
900 Series HP 3000 Computer Systems

ALLBASE/SQL C

Application Programming Guide

ABCDE

HP Part No. 36216-90023

Printed in U.S.A. 1992

Fourth Edition

E0692

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c
 1987, 1988, 1989, 1990, 1991, 1992 by Hewlett-Packard

Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition December 1987 36216-02A.01.00
Second Edition October 1988 36216-02A.12.00
Third Edition January 1991 36216-02A.20.00
Fourth Edition June 1992 36216-02A.E1.00

iii

iv

Preface

ALLBASE/SQL is a relational database management system for use on the HP 3000 Series
900 computer. ALLBASE/SQL (Structured Query Language) is the language you use to
de�ne and maintain data in an ALLBASE/SQL DBEnvironment. This manual presents the
techniques of embedding ALLBASE/SQL within C language source code.

This manual is intended as a learning tool and a reference guide for C programmers. It
presumes the reader has a working knowledge of C, the MPE/iX operating system, and
ALLBASE/SQL relational database concepts.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series
of forward-compatible operating systems for the HP 3000 line of computers. In HP
documentation and in talking with HP 3000 users, you will encounter references to MPE XL,
the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written
for MPE XL will run without change under MPE/iX. You can continue to use MPE XL
system documentation, although it may not refer to features added to the operating system to
support POSIX (for example, hierarchical directories).

This manual contains both basic and in-depth information about embedding ALLBASE/SQL.
Code examples are based, for the most part, on the sample database, PartsDBE, which
accompanies ALLBASE/SQL. Refer to Appendix C in the ALLBASE/SQL Reference Manual
for information about the structure of PartsDBE and for listings of the sample database.

Chapter 1, \Getting Started with ALLBASE/SQL Programming in C," is an introduction
to ALLBASE/SQL programming which includes information on developing, using, and
maintaining programs on the MPE XL operating system.
Chapter 2, \Using the Preprocessor," explains the ALLBASE/SQL preprocessor and how to
invoke it.
Chapter 3, \Host Variables," describes how to de�ne and use variables to transfer data
between your C program and an ALLBASE/SQL DBEnvironment.
Chapter 4, \Runtime Status Checking and the sqlca," de�nes ways to monitor and handle
successful and unsuccessful SQL command execution.

Chapters 5 through 11 address the various ways to manipulate data in an ALLBASE/SQL C
program.

Chapter 5, \Simple Data Manipulation," explains how to operate on one row at a time.
Chapter 6, \Processing with Cursors," shows how to process a multiple row query result one
row at a time.
Chapter 7, \BULK Table Processing," examines the processing of multiple rows at a time.
Chapter 8, \Using Dynamic Operations," describes the use of ALLBASE/SQL commands
that are preprocessed at runtime.
Chapter 9, \Programming with Constraints," compares the use of statement level integrity
and row level integrity and discusses the use of integrity constraints.
Chapter 10, \Programming with LONG Columns," discusses the LONG BINARY and
LONG VARBINARY data types.
Chapter 11, \Programming with ALLBASE/SQL Functions," describes the formatting
functions to be used with date/time data types.

v

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vi

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

vii

Contents

1. Getting Started with ALLBASE/SQL Programming in C
Understanding ALLBASE/SQL Operations 1-1
Using DML to Manipulate Data 1-2
Using DDL to De�ne Database Objects 1-2
Using DCL to Manage Security . 1-3
Handling Transactions . 1-3
Handling Errors . 1-3
Dynamic and Non-Dynamic Operations 1-4

Understanding the Program Life Cycle 1-5
Developing ALLBASE/SQL Applications 1-5
Creating Source Files . 1-6
Using Embedded SQL . 1-7

General Rules for Embedding SQL 1-7
Declaring Special Data Structures 1-7
Declaring Host Variables . 1-8
Skeleton Program . 1-8
Rules of Syntax for Embedded SQL Statements 1-10

Preprocessing the Source File . 1-11
Creating the Modi�ed Source File 1-11
Creating Stored Sections . 1-11
Stored Form of the SQL Command 1-12
Optimized Access Instructions 1-12
Validity Flag . 1-12
Runtime Revalidation of Sections 1-13

Generating the Message File . 1-13
Compiling and Linking the Program 1-13
Running the Program . 1-15
Authorizations . 1-15
Debugging and Testing . 1-16

Moving into the Production Phase 1-16
Installing Program Modules . 1-16
Granting Module Owner Authorizations 1-18
Granting Program User Authorization 1-18

Maintaining ALLBASE/SQL Applications 1-19
Tuning Performance . 1-19
Managing Source Code . 1-20
Updating Application Programs 1-20
Changing Program-Related Authorization 1-21
Dropping Obsolete Modules . 1-21

Programming Under the MPE XL Operating System 1-22
Security Considerations . 1-22
File Naming Conventions . 1-22

Contents-1

Native Language Support . 1-23
Looking at an Embedded SQL Source Program 1-24

2. Using the Preprocessor
Invoking the C Preprocessor . 2-1
Full Preprocessing Mode . 2-1
Preprocessor Syntax I . 2-2
Parameters . 2-2
Description . 2-3
Authorization . 2-4
Example . 2-5
Syntax Checking Mode . 2-6
Preprocessor Syntax II . 2-6
Description . 2-6
Authorization . 2-6
Example . 2-7
DBEnvironment Access . 2-8
Compiling and Linking . 2-9
Using the Preprocessor UDCs . 2-10
Using the Preprocessor in Job Mode 2-14
Running the Program . 2-14
Accessing Multiple DBEnvironments 2-15

Identifying Preprocessor Input . 2-15
Source File . 2-16
ALLBASE/SQL Message Catalog 2-16

Identifying Preprocessor Output . 2-17
Modi�ed Source File . 2-18
Include Files . 2-19
ALLBASE/SQL Message File . 2-19
Stored Module Containing Sections 2-23
Installable Module File . 2-27

Handling Preprocessor Errors . 2-27
Preprocessor or DBEnvironment Termination 2-27
Preprocessor Invocation Errors . 2-28
Source File Errors . 2-28
DBEnvironment Errors . 2-28

Sample Modi�ed Source File . 2-29
Sample Preprocessor Generated Include Files 2-35

3. Host Variables
Using Host Variables . 3-1
Host Variable Names . 3-2
Input and Output Host Variables 3-3
Indicator Variables . 3-3
Bulk Processing Variables . 3-5

Declaring Host Variables . 3-6
Creating Declaration Sections . 3-6
Declaring Variables for Data Types 3-8
CHAR Data . 3-8
VARCHAR Data . 3-8
SMALLINT Data . 3-11

Contents-2

INTEGER Data . 3-11
FLOAT Data . 3-11
Floating Point Data Compatibility 3-11

BINARY Data . 3-12
Binary Data Compatibility . 3-12
Using the LONG Phrase with Binary Data Types 3-12
Declaring Host Variables for BINARY Data 3-12
Declaring Host Variables for VARBINARY Data 3-13
Inserting and Updating VARBINARY Data 3-14
Selecting and Fetching VARBINARY Data 3-16

DECIMAL Data . 3-17
DATE, TIME, DATETIME, and INTERVAL Data 3-17

Using Default Data Values . 3-17
Coding Considerations . 3-19
When the DEFAULT Clause Cannot be Used 3-19

Declaring Variables for Compatibility 3-20
String Data Conversion . 3-24
String Data Truncation . 3-24
Numeric Data Conversion . 3-25

Declaring Variables for Program Elements 3-26
sqlca Array . 3-26
Dynamic Processing Arrays . 3-26
Bulk Processing Arrays . 3-27
Indicator Variables . 3-27
Dynamic Commands . 3-27
Savepoint Numbers . 3-28
Messages from the Message Catalog 3-29
DBEnvironment Name . 3-30

4. Runtime Status Checking and the sqlca
Purposes of Status Checking . 4-2
Handling Runtime Errors and Warnings 4-2
Maintaining Data Consistency . 4-2
Checking the Most Recently Executed Command 4-3

Using the sqlca . 4-4
sqlcode . 4-6
sqlerrd[2] . 4-8
sqlwarn[0] . 4-9
sqlwarn[1] . 4-10
sqlwarn[2] . 4-11
sqlwarn[3] . 4-11
sqlwarn[6] . 4-12

Approaches to Status Checking . 4-13
Implicit Status Checking Techniques 4-13
Program Illustrating Implicit and Explicit Status Checking 4-17

Explicit Status Checking Techniques 4-24
Handling Deadlock and Shared Memory Problems 4-30
Determining Number of Rows Processed 4-30
INSERT, UPDATE, and DELETE Operations 4-31
BULK Operations . 4-32

Detecting End of Scan . 4-35

Contents-3

Determining When More Than One Row Quali�es 4-36
Detecting Log Full Condition . 4-37
Handling Out of Space Conditions 4-37
Checking for Authorizations . 4-37

5. Simple Data Manipulation
SQL Commands . 5-1
SELECT . 5-1
INSERT . 5-5
UPDATE . 5-6
DELETE . 5-7

Transaction Management for Simple Operations 5-7
Sample Program Using Simple DML Commands 5-11

6. Processing with Cursors
SQL Cursor Commands . 6-1
DECLARE CURSOR . 6-2
OPEN . 6-3
FETCH . 6-3
UPDATE WHERE CURRENT . 6-5
DELETE WHERE CURRENT . 6-8
CLOSE . 6-9

Transaction Management for Cursor Operations 6-10
Using KEEP CURSOR . 6-11
KEEP CURSOR and Isolation Levels 6-11
OPEN Command Without KEEP CURSOR 6-11
OPEN Command Using KEEP CURSOR WITH LOCKS and CS Isolation

Level . 6-12
OPEN Command Using KEEP CURSOR WITH NOLOCKS 6-13
KEEP CURSOR and BEGIN WORK 6-14
KEEP CURSOR and COMMIT WORK 6-15
KEEP CURSOR and ROLLBACK WORK 6-15
KEEP CURSOR and Aborted Transactions 6-15
Writing Keep Cursor Applications 6-15

Examples . 6-18
Common StatusCheck Procedure 6-19
Single Cursor WITH LOCKS . 6-20
Multiple Cursors and Cursor Stability 6-22
Avoiding Locks on Terminal Reads 6-25

Sample Program Using Cursor Operations 6-27

7. BULK Table Processing
Variables Used in BULK Processing 7-1
SQL Bulk Commands . 7-4
BULK SELECT . 7-4
BULK FETCH . 7-9
BULK INSERT . 7-11

Transaction Management for BULK Operations 7-13
Sample Program Using BULK Processing 7-14

Contents-4

8. Using Dynamic Operations
Review of Preprocessing Events . 8-1
Di�erences between Dynamic and Non-Dynamic Preprocessing 8-2
Permanently Stored vs. Temporary Sections 8-2
Examples of Non-Dynamic and Dynamic SQL Statements 8-4
Why Use Dynamic Preprocessing? 8-5

Passing Dynamic Commands to ALLBASE/SQL 8-5
Understanding the Types of Dynamic Operations 8-6
Preprocessing of Dynamic Non-Queries 8-6
Using EXECUTE IMMEDIATE 8-6
Using PREPARE and EXECUTE 8-8

Preprocessing of Dynamic Queries . 8-8
Dynamically Updating and Deleting Data 8-10
Setting Up the SQLDA . 8-11
Setting Up the Format Array . 8-13
Setting Up the Data Bu�er . 8-15
Setting up a Bu�er for Query Results of Unknown Format 8-15
Setting up a Bu�er for Query Results of Known Format 8-15

Using the Dynamic Query Data Structures 8-16
Parsing the Data Bu�er . 8-19

Preprocessing of Commands That May or May Not Be Queries 8-21
Sample Programs Using Dynamic Query Operations 8-23
cex10a: Program for Dynamic Commands of Unknown Format 8-23
cex10b: Program Using Dynamic Commands of Known Format 8-41

9. Programming with Constraints
Comparing Statement Level and Row Level Integrity 9-1
Using Unique and Referential Integrity Constraints 9-2
Designing an Application Using Statement Level Integrity Checks 9-3
Insert a Member in the Recreation Database 9-5
Update an Event in the Recreation Database 9-6
Delete a Club in the Recreation Database 9-7
Delete an Event in the Recreation Database 9-7

10. Programming with LONG Columns
General Concepts . 10-2
Restrictions . 10-4
De�ning LONG Columns with a CREATE TABLE or ALTER TABLE

Command . 10-4
De�ning Input and Output with the LONG Column I/O String 10-5
Putting Data into a LONG Column with a [BULK] INSERT Command . . . 10-6
Insert Using Host Variables for LONG Column I/O Strings 10-6
Bulk Insert Using Host Variables for LONG Column I/O Strings 10-6
Example . 10-7
Example Data File . 10-9

Retrieving LONG Column Data with a [BULK] SELECT, FETCH, or
REFETCH Command . 10-10
Using the LONG Column Descriptor 10-10
Example LONG Column Descriptor Declaration 10-11

Using LONG Columns with a BULK SELECT Command 10-12
Using LONG Columns with a Dynamic FETCH Command 10-12

Contents-5

Changing a LONG Column with an UPDATE [WHERE CURRENT] Command 10-12
Removing LONG Column Data with a DELETE [WHERE CURRENT]

Command . 10-13
Coding Considerations . 10-13
File versus Random Heap Space 10-13
File Naming Conventions . 10-13
Considering Multiple Users . 10-14
Deciding How Much Space to Allocate and Where 10-14

11. Programming with ALLBASE/SQL Functions
Where Date/Time Functions Can Be Used 11-2
De�ning and Using Host Variables with Date/Time Functions 11-2
Using Date/Time Input Functions 11-3
Examples of TO DATETIME, TO DATE, TO TIME, and TO INTERVAL

Functions . 11-4
Example Using the INSERT Command 11-4
Example Using the UPDATE Command 11-5
Example Using the SELECT Command 11-7
Example Using the DELETE Command 11-7

Using Date/Time Output Functions 11-8
Example TO CHAR Function . 11-8
Example TO INTEGER Function 11-10

Using the Date/Time ADD MONTHS Function 11-11
Example ADD MONTHS Function 11-11

Coding Considerations . 11-11
Program Example for Date/Time Data 11-12
Example Program cex9a . 11-13

Programming with TID Data Access 11-20
Understanding TID Function Input and Output 11-20
Using the TID Function in a Select List 11-20
Using the TID Function in a WHERE Clause 11-21
Declaring TID Host Variables 11-21
Understanding the SQLTID Data Format 11-21

Transaction Management with TID Access 11-22
Comparing TID Access to Other Types of Data Access 11-22
Verifying Data that is Accessed by TID 11-23
Considering Interactive User Applications 11-23
Coding Strategies . 11-24
Reducing Commit Overhead for Multiple Updates with TID Access 11-25

Index

Contents-6

Figures

1-1. Creating an ALLBASE/SQL C Application Program 1-6
1-2. Skeleton ALLBASE/SQL C Program 1-9
1-3. Components of a Stored Section 1-12
1-4. Ways of Compiling and Linking an ALLBASE/SQL C Program 1-14
1-5. Moving an Application to a Production System 1-17
1-6. Runtime Dialog of Program cex2 1-26
1-7. Program cex2: Using Simple SELECT 1-27
2-1. Compiling and Linking . 2-9
2-2. UDC for Preprocessing SQLIN . 2-11
2-3. UDC for Preprocessing, Compiling, and Preparing SQLIN 2-12
2-4. Sample UDC Invocation . 2-13
2-5. Full Preprocessing Mode Input and Output 2-17
2-6. Sample sqlmsg Showing Errors . 2-21
2-7. Sample sqlmsg Showing Warning 2-22
2-8. Information in SYSTEM.SECTION on Stored Sections 2-25
2-9. Modi�ed Source File For Program cex2 2-29
2-10. Sample Type Include File . 2-36
2-11. Sample Variable Include File . 2-38
2-12. Sample Externals Include File . 2-38
3-1. Host Variable Declarations . 3-7
3-2. Declaring Host Variables for Single-Row Query Results 3-22
3-3. Declaring Host Variables for Multiple-Row Query Results 3-23
3-4. Declaring Host Variables for Dynamic Commands 3-27
3-5. Declaring Host Variables for Savepoint Numbers 3-28
3-6. Declaring Host Variables for Message Catalog Messages 3-29
3-7. Declaring Host Variables for DBEnvironment Names 3-30
4-1. Program cex5: Implicit and Explicit Status Checking 4-18
4-2. Explicit Status Checking Procedures 4-25
4-3. Determining Number of Rows Processed After a BULK SELECT 4-33
5-1. Flow Chart of Program cex7 . 5-14
5-2. Runtime Dialog of Program cex7 5-16
5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE 5-19
6-1. Cursor Operation without the KEEP CURSOR Feature 6-12
6-2. Cursor Operation Using KEEP CURSOR WITH LOCKS 6-13
6-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS 6-14
6-4. Keep Cursor Application Program 6-17
6-5. Flow Chart of Program cex8 . 6-29
6-6. Runtime Dialog of Program cex8 6-30
6-7. Program cex8: Using UPDATE WHERE CURRENT 6-32
7-1. Flow Chart of Program cex9 . 7-17
7-2. Runtime Dialog of Program cex9 7-18
7-3. Program cex9: Using BULK INSERT 7-21

Contents-7

8-1. Creation and Use of a Program that has a Stored Module 8-3
8-2. Creation and Use of a Program that has no Stored Module 8-4
8-3. Procedure Hosting Dynamic Non-Query Commands 8-7
8-4. Dynamic Query Data Structures and Data Assignment 8-9
8-5. Format of the Data Bu�er . 8-18
8-6. Parsing the Data Bu�er in cex10a 8-20
8-7. Flow Chart of Program cex10a . 8-26
8-8. Run Time Dialog of Program cex10a 8-28
8-9. Program cex10a: Dynamic Queries of Unknown Format 8-30
8-10. Flow Chart of Program cex10b . 8-44
8-11. Run Time Dialog of Program cex10b 8-46
8-12. Program cex10b: Dynamic Queries of Known Format 8-47
9-1. Constraints Enforced on the Recreation Database 9-4
10-1. Flow of LONG Column Data and Related Information to the Database . . 10-3
10-2. Flow of LONG Column Data and Related Information from the Database . 10-3
11-1. Program cex9a: Using Date/Time Functions 11-13
11-2. Using RC and RR Transactions with BULK SELECT, SELECT, and

UPDATE . 11-24
11-3. Using TID Access to Reduce Commit Overhead 11-27

Contents-8

Tables

3-1. Data Type Declarations . 3-9
3-2. Program Element Declarations . 3-10
3-3. ALLBASE/SQL Floating Point Column Speci�cations 3-11
3-4. C Data Type Equivalency and Compatibility 3-20
4-1. sqlca Status Checking Fields . 4-5
8-1. SQLDA Fields . 8-12
8-2. Fields in a Format Array Record 8-14
9-1. Commands Used with Integrity Constraints 9-2
9-2. Constraint Test Matrix . 9-3
10-1. Commands You Can Use with LONG Columns 10-1
10-2. LONG Column Descriptor . 10-11
11-1. Where to Use Date/Time Functions 11-2
11-2. Host Variable Data Type Compatibility for Date/Time Functions 11-3
11-3. Sample of User Requested Formats for Date/Time Data 11-4
11-4. SQLTID Data Internal Format . 11-22

Contents-9

1

Getting Started with ALLBASE/SQL Programming in C

ALLBASE/SQL is a relational database management system that uses SQL statements to
access data within an ALLBASE/SQL DBEnvironment. Embedding SQL statements in your
C program and preprocessing with the SQL preprocessor allows programmatic access to
this data. Embedded statements are ALLBASE/SQL commands in the
ow of what would
otherwise be C source code. When embedded statements are present, the source code must be
passed through an ALLBASE/SQL preprocessor to convert them to a form understood by the
C compiler. This chapter examines the steps to follow as you begin to work with embedded
SQL. It focuses on the programmer's tasks, which are presented in the following sections:

Understanding ALLBASE/SQL Operations.
Understanding the Program Life Cycle.
Developing ALLBASE/SQL Applications.
Moving Programs into Production.
Maintaining ALLBASE/SQL Applications.
Programming Under the MPE XL Operating System.
Looking at an Embedded SQL Source Program

Embedded SQL programming is a simple process. You include SQL statements in a C source
program, then you preprocess the code using the ALLBASE/SQL C preprocessor before
compiling and linking. The preprocessor is fully described in Chapter 2, and the speci�c
techniques of ALLBASE/SQL programming are presented in more detail in the succeeding
chapters. Readers who are already familiar with the general process of embedded SQL
programming should skip ahead to Chapter 2.

Understanding ALLBASE/SQL Operations

You can incorporate almost any ALLBASE/SQL command in an application program. Some
commands can only be used in applications; others require special varieties of syntax that are
only used in applications. All the ALLBASE/SQL commands and the places where you can
use them are described in the ALLBASE/SQL Reference Manual .

Note You cannot use ISQL, SQLUtil, SQLGEN, or SQLMIGRATE commands
programmatically. ISQL, SQLUtil, SQLGEN, and SQLMIGRATE are
themselves independent applications.

Getting Started with ALLBASE/SQL Programming in C 1-1

There are several kinds of SQL operations you can perform from application programs:

Accessing data using data manipulation language (DML).
Creating ALLBASE/SQL objects using data de�nition language (DDL).
Managing security with data control language (DCL).
Handling transactions.
Handling errors.
Performing dynamic processing.

Using DML to Manipulate Data

You use DML to examine or modify the rows in the tables in a database. The chief DML
command for creating queries is SELECT. For other kinds of data manipulation you use
DELETE, INSERT, or UPDATE. Whether for OLTP (online transaction processing) or
report-writer applications, DML commands are the heart of database access. Therefore, much
of the programmer's time is spent using DML to create the most e�cient queries and updates.
Most of this manual is devoted to the task of coding e�ective DML statements.

The following example of a simple data manipulation statement reads a row of data into some
host variables (host variables are described below, under \Creating Source Files").

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber, :PartName, :SalesPrice

FROM PurchDB.Parts;

Using DDL to Define Database Objects

You use DDL to create database objects, including tables, views, indexes, and authorization
groups. For these tasks, you use the SQL CREATE commands, including CREATE TABLE,
CREATE VIEW, CREATE INDEX, and CREATE GROUP. DDL is not always used in
application programs, since database objects frequently exist before coding starts. However,
it is sometimes useful to de�ne objects at run time. Or you might wish to create special
applications to tailor the creation of objects for the speci�c needs of your system. For detailed
information about DDL functions, refer to the ALLBASE/SQL Database Administration
Guide.

The following example of a data de�nition statement shows the creation of an index on one
column of the Parts table:

EXEC SQL CREATE UNIQUE INDEX PartNumIndex

ON PurchDB.Parts (PartNumber);

Data de�nition also includes the DROP commands for database objects such as the index
created in the previous example, and the ALTER TABLE command for making changes to
these objects. It also includes SQL statements for creating �les and �lesets for storage of
database information.

1-2 Getting Started with ALLBASE/SQL Programming in C

Using DCL to Manage Security

You use DCL to create a security scheme for your databases. Control statements are used to
initiate access to a DBEnvironment and to provide security on speci�c database objects.

You may �nd it useful to assign permissions for newly created objects when the default
permissions are not su�cient for the needs of your application. You can control the ownership
of objects in ALLBASE/SQL DBEnvironments at creation time or through the TRANSFER
OWNERSHIP command. Similarly, you can assign authorization for speci�c objects as you
create them or through the GRANT and REVOKE commands.

Data control statements let you create groups, assign members to them, then grant all the
authorities as needed. You can also grant and revoke authorities to individual users.

The following example of a data control statement assigns CONNECT authority to everyone
for the current DBEnvironment:

EXEC SQL GRANT CONNECT TO ALL;

Handling Transactions

Transactions are the units of work in an ALLBASE/SQL application. Transactions are
usually delimited by BEGIN WORK and COMMIT WORK or ROLLBACK WORK
statements. During a transaction, ALLBASE/SQL obtains locks on data and index pages;
this can cause others to wait for data access. ALLBASE/SQL lets you regulate the kinds
of locking your transactions use so as to achieve the greatest concurrency possible while
protecting data from the actions of other users. The ALLBASE/SQL Reference Manual
contains information about managing the transactions in your applications.

Handling Errors

You use error handling to detect error conditions that arise while you are connected to an
ALLBASE/SQL DBEnvironment. Error handling can be either implicit or explicit.

In implicit error handling, you use the WHENEVER SQLERROR and WHENEVER
SQLWARNING statements to branch to a speci�c location following any error or warning. In
this kind of processing, you do not test for a speci�c error condition.

In explicit error handling, it the programmer's responsibility to examine the speci�c error
code returned by ALLBASE/SQL. For example, if the error number returned is -14024,
ALLBASE/SQL has detected a deadlock and has rolled back a transaction. This means you
can try the transaction again. On the other hand, an error of -2206 means that a table or
view was not found. In this case, it does not make sense to reattempt the transaction.

Both implicit and explicit error handling techniques usually employ an error routine that
incorporates the ALLBASE/SQL message command, SQLEXPLAIN. For example, a loop may
be used to display to the user the text of each error or warning message related to a given
SQL command.

Refer to Chapter 4 for complete details about error handling, including several examples.

Getting Started with ALLBASE/SQL Programming in C 1-3

Dynamic and Non-Dynamic Operations

Whether you are using DML, DDL, or DCL operations, you can structure embedded SQL
statements as either dynamic or non-dynamic. Commands are non-dynamic when the syntax
of the entire command is known and preprocessed prior to run time. For many non-dynamic
commands, ALLBASE/SQL can speed up database access by storing runtime instructions in
the DBEnvironment at preprocessing time. The following is a non-dynamic query.

printf("Enter the Part Number: ");

gets(PartNumber);

EXEC SQL SELECT PartName, SalesPrice

INTO :PartName, :SalesPrice

WHERE PartNumber = :PartNumber;

Commands are dynamic when they are preprocessed at run time. ALLBASE/SQL converts
these commands into executable instructions at run time rather than at preprocessing time.
For example, you might know which table and which columns you want to query with a
SELECT, but you may not know until run time the name of the DBEnvironment itself. In
such a case, the preprocessor cannot store instructions in the DBEnvironment prior to run
time.

The following is an example of a dynamic CONNECT in which the user enters the name of
the DBEnvironment at run time:

printf("Enter the DBEnvironment Name: ");

gets(DBEName);

sprintf(DynamicCommand,"CONNECT TO '%s';",DBEName);

EXEC SQL EXECUTE IMMEDIATE :DynamicCommand;

There are many techniques for dynamic processing of queries and non-queries. The topic is
discussed fully in Chapter 8.

1-4 Getting Started with ALLBASE/SQL Programming in C

Understanding the Program Life Cycle

Each ALLBASE/SQL application program undergoes a number of phases in its useful life:

Development: In the development phase, you create C source code procedures and integrate
them into applications. Database access is provided through embedded SQL statements
which are translated by a preprocessor into C procedures. After preprocessing the source,
you compile, test, and debug, until the application is satisfactory. Then you install the
application on a production system.

Production: In the production phase, the application runs more or less continuously. The
goals in this phase are to provide a high degree of concurrent access to data consistent with
data security. The programmer can often enhance the performance of an application during
production runs by using speci�c techniques as the code is developed. During production,
the database administrator (DBA) can also help improve performance by monitoring the
system's use of resources and by allocating additional disk space or shared memory as
needed.

Maintenance: In the maintenance phase, you modify the application in response to the
changing needs of its users. This may mean updating the code, changing the security
structure, or adding code to accomodate changes in the DBEnvironment. By careful coding
to anticipate future developments in your databases, you can avoid the need to make
extensive changes to production software.

Developing ALLBASE/SQL Applications

The basic steps in developing ALLBASE/SQL applications are as follows:

Create a source �le.
Preprocess the source �le.
Compile and link the program.

These steps, shown in Figure 1-1, are further described in the following paragraphs.

Getting Started with ALLBASE/SQL Programming in C 1-5

Figure 1-1. Creating an ALLBASE/SQL C Application Program

Creating Source Files

Using an editor, you create one or more �les containing C source code and SQL commands,
which are said to be embedded in the program. You can use multiple source �les, but each �le
containing embedded SQL statements must be separately preprocessed.

1-6 Getting Started with ALLBASE/SQL Programming in C

Using Embedded SQL

The following SQL statements can be embedded in your program:

Host variable declarations.
INCLUDE SQLCA statements to let ALLBASE/SQL pass return codes to your program.
A CONNECT command specifying the name of a DBEnvironment.
BEGIN WORK and COMMIT WORK commands to delimit transactions (Note that if a
transaction is not already started, any SQL command will automatically issue an implicit
BEGIN WORK.).
SELECT, INSERT, UPDATE, or DELETE commands; or cursor operations.
Explicit or implicit error handling.

The ALLBASE/SQL Reference Manual describes the complete syntax for each kind of SQL
statement.

Some SQL statements can only be used in application programs. These include the cursor
commands (DECLARE, OPEN, FETCH, REFETCH, UPDATE WHERE CURRENT,
DELETE WHERE CURRENT, and CLOSE); the bulk commands (BULK SELECT and
BULK INSERT); and the error handling commands (WHENEVER and SQLEXPLAIN).

Moreover, some of the statements have a di�erent e�ect when used in an application program
than when used interactively. For example, the SELECT command in ISQL may be used
when you wish to retrieve multiple rows, but in an application program a simple SELECT
that retrieves more than one row results in an error.

General Rules for Embedding SQL

ALLBASE/SQL C programs often follow a pattern where a main program segment calls
functions that include the embedded SQL code.

Declaring Special Data Structures

You must include the following instruction to the ALLBASE/SQL preprocessor in the global
declarations area of each source �le:

EXEC SQL INCLUDE SQLCA;

This incorporates into your program a data structure for handling return codes from
ALLBASE/SQL, including numbered error conditions. You can use the information in the
sqlca (SQL Communications Area) to test and branch. Refer to Chapter 4, \Runtime Status
Checking and the sqlca," for complete information about using the sqlca.

If your program includes dynamic query processing for the FETCH command with a USING
DESCRIPTOR clause, add the INCLUDE SQLDA statement to your global declarations, and
de�ne the appropriate data bu�er and format array. These elements are described fully in
Chapter 8.

All other SQL commands may appear in any part of your program.

Getting Started with ALLBASE/SQL Programming in C 1-7

Declaring Host Variables

In addition to the normal variable declarations, the source �le contains variable declarations
for host variables. These can appear wherever declarations are legal. However, it is
recommended that you include them at the beginning of the �le, since they are translated into
global variables by the preprocessor anyway. If more than one source �le references the same
set of variables, you must declare them separately in each �le, and you must preprocess each
�le separately. See Chapter 2 for more details. Host variable declarations appear within a pair
of SQL statments:

EXEC SQL BEGIN DECLARE SECTION;

.

.

EXEC SQL END DECLARE SECTION;

Host variables can appear both in the embedded SQL statements in your code and in ordinary
C statements. When they appear in embedded SQL statements, you pre�x them with a colon,
as shown in this example:

EXEC SQL SELECT PartName, SalesPrice

INTO :PartName, :SalesPrice

FROM PurchDB.Parts;

Host variables are treated fully in Chapter 3.

Skeleton Program

The skeleton program in Figure 1-2 illustrates the relationship between C constructs and
embedded SQL commands in an application program. SQL commands may appear in the
program at locations indicated by the comments.

1-8 Getting Started with ALLBASE/SQL Programming in C

.

/* STATIC VARIABLE DECLARATION PART */

sqlca Declaration

sqlda Declaration

.

/* Host Variable Declarations */

/* Host Variables can be global, local, or both */

.

/* main DECLARATION PART */

main(argc,argv)

/* Parameter Declaration */

{

.

/* Host Variable Declarations */

/* Host Variables can be local, or for called routines */

/* C statements, some containing SQL Commands */

EXEC SQL ...

int FunctionName();

.

}

/* FUNCTION DECLARATION PART */

FunctionName(parameter list)

/* Parameter Declaration */

{

.

/* Host Variable Declarations */

/* Host Variables can be local */

/* C statements, some containing SQL Commands */

EXEC SQL ...

.

}

Figure 1-2. Skeleton ALLBASE/SQL C Program

Most SQL commands appear within C functions in which you establish DBEnvironment
access and manipulate data in a database. Variable declarations should follow rules for coding
C programs without SQL statements. In addition to functions for various kinds of database
access, you should code a CONNECT function, a RELEASE function, an error handling
function, and transaction management functions containing BEGIN WORK and COMMIT
WORK statements.

Getting Started with ALLBASE/SQL Programming in C 1-9

Rules of Syntax for Embedded SQL Statements

You must follow some simple rules when embedding SQL statements in C code:

Commands must be of appropriate size:

An embedded SQL command has no maximum length.

A dynamic SQL command within a host variable is limited only by the size of the host
variable's declaration.

A dynamic SQL command not within a host variable can be no longer than 2048 bytes.

Use EXEC SQL as the pre�x to each SQL statement. The entire pre�x, EXEC SQL, must
appear on one line, as follows:

EXEC SQL SELECT PartName INTO :PartName

FROM PurchDB.Parts WHERE PartNumber = :PartNumber;

The following is not legal:

EXEC

SQL SELECT PartName INTO :PartName

FROM PurchDB.Parts WHERE PartNumber = :PartNumber;

Use a semicolon at the end of the SQL command, as shown above.

C comments (those which begin with /* and end with */) may appear within or between
embedded SQL commands, as in the following:

EXEC SQL SELECT PartNumber, PartName

/* put the data into the following host variables */

INTO :PartNumber, :PartName

/* find the data in the following table */

FROM PurchDB.Parts

/* retrieve only data that satisfies this search condition */

WHERE PartNumber = :PartNumber;

/* end of command */

SQL comments can be inserted in any line of an SQL statement, except the last line, by
pre�xing the comment character with at least one space followed by two hyphens followed
by one space:

EXEC SQL SELECT * FROM PurchDB.Parts -- This code selects Parts Table values

WHERE SalesPrice > 500.;

The comment terminates at the end of the line on which it appears. (The decimal point in
the 500 improves performance when being compared to SalesPrice, which also has a decimal;
no data type conversion is necessary.)

Non-numeric literals in embedded commands may be continued from one line to another.

When referring to a host variable within an embedded SQL statement, precede it with a
colon (:). Do not use the colon outside the embedded SQL statement.

A sample source �le appears at the end of this chapter. And more detailed explanation of
coding for di�erent types of embedded SQL statements appears in Chapters 4 through 8.

1-10 Getting Started with ALLBASE/SQL Programming in C

Preprocessing the Source File

After embedding SQL commands in the source code, preprocess it with the ALLBASE/SQL C
preprocessor . Use the following command, which is described fully in Chapter 2:

:RUN PSQLC.PUB.SYS; INFO="DBEnvironmentName (MODULE (ModuleName))"

In addition to checking the syntax of your SQL statements, preprocessing also does the
following:

Creates a modi�ed source �le.
Stores sections in the DBEnvironment.
Generates a �le, SQLMSG , for preprocessing messages. Creates an installable module �le.

Creating the Modified Source File

The preprocessor translates embedded SQL statements into C language statements and
comments out the SQL statements. Non-SQL statements in your code are not translated.
As output, the preprocessor creates a modi�ed source �le which can then be compiled. The
original source �le is not changed.

The preprocessor also creates three include �les, which contain variable declarations, type
declarations, and external procedure declarations used by the preprocessor generated C code.
The modi�ed source �le contains include statements which direct the compiler to incorporate
these include �les at compile time.

Creating Stored Sections

The preprocessor also stores runtime instructions in the system catalog of the DBEnvironment
you specify when preprocessing. These instructions are called sections and are stored in a
module, which contains a section for each DML, DDL, or DCL statement in your program
that can be completely de�ned before run time. A module is referenced in the system catalog
of the DBEnvironment.

Not all SQL statements cause the preprocessor to store a section. Only statements that access
data cause a section to be stored.

A section has three parts:

A stored form of the SQL command.
Instructions for executing the command according to the best available access path.
A
ag indicating whether the section is valid or invalid .

These elements are illustrated in Figure 1-3.

Getting Started with ALLBASE/SQL Programming in C 1-11

Figure 1-3. Components of a Stored Section

Stored Form of the SQL Command. In addition to translating each SQL statement into C
code, the preprocessor stores a version of the statement in a section. This version of the
statement is used at a later time if it becomes necessary to revalidate the section.

Optimized Access Instructions. ALLBASE/SQL also chooses the best available path for
accessing the data referred to in the statement. This process is called optimization. For
example, the following query can be optimized:

EXEC SQL SELECT * FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

ALLBASE/SQL �rst determines whether or not indexes exist on the PartNumber column. If
there are indexes, ALLBASE/SQL then computes whether the use of an available index is
more e�cient than doing a serial scan of the entire table. The result of this decision whether
or not to use the index (or which index to use, if there is more than one) is stored as part of
the section for the query.

Validity Flag. The validity
ag provides a way to ensure that any objects you reference in an
SQL statement still exist and that runtime authorization criteria are satis�ed. If the SQL
command in a section references objects that exist at preprocessing time and the individual
doing the preprocessing is authorized to issue the command, the stored section is marked as
valid. If the SQL command references an object that does not exist at preprocessing time or
if the individual doing the preprocessing is not authorized to issue the command, the stored
section is marked as invalid.

After being stored by the preprocessor, a valid section is marked as invalid when activities
such as the following occur:

1-12 Getting Started with ALLBASE/SQL Programming in C

Changes in authorities of the module's owner.
Alterations to tables accessed by the program.
Deletions or creations of indexes.
Updating a table's statistics.

In general, ALLBASE/SQL invalidates a section whenever there is a chance that the existing
access path to the data might have changed. Suppose you drop an index on a column that
appears in a query. In such a case, the section which contains that query and any other
sections which reference that column are marked invalid.

Runtime Revalidation of Sections. At run time, ALLBASE/SQL checks each section for
validity before executing it. When a section is found to be invalid, ALLBASE/SQL revalidates
it to revalidate it (if possible), then executes it. You may notice a slight delay as the
revalidation takes place. If you wish, you can re-preprocess the entire program to revalidate
all sections at once, avoiding the delay of runtime revalidation. However, this is not required,
since revalidation is done automatically and transparently.

If an invalid section cannot be validated, as when a table reference is invalid because the table
owner name has changed, ALLBASE/SQL returns an error indication to the application
program. The new owner can validate the section.

Generating the Message File

During preprocessing, messages are written to the �le sqlmsg. If preprocessing is successful,
the �le contains a statement indicating the name of the module stored in the DBEnvironment
and the number of sections stored.

Compiling and Linking the Program

Use the C compiler and system linker to create the executable program from the modi�ed
source code �le and the include �les. You can run both the compiler and the linker with the
CCXLLK command. Alternatively, you can create object �les by using the CCXL command.
In this case, you must link objects in a separate step using the link editor. Figure 1-4 shows
both techniques.

Getting Started with ALLBASE/SQL Programming in C 1-13

Figure 1-4. Ways of Compiling and Linking an ALLBASE/SQL C Program

Caution When correcting your programs during the compile process, be sure to edit
the original source �le , not the preprocessor output �le. Note that when it
encounters an error, the compiler returns line numbers for the modi�ed source
�le , so you must extrapolate from these to the actual lines in your original
source. Edit the original source, re-preprocess, then re-compile and re-link.

1-14 Getting Started with ALLBASE/SQL Programming in C

Running the Program

Once the preprocessing and compile steps have completed without error, you can run the
application.

All the C constructs inserted by the preprocessor and the stored sections automatically handle
database operations, including providing the application program with status information
after each SQL command is executed. SQL commands that have a stored section are executed
if the section is valid at run time or can be validated by ALLBASE/SQL at run time. As
your program runs, it executes code that calls each section that was previously stored. If the
section is valid, it is then executed to carry out the query or other SQL operation.

If the section cannot be executed for any reason, ALLBASE/SQL returns an error code to the
sqlca. Your program can examine this data structure and print out the text of messages that
correspond to the error codes sent back by ALLBASE/SQL. Using a standard error handling
routine makes debugging the embedded SQL a straightforward process. Refer to Chapter 4,
\Runtime Status Checking and the sqlca," for details and examples of incorporating error
routines.

Note The error codes returned at run time are not the same as the errors shown in
sqlmsg at preprocessing time. Runtime errors include such logical mistakes as
issuing a BEGIN WORK when a transaction is already underway, OPENing a
cursor that is already open, and so on.

If your program contains the SQLEXPLAIN command, you can display the text of an
ALLBASE/SQL error message as an aid to debugging. SQLEXPLAIN obtains warning and
error messages from the ALLBASE/SQL message catalog, which must be available at run
time. The default message catalog is SQLCT000.PUB.SYS. For native language users, the
catalog is SQLCTxxx.PUB.SYS, where xxx is the numerical value for the current language.
(See the \Native Language Support" section for information about how to determine the
number for the current language.) If this catalog is not available, ALLBASE/SQL issues a
warning and then uses the default catalog instead.

Authorizations

ALLBASE/SQL authorization governs who can preprocess, execute, and maintain a program
that accesses an ALLBASE/SQL DBEnvironment.

To preprocess a program for the �rst time, you need CONNECT or DBA authority in the
DBEnvironment your program accesses. When you preprocess a program, your login name
becomes the owner of that module. Subsequently, only you or someone else with DBA
authority can re-preprocess the program.

To access an ALLBASE/SQL DBEnvironment through a program, you need the authority to
execute the command used in the program to start the DBE session:

If the program uses a CONNECT command to start a DBE session, you need CONNECT
authority and RUN or module OWNER authority to run the program.

If the program uses a START DBE command to start the DBE session, you need DBA
authority to run the program.

At run time, any SQL command in the program is executed only if the original OWNER
of the module has the authorization to execute the command at run time. However, any

Getting Started with ALLBASE/SQL Programming in C 1-15

dynamic command (an SQL command entered by the user at run time) is executed only if the
login of the user running the program has the authority to execute the entered command.

Whoever runs the program must have either RUN authorization for the module or else be the
OWNER or DBA. Granting authorizations is further described in Chapter 2 of this manual
and in the ALLBASE/SQL Database Administration Guide.

Debugging and Testing

As you test the program, use a set of database tables that resembles the production
DBEnvironment as closely as possible. This will let you judge the performance of the program
as well as exercising each of the segments of code. Remember that in debugging and testing
the application, you are also testing the DBEnvironment's parameters. Elements such as log
size, bu�er size, maximum number of transactions, and other con�gurable parameters may
need to be adjusted for the needs of the application. Use SQLUtil to adjust the parameters of
the DBEnvironment. (DBA authority is required.)

After testing in single user mode, run tests with multiple users to observe the level of
concurrency and the degree of throughput your application achieves. If relevant, observe
the performance of the application while other applications are running. Refer to the
ALLBASE/SQL Reference Manual for additional guidelines on coding for performance.

Moving into the Production Phase

At the beginning of the production phase, you need to:

Install the program module in the production DBEnvironment.
Assign the appropriate security structure on the production system.

Installing Program Modules

Installation involves using the ISQL INSTALL command to store a module created in one
DBEnvironment into a di�erent DBEnvironment on the same or a di�erent system. When the
preprocessor stores a module in a DBEnvironment, it also creates a �le containing a copy of
the module, which can be installed into another DBEnvironment. The installable module �le
in the following example is SQLMOD. The module also has an internal, SQL name, in this
case PGMR1@ACCOUNT.CEX8, which is saved as part of the module at preprocessing time.
Use the INSTALL command in ISQL as shown in this example:

isql=> CONNECT TO 'SOMEDBE.SOMEGRP.SOMEACCT';

isql=> INSTALL SQLMOD;

Name of module in this file: PGMR1@ACCOUNT.CEX8

Number of sections installed: 3

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

This process is illustrated in Figure 1-5.

1-16 Getting Started with ALLBASE/SQL Programming in C

Figure 1-5. Moving an Application to a Production System

ISQL copies the module from the installable module �le named SQLMOD into a
DBEnvironment named SOMEDBE.SOMEGRP.SOMEACCT. During installation,
ALLBASE/SQL marks each section in the module valid or invalid, depending on the current
objects and authorities in SOMEDBE.SOMEGRP.SOMEACCT.

To use the INSTALL command, you need to be able to start a DBE session in the
DBEnvironment that will contain the new module. If you are replacing a module with a new
one of the same name, make sure no other users are accessing the module. To avoid problems,
install modules while connected to the DBEnvironment in single-user mode. Before installing,
you should DROP any existing module on the production machine that has the same name:

isql=> DROP MODULE PGMR1@ACCOUNT.CEX8;

Getting Started with ALLBASE/SQL Programming in C 1-17

Granting Module Owner Authorizations

The original module owner is the DBEUserID of the person who preprocesses the program
or, if speci�ed, the DBEUserID used with the OWNER option in the preprocessor command
line. At run time, embedded SQL commands are executed only if the original module owner
has the authority to execute them. Therefore, you need to grant required authority to a user
in the production DBEnvironment with the same name as the original module owner in the
development environment.

If module PGMR1@ACCOUNT.CEX8 contains a SELECT command for table
PurchDB.Parts, the following grant would ensure valid owner authorization in the
development environment:

isql=> GRANT SELECT ON PurchDB.Parts TO Pgmr1;

Being the owner of the module, Pgmr1 could have assigned ownership of the module to
another owner at preprocessing time by using the -o option:

: RUN PSQLC.PUB.SYS;INFO="SOMEDBE.SOMEGRP.SOMEACCT (MODULE (CEX8) OWNER (PurchMgrs))

In this case, ownership belongs to a group, PurchMgrs . Only members of the group or an
individual with DBA authority can maintain this program, and runtime authorization would
be established as follows:

isql=> GRANT SELECT ON PurchDB.Parts TO PurchMgrs;

Note Keep in mind that the original module owner's name is coded into the module
itself. Therefore, the original DBEUserId must exist on the production system
and possess the appropriate CONNECT and object authorities. As a rule,
it is wise to assign ownership of modules to a group name which can be
used on both development and production systems. In this fashion, you can
assign di�erent membership to the group on the production system than you
assigned on the development system.

Granting Program User Authorization

In order to execute an ALLBASE/SQL program, you must have CONNECT authority for any
DBEnvironment accessed by the program. You must also have one of the following authorities
in the DBEnvironment accessed by the program:

RUN.
Module OWNER.
DBA.

A DBA must grant the authority to start a DBE session. In most cases, application programs
start a DBE session with the CONNECT command, so CONNECT authorization is su�cient:

1-18 Getting Started with ALLBASE/SQL Programming in C

isql=> CONNECT TO 'SOMEDBE.SOMEGRP.SOMEACCT';

isql=> GRANT CONNECT TO USER@ACCOUNT;

isql=> COMMIT WORK;

If you have module OWNER or DBA authority, you can grant RUN authority:

isql=> CONNECT TO 'SOMEDBE.SOMEGRP.SOMEACCT';

isql=> GRANT RUN ON SOMEPROG TO USER@ACCOUNT;

isql=> COMMIT WORK;

Now USER.ACCOUNT can run program SOMEPROG:

: HELLO USER.ACCOUNT

.

.

: RUN SOMEPROG

Refer to the ALLBASE/SQL Reference Manual for complete information on the GRANT
command.

Maintaining ALLBASE/SQL Applications

After ALLBASE/SQL C programs are in production use, changes in procedures, personnel,
or databases may necessitate various changes in the application itself. Maintaining an
ALLBASE/SQL program includes such activities as these:

Tuning performance.
Managing the source code.
Updating a program in production use.
Changing runtime authorizations as program users change.
Obsoleting application programs.

For these activities, you need OWNER authority for the module or DBA authority.

Tuning Performance

When an application enters production, you can estimate the best allocation of system
resources, but only after it has run for a while can you �ne-tune the performance. Refer to
the ALLBASE/SQL Performance Guidelines for additional information about \Controlling
Performance."

The best performance also depends on good transaction management. Refer to the
ALLBASE/SQL Reference Manual for additional discussion of transaction management.

Getting Started with ALLBASE/SQL Programming in C 1-19

Managing Source Code

You should carefully maintain the source code for each application program in case it
should be necessary to re-preprocess and re-compile at a later time. In addition to C source,
it is recommended that you keep copies of the ISQL command �les used to create your
DBEnvironments. This information is extremely useful when modifying existing code.

Use SQLGEN to create schema �les for storage once you have con�gured the DBEnvironment
on the production side. Refer to the ALLBASE/SQL Database Administration Guide for
information about using SQLGEN.

Updating Application Programs

Minor modi�cations to programs in the production environment can be made while
the program is not currently in use. Major program modi�cations, because they are
more time-consuming, are usually made on a development machine in a development
DBEnvironment.

In either case, the OWNER of the program's module (or a DBA) preprocesses the revised
program and replaces the old module with a new one. Existing RUN authorities can be either
preserved or revoked. Dropping old modules and preserving or revoking RUN authorities
can be done by using the DROP MODULE command in ISQL or can be speci�ed when you
invoke the preprocessor.

The PRESERVE option of the DROP MODULE command retains any existing RUN
authorities for the module when it is deleted from the system catalog:

isql=> DROP MODULE myprog PRESERVE;

To delete a module and any existing RUN authorities for that module, simply omit the
PRESERVE option.

You can also drop a module and revoke any existing run authorities for it at preprocessing
time:

: RUN PSQLC.PUB.SYS; INFO="SOMEDBE (MODULE (MODULENAME) DROP REVOKE)"

The DROP option tells the preprocessor to drop any existing module named
MODULENAME ; if you omit the DROP option, a new module is created only if a module
named MODULENAME does not exist. This invocation line drops any existing module
named MODULENAME , and revokes any related RUN authorities. To revoke the RUN
authorities by specifying the REVOKE option in the INFO string, you must also drop the
module by specifying the DROP option. The DROP MODULE command is also useful for
revised programs whose modules must be installed in a DBEnvironment di�erent from that on
which preprocessing occurred. Before using the INSTALL command to store the new module,
drop the existing module using the DROP MODULE command, preserving or dropping
related RUN authorization as required.

1-20 Getting Started with ALLBASE/SQL Programming in C

Changing Program-Related Authorization

Once a program is in production use, you may need to grant and revoke RUN and
CONNECT authority as program users change. Revoking CONNECT authority requires DBA
authorization:

isql=> REVOKE CONNECT FROM OLDUSER@ACCOUNT;

Revoking RUN authority requires either module OWNER or DBA authority:

isql=> REVOKE RUN ON PGMR1@ACCOUNT.SOMEPGM FROM OLDUSER@ACCOUNT;

Dropping Obsolete Modules

When an application program becomes obsolete, you use the DROP MODULE command to
both remove the module from any DBEnvironment where it is stored and revoke any related
RUN authorities:

isql=> DROP MODULE myprog;

Related RUN authorities are automatically revoked when you do not use the PRESERVE
option of this command.

Getting Started with ALLBASE/SQL Programming in C 1-21

Programming Under the MPE XL Operating System

You must take certain characteristics of the MPE XL operating system into account as you
code ALLBASE/SQL C applications. These include the following:

Security Considerations.
File Naming Conventions.
Native Language Support.

Security Considerations

In order to preprocess and compile embedded SQL applications, you must have SF capability
in the group where the preprocessing is done. You also need the ability to execute programs.

File Naming Conventions

When you create a DBEnvironment, a DBECon �le having the name of the DBEnvironment
is created. The fully quali�ed name of this DBECon �le is stored in the DBECon
�le itself. In all references to �les, the group and account of the DBEnvironment
are assumed. For example, if your application connects to a DBEnvironment named
PARTSDBE.SAMPLEDB.SYS and if the application creates a DBEFile as follows:

CREATE DBEFILE ORDERS WITH PAGES=50, NAME='OrderF1'

the fully quali�ed name of the �le will be ORDERF1.SAMPLEDB.SYS, regardless of what
group and account the application is in. Fully quali�ed �le names, enclosed in quotes, are
restricted to a maximum length of 36 bytes.

Note that the DBEnvironment does not have to be in the same group and account as
the user's application; if it is to be located in a group and account di�erent from the
group and account where the executable program resides, you should use a fully quali�ed
DBEnvironment name, as in the following example:

: RUN PSQLC.PUB.SYS:INFO="PARTSDBE.SAMPLEDB.SYS (MODULE SOMEMOD (DROP))"

1-22 Getting Started with ALLBASE/SQL Programming in C

Native Language Support

ALLBASE/SQL lets you manipulate databases in a wide variety of native languages in
addition to the default language, known as NATIVE-3000. You can use either 8-bit or 16-bit
character data, as appropriate for the language you select. In addition, you can always include
ASCII data in any database, since ASCII is a subset of each supported character set. The
collating sequence for sorting and comparisons is that of the native language selected.

You can use native language characters in a wide variety of places, including the following:

Character literals.

Host variables for CHAR or VARCHAR data (but not variable names).

ALLBASE/SQL object names.

WHERE and VALUES clauses.

If your system has the proper message �les installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select, and it displays dates and time according
to local customs. In addition, ISQL accepts responses to its prompts in the native language
selected. However, regardless of the native language used, the syntax of ISQL and SQL
commands|including punctuation|remains in ASCII.

Note that MPE XL does not support native language �le names nor DBEnvironment names.

In order to use a native language other than the default, you must do the following:

1. Make sure your I/O devices support the character set you wish to use.

2. Set the MPE job control word NLUSERLANG to the number (LangNum) of the native
language you wish to use. Use the following MPE XL command:

SETJCW NLUSERLANG = LangNum

This language then becomes the current language. (If NLUSERLANG is not set, the
current language is NATIVE-3000.)

3. Use the LANG = LanguageName option of the START DBE NEW command to specify the
language of a DBEnvironment when you create it.

Getting Started with ALLBASE/SQL Programming in C 1-23

Run the MPE XL utility program NLUTIL.PUB.SYS to determine which native languages
are supported on your system. Here is a list of some supported languages, preceded by the
LangNum for each:

0 NATIVE-3000 9 ITALIAN 52 ARABICW

1 AMERICAN 10 NORWEGIAN 61 GREEK

2 C-FRENCH 11 PORTUGUESE 71 HEBREW

3 DANISH 12 SPANISH 81 TURKISH

4 DUTCH 13 SWEDISH 201 CHINESE-S

5 ENGLISH 14 ICELANDIC 211 CHINESE-T

6 FINNISH 41 KATAKANA 221 JAPANESE

7 FRENCH 51 ARABIC 231 KOREAN

8 GERMAN

Resetting NLUSERLANG while you are connected to a DBEnvironment has no e�ect on the
current DBE session.

Looking at an Embedded SQL Source Program

In every ALLBASE/SQL C program, you embed SQL commands in the declaration part and
the procedure part of your program to carry out speci�c tasks. The program listing shown in
Figure 1-7 illustrates where in a program you can embed SQL commands to accomplish these
tasks:

� 1 � Declare the SQL Communications Area (sqlca).

The sqlca is an ALLBASE/SQL data structure that contains current information
about a program's DBE session. Every ALLBASE/SQL C program must contain
an sqlca declaration in the global declaration section. Use the following command:

EXEC SQL INCLUDE SQLCA;

� 2 � Declare host variables.

All host variables used in a program must be declared in a declaration part.
You can put more than one such declaration section in a program, but all host
variables must be declared between the BEGIN and END DECLARE SECTION
commands.

� 3 � Display error and warning messages from the ALLBASE/SQL message catalog.

You can display messages for any errors encountered in execution as shown in the
SQLStatusCheck function. Complete details about error and message handling
are presented in Chapter 4.

� 4 � Start a DBE session.

In most application programs, you embed the CONNECT command to start
a DBE session. This command must be executed before you can access the
DBEnvironment

� 5 � Check the status of SQL command execution.

Your program should check for the success or failure of execution of each SQL
command, as shown in the example program.

1-24 Getting Started with ALLBASE/SQL Programming in C

� 6 � Terminate the DBE session.

You use the RELEASE command or the RELEASE option of the COMMIT
WORK command to end a DBE session.

� 7 � and
� 8 �

De�ne transactions.

You de�ne transactions in a program to control concurrency and consistency
in your database access. The transaction is bounded by the BEGIN WORK
and COMMIT WORK or ROLLBACK WORK commands. When a COMMIT
WORK is successfully executed, all operations performed by the transaction it
ends are permanently committed to the DBEnvironment

� 9 � De�ne or manipulate data in the DBEnvironment.

Nearly all programs access data in one or more databases. The SELECT
command shown in the example program retrieves the row from PurchDB.Parts
that contains a part number matching the value in the host variable named in the
WHERE clause. Note, indicator variables such as SalesPriceInd are discussed in
Chapter 3, and data manipulation is presented fully in Chapters 5 through 8.

Getting Started with ALLBASE/SQL Programming in C 1-25

Program to SELECT specified rows from the Parts Table - cex2

Event List:

CONNECT to PartsDBE

BEGIN WORK

SELECT specified row from Parts Table

until user enters a '/'

COMMIT WORK

RELEASE from PartsDBE

Connect to PartsDBE

Enter Part Number within Parts Table or '/' to STOP> 1243-P-01

Begin Work

SELECT PartNumber, PartName, SalesPrice

Row not found!

Commit Work

Enter Part Number within Parts Table or "/" to STOP> 1323-D-01

Begin Work

SELECT PartNumber, PartName, SalesPrice

Part Number: 1323-D-01

Part Name: Floppy Diskette Drive

Sales Price: 200.00

Commit Work

Enter Part Number within Parts Table or "/" to STOP> /

Release PartsDBE

Figure 1-6. Runtime Dialog of Program cex2

1-26 Getting Started with ALLBASE/SQL Programming in C

/* Program cex2 */

/* */

/* This program illustrates the use of SQL's SELECT command to */

/* retrieve one row or tuple of data at a time. */

/* BEGIN WORK is executed before the SELECT and a COMMIT WORK */

/* is executed after the SELECT. An indicator variable is also */

/* used for SalesPrice. */

/* */

typedef int boolean;

char response[2];

boolean Abort;

#include <stdio.h>

#define OK 0
#define NotFound 100

#define MultipleRows -10002

#define DeadLock -14024

#define FALSE 0

#define TRUE 1

EXEC SQL INCLUDE SQLCA; /* SQL Communication Area */ � 1 �

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION; � 2 �
char PartNumber[17];

char PartName[31];

double SalesPrice;

sqlind SalesPriceInd;

char SQLMessage[133];

EXEC SQL END DECLARE SECTION; � 2 �
/* End Host Variable Declarations */

Figure 1-7. Program cex2: Using Simple SELECT

Getting Started with ALLBASE/SQL Programming in C 1-27

int SQLStatusCheck() /* Function to Display Error Messages */

{

Abort = FALSE;

if (sqlca.sqlcode < DeadLock)

Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage; � 3 �
printf("\n");

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) {

EndTransaction();

ReleaseDBE();

}

} /* End SQLStatusCheck Function */

boolean ConnectDBE() /* Function to Connect to PartsDBE */

{

boolean ConnectDBE;

ConnectDBE = TRUE;

printf("\n connect to PartsDBE");

EXEC SQL CONNECT TO 'PartsDBE');

if (sqlca.sqlcode != OK) {

ConnectDBE = FALSE;

SQLStatusCheck(); � 5 �
} /* End if */

return (ConnectDBE);

} /* End of ConnectDBE Function */

int ReleaseDBE() /* Function to Release PartsDBE */

{

printf("\n");

printf("\n Release PartsDBE");

printf ("\n);

EXEC SQL RELEASE; � 6 �

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End ReleaseDBE Function */

Figure 1-7. Program cex2: Using Simple SELECT (page 2 of 5)

1-28 Getting Started with ALLBASE/SQL Programming in C

boolean BeginTransaction() /* Function to Begin Work */

{

boolean BeginTransaction;

BeginTransaction = TRUE;

printf("\n");

printf("\n Begin Work");

EXEC SQL BEGIN WORK; � 7 �

if (sqlca.sqlcode != OK) {

BeginTransaction = FALSE;

SQLStatusCheck(); � 5 �
ReleaseDBE();

} /* End if */

return (BeginTransaction);

} /* End BeginTransaction Function */

int EndTransaction() /* Function to Commit Work */

{

printf("\n");

printf("\n Commit Work");

EXEC SQL COMMIT WORK; � 8 �

if (sqlca.sqlcode != OK) SQLStatusCheck(); � 5 �
} /* End EndTransaction Function */

int DisplayRow() /* Function to Display Parts Table Rows */

{

printf("\n");

printf("\n Part Number: %s\n", PartNumber);

printf(" Part Name: %s\n", PartName);

if (SalesPriceInd < 0) {

printf(" Sales Price: is NULL \n");

}

else

printf(" Sales Price: %10.2f\n", SalesPrice);

} /* End of DisplayRow */

Figure 1-7. Program cex2: Using Simple SELECT (page 3 of 5)

Getting Started with ALLBASE/SQL Programming in C 1-29

int Select() /* Function to Query Parts Table */

{

do {

printf("\n");

printf("\n Enter Part Number within Parts Table or '/' to STOP > ");

scanf("%s",PartNumber);

if (PartNumber[0] != '/') {

BeginTransaction();

printf("\n SELECT PartNumber, PartName, SalesPrice");

EXEC SQL SELECT PartNumber, PartName, SalesPrice � 9 �
INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts
WHERE PartNumber = :PartNumber;

if ((sqlca.sqlwarn[0] == 'W') || (sqlca.sqlwarn[0] == 'w')) {

printf("\n SQL WARNING has occurred. The following row");

printf("\n of data may not be valid!");

}

if (sqlca.sqlcode == OK) {

DisplayRow();

}

else if (sqlca.sqlcode == NotFound) {

printf("\n Row not found!");

}

else if (sqlca.sqlcode == MultipleRows) {

printf("\n WARNING: More than one row qualifies!");

}

else {

SQLStatusCheck(); � 5 �
}

EndTransaction();

}

} /* End do */

while (PartNumber[0] != '/');

}/* End of Select Function */

Figure 1-7. Program cex2: Using Simple SELECT (page 4 of 5)

1-30 Getting Started with ALLBASE/SQL Programming in C

main() /* Beginning of program */

{

printf("\n Program to SELECT specified rows from");

printf("\n the Parts Table - cex2");

printf("\n");

printf("\n Event List:");

printf("\n CONNECT TO PartsDBE");

printf("\n BEGIN WORK");

printf("\n SELECT the specified row from the Parts Table");

printf("\n until the user enters a '/'");

printf("\n COMMIT WORK");

printf("\n RELEASE from PartsDBE");

printf("\n");

if (ConnectDBE()) {

Select();

ReleaseDBE();
}

else

printf("\n Error: Cannot Connect to PartsDBE!\n");

} /* End of Program */

Figure 1-7. Program cex2: Using Simple SELECT (page 5 of 5)

Getting Started with ALLBASE/SQL Programming in C 1-31

2

Using the Preprocessor

This chapter shows how to use all the preprocessor's options, and it describes the inputs and
outputs of the preprocessor command. Topics are:

Invoking the C Preprocessor.
Identifying Preprocessor Input.
Identifying Preprocessor Output.
Dealing with Preprocessor Errors.
Looking at a Modi�ed ALLBASE/SQL Source Program.
Looking at Preprocessor Created INCLUDE Files.

An example of a modi�ed source �le appears at the end of the chapter along with listings of
the preprocessor generated include �les.

Invoking the C Preprocessor

You can use the preprocessor in two modes:

1. Full preprocessing mode: includes SQL syntax checking, creating compilable output,
storing a module in a DBEnvironment, and creating a �le that contains an installable copy
of the stored module.

2. Syntax checking mode: checks your SQL syntax without doing any other preprocessor
tasks.

As you develop the SQL portions of your C programs, syntax checking mode is quite useful.
Preprocessing is quicker in this mode than in full preprocessing mode. In addition, you can
start debugging your SQL commands before the DBEnvironment itself is in place.

Command syntax for both modes is presented below.

Full Preprocessing Mode

Use the following preprocessor command to:

Check the embedded SQL command syntax.

Create compilable output �les that can be processed by the C compiler

Store a module in the DBEnvironment named.

Create a �le containing an installable version of the module.

Using the Preprocessor 2-1

Preprocessor Syntax I

RUN PSQLC.PUB.SYS;INFO= "DBEnvironmentName [(

8>>>><
>>>>:

MODULE(ModuleName)

OWNER (OwnerName)8<
:

DROP

�
PRESERVE

REVOKE

�

NODROP

9=
;

9>>>>=
>>>>;

|...|)]"

Parameters

DBEnvironmentName Identi�es the DBEnvironment in which a module is to be
stored. You may use a backreference to a �le de�ned in a �le
equation for this parameter.

ModuleName Assigns a name to the stored module. Module names must
follow the rules governing ALLBASE/SQL basic names as
described in the ALLBASE/SQL Reference Manual . If a
module name is not speci�ed, the preprocessor uses the
PROGRAM-ID as the module name.

OwnerName Associates the stored module with a User@Account, a
ClassName, or a GroupName. You can specify an owner
name for the module only if you have DBA authority in the
DBEnvironment where the module is to be stored. If not
speci�ed, the owner name is your log-on User@Account. Any
object names in SQLIN not quali�ed with an owner name are
quali�ed with the OwnerName speci�ed by the preprocessor, or
the user.

DROP Deletes any module currently stored in the DBEnvironment
by the ModuleName and OwnerName speci�ed in the INFO
string.

NODROP Terminates preprocessing if any module currently exists in
the DBEnvironment by the ModuleName and OwnerName
speci�ed in the INFO string. If not speci�ed, NODROP is
assumed.

PRESERVE Is speci�ed when the program being preprocessed already
has a stored module and you want to preserve existing RUN
authorities for that module. If not speci�ed, PRESERVE is
assumed. PRESERVE cannot be speci�ed unless DROP is also
speci�ed.

2-2 Using the Preprocessor

REVOKE Is speci�ed when the program being preprocessed already
has a stored module and you want to revoke existing RUN
authorities for that module. REVOKE cannot be speci�ed
unless DROP is also speci�ed.

Description

1. Before invoking the preprocessor in this mode when the program being preprocessed
already has a stored module, ensure that the earlier version of the program is not being
executed.

2. The preprocessor starts a DBE session in the DBEnvironment named in the RUN
command by issuing a CONNECT TO 'DBEnvironmentName' command. If the autostart
ag
is OFF, the DBE session can be initiated only after a START DBE command has been
processed.

3. If the DBEnvironment to be accessed is operating in single-user mode, preprocessing can
occur only when another DBE session for the DBEnvironment does not exist.

4. When the preprocessor's DBE session begins, ALLBASE/SQL processes a BEGIN WORK
command. When preprocessing is completed, the preprocessor submits a COMMIT
WORK command, and any sections created are committed to the system catalog. If the
preprocessor detects an error in SQLIN, it processes a ROLLBACK WORK command
before terminating, and no sections are stored in the DBEnvironment. Preprocessor
warnings do not prevent sections from being stored.

5. Since all preprocessor DBE sessions initiate only one transaction, any log �le space
used by the session is not available for re-use until after the session terminates. If
rollforward logging is not in e�ect, you can issue the CHECKPOINT command in ISQL
before preprocessing to increase the amount of available log space. Refer to the Database
Administration Guide for additional information on log space management, such as using
the START DBE NEWLOG command to increase the size of the log and recovering log
space when rollforward logging is in e�ect.

6. During preprocessing, system catalog pages accessed for embedded commands are locked.
In multiuser mode, other DBE sessions accessing the same objects must wait, and
the potential for a deadlock exists. Therefore minimize competing transactions when
preprocessing an application program. Refer to the appendix \Locks Held on the System
Catalog by SQL Commands" in the ALLBASE/SQL Database Administration Guide for
information on operations that lock system catalog pages.

7. For improved runtime performance, use ISQL to submit the UPDATE STATISTICS
command before preprocessing for each table accessed in a data manipulation command
when an index on that table has been added or dropped and when data in the table is
often changed.

8. If you specify an OwnerName or ModuleName in a language other than NATIVE-3000
(ASCII), be sure that the language you are using is also the language of the
DBEnvironment in which the module will be stored.

Using the Preprocessor 2-3

Authorization

To preprocess a program, you need DBA or CONNECT authority for the DBEnvironment
speci�ed in the preprocessor command line. You also need table and view authorities for the
tables and views which the program will access at run time.

DBEnvironment CONNECT authority can also be explicitly GRANTed. If you have
DBECreator or DBA authority or module OWNER authority, you have CONNECT authority
by default.

Table authorities are implicitly speci�ed at the time the table is CREATEd and depend on
the table type (PUBLIC, PUBLICREAD, or PRIVATE). Once a table has been created, its
implicit authorities can be changed by the table OWNER, the DBECreator, or another DBA.
Table authorities are removed by using the REVOKE command and are added by using the
GRANT command.

For example, for a PUBLIC table, you are implicitly GRANTed authority for any type of
table access when the table is created. For a PUBLICREAD table, you must have explicitly
GRANTed authority for any table access except READ access which is an implicit grant. For
a PRIVATE table, there are no implicit grants at table creation time; only the table OWNER
or a DBA can access a PRIVATE table, unless speci�c authorities are GRANTed to others.

Note, in the case of the sample database, PartsDBE, the creation script REVOKEs all implicit
table authorities, and desired authorities must be explicitly GRANTed.

Note When preprocessing, you cannot name another user as module owner unless
you are a DBA of the DBEnvironment or you are the current module owner.

2-4 Using the Preprocessor

Example

:FILE SQLIN=CEX2

:RUN PSQLC.PUB.SYS;INFO=&

"PartsDBE (MODULE(CEX2) OWNER(OwnerP@SomeAcct) REVOKE DROP)"

WED, OCT 25, 1991, 1:38 PM

HP36216-02A.E1.02 C Preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,
1989,1990,1991. ALL RIGHTS RESERVED.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING.

END OF PROGRAM

:EDITOR

HP32501A.07.20 EDIT/3000 FRI, OCT 27, 1991, 10:17 AM

(C)HEWLETT-PACKARD CO. 1990

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

.

SQLIN = CEX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = CEX2

SELECT PARTNUMBER, PARTNAME, SALESPRICE INTO :PARTNUMBER, :PARTNAME,

:SALESPRICE :SALESPRICEIND FROM PURCHDB.PARTS WHERE PARTNUMBER =

:PARTNUMBER ;

****** ALLBASE/SQL warnings (DBWARN 10602)

****** in SQL statement ending in line 133

*** User SomeUser@SomeAcct does not have SELECT authority on PURCHDB.PARTS.

(DBERR 2301)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING

/

Using the Preprocessor 2-5

Syntax Checking Mode

The following command only checks the syntax of the SQL commands embedded in the source
code �le.

Preprocessor Syntax II

RUN PSQLC.PUB.SYS;INFO="(SYNTAX)"

Description

1. The preprocessor does not access a DBEnvironment when it is run in this mode.

2. When performing only syntax checking, the preprocessor does not convert the SQL
commands into C statements. Therefore SQLOUT does not contain any preprocessor
generated calls to ALLBASE/SQL external procedures.

3. SQLTYPE, SQLEXTN, SQLVAR, and SQLMOD are created, but incomplete.

Authorization

You do not need ALLBASE/SQL authorization when you use the preprocessor to only check
SQL syntax.

2-6 Using the Preprocessor

Example

:FILE SQLIN=CEX2

:RUN PSQLC.PUB.SYS;INFO="(SYNTAX)"

WED, OCT 25, 1991, 1:38 PM

HP36216-02A.E1.02 C Preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

:EDITOR

HP32501A.07.20 EDIT/3000 FRI, OCT 27, 1991, 9:35 AM

(C) HEWLETT-PACKARD CO. 1985

/T SQLMSG;L ALL UNN

FILE UNNUMBERED

.

.

.

SQLIN = CEX2.SOMEGRP.SOMEACCT

SELECT PARTNUMBER, PARTNAME, SALESPRICE INTO :PARTNUMBER, :PARTNAME,

:SALESPRICE :SALESPRICEIND, FROM PURCHDB.PARTS WHERE PARTNUMBER =

:PARTNUMBER ;

****** ALLBASE/SQL errors (DBERR 10977)

****** in SQL statement ending in line 176

*** Unexpected keyword. (DBERR 1006)

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

/

The line 176 referenced in SQLMSG is the line in

SQLIN where the erroneous SQL command ends.

Using the Preprocessor 2-7

DBEnvironment Access

When you invoke the preprocessor in full preprocessing mode, you name an ALLBASE/SQL
DBEnvironment. The preprocessor starts a DBE session for that DBEnvironment when
preprocessing begins and terminates that session when preprocessing is completed. The
preprocessor derives the name of the module from the source code �le name unless you supply
a di�erent name when you invoke the preprocessor:

: RUN PSQLC.PUB.SYS; INFO="DBEnvironment (MODULE (ModuleName))"

When the preprocessor terminates its DBEnvironment session, it issues a COMMIT WORK
command if it encountered no errors. Created sections are stored in the DBEnvironment and
associated with the module name. See Figure 2-6 later in this chapter.

ALLBASE/SQL accesses the DBEnvironment you specify during preprocessing, even if your
program does not use SQL statements that store sections in this DBEnvironment. Therefore,
you must specify the name of a valid DBEnvironment.

In some cases an ALLBASE/SQL progam is used with one or more DBEnvironments in
addition to the DBEnvironment accessed at preprocessing time. In these cases, use ISQL to
install the installable module created by the preprocessor into each additional DBEnvironment
accessed by your program. See the section \Installable Module File" in this chapter.

An alternative method of accessing more than one DBEnvironment from the same
program would be to divide the program into separate compilable �les. Each source �le
would access a DBEnvironment. In each �le, start and terminate a DBE session for the
DBEnvironment accessed. Then preprocess and compile each �le separately. When you invoke
the preprocessor, identify the DBEnvironment accessed by the source �le being preprocessed.
After a �le is preprocessed, it must be either saved under a di�erent �le name than the usual
preprocessor output, or compiled with no linking before the next source �le is preprocessed.
When all source �les have been preprocessed and compiled, link them together to create an
executable program.

For example if you want to preprocess several ALLBASE/SQL application programs in the
same group and account and compile and link the programs later, or you plan to compile a
preprocessed program during a future session, you should do the following for each program:

Before running the preprocessor, equate SQLIN to the name of the �le containing the
application you want to preprocess:

:FILE SQLIN = InFile

After running the preprocessor, save and rename the output �les if you do not want them
overwritten. For example:

:SAVE SQLOUTPUT

:RENAME SQLOUT, OutFile

:SAVE SQLMOD

:RENAME SQLMOD, ModFile

:SAVE SQLVAR

:RENAME SQLVAR, VarFile

When you are ready to compile the program, you must equate the include �le name to its
standard ALLBASE/SQL name (SQLVAR).

2-8 Using the Preprocessor

Note A program that accesses more than one DBEnvironment must do so in
sequence since only one DBEnvironment can be accessed at a time. Such
program design may adversely a�ect performance and requires special
consideration.

To preprocess a program, or to use an already preprocessed ALLBASE/SQL application
program, you must satisfy the authorization requirements for each DBEnvironment accessed.

Compiling and Linking

Figure 2-1 shows the process of compiling and linking an embedded SQL C program.

Figure 2-1. Compiling and Linking

As shown in the �gure, you submit to the C compiler one or more modi�ed source code �les
and the related include �les created by the preprocessor. The compiler then generates object
code.

To convert these object code �les into an executable program, link them after compilation by
invoking the link editor. This step creates an executable program �le.

To expedite the process of compiling and linking your embedded SQL programs, use the
preprocessor UDCs described below.

Using the Preprocessor 2-9

Using the Preprocessor UDCs

Two UDC's for invoking the C preprocessor are provided with ALLBASE/SQL in the
HPSQLUDC.PUB.SYS �le:

PC, illustrated in Figure 2-2, invokes the preprocessor in full preprocessing mode. You
specify the source �le name, a DBEnvironment name, and a name for SQLMSG (if you do
not want preprocessor messages to go to $STDLIST).

:PC SourceFileName,DBEnvironment

The PC UDC uses the following preprocessor INFO string parameters:

ModuleName is the name of the source �le.

OwnerName is the log-on User@Account.

PRESERVE and DROP are in e�ect.

PPC, illustrated in Figure 2-3, invokes the preprocessor in full preprocessing mode, then
invokes the C compiler if preprocessing is successful and the linker if compilation is
successful.

To use this UDC, you specify the source �le name, a DBEnvironment name, and an
executable �le name. You can specify a name for SQLMSG if you do not want preprocessor
messages to go to $STDLIST:

:PPC SourceFileName,DBEnvironment,ExecutableFileName

This UDC uses the following preprocessor INFO string parameters:

ModuleName is the source �le name.

OwnerName is the log-on User@Account.

PRESERVE and DROP are in e�ect.

If you make your own version of the UDC's, do not modify the record attributes for any of the
preprocessor output �les. Only modify the �le limit (disc=FileLimit) if required.

Note Because the UDC's purge the preprocessor message �le, if messages are
sent to $STDLIST an error message appears when you use the UDC's, but
preprocessing continues.

2-10 Using the Preprocessor

PC srcfile,dbefile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

purge sqltype

purge sqlextn

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary

file sqlvar; disc=2048,32; rec=-80,16,f,ascii
file sqltype; disc=2048,32; rec=-80,16,f,ascii

file sqlextn; disc=2048,32; rec=-80,16,f,ascii

continue

run psqlc.pub.sys;info="!dbefile (drop)"

reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

reset sqltype

reset sqlextn

Figure 2-2. UDC for Preprocessing SQLIN

Using the Preprocessor 2-11

PPC srcfile,dbefile,pgmfile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

purge sqltype

purge sqlextn

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary

file sqlvar; disc=2048,32; rec=-80,16,f,ascii
file sqltype; disc=2048,32; rec=-80,16,f,ascii

file sqlextn; disc=2048,32; rec=-80,16,f,ascii

continue

run psqlc.pub.sys;info="!dbefile (drop)"

if jcw <= warn then

continue

ccxllk sqlout,!pgmfile,$null

endif

reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

reset sqltype

reset sqlextn

Figure 2-3. UDC for Preprocessing, Compiling, and Preparing SQLIN

2-12 Using the Preprocessor

The example in Figure 2-4 illustrates the use of PPC on an SQLIN that could be successfully
preprocessed, but failed to compile because a C error exists in the �le. In addition to
generating an error message for the C error, the C compiler generates several warning
messages. The warning messages are normal and will not cause runtime problems; they are
due to the way the C preprocessor declares some of the variables in SQLVAR.

:PPC CEX2,PARTSDBE,CEX2P

WED, OCT 25, 1991, 1:38 PM

HP36216-02A.E1.02 C Preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

SQLIN = CEX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = CEX2

1 Sections stored in DBEnvironment.

0 ERRORS 0 WARNINGS
END OF PREPROCESSING.

END OF PROGRAM

END OF COMPILE

HP Link Editor/XL (HP30315A.04.04) Copyright Hewlett-Packard Co 1986

LinkEd> LINK FROM=$OLDPASS;RL= CCSTDRL.LIB.SYS;TO=c2p

END OF PROGRAM

:

Figure 2-4. Sample UDC Invocation

Using the Preprocessor 2-13

The line number referenced in the compiler output messages is the C statement number in the
compiler output listing . Because PPC sends the compiler output listing to $null, you must
reinvoke the compiler, sending the compiler listing to an output �le, to identify the line in
error:

:BUILD CLIST;DISC=10000,32;REC=-80,16,F,ASCII

:CCXL SQLOUT,$OLDPASS,CLIST

The C syntax error
agged in the example under \Syntax Checking Mode" appears as follows
in CLIST:

00261 DISPAY "SELECT PartNumber, PartName and SalesPrice".

Using the Preprocessor in Job Mode

You can preprocess, compile, and prepare C ALLBASE/SQL programs in job mode. The
following example illustrates a job �le that uses the PPC UDC to preprocess several sample
programs.

!JOB JIM,MGR.HPDB,CPROG;OUTCLASS=,1

!ppc cexp01,PartsDBE,cexp01p

!ppc cexp01a,PartsDBE,cexp01ap

!ppc cexp02,PartsDBE,cexp02p

.

.

!ppc cexp50,PartsDBE,cexp50p

!TELL JIM,MGR.HPDB; C Preprocessing is complete!

!EOJ''

Running the Program

When an ALLBASE/SQL program is �rst created, it can only be executed by the module
OWNER or a DBA. In addition, it can only operate on the DBEnvironment used at
preprocessing time if a module was generated. If no module was generated because the SQL
commands embedded in the program are only commands for which no sections are created,
the program can be run against any DBEnvironment.

The program created in the previous example can be executed as follows by the module
owner:

: run someprog

To make the program executable by other users in other DBEnvironments:

Load the executable program �le onto the machine where the production DBEnvironment
resides.
Install any related module in the production DBEnvironment.
Ensure necessary module owner authorities exist.
Grant required authorities to program users.

2-14 Using the Preprocessor

Accessing Multiple DBEnvironments

An alternative method of accessing more than one DBEnvironment from the same
program would be to divide the program into separate compilable �les. Each source �le
would access a DBEnvironment. In each �le, start and terminate a DBE session for the
DBEnvironment accessed. Then preprocess and compile each �le separately. When you invoke
the preprocessor, identify the DBEnvironment accessed by the source �le being preprocessed.
After a �le is preprocessed, it must be compiled so that no linking is performed before the
next source �le is preprocessed. When all source �les have been preprocessed and compiled,
link them together to create an executable program. An example of this technique follows:

:RUN PSQLC.PUB.SYS;INFO="DBEnvironment1 (MODULE (ModuleName))"

:CCXL SQLOUT, SQLOBJ1

.

.

:RUN PSQLC.PUB.SYS;INFO="DBEnvironment2 (MODULE (ModuleName))"

:CCXL SQLOUT, SQLOBJ2

.

.

:LINK FROM=SQLOBJ1,SQLOBJ2;RL=STDRL.LIB.SYS;TO=SOMEPROG

Note that a program which accesses more than one DBEnvironment must do so in sequence
since only one DBEnvironment can be accessed at a time. Such program design may adversely
a�ect performance and requires special consideration.

To preprocess a program, or to use an already preprocessed ALLBASE/SQL application
program, you must satisfy the authorization requirements for each DBEnvironment accessed.

Identifying Preprocessor Input

In the simplest case, illustrated earlier in Figure 1-1, the ALLBASE/SQL C program consists
of one source code �le and, optionally, one or more user include �les; both the source code
and the include �les can contain SQL commands. The preprocessor merges any include
�les into the source program, and preprocesses it. The resulting modi�ed source code �le
is then compiled and linked in the same manner as a C program not containing embedded
SQL statements. (Include �les must either exist in the current group or be speci�ed with an
account and group name.)

Regardless of the preprocessing mode you use, the source �le and the ALLBASE/SQL
message catalog must be available when you invoke the C preprocessor, as shown in Figure
2-5.

Using the Preprocessor 2-15

Source File

The source �le is a �le containing the source code of the C ALLBASE/SQL program with
embedded SQL commands for one or more DBEnvironments. The default input �lename is:

SQLIN

An alternative name can be speci�ed by using the DROP option in the preprocessor command
line, as explained earlier in this chapter.

When parsing the source �le, the C preprocessor ignores most C statements and C compiler
directives in it. Only the following information is parsed by the C preprocessor:

The C compiler directive, include.

The source �le name. Unless you specify a module name in the preprocessor command line,
the preprocessor uses the source �le name as the name for the module it stores. A module
name can contain as many as 8 bytes and must follow the rules governing ALLBASE/SQL
basic names (given in the ALLBASE/SQL Reference Manual).

Constructs found between the pre�x EXEC SQL and the su�x ;. These constructs follow
the rules given in Chapter 1 for how and where to embed these constructs.

Constructs found between the BEGIN DECLARE SECTION and END DECLARE
SECTION commands. These commands delimit a declare section, which contains C data
declarations for the host variables used in the program. Host variables are described in
Chapter 3.

ALLBASE/SQL Message Catalog

The ALLBASE/SQL message catalog, contains preprocessor messages and ALLBASE/SQL
error and warning messages. The fully quali�ed name for the default message catalog is:

SQLCT000.PUB.SYS

For native language users, the name of the catalog is:

SQLCTxxx.PUB.SYS

where xxx is the numerical value for the current language. If this catalog is not available,
ALLBASE/SQL issues a warning and uses the default catalog instead.

When you run the preprocessor in full preprocessing mode, also ensure that the
DBEnvironment accessed by the program is available.

2-16 Using the Preprocessor

Figure 2-5. Full Preprocessing Mode Input and Output

Identifying Preprocessor Output

As Figure 2-5 points out, running the C preprocessor in full preprocessing mode creates the
following output �les:

Modi�ed source �le.
Include �les.
SQL message �le.
Installable module �le.

Also, a module is stored in the DBEnvironment speci�ed in the preprocessor invocation line.
Each of these is described in the following sections.

Using the Preprocessor 2-17

Modified Source File

As the C preprocessor parses the source �le, it copies lines from it and any include �les into
the modi�ed source �le, inserts conditional compiler directives around the embedded SQL
commands, and inserts information around each embedded SQL command.

The default modi�ed source �le name is SQLOUT .

Figure 2-9 illustrates the modi�ed source �le generated for the source �le pictured in Figure
1-8. The shaded lines contain information generated by the C preprocessor.

In both preprocessing modes, the C preprocessor:

Inserts conditional compiler directives around embedded SQL commands to conditionally
ignore the SQL commands.

Inserts three #INCLUDE C compiler directives within the Declaration part. These
directives reference the three preprocessor generated include �les. These �les are included at
the beginning of the modi�ed source �le created by the preprocessor.

Places comments on the line with an embedded command following the last line the
embedded command generates. Note, for example, that the comment following the EXEC
SQL INCLUDE SQLCA command in the source �le is in the same column, but on a
di�erent line, in the modi�ed source �le.

In full preprocessing mode, the preprocessor also:

Generates a C declaration of the sqlca and the sqlda in the type include �le.

Generates C statements providing conditional instructions following SQL commands
encountered after one of the following SQL commands: WHENEVER SQLERROR,
WHENEVER SQLWARNING, and WHENEVER NOT FOUND.

Generates C statements that call ALLBASE/SQL external procedures at run time. These
calls reference the module stored by the preprocessor in the DBEnvironment for execution
at run time. Parameters used by these external calls are de�ned in the variable and type
include �les.

Caution Although you can access the preprocessor output �les with an editor, you
should never change the information generated by the C preprocessor. Your
DBEnvironment or your system could be damaged at run time if preprocessor
generated constructs are altered.

If you change non-preprocessor-generated constructs, make the changes to the source �le,
re-preprocess it, and re-compile the output �les before putting the application program into
production.

2-18 Using the Preprocessor

Include Files

There are three include �les, which contain declarations and de�nitions used by the C
functions created by the preprocessor and inserted into the modi�ed source code �le:

type include �le: the name for this �le, which contains type declarations, is:

SQLTYPE

variable include �le: the name for this �le, which contains variable declarations, is:

SQLVAR

externals include �le: the name for this �le, which contains external procedure declarations,
is:

SQLEXTN

The sqlmodulename and ownername of sections are de�ned as global static variables in
SQLVAR. It is advised that multiple source �le applications be preprocessed all at one
time so that only one SQLVAR �le is generated. If the source �les are preprocessed and
compiled separately and combined at link time, runtime errors occur because the static global
sqlmodulename variable from the �rst source �le preprocessed is used and incorrect sections
are executed. Therefore, all preprocessed sections in your program must reside in the same �le
for input to the C compiler.

When you use �le equations to redirect the include �les, remember that the preprocessor
always inserts the same #INCLUDE directives. Therefore, insure that the applicable �le
equations are in e�ect when you preprocess and when you compile.

When the preprocessor is invoked, the following �le equations must be in e�ect:

:FILE SQLTYPE = MYTYPE

:FILE SQLVAR = MYVAR

:FILE SQLEXTN = MYEXTN

Then when the C compiler is invoked, the following �le equations must be in e�ect:

:FILE SQLTYPE = MYTYPE

:FILE SQLVAR = MYVAR

:FILE SQLEXTN = MYEXTN

:CC MYSQLPRG, $NEWPASS, $NULL

ALLBASE/SQL Message File

The ALLBASE/SQL message �le is named sqlmsg. Messages placed in sqlmsg
when you preprocess come from the ALLBASE/SQL message catalog. The default
catalog is SQLCT000.PUB.SYS. For native language users, the name of the catalog is
SQLCTxxx.PUB.SYS, where xxx is the number of the current language. If this catalog is not
available, ALLBASE/SQL uses the default instead.

Sqlmsg messages contain four parts:

Using the Preprocessor 2-19

1. A banner:

For Series 900 systems:

HP36216-02A.E1.02 C preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

Banners are displayed when ISQL, SQLUtil, or a preprocessor is invoked.

2. A summary of the preprocessor invocation conditions:

DBEnvironment = PARTSDBE.SOMEGRP.SOMEACCT

Module Name = CEX2

3. Warnings and errors encountered during preprocessing:

32 SalesPriceInd : SQLID;

|

****** Unsupported type syntax for host variable. (DBERR 10933)

SELECT PartNumber, PartName, SalesPrice INTO :PartNumber, :PartName,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE PartNumber =

:PartNumber;

****** ALLBASE/SQL query processing errors. (DBERR 10952)
****** in SQL statement ending in line 128

*** ALLBASE/SQL alignment error on column 3 in buffer 5. (DBERR 4200)

There are errors. No sections stored.

4. A summary of the results of preprocessing:

2 ERRORS 0 WARNINGS

END OF PREPROCESSING.

Both the banner and the preprocessing summary results are also echoed to the terminal.

As illustrated in Figure 2-6, a line number is often provided in sqlmsg. This line number
references the line in the program source �le containing the command in question. A message
accompanied by a number may also appear. You can refer to the ALLBASE/SQL Message
Manual for additional information on the exception condition when these numbered messages
appear.

2-20 Using the Preprocessor

: print sqlmsg

HP36216-02A.E1.02 C preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

DBEnvironment = PARTSDBE.SOMEGRP.SOMEACCT

Module Name = CEX2

32 SalesPriceInd : SQLID

|

****** Unsupported type syntax for host variable. (DBERR 10933)

SELECT PartNumber, PartName, SalesPrice INTO :PartNumber, :PartName,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE PartNumber=

:PartNumber;

****** ALLBASE/SQL query processing errors. (DBERR 10952)
****** in SQL statement ending in line 128

*** ALLBASE/SQL alignment error on column 3 in buffer 5. (DBERR 4200)

There are errors. No sections stored.

2 ERRORS 0 WARNINGS

END OF PROCESSING.

:

Figure 2-6. Sample sqlmsg Showing Errors

Using the Preprocessor 2-21

As Figure 2-7 illustrates, the preprocessor can terminate with the warning message

****** ALLBASE/SQL warnings. (DBWARN 10602)

when the name of an object in the source �le does not match the name of any object in the
system catalog. Although a section is stored for the semantically incorrect command, the
section is marked as invalid and will not execute at run time if it cannot be validated.

: ppc cex2,partsdbe,cex2p

HP36216-02A.20.00.00 C preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING

: print sqlmsg

HP36216-02A.E1.02 C preprocessor/3000 ALLBASE/SQL

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED.

DBEnvironment = PARTSDBE.SOMEGRP.SOMEACCT

Module Name = CEX2

SELECT PartNumber, PartName, SalesPrice INTO :PartNumber, PartName,
:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE ParNumber =

:PartNumber;

****** ALLBASE/SQL warnings. (DBWARN 10602)

****** in SQL statement ending in line 128

*** Column PARNUMBER not found. (DBERR 2211)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING

Figure 2-7. Sample sqlmsg Showing Warning

2-22 Using the Preprocessor

Stored Module Containing Sections

In full preprocessing mode, the preprocessor stores a module in the DBEnvironment you
specify at preprocessing time. By default, the preprocessor uses the source �le name as the
name for the module it stores. You can specify a module name with the MODULE option of
the preprocessor command.

The module contains a section for each embedded SQL command in your program except:

BEGIN DECLARE SECTION INCLUDE

BEGIN WORK OPEN

CLOSE PREPARE

COMMIT WORK RELEASE

CONNECT ROLLBACK WORK
DECLARE CURSOR SAVEPOINT

DELETE WHERE CURRENT START DBE

DESCRIBE STOP DBE

END DECLARE SECTION SQLEXPLAIN

EXECUTE TERMINATE USER

EXECUTE IMMEDIATE UPDATE WHERE CURRENT

FETCH WHENEVER

The commands listed above either require no authorization to execute or are executed based
on information contained in the compilable preprocessor output �les.

When the preprocessor stores a section, it actually stores what are known as an input tree
and a run tree. The input tree consists of the uncompiled command. The run tree is the
compiled, executable form of the command. If at run time a section is valid, ALLBASE/SQL
executes the appropriate run tree when the SQL command is encountered in the application
program. If a section is invalid, ALLBASE/SQL determines whether the objects referenced
in the section exist and whether current authorization criteria are satis�ed. When an invalid
section can be validated, ALLBASE/SQL dynamically recompiles the input tree to create an
executable run tree and executes the command. When a section cannot be validated, the
command is not executed, and an error condition is returned to the program.

There are three types of sections:

1. Sections for executing the SELECT command associated with a DECLARE CURSOR
command.

2. Sections for executing the SELECT command associated with a CREATE VIEW
command.

3. Sections for all other commands for which the preprocessor stores a section.

Figure 2-8 illustrates the kind of information in the system catalog. All stored sections for
each module in the DBEnvironment are referenced here. The query result illustrated was
extracted from the system view named SYSTEM.SECTION by using ISQL. The columns in
Figure 2-8 have the following meanings:

NAME: This column contains the name of the module to which a section belongs. You can
specify a module name when you invoke the preprocessor; or the module name will default
to the source code �le name of the C program. If you are supplying a module name in a
native language other than NATIVE-3000 (ASCII), be sure it is in the same language as
that of the DBEnvironment.

Using the Preprocessor 2-23

OWNER: This column identi�es the owner of the module. You can specify an owner
name when you invoke the preprocessor,or the owner name will default to the login name
associated with the preprocessing session. If you are supplying an owner name in a native
language other than NATIVE-3000 (ASCII), be sure it is in the same language as that of
the DBEnvironment.

DBEFILESET: This column indicates the DBEFileSet which contains the DBEFile(s) which
in turn contains the section(s).

SECTION: This column gives the section number. Each section associated with a module
is assigned a number by the preprocessor as it parses the related SQL command at
preprocessing time.

TYPE: This column identi�es the type of section:

1 = SELECT associated with a cursor

2 = SELECT defining a view

0 = All other sections

VALID: This column identi�es whether a section is valid or invalid:

0 = invalid

1 = valid

2-24 Using the Preprocessor

isql=> SELECT NAME,OWNER,DBEFILESET,SECTION,TYPE,VALID FROM SYSTEM.SECTION;

SELECT NAME,OWNER,DBEFILESET,SECTION,TYPE,VALID FROM SYSTEM.SECTION;

--

NAME |OWNER |DBEFILESET |SECTION |TYPE |VALID

--

TABLE |SYSTEM |SYSTEM | 0| 2| 0

COLUMN |SYSTEM |SYSTEM | 0| 2| 0

INDEX |SYSTEM |SYSTEM | 0| 2| 0

SECTION |SYSTEM |SYSTEM | 0| 2| 0

DBEFILESET |SYSTEM |SYSTEM | 0| 2| 0

DBEFILE |SYSTEM |SYSTEM | 0| 2| 0

SPECAUTH |SYSTEM |SYSTEM | 0| 2| 0

TABAUTH |SYSTEM |SYSTEM | 0| 2| 0

COLAUTH |SYSTEM |SYSTEM | 0| 2| 0

MODAUTH |SYSTEM |SYSTEM | 0| 2| 0

GROUP |SYSTEM |SYSTEM | 0| 2| 0

VIEWDEF |SYSTEM |SYSTEM | 0| 2| 0
HASH |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINT |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINTCOL |SYSTEM |SYSTEM | 0| 2| 0

CONSTRAINTINDEX |SYSTEM |SYSTEM | 0| 2| 0

COLDEFAULT |SYSTEM |SYSTEM | 0| 2| 0

TEMPSPACE |SYSTEM |SYSTEM | 0| 2| 0

PARTINFO |PURCHDB |SYSTEM | 0| 2| 0

VENDORSTATISTICS |PURCHDB |SYSTEM | 0| 2| 0

CEX2 |PGMR1@ACCT2 |SYSTEM | 1| 0| 1

CEX7 |PGMR1@ACCT2 |SYSTEM | 1| 1| 1

CEX7 |PGMR1@ACCT2 |SYSTEM | 2| 0| 1

--

Number of rows selected is 16.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

Figure 2-8. Information in SYSTEM.SECTION on Stored Sections

Using the Preprocessor 2-25

The �rst eleven rows in the query result shown in Figure 2-8 describe the sections stored
for the system views. The next two rows describe the two views in the sample database:
PurchDB.PartInfo and PurchDB.VendorStatistics. Views are always stored as invalid sections,
because the run tree is always generated at run time.

The remaining rows describe sections associated with two preprocessed programs. CEX2
contains only one section, for executing the SELECT command in the program illustrated in
Figure 2-9. CEX7 contains two sections, one for executing the SELECT command associated
with a DECLARE CURSOR command and one for executing a FETCH command.

Stored sections remain in the DBEnvironment until they are deleted by using the ISQL DROP
MODULE command:

isql=> DROP MODULE cex2;

or by invoking the preprocessor with the DROP option:

: RUN PSQLC.PUB.SYS;INFO="PARTSDBE (DROP)"

Stored sections are marked invalid when:

The UPDATE STATISTICS command is executed.

Tables accessed in the program are dropped, altered, or assigned new owners.

Indexes or DBEFileSets related to tables accessed in the program are changed.

Module owner authorization changes are made that a�ect the execution of embedded
commands.

When an invalid section is validated at run time, the validated section is committed when
the program issues a COMMIT WORK command. If a COMMIT WORK command is not
executed, ALLBASE/SQL must re-validate the section again the next time the program is
executed. For this reason, you should embed COMMIT WORK commands even following
SELECT commands, since the COMMIT WORK command may be needed even when data is
not changed by a program.

2-26 Using the Preprocessor

Installable Module File

When the preprocessor stores a module in the DBEnvironment you named at preprocessing
time, it places a copy of the module in an installable module �le. The module in this �le
can be installed into a DBEnvironment di�erent from the DBEnvironment accessed at
preprocessing time by using the INSTALL command in ISQL. In order to install the module,
you need CONNECT or DBA authority in the target DBEnvironment.

The installable module �le is named SQLMOD. The module also has an internal, SQL name,
in this case PGMR1@ACCT2.CEX2 which is saved as part of the module at preprocessing
time. PGMR1@ACCT2 is the login of the user who preprocessed source �le cex2, and
PGMR1@ACCT2 is the owner of the module.

: isql

isql=> CONNECT TO 'PARTSDBE.SOMEGRP.SOMEACCT';

isql=> INSTALL;

File name> SQLMOD;

Name of module in this file: PGMR1@ACCT2.CEX2

Number of sections installed: 1

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

isql=>

Handling Preprocessor Errors

Several types of errors can occur while you are using the C preprocessor:

Unexpected preprocessor or DBEnvironment termination.

Preprocessor invocation errors.

Source �le errors.

DBEnvironment errors.

Preprocessor or DBEnvironment Termination

Whenever the preprocessor stops running unexpectedly while you are using it in full
preprocessing mode, sections stored during the preprocessor's DBE session are automatically
dropped when the DBEnvironment is next started up. Unexpected preprocessor session
termination occurs, for example, when a DBA issues a STOP DBE command during a
preprocessor DBE session.

Using the Preprocessor 2-27

Preprocessor Invocation Errors

If the source �le speci�ed is currently being accessed, or if the source �le named cannot be
found, preprocessing terminates with the following messages, respectively:

System error in opening input source file. (DBERR 10922)

File open Error (DBERR 10907)

sqlin

ERRORS Processing terminated prematurely. (DBERR 10923)

In addition, the invocation line may name a DBEnvironment that does not exist or the
command may contain erroneous syntax:

****** Cannot connect to DBEnvironment. (DBERR 10953)

ERRORS Processing terminated prematurely. (DBERR 10923)

Source File Errors

When the preprocessor encounters errors while parsing the source �le, messages are placed in
sqlmsg. Refer to the discussion earlier in this chapter under \ALLBASE/SQL Message File"
for additional information on this category of errors.

DBEnvironment Errors

Some errors result because:

A DBEnvironment is not yet started.

Resources are insu�cient.

A deadlock has occurred.

Refer to the ALLBASE/SQL Database Administration Guide for information on handling
DBEnvironment errors.

2-28 Using the Preprocessor

Sample Modified Source File

The following modi�ed source �le is the result of preprocessing program cex2 (shown at the
end of Chapter 1). In the listing, the preprocessor-added code is shaded for easy reference.
The numbers in the �gure are the same as the numbers shown for program cex2.

x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a

#include "sqltype"

#include "sqlvar"

#include "sqlextn"

/* Program cex2 */

/* */

/* This program illustrates the use of SQL's SELECT command to */

/* retrieve one row or tuple of data at a time. */

/* BEGIN WORK is executed before the SELECT and a COMMIT WORK */

/* is executed after the SELECT. An indicator variable is also */

/* used for SalesPrice. */

/* */

typedef int boolean;

char response[2];

boolean Abort;

#include <stdio.h>

#define OK 0

#define NotFound 100

#define MultipleRows -10002

#define DeadLock -14024

#define FALSE 0

#define TRUE 1

NNNNNNNNNNNNNNNNN
#if 0

EXEC SQL INCLUDE SQLCA; � 1 �x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�

#endif

sqlca_type sqlca;

Figure 2-9. Modified Source File For Program cex2

Using the Preprocessor 2-29

/* SQL Communication Area */

/* Begin Host Variable Declarations */

NNNNNNNNNNNNNNNNN
#if 0

EXEC SQL BEGIN DECLARE SECTION; � 2 �NNNNNNNNNNNNNNNNNNNN
#endif

char PartNumber[17];

char PartName[31];

double SalesPrice;

sqlind SalesPriceInd;

char SQLMessage[133];

NNNNNNNNNNNNNNNNN
#if 0

EXEC SQL END DECLARE SECTION; � 2 �NNNNNNNNNNNNNNNNNNNN
#endif

/* End Host Variable Declarations */

int SQLStatusCheck() /* Function to Display Error Messages */

{

Abort = FALSE;
if (sqlca.sqlcode < DeadLock)

Abort = TRUE;

do {

NNNNNNNNNNNNNNNNN
#if 0

EXEC SQL SQLEXPLAIN :SQLMessage;x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

#endif

{

sqlxplnc(&sqlca,&sqltempv,133,1);

sqltempv.rec1.

SQLREC1_FIELD1[sqltempv.rec1.SQLREC1_FIELD1_LEN] = '\0';

strcpy(SQLMessage,

sqltempv.rec1.SQLREC1_FIELD1);

} � 3 �

printf("\n");

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort)

{

EndTransaction();

ReleaseDBE();

}

} /* End SQLStatusCheck Function */

Figure 2-9. Modified Source File For Program cex2 (page 2 of 6)

2-30 Using the Preprocessor

boolean ConnectDBE)() /* Function to Connect to PartsDBE */

{

boolean ConnectDBE;

ConnectDBE = TRUE;

printf("\n Connect to PartsDBE");

NNNNNNNNNNNNNNNNN
#if 0

EXEC SQL CONNECT TO 'PartsDBE';x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

#endif

{

sqlvar1 = "00AE00005061727473444245202020202020202020202020\

20\

20\

20\

202020202020202020202020202020202020";

sqlxconc(&sqlca,sqlvar1);

} � 4 �

if (sqlca.sqlcode != OK)

{

ConnectDBE = FALSE;

SQLStatusCheck(); � 5 �
} /* End if */

return (ConnectDBE);

} /* End of ConnectDBE Function */

int ReleaseDBE() /* Fundtion to Release PartsDBE */

{
printf("\n");

printf("\n Release PartsDBE");

printf("\n");

NNNNNNNNNNNNNNNNNNNNNNN
#if {

EXEC SQL RELEASE;x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

#endif

{

sqlvar2 = "00B2000020FFFFFFFF";

sqlxconc(&sqlca,sqlvar2);

} � 6 �

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End ReleaseDBE Function */

boolean BeginTransaction() /* Function to Begin Work */

{

boolean BeginTransaction;

BeginTransaction = TRUE;

Figure 2-9. Modified Source File For Program cex2 (page 3 of 6)

Using the Preprocessor 2-31

printf("\n");

printf("\n Begin Work");

NNNNNNNNNNNNNNNNN
#if 0

EXEC SQL BEGIN WORK;x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

#endif

{

sqlvar3 = "00A6007F00110061";

sqlxconc(&sqlca,sqlvar3);

} � 7 �

if (sqlca.sqlcode != OK)

{

BeginTransaction = FALSE;

SQLStatusCheck();

ReleaseDBE(); � 5 �
} /* End if */

return (BeginTransaction);

} /* End BeginTransaction Function */

int EndTransaction() /* Function to Commit Work */

{

printf("\n");
printf("\n Commit Work");

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

#if 0

EXEC SQL COMMIT WORK; {{#endif

{

sqlvar4 = "00A10000";

sqlxconc(&sqlca,sqlvar4);

} � 8 �

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End EndTransaction Function */ � 5 �

int DisplayRow() /* Function to Display Parts Table Rows */

{

printf("\n");

printf("\n Part Number: %s\n", PartNumber);

printf(" Part Name: %s\n", PartName);

if (SalesPriceInd < 0) {

printf(" Sales Price: is NULL \n");

}

else

printf(" Sales Price: %10.2f\n", SalesPrice);

} /* End of DisplayRow */

Figure 2-9. Modified Source File For Program cex2 (page 4 of 6)

2-32 Using the Preprocessor

int Select() /* Function to Query Parts Table */

{

do {

printf("\n");

printf("\n Enter Part Number within Parts Table or '/' to STOP > ");

scanf("%s",PartNumber);

if (PartNumber[0] != '/') {

BeginTransaction();

printf("\n SELECT PartNumber, PartName, SalesPrice");

NNNNNNNNNNNNNNNNN
#if 0

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts
WHERE PartNumber = :PartNumber;x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

#endif

{

sqltempv.rec2.SQLREC2_FIELD1_LEN =

strlen(PartNumber);

strcpy(sqltempv.rec2.SQLREC2_FIELD1,

PartNumber);

sqlxfetc(&sqlca,sqlowner,sqlmodname,1,&sqltempv,24,80,1);

if (sqlca.sqlcode == 0)

{

sqltempv.rec3.

SQLREC3_FIELD1[sqltempv.rec3.SQLREC3_FIELD1_LEN] = '

0';

strcpy(PartNumber,

sqltempv.rec3.SQLREC3_FIELD1);

sqltempv.rec3.

SQLREC3_FIELD2[sqltempv.rec3.SQLREC3_FIELD2_LEN] = '

0';

strcpy(PartName,

sqltempv.rec3.SQLREC3_FIELD2);

SalesPriceInd =

sqltempv.rec3.SQLREC3_FIELD3_IND;

if (sqltempv.rec3.SQLREC3_FIELD3_IND >= 0)
{

SalesPrice =

sqltempv.rec3.SQLREC3_FIELD3;

}

} � 9 �

Figure 2-9. Modified Source File For Program cex2 (page 5 of 6)

Using the Preprocessor 2-33

else

{

}

}

if ((sqlca.sqlwarn[0] == 'W') || (sqlca.sqlwarn[0] == 'w')) {

printf("\n SQL WARNING has occurred. The following row");

printf("\n of data may not be valid!");

}

if (sqlca.sqlcode == OK) {

DisplayRow();

}

else if (sqlca.sqlcode == NotFound) {

printf("\n Row not found!");

}

else if (sqlca.sqlcode == MultipleRows) {

printf("\n WARNING: More than one row qualifies!");

}

else {
SQLStatusCheck();

}

EndTransaction();

}

} /* End do */

while (PartNumber[0] != '/');

}/* End of Select Function */

main() /* Beginning of program */

{

printf("\n Program to SELECT specified rows from");

printf("\n the Parts Table - cex2");

printf("\n");

printf("\n Event List:");

printf("\n CONNECT TO PartsDBE");

printf("\n BEGIN WORK");

printf("\n SELECT the specified row from the Parts Table");

printf("\n until the user enters a '/'");

printf("\n COMMIT WORK");

printf("\n RELEASE from PartsDBE");

printf("\n");

if (ConnectDBE()) {

Select();

ReleaseDBE();

}
else

printf("\n Error: Cannot Connect to PartsDBE!\n");

} /* End of Program */

Figure 2-9. Modified Source File For Program cex2 (page 6 of 6)

2-34 Using the Preprocessor

Sample Preprocessor Generated Include Files

Figures 2-10 through Figure 2-12 illustrate, respectively, the type, variable, and externals
include �les that correspond to the modi�ed source �le in Figure 2-9. Note that the
preprocessor inserts the following three C compiler directives to reference the include �les:

#include "sqltype"

#include "sqlvar"

#include "sqlextn"

These three directives are always inserted into the static or global declaration part of the
program.

Using the Preprocessor 2-35

typedef char ownername_type[21];

typedef char modulename_type[21];

typedef short sqlind;

typedef unsigned char sqlbinary;

typedef int sqlvarbinary;

typedef struct {

int f1;

int f2;

} sqltid;

typedef struct {

int SQLREC1_FIELD1_LEN;

char SQLREC1_FIELD1[133];

} SQLREC1;

typedef struct {

int SQLREC2_FIELD1_LEN;

char SQLREC2_FIELD1[20];

} SQLREC2;

typedef struct {
int SQLREC3_FIELD1_LEN;

char SQLREC3_FIELD1[20];

int SQLREC3_FIELD2_LEN;

char SQLREC3_FIELD2[32];

double SQLREC3_FIELD3;

sqlind SQLREC3_FIELD3_IND;

} SQLREC3;

typedef struct {

SQLREC3 dummy1, dummy2;

} SQLREC4;

#define sqlwarn0 sqlwarn[0]

#define sqlwarn1 sqlwarn[1]

#define sqlwarn2 sqlwarn[2]

#define sqlwarn3 sqlwarn[3]

#define sqlwarn4 sqlwarn[4]

#define sqlwarn5 sqlwarn[5]

#define sqlwarn6 sqlwarn[6]

#define sqlwarn7 sqlwarn[7]

typedef struct {

char sqlaid[8];

int sqlabc;

int sqlcode;

Figure 2-10. Sample Type Include File

2-36 Using the Preprocessor

int sqlerrl;

char sqlerrm[256];

char sqlerrp[8];

int sqlerrd[6];

char sqlwarn[8];

char sqlext[8];

} sqlca_type;

typedef struct {

short sqlnty;

short sqltype;

short sqlprec;

short sqlscale;

int sqltotallen;

int sqlvallen;

int sqlindlen;

int sqlvof;

int sqlnof;

char sqlname[20];
} sqlformat_type;

typedef struct {

char sqldaid[8];

int sqldabc;

int sqln;

int sqld;

sqlformat_type *sqlfmtarr;

int sqlnrow;

int sqlrrow;

int sqlrowlen;

int sqlbuflen;

int sqlrowbuf;

} sqlda_type;

typedef union {

int dummy;

SQLREC1 rec1;

SQLREC2 rec2;

SQLREC3 rec3;

SQLREC4 rec4;

} sqltempv_type;

Sample Type Include File (page 2 of 2)

Using the Preprocessor 2-37

static ownername_type sqlowner = "JOANN@ACCT1 ";

static modulename_type sqlmodname = "CEX2 ";

int sqlindex;

char *sqlvar1;

char *sqlvar2;

char *sqlvar3;

char *sqlvar4;

sqltempv_type sqltempv;

Figure 2-11. Sample Variable Include File

extern sqlxbfec();

extern sqlxbinc();

extern sqlxcnhc();

extern sqlxconc();

extern sqlxdduc();

extern sqlxdexc();

extern sqlxdfec();

extern sqlxdopc();

extern sqlxdsbc();

extern sqlxexic();

extern sqlxexuc();

extern sqlxfetc();

extern sqlxiduc();

extern sqlxopkc();

extern sqlxopuc();

extern sqlxplnc();

extern sqlxprec();

extern sqlxsecc();

extern sqlxstpc();

extern sqlxsvpc();

Figure 2-12. Sample Externals Include File

2-38 Using the Preprocessor

3

Host Variables

Host variables are variables used to pass the following information between an application
program and ALLBASE/SQL:

Data values.

Null value indicators.

String truncation indicators.

Bulk processing rows to process.

Dynamic commands.

Savepoint numbers.

Messages from the ALLBASE/SQL message catalog.

DBEnvironment names.

All host variables used in a C program must be declared in declaration parts of the program.
The type descriptions of host variables must be compatible with ALLBASE/SQL data types.
The type descriptions of host variables must also satisfy certain preprocessor criteria.

This chapter identi�es where in a C program you can use host variables and then discusses
how to write type descriptions that complement the way host variables are used. See the
chapter, \Simple Data Manipulation", for a sample program that uses host variables.

Using Host Variables

Host variables are used in SQL commands as follows:

To pass data values with the following data manipulation commands:

SELECT

INSERT

DELETE

UPDATE
DECLARE

FETCH

REFETCH

UPDATE WHERE CURRENT

Host Variables 3-1

To hold null value indicators in these data manipulation commands:

SELECT

INSERT

FETCH

REFETCH

UPDATE

UPDATE WHERE CURRENT

In queries to indicate string truncation and the string length before truncation

To identify the starting row and the number of rows to process in the INTO clause of the
following commands:

BULK SELECT

BULK INSERT

To pass dynamic commands at run time with the following commands:

PREPARE

EXECUTE IMMEDIATE

To hold savepoint numbers, which are used in the following commands:

SAVEPOINT

ROLLBACK WORK TO :savepoint

To hold messages from the ALLBASE/SQL message catalog, obtained by using the
SQLEXPLAIN command.

To hold a DBEnvironment name in the CONNECT command.

Later in this section are examples illustrating where, in the commands itemized above, the
SQL syntax supports host variables.

Host Variable Names

ALLBASE/SQL host variable names in C programs must do the following:

Contain from 1 to 30 bytes.

Conform to the rules for ALLBASE/SQL basic names.

Contain characters chosen from the following set: the 26 letters of the ASCII alphabet, the
10 decimal digits, an underscore (), or valid characters for any native language you are
using.

Begin with an alphabetic character, although the pre�x SQL is not recommended.

Not be the same as any ALLBASE/SQL or C reserved word.

In all SQL commands containing host variables, the host variable name must be preceded by a
colon:

:HostVariableName

3-2 Host Variables

Input and Output Host Variables

Host variables can be used for input or for output:

Input host variables provide data for ALLBASE/SQL.

Output host variables contain data from ALLBASE/SQL.

Be sure to initialize an input host variable before using it. When using cursor operations
with the SELECT command, initialize the input host variables in the select list and WHERE
clause before you execute the OPEN command.

In the following SELECT command, the INTO clause contains two output host variables:
PartNumber and PartName. ALLBASE/SQL puts data from the PurchDB.Parts table into
these host variables. The WHERE clause contains one input host variable, PartNumber.
ALLBASE/SQL reads data from this host variable to determine which row to retrieve.

EXEC SQL SELECT PartNumber, PartName

INTO :PartNumber,

:PartName

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

In this example, the host variable, PartNumber, is used for both input and output.

Indicator Variables

A special type of host variable called an indicator variable, is used in SELECT, FETCH,
UPDATE, UPDATE WHERE CURRENT, and INSERT commands to identify null values
and in SELECT and FETCH commands to identify truncated output strings.

An indicator variable must appear in an SQL command immediately after the host variable
whose data it describes. The host variable and its associated indicator variable are not
separated by a comma. In SELECT and FETCH commands, an indicator variable is
an output host variable containing one of the following indicators, which describe data
ALLBASE/SQL returns:

0 value is not null

-1 value is null

>0 string value is truncated; number indicates data length

before truncation.

Host Variables 3-3

In the INSERT, UPDATE, and UPDATE WHERE CURRENT commands, an indicator
variable is an input host variable. The value you put in the indicator variable tells
ALLBASE/SQL when to insert a null value in a column:

>=0 value is not null

<0 value is null

The following SELECT command uses an indicator variable, PartNameInd, for data from the
PartName column. When this column contains a null value, ALLBASE/SQL puts a negative
number into PartNameInd:

EXEC SQL SELECT PartNumber, PartName

INTO :PartNumber,

:PartName :PartNameInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

Any column not de�ned with the NOT NULL attribute may contain null values. In the
PurchDB.Parts table, ALLBASE/SQL prevents the PartNumber column from containing null
values, because it was de�ned as NOT NULL. In the other two columns, however, null values
are allowed:

CREATE PUBLIC TABLE PurchDB.Parts

(PartNumber CHAR(16) NOT NULL,

PartName CHAR(30),

SalesPrice DECIMAL(10,2));

Null values have certain properties that you need to remember when manipulating data that
may be null. For example, ALLBASE/SQL ignores columns or rows containing null values
when evaluating an aggregate function (except that COUNT (*) includes all null values).
Refer to the ALLBASE/SQL Reference Manual for a complete account of the properties of
null values.

Be sure to use an indicator variable in the SELECT and FETCH commands whenever
columns accessed may contain null values. A runtime error results if ALLBASE/SQL
retrieves a null value and the program contains no indicator variable.

An indicator variable will also detect truncated strings in the SELECT and FETCH
commands. In the SELECT command illustrated above, PartNameInd contains a value
>0 when a part name is too long for the host variable declared to hold it. The value in
PartNameInd indicates the actual length of the string before truncation.

3-4 Host Variables

Bulk Processing Variables

Bulk processing variables can be used with the BULK option of the SELECT or the INSERT
command.

When used with the BULK SELECT command, two input host variables may be named
following the array name in the INTO clause to specify how ALLBASE/SQL should store the
query result in the array:

INTO :ArrayName [,:StartIndex [,:NumberOfRows]]

The StartIndex value denotes at which array element the query result should start. The
NumberOfRows value is the maximum, total number of rows ALLBASE/SQL should put into
the array:

EXEC SQL BULK SELECT PurchasePrice * :Discount,

OrderQty,

OrderNumber

INTO :OrdersArray,

:FirstRow,

:TotalRows

FROM PurchDB.OrderItems

WHERE OrderNumber

BETWEEN :LowValue AND :HighValue

GROUP BY OrderQty, OrderNumber;

ALLBASE/SQL puts the entire query result, or the number of rows speci�ed in TotalRows ,
whichever is less, into the array named OrdersArray, starting at the array subscript stored in
FirstRow . If neither of these input host variables is speci�ed, ALLBASE/SQL stores as many
rows as the array can hold, starting at OrdersArray[0] . If FirstRow plus TotalRows is greater
than the size of the array, a runtime error occurs and the program aborts.

Bulk processing variables may be used with the BULK INSERT command to direct
ALLBASE/SQL to insert only certain rows from the input array:

EXEC SQL BULK INSERT INTO PurchDB.Orders

VALUES (:OrdersArray,

:FirstRow,

:TotalRows);

If a starting index or total number of rows is not speci�ed, ALLBASE/SQL inserts, starting at
the beginning of the array, as many rows as there are elements in the array.

Host Variables 3-5

Declaring Host Variables

Host variables may be declared wherever you can declare variables in C programs. For the
purpose of this discussion, we de�ne declaration part as the portion of a C program where
variables having the scope of a �le, a function, or a block can be declared.

At run time, the scope of a host variable is the same as that of any other C variable declared
in the same declaration part. At preprocessing time, however, all host variable declarations
are treated as global declarations. Therefore host variables having the same name in di�erent
declaration parts must also have the same C type description in each variable declaration.

Creating Declaration Sections

Host variables must be declared in what is known as a declare section. A declare section
consists of the SQL command BEGIN DECLARE SECTION, one or more variable
declarations, and the SQL command END DECLARE SECTION (as shown in Figure 3-1).
More than one declare section may appear in a given declaration part. However, a host
variable name may appear only once in a given declaration part.

Each host variable is declared by using a C type declaration. The declaration contains the
same components as any C variable declaration:

EXEC SQL BEGIN DECLARE SECTION;

int OrderNumber;

| |

| |

| data name

|

data type

EXEC SQL END DECLARE SECTION;

The data name must be the same as the host variable name in the corresponding SQL
statement. The data type must satisfy ALLBASE/SQL data type and ALLBASE/SQL C
preprocessor requirements.

3-6 Host Variables

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

.

. Declarations for global host variables.

.

EXEC SQL END DECLARE SECTION;

.

.

.

int query()

{

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

.

. Declarations for local host variables.

.

EXEC SQL END DECLARE SECTION;

.

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

.

. Declarations for local host variables.

.

EXEC SQL END DECLARE SECTION;

.

.

}

.

.

.

main()

{

.

.

.

}

Figure 3-1. Host Variable Declarations
Host Variables 3-7

Declaring Variables for Data Types

Any variable can be used as a host variable. Table 3-1 summarizes C data declarations for
host variables of each ALLBASE/SQL data type. Only the type descriptions shown in Table
3-1 are supported by the C preprocessor. Note in particular that the preprocessor does not
support user-de�ned data types.

CHAR Data

A CHAR column can be declared for character strings ranging from 1 to 3996 bytes.

A single byte of the char data type in ALLBASE/SQL is directly equivalent to a single byte
of the CHAR data type in C. Strings greater than one byte in C are associated with the char
array data type. Character arrays in C are not directly equivalent to the ALLBASE/SQL
CHAR data type; however, they are compatible. ALLBASE/SQL handles the conversion
between ALLBASE/SQL CHAR data types and C char array data types through code
generated by the preprocessor and embedded in the application's modi�ed source code �le.

For C strings (character arrays), C has the convention of using an ASCII 0 ('n0'), the null
character, to mark the end of the string. Therefore, char host variables declared in C must
have a size one greater than their ALLBASE/SQL column de�nition, to allow for the null
character at the end of the string. The PartNumber column in the PurchDB.Parts table is
de�ned as CHAR(30). The associated host variable is therefore declared:

char PartNumber[31];

When ALLBASE/SQL assigns CHAR data to a char array host variable, the total length of
the ALLBASE/SQL CHAR �eld is stored in the host variable including any trailing blanks on
the right of the data string. An ASCII 0 is then added after the last byte of the string.

VARCHAR Data

A VARCHAR column can be declared for strings ranging from 1 to 3996 bytes.
ALLBASE/SQL stores only the actual value of the string, not any trailing blanks.

Strings greater than one character in C are equivalent to the VARCHAR data type in
ALLBASE/SQL. C host variables for VARCHAR data types in ALLBASE/SQL are declared
the same as variables declared for CHAR data types. The only di�erence is that when
ALLBASE/SQL assigns VARCHAR data to a char array host variable, no trailing blanks are
added. An ASCII 0 is placed after the last character of the C string based on the speci�ed
length of the string.

The VendorRemarks column in the PurchDB.Vendors table is de�ned as VARCHAR(60). It is
therefore declared:

char VendorRemarks[61];

3-8 Host Variables

Table 3-1. Data Type Declarations

SQL DATA TYPES C DATA DECLARATIONS

CHAR(1) char dataname;

CHAR(n) char dataname[n+1];

VARCHAR(n) char dataname[n+1]; *

SMALLINT short dataname; or

short int dataname;

INTEGER int dataname; or

long int dataname; or

long dataname;

REAL float dataname;

FLOAT(1..24) float dataname;

FLOAT(25..53) double dataname;

DOUBLE PRECISION double dataname;

BINARY sqlbinary dataname;

sqlbinary dataname[n];

VARBINARY sqlvarbinary dataname[m]; **

DECIMAL double dataname;

DATE char dataname[11];

TIME char dataname[9];

DATETIME char dataname[24];

INTERVAL char dataname[21];

* This declaration is for non-dynamic
commands only. Refer to the chapter, \Using
Dynamic Operations," for a description of how
to use VARCHAR dynamically.
** See the \BINARY Data" section later in this
chapter for the calculation of m.

Host Variables 3-9

Table 3-2. Program Element Declarations

PROGRAM ELEMENT C DATA DECLARATIONS

Indicator variable sqlind indvarname;

Array of n rows struct structtypenamef

Data values validdatatype column1name;
validdatatype column2name;

Indicator variable sqlind indvarname;
gstructname[n];

StartIndex short startindexname; or

int startindexname;

NumberOfRows short numrowsname; or

int numrowsname;

Dynamic commands char commandname[n+1];

Savepoint numbers int savepointname;

Message catalog messages char messagename[n+1];

DBEnvironment name char DBEName[n+1];

3-10 Host Variables

SMALLINT Data

You can assign values ranging from -32,768 to +32,767 to a column de�ned as SMALLINT.

INTEGER Data

You can assign values ranging from -2,147,483,648 to +2,147,483,647 to a column de�ned as
INTEGER.

FLOAT Data

ALLBASE/SQL o�ers the option of specifying the precision of
oating point data. You have
the choice of a 4-byte or an 8-byte
oating point number. (This conforms to ANSI SQL86
level 2 speci�cations.) The keyword REAL and FLOAT(1) through FLOAT(24) speci�cations
map to a 4-byte
oat. The FLOAT(25) through FLOAT(53) and DOUBLE PRECISION
speci�cations map to an 8-byte
oat.

The REAL data type could be useful when the number you are dealing with is very small, and
you do not require a great deal of precision. However, it is subject to over
ow and under
ow
errors if the value goes outside its range. It is also subject to greater rounding errors than
double precision. With the DOUBLE PRECISION (8-byte
oat) data type, you can achieve
signi�cantly higher precision and have available a larger range of values.

By using the CREATE TABLE or ALTER TABLE command, you can de�ne a
oating point
column by using a keyword from the following table. See the ALLBASE/SQL Reference
Manual for complete syntax speci�cations.

Table 3-3. ALLBASE/SQL Floating Point Column Specifications

Possible Keywords Range of Possible Values Stored In
and

Boundary
Aligned On

REAL
or
FLOAT(n)
where
n = 1 through 24

�3.402823 E+38 through �1.175495 E�38
and

1.175495 E�38 through 3.402823 E+38
and
0

4 bytes

DOUBLE PRECISION
or
FLOAT
or
FLOAT(n)
where
n = 25 through 53

�1.79769313486231 E+308 through �2.22507385850721 E�308
and

+2.22507385850721 E�308 through +1.79769313486231 E+308
and
0

8 bytes

Floating Point Data Compatibility. Floating point data types are compatible with each
other and with other ALLBASE/SQL numeric data types (DECIMAL, INTEGER, and
SMALLINT). All arithmetic operations and comparisons and aggregate functions are
supported.

Host Variables 3-11

BINARY Data

As with other data types, use the CREATE TABLE or ALTER TABLE statement to de�ne a
binary or varbinary column. Up to 3996 bytes can be stored in such a column.

BINARY data is stored as a �xed length of left-justi�ed bytes. It is zero padded up to
the �xed length you have speci�ed. VARBINARY data is stored as a variable length of
left-justi�ed bytes. You specify the maximum possible length. (Note that CHAR and
VARCHAR data is stored in the same manner except that CHAR data is blank padded.)

Binary Data Compatibility. BINARY and VARBINARY data types in an ALLBASE/SQL
database are compatible with each other and with CHAR and VARCHAR data types. They
can be used with all comparison operators and the aggregate functions MIN and MAX, but
arithmetic operations are not allowed.

Using the LONG Phrase with Binary Data Types. If the amount of data in a given column of a
row can exceed 3996 bytes, it must be de�ned as a LONG column. Use the CREATE TABLE
or ALTER TABLE command to specify the column as either LONG BINARY or LONG
VARBINARY.

LONG BINARY and LONG VARBINARY data is stored in the database just as BINARY
and VARBINARY data, except that its maximum possible length is practically unlimited.

When deciding on whether to use LONG BINARY versus LONG VARBINARY, and if
space is your main consideration, you would choose LONG VARBINARY. However, LONG
BINARY o�ers faster data access.

LONG BINARY and LONG VARBINARY data types are compatible with each other, but not
with other data types. Also, the concept of inputting and accessing LONG column data di�ers
from that of other data types. Refer to the ALLBASE/SQL Reference Manual for detailed
syntax and to the chapter in this document titled \De�ning and Using Long Columns" for
information about using LONG column data.

Declaring Host Variables for BINARY Data. Host variables for BINARY data columns must be
declared as sqlbinary, as in the following example:

EXEC SQL BEGIN DECLARE SECTION;
...

sqlbinary BinaryHostVariableName[n];
...

EXEC SQL END DECLARE SECTION;

The host variable array size n equals the length of the column as de�ned in the database.

At preprocessing time, the ALLBASE/SQL preprocessor sqlbinary data type is de�ned as an
unsigned char with the following statement in the SQL Type Include File:

typedef unsigned char sqlbinary;

An sqlbinary host variable is used for �xed length data. It is your responsibility to
appropriately load binary data into the host variable before an insert or update operation.

3-12 Host Variables

In the following example, data from a binary column de�ned with a length of 12 is selected
into an sqlbinary host variable.

...

EXEC SQL BEGIN DECLARE SECTION;

sqlbinary BinaryHV[12];

EXEC SQL END DECLARE SECTION;

...

EXEC SQL SELECT BinaryColumn

INTO :BinaryHV

FROM TableA;...

Declaring Host Variables for VARBINARY Data. Host variables for VARBINARY data columns
must be declared as sqlvarbinary, as in the following example:

EXEC SQL BEGIN DECLARE SECTION;
...

sqlvarbinary VarbinaryHostVariableName[m]
...

EXEC SQL END DECLARE SECTION;

At preprocessing time, the ALLBASE/SQL preprocessor sqlvarbinary data type is de�ned as
an integer with the following statement in the SQL Type Include File:

typedef int sqlvarbinary;

You specify the host variable array size m based on the following formula:

m = 1 + [n/4]

where:

m = the host variable array size
n = the length of the column as de�ned in the database
[n/4] = the LeastInteger of (n/4)

LeastInteger is the smallest integer >= (n/4).

Host Variables 3-13

In order to pass information between an sqlvarbinary host variable and the database, a special
format is used. The internal format of an sqlvarbinary host variable is illustrated below:

Array Index 0 1 . . . m-1

Byte Offset 0 4 (m-1)*4 m*4

+---------+----------------------------------+---------+

| Length | Data |

+---------+----------------------------------+---------+

where:

Length, in the �rst four bytes, represents the actual data length.
Data starts from byte o�set four and represents the varbinary data.
(m-1)*4 equals the byte o�set of the last element of the sqlvarbinary array.
m*4 equals the end of the sqlvarbinary array.

For example, to declare an sqlvarbinary host variable for a varbinary column having a
maximum length of nine, you de�ne the host variable with an array size of four (one four byte
element to hold the actual data length and three four byte elements for the data):

EXEC SQL BEGIN DECLARE SECTION;

sqlvarbinary VarbinaryHV[4];

EXEC SQL END DECLARE SECTION;

Inserting and Updating VARBINARY Data. Before issuing an INSERT or UPDATE statement,
you must load the sqlvarbinary host variable using the format mentioned in the previous
section. Two examples of loading data into an sqlvarbinary host variable are presented below.
The �rst example loads data from a bu�er; the second example loads data from a union
structure.

Using a Bu�er

Suppose your varbinary column is de�ned in the database with a maximum length of 16. You
want to to load it with data from a bu�er called bbu� as follows:

...

int length;

char bbuff[16];

EXEC SQL BEGIN DECLARE SECTION;

Derive the host variable length from the formula described in the previous section,

"Declaring Host Variables for Varbinary Data," as follows:

1 + the LeastInteger of (16/4).

sqlvarbinary VarbinaryHV[5];

EXEC SQL END DECLARE SECTION;

...

3-14 Host Variables

Load the �rst array element with the actual data length.

Here we'll assume actual length to be 11 bytes.

VarbinaryHV[0] = 11;

Load the data in bbu�, starting at the second element of the array.

memcpy(&VarbinaryHV + 1, &bbuff, 11);

EXEC SQL INSERT INTO TableA VALUES (:VarbinaryHV, . . .);

...

Using a Union Structure

Here is another method of loading the same host variable. In the following example, the data
length and data are loaded into a union structure and then into the sqlvarbinary host variable:

...

int length;

char bbuff[16];

union u_t {

struct {

int length;

int data[4];

} s1;

int ubuff[5];

} u1;

EXEC SQL BEGIN DECLARE SECTION;

...

Derive the host variable length from the formula described in the previous section,

"Declaring Host Variables for Varbinary Data," as follows:

1 + the LeastInteger of (16/4).

sqlvarbinary VarbinaryHV[5];

EXEC SQL END DECLARE SECTION;

...

Load the length �eld of the structure with the actual column data length.

Here we'll assume actual length to be 11 bytes.

u1.s1.length = 11;

Host Variables 3-15

Load the data in bbu�, into the data �eld of the structure.

memcpy(u1.s1.data, &bbuff, 11);

Load the length and the data into the varbinary host variable.

memcpy(&VarbinaryHV, &(u1.ubuff), sizeof(u1.ubuff));

EXEC SQL INSERT INTO TableA VALUES (:VarbinaryHV, . . .);

...

Selecting and Fetching VARBINARY Data. After the successful execution of a SELECT or
FETCH statement, the length of the data returned for any varbinary column is found in the
�rst element of the related host variable array.

Two examples of retrieving data from an sqlvarbinary host variable are presented below. The
�rst example loads retrieved data into a bu�er; the second example loads retrieved data into a
union structure. The same data declarations used for the examples in the previous section are
assumed.

Using a Bu�er

The following example selects data into an sqlvarbinary host variable, loads it into a bu�er
named bbu�, and saves the length of the data in an integer variable named length:

...

EXEC SQL SELECT * FROM TableA INTO :VarbinaryHV, . . . ;

memcpy (&bbuff, &VarbinaryHV+1, VarbinaryHV[0]);

length = VarbinaryHV[0];

...

Using a Union Structure

The following example selects data into an sqlvarbinary host variable, loads it into a union
structure, saves the length of the data in an integer variable named length, and saves the data
in a bu�er named bbu�:

...

EXEC SQL SELECT * FROM TableA INTO :VarbinaryHV, . . . ;

memcpy(&(u1.ubuff), &VarbinaryHV, sizeof(u1.ubuff));

length = u1.s1.length;

memcpy(&bbuff, &(u1.s1.data), u1.s1.length);

...

3-16 Host Variables

DECIMAL Data

The DECIMAL data type is not supported by ALLBASE/SQL C. The DECIMAL data type
is compatible with an ALLBASE/SQL C double data type.

When you use DECIMAL values in arithmetic operations and certain aggregate functions, the
precision and scale of the result are functions of the precisions and scales of the values in the
operation. Refer to the ALLBASE/SQL Reference Manual for a complete account of how to
calculate the precision and scale of DECIMAL results.

DATE, TIME, DATETIME, and INTERVAL Data

DATE, TIME, DATETIME, and INTERVAL data types are declared as character strings.
(See the previous section, \CHAR Data.") For example:

/* Declare host variables and, where applicable, indicator variables. */

EXEC SQL BEGIN DECLARE SECTION; /* DATETIME DATA TYPE */

char BatchStamp[24]; /* DATE DATA TYPE */

char TestDate[11];

sqlind TestDateInd; /* TIME DATA TYPE */

Char TestStart[9];

sqlind TestStartInd; /* INTERVAL DATE TYPE */

char LabTime[21];

sqlind LabTimeInd;

EXEC SQL END DECLARE SECTION;

/*DECLARE and OPEN CURSOR C1 here. Nulls not allowed for BatchStamp.*/

EXEC SQL FETCH C1

INTO :BatchStamp,

:TestDate :TestDateInd,

:TestSart :TestStartInd,
:LabTime :LabTimeInd;

See the chapter, \Understanding Date/Time Functions," for information on using date/time
data types with date/time functions.

Using Default Data Values

You can choose a default value other than NULL when you create or alter a table by using
the DEFAULT speci�cation. Then when data is inserted, and a given column is not in the
insert list, the speci�ed default value is inserted. Or when you alter a table, adding a column
to existing rows, every occurrence of the column is initialized to the default value. (This
conforms to ANSI SQL1 level 2 with addendum-1 and FIPS 127 standards.)

Host Variables 3-17

When a table or column is de�ned with the DEFAULT speci�cation, you will not get an error
if a column de�ned as NOT NULL is not speci�ed in the insert list of an INSERT command.
Without the DEFAULT speci�cation, if a column is de�ned as NOT NULL, it must have some
value inserted into it. However, if the column is de�ned with the DEFAULT speci�cation, it
satis�es both the requirement that it be NOT NULL and have some value, in this case, the
default value. If a column not in an insert list does allow a NULL, then a NULL is inserted
instead of the default value. Your default speci�cation options are:

NULL.
USER (this indicates the current DBEUser ID).
A constant.
The result of the CURRENT DATE function.
The result of the CURRENT TIME function.
The result of the CURRENT DATETIME function.

Complete syntax for the CREATE TABLE and ALTER TABLE commands as well as
de�nitions of the above options are found in the ALLBASE/SQL Reference Manual . In
e�ect, by choosing any option other than NULL, you assure the column's value to be NOT
NULL and of a particular format, unless and until you use the UPDATE command to enter
another value.

In the following example, the OrderNumber column defaults to the constant 5, and it is
possible to insert a NULL value into the column:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DEFAULT 5 ,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

However, suppose you want to de�ne a column default and specify that the column cannot be
null. In the next example, the OrderNumber column defaults to the constant 5, and it is not
possible to insert a NULL value into this column:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NN
DEFAULT 5 NOT NULL ,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

3-18 Host Variables

Coding Considerations

Any default value must be compatible with the data type of its corresponding column. For
example, when the default is an integer constant, the column for which it is the default must
be created with an ALLBASE/SQL data type of INTEGER, REAL, or FLOAT.

In your application, you input or access data for which column defaults have been de�ned just
as you would data for which defaults are not de�ned. In this chapter, refer to the section,
\Declaring Variables for Data Types", for information on using the data types in your
program. Also refer to the section, \Declaring Variables for Compatibility", for information
relating to compatibility.

When the DEFAULT Clause Cannot be Used

You can specify a default value for any ALLBASE/SQL column except those de�ned as
LONG BINARY or LONG VARBINARY. For information on these data types, see the
section in this document titled \Using the LONG Phrase with Binary Data Types."

With the CREATE TABLE command, you can use either a DEFAULT NULL speci�cation
or the NOT NULL speci�cation. An error results if both are speci�ed for a column as in
the next example:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNN
DEFAULT NULL NOT NULL ,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

Host Variables 3-19

Declaring Variables for Compatibility

Under the following conditions, ALLBASE/SQL performs data type conversion when
executing SQL commands containing host variables under the following circumstances:

When the data types of values transferred between your program and a DBEnvironment do
not match.

When data of one type is moved to a host variable of a di�erent type.

when values of di�erent types appear in the same expression.

Data types for which type conversion can be performed are called compatible data types.
Table 3-4 summarizes data type-host variable compatibility. It also points out which data
type combinations are incompatible and which data type combinations are equivalent, i.e.,
require no type conversion. E describes an equivalent situation, C a compatible situation, and
I an incompatible situation.

Table 3-4. C Data Type Equivalency and Compatibility

ALLBASE\SQL

Data

Types

char char[n] short

shortint

int

long

longint

double

longfloat

CHAR E C I I I

VARCHAR C C I I I

BINARY C C I I I

VARBINARY I I C C I

DATE C C I I I

TIME C C I I I

DATETIME C C I I I

INTERVAL C C I I I

SMALLINT I I E C C

INTEGER I I C E C

FLOAT I I C C E

DECIMAL I I C C C

As the following example illustrates, the ISQL INFO command provides the information you
need to declare host variables compatible with or equivalent to ALLBASE/SQL data types. It
also provides the information you need to determine whether an indicator variable is needed
to handle null values:

3-20 Host Variables

isql=> INFO PurchDB.OrderItems;

Column Name Data Type (length) Nulls Allowed

ORDERNUMBER Integer NO

ITEMNUMBER Integer NO

VENDPARTNUMBER Char (16) YES

PURCHASEPRICE Decimal (10,2) NO

ORDERQTY Smallint YES

ITEMDUEDATE Char (8) YES

RECEIVEDQTY Smallint YES

For example, the query in Figure 3-2 produces a single-row query result. The declare
section contains data types equivalent to or compatible with the data types in the
PurchDB.OrderItems table:

PurchasePrice is declared as a double variable because it holds the DECIMAL result of an
aggregate function on a DECIMAL column.

Discount is declared as a double variable because it is used in an arithmetic expression with
a DECIMAL column, PurchasePrice.

OrderQty is declared as a short int variable because it holds the result of a SMALLINT
column, OrderQty.

OrderQtyInd is an indicator variable, necessary because the resulting OrderQty can contain
null values. Note in the INFO example above that this column allows null values.

OrderNumber is an integer variable because the column whose data it holds is INTEGER.

Host Variables 3-21

.

EXEC SQL BEGIN DECLARE SECTION;

double Discount ;

double PurchasePrice ;

short int OrderQty ;

sqlind OrderQtyInd ;

int OrderNumber ;

.

.

EXEC SQL END DECLARE SECTION;

.

{

.

EXEC SQL SELECT PurchasePrice * :Discount ,

OrderQty,

INTO :PurchasePrice,

:OrderQty :OrderQtyInd

FROM PurchDB.OrderItems
WHERE OrderNumber = :OrderNumber

.

.

}

Figure 3-2. Declaring Host Variables for Single-Row Query Results

The example in Figure 3-3 is similar to that in Figure 3-2. This query, however, is a BULK
query, which may return a multiple-row query result. And it incorporates a HAVING clause.

OrdersArray is the name of the array for storing the query result. It can hold up to 26
rows. Each row in the array has the same format as that in the single-row query result just
discussed.

FirstRow and TotalRows are declared as short int variables, since their maximum value is
the size of the array (in this case, 26).

GroupCriterion is an integer variable because its value is compared in the HAVING clause
with the result of a COUNT function, which is always an INTEGER value.

3-22 Host Variables

.

.

EXEC SQL BEGIN DECLARE SECTION;

double Discount;

struct {

double PurchasePrice;

short int OrderQty;

sqlind OrderQtyInd;

int OrderNumber;

} OrdersArray[26];

short int FirstRow;

short int TotalRows;

int LowValue;

int HighValue;

int GroupCriterion;

.

.

EXEC SQL END DECLARE SECTION;
.

.

{

.

.

EXEC SQL BULK SELECT PurchasePrice * :Discount ,

OrderQty,

OrderNumber

INTO :OrdersArray,

:FirstRow,

:TotalRows

FROM PurchDB.OrderItems

WHERE OrderNumber

BETWEEN :LowValue AND :HighValue

GROUP BY OrderQty, OrderNumber

HAVING COUNT(ItemNumber) > :GroupCriterion ;

.

.

}

Figure 3-3. Declaring Host Variables for Multiple-Row Query Results

Host Variables 3-23

String Data Conversion

When ALLBASE/SQL stores the characters in a C string into a CHAR column, the �nal
ASCII 0 is removed and any remaining positions to the right are padded with spaces.
Internally, when ALLBASE/SQL stores the characters in a C string to a VARCHAR column,
it only stores the string up to but not including the ASCII 0. The length of the string is
stored in a four-byte header in the front of each VARCHAR data type.

When ALLBASE/SQL moves VARCHAR data to a character array variable, only the length
of the string is moved, no trailing blanks are added. ALLBASE/SQL embeds preprocessor
generated code into the modi�ed source code �le to place an ASCII 0 at the end of the
string variable. Refer to the \Using Dynamic Operations" chapter in this manual for further
information speci�c to dynamic operations.

String Data Truncation

If the target host variable used in a SELECT or FETCH operation is too small to hold an
entire string, the string is truncated. You can use an indicator variable to determine the
actual length of the string in bytes before truncation:

EXEC SQL BEGIN DECLARE SECTION;

char LittleString[n];

sqlind LittleStringInd;

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

{

.

.

.

EXEC SQL SELECT BigString

INTO :LittleString :LittleStringInd

.

.

.

}

When the value in column BigString is too long to �t in host variable LittleString ,
ALLBASE/SQL puts the actual length of the string in bytes into indicator variable
LittleStringInd . In this example, the maximum number of bytes that can be stored in
LittleString is n-1, since the last byte is always reserved for the ASCII 0 null character.

If a column is too small to hold a string in an INSERT or an UPDATE operation, the string is
truncated and stored. The sqlca sqlwarn[1] �eld is set to W when this occurs.

It is possible to store native language data in a character column de�ned as n-computer. It
is the programmer's responsibility to verify the language de�nition of the column that is to
receive data. If the character column is de�ned for a native language, truncation will always
occur on a proper character boundary for that language.

3-24 Host Variables

Numeric Data Conversion

When you use numeric data of di�erent types in an expression or comparison operation, data
of the lesser type is converted into data of the greater type, and the result is expressed in the
greater type. ALLBASE/SQL numeric types have the following precedence, from highest to
lowest:

1. FLOAT
2. DECIMAL
3. INTEGER
4. SMALLINT

The following example illustrates numeric type conversion:

EXEC SQL BEGIN DECLARE SECTION;

int Discount;

int MaxPurchasePrice;

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

{

.

.

.

EXEC SQL SELECT (MAX)PurchasePrice * :Discount

INTO :MaxPurchasePrice

FROM PurchDB.OrderItems;
.

.

.

}

The select list of the query illustrated contains an aggregate function, MAX . The argument
of the function is the PurchasePrice column, de�ned in the PartsDBE DBEnvironment
as DECIMAL(10,2). Therefore the result of the function is DECIMAL. Since the host
variable named Discount is declared as an integer, a data type compatible with DECIMAL,
ALLBASE/SQL converts the value in Discount to a DECIMAL quantity having a precision of
10 and a scale of 0.

After subtraction, data conversion occurs again before the DECIMAL result is stored in the
integer host variable MaxPurchasePrice. In this case, the fractional part of the DECIMAL
value is truncated.

Refer to the ALLBASE/SQL Reference Manual for additional information on how type
conversion can cause truncation and over
ow of numeric values.

Host Variables 3-25

Declaring Variables for Program Elements

The following section discusses how to declare elements speci�c to ALLBASE/SQL programs.
In addition, Table 3-2 provides examples of these special elements.

sqlca Array

Every ALLBASE/SQL C program must have the SQL Communications Area (sqlca) declared
in the global declaration part. You can use the INCLUDE command to declare the sqlca:

EXEC SQL INCLUDE SQLCA;

When the C preprocessor parses this command, it inserts the following type de�nition into the
modi�ed source �le:

sqlca_type sqlca;

Optionally, you can use this type de�nition in the global declaration part of your source �le
instead of using the INCLUDE command to declare the sqlca.

Refer to the chapter, \Runtime Status Checking," for further information regarding the sqlca.

Dynamic Processing Arrays

For programs which accept dynamic queries, you include three special declarations in a
declaration part:

EXEC SQL INCLUDE SQLDA;

This command causes the preprocessor to declare the sqlda as

type sqlda type, de�ned in the preprocessor-generated type

declaration include �le.

sqlformat_type sqlfmts[MaxFmtArray];

This declaration identi�es the format array and its size.

MaxFmtArray is a constant representing the maximum number

of columns you expect in the query result. Sqlformat type

is de�ned in the type declaration include �le.

char DataBuffer[MaxDataBuff];

This declaration identi�es a data bu�er and its size.

MaxDataBu� is a constant representing the maximum number

of bytes you will need to hold the number of rows you

request in the sqlnrow �eld of the sqlda.

See the chapter on \Using Dynamic Operations" for more information.

3-26 Host Variables

Bulk Processing Arrays

When you declare a structure array for holding the results of a BULK SELECT or BULK
FETCH operation, ensure that you declare the �elds in the same order as in the select list.
(For single-row query results, however, the order of declaration does not have to match the
select list order.) In addition, each indicator variable �eld must be declared in the declaration
of the structure array immediately after the host variable �eld it describes. And if used,
the bulk processing indicator variables (starting index and number of rows) are referenced
in order, immediately following the reference to your array name. Figure 3-3 provides an
example.

Indicator Variables

Each indicator variable �eld must be declared immediately following the host variable �eld it
describes as shown in Figures 3-2 and 3-3. If a column allows nulls, a null indicator must be
declared for it.

Dynamic Commands

The maximum size for the host variables used to hold dynamic commands is 32,762 bytes. In
Figure 3-4, the host variable is declared to hold a command as large as 2048 bytes.

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

char DynamicCommand[2048] ;

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

{

.

.

.

EXEC SQL PREPARE CommandOnTheFly

FROM :DynamicCommand ;

.

.

.

}

Figure 3-4. Declaring Host Variables for Dynamic Commands

Host Variables 3-27

Savepoint Numbers

Savepoint numbers are positive numbers ranging from 1 to 2,147,483,647. A host variable for
holding a savepoint number should be declared as an integer.

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

int SavePoint1 ;

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

{

.

.

.

EXEC SQL SAVEPOINT :Savepoint1 ;

.

.

.

EXEC SQL ROLLBACK WORK TO :Savepoint1 ;

.

.

}

Figure 3-5. Declaring Host Variables for Savepoint Numbers

3-28 Host Variables

Messages from the Message Catalog

The maximum size of a message catalog message is 256 bytes. Figure 3-6 illustrates how a
host variable for holding a message might be declared.

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

char SQLMessage[256] ;

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

{

.

.

.
EXEC SQL SQLEXPLAIN :SQLMessage ;

printf("%s\n",SQLMessage);

.

.

.

}

Figure 3-6. Declaring Host Variables for Message Catalog Messages

Host Variables 3-29

DBEnvironment Name

The maximum pathname (either relative or absolute) of a DBECon �le is 128 bytes. The
DBECon �le name is the same as the DBEnvironment name. The name you store in this host
variable does not have to be delimited by single quotation marks.

EXEC SQL BEGIN DECLARE SECTION;

char SomeDBE[128];

.

.

.

EXEC SQL END DECLARE SECTION;

.

.

.

{

printf("\n Enter DBEnvironment name> ");

scanf("%s",SomeDBE);

EXEC SQL CONNECT to :SomeDBE;

.

.

.

}

Figure 3-7. Declaring Host Variables for DBEnvironment Names

This host variable can be declared as a string or as a character array. In the example, it is
declared as a character array large enough to hold the absolute �le name of any DBECon �le.

3-30 Host Variables

4

Runtime Status Checking and the sqlca

This chapter examines the need for runtime status checking. It describes the sqlca and
the conditions under which its data items are set by ALLBASE/SQL. It also gives several
examples of implicit and explicit status checking, some of which use SQLEXPLAIN to display
a status message. Examples of handling speci�c status checking tasks are included under
\Approaches to Status Checking."

When an SQL command is executed, ALLBASE/SQL returns information describing how the
command executed. This information signals one or more of the following status conditions:

The command was successfully executed.

The command could not be executed because an error condition occurred, but the current
transaction will continue.

No rows quali�ed for a data manipulation operation.

A speci�c number of rows were placed into output host variables.

A speci�c number of rows quali�ed for an INSERT, UPDATE, or DELETE operation.

The command was executed, but a warning condition resulted.

The command was executed, but a character string was truncated.

The command was executed, but a null value was eliminated from an aggregate function.

The command could not be executed because the number of variables in a SELECT or
FETCH statement is unequal to the number of columns in the table being operated on.
This applies to dynamic processing only.

The command could not be executed because an error condition necessitated rolling back
the current transaction.

Based on this runtime status information, a program can COMMIT WORK, ROLLBACK
WORK, continue, terminate, display a message, or perform some other appropriate activity.

You can use the WHENEVER command to perform implicit status checking. This means
that ALLBASE/SQL checks the sqlcode and sqlwarn[0] values for you, then takes an action
based on information you provide in the WHENEVER command.

You can write C code that explicitly examines one or more of the seven sqlca elements, then
proceeds on the basis of their values. This kind of status checking is called explicit status
checking.

You can use a combination of both implicit and explicit status checking.

In conjunction with status checking of any kind, you can use the SQLEXPLAIN command.
This command retrieves a message from the ALLBASE/SQL message catalog that describes
an error or warning condition.

Runtime Status Checking and the sqlca 4-1

When several errors or warnings occur, you can use SQLEXPLAIN to retrieve messages for all
of them. Messages are available to your program in the order in which the errors or warnings
occurred. When ALLBASE/SQL rolls back the current transaction, it does not continue to
look for errors. This means that the last message retrieved will indicate the cause of the roll
back. An example of this scenario is presented later in this chapter under \sqlcode." Refer to
the ALLBASE/SQL Message Manual for an explanation of all error and warning messages.

Purposes of Status Checking

Status checking is performed primarily for the following reasons:

To gracefully handle runtime error and warning conditions.

To maintain data consistency.

To return information about the most recently executed command.

Handling Runtime Errors and Warnings

A program is said to be robust if it anticipates common runtime errors and handles them
gracefully. In online applications, robust programs may allow the user to decide what to do
when an error occurs rather than just terminating. This approach is useful, for example, when
a deadlock occurs.

If a deadlock occurs, sqlcode is set to -14024 and an SQLEXPLAIN call retrieves the following
message:

Deadlock detected. (DBERR 14024)

ALLBASE/SQL rolls back the transaction containing the SQL command that caused the
deadlock. You may want to either give the user the option of restarting the transaction,
automatically re-execute the transaction a �nite number of times before notifying the user of
the deadlock, or re-execute the transaction until the deadlock is resolved.

Maintaining Data Consistency

Two or more data values, rows, or tables are said to be consistent if they agree in some way.
Changes to such interdependent values are either committed or rolled back at the same
time in order to retain data consistency. In other words, the set of operations that form a
transaction are considered as an atomic operation; either all or none of the operations are
performed on the database. Status checking in this case determines whether to commit or roll
back work.

4-2 Runtime Status Checking and the sqlca

For example, in the sample database (SampleDBE), each order is de�ned by rows
in two tables: one row in the PurchDB.Orders table and one or more rows in the
PurchDB.OrderItems table. A transaction that deletes orders from the database has to delete
all the rows for a speci�c order from both tables to maintain data consistency. A program
containing such a transaction should commit work to the database only if it is able to delete
the row from the PurchDB.Orders table and delete all the rows for the same order from the
PurchDB.OrderItems table:

EXEC SQL BEGIN WORK;

EXEC SQL DELETE FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber;

If this command succeeds, the program

submits the following command.

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderNumber = :OrderNumber;

If this command succeeds, the program

submits a COMMIT WORK command. If this

command does not succeed, the

program submits a ROLLBACK WORK command.

This ensures that the previous delete won't

remove part of the information about this

order when the rest of the information could not

be deleted.

Checking the Most Recently Executed Command

Depending on which ALLBASE/SQL command was most recently executed, you can make
checks to insure that the command executed in a manner appropriate to the program's
context. The following section, \Using the sqlca," gives explanations based on each sqlca
element. Later in this chapter, the section \Explicit Status Checking Techniques" provides
examples based on speci�c programming tasks.

Runtime Status Checking and the sqlca 4-3

Using the sqlca

Every ALLBASE/SQL program must have the SQL Communications Area (sqlca) declared in
the global declaration part. You can use the INCLUDE command to declare the sqlca:

EXEC SQL INCLUDE SQLCA;

When the C preprocessor parses this command, it inserts the following type de�nition into the
modi�ed source �le:

sqlca_type sqlca;

Optionally, you can use this type de�nition in the global declaration part of your source �le
instead of using the INCLUDE command to declare the sqlca.

The C preprocessor generates the following record declaration for sqlca type in the type
declaration include �le:

typedef struct {

char sqlaid[8];

int sqlabc;

int sqlcode;

int sqlerrl;

char sqlerrm[256];

char sqlerrp[8];

int sqlerrd[6];

char sqlwarn[8];

char sqlext[8];

} sqlca_type;

The following elements in this record are available for you to use in status checking and are
accessed as follows. The other elements are reserved for use by ALLBASE/SQL only.

sqlcode or sqlca.sqlcode

sqlca.sqlerrd[2]

sqlca.sqlwarn[0] or sqlca.sqlwarn0

sqlca.sqlwarn[1] or sqlca.sqlwarn1

sqlca.sqlwarn[2] or sqlca.sqlwarn2
sqlca.sqlwarn[3] or sqlca.sqlwarn3 (used only for dynamic commands)

sqlca.sqlwarn[6] or sqlca.sqlwarn6

Note In conformance with the ANSI standard, either sqlcode or sqlca.sqlcode may
be used to address this particular element. And each sqlwarn element can be
addressed in two di�erent ways.

The following table gives an overview of how ALLBASE/SQL sets these �elds. Each �eld
is then described with brief examples of how you can use it, including examples for using
SQLEXPLAIN. Methods of handling speci�c status checking tasks are found in the succeeding
section, \Approaches to Status Checking."

4-4 Runtime Status Checking and the sqlca

Table 4-1. sqlca Status Checking Fields

FIELD NAME SET TO CONDITION

sqlca.sqlcode or sqlcode 0

less than 0

100

no error occurred during command
execution

error, command not executed

no rows qualify for DML operation
(does not apply to dynamic commands)

sqlca.sqlerrd[2] number of rows put into
output host variables

number of rows processed

0

0

data retrieval operation

data change operation

error in single row data change
operation

sqlcode equals 100

sqlca.sqlwarn[0] or sqlca.sqlwarn0 W warning, command not properly
executed

sqlca.sqlwarn[1] or sqlca.sqlwarn1 W at least one character string value
was truncated when being stored in
a host variable

sqlca.sqlwarn[2] or sqlca.sqlwarn2 W at least one null value was eliminated
from the argument set of an aggregrate
function

sqlca.sqlwarn[3] or sqlca.sqlwarn3 W for dynamic commands only, when the
number of host variables in a SELECT
or FETCH is unequal to the number of
columns in the table being operated on

sqlca.sqlwarn[6] or sqlca.sqlwarn6 W the current transaction was rolled back

Runtime Status Checking and the sqlca 4-5

sqlcode

sqlcode can contain one of the following values:

0, when an SQL command executes without generating an error condition and without
generating a no rows qualify condition.

A negative number, when an error condition exists and an ALLBASE/SQL command
cannot be executed.

100, when no rows qualify for one of the following commands, but no error condition exists:

SELECT

INSERT

UPDATE (non-dynamic execution only)

DELETE (non-dynamic execution only)

BULK SELECT

FETCH

BULK FETCH

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

Note that the absolute value of sqlcode is the same as the absolute value associated with its
corresponding message in the ALLBASE/SQL message catalog. This absolute value is part of
the returned message. If an error occurs, the message number is preceded by DBERR. For
example, the error message associated with an sqlcode of -2613 is:

Precision digits lost in decimal operation MULTIPLY. (DBERR 2613)

Sqlcode is set by all SQL commands except the following directives:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

WHENEVER

When sqlcode is -4008, -14024, or a greater negative value than -14024, ALLBASE/SQL
automatically rolls back the current transaction. When this condition occurs, ALLBASE/SQL
also sets sqlwarn[6] to W. Refer to the discussion later in this chapter on sqlwarn[6] for more
on this topic.

More than one sqlcode is returned when more than one error occurs. For example, if you
attempt to execute the following SQL command, two negative sqlcode values result:

EXEC SQL ADD PUBLIC, GROUP1 TO GROUP GROUP1;

The sqlcodes associated with the two errors are:

-2308, which indicates the reserved name PUBLIC is invalid.

-2318, which indicates you cannot add a group to itself.

4-6 Runtime Status Checking and the sqlca

To obtain all sqlcodes associated with the execution of an SQL command, you execute the
SQLEXPLAIN command until sqlcode is 0:

if (sqlca.sqlcode == 100) {
printf("No rows qualified for this operation.\n");

}

else

if (sqlca.sqlcode < 0) SQLStatusCheck();

.

.

.

int SQLStatusCheck()

{

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

}

The function named SQLStatusCheck is executed when sqlcode is a negative number. Before
executing SQLEXPLAIN for the �rst time, the program has access to the �rst sqlcode
returned. Each time SQLEXPLAIN is executed subsequently, the next sqlcode becomes
available to the program, and so on until sqlcode equals 0.

This example explicitly tests the value of sqlcode twice: �rst to determine whether it is equal
to 100 , then to determine whether it is less than 0 . If the value 100 exists, no error will have
occurred and the program will display the message No rows qualify for this operation.

It is necessary for the program to display its own message in this case, because SQLEXPLAIN
messages are available to your program only when sqlcode contains a negative number and
when sqlwarn[0] contains a W.

The sqlcode is also used in implicit status checking:

ALLBASE/SQL tests for the condition sqlcode less than 0 when you use the SQLERROR
option of the WHENEVER command.

ALLBASE/SQL tests for the condition sqlcode equal to 100 when you use the NOT
FOUND option of the WHENEVER command.

In the following situation, when ALLBASE/SQL detects a negative sqlcode, the code routine
at label a2000 is executed. When ALLBASE/SQL detects an sqlcode of 100, the code routine
at label a4000 is executed instead:

EXEC SQL WHENEVER SQLERROR GOTO a2000;

EXEC SQL WHENEVER NOT FOUND GOTO a4000;

WHENEVER commands remain in e�ect for all SQL commands that appear physically after
them in the source program until another WHENEVER command for the same condition
appears.

The scope of WHENEVER commands is fully explained later in this chapter under \Implicit
Error Handling Techniques."

Runtime Status Checking and the sqlca 4-7

sqlerrd[2]

sqlca.sqlerrd[2] can contain one of the following values:

0, when sqlcode is 100 or when one of the following commands causes an error condition:

INSERT

UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

If an error occurs during execution of INSERT, UPDATE, or DELETE, one or more
rows may have been processed prior to the error. In these cases, you may want to either
COMMIT WORK or ROLLBACK WORK, depending on the transaction. For example, if
all or no rows should be updated for logical data consistency, use ROLLBACK WORK.
However, if logical data consistency is not an issue, COMMIT WORK may minimize
re-processing time.

A positive number, when sqlcode is 0. In this case, the positive number provides
information about the number of rows processed in the following data manipulation
commands.

The number of rows inserted, updated, or deleted in one of the following operations:

INSERT
UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The number of rows put into output host variables when one of the following commands is
executed:

SELECT

BULK SELECT

FETCH

BULK FETCH

A positive number, when sqlcode is less than 0. In this case, sqlerrd[2] indicates the number
of rows that were successfully retrieved or inserted prior to the error condition:

BULK SELECT

BULK FETCH

BULK INSERT

As in the case of INSERT, UPDATE, and DELETE, mentioned above, you can use either a
COMMIT WORK or ROLLBACK WORK command, as appropriate.

4-8 Runtime Status Checking and the sqlca

sqlwarn[0]

A W in sqlwarn[0], in conjunction with a 0 in sqlcode, indicates that the SQL command just
executed caused a warning condition.

Warning conditions
ag unusual but not necessarily important conditions. For example, if a
program attempts to submit an SQL command that grants an already existing authority, a
message such as the following would be retrieved when SQLEXPLAIN is executed:

User PEG already has DBA authorization. (DBWARN 2006)

In the case of the following warning, the situation may or may not indicate a problem:

A transaction in progress was aborted. (DBWARN 2010)

This warning occurs when a program submits a RELEASE command without �rst
terminating a transaction with a COMMIT WORK or ROLLBACK WORK. If the
transaction did not perform any UPDATE, INSERT, or DELETE operations, this situation
will not cause work to be lost. If the transaction did perform UPDATE, INSERT, or
DELETE operations, the database changes are rolled back when the RELEASE command is
processed.

You retrieve the appropriate warning message by using SQLEXPLAIN. Note that you cannot
explicitly test sqlwarn[0] the way you can test sqlcode, since sqlwarn[0] always contains W
when a warning occurs.

An error and a warning condition may exist at the same time. In this event, sqlcode is set to
a negative number, and sqlwarn[0] is set to W. Messages describing all the warnings and errors
can be displayed as follows:

if (sqlca.sqlcode != 0) {
do {

DisplayMessage();

} while (sqlca.sqlcode != 0);

}

.

.

.

int DisplayMessage()

{

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

}

Runtime Status Checking and the sqlca 4-9

If multiple warnings but no errors result when ALLBASE/SQL processes a command,
sqlwarn[0] is set to W and remains set until the last warning message has been retrieved
by SQLEXPLAIN or another SQL command is executed. In the following example,
DisplayWarning is executed when this condition exists:

if ((sqlca.sqlcode == 0) & (sqlca.sqlwarn[0] == 'W')) {

do {

DisplayWarning();

} while (sqlca.sqlwarn[0] == 'W');

}

.

.

.

int DisplayWarning()

{

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

}

When you use the SQLWARNING option of the WHENEVER command, ALLBASE/SQL
checks for a W in sqlwarn[0]. You can use the WHENEVER command to do implicit status
checking (equivalent to that done explicitly above) as follows:

EXEC SQL WHENEVER SQLWARNING GOTO a3000;

EXEC SQL WHENEVER SQLERROR GOTO a2000;

sqlwarn[1]

A W in sqlwarn[1] indicates truncation of at least one character string value when the string
was stored in a host variable. Any associated indicator variable is set to the value of the string
length before truncation.

For example:

EXEC SQL SELECT PartNumber,

PartName

INTO :PartNumber

:PartName :PartNameInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

If PartName was declared as a character array of 20 bytes, and the PartName column in the
PurchDB.Parts table has a length of 30 bytes, then the following occurs:

sqlwarn[1] is set to W.

PartNameInd is set to 30 (the length of PartName in the table).

sqlcode is set to 0.

SQLEXPLAIN retrieves the message:

Character string truncation during storage in host variable.

(DBWARN 2040)

4-10 Runtime Status Checking and the sqlca

sqlwarn[2]

A W in sqlwarn[2] indicates that at least one null value was eliminated from the argument set
of an aggregrate function.

For example:

EXEC SQL SELECT MAX(OrderQty)

INTO :MaxOrderQty

FROM PurchDB.OrderItems;

If any OrderQty values are null, the following occurs:

sqlwarn[2] is set to W.

sqlcode is set to 0.

SQLEXPLAIN retrieves the message:

NULL values eliminated from the argument of an aggregate

function. (DBWARN 2041)

sqlwarn[3]

A W in sqlwarn[3] indicates that the number of host variables speci�ed in a dynamic SELECT
or FETCH statement is unequal to the number of columns in the table being operated on.

For example:

EXEC SQL PREPARE DynamicCommand from 'SELECT PartNumber, PartName

FROM PurchDB.Parts;';

.

EXEC SQL DESCRIBE DynamicCommand INTO SQLDA; /*sqlda.sqld is always set

at DESCRIBE by ALLBASE/SQL.*/

EXEC SQL DECLARE DynamicCursor FOR DynamicCommand;

EXEC SQL OPEN DynamicCursor;

.

/* Set up the sqlda for a fetch. */

sqlda.sqlbuflen=sizeof(DataBuffer);

sqlda.sqlnrow=((sqlbuflen)/(sqlrowlen));

sqlda.sqlrowbuf=&databuffer;

sqlda.sqld=1; / *sqlda.sqld is incorrectly reset by the program. */

.

/* Do the fetch. */

EXEC SQL FETCH DynamicCursor USING DESCRIPTOR SQLDA;

The FETCH will fail and the following occurs:

sqlwarn[3] is set to W.

sqlcode is set to -2762.

SQLEXPLAIN retrieves the message:

Select list has ! items and host variable buffer has !.

(DBERR 2762)

Runtime Status Checking and the sqlca 4-11

sqlwarn[6]

When an error occurs that causes ALLBASE/SQL to roll back the current transaction,
sqlwarn[6] is set to W. ALLBASE/SQL automatically rolls back transactions when sqlcode is
equal to -4008, or equal to or less than -14024.

When such errors occur, ALLBASE/SQL does the following:

Sets sqlwarn[6] to W.

Sets sqlwarn[0] to W.

Sets sqlcode to a negative number.

If you want to terminate your program any time ALLBASE/SQL has to roll back the current
transaction, you can just test sqlwarn[6].

if (sqlca.sqlcode < 0) {

if (sqlca.sqlwarn[6] == 'W') {

SQLStatusCheck();

TerminateProgram();

}

else
SQLStatusCheck();

}

In this example, the program executes the function SQLStatusCheck when an error occurs.
The program terminates whenever ALLBASE/SQL has rolled back a transaction, but
continues if an error has occurred but was not serious enough to cause transaction roll back.

4-12 Runtime Status Checking and the sqlca

Approaches to Status Checking

This section presents examples of how to use implicit and explicit status checking and to
notify program users of the results of status checking.

Implicit status checking is useful when control to handle warnings and errors can be passed to
one prede�ned point in the program. Explicit status checking is useful when you want to test
for speci�c sqlca values before passing control to one of several locations in your program.

Error and warning conditions detected by either type of status checking can be conveyed to
the program user in various ways:

SQLEXPLAIN can be used one or more times after an SQL command is processed to
retrieve warning and error messages from the ALLBASE/SQL message catalog. (The
ALLBASE/SQL message catalog contains messages for every negative sqlcode and for every
condition that sets sqlwarn[0].)

Your own messages can be displayed when a certain condition occurs.

You can choose not to display a message; for example, if a condition exists that is irrelevant
to the program user or when an error is handled internally by the program.

Implicit Status Checking Techniques

The WHENEVER command has two components: a condition and an action. The command
format is:

EXEC SQL WHENEVER Condition Action;

There are three possible WHENEVER conditions:

SQLERROR

If WHENEVER SQLERROR is in e�ect, ALLBASE/SQL checks for a negative sqlcode
after processing any SQL command except:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

SQLEXPLAIN

WHENEVER

Runtime Status Checking and the sqlca 4-13

SQLWARNING

If WHENEVER SQLWARNING is in e�ect, ALLBASE/SQL checks for a W in sqlwarn[0]
after processing any SQL command except the following:

BEGIN DECLARE SECTION

DECLARE

END DECLARE SECTION

INCLUDE

SQLEXPLAIN

WHENEVER

NOT FOUND

If WHENEVER NOT FOUND is in e�ect, ALLBASE/SQL checks for the value 100 in
sqlcode after processing a SELECT or FETCH command.

A WHENEVER command for each of these conditions can be in e�ect at the same time.

There are three possible WHENEVER actions:

STOP

If WHENEVER Condition STOP is in e�ect, ALLBASE/SQL rolls back the current
transaction and terminates the DBE session and the program when the Condition exists.

CONTINUE

If WHENEVER Condition CONTINUE is in e�ect, program execution continues when the
Condition exists. Any earlier WHENEVER command for the same condition is cancelled.

GOTO LineLabel .

If WHENEVER Condition GOTO LineLabel is in e�ect, the code routine located at that
alpha-numeric line label is executed when the Condition exists. The line label must appear
in the function where the GOTO is executed. GOTO and GO TO forms of this action have
exactly the same e�ect.

Any action may be speci�ed for any condition.

The WHENEVER command causes the preprocessor to generate status-checking and
status-handling code for each SQL command that comes after it physically in the program
until another WHENEVER command for the same condition is found. In the following
program sequence, for example, the WHENEVER command in Procedure1 is in e�ect for
SQLCommand1 , but not for SQLCommand2 , even though SQLCommand1 is executed �rst at
run time:

4-14 Runtime Status Checking and the sqlca

int Procedure2()

{

EXEC SQL SQLCommand2;

}

int Procedure1()

{

EXEC SQL WHENEVER SQLERROR GOTO a2000;

EXEC SQL SQLCommand1;

}

.

.

.

{

Procedure1();

Procedure2();

}

EXEC SQL WHENEVER SQLERROR CONTINUE;

The code that the preprocessor generates depends on the condition and action in a
WHENEVER command. In the example above, the preprocessor inserts a test for a negative
sqlcode and a statement that invokes the code routine located at Line Label a2000 :

#if 0

EXEC SQL WHENEVER SQLERROR GOTO a2000;

#endif

#if 0

EXEC SQL SQLCommand1;

#endif

Statements for executing SQLCommand1 appear here

if (sqlca.sqlcode < 0) {

goto a2000;

}

Runtime Status Checking and the sqlca 4-15

As the previous example illustrates, you pass control to an exception-handling routine with a
WHENEVER command, by using a GOTO statement with an alpha-numeric line label rather
than a function name. Therefore after the exception-handling routine is executed, control
cannot automatically return to the statement which invoked it. You must use another GOTO
statement to explicitly pass control to a speci�c point in your program:

/* WHENEVER Routine -- SQL Error */

a2000:

if ((sqlca.sqlcode <= -14024) || (sqlca.sqlcode == -4008)) {

TerminateProgram();

}

else

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

goto a500; /* Goto Restart/Reentry point of function */

This exception-handling routine explicitly checks the �rst sqlcode returned. The program
either terminates, or it continues from the Restart/Reentry point after all warning and error
messages are displayed. Note that a GOTO statement was required in this routine in order
to allow the program to continue. Using a GOTO statement may be impractical when you
want execution to continue from di�erent places in the program, depending on the part of the
program that provoked the error. This situation is discussed under \Explicit Status Checking"
later in the chapter.

4-16 Runtime Status Checking and the sqlca

Program Illustrating Implicit and Explicit Status Checking

The program in Figure 4-1 contains �ve WHENEVER commands to demonstrate implicit
status checking. It also uses two explicit status checking routines.

The WHENEVER command numbered � 1 � handles errors associated with the following
commands:

CONNECT

BEGIN WORK

COMMIT WORK

RELEASE

The WHENEVER command numbered � 2 � turns o� the �rst WHENEVER command.

The WHENEVER commands numbered � 3 � through � 5 � handle warnings and errors
associated with the SELECT command.

The routine at Label a1000 is executed when an error occurs during the processing of
session-related and transaction-related commands. The program terminates after displaying
all available error messages. If a warning condition occurs during the execution of these
commands, the warning condition is ignored, because the WHENEVER SQLWARNING
CONTINUE command is in e�ect by default.

The code routine located at Label a2000 is executed when an error occurs during the
processing of the SELECT command. This code routine explicitly examines the sqlcode value
to determine whether it is -10002, in which case it displays a warning message. If sqlcode
contains another value, function SQLStatusCheck is executed.

SQLStatusCheck explicitly examines sqlcode to determine whether a deadlock or shared
memory problem occurred (sqlcode = -14024 or -4008) or whether the error was serious
enough to warrant terminating the program (sqlcode less than -14024):

If a deadlock or shared memory problem occurred, the program attempts to execute the
SelectData function as many as three times before notifying the user of the situation.

If sqlcode contains a value less than -14024, the program terminates after all available
warnings and error messages from the ALLBASE/SQL message catalog have been displayed.

In the case of any other errors, the program displays all available messages, then prompts for
another part number.

The code routine located at Label a3000 is executed when only a warning condition results
during execution of the SELECT command. This code routine displays a message and the row
of data retrieved.

The NOT FOUND condition that may be associated with the SELECT command is handled
by the code routine located at Label a4000 . This code routine displays the message Row not
found! , then passes control to EndTransaction. SQLEXPLAIN does not provide a message for
the NOT FOUND condition, so the program must provide one.

Runtime Status Checking and the sqlca 4-17

/* Program cex5 */

/* */

/* This program illustrates the use of SQL's SELECT command to */

/* retrieve one row or tuple of data at a time. */

/* This programs is the same as cex2 with added status checking */

/* and deadlock routines. */

/* */

typedef int boolean;

char response[2];

boolean Abort;

boolean SQLCommandDone;

int TryCounter;

#include <stdio.h>

#define OK 0

#define NotFound 100

#define MultipleRows -10002

#define DeadLock -14024

#define FALSE 0

#define TRUE 1

#define NoMemory -4008

#define TryLimit 3

sqlca_type sqlca; /* SQL Communication Area */

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION;

char PartNumber[17];

char PartName[31];

double SalesPrice;

sqlind SalesPriceInd;

char SQLMessage[133];

EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

Figure 4-1. Program cex5: Implicit and Explicit Status Checking

4-18 Runtime Status Checking and the sqlca

int SQLStatusCheck() /* Function to Display Error Messages */

{

if ((sqlca.sqlcode == DeadLock) || (sqlca.sqlcode == NoMemory)) {

if (TryCounter == TryLimit) {

SQLCommandDone = TRUE;

printf("\n Could not complete transaction. You may want to try again.");

}

else

SQLCommandDone = FALSE;

}

else {

Abort = FALSE;

if ((sqlca.sqlwarn[6] = 'W') || (sqlca.sqlwarn[6] = 'w'))

Abort = TRUE;

}

do {

EXEC SQL SQLEXPLAIN :SQLMessage;
printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) {

EndTransaction();

ReleaseDBE();

}

} /* End SQLStatusCheck Function */

EXEC SQL WHENEVER SQLERROR GOTO a1000; � 1 �

boolean ConnectDBE() /* Function to Connect to PartsDBE */

{

boolean ConnectDBE;

ConnectDBE = TRUE;

printf("\n Connect to PartsDBE");

EXEC SQL CONNECT TO 'PartsDBE';

goto exit;

a1000: /* WHENEVER SQLERROR entry point 1 */

SQLStatusCheck();

EndTransaction();

ReleaseDBE();

exit:

return (ConnectDBE);
} /* End of ConnectDBE Function */

Figure 4-1. Program cex5: Implicit and Explicit Status Checking (page 2 of 6)

Runtime Status Checking and the sqlca 4-19

boolean BeginTransaction() /* Function to Begin Work */

{

boolean BeginTransaction;

BeginTransaction = TRUE;

printf("\n");

printf("\n Begin Work");

EXEC SQL BEGIN WORK;

goto exit;

a1000: /* WHENEVER SQLERROR entry point 1 */

SQLStatusCheck();

EndTransaction();

ReleaseDBE();

exit:

return (BeginTransaction);

} /* End BeginTransaction Function */

int EndTransaction() /* Function to Commit Work */

{

printf("\n");

printf("\n Commit Work");

EXEC SQL COMMIT WORK;

goto exit;

a1000: /* WHENEVER SQLERROR entry point 1 */

SQLStatusCheck();

ReleaseDBE();

exit:

return(0);

} /* End EndTransaction Function */

int ReleaseDBE() /* Function to Release PartsDBE */

{

printf("\n");

printf("\n Release PartsDBE");

printf("\n");

EXEC SQL RELEASE;

goto exit;

Figure 4-1. Program cex5: Implicit and Explicit Status Checking (page 3 of 6)

4-20 Runtime Status Checking and the sqlca

a1000: /* WHENEVER SQLERROR entry point 1 */

SQLStatusCheck();

EndTransaction();

exit:

return(0);

} /* End ReleaseDBE Function */

EXEC SQL WHENEVER SQLERROR CONTINUE; � 2 �

int DisplayRow() /* Function to Display Parts Table Rows */

{

printf("\n");

printf(" Part Number: %s\n", PartNumber);

printf(" Part Name: %s\n", PartName);

if (SalesPriceInd < 0) {
printf("\n Sales Price: is NULL");

}

else

printf(" Sales Price: %10.2f\n", SalesPrice);

} /* End of DisplayRow Function */

EXEC SQL WHENEVER SQLERROR GOTO a2000; � 3 �
EXEC SQL WHENEVER SQLWARNING GOTO a3000; � 4 �
EXEC SQL WHENEVER NOT FOUND GOTO a4000; � 5 �

int Select() /* Function to Query Parts Table */

{

do {

if (SQLCommandDone) {

printf("\n");

printf("\n Enter Part Number within Parts Table or '/' to STOP > ");

scanf("%s",PartNumber);

printf("\n");

TryCounter = 0;

}

if (PartNumber[0] != '/') {

BeginTransaction();

TryCounter = TryCounter + 1;

Figure 4-1. Program cex5: Implicit and Explicit Status Checking (page 4 of 6)

Runtime Status Checking and the sqlca 4-21

printf("\n SELECT PartNumber, PartName, SalesPrice");

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice :SalesPriceInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

/* If no errors occur, set command done flag and display the row. */

SQLCommandDone = TRUE;

DisplayRow();

EndTransaction();

} /* End if */

} /* End do */

while (PartNumber[0] != '/');

goto exit;

a2000: /* WHENEVER SQLERROR entry point 2 */

if (sqlca.sqlcode == MultipleRows) {

printf("\n");

printf("\n WARNING: More than one row qualifies!");

EndTransaction();

SQLCommandDone = TRUE;

Select(); /* Call Restart/Reentry point */

}

else

SQLStatusCheck();

Select(); /* Call Restart/Reentry point */

a3000: /* WHENEVER SQLWARNING entry point */

printf("\n SQL WARNING has occurred. The following row");

printf("\n of data may not be valid!");

DisplayRow();

EndTransaction();

SQLCommandDone = TRUE;

Select(); /* Call Restart/Reentry point */

a4000: /* WHENEVER NOT FOUND entry point */

printf("\n");

printf("\n Row not found!");

EndTransaction();

SQLCommandDone = TRUE;

Select(); /* Call Restart/Reentry point */

exit:
return(0);

}/* End of Select Function */

Figure 4-1. Program cex5: Implicit and Explicit Status Checking (page 5 of 6)

4-22 Runtime Status Checking and the sqlca

main() /* Beginning of program */

{

printf("\n Program to SELECT specified rows from");

printf("\n the Parts Table - cex5");

printf("\n");

printf("\n Event List:");

printf("\n CONNECT TO PartsDBE");

printf("\n BEGIN WORK");

printf("\n SELECT the specified row from the Parts Table");

printf("\n until the user enters a '/'");

printf("\n COMMIT WORK");

printf("\n RELEASE from PartsDBE");

printf("\n");

if (ConnectDBE()) {

SQLCommandDone = TRUE; /* Initialize command done flag */

Select();

ReleaseDBE();

}

else

printf("\n Error: Cannot Connect to PartsDBE!\n");

} /* End of Program */

Figure 4-1. Program cex5: Implicit and Explicit Status Checking (page 6 of 6)

Runtime Status Checking and the sqlca 4-23

Explicit Status Checking Techniques

With explicit error handling, you invoke a function after explicitly checking sqlca values rather
than using the WHENEVER command. The program in Figure 4-1 has already illustrated
several uses of explicit error handling to:

Isolate errors so critical that they caused ALLBASE/SQL to roll back the current
transaction.

Control the number of times SQLEXPLAIN is executed.

Detect when more than one row quali�es for the SELECT operation.

The example in Figure 4-1 illustrates how implicit routines can sometimes reduce the amount
of status checking code. As the number of SQL operations in a program increases, however,
the likelihood of needing to return to di�erent locations in the program after execution of such
a routine increases.

The example shown in Figure 4-2 contains four data manipulation operations: INSERT,
UPDATE, DELETE, and SELECT. Each of these operations is executed within its own
function.

As in the program in Figure 4-1, one function is used for explicit status checking:
SQLStatusCheck . Unlike the program in Figure 4-1, however, this function is invoked after an
explicit test of sqlcode is made immediately following each data manipulation operation.

Because status checking is performed in a called function rather than in a routine
following the embedded SQL command, control returns to the point in the program where
SQLStatusCheck is invoked.

4-24 Runtime Status Checking and the sqlca

#define Deadlock -14024

#define OK 0

#define NotFound 100

#define MultipleRows -10002

#define NoMemory -4008

.

.

.

int SelectActivity()

{

This function prompts for a number that indicates

whether the user wants to SELECT, UPDATE, DELETE,

or INSERT rows, then invokes a function that

accomplishes the selected activity. The DONE
ag

is set when the user enters a slash.

}

.

.

.

int InsertData()

{

Statements that accept data from the user appear here.

EXEC SQL INSERT

INTO PurchDB.Parts (PartNumber,

PartName,

SalesPrice)

VALUES (:PartNumber,

:PartName,

:SalesPrice);

if (sqlca.sqlcode != OK) SQLStatusCheck();

.

.

.

}

Figure 4-2. Explicit Status Checking Procedures
Runtime Status Checking and the sqlca 4-25

int UpdateData()

{

This function veri�es that the row(s) to be changed

exist, then invokes function DisplayUpdate to accept

new data from the user.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

switch(sqlca.sqlcode) {

case OK: DisplayUpdate();

break;

case NotFound: printf("\n");

printf("\n Row not found!");

break;

case MultipleRows: printf("\n");

printf("WARNING: More than one row qualifies!")

DisplayUpdate();

break;

default: SQLStatusCheck();

break;

}

.

.

.

}

.

.

.

int DisplayUpdate()

{

Code that prompts the user for new data appears here.

EXEC SQL UPDATE PurchDB.Parts

SET PartName = :PartName,

SalesPrice = :SalesPrice,

WHERE PartNumber = :PartNumber;

if (sqlca.sqlcode != OK) SQLStatusCheck();

.

.

.

}

Figure 4-2. Explicit Status Checking Procedures (page 2 of 5)

4-26 Runtime Status Checking and the sqlca

int DeleteData()

{

This function veri�es that the row(s) to be deleted

exist, then invokes the function DisplayDelete to delete

the row(s).

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

switch(sqlca.sqlcode) {

case OK: DisplayDelete();

break;

case NotFound: printf("\n");

printf("\n Row not found!");

break;

case MultipleRows: printf("\n");

printf("WARNING: More than one row qualifies!");

DisplayDelete();

break;

default: SQLStatusCheck();

break;

}

.

.

.

}

.

.

.

int DisplayDelete()

{

Statements that verify that the deletion should

actually occur appear here.

EXEC SQL DELETE FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

if (sqlca.sqlcode != OK) SQLStatusCheck();

.

.

.

}

Figure 4-2. Explicit Status Checking Procedures (page 3 of 5)

Runtime Status Checking and the sqlca 4-27

int SelectData()

{

Statements that prompt for a partnumber appear here.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

switch(sqlca.sqlcode) {

case OK: DisplayRow();

break;

case NotFound: printf("\n");

printf("\n Row not found!");

break;

case MultipleRows: printf("\n");

printf("WARNING: More than one row qualifies!");

DisplayDelete();

break;

default: SQLStatusCheck();

break;

}

.

.

}

.

.

int SQLStatusCheck()

{

if ((sqlca.sqlcode == DeadLock) || (sqlca.sqlcode=NoMemory)) {

if (TryCounter == TryLimit) {

SQLCommandDone = TRUE;

printf("\n Could not complete transaction. Try again if you

want.");

}

else

SQLCommandDone = FALSE;

}

Figure 4-2. Explicit Status Checking Procedures (page 4 of 5)

4-28 Runtime Status Checking and the sqlca

else

{

Abort = FALSE;

if (sqlca.sqlwarn[6] == 'W') { /* The transaction was rolled back

due to other than deadlock or

shared memory problems. */

Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

}

if (Abort) {

TerminateProgram();

}

else
SQLCommandDone = TRUE;

}

}

.

if (SQLCommandDone) {

.

/* Prompt user for a part number. */

.

TryCounter = 0;

TryLimit = 3;

.

/* A transaction is started. */

.

TryCounter = TryCounter + 1;

} /* End SQLStatusCheck Procedure */

Figure 4-2. Explicit Status Checking Procedures (page 5 of 5)

Runtime Status Checking and the sqlca 4-29

Handling Deadlock and Shared Memory Problems

A deadlock exists when two transactions need data that the other transaction already has
locked. When a deadlock occurs, ALLBASE/SQL rolls back the transaction with the larger
priority number. If two deadlocked transactions have the same priority, ALLBASE/SQL rolls
back the newer transaction.

An sqlcode of -14024 indicates that a deadlock has occurred:

Deadlock detected. (DBERR 14024)

An sqlcode of -4008 indicates that ALLBASE/SQL does not have access to the amount of
shared memory required to execute a command:

ALLBASE/SQL shared memory allocation failed in DBCORE. (DBERR 4008)

One way of handling deadlocks and shared memory problems is shown in the previous
example, Figure 4-2. A SELECT command is executed, and, if an error occurs, function
SQLStatusCheck is executed. If the �rst error detected was a deadlock or a shared memory
problem, the SELECT command is automatically re-executed as many as three times before
the user is noti�ed of the situation. If other errors occurred before the deadlock or shared
memory problem, the transaction is not automatically re-applied. If an error with an sqlcode
less than -14024 occurred, the program is terminated after the error messages are displayed.

Determining Number of Rows Processed

Sqlerrd[2] is useful in the following ways:

To determine how many rows were processed in one of the following operations, when the
operation could be executed without error:

SELECT

INSERT

UPDATE

DELETE

Cursor operations:

FETCH

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The sqlerrd[2] value can be used in these cases only when sqlcode does not contain a
negative number. When sqlcode is 0, sqlerrd[2] is always equal to 1 for SELECT, FETCH,
UPDATE WHERE CURRENT, and DELETE WHERE CURRENT operations. Sqlerrd[2]
may be greater than 1 if more than one row quali�es for an INSERT, UPDATE, or
DELETE operation. When sqlcode is 100, sqlerrd[2] is 0 .

To determine how many rows were processed in one of the BULK operations:

BULK SELECT

BULK FETCH

BULK INSERT

4-30 Runtime Status Checking and the sqlca

In this case, you also need to test sqlcode to determine whether the operation executed
without error. If sqlcode is negative, sqlerrd[2] contains the number of rows that could be
successfully retrieved or inserted before an error occurred. If sqlcode is 0, sqlerrd[2] contains
the total number of rows that ALLBASE/SQL put into or took from the host variable array.
If, in a BULK SELECT operation, more rows qualify than the array can accommodate,
sqlcode will be 0.

Examples follow.

INSERT, UPDATE, and DELETE Operations. The example in Figure 4-2 could be modi�ed to
display the number of rows inserted, updated, or deleted by using sqlerrd[2]. In the case of the
update operation, for example, the actual number of rows updated could be displayed after
the UPDATE command is executed:

.

.

.

int DisplayUpdate()

{

Code that prompts the user for new data appears here.

EXEC SQL UPDATE PurchDB.Parts

SET PartName = :PartName,

SalesPrice = :SalesPrice,

WHERE PartNumber = :PartNumber;

switch(sqlca.sqlcode) {

case OK: NumberOfRows = sqlerrd[2];

printf("The number of rows updated was: %d\n" NumberOfRows);

break;

default: printf("\n No rows could be updated!");

SQLStatusCheck();

break;

}

}

. .

If the UPDATE command is successfully executed, sqlcode is 0 and sqlerrd[2] contains the
number of rows updated. If the UPDATE command cannot be successfully executed, sqlcode
contains a negative number and sqlerrd[2] contains a 0.

Runtime Status Checking and the sqlca 4-31

BULK Operations. When using the BULK SELECT, BULK FETCH, or BULK INSERT
commands, you can use the sqlerrd[2] value in several ways:

If the command executes without error, to determine the number of rows retrieved into an
output host variable array or inserted from an input host variable array.

If the command causes an error condition, to determine the number of rows that could be
successfully put into or taken out of the host variable array before the error occurred.

In the code identi�ed as � 1 � in Figure 4-3, the value in sqlerrd[2] is displayed when only some
of the qualifying rows could be retrieved before an error occurred.

In the code identi�ed as � 2 �, the value in sqlerrd[2] is compared with the maximum array size
to determine whether more rows might have quali�ed than the program could display. You
could also use a cursor and execute the FETCH command until sqlcode=100.

In the code identi�ed as � 3 �, the value in sqlerrd[2] is used to control the number of times
function DisplayRow is executed.

4-32 Runtime Status Checking and the sqlca

#define OK 0

#define NotFound 100

#define MaximumRows 200

/*Begin Host Variable Declarations */

EXEC SQL Begin Declare Section;

struct {

char PartNumber[17];

char PartName[31];

double SalesPrice;

} PartsTable[MaximumRows];

char SQLMessage[133];

EXEC SQL End Declare Section;

/* End Host Variable Declarations */

sqlca : sqlca_type; /* SQL Communication Area */

int i;
int NumberOfRows;

int BulkSelect()

{

EXEC SQL BULK SELECT PartNumber,

PartName,

SalesPrice

INTO :PartsTable

FROM PurchDB.Parts;

switch(sqlca.sqlcode) {

case OK: DisplayTable();

break;

case NotFound: printf("\n");

printf("\n No rows qualify for this operation!");

break;

default: NumberOfRows = sqlerrd[2]; � 1 �
printf("\nOnly %d rows were retrieved",NumberOfRows);

printf("\n before an error occurred!");

DisplayTable();

SQLStatusCheck();

break;

}

}

Figure 4-3. Determining Number of Rows Processed After a BULK SELECT

Runtime Status Checking and the sqlca 4-33

.

.

.

int DisplayTable()

{

if (sqlerrd[2] == MaximumRows) � 2 �
{

printf("\n");

printf("\nWARNING: There may be additional rows that qualify!");

}

The column headings are displayed here.

for (i = 0; i < sqlerrd[2]; i++)

DisplayRow(); � 3 �
printf("\n");

}

int DisplayRow()

{

printf(PartNumber[i], "%s\n |");

printf(PartName[i], "%s\n |");

printf(SalesPrice[i], "%.2f\n |");

}

Determining Number of Rows Processed After a BULK SELECT (page 2 of 2)

4-34 Runtime Status Checking and the sqlca

Detecting End of Scan

Previous examples in this chapter have illustrated how an sqlcode of 100 can be detected and
handled for data manipulation commands that do not use a cursor. When a cursor is being
used, this sqlcode value can be used to determine when all rows in an active set have been
fetched:

int FetchRow()

{

EXEC SQL FETCH CURSOR1

INTO :PartNumber,

:PartName,

:SalesPrice;

switch(sqlca.sqlcode) {

case OK: DisplayRow();

break;

case NotFound: DoneFetch = TRUE;

printf("\n Row not found or no more rows!");

break;

default: SQLStatusCheck();

break;

}

}

.

.

.

EXEC SQL OPEN CURSOR1;

.

.

.

do {
FetchRow();

} while (DoneFetch != TRUE);

In this example, the active set is de�ned when the OPEN command is executed. The cursor
is then positioned before the �rst row of the active set. When the FETCH command is
executed, the �rst row in the active set is placed into the program's host variables, then
displayed. The FETCH command retrieves one row at a time into the host variables until
the last row in the active set has been retrieved. The next attempt to FETCH after the last
row has been fetched from the active set, will set sqlcode to NotFound (de�ned as 100 in the
declaration part). If no rows qualify for the active set, sqlcode is NotFound the �rst time
function FetchRow is executed.

Runtime Status Checking and the sqlca 4-35

Determining When More Than One Row Qualifies

If more than one row quali�es for a non-BULK SELECT or FETCH operation,
ALLBASE/SQL sets sqlcode to -10002. In the following example, when sqlcode is
MultipleRows (de�ned as -10002 in the declaration part), a status checking function is not
invoked; instead a warning message is displayed:

int UpdateData()

{

This function veri�es that the row(s) to be changed

exist, then invokes the function DisplayUpdate to accept

new data from the user.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber,

:PartName,

:SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

switch(sqlca.sqlcode) {

case OK: DisplayUpdate();

break;

case NotFound: printf("\n");

printf("\n Row not found!");

break;

case MultipleRows: printf("\n");

printf("\n WARNING: More than one row qualifies!");

DisplayUpdate();

break;

default: SQLStatusCheck();

break;

}

}

Note The PARTS table in the sample database has a unique index on
PARTNUMBER, so a test for multiple rows is not required. This test is useful
for the ORDERITEMS table which does not have a unique index.

4-36 Runtime Status Checking and the sqlca

Detecting Log Full Condition

When the log �le is full, log space must be reclaimed before ALLBASE/SQL can process any
additional transactions. Your program can detect the situation, and it can be corrected by the
DBA.

SQLEXPLAIN retrieves the following message:

Log full. (DBERR 14046)

In the following example, sqlcode is checked for a log full condition. If the condition is true,
ALLBASE/SQL has rolled back the current transaction. The program issues a COMMIT
WORK command, the SQLStatusCheck routine is executed to display any messages, and the
program is terminated.

if (sqlca.sqlcode = -14046)

COMMIT WORK;

SQLStatusCheck();

TerminateProgram();

Handling Out of Space Conditions

It is possible that data or index space may be exhausted in a DBEFileSet. This could happen
as rows are being added or an index is being created or when executing queries which require
that data be sorted. Your program can detect the problem, and the DBA must add index or
data space to the appropriate DBEFileSet.

SQLEXPLAIN retrieves the following message:

Data or Index space exhaused in DBEFileSet. (DBERR 2502)

In the following example, sqlcode is checked for an out of space condition. If the condition
is true, the transaction is rolled back to an appropriate savepoint. The program issues
a COMMIT WORK command, the SQLStatusCheck routine is executed to display any
messages, and the program is terminated.

if (sqlca.sqlcode = -2502)

ROLLBACK WORK TO :SavePoint;

COMMIT WORK;

SQLStatusCheck();

TerminateProgram();

Checking for Authorizations

When the DBEUserID related to an ALLBASE/SQL command does not have the authority to
execute the command, the following message is retreived by SQLEXPLAIN:

User ! does not have ! authorization. (DBERR 2300)

In the following example, sqlcode is checked to determine if the user has proper connect
authority. If the condition is true, the SQLStatusCheck routine is executed to display any
messages, and the program is terminated.

EXEC SQL CONNECT TO 'PartsDBE';

if (sqlca.sqlcode = -2300)

SQLStatusCheck();

TerminateProgram();

Runtime Status Checking and the sqlca 4-37

5

Simple Data Manipulation

Simple data manipulation is a programming technique used to SELECT or INSERT a
single row. It can also be used to INSERT, DELETE, or UPDATE one or more rows based
on a speci�c criterion. These types of data manipulation operations are considered simple
because they can be done with SQL data manipulation commands that staisfy the following
conditions:

Do not contain the BULK option; therefore, the host variables used are not arrays, and data
references are simpli�ed.

Are not executed in conjunction with a cursor; therefore, additional SQL commands such as
FETCH and OPEN are not required.

Are not dynamically preprocessed; and therefore, do not require use of commands such as
PREPARE, DESCRIBE, and EXECUTE IMMEDIATE.

This chapter reviews how to use the SELECT, INSERT, DELETE, and UPDATE
commands for simple data manipulation. It then brie
y examines transaction management
considerations. For further discussion of transaction management, refer to the
ALLBASE/SQL Reference Manual .

A program illustrating simple data manipulation is found at the end of the chapter.

SQL Commands

The SQL commands used for simple data manipulation are:

SELECT

INSERT

DELETE

UPDATE

Refer to the ALLBASE/SQL Reference Manual for the complete syntax and semantics of
these commands.

SELECT

In simple data manipulation, you use the SELECT command to retrieve a single row, i.e., a
one-row query result. The form of the SELECT command that describes a one-row query
result is:

SELECT SelectList

INTO HostVariables

FROM TableNames

WHERE SearchCondition

Simple Data Manipulation 5-1

Note that the GROUP BY, HAVING, and ORDER BY clauses are not necessary, since these
clauses usually describe multiple-row query results.

You may omit the WHERE clause from certain queries when the select list contains only
aggregate functions:

EXEC SQL SELECT AVG(SalesPrice)

INTO :AvgSalesPrice

FROM PurchDB.Parts;

A WHERE clause may be used, however, to qualify the rows over which the aggregate
function is applied:

EXEC SQL SELECT AVG(SalesPrice)

INTO :AvgSalesPrice

FROM PurchDB.Parts

WHERE SalesPrice > :SalesPrice;

If the select list does not contain aggregate functions, a WHERE clause is needed to restrict
the query result to a single row:

EXEC SQL SELECT PartName, SalesPrice

INTO :PartName, :SalesPrice

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

Because the host variables that hold query results for a simple SELECT command are not
arrays of records, they can hold only a single row. A runtime error occurs when multiple rows
qualify for a simple SELECT command. You can test for an sqlcode value of -10002 to detect
this condition:

#define MultipleRows -10002

.

.

.

int GetRow()

{

.

.

.

The SELECT command is executed here.

if (sqlca.sqlcode == MultipleRows) {

printf("\n WARNING: More than one row qualifies!");

}

}

When multiple rows qualify but the receiving host variables are not in an array of records and
the BULK option is not speci�ed, none of the rows are returned.

5-2 Simple Data Manipulation

When a column named in the WHERE clause has a unique index on it, you can omit testing
for multiple-row query results. A unique index prevents the key column(s) from having
duplicate values. The following index, for example, ensures that only one row will exist for
any part number in PurchDB.Parts:

CREATE UNIQUE INDEX PartNumIndex

ON PurchDB.Parts (PartNumber)

If a key column of a unique index can contain a null value, the unique index insures that no
more than one null value can exist for that column.

It is useful to execute the SELECT command before executing the INSERT, DELETE, or
UPDATE commands in the following situations:

When an application updates or deletes rows, the SELECT command can retrieve the
target data for user veri�cation before the data is changed. This technique minimizes
inadvertent data changes:

The program accepts a part number from the user into a host variable

PartNumber, then retrieves a row for that part.

EXEC SQL SELECT PartNumber, BinNumber

INTO :PartNumber, :BinNumber

FROM PurchDB.Inventory

WHERE PartNumber = :PartNumber;

The row is displayed, and the user is prompted whether to change the

bin number. If not, the user is prompted for another part number. If

so, the user is prompted for the new bin number which is accepted into

the host variable named BinNumber. Then the UPDATE command is

executed.

EXEC SQL UPDATE PurchDB.Inventory

SET BinNumber = :BinNumber

WHERE PartNumber = :PartNumber;

Another method of qualifying the rows you want to select is to use the LIKE speci�cation to
search for a particular character string pattern.

For example, suppose you want to search for all VendorRemarks that contain a reference to
6%. Since the percent sign (%) happens to be one of the wild card characters for the LIKE
speci�cation, you could use the following SELECT statement specifying the exclamation
point (!) as your escape character.

SELECT * FROM PurchDB.Vendors

WHERE VendorRemarks LIKE '%6!%%' ESCAPE '!'

The �rst and last percent sign character are the wildcard characters. The next to the last
percent sign, preceded by an exclamation point, is the percent sign that you want to escape,
so that it is actually used in the search pattern for the LIKE clause.

The character following an escape character must be either a wild card character or the
escape character itself. Complete syntax is presented in the ALLBASE/SQL Reference
Manual .

Simple Data Manipulation 5-3

To prohibit the multiple-row changes possible if multiple rows qualify for an UPDATE or
DELETE operation. If multiple rows qualify for the SELECT operation, the UPDATE or
DELETE command would not be executed. Alternatively, the user could be advised that
multiple rows would be a�ected and given a choice about whether to perform the change:

The program prompts the user for an order number and a vendor part

number in preparation for allowing the user to change the vendor part

number. The following SELECT command determines whether more than one

line at a time exists on the order for the speci�ed vendor part number.

EXEC SQL SELECT ItemNumber

INTO :ItemNumber

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber

AND VendPartNumber = :VendPartNumber;

When more than one row quali�es for this query, the program lets the

user decide whether to proceed with the update operation.

When an application lets the user INSERT a row that must contain a value higher than an
existing value, the SELECT command can identify the highest existing value:

EXEC SQL SELECT MAX(OrderNumber)

INTO :MaxOrderNumber

FROM PurchDB.Orders;

The program can increment the maximum order number by one, then

the user with the new number and prompt for information describing the

new order.

5-4 Simple Data Manipulation

INSERT

In simple data manipulation, you use the INSERT command to either insert a single row or
copy one or more rows into one table from another table.

Use the following form of the INSERT command to insert a single row:

INSERT INTO TableName

(ColumnNames)

VALUES (DataValues)

You can omit ColumnNames when you provide values for all columns in the target table:

EXEC SQL INSERT INTO PurchDB.Parts

VALUES (:PartNumber,

:PartName :PartNameInd,

:SalesPrice :SalesPriceInd);

Remember that when you do include Column Names but do not name all the columns in the
target table, ALLBASE/SQL attempts to insert a null value into each unnamed column. If an
unnamed column was de�ned as NOT NULL, the INSERT command fails.

To copy one or more rows from one or more tables to another table, use the following form of
the INSERT command:

INSERT INTO TableName

(ColumnNames)

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

Note that the SELECT command embedded in this INSERT command cannot contain
an INTO or ORDER BY clause. In addition, any host variables used must be within the
WHERE or HAVING clauses.

The following example copies historical data for �lled orders into table PurchDB.OldOrders,
then deletes rows for these orders from PurchDB.Orders, keeping that table minimal in size.

The INSERT command copies rows from PurchDB.Orders to PurchDB.OldOrders.

EXEC SQL INSERT INTO PurchDB.OldOrders

(OldOrder, OldVendor, OldDate)

SELECT OrderNumber, VendorNumber, OrderDate

FROM PurchDB.Orders

WHERE OrderNumber = :OrderNumber;

Then the DELETE command deletes rows from PurchDB.Orders.

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderNumber: = OrderNumber;

Simple Data Manipulation 5-5

UPDATE

In simple data manipulation, you use the UPDATE command to change data in one or more
columns:

UPDATE TableName

SET Columname = ColumnValue

[,...]

WHERE SearchCondition

As in the case of the DELETE command, if you omit the WHERE clause, the value of any
column speci�ed is changed in all rows of the table.

If the WHERE clause is speci�ed, all rows satisfying the search condition are changed, for
example:

EXEC SQL UPDATE PurchDB.Vendors

SET ContactName = :ContactName :ContactNameInd,

VendorStreet = :VendorStreet,

VendorCity = :VendorCity,

VendorState = :VendorState,

VendorZipCode = :VendorZipCode

WHERE VendorNumber = :VendorNumber;

In this example, column ContactName can contain a null value. To insert a null value, the
program must assign a number less than zero to the indicator variable for this column,
ContactNameInd:

The program prompts the user for new values for the four columns.

printf ("\n Enter Vendor Street > ");

getline(VendorStreet);

printf ("\n Enter Vendor City > ");

getline(VendorCity);

printf ("\n Enter Vendor State > ");

getline(VendorState);

printf ("\n Enter Vendor Zip Code > ");

getline(VendorZipCode);

printf ("\n Enter Contact Name (0 for null) > ");

getline(ContactName);

If the user enters a 0 to assign a null value to column

ContactName, the program assigns a -1 to the indicator

variable; otherwise, the program assigns a 0 to this variable:

if (ContactName[0] == '0') {

ContactNameInd = -1;

}

else

5-6 Simple Data Manipulation

ContactNameInd = 0;

DELETE

In simple data manipulation, you use the DELETE command to delete one or more rows from
a table:

DELETE FROM TableName

WHERE SearchCondition

The WHERE clause speci�es a SearchCondition that rows must meet to be deleted, for
example:

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderDate < :OrderDate;

If the WHERE clause is omitted, all rows in the table are deleted.

Transaction Management for Simple Operations

The major objectives of transaction management are to minimize the contention for locks
and to ensure logical data consistency. Minimizing lock contention implies short transactions
and/or locking small, unique parts of a database. Logical data consistency implies keeping
data manipulations that should all occur or all not occur within a single transaction. De�ning
your transactions should always be made with these two objectives in mind. For in depth
transaction management information, refer to the ALLBASE/SQL Reference Manual .

Most simple data manipulation applications involve random operations on a minimal number
of related rows that satisfy very speci�c criteria. To minimize lock contention, you should
begin a new transaction each time these criteria change. For example, if an application
displays order information for random orders, delimit each new query with a BEGIN WORK
and a COMMIT WORK command:

The program accepts an order number from the user.

EXEC SQL BEGIN WORK;

EXEC SQL SELECT OrderNumber,

VendorNumber,

OrderDate

INTO :OrderNumber,

:VendorNumber :VendorNumberInd,

:OrderDate :OrderDateInd

FROM PurchDB.Orders

WHERE OrderNumber = :OrderNumber;

Error checking is done here.

EXEC SQL COMMIT WORK;

Simple Data Manipulation 5-7

The program displays the row, then prompts for

another order number.

5-8 Simple Data Manipulation

Because SELECT commands are often executed prior to a related UPDATE, DELETE, or
INSERT command, you must decide whether to make each command a separate transaction
or combine commands within one transaction:

If you combine SELECT and DELETE operations within one transaction, when the
DELETE command is executed, the row deleted is guaranteed to be the same row retrieved
and displayed for the user. However, if the program user goes to lunch between SELECT
and DELETE commands, and the default isolation level (RR) is in e�ect, no other users can
modify the page or table locked by the SELECT command until the transaction terminates.

If you put the SELECT and DELETE operations in separate transactions, another
transaction may change the target row(s) before the DELETE command is executed.
Therefore the user may delete a row di�erent from that originally intended. One way to
handle this situation is as follows:

EXEC SQL BEGIN WORK;

The SELECT command is executed and the query result displayed.

EXEC SQL COMMIT WORK;

The program user requests that the row be deleted.

EXEC SQL BEGIN WORK;

The SELECT command is re-executed, and the program compares the

original query result with the new one. If the query results match, the

DELETE command is executed.

EXEC SQL COMMIT WORK;

If the new query result does not match the original query result, the

program re-executes the SELECT command to display the query result.

Simple Data Manipulation 5-9

In the case of some multi-command transactions, you must execute multiple data
manipulation commands within a single transaction for the sake of logical data consistency:

In the following example, the DELETE and INSERT commands are used in place of the
UPDATE command to insert null values into the target table.

EXEC SQL BEGIN WORK;

The DELETE command is executed.

If the DELETE command fails, the transaction can be terminated as

follows:

EXEC SQL COMMIT WORK;

If the DELETE command succeeds, the INSERT command is executed.

If the INSERT command fails, the transaction is terminated as follows:

EXEC SQL ROLLBACK WORK;

If the INSERT command succeeds, the transaction is

terminated as follows:

EXEC SQL COMMIT WORK;

Logical data consistency is also an issue when an UPDATE, INSERT, or DELETE command
may operate on multiple rows. If one of these commands fails after only some of the target
rows have been operated on, you must use a ROLLBACK WORK command to ensure that
any row changes made before the failure are undone:

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderDate < :OrderDate;

if (sqlca.sqlcode != OK) {

EXEC SQL ROLLBACK WORK;

}

5-10 Simple Data Manipulation

Sample Program Using Simple DML Commands

The
ow chart shown in Figure 5-1 summarizes the functionality of program cex7.
This program uses the four simple data manipulation commands to operate on the
PurchDB.Vendors table. A function menu determines whether to execute one or more
SELECT, UPDATE, DELETE, or INSERT operations. Each execution of a simple data
manipulation command is done in a separate transaction.

The runtime dialog for program cex7 appears in Figure 5-2, and the source code in Figure 5-3.

Function ConnectDBE starts a DBE session � 51 �. This function executes the CONNECT
command � 2 � for the sample DBEnvironment, PartsDBE . The operation performed next
depends on the number entered when a function menu is displayed � 52 �:

The program terminates if 0 is entered.

Function Select is executed if 1 is entered.

Function Update is executed if 2 is entered.

Function Delete is executed if 3 is entered.

Function Insert is executed if 4 is entered.

The Select function � 9 � prompts for a vendor number or a 0 � 10 �. If a 0 is entered, the
function menu is re-displayed. If a vendor number is entered, function BeginTransaction
is executed � 11 � to issue the BEGIN WORK command � 4 �. Then a SELECT command
is executed to retrieve all data for the vendor speci�ed from PurchDB.Vendors � 12 �. The
sqlca.sqlcode returned is examined to determine the next action:

If no rows qualify for the SELECT operation, a message � 14 � is displayed and the
transaction terminated � 17 �. Function EndTransaction terminates the transaction by
executing the COMMIT WORK command � 5 �. The user is then re-prompted for a vendor
number or a 0.

If more than one row quali�es for the SELECT operation, a di�erent message � 15 � is
displayed and the transaction is terminated � 17 �. The user is then re-prompted for a
vendor number or a 0.

If the SELECT command execution results in an error condition, function SQLStatusCheck
is executed � 16 �. This function executes SQLEXPLAIN � 1 � to display all error messages.
Then the transaction is terminated � 17 � and the user re-prompted for a vendor number or a
0.

If the SELECT command can be successfully executed, the DisplayRow function � 13 � is
executed to display the row. This function examines the null indicators for each of the three
potentially null columns (ContactName, PhoneNumber , and VendorRemarks). If any null
indicator contains a value not equal to 0 � 8 �, a message indicating that the value is null is
displayed. After the row is completely displayed, the transaction is terminated � 17 � and the
user re-prompted for a vendor number or a 0.

Simple Data Manipulation 5-11

The Update function � 23 � lets the user UPDATE the value of a column only if it contains
a null value. The function prompts � 24 � for a vendor number or a 0. If a 0 is entered, the
function menu is re-displayed. If a vendor number is entered, function BeginTransaction
is executed � 25 �. Then a SELECT command is executed � 26 � to retrieve data from
PurchDB.Vendors for the vendor speci�ed. The sqlca.sqlcode returned is examined to
determine the next action:

If no rows qualify for the SELECT operation, a message � 28 � is displayed and the
transaction is terminated � 31 �. The user is then re-prompted for a vendor number or a 0.

If more than one row quali�es for the SELECT operation, a di�erent message � 29 � is
displayed and the transaction is terminated � 31 �. The user is then re-prompted for a
vendor number or a 0.

If the SELECT command execution results in an error condition, function SQLStatusCheck
is executed � 30 �. Then the transaction is terminated � 31 � and the user re-prompted for a
vendor number or a 0.

If the SELECT command can be successfully executed, function DisplayUpdate � 27 � is
executed. This function executes function DisplayRow to display the row retrieved � 18 �.
Function AnyNulls is then executed to determine whether the row contains any null values.
This boolean function evaluates to TRUE � 6 � if the indicator variable for any of the three
potentially null columns contains a non-zero value.

If function AnyNulls evaluates to FALSE, a message is displayed � 7 � and the transaction is
terminated � 31 �; the user is then re-prompted for a vendor number or a 0.

If function AnyNulls evaluates to TRUE, the null indicators are examined to determine
which of them contain a negative value � 19 �. A negative null indicator means the column
contains a null value, and the user is prompted for a new value � 20 �. If the user enters a 0,
the program assigns a -1 to the null indicator � 21 � so that when the UPDATE command
� 22 � is executed, a null value is assigned to that column. If a non-zero value is entered,
the program assigns a 0 to the null indicator so that the value speci�ed is assigned to that
column. After the UPDATE � 22 � command is executed, the transaction is terminated � 31 �
and the user re-prompted for a vendor number or a 0.

Function Delete � 35 � lets the user DELETE one row. The function prompts for a vendor
number or a 0 � 36 �. If a 0 is entered, the function menu is re-displayed. If a vendor number
is entered, function BeginTransaction is executed � 37 �. Then a SELECT command is
executed to retrieve all data for the vendor speci�ed from PurchDB.Vendors � 38 �. The
sqlca.sqlcode returned is examined to determine the next action:

If no rows qualify for the SELECT operation, a message � 40 � is displayed and the
transaction is terminated � 43 �. The user is then re-prompted for a vendor number or a 0.

If more than one row quali�es for the SELECT operation, a di�erent message � 41 � is
displayed and the transaction is terminated � 43 �. The user is then re-prompted for a
vendor number or a 0.

If the SELECT command execution results in an error condition, function SQLStatusCheck
is executed � 42 �. Then the transaction is terminated � 43 � and the user re-prompted for a
vendor number or a 0.

5-12 Simple Data Manipulation

If the SELECT command can be successfully executed, the DisplayDelete function � 39 � is
executed. This function executes function DisplayRow to display the row retrieved � 32 �.
Then the user is asked whether she wants to actually delete the row � 33 �. If not, the
transaction is terminated � 43 � and the user re-prompted for a vendor number or a 0. If so,
the DELETE command � 34 � is executed before the transaction is terminated � 43 � and the
user re-prompted.

The Insert function � 44 � lets the user INSERT one row. The function prompts for a vendor
number or a 0 � 45 �. If a 0 is entered, the function menu is re-displayed. If a vendor number
is entered, the user is prompted for values for each column. The user can enter a 0 to specify
a null value for potentially null columns � 46 �; to assign a null value, the program assigns a
-1 to the appropriate null indicator � 47 �. After a transaction is started � 48 �, an INSERT
command � 49 � is used to insert a row containing the speci�ed values. After the INSERT
operation, the transaction is terminated � 50 �, and the user re-prompted for a vendor number
or a 0.

When the user enters a 0 in response to the function menu display, the program terminates by
executing function ReleaseDBE � 53 �. This function executes the RELEASE command � 3 �.

Simple Data Manipulation 5-13

Figure 5-1. Flow Chart of Program cex7

5-14 Simple Data Manipulation

Figure 5-1. Flow Chart of Program cex7 (page 2 of 2)

Simple Data Manipulation 5-15

Program for Simple Data Manipulation of Vendors Table - cex7

Connect to PartsDBE

1 SELECT rows from PurchDB.Vendors table

2 UPDATE rows with null values in PurchDB.Vendors table

3 DELETE rows from PurchDB.Vendors table

4 INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP > 4

*** Function to INSERT rows into PurchDB.Vendors ***

Enter Vendor Number to INSERT into Vendors Table or 0 for MENU > 9016

Enter Vendor Name > Wolfe Works

Enter Contact Name or a 0 for null > Stanley Wolfe

Enter Phone Number or a 0 for null > 408 975 6061

Enter Vendor Street > 7614 Canine Way

Enter Vendor City > San Jose

Enter Vendor State > CA

Enter Vendor Zip Code > 90016

Enter Vendor Remarks or a 0 for null > 0

Begin Work

INSERT row into PurchDB.Vendors

Commit Work

Enter Vendor Number to INSERT into Vendors Table or 0 for MENU > 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP > 1

Figure 5-2. Runtime Dialog of Program cex7

5-16 Simple Data Manipulation

*** Function to SELECT a row from the Vendors Table ***

Enter Vendor Number to SELECT from Vendors Table or 0 for MENU > 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks is NULL

Commit Work

Enter Vendor Number to SELECT from Vendors Table or 0 for MENU > 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP > 2

*** Function to UPDATE rows in PurchDB.Vendors ***

Enter Vendor Number to UPDATE within Vendors Table or 0 for MENU > 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks is NULL

Enter new VendorRemarks or 0 for null > can expedite shipments

Commit Work

Figure 5-2. Runtime Dialog of Program cex7 (page 2 of 3)

Simple Data Manipulation 5-17

Enter Vendor Number to UPDATE within Vendors Table or 0 for MENU > 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP > 3

*** Function to DELETE rows from PurchDB.Vendors ***

Enter Vendor Number to DELETE from Vendors Table or 0 for MENU > 9016

Begin Work

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works
ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode: 90016

VendorRemarks: can expedite shipments

Is it OK to DELETE this row (N/Y)? > Y

DELETE row from PurchDB.Vendors

Commit Work

Enter Vendor Number to DELETE from Vendors Table or 0 for MENU > 0

1 . . . SELECT rows from PurchDB.Vendors table

2 . . . UPDATE rows with null values in PurchDB.Vendors table

3 . . . DELETE rows from PurchDB.Vendors table

4 . . . INSERT rows into PurchDB.Vendors table

Enter choice or 0 to STOP > 0

Figure 5-2. Runtime Dialog of Program cex7 (page 3 of 3)

5-18 Simple Data Manipulation

/* Program cex7 */

/* */

/* This program illustrates the use of SQL's data manipulation */

/* commands for simple operations. It uses the UPDATE */

/* command with indicator variables to update any row in the */

/* Vendors table that contains null values. It also uses indicator */

/* variables in conjunction with SELECT and INSERT commands. */

/* The DELETE command is also illustrated. */

/* */

typedef int boolean;

boolean Abort;

int response1;

char response2[2];

#include <stdio.h>

#define OK 0

#define NotFound 100

#define MultipleRows -10002

#define DeadLock -14024

#define FALSE 0

#define TRUE 1

sqlca_type sqlca; /* SQL Communication Area */

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION;

int VendorNumber;

char VendorName[31];

char ContactName[31];

sqlind ContactNameInd;

char PhoneNumber[16];

sqlind PhoneNumberInd;

char VendorStreet[31];

char VendorCity[21];

char VendorState[3];

char VendorZipCode[11];

char VendorRemarks[61];

sqlind VendorRemarksInd;

char SQLMessage[133];

EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE

Simple Data Manipulation 5-19

int getline(linebuff) /* Function to get a line of characters */

char linebuff[80];

{

while (strlen(gets(linebuff)) == 0);

} /* End of function to get a line of characters */

int SQLStatusCheck() /* Function to Display Error Messages */ � 16 �
{

Abort = FALSE;

if (sqlca.sqlcode < DeadLock) Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage; � 1 �
printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) ReleaseDBE();

} /* End SQLStatusCheck Function */

boolean ConnectDBE() /* Function to Connect to PartsDBE */

� 51 �
{

boolean ConnectDBE;

printf("\n Connect to PartsDBE");

EXEC SQL CONNECT TO 'PartsDBE'; � 2 �

ConnectDBE = TRUE;

if (sqlca.sqlcode != OK) {

ConnectDBE = FALSE;

SQLStatusCheck();

} /* End if */

return (ConnectDBE);

} /* End of ConnectDBE Function */

int ReleaseDBE() /* Function to Release PartsDBE */

� 53 �
{

printf("\n Release PartsDBE");

printf("\n");

EXEC SQL RELEASE; � 3 �

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End ReleaseDBE Function */

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 2 of 12)

5-20 Simple Data Manipulation

boolean BeginTransaction() /* Function to Begin Work */ � 11 �
{

boolean BeginTransaction;

printf("\n");

printf("\n Begin Work");

EXEC SQL BEGIN WORK; � 4 �
if (sqlca.sqlcode != OK) {

BeginTransaction = FALSE;

SQLStatusCheck();

ReleaseDBE();

}

else

BeginTransaction = TRUE;

return (BeginTransaction);

} /* End BeginTransaction Function */

int EndTransaction() /* Function to Commit Work */ � 17 �
{

printf("\n");

printf("\n Commit Work");

EXEC SQL COMMIT WORK; � 5 �
if (sqlca.sqlcode != OK) {

SQLStatusCheck();

ReleaseDBE();

}

} /* End EndTransaction Function */

boolean AnyNulls() /* Function to test a row for null values */

{

boolean AnyNulls;

AnyNulls = TRUE;

if ((ContactNameInd == 0)&(PhoneNumberInd == 0)&(VendorRemarksInd == 0)) {

/* All columns that might be null contain non-null values */ � 6 �
printf("\n No null values exist for this vendor!"); � 7 �
AnyNulls = FALSE;

}

return (AnyNulls);

} /* End of AnyNulls Function */

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 3 of 12)

Simple Data Manipulation 5-21

int DisplayRow() /* Function to Display Parts Table Rows */ � 13 �
{

printf("\n");

printf("Vendor Number: %10d\n", VendorNumber);

printf("Vendor Name: %s\n", VendorName);

if (ContactNameInd != 0) { � 8 �
printf("Contact Name: is NULL \n");

}

else

printf("Contact Name: %s\n", ContactName);

if (PhoneNumberInd != 0) { � 8 �
printf("Phone Number: is NULL \n");

}

else

printf("PhoneNumber: %s\n", PhoneNumber);

printf("VendorStreet: %s\n", VendorStreet);

printf("VendorCity: %s\n", VendorCity);

printf("VendorState: %s\n", VendorState);

printf("VendorZipCode: %s\n", VendorZipCode);

if (VendorRemarksInd != 0) { � 8 �
printf("Vendor Remarks: is NULL \n");

}

else

printf("VendorRemarks: %s\n", VendorRemarks);

} /* End of DisplayRow */

int Select() /* Function to Query Parts Table */ � 9 �
{

printf("\n");

printf("\n *** Function to SELECT a row from the Vendors table. ***");

printf("\n");

do {

printf("\nEnter Vendor Number to SELECT from Vendors Table or 0 for

MENU>");

while (scanf("%d%*c", &VendorNumber) == 0; � 10 �

if (VendorNumber != 0) {

BeginTransaction(); � 11 �

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 4 of 12)

5-22 Simple Data Manipulation

printf("\n");

printf("\n SELECT * from PurchDB.Vendors");

EXEC SQL SELECT VendorNumber, � 12 �
VendorName,

ContactName,

PhoneNumber,

VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks

INTO :VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,

:VendorCity,

:VendorState,
:VendorZipCode,

:VendorRemarks :VendorRemarksInd

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

switch(sqlca.sqlcode) {

case OK: DisplayRow(); � 13 �
break;

case NotFound: printf("\n");

printf("\n Row not found!"); � 14 �
break;

case MultipleRows: printf("\n");

printf("\nWARNING: More than one row qualifies!");

break; � 15 �
default: SQLStatusCheck(); � 16 �

break;

} /* End switch */

EndTransaction(); � 17 �

} /* End if */

} while (VendorNumber != 0);

} /* End of Select Function */

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 5 of 12)

Simple Data Manipulation 5-23

int DisplayUpdate() /* Display & Update row in Parts Table */ � 27 �
{

DisplayRow(); � 18 �
if (AnyNulls) {

if (ContactNameInd != 0) { � 19 �
printf("\n");

printf("\n Enter new Contact Name or 0 for NULL > "); � 20 �
getline(ContactName);

}

if (PhoneNumberInd != 0) { � 19 �
printf("\n");

printf("\n Enter new Phone Number of 0 for NULL > "); � 20 �
getline(PhoneNumber);

}

if (VendorRemarksInd != 0) { � 19 �
printf("\n");

printf("]\n Enter new Vendor Remarks or 0 for NULL > "); � 20 �
getline(VendorRemarks);
}

if (ContactName[0] == '0') ContactNameInd = -1; � 21 �
else

ContactNameInd = 0;

if (PhoneNumber[0] == '0') PhoneNumberInd = -1; � 21 �
else

PhoneNumberInd = 0;

if (VendorRemarks[0] == '0') VendorRemarksInd = -1; � 21 �
else

VendorRemarksInd = 0;

printf("\n");

printf("\n UPDATE the Vendors Table");

EXEC SQL UPDATE PurchDB.Vendors � 22 �
SET ContactName = :ContactName :ContactNameInd,

PhoneNumber = :PhoneNumber :PhoneNumberInd,

VendorRemarks = :VendorRemarks :VendorRemarksInd

WHERE VendorNumber = :VendorNumber;

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End if AnyNulls */

} /* End of DisplayUpdate Function */

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 6 of 12)

5-24 Simple Data Manipulation

int Update() /* Update a row within the Parts Table */ � 23 �
{

printf("\n");

printf("\n *** Function to UPDATE rows in PurchDB.Vendors ***");

printf("\n");

do {

printf("\n Enter Vendor Number to UPDATE in Vendors Table or 0 for MENU >");

while (scanf("%d%*c", &VendorNumber) == 0); � 24 �

if (VendorNumber != 0) {

BeginTransaction(); � 25 �

printf("\n");

printf("\n SELECT * from PurchDB.Vendors");

EXEC SQL SELECT VendorNumber, � 26 �
VendorName,
ContactName,

PhoneNumber,

VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks

INTO :VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,

:VendorCity,

:VendorState,

:VendorZipCode,

:VendorRemarks :VendorRemarksInd

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

if (sqlca.sqlcode == OK)

DisplayUpdate(); � 27 �
else if (sqlca.sqlcode == NotFound)

printf("\n Row not found!"); � 28 �
else if (sqlca.sqlcode == MultipleRows)

printf("\n WARNING: More than one row qualifies!"); � 29 �
else

SQLStatusCheck(); � 30 �

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 7 of 12)

Simple Data Manipulation 5-25

EndTransaction(); � 31 �

} /* End if */

} while (VendorNumber != 0);

} /* End of Update Function */

int DisplayDelete() /* Display & optionally Delete Rows */ � 39 �
{

DisplayRow(); � 32 �

printf("\n");

printf("\n Is it OK to DELETE this row (N/Y) ? > "); � 33 �
scanf("%s",response2);

if ((response2[0] == 'Y') || (response2[0] == 'y')) {

printf("\n");
printf("\n DELETE Row from PurchDB.Vendors Table");

EXEC SQL DELETE FROM PurchDB.Vendors � 34 �
WHERE VendorNumber = :VendorNumber;

if (sqlca.sqlcode != OK) SQLStatusCheck();

}

} /* End of DisplayDelete */

int Delete() /* Function to Delete a row from the Parts Table */� 35 �
{

printf("\n");

printf("\n *** Function to DELETE rows from PurchDB.Vendors ***");

printf("\n");

do {

printf("\nEnter Vendor Number to DELETE from Vendors Table or 0 for MENU>");

while(scanf("%d%*c", &VendorNumber) == 0); � 36 �
if (VendorNumber != 0) {

BeginTransaction(); � 37 �

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 8 of 12)

5-26 Simple Data Manipulation

printf("\n");

printf("\n SELECT * from PurchDB.Vendors");

EXEC SQL SELECT VendorNumber, � 38 �
VendorName,

ContactName,

PhoneNumber,

VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks

INTO :VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,

:VendorCity,

:VendorState,
:VendorZipCode,

:VendorRemarks :VendorRemarksInd

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

if (sqlca.sqlcode == OK)

DisplayDelete(); � 39 �
else if (sqlca.sqlcode == NotFound)

printf("\n Row not found!"); � 40 �
else if (sqlca.sqlcode == MultipleRows)

printf("\n WARNING: More than one row qualifies!"); � 41 �
else

SQLStatusCheck(); � 42 �

EndTransaction (); � 43 �

} /* End if */

} while (VendorNumber != 0);

} /* End of Delete */

int Insert() /* Insert a row into the Parts Table */ � 44 �
{

printf("\n");

printf("\n *** Function to INSERT rows into PurchDB.Vendors ***");

printf("\n");

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 9 of 12)

Simple Data Manipulation 5-27

do {

VendorNumber = 0;

printf("\nEnter Vendor Number to INSERT into Vendors Table or 0 for MENU>");

while(scanf("%d%*c", &VendorNumber) == 0); � 45 �

if (VendorNumber != 0) {

printf("\n Enter Vendor Name > ");

getline(VendorName);

printf("\n Enter Contact Name or a 0 for NULL > "); � 46 �
getline(ContactName);

if (ContactName[0] == '0') ContactNameInd = -1; � 47 �
else

ContactNameInd = 0;

printf("\n Enter Phone Number or a 0 for NULL > "); � 46 �
getline(PhoneNumber);

if (PhoneNumber[0] == '0') PhoneNumberInd = -1 � 47 �
else

PhoneNumberInd = 0;

printf("\n Enter Vendor Street > ");

getline(VendorStreet);

printf("\n Enter Vendor City > ");

getline(VendorCity);

printf("\n Enter Vendor State > ");

getline(VendorState);

printf("\n Enter Vendor Zip Code > ");

getline(VendorZipCode);

printf("\n Enter Vendor Remarks or a 0 for NULL > "); � 46 �
getline(VendorRemarks);

if (VendorRemarks[0] == '0') VendorRemarksInd = -1; � 47 �
else

VendorRemarksInd = 0;

BeginTransaction(); � 48 �

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 10 of 12)

5-28 Simple Data Manipulation

printf("\n");

printf("\n INSERT row into PurchDB.Vendors");

EXEC SQL INSERT � 49 �
INTO PurchDB.Vendors

(VendorNumber,

VendorName,

ContactName,

PhoneNumber,

VendorStreet,

VendorCity,

VendorState,

VendorZipCode,

VendorRemarks)

VALUES (:VendorNumber,

:VendorName,

:ContactName :ContactNameInd,

:PhoneNumber :PhoneNumberInd,

:VendorStreet,
:VendorCity,

:VendorState,

:VendorZipCode,

:VendorRemarks :VendorRemarksInd);

if (sqlca.sqlcode != OK) SQLStatusCheck();

EndTransaction(); � 50 �

} /* End if */

} while (VendorNumber != 0);

} /* End of Insert */

main() /* Beginning of program */

{

printf("\n Program for Simple Data Manipulation of Vendors Table-cex7")

printf("\n");

if (ConnectDBE()) { � 51 �

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 11 of 12)

Simple Data Manipulation 5-29

do {

printf("\n"); � 52 �
printf("\n 1 . . .SELECT rows from PurchDB.Vendors Table");

printf("\n 2 . . .UPDATE rows with NULL values in PurchDB.Vendors Table");

printf("\n 3 . . .DELETE rows from PurchDB.Vendors Table");

printf("\n 4 . . .INSERT rows into PurchDB.Vendors Table");

printf("\n");

printf("\n Enter choice or 0 to STOP > ");

scanf("%2d%*c", &response1);

if (response1 != 0) {

switch (response1) { � 50 �
case 1: Select(); � 9 �

break;

case 2: Update(); � 23 �
break;

case 3: Delete(); � 35 �
break;

case 4: Insert(); � 44 �
break;

default: printf("\n Enter 0-4 only, please!");

break;

} /* switch */

} /* End if response1 */

} while (response1 != 0);

ReleaseDBE(); � 53 �
} /* End if Connect */

else

printf("\n Error: Cannot Connect to PartsDBE!\n");

} /* End of Program */

Figure 5-3. Program cex7: Using INSERT, UPDATE, SELECT and DELETE (page 12 of 12)

5-30 Simple Data Manipulation

6

Processing with Cursors

Processing with cursors gives you the option of operating on a multiple-row query result,
one row at a time. The query result is referred to as an active set. You use a pointer called
a cursor to move through the active set, retrieving a row at a time into host variables and
optionally updating or deleting the row. Reporting applications may �nd this technique
useful. Update applications such as those that periodically operate on tables not being
concurrently accessed (for example, inventory adjustments) may also �nd this technique
useful.

This chapter presents:

SQL Cursor Commands.

Transaction Management for Cursor Operations

Sample Program Using Cursor Operations.

The emphasis in this chapter is on FETCHing one row at a time. For an example of using the
FETCH command with the BULK option, see the BULK FETCH section of Chapter 7.

SQL Cursor Commands

The following ALLBASE/SQL commands are used in cursor processing:

DECLARE CURSOR de�nes a cursor and associates it with a query.

OPEN de�nes the active set.

FETCH retrieves one row of the active set into host variables; when a row resides in host
variables it is known as the current row. When a row is current and the active set is a
query result derived from a single table, you can use one of the following two commands to
change the row.

UPDATE WHERE CURRENT updates the current row.

DELETE WHERE CURRENT deletes the current row.

CLOSE terminates access to the active set and frees up ALLBASE/SQL bu�er space used
to handle the cursor.

For a given cursor, the commands listed above (with the exception of DECLARE CURSOR)
should be contained within the same transaction. Refer to the ALLBASE/SQL Reference
Manual for the complete syntax and semantics of these commands.

Processing with Cursors 6-1

DECLARE CURSOR

The DECLARE CURSOR command names a cursor and associates it with a particular
SELECT command:

DECLARE CursorName

[IN DBEFileSetName]

CURSOR FOR

SelectCommand

[FOR UPDATE OF ColumnName [,ColumnName...]

Note that the DECLARE CURSOR command has two optional clauses:

The IN clause de�nes the DBEFileSet in which the section generated by the preprocessor
for this command is stored. If no IN clause is speci�ed, �le space in the SYSTEM
DBEFileSet is used.

The FOR UPDATE OF clause is used when you intend to use the UPDATE WHERE
CURRENT command to update a current row. This command may o�er the simplest way
to update a current row, but it imposes certain restrictions on the SELECT command.
Updating a current row is discussed fully later in this chapter under \Update Where
Current."

The SELECT command for cursor declarations that do not include the FOR UPDATE clause
can consist of any of the SELECT command clause except the INTO clause:

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnNames

HAVING SearchCondition2

ORDER BY ColumnIdenti�ers

A SELECT command associated with a cursor does not name output host variables, but
may name input host variables in the select list, the WHERE clause, and the HAVING
clause. In the following example, the rows qualifying for the query result will be those with a
CountCycle matching that speci�ed by the user in input host variable CountCycle :

EXEC SQL DECLARE Inventory

CURSOR FOR

SELECT PartNumber,

BinNumber,

QtyOnHand,

AdjustmentQty

FROM PurchDB.Inventory

WHERE CountCycle = :CountCycle

ORDER BY BinNumber;

6-2 Processing with Cursors

When performing cursor processing, the ORDER BY clause may be useful. In the previous
example, the rows in the query result will be in order by ascending bin number to help the
program user, who will be moving from bin to bin, taking a physical inventory.

The DECLARE CURSOR command is actually a preprocessor directive. When the
preprocessor parses this command, it stores a section in the target DBEnvironment. At run
time, the section is not executed when the DECLARE CURSOR command is encountered.
The section is executed when the OPEN command is encountered. Because the DECLARE
CURSOR command is not executed at run time, you do not need to perform error status
checking in your program following this command.

OPEN

The OPEN command allocates internal bu�er space and de�nes the active set:

OPEN CursorName

�
KEEP CURSOR

� �
WITH LOCKS

NOLOCKS

�� �

The following command opens the cursor de�ned earlier:

EXEC SQL OPEN Inventory;

Once the active set is de�ned, the FETCH command will retrieve data from it, one row at a
time.

You can use the KEEP CURSOR WITH NOLOCKS option for a cursor that involves sorting,
whether through the use of a DISTINCT, GROUP BY, or ORDER BY clause, or as the result
of a union or a join operation. However, for kept cursors involving sorting, ALLBASE/SQL
does not ensure data integrity.

It is your responsibility to ensure data integrity by verifying the continued existence of a row
before updating it or using it as the basis for updating some other table. For an updatable
cursor, you can use either the REFETCH or SELECT command to verify the continued
existence of a row. For a cursor that is non-updatable, you must use the SELECT command.

A warning (DBWARN 2056) regarding the kept cursor on a sort with no locks is generated.
You must check for this warning if you want to detect the execution of this type of cursor
operation.

FETCH

The FETCH command de�nes a current row and delivers the row into output host variables:

FETCH CursorName INTO OutputHostVariables

Remember to include indicator variables when one or more columns in the query result may
contain a null value, for example:

EXEC SQL FETCH Inventory

INTO :PartNumber,

:BinNumber,
:QtyOnHand :QtyOnHandInd,

:AdjustmentQty :AdjustmentQtyInd;

Processing with Cursors 6-3

The �rst time you execute the FETCH command, the �rst row in the query result becomes
the current row. With each subsequent execution of the FETCH command, each succeeding
row in the query result becomes the current row. After the last row in the query result
has been fetched, ALLBASE/SQL sets sqlca.sqlcode to 100. ALLBASE/SQL also sets
sqlca.sqlcode to 100 if no rows qualify for the active set. You should test for an sqlca.sqlcode
value of 100 after each execution of the FETCH command to determine whether to re-execute
the command.

#define TRUE 0

#define FALSE 1

.

.

.

int GetARow()

{

int DoFetch;

.

.

.

DoFetch = TRUE;

do {

.

. The FETCH command appears here.

.

switch (sqlca.sqlcode) {

case 0: DisplayRow();

break;

case 100: DoFetch = FALSE;

CloseCursor();

CommitWork();

break;

default: DoFetch = FALSE;

SQLStatusCheck();

CloseCursor();

RollBack();

break;

}

} while (DoFetch == TRUE);

}

When a row is current, you can update it by using the UPDATE WHERE CURRENT
command or delete it by using the DELETE WHERE CURRENT command.

6-4 Processing with Cursors

UPDATE WHERE CURRENT

This command can be used to update the current row when the SELECT command
associated with the cursor does not contain one of the following:

DISTINCT clause in the select list.

Aggregate function in the select list.

FROM clause with more than one table.

ORDER BY clause.

GROUP BY clause.

The UPDATE WHERE CURRENT command identi�es the active set to be updated by
naming the cursor and the column(s) to be updated:

UPDATE TableName

SET ColumnName = ColumnValue [,...]

WHERE CURRENT OF CursorName

Any columns you name in this command must also have been named in a FOR UPDATE
clause in the related DECLARE CURSOR command, for example:

EXEC SQL
NNN
DECLARE AdjustQtyOnHand

CURSOR FOR

SELECT PartNumber,

BinNumber,

QtyOnHand,

AdjustmentQty

FROM PurchDB.Inventory

WHERE QtyOnHand IS NOT NULL

AND AdjustmentQty IS NOT NULLNN
FOR UPDATE OF QtyOnHand,NN

AdjustmentQty;

EXEC SQL OPEN AdjustQtyOnHand;

.

In this case, the output host variables do not need to include

indicator variables, because the SELECT command associated with the

cursor eliminates any rows having null values from the active set.

.

EXEC SQL
NN
FETCH AdjustQtyOnHand

INTO :PartNumber,

:BinNumber,

:QtyOnHand,

:AdjustmentQty;

.

.

EXEC SQL
NNNNNNNNNNNNNNNNNNNN
UPDATE PurchDB.Inventory

SET
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
QtyOnHand = :QtyOnHand + :AdjustmentQty,

Processing with Cursors 6-5

NNN
AdjustmentQty = 0NN

WHERE CURRENT OF AdjustQtyOnHand;

6-6 Processing with Cursors

In the previous example, the order of the rows in the query result is not important. Therefore
the SELECT command associated with the cursor AdjustQtyOnHand does not need to contain
an ORDER BY clause and the UPDATE WHERE CURRENT command can be used.

In cases where order is important and the ORDER BY clause must be used, you can use the
UPDATE command with the WHERE clause to update values in the current row, as well as
other rows that qualify for the search condition:

EXEC SQL
NNN
DECLARE Inventory

CURSOR FOR

SELECT PartNumber,

BinNumber,

QtyOnHand,

AdjustmentQty

FROM PurchDB.Inventory

WHERE CountCycle = :CountCycle

ORDER BY BinNumber;

.

.

.

EXEC SQL
NN
FETCH Inventory

INTO :PartNumber,

:BinNumber,

:QtyOnHand :QtyOnHandInd

:AdjustmentQty :AdjustmentQtyInd;

.

The program displays the current row. If the QtyOnHand value is not null,

the program prompts the user for an adjustment quantity. Adjustment

quantity is the di�erence between the quantity actually in the bin and the

QtyOnHand in the row displayed. If the QtyOnHand value is null, the program

prompts the user for both QtyOnHand and AdjustmentQty. Any value entered is

used in the following UPDATE command.

.

.

EXEC SQL
NNNNNNNNNNNNNNNNNNNN
UPDATE PurchDB.Inventory

SET QtyOnHand = :QtyOnHand :QtyOnHandInd,

AdjustmentQty = :AdjustmentQty :AdjustmentQtyIndNNNNNNNNNNNNNNNNN
WHERE PartNumber = :PartNumber

AND BinNumber = :BinNumber;

After either the UPDATE WHERE CURRENT or the UPDATE command is executed, the
current row remains the same until the FETCH command is re-executed.

If you want to execute UPDATE commands inside the FETCH loop, remember that more
than one row in the active set may qualify for the UPDATE operation, as when the WHERE
clause in the the UPDATE command does not specify a unique key. When more than one row
quali�es for the UPDATE, you may not see a changed row unless you CLOSE and re-OPEN
the cursor. To avoid this problem, either ensure that your UPDATE commands change only
one row (the current row) or perform the UPDATE operations outside the FETCH loop.

Processing with Cursors 6-7

DELETE WHERE CURRENT

This command can be used to delete the current row when the SELECT command associated
with the cursor does not contain one of the following:

DISTINCT clause in the select list.

Aggregate function in the select list.

FROM clause with more than one table.

ORDER BY clause.

GROUP BY clause.

The DELETE WHERE CURRENT command has a very simple structure:

DELETE FROM TableName

WHERE CURRENT OF CursorName

The DELETE WHERE CURRENT command can be used in conjunction with a cursor
declared with or without the FOR UPDATE clause:

The program displays the current row and asks the user whether to update or

delete it. If the user wants to delete the row, the following command

is executed.

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DELETE FROM PurchDB.InventoryNN
WHERE CURRENT OF AdjustQtyOnHand;

Even though the SELECT command associated with cursor Inventory names only some of the
columns in table PurchDB.Inventory , the entire current row is deleted.

After the DELETE WHERE CURRENT command is executed, there is no current row. You
must re-execute the FETCH command to obtain another current row.

As with the UPDATE WHERE CURRENT command, if the SELECT command associated
with the cursor contains an ORDER BY clause or other components listed earlier, you can use
the DELETE command with the WHERE clause to delete a row:

EXEC SQL
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DELETE FROM PurchDB.InventoryNNNNNNNNNNNNNNNNN

WHERE PartNumber = :PartNumber

AND BinNumber = :BinNumber;

If you use the DELETE command to delete a row while using a cursor to examine an active
set, remember that more than one row will be deleted if multiple rows satisfy the conditions
speci�ed in the WHERE clause of the DELETE command. In addition, the row that is
current when the DELETE command is executed remains the current row until the FETCH
command is re-executed.

6-8 Processing with Cursors

CLOSE

When you no longer want to operate on the active set, you use the CLOSE command:

CLOSE CursorName

The CLOSE command frees up ALLBASE/SQL internal bu�ers used to handle cursor
operations. This command does not release any locks obtained since the cursor was opened; to
release locks, you must terminate the transaction with a COMMIT WORK or a ROLLBACK
WORK:

The program opens a cursor and operates on the active set. After the last

row has been operated on, the cursor is closed.

EXEC SQL CLOSE Inventory;

Additional SQL commands are executed, then the transaction is terminated.

EXEC SQL COMMIT WORK;

You also use the CLOSE command when you want to re-access the active set. In this case,
simply re-open the cursor after executing the CLOSE command. Because locks have not been
released, any changes to the rows in the active set will be those made by your program since
the cursor was �rst opened:

Cursor Inventory is used to update information

in table PurchDB.Inventory. After the last row

in the active set has been fetched and its information

changed, the cursor is closed.

EXEC SQL CLOSE Inventory;

The cursor is then re-opened to allow the program

user to review the information and optionally make

last-minute adjustments.

EXEC SQL OPEN Inventory;

After the user has reviewed all rows in the active

set, any changes made to the active set are

made permanent as follows.

EXEC SQL COMMIT WORK;

When a transaction terminates, any cursors opened during that transaction are automatically
closed unless you are using the KEEP CURSOR option of the OPEN command. To avoid
possible confusion, it is good programming practice to always use the CLOSE command
followed by COMMIT WORK to explicitly close any open cursors before ending a transaction.

Processing with Cursors 6-9

Transaction Management for Cursor Operations

The time at which ALLBASE/SQL obtains locks during cursor processing depends on
whether ALLBASE/SQL uses an index scan or a sequential scan to retrieve the query result.

When a cursor is based on a SELECT command for which ALLBASE/SQL can use an index
scan, locks are obtained when the FETCH command is executed. In the following example, an
index scan can be used, because the predicate is optimizable and an index exists on column
OrderNumber :

EXEC SQL DECLARE OrderReview

CURSOR FOR

SELECT OrderNumber,

ItemNumber,

OrderQty,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber;

When the cursor is based on a SELECT command for which ALLBASE/SQL will use a
sequential scan, locks are obtained when the OPEN command is executed. A sequential scan
would be used in conjunction with the following cursor:

EXEC SQL DECLARE OrderReview

CURSOR FOR

SELECT OrderNumber,
ItemNumber

OrderQty,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber > :OrderNumber;

The scope and strength of any lock obtained depends in part on the automatic locking mode
of the target table(s). If the lock obtained is a shared lock, as for PUBLIC or PUBLICREAD
tables, ALLBASE/SQL elevates the lock to an exclusive lock when you update or delete a row
in the active set.

The use of lock types, lock granularities, and isolation levels is discussed in the
ALLBASE/SQL Reference Manual .

As mentioned in the previous section, when a transaction terminates, any cursors opened
during that transaction are either automatically closed, or they remain open if you are using
the KEEP CURSOR option of the OPEN command. To avoid possible confusion, it is good
programming practice to always use the CLOSE command to explicitly close any open cursors
before ending a transaction with the COMMIT WORK or ROLLBACK WORK command.

When the transaction terminates, any changes made to the active set during the transaction
are either all committed or all rolled back , depending on how you terminate the transaction.

6-10 Processing with Cursors

Using KEEP CURSOR

Cursor operations in an application program let you manipulate data in an active set
associated with a SELECT command. The cursor is a pointer to a row in the active set. The
KEEP CURSOR option of the OPEN command lets you maintain the cursor position in an
active set beyond transaction boundaries. This means you can scan and update a large table
without holding locks for the duration of the entire scan. You can also design transactions
that avoid holding any locks around terminal reads. In general, use the KEEP CURSOR
option when you wish to release locks periodically in long or complicated transactions.

After you specify KEEP CURSOR in an OPEN command, a COMMIT WORK does not close
the cursor, as it normally does. Instead, COMMIT WORK releases locks not associated with
the kept cursor and begins a new transaction without changing the current cursor position.
This makes it possible to update tuples in a large active set, releasing locks as the cursor
moves from page to page, instead of requiring you to reopen and manually reposition the
cursor before the next FETCH.

Locks held on the page of data corresponding to the current cursor position are either held
until the transaction ends (the default) or released depending on whether you specify WITH
LOCKS or WITH NOLOCKS. (Pages held include data and system pages.)

KEEP CURSOR and Isolation Levels

The KEEP CURSOR option retains the current isolation level (RR, CS, or RC) that you have
speci�ed in the BEGIN WORK command. Moreover, the exact pattern of lock retention and
release for cursors opened using KEEP CURSOR WITH LOCKS depends on the current
isolation level. With the READ COMMITTED isolation level, no locks are maintained across
transactions because locks are released at the end of the FETCH. Therefore, KEEP CURSOR
WITH LOCKS does not make sense at a RC isolation level.

For additional information on isolation levels, refer to the chapter \Concurrency Control
through Locks and Isolation Levels" in the ALLBASE/SQL Reference Manual .

OPEN Command Without KEEP CURSOR

Figure 6-1 shows the operation of cursors when you do not select the KEEP CURSOR option.

Processing with Cursors 6-11

Figure 6-1. Cursor Operation without the KEEP CURSOR Feature

After the cursor is opened, successive FETCH commands advance the cursor position. Any
exclusive locks acquired along the way are retained until the transaction ends. If you have
selected the Cursor Stability option in the BEGIN WORK command, shared locks on pages
that have not been updated are released when the cursor moves to a tuple on a new data
page. Exclusive locks are not released until a COMMIT WORK, which also closes the cursor.

OPEN Command Using KEEP CURSOR WITH LOCKS and CS Isolation Level

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, locks accociated with the cursor are not released.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state,
release all locks associated with the cursor, and prevent a new implicit BEGIN WORK.

Figure 6-2 shows the e�ect of the KEEP CURSOR WITH LOCKS.

6-12 Processing with Cursors

Figure 6-2. Cursor Operation Using KEEP CURSOR WITH LOCKS

OPEN Command Using KEEP CURSOR WITH NOLOCKS

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, all locks associated with the cursor position are
released. This means that another transaction may delete or modify the next tuple in the
active set before you have the chance to FETCH it.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state and
prevent a new implicit BEGIN WORK.

You cannot use the KEEP CURSOR option WITH NOLOCKS for a cursor declared as a
SELECT with a DISTINCT or ORDER BY clause.

When using KEEP CURSOR WITH NOLOCKS, be aware that data at the cursor position
may be lost before the next FETCH:

Processing with Cursors 6-13

If another transaction deletes the current row, ALLBASE/SQL will return the next row.
No error message is displayed.

If another transaction deletes the table being accessed, the user will see the message
TABLE NOT FOUND (DBERR 137).

Figure 6-3 shows the e�ect of KEEP CURSOR WITH NOLOCKS.

Figure 6-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS

KEEP CURSOR and BEGIN WORK

ALLBASE/SQL automatically begins a transaction whenever you issue a command if a
transaction is not already in progress. Thus, although you can code an explicit BEGIN
WORK to start transactions, it is not necessary to do so unless you wish to specify an
isolation level other than RR.

With KEEP CURSOR, an implicit BEGIN WORK follows immediately after you perform
a COMMIT WORK, so if you do an explicit BEGIN WORK, ALLBASE/SQL returns an
error message stating that a transaction is already in progress. If this problem should arise,
re-code to eliminate the BEGIN WORK from the loop.

6-14 Processing with Cursors

KEEP CURSOR and COMMIT WORK

When the KEEP CURSOR option of the OPEN command is activated for a cursor,
COMMIT WORK may or may not release locks associated with the cursor depending on
the setting of the WITH LOCKS/WITH NOLOCKS option.

COMMIT WORK does not close cursors opened with the KEEP CURSOR option.
COMMIT WORK does end the previous implicit transaction and starts an implicit
transaction with the same isolation level as that speci�ed with the BEGIN WORK
command.

Remember that COMMIT WORK will still close all cursors opened without the KEEP
CURSOR option.

KEEP CURSOR and ROLLBACK WORK

When the KEEP CURSOR option is activated for an opened cursor, all locks are released
when you ROLLBACK WORK, whether or not you have speci�ed WITH LOCKS or WITH
NOLOCKS. The position of the cursor is restored to what it was at the beginning of the
transaction being rolled back. The current transaction is ended and a new transaction is
implicitly started with the same isolation level as speci�ed in the BEGIN WORK command.

Remember that ROLLBACK WORK closes all cursors that you opened during the current
transaction, unless the cursor was opened with the KEEP CURSOR option and its position
was saved with a COMMIT WORK command immediately following the OPEN command.

When a cursor is opened with the KEEP CURSOR option, ROLLBACK WORK TO
SavePoint is not allowed.

KEEP CURSOR and Aborted Transactions

When a transaction is aborted by ALLBASE/SQL, the cursor position is retained, and a
new transaction begins, as with ROLLBACK WORK.

Remember that when a transaction aborts all cursors that you opened during the current
transaction are closed, unless the cursor was opened with the KEEP CURSOR option and
its position was saved with a COMMIT WORK command immediately following the OPEN
command.

The use of multiple cursors may require frequent examination of several system catalog
tables. This means acquiring exclusive locks, which creates the potential for deadlock.
However, the behavior of aborted transactions with KEEP CURSOR lets you create
automatic deadlock handling routines. Simply repeat the operation until deadlock does not
occur. The technique is shown under \Examples," below.

Writing Keep Cursor Applications

Because of the potential for deadlock, you must be careful to test for that condition frequently
in applications using KEEP CURSOR. Use the following steps to create your code:

1. Declare all cursors to be used in the application.

2. Use a loop to test for a deadlock condition as you open all cursors that will use the
KEEP CURSOR option. Start the loop with a BEGIN WORK statement that speci�es
the isolation level, then include a separate test for non-deadlock errors for each OPEN

Processing with Cursors 6-15

statement. Create an SQLStatusCheck routine to display all error messages and RELEASE
the DBEnvironment in the event of fatal errors. See the \Examples" section below.

3. Use the COMMIT WORK command. If you do not COMMIT at this point, an aborted
transaction will roll back all the OPEN statements, and you will lose the cursor positions.
The COMMIT starts a new transaction and keeps the cursor positions.

4. Use a loop to scan your data until all rows have been processed.

First, open any non-kept cursors. Do not include a COMMIT WORK after opening
the non-kept cursors. If a deadlock is detected at this point, the transaction will
automatically be reapplied.

Next, execute any FETCH, UPDATE WHERE CURRENT, or DELETE WHERE
CURRENT commands. Be sure to test for unexpected errors and branch to
SQLStatusCheck to display messages and RELEASE in the event of a non-deadlock
error. In the event of deadlock, the transaction will automatically be reapplied.

At the end of the loop, include a COMMIT WORK. This will commit your data to the
database, and it will close any non-kept cursors opened so far in the program. It will also
start a new transaction and maintain the cursor position of all kept cursors.

Place any terminal or �le I/O after this COMMIT , in order to prevent duplicate
messages from appearing in the event of a rollback because of deadlock.

5. Once the program is �nished scanning the tables, you should close all kept cursors within a
�nal loop which tests for a deadlock condition. Once again, test for unexpected errors and
branch to SQLStatusCheck if necessary.

6. Execute a �nal COMMIT WORK to release the KEEP state.

Figure 6-4 is a skeleton outline of a KEEP CURSOR application showing the sections outlined
above. Speci�c examples follow in the next section.

6-16 Processing with Cursors

x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�/* First, Declare all your Kept and Non-Kept Cursors */ � 1 �

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

do { /* Open Kept Cursors */

EXEC SQL BEGIN WORK [RR/CS/RC];

/* Open Kept Cursors in a Loop */

}while (!DeadLockFree); � 2 �

x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�EXEC SQL COMMIT WORK; /* COMMIT to Save Cursor Positions */ � 3 �

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

x
x
x
x
x
x
�

do {

/* Open any Non-Kept Cursors */

/* Execute SQL Commands, i.e., FETCH, UPDATE, etc */

if (DeadLockFree)

{

EXEC SQL COMMIT WORK; /* Save Cursor Positions */

/* Write any messages or output to file or terminal */

};

}while (!EndofScan); � 4 �

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

x
x
l

do {

/* Close all Cursors Opened with KEEP CURSOR Option */

}while (!DeadlockFree); � 5 �

x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�EXEC SQL COMMIT WORK; /* Final COMMIT to end KEEP state */ � 6 �

Figure 6-4. Keep Cursor Application Program

Processing with Cursors 6-17

Examples

This code is intended as a guide; you will want to customize it for your speci�c needs.

The code illustrates status checking techniques with emphasis on deadlock detection. Four
generalized code segments are presented:

A status checking routine to be used in conjunction with the other code segments.

Using a single kept cursor with locks.

Using multiple cursors and cursor stability.

Avoiding locks on terminal reads.

6-18 Processing with Cursors

Common StatusCheck Procedure

SQLStatusCheck ()

{

/**/

/* Deadlock occurred: Set DeadLockFree to FALSE */

/**/

if (sqlca.sqlcode = -14024) {
DeadLockFree = FALSE;

/**/

/* If your program monopolizes CPU time by repeatedly */

/* reapplying a transaction, you could include a call */

/* to the XL PAUSE intrinsic at this point. */

/**/

}

/**/

/* Fatal Error: Show Messages, Release DBE, and terminate */

/**/

else if (sqlca.sqlcode < 0) {

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf(SQLMessage);

} while (sqlca.sqlcode != 0);

EXEC SQL RELEASE;

}

/**/

/* On fatal errors, halt program to avoid an endless loop */

/**/

halt ();

/**/

/* No More Rows Found: Set EndofScan to TRUE */

/**/

if (sqlca.sqlcode = 100)

EndofScan = TRUE;

} /* SQLStatusCheck function */

Processing with Cursors 6-19

Single Cursor WITH LOCKS

SQLSingleCursor ()

{

/***/

/* First, declare the cursor: */

/***/

EXEC SQL DECLARE C1 CURSOR FOR SELECT PartName,
FROM PurchDB.Parts WHERE SalesPrice > 500.00;

/***/

/* Next, open the cursor using KEEP CURSOR WITH LOCKS option: */

/***/

do {

DeadLockFree = TRUE;

EXEC SQL OPEN C1 KEEP CURSOR WITH LOCKS;

if (sqlca.sqlcode != 0)

SQLStatusCheck ();

} while (!DeadLockFree);

/***/

/* COMMIT WORK in order to preserve the cursor position */

/***/

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck ();

/***/

/* Execute BULK FETCH option until there is no deadlock */

/***/

EndofScan = FALSE;

while (! EndofScan) {

do {
DeadlockFree = TRUE;

EXEC SQL BULK FETCH C1 INTO :PriceList, 1, 20;

if (sqlca.sqlcode != 0)

SQLStatusCheck ();

else {

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck ();

}

} while (!DeadLockFree);

6-20 Processing with Cursors

/***/

/* Display qualified rows. SQLERRD[3] contains the */

/* number of qualified rows. */
/***/

printf ("\n Part Name Sales Price\n");

for (i = 0; i < sqlca.sqlerrd[2]; i++)

printf("%s %10.2f",PriceList[i].PartName,PriceList[i].SalesPrice);

} /* WHILE not EndofScan */

/***/

/* Execute the CLOSE command until no deadlock occurs */

/***/

do {

EXEC SQL CLOSE C1;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} while (!DeadLockFree);

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} /* SQLSingleCursor function */

Processing with Cursors 6-21

Multiple Cursors and Cursor Stability

SQLMultiCursor ()

{

/***/

/* First, declare your cursors: */

/***/

EXEC SQL DECLARE C1 CURSOR FOR SELECT BranchNo FROM Tellers
WHERE TellerNo > 15000 FOR UPDATE OF Status;

EXEC SQL DECLARE C2 CURSOR FOR SELECT BranchNo FROM Branches

FOR UPDATE OF Credit;

/***/

/* Next, Open cursor C1. Use explicit BEGIN WORK in do while loop. */

/* loop to make sure ALLBASE/SQL will use the CS isolation level */

/* in case the program runs into a deadlock condition. */

/***/

do {

DeadLockFree = TRUE;

EXEC SQL BEGIN WORK CS;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

else {

EXEC SQL OPEN C1 KEEP CURSOR WITH LOCKS;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

}

} while (!DeadLockFree);

/***/

/* COMMIT WORK in order to preserve the cursor position */

/***/

EXEC SQL COMMIT WORK;
if (sqlca.sqlcode != 0)

SQLStatusCheck();

/**/

/* Initialize EndofScan to FALSE for the outer and inner loops */

/**/

EndofScan = FALSE;

while (! EndofScan) {

6-22 Processing with Cursors

/**/

/* The following do while loop is executed once per */

/* deadlock. We FETCH again using Cursor C1, reopen */
/* Cursor C2, then start to fetch rows using C2. */

/* Note that there is a deadlock, and when the */

/* transaction is aborted, Cursor */

/* C2 is closed and Cursor C1 returns to the beginning */

/* of the transaction. Any work done by the current */

/* transaction on the database is undone. This provides */

/* a method of reapplying the transaction when a */

/* deadlock at any point rolls it back. */

/**/

do {

DeadLockFree = TRUE;

EXEC SQL FETCH C1 INTO :HostBranchNo1;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

else /* 1 */ {

EXEC SQL OPEN C2;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

else /* 2 */ {

while ((! EndofScan) && DeadLockFree) {

EXEC SQL FETCH C2 INTO :HostBranchNo2;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

else /* 3 */ {

if (HostBranchNo1 == HostBranchNo2) {

/**/
/* Update the Branches table. Note: You might wish */

/* to include a DateUpdated column in the Branches */

/* table that can be updated with a timestamp every */

/* time the Credit column is updated. Then, in case */

/* the program terminates abnormally, you will know */

/* which values in the Credit column were updated */

/* before termination. */

/**/

EXEC SQL UPDATE Branches

SET Credit = Credit*0.005

WHERE CURRENT OF C2;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} /* if HostBranchNo1 */

} /* else 3 */

} /* inner while not EndofScan clause */

Processing with Cursors 6-23

if (EndofScan) {

EndofScan = FALSE;

EXEC SQL CLOSE C2;
if (sqlca.sqlcode != 0)

SQLStatusCheck();

else /* 4 */ {

EXEC SQL UPDATE TELLERS SET Status = :NewStatus

WHERE CURRENT OF C1;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

else /* 5 */ {

/**/

/* Changes are committed and a new transaction begins. */

/* Cursor C1 still open; locks associated with the page */

/* pointed to by the cursor are kept. All locks for C2 */

/* are released when the transaction is committed */

/**/

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} /* else 5 */

} /* else 4 */

} /* if EndofScan */

} /* else 2 */

} /* else 1 */

} while (!DeadLockFree);

} /* outer while not EndofScan clause */

/***/
/* Repeat the CLOSE command until no deadlock is found: */

/***/

do {

EXEC SQL CLOSE C1;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} while (!DeadLockFree);

/**/

/* Final COMMIT WORK: current transaction ends, and no new */

/* transaction begins. THIS STEP IS ABSOLUTELY ESSENTIAL */

/* TO END THE KEEP STATE! */

/**/

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} /* SQLMultiCursor function */

6-24 Processing with Cursors

Avoiding Locks on Terminal Reads

SQLNoTermLock ()

{

/***/

/* First, declare the cursor: */

/***/

EXEC SQL DECLARE C1 Cursor FOR

SELECT PartNumber, SalesPrice FROM PurchDB.Parts;

/***/

/* Execute the OPEN command until there is no deadlock: */

/***/

do {

DeadLockFree = TRUE;

EXEC SQL OPEN C1 KEEP CURSOR WITH NOLOCKS;

if (sqlca.sqlcode != 0)

SQLStatusCheck;

} while (!DeadLockFree);

/***/

/* COMMIT WORK to preserve the cursor position: */

/***/

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck;

/***/

/* Now FETCH a row from the active set until EndofScan */

/***/

while (! EndofScan) {

do {

DeadLockFree = TRUE;

EXEC SQL FETCH C1 INTO :PartNumber, :PresentSalesPrice;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

else {
EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

}

} while (!DeadLockFree);

/***/

/* Display the present price and prompt for a new one: */

/***/

printf("\n Part Number: %d", PartNumber);

printf("\n Current Sales Price: %10.2f", PresentSalesPrice);

scanf ("\n Enter New Sales Price: %10.2f", NewSalesPrice);

Processing with Cursors 6-25

/***/

/* Verify that the value of PresentSalesPrice has not */

/* changed. If not, update with NewSalesPrice */
/***/

do {

DeadLockFree = TRUE;

EXEC SQL SELECT SalesPrice INTO :SalesPrice FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

if (sqlca.sqlcode < 0)

SQLStatusCheck();

if (sqlca.sqlcode = 100)

printf("\n Part Number no longer in database. Not updated.")

else {

if (SalesPrice == PresentSalesPrice) {

EXEC SQL UPDATE PurchDB.Parts

SET SalesPrice = :NewSalesPrice

WHERE PartNumber = :PartNumber;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

}

else printf("\n Current price has changed. Not updated.");

}

} while (!DeadLockFree);

} /* while not EndofScan */

/***/

/* Execute the CLOSE command until there is no deadlock: */

/***/

do {

EXEC SQL CLOSE C1;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} while (!DeadLockFree);

/**/

/* Final COMMIT WORK: current transaction ends, and no new */

/* transaction begins. THIS STEP IS ABSOLUTELY ESSENTIAL */

/* TO END THE KEEP STATE! */

/**/

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != 0)

SQLStatusCheck();

} /* SQLNoTermLock function */

6-26 Processing with Cursors

Sample Program Using Cursor Operations

The
ow chart in Figure 6-5 summarizes the functionality of program cex8. This program uses
a cursor and the UPDATE WHERE CURRENT command to update column ReceivedQty in
table PurchDB.OrderItems . The runtime dialog for cex8 appears in Figure 6-6, and the source
code in Figure 6-7.

The program �rst executes function DeclareCursor � 26 �, which contains the DECLARE
CURSOR command � 7 �. This command is a preprocessor directive and is not executed at
run time. At run time, function DeclareCursor only displays the message Declare the Cursor.
The DECLARE CURSOR command de�nes a cursor named OrderReview . The cursor is
associated with a SELECT command that retrieves the following columns for all rows in
table PurchDB.OrderItems having a speci�c order number but no null values in column
VendPartNumber :

OrderNumber (defined NOT NULL)

ItemNumber (defined NOT NULL)

VendPartNumber

ReceivedQty

Cursor OrderReview has a FOR UPDATE clause naming column ReceivedQty to allow the
user to change the value in this column.

To establish a DBE session, program cex8 executes function ConnectDBE � 27 �. This function
evaluates to TRUE when the CONNECT command � 1 � for the sample DBEnvironment,
PartsDBE , is successfully executed.

The program then executes function FetchUpdate until the Done
ag is set to TRUE � 28 �.

Function FetchUpdate prompts for an order number or a zero � 17 �. When the user enters a
zero, function FetchUpdate ends and the main program prompts the user to indicate whether
another OrderNumber should be FETCHed. When the user enters an order number, the
program begins a transaction by executing function BeginTransaction � 18 �, which executes
the BEGIN WORK command � 3 �.

Cursor OrderReview is then opened by invoking function OpenCursor � 19 �. This function,
which executes the OPEN command � 8 �, evaluates to TRUE when the command is
successful.

A row at a time is retrieved and optionally updated until the DoFetch
ag is set to FALSE
� 20 �. This
ag becomes false when:

the FETCH command fails. This command fails when no rows qualify for the active set,
when the last row has already been fetched, or when ALLBASE/SQL cannot execute this
command for some other reason.

the program user wants to stop reviewing rows from the active set.

The FETCH command � 21 � names an indicator variable for ReceivedQty, the only column
in the query result that may contain a null value. If the FETCH command is successful, the
program executes function DisplayUpdate � 22 � to display the current row and optionally
update it.

Function DisplayUpdate executes function DisplayRow � 10 � to display the current row � 6 �.
If column ReceivedQty in the current row contains a null value, the message ReceivedQty is
NULL is displayed.

Processing with Cursors 6-27

Function DisplayUpdate then prompts whether the user wants to update the current
ReceivedQty value � 11 �. If so, the user is prompted for a new value. The value accepted is
used in an UPDATE WHERE CURRENT command � 12 �. If the user entered a zero, a null
value is assigned to this column.

The program then prompts whether to FETCH another row � 13 �. If so, the FETCH
command is re-executed. If not, the program prompts the user whether to make permanent
any updates that may have made made to the active set � 14 �. To keep any row changes,
the program executes function EndTransaction � 16 � which executes the COMMIT WORK
command � 4 �. To undo any row changes, the program executes function RollBack � 15 �,
which executes the ROLLBACK WORK command � 5 �.

The COMMIT WORK command is also executed when ALLBASE/SQL sets sqlca.sqlcode to
100 following execution of the FETCH command � 23 �. Sqlca.sqlcode is set to 100 when no
rows qualify for the active set or when the last row has already been fetched. If the FETCH
command fails for some other reason, the ROLLBACK WORK command is executed instead
� 24 �.

Before any COMMIT WORK or ROLLBACK WORK command is executed, cursor
OrderReview is closed � 9 �. Although the cursor is automatically closed whenever a
transaction is terminated, it is good programming practice to use the CLOSE command to
close open cursors prior to terminating transactions.

When the program user enters an N in response to the main program's prompt to FETCH
another order number, the program terminates by executing function ReleaseDBE � 29 �,
which executes the RELEASE command � 2 �.

6-28 Processing with Cursors

Figure 6-5. Flow Chart of Program cex8

Processing with Cursors 6-29

Program to UPDATE OrderItems Table via a CURSOR - cex8

Event List:

CONNECT TO PartsDBE

Prompt for Order Number

BEGIN WORK

OPEN CURSOR

FETCH a row

Display the retrieved row

Prompt for new Received Quantity

UPDATE row within OrderItems table

FETCH the next row, if any, with the same Order Number

Repeat the above five steps until there are no more rows

CLOSE CURSOR

End Transaction

Repeat the above eleven steps until user enters 0

RELEASE the DBEnvironment

Connect to PartsDBE

Declare Cursor

Enter OrderNumber or 0 to STOP > 30520

Begin Work

Open the Cursor

Fetch the next row.

Order Number: 30520

Item Number: 1

Vendor Part Number: 9375

Received Quantity: 9

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > y

Fetch the next row.

Order Number: 30520

Item Number: 2

Vendor Part Number: 9105

Received Quantity: 3

Do you want to change ReceivedQty (Y/N)? > y

Enter New ReceivedQty or 0 for NULL > 15

Figure 6-6. Runtime Dialog of Program cex8

6-30 Processing with Cursors

Update the PurchDB.OrderItems table

Do you want to see another row (Y/N)? > y

Fetch the next row.

Order Number: 30520

Item Number: 3

Vendor Part Number: 9135

Received Quantity: 3

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > y

Fetch the next row.

Row not found or no more rows!

Do you want to save your changes (Y/N)? > y

Close the Cursor

Commit Work

1 rows changed!

Do you want to FETCH another OrderNumber (Y/N)? > y

Enter an OrderNumber or a 0 to STOP > 30510

Begin Work

Open the Cursor

Fetch the next row.

Order Number: 30510

Item Number: 1

Vendor Part Number: 1001

Received Quantity: 3

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > n

Close Cursor

Commit Work

Do you want to FETCH another OrderNumber (Y/N)? > n

Release PartsDBE

Figure 6-6. Runtime Dialog of Program cex8 (page 2 of 2)

Processing with Cursors 6-31

/* Program cex8 */

/* */

/* This program illustrates the use of SQL's UPDATE WHERE */

/* CURRENT command using a cursor to update a single row */

/* at a time. */

/* */

typedef int boolean;

boolean Abort;

boolean Done;

boolean DoFetch;

char response[2];

int RowCounter;

#include <stdio.h>

#define OK 0

#define NotFound 100

#define MultipleRows -10002

#define DeadLock -14024

#define FALSE 0

#define TRUE 1

sqlca_type sqlca; /* SQL Communication Area */

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION;

int OrderNumber;

int ItemNumber;

char VendPartNumber[17];

int ReceivedQty;

sqlind ReceivedQtyInd;

char SQLMessage[133];

EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT

6-32 Processing with Cursors

int SQLStatusCheck() /* Function to Display Error Messages */

{

Abort = FALSE;

if (sqlca.sqlcode < DeadLock) Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("\n");

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) {

ReleaseDBE();

}

} /* End SQLStatusCheck Function */

boolean ConnectDBE() /* Function to Connect to PartsDBE */

� 27 �
{

boolean ConnectDBE;

printf("\n Connect to PartsDBE");

EXEC SQL CONNECT TO 'PartsDBE'; � 1 �

ConnectDBE = TRUE;

if (sqlca.sqlcode != OK) {

ConnectDBE = FALSE;

SQLStatusCheck();

} /* End if */

return (ConnectDBE);

} /* End of ConnectDBE Function */

int ReleaseDBE() /* Function to Release PartsDBE */

� 29 �
{

printf("\n Release PartsDBE");

printf("\n");

EXEC SQL RELEASE; � 2 �

Done = TRUE;

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End ReleaseDBE Function */

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT (page 2 of 8)

Processing with Cursors 6-33

boolean BeginTransaction() /* Function to Begin Work */ � 18 �
{

boolean BeginTransaction;

printf("\n");

printf("\n Begin Work");

EXEC SQL BEGIN WORK; � 3 �

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

ReleaseDBE();

}

} /* End BeginTransaction Function */

int EndTransaction() /* Function to Commit Work */ � 16 �
{
printf("\n");

printf("\n Commit Work");

EXEC SQL COMMIT WORK; � 4 �
if (sqlca.sqlcode != OK) {

SQLStatusCheck();

ReleaseDBE();

}

} /* End EndTransaction Function */

int RollBack() /* Function to RollBack work */ � 15 �
{

printf("\n");

printf("\n RollBack Work");

EXEC SQL ROLLBACK WORK; � 5 �
if (sqlca.sqlcode != OK) {

SQLStatusCheck();

ReleaseDBE();

}

} /* End of RollBack Function */

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT (page 3 of 8)

6-34 Processing with Cursors

int DisplayRow() /* Function to Display Parts Table Rows */ � 10 �
{

printf("\n");

printf("Order Number: %10d\n", OrderNumber); � 6 �
printf("Item Number: %10d\n", ItemNumber);

printf("Vendor Part Number: %s\n", VendPartNumber);

if (ReceivedQtyInd != 0)

printf("Received Quantity: is NULL \n");

else

printf("Received Quantity: %5d\n", ReceivedQty);

} /* End of DisplayRow */

int DeclareCursor() /* Function to Declare the Cursor */ � 26 �
{

printf("\n");
printf("\n Declare the Cursor");

EXEC SQL DECLARE OrderReview � 7 �
CURSOR FOR

SELECT OrderNumber,

ItemNumber,

VendPartNumber,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber

AND VendPartNumber IS NOT NULL

FOR UPDATE OF ReceivedQty;

} /* End DeclareCursor Function */

boolean OpenCursor() /* Function to Open the Declared Cursor */

� 19 �
{

boolean OpenCursor;

OpenCursor = TRUE;

printf("\n");

printf("\n Open the Cursor");

EXEC SQL OPEN OrderReview; � 8 �
if (sqlca.sqlcode != OK) {

OpenCursor = FALSE;

SQLStatusCheck();

RollBack();

}

return(OpenCursor);
} /* End of OpenCursor Function */

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT (page 4 of 8)

Processing with Cursors 6-35

int CloseCursor() /* Function to Close the Declared Cursor */

{

printf("\n");

printf("\n Close the Cursor");

EXEC SQL CLOSE OrderReview;

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

EndTransaction();

}

} /* End of CloseCursor Function */

int DisplayUpdate() /* Display & Update row in OrderItems Table*/

{ � 22 �
DisplayRow(); � 10 �
printf("\n");

printf("\n Do you want to change ReceivedQty (Y/N)? > "); � 11 �
scanf("%s",response);

if ((response[0] == 'Y') || (response[0] == 'y')) {

printf("\n");

printf("\n Enter new ReceivedQty or a 0 for NULL > ");

scanf("%d5",&ReceivedQty);

if (ReceivedQty == 0)

ReceivedQtyInd = -1;

else

ReceivedQtyInd = 0;

printf("\n UPDATE the PurchDB.OrderItems table");

EXEC SQL UPDATE PurchDB.OrderItems � 12 �
SET ReceivedQty = :ReceivedQty :ReceivedQtyInd

WHERE CURRENT OF OrderReview;

if (sqlca.sqlcode != OK)

SQLStatusCheck();

else

RowCounter = RowCounter + 1;

}

printf("\n");

printf("\n Do you want to see another row (Y/N)? > "); � 13 �
scanf("%s",response);

if ((response[0] == 'N') || (response[0] == 'n')) {

if (RowCounter > 0) {

printf("\n");
printf("\n Do you want to save the changes you made (Y/N)?>");

scanf("%s",response); � 14 �

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT (page 5 of 8)

6-36 Processing with Cursors

if ((response[0] == 'N') || (response[0] == 'n')) {

CloseCursor();

RollBack(); � 15 �
DoFetch = FALSE;

}

else {

CloseCursor();

EndTransaction(); � 16 �
printf(RowCounter," %d\n rows were changed!");

DoFetch = FALSE;

}

}

if (RowCounter == 0) {

CloseCursor();

EndTransaction();

DoFetch = FALSE;

}

}

} /* End DisplayUpdate Function */

int FetchUpdate() /* Fetch a row to Update within OrderItems */

{ � 28 �
printf("\n");

printf("\n Enter an OrderNumber or a 0 to STOP > "); � 17 �
scanf("%d",&OrderNumber);

RowCounter = 0;

if (OrderNumber != 0) {

BeginTransaction(); � 18 �
if (OpenCursor()) { � 19 �

DoFetch = TRUE;

do {

printf("\n");

printf("\n FETCH the next row.");

EXEC SQL FETCH OrderReview � 21 �
INTO :OrderNumber,

:ItemNumber,

:VendPartNumber,

:ReceivedQty :ReceivedQtyInd;

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT (page 6 of 8)

Processing with Cursors 6-37

switch(sqlca.sqlcode) {

case OK: DisplayUpdate(); � 22 �
break;

case NotFound: DoFetch = FALSE; � 20 �
printf("\n");

printf("\n Row not found or no more rows!");

if (RowCounter > 0) {

printf("\n");

printf("\n Do you want to save your changes (Y/N)?>");

scanf("%s",response);

if ((response[0] == 'N') || (response[0] == 'n')) {

CloseCursor(); � 9 �
RollBack();

}

else {

CloseCursor(); � 9 �
EndTransaction(); � 23 �
printf(RowCounter,"%d\n rows were changed!");

}

}

if (RowCounter == 0) {

CloseCursor(); � 9 �
EndTransaction(); � 23 �
}

break;

default: DoFetch = FALSE; � 20 �
SQLStatusCheck();

CloseCursor(); � 9 �
RollBack(); � 24 �
break;

} /* End switch */

} while (DoFetch != FALSE); /* End do */

} /* End if open */

} /* End if OrderNumber */

} /* End of FetchUpdate Function */

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT (page 7 of 8)

6-38 Processing with Cursors

main() /* Beginning of program */

{

printf("\n Program to UPDATE the OrderItems table via a CURSOR - cex8");

printf("\n");

printf("\n Event list:");

printf("\n CONNECT TO PartsDBE");

printf("\n Prompt for an Order Number");

printf("\n BEGIN WORK");

printf("\n OPEN CURSOR");

printf("\n FETCH a row");

printf("\n Display the retrieved row");

printf("\n Prompt for new Received Quantity");

printf("\n UPDATE row within the OrderItems table");

printf("\n FETCH the next row, if any, with the same Order Number");

printf("\n Repeat the above five steps until there are no more rows");

printf("\n CLOSE CURSOR");

printf("\n End Transaction");

printf("\n Repeat the above eleven steps until the user enters a 0");
printf("\n RELEASE the DBEnvironment");

printf("\n");

if (ConnectDBE()) { � 27 �

DeclareCursor(); � 26 �

Done = FALSE;

do {

FetchUpdate(); � 28 �
printf("\n Do you want to FETCH another OrderNumber (Y/N)?>");

scanf("%s",response);

if ((response[0] == 'N') || (response[0] == 'n')) Done = TRUE;

} while (Done != TRUE);

ReleaseDBE(); � 29 �
}

else

printf("\n Error: Cannot Connect to PartsDBE!\n");

} /* End of Program */

Figure 6-7. Program cex8: Using UPDATE WHERE CURRENT (page 8 of 8)

Processing with Cursors 6-39

7

BULK Table Processing

BULK table processing is the programming technique you use to SELECT, FETCH, or
INSERT multiple rows at a time. This chapter describes the following aspects of BULK
processing:

Variables Used in BULK Processing.

SQL BULK Commands.

Transaction Management for BULK Operations.

Sample Program Using BULK Processing.

Variables Used in BULK Processing

Rows are retrieved into or inserted from host variables declared as an array of records. Any
column that may contain a null value must have an indicator variable immediately following
the declaration for the column in the array:

struct StructName {NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
data type Column1Name;NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
data type Column2Name;

sqlind Col2IndVar;

.

.

.NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
data type ColumnnName;

sqlind ColnIndVar;

} ArrayName[n];

BULK Table Processing 7-1

You reference the name of the array in the BULK SQL command:

EXEC SQL BEGIN DECLARE SECTION;

struct {
char PartNumber[17];

char PartName[31];

sqlind PartNameInd;

}
NNN
PartsArray[26];

double SalesPrice;

EXEC SQL END DECLARE SECTION;

.

.

.

EXEC SQL BULK SELECT PartNumber, PartName

INTO
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:PartsArray

FROM PurchDB.Parts

WHERE SalesPrice < :SalesPrice;

Two additional host variables may be speci�ed in conjunction with the array:

A StartIndex variable: a SMALLINT or INTEGER variable that speci�es an array
subscript. The subscript identi�es where in the array ALLBASE/SQL should store the
�rst row in a group of rows retrieved. In the case of an INSERT operation, the subscript
identi�es where in the array the �rst row to be inserted is stored. If not speci�ed, the
assumed subscript is zero.

A NumberOfRows variable: a SMALLINT or INTEGER variable that indicates to
ALLBASE/SQL how many rows to transfer into or take from the array, starting at the
array record designated by StartIndex. If not speci�ed, the default number of rows is the
number of records in the array from the StartIndex to the end of the array for an INSERT
operation. For a retrieval operation, the default number of rows is the smaller of two values;
1) the number of records in the array from the StartIndex to the end of the array, or 2) the
number of rows in the query result. NumberOfRows can be speci�ed only if you specify the
StartIndex variable.

7-2 BULK Table Processing

In the BULK SELECT example shown earlier, these two variables would be declared and
referenced as follows:

EXEC SQL BEGIN DECLARE SECTION;
struct {

char PartNumber[17];

char PartName[31];

sqlind PartNameInd;

} PartsArray[26];NN
short int StartIndex ;NN
short int NumberOfRows ;

double SalesPrice;

EXEC SQL END DECLARE SECTION;

.

.

.

EXEC SQL BULK SELECT PartNumber, PartName

INTO :PartsArray,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
:StartIndex,NNN
:NumberOfRows

FROM PurchDB.Parts

WHERE SalesPrice < :SalesPrice;

Note StartIndex and NumberOfRows must be referenced in that order and
immediately following the array reference.

BULK Table Processing 7-3

SQL Bulk Commands

The SQL commands used for BULK table processing are:

BULK SELECT

BULK FETCH

BULK INSERT

BULK SELECT

The BULK SELECT command is useful when the maximum number of rows in the query
result is known at programming time and when the query result is not too large. For example,
this command might be used in an application that retrieves a query result containing a row
for each month of the year.

The form of the BULK SELECT command is:

BULK SELECT SelectList

INTO ArrayName [,StartIndex [,NumberOfRows]]

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

ORDER BY ColumnID

Remember, the WHERE, GROUP BY, HAVING, and ORDER BY clauses are optional. Note
that the order of the select list items must match the order of the corresponding host variables
in the array.

In the following example, parts are counted at one of three frequencies or cycles: 30, 60, or 90
days. The host variable array needs to contain only three records, since the query result will
never exceed three rows.

EXEC SQL BEGIN DECLARE SECTION;

struct {

short int CountCycle;

int PartCount;

} PartsPerCycle[3];
EXEC SQL END DECLARE SECTION;

.

.

.

EXEC SQL BULK SELECT CountCycle, COUNT(PartNumber)

INTO :PartsPerCycle

FROM PurchDB.Inventory;

The query result is a three-row table that describes how many parts are counted per count
cycle.

Multiple query results can be retrieved into the same host variable array by using StartIndex
and NumberOfRows values and executing a BULK SELECT command multiple times:

.

.

7-4 BULK Table Processing

.

EXEC SQL BEGIN DECLARE SECTION;

struct {
short int CountCycle;

int PartCount;

} PartsPerCycle[15];

short int StartIndex;

short int NumberOfRows;

char LowBinNumber[16];

char HighBinNumber[16];

EXEC SQL END DECLARE SECTION;

.

.

.

int DisplayRows()

{

int i;

for (i = 0; i < StartIndex; i++) {

printf("CountCycle: %d\n", PartsPerCycle[i].CountCycle);

printf("PartCount: %d\n", PartsPerCycle[i].PartCount);

} /* end for */

} /* end of procedure DisplayRows */

.

.

.

main()

{

#define TRUE 1

#define FALSE 0

typedef int boolean;

int StartIndex;

int NumberOfRows;

boolean LessThanFive;

/* Initialize variables. */

StartIndex = 1;

NumberOfRows = 3;

LessThanFive = TRUE;

do {

The user is prompted for a range of bin numbers or a 0. If bin numbers are entered, they are
used in a BETWEEN predicate in the BULK SELECT command. This WHILE loop can be
executed as many as �ve times, at which time the array would be �lled.

BULK Table Processing 7-5

printf("\n Enter a low bin number or 0 to STOP > ");

scanf("%d",LowBinNumber);

if (LowBinNumber != 0) {

printf("\n Enter a high bin number > ");

scanf("%d\n",HighBinNumber);

EXEC SQL BULK SELECT CountCycle, COUNT(PartNumber)

INTO :PartsPerCycle,

:StartIndex,

:NumberOfRows

FROM PurchDB.Inventory

WHERE BinNumber

BETWEEN :LowBinNumber AND :HighBinNumber;

StartIndex = StartIndex + 3;

if (StartIndex == 15) LessThanFive = FALSE;

} /* if LowBinNumber */

else

LessThanFive = FALSE;

} while (LessThanFive == TRUE);

The �nal StartIndex value is used to display the �nal contents of the host variable array.

if (StartIndex > 0) {

DisplayRows();

}

}

The following example illustrates the use of sqlca.sqlerrd[2] to display rows stored in the
host variable array. It also checks sqlca.sqlcode in conjunction with sqlca.sqlerrd[2], to
determine whether or not the BULK SELECT executed without error and whether there
may be additional quali�ed rows for which there was not room in the array. In each case, an
appropriate message is displayed.

int DisplayRows()

{

int i;

for (i = 0; i < sqlca.sqlerrd[2]; i++) {

printf("OrderNumber: %s\n", OrdersArray[i].OrderNumber);

printf("VendorNumber: %s\n", OrdersArray[i].VendorNumber);

}

} (* end of procedure DisplayRows *)

.

.

.

7-6 BULK Table Processing

The variable MaximumRows is set to the number of records in the host variable array.

BULK Table Processing 7-7

Main()

{

.

.

.

MaximumRows = 25;

.

.

.

EXEC SQL BULK SELECT OrderNumber, VendorNumber

INTO :OrdersArray

FROM PurchDB.Orders;

switch (sqlca.sqlcode) {

case 0: if (sqlca.sqlerrd[2] == MaximumRows) {

printf("\n There may be additional rows ");

printf("\n that cannot be displayed.");

}

DisplayRows();

break;

case 100: printf("\n No rows were found!");

break;

default: if (sqlca.sqlerrd[2] > 0) {

printf("\n The following rows were retrieved ");

printf("\n before an error occurred:");

}

DisplayRows();

SQLStatusCheck();

break;

} /* End switch */

.

.

.

}

7-8 BULK Table Processing

BULK FETCH

The BULK FETCH command is useful for reporting applications that operate on large query
results or query results whose maximum size is unknown at programming time.

The form of the BULK FETCH command is:

BULK FETCH CursorName

INTO ArrayName [,StartIndex [,NumberOfRows]]

You use this command in conjunction with the following cursor commands:

DECLARE CURSOR: de�nes a cursor and associates with it a query. The cursor
declaration should not contain a FOR UPDATE clause because the BULK FETCH
command is designed to be used for active set retrieval only. The order of the select list
items in the embedded SELECT command must match the order of the corresponding host
variables in the host variable array.

OPEN: opens the cursor.

BULK FETCH: delivers rows into the host variable array and advances the cursor to the
last row delivered. If a single execution of this command does not retrieve the entire active
set, you re-execute it to retrieve subsequent rows in the active set.

CLOSE: releases ALLBASE/SQL internal bu�ers used to handle cursor operations.

To retrieve all the rows in an active set larger than the host variable array, you can test for a
value of 100 in sqlca.sqlcode to determine when you have fetched the last row in the active set:

.

.

int DisplayRows()

{

int i;

for (i = 0; i < sqlca.sqlerrd[2]; i++) {

The values in each row returned by the BULK FETCH command are displayed here.

}

if (sqlca.sqlcode != 0) {

printf("\n Do you want to see additional rows? (yes/no) > ");

scanf("%s", Response);

if ((Response[0] == 'N') || (Response[0] == 'n')) {

DoFetch = FALSE;

}

} (* end of DisplayRows procedure *)

.

.

main()

{

EXEC SQL BEGIN DECLARE SECTION;

struct {

char PartNumber[17];

char VendorName[31];

BULK Table Processing 7-9

short int DeliveryDays;

sqlind DeliveryDaysInd;

} SupplierBuffer[20];

EXEC SQL END DECLARE SECTION;

typedef int boolean;

boolean DoFetch;

char Response[2];

#define TRUE 1

#define FALSE 0

.

.

EXEC SQL DECLARE SupplierInfo

CURSOR FOR

SELECT PartNumber,

VendorName,

DeliveryDays

FROM PurchDB.Vendors,

PurchDB.SupplyPrice

WHERE PurchDB.Vendors.VendorNumber =

PurchDB.SupplyPrice.VendorNumber

ORDER BY PartNumber;

EXEC SQL OPEN SupplierInfo;

DoFetch = TRUE;

do {

EXEC SQL BULK FETCH SupplierInfo

INTO :SupplierBuffer;

switch (sqlca.sqlcode) {

case 0: DisplayRows();

break;

case 100: printf("\n No rows were found!");

DoFetch = FALSE;

break;

default: DisplayRows();

SQLStatusCheck();

DoFetch = FALSE;

break;

} /* End switch */

} while (DoFetch != TRUE);

EXEC SQL CLOSE SupplierInfo;

After the BULK FETCH command is executed, the last row ALLBASE/SQL put into the
host variable array is the current row. If the BULK FETCH command is re-executed, the
�rst row in the next set of rows fetched is the row following the current row, and the last

7-10 BULK Table Processing

row fetched becomes the current row. When the last row in the active set has been fetched,
ALLBASE/SQL sets sqlca.sqlcode to 100 the next time the BULK FETCH command is
executed.

BULK INSERT

The BULK INSERT command is useful for multiple-row insert operations.

The form of the BULK INSERT command is:

BULK INSERT INTO TableName

(ColumnNames)

VALUES (ArrayName [,StartIndex [,NumberOfRows]]

As in the case of the simple INSERT command, you can omit ColumnNames when you
provide values for all columns in the target table. ALLBASE/SQL attempts to assign a null
value to any unnamed column.

In the following example, a user is prompted for multiple rows. When the host variable array
is full and/or when the user is �nished specifying values, the BULK INSERT command is
executed:

EXEC SQL BEGIN DECLARE SECTION;

struct {

char PartNumber[17];

char PartName[31];

sqlind PartNameInd;

double SalesPrice;

sqlind SalesPriceInd;

} NewParts[20];

short int StartIndex;

short int NumberOfRows;

EXEC SQL END DECLARE SECTION;

typedef int boolean;

boolean DoneEntry;

char Response[2];

#define TRUE 1

#define FALSE 0

StartIndex = 1;

NumberOfRows = 0;

DoneEntry = FALSE;

do {

PartEntry();

} while (DoneEntry != TRUE);

.

.

int BulkInsert()

{

BULK Table Processing 7-11

EXEC SQL BULK INSERT INTO PurchDB.Parts

(PartNumber,

PartName,
SalesPrice)

VALUES (:NewParts,

:StartIndex,

:NumberOfRows);

.

.

} /* End of function BulkInsert */

int PartEntry()

{

.

.

The user is prompted for three column values, and the values are assigned to the appropriate
record in the host variable array; then the array row counter (NumberOfRows) is incremented
and the user asked whether s/he wants to specify another line item.

.

.

NumberOfRows = NumberOfRows + 1;

printf("\n Do you want to specify another line item (Y/N)? > ");

scanf("%s",Response);

if ((Response[0] == 'N') || (Response[0] == 'n')) {

DoneEntry = TRUE;

BulkInsert();

}

else {

if (NumberOfRows == 20) {

BulkInsert();

NumberOfRows = 0;

}

} /* End else */

.

.

} /* End of PartEntry Function */

7-12 BULK Table Processing

Transaction Management for BULK Operations

Bulk processing, by using only one ALLBASE/SQL command to operate on multiple rows,
provides a way of minimizing the time page or table locks are held. Locks are only held while
moving rows between database tables and an array de�ned by the program, and operations
can be done while holding data in that array without holding locks against the database.

Because the BULK FETCH command may need to be executed several times before an entire
active set is retrieved, locks obtained to execute this command may be held longer than locks
needed to execute the other BULK commands. Therefore this command is most useful for
applications running when multi-user DBEnvironment access is minimal or when concurrent
transactions do not need to update the table that is the target of the BULK FETCH.

Transaction management is further discussed in the ALLBASE/SQL Reference Manual .

BULK Table Processing 7-13

Sample Program Using BULK Processing

The
ow chart in Figure 7-1 summarizes the functionality of program cex9. This program
creates orders in the sample DBEnvironment, PartsDBE. Each order is placed with a speci�c
vendor, to obtain one or more parts supplied by that vendor.

An order consists of a row in table PurchDB.Orders, which comprises the order header:

OrderNumber (defined NOT NULL)

VendorNumber

OrderDate

An order usually consists of one or more line items, represented by one or more rows in the
table PurchDB.OrderItems:

OrderNumber (defined NOT NULL)

ItemNumber (defined NOT NULL)

VendPartNumber

PurchasePrice (defined NOT NULL)

OrderQty

ItemDueDate
ReceivedQty

Program cex9 uses a simple INSERT command to create the order header and, optionally, a
BULK INSERT command to insert line items.

The runtime dialog for program cex9 appears in Figure 7-2, and the source code in Figure 7-3.

To establish a DBE session � 54 �, cex9 executes function ConnectDBE . This function
evaluates to TRUE when the CONNECT command � 5 � is successfully executed.

The program then executes function CreateOrder until the Done
ag is set to TRUE � 55 �.

Function CreateOrder prompts for a vendor number or a zero (0) to stop the program � 48 �.
When the user enters a zero, Done is set to TRUE � 53 � and the program terminates. When
the user enters a vendor number, program cex9:

Validates the number entered.

Creates an order header if the vendor number is valid.

optionally inserts line items if the order header has been successfully created; the part
number for each line item is validated to ensure the vendor actually supplies the part.

Displays the order created.

To validate the vendor number, function ValidateVendor is executed � 49 �. Function
ValidateVendor starts a transaction by invoking function BeginTransaction � 9 �, which
executes the BEGIN WORK command � 6 �. Then a SELECT command � 10 � is processed
to determine whether the vendor number exists in column VendorNumber of table
PurchDB.Vendors :

If the number exists in table PurchDB.Vendors , the vendor number is valid. Flag
VendorOK is set to TRUE, and the transaction is terminated by invoking function
EndTransaction � 11 �. EndTransaction executes the COMMIT WORK command � 7 �.

If the vendor number is not found, COMMIT WORK is executed and a message is displayed
to inform the user that the number entered is invalid � 12 �. Several
ags are set to FALSE

7-14 BULK Table Processing

so that when control returns to function CreateOrder , the user is again prompted for a
vendor number.

If the SELECT command fails, function SQLStatusCheck is invoked � 13 � to display any
error messages � 4 �. Then the COMMIT WORK command is executed, and the appropriate

ags set to FALSE.

If the vendor number is valid, program cex9 invokes function CreateHeader to create the order
header � 50 �. The order header consists of a row containing the vendor number entered, plus
two values computed by the program: OrderNumber and OrderDate.

Function CreateHeader starts a transaction � 34 �, then obtains an exclusive lock on table
PurchDB.Orders � 35 �. Exclusive access to this table ensures that when the row is inserted,
no row having the same number will have been inserted by another transaction. The
unique index that exists on column OrderNumber prevents duplicate order numbers in table
PurchDB.Orders . Therefore an INSERT operation fails if it attempts to insert a row having
an order number with a value already in column OrderNumber .

In this case, the exclusive lock does not threaten concurrency. No operations conducted
between the time the lock is obtained and the time it is released involve operator intervention:

Function CreateHeader invokes function ComputeOrderNumber � 36 � to compute the order
number and the order date.

Function ComputeOrderNumber executes a SELECT command to retrieve the highest order
number in PurchDB.Orders � 30 �. The number retrieved is incremented by one � 31 � to
assign a number to the order.

Function ComputeOrderNumber then executes function SystemDate � 32 �. This function
calls the MPE XL system library nl ctime � 2 � to retrieve and format the current date. The
date retrieved is converted into YYYYMMDD format, the format in which dates are stored
in the sample DBEnvironment.

Function ComputeOrderNumber then executes function InsertRow � 33 �. This function
executes a simple INSERT command � 22 � to insert a row into PurchDB.Orders . If the
INSERT command succeeds, the transaction is terminated with a COMMIT WORK
command, and the HeaderOK
ag is set to TRUE � 24 �. If the INSERT command fails, the
transaction is terminated with a COMMIT WORK command, but the HeaderOK
ag is
set to FALSE � 23 � so that the user is prompted for another vendor number when control
returns to function CreateOrder .

To create line items, function CreateOrder executes function CreateOrderItems until the
DoneItems
ag is set to TRUE � 51 �. Function CreateOrderItems prompts for whether the
user wants to specify line items � 44 �.

If the user wants to create line items, function CreateOrderItems executes function ItemEntry
until the DoneItems
ag is set to TRUE � 46 �, then executes function BulkInsert � 47 �:

Function ItemEntry assigns values to the host variable structure array OrderItems � 1 �;
each record in the array corresponds to one line item, or row in PurchDB.OrderItems . The
function �rst assigns the order number and a line number to each row � 37 �, beginning
at one. ItemEntry then prompts for a vendor part number � 38 �, which is validated by
invoking function ValidatePart � 39 �.

BULK Table Processing 7-15

Function ValidatePart starts a transaction � 14 �. Then it executes a SELECT command
� 15 � to determine whether the part number entered matches any part number known to
be supplied by the vendor. If the part number is valid, the COMMIT WORK command is
executed � 16 � and the PartOK
ag set to TRUE. If the part number is invalid, COMMIT
WORK is executed � 17 �, and the user informed that the vendor does not supply any part
having the number speci�ed; then the PartOK
ag is set to FALSE so that the user is
prompted for another part number when control returns to function ItemEntry .

If the part number is valid, function ItemEntry completes the line item. It prompts for
values to assign to columns PurchasePrice, OrderQty, and ItemDueDate � 40 �. The function
then assigns a negative value to the indicator variable for column ReceivedQty � 41 � in
preparation for inserting a null value into this column.

Function ItemEntry terminates when the user indicates that the user does not want to
specify any more line items � 42 � or when the host variable array is full � 43 �.

Function BulkInsert starts a transaction � 25 �, then executes the BULK INSERT command
� 27 �. The line items in array OrderItems are inserted into table PurchDB.OrderItems ,
starting with the �rst record and continuing for as many records as there were line items
speci�ed � 26 �. If the BULK INSERT command succeeds, the COMMIT WORK command
is executed � 29 � and the ItemsOK
ag set to TRUE. If the BULK INSERT command fails,
function RollBackWork is executed � 28 � to process the ROLLBACK WORK command � 8 �
so that any rows inserted prior to the failure are rolled back.

If the user does not want to create line items, function CreateOrderItems displays the
order header by invoking function DisplayHeader � 45 �. Function DisplayHeader displays
the row � 18 � that was created earlier in function CreateHeader � 50 � and inserted into
PurchDB.Orders in the function InsertRow � 33 �.

If line items were successfully inserted into the PurchDB.OrderItems table in function
BulkInsert, then function CreateOrder invokes function DisplayOrder � 52 � to display the
order created. Function DisplayOrder invokes function DisplayHeader � 20 � to display the
order header. Then it executes function DisplayItems � 21 � to display each row inserted into
the PurchDB.OrderItems table. Function DisplayItems displays values from the structure
array OrderItems � 19 �.

When the program user enters a 0 in response to the vendor number prompt in function
CreateOrder, Done is set to TRUE � 53 � and the program terminates by executing function
ReleaseDBE � 56 �, which executes the RELEASE command � 3 �.

7-16 BULK Table Processing

Figure 7-1. Flow Chart of Program cex9

BULK Table Processing 7-17

Program to Create an Order - cex9

Event List:

CONNECT TO PartsDBE

Prompt for VendorNumber

Validate VendorNumber

BEGIN WORK

INSERT a row into PurchDB.Orders

Prompt for a line item

Validate the Vendor Part Number for each line item

BULK INSERT rows into PurchDB.OrderItems

Repeat the above six steps until the user enters a 0

RELEASE the DBEnvironment

Connect to PartsDBE

Enter a Vendor Number or a 0 to STOP> 9015

Begin Work

Validating VendorNumber

Commit Work

Begin Work

LOCK the PurchDB.Orders table.

Calculating OrderNumber

Calculating OrderDate

INSERT into PurchDB.Orders

Commit Work

Do you want to specify line items (Y/N)?> y

You can specify as many as 25 line items.

Enter data for ItemNumber: 1

Vendor Part Number > 9040

Begin Work

Validating VendPartNumber

Commit Work

Purchase Price > 1500

Figure 7-2. Runtime Dialog of Program cex9

7-18 BULK Table Processing

Order Quantity > 5

Item Due Date (yyyymmdd) > 19860630

Do you want to specify another line item (Y/N)? > y

You can specify as many as 25 line items.

Enter data for ItemNumber: 2

Vendor Part Number > 9055

Begin Work

Validating VendPartNumber

Commit Work

The vendor has no part with the number
you specified!

Do you want to specify another line item (Y/N)? > y

You can specify as many as 25 line items.

Enter data for ItemNumber: 2

Vendor Part Number > 9050

Begin Work

Validating VendPartNumber

Commit Work

Purchase Price > 345

Order Quantity > 2

Item Due Date (yyyymmdd) > 19860801

Do you want to specify another line item (Y/N)?> n

Begin Work

BULK INSERT into PurchDB.OrderItems

Commit Work

Figure 7-2. Runtime Dialog of Program cex9 (page 2 of 3)

BULK Table Processing 7-19

The following order has been created:

Order Number: 30524

Vendor Number: 9015

Order Date: 19860603

Item Number: 1

Vendor Part Number: 9040

Purchase Price: 1500.00

Order Quantity: 5

Item Due Date: 19860630

Received Quantity: is NULL

Item Number: 2

Vendor Part Number: 9050

Purchase Price: 345.00

Order Quantity: 2

Item Due Date: 19860801

Received Quantity: is NULL

Enter a Vendor Number or a 0 to STOP > 0

Release PartsDBE

Figure 7-2. Runtime Dialog of Program cex9 (page 3 of 3)

7-20 BULK Table Processing

/* Program cex9 */

/* */

/* This program illustrates the use of SQL's BULK INSERT */

/* command to insert mulitple rows or tuples at a time. */

/* */

typedef int boolean;

boolean Abort;

boolean Done;

boolean DoneItems;

boolean VendorOK;

boolean HeaderOK;

boolean PartOK;

boolean ItemsOK;

char response[2];

int counter1;
int counter2;

int i,j,k;

long sec;

char *Date;

#include <stdio.h>

#include <time.h>

#define OK 0

#define NotFound 100

#define MultipleRows -10002

#define DeadLock -14024

#define FALSE 0

#define TRUE 1

sqlca_type sqlca; /* SQL Communication Area */

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION;

int OrderNumber1;

int VendorNumber;

char OrderDate[9];

char PartSpecified[17];

int MaxOrderNumber;

short StartIndex;

short NumberOfRows;

Figure 7-3. Program cex9: Using BULK INSERT

BULK Table Processing 7-21

struct {

int OrderNumber2;

int ItemNumber;

char VendPartNumber[17];

double PurchasePrice;

short OrderQty;

char ItemDueDate[9];

short ReceivedQty;

sqlind ReceivedQtyInd;

} OrderItems[25]; � 1 �
char SQLMessage[133];

EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

int SystemDate() /* Function to get the system date */ � 32 �
{

sec = time(0);

printf("\n Calculating OrderDate");

ptr = localtime(&sec);

sprintf(OrderDate, "%2s%2.2d%2.2d%2.2d",

"19",ptr->tm_year,++ptr->tm_mon,ptr->tm_mday);

} /* End of SystemDate Function */

int SQLStatusCheck() /* Function to Display Error Messages */ � 13 �
{

Abort = FALSE;

if (sqlca.sqlcode < DeadLock) Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage; � 4 �
printf("\n");

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) {

ReleaseDBE();

}

} /* End SQLStatusCheck Function */

Figure 7-3. Program cex9: Using BULK INSERT (page 2 of 11)

7-22 BULK Table Processing

boolean ConnectDBE() /* Function to Connect to PartsDBE */

� 54 �
{

boolean ConnectDBE;

printf("\n Connect to PartsDBE");

EXEC SQL CONNECT TO 'PartsDBE'; � 5 �

ConnectDBE = TRUE;

if (sqlca.sqlcode != OK) {

ConnectDBE = FALSE;

SQLStatusCheck();

} /* End if */

return (ConnectDBE);

} /* End of ConnectDBE Function */

int ReleaseDBE() /* Function to Release PartsDBE */ � 56 �
{
printf("\n Release PartsDBE");

EXEC SQL RELEASE; � 3 �
printf("\n");

Done = TRUE;

if (sqlca.sqlcode != OK)

SQLStatusCheck();

} /* End ReleaseDBE Function */

boolean BeginTransaction() /* Function to Begin Work */ � 9 �
{

boolean BeginTransaction;

printf("\n");

printf("\n Begin Work");

EXEC SQL BEGIN WORK; � 6 �

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

ReleaseDBE();

}

} /* End BeginTransaction Function */

Figure 7-3. Program cex9: Using BULK INSERT (page 3 of 11)

BULK Table Processing 7-23

int EndTransaction() /* Function to Commit Work */ � 11 �
{

printf("\n");

printf("\n Commit Work");

EXEC SQL COMMIT WORK; � 7 �
if (sqlca.sqlcode != OK) {

SQLStatusCheck();

}

} /* End EndTransaction Function */

int RollBackWork() /* Function to RollBack work */ � 28 �
{

printf("\n");

printf("\n RollBack Work");

EXEC SQL ROLLBACK WORK; � 8 �
if (sqlca.sqlcode != OK) {

SQLStatusCheck();

ReleaseDBE();

}

} /* End of RollBack Function */

int ValidateVendor() /* Function that ensures vendor number is valid */

{ � 49 �
BeginTransaction(); � 9 �

printf("\n Validating VendorNumber");

EXEC SQL SELECT VendorNumber � 10 �
INTO :VendorNumber

FROM PurchDB.Vendors

WHERE VendorNumber = :VendorNumber;

switch (sqlca.sqlcode) {

case OK: VendorOK = TRUE;

EndTransaction(); � 11 �
break;

case NotFound: EndTransaction();

printf("\n");

printf("\n No vendor has the VendorNumber you");

printf("\n specified!"); � 12 �
VendorOK = FALSE;

HeaderOK = FALSE;
ItemsOK = FALSE;

break;

Figure 7-3. Program cex9: Using BULK INSERT (page 4 of 11)

7-24 BULK Table Processing

default: SQLStatusCheck(); � 13 �
EndTransaction();

VendorOK = FALSE;

HeaderOK = FALSE;

ItemsOK = FALSE;

break;

} /* End switch */

} /* End ValidateVendor Function */

\mf="Function"

int ValidatePart() /* Function that ensures vendor part number is valid */

{ � 39 �
BeginTransaction(); � 14 �

sscanf(OrderItems[i].VendPartNumber,"%s",PartSpecified);

printf("\n Validating VendPartNumber");

EXEC SQL SELECT VendPartNumber � 15 �
INTO :PartSpecified

FROM PurchDB.SupplyPrice

WHERE VendorNumber = :VendorNumber

AND VendPartNumber = :PartSpecified;

switch (sqlca.sqlcode) {

case OK: EndTransaction(); � 16 �
PartOK = TRUE;

break;

case NotFound: EndTransaction(); � 17 �
printf("\n");

printf("\n The vendor has no part with the number"

printf("\n you specified!");

PartOK = FALSE;

break;

Figure 7-3. Program cex9: Using BULK INSERT (page 5 of 11)

BULK Table Processing 7-25

default: SQLStatusCheck();

EndTransaction();

PartOK = FALSE;

break;

} /* End switch */

} /* End ValidatePart Function */

int DisplayHeader() /* Function to Display row from PurchDB.Orders */

{ � 45 �
printf("\n");

printf("\n The following order has been created.");

printf("\n");

printf("Order Number: %d\n", OrderNumber1); � 18 �
printf("Vendor Number: %d\n", VendorNumber);

printf("Order Date: %s\n", OrderDate);

} /* End of DisplayRow Function */

int DisplayItems() /* Function to Display Rows from PurchDB.OrderItems */

{ � 21 �
j = counter2;

printf("\n"); � 19 �
printf("Item Number: %d\n", OrderItems[j].ItemNumber);

printf("Vendor Part Number: %s\n", OrderItems[j].VendPartNumber);

printf("Purchase Price: %10.2f\n", OrderItems[j].PurchasePrice)

printf("Order Quantity: %d\n", OrderItems[j].OrderQty);

printf("Item Due Date: %s\n", OrderItems[j].ItemDueDate);

printf("Received Quantity: is NULL \n");

counter2 = j + 1;

} /* End of DisplayRow */

int DisplayOrder() /* Function to Display Order Created */ � 52 �
{

DisplayHeader(); � 20 �
printf("\n");

i = counter1;

counter2 = 1;

do {

DisplayItems(); � 21 �
j = j + 1;

} while (j < i);

} /* End of DisplayOrder Function */

Figure 7-3. Program cex9: Using BULK INSERT (page 6 of 11)

7-26 BULK Table Processing

int InsertRow() /* Function to insert row in PurchDB.Orders */ � 33 �
{

printf("\n");

printf("\n INSERT into PurchDB.Orders");

EXEC SQL INSERT INTO PurchDB.Orders � 22 �
(OrderNumber,

VendorNumber,

OrderDate)

VALUES (:OrderNumber1,

:VendorNumber,

:OrderDate);

if (sqlca.sqlcode != 0) {

SQLStatusCheck();

EndTransaction();

HeaderOK = FALSE; � 23 �
}

else {
EndTransaction();

HeaderOK = TRUE; � 24 �
}

} /* End of InsertRow Function */

int BulkInsert() /* Function to bulk insert into PurchDB.OrderItems */

{ � 47 �
BeginTransaction(); � 25 �
NumberOfRows = counter1; � 26 �
StartIndex = 1;

printf("\n BULK INSERT into PurchDB.OrderItems");

EXEC SQL BULK INSERT INTO PurchDB.OrderItems � 27 �
(OrderNumber,

ItemNumber,

VendPartNumber,

PurchasePrice,

OrderQty,

ItemDueDate,

ReceivedQty)

VALUES (:OrderItems,

:StartIndex,

:NumberOfRows);

Figure 7-3. Program cex9: Using BULK INSERT (page 7 of 11)

BULK Table Processing 7-27

if (sqlca.sqlcode != 0) {

SQLStatusCheck();

RollBackWork(); � 28 �
ItemsOK = FALSE;

}

else {

EndTransaction(); � 29 �
ItemsOK = TRUE;

}

} /* End of BulkInsert Function */

int ComputeOrderNumber() /* Function to assign a number to an order */

{ � 36 �
EXEC SQL SELECT MAX(OrderNumber) � 30 �

INTO :MaxOrderNumber

FROM PurchDB.Orders;

if (sqlca.sqlcode != 0) {

SQLStatusCheck();

EndTransaction();

HeaderOK = FALSE;

}

else {

printf("\n Calculating OrderNumber");

OrderNumber1 = MaxOrderNumber + 1; � 31 �
SystemDate(); � 32 �
InsertRow(); � 33 �
}

} /* End ComputeOrderNumber Function */

int CreateHeader() /* Function to create order header */ � 50 �
{

BeginTransaction(); � 34 �

printf("\n LOCK the PurchDB.Orders table.");

EXEC SQL LOCK TABLE PurchDB.Orders IN EXCLUSIVE MODE; � 35 �

if (sqlca.sqlcode != 0) {

SQLStatusCheck();

EndTransaction();

HeaderOK = FALSE;

}

Figure 7-3. Program cex9: Using BULK INSERT (page 8 of 11)

7-28 BULK Table Processing

else

ComputeOrderNumber(); � 36 �

} /* End CreateHeader Function */

int ItemEntry() /* Function to put line items into OrderItems array */

{ � 46 �
i = counter1;

OrderItems[i].OrderNumber2 = OrderNumber1; � 37 �
OrderItems[i].ItemNumber = i;

printf("\n");

printf("\n You can specify as many as 25 line items.");

printf("\n");

printf("\n Enter data for ItemNumber: %d\n", OrderItems[i].ItemNumber);

printf("\n");

printf("\n Vendor Part Number > "); � 38 �
scanf("%s%*c",OrderItems[i].VendPartNumber);
ValidatePart(); � 39 �
DoneItems = FALSE;

if (PartOK != FALSE) {

printf("\n");

printf("\n Purchase Price > "); � 40 �
scanf("%1f",&OrderItems[i].PurchasePrice);

printf("\n Order Quantity > "); � 40 �
scanf("%5d%*c",&OrderItems[i].OrderQty);

printf("\n Item Due Date (yyyymmdd) > "); � 40 �
scanf("%s%*c",OrderItems[i].ItemDueDate);

OrderItems[i].ReceivedQtyInd = -1; � 41 �

counter1 = i + 1;

}

if (i < 25) {

printf("\n");

printf("\n Do you want to specify another line item (Y/N)? >");

scanf("%s%*c",response); � 42 �
if ((response[0] == 'N') || (response[0] == 'n')) {

DoneItems = TRUE;

}

}

else

DoneItems = TRUE; � 43 �
} /* End ItemEntry Function */

Figure 7-3. Program cex9: Using BULK INSERT (page 9 of 11)

BULK Table Processing 7-29

int CreateOrderItems() /* Function to create line items */ � 51 �
{

ItemsOK = FALSE;

printf("\n");

printf("\n Do you want to specify line items (Y/N)? > "); � 44 �
scanf("%s%*c",response);

if ((response[0] == 'N') || (response[0] == 'n')) {

DoneItems = TRUE;

DisplayHeader(); � 45 �
}

else {

counter1 = 1;

do {

ItemEntry(); � 46 �
} while (DoneItems == FALSE);

if (counter1 != 1) {

BulkInsert(); � 47 �
ItemsOK = TRUE;
}

}

} /* End of CreateOrderItems Function */

int CreateOrder() /* Function to create an order */ � 55 �
{

printf("\n");

printf("\n Enter a Vendor Number or a 0 to STOP > "); � 48 �
scanf("%10d%*c",&VendorNumber);

if (VendorNumber != 0) {

ValidateVendor(); � 49 �
if (VendorOK == TRUE) CreateHeader(); � 50 �
if (HeaderOK == TRUE) {

DoneItems = FALSE;

do {

CreateOrderItems(); � 51 �
} while (DoneItems == FALSE);

}

if (ItemsOK == TRUE) DisplayOrder(); � 52 �
}

else

Done = TRUE; � 53 �

} /* End CreateOrder Function */

Figure 7-3. Program cex9: Using BULK INSERT (page 10 of 11)

7-30 BULK Table Processing

main() /* Beginning of program */

{

printf("\n Program to CREATE an Order - cex9");

printf("\n");

printf("\n Event list:");

printf("\n CONNECT TO PartsDBE");

printf("\n Prompt for a Vendor Number");

printf("\n Validate the Vendor Number");

printf("\n BEGIN WORK");

printf("\n INSERT a row into PurchDB.Orders");

printf("\n Prompt for a line item");

printf("\n Validate the Vendor Part Number for each line item");

printf("\n BULK INSERT rows into PurchDB.OrderItems");

printf("\n Repeat the above six steps until the user enters a 0");

printf("\n RELEASE the DBEnvironment");

printf("\n");

if (ConnectDBE()) { � 54 �

Done = FALSE;

do {

CreateOrder(); � 55 �
} while (Done != TRUE);

ReleaseDBE(); � 56 �
}

else

printf("\n Error: Cannot Connect to PartsDBE!\n");

} /* End of Program */

Figure 7-3. Program cex9: Using BULK INSERT (page 11 of 11)

BULK Table Processing 7-31

8

Using Dynamic Operations

Dynamic operations are used to execute SQL commands that are not preprocessed until run
time. Such commands, known as dynamic SQL commands, are submitted to ALLBASE/SQL
through several special SQL statements: PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE.

This chapter contrasts dynamic with non-dynamic operations and introduces the techniques
used to handle dynamic operations from a program. It then focuses on dynamic non-queries
and queries. The following topics are considered:

Review of Preprocessing Events.
Di�erences between Dynamic and Non-Dynamic Preprocessing.
Preprocessing of Dynamic Non-Queries.
Preprocessing of Dynamic Queries.
Preprocessing of Dynamic Commands That May or May Not be Queries.
Programs Using Dynamic Query Operations.

Review of Preprocessing Events

All embedded SQL statements must be preprocessed before they can be executed.
Preprocessing may be done by running the C preprocessor during application development,
or it may be done for dynamic commands when the program is run. Preprocessing does the
following:

Checks syntax: The syntax of SQL commands and host variable declarations must be
correct.

Veri�es the existence of objects: Any object named in an SQL command must exist.

Optimizes data access: If the statement accesses data, the fastest way to access the data
must be determined.

Checks authorizations: Both the program owner and the executor must have the required
authorities.

Creates sections: ALLBASE/SQL creates sections for SQL commands when this is
appropriate. At run time, the section is executed.

These preprocessing events take place for all non-dynamic SQL commands when you run the
ALLBASE/SQL preprocessor. Non-dynamic commands are fully de�ned in the source code
and are preprocessed before run time. So far, most of the examples in this manual have shown
non-dynamic preprocessing.

ALLBASE/SQL completes the preprocessing of dynamic commands at run time, in an event
known as dynamic preprocessing. Any SQL command except the following, which do not
require sections for execution, can be preprocessed at run time:

Using Dynamic Operations 8-1

BEGIN DECLARE SECTION FETCH

CLOSE CURSOR INCLUDE

DECLARE CURSOR OPEN CURSOR
DELETE WHERE CURRENT PREPARE

DESCRIBE SQLEXPLAIN

END DECLARE SECTION UPDATE WHERE CURRENT

EXECUTE WHENEVER

EXECUTE IMMEDIATE

Dynamic commands that are not queries can be preprocessed at run time using the
PREPARE and EXECUTE statements or the EXECUTE IMMEDIATE statement. Dynamic
queries are preprocessed using the PREPARE and DESCRIBE commands in conjunction with
the SQLDA or SQL Description Area and other data structures. These statements and data
structures, used with a cursor, are described further in a later section.

Differences between Dynamic and Non-Dynamic Preprocessing

The authorization checking and section creation activities for Non-dynamic and dynamic
ALLBASE/SQL commands di�er in the following ways:

Authorization checking. A non-dynamic command is executed if the owner of the program
module has the proper authority at run time. A dynamic command is executed if the
program executor has the proper authority at run time.

Section creation. Any section created for a non-dynamic command becomes part of a
module permanently stored in a DBEnvironment by the C preprocessor. The module
remains in that system catalog until you execute the DROP MODULE command or invoke
the preprocessor with the DROP option. Any section created for a dynamic command is
temporary. The section is created at run time, temporarily stored, then deleted at the end
of the transaction in which it was created.

Permanently Stored vs. Temporary Sections

In some instances, you could code the same SQL statement as either dynamic or non-dynamic,
depending on whether you wanted to store permanent sections. A program that has
permanently stored sections associated with it can be executed only against DBEnvironments
containing those sections. Figure 8-1 illustrates how you create and use such programs. Note
that the sections can be permanently stored either by the preprocessor or by using the ISQL
INSTALL command.

8-2 Using Dynamic Operations

Figure 8-1. Creation and Use of a Program that has a Stored Module

Programs that contain only SQL commands that do not have permanently stored sections
can be executed against any DBEnvironment without the prerequisite of storing a module in
the DBEnvironment. Figure 8-2 illustrates how you create and use programs in this category.
Note that the program must still be preprocessed, in order to create compilable �les and
generate ALLBASE/SQL external procedure calls.

Using Dynamic Operations 8-3

Figure 8-2. Creation and Use of a Program that has no Stored Module

Examples of Non-Dynamic and Dynamic SQL Statements

The following example shows an embedded SQL statement that is coded so as to generate a
stored section before run time:

EXEC SQL UPDATE STATISTICS FOR TABLE PurchDB.Parts;

When you run the preprocessor on a source �le containing this statement, a permanent section
will be stored in the appropriate DBEnvironment.

The following example shows an SQL statement that is coded so as to generate a temporary
section at run time:

DynamicCommand := 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

EXEC SQL PREPARE MyCommand FROM :DynamicCommand;

EXEC SQL EXECUTE MyCommand;

8-4 Using Dynamic Operations

In this case, the SQL statement is stored in a host variable which is passed to ALLBASE/SQL
in the PREPARE statement at run time. A temporary section is then created and executed,
and the section is not stored in the DBEnvironment.

Why Use Dynamic Preprocessing?

In some cases, it may not be desirable to preprocess an SQL command before run time:

You may need to code an application that permits ad hoc queries requiring that SQL
commands be entered by the user at run time. (ISQL is an example of an ad hoc query
facility in which the command the user will submit is completely unknown at programming
time.)

You may need more specialized applications requiring SQL commands that are de�ned
partly at programming time and partly by the user at run time. An application may, for
example, perform UPDATE STATISTICS operations on tables the user speci�es at run
time.

You may wish to run an application on di�erent DBEnvironments at di�erent times without
the need to permanently store sections in those DBEnvironments.

You may wish to code only one dynamic command (a CONNECT, for instance) and then
preprocess or install the same application in several di�erent DBEnvironments.

Passing Dynamic Commands to ALLBASE/SQL

A dynamic command is passed to ALLBASE/SQL either as a string literal or as a host
variable containing a string. It must be terminated with a semicolon. The maximum length
for such a string is 2048 bytes.

To pass a dynamic command that can be completely de�ned at programming time, you can
use a delimited string:

EXEC SQL
PREPARE MyCommand FROM 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

or

EXEC SQL

EXECUTE IMMEDIATE 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

Using Dynamic Operations 8-5

To pass a dynamic command that cannot be completely de�ned at programming time, you use
a host variable declared as an array of char:

char DynamicHostVar[2048];
.

.

EXECUTE IMMEDIATE :DynamicHostVar

Understanding the Types of Dynamic Operations

Dynamic operations in ALLBASE/SQL are of two major types:

Dynamic Non-Queries: dynamic operations that do not retrieve rows from the database.
Note that dynamic non-queries either do or do not require the use of sections at execution
time. For example, a CONNECT does not require a section, but a DELETE does.

Dynamic Queries: dynamic operations that do retrieve rows. Note that dynamic queries
may have a query result whose format is known to you at programming time, or they may
have a query result whose format is unknown. Dynamic queries always use sections at
execution time.

It is sometimes necessary to de�ne dynamic data structures that can accomodate either
non-queries or queries at run time. An example is shown later in this chapter in program
cex10a (Figures 8-7, 8-8, 8-9).

The following paragraphs examine each type of dynamic operation and present information on
how to determine whether or not a dynamic command is a query.

Preprocessing of Dynamic Non-Queries

There are two methods for dynamic preprocessing of a non-query:

Using EXECUTE IMMEDIATE.
Using PREPARE and EXECUTE.

The �rst method can be used with any non-query; the second is only for those non-query
commands that use sections at execution time.

Using EXECUTE IMMEDIATE

If you know in advance that a dynamic command will not be a query, you can dynamically
preprocess and execute the command in one step, using the EXECUTE IMMEDIATE
command. Figure 8-3 illustrates a procedure hosting a dynamic UPDATE STATISTICS
command that can be handled in this fashion.

Function UpdateStatistics � 1 � prompts the user for a table name � 2 �. The table name
entered is assigned to the host variable CmdLine � 3 � to complete the UPDATE STATISTICS
command. After the command is prepared and executed � 4 �, the transaction is terminated
with a COMMIT WORK command � 5 � or a ROLLBACK WORK command � 6 �, depending
on the value in SQLCA.SQLCODE. Terminating the transaction before accepting another

8-6 Using Dynamic Operations

table name and re-executing the UPDATE STATISTICS command releases any locks obtained
and improves concurrency.

If you do not know in advance whether a dynamic command will be a query or a non-query,
you must use the PREPARE command to dynamically preprocess the command, the
DESCRIBE command to distinguish between queries and non-queries, and the EXECUTE
or EXECUTE IMMEDIATE command to execute the dynamic non-query. The program
examined later in this chapter under \Program Using Dynamic Commands of Unknown Type"
illustrates how to handle this situation.

.

.

.

EXEC SQL BEGIN DECLARE SECTION;

char CmdLine[100];

EXEC SQL END DECLARE SECTION;

char TableName[50];

.

.

.

int UpdateStatistics() � 1 �
{

do {
sprintf(CmdLine,"UPDATE STATISTICS FOR TABLE ");

printf("\n Enter name of table or / to terminate > "); � 2 �
gets(TableName);

if (TableName[0] != '/') {

sprintf(CmdLine+strlen(CmdLine)," %s;",TableName); � 3 �

EXEC SQL EXECUTE IMMEDIATE :CmdLine; � 4 �

if (sqlca.sqlcode == 0) {

EXEC SQL COMMIT WORK; � 5 �
}

else

EXEC SQL ROLLBACK WORK; � 6 �

} /* End of if TableName */

} while (TableName[0] != '/');

} /* End of UpdateStatistics function */

.

.

.

Figure 8-3. Procedure Hosting Dynamic Non-Query Commands

Using Dynamic Operations 8-7

Using PREPARE and EXECUTE

Use the PREPARE command to create and store a temporary section for the dynamic
command:

PREPARE CommandName FROM CommandSource

Because the PREPARE command operates only on sections, it can be used to dynamically
preprocess only SQL commands executed by using sections. The DBE session management
and transaction management commands can only be dynamically preprocessed by using
EXECUTE IMMEDIATE.

With PREPARE, ALLBASE/SQL creates a temporary section for the command that you can
execute one or more times in the same transaction by using the EXECUTE command:

EXEC SQL PREPARE MyNonQuery FROM :DynamicCommand;

for i=0;i<MaxIterations;i++)

EXEC SQL EXECUTE MyNonQuery;

As soon as you process a COMMIT WORK or ROLLBACK WORK command, the temporary
section is deleted.

Preprocessing of Dynamic Queries

Preprocessing of dynamic queries requires setting up a bu�er to receive the query result and
extracting the items you want from the bu�er. For these operations, you use three special
data structures:

SQL Description Area (SQLDA). The SQLDA is a record used to pass information on the
location and contents of the other two dynamic data structures, the format array and the
data bu�er. You set some �elds in the SQLDA and pass them to ALLBASE/SQL; and
ALLBASE/SQL passes values back to you in other �elds.

SQL Format Array. The format array is an array of records with one record for each select
list item (column). The attributes of a column in the query result are described in a format
array record. When you do not know the format of a query result at programming time,
you use format array information to identify where in the data bu�er to �nd each column
value and how to interpret it.

Data Bu�er. The data bu�er is an array for holding rows in a query result.
ALLBASE/SQL puts rows into the data bu�er each time you execute the FETCH
command.

Figure 8-4 summarizes the relationships among the special data structures and when data is
assigned to them. Note that status checking information for each SQL command can be found
in the sqlca data structure. See the chapter \Runtime Status Checking and the SQLCA" for
more details.

8-8 Using Dynamic Operations

Figure 8-4. Dynamic Query Data Structures and Data Assignment

Though some speci�c details di�er depending on the query type, in general you handle all
types of dynamic query as follows:

De�ne a host variable (or a string) to hold the SELECT statement to be used by the
PREPARE command.

The PREPARE command dynamically preprocesses the query. ALLBASE/SQL de�nes a
temporary section, which includes a run tree for the SELECT command speci�ed in the
PREPARE command:

EXEC SQL PREPARE MyQuery FROM :DynamicCommand;

The DESCRIBE command makes available to your program information about each column
in a query result:

EXEC SQL DESCRIBE MyQuery INTO SQLDA

The DECLARE CURSOR command maps the temporary section to a cursor so that the
other cursor manipulation commands can be used:

EXEC SQL DECLARE DynamicCursor CURSOR FOR MyQuery;

The OPEN command allocates ALLBASE/SQL bu�er space for holding qualifying rows and
de�nes the active set:

EXEC SQL OPEN DynamicCursor;

The FETCH command evaluates any predicates in the query and transfers rows from the
ALLBASE/SQL bu�er into host variables:

EXEC SQL FETCH DynamicCursor USING DESCRIPTOR SQLDA;

The USING DESCRIPTOR clause indicates to ALLBASE/SQL that rows should be
formatted in accord with a format array identi�ed in the SQLDA and returned to a data

Using Dynamic Operations 8-9

bu�er identi�ed in the SQLDA. The SQLDA, the format array, and the data bu�er are
discussed later in this section under \Using the Dynamic Query Data Structures."

Although you can fetch multiple rows with each execution of the FETCH command, you
do not specify the BULK option when fetching rows that qualify for dynamic queries.
Instead, you set a �eld in the SQLDA as shown later in this chapter to communicate
to ALLBASE/SQL how many rows to fetch. You can repeatedly execute the FETCH
command until ALLBASE/SQL sets sqlca.sqlcode to 100.

The CLOSE command closes the cursor and frees previously allocated bu�er space:

EXEC SQL CLOSE DynamicCursor;

The COMMIT WORK and ROLLBACK WORK commands also close any open cursors,
unless you are using the KEEP CURSOR option of the OPEN command (see Chapter
6). In addition, these commands release locks obtained to execute the dynamic query.
Therefore, to improve concurrency when repeatedly preparing dynamic queries, issue one
of these commands before executing the PREPARE command for the second and each
subsequent time.

Dynamically Updating and Deleting Data

You have the option of dynamically updating or deleting a row in conjunction with a dynamic
FETCH statement. Any dynamic UPDATE WHERE CURRENT or DELETE WHERE
CURRENT statement must be hard coded in your program just as you would code it for a
non-dynamic FETCH statement. The statements cannot be de�ned at run time and prepared.

Whether your SELECT statement is completely user speci�ed at run time, supplied by your
program based on related user input, or completely de�ned by your program, here are some
things to keep in mind:

If you are using a dynamic cursor to update, be sure your SELECT statement contains a
FOR UPDATE OF clause.

An UPDATE WHERE CURRENT command must map to an appropriate SELECT
statement. Be sure all of the columns you might possibly want to update are speci�ed in
the FOR UPDATE OF clause.

For example, if the host variable or string from which you prepare contains the following
statement, you can use the UPDATE WHERE CURRENT command to change the content
of all the columns in qualifying rows of PurchDB.Parts.

SELECT PartNumber FROM PurchDB.Parts

WHERE PartNumber BETWEEN 9000 AND 9999

FOR UPDATE OF PartNumber, PartName, SalesPrice

However, if your prepared command is based on a host variable or string containing the
following statement, you will only be able to use UPDATE WHERE CURRENT to change
column SalesPrice in any qualifying rows of PurchDB.Parts.

SELECT PartNumber FROM PurchDB.Parts

WHERE PartNumber BETWEEN 9000 AND 9999

FOR UPDATE OF SalesPrice

8-10 Using Dynamic Operations

Your error checking strategy might include routines to parse user input for an acceptable
SELECT statement and/or routines to test speci�c sqlca �eld values and invoke
SQLEXPLAIN. This error checking strategy may need to be modi�ed, if the syntax of the
SELECT statement has changed for a particular ALLBASE/SQL release.

Setting Up the SQLDA

You use the INCLUDE command to declare the SQLDA in the declaration section of your
program:

EXEC SQL INCLUDE SQLDA;

When the C preprocessor parses this command, it inserts a type declaration for this data
structure into the modi�ed source code �le:

if 0

EXEC SQL INCLUDE SQLDA;

endif

sqlda_type sqlda;

Alternatively, you can include the above type declaration in your source �le and omit the
INCLUDE command.

The Sqlda Type record is de�ned as follows in the full preprocessor generated include �le
named SQLTYPE:

typedef struct {

char sqldaid[8]; reserved for ALLBASE/SQL

int sqldabe; reserved for ALLBASE/SQL

int sqln; number of format array records

int sqld; number of columns

sqlformat_type *sqlfmtarr; format array address

int sqlnrow; number of rows to FETCH

int sqlrrow; number of rows fetched

int sqlrowlen; bytes in each row

int sqlbuflen; bytes in data bu�er

int sqlrowbuf; data bu�er address

} sqlda_type;

Values are assigned to SQLDA �elds by you or by ALLBASE/SQL, as summarized in Table
8-1.

Using Dynamic Operations 8-11

Table 8-1. SQLDA Fields

FIELD
NAME

FIELD
DESCRIPTION

C
DATA
TYPE

YOU SET
BEFORE
DESCRIBE

YOU
SET

BEFORE
FETCH

ALLBASE/
SQL

SETS AT
DESCRIBE

ALLBASE/
SQL

SETS AT
FETCH

sqldaid reserved char[8]

sqldabc reserved int

sqln number of format
array records (one
record (column)
per select list item)

int X

sqld number of columns
in query result (0
if non-query)

int X

sqlfmtarr address of format
array

sqlformat type* X

sqlnrow number of rows to
FETCH into the
data bu�er

int X

sqlrrow number of rows
put into the data
bu�er

int X

sqlrowlen number of bytes in
each row

int X

sqlbu
en number of bytes in
the data bu�er

int X

sqlrowbuf address of data
bu�er

int X

8-12 Using Dynamic Operations

Setting Up the Format Array

You declare the format array as an array of records having the type SqlFormat Type:

sqlformat_type sqlfmts[NbrFmtRecords];

You set the number of records in the format array (NbrFmtRecords in this example) to the
largest number of select list items you expect. If you do not know this value at programming
time, you can allow for as many as 1024 records, since 1024 is the maximum number of
columns any query result can contain, as follows:

#define NbrFmtRecords 1024;

On the other hand, if you know at programming time the maximum number of columns to
expect, you may be able to declare a smaller format array:

#define NbrFmtRecords 6;

The de�nition for the type SqlFormat Type appears in the full preprocessor generated type
include �le:

typedef struct {

short sqlnty;

short sqltype;

short sqlprec;

short sqlscale;

int sqltotallen;

int sqlvallen;

int sqlindlen;

int sqlvof;

int sqlnof;

char sqlname[20];

} sqlformat_type;

Each record in the format array describes one of the columns in the query result. The �rst
record describes the �rst column, the second record describes the second column, and so forth.
Table 8-2 explains the meaning of each �eld in a format array record.

Using Dynamic Operations 8-13

Table 8-2. Fields in a Format Array Record

FIELD
NAME

MEANING OF FIELD C DATA TYPE

sqlnty reserved; always set to 110 short

sqltype data type of column:

0 = SMALLINT or INTEGER

1 = BINARY*

2 = CHAR*

3 = VARCHAR*

4 = FLOAT

5 = DECIMAL

8 = NATIVE CHAR *

9 = NATIVE VARCHAR *

10 = DATE*

11 = TIME*

12 = DATETIME*

13 = INTERVAL*

14 = VARBINARY*

* Native CHAR or VARCHAR is what SQLCore uses internally
when a CHAR or VARCHAR column is de�ned with a
LANG = ColumnLanguageName clause. They possess the
same characteristics as the related types CHAR and
VARCHAR, except that data stored in native columns will be
sorted, compared, or truncated using local language rules.
Native and Date/Time/Interval character types are compatible
with regular character types.

short

sqlprec precision of DECIMAL data short

sqlscale scale of DECIMAL data short

sqltotallen byte sum of sqlvallen, sqlindlen, indicator alignment bytes, and
next data value alignment bytes

int

sqlvallen number of bytes in data value, including a 4-byte pre�x
containing actual length of VARCHAR data

int

sqlindlen number of bytes null indicator occupies in the data bu�er:

0 bytes: column defined NOT NULL

2 bytes: column allows null values

short

sqlvof byte o�set of value from the beginning of a row int

sqlnof byte o�set of null indicator from the beginning of a row,
dependent on the value of sqlindlen

int

sqlname de�ned name of column or, for computed expression, EXPR char[30]

8-14 Using Dynamic Operations

Setting Up the Data Buffer

You use di�erent approaches to setting up the data bu�er depending on whether your
dynamic query result has an unknown format or a known format. If the query result has an
unknown format, you may not know the number of columns or their data types. If the query
result has a known format, you know in advance the number of columns in the query result
and the data type of each column.

Setting up a Buffer for Query Results of Unknown Format

For query results of unknown format, you declare the data bu�er as a character array:

#define MaxDataBuff 2500 /* bytes in data buffer */

.

.

.

char DataBuffer[MaxDataBuff]; /* the data buffer */

The data bu�er must be large enough to hold all the rows ALLBASE/SQL retrieves each time
you execute the FETCH command, i.e., the number of rows you specify in SQLDA.SqlNRow.
The data bu�er de�ned above can hold as many as 2500 bytes of data.

Although the data bu�er above can hold 2500 bytes, it would not be able to hold 2500 bytes
of column values if any of the values were null and/or VARCHAR:

If a column can contain null values, ALLBASE/SQL appends a 2-byte su�x to the data
value when it puts the data into the data bu�er. This su�x, referred to as a null indicator,
contains a 0 when the data value is not null and a negative number when the value is null .
You use the sqlindlen �eld of the format array record to determine whether ALLBASE/SQL
returned this su�x with the data.

When ALLBASE/SQL puts VARCHAR data into the data bu�er, it pre�xes the data with
4 bytes containing the actual length of the VARCHAR string. You use the sqltype �eld
of the format array record to identify VARCHAR values. This �eld is set to 3 when data
returned to the data bu�er has this pre�x.

You can use the SQLDA.SqlRowLen value to compute how many rows will �t into the data
bu�er. Dividing SQLDA.SqlRowLen into SQLDA.SqlBufLen gives you the number of rows,
including any VARCHAR pre�xes and null indicator su�xes accompanying data values in the
row:

sqlda.sqlnrow = ((sqlbuflen) / (sqlrowlen));

The data bu�er declaration shown above is an array of char, because the format of the query
result is unknown at programming time.

Setting up a Buffer for Query Results of Known Format

When you know the query result format in advance, you can declare a data bu�er as an array
of records having the expected format. When a column can contain null values, you must
declare a 2-byte indicator variable, immediately following the variable for that column. The
indicator variable will hold the 2-byte su�x ALLBASE/SQL returns with the data value. In
the following example, Column3Ind is an indicator variable for Column3:

Using Dynamic Operations 8-15

struct {

int strlen_col1; /* string length of column1 */

char column1[20];
short column2;

int column3;

short column3Ind; /* indicator variable */

} databuffer[MaxDataBuff];

When a column contains a VARCHAR data type, a 4 byte integer must be declared
immediately before the variable for that column to hold the string length. The application
itself needs to properly place the string terminator, ASCII 0, into the string.

struct SQLVarChar {

int length; /* actual length of VARCHAR value */

char VarCharCol[MaxColSize]; /* VARCHAR value */

};

The data types you declare for a query result of known format need not be equivalent to
the data types of their corresponding columns, but they should be compatible. (DATE,
TIME, DATETIME, and INTERVAL values are treated like CHAR values.) Refer to the
ALLBASE/SQL Reference Manual for the rules governing data type compatibility and
conversion for complete information on this topic. The ALLBASE/SQL Reference Manual
also addresses type conversion that may occur when a select list item is an expression
containing data of di�erent types. When you expect truncation, the column must allow nulls
in order to detect the truncation.

Using the Dynamic Query Data Structures

You use the sqlda, the format array, and the data bu�er in the following sequence of
operations:

Declare a data bu�er to hold the query result. This may be structured or not, depending on
whether you know the format of the query result in advance. The following is unstructured:

#define MaxDataBuff 1000 /* bytes in data buffer */

char DataBuffer[MaxDataBuff]; /* the data buffer */

When the select list is known, you can de�ne the data bu�er as an array of records having
the expected format:

#define MaxNbrRows 200

char DataBuffer[MaxNbrRows];

struct {

Column1DataType Column1;
Column2DataType Column2;

} DataBuffer[MaxNbrRows];

You declare a format array as sqlformat type. This type is de�ned for you in the
preprocessor generated type include �le. The number of records in the format array in this
example is 1024, which allows for the maximum size query result of 1024 columns.

8-16 Using Dynamic Operations

#define NbrFmtRecords 1024 /* Columns expected */

.

.
sqlformat_type sqlfmts[NbrFmtRecords]; /* sqlfmts is the format array */

Use a host variable for the SELECT command, and pass it to ALLBASE/SQL in the
PREPARE command:

EXEC SQL BEGIN DECLARE SECTION;

char DynamicCommand[2048];

EXEC SQL END DECLARE SECTION;

.

.

.

EXEC SQL PREPARE Cmd1 FROM :DynamicCommand;

Initialize two sqlda �elds, sqln and sqlfmtarr. sqln is set to the size of the format array, and
sqlfmtarr is set to its address.

.

sqlda.sqln = NbrFmtRecords; /* Maximum select list elements*/

sqlda.sqlfmtarr = sqlfmts; /* Format array address */

Execute the DESCRIBE command:

EXEC SQL DESCRIBE Cmd1 INTO sqlda;

During the execution of the DESCRIBE command, ALLBASE/SQL returns to the format
array and to the SQLDA the information you need later to parse and handle the query
result. You use format array information to parse the data bu�er when you do not know in
advance the format of a query result.

Note When you know the format of the query result in advance, you can de�ne a
data bu�er having the format you expect, and you do not need to use format
array information to parse it. However, you still need to declare the format
array.

Declare and open a cursor for the prepared query:

EXEC SQL DECLARE Cursor1 CURSOR FOR Cmd1;
EXEC SQL OPEN Cursor1;

Before retrieving rows into the data bu�er, initialize three SQLDA �elds. These �elds
identify your data bu�er and specify how many rows you want retrieved into the data bu�er
each time the FETCH command is executed:

with SQLDA do

begin

sqlda.sqlbuflen = sizeof(DataBuffer); /* bytes in data buffer */

sqlda.sqlrowbuf = int(DataBuffer); /* data buffer address */

/* cast as INT */

sqlda.sqlnrow = ((sqlda.sqlbuflen) / (sqlda.sqlrowlen));

/* number of rows to FETCH */

end;

Using Dynamic Operations 8-17

Execute the FETCH command. ALLBASE/SQL packs the data bu�er with as many
rows from the active set as you speci�ed in SQLDA.SqlNRow. ALLBASE/SQL puts the
�rst select list value into the data bu�er, starting at the �rst byte of the format array
and including any VARCHAR pre�xes, ALLBASE/SQL null indicators for columns that
can contain null values, and any alignment bytes provided by the C compiler. Then
ALLBASE/SQL writes the second through last select list values for the �rst row. If the
query result contains another row, the �rst through last select list values in that row are
written to the data bu�er. Data values are thus concatenated in the data bu�er until
the last row has been fetched. When the last row in the active set has been fetched,
ALLBASE/SQL sets SQLCA.SQLCODE to 100.

In Figure 8-5, two columns are selected from the vendors table in the sample database.
Column VendorNumber is de�ned in the table as an INTEGER that cannot contain a null
value. Column VendorRemarks is de�ned in the table as a VARCHAR that can contain
a null value. Since the VendorRemarks column can contain a null value, a two byte null
indicator needs to be provided immediately following this VARCHAR data column. Note
the two byte �ller that completes the VendorRemarks column de�nition. The �gure
illustrates the relationships between column de�nitions and the layout of data in the data
bu�er.

Figure 8-5. Format of the Data Buffer

8-18 Using Dynamic Operations

Note that the number of rows to retrieve with each execution of the FETCH command
is speci�ed in SQLDA.SqlNRow. As shown in the above example, you can calculate the
number of rows that will �t into the data bu�er by dividing the row length (in bytes)
into the number of bytes in the data bu�er. Sqlrowlen, one of the SQLDA �elds set by
ALLBASE/SQL when you execute the DESCRIBE command, contains the number of bytes
in each row.

do {

EXEC SQL FETCH Cursor1 USING DESCRIPTOR sqlda;

DisplayRow();

} while (sqlca.sqlcode !=100)

If the query result is of unknown format, parse rows out of the data bu�er after each
execution of the FETCH command. The technique for parsing is shown in detail in the next
section.

Parsing the Data Buffer

The technique for parsing the data bu�er and assigning its contents to variables of appropriate
types is illustrated in function DisplaySelect of program cex10a. The listing is found in Figure
8-9 in the following section, \cex10a: Program Using Dynamic Commands of Unknown
Format." Essentially, you initialize an o�set variable for the data bu�er, then execute a loop
for each row retrieved with the FETCH statement. For each column in the loop, you do the
following:

Check for null values, taking appropriate action when one is found.

Examine the data type and length of the data element itself, assigning it to an appropriate
variable of the corresponding size.

Increment the o�set variable by the value of SQLDA.SqlRowLen (the length of a complete
row).

The following diagram summarizes the arithmetic used to parse the data bu�er in function
DisplaySelect in program cex10a. The data bu�er shown is for the �rst query executed in the
dialog in Figure 8-8.

Using Dynamic Operations 8-19

Figure 8-6. Parsing the Data Buffer in cex10a

Program cex10a uses the following assignment to set the start of a row:

CurrentOffset = CurrentOffset + SqlRowLen;

To �nd a null indicator, the program uses the following assignment:

NullIndOffset = CurrentOffset + sqlfmts[i].SqlNOf;

To move a data value into a variant record, cex10a uses the following statement:

StrMove(sqlfmts[1].(SqlValLen, DataBuffer,

CurrentOffset + sqlfmts[i].SqlVOf, OneColumn.CharData, 0);

8-20 Using Dynamic Operations

Preprocessing of Commands That May or May Not Be Queries

You need special techniques to handle dynamic commands which may be either queries or
non-queries. In a program that accepts both query and non-query SQL commands, you
�rst PREPARE the command, then use the DESCRIBE command in conjunction with
the sqlda, the data structure that lets you identify whether a command is a query. The
PREPARE command must appear physically in your source program before the EXECUTE or
DECLARE CURSOR command that uses the name you assign to the dynamic command in
the PREPARE command.

The sqld �eld of the sqlda is set to 0 if the dynamic command is not a query and to a positive
integer if it is a query. The sqlda data structure is used in any program that may host a
dynamic query.

In the following example, if the command is not a query, you branch to function NonQuery()
and use the EXECUTE or EXECUTE IMMEDIATE command to execute it. If it is a query,
you branch to function Query(), where you declare a cursor, open it, then use FETCH to
retrieve qualifying rows.

EXEC SQL PREPARE ThisCommand FROM :DynamicCommand;

EXEC SQL DESCRIBE ThisCommand INTO sqlda;

if (sqlda.sqld == 0) {

Nonquery();

}

else if (sqlda.sqld > 0) {

Query();

}

To handle a command entirely unknown at programming time, you accept the command
into the host variable. In the following example, an SQL command is accepted into a host
variable named DynamicCommand , declared large enough to accommodate the largest
expected dynamic command. User input is accepted into DynamicClause and concatenated in
DynamicCommand until the user enters a semicolon:

Using Dynamic Operations 8-21

EXEC SQL BEGIN DECLARE SECTION;

char DynamicCommand[2048];

EXEC SQL END DECLARE SECTION;
char DynamicClause[80];

short int Pos;

.

.

<newpage>

.

.

printf("\n Enter your SQL command or clause ");

printf("\n");

DynamicCommand[0] = '\0';

do {

printf("\n > ");

getline(DynamicClause);

if (DynamicClause[0] != '/') {

strcat(DynamicCommand," ");

strcat(DynamicCommand,DynamicClause);

i = 0;

while (DynamicClause[i] != '\0' && DynamicClause[i++] !=';');

if (DynamicClause[i-1] == ';') {

DynamicClause[0] = '/';

DynamicClause[1] = '\0';

}

}

else {

DynamicCommand[0] = '/';

DynamicCommand[1] = '\0';

}

} while (DynamicClause[0] != '/');
.

.

EXEC SQL PREPARE SQLCommand FROM :DynamicCommand;

8-22 Using Dynamic Operations

Sample Programs Using Dynamic Query Operations

The rest of this chapter contains sample programs that illustrate the use of dynamic
preprocessing techniques for queries. There are two complete programs:

cex10a, which contains statements for executing any dynamic command (non-query or query
with unknown format).

cex10b, which contains statements for executing dynamic queries of known format.

For each program, there is a description of the code, a display of the runtime dialog with user
input, and a listing.

cex10a: Program for Dynamic Commands of Unknown Format

Programs that host queries having query result formats unknown at programming time must
use format array information to parse the data bu�er. Figure 8-7 illustrates the logic for one
such program, cex10a. The run-time dialog and source code for this program are shown in
Figures 8-8 and 8-9, respectively.

Program cex10a executes function ConnectDBE � 4 � to invoke the CONNECT command � 37 �
to start a DBE session in the sample database. It then executes the function named Describe
� 23 �. This function:

Initializes the two sqlda �elds � 24 � that must be set before executing the DESCRIBE
command: sqlda.sqln (the number of elements in the format array) and sqlda.sqlfmtarr (the
address of the format array). The number of elements in the format array is de�ned in
the constant NbrFmtRecords , set to 1024 in this program to accommodate the maximum
number of columns in any query result.

Calls function GetCommand � 25 � and processes commands accepted from the user in that
function until the user enters a slash (/).

Function GetCommand � 25 � accepts SQL commands into the host variable named
DynamicCommand . This variable is declared � 1 � as char DynamicCommand[2048] to
allow for a dynamic command of up to 2048 bytes, including the semicolon. GetCommand
concatenates multiple lines of user input by accepting each line into a local variable,
DynamicClause and adding it to the contents of DynamicCommand until the user enters a
semicolon.

After SQL command entry is complete, control returns to function Describe � 23 �, which:

Starts a transaction by executing function BeginTransaction � 6 �.

Executes the PREPARE � 26 � and DESCRIBE � 27 � commands.

Examines the sqlda.sqld �eld (number of columns in query result) to determine whether
the dynamic command is a query � 29 �. If this value is 0, the command is not a query and
function NonQuery � 28 � is invoked to execute the command. If the sqlda.sqld value is not
0, function Query � 29 � is invoked to execute the command.

You must name a dynamic command in the PREPARE command before you reference it
in the EXECUTE or DECLARE CURSOR commands. In this program, the PREPARE
command is executed in function Describe, which calls both function NonQuery and function
Query, which follow after function Describe sequentially in the source code.

Function Query � 29 �:

Using Dynamic Operations 8-23

Displays the number of columns in the query result, by using the value ALLBASE/SQL
assigned to sqlda.sqld when the DESCRIBE command was executed � 31 �.

Declares and opens a cursor for the dynamic query � 32 �.

Initializes the three sqlda �elds that must be set before executing the FETCH command
� 33 �: sqlda.sqlbu
en (the size of the data bu�er), sqlda.sqlnrow (the number of rows to
put into the data bu�er with each FETCH), and sqlda.sqlrowbuf (the address of the data
bu�er).

Note that to set sqlda.sqlnrow, the program divides the row length into the data bu�er size
to determine how many rows can �t into the data bu�er � 34 �.

Executes the FETCH command � 35 � and calls function DisplaySelect � 36 � until the
last row in the active set has been fetched. When no more rows are available to fetch,
ALLBASE/SQL sets sqlca.sqlcode to 100 .

Function DisplaySelect � 36 � parses the data bu�er after each FETCH operation and displays
the fetched rows:

The function keeps track of the beginning of each row by using a local variable,
CurrentO�set , as a pointer. CurrentO�set is initialized to 0 � 10 � at the beginning of
function DisplaySelect .

Column headings are written from the sqlfmts[x].sqlname �eld of each format array record
� 11 �. The loop that displays the headings uses the sqlda.sqld value (the number of columns
in the query result) as the �nal value of a format array record counter (x).

The �rst through last column values in each row are examined and displayed in a loop. The
loop uses the sqlda.sqlrrow value (the number of rows fetched) as the �nal value of a row
counter � 12 �. The loop also uses the sqlda.sqld value (the number of select list items) as
the �nal value of a column counter � 13 �.

The sqlfmts[i].sqlindlen �eld of each column's format array record is examined � 14 � to
determine whether a null value may exist.

If a column can contain null values, sqlfmts[i].sqlindlen is greater than zero, and the
function must examine the indicator variable to determine whether a value is null. A local
variable, NullIndO�set , is used to keep track of the �rst byte of the current indicator
variable � 15 �.

Any null indicator can be located by adding the current value of sqlnof to the current value
of CurrentO�set . Sqlfmts[i].sqlnof is the format array record �eld that contains the byte
o�set of a null indicator from the beginning of a row. Recall that CurrentO�set keeps track
of the beginning of a row.

DataBu�er and NullIndO�set are used to determine whether or not a null value exists. If a
null value exists, the function displays the message Column is NULL � 17 �.

If a value is not null, it is moved � 18 � from the data bu�er to OneColumn.CharData.
The starting location of a value in the StrMove function � 30 � is computed by adding the
current value of sqlfmts[i].sqlvof to the current value of CurrentO�set . Sqlfmts[i].sqlvof is
the format array record �eld that contains the byte o�set of a value from the beginning
of a row. The number of bytes to move is the value stored in sqlfmts[i].sqlvallen.
OneColumn.CharData is one of the variations of the variant record, GenericType � 9 �.

The GenericType type de�nition is used to write data values. This variant record has a
record de�nition describing a format for writing data of each of the ALLBASE/SQL data

8-24 Using Dynamic Operations

types. The record variation used depends on the value of sqlfmts[i].sqltype � 19 �, the format
array record �eld describing the data type of a select list item. In the case of DECIMAL
data, a function named BCDToString � 2 � converts the binary coded decimal (BCD)
information in the data bu�er into ASCII format for display purposes.

After each value in a row is displayed, CurrentO�set is incremented by sqlda.sqlrowlen � 20 �
to point to the beginning of the next row.

When the dynamic command has been completely processed, function Query calls function
EndTransaction � 7 � to process a COMMIT WORK command. Thus each dynamic query
hosted by this program is executed in a separate transaction.

To determine whether each SQL command executed successfully, the program examines the
value of sqlca.sqlcode after each SQL command is executed. Function SQLStatusCheck � 3 �
is invoked to display one or more messages from the ALLBASE/SQL message catalog. Any
other action taken depends on the SQL command:

If the CONNECT command fails, function ConnectDBE � 4 � sets the Connect
ag to
FALSE , calls function SQLStatusCheck , and then terminates the program.

If the BEGIN WORK command fails, function BeginTransaction � 6 � calls SQLStatusCheck
to display messages, then calls function ReleaseDBE � 5 � to end the DBE session. The
program then terminates because function Describe � 23 � sets DynamicCommand to a slash
� 31 �.

If other SQL commands fail, function SQLStatusCheck terminates the program whenever
the error is serious enough to return an sqlca.sqlcode less than -14024.

Using Dynamic Operations 8-25

Figure 8-7. Flow Chart of Program cex10a

8-26 Using Dynamic Operations

Figure 8-7. Flow Chart of Program cex10a (page 2 of 2)

Using Dynamic Operations 8-27

C program illustrating dynamic command processing -- cex10a

Event List:

CONNECT TO PartsDBE

Prompt for any SQL command

BEGIN WORK

PREPARE

DESCRIBE

If the command is a non-query command, execute it;

otherwise execute the following:

DECLARE CURSOR

OPEN Cursor

FETCH a row

CLOSE CURSOR

COMMIT WORK

Repeat the above ten steps until the user enters a /

RELEASE PartsDBE

Connect to PartsDBE

You may enter any SQL command or '/' to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon.

Enter your SQL command or clause >

> SELECT * FROM PURCHDB.PARTS WHERE SALESPRICE = 2000;

Begin Work

Prepare SELECT * FROM PURCHDB.PARTS WHERE SALESPRICE = 2000;

Describe

A Query SQL command was entered.

Number of columns: 3

PARTNUMBER | PARTNAME | SALESPRICE |

1343-D-01 | Winchester Drive | 2000.00 |

Row not found or no more rows!

Commit Work

You may enter any SQL command or '/' to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon.

Figure 8-8. Run Time Dialog of Program cex10a

8-28 Using Dynamic Operations

Enter your SQL command or clause >

> DELETE FROM PURCHDB.PARTS WHERE PARTNUMBER = '1343-D-01';

Begin Work

Prepare DELETE FROM PURCHDB.PARTS WHERE PARTNUMBER = '1343-D-01';

Describe

A Non-Query SQL command was entered.

Execute

The Non-Query Command Executed Successfully!

Commit Work

You may enter any SQL command or '/' to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon.

Enter your SQL command or clause >

> SELECT * FROM PURCHDB.PARTS WHERE SALESPRICE = 2000;

Begin Work

Prepare SELECT * FROM PURCHDB.PARTS WHERE SALESPRICE = 2000;

Describe

A Query SQL command was entered.

Number of columns: 3

Row not found or no more rows!

Commit Work

You may enter any SQL command or '/' to STOP the program.

The command can be continued on the next line. The command

must be terminated with a semicolon.

Enter your SQL command or clause > /

Release PartsDBE

Figure 8-8. Run Time Dialog of Program cex10a (page 2 of 2)

Using Dynamic Operations 8-29

/* Program cex10a */

/* */

/* This program illustrates dynamic preprocessing of SQL commands */

/* including SELECT commands using the DESCRIBE command. */

/* */

#include <stdio.h>

#include <malloc.h>

typedef int boolean;

#define NotFound 100

#define OK 0

#define DeadLock -14024

/* NbrFmtRecords is number of columns expected in a dynamic SELECT. */

#define NbrFmtRecords 1024
#define EndOF 100

#define MaxDataBuff 2500

#define MaxColSize 3996

#define MaxStr 132

#define TRUE 1

#define FALSE 0

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION;

/* DynamicCommand is a String that will hold the dynamic command. */

char DynamicCommand[1023]; � 1 �
EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

EXEC SQL INCLUDE SQLCA;

/* SQLDA is the SQL DESCRIBE Area used by the DESCRIBE command. */

EXEC SQL INCLUDE SQLDA;

/* Each record in sqlfmts will hold information about each column */

/* in a dynamic SELECT. */

sqlformat_type sqlfmts[NbrFmtRecords];

/* Nibbles and BCDType are data types needed for decimal type */

int Nibbles;

char BCDType[20];

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format

8-30 Using Dynamic Operations

/* DataBuffer is the buffer containing retrieved data as a result */

/* of a dynamic SELECT. */

char DataBuffer[MaxDataBuff];

boolean Abort;

struct SQLVarChar {

int Length;

char VarCharCol[MaxColSize];

};

main() /* Beginning of Program */

{

printf("\nC program illustrating dynamic command processing -- cex10a");

printf("\n");

printf("\nEvent List:");

printf("\n CONNECT TO PartsDBE");

printf("\n Prompt for any SQL command");
printf("\n BEGIN WORK");

printf("\n PREPARE");

printf("\n DESCRIBE");

printf("\n If command is a non-query command, EXECUTE it");

printf("\n Otherwise execute the following:");

printf("\n DECLARE CURSOR");

printf("\n OPEN Cursor");

printf("\n FETCH a row");

printf("\n CLOSE Cursor");

printf("\n COMMIT WORK");

printf("\n Repeat the above ten steps");

printf("\n RELEASE PartsDBE\n");

if (ConnectDBE()) { � 4 �
Describe(); � 23 �
ReleaseDBE();

printf("\n");

}

else

printf("\nError: Cannot Connect to PartsDBE");

printf("\n");

} /* End of Main Program */

/* Function BCDToString converts a binary field in the "DataBuffer" */

/* buffer to its ACSII representation. Input parameters are */

/* the Length, Precision and Scale. The input decimal field is passed */

/* via "DataBuffer" and the output String is passed via "result". */

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 2 of 11)

Using Dynamic Operations 8-31

int BCDToString(DataBuffer, Length, Precision, Scale, Result0) � 2 �
char DataBuffer[];

short Length, Precision, Scale;

char Result0[];

{

#define hexd '0123456789ABCDEF'

#define ASCIIZero '0'

#define PlusSign 12

#define MinusSign 13

#define UnSigned 14

#define btod(d,i) ((i&1)?((d[i/2])&0xf):((d[i/2]>>4)&0xf))

int i;

int DecimalPlace;

int PutPos=0;

int DataEnd;

int DataStart;

boolean done;
char space[MaxStr];

char *Result;

Result = space;

DataEnd = (Length*2) - 2;

DataStart = (DataEnd - Precision);

for (i = 0; i < MaxStr; i++) Result[i] = '\0';

DecimalPlace = (Precision-Scale);

/* convert decimal to character String */

if (DecimalPlace == 0) Result[PutPos++] = '.';

/* convert each Nibble into a character */

for (i = DataStart; i <= DataEnd; i++) {

Result[PutPos] = ASCIIZero + btod(DataBuffer,i);

if (PutPos == DecimalPlace) Result[++PutPos] = '.';

PutPos++;

}

i = 0;

done = FALSE;

while (i<strlen(Result) && Result[i]=='0') ++Result;

if (Result[0] == '\0')

Result[0] = '0';

else {

/* place a zero at the left of the decimal point */

if (Result[0] == '.') StrInsert('0', Result);

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 3 of 11)

8-32 Using Dynamic Operations

/* insert sign */

switch (btod(DataBuffer,DataEnd + 1)) {

case PlusSign: StrInsert(' ', Result);

break;

case MinusSign: StrInsert('-', Result);

break;

default: break;

} /* End switch */

} /* End else */

strcpy(Result0, Result);

} /* End BCDToString */

int getline(linebuff) /*Function to get a line of characters */

char linebuff[80];

{

while (strlen(gets(linebuff)) ==0);

} /* End of function to get a line of characters */

int SQLStatusCheck() /* Function to Display Error Messages */ � 3 �
{

Abort = FALSE;

if (sqlca.sqlcode < DeadLock) Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("\n");

printf("%s\n",SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) {

EXEC SQL COMMIT WORK RELEASE;

DynamicCommand[0] = '/';

DynamicCommand[1] = '\0';

}

} /* End SQLStatusCheck Function */

int ConnectDBE() /* Function to Connect to PartsDBE */

{ � 4 �
boolean Connect;

printf("\nConnect to PartsDBE");

EXEC SQL CONNECT TO 'PartsDBE'; � 37 �

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 4 of 11)

Using Dynamic Operations 8-33

Connect = TRUE;

if (sqlca.sqlcode != OK) {

Connect = FALSE;

SQLStatusCheck();

} /* End if */

return(Connect);

} /* End of ConnectDBE Function */

int ReleaseDBE() /* Function to Release PartsDBE */ � 5 �
{

printf("\nRelease PartsDBE");

EXEC SQL RELEASE;

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End ReleaseDBE Function */

boolean BeginTransaction() /* Function to Begin Work */ � 6 �
{

boolean BeginTransaction;

printf("\n");

printf("\nBegin Work");

EXEC SQL BEGIN WORK;

if (sqlca.sqlcode != OK) {

BeginTransaction = FALSE;

SQLStatusCheck();

ReleaseDBE(); � 5 �
}

else

BeginTransaction = TRUE;

return(BeginTransaction);

} /* End BeginTransaction Function */

int EndTransaction() /* Function to Commit Work */ � 7 �
{

printf("\n");

printf("\nCommit Work");

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End EndTransaction Function */

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 5 of 11)

8-34 Using Dynamic Operations

/* Function DisplaySelect deblocks the result of the dynamic */

/* SELECT in "DataBuffer". */

int DisplaySelect() � 36 �
{

typedef union gt { � 9 �
char CharData[MaxColSize];

char VarCharData[MaxColSize];

int IntegerData;

short SmallIntData;

double FloatData;

float DecimalData;

} GenericType;

short CurrentOffset;

short NullIndOffset;

GenericType OneColumn;
char DecString[20];

boolean IsNull;

short n,i,j,x; /* local loop counters */

CurrentOffset = 0; � 10 �

for (x = 0; x < sqlda.sqld; x++) { /* display column names */

printf("%s | ",sqlfmts[x].sqlname); � 11 �
}

printf("\n");

for (n = 0; n < sqlda.sqlrrow; n++) { /* for each FETCHed row */

� 12 �
for (i = 0; i < sqlda.sqld; i++) { /*for each column in a FETCHed row*/

� 13 �
/* Check to see if this column has the value NULL. This is done */

/* by checking the NULL indicator in the buffer. This indicator */

/* appears after the data value for this column. */

IsNull = FALSE;

if (sqlfmts[i].sqlindlen > 0) { � 14 �

NullIndOffset = CurrentOffset + sqlfmts[i].sqlnof; � 15 �

if ((DataBuffer[NullIndOffset] == '\0') && � 16 �
(DataBuffer[NullIndOffset+1] == '\0')) {

IsNull = FALSE;

}
else

IsNull = TRUE;

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 6 of 11)

Using Dynamic Operations 8-35

} /* End if sqlfmts[i].sqlindlen > 0 .. */

if (IsNull) {

printf(" Column is NULL |"); � 17 �
}

else {

/* Now bring down the actual value of this column. */

StrMove(sqlfmts[i].sqlvallen,DataBuffer, � 18 �
CurrentOffset + sqlfmts[i].sqlvof, OneColumn.CharData, 0);

� 30 �
switch (sqlfmts[i].sqltype) { � 19 �

case 0: /* Integer number */

switch (sqlfmts[i].sqlvallen) {

case 2: printf("%d | ",OneColumn.SmallIntData);

break;

case 4: printf("%d | ",OneColumn.IntegerData);
break;

} /* End switch statement */

break;

case 2: /* fixed-length character */

case 8: /* fixed-length native character */

for (j = 0; j < sqlfmts[i].sqlvallen; j++)

printf("%c",OneColumn.CharData[j]);

printf(" | ");

break;

case 3: /* variable-length char */

case 9: /* variable-length native char */

for (j = 4; j < sqlfmts[i].sqlvallen; j++)

printf("%s | ",OneColumn.VarCharData[j]);

printf(" | ");

break;

case 4: /* floating point */

printf("%f | ",OneColumn.FloatData);

break;

case 5: /* Packed decimal */� 2 �
BCDToString(OneColumn.CharData, sqlfmts[i].sqlvallen,

sqlfmts[i].sqlprec, sqlfmts[i].sqlscale, DecString);

printf("%s | ",DecString);

break;

default: printf("SQLType = %1s\n",sqlfmts[i].sqltype);

break;

} /* End switch statement */

} /* End if IsNull else */

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 7 of 11)

8-36 Using Dynamic Operations

} /* End for i/with sqlfmts[i] ... */

CurrentOffset = CurrentOffset + sqlda.sqlrowlen; � 20 �

printf("\n");

} /* End for n = ... */

printf("\n");

} /* End of DisplaySelect function */

int GetCommand() � 25 �
{

char DynamicClause[80];

short i;

printf("\n");
printf("\nYou may enter any SQL command or a '/' to STOP the program.");

printf("\nThe command can be continued on the next line. The command");

printf("\nmust be terminated with a semicolon.");

printf("\n");

printf("\nEnter your SQL command or clause ");

printf("\n");

DynamicCommand[0] = '\0'; /* @001 */

do {

printf("\n >");

getline(DynamicClause);

if (DynamicClause[0] != '/') {

strcat(DynamicCommand," ");

strcat(DynamicCommand,DynamicClause);

i = 0;

while (DynamicClause[i] != '\0'&& DynamicClause[i++] != ';');

if (DynamicClause[i-1] == ';') {

DynamicClause[0] = '/'; /* @001 */

DynamicClause[1] = '\0'; /* @001 */

}

}

else {

DynamicCommand[0] = '/';

DynamicCommand[1] = '\0'; /* @001 */

}

} while (DynamicClause[0] != '/'); /* End do */ /* @001 */

} /* End of GetCommand function */

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 8 of 11)

Using Dynamic Operations 8-37

int Describe() /* Describe Function */ � 23 �
{

/* set up SQLDA fields */ � 24 �
sqlda.sqln = NbrFmtRecords; /* number of columns expected */

sqlda.sqlfmtarr = sqlfmts;

do {

GetCommand(); � 25 �

if (DynamicCommand[0] != '/') { /* @001 */

if (BeginTransaction()) { � 6 �

printf("\nPrepare");

printf("%s\n",DynamicCommand);

EXEC SQL PREPARE CMD1 FROM :DynamicCommand; � 26 �
if (sqlca.sqlcode != OK) {

SQLStatusCheck();

EndTransaction();

}

else {

printf("\nDescribe");

EXEC SQL DESCRIBE CMD1 INTO SQLDA; � 27 �
if (sqlca.sqlcode != OK) {

SQLStatusCheck();

EndTransaction();

}

else {

if (sqlda.sqld == 0) NonQuery(); � 28 �
else

Query(); � 29 �
} /* End if sqlca.sqlcode != OK after DESCRIBE */

} /* End if sqlca.sqlcode != OK after PREPARE */

} /* End if BeginTransaction */

else { /* BeginTransaction failed; */

� 31 �
DynamicCommand[0] = '/'; /* force logical to */ /* @001 */

DynamicCommand[1] = '\0'; /* Describe function */ /* @001 */

}

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 9 of 11)

8-38 Using Dynamic Operations

} /* End if DynamicCommand */

} while (DynamicCommand[0] != '/'); /* End do */ /* @001 */

} /* End of Describe function */

int NonQuery() � 29 �
{

printf("\nA Non Query SQL command was entered.");

printf("\nExecute");

EXEC SQL EXECUTE CMD1;

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

EXEC SQL ROLLBACK WORK;

}

else {

printf("\nThe Non-Query Command Executed Successfully.");

EndTransaction();

}

} /* End of NonQuery function */

int Query() � 28 �
{

short RowLength;

short i;

printf("\nA Query SQL command was entered.");

printf("\n");

printf("\nNumber of columns: %2d",sqlda.sqld); � 31 �
printf("\n");

EXEC SQL DECLARE CURSOR1 CURSOR FOR CMD1; � 32 �
EXEC SQL OPEN CURSOR1;

if (sqlca.sqlcode != OK) SQLStatusCheck();

else {

sqlda.sqlbuflen = sizeof(DataBuffer); � 33 �
sqlda.sqlnrow = ((sqlda.sqlbuflen) / (sqlda.sqlrowlen)); � 34 �
sqlda.sqlrowbuf = DataBuffer;

while (sqlca.sqlcode == 0) {

EXEC SQL FETCH CURSOR1 USING DESCRIPTOR SQLDA; � 35 �
if (sqlca.sqlcode != OK) {

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 10 of 11)

Using Dynamic Operations 8-39

if (sqlca.sqlcode == EndOF) {

printf("\nRow not found or no more rows!");

}

else

SQLStatusCheck();

}

else

DisplaySelect(); � 36 �

} /* End of while sqlca.sqlcode = 0 */

EXEC SQL CLOSE CURSOR1;

if (sqlca.sqlcode != OK) SQLStatusCheck();

} /* End of if OPEN CURSOR is OK */

EndTransaction(); � 7 �
} /* End of Query function */

int StrMove(n,s1,p1,s2,p2) � 30 �
int n, p1, p2;

char s1[], s2[];

{

int i = 1;

while (i++ <= n)

s2[p2++] = s1[p1++];

} /* StrMove */

int StrInsert(c, string)

char c;

char *string;

{

char *temp;

temp = malloc(MaxStr);

strcpy(temp, string);

*string++ = c;

while ((*string++ = *temp++) != '\0');

} /* StrInsert */

Figure 8-9. Program cex10a: Dynamic Queries of Unknown Format (page 11 of 11)

8-40 Using Dynamic Operations

cex10b: Program Using Dynamic Commands of Known Format

In some applications, you may know the format of a query result in advance, but may
still want to dynamically preprocess the query to create a program that does not have a
permanently stored module. Database administration utilities that include system catalog
queries often fall into this category of application.

In programs hosting dynamic queries having query results of a known format, you do not
need to use the format array to parse the data bu�er. Because you know in advance the
query result format, you can pre-de�ne an array having a complementary format and read
information from the array without having to determine where data is and the format in
which it has been returned.

Program cex10b, whose
ow chart is shown in Figure 8-10, whose execution is illustrated in
Figure 8-11, and whose source code appears in Figure 8-12, executes two dynamic queries with
select lists known at programming time. The program reads the SYSTEM.TABLE view and
the SYSTEM.COLUMN view in order to re-create the SQL CREATE TABLE commands
originally used to de�ne the tables in the DBEnvironment. The CREATE TABLE commands
are stored in a �le you name when you execute the program. Such a �le can be used as an
ISQL command �le in order to re-create the tables in some other DBEnvironment.

The program �rst prompts � 6 � for the name of the schema �le in which to store the table
de�nitions. It purges � 7 � any �le that exists by the same name.

The program then prompts for a DBEnvironment name � 8 �. The DBEnvironment name
is used to build a CONNECT command � 9 � in host variable CmdLine . The CONNECT
command is executed by using the EXECUTE IMMEDIATE command � 10 �.

The program then prompts for an owner name � 11 �. If an owner name is entered, it is
upshifted � 12 �, then added to the WHERE clause in the �rst dynamic query � 14 �:

sprintf(CmdLine,"SELECT OWNER, NAME, DBEFILESET, RTYPE FROM SYSTEM.TABLE\

WHERE TYPE = 0 AND OWNER = '%s';",OwnerName);

This query retrieves a row for every table (TYPE = 0) having an owner name as speci�ed
in the variable OwnerName. Each row consists of four columns: the owner name, the table
name, the name of the DBEFileSet with which the table is associated, and the automatic
locking mode.

To obtain a de�nition of all tables in a DBEnvironment except those owned by SYSTEM , the
user enters ALL in response to the owner name prompt. In this case, the program uses the
following form of the dynamic query � 13 �:

sprintf(CmdLine,"SELECT OWNER, NAME, DBEFILESET, RTYPE FROM SYSTEM.TABLE\

WHERE TYPE = 0 AND OWNER <> 'SYSTEM';");

The PREPARE command � 15 � creates a temporary section named SelectCmd1 for the
dynamic query from CmdLine .

Then the program initializes the two sqlda �elds � 16 � needed by the DESCRIBE command
� 17 �. Because the number of columns in the query result is known to be four at programming
time, sqlda.sqln is set to 4 . Four of the format array records will be needed, one per select list
item.

Using Dynamic Operations 8-41

The program then declares and opens a cursor named TableList for the dynamic query � 18 �.
Before using the cursor to retrieve rows, the program initializes several sqlda �elds � 19 � as
follows:

The sqlda.sqlnrow �eld is set to 300 , as de�ned in the constant MaxNbrTables � 1 �. This
number is the maximum number of rows ALLBASE/SQL will return from the active set
when the FETCH command is executed.

The sqlda.sqlbu
en �eld is set to the size of the data bu�er. In this program, the data
bu�er for the �rst query is a structure array of records named TableList � 4 �. Note
that each record in the array consists of four elements, one for each item in the select
list. The elements are declared with types compatible with those in their corresponding
SYSTEM.TABLE columns. Note also that each element in the array is declared as the same
size as its corresponding column in the system table and not one character larger. It is up
to the program to insert the ASCII 0 null character in the correct location to indicate the
end of a character string.

The sqlda.sqlrowbuf �eld is set to the address of the data bu�er.

After initializing the required �elds in the sqlda, the program executes the FETCH command
� 20 �. Because the FETCH command is executed only once, this program can re-create table
de�nitions for a maximum of 300 tables.

After the FETCH command is executed, the value in sqlca.sqlerrd[2] is saved in variable
NumOfTables � 21 �. This value indicates the number of rows ALLBASE/SQL returned to
the data bu�er. NumOfTables is used later as the �nal value of a counter � 23 � to control the
number of times the second dynamic query is executed; the second query must be executed
once for each table qualifying for the �rst query.

After terminating the transaction that executes the �rst query � 22 �, the program uses the
StrCpy function � 24 � to move CHAR values to char array variables so that other C string
functions can be used when formatting the CREATE TABLE commands and writing them to
the output �le.

The second query � 26 � retrieves information about each column in each table qualifying for
the �rst query. This query contains a WHERE clause that identi�es an owner and table name:

sprintf(CmdLine,"SELECT COLNAME, LENGTH, TYPECODE, NULLS, PRECISION,\

SCALE FROM SYSTEM.COLUMN WHERE OWNER = '%s' AND TABLENAME = \

'%s';",OwnerName, TableName);

These names are obtained from the Owner and Table values in the TableList array � 4 �.

After each version of the second query is dynamically preprocessed � 27 �, the program
initializes two sqlda �elds � 28 � before executing the DESCRIBE command � 29 �. Then a
cursor named ColumnList is declared and opened � 30 � to operate on the active set. Before
fetching rows, the program initializes the necessary sqlda values � 31 �:

The sqlda.sqlnrow �eld is set to 255 , de�ned in the constant MaxNbrColumns � 2 �. This
number is the maximum number of rows ALLBASE/SQL will return from the active set
when the FETCH command is executed.

The sqlda.sqlbu
en �eld is set to the size of the data bu�er. The data bu�er for the second
query is a structure array of records named ColumnList � 5 �.

The sqlda.sqlrowbuf �eld is set to the address of the data bu�er.

8-42 Using Dynamic Operations

The FETCH command � 32 � is executed only once for each table that quali�ed for the �rst
query, since no more than 255 rows would ever qualify for the query because the maximum
number of columns any table can have is 255.

After the active set has been fetched into data bu�er ColumnList , a CREATE TABLE
command for the table is written to the schema �le � 34 �:

CREATE LockMode TABLE OwnerName.TableName,

(ColumnList[1].ColName TypeInfo NullInfo,

ColumnList[2].ColName TypeInfo NullInfo,

.

.

. ColumnList[j].ColName TypeInfo NullInfo) IN TableList[i].FileSet;

Most of the information needed to reconstruct the CREATE TABLE commands is written
directly from program variables. In three cases, however, data returned from the system views
must be translated:

LockMode is generated in a switch statement � 33 � based on the value ALLBASE/SQL put
in TableList[i].LockMode. The SYSTEM.TABLE view stores the automatic locking mode for
tables as an integer from 1 through 3. The switch statement equates these codes with the
expressions that must appear in the CREATE TABLE command.

TypeCode is generated in a switch statement � 35 � based on the value ALLBASE/SQL put
in ColumnList[i].TypeCode. The SYSTEM.COLUMN view stores the data type of each
column as an integer from 0 through 5. The switch statement equates these codes with the
expressions that must appear in the CREATE TABLE command.

Nulls is generated from the null indicator ALLBASE/SQL returned to ColumnList[i].Nulls
� 36 �. A value of 0 indicates the column cannot contain null values, and the program inserts
NOT NULL into the table de�nition.

After a CREATE TABLE command has been written for each qualifying table, a COMMIT
WORK command is executed � 37 � to release locks on SYSTEM.COLUMN before the
PREPARE command is re-executed and before the DBE session terminates with a COMMIT
WORK RELEASE command � 38 �.

Using Dynamic Operations 8-43

Figure 8-10. Flow Chart of Program cex10b

8-44 Using Dynamic Operations

Flow Chart of Program cex10b (page 2 of 2)

Using Dynamic Operations 8-45

C program illustrating dynamic command processing -- cex10b

ALLBASE/SQL/MPE XL SCHEMA Generator for Tables

Enter name of schema file to be generated > SCHM1

Enter name of DBEnvironment > PARTSDBE

Enter owner name or RETURN for all owners > PURCHDB

Generating SQL command to CREATE TABLE PURCHDB.INVENTORY

Generating SQL command to CREATE TABLE PURCHDB.ORDERITEMS

Generating SQL command to CREATE TABLE PURCHDB.ORDERS

Generating SQL command to CREATE TABLE PURCHDB.PARTS

Generating SQL command to CREATE TABLE PURCHDB.REPORTS

Generating SQL command to CREATE TABLE PURCHDB.SUPPLYPRICE

Generating SQL command to CREATE TABLE PURCHDB.VENDORS

:PRINT SCHM1

CREATE PUBLIC TABLE PURCHDB.INVENTORY
(PARTNUMBER CHAR(16) NOT NULL,

BINNUMBER SMALLINT NOT NULL,

QTYONHAND SMALLINT,

LASTCOUNTDATE CHAR(8),

COUNTCYCLE SMALLINT,

ADJUSTMENTQTY SMALLINT,

REORDERQTY SMALLINT,

REORDERPOINT SMALLINT) IN WAREHFS;

CREATE PUBLIC TABLE PURCHDB.ORDERITEMS

(ORDERNUMBER INTEGER NOT NULL,

ITEMNUMBER INTEGER NOT NULL,

VENDPARTNUMBER CHAR(16),

PURCHASEPRICE DECIMAL(10, 2) NOT NULL,

ORDERQTY SMALLINT,

ITEMDUEDATE CHAR(8),

RECEIVEDQTY SMALLINT) IN ORDERFS;

CREATE PUBLIC TABLE PURCHDB.ORDERS

(ORDERNUMBER INTEGER NOT NULL,

VENDORNUMBER INTEGER,

ORDERDATE CHAR(8)) IN ORDERFS;

CREATE PUBLIC TABLE PURCHDB.PARTS

(PARTNUMBER CHAR(16) NOT NULL,

PARTNAME CHAR(30),

SALESPRICE DECIMAL(10, 2)) IN WAREHFS;

CREATE PUBLIC TABLE PURCHDB.REPORTS

(REPORTNAME CHAR(20) NOT NULL,...

Figure 8-11. Run Time Dialog of Program cex10b
8-46 Using Dynamic Operations

/* Program cex10b */

/* */

/* This program generates an ISQL command file that will re-create */

/* tables within a particular DBEnvironment. This program must be */

/* preprocessed; however, it does not need to be installed. */

/* */

#include <stdio.h>

#include <ctype.h>

#define OK 0

#define MaxNbrTables 300 � 1 �
#define MaxNbrColumns 255 � 2 �
#define mode 0700

#define NbrFmtRecords 32

sqlca_type sqlca; /* SQL Communication Area */
sqlda_type sqlda; /* SQL Describe Area */

sqlformat_type sqlfmts[NbrFmtRecords]; /* declaration of format nodes */

char FileName[15];

char OwnerName[21];

char TableName[21];

char DBEFileSet[21];

char ColumnName[21];

char DBEName[128];

char OneLine[81];

int FileNum;

short i;

short j;

short NumOfTables;

struct {

char Owner[20];

char Table[20];

char FileSet[20];

short LockMode;

} TableList[MaxNbrTables]; � 4 �

Figure 8-12. Program cex10b: Dynamic Queries of Known Format

Using Dynamic Operations 8-47

struct {

char ColName[20];

int Length;

short TypeCode;

short Nulls;

short Precision;

short Scale;

} ColumnList[MaxNbrColumns]; � 5 �

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION;

char CmdLine[200];

char SQLMessage[133];

EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

main() /* Beginning of Program */

{
printf("\n C program illustrating dynamic command processing -- cex10b");

printf("\n");

printf("\n ALLBASE/SQL/MPE XL SCHEMA Generator for Tables");

printf("\n");

printf("\n Event List:");

printf("\n Prompt for the name of the schema file to create");

printf("\n Prompt for the name of the DBEnvironmet");

printf("\n Prompt for the owner name");

printf("\n Generate schema file");

printf("\n");

printf("\n Enter name of schema file to be generated > "); � 6 �
scanf("%s",FileName);

FileNum = unlink(FileName); � 7 �
FileNum = creat(FileName,mode);

printf("\n Enter name of DBEnvironment > "); � 8 �
scanf("%s",DBEName);

sprintf(CmdLine,"CONNECT TO '%s';",DBEName); � 9 �

EXEC SQL EXECUTE IMMEDIATE :CmdLine; � 10 �
if (sqlca.sqlcode != OK) {

printf("\n Could not CONNECT to DBEnvironment!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;
}

Figure 8-12. Program cex10b: Dynamic Queries of Known Format (page 2 of 7)

8-48 Using Dynamic Operations

printf("\n Enter database owner name or ALL for all owners > "); � 11 �
scanf("%s",OwnerName);

for (i = 0; i <= strlen(OwnerName); i++) { /* Upshift OwnerName */

if (islower(OwnerName[i])) {

OwnerName[i] = toupper(OwnerName[i]); � 12 �
}

}

response = "ALL";

if (strcmp(response,OwnerName) == 0) {

sprintf(CmdLine,"SELECT OWNER,NAME,DBEFILESET,RTYPE FROM SYSTEM.TABLE\

WHERE TYPE = 0 AND OWNER <> 'SYSTEM';"); � 13 �

}

else {

sprintf(CmdLine,"SELECT OWNER,NAME,DBEFILESET,RTYPE FROM SYSTEM.TABLE\
WHERE TYPE = 0 AND OWNER = '%s';",OwnerName); � 14 �
}

EXEC SQL PREPARE SelectCmd1 FROM :CmdLine; � 15 �
if (sqlca.sqlcode != OK) {

printf("\n Problem PREPARING the SELECT #1 command!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

/* set up SQLDA fields */

sqlda.sqlfmtarr = sqlfmts; /* pointer to format nodes */ � 16 �
sqlda.sqln = 4; /* number of columns expected */

EXEC SQL DESCRIBE SelectCmd1 INTO SQLDA; � 17 �
if (sqlca.sqlcode != OK) {

printf("\n Problem describing SelectCmd1!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

Figure 8-12. Program cex10b: Dynamic Queries of Known Format (page 3 of 7)

Using Dynamic Operations 8-49

EXEC SQL DECLARE TableList CURSOR for SelectCmd1; � 18 �
if (sqlca.sqlcode != OK) {

printf("\n Problem declaring TableList cursor!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

EXEC SQL OPEN TableList; � 18 �
if (sqlca.sqlcode != OK) {

printf("\n Problem opening TableList cursor!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

/* set up SQLDA fields */

sqlda.sqlnrow = MaxNbrTables; � 19 �
sqlda.sqlbuflen = sizeof(TableList);

sqlda.sqlrowbuf = TableList;

/* Get Table List from SYSTEM.TABLE */

EXEC SQL FETCH TableList USING DESCRIPTOR SQLDA; � 20 �
if (sqlca.sqlcode == 100) {

printf("\n No tables qualified!");

goto a9999;

}

else {

if (sqlca.sqlcode != OK) {

printf("\n Problem encountered when reading SYSTEM.TABLE!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

}

NumOfTables = sqlca.sqlerrd[2]; � 21 �
EXEC SQL COMMIT WORK; � 22 �

/* do loop for i */

for (i = 0; i < NumOfTables; i ++) { � 23 �
TableList[i].Owner[19] = '\0';

TableList[i].Table[19] = '\0';

TableList[i].FileSet[19] = '\0';

Figure 8-12. Program cex10b: Dynamic Queries of Known Format (page 4 of 7)

8-50 Using Dynamic Operations

sscanf(TableList[i].Owner,"%s",OwnerName); � 24 �
sscanf(TableList[i].Table,"%s",TableName);

sscanf(TableList[i].FileSet,"%s",DBEFileSet);

printf("\n Generating SQL command to CREATE TABLE ");

printf("%s.%s",OwnerName,TableName);

sprintf(CmdLine,"SELECT COLNAME,LENGTH,TYPECODE,NULLS,PRECISION,\

SCALE FROM SYSTEM.COLUMN WHERE OWNER = '%s' AND TABLENAME =\

'%s';",OwnerName,TableName); � 26 �

EXEC SQL PREPARE SelectCmd2 FROM :CmdLine; � 27 �
if (sqlca.sqlcode != OK) {

printf("\n Problem PREPARING the SELECT #2 command!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

/* set up SQLDA fields */

sqlda.sqlfmtarr = sqlfmts; /* pointer to format nodes */ � 28 �
sqlda.sqln = 6; /* number of columns expected */

EXEC SQL DESCRIBE SelectCmd2 INTO SQLDA; � 29 �
if (sqlca.sqlcode != OK) {

printf("\n Problem describing SelectCmd2!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

EXEC SQL DECLARE ColumnList CURSOR for SelectCmd2; � 30 �
if (sqlca.sqlcode != OK) {

printf("\n Problem declaring ColumnList Cursor!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

EXEC SQL OPEN ColumnList; � 30 �
if (sqlca.sqlcode != OK) {

printf("\n Problem opening ColumnList cursor!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

Figure 8-12. Program cex10b: Dynamic Queries of Known Format (page 5 of 7)

Using Dynamic Operations 8-51

/* set up SQLDA fields */

sqlda.sqlnrow = MaxNbrColumns; � 31 �
sqlda.sqlbuflen = sizeof(ColumnList);

sqlda.sqlrowbuf = ColumnList;

/* Get Column List from SYSTEM.COLUMN */

EXEC SQL FETCH ColumnList USING DESCRIPTOR SQLDA; � 32 �
if (sqlca.sqlcode != OK) {

printf("\n Problem encountered when reading SYSTEM.COLUMN!");

EXEC SQL SQLEXPLAIN :SQLMessage;

printf("%s\n",SQLMessage);

goto a9999;

}

switch (TableList[i].LockMode) { � 33 �
case 1: sprintf(OneLine,"\nCREATE PUBLICREAD ");

break;
case 2: sprintf(OneLine,"\nCREATE PRIVATE ");

break;

case 3: sprintf(OneLine,"\nCREATE PUBLIC ");

break;

default: sprintf(OneLine,"\nUnrecognized Lock Mode ");

break;

} /* end switch */

sprintf(OneLine+strlen(OneLine),"TABLE %s.%s ",OwnerName,TableName);

write(FileNum,OneLine,strlen(OneLine)); � 34 �

for (j = 0; j < sqlca.sqlerrd[2]; j++) {

ColumnList[j].ColName[19] = '\0';

strcpy(ColumnName,ColumnList[j].ColName);

if (j==0) sprintf(OneLine,"\n (%s ",ColumnName);

else sprintf(OneLine,"\n (%s ",ColumnName);

switch (ColumnList[j].TypeCode) { � 35 �
case 0: if (ColumnList[j].Length == 4) {

sprintf(OneLine+strlen(OneLine),"INTEGER ");

}

else

sprintf(OneLine+strlen(OneLine),"SMALLINT ");

break;

case 2:

case 8: sprintf(OneLine+strlen(OneLine),"CHAR(%2d)",\

ColumnList[j].Length);
break;

Figure 8-12. Program cex10b: Dynamic Queries of Known Format (page 6 of 7)

8-52 Using Dynamic Operations

case 3:

case 9: sprintf(OneLine+strlen(OneLine),"VARCHAR(%2d)",\

ColumnList[j].Length);

break;

case 4: sprintf(OneLine+strlen(OneLine),"FLOAT ");

break;

case 5: sprintf(OneLine+strlen(OneLine),"DECIMAL(%2d,%2d)",\

ColumList[j].Precision,ColumnList[j].Scale);

break;

default: sprintf(OneLine+strlen(OneLine)," **** ");

break;

} /* end switch */

if (ColumnList[j].Nulls == 0) { � 36 �
sprintf(OneLine+strlen(OneLine)," NOT NULL");

}

if (j != sqlca.sqlerrd[2]-1) {
sprintf(OneLine+strlen(OneLine),",");

}

else {

sprintf(OneLine+strlen(OneLine),") IN %s;\n",TableList[i].FileSet

}

write(FileNum,OneLine,strlen(OneLine));

} /* for j = 1 to sqlca.sqlerrd[2] */

EXEC SQL COMMIT WORK; � 37 �

} /* for i = 1 to NumOfTables */

a9999:

EXEC SQL COMMIT WORK RELEASE; � 38 �
printf("\n");

}

Figure 8-12. Program cex10b: Dynamic Queries of Known Format (page 7 of 7)

Using Dynamic Operations 8-53

9

Programming with Constraints

This chapter explains the use of statement level integrity versus row level integrity. Also,
methods of implementing schema level unique and referential integrity contraints in your
database are highlighted.

Integrity constraints allow you to have ALLBASE/SQL verify data integrity at the schema
level. Thus you can avoid coding complex veri�cation routines in application programs and
avoid the increased execution time of additional queries. Your coding tasks are simpli�ed, and
performance is improved.

The following sections are presented in the chapter:

Comparing Statement Level and Row Level Integrity.
Using Unique and Referential Integrity Constraints.
Designing an Application Using Statement Level Integrity Checks.

Comparing Statement Level and Row Level Integrity

In ALLBASE/SQL release E.1, enforcement of de�ned constraints is performed at statement
level rather than at the row level of previous releases. This is called statement level integrity.
Even though a constraint may be violated on a particular row, the check for that constraint
is not made until the statement has completed processing. At that time, if there are one or
more constraint errors, an error message is issued and the entire statement is rolled back with
no rows being processed. You do not need to detect constraint errors yourself and code your
program to respond to partially processed tables.

When a statement is rolled back, the appropriate sqlerrd �eld will be 0, re
ecting that no
rows were processed. If a constraint error is the cause of the rollback, this �eld will not
be greated than zero indicating a partially processed table. Thus, applications written for
ALLBASE/SQL may need to check for a di�erent value in the sqlerrd �eld.

For information on status checking, see the chapter, \Runtime Status Checking and the
sqlca." For information on deferring constraint error checking to the transaction level and
other error checking enhancements related to releases after E.1, see the ALLBASE/SQL
Release F.0 Application Programming Bulletin for MPE/iX .

Programming with Constraints 9-1

Using Unique and Referential Integrity Constraints

Any database containing tables with interdependent data is a good candidate for the use of
integrity constraints. You can pro�t from their use whether your data is volatile or stable
in nature. For instance, your database might contain a table of employee and department
data that is constantly changing, or it could contain a table of part number data that rarely
changes even though it is frequently accessed. (Note that integrity constraints cannot be
assigned to LONG columns. LONG columns are described in the chapter, Programming with
LONG Columns.)

To implement unique and referential constraints, use the CREATE TABLE command and
optionally the GRANT REFERENCES command in your schema �le. The following table
lists the commands you might use in dealing with integrity constraints.

Table 9-1. Commands Used with Integrity Constraints

DDL Operations DCL Operations DML Operations

CREATE TABLE GRANT REFERENCES [BULK] INSERT

DROP TABLE GRANT DBA UPDATE [WHERE CURRENT]

REMOVE FROM GROUP REVOKE REFERENCES DELETE [WHERE CURRENT]

DROP GROUP REVOKE DBA

The concepts and syntax of integrity contraints are fully discussed in the ALLBASE/SQL
Reference Manual , and database administration considerations are found in the
ALLBASE/SQL Database Administration Guide . This chapter contains techniques to use
when coding applications that manipulate data upon which integrity constraints have been
de�ned.

When executing the [BULK] INSERT, UPDATE [WHERE CURRENT], or DELETE
[WHERE CURRENT] commands, ALLBASE/SQL considers applicable integrity constraints
depending on what the overall e�ect of a statement would be once it completes execution.
The syntax for UNIQUE or PRIMARY KEY requires unique constraint enforcement. The
syntax for REFERENCES requires referential constraint enforcement on the referencing and
referenced tables involved. For example, consider the following table showing what tests must
be passed for a DML command to successfully complete.

9-2 Programming with Constraints

Table 9-2. Constraint Test Matrix

DML Operations UNIQUE or
PRIMARY KEY

Referenced Table Referencing Table

[BULK] INSERT
or Type 2 INSERT

Must be unique in
the table.

Must match a unique key in
the referenced table.

UPDATE
[WHERE

CURRENT]

Must be unique in
the table.

No foreign key can reference
the unique key being
updated.

Must match a unique key in
the referenced table.

DELETE
[WHERE

CURRENT]

No foreign key can reference
the unique key being deleted.

Designing an Application Using Statement Level Integrity Checks

This section contains examples based on the recreation database, RecDB, which is supplied as
part of the ALLBASE/SQL software package. The schema �les used to create the database
are found in appendix C of the ALLBASE/SQL Reference Manual .

The recreation database is made up of three tables (Clubs, Members, and Events). Two
primary key constraints and two referential constraints were speci�ed (when the tables were
created) to secure the data integrity of these tables.

Figure 9-1 illustrates these contraint relationships by showing the name of each constraint and
its referencing or referenced columns. Referencing columns are shaded. Referenced columns
are clear white.

Programming with Constraints 9-3

Figure 9-1. Constraints Enforced on the Recreation Database

Suppose you designed an application program providing a user interface to the recreation
database. The interface gives choices for inserting, updating, and deleting data in any of the
three tables. Your application is user friendly and guides the user with informational messages
when their request is denied because it would violate data integrity. The main interface menu
might look like this:

Main Menu for Recreation Database Maintenance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. INSERT a Club 4. INSERT a Member 7. INSERT an Event

2. UPDATE a Club 5. UPDATE Member Info. 8. UPDATE Event Info.

3. DELETE a Club 6. DELETE a Member 9. DELETE an Event

When users make a selection (by number or by tabbing to a �eld), a screen displaying all the
appropriate information allows them to insert, update, or delete.

The next sections provide generic examples of how you can code such an application. The
error checking in these examples deals with constraint enforcement errors only. (For complete
explanation of these errors, see the ALLBASE/SQL Message Manual .) Your error checking
routine should also include a method of handling multiple errors per command and errors not
related to constraint enforcement. (For more information on error coding techniques, see the
chapter, \Runtime Status Checking and the sqlca.")

9-4 Programming with Constraints



Insert a Member in the Recreation Database

The user chooses to insert a new member in the database. For this activity to complete, the
foreign key (Club) which is being inserted into the Members table must exist in the primary
key (ClubName) of the Clubs table.

Execute subroutines to display and prompt for information needed in the

Members table.

Place user entered information in appropriate host variables.

INSERT INTO RecDB.Members

VALUES (:MemberName,

:Club,

:MemberPhone :MemberPhoneInd)

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert

a new ClubName in the Clubs table, to reenter the Club for the new member,

or to exit to the main menu. Execute the appropriate subroutine.

If sqlcode equals �2295, indicating that the user tried to insert a non-unique

primary key, display the error message and prompt the user to enter a

unique MemberName/Club combination or to exit to the main menu.

Execute the appropriate subroutine.

Else, if sqlcode = 0, tell the user the member was inserted successfully,

and prompt for another new member or a return to the main menu display.

Programming with Constraints 9-5



Update an Event in the Recreation Database

The user now wants to update information in the Events table. For this activity to complete,
the SponsorClub and Coordinator being updated in the Events table must exist in the
primary key composed of MemberName and Club in the Members table.

Execute subroutines to display and prompt for information needed in the

Events table.

Place user entered information in appropriate host variables.

UPDATE RecDB.Events

SET SponsorClub = :SponsorClub :SponsorClubInd,

Event = :Event :EventInd,

Date = :Date :DateInd,

Time = :Time :TimeInd,

Coordinator = :Coordinator :CoordinatorInd

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert a new

MemberName/Club primary key in the Members table, to reenter update

information for the Events table, or to exit to the main menu. Execute

the appropriate subroutine.

Else, if sqlcode = 0, tell the user the event was updated successfully,

and prompt for another event or a return to the main menu display.

9-6 Programming with Constraints



Delete a Club in the Recreation Database

The user chooses to delete a club. For this activity to complete, no foreign key must reference
the primary key (ClubName) that is being deleted.

Execute subroutines to display and prompt for a ClubName in the Clubs table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE ClubName = :ClubName

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating that referencing data exists for ClubName,

display the error message and prompt the user to indicate whether or not

to delete the Members table row or rows that reference the ClubName,

to reenter the ClubName to be deleted, or to exit to the main menu.

Execute the appropriate subroutine.

(If you execute the subroutine to delete those rows in the Members table

which reference the Clubs table, be sure to test sqlcode.

Depending on the result, you can prompt the user to delete referencing

Events table rows, to reenter the Members table information, or to exit

to the main menu. Execute the appropriate subroutine.)

Else, if sqlcode = 0, tell the user the club was deleted successfully,

and prompt for another club or a return to the main menu display.

Delete an Event in the Recreation Database

The user chooses to delete an event. Because no primary key or unique constraints are de�ned
in the Events table, no constraint enforcement is necessary.

Execute subroutines to display and prompt for an Event in the Events table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode = 0, tell the user the event was deleted successfully, and

prompt for another event or a return to the main menu display.

Programming with Constraints 9-7



10

Programming with LONG Columns

LONG columns in ALLBASE/SQL enable you to store a very large amount of binary data in
your database, referencing that data via a table column name. You might use LONG columns
to store text �les, software application code, voice data, graphics data, facsimile data, or
test vectors. You can easily SELECT or FETCH this data, and you have the advantages
of ALLBASE/SQL's recoverability, concurrency control, locking strategies, and indexes on
related columns.

You can use LONG columns in an application program to be preprocessed or with ISQL. This
discussion focuses on application programming concerns. As you will see, great 
exibility is
provided so that you can custom design your application.

The chapter highlights methods of implementing LONG columns in your database as follows:

General Concepts.
Restrictions.
De�ning LONG Columns with CREATE TABLE or ALTER TABLE.
De�ning Input and Output with the LONG Column I/O String.
Putting Data into a LONG Column with [BULK] INSERT.
Changing a LONG Column with UPDATE [WHERE CURRENT].
Retrieving LONG Column Data with [BULK] SELECT, FETCH, or REFETCH.
Using the LONG Column Descriptor.
Removing LONG Column Data with DELETE or DELETE WHERE CURRENT.
Coding Considerations.

For every DDL and DML command that can be used with LONG columns, examples
are included with discussion of related considerations. These examples pertain to the
same logical table (PartsTable) and set of columns. In contrast to other examples in this
document, PartsTable is a hypothetical table created and altered in this chapter. Refer to the
ALLBASE/SQL Reference Manual which contains complete syntax speci�cations for using
long columns.

Table 10-1. Commands You Can Use with LONG Columns

DDL Operations DML Operations

ALTER TABLE [BULK] INSERT

CREATE TABLE UPDATE [WHERE CURRENT]

[BULK] SELECT

FETCH

REFETCH

DELETE [WHERE CURRENT]

Programming with LONG Columns 10-1



General Concepts

ALLBASE/SQL stores LONG column data in a database for later retrieval. LONG column
data is not processed by ALLBASE/SQL. Any formatting, viewing, or other processing
must be accomplished by means of your program. For example, you might use a graphics
application to create an intricate graphic display (or set of graphic displays). You could then
write a program in which you embed ALLBASE/SQL commands to store each graphics �le
in your database along with related data in a given row. Your graphics application could be
called from another program, this time to select a row and display the graphic. The graphic
could be displayed on the upper portion of a screen, with related data from the same row
displayed on the lower portion of a screen. The related data in standard columns or LONG
columns could be a graphics explanation or an entire chapter.

LONG column data can occupy a practically unlimited amount of space in the database,
the maximum number of bytes being 231�1 (or 2,147,483,647) per LONG column per row.
Standard column data is restricted to 3996 bytes maximum.

The LONG speci�cation is used with a given ALLBASE/SQL data type when you create the
LONG column. Currently, LONG BINARY and LONG VARBINARY are available. Refer to
the chapter on \Host Variables" for the details of BINARY and VARBINARY data types.

The concept of how LONG column data is stored in a row and retrieved di�ers from that of
standard columns. Although LONG column data is associated with a particular row, it can be
stored separately from the row. Thus you can specify a DBEFileSet in which to store data for
a LONG column.

During an INSERT or UPDATE operation, you specify a LONG column I/O string to
indicate where LONG column input data is located and where that data is to be placed when
it is later selected or fetched. You indicate either an operating system �le or random random
heap space.

A LONG column descriptor (rather than the data itself ) is selected or fetched into a host
variable. Figure 10-1 and Figure 10-2 illustrate these concepts.

10-2 Programming with LONG Columns



Figure 10-1. Flow of LONG Column Data and Related Information to the Database

Figure 10-2. Flow of LONG Column Data and Related Information from the Database

Programming with LONG Columns 10-3



Restrictions

A LONG column can be referenced in a select list and/or a host variable declaration. Some
restrictions do apply to LONG columns. However, related standard columns are not a�ected
by these restrictions.

LONG columns cannot be used as follows:

In a WHERE clause.
In a type 2 INSERT command.
Remotely through ALLBASE/NET.
As hash or B-tree index key columns.
In a GROUP BY, ORDER BY, DISTINCT, or UNION clause.
In an expression.
In a subquery.
In aggregate functions (AVG, SUM, MIN, MAX).
As columns to which integrity constraints are assigned.
With the DEFAULT option of the CREATE or ALTER TABLE commands.

Defining LONG Columns with a CREATE TABLE or ALTER TABLE
Command

Following is the new portion of the CREATE TABLE or ALTER TABLE command syntax for
specifying a LONG column column de�nition . A maximum of 40 such LONG columns may be
de�ned for a single table.

(ColumnName LONG

�
BINARY

VARBINARY

�
(ByteSize)

�
IN DBEFileSet

� �
NOT NULL

�
)
�
, . . .

�

When you create or add a LONG column to a table you have the option of specifying the
DBEFileSet in which it is to be stored. Because LONG column data may take up a large
chunk of a given DBEFile's data pages, placing LONG column data in a separate DBEFileSet
is strongly advantageous from the standpoint of storage as well as performance.

If the IN DBEFileSetName clause is not speci�ed for a LONG column, this column's data is
by default stored in the same DBEFileSet as its related table.

Note It is recommended that you do not use the SYSTEM DBEFileSet in which to
store your data, as this could severely impact database performance.

In the following example, LONG column data for PartPicture will be stored in PartPictureSet
while data for columns PartName and PartNumber will be stored in PartsTableSet.

CREATE TABLE PartsTable (

PartName CHAR(10),

PartNumber INTEGER,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartPicture LONG VARBINARY(1000000) IN PartPictureSet)NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

IN PartsTableSet

10-4 Programming with LONG Columns



The next command speci�es that data for new LONG column, PartModule, be stored in
PartPictureSet.

ALTER TABLE PartsTable

ADD
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartModule LONG VARBINARY(70000) IN PartPictureSet

See the \BINARY Data" section of the \Host Variables" chapter for more information on
using BINARY and VARBINARY data types in long columns.

Now that we have de�ned our table, let's see how to put data into it and to specify where
data goes when it is retrieved.

Defining Input and Output with the LONG Column I/O String

Both the INSERT and the UPDATE commands allow you to de�ne various input and output
parameters for any LONG column. Parameters are speci�ed with a LONG column I/O string.
You'll need to understand this string in order to input, change, or retrieve LONG column
data. This section o�ers an overview. See the ALLBASE/SQL Reference Manual for complete
syntax.

Using the INSERT or UPDATE command, you pass the string to ALLBASE/SQL as either a
host variable or a literal. Host variables are covered in detail in the \Host Variables" chapter.

Note The input and output portions of the I/O string are not positional. In the
following examples, < indicates input, and > indicates output. See the
ALLBASE/SQL Reference Manual for a full description of I/O operations
with LONG columns.

The input portion of the LONG column I/O string speci�es the location of data that you
want written to the database. It is also referred to as an input device speci�cation. You can
indicate a �le name or a random heap address.

Use the output portion of the I/O string (output device speci�cation) to indicate where you
want LONG column data to be placed when you use the SELECT or FETCH command.
You have the option of specifying a �le name, part of a �le name, or having ALLBASE/SQL
specify a �le name. You also can direct output to a random heap address. Additional output
parameters allow you to append to or overwrite an existing �le. Information in the output
device speci�cation is stored in the database table and is available to you when a LONG
column is selected or fetched (via a LONG column descriptor, discussed later in the section,
\Using the LONG Column Descriptor").

It's important to note that �les used for LONG column input and output are opened and
closed by ALLBASE/SQL for its purposes. You need not open or close such �les in your
program unless you use them for additional purposes. ALLBASE/SQL does not control input
or output device �les once they are on the operating system. So, any operation on the �le is
valid, whether by your application or another application or user of the system. Such �les are
your responsibility, even before the transaction is complete.

The syntax for the INSERT and UPDATE commands is identical except that the input device
is required for the INSERT command.

Programming with LONG Columns 10-5



Putting Data into a LONG Column with a [BULK] INSERT Command

As with any column, use the INSERT command to initially put data into a LONG column.
At the time of the insert, all input devices must be on the system in the locations you have
speci�ed. Should your insert operation fail, nothing is inserted, a relevant error message is
returned to the program, and the transaction continues. Depending on your application, you
might want to write a veri�cation routine that reads a portion of each speci�ed input device
to make certain valid data exists prior to using the INSERT command.

The next examples are based on the PartsTable created and altered in the previous section,
\De�ning LONG Columns with CREATE TABLE or ALTER TABLE." Additional examples
of LONG column I/O string usage are found in the ALLBASE/SQL Reference Manual .

Insert Using Host Variables for LONG Column I/O Strings

When inserting a single row, use a version of the LONG Column I/O String for each LONG
column following the VALUES clause, as below.

INSERT INTO PartsTable VALUES (

'bracket',

200,

:PartPictureIO,

:PartModuleIO)

An example of the values that might be stored in the host variables, :PartPictureIO and :Part
ModuleIO, are shown in the last two �elds of a hypothetical record in the Example Data
File that appears later in this chapter. In the above example, the values, bracket and 200,
are coded as constants, rather than coming from the data �le. The following represents a
record could be read into host variables in preparation for the above INSERT statement. The
constants, bracket and 200, in the statement could alternately be read into host variables.

bracket 200 0'<bracket.tools >hammer' 0'<mod88.module > mod88' 0

Bulk Insert Using Host Variables for LONG Column I/O Strings

The following example illustrates how to de�ne and use an appropriate host variable for a
BULK INSERT into PartsTable. De�ne an entry in your host variable array for each LONG
column I/O string.

10-6 Programming with LONG Columns



Example

/* This code segment reads a data file into a host variable array, one line */
/* at a time. It parses the buffer and displays each record as it's */

/* read and loaded. Then a BULK INSERT to an ALLBASE/SQL database table is */

/* performed. Maximum number of records per BULK INSERT is 25. */

#include <stdio.h>

#define MAXSIZE 25

.

.

.

/* PartNum is used to read in the PartNumber as a string. */

char PartNum[7];

/* Note that all of the columns allow null values, and an indicator */

/* variable has been defined for each. */

EXEC SQL BEGIN DECLARE SECTION;

struct {

char PartName[11];

sqlind PartNameInd;

int PartNumber;

sqlind PartNumberInd;

char PartPictureIO[31]; /* IO string for LONG column PartPicture */

sqlind PartPictureInd;

char PartModuleIO[31]; /* IO string for LONG column PartModule */
sqlind PartModuleInd;

} PartsTableRows[25]; /* INSERT up to 25 rows at a time */

char SQLMessage[133];

EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

.

.

.

Programming with LONG Columns 10-7



int InsertRows() /* function to insert rows in PartsTable */

{

StartIndex = 1;

NumberOfRows = counter1;

EXEC SQL BULK INSERT INTO PartsTable

(PartName,

PartNumber,

PartPicture,

PartModule)

VALUES (:PartsTableRows,

:StartIndex,

:NumberOfRows);

if (sqlca.sqlcode != 0) {

SQLStatusCheck();

}

} /* End of InsertRows Function */

/* Here you could accept data from the user or from a file. */

/* For this example, a file is used. */

int main() /* function to initialize host variable array from */

/* a file */

{

char s[225];
int i = 0;

FILE *ptr;

ptr = fopen("data_file","r");

while (fgets(s,225,ptr) && (i < MAXSIZE)) {

sscanf (s, "%10c %2d%2c %2d%30c %2d%30

PartsTableRows[i].PartName, &PartsTableRows[i].PartNameInd,

PartNum, &PartsTableRows[i].PartNumberInd,

PartsTableRows[i].PartPictureIO,

&PartsTableRows[i].PartPictureInd,

PartsTableRows[i].PartModuleIO, &PartsTableRows[i].PartModuleInd);

10-8 Programming with LONG Columns



/* We read PartNumber as a string, but assign it as an integer. */

/* atoi converts the ascii to integer. */
PartsTableRows[i].PartNumber = atoi(PartNum);

printf ("%10s %2d %2d %2d %30s %2d %30s %2d\n",

PartsTableRows[i].PartName, PartsTableRows[i].PartNameInd,

PartsTableRows[i].PartNumber, PartsTableRows[i].PartNumberInd,

PartsTableRows[i].PartPictureIO,

PartsTableRows[i].PartPictureInd,

PartsTableRows[i].PartModuleIO, PartsTableRows[i].PartModuleInd);

i++;

}

} /* end of initialize function */

.

.

.

Example Data File

The �le, in this case named data �le, that your program reads might look something like this.
Note that it is limited to 80 characters per record to facilitate documentation.

hammer 011 0'<hammer.tools >hammer' 0'<mod11.module > mod11' 0

file 022 0'<file.tools >file' 0'<mod22.module > mod22' 0

saw 033 0'<saw.tools > saw' 0'<mod33.module > mod33' 0

wrench 044 0'<wrench.tools >wrench' 0'<mod44.module > mod44' 0

lathe 055 0'<lathe.tools >lathe' 0'<mod55.module > mod55' 0

drill 066 0'<drill.tools >drill' 0'<mod66.module > mod66' 0

pliers 077 0'<pliers.tools >pliers' 0'<mod77.module > mod77' 0

.

.

.

Programming with LONG Columns 10-9



Retrieving LONG Column Data with a [BULK] SELECT, FETCH, or
REFETCH Command

The following syntax represents the available subset when your select list includes one or more
LONG columns. Remember, a LONG column can be referenced only in a select list and/or a
host variable declaration.

�
BULK

�
SELECT

�
ALL

�
8>><
>>:

*�
Owner.

�
Table.*

CorrelationName.*

CorrelationName.ColumnName

9>>=
>>;
�
, . . .

�

�
INTO HostVariableDeclaration

�
FROM

� �
Owner.

�
FromTableName

�
CorrelationName

� 	
�
, . . .

�
As we noted earlier, the concept of how LONG column data is retrieved di�ers from that of
standard columns. The LONG column descriptor (rather than the data itself ) is selected or
fetched into a host variable. In the case of a dynamic FETCH command, the LONG column
descriptor information goes to the data bu�er. In any case, the LONG column data is written
to a �le or random heap space.

When the following SELECT command is executed, :HostPartPic will contain the LONG
column descriptor information for column PartPicture. LONG column data will go to the
output device speci�ed when column PartPicture was last inserted or updated.

SELECT PartNumber, PartPicture

INTO :HostPartNum, :HostPartPic

FROM PartsTable

WHERE PartNumber = 200

Using the LONG Column Descriptor

ALLBASE/SQL does not swap LONG column data into or out of a host variable. Instead
a 96-byte descriptor is available to your program at select or fetch time. It contains LONG
column information for your program for which you must declare an appropriate host variable.

For example, if you do not know the output device type and its name or address, you obtain
this information from the descriptor. Then open the appropriate �le or call the operating
system to access random heap space.

Note The LONG column descriptor must be declared whether or not you access its
contents in your code.

10-10 Programming with LONG Columns



Table 10-2. LONG Column Descriptor

Description Possible Binary Values Byte Range

Name or Address of Output
Device

File name or heap address 1 through 44

Output Device Options 0 = no output speci�ed
1 = overwrite
2 = append
3 = wildcard
4 = overwrite and wildcard
5 = append and wildcard

45

Output Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

46

Input Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

47

Reserved for Internal Use 48

Size in Bytes of LONG Column
Data

1 to 231�1 (or 2,147,483,647) per LONG
column per row. Standard column data is
restricted to 3996 bytes maximum.

49 through 52

Reserved for Internal Use 53 through 96

Example LONG Column Descriptor Declaration

/* Use this when you don't need to break down the descriptor. */

EXEC SQL BEGIN DECLARE SECTION;

char longdescriptor[96];...
EXEC SQL END DECLARE SECTION;

/* If you want to access a portion of the descriptor, copy the */

/* longdescriptor host variable to the structure below. */

struct {

char outputdevlocation[44];

char outputdevop;

char outputdevtype;

char inputdevtype;

char unused_A;

int bytelength;

char unused_B[44];

} longstruct

Programming with LONG Columns 10-11



Using LONG Columns with a BULK SELECT Command

When you use the BULK SELECT command with LONG columns, should an error occur
before completion of the BULK SELECT command, any operating system �les written before
the error occurred remain on the system, and LONG column descriptors written to a host
variable array remain in the array. It is your responsibility to remove such �les as appropriate.

Using LONG Columns with a Dynamic FETCH Command

If you have the need to dynamically retrieve LONG column data, the sqlrowbuf column of
the sqlda, as always, contains the address of the data bu�er. However, the data bu�er, rather
than containing LONG column data, holds the 96-byte LONG column descriptor.

The sqltype �eld of the format array holds a data type ID number of 15 for a LONG BINARY
column and 16 for a LONG VARBINARY column. And the sqltotallen and sqlvallen columns
will always contain a value of 96 (indicating the length of the descriptor).

When a NULL is fetched as the LONG column value, no external �les are created, and the
associated indicator variable for the LONG column descriptor is set to �1.

Changing a LONG Column with an UPDATE [WHERE CURRENT]
Command

When you issue an UPDATE command on a LONG column, you have the following options:

Change the stored data as well as the output device name and/or options.
Change the stored data only.
Change the output device name and/or options only.

Specify a LONG column I/O string (discussed earlier in this chapter) following the SET
clause, for each LONG column to be updated. You must specify either the input device, the
output device, or both. Complete syntax with examples is found in the ALLBASE/SQL
Reference Manual .

In the following example, the LONG column I/O string is contained in host variable
PartPictureIO.

UPDATE PartsTable

SET PartPicture = :PartPictureIO

WHERE PartName = 'saw'

10-12 Programming with LONG Columns



Removing LONG Column Data with a DELETE [WHERE CURRENT]
Command

Syntax for the DELETE and DELETE WHERE CURRENT commands is unchanged for use
with LONG columns. It is limited for the DELETE command in that a LONG column cannot
be used in the WHERE clause.

In the following example, any rows in PartsTable with the PartName of hammer are deleted.

DELETE FROM PartsTable WHERE PartName = 'hammer'

When LONG column data is deleted, the space it occupied in the DBEnvironment is released
when your transaction ends. But any data �le selected earlier still exists on the operating
system. You may want to design a \cleanup" strategy for such �les that are no longer needed.

Coding Considerations

File versus Random Heap Space

Depending on your application, you might want to use a �le or random heap space as your
input or output device. Random heap space may provide faster data access. Consider how
much random heap space will be available.

What about using a �le as an I/O device? You might ask yourself the following questions.
Whom do you want to access the �le during and after the application transaction is complete?
How will it be \cleaned up" when it is no longer being used; perhaps the overwrite option
would be helpful or another maintenance procedure.

File Naming Conventions

When a LONG column is selected or fetched, data goes to the output device you have
speci�ed at insert or update time. In the case of a �le, because this output device name can
be completely de�ned by you, partially de�ned by you, or assigned by ALLBASE/SQL, you
may want to consider whether or not naming conventions are necessary. For instance, if your
application is such that you can always give the same name to your LONG column output
device as you give to the standard column you use in the WHERE clause, no need exists to
extract the device name from the LONG column descriptor when you select or fetch it. For
example, assuming your WHERE clause uses the PartsTable PartName column, the data �le
example in the previous section, \Example Data File," uses this strategy. (Your application
might still require information other than a �le name from the descriptor area.)

Programming with LONG Columns 10-13



Considering Multiple Users

With multiple users reading the same LONG column data, it is preferable for each user to run
the application in a local area. This can prevent �le access problems.

If several users must access the same data from the same group, you might want to use the
wildcard option ($) and avoid using the overwrite option (!).

Deciding How Much Space to Allocate and Where

Remember to consider the space requirements of any DBEFileSet used for LONG column
data. For example, suppose you execute an INSERT or UPDATE command for a LONG
column de�ned as VARBINARY. If inadequate space is available in the database for the new
data, an error message is returned to your program, and the transaction is rolled back. In this
case, you can CREATE another DBEFile and add it to the appropriate DBEFileSet.

You will also want to consider the amount of random heap space available for your use in
relation to the size and number of LONG columns to be selected or fetched.

10-14 Programming with LONG Columns



11

Programming with ALLBASE/SQL Functions

Seven functions can be used with date/time data types. These functions provide 
exibility for
inputting and retrieving date/time data from the database.

These functions can be used with a preprocessed application or with ISQL. This chapter
outlines basic principles for using date/time functions in an application program. The
following sections are included:

Where Date/Time Functions Can Be Used.
De�ning and Using Host Variables with Date/Time Functions.
Using Date/Time Input Functions.
Using Date/Time Output Functions.
Using the Date/Time ADD MONTHS Function.
Coding Considerations.
Program Examples for Date/Time Data.

Date/time functions are used as you would use an expression. And when used in a select list,
all date/time functions produce data output. Refer to the section in this chapter, \De�ning
and Using Host Variables with Date/Time Functions."

Suppose for example that you are programming for an international corporation. Your
database tables contain various date/time columns and the data is used by employees in
several countries. You write a generic program on which you base a set of customized
programs, one for each geographical location. Each customized program allows the employees
at a given location to input and retrieve date/time information in the formats with which they
are most comfortable.

Refer to the \Host Variables" chapter for more information on date/time data types.
Complete syntax and format speci�cations for date/time functions are found in the
ALLBASE/SQL Reference Manual in the \Expressions" and \Data Types" chapters.

Note For all date/time functions, character input and output values are in
Native-3000 format.

Programming with ALLBASE/SQL Functions 11-1



Where Date/Time Functions Can Be Used

Use date/time functions, as you would an expression, in the DML operations listed below:

Table 11-1. Where to Use Date/Time Functions

DML Operation Clause

[BULK]INSERT 1 VALUES

WHERE

UPDATE or SET

UPDATE WHERE CURRENT WHERE

DELETE or WHERE

DELETE WHERE CURRENT

[BULK]SELECT Select list 2

WHERE

DECLARE Select list 2

WHERE

1 In the case of a [BULK] INSERT, output functions, TO CHAR and TO INTEGER, and the ADD MONTHS
function, are limited to use in the select list and the WHERE clause of a Type 2 INSERT.

2 Input functions, TO DATE, TO TIME, TO DATETIME, and TO INTERVAL, are generally not appropriate in a
select list.

Defining and Using Host Variables with Date/Time Functions

Date/time functions can be used in the way an expression is used; that is, in a select list to
indicate the columns you want in the query result, in a search condition to de�ne the set
of rows to be operated on, and to de�ne the value of a column when using the UPDATE
command. (See the ALLBASE/SQL Reference Manual for in-depth information regarding
expressions.)

Whether you use host variables or literal strings to specify the parameters of the date/time
functions depends on the elements of your application and on how you are using the functions.
This section focuses on the use of host variables.

You can use host variables to specify input or output format speci�cations. Use them as well
to hold data input to and any resulting data output from the date/time functions. (Host
variables cannot be used to indicate column names.)

Host variables for format speci�cations must be de�ned in your application to be compatible
with ALLBASE/SQL CHAR or VARCHAR data types. The exception is the ADD MONTHS
function which requires an INTEGER compatible host variable.

11-2 Programming with ALLBASE/SQL Functions



As for host variables containing input and output data, de�ne them to be CHAR or
VARCHAR compatible with one exception. The TO INTEGER function requires an
INTEGER compatible host variable for its output.

Reference the chapter on de�ning host variables for additional information about de�ning
a host variable to be compatible with a speci�c ALLBASE/SQL data type. Note that the
declarations relate to the default format speci�cation for each date/time data type. Your
declaration must re
ect the length of the format you are using.

Table 11-2 shows host variable data type compatibility for date/time functions.

Table 11-2. Host Variable Data Type Compatibility for Date/Time Functions

Date/Time
Function

Input Format
Speci�cation

Output Format
Speci�cation

Input Data Output Data

TO DATE (VAR)CHAR (VAR)CHAR (VAR)CHAR 1

TO TIME

TO DATETIME

TO INTERVAL

TO CHAR (VAR)CHAR (VAR)CHAR

TO INTEGER (VAR)CHAR INTEGER

ADD MONTHS INTEGER (VAR)CHAR 1

1 Applies only when used in a select list.

Using Date/Time Input Functions

The new input functions are designed so that you can easily input data for a given date/time
data type in either the default format or a format of your choice. (When you do not include a
format speci�cation, the default is used.)

You have the option of choosing a literal string or a host variable to indicate a desired data
value and/or optional format speci�cation. See the ALLBASE/SQL Reference Manual for
detailed syntax.

Following is the general syntax for date/time input functions:

8>><
>>:

TO_DATETIME (DataValue
�
,FormatSpeci�cation

�
)

TO_DATE (DataValue
�
,FormatSpeci�cation

�
)

TO_TIME (DataValue
�
,FormatSpeci�cation

�
)

TO_INTERVAL (DataValue
�
,FormatSpeci�cation

�
)

9>>=
>>;

Input functions can be used in DML operations as shown in Table 11-1. It is most appropriate
to use date/time input functions in a WHERE, VALUES, or SET clause. Although they can
be used in a select list, it is generally not appropriate to do so. The data value returned to
the function in this instance is not a column value but is identical to the value you specify as
input to the function.

Programming with ALLBASE/SQL Functions 11-3



Examples of TO DATETIME, TO DATE, TO TIME, and TO INTERVAL Functions

Imagine a situation in which users will be inputting and retrieving date/time data in formats
other than the default formats. (Refer to the ALLBASE/SQL Reference Manual for default
format speci�cations.)

The data is located in the TestData table in the manufacturing database. (Reference
appendix C in the ALLBASE/SQL Reference Manual .)

You are to provide them with the capability of keying and retrieving data in the formats
shown in Table 11-3.

Table 11-3. Sample of User Requested Formats for Date/Time Data

Date/Time Data Type Desired Format Speci�cation Length of Format
Speci�cation in ASCII

Characters

DATETIME MM-DD-YYYY HH:MM:SS.FFF 23

DATE MM-DD-YYYY 10

TIME HH:MM:SS 1 8

INTERVAL DDDDDDD HH:MM:SS 16

1 This is the default time data format.

You might use the following generic code examples to meet their needs.

Example Using the INSERT Command

Your application allows users to enter data in their desired formats with a minimum of e�ort
on your part.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format, :TestDate,

:TestDate-Format, :TestStart, :LabTime, and LabTime-Format) to be compatible

with data type CHAR or VARCHAR.

Declare input indicator variables (:TestDateInd and :LabTimeInd).

END DECLARE SECTION

.

.

.

11-4 Programming with ALLBASE/SQL Functions



INSERT

INTO MANUFDB.TESTDATA

(BatchStamp,

TestDate,

TestStart,

TestEnd,

LabTime,

PassQty,

TestQty)

VALUES
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(TO_DATETIME (:BatchStamp, :BatchStamp-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATE (:TestDate :TestDateInd, :TestDate-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_TIME (:TestStart :TestStartInd),

:TestEnd :TestEndInd,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime :LabTimeInd, :LabTime-Format),

:PassQty :PassQtyInd,

:TestQty :TestQtyInd)

Note that the user requested time data format is the default format. Using the two time data
columns in the TestData table (TestStart and TestEnd), the above example illustrates two
ways of specifying a default format. Specify a date/time function without a format, or simply
do not use a date/time function.

Example Using the UPDATE Command

These users want the capability of updating data based on the BatchStamp column.

BEGIN DECLARE SECTION

Declare input host variables (:TestDate, :TestDate-Format, :BatchStamp,

and :BatchStamp-Format) to be compatible with data type CHAR or VARCHAR.

Declare input indicator variable (:TestDateInd).

END DECLARE SECTION

.

.

.

UPDATE MANUFDB.TESTDATA

SET TESTDATE =
NNNNNNNNNNNNNNNNNNNNNNN
TO_DATENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(:TestDate :TestDateInd, :TestDate-Format),

TestStart = :TestStart :TestStartInd,,

TestEnd = :TestEnd :TestEndInd,,

LabTime = :LabTime :LabTimeInd,

PassQty = :PassQty :PassQtyInd,

TestQty = :TestQty :TestQtyInd

WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME

Programming with ALLBASE/SQL Functions 11-5



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(:BatchStamp, :BatchStamp-Format)

11-6 Programming with ALLBASE/SQL Functions



Example Using the SELECT Command

The users are planning to select data from the TestData table based on the lab time interval
between the start and end of a given set of tests.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format,

LabTime, and LabTime-Format) to be compatible with data type

CHAR or VARCHAR.

END DECLARE SECTION

.

.

.

SELECT BatchStamp

Testdate

TestStart,

TestEnd,

LabTime

PassQty,

TestQty

INTO :BatchStamp,

:TestDate :TestDateInd,

:TestStart :TestStartInd,

:TestEnd :TestEndInd,

:LabTime :LabTimeInd,

:PassQty : PassQtyInd,

:TestQty TestQtyInd

FROM MANUFDB.TESTDATA

WHERE LabTime >
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime, :LabTime-Format)

AND
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format),

BETWEEN :StampOne AND :StampTwo

Example Using the DELETE Command

The users want to delete data from the TestData table by entering a value for the
BatchStamp column.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp and :BatchStamp-Format)

to be compatible with data type CHAR or VARCHAR.

END DECLARE SECTION

.

.

.

DELETE FROM MANUFDB.TESTDATA

Programming with ALLBASE/SQL Functions 11-7



WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format)

Using Date/Time Output Functions

Specify the output format of any type of date/time column by using a date/time output
function. Use an output function with any DML operation listed in Table 11-2 with one
exception. In the case of a [BULK] INSERT command, output functions are limited to use in
the select list and the WHERE clause of a Type 2 INSERT command.

As with date/time input functions, use a host variable or a literal string to indicate a format
speci�cation. See the ALLBASE/SQL Reference Manual for detailed syntax.

Following is the general syntax for date/time output functions:

�
TO_CHAR (ColumnName

�
,FormatSpeci�cation

�
)

TO_INTEGER (ColumnName, FormatSpeci�cation)

�

Example TO CHAR Function

The default format for the DATETIME data type speci�es the year followed by the month
followed by the day. The default format for the TIME data type speci�es a 24-hour clock.
(Refer to the ALLBASE/SQL Reference Manual .)

Suppose users located in Italy want to input a speci�ed batch stamp to obtain the start and
end times of the related test in 12-hour format. They will key the batch stamp in this format,
\DD-MM-YYYY HH12:MM:SS:FFF AM or PM." The times returned will be in this format,
\HH12:MM:SS.FFF AM or PM."

Data is located in the TestData table in the manufacturing database. (Refer to appendix C in
the ALLBASE/SQL Reference Manual .) The following code could be used:

BEGIN DECLARE SECTION

Declare input host variables (:TwelveHourClockFormat, :BatchStamp,

:ItalianFormat, and :Speci�edInput) to be compatible with data type

CHAR or VARCHAR.

Declare output host variables (:TestStart and :TestEnd) to be compatible

with data type CHAR or VARCHAR .

Declare output indicator variables (:TestStartInd and :TestEndInd).

END DECLARE SECTION

.

.

.

SELECT
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestStart, :TwelveHourClock),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestEnd, :TwelveHourClock)

INTO :TestStart :TestStartInd,

11-8 Programming with ALLBASE/SQL Functions



:TestEnd :TestEndInd,

FROM ManufDB.TestData

WHERE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME(:BatchStamp, :ItalianFormat) = :SpecifiedInput

Note the use of indicator variables in the above example. Because the TO CHAR function is
used in the select list, no need exists to specify an indicator variable as part of the function.

Programming with ALLBASE/SQL Functions 11-9



Example TO INTEGER Function

The TO INTEGER format speci�cation is mandatory and di�ers from that of other
date/time functions in that it must consist of a single element only. See the ALLBASE/SQL
Reference Manual for detailed format speci�cations.

Perhaps you are writing a management report that indicates the quarter of the year in which
tests were performed. (As in the previous example, data is located in the TestData table in
the manufacturing database.) You could use the following code:

BEGIN DECLARE SECTION

Use the ALLBASE/SQL Reference Manual to determine your desired format

speci�cation. (In this case it is Q.)

Declare the input host variable, :QuarterlyFormat, to be compatible with data

types CHAR or VARCHAR.

In the ReportBu�er array, declare an output host variable (:TestDateQuarter)

to be compatible with data type INTEGER. Declare other output host

variables (:BatchStamp, :LabTime, :PassQty, and :TestQty) to be

compatible with data type CHAR or VARCHAR.

Remember to declare output indicator variables (:TestDateQuarterInd,

LabTimeInd, PassQtyInd, and :TestQtyInd) in the ReportBu�er array.

END DECLARE SECTION

.

.

.

DECLARE ReportInfo CURSOR FOR

SELECT BatchStamp,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTEGER(TestDate, :QuarterlyFormat),

LabTime,

PassQty,

TestQty

FROM ManufDB.TestData

.

.

.

BULK FETCH ReportInfo

INTO ReportBuffer

11-10 Programming with ALLBASE/SQL Functions



Using the Date/Time ADD MONTHS Function

This function allows you to add an integer number of months to a DATE or DATETIME
column. Do so by indicating the number of months as a positive, negative, or unsigned integer
value. (An unsigned value is assumed positive.) Also, you can specify the integer in a host
variable of type INTEGER.

The ADD MONTHS function can be used in both input and output operations as shown in
Table 11-1.

Following is the general syntax for the ADD MONTHS function:

�
ADD_MONTHS (ColumnName, IntegerValue)

	
As with date/time output functions, use the ADD MONTHS function with any DML
operation listed in Table 11-2 with one exception. In the case of a [BULK] INSERT command,
the ADD MONTHS function is limited to use in the select list and the WHERE clause of a
Type 2 INSERT command.

Example ADD MONTHS Function

Perhaps you want to increment each date in the TestDate column by one month in the
ManufDB.TestData table of the manufacturing database. The following command could be
used:

UPDATE ManufDB.TestData

SET TestDate = ADD_MONTHS (TestDate, 1);

Coding Considerations

The following list provides helpful reminders when you are using date/time functions:

Input functions require leading zeros to match the �xed format of an element. (Z is not
supported.)

For all date/time functions, when you provide only some elements of the complete format in
your format speci�cation, any unspeci�ed elements are �lled with default values.

Arithmetic operations are possible with functions of type INTEGER.

The length of the data cannot exceed the length of the format speci�cation for that data.
The maximum size of a format speci�cation is 72 bytes.

Because LIKE works only with CHAR and VARCHAR values, if you want to use LIKE
with date/time data, you must �rst convert it to CHAR or VARCHAR. For this you can
use the TO CHAR conversion function.

MIN, MAX, COUNT can be used with any DATE/TIME column type. SUM, AVG can be
used with INTERVAL data only.

Do not specify an indicator variable as a parameter of a date/time function used in the
select list of a query.

Programming with ALLBASE/SQL Functions 11-11



When using the ADD MONTHS function, if the addition of a number of months (positive
or negative) would result in an invalid day, the day �eld is set to the last day of the month
for the appropriate year, and a warning is generated indicating the adjustment.

Program Example for Date/Time Data

The example program shown in Figure 11-1 is based on the manufacturing database and
the purchasing database that are a part of the sample database environment, PartsDBE.
(Reference the ALLBASE/SQL Reference Manual , appendix C.)

The program shows how to convert a column data type from CHAR to DATE. Informative
comments and explanations are present throughout the listing.

11-12 Programming with ALLBASE/SQL Functions



Example Program cex9a

/* Program cex9a */

/** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*This program uses BULK FETCH and BULK INSERT commands to select all rows*/

/*from the Orders table (part of the sample DBEnvironment, PartsDBE), */
/*convert the order date column from the CHAR data type to the DATE data */

/*type default format, and write all Orders table information to another */

/*table called NewOrders table (created previously by you as described in */

/*this chapter). */

/** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

#include <stdio.h>

typedef int boolean;

boolean DoneConvert;

boolean OrdersOK;

boolean Abort;

boolean ConnectDBE();

int counter1;

#define OK 0

#define NotFound 100

#define DeadLock -14024

#define NoMemory -4008

#define FALSE 0

#define TRUE 1

sqlca_type sqlca; /* SQL Communication Area */

/* Begin Host Variable Declarations */

EXEC SQL BEGIN DECLARE SECTION;

struct {

int OrderNumber;

int VendorNumber;

sqlind VendorNumInd;

char OrderDate[9]; /* Add a byte for end of char array. */

sqlind OrderDateInd;

} Orders[25];

short StartIndex;

short NumberOfRows;

Figure 11-1. Program cex9a: Using Date/Time Functions

Programming with ALLBASE/SQL Functions 11-13



struct {

int NewOrderNumber;

int NewVendorNumber;

sqlind NewVendorNumInd;

char NewOrderDate[11]; /*Add a byte for end of char array.*/

sqlind NewOrderDateInd;

} NewOrders[25];

short StartIndex2;

short NumberOfRows2;

char SQLMessage[133]; /*Add a byte for end of char array.*/

EXEC SQL END DECLARE SECTION;

/* End Host Variable Declarations */

/**************************************************************************/

/*The cursor for the BULK FETCH is declared in a function that is never */

/*executed at run time. The section for this cursor is created and stored*/
/*in the program module at preprocess time. */

/**************************************************************************/

boolean DeclareCursor(){

EXEC SQL DECLARE OrdersCursor

CURSOR FOR

SELECT *

FROM PurchDB.Orders;

}

/*************************************************************************/

/*Function to rollback the transaction. */

/*************************************************************************/

int RollBackWork(){

printf("Rollback Work\n");

EXEC SQL ROLLBACK WORK;

if (sqlca.sqlcode != OK){

SQLStatusCheck();

TerminateProgram();

}

} /* End RollBackWork Function */

Figure 11-1. Program cex9a: Using Date/Time Functions (2 of 7)

11-14 Programming with ALLBASE/SQL Functions



/*************************************************************************/

/* Beginning of program. */

/*************************************************************************/

main() {

printf("Program to convert date from CHAR to DATE data type.\n");

printf("Event List:\n");

printf(" Connect to PartsDBE\n");

printf(" BULK FETCH all rows from Orders Table.\n");

printf(" Convert the date.\n");

printf(" BULK INSERT all fetched rows into NewOrders Table \n");

printf(" with converted date.\n");

printf(" Release PartsDBE\n\n");

if (ConnectDBE()) {

DoneConvert = FALSE;

OrdersOK = TRUE;

BeginTransaction();

EXEC SQL OPEN OrdersCursor KEEP CURSOR WITH LOCKS;

if (sqlca.sqlcode != OK) {

SQLStatusCheck();

RollBackWork();

OrdersOK = FALSE;

DoneConvert = TRUE;

}

do {

FetchOld();

} while (! DoneConvert);/* DoneConvert is TRUE when all data has been */

/* converted and inserted or when an error */

/* condition not serious enough for ALLBASE/SQL*/

/* to rollback work was encountered. */

if (OrdersOK) /* If there were no errors in processing, data */

CommitWork(); /* is committed to the database. */

TerminateProgram();

} /* END if */

} /* End of Main Program */

Figure 11-1. Program cex9a: Using Date/Time Functions (3 of 7)

Programming with ALLBASE/SQL Functions 11-15



/*************************************************************************/

/* Function to release PartsDBE. */

/*************************************************************************/

int TerminateProgram() /* Function to Release PartsDBE */

{

EXEC SQL RELEASE;

} /* End TerminateProgram Function */

/*************************************************************************/

/*Function to display error messages and terminate the program when the */

/*transaction has been rolled back by ALLBASE/SQL. */

/*************************************************************************/

int SQLStatusCheck() /* Function to Display Error Messages */

{

Abort = FALSE;

if (sqlca.sqlcode <= DeadLock) Abort = TRUE;

if (sqlca.sqlcode = NoMemory) Abort = TRUE;

do {

EXEC SQL SQLEXPLAIN :SQLMessage;

printf(SQLMessage);

} while (sqlca.sqlcode != 0);

if (Abort) TerminateProgram();

} /* End SQLStatusCheck Function */

/*************************************************************************/

/*Function to connect to the sample database environment, PartsDBE. */

/*************************************************************************/

boolean ConnectDBE(){

boolean rv; /* return value */

printf("Connect to PartsDBE\n");

EXEC SQL CONNECT TO 'PartsDBE';

rv = TRUE;

if (sqlca.sqlcode != OK){

rv = FALSE;

Figure 11-1. Program cex9a: Using Date/Time Functions (4 of 7)

11-16 Programming with ALLBASE/SQL Functions



SQLStatusCheck();

} /* End if */

return(rv);

} /* End of ConnectDBE Function */

/*************************************************************************/

/*Function to begin the transaction with cursor stability specified. */

/*************************************************************************/

int BeginTransaction(){

EXEC SQL BEGIN WORK CS;

if (sqlca.sqlcode != OK){

SQLStatusCheck();

TerminateProgram();

}

} /* End BeginTransaction Function */

/*************************************************************************/

/*Function to commit work to the database OR save the cursor position. */

/*************************************************************************/

int CommitWork(){

printf("Commit Work\n");

EXEC SQL COMMIT WORK;

if (sqlca.sqlcode != OK){

SQLStatusCheck();

TerminateProgram();

}

} /* End CommitWork Function */

/*************************************************************************/

/*Function to BULK INSERT into PurchDB.NewOrders table. */

/*************************************************************************/

int InsertNew(){

NumberOfRows2 = counter1;

StartIndex2 = 0;

printf("BULK INSERT INTO PurchDB.NewOrders\n");

EXEC SQL BULK INSERT INTO PurchDB.NewOrders

VALUES (:NewOrders,

:StartIndex2,
:NumberOfRows2);

Figure 11-1. Program cex9a: Using Date/Time Functions (5 of 7)

Programming with ALLBASE/SQL Functions 11-17



switch (sqlca.sqlcode){

case OK: break;

default: SQLStatusCheck();

RollBackWork();

OrdersOK = FALSE;

DoneConvert = TRUE;

} /* switch */

} /* End of Function InsertNew */

/*************************************************************************/

/*Function to convert OrderDate from CHAR to DATE data type and transfer */

/*data to an array in preparation for BULK INSERT into a new table. */

/*************************************************************************/

int TransferData()

{
int i,j;

NumberOfRows = counter1;

for (i = 0; i <= NumberOfRows; i++){

NewOrders[i].NewOrderNumber = Orders[i].OrderNumber;

NewOrders[i].NewVendorNumber = Orders[i].VendorNumber;

}

/* Convert Date */

for (i = 0; i <= NumberOfRows; i++){

for (j = 0; j < 4; j++){

NewOrders[i].NewOrderDate[j] = Orders[i].OrderDate[j];

}

NewOrders[i].NewOrderDate[4] = '-';

for (j = 5; j < 7; j++)

NewOrders[i].NewOrderDate[j] = Orders[i].OrderDate[j-1];

NewOrders[i].NewOrderDate[7] = '-';

for (j = 8; j < 10; j++)

NewOrders[i].NewOrderDate[j] = Orders[i].OrderDate[j-2];

}

} /* End of Function TransferData */

Figure 11-1. Program cex9a: Using Date/Time Functions (6 of 7)

11-18 Programming with ALLBASE/SQL Functions



/**************************************************************************/

/*Function to BULK FETCH Orders table data 25 rows at a time into an array*/

/**************************************************************************/

int FetchOld()

{

NumberOfRows = 25;

StartIndex = 0;

printf("BULK FETCH PurchDB.Orders\n");

EXEC SQL BULK FETCH OrdersCursor

INTO :Orders, :StartIndex, :NumberOfRows;

counter1 = sqlca.sqlerrd[2]; /* Set counter1 to number of rows fetched.*/

switch (sqlca.sqlcode){
case OK: CommitWork(); /* SAVE THE CURSOR POSITION */

break; /* Used in conjunction with */

/* cursor stability. */

case NotFound: CommitWork();

printf("\nThere are no Orders Table rows to FETCH.\n");

DoneConvert = TRUE;

break;

default: SQLStatusCheck();

RollBackWork();

OrdersOK = FALSE;

DoneConvert = TRUE;

} /* switch */

if (! DoneConvert)

TransferData();

if (! DoneConvert)

InsertNew();

} /* End of Function FetchOld */

Figure 11-1. Program cex9a: Using Date/Time Functions (7 of 7)

Programming with ALLBASE/SQL Functions 11-19



Programming with TID Data Access

Each row (tuple) in an ALLBASE/SQL table is stored at a database address on disk. This
unique address is called the tuple identi�er or TID. When using a SELECT statement, you
can obtain the TID of any row. In turn, you can use this TID to specify the target row for a
SELECT, UPDATE, or DELETE statement. TID functionality provides the fastest possible
data access to a single row at a time (TID access) in conjunction with maximum coding

exibility. The following options are available:

Rapid read and write access to a speci�c row without the use of a cursor (less overhead).
Rapid update and delete capability based on TIDs returned by a nested query, a union
query, a join query, or a query specifying sorted data.

Other ALLBASE/SQL functionality provides a method of processing a multiple row query
result sequentially, one row at a time. This involves the use of a cursor with the UPDATE
WHERE CURRENT, DELETE WHERE CURRENT, and REFETCH commands which
internally utilize TID access. (See the ALLBASE/SQL Reference Manual for more details.)

The nature of your applications will determine how valuable TID functionality can be to you.
It could be most useful for applications designed for interactive users and applications that
must update a set of related rows atomically.

A TID function and host variable data type are provided. The TID function is used in the
select list and/or the WHERE clause of a SELECT statement and in the WHERE clause
of an UPDATE or DELETE statement. The new host variable data type is used in an
application program to hold data input to and output from the TID function.

Understanding TID Function Input and Output

The next sections describe how TID output is accessed via a select list and how you provide
TID input via a WHERE clause. Topics discussed are as follows:

Using the TID Function in a Select List.
Using the TID Function in a WHERE Clause.
Declaring TID Host Variables.
Understanding the SQLTID Data Format.

Using the TID Function in a Select List

When using the TID function in a select list, specify it as you would a column name. In an
application, you could use a statement like the following:

SELECT TID(), VendorNumber, VendorName, PhoneNumber

INTO :TidHostVar, :VendorNumber,

:VendorName, :PhoneNumber;

FROM Purchdb.Vendors

WHERE VendorName = :VendorName

The resulting TID and column data is placed in the host variable array, VendorsArray.

The next example illustrates how to obtain TID values for qualifying rows of a two table join.
Correlation names are used.

11-20 Programming with ALLBASE/SQL Functions



SELECT TID(sp), TID(o)

FROM PurchDB.SupplyPrice sp,

PurchDB.Orders o
WHERE sp.VendorNumber = :VendorNumber

AND o.VendorNumber = :VendorNumber

Using the TID Function in a WHERE Clause

When using the TID function in a WHERE clause, you provide an input parameter. For
application programs, this parameter can be speci�ed as a host variable, or a constant. The
input parameter is a constant. For example:

DELETE FROM PurchDB.Parts WHERE TID() = 3:3:30;

In an application, you could use a statement like the following to verify the data integrity of a
previously accessed row:

SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber, :PartName, :SalesPrice

FROM purchdb.Parts

WHERE TID() = :PartsTID

You might use the following statement in an application to update a row:

UPDATE PurchDB.Parts

SET PartNumber = :PartNumber,

PartName = :PartName,

SalesPrice = :SalesPrice

WHERE TID() = :PartsTID

Declaring TID Host Variables

Host variables for TID function input and output must be declared in your application as
SQLTID host variables. You would declare an SQLTID host variable as follows:

sqltid tidvarname;

Understanding the SQLTID Data Format

The data in SQLTID host variables has its own unique format which is not compatible with
any other ALLBASE/SQL data type. It is not necessary to know the internal format of
SQLTID data to use the TID function. The information in this section is provided in case you
require the TID value to be broken into its components.

For instance, you might want to know the page numbers of all TID's in a table in order to
analyze data distribution. To do this, you must parse the SQLTID host variable.

ALLBASE/SQL does allow you to unload SQLTID data. However, you cannot use the LOAD
command to load TID data back into a table. The TID is a unique identi�er generated
internally by ALLBASE/SQL, and cannot be assigned by users.

Programming with ALLBASE/SQL Functions 11-21



An SQLTID host variable consists of eight bytes of binary data and has the following format:

Table 11-4. SQLTID Data Internal Format

Content Byte Range

Version Number 1 through 2

File Number 3 through 4

Page Number 5 through 7

Slot Number 8

The SQLTID version number is an optional input parameter. If not speci�ed, the version
number defaults to 0. If you do specify the version, it must always be 0. If a version other
than 0 is speci�ed, no rows will qualify for the operation.

TID function application output always contains a version number of 0.

Transaction Management with TID Access

TID data access is fast, and it must be used with care. A great deal of 
exibility of use is
possible, and exactly how it should be used depends on your application programming needs.

The next sections look at performance, concurrency and data integrity issues involved in
designing database transactions that use TID access. Although a possible usage scenario is
given, you must decide how to combine the elements of transaction management to best suit
your purposes. The following concepts are highlighted:

Comparing TID Access to Other Types of Data Access.
Insuring that the Optimizer Chooses TID Access.
Verifying Data that is Accessed by TID.
Stable versus Volatile Data.
Using Isolation Levels with the TID Function.
Considering Interactive User Applications.
Coding Strategies.

TID access requires an initial SELECT, BULK SELECT, FETCH or BULK FETCH to
obtain TID values. You can then SELECT, UPDATE or DELETE data by TID.

Comparing TID Access to Other Types of Data Access

When using TID functionality, data access speed is always improved compared to the speed of
other ALLBASE/SQL access methods, for the following reasons:

Index access must lock more pages (i.e. index pages).
Relation access locks more pages to �nd the TID of any qualifying row.
Hash access employs more search overhead.

Note that use of the TID function in a WHERE clause does not guarantee that TID access
will be chosen by the optimizer. For example, the following statement would utilize TID
access:

11-22 Programming with ALLBASE/SQL Functions



DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID AND PartName = 'Winchester Drive'

However, in the next statement TID access would not be used:

DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID1 OR TID() = :PartsTID2

See the \Expressions" chapter of the ALLBASE/SQL Reference Manual for an explanation of
the above and additional optimization criteria.

Verifying Data that is Accessed by TID

It is important to note that a TID in ALLBASE/SQL is unique and is valid until its related
data is deleted. You must take precautions to assure that the data you are selecting or
changing exists when your statement executes. (Note that a TID can be reassigned after its
data has been deleted.)

You can rely on the existence of a given TID, if you know its data won't be deleted. That
is, you know the nature of the data is non-volatile. In this case, you can select the TID and
update by TID with the assurance that data integrity will be maintained. An example might
be a table that has been created as private. Another example might be a table that you know
is currently being accessed only by your application. (You have begun the transaction with
the RR isolation level, or you have used the LOCK TABLE command.)

By contrast, you may be dealing with data that changes frequently. In cases where you are
using the CS, RC, or RU isolation levels, you must verify that your data has not changed
between the time you select it and the time you update or delete it. A method is to end the
transaction in which you selected the data, and begin an RR transaction in which you use a
SELECT statement with the TID function in the WHERE clause. See the following section
titled \Coding Strategies" for an example.

When you attempt to access a row for update or delete, status checking procedure is the same
as for a statement that does not contain the TID function. An application must check the
sqlcode �eld of the sqlca for a value of 100. ISQL displays, \Number of rows selected is 0"
for a SELECT statement and \Number of rows processed is 0" for an UPDATE or DELETE
statement.

Status checking is discussed in detail in the ALLBASE/SQL application programming guides.
Refer to the guide for the language you are using.

Considering Interactive User Applications

Some transaction management basics that apply to TID functionality when used in interactive
applications are listed below:

Be sure to avoid holding locks against the database within a transaction driven by
interactive user input. This is sometimes termed \holding locks around terminal reads." It
means that the speed at which the user enters required data determines the execution time
of your transaction and thus the time span of transaction locks.
Does your transaction use the RR isolation level? If so, there is no need to verify your data
prior to updating or deleting within the same transaction.
Does your transaction use the CS, RC, or RU isolation level? If so, in order to maintain
data integrity, you must verify that the data has not changed before you attempt to

Programming with ALLBASE/SQL Functions 11-23



update or delete it. By verifying the data in this way, you insure that it still exists and can
determine whether or not it has changed from the time it was last presented to the user.

Coding Strategies

Suppose you are writing an application that will be executed by many simultaneous users in
an online transaction processing environment. You want each user to be able to locate and
update just a few rows in a table that is frequently accessed by many users.

The following scenario illustrates the use of two transactions with di�erent isolation levels.
Figure 11-2 uses the RC isolation level with a BULK SELECT statement to obtain data and
the RR isolation level with a SELECT statement based on TID access to verify the data
before it is updated.

De�ne two arrays, one (OrdersArray) to hold the qualifying rows of the Orders
table and another (NewOrdersArray) to hold the rows that the user wants to change.

Be sure to de�ne an element in each array to hold the TID value.

Begin the transaction with RC isolation level. This ensures maximum

concurrency for committed data. Locks are released immediately following

data access.

BEGIN WORK RC

BULK SELECT TID(), OrderNumber, VendorNumber, OrderDate

INTO :OrdersArray, :StartIndex, :NumberOfRows;

FROM PurchDB.Orders

WHERE OrderNumber BETWEEN 30510 AND 30520

COMMIT WORK

Once all qualifying rows have been loaded into OrdersArray, end the

transaction. Then loop through the array displaying the rows and accepting any

user entered changes in NewOrdersArray. Include the appropriate TID

values with each NewOrdersArray entry.

Figure 11-2. Using RC and RR Transactions with BULK SELECT, SELECT, and UPDATE

11-24 Programming with ALLBASE/SQL Functions



When all user changes have been entered, use a loop to compare the previously

fetched rows (in OrdersArray) with the same rows as they now exist in the

database.

Begin your transaction with the RR isolation level. No other transaction can

access the locked data until this transaction ends, providing maximum data

integrity.

BEGIN WORK RR

For each entry in NewOrdersArray, do the following:

SELECT TID(), *

INTO :TIDvalue, :OrderNumber, :VendorNumber, :OrderDate

FROM PurchDB.Orders

WHERE TID() = :TIDHostVariable

Verify the selected data against the corresponding data in OrdersArray.

If the row is unchanged, update it using TID access.

UPDATE PurchDB.Orders

SET OrderNumber = :NewOrderNumber :NewOrderNumberInd,

VendorNumber = :NewVendorNumber :NewVendorNumberInd,

OrderDate = :NewOrderDate :NewOrderDateInd

WHERE TID() = :TIDHostVariable

If the row has changed or has been deleted, inform the user and o�er

appropriate options.

COMMIT WORK

Figure 11-2. Using RC and RR Transactions with BULK SELECT, SELECT, and UPDATE (2 of 2)

Reducing Commit Overhead for Multiple Updates with TID Access

Figure 11-3 shows how to reduce COMMIT overhead when performing multiple updates
following a BULK FETCH. Two loops are used, each with its own cursor and own set of locks.

In the outer loop, a BULK FETCH is performed with a cursor to load an array. The
transaction enveloping the outer loop uses an RC isolation level to allow maximum
concurrency while the user is entering data at the terminal. The locks associated with the
BULK FETCH cursor are released after each fetch.

The inner loop uses another cursor to FETCH a single row of data based on the TID value.
Since an RC isolation is being used, the data must be refetched to prevent other transactions
from modifying it. The data is veri�ed, and an UPDATE is performed.

After the inner loop has �nished updating the rows of data, a COMMIT WORK is issued to
actually commit the updates to the data base and to release the exclusive locks held by the

Programming with ALLBASE/SQL Functions 11-25



updates in the inner loop. This use of a single COMMIT WORK for the multiple updates in
the inner loop reduces overhead.

11-26 Programming with ALLBASE/SQL Functions



De�ne two arrays, one (PartsArray) to hold the qualifying rows of the Parts

table and another (NewPartsArray) to hold the rows that the user wants to

change. Be sure to de�ne an element in each array to hold the TID value.

Declare the cursor (BulkCursor) used by the BULK FETCH � 4 � that

loads the PartsArray.

DECLARE BulkCursor CURSOR FOR

SELECT TID(), PartNumber, PartName, SalesPrice

FROM PurchDB.Parts

Declare the cursor (TidCursor) used to UPDATE � 11 � an individual row based

on the TID value.

DECLARE TidCursor CURSOR FOR � 1 �
SELECT PartName, SalesPrice

FROM PurchDB.Parts

WHERE TID() = :HostPartTid

FOR UPDATE OF PartName, SalesPrice

Begin the transaction with a RC isolation level. This ensures maximum

concurrency while assuring that only commited data is read.

BEGIN WORK RC � 2 �

OPEN the cursor associated with the BULK FETCH � 4 � . The KEEP CURSOR

parameter maintains the cursor position across transactions until the

CLOSE � 6 � statement. The WITH NOLOCKS parameter releases all locks

associated with the cursor when the COMMIT WORK � 7 � statement is executed.

OPEN BulkCursor KEEP CURSOR WITH NOLOCKS

The following COMMIT WORK � 3 � statement preserves the open cursor

position and automatically starts a new transaction with an RC isolation level.

COMMIT WORK � 3 �
Loop until no more rows are fetched

BULK FETCH BulkCursor INTO :PartsArray � 4 �

Display the rows in PartsArray and move any changes entered by the user

to NewPartsArrray. Include the appropriate TID value with each

NewPartsArray entry.

For each row in the NewPartsArray

VerifyAndUpdate � 8 �
End For

Figure 11-3. Using TID Access to Reduce Commit Overhead

Programming with ALLBASE/SQL Functions 11-27



The following COMMIT WORK � 5 � statement commits the updates � 11 � in

VerifyAndUpdate and releases the locks held.

COMMIT WORK � 5 �

End Loop

CLOSE BulkCursor � 6 �

The �nal COMMIT WORK � 7 � statement ends the transaction started by the

BEGIN WORK RC � 2 � . Any locks still held are released.

COMMIT WORK � 7 �
Begin the VerifyAndUpdate routine. � 8 �

Assign to HostPartTid the TID value in NewPartsArray.

OPEN TidCursor

Using the cursor declared above � 1 � as TidCursor, perform a FETCH � 9 �
and REFETCH � 10 � to verify the data. The REFETCH � 10 � places a lock

on the data page, to prevent another transaction from modifying the data.

The lock is held until all the rows in the NewPartsArray have been updated

and when the COMMIT WORK � 5 � is performed.

FETCH TidCursor INTO :PartName, :SalesPrice � 9 �

REFETCH TidCursor INTO :PartName, :SalesPrice � 10 �

Verify the fetched data against the corresponding row in PartsArray.

If the row is unchanged, update it using the TID cursor.

UPDATE PurchDB.Parts � 11 �
SET PartName = :NewPartName,

SalesPrice = :NewSalesPrice

WHERE CURRENT OF TidCursor

If the row has changed or has been deleted, inform the user and o�er

appropriate options.

CLOSE TidCursor

End the VerifyAndUpdate routine.

Figure 11-3. Using TID Access to Reduce Commit Overhead (2 of 2)

11-28 Programming with ALLBASE/SQL Functions



Index

A

active set
re-access, 6-9

ADD MONTHS function
example with BULK SELECT, 11-11
syntax, 11-11

aggregate function
simple data manipulation, 5-2

ALTER TABLE command
syntax for LONG columns, 10-4

ANSI SQL1 level 2
specifying a default value, 3-17

ANSI SQL86 level 2

oating point data, 3-11

ANSI standards
sqlcode, 4-4

arrays
BULK SELECT, 3-5
character data, 3-8
declarations of, 3-26
in sqlda declaration, 8-15
referencing, 7-2

atomic operation
de�ned, 4-2

authorization
changing, 1-21
dynamic preprocessing, 8-2
granting, 1-18
program development, 1-15
program maintenance, 1-20

automatic rollback, 4-12

B

basic SQL statements, 1-7
BEGIN DECLARE SECTION
declaring host variables, 3-6
delimiting the declare section, 2-16

BEGIN WORK
in transaction management, 5-7

binary data
compatibility, 3-12
host variable de�nition, 3-12
using the LONG phrase with, 3-12

BULK FETCH
basic uses of, 7-9

BULK FETCH command
used in example program, 11-13
with TO INTEGER function, 11-10

BULK INSERT
basic uses of, 7-11

BULK INSERT command
used in example program, 11-13
used with LONG columns, 10-6
using host variables for LONG column I/O

strings, 10-6
with LONG columns:example data �le, 10-9
with LONG columns:example program, 10-7

BULK option
not used for dynamic FETCH, 8-10

bulk processing
INTO clause, 3-5

bulk processing variables, 3-5
BULK SELECT
basic uses, 7-4

[BULK] SELECT command
used with LONG columns, 10-10

BULK SELECT command
used with LONG columns, 10-12
with ADD MONTHS function, 11-11

BULK table processing
BULK FETCH, 7-9
BULK INSERT, 7-11
BULK SELECT, 7-4
commands, 7-4
sample program, 7-14
techniques, 7-1

C

cex10a, 8-23
cex10b, 8-41
cex2, 2-29
source code, 1-27

cex2.c
preprocessor modi�ed source code, 2-29

cex5, 4-18
cex7, 5-19
cex8, 6-27
cex9, 7-21
CHAR data declaration, 3-8
CLOSE
after BULK FETCH, 7-9

Index-1



before ending a transaction, 6-9, 6-10
freeing bu�er space with, 6-9
to re-access the active set, 6-9
with COMMIT WORK, 6-12
with KEEP CURSOR, 6-12

coding considerations
for date/time functions, 11-11
for LONG columns, 10-13, 10-14

column speci�cations for 
oating point data,
3-11

comments in SQL commands, 1-10
COMMIT WORK
and revalidation of sections, 2-26
in transaction management, 5-7
issued by preprocessor, 2-8
with CLOSE, 6-12
with KEEP CURSOR, 6-12

compatibility of variables, 3-20
concurrency, 5-7
CONNECT
in application programs, 1-18
to start a DBE session, 1-15

CONNECT authority
and preprocessing, 1-15

constant
as default data value, 3-18

constraint test matrix for integrity constraints,
9-3

conversion
numeric, 3-25
string data, 3-24

CREATE TABLE command
syntax for LONG columns, 10-4

CURRENT DATE function result
used as default data value, 3-18

CURRENT DATETIME function result
used as default data value, 3-18

current language, 1-23
current row
DELETE WHERE CURRENT, 6-8

CURRENT TIME function result
used as default data value, 3-18

cursor
and BULK FETCH, 7-9
and dynamic queries, 8-17
and sections, 2-24

cursor processing
CLOSE, 6-9
commands, 6-1
DECLARE CURSOR, 6-2
de�nition, 6-1
DELETE WHERE CURRENT, 6-8
FETCH, 6-3
OPEN, 6-3
sample program, 6-27

techniques, 6-1
transaction management, 6-10
UPDATE and FETCH, 6-7
UPDATE WHERE CURRENT, 6-5

D

data bu�er
declaration, 3-26
layout, 8-15
null indicator su�x, 8-15
parsing, 8-19
rows to retrieve, 8-15
varchar pre�x, 8-15

data compatibility
binary, 3-12

oating point, 3-11
for date/time function parameters, 11-2, 11-3
for default data values, 3-19
LONG binary, 3-12
LONG varbinary, 3-12

data consistency, 4-2
in sample database, 4-2

data input using date/time functions, 11-3
data integrity
changes to error checking , 9-1
introduction to, 9-1
number of rows processed , 9-1
row level versus statement level, 9-1
using sqlerrd[2], 9-1

data retrieval using date/time functions, 11-8
data structures
for dynamic query, 8-8

data type
compatibility, 3-20
conversion, 3-24, 3-25
declarations, 3-8
equivalency, 3-20

data types

oating point, 3-11
used with LONG columns, 10-2

date/time ADD MONTHS function
overview, 11-11
where to use, 11-11

date/time data conversion
example program, 11-13

date/time functions
coding considerations, 11-11
data compatibility, 11-2, 11-3
example programs, 11-12
examples using ManufDB database, 11-4,

11-8, 11-11
example using default format speci�cations,

11-5
how used, 11-2
introduction to, 11-1

Index-2



leading zeros required for input functions,
11-11

parameters for, 11-2
unspeci�ed format elements default �lled,

11-11
used to add a number of months, 11-11
used when inputting data, 11-3
used when retrieving data, 11-8
using host variables for format speci�cations,

11-2
using host variables for input and output data,

11-2
using host variables with, 11-2
where to use ADD MONTHS, 11-11
where to use input functions, 11-3
where to use output functions, 11-8
where to use TO CHAR, 11-8
where to use TO DATE, 11-3
where to use TO DATETIME, 11-3
where to use TO INTEGER, 11-8
where to use TO INTERVAL, 11-3
where to use TO TIME, 11-3
where used, 11-2

date/time input functions
examples, 11-4
not intended for use in select list, 11-3
overview, 11-3
where to use, 11-3

date/time output functions
examples, 11-8, 11-10
overview, 11-8
where to use, 11-8, 11-11

DBA authority
and preprocessing, 1-15
and START DBE, 1-15

DBAAuthority, 2-4
DCL de�ned, 1-2
DDL de�ned, 1-2
DDL operations
used with integrity constraints, 9-2
used with LONG columns, 10-1

deadlock
and error recovery, 4-2
status checking, 4-30

DECIMAL data declaration, 3-17
decimal type compatibility, 3-25
declaration of data
CHAR, 3-8
DATE, 3-17
DATETIME, 3-17
DECIMAL, 3-17
FLOAT, 3-11
INTEGER, 3-11
INTERVAL, 3-17
SMALLINT, 3-11

TIME, 3-17
VARCHAR, 3-8

declaration part
host variable, 3-6

DECLARE CURSOR
FOR UPDATE OF, 6-2
preprocessor directive, 6-3
SELECT, 6-2
syntax, 6-2
used with BULK FETCH, 7-9

declare section
BEGIN and END DECLARE SECTION

commands, 2-16
de�ned, 3-6

default data values
constant, 3-18
data compatibility, 3-19
for columns allowing nulls, 3-17
in addition to null, 3-17
not used with LONG BINARY data, 3-19
not used with LONG columns, 3-19
not used with LONG VARBINARY data,

3-19
NULL, 3-18
result of CURRENT DATE function, 3-18
result of CURRENT DATETIME function,

3-18
result of CURRENT TIME function, 3-18
USER, 3-18

default format speci�cation example
date/time functions, 11-5

de�ning integrity constraints, 9-2
de�ning LONG columns
in a table, 10-4
input and output speci�cation, 10-5
with the LONG column I/O string, 10-5

de�nitions
input device speci�cation, 10-5
LONG column I/O string, 10-5
output device speci�cation, 10-5
row level integrity, 9-1

DELETE, 5-7
DELETE command
used with LONG columns, 10-13
with TO DATETIME function, 11-7

DELETE WHERE CURRENT
current row, 6-8
restrictions, 6-8
syntax, 6-8

DELETE WHERE CURRENT command
used with LONG columns, 10-13

delimiting SQL commands, 1-9
DESCRIBE
dynamic non-query, 8-21
dynamic query, 8-21

Index-3



designing an application using statement level
integrity, 9-3

detecting end of scan, 4-35
DML de�ned, 1-2
DML operations
used with date/time functions, 11-2
used with integrity constraints, 9-2
used with LONG columns, 10-1

DROP MODULE, 1-20, 1-21, 2-2
DROP option
full preprocessing mode, 2-1

dynamically deleting data
DELETE WHERE CURRENT command

cannot be prepared, 8-10
error checking strategy, 8-10

dynamically updating data
error checking strategy, 8-10
UPDATE WHERE CURRENT command

cannot be prepared, 8-10
using SELECT command with FOR UPDATE

OF clause, 8-10
dynamic command, 8-1
passing to ALLBASE/SQL, 8-5
query with known query result format, 8-41
query with unknown query result format, 8-23

dynamic commands
and authorization, 1-24

dynamic FETCH
BULK option not used, 8-10

dynamic FETCH command
used with LONG columns, 10-12

dynamic operations
dynamic commands, 8-1
handling non-queries, 8-6
queries vs. non-queries, 8-21
sample programs, 8-23, 8-41
techniques, 8-1

dynamic preprocessing, 8-1
authorization for, 8-2

dynamic query data structures, 8-8

E

END DECLARE SECTION
declaring host variables, 3-6
delimiting the declare section, 2-16

error checking
changes for this release, 9-1
using sqlerrd[2], 9-1
when dynamically deleting data, 8-10
when dynamically updating data, 8-10
with row level integrity, 9-1
with statement level integrity, 9-1

example
BULK FETCH command with TO INTEGER

function, 11-10

BULK SELECT command with
ADD MONTHS function, 11-11

DELETE command with TO DATETIME
function, 11-7

INSERT command with TO DATE function
, 11-4

INSERT command with TO DATETIME
function, 11-4

INSERT command with TO INTERVAL
function, 11-4

INSERT command with TO TIME function,
11-4

SELECT command with TO CHAR function,
11-8

SELECT command with TO DATETIME
function, 11-7, 11-8

SELECT command with TO INTERVAL
function, 11-7

UPDATE command with TO DATE function,
11-5

UPDATE command with TO DATETIME
function, 11-5

example application design
using integrity constraints, 9-3

example data �le
BULK INSERT command with LONG

columns, 10-9
example program
BULK INSERT command with LONG

columns, 10-7
date/time data conversion, 11-13
LONG column descriptor declaration, 10-11

examples of date/time input functions, 11-4
examples of date/time output functions, 11-8,

11-10
EXECUTE
non-dynamic queries, 8-8

executing programs, 1-19
explicit status checking
de�ned, 4-1
introduction, 4-13
uses of, 4-24

externals include �le
sample, 2-38

F

FETCH, 6-3
current row, 6-3

FETCH command
used dynamically with LONG columns, 10-12
used with LONG columns, 10-10

�le IO
KEEP CURSOR, 6-16

FLOAT data declaration, 3-11

oating point data

Index-4



4-byte, 3-11
8-byte, 3-11
column speci�cations, 3-11
compatibility, 3-11
REAL keyword, 3-11

format array
declaration, 3-26
�elds, 8-13
manditory declaration for dynamic query,

8-17
FOR UPDATE OF
UPDATE WHERE CURRENT, 6-2, 6-5

full preprocessing mode
preprocessor command, 2-1

G

general rules
skeleton program, 1-8

GOTO vs. GO TO, 4-14
GRANT
for required authorities, 1-18

H

heap space input and output, 10-6
host variable
bulk processing, 3-5
declaration, 3-6
declaration part, 3-6
declaration summary, 3-11
declaring for ALLBASE/SQL messages, 3-29
declaring for DBEnvironment names, 3-30
declaring for savepoints, 3-28
indicator, 3-3
initialization, 3-3
input, 3-3
names, 3-2
output, 3-3
purpose, 3-1
scope, 3-6
uses, 3-1

host variables
used for binary data, 3-12
used for LONG column I/O strings, 10-6
used with date/time functions, 11-2

host variable scope
at preprocessing time, 3-6
at run time, 3-6

I

implicit status checking
de�ned, 4-1
usage, 4-13

include �les
as input �les, 2-19

contents, 2-35
created by preprocessor, 1-11
samples, 2-35
user speci�ed, 2-15

indicator variables, 3-3, 3-27
location of, 3-3
null, 3-3
null values, 6-3
truncation, 3-3

INFO command
and null indicator variables, 3-20
and null values, 3-20
and type compatibility, 3-20

input device speci�cation
de�nition, 10-5

INSERT
and simple data manipulation, 5-5

INSERT command
used with LONG columns, 10-6
using host variables for LONG column I/O

strings, 10-6
with TO DATE function, 11-4
with TO DATETIME function, 11-4
with TO INTERVAL function, 11-4
with TO TIME function, 11-4

INSTALL, 1-20, 2-14
installable module �le, 2-27
INTEGER data declaration, 3-11
integrity constraint de�nition, 9-2
integrity constraints
and statement level integrity, 9-3
commands used with, 9-2
constraint test matrix, 9-3
designing an application, 9-3
example application using RecDB database,

9-3
in RecDB database, 9-3
introduction to, 9-1
restrictions, 9-2
unique and referential, 9-2

J

job mode, 2-14

K

KEEP CURSOR
�le IO, 6-16
terminal IO, 6-16

KEEP CURSOR WITH NOLOCKS command
use with OPEN command , 6-3

Index-5



L

language
current language, 1-23
native language support, 1-23

logging, 2-3
LONG binary data
compatibility, 3-12
de�nition, 3-12
how stored, 3-12

LONG binary versus LONG varbinary data
usage, 3-12

LONG column de�nition
in a table, 10-4
input and output speci�cation , 10-5
with the LONG column I/O string, 10-5

LONG column descriptor
contents of, 10-10
example declaration, 10-11
general concept, 10-2
how used, 10-10
introduction to, 10-5

LONG column I/O string
general concept, 10-2
heap space input and output, 10-6
how used , 10-5
input device speci�cation, 10-5
output device speci�cation, 10-5
used with [BULK] INSERT command, 10-6
used with host variable, 10-6
used with INSERT command, 10-6

LONG columns
changing data, 10-12
coding considerations, 10-13
commands used with, 10-1
considering multiple users, 10-14
data types used with, 10-2
deciding on space allocation, 10-14
deleting data, 10-13
�le usage from an application, 10-5
general concepts, 10-2
input options, 10-5
introduction to, 10-1
maximum per table de�nition, 10-4
output options, 10-5
performance, 10-4
putting data in, 10-6
restrictions, 10-4
retrieving data from, 10-10
size maximum, 10-2
specifying a DBEFileSet, 10-4
storage, 10-4
storing and retrieving data, 10-2
used with [BULK] INSERT command, 10-6
used with [BULK] SELECT command, 10-10

used with DELETE [WHERE CURRENT]
command, 10-13

used with dynamic FETCH command, 10-12
used with FETCH or REFETCH commands,

10-10
used with UPDATE [WHERE CURRENT]

command, 10-12
using �le naming conventions, 10-13
using �le versus heap space, 10-13
using the LONG column descriptor, 10-10

LONG phrase
used with binary data, 3-12
used with varbinary data, 3-12

LONG varbinary data
compatibility, 3-12
de�nition, 3-12
how stored, 3-12

M

maintaining ALLBASE/SQL programs, 1-19
ManufDB database
examples using date/time functions, 11-4,

11-8, 11-11
message catalog, 2-19
default, 1-15, 2-16
native language, 1-15, 2-16
preprocessor input, 2-16

message catalog number
related to sqlcode, 4-6

message �le, 2-19
messages from SQLEXPLAIN
when produced, 4-7

modi�ed source �le
contents, 2-18
created by preprocessor, 1-11
creation, 2-18
inserted constructs, 2-16

module
de�nition, 1-11
installable, 2-27
installation, 2-14
name, 2-2, 2-8, 2-16, 2-23
owner, 2-2, 2-24
OWNER authority for, 1-15
ownership, 1-18
storage, 2-24, 8-2
updating, 1-20
validation, 1-13

MODULE option
full preprocessing mode, 2-1

multiple rows
not allowed in simple data manipulation, 5-2

multiple rows qualify
runtime error, 5-2

multiple users of LONG columns, 10-14

Index-6



multiple warnings
SQLEXPLAIN, 4-10

N

naming conventions for LONG column �les,
10-13

NATIVE-3000
de�ned, 1-23

native language
current language, 1-23
defaults, 1-23
message catalog, 1-15

native language data
verifying column de�nition, 3-24

native language support
overview, 1-23

non-dynamic commands, 8-1
NULL
as default data value, 3-18

null indicator su�x
data bu�er, 8-15

null indicator variable
in dynamic command, 8-15

null indicator variables
and the INFO command, 3-20

NULL result of a dynamic fetch of a LONG
column, 10-12

null value
in key column of unique index, 5-3

null values, 8-16
and the INFO command, 3-20
and unnamed columns in an INSERT, 5-5
in a structure declaration, 8-16
indicator variables mandatory, 6-3
properties of, 3-4
runtime errors, 3-4
using indicator variables with, 5-6
with FETCH, 3-4, 6-3
with SELECT, 3-4

number of rows processed
data integrity, 9-1

number of rows variable, 7-2

O

OLTP de�ned, 1-2
OPEN
before BULK FETCH, 7-9
cursor processing, 6-3

OPEN command
use with KEEP CURSOR WITH NOLOCKS

command, 6-3
optimization, 1-12
output device speci�cation
de�nition, 10-5

over
ow

of numeric values, 3-25
OWNER authority
and program development, 1-15
granting, 1-18

OWNER option
full preprocessing mode, 2-1

P

performance
integrity constraints, 9-1
LONG columns, 10-4

permanent section
and DBEnvironment, 8-2

PREPARE
non-dynamic queries, 8-8

preprocessor
authorization, 1-15
DBE sessions, 2-8
e�ect of mode on modi�ed source, 2-18
e�ect on source code, 2-16
errors, 2-27
events, 1-11
identifying input, 2-15
include �les, 2-35
invocation, 2-1
job mode, 2-14
logging, 2-3
messages, 2-19
modes, 2-1
modes and invocation, 2-6
options, 2-1, 2-6
parsing, 2-16
UDC's, 2-10

preprocessor banner
900 series, 2-20

preprocessor directive
DECLARE CURSOR, 6-3

program
execution, 1-19, 2-14
maintenance, 1-19
methods of linking, 1-13, 1-15
name, 2-16
obsolescence, 1-21
steps in compiling, 1-13, 1-15
steps in creating, 1-5
user authorization, 1-18

program example
date/time data conversion, 11-13

program structure
example, 1-8

Index-7



Q

query
dynamic data structures, 8-8

R

REAL keyword

oating point data, 3-11

RecDB database application design
example maintenance menu, 9-4
example of deleting data, 9-7
example of error checking, 9-4
example of inserting data, 9-5
example of updating data, 9-6
integrity constraints de�ned, 9-3

REFETCH command
used with LONG columns, 10-10

restrictions
integrity constraints, 9-2
LONG columns, 10-4

retrieving LONG column data
with [BULK] SELECT, FETCH, or REFETCH

commands, 10-10
REVOKE, 1-21
REVOKE option
full preprocessing mode, 2-1

robust program
de�ned, 4-2

ROLLBACK WORK
to ensure data consistency, 5-10

row level integrity
de�nition, 9-1

rows to retrieve
data bu�er, 8-15

RUN authority
and program development, 1-15

runtime authorization, 1-19
runtime errors, 4-2
bulk processing, 3-5
multiple rows qualify, 5-2
null values, 3-4

runtime events, 1-15
runtime status checking
possible errors, 4-1
status codes, 4-1

runtime warnings, 4-2

S

sample database
authorities, 2-4
data consistency, 4-2
views, 2-26

sample program
bulk processing, 7-21
cex10a, 8-30

cex10b, 8-41
cex2, 1-27
cex5, 4-18
cex7, 5-19
cex8, 6-32
cex9, 7-21
cursor processing, 6-27
dynamic queries, known format, 8-41
dynamic queries, unknown format, 8-23
modi�ed source �le, 2-29
simple data manipulation, 5-11
status checking, 4-18

section
and system catalog, 2-23
creation, 1-12
de�nition, 1-11, 2-23
dynamic vs. non-dynamic, 8-2
permanently stored, 8-2
purpose, 1-12
temorarily stored, 8-2
temporary, 8-8
types, 2-23
validity, 1-12, 2-23

SELECT
and simple data manipulation, 5-1
DECLARE CURSOR, 6-2
use of COMMIT WORK with, 2-26

SELECT command
used with LONG columns, 10-10
with TO CHAR function, 11-8
with TO DATETIME function, 11-7, 11-8
with TO INTERVAL function, 11-7

SELECT with CURSOR
input host variables only, 6-2

shared memory problem
status checking, 4-30

simple data manipulation
commands, 5-1
DELETE, 5-7
INSERT, 5-5
multiple rows not allowed, 5-2
sample program, 5-11
SELECT, 5-1
techniques, 5-1
transaction management, 5-7
UPDATE, 5-6

size maximum
LONG columns, 10-2

skeleton program, 1-8
SMALLINT data declaration, 3-11
source �le, 2-16
source �le;, 2-16
space allocation for LONG column data, 10-14
SQL
basic statements, 1-7

Index-8



sqlca
elements of, 4-4
purpose, 4-4

sqlca.sqlcode
introduction, 4-4
usage, 4-6

sqlca.sqlerrd[2]
introduction, 4-4
usage, 4-8

sqlca.sqlwarn[0]
introduction, 4-4
usage, 4-9

sqlca.sqlwarn[1]
introduction, 4-4
usage, 4-10

sqlca.sqlwarn[2]
introduction, 4-4
usage, 4-11

sqlca.sqlwarn[3]
introduction, 4-4
usage, 4-11

sqlca.sqlwarn[6]
introduction, 4-4
usage, 4-12

sqlcode
and sqlwarn[6], 4-6
a negative number, 4-6
ANSI standards, 4-4
deadlock detected, 4-30
detecting end of scan, 4-35
multiple messages, 4-6
multiple sqlcodes, 4-6
of 0, 4-6
of 100, 4-6, 4-35
of -10002, 4-36
of -14024, 4-12, 4-30
of -4008, 4-12
related to message catalog number, 4-6
SQLEXPLAIN, 4-7
usage, 4-6
used with sqlerrd[2], 7-6

sqlcode of 100, 7-9
SQL commands
comments within, 1-10
delimiters for, 1-8
location in the code, 1-8
syntax, 1-10

sqlda
declaring, 3-26
�elds, 8-11
when �elds are set, 8-11

sqlerrd[2]
as counter in display routine, 7-6
error checking, 9-1
usage, 4-8

used with sqlcode, 7-6
uses for, 4-30

SQLEXPLAIN
and message catalogs, 1-15
introduction, 4-1
multiple messages, 4-1
multiple warnings, 4-10
no message for sqlcode=100, 4-7
simultaneous warning and error, 4-9
sqlcode, 4-7
sqlwarn[0], 4-9
using, 4-7
when messages are available, 4-13

sqlmsg, 2-19
sqlwarn[0]
SQLEXPLAIN, 4-9
usage, 4-9

sqlwarn[1]
string truncation, 3-24
usage, 4-10

sqlwarn[2]
usage, 4-11

sqlwarn[3]
usage, 4-11

sqlwarn[6], 4-12
transaction rollback, 4-12
usage, 4-12

start a DBE session
CONNECT, 1-15
START DBE, 1-15

START DBE
and DBA authority, 1-15
to start a DBE session, 1-15

StartIndex variable
de�ned, 7-2

statement level integrity
and integrity constraints, 9-3

status checking
deadlock, 4-30
elements available, 4-4
explicit, 4-24
explicit de�ned, 4-1
implicit, 4-13
implicit de�ned, 4-1
information available, 4-1
introduction to explicit, 4-13
kinds of, 4-13
procedures, 4-17, 4-24
purposes of, 4-2
runtime techniques, 4-2
shared memory problem, 4-30

status codes
runtime status checking, 4-1

storage
LONG columns, 10-4

Index-9



syntax checking mode, 2-6
syntax for date/time functions
ADD MONTHS, 11-11
input functions, 11-3
output functions, 11-8
TO CHAR, 11-8
TO DATE, 11-3
TO DATETIME, 11-3
TO INTEGER, 11-8
TO INTERVAL, 11-3
TO TIME, 11-3

syntax for LONG columns
ALTER TABLE command, 10-4
CREATE TABLE command, 10-4
select list, 10-10

syntax within embedded SQL, 1-10
system catalog, 1-12

T

temporary section, 8-8
terminal IO
KEEP CURSOR, 6-16

TO CHAR function
example with SELECT command, 11-8
syntax, 11-8

TO DATE function
example with INSERT command, 11-4
example with UPDATE command, 11-5
syntax, 11-3

TO DATETIME function
example with DELETE command, 11-7
example with INSERT command, 11-4
example with SELECT command, 11-7, 11-8
example with UPDATE command, 11-5
syntax, 11-3

TO INTEGER function
example with BULK FETCH command, 11-10
syntax, 11-8

TO INTERVAL function
example with INSERT command, 11-4
example with SELECT command, 11-7
syntax, 11-3

TO TIME function
example with INSERT command, 11-4
syntax, 11-3

transaction management, 4-12
cursor processing, 6-10
simple data manipulation, 5-7

truncation
detecting in strings, 3-4
in string operations, 3-24
of numeric values, 3-25
of UPDATE or DELETE strings, 3-24

type compatibility, 3-20
and the INFO command, 3-20

decimal, 3-25
type conversion, 3-20
type include �le
sample, 2-35

type precedence
in numeric conversion, 3-25

U

UDC's
PC, 2-10
PPC, 2-10
preprocess, 2-10
preprocess, compile, link, 2-10

unique index
WHERE clause, 5-2

UPDATE
and simple data manipulation, 5-6

UPDATE and FETCH
cursor processing, 6-7

UPDATE command
used with LONG columns, 10-12
used with TO DATE function, 11-5
used with TO DATETIME function, 11-5

UPDATE STATISTICS
invalidating sections, 2-26

UPDATE WHERE CURRENT
FOR UPDATE OF, 6-2, 6-5
restrictions, 6-5
syntax, 6-5

UPDATE WHERE CURRENT command
used with LONG columns, 10-12

updating application programs, 1-20
USER
as default data value, 3-18

using default data values
introduction to, 3-17

using indicator variables
assigning null values, 5-6

V

validation, 1-12
module, 1-13

varbinary data
using the LONG phrase with, 3-12

VARCHAR
data declaration, 3-8
data storage, 3-24
dynamic command declaration, 8-16

varchar pre�x in the data bu�er, 8-15
variable include �le
sample, 2-38

views
and sections, 2-24

Index-10



W

warning message
and sqlcode, 4-10
and sqlwarn[0], 4-10

warnings

runtime handling, 4-2
WHENEVER
components of, 4-13
duration of command, 4-7
for di�erent conditions, 4-14

transaction roll back, 4-14

Index-11




	Contents
	Getting Started with ALLBASE/SQL Programming in C
	Understanding ALLBASE/SQL Operations
	Using DML to Manipulate Data
	Using DDL to Define Database Objects
	Using DCL to Manage Security
	Handling Transactions
	Handling Errors
	Dynamic and Non-Dynamic Operations

	Understanding the Program Life Cycle
	Developing ALLBASE/SQL Applications
	General Rules for Embedding SQL
	Preprocessing the Source File
	Compiling and Linking the Program
	Running the Program
	Authorizations
	Debugging and Testing

	Moving into the Production Phase
	Granting Module Owner Authorizations
	Granting Program User Authorization

	Maintaining ALLBASE/SQL Applications
	Managing Source Code
	Changing Program-Related Authorization
	Dropping Obsolete Modules

	Programming Under the MPE XL Operating System
	Native Language Support

	Looking at an Embedded SQL Source Program

	Using the Preprocessor
	Invoking the C Preprocessor
	DBEnvironment Access
	Using the Preprocessor in Job Mode
	Accessing Multiple DBEnvironments

	Identifying Preprocessor Input
	ALLBASE/SQL Message Catalog

	Identifying Preprocessor Output
	Stored Module Containing Sections

	Handling Preprocessor Errors
	Sample Modified Source File
	Sample Preprocessor Generated Include Files

	Host Variables
	Using Host Variables
	Host Variable Names
	Input and Output Host Variables
	Indicator Variables
	Bulk Processing Variables

	Declaring Host Variables
	Declaring Variables for Data Types
	Using Default Data Values
	Declaring Variables for Compatibility
	Declaring Variables for Program Elements


	Runtime Status Checking and the sqlca
	Purposes of Status Checking
	Checking the Most Recently Executed Command

	Using the sqlca
	Approaches to Status Checking
	Explicit Status Checking Techniques


	Simple Data Manipulation
	SQL Commands
	INSERT
	UPDATE
	DELETE

	Transaction Management for Simple Operations
	Sample Program Using Simple DML Commands

	Processing with Cursors
	SQL Cursor Commands
	DECLARE CURSOR
	OPEN
	FETCH
	UPDATE WHERE CURRENT
	DELETE WHERE CURRENT
	CLOSE

	Transaction Management for Cursor Operations
	Using KEEP CURSOR
	KEEP CURSOR and BEGIN WORK
	Writing Keep Cursor Applications
	Examples

	Sample Program Using Cursor Operations

	BULK Table Processing
	Variables Used in BULK Processing
	SQL Bulk Commands
	BULK FETCH
	BULK INSERT

	Transaction Management for BULK Operations
	Sample Program Using BULK Processing

	Using Dynamic Operations
	Review of Preprocessing Events
	Differences between Dynamic and Non-Dynamic Preprocessing
	Examples of Non-Dynamic and Dynamic SQL Statements

	Passing Dynamic Commands to ALLBASE/SQL
	Understanding the Types of Dynamic Operations
	Preprocessing of Dynamic Non-Queries
	Using PREPARE and EXECUTE

	Preprocessing of Dynamic Queries
	Dynamically Updating and Deleting Data
	Setting Up the SQLDA
	Setting Up the Format Array
	Setting Up the Data Buffer
	Using the Dynamic Query Data Structures
	Parsing the Data Buffer

	Preprocessing of Commands That May or May Not Be Queries
	Sample Programs Using Dynamic Query Operations
	cex10b: Program Using Dynamic Commands of Known Format


	Programming with Constraints
	Comparing Statement Level and Row Level Integrity
	Using Unique and Referential Integrity Constraints
	Designing an Application Using Statement Level Integrity Checks

	Programming with LONG Columns
	General Concepts
	Restrictions
	Defining LONG Columns with a CREATE TABLE or ALTER TABLE Command
	Defining Input and Output with the LONG Column I/O String
	Putting Data into a LONG Column with a [BULK] INSERT Command
	Retrieving LONG Column Data with a [BULK] SELECT, FETCH, or REFETCH Command
	Changing a LONG Column with an UPDATE [WHERE CURRENT] Command
	Removing LONG Column Data with a DELETE [WHERE CURRENT] Command
	Coding Considerations

	Programming with ALLBASE/SQL Functions
	Where Date/Time Functions Can Be Used
	Defining and Using Host Variables with Date/Time Functions
	Using Date/Time Input Functions
	Using the Date/Time ADD MONTHS Function
	Coding Considerations
	Program Example for Date/Time Data
	Programming with TID Data Access
	Transaction Management with TID Access

	Index

