)

end; (* end if DynamicCommand *)

until DynamicCommand = '/'; (* end repeat *)

end; (* end of Describe procedure *)

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 9 of 12)

10-38 Using Dynamic Operations

$PAGE $

procedure NonQuery; � 29 �
begin

writeln ('Non Query SQL command.');

writeln ('Execute');

EXEC SQL EXECUTE CMD1;

if SQLCA.SQLCODE <> OK then

begin

SqlStatusCheck;

EXEC SQL ROLLBACK WORK;

end

else

begin

writeln ('Non-Query Command Executed Successfully.');

EndTransaction;

end;

end; (* end of NonQuery procedure *)

$PAGE $

procedure Query; � 30 �

var

RowLength : SmallInt;

i : SmallInt;

begin

writeln ('Query SQL command.');

writeln;

writeln('Number of columns: ',SQLDA.Sqld:2); � 31 �
writeln;

EXEC SQL DECLARE CURSOR1 CURSOR FOR CMD1; � 32 �
EXEC SQL OPEN CURSOR1;

if SQLCA.SQLCODE <> OK then SQLStatusCheck

else

begin

with SQLDA do

begin

SqlBufLen := sizeof(DataBuffer); � 33 �

SqlNRow := SqlBufLen DIV SqlRowLen; � 34 �
SqlRowBuf := waddress(DataBuffer);

end;

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 10 of 12)

Using Dynamic Operations 10-39

while SQLCA.SQLCODE = 0 do

begin

EXEC SQL FETCH CURSOR1 USING DESCRIPTOR SQLDA; � 35 �
if SQLCA.SQLCODE <> OK then

begin

if SQLCA.SQLCODE = EOF then

writeln('Row not found or no more rows')

else

SQLStatusCheck;

end

else

DisplaySelect; � 36 �
end; (* end of while SQLCA.SQLCODE = 0 *)

EXEC SQL CLOSE CURSOR1;

if SQLCA.SQLCODE <> OK then SqlStatusCheck;

end; (* end of OPEN CURSOR OK *)

EndTransaction;

end; (* end of Query procedure *)

$PAGE $

begin (* Beginning of Program *)

writeln('Pascal program illustrating dynamic command processing.');

writeln;

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' Prompt for any SQL command ');

writeln(' Begin Work');

writeln(' Prepare ');

writeln(' Describe ');

writeln(' If command is a non-query command, EXECUTE it');

writeln(' Otherwise execute the following:');

writeln(' Declare ');

writeln(' Open ');

writeln(' Fetch ');

writeln(' Close ');

writeln(' Commit Work');

writeln(' Repeat the above ten steps');

writeln(' Release PartsDBE');

writeln;

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 11 of 12)

10-40 Using Dynamic Operations

if ConnectDBE then � 37 �
begin

Describe;

ReleaseDBE

end

else

writeln('Error: Cannot Connect to PartsDBE');

end. (* End of Program *)

Figure 10-9. Program pasex10a: Dynamic Commands of Unknown Format (page 12 of 12)

Using Dynamic Operations 10-41

Sample Program Using Dynamic Queries of Known Format

In some applications, you may know the format of a query result in advance, but want to
dynamically preprocess the query to create a program that does not have a permanently
stored module. Database administration utilities that include system catalog queries often fall
into this category of applications.

In programs hosting dynamic queries having query results of known format, you do not
need to use the format array to parse the data bu�er. Because you know in advance the
query result format, you can pre-de�ne an array having a complementary format and read
information from the array without having to determine where data is and the format it has
been returned in.

Program pasex10b, whose ow chart is shown in Figure 10-10 , whose execution is illustrated
in Figure 10-11, and whose source code appears in Figure 10-12, executes two dynamic queries
with select lists known at programming time. The program reads the SYSTEM.TABLE view
and the SYSTEM.COLUMN view in order to re-create the SQL CREATE TABLE commands
originally used to de�ne tables in a DBEnvironment. The CREATE TABLE commands are
stored in a permanent ASCII �le you name when you execute the program. Such a �le can be
used as an ISQL command �le in order to re-create the tables in some other DBEnvironment.

The program �rst prompts � 6 � for the name of the �le in which to store the table de�nitions.
It purges � 7 � any �le that exists by the same name.

The program then prompts for a DBEnvironment name � 8 �. The DBEnvironment name
is used to build a CONNECT command in host variable CmdLine � 9 �. The CONNECT
command is executed by using the EXECUTE IMMEDIATE command � 10 �.

The program then prompts for an owner name � 11 �. If an owner name is entered, it is
upshifted � 12 �, then added to the WHERE clause in the �rst dynamic query � 14 �:

CmdLine := 'SELECT OWNER, NAME, DBEFILESET, RTYPE FROM SYSTEM.TABLE'

+ ' WHERE TYPE = 0 AND OWNER = ''' + OwnerName + ''';';

This query retrieves a row for every table (TYPE = 0) having an owner name as speci�ed
in the variable OwnerName. Each row consists of four columns: the owner name, the table
name, the name of the DBEFileSet with which the table is associated, and the automatic
locking mode.

To obtain a de�nition of all tables in a DBEnvironment except those owned by SYSTEM,
the user presses the carriage return in response to the owner name prompt. In this case, the
program uses the following form of the dynamic query � 13 �:

CmdLine := 'SELECT OWNER, NAME, DBEFILESET, RTYPE FROM SYSTEM.TABLE'

+ ' WHERE TYPE = 0 AND OWNER <> ''SYSTEM'';'

The PREPARE command (� 15 �) creates a temporary section named SelectCmd1 for the
dynamic query from CmdLine.

Then the program initializes the two SQLDA �elds � 16 � needed by the DESCRIBE command
� 17 �. Because the number of columns in the query result is known to be four at programming
time, SqlN is set to 4. Four of the format array records will be needed, one per select list
item.

10-42 Using Dynamic Operations

The program then declares and opens a cursor named TableList for the dynamic query � 18 �.
Before using the cursor to retrieve rows, the program initializes the SQLDA � 19 � as follows:

The SqlBufLen �eld is set to the size of the data bu�er. In this program, the data bu�er for
the �rst query is a packed array of records named TableList � 4 �. Note that each record in
the array consists of four elements, one for each item in the select list. The elements are
declared with types compatible with those in the corresponding SYSTEM.TABLE columns.

The SqlRowBuf �eld is set to the address of the data bu�er.

The SqlNRow �eld is set to 300, de�ned in th constant MaxNbrTables � 1 �. This number
is the maximum number of rows ALLBASE/SQL will return from the active set when the
FETCH command is executed.

After initializing the required �elds in the SQLDA, the program executes the FETCH
command � 20 �. Because the FETCH command is executed only once, this program can
re-create table de�nitions for a maximum of 300 tables.

After the FETCH command is executed, the value in SQLCA.SQLERRD[3] is saved in
variable NumOfTables � 21 �. This value indicates the number of rows ALLBASE/SQL
returned to the data bu�er. NumOfTables is used later as the �nal value of a counter � 23 � to
control the number of times the second dynamic query is executed; the second query must be
executed once for each table qualifying for the �rst query.

After terminating the transaction that executes the �rst query � 22 �, the program uses the
STRMOVE procedure � 24 � to move CHAR values to string variables so that other Pascal
string procedures can be used when formatting the CREATE TABLE commands and writing
them to the output �le.

The second query � 26 � retrieves information about each column in each table qualifying for
the �rst query. This query contains a WHERE clause that identi�es an owner and table name:

CmdLine := 'SELECT COLNAME, LENGTH, TYPECODE, NULLS, PRECISION,'

+ ' SCALE FROM SYSTEM.COLUMN WHERE OWNER = '''

+ ' OwnerName + ''' AND TABLENAME = ''' + TableName + ''';';

These names are obtained from the Owner and Table values in the TableList array � 4 � after
trailing blanks are trimmed by using the STRRTRIM function � 25 �. Note that trailing blanks
are also trimmed o� the current TableList.FileSet value. Trailing blanks are removed from
these three values so excess blanks do not appear when the values are written to the �le
containing the table de�nition.

After each version of the second query is dynamically preprocessed � 27 �, the program
initializes two SQLDA �elds � 28 � before executing the DESCRIBE command � 29 �. Then a
cursor named ColumnList is declared and opened � 30 � to operate on the active set. Before
fetching rows, the program initializes � 31 � the necessary SQLDA values:

The SqlBufLen �eld is set to the size of the data bu�er. The data bu�er for the second
query is a packed array of records named ColumnList � 5 �.

The SqlRowBuf �eld is set to the address of the data bu�er.

The SqlNRow �eld is set to 255, de�ned in th constant MaxNbrColumns � 2 �. This number
is the maximum number of rows ALLBASE/SQL will return from the active set when the
FETCH command is executed.

Using Dynamic Operations 10-43

The FETCH command � 32 � is executed only once for each table that quali�ed for the �rst
query, since no more than 255 rows would ever qualify for the query. The maximum number
of columns any table can have is 255.

After the active set has been fetched into data bu�er ColumnList, a CREATE TABLE
command for the table is written to the schema �le � 33 �:

CREATE LockMode TABLE OwnerName.TableName,

(ColumnList.ColName[1] TypeInfo NullInfo,

ColumnList.ColName[2] TypeInfo NullInfo,

.

.

.

ColumnList.ColName[j] TypeInfo NullInfo) IN TableList.FileSet[i];

Most of the information needed to reconstruct the CREATE TABLE commands is written
directly from program variables. In three cases, however, data returned from the system views
must be translated:

LockMode is generated in a CASE statement � 34 � based on the value ALLBASE/SQL put
in TableList.LockMode. The SYSTEM.TABLE view stores the automatic locking mode for
tables as an integer from 1 through 3. The CASE statement equates these codes with the
expressions that must appear in the CREATE TABLE command.

TypeInfo is generated in a CASE statement � 35 � based on the value ALLBASE/SQL put
in ColumnList.TypeCode. The SYSTEM.COLUMN view stores the data type of each
column as an integer from 0 through 5. The CASE statement equates these codes with the
expressions that must appear in the CREATE TABLE command.

NullInfo is generated from the null indicator ALLBASE/SQL returned to ColumnList.Nulls
� 36 �. A value of 0 indicates the column cannot contain null values, and the program inserts
NOT NULL into the table de�nition.

After a CREATE TABLE command has been written for each qualifying table, a COMMIT
WORK command is executed � 37 � to release locks on SYSTEM.COLUMN before the
PREPARE command is re-executed and before the DBE session terminates � 38 �. After the
RELEASE command is executed, the �le equations created within the program are reset � 39 �,
and the program terminates.

10-44 Using Dynamic Operations

Figure 10-10. Flow Chart of Program pasex10b

Using Dynamic Operations 10-45

Figure 10-10. Flow Chart of Program pasex10b (page 2 of 2)

In the runtime dialog shown in Figure 10-11, the name of the DBEnvironment must be
entered with upper and lower case as shown. The name of the schema �le and the name of the
owner can be entered with either upper or lower case.

10-46 Using Dynamic Operations

ALLBASE/SQL SCHEMA Generator for Tables X.00.00

Enter name of schema file to be generated > SCHM1

Enter name of DBEnvironment > PARTSDBE

Enter owner name or RETURN for all owners > PURCHDB

Generating SQL command to CREATE TABLE PURCHDB.INVENTORY

Generating SQL command to CREATE TABLE PURCHDB.ORDERITEMS

Generating SQL command to CREATE TABLE PURCHDB.ORDERS

Generating SQL command to CREATE TABLE PURCHDB.PARTS

Generating SQL command to CREATE TABLE PURCHDB.REPORTS

Generating SQL command to CREATE TABLE PURCHDB.SUPPLYPRICE

Generating SQL command to CREATE TABLE PURCHDB.VENDORS

:PRINT SCHM1

CREATE PUBLIC TABLE PURCHDB.INVENTORY

(PARTNUMBER CHAR(16) NOT NULL,

BINNUMBER SMALLINT NOT NULL,
QTYONHAND SMALLINT,

LASTCOUNTDATE CHAR(8),

COUNTCYCLE SMALLINT,

ADJUSTMENTQTY SMALLINT,

REORDERQTY SMALLINT,

REORDERPOINT SMALLINT) IN WAREHFS;

CREATE PUBLIC TABLE PURCHDB.ORDERITEMS

(ORDERNUMBER INTEGER NOT NULL,

ITEMNUMBER INTEGER NOT NULL,

VENDPARTNUMBER CHAR(16),

PURCHASEPRICE DECIMAL(10, 2) NOT NULL,

ORDERQTY SMALLINT,

ITEMDUEDATE CHAR(8),

RECEIVEDQTY SMALLINT) IN ORDERFS;

CREATE PUBLIC TABLE PURCHDB.ORDERS

(ORDERNUMBER INTEGER NOT NULL,

VENDORNUMBER INTEGER,

ORDERDATE CHAR(8)) IN ORDERFS;

CREATE PUBLIC TABLE PURCHDB.PARTS

(PARTNUMBER CHAR(16) NOT NULL,

PARTNAME CHAR(30),

SALESPRICE DECIMAL(10, 2)) IN WAREHFS;

CREATE PUBLIC TABLE PURCHDB.REPORTS

(REPORTNAME CHAR(20) NOT NULL,
REPORTOWNER CHAR(20) NOT NULL,...

Figure 10-11. Runtime Dialog of Program pasex10b

Using Dynamic Operations 10-47

$Heap_dispose ON$

$Heap_Compact ON$

Standard_Level 'HP_Pascal$

(* *)

(* This program generates an ISQL Command File that will re-create *)

(* tables within a particular DBEnvironment. This program must be *)

(* preprocessed; however, it does not need to be INSTALLed. *)

(* *)

Program pasex10b(input, output);

label

9999;

const

MaxNbrTables = 300; � 1 �
CR = chr(13); (* Carriage Return *)

MaxNbrColumns = 64; � 2 �

OK = 0;

var

EXEC SQL BEGIN DECLARE SECTION;

SQLMessage : Packed Array[1..132] of Char;

CmdLine : String[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

EXEC SQL INCLUDE SQLDA;

SchemaFile : Text;

FileName : String[20];

OwnerName : String[20];

TableName : String[20];

DBEFileSet : String[20];

ColumnName : String[20];

DBEName : String[50];

OneLine : String[80];

i,j : SmallInt;

Pos : SmallInt;

NumOfTables : SmallInt;

ErrorCode : SmallInt;

Parm : SmallInt;

Figure 10-12. Program pasex10b: Dynamic Queries of Known Format

10-48 Using Dynamic Operations

$PAGE $

SqlFmts : Array[1..6] of SQLFormat_Type; � 3 �

TableList : Packed Array[1..MaxNbrTables] of Packed Record � 4 �
Owner : Packed Array[1..20] of char;

Table : Packed Array[1..20] of char;

FileSet : Packed Array[1..20] of char;

LockMode : SmallInt;

end;

ColumnList : Packed Array[1..MaxNbrColumns] of Packed Record � 5 �
ColName : Packed Array[1..20] of char;

Length : Integer;

TypeCode : SmallInt;

Nulls : SmallInt;

Precision : SmallInt;

Scale : SmallInt;

end;

procedure Command; intrinsic;

$PAGE $

begin

writeln;

writeln('ALLBASE/SQL SCHEMA Generator for Tables X.00.00');

writeln;

prompt('Enter name of schema file to be generated > '); � 6 �
readln(FileName);

CmdLine := 'PURGE ' + FileName + CR; � 7 �
Command(CmdLine, ErrorCode, Parm);

CmdLine := 'FILE ' + FileName + ',NEW;DEV=DISC;REC=-80,16,F,ASCII';

CmdLine := CmdLine + ';SAVE;NOCCTL' + CR;

Command(CmdLine, ErrorCode, Parm);

if ErrorCode <> OK then

begin

writeln('Problem equating Schema file. Error Code=(',ErrorCode:1,')')

goto 9999;

end;

rewrite(SchemaFile, FileName);

Figure 10-11. Program pasex10b: Dynamic Queries of Known Format (page 2 of 7)

Using Dynamic Operations 10-49

prompt('Enter name of DBEnvironment > '); � 8 �
readln(DBEName);

CmdLine := 'CONNECT TO ''' + DBEName + ''';';

EXEC SQL EXECUTE IMMEDIATE :CmdLine; � 9 �
if SQLCA.SQLCODE <> OK then

begin

writeln('Could not CONNECT to DBEnvironment.');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;

end;

$PAGE $

prompt('Enter owner name or RETURN for all owners > '); � 11 �
readln(OwnerName);

OwnerName := StrLTrim(StrRTrim(OwnerName));

(* Upshift OwnerName *)

for i := 1 to StrLen(OwnerName) do s � 12 �
if OwnerName[i] in ['a'..'z'] then

OwnerName[i] := chr(ord(OwnerName[i]) - ord('a') + ord('A'));

writeln;

if OwnerName = '' then

CmdLine:= 'SELECT OWNER,NAME,DBEFILESET,RTYPE FROM SYSTEM.TABLE' � 13 �
+ ' WHERE TYPE = 0 AND OWNER <> ''SYSTEM'';'

else

CmdLine:= 'SELECT OWNER,NAME,DBEFILESET,RTYPE FROM SYSTEM.TABLE' � 14 �
+ ' WHERE TYPE = 0 AND OWNER = ''' + OwnerName + ''';';

EXEC SQL PREPARE SelectCmd1 FROM :CmdLine; � 15 �
if SQLCA.SQLCODE <> OK then

begin

writeln('Problem PREPARING the SELECT command.');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;

end;

with SQLDA do (* set up SQLDA fields *) � 16 �
begin

Sqln := 4; (* number of columns expected *)

SqlFmtArr := waddress(SQLFmts);

end;

Figure 10-11. Program pasex10b: Dynamic Queries of Known Format (page 3 of 7)

10-50 Using Dynamic Operations

EXEC SQL DESCRIBE SelectCmd1 INTO SQLDA; � 17 �
$PAGE $

if SQLCA.SQLCODE <> OK then

begin

writeln('Problem DESCRIBING SELECT FROM SYSTEM.TABLE.');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;

end;

$PAGE $

EXEC SQL DECLARE TableList CURSOR for SelectCmd1; � 18 �
EXEC SQL OPEN TableList;

if SQLCA.SQLCODE <> OK then

begin

writeln('Problem opening TableList cursor.');

EXEC SQL SQLEXPLAIN :SQLMessage;
writeln(SQLMessage);

goto 9999;

end;

with SQLDA do � 19 �
begin

SqlBufLen := SizeOf(TableList);

SqlRowBuf := Waddress(TableList);

SqlNRow := MaxNbrTables;

end;

(* Get Table List from SYSTEM.TABLE *)

EXEC SQL FETCH TableList USING DESCRIPTOR SQLDA; � 20 �
if SQLCA.SQLCODE = 100 then

begin

writeln('No tables qualified.');

goto 9999;

end

else if SQLCA.SQLCODE <> OK then

begin

writeln('Problem encountered when reading SYSTEM.TABLE');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;

end;

Figure 10-11. Program pasex10b: Dynamic Queries of Known Format (page 4 of 7)

Using Dynamic Operations 10-51

NumOfTables := SQLCA.SQLERRD[3]; � 21 �

EXEC SQL COMMIT WORK; � 22 �
$PAGE $

for i := 1 to NumOfTables do � 23 �
with TableList[i] do

begin

OwnerName := '';

StrMove(20, Owner, 1, OwnerName,1); � 24 �
OwnerName := StrRTrim(OwnerName);

TableName := '';

StrMove(20, Table, 1, TableName, 1);

TableName := StrRTrim(TableName);

DBEFileSet := '';

StrMove(20, FileSet, 1, DBEFileSet, 1);

DBEFileSet := StrRTrim(DBEFileSet); � 25 �

write('Generating SQL command to CREATE TABLE ');

writeln(OwnerName, '.', TableName);

CmdLine:='SELECT COLNAME, LENGTH, TYPECODE, NULLS, PRECISION,' � 26 �
+ ' SCALE FROM SYSTEM.COLUMN WHERE OWNER = '''

+ OWNERNAME + ''' AND TABLENAME = ''' + TableName + ''';';

EXEC SQL PREPARE SelectCmd2 FROM :CmdLine; � 27 �
if SQLCA.SQLCODE <> OK then

begin

writeln('Problem PREPARING the SELECT #2 command.');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;

end;

with SQLDA do (* set up SQLDA fields *) � 28 �
begin

Sqln := 6; (* number of columns expected *)

SqlFmtArr := waddress(SQLFmts);

end;

EXEC SQL DESCRIBE SelectCmd2 INTO SQLDA; � 29 �
if SQLCA.SQLCODE <> OK then

begin

writeln('Problem DESCRIBING SELECT FROM SYSTEM.COLUMN.');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;
end;

Figure 10-11. Program pasex10b: Dynamic Queries of Known Format (page 5 of 7)

10-52 Using Dynamic Operations

$PAGE $

EXEC SQL DECLARE ColumnList CURSOR for SelectCmd2; � 30 �
EXEC SQL OPEN ColumnList;

if SQLCA.SQLCODE <> OK then

begin

writeln('Problem opening cursor #2.');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;

end;

with SQLDA do � 31 �
begin

SqlBufLen := SizeOf(ColumnList);

SqlRowBuf := Waddress(ColumnList);

SqlNRow := MaxNbrColumns;

end;

(* Get Column List from SYSTEM.COLUMN *)

EXEC SQL FETCH ColumnList USING DESCRIPTOR SQLDA; � 32 �
if SQLCA.SQLCODE <> OK then

begin

writeln('Problem encountered when reading SYSTEM.COLUMN');

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

goto 9999;

end;

$PAGE $

writeln(SchemaFile);

OneLine := 'CREATE '; � 33 �
Pos := 8;

case LockMode of � 34 �
1 : StrWrite(OneLine, Pos, Pos, 'PUBLICREAD ');

2 : StrWrite(OneLine, Pos, Pos, 'PRIVATE ');

3 : StrWrite(OneLine, Pos, Pos, 'PUBLIC ');

end; (* end case *)

StrWrite(OneLine, Pos, Pos, 'TABLE ', OwnerName, '.', TableName);

writeln(SchemaFile, OneLine);

OneLine := ' (';

Pos := 4;

Figure 10-11. Program pasex10b: Dynamic Queries of Known Format (page 6 of 7)

Using Dynamic Operations 10-53

for j := 1 to SQLCA.SQLERRD[3] do

with ColumnList[j] do

begin

ColumnName := '';

StrMove(20, ColName, 1, ColumnName, 1);

StrWrite(OneLine, Pos, Pos, ColumnName, ' ');

case TypeCode of � 35 �
0 : if Length = 4 then

StrWrite(OneLine, Pos, Pos,

'INTEGER ')

else

StrWrite(OneLine, Pos, Pos,

'SMALLINT ');

2 : StrWrite(OneLine, Pos, Pos,

'CHAR(', Length:4, ') ');

3 : StrWrite(OneLine, Pos, Pos,

'VARCHAR(', Length:4, ') ');

4 : StrWrite(OneLine, Pos, Pos,
'FLOAT ');

5 : StrWrite(OneLine, Pos, Pos,

'DECIMAL(', Precision:2, ',', Scale:2, ') ');

otherwise StrWrite(OneLine, Pos, Pos, '****');

end; (* case *)

if Nulls = 0 then � 36 �
OneLine := OneLine + 'NOT NULL'

else

OneLine := StrRTrim(OneLine);

if j <> SQLCA.SQLERRD[3] then

OneLine := OneLine + ','

else

OneLine := OneLine + ') IN ' + DBEFileSet + ';';

writeln(SchemaFile, OneLine);

OneLine := ' ';

Pos := 4;

end; (* for j := 1 to SQLCA.SQLERRD[3] *)

EXEC SQL COMMIT WORK; � 37 �
end; (* for i := 1 to NumOfTables *)

9999:

EXEC SQL COMMIT WORK RELEASE; � 38 �

CmdLine := 'RESET SCHEMDBE' + CR; � 39 �
Command(CmdLine, ErrorCode, Parm);

CmdLine := 'RESET ' + FileName + CR;

Command(CmdLine, ErrorCode, Parm);

writeln;
end.

Figure 10-11. Program pasex10b: Dynamic Queries of Known Format (page 7 of 7)

10-54 Using Dynamic Operations

11

Programming With Constraints

This chapter explains the use of statement level integrity versus row level integrity. Also,
methods of implementing schema level unique and referential integrity constraints in your
database are highlighted.

Integrity constraints allow you to have ALLBASE/SQL verify data integrity at the schema
level. Thus you can avoid coding complex veri�cation routines in application programs and
avoid the increased execution time of additional queries. Your coding tasks are simpli�ed, and
performance is improved.

The following sections are presented in the chapter:

Comparing Statement Level and Row Level Integrity.
Using Unique and Referential Integrity Constraints.
Designing an Application Using Statement Level Integrity Checks.

Comparing Statement Level and Row Level Integrity

The following discussion applies to the use of BULK INSERT, Type 2 INSERT, UPDATE,
and DELETE commands.

In ALLBASE/SQL release E.1, enforcement of de�ned constraints is performed at statement
level rather than at the row level of previous releases. This is called statement level integrity.
Even though a constraint may be violated on a particular row, the check for that constraint
is not made until the statement has completed processing. At that time, if there are one or
more constraint errors, an error message is issued and the entire statement is rolled back with
no rows being processed. You do not need to detect constraint errors yourself and code your
program to respond to partially processed tables.

When a statement is rolled back, the appropriate sqlerrd �eld will be 0, reecting that no
rows were processed. If a constraint error is the cause of the rollback, this �eld will not
be greater than zero indicating a partially processed table. Thus, applications written for
ALLBASE/SQL may need to check for a di�erent value in the sqlerrd �eld.

For information on status checking, see the chapter, \Runtime Status Checking and the
SQLCA." For information on deferring constraint error checking to the transaction level
and other error checking enhancements related to releases after E.1, see the ALLBASE/SQL
Release F.0 Application Programming Bulletin for MPE/iX .

Programming With Constraints 11-1

Using Unique and Referential Integrity Constraints

Any database containing tables with interdependent data is a good candidate for the use of
integrity constraints. You can pro�t from their use whether your data is volatile or stable.
For instance, your database might contain a table of employee and department data that
is constantly changing, or it could contain a table of part number data that rarely changes
even though it is frequently accessed. (Note that integrity constraints cannot be assigned to
LONG columns. LONG columns are described in the chapter, \Programming with LONG
Columns.")

To implement unique and referential constraints, use the CREATE TABLE command and
optionally the GRANT REFERENCES command in your schema �le. The following table
lists the commands you might use in dealing with integrity constraints.

Table 11-1. Commands Used with Integrity Constraints

DDL Operations DCL Operations DML Operations

CREATE TABLE GRANT REFERENCES [BULK] INSERT

DROP TABLE GRANT DBA UPDATE [WHERE CURRENT]

REMOVE FROM GROUP REVOKE REFERENCES DELETE [WHERE CURRENT]

DROP GROUP REVOKE DBA

The concepts and syntax of integrity constraints are fully discussed in the ALLBASE/SQL
Reference Manual , and database administration considerations are found in the
ALLBASE/SQL Database Administration Guide . This chapter contains techniques to use
when coding applications that manipulate data upon which integrity constraints have been
de�ned.

When executing the [BULK] INSERT, UPDATE [WHERE CURRENT], or DELETE
[WHERE CURRENT] commands, ALLBASE/SQL considers applicable integrity constraints
depending on what the overall e�ect of a statement would be once it completes execution.
The syntax for UNIQUE or PRIMARY KEY requires unique constraint enforcement. The
syntax for REFERENCES requires referential constraint enforcement on the referencing and
referenced tables involved. For example, consider the following table showing what tests
must be passed for a DML command to successfully complete. Refer to the ALLBASE/SQL
Reference Manual for more information on enforcing constraints.

11-2 Programming With Constraints

Table 11-2. Constraint Test Matrix

DML Operations UNIQUE or
PRIMARY KEY

Referenced Table Referencing Table

[BULK] INSERT
or Type 2 INSERT

Must be unique in
the table.

Must match a unique key in
the referenced table.

UPDATE
[WHERE

CURRENT]

Must be unique in
the table.

No foreign key can reference
the unique key being
updated.

Must match a unique key in
the referenced table.

DELETE
[WHERE

CURRENT]

No foreign key can reference
the unique key being deleted.

Designing an Application Using Statement Level Integrity Checks

This section contains examples based on the recreation database, RecDB, which is supplied as
part of the ALLBASE/SQL software package. The schema �les used to create the database
are found in appendix C of the ALLBASE/SQL Reference Manual .

The recreation database is made up of three tables (Clubs, Members, and Events). Two
primary key constraints and two referential constraints were speci�ed when the tables were
created to secure the data integrity of these tables.

Figure 11-1 illustrates these constraint relationships by showing the name of each constraint
and its referencing or referenced columns. Referencing columns are shaded. Referenced
columns are clear white.

Programming With Constraints 11-3

Figure 11-1. Constraints Enforced on the Recreation Database

Suppose you designed an application program providing a user interface to the recreation
database. The interface gives choices for inserting, updating, and deleting data in any of the
three tables. Your application is user friendly and guides the user with error messages when
their request is denied because it would violate data integrity. The main interface menu might
look like this:

Main Menu for Recreation Database Maintenance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. INSERT a Club 4. INSERT a Member 7. INSERT an Event

2. UPDATE a Club 5. UPDATE Member Info. 8. UPDATE Event Info.

3. DELETE a Club 6. DELETE a Member 9. DELETE an Event

When users make a selection (by number or by tabbing to a �eld), a screen displaying all the
appropriate information allows them to insert, update, or delete.

The next sections provide generic examples of how you can code such an application. The
error checking in these examples deals with constraint enforcement errors only. (For complete
explanation of these errors, see the ALLBASE/SQL Message Manual .) Your error checking
routine should also include a method of handling multiple errors per command and errors not
related to constraint enforcement. (For more information on error coding techniques, see the
chapter, \Runtime Status Checking and the SQLCA.")

11-4 Programming With Constraints



Insert a Member in the Recreation Database

The user chooses to insert a new member in the database. For this activity to complete, the
foreign key (Club) which is being inserted into the Members table must exist in the primary
key (ClubName) of the Clubs table.

Execute routines to display and prompt for information needed in the

Members table.

Place user entered information in appropriate host variables.

INSERT INTO RecDB.Members

VALUES (:MemberName,

:Club,

:MemberPhone :MemberPhoneInd)

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert

a new ClubName in the Clubs table, to reenter the Club for the new member,

or to exit to the main menu. Execute the appropriate subroutine.

If sqlcode equals �2295, indicating that the user tried to insert a non-unique

primary key, display the error message and prompt the user to enter a

unique MemberName/Club combination or to exit to the main menu.

Execute the appropriate subroutine.

Else, if sqlcode = 0, tell the user the member was inserted successfully,

and prompt for another new member or a return to the main menu display.

Programming With Constraints 11-5



Update an Event in the Recreation Database

The user now wants to update information in the Events table. For this activity to complete,
the SponsorClub and Coordinator being updated in the Events table must exist in the
primary key composed of MemberName and Club in the Members table.

Execute subroutines to display and prompt for information needed in the

Events table.

Place user entered information in appropriate host variables.

UPDATE RecDB.Events

SET SponsorClub = :SponsorClub :SponsorClubInd,

Event = :Event :EventInd,

Date = :Date DateInd,

Time = :Time TimeInd,

Coordinator = :Coordinator CoordinatorInd

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert a new

MemberName/Club primary key in the Members table, to reenter update

information for the Events table, or to exit to the main menu. Execute

the appropriate subroutine.

Else, if sqlcode = 0, tell the user the event was updated successfully,

and prompt for another event or a return to the main menu display.

11-6 Programming With Constraints



Delete a Club in the Recreation Database

The user chooses to delete a club. For this activity to complete, no foreign key must reference
the primary key (ClubName) that is being deleted.

Execute subroutines to display and prompt for a ClubName in the Clubs table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE ClubName = :ClubName

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating that referencing data exists for ClubName,

display the error message and prompt the user to indicate whether or not

to delete the Members table row or rows that reference the ClubName,

to reenter the ClubName to be deleted, or to exit to the main menu.

Execute the appropriate subroutine.

(If you execute the subroutine to delete those rows in the Members table

which reference the Clubs table, be sure to test sqlcode.

Depending on the result, you can prompt the user to delete referencing

Events table rows, to reenter the Members table information, or to exit

to the main menu. Execute the appropriate subroutine.)

Else, if sqlcode = 0, tell the user the club was deleted successfully,

and prompt for another club or a return to the main menu display.

Delete an Event in the Recreation Database

The user chooses to delete an event. Because no primary key or unique constraints are de�ned
in the Events table, no constraint enforcement is necessary.

Execute subroutines to display and prompt for an Event in the Events table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode = 0, tell the user the event was deleted successfully, and

prompt for another event or a return to the main menu display.

Programming With Constraints 11-7



12

Programming with LONG Columns

LONG columns in ALLBASE/SQL enable you to store a very large amount of binary data in
your database, referencing that data via a table column name. You might use LONG columns
to store text �les, software application code, voice data, graphics data, facsimile data, or
test vectors. You can easily SELECT or FETCH this data, and you have the advantages
of ALLBASE/SQL's recoverability, concurrency control, locking strategies, and indexes on
related columns.

You can use LONG columns in an application program to be preprocessed or with ISQL. This
discussion focuses on application programming concerns. As you will see, great exibility is
provided so that you can custom design your application.

The chapter highlights methods of implementing LONG columns in your database as follows:

General Concepts.
Restrictions.
De�ning LONG Columns with the CREATE TABLE or ALTER TABLE command.
De�ning Input and Output with the LONG Column I/O String.
Putting Data into a LONG Column with INSERT.
Retrieving LONG Column Data with SELECT, FETCH, or REFETCH.
Changing a LONG Column with UPDATE [WHERE CURRENT].
Using the LONG Column Descriptor.
Removing LONG Column Data with DELETE or DELETE WHERE CURRENT.
Coding Considerations.

For every DDL and DML command that can be used with LONG columns, examples
are included with discussion of related considerations. These examples pertain to the
same logical table (PartsTable) and set of columns. In contrast to other examples in this
chapter, PartsTable is a hypothetical table created and altered in this chapter. Refer to the
ALLBASE/SQL Reference Manual which contains complete syntax speci�cations for using
long columns.

Table 12-1. Commands You Can Use with LONG Columns

DDL Operations DML Operations

ALTER TABLE INSERT

CREATE TABLE UPDATE [WHERE CURRENT]

SELECT

FETCH

REFETCH

DELETE [WHERE CURRENT]

Programming with LONG Columns 12-1



General Concepts

ALLBASE/SQL stores LONG column data in a database for later retrieval. LONG column
data is not manipulated by ALLBASE/SQL when it is modi�ed or retrieved. Any formatting,
viewing, or other processing must be accomplished by means of your program. For example,
you might use a graphics application to create an intricate graphic display (or set of graphic
displays). You could then write a program in which you embed ALLBASE/SQL commands to
store each graphics �le in your database along with related data in a given row. Your graphics
application could be called from another program, this time to select a row and display the
graphic. The graphic could be displayed on the upper portion of a screen, with related data
from the same row displayed on the lower portion of a screen. The related data in standard
columns or LONG columns could be a graphics explanation or an entire chapter.

LONG column data can occupy a practically unlimited amount of space in the database,
the maximum number of bytes being 231�1 (or 2,147,483,647) per LONG column per row.
Standard column data is restricted to 3996 bytes maximum.

The LONG speci�cation is used with a given ALLBASE/SQL data type when you create the
LONG column. Currently, LONG BINARY and LONG VARBINARY are available. Refer to
the chapter on \Host Variables" for the details of BINARY and VARBINARY data types.

The concept of how LONG column data is stored in a row and retrieved di�ers from that of
standard columns. Although LONG column data is associated with a particular row, it can be
stored separately from the row. Thus you can specify a DBEFileSet in which to store data for
a LONG column.

During an INSERT or UPDATE operation, you specify a LONG column I/O string to
indicate where LONG column input data is located and where that data is to be placed when
it is later selected or fetched. You indicate either an operating system �le or random heap
space.

A LONG column descriptor (rather than the data itself ) is selected or fetched into a host
variable. Figure 12-1 and Figure 12-2 illustrate these concepts.

12-2 Programming with LONG Columns



Figure 12-1. Flow of LONG Column Data and Related Information to the Database

Figure 12-2. Flow of LONG Column Data and Related Information from the Database

Programming with LONG Columns 12-3



Restrictions

A LONG column can be referenced in a select list and/or a host variable declaration. Some
restrictions do apply to LONG columns. However, related standard columns are not a�ected
by these restrictions.

LONG columns cannot be used as follows:

In a WHERE clause.
In a Type 2 INSERT command.
Remotely through ALLBASE/NET.
As hash or B-tree index key columns.
In a GROUP BY, ORDER BY, DISTINCT, or UNION clause.
In an expression.
In a subquery.
In aggregate functions (AVG, SUM, MIN, MAX).
As columns to which integrity constraints are assigned.
With the DEFAULT option of the CREATE or ALTER TABLE commands.

Defining LONG Columns with a CREATE TABLE or ALTER TABLE
Command

Following is the portion of the CREATE TABLE or ALTER TABLE command syntax for
specifying a LONG column column de�nition . A maximum of 40 such LONG columns may be
de�ned for a single table.

(ColumnName LONG

�
BINARY

VARBINARY

�
(ByteSize)

�
IN DBEFileSet

� �
NOT NULL

�
)
�
, . . .

�

When you create or add a LONG column to a table you have the option of specifying the
DBEFileSet in which it is to be stored. Because LONG column data may take up a large
chunk of a given DBEFile's data pages, placing LONG column data in a separate DBEFileSet
is strongly advantageous from the standpoint of storage as well as performance.

If the IN DBEFileSetName clause is not speci�ed for a LONG column, this column's data is
by default stored in the same DBEFileSet as its related table.

Note It is recommended that you do not use the SYSTEM DBEFileSet in which to
store your data, as this could severely impact database performance.

In the following example, LONG column data for PartPicture will be stored in PartPictureSet
while data for columns PartName and PartNumber will be stored in PartsTableSet.

CREATE TABLE PartsTable (

PartName CHAR(10),

PartNumber INTEGER,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartPicture LONG VARBINARY(1000000) IN PartPictureSet)NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

IN PartsTableSet

12-4 Programming with LONG Columns



The next command speci�es that data for new LONG column, PartModule, be stored in
PartPictureSet.

ALTER TABLE PartsTable

ADD
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartModule LONG VARBINARY(70000) IN PartPictureSet

See the \BINARY Data" section of the \Host Variables" chapter for more information on
using BINARY and VARBINARY data types in long columns.

Now that we have de�ned our table, let's see how to put data into it and to specify where
data goes when it is retrieved.

Defining Input and Output with the LONG Column I/O String

Both the INSERT and the UPDATE commands allow you to de�ne various input and output
parameters for any LONG column. Parameters are speci�ed with a LONG column I/O string.
You'll need to understand this string in order to input, change, or retrieve LONG column
data. This section o�ers an overview. See the ALLBASE/SQL Reference Manual for complete
syntax.

Using the INSERT or UPDATE command, you pass the string to ALLBASE/SQL as either a
host variable or a literal. Host variables are covered in detail in the \Host Variables" chapter.

Note The input and output portions of the I/O string are not positional. In the
following examples, < indicates input, and > indicates output. See the
ALLBASE/SQL Reference Manual for a full description of I/O operations
with LONG columns.

The input portion of the LONG column I/O string speci�es the location of data that you
want written to the database. It is also referred to as an input device speci�cation. You can
indicate a �le name or a random heap address.

Use the output portion of the I/O string (output device speci�cation) to indicate where you
want LONG column data to be placed when you use the SELECT or FETCH command.
You have the option of specifying a �le name, part of a �le name, or having ALLBASE/SQL
specify a �le name. You also can direct output to random heap space. Additional output
parameters allow you to append to or overwrite an existing �le. Information in the output
device speci�cation is stored in the database table and is available to you when a LONG
column is selected or fetched (via a LONG column descriptor, discussed later in the section,
\Using the LONG Column Descriptor").

It is important to note that �les used for LONG column input and output are opened and
closed by ALLBASE/SQL for its purposes. You need not open or close such �les in your
program unless you use them for additional purposes. ALLBASE/SQL does not control input
or output device �les once they are on the operating system. So, any operation on the �le is
valid, whether by your application or another application or user of the system. Such �les are
your responsibility, even before the transaction is complete.

The syntax for the INSERT and UPDATE commands is identical except that the input device
is required for the INSERT command.

Programming with LONG Columns 12-5



Putting Data into a LONG Column with a INSERT Command

As with any column, use the INSERT command to initially put data into a LONG column.
At the time of the insert, all input devices must be on the system in the locations you have
speci�ed. Should your insert operation fail, nothing is inserted, a relevant error message is
returned to the program, and the transaction continues. Depending on your application, you
might want to write a veri�cation routine that reads a portion of each speci�ed input device
to make certain valid data exists prior to using the INSERT command.

The next examples are based on the PartsTable created and altered in the previous section,
\De�ning LONG Columns with CREATE TABLE or ALTER TABLE." Additional examples
of LONG column I/O string usage are found in the ALLBASE/SQL Reference Manual .

Insert Using Host Variables for LONG Column I/O Strings

When inserting a single row, use a version of the LONG Column I/O String for each LONG
column following the VALUES clause, as below.

INSERT INTO PartsTable

VALUES ('
NNNNNNNNNNNNNNNNNNNNNNN
bracket ',NNNNNNNNNNNNNN

200,

:PartPictureIO,

:PartModuleIO)

An example of the values that might be stored in the host variables, :PartPictureIO and
:Part ModuleIO, are shown in the last two �elds of a hypothetical record below. In the above
example, the values, bracket and 200, are coded as constants, rather than coming from the
data �le. Your data �le might look like this (note that each item is limited to 80 characters
per record to facilitate documentation):

bracket 200 0'<bracket.tools >bracket' 0'<mod88.module > mod88' 0

hammer 011 0'<hammer.tools >hammer' 0'<mod11.module > mod11' 0
file 022 0'<file.tools >file' 0'<mod22.module > mod22' 0

saw 033 0'<saw.tools > saw' 0'<mod33.module > mod33' 0

wrench 044 0'<wrench.tools >wrench' 0'<mod44.module > mod44' 0

lathe 055 0'<lathe.tools >lathe' 0'<mod55.module > mod55' 0

drill 066 0'<drill.tools >drill' 0'<mod66.module > mod66' 0

pliers 077 0'<pliers.tools >pliers' 0'<mod77.module > mod77' 0

.

.

.

12-6 Programming with LONG Columns



Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH
Command

The following syntax represents the available subset when your select list includes one or more
LONG columns. Remember, a LONG column can be referenced only in a select list and/or a
host variable declaration.

SELECT
�
ALL

�
8>><
>>:

*�
Owner.

�
Table.*

CorrelationName.*

CorrelationName.ColumnName

9>>=
>>;
�
, . . .

�

�
INTO HostVariableDeclaration

�
FROM

� �
Owner.

�
FromTableName

�
CorrelationName

� 	
�
, . . .

�
As we noted earlier, the concept of how LONG column data is retrieved di�ers from that of
standard columns. The LONG column descriptor (rather than the data itself) is selected or
fetched into a host variable. In the case of a dynamic FETCH command, the LONG column
descriptor information goes to the data bu�er. In any case, the LONG column data is written
to a �le or random heap space.

When the following SELECT command is executed, :HostPartPic will contain the LONG
column descriptor information for column PartPicture. LONG column data will go to the
output device speci�ed when column PartPicture was last inserted or updated.

SELECT PartNumber, PartPicture

INTO :HostPartNum, :HostPartPic

FROM PartsTable

WHERE PartNumber = 200

Using the LONG Column Descriptor

ALLBASE/SQL does not swap LONG column data into or out of a host variable. Instead
a 96-byte descriptor is available to your program at select or fetch time. It contains LONG
column information for your program for which you must declare an appropriate host variable.

For example, if you do not know the output device type and its name or address, you obtain
this information from the descriptor. Then open the appropriate �le or call the operating
system to access random heap space. Table 12-2 shows the format of the LONG column
descriptor.

Note The LONG column descriptor must be declared whether or not you access its
contents in your code.

Programming with LONG Columns 12-7



Table 12-2. LONG Column Descriptor

Description Possible Binary Values Byte Range

Name or Address of Output
Device

File name or heap address 1 through 44

Output Device Options 0 = no output speci�ed
1 = overwrite
2 = append
3 = wildcard
4 = overwrite and wildcard
5 = append and wildcard

45

Output Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

46

Input Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

47

Reserved for Internal Use 48

Size in Bytes of LONG Column
Data

1 to 231�1 (or 2,147,483,647) per LONG
column per row. Standard column data is
restricted to 3996 bytes maximum.

49 through 52

Reserved for Internal Use 53 through 96

Parsing LONG Column Descriptors

Record structures cannot be declared as host variables unless they are to be used in BULK
operations. To parse the LONG column descriptor returned by a SELECT or FETCH
statement, copy it to a record like the one shown below.

(* Use case 0 when you don't need to break down the descriptor. *)
(* Use case 1 when you want to access a portion of the descriptior. *)

type

desc_type = packed record

case integer of

0:(lfhv : packed array [1..96] of char);

1:(name : packed array [1..44] of char;

opt : 0..255;

outdev : 0..255;

indev : 0..255;

xxx : 0..255;

size : integer;

intern : packed array [1..44] of char);

end;

12-8 Programming with LONG Columns



Using LONG Columns with a SELECT Command

When you use the BULK SELECT command with long columns, should an error occur before
completion of the BULK SELECT command, any operating system �les written before the
error occurred remain on the system, and LONG column descriptors written to a host variable
array remain. It is your responsibility to remove such �les as appropriate.

Using LONG Columns with a Dynamic FETCH Command

If you have the need to dynamically retrieve LONG column data, the sqlrowbuf column of the
SQLDA, as always, contains the address of the data bu�er. However, the data bu�er, rather
than containing LONG column data, holds the 96-byte LONG column descriptor.

The sqltype �eld of the format array holds a data type ID number of 15 for a LONG BINARY
column and 16 for a LONG VARBINARY column. And the sqltotallen and sqlvallen columns
will always contain a value of 96 (indicating the length of the descriptor).

When a NULL is fetched as the LONG column value, no external �les are created, and the
associated indicator variable for the LONG column descriptor is set to �1.

Changing a LONG Column with an UPDATE [WHERE CURRENT]
Command

When you issue an UPDATE command on a LONG column, you have the following options:

Change the stored data as well as the output device name and/or options.
Change the stored data only.
Change the output device name and/or options only.

Specify a LONG column I/O string (discussed earlier in this chapter) following the SET
clause, for each LONG column to be updated. You must specify either the input device, the
output device, or both. Complete syntax with examples is found in the ALLBASE/SQL
Reference Manual .

In the following example, the LONG column I/O string is contained in host variable
PartPictureIO.

UPDATE PartsTable

SET PartPicture =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:PartPictureIO

WHERE PartName = 'saw'

Programming with LONG Columns 12-9



Removing LONG Column Data with a DELETE [WHERE CURRENT]
Command

Syntax for the DELETE and DELETE WHERE CURRENT commands is unchanged for use
with LONG columns. It is limited for the DELETE command in that a LONG column cannot
be used in the WHERE clause.

In the following example, any rows in PartsTable with the PartName of hammer are deleted.

DELETE FROM PartsTable WHERE PartName = 'hammer'

When LONG column data is deleted, the space it occupied in the DBEnvironment is released
when your transaction ends. But any data �le selected earlier still exists on the operating
system. You may want to design a \cleanup" strategy for such �les that are no longer needed.

Coding Considerations

File versus Random Heap Space

Depending on your application, you might want to use a �le or random heap space as your
input or output device. Random heap space may provide faster data access. Consider how
much random heap space will be available.

What about using a �le as an I/O device? You might ask yourself the following questions.
Whom do you want to access the �le during and after the application transaction is complete?
How will it be \cleaned up" when it is no longer being used; perhaps the overwrite option
would be helpful, or you could create a maintenance procedure.

File Naming Conventions

When a LONG column is selected or fetched, data goes to the output device you have
speci�ed at insert or update time. In the case of a �le, because this output device name can
be completely de�ned by you, partially de�ned by you, or assigned by ALLBASE/SQL, you
may want to consider whether or not naming conventions are necessary. For instance, if your
application is such that you can always give the same name to your LONG column output
device as you give to the standard column you use in the WHERE clause, no need exists to
extract the device name from the LONG column descriptor when you select or fetch it. For
example, assuming your WHERE clause uses the PartsTable PartName column, the data �le
example in the previous section, \Example Data File," uses this strategy. (Your application
might still require information other than a �le name from the descriptor area.)

12-10 Programming with LONG Columns



Considering Multiple Users

With multiple users reading the same LONG column data, it is preferable for each user to run
the application in a local area. This can prevent �le access problems.

If several users must access the same data from the same group, you might want to use the
wildcard option ($) and avoid using the overwrite option (!).

Deciding How Much Space to Allocate and Where

Remember to consider the space requirements of any DBEFileSet used for LONG column
data. For example, suppose you execute an INSERT or UPDATE command for a LONG
column de�ned as VARBINARY. If inadequate space is available in the database for the new
data, an error message is returned to your program, and the transaction is rolled back. In this
case, you can create another DBEFile and add it to the appropriate DBEFileSet.

You will also want to consider the amount of random heap space available for your use in
relation to the size and number of LONG columns to be selected or fetched.

To place data in random heap space, use the wildcard option ($) because Pascal cannot
specify random heap space address. The actual heap space address will be placed in the
LONG column descriptor. Refer to this address when using SELECT and UPDATE
commands.

Programming with LONG Columns 12-11



13

Programming with ALLBASE/SQL Functions

This chapter highlights some functions available in ALLBASE/SQL. The functions return
values that can be used to access, search, update, and delete data. Refer to the \Expressions"
chapter of the ALLBASE/SQL Reference Manual for a discussion of other available
ALLBASE/SQL functions. The ALLBASE/SQL functions discussed in this chapter are as
follows:

Date/Time functions.
Tuple Identi�er (TID) function.

Programming with Date/Time Functions

Seven functions can be used with date/time data types. These functions provide exibility for
inputting and retrieving date/time data from the database.

These functions can be used with a preprocessed application or with ISQL. This chapter
outlines basic principles for using date/time functions in an application program. The
following sections are included:

Where Date/Time Functions Can Be Used.
De�ning and Using Host Variables with Date/Time Functions.
Using Date/Time Input Functions.
Using Date/Time Output Functions.
Using the Date/Time ADD MONTHS Function.
Coding Considerations.
Program Examples for Date/Time Data.

Date/time functions are used as you would use an expression. And when used in a select list,
all date/time functions produce data output. Refer to the section in this chapter, \De�ning
and Using Host Variables with Date/Time Functions."

Refer to the \Host Variables" chapter for more information on date/time data types.
Complete syntax and format speci�cations for date/time functions are found in the
ALLBASE/SQL Reference Manual in the chapters on \Data Types" and \Expressions."

Suppose for example that you are programming for an international corporation. Your
database tables contain various date/time columns and the data is used by employees in
several countries. You write a generic program on which you base a set of customized
programs, one for each geographical location. Each customized program allows the employees
at a given location to input and retrieve date/time information in the formats with which they
are most comfortable.

Programming with ALLBASE/SQL Functions 13-1



Note For all date/time functions, character input and output values are in
Native-3000 format.

Where Date/Time Functions Can Be Used

Use date/time functions, as you would an expression, in the DML operations listed below:

Table 13-1. Where to Use Date/Time Functions

DML Operation Clause

INSERT 1 VALUES

WHERE

UPDATE or SET

UPDATE WHERE CURRENT WHERE

DELETE or WHERE

DELETE WHERE CURRENT

SELECT Select list 2

WHERE

DECLARE Select list 2

WHERE

1 The output functions, TO CHAR and TO INTEGER, and the ADD MONTHS function, are limited to use in the

select list and the WHERE clause of a Type 2 INSERT.

2 Input functions, TO DATE, TO TIME, TO DATETIME, and TO INTERVAL, are generally not appropriate in a

select list.

Defining and Using Host Variables with Date/Time Functions

Date/time functions can be used in the way an expression is used; that is, in a select list to
indicate the columns you want in the query result, in a search condition to de�ne the set
of rows to be operated on, and to de�ne the value of a column when using the UPDATE
command. (See the ALLBASE/SQL Reference Manual for in-depth information regarding
expressions.)

Whether you use host variables or literal strings to specify the parameters of the date/time
functions depends on the elements of your application and on how you are using the functions.
This section focuses on the use of host variables.

You can use host variables to specify input or output format speci�cations. Use them as well
to hold data input to and any resulting data output from the date/time functions. (Host
variables cannot be used to indicate column names.)

Host variables for format speci�cations must be de�ned in your application to be compatible
with ALLBASE/SQL CHAR or VARCHAR data types. The exception is the ADD MONTHS
function which requires an INTEGER compatible host variable.

13-2 Programming with ALLBASE/SQL Functions



As for host variables containing input and output data, de�ne them to be CHAR or
VARCHAR compatible with one exception. The TO INTEGER function requires an
INTEGER compatible host variable for its output.

Reference the chapter on de�ning host variables for additional information on host variable
ALLBASE/SQL data type compatibility. Note that the declarations relate to the default
format speci�cation for each date/time data type. Your declaration must reect the length of
the format you are using.

Table 13-2 shows host variable data type compatibility for date/time functions.

Table 13-2. Host Variable Data Type Compatibility for Date/Time Functions

Date/Time
Function

Input Format
Speci�cation

Output Format
Speci�cation

Input Data Output Data

TO DATE (VAR)CHAR (VAR)CHAR (VAR)CHAR 1

TO TIME

TO DATETIME

TO INTERVAL

TO CHAR (VAR)CHAR (VAR)CHAR

TO INTEGER (VAR)CHAR INTEGER

ADD MONTHS INTEGER (VAR)CHAR 1

1 Applies only when used in a select list.

Using Date/Time Input Functions

The input functions are designed so that you can easily input data for a given date/time data
type in either the default format or a format of your choice. (When you do not include a
format speci�cation, the default is used.)

You have the option of choosing a literal string or a host variable to indicate a desired data
value and/or optional format speci�cation. See the ALLBASE/SQL Reference Manual for
detailed syntax.

Following is the general syntax for date/time input functions:

8>><
>>:

TO_DATETIME (DataValue
�
,FormatSpeci�cation

�
)

TO_DATE (DataValue
�
,FormatSpeci�cation

�
)

TO_TIME (DataValue
�
,FormatSpeci�cation

�
)

TO_INTERVAL (DataValue
�
,FormatSpeci�cation

�
)

9>>=
>>;

Input functions can be used in DML operations as shown in Table 13-1. It is most appropriate
to use date/time input functions in a WHERE, VALUES, or SET clause. Although they can
be used in a select list, it is generally not appropriate to do so. The data value returned to
the function in this instance is not a column value but is identical to the value you specify as
input to the function.

Programming with ALLBASE/SQL Functions 13-3



Examples of TO DATETIME, TO DATE, TO TIME, and TO INTERVAL Functions

Imagine a situation in which users will be inputting and retrieving date/time data in formats
other than the default formats. (Refer to the ALLBASE/SQL Reference Manual for default
format speci�cations.)

The data is located in the TestData table in the manufacturing database. (Reference
appendix C in the ALLBASE/SQL Reference Manual .)

You are to provide them with the capability of keying and retrieving data in the formats
shown in Table 13-3.

Table 13-3. Sample of User Requested Formats for Date/Time Data

Date/Time Data Type Desired Format Speci�cation Length of Format
Speci�cation in ASCII

Characters

DATETIME MM-DD-YYYY HH:MM:SS.FFF 23

DATE MM-DD-YYYY 10

TIME HH:MM:SS 1 8

INTERVAL DDDDDDD HH:MM:SS 16

1 This is the default time data format.

You might use the following generic code examples to meet their needs.

Example Using the INSERT Command.

Your application allows users to enter data in their desired formats with a minimum
of e�ort on your part.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format, :TestDate,

:TestDate-Format, :TestStart, :LabTime, and :LabTime-Format) to be compatible

with data type CHAR or VARCHAR.

Declare input indicator variables (:TestDateInd, TestStartInd,

and :LabTimeInd).

END DECLARE SECTION
...

INSERT

INTO MANUFDB.TESTDATA

(BatchStamp,

TestDate,

TestStart,

TestEnd,

13-4 Programming with ALLBASE/SQL Functions



LabTime,

PassQty,

TestQty)

VALUES (
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATE (:TestDate :TestDateInd, :TestDate-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_TIME (:TestStart :TestStartInd),

:TestEnd :TestEndInd,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime :LabTimeInd, :LabTime-Format),

:PassQty :PassQtyInd,

:TestQty :TestQtyInd)

Note that the user requested time data format is the default format. Using the two time data
columns in the TestData table (TestStart and TestEnd), the above example illustrates two
ways of specifying a default format. Specify a date/time function without a format, or simply
do not use a date/time function.

Example Using the UPDATE Command.

These users want the capability of updating data based on the BatchStamp
column.

BEGIN DECLARE SECTION

Declare input host variables (:TestDate, :TestDate-Format, :BatchStamp,

and :BatchStamp-Format) to be compatible with data type CHAR or VARCHAR.

Declare input indicator variable (:TestDateInd).

END DECLARE SECTION
...

UPDATE MANUFDB.TESTDATA

SET TESTDATE =
NNNNNNNNNNNNNNNNNNNNNNN
TO_DATE

(
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:TestDate :TestDateInd, :TestDate-Format),

TestStart = :TestStart :TestStartInd,,

TestEnd = :TestEnd :TestEndInd,,

LabTime = :LabTime :LabTimeInd,

PassQty = :PassQty :PassQtyInd,

TestQty = :TestQty :TestQtyInd

WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME

(
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:BatchStamp, :BatchStamp-Format)

Programming with ALLBASE/SQL Functions 13-5



Example Using the SELECT Command.

The users are planning to select data from the TestData table based on the lab time
interval between the start and end of a given set of tests.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format,

:LabTime, and :LabTime-Format) to be compatible with data type

CHAR or VARCHAR.

END DECLARE SECTION

.

.

.

SELECT BatchStamp

TestDate

TestStart,

TestEnd,

LabTime

PassQty,

TestQty

INTO :BatchStamp,

:TestDate :TestDateInd,

:TestStart :TestStartInd,

:TestEnd :TestEndInd,

:LabTime :LabTimeInd,

:PassQty : PassQtyInd,

:TestQty :TestQtyInd

FROM MANUFDB.TESTDATA

WHERE LabTime >
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime, :LabTime-Format)

AND
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format),

BETWEEN :StampOne AND :StampTwo

Example Using the DELETE Command.

The users want to delete data from the TestData table by entering a value for the
BatchStamp column.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp and :BatchStamp-Format)

to be compatible with data type CHAR or VARCHAR.

END DECLARE SECTION
...

DELETE FROM MANUFDB.TESTDATA

WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format)

13-6 Programming with ALLBASE/SQL Functions



Using Date/Time Output Functions

Specify the output format of any type of date/time column by using a date/time output
function. Use an output function with any DML operation listed in Table 13-2 with one
exception. In the case of a INSERT command, output functions are limited to use in the
select list and the WHERE clause of a Type 2 INSERT command.

As with date/time input functions, use a host variable or a literal string to indicate a format
speci�cation. See the ALLBASE/SQL Reference Manual for detailed syntax.

Following is the general syntax for date/time output functions:

�
TO_CHAR (ColumnName

�
,FormatSpeci�cation

�
)

TO_INTEGER (ColumnName, FormatSpeci�cation)

�

Example TO CHAR Function

The default format for the DATETIME data type speci�es the year followed by the month
followed by the day. The default format for the TIME data type speci�es a 24-hour clock.
(Refer to the ALLBASE/SQL Reference Manual .)

Suppose users located in Italy want to input a speci�ed batch stamp to obtain the start and
end times of the related test in 12-hour format. They will key the batch stamp in this format,
\DD-MM-YYYY HH12:MM:SS:FFF AM or PM." The times returned will be in this format,
\HH12:MM:SS.FFF AM or PM."

Data is located in the TestData table in the manufacturing database. (Refer to appendix C in
the ALLBASE/SQL Reference Manual .) The following code could be used:

BEGIN DECLARE SECTION

Declare input host variables (:TwelveHourClockFormat, :BatchStamp,

:ItalianFormat, and :Speci�edInput) to be compatible with data type

CHAR or VARCHAR.

Declare output host variables (:TestStart and :TestEnd) to be compatible

with data type CHAR or VARCHAR .

Declare output indicator variables (:TestStartInd and :TestEndInd).

END DECLARE SECTION
...

SELECT
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestStart, :TwelveHourClock),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestEnd, :TwelveHourClock)

INTO :TestStart :TestStartInd,

:TestEnd :TestEndInd,

FROM ManufDB.TestData

WHERE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME(:BatchStamp, :ItalianFormat) = :SpecifiedInput

Note the use of indicator variables in the above example. Because the TO CHAR function is
used in the select list, no need exists to specify an indicator variable as part of the function.

Programming with ALLBASE/SQL Functions 13-7



Example TO INTEGER Function

The TO INTEGER format speci�cation is mandatory and di�ers from that of other
date/time functions in that it must consist of a single element only. See the ALLBASE/SQL
Reference Manual for detailed format speci�cations.

Perhaps you are writing a management report that indicates the quarter of the year in which
tests were performed. (As in the previous example, data is located in the TestData table in
the manufacturing database.) You could use the following code:

BEGIN DECLARE SECTION

Use the ALLBASE/SQL Reference Manual to determine your desired format

speci�cation. (In this case it is Q.)

Declare the input host variable, :QuarterlyFormat, to be compatible with data

types CHAR or VARCHAR.

Declare an output host variable (:TestDateQuarter)

to be compatible with data type INTEGER. Declare other output host

variables (:BatchStamp, :LabTime, :PassQty, and :TestQty) to be

compatible with data type CHAR or VARCHAR.

Remember to declare output indicator variables (:TestDateQuarterInd,

:LabTimeInd, :PassQtyInd, and :TestQtyInd).

END DECLARE SECTION

.

.

.

DECLARE ReportInfo CURSOR FOR

SELECT BatchStamp,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTEGER(TestDate, :QuarterlyFormat),

LabTime,

PassQty,

TestQty

FROM ManufDB.TestData

.

.

.

FETCH ReportInfo

INTO :BatchStamp,

:TestDateQuarter :TestDateQuarterInd,

:LabTime :LabTimeInd,

:PassQty :PassQtyInd,

:TestQty :TestQtyInd

13-8 Programming with ALLBASE/SQL Functions



Using the Date/Time ADD MONTHS Function

This function allows you to add an integer number of months to a DATE or DATETIME
column. Do so by indicating the number of months as a positive, negative, or unsigned integer
value. (An unsigned value is assumed positive.) Also, you can specify the integer in a host
variable of type INTEGER.

The ADD MONTHS function can be used in both input and output operations as shown in
Table 13-2.

Following is the general syntax for the ADD MONTHS function:

�
ADD_MONTHS (ColumnName, IntegerValue)

	
As with date/time output functions, use the ADD MONTHS function with any DML
operation listed in Table 13-1 with one exception. In the case of a [BULK] INSERT command,
the ADD MONTHS function is limited to use in the select list and the WHERE clause of a
Type 2 INSERT command.

Example ADD MONTHS Function

Perhaps you want to increment each date in the TestDate column by one month in the
ManufDB.TestData table of the manufacturing database. The following command could be
used:

UPDATE ManufDB.TestData

SET TestDate =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
ADD_MONTHS (TestDate, 1);

Coding Considerations

The following list provides helpful reminders when you are using date/time functions:

Input functions require leading zeros to match the �xed format of an element. (Z is not
supported.)

For all date/time functions, when you provide only some elements of the complete format in
your format speci�cation, any unspeci�ed elements are �lled with default values.

Arithmetic operations are possible with functions of type INTEGER.

The length of the data cannot exceed the length of the format speci�cation for that data.
The maximum size of a format speci�cation is 72 bytes.

Because LIKE works only with CHAR and VARCHAR values, if you want to use LIKE
with date/time data, you must �rst convert it to CHAR or VARCHAR. For this you can
use the TO CHAR conversion function.

MIN, MAX, COUNT can be used with any DATE/TIME column type. SUM, AVG can be
used with INTERVAL data only.

Do not specify an indicator variable as a parameter of a date/time function used in the
select list of a query.

When using the ADD MONTHS function, if the addition of a number of months (positive
or negative) would result in an invalid day, the day �eld is set to the last day of the month
for the appropriate year, and a warning is generated indicating the adjustment.

Programming with ALLBASE/SQL Functions 13-9



Program Example for Date/Time Data

The next data conversion program is intended as a guide should you decide to convert any
character (CHAR) columns in an existing table to a date/time data type.

Before running this program, you must create a new table, PurchDB.NewOrders, in
PartsDBE. This table is similar to the PurchDB.Orders table already existing in PartsDBE,
except that the OrderDate column is of the DATE data type. You can create the table by
issuing the following command from ISQL:

CREATE PUBLIC TABLE PurchDB.NewOrders

(OrderNumber INTEGER NOT NULL,

VendorNumber INTEGER,

OrderDate DATE)

IN OrderFS;

13-10 Programming with ALLBASE/SQL Functions



(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)

(* This program uses BULK FETCH and BULK INSERT commands to select all *)

(* rows from the Orders table (part of the sample DBEnvironment, *)

(*PartsDBE), convert the order date column from the CHAR data type to *)

(*the DATE data type default format, and write all Orders table *)

(*information to another table called NewOrders table (created *)

(*previously by you as described in this chapter). *)

(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)

Program pasex9a(input, output);

const

OK = 0;

NotFound = 100;

DeadLock = -14024;

NoMemory = -4008;

var

(* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION;

(*************************************************************************)

(* Arrays are NOT packed, although elements within the arrays can be. *)

(*************************************************************************)

Orders : array[1..25]

of record

OrderNumber : integer;

VendorNumber : integer;

VendorNumberInd : sqlind;

OrderDate : packed array[1..8] of char;

OrderDateInd : sqlind;

end;

StartIndex : SmallInt;

NumberOfRows : SmallInt;

NewOrders : array[1..25]

of record

NewOrderNumber : integer;

NewVendorNumber : integer;

NewVendorNumberInd : sqlind;

NewOrderDate : packed array[1..10] of char;

NewOrderDateInd : sqlind;

end;

StartIndex2 : SmallInt;

NumberOfRows2 : SmallInt;

Figure 13-1. Sample Program Converting Column from CHAR to DATE

Programming with ALLBASE/SQL Functions 13-11



SQLMessage : packed array[1..132] of char;

EXEC SQL END DECLARE SECTION;

(* End Host Variable Declarations *)

SQLCA : SQLCA_type; (* SQL Communication Area *)

DoneConvert : boolean;

OrdersOK : boolean;

Abort : boolean;

counter1 : integer;

(**************************************************************************)

(* Procedure to release PartsDBE. *)

(**************************************************************************)

procedure TerminateProgram; (* Procedure to Release PartsDBE *)

begin

EXEC SQL RELEASE;

end; (* End TerminateProgram Procedure *)

(**************************************************************************)

(* Procedure to display error messages and terminate the program when the *)

(* transaction has been rolled back by ALLBASE/SQL. *)

(**************************************************************************)

procedure SQLStatusCheck; (* Procedure to Display Error Messages *)

begin

Abort := FALSE;

if SQLCA.SQLCODE <= DeadLock then Abort := TRUE;

if SQLCA.SQLCODE = NoMemory then Abort := TRUE;

repeat

EXEC SQL SQLEXPLAIN :SQLMessage;

writeln(SQLMessage);

until SQLCA.SQLCODE = 0;

if Abort then TerminateProgram;

end; (* End SQLStatusCheck Procedure *)

Figure 13-1. Sample Program Converting Column from CHAR to DATE (page 2 of 8)

13-12 Programming with ALLBASE/SQL Functions



(*************************************************************************)

(* The cursor for the BULK FETCH is declared in a function that is never *)

(* executed at run time. The section for this cursor is created and *)

(* stored in the program module at preprocess time. *)

(*************************************************************************)

procedure DeclareCursor;

begin

EXEC SQL DECLARE OrdersCursor

CURSOR FOR

SELECT *

FROM PurchDB.Orders;

end;

(**************************************************************************)

(* Function to connect to the sample database environment, PartsDBE. *)

(**************************************************************************)

function ConnectDBE: boolean;

begin

writeln('Connect to PartsDBE');

EXEC SQL CONNECT TO 'PartsDBE';

ConnectDBE := TRUE;

if SQLCA.SQLCODE OK then

begin

ConnectDBE := FALSE;

SQLStatusCheck;

end; (* End if *)

end; (* End of ConnectDBE Function *)

(**************************************************************************)

(* Procedure to begin the transaction with cursor stability specified. *)

(**************************************************************************)

procedure BeginTransaction;

begin

EXEC SQL BEGIN WORK CS;

Figure 13-1. Sample Program Converting Column from CHAR to DATE (page 3 of 8)

Programming with ALLBASE/SQL Functions 13-13



if SQLCA.SQLCODE OK then

begin

SQLStatusCheck;

TerminateProgram;

end;

end; (* End BeginTransaction Procedure *)

(**************************************************************************)

(* Procedure to commit work to the database OR save the cursor position. *)

(**************************************************************************)

procedure CommitWork;

begin

writeln('Commit Work');
EXEC SQL COMMIT WORK;

if SQLCA.SQLCODE OK then

begin

SqlStatusCheck;

TerminateProgram;

end;

end; (* End CommitWork Procedure *)

(**************************************************************************)

(* Procedure to rollback the transaction. *)

(**************************************************************************)

procedure RollBackWork;

begin

writeln('Rollback Work');

EXEC SQL ROLLBACK WORK;

if SQLCA.SQLCODE OK then

begin

SqlStatusCheck;

TerminateProgram;

end;

end; (* End RollBackWork Procedure *)

Figure 13-1. Sample Program Converting Column from CHAR to DATE (page 4 of 8)

13-14 Programming with ALLBASE/SQL Functions



(**************************************************************************)

(* Procedure to BULK INSERT into PurchDB.NewOrders table. *)

(**************************************************************************)

procedure InsertNew;

begin

NumberOfRows2 := counter1;

StartIndex2 := 1;

writeln('BULK INSERT INTO PurchDB.NewOrders');

EXEC SQL BULK INSERT INTO PurchDB.NewOrders

VALUES (:NewOrders,

:StartIndex2,

:NumberOfRows2);

case SQLCA.SQLCODE of

OK : ;

Otherwise begin

SQLStatusCheck;

RollBackWork;

OrdersOK := FALSE;

DoneConvert := TRUE;

end;

end; (* case *)

end; (* End of Procedure InsertNew *)

(**************************************************************************)

(* Procedure to convert OrderDate from CHAR to DATE data type and transfer*)

(* data to an array in preparation for BULK INSERT into a new table. *)

(**************************************************************************)

procedure TransferData;

var

i,j:integer;

begin

NumberOfRows := counter1;

for i := 1 to NumberOfRows do

begin

NewOrders[i].NewOrderNumber := Orders[i].OrderNumber;
NewOrders[i].NewVendorNumber := Orders[i].VendorNumber;

end;

Figure 13-1. Sample Program Converting Column from CHAR to DATE (page 5 of 8)

Programming with ALLBASE/SQL Functions 13-15



(* Convert Date *)

for i := 1 to NumberOfRows do

begin

for j := 1 to 4 do

begin

NewOrders[i].NewOrderDate[j] := Orders[i].OrderDate[j];

end;

NewOrders[i].NewOrderDate[5] := '-';

for j := 6 to 7 do

NewOrders[i].NewOrderDate[j] := Orders[i].OrderDate[j-1];

NewOrders[i].NewOrderDate[8] := '-';

for j := 9 to 10 do

NewOrders[i].NewOrderDate[j] := Orders[i].OrderDate[j-2];

end;

end; (* End of Procedure TransferData *)

(**************************************************************************)
(* Procedure to BULK FETCH Orders table data 25 rows at a time *)

(* into an array. *)

(**************************************************************************)

procedure FetchOld;

begin;

NumberOfRows := 25;

StartIndex := 1;

writeln('BULK FETCH PurchDB.Orders');

EXEC SQL BULK FETCH OrdersCursor

INTO :Orders, :StartIndex, :NumberOfRows;

counter1 := SQLCA.SQLERRD[3];

case SQLCA.SQLCODE of

OK : begin

CommitWork; (* SAVE THE CURSOR POSITION *)

end; (* Used in conjunction with *)

(* cursor stability. *)

NotFound : begin

CommitWork;

writeln;

writeln('There are no Orders Table rows to FETCH.');

DoneConvert := TRUE;
end;

Figure 13-1. Sample Program Converting Column from CHAR to DATE (page 6 of 8)

13-16 Programming with ALLBASE/SQL Functions



Otherwise begin

SQLStatusCheck;

RollBackWork;

OrdersOK := FALSE;

DoneConvert := TRUE;

end;

end; (* case *)

if not DoneConvert then

TransferData;

if not DoneConvert then

InsertNew;

end; (* End of procedure FetchOld *)

(**************************************************************************)
(* Beginning of program. *)

(**************************************************************************)

begin

writeln('Program to convert date from CHAR to DATE data type.');

writeln('Event List:');

writeln(' Connect to PartsDBE');

writeln(' BULK FETCH all rows from Orders Table.');

writeln(' Convert the date.');

writeln(' BULK INSERT all fetched rows into NewOrders Table' );

writeln(' with converted date.');

writeln(' Release PartsDBE');

writeln;

if ConnectDBE then

begin

DoneConvert := FALSE;

OrdersOK := TRUE;

BeginTransaction;

EXEC SQL OPEN OrdersCursor KEEP CURSOR WITH LOCKS;

Figure 13-1. Sample Program Converting Column from CHAR to DATE (page 7 of 8)

Programming with ALLBASE/SQL Functions 13-17



if SQLCA.SQLCODE OK then

begin

SQLStatusCheck;

RollBackWork;

OrdersOK := FALSE;

DoneConvert := TRUE;

end;

repeat

FetchOld

until DoneConvert; (* DoneConvert is TRUE when all data has been *)

(* converted and inserted or when an error *)

(* condition not serious enough for ALLBASE/SQL *)

(* to rollback work was encountered. *)

if OrdersOK then (* If there were no errors in processing, data *)

CommitWork; (* is committed to the database. *)

end;

TerminateProgram;

end. (* End of Program *)

Figure 13-1. Sample Program Converting Column from CHAR to DATE (page 8 of 8)

13-18 Programming with ALLBASE/SQL Functions



Programming with TID Data Access

Each row (tuple) in an ALLBASE/SQL table is stored at a database address on disk. This
unique address is called the tuple identi�er or TID. When using a SELECT statement, you
can obtain the TID of any row. In turn, you can use this TID to specify the target row for a
SELECT, UPDATE, or DELETE statement. TID functionality provides the fastest possible
data access to a single row at a time (TID access) in conjunction with maximum coding
exibility. The following options are available:

Rapid read and write access to a speci�c row without the use of a cursor (less overhead).
Rapid update and delete capability based on TIDs returned by a nested query, a union
query, a join query, or a query specifying sorted data.

Other ALLBASE/SQL functionality provides a method of processing a multiple row query
result sequentially, one row at a time. This involves the use of a cursor with the UPDATE
WHERE CURRENT, DELETE WHERE CURRENT, and REFETCH commands which
internally utilize TID access. See the ALLBASE/SQL Reference Manual for more details.

The nature of your applications will determine how valuable TID functionality can be to you.
It could be most useful for applications designed for interactive users and applications that
must update a set of related rows as a group. See the programming examples at the end of
this chapter.

A TID function and host variable data type are provided. The TID function is used in the
select list and/or the WHERE clause of a SELECT statement and in the WHERE clause
of an UPDATE or DELETE statement. The new host variable data type is used in an
application program to hold data input to and output from the TID function.

Understanding TID Function Input and Output

The next sections describe how TID output is accessed via a select list and how you provide
TID input via a WHERE clause. Topics discussed are as follows:

Using the TID Function in a Select List.
Using the TID Function in a WHERE Clause.
Declaring TID Host Variables.
Understanding the SQLTID Data Format.

Using the TID Function in a Select List

When using the TID function in a select list, specify it as you would a column name. In an
application, you could use a statement like the following:

SELECT TID(), VendorNumber, VendorName, PhoneNumber

INTO :TidHostVar, :VendorNumber,

:VendorName, :PhoneNumber;

FROM Purchdb.Vendors

WHERE VendorName = :VendorName

The resulting TID and column data is placed in the host variables, TidHostVar,
VendorNumber, VendorName, PhoneNumber.

The next example illustrates how to obtain TID values for qualifying rows of a two table join.
Correlation names are used.

Programming with ALLBASE/SQL Functions 13-19



SELECT TID(sp), TID(o)

INTO :SupplyPriceTID, :OrdersTID,

FROM PurchDB.SupplyPrice sp,
PurchDB.Orders o

WHERE sp.VendorNumber = :VendorNumber

AND o.VendorNumber = :VendorNumber

Using the TID Function in a WHERE Clause

When using the TID function in a WHERE clause, you provide an input parameter. For
application programs, this parameter can be speci�ed as a host variable, a constant, or a
question mark (?) representing a dynamic parameter. The input parameter is a constant. For
example:

DELETE FROM PurchDB.Parts WHERE TID() = 3:3:30;

In an application, you could use a statement like the following to verify the data integrity of a
previously accessed row:

SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber, :PartName, :SalesPrice

FROM PurchDB.Parts

WHERE TID() = :PartsTID

You might use the following statement in an application to update a row:

UPDATE PurchDB.Parts

SET PartNumber = :PartNumber,

PartName = :PartName,

SalesPrice = :SalesPrice

WHERE TID() = :PartsTID

Declaring TID Host Variables

Host variables for TID function input and output must be declared in your application as
SQLTID host variables. You would declare an SQLTID host variable as follows:

TIDVarName : SQLTID;

Understanding the SQLTID Data Format

The data in SQLTID host variables has its own unique format which is not compatible with
any other ALLBASE/SQL data type. It is not necessary to know the internal format of
SQLTID data to use the TID function. The information in this section is provided in case you
require the TID value to be broken into its components.

For instance, you might want to know the page numbers of all TID's in a table in order to
analyze data distribution. To do this, you must parse the SQLTID host variable.

ALLBASE/SQL does allow you to unload SQLTID data. However, you cannot use the LOAD
command to load TID data back into a table. The TID is a unique identi�er generated
internally by ALLBASE/SQL, and cannot be assigned by users.

13-20 Programming with ALLBASE/SQL Functions



An SQLTID host variable consists of eight bytes of binary data and has the following format:

Table 13-4. SQLTID Data Internal Format

Content Byte Range

Version Number 1 through 2

File Number 3 through 4

Page Number 5 through 7

Slot Number 8

The SQLTID version number is an optional input parameter. If not speci�ed, the version
number defaults to 0. If you do specify the version, it must always be 0. If a version other
than 0 is speci�ed, no rows will qualify for the operation.

TID function application output always contains a version number of 0.

Transaction Management with TID Access

TID data access is fast, and it must be used with care. A great deal of exibility of use is
possible, and exactly how it should be used depends on your application programming needs.

The next sections look at performance, concurrency and data integrity issues involved in
designing database transactions that use TID access. Although a possible usage scenario is
given, you must decide how to combine the elements of transaction management to best suit
your purposes. The following concepts are highlighted:

Comparing TID Access to Other Types of Data Access.
Ensuring that the Optimizer Chooses TID Access.
Verifying Data that is Accessed by TID.
Stable versus Volatile Data.
Using Isolation Levels with the TID Function.
Considering Interactive User Applications.
Coding Strategies.

TID access requires an initial SELECT, BULK SELECT, FETCH or BULK FETCH to
obtain TID values. You can then select, update or delete data by TID.

Comparing TID Access to Other Types of Data Access

When using TID functionality, data access speed is always improved compared to the speed of
other ALLBASE/SQL access methods, for the following reasons:

Index access must lock more pages (i.e. index pages).
Relation access locks more pages to �nd the TID of any qualifying row.
Hash access employs more search overhead.

Note that use of the TID function in a WHERE clause does not guarantee that TID access
will be chosen by the optimizer. For example, the following statement would utilize TID
access.

Programming with ALLBASE/SQL Functions 13-21



DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID AND PartName = 'Winchester Drive'

However, in the next statement TID access would not be used because it uses an OR:

DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID1 OR TID() = :PartsTID2

See the \Expressions" chapter of the ALLBASE/SQL Reference Manual for an explanation of
the above restriction on the OR and additional optimization criteria.

Verifying Data that is Accessed by TID

It is important to note that a TID in ALLBASE/SQL is unique and is valid until its related
data is deleted. You must take precautions to assure that the data you are selecting or
changing exists when your statement executes. (Note that a TID can be reassigned after its
data has been deleted.)

You can rely on the existence of a given TID, if you know its data won't be deleted. That
is, you know the nature of the data is non-volatile. In this case, you can select the TID and
update by TID with the assurance that data integrity will be maintained. An example might
be a table that has been created as private. Another example might be a table that you know
is currently being accessed only by your application. (You have begun the transaction with
the RR isolation level, or you have used the LOCK TABLE command.)

By contrast, you may be dealing with data that changes frequently. In cases where you are
using the CS, RC, or RU isolation levels, you must verify that your data has not changed
between the time you select it and the time you update or delete it. A method is to end the
transaction in which you selected the data, and begin an RR transaction in which you use a
SELECT statement with the TID function in the WHERE clause. See the following section
titled \Coding Strategies" for an example.

When you attempt to access a row for update or delete, the status checking procedure is the
same as for a statement that does not contain the TID function. An application must check
the sqlcode �eld of the sqlca for a value of 100.

Considering Interactive User Applications

Some transaction management basics that apply to TID functionality when used in interactive
applications are listed below:

Be sure to avoid holding locks against the database within a transaction driven by
interactive user input. This is sometimes termed \holding locks around terminal reads." It
means that the speed at which the user enters required data determines the execution time
of your transaction and thus the time span of transaction locks.
Does your transaction use the RR isolation level? If so, there is no need to verify your data
prior to updating or deleting within the same transaction.
Does your transaction use the CS, RC, or RU isolation level? If so, in order to maintain
data integrity, you must verify that the data has not changed before you attempt to
update or delete it. By verifying the data in this way, you insure that it still exists and can
determine whether or not it has changed from the time it was last presented to the user.

13-22 Programming with ALLBASE/SQL Functions



Coding Strategies

Suppose you are writing an application that will be executed by many simultaneous users in
an online transaction processing environment. You want each user to be able to locate and
update just a few rows in a table that is frequently accessed by many users.

The following scenario illustrates the use of two transactions with di�erent isolation levels.
Figure 13-2 uses the RC isolation level with a BULK SELECT statement to obtain data and
RR isolation level with a SELECT statement based on TID access to verify the data before it
is updated.

De�ne two arrays, one (OrdersArray) to hold the qualifying rows of the Orders
table and another (NewOrdersArray) to hold the rows that the user wants to change.

Be sure to de�ne an element in each array to hold the TID value.

Begin the transaction with RC isolation level. This ensures maximum

concurrency for committed data. Locks are released immediately following

data access.

BEGIN WORK RC

BULK SELECT TID(), OrderNumber, VendorNumber, OrderDate

INTO :OrdersArray, :StartIndex, :NumberOfRows;

FROM PurchDB.Orders

WHERE OrderNumber BETWEEN 30510 AND 30520

COMMIT WORK

Once all qualifying rows have been loaded into OrdersArray, end the

transaction. Then loop through the array displaying the rows and accepting any

user entered changes in NewOrdersArray. Include the appropriate TID

values with each NewOrdersArray entry.

Figure 13-2. Using RC and RR Transactions with BULK SELECT, SELECT, and UPDATE

Programming with ALLBASE/SQL Functions 13-23



When all user changes have been entered, use a loop to compare the previously

fetched rows (in OrdersArray) with the same rows as they now exist in the

database.

Begin your transaction with the RR isolation level. No other transaction can

access the locked data until this transaction ends, providing maximum data

integrity.

BEGIN WORK RR

For each entry in NewOrdersArray, do the following:

SELECT TID(), *

INTO :TIDvalue, :OrderNumber, :VendorNumber, :OrderDate

FROM PurchDB.Orders

WHERE TID() = :TIDHostVariable

Verify the selected data against the corresponding data in OrdersArray.

If the row is unchanged, update it using TID access.

UPDATE PurchDB.Orders

SET OrderNumber = :NewOrderNumber :NewOrderNumberInd,

VendorNumber = :NewVendorNumber :NewVendorNumberInd,

OrderDate = :NewOrderDate :NewOrderDateInd

WHERE TID() = :TIDHostVariable

If the row has changed or has been deleted, inform the user and o�er

appropriate options.

COMMIT WORK

Figure 13-2. Using RC and RR Transactions with BULK SELECT, SELECT, and UPDATE (2 of 2)

Reducing Commit Overhead for Multiple Updates with TID Access

Figure 13-3 shows how to reduce commit overhead when performing multiple updates
following a BULK FETCH. Two loops are used, each with its own cursor and own set of locks.

In the outer loop, a BULK FETCH is performed with a cursor to load an array. The
transaction enveloping the outer loop uses an RC isolation level to allow maximum
concurrency while the user is entering data at the terminal. The locks associated with the
BULK FETCH cursor are released after each fetch.

The inner loop uses another cursor to FETCH a single row of data based on the TID value.
Since the RC isolation level is being used, the data must be refetched to prevent other
transactions from modifying it. The data is veri�ed, and an UPDATE is performed.

After the inner loop has �nished updating the rows of data, a COMMIT WORK is issued to
actually commit the updates to the data base and to release the exclusive locks held by the
updates in the inner loop. This use of a single COMMIT WORK for the multiple updates in
the inner loop reduces overhead.

13-24 Programming with ALLBASE/SQL Functions



De�ne two arrays, one (PartsArray) to hold the qualifying rows of the Parts

table and another (NewPartsArray) to hold the rows that the user wants to

change. Be sure to de�ne an element in each array to hold the TID value.

Declare the cursor (BulkCursor) used by the BULK FETCH � 4 � that

loads the PartsArray.

DECLARE BulkCursor CURSOR FOR

SELECT TID(), PartNumber, PartName, SalesPrice

FROM PurchDB.Parts

Declare the cursor (TidCursor) used to UPDATE � 11 � an individual row based

on the TID value.

DECLARE TidCursor CURSOR FOR � 1 �
SELECT PartName, SalesPrice

FROM PurchDB.Parts

WHERE TID() = :HostPartTid

FOR UPDATE OF PartName, SalesPrice

Begin the transaction with the RC isolation level. This ensures maximum

concurrency while assuring that only commited data is read.

BEGIN WORK RC � 2 �
OPEN the cursor associated with the BULK FETCH � 4 �. The KEEP CURSOR

parameter maintains the cursor position across transactions until the

CLOSE � 6 � statement. The WITH NOLOCKS parameter releases all locks

associated with the cursor when the COMMIT WORK � 7 � statement is executed.

OPEN BulkCursor KEEP CURSOR WITH NOLOCKS

The following COMMIT WORK � 3 � statement preserves the open cursor

position and automatically starts a new transaction with an RC isolation level.

COMMIT WORK � 3 �
Loop until no more rows are fetched.

BULK FETCH BulkCursor INTO :PartsArray � 4 �

Display the rows in PartsArray and move any changes entered by the user

to NewPartsArrray. Include the appropriate TID value with each

NewPartsArray entry.

For each row in the NewPartsArray

VerifyAndUpdate � 8 �
End For

Figure 13-3. Using TID Access to Reduce Commit Overhead

Programming with ALLBASE/SQL Functions 13-25



The following COMMIT WORK � 5 � statement commits the updates � 11 � in

VerifyAndUpdate and releases the locks held.

COMMIT WORK � 5 �

End Loop

CLOSE BulkCursor � 6 �

The �nal COMMIT WORK � 7 � statement ends the transaction started by the

BEGIN WORK RC � 2 �. Any locks still held are released.

COMMIT WORK � 7 �
Begin the VerifyAndUpdate routine. � 8 �

Assign to HostPartTid the TID value in NewPartsArray.

OPEN TidCursor

Using the cursor declared above � 1 � as TidCursor, perform a FETCH � 9 �
and REFETCH � 10 � to verify the data. The REFETCH � 10 � places a lock

on the data page, to prevent another transaction from modifying the data.

The lock is held until all the rows in the NewPartsArray have been updated

and the COMMIT WORK � 5 � is performed.

FETCH TidCursor INTO :PartName, :SalesPrice � 9 �

REFETCH TidCursor INTO :PartName, :SalesPrice � 10 �

Verify the fetched data against the corresponding row in PartsArray.

If the row is unchanged, update it using the TID cursor.

UPDATE PurchDB.Parts � 11 �
SET PartName = :NewPartName,

SalesPrice = :NewSalesPrice

WHERE CURRENT OF TidCursor

If the row has changed or has been deleted, inform the user and o�er

appropriate options.

CLOSE TidCursor

End the VerifyAndUpdate routine.

Figure 13-3. Using TID Access to Reduce Commit Overhead (page 2 of 2)

13-26 Programming with ALLBASE/SQL Functions



Index

A

active set, 6-11
ADD MONTHS function
example with BULK SELECT, 13-9
syntax, 13-9

aggregate function, 6-4
simple data manipulation, 7-2

ALTER TABLE command
syntax for LONG columns, 12-4

ANSI SQL1 level 2
specifying a default value, 4-11

ANSI SQL86 level 2
oating point data, 4-9

ANSI standards
SQLCODE, 5-4

arrays, 6-18, 9-1
BULK SELECT, 4-5
declarations of, 4-20
in sqlda declaration, 10-15
referencing, 9-1

arrays, char data, 4-8
arrays, declaring, 4-22
atomic operation
de�ned, 5-2

authority option
program maintenance, 1-20

authorization
and program maintenance, 1-19
changing, 1-20
dynamic preprocessing, 10-2
granting, 1-16
program development, 1-16
runtime, 1-5

automatic rollback, 5-12
autostart mode, 3-10

B

basic SQL statements, 1-3
BEGIN DECLARE SECTION, 3-7, 4-6
as delimiter, 2-9

BEGIN WORK, 7-7
binary data
compatibility, 4-10
host variable de�nition, 4-10
how stored, 4-10

using the LONG phrase with, 4-10
BULK FETCH, 6-18
BULK FETCH command
used in example Pascal program, 13-11

BULK INSERT, 6-18
basic uses of, 9-9

BULK INSERT command
used in example Pascal program, 13-11
used with LONG columns, 12-6

BULK option
not used for dynamic FETCH, 10-10

bulk processing
INTO clause, 4-5

bulk processing variables, 4-5
BULK SELECT, 6-3
basic uses, 9-3

[BULK] SELECT command
used with LONG columns, 12-7

BULK SELECT command
with ADD MONTHS function, 13-9

BULK table processing, 6-1
BULK INSERT, 9-9
BULK SELECT, 9-3
commands, 9-3
overview, 6-18
sample program, 9-11
techniques, 9-1

C

CHAR data declaration, 4-8
CLOSE, 6-14, 6-20
before ending a transaction, 8-8, 8-9
freeing bu�er space with, 8-8
with COMMIT WORK, 8-12
with KEEP CURSOR, 8-12

coding considerations
for date/time functions, 13-9
for LONG columns, 12-10, 12-11

column speci�cations for oating point data,
4-10

comments
Pascal, 3-8
SQL, 3-8

COMMIT WORK, 1-11, 3-11, 7-7
and termination, 1-11
with CLOSE, 8-12

Index-1



with KEEP CURSOR, 8-12
comparison predicate, 6-3
compatibility, 4-13
compiler, 1-13
separate compilable section, 1-4

compiler directive for SQLCODE, 5-4
concurrency, 3-11, 7-7
CONNECT, 3-10
authority, 1-5
granting authority, 1-17
to start DBE session, 1-5

consistency, 3-11
constant
as default data value, 4-12

constraint test matrix for integrity constraints,
11-3

conversion, 4-19
copy of module, 1-16
CREATE TABLE command
syntax for LONG columns, 12-4

CURRENT DATE function result
used as default data value, 4-12

CURRENT DATETIME function result
used as default data value, 4-12

current language, 1-7
current row, 6-12
DELETE WHERE CURRENT, 8-7

CURRENT TIME function result
used as default data value, 4-12

cursor
and BULK FETCH, 9-7
and dynamic queries, 10-17
and sections, 2-35
closing, 6-14
de�nition, 8-1
deleting with, 6-12
e�ect of commands on, 6-15
opening, 6-11
positioning, 6-12
sample program, 8-26
techniques, 8-1
UPDATE and FETCH, 8-6
updating with, 6-13
use of, 6-11

cursor processing
CLOSE, 8-8
commands, 8-1
DECLARE CURSOR, 8-2
de�nition, 8-1
DELETE WHERE CURRENT, 8-7
FETCH, 8-3
OPEN, 8-3
techniques, 8-1
transaction management, 8-9
UPDATE and FETCH, 8-6

UPDATE WHERE CURRENT, 8-4

D

Database Environment Con�guration File, 1-5
data bu�er
declaration, 4-21
layout, 10-15
null indicator su�x, 10-15
parsing, 10-19
rows to retrieve, 10-15
use of, 6-21
varchar pre�x, 10-15

data compatibility
binary, 4-10
oating point, 4-10
for date/time function parameters, 13-2, 13-3
for default data values, 4-12
LONG binary, 4-11
LONG varbinary, 4-11

data consistency, 5-2
in sample database, 5-2

data de�nition
overview, 3-13

data input using date/time functions, 13-3
data integrity
changes to error checking , 11-1
introduction to, 11-1
number of rows processed , 11-1
row level versus statement level, 11-1
using sqlerrd[2], 11-1

data manipulation
commands, 3-13, 6-2
overview, 3-13, 6-1
techniques, 6-1

data retrieval using date/time functions, 13-7
data storage
binary data, 4-10

data structures
for dynamic query, 10-8

data type
and declarations, 4-8
compatibility, 4-13
conversion, 4-18, 4-19
equivalency, 4-13

data types
binary, 4-10
oating point, 4-9
used with LONG columns, 12-2

date/time ADD MONTHS function
overview, 13-9
where to use, 13-9

date/time data conversion
example program in Pascal, 13-11
example programs, 13-10

date/time functions, 13-1

Index-2



coding considerations, 13-9
data compatibility, 13-2, 13-3
examples using ManufDB database, 13-4,

13-7, 13-9
example using default format speci�cations,

13-5
how used, 13-2
introduction to, 13-1
leading zeros required for input functions,

13-9
parameters for, 13-2
unspeci�ed format elements default �lled,

13-9
used to add a number of months, 13-9
used when inputting data, 13-3
used when retrieving data, 13-7
using host variables for format speci�cations,

13-2
using host variables for input and output data,

13-2
using host variables with, 13-2
where to use ADD MONTHS, 13-9
where to use input functions, 13-3
where to use output functions, 13-7
where to use TO CHAR, 13-7
where to use TO DATE, 13-3
where to use TO DATETIME, 13-3
where to use TO INTEGER, 13-7
where to use TO INTERVAL, 13-3
where to use TO TIME, 13-3
where used, 13-2

date/time input functions
examples, 13-4
not intended for use in select list, 13-3
overview, 13-3
where to use, 13-3

date/time output functions
examples, 13-7, 13-8
overview, 13-7
where to use, 13-7, 13-9

DBA authority, 1-5
DBECon �le, 1-5
DBEnvironment
access, 1-4

DBE session, 3-10, 3-12
DDL operations
used with integrity constraints, 11-2
used with LONG columns, 12-1

deadlock
and error recovery, 5-2
status checking, 5-29

DECIMAL data declaration, 4-11
declaration of data
char, 4-8
FLOAT, 4-9

integer, 4-8
smallint, 4-8
varchar, 4-8

declaration part, 3-1, 4-6
DECLARE CURSOR, 6-11, 6-20
FOR UPDATE OF, 8-2
preprocessor directive, 8-3
SELECT, 8-2
specify location of stored section, 8-2
syntax, 8-2

DECLAREing for UPDATE
KEEP CURSOR, 8-10

declare section, 4-6
and delimiters, 2-9

declaring, arrays, 4-22
default data values
constant, 4-12
data compatibility, 4-12
for columns allowing nulls, 4-11
in addition to null, 4-11
not used with LONG BINARY data, 4-12
not used with LONG columns, 4-12
not used with LONG VARBINARY data,

4-12
NULL, 4-12
result of CURRENT DATE function, 4-12
result of CURRENT DATETIME function,

4-12
result of CURRENT TIME function, 4-12
USER, 4-12

default format speci�cation example
date/time functions, 13-5

de�ning integrity constraints, 11-2
de�ning LONG columns
in a table, 12-4
input and output speci�cation, 12-5
with the LONG column I/O string, 12-5

de�nitions
input device speci�cation, 12-5
LONG column I/O string, 12-5
output device speci�cation, 12-5
row level integrity, 11-1

DELETE, 7-6
DELETE command
used with LONG columns, 12-10
with TO DATETIME function, 13-6

DELETE WHERE CURRENT, 6-12
current row, 8-7
restrictions, 8-7
syntax, 8-7

DELETE WHERE CURRENT command
used with LONG columns, 12-10

DESCRIBE, 6-20
dynamic non-query, 10-21
dynamic query, 10-21

Index-3



designing an application using statement level
integrity, 11-3

directives, 1-2
DML operations
used with date/time functions, 13-2
used with integrity constraints, 11-2
used with LONG columns, 12-1

DROP MODULE, 1-20
and RUN authorities, 1-19

dynamically deleting data
DELETE WHERE CURRENT command

cannot be prepared, 10-10
error checking strategy, 10-10

dynamically updating data
error checking strategy, 10-10
UPDATE WHERE CURRENT command

cannot be prepared, 10-10
using SELECT command with FOR UPDATE

OF clause, 10-10
dynamic command, 10-1
passing to ALLBASE/SQL, 10-5
queries, 6-20
query with known query result format, 10-42
query with unknown query result format,

10-23
dynamic commands
and authorization, 1-8

dynamic FETCH
BULK option not used, 10-10

dynamic FETCH command
used with LONG columns, 12-9

dynamic operations, 6-1
dynamic commands, 10-1
handling non-queries, 10-6
overview, 6-20
queries vs. non-queries, 10-21
sample program, 10-23, 10-42
techniques, 10-1

dynamic preprocessing, 6-20, 10-1
authorization for, 10-2

dynamic query data structures, 10-8

E

embedding SQL commands, 1-2, 3-1
END DECLARE SECTION, 3-7, 4-6
as delimiter, 2-9

error checking
changes for this release, 11-1
using sqlerrd[2], 11-1
when dynamically deleting data, 10-10
when dynamically updating data, 10-10
with row level integrity, 11-1
with statement level integrity, 11-1

error messages, 3-15
example

BULK SELECT command with
ADD MONTHS function, 13-9

DELETE command with TO DATETIME
function, 13-6

FETCH command with TO INTEGER
function, 13-8

INSERT command with TO DATE function
, 13-4

INSERT command with TO DATETIME
function, 13-4

INSERT command with TO INTERVAL
function, 13-4

INSERT command with TO TIME function,
13-4

LONG column descriptor declaration, 12-8
SELECT command with TO CHAR function,

13-7
SELECT command with TO DATETIME

function, 13-6, 13-7
SELECT command with TO INTERVAL

function, 13-6
UPDATE command with TO DATE function,

13-5
UPDATE command with TO DATETIME

function, 13-5
example application design
using integrity constraints, 11-3

example data �le
BULK INSERT command with LONG

columns, 12-6
example program in Pascal
date/time data conversion, 13-11

example programs
date/time data conversion, 13-10

examples of date/time input functions, 13-4
examples of date/time output functions, 13-7,

13-8
EXEC SQL, 3-7
EXECUTE
non-dynamic queries, 10-8

executing programs, 1-17
explicit status checking, 5-23
de�ned, 5-1
introduction, 5-13

expression, 6-4

F

FETCH, 6-12, 6-20
and null values, 8-3
cursor processing, 8-3

FETCH command
used dynamically with LONG columns, 12-9
used with LONG columns, 12-7
with TO INTEGER function, 13-8

�le

Index-4



Database Environment Con�guration, 1-5
DBECon, 1-5
include, 2-1
user include, 2-1

�le IO
KEEP CURSOR, 8-16

�le name
fully quali�ed, 1-5
relative, 1-5

FLOAT data declaration, 4-9
oating point data
4-byte, 4-9
8-byte, 4-9
column speci�cations, 4-10
compatibility, 4-10
REAL keyword, 4-9

format array
declaration, 4-21
�elds, 10-13
manditory declaration for dynamic query,

10-17
FOR UPDATE OF
UPDATE WHERE CURRENT, 8-2, 8-5

FROM clause, 6-2
fully quali�ed �le name, 1-5

G

GOTO vs. GO TO, 5-14
GRANT, 1-16
GROUP BY clause, 6-3

H

heap space input and output, 12-6
host variable
and data manipulation, 3-13
and modi�ed source, 1-10
declaration, 4-6
declaration summary, 4-9
declaring, 3-9
declaring for ALLBASE/SQL messages, 4-23
declaring for data, 4-19
declaring for DBEnvironment names, 4-24
declaring for null values, 4-19
declaring for savepoints, 4-23
overview, 3-9
scope, 4-6

host variables
bulk processing, 4-5
indicator, 4-3
initialization, 4-3
input, 4-3
names, 4-2
output, 4-3
purpose, 4-1
used for binary data, 4-10

used for LONG column I/O strings, 12-6
used with date/time functions, 13-2
uses, 4-1

I

implicit status checking
de�ned, 5-1
usage, 5-13

INCLUDE, 3-7
include �le, 2-1
include �les
creation, 1-2

include �le, user, 2-1
index scan, 6-12
indicator variables, 4-3, 4-22
location of, 4-3
null, 4-3
null values, 8-3
truncation, 4-3

input device speci�cation
de�nition, 12-5

INSERT, 7-4
INSERT command
used with LONG columns, 12-6
using host variables for LONG column I/O

strings, 12-6
with LONG columns:example data �le, 12-6
with TO DATE function, 13-4
with TO DATETIME function, 13-4
with TO INTERVAL function, 13-4
with TO TIME function, 13-4

INSTALL, 1-19
INTEGER data declaration, 4-8
integrity constraint de�nition, 11-2
integrity constraints
and statement level integrity, 11-3
commands used with, 11-2
constraint test matrix, 11-3
designing an application, 11-3
example application using RecDB database,

11-3
in RecDB database, 11-3
introduction to, 11-1
restrictions, 11-2
unique and referential, 11-2

J

join condition, 6-5
joining tables, 6-5
join variables, 6-7

Index-5



K

KEEP CURSOR
DECLAREing for UPDATE, 8-10
�le IO, 8-16
terminal IO, 8-16

KEEP CURSOR WITH NOLOCKS command
use with OPEN command , 8-3, 8-10

L

language
current language, 1-7
native language support, 2-31
setting and resetting, 1-7

LANG variable
setting and resetting, 1-7

length of commands, 3-7
linker, 1-13
separate linked objects, 1-4

locking
and cursors, 6-12
table level, 6-12

LONG binary data
compatibility, 4-11
de�nition, 4-10
how stored, 4-10

LONG binary versus LONG varbinary data
usage, 4-10

LONG column de�nition
in a table, 12-4
input and output speci�cation , 12-5
with the LONG column I/O string, 12-5

LONG column descriptor
contents of, 12-7
example declaration, 12-8
general concept, 12-2
how used, 12-7
introduction to, 12-5

LONG column I/O string
general concept, 12-2
heap space input and output, 12-6
how used , 12-5
input device speci�cation, 12-5
output device speci�cation, 12-5
used with host variable, 12-6
used with INSERT command, 12-6

LONG columns
changing data, 12-9
coding considerations, 12-10
commands used with, 12-1
considering multiple users, 12-11
data types used with, 12-2
deciding on space allocation, 12-11
deleting data, 12-10
�le usage from an application, 12-5

general concepts, 12-2
input options, 12-5
introduction to, 12-1
maximum per table de�nition, 12-4
output options, 12-5
performance, 12-4
putting data in, 12-6
restrictions, 12-4
retrieving data from, 12-7
size maximum, 12-2
specifying a DBEFileSet, 12-4
storage, 12-4
storing and retrieving data, 12-2
used with [BULK] INSERT command, 12-6
used with [BULK] SELECT command, 12-7
used with DELETE [WHERE CURRENT]

command, 12-10
used with dynamic FETCH command, 12-9
used with FETCH or REFETCH commands,

12-7
used with UPDATE [WHERE CURRENT]

command, 12-9
using �le naming conventions, 12-10
using �le versus heap space, 12-10
using the LONG column descriptor, 12-7

LONG phrase
used with binary data, 4-10
used with varbinary data, 4-10

LONG varbinary data
compatibility, 4-11
de�nition, 4-10
how stored, 4-10

M

maintaining ALLBASE/SQL programs, 1-19
ManufDB database
examples using date/time functions, 13-4,

13-7, 13-9
memory problem
status checking, 5-36

message catalog, 1-17, 3-15
defaults, 2-31

message catalog number
related to sqlcode, 5-6

modi�ed source
creation, 1-2
inserted constructs, 1-10

module
copy, 1-16
creation, 1-11
de�nition, 1-2
installation, 1-16
name, 1-11, 2-8
owner, 1-5
ownership, 1-16

Index-6



storage, 10-2
updating, 1-19

multiple rows qualify
runtime error, 7-2

multiple SQLCODEs, 5-6
multiple users of LONG columns, 12-11

N

name quali�cation, 6-5
naming conventions for LONG column �les,

12-10
native language
current language, 1-7
setting and resetting, 1-7

native language support
message catalog, 2-31
SQLMSG, 2-31

non-dynamic commands, 10-1
NULL
as default data value, 4-12

null indicator su�x
data bu�er, 10-15

null indicator variable
in dynamic command, 10-15

null predicate, 6-3
NULL result of a dynamic fetch of a LONG

column, 12-9
null values, 10-16
and groups, 6-4
and unique indexes, 7-2
in a structure declaration, 10-16
indicator variables mandatory, 8-3
in INSERT, 7-4
in UPDATE, 7-5
properties of, 4-4
runtime errors, 4-4
with FETCH, 4-4, 8-3
with SELECT, 4-4

number of rows processed
data integrity, 11-1

NumberOfRows variable
usage, 9-2

O

OPEN, 6-12, 6-20
cursor processing, 8-3

OPEN command
use with KEEP CURSOR WITH NOLOCKS

command, 8-3, 8-10
optimization
and section creation, 1-12

ORDER BY clause, 6-3
output device speci�cation
de�nition, 12-5

overow

of numeric values, 4-19
OWNER
authority for, 1-17

OWNER authority
and program development, 1-16
granting, 1-17

OWNER authorization, 1-16
and CONNECT, 1-5
granting of, 1-16

P

Pascal comments, 3-8
Pascal program
date/time data conversion, 13-11

pasex10a, 10-30
pasex10b, 10-42
pasex2, 3-1
pasex5, 5-17
pasex7, 7-17
pasex8, 8-30
pasex9, 9-16
performance
integrity constraints, 11-1
LONG columns, 12-4

permanent section
and DBEnvironment, 10-2

predicates, 6-3
PREPARE, 6-20
non-dynamic queries, 10-8

preprocessor
access to DBEnvironment, 1-4
and authorization, 1-5
and DBE sessions, 1-11
directives, 1-2
e�ect on source code, 1-10
errors, 2-48
events, 1-2, 1-9
input, 2-5
invocation, 2-37
modes, 2-4
modes and invocation, 2-38
modifying output of, 1-11
options, 2-38
output, 2-5
parsing, 2-8
syntax checking mode, 2-38
transactions, 1-11
UDCs, 2-43
using, 2-1

preprocessor directive
DECLARE CURSOR, 8-3

procedure part, 3-1
program
compiling and linking, 1-2

Index-7



creation steps, 1-1
development, 2-1
execution, 1-15, 1-17
maintenance, 1-19
name, 2-8
obsolescence, 1-20
user authorization, 1-16

program structure, 1-3
punctuation, 3-7
PurchDB database
date/time conversion example programs, 13-10

Q

query
dynamic data structures, 10-8
result, 6-2

query result, 6-11

R

REAL keyword
oating point data, 4-9

RecDB database application design
example maintenance menu, 11-4
example of deleting data, 11-7
example of error checking, 11-4
example of inserting data, 11-5
example of updating data, 11-6
integrity constraints de�ned, 11-3

REFETCH command
used with LONG columns, 12-7

relative �le name, 1-5
RELEASE, 3-12
restrictions
integrity constraints, 11-2
LONG columns, 12-4

retrieving LONG column data
with SELECT, FETCH, or REFETCH

commands, 12-7
REVOKE, 1-20
robust program
de�ned, 5-2

ROLLBACK WORK, 3-11, 7-8
row level integrity
de�nition, 11-1

rows to retrieve
data bu�er, 10-15

RUN authority, 1-5
runtime authorization, 1-5
runtime errors, 5-2
bulk processing, 4-5
multiple rows qualify, 5-1, 7-2
null values, 4-4

runtime events, 1-18
runtime status checking
possible errors, 5-1

status codes, 5-1
runtime warnings, 5-2

S

sample database
data consistency, 5-2

sample program
cursor processing, 8-30
simple data manipulation, 7-9
status checking, 5-17

sample programs
pasex10a, 10-30
pasex10b, 10-42
pasex2, 3-1
pasex5, 5-17
pasex7, 7-17
pasex8, 8-30
pasex9, 9-16

section
and system catalog, 2-35
commands requiring, 1-12
creation, 1-11
de�nition, 2-34
dynamic vs. non-dynamic, 10-2
permanently stored, 10-2
purpose, 1-12
temorarily stored, 10-2
temporary, 10-8
types, 2-35
validity, 1-13, 2-35

SELECT, 6-2
and DECLARE CURSOR, 8-2
and simple data manipulation, 7-1
DECLARE CURSOR, 8-2

SELECT command
used with LONG columns, 12-7, 12-9
with TO CHAR function, 13-7
with TO DATETIME function, 13-6, 13-7
with TO INTERVAL function, 13-6

select list, 6-2
SELECT with cursor
input host variables only, 8-2

SELECT with CURSOR
input host variables only, 8-2

self-joins, 6-6
semi-colon, 3-7
sequential table processing, 6-1
overview, 6-16
sample programs, 8-26

serial scan, 6-12
shared memory problem
status checking, 5-29

simple data manipulation
commands, 7-1

Index-8



DELETE, 7-6
INSERT, 7-4
overview, 6-10
sample program, 7-9
SELECT, 7-1
techniques, 7-1
transaction management, 7-7
UPDATE, 7-5

size maximum
LONG columns, 12-2

SMALLINT data declaration, 4-8
source �le
and preprocessor, 2-8
de�nition of, 2-5

space allocation for LONG column data, 12-11
SQLCA
declaring, 3-8
elements of, 5-3
overview, 3-8

sqlca.sqlcode
introduction, 5-4

SQLCA.SQLCODE, 5-6
SQLCA.SQLCODE vs. SQLCODE, 5-4
sqlca.sqlerrd[2]
introduction, 5-4

SQLCA.SQLERRD[3], 5-8
sqlca.sqlwarn[0]
introduction, 5-4

SQLCA.SQLWARN[0], 5-9
sqlca.sqlwarn[1]
introduction, 5-4

SQLCA.SQLWARN[1]
usage, 5-10

sqlca.sqlwarn[2]
introduction, 5-4

SQLCA.SQLWARN[2]
usage, 5-11

sqlca.sqlwarn[3]
introduction, 5-4

SQLCA.SQLWARN[3]
usage, 5-11

sqlca.sqlwarn[6]
introduction, 5-4
usage, 5-12

sqlcode
and sqlerrd[3], 5-8
deadlock detected, 5-29
of 100, 9-7
of -14024, 5-12, 5-29
of -4008, 5-12

SQLCODE, 5-6
and sqlerrd[3], 5-8
and sqlwarn[1], 5-10
and sqlwarn[2], 5-11
and sqlwarn[3], 5-11

a negative number, 5-6
multiple messages, 5-6
multiple SQLCODEs, 5-6
of 100, 5-6, 5-34
of -10002, 5-35
related to message catalog number, 5-6
sqlwarn[0], 5-9

SQLCODE of 100, 5-6, 5-34
SQLCODE of -10002, 5-35, 7-2
SQLCODE vs. SQLCA.SQLCODE, 5-4
SQL commands
and data manipulation, 6-2
delimiting, 1-3
embedding, 3-1
for data de�nition, 3-13
for data manipulation, 3-13
length, 3-7
location, 1-3, 3-7
pre�x, 3-7
su�x, 3-7
use of, 1-2

SQL comments, 3-8
sqlda
declaring, 4-20
�elds, 10-11
when �elds are set, 10-11, 10-12

sqlerrd[2]
error checking, 11-1

sqlerrd[3]
as counter, 9-6
in display counter, 9-6
ussage, 5-8

SQLERRD[3], 5-8, 5-29
sqlerre[3]
uses for, 5-31

SQLEXPLAIN, 1-17, 3-15
introduction, 5-1
multiple messages, 5-1
no message for SQLCODE=100, 5-7
simultaneous warning and error, 5-9
SQLCODE, 5-7
sqlwarn[0], 5-9
using, 5-7
when messages are available, 5-13

SQLMSG
defaults, 2-31

SQLSECNUM
in preprocessor-generated calls, 1-12

sqlwarn[0]
SQLEXPLAIN, 5-9
usage, 5-9

SQLWARN[0], 5-9
sqlwarn[1]
string truncation, 5-10
usage, 5-10

Index-9



SQLWARN[1]
usage, 5-10

SQLWARN[2]
usage, 5-11

SQLWARN[3]
usage, 5-11

sqlwarn[6], 5-12
transaction rollback, 5-12
usage, 5-12

START DBE, 3-10
authorization, 1-5

StartIndex variable
usage, 9-2

statement level integrity
and integrity constraints, 11-3

status checking
deadlock, 5-28, 5-29
elements available, 5-4
explicit, 3-14, 5-23
explicit de�ned, 5-1
implicit, 3-12, 5-13
implicit de�ned, 5-1
information available, 5-1
introduction to explicit, 5-13
kinds of, 5-13
memory problem, 5-36
procedures, 5-16, 5-23
purposes of, 5-2
runtime techniques, 5-2
shared memory problem, 5-29

status codes
runtime status checking, 5-1

storage
LONG columns, 12-4

syntax checking mode, 2-38
syntax for date/time functions
ADD MONTHS, 13-9
input functions, 13-3
output functions, 13-7
TO CHAR, 13-7
TO DATE, 13-3
TO DATETIME, 13-3
TO INTEGER, 13-7
TO INTERVAL, 13-3
TO TIME, 13-3

syntax for LONG columns
ALTER TABLE command, 12-4
CREATE TABLE command, 12-4
select list, 12-7

system catalog
storing a section, 1-11

T

temporary section, 10-8
terminal IO
KEEP CURSOR, 8-16

TID function, 13-1, 13-19
TO CHAR function
example with SELECT command, 13-7
syntax, 13-7

TO DATE function
example with INSERT command, 13-4
example with UPDATE command, 13-5
syntax, 13-3

TO DATETIME function
example with DELETE command, 13-6
example with INSERT command, 13-4
example with SELECT command, 13-6, 13-7
example with UPDATE command, 13-5
syntax, 13-3

TO INTEGER function
example with FETCH command, 13-8
syntax, 13-7

TO INTERVAL function
example with INSERT command, 13-4
example with SELECT command, 13-6
syntax, 13-3

TO TIME function
example with INSERT command, 13-4
syntax, 13-3

transaction management, 5-12
automatic, 3-11
cursor processing, 8-9
overview, 3-11
simple data manipulation, 7-7

truncation, 4-18
detecting in strings, 4-4, 4-18
of numeric values, 4-19
of UPDATE or DELETE strings, 4-18

type compatibility, 4-13
decimal, 4-11

type conversion, 4-13
type precedence
in numeric conversion, 4-19

type precision, 4-19

U

UDC's
PPPAS, 2-43
preprocess, 2-43

UDCs
PPPAS, 2-43
preprocess, compile, link, 2-43

unique index, 7-2
null values, 7-2
WHERE clause, 7-2

Index-10



UPDATE, 7-5
UPDATE and FETCH
cursor processing, 8-6

UPDATE command
used with LONG columns, 12-9
used with TO DATE function, 13-5
used with TO DATETIME function, 13-5

UPDATE WHERE CURRENT, 6-13
FOR UPDATE OF, 8-2, 8-5
restrictions, 8-4
syntax, 8-4

UPDATE WHERE CURRENT command
used with LONG columns, 12-9

updating application programs, 1-19
USER
as default data value, 4-12

using default data values
introduction to, 4-11

using indicator variables
assigning null values, 6-10

V

validation, 1-12
varbinary data
using the LONG phrase with, 4-10

VARCHAR
dynamic command declaration, 10-16

VARCHAR data declaration, 4-8
varchar pre�x in the data bu�er, 10-15
views
and DELETE, 6-9
and SELECT, 6-8
and UPDATE, 6-9
restrictions, 6-9, 6-14

W

warning message
and sqlcode, 5-6
and sqlwarn[0], 5-9

warning messages, 3-15
warnings
runtime handling, 5-2

WHENEVER, 3-10, 3-12, 3-15
components of, 5-13
duration of command, 5-7
for di�erent conditions, 5-14

transaction roll back, 5-14

Index-11




	Contents
	Getting Started with ALLBASE/SQL Pascal Programming
	ALLBASE/SQL Pascal Programs
	Program Structure
	DBEnvironment Access
	Authorization
	File Referencing

	Native Language Support
	The ALLBASE/SQL Pascal Preprocessor
	Effect of Preprocessing on Source Code
	Effect of Preprocessing on DBEnvironments

	Compiling and Linking the Program
	ALLBASE/SQL Program Execution
	Maintaining ALLBASE/SQL Programs

	Using the ALLBASE/SQL Pascal Preprocessor
	Preprocessor Modes
	Preprocessor Input and Output
	Source File
	Output File Attributes
	Preprocessor Modified Source File
	Preprocessor-Generated Include Files
	ALLBASE/SQL Message File
	Installable Module File
	Stored Sections

	Invoking the Pascal Preprocessor
	Syntax Checking Mode
	Full Preprocessing Mode
	Using the Preprocessor UDCs
	Using the Preprocessor UDCs

	Running the Preprocessor in Job Mode
	Preprocessing Errors

	Embedding SQL Commands
	General Rules for Embedding SQL
	Declaring the SQLCA
	Declaring Host Variables
	Starting a DBE Session
	Defining Transactions
	Implicit Status Checking
	Terminating a DBE Session
	Defining and Manipulating Data
	Explicit Status Checking
	Obtaining ALLBASE/SQL Messages

	Host Variables
	Using Host Variables
	Host Variable Names
	Input and Output Host Variables
	Indicator Variables
	Bulk Processing Variables

	Declaring Host Variables
	Declaring Variables for Program Elements


	Runtime Status Checking and the SQLCA
	Purposes of Status Checking
	Using the SQLCA
	SQLCODE

	Approaches to Status Checking
	Program Illustrating Implicit and Explicit Status Checking
	Explicit Status Checking Techniques


	Overview Of Data Manipulation
	The Query
	Selecting from Multiple Tables
	Selecting Using Views

	Simple Data Manipulation
	Introducing the Cursor
	Sequential Table Processing
	Bulk Table Processing
	Dynamic Operations

	Simple Data Manipulation
	SQL Commands
	The INSERT Command
	The UPDATE Command

	Transaction Management for Simple Operations
	Program Using Simple DML Operations

	Processing with Cursors
	Transaction Management for Cursor Operations
	Using KEEP CURSOR
	KEEP CURSOR and BEGIN WORK

	Examples
	Program Using UPDATE WHERE CURRENT

	Bulk Table Processing
	Variables Used in BULK Processing
	SQL Bulk Commands
	Transaction Management for BULK Operations
	Program Using BULK INSERT

	Using Dynamic Operations
	Review of Preprocessing Events
	Differences between Dynamic and Non-Dynamic Preprocessing
	Passing Dynamic Commands to ALLBASE/SQL
	Preprocessing of Dynamic Queries
	Setting up the Data Buffer
	Using the Dynamic Query Data Structures
	Parsing the Data Buffer

	Preprocessing Dynamic Commands That May or May Not Be Queries
	Programs Using Dynamic Command Operations

	Programming With Constraints
	Comparing Statement Level and Row Level Integrity
	Using Unique and Referential Integrity Constraints
	Designing an Application Using Statement Level Integrity Checks

	Programming with LONG Columns
	General Concepts
	Restrictions
	Defining LONG Columns with a CREATE TABLE or ALTER TABLE Command
	Defining Input and Output with the LONG Column I/O String
	Putting Data into a LONG Column with a INSERT Command
	Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH Command
	Changing a LONG Column with an UPDATE [WHERE CURRENT] Command
	Removing LONG Column Data with a DELETE [WHERE CURRENT] Command

	Programming with ALLBASE/SQL Functions
	Programming with Date/Time Functions
	Program Example for Date/Time Data
	Programming with TID Data Access
	Transaction Management with TID Access

	Index

