
900 Series HP 3000 Computer Systems

ALLBASE/SQL FORTRAN

Application Programming Guide

ABCDE

HP Part No. 36216-90030

Printed in U.S.A. 1992

Third Edition

E0692



The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1987, 1988, 1989, 1990, 1991, 1992 by Hewlett-Packard

Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend



Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition October 1988 36216-02A.12.00
Second Edition January 1991 36216-02A.20.00
Third Edition June 1992 36216-02A.E1.00

iii



iv



Preface

ALLBASE/SQL is a relational database management system for use on HP 3000 Series
900 computers. ALLBASE/SQL (Structured Query Language) is the language you use to
de�ne and maintain data in an ALLBASE/SQL DBEnvironment. This manual presents the
techniques of embedding ALLBASE/SQL within FORTRAN language source code.

This manual is intended as a learning tool and a reference guide for FORTRAN programmers.
It presumes the reader has a working knowledge of FORTRAN, the MPE/iX operating
system, and ALLBASE/SQL relational database concepts.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series
of forward-compatible operating systems for the HP 3000 line of computers. In HP
documentation and in talking with HP 3000 users, you will encounter references to MPE XL,
the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written
for MPE XL will run without change under MPE/iX. You can continue to use MPE XL
system documentation, although it may not refer to features added to the operating system to
support POSIX (for example, hierarchical directories).

This manual contains both basic and in-depth information about embedding ALLBASE/SQL.
Code examples are based, for the most part, on the sample database, PartsDBE, which
accompanies ALLBASE/SQL. Refer to Appendix C in the ALLBASE/SQL Reference Manual
for information about the structure of PartsDBE and for listings of the sample database.

Chapter 1, \Getting Started with ALLBASE/SQL Programming in FORTRAN," is an
introduction to ALLBASE/SQL programming which includes information on developing,
using, and maintaining programs on the MPE/iX operating system.
Chapter 2, \Using the ALLBASE/SQL FORTRAN Preprocessor," explains the
ALLBASE/SQL preprocessor and how to invoke it.
Chapter 3, \Embedding SQL Commands," gives rules on where and how to embed SQL
commands.
Chapter 4, \Host Variables," describes how to de�ne and use variables to transfer data
between your FORTRAN program and an ALLBASE/SQL DBEnvironment.
Chapter 5, \Runtime Status Checking and the SQLCA," de�nes ways to monitor and
handle successful and unsuccessful SQL command execution.

Chapters 6 through 12 address the various ways to manipulate data in an ALLBASE/SQL
FORTRAN program.

Chapter 6, \Overview of Data Manipulation," is an overview of data manipulation and the
techniques for executing data manipulation commands.
Chapter 7, \Simple Data Manipulation," explains how to process data one row at a time.
Chapter 8, \Processing with Cursors," explains the use of a cursor to process a multiple row
query result one row at a time.
Chapter 9, \Using Dynamic Operations," covers the use of ALLBASE/SQL commands that
are preprocessed at runtime.
Chapter 10, \Programming with Constraints," describes ALLBASE/SQL data integrity
features and describes how to use them in programs.
Chapter 11, \Programming with LONG Columns," describes how to program with LONG
columns.
Chapter 12, \Programming with ALLBASE/SQL Functions," contains descriptions of SQL,
including date/time functions and the TID function.

Chapters 2, 3, 5, and 7 through 9 contain sample programs for use with the sample database.

v



Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[ ] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vi



Conventions (continued)

[ . . . ] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

vii



Contents

1. Getting Started with ALLBASE/SQL Programming in FORTRAN
ALLBASE/SQL FORTRAN Programs . . . . . . . . . . . . . . . . . 1-2
Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
DBEnvironment Access . . . . . . . . . . . . . . . . . . . . . . . 1-4
Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
File Referencing . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Native Language Support . . . . . . . . . . . . . . . . . . . . . . . 1-6
The ALLBASE/SQL FORTRAN Preprocessor . . . . . . . . . . . . . . 1-7
E�ect of Preprocessing on Source Code . . . . . . . . . . . . . . . . 1-8
E�ect of Preprocessing on DBEnvironments . . . . . . . . . . . . . . 1-10

The Stored Section . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Purpose of Sections . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Section Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

The Compiler and the Linker . . . . . . . . . . . . . . . . . . . . . . 1-11
The Executable Program . . . . . . . . . . . . . . . . . . . . . . . 1-13
Installing the Program Module . . . . . . . . . . . . . . . . . . . . 1-13
Granting Required Owner Authorization . . . . . . . . . . . . . . . . 1-14
Granting Program User Authorization . . . . . . . . . . . . . . . . . 1-15
Running the Program . . . . . . . . . . . . . . . . . . . . . . . . 1-15

Maintaining ALLBASE/SQL Programs . . . . . . . . . . . . . . . . . 1-18
Updating Application Programs . . . . . . . . . . . . . . . . . . . 1-18
Changing Program-Related Authorization . . . . . . . . . . . . . . . 1-19
Obsoleting Programs . . . . . . . . . . . . . . . . . . . . . . . . 1-19

2. Using The ALLBASE/SQL FORTRAN Preprocessor
FORTRAN Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Preprocessor Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Preprocessor Input and Output . . . . . . . . . . . . . . . . . . . . . 2-5
Source File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Output File Attributes . . . . . . . . . . . . . . . . . . . . . . . 2-18
Modi�ed Source File . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Variable Declaration Include File . . . . . . . . . . . . . . . . . . . 2-33
ALLBASE/SQL Message File . . . . . . . . . . . . . . . . . . . . 2-34
Installable Module File . . . . . . . . . . . . . . . . . . . . . . . 2-37
Stored Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38

Invoking The Fortran Preprocessor . . . . . . . . . . . . . . . . . . . 2-40
Syntax Checking Mode . . . . . . . . . . . . . . . . . . . . . . . 2-41
Full Preprocessing Mode . . . . . . . . . . . . . . . . . . . . . . . 2-43
Using the Preprocessor UDC's . . . . . . . . . . . . . . . . . . . . 2-46
Running the Preprocessor in Job Mode . . . . . . . . . . . . . . . . 2-50

Preprocessing Errors . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
Preprocessor or DBEnvironment Termination . . . . . . . . . . . . . . 2-50

Contents-1



Preprocessor Invocation Errors . . . . . . . . . . . . . . . . . . . . 2-51
Source File Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
DBEnvironment Errors . . . . . . . . . . . . . . . . . . . . . . . 2-51

3. Embedding SQL Commands
General Rules for Embedding SQL . . . . . . . . . . . . . . . . . . . 3-11
Location of SQL Commands . . . . . . . . . . . . . . . . . . . . . 3-11
Pre�x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
FORTRAN Comments . . . . . . . . . . . . . . . . . . . . . . . . 3-12
SQL Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Continuation Lines . . . . . . . . . . . . . . . . . . . . . . . . . 3-12

Declaring the SQLCA . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Declaring Host Variables . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Starting a DBE Session . . . . . . . . . . . . . . . . . . . . . . . . 3-15
De�ning Transactions . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Implicit Status Checking . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Terminating a DBE Session . . . . . . . . . . . . . . . . . . . . . . 3-18
De�ning and Manipulating Data . . . . . . . . . . . . . . . . . . . . 3-18
Data De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Explicit Status Checking . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Obtaining ALLBASE/SQL Messages . . . . . . . . . . . . . . . . . . 3-20

4. Host Variables
Using Host Variables . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Host Variable Names . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Input and Output Host Variables . . . . . . . . . . . . . . . . . . . 4-2
Data Values and Null Indicators . . . . . . . . . . . . . . . . . . . 4-3
Indicator Variables . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Declaring Host Variables . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Declaring Variables for Data Types . . . . . . . . . . . . . . . . . . 4-5
Variable Declarations . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
CHARACTER Data . . . . . . . . . . . . . . . . . . . . . . . 4-7
VARCHAR Data . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
SMALLINT Data . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
INTEGER Data . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
FLOAT Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Floating Point Data Compatibility . . . . . . . . . . . . . . . . 4-10

BINARY Data . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Binary Data Compatibility . . . . . . . . . . . . . . . . . . . . 4-10
Using the LONG Phrase with Binary Data Types . . . . . . . . . . 4-10

DECIMAL Data . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
DATE, TIME, DATETIME, and INTERVAL Data . . . . . . . . . . 4-11

Using Default Data Values . . . . . . . . . . . . . . . . . . . . . . 4-11
Coding Considerations . . . . . . . . . . . . . . . . . . . . . . . 4-12
When the DEFAULT Clause Cannot be Used . . . . . . . . . . . . . 4-12
Indicator Variable Declaration . . . . . . . . . . . . . . . . . . . 4-13
Dynamic Command Variable Declaration . . . . . . . . . . . . . . 4-13
Savepoint Number Variable Declaration . . . . . . . . . . . . . . . 4-13
Message Catalog Variable Declaration . . . . . . . . . . . . . . . . 4-13

Contents-2



DBEnvironment Name . . . . . . . . . . . . . . . . . . . . . . . 4-13
Data Type Compatibility . . . . . . . . . . . . . . . . . . . . . . 4-13
Character Data Conversion . . . . . . . . . . . . . . . . . . . . . 4-14
Character Data Truncation . . . . . . . . . . . . . . . . . . . . . 4-15
Numeric Data Conversion . . . . . . . . . . . . . . . . . . . . . 4-16

Declaring Host Variables for Data Values and Indicator Variables . . . . . 4-17
Declaring Host Variables for Dynamic Commands . . . . . . . . . . . . 4-20
Declaring Host Variables for Savepoint Numbers . . . . . . . . . . . . 4-21
Declaring Host Variables for Message Catalog Messages . . . . . . . . . 4-22
Declaring Host Variables Passed from Subprograms . . . . . . . . . . . 4-23
Declaring Host Variables for MPE XL File Values . . . . . . . . . . . . 4-24
Declaring Host Variables for DBEnvironment Names . . . . . . . . . . 4-26

5. Runtime Status Checking and the SQLCA
The Importance of Status Checking . . . . . . . . . . . . . . . . . . . 5-2
Handling Runtime Errors and Warnings . . . . . . . . . . . . . . . . 5-2
Maintaining Data Consistency . . . . . . . . . . . . . . . . . . . . 5-3
Determining Number of Rows Processed . . . . . . . . . . . . . . . . 5-4

The SQLCA COMMON Block . . . . . . . . . . . . . . . . . . . . . 5-5
SQLCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
SQLERRD(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
SQLWARN(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
SQLWARN(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
SQLWARN(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
SQLWARN(6) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12

Approaches to Status Checking . . . . . . . . . . . . . . . . . . . . . 5-15
Implicit Status Checking . . . . . . . . . . . . . . . . . . . . . . . 5-15
Implicitly Invoking Status-Checking Subprogram Units . . . . . . . . 5-21

Explicit Status Checking . . . . . . . . . . . . . . . . . . . . . . . 5-31
Explicitly Invoking Status-Checking Subprogram Units . . . . . . . . 5-32
Explicitly Checking for Number of Rows . . . . . . . . . . . . . . . 5-38
Using SQLErrd(3) for UPDATE and DELETE Operations . . . . . . 5-38
Using SQLCode of 100 . . . . . . . . . . . . . . . . . . . . . . 5-41
Using SQLCode of -10002 . . . . . . . . . . . . . . . . . . . . 5-42

6. Overview of Data Manipulation
The Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
The SELECT Command . . . . . . . . . . . . . . . . . . . . . . . 6-2
Selecting from Multiple Tables . . . . . . . . . . . . . . . . . . . . 6-5
Selecting Using Views . . . . . . . . . . . . . . . . . . . . . . . . 6-8
Query E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

Simple Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . 6-12
Introducing the Cursor . . . . . . . . . . . . . . . . . . . . . . . . 6-15
Sequential Table Processing . . . . . . . . . . . . . . . . . . . . . . 6-20
Dynamic Operations . . . . . . . . . . . . . . . . . . . . . . . . . 6-23

Contents-3



7. Simple Data Manipulation
Simple Data Manipulation Commands . . . . . . . . . . . . . . . . . . 7-1
The SELECT Command . . . . . . . . . . . . . . . . . . . . . . . 7-1
The INSERT Command . . . . . . . . . . . . . . . . . . . . . . . 7-4
The DELETE Command . . . . . . . . . . . . . . . . . . . . . . 7-5
The UPDATE Command . . . . . . . . . . . . . . . . . . . . . . 7-7

Transaction Management for Simple Operations . . . . . . . . . . . . . 7-9
Program Using SELECT, UPDATE, DELETE, and INSERT . . . . . . . . 7-12
Select Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Update Function . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Delete Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Insert Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14

8. Processing with Cursors
Sequential Table Processing Commands . . . . . . . . . . . . . . . . . 8-1
The DECLARE CURSOR Command . . . . . . . . . . . . . . . . . 8-2
The OPEN Command . . . . . . . . . . . . . . . . . . . . . . . . 8-3
The FETCH Command . . . . . . . . . . . . . . . . . . . . . . . 8-3
The UPDATE WHERE CURRENT Command . . . . . . . . . . . . . 8-5
The DELETE WHERE CURRENT Command . . . . . . . . . . . . . 8-7
The CLOSE Command . . . . . . . . . . . . . . . . . . . . . . . 8-8

Transaction Management for Cursor Operations . . . . . . . . . . . . . 8-10
Using KEEP CURSOR . . . . . . . . . . . . . . . . . . . . . . . 8-11
Using KEEP CURSOR . . . . . . . . . . . . . . . . . . . . . . . 8-11
OPEN Command Using KEEP CURSOR WITH LOCKS . . . . . . . . 8-12
OPEN Command Using KEEP CURSOR WITH NOLOCKS . . . . . . . 8-13
KEEP CURSOR and Isolation Levels . . . . . . . . . . . . . . . . . 8-14
KEEP CURSOR and BEGIN WORK . . . . . . . . . . . . . . . . . 8-15
KEEP CURSOR and COMMIT WORK . . . . . . . . . . . . . . . . 8-15
KEEP CURSOR and ROLLBACK WORK . . . . . . . . . . . . . . . 8-15
KEEP CURSOR and Aborted Transactions . . . . . . . . . . . . . . 8-15
Writing Keep Cursor Applications . . . . . . . . . . . . . . . . . . . 8-16

Program Using UPDATE WHERE CURRENT . . . . . . . . . . . . . . 8-17
FetchUpdate Function . . . . . . . . . . . . . . . . . . . . . . . . 8-17
DisplayUpdate Subroutine . . . . . . . . . . . . . . . . . . . . . . 8-18

9. Using Dynamic Operations
Review of Preprocessing Events . . . . . . . . . . . . . . . . . . . . . 9-1
Di�erences between Dynamic and Non-Dynamic Preprocessing . . . . . . . 9-2
Permanently Stored vs. Temporary Sections . . . . . . . . . . . . . . 9-2
Examples of Non-Dynamic and Dynamic SQL Statements . . . . . . . . 9-4
Why Use Dynamic Preprocessing? . . . . . . . . . . . . . . . . . . 9-5

Passing Dynamic Commands to ALLBASE/SQL . . . . . . . . . . . . . 9-5
Understanding Dynamic Operations . . . . . . . . . . . . . . . . . . . 9-6
Preprocessing of Dynamic Non-Queries . . . . . . . . . . . . . . . . . 9-6
Using EXECUTE IMMEDIATE . . . . . . . . . . . . . . . . . . . 9-6
Using PREPARE and EXECUTE . . . . . . . . . . . . . . . . . . . 9-7

Programs Using Dynamic Operations . . . . . . . . . . . . . . . . . . 9-8
Sample Program Using EXECUTE IMMEDIATE . . . . . . . . . . . . . 9-9
Sample Program Using PREPARE and EXECUTE . . . . . . . . . . . . 9-17

Contents-4



10. Programming with Constraints
Comparing Statement Level and Row Level Integrity . . . . . . . . . . . 10-1
Using Unique and Referential Integrity Constraints . . . . . . . . . . . . 10-2
Designing an Application Using Statement Level Integrity Checks . . . . . . 10-3
Insert a Member in the Recreation Database . . . . . . . . . . . . . . 10-5
Update an Event in the Recreation Database . . . . . . . . . . . . . . 10-6
Delete a Club in the Recreation Database . . . . . . . . . . . . . . . 10-7
Delete an Event in the Recreation Database . . . . . . . . . . . . . . 10-7

11. Programming with LONG Columns
General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
De�ning LONG Columns with a CREATE TABLE or ALTER TABLE

Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
De�ning Input and Output with the LONG Column I/O String . . . . . . . 11-5
Putting Data into a LONG Column with an INSERT Command . . . . . . 11-6
Insert Using Host Variables for LONG Column I/O Strings . . . . . . . 11-6
Example Data File . . . . . . . . . . . . . . . . . . . . . . . . 11-6

Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH
Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7
Using the LONG Column Descriptor . . . . . . . . . . . . . . . . . 11-7
Example LONG Column Descriptor Declaration . . . . . . . . . . . 11-8

Using LONG Columns with a SELECT Command . . . . . . . . . . . 11-9
Using LONG Columns with a Dynamic FETCH Command . . . . . . . . 11-9

Changing a LONG Column with an UPDATE [WHERE CURRENT] Command 11-9
Removing LONG Column Data with a DELETE [WHERE CURRENT]

Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10
Coding Considerations . . . . . . . . . . . . . . . . . . . . . . . . 11-10
File versus Random Heap Space . . . . . . . . . . . . . . . . . . 11-10
File Naming Conventions . . . . . . . . . . . . . . . . . . . . . 11-10
Considering Multiple Users . . . . . . . . . . . . . . . . . . . . . 11-11
Deciding How Much Space to Allocate and Where . . . . . . . . . . 11-11

12. Programming with ALLBASE/SQL Functions
Programming with Date/Time Functions . . . . . . . . . . . . . . . . 12-1
Where Date/Time Functions Can Be Used . . . . . . . . . . . . . . . 12-2
De�ning and Using Host Variables with Date/Time Functions . . . . . . 12-2
Using Date/Time Input Functions . . . . . . . . . . . . . . . . . . 12-3
Examples of TO DATETIME, TO DATE, TO TIME, and

TO INTERVAL Functions . . . . . . . . . . . . . . . . . . . 12-4
Example Using the INSERT Command . . . . . . . . . . . . . . 12-4
Example Using the UPDATE Command . . . . . . . . . . . . . . 12-5
Example Using the SELECT Command . . . . . . . . . . . . . . 12-7
Example Using the DELETE Command . . . . . . . . . . . . . . 12-7

Using Date/Time Output Functions . . . . . . . . . . . . . . . . . . 12-8
Example TO CHAR Function . . . . . . . . . . . . . . . . . . . 12-8
Example TO INTEGER Function . . . . . . . . . . . . . . . . . 12-10

Using the Date/Time ADD MONTHS Function . . . . . . . . . . . . 12-11
Example ADD MONTHS Function . . . . . . . . . . . . . . . . . 12-11
Coding Considerations . . . . . . . . . . . . . . . . . . . . . . . 12-11

Programming with TID Data Access . . . . . . . . . . . . . . . . . . 12-12

Contents-5



Understanding TID Function Input and Output . . . . . . . . . . . . 12-12
Using the TID Function in a Select List . . . . . . . . . . . . . . . 12-12
Using the TID Function in a WHERE Clause . . . . . . . . . . . . . 12-13
Declaring TID Host Variables . . . . . . . . . . . . . . . . . . . 12-13
Understanding the SQLTID Data Format . . . . . . . . . . . . . . 12-13

Transaction Management with TID Access . . . . . . . . . . . . . . . . 12-14
Comparing TID Access to Other Types of Data Access . . . . . . . . . 12-15
Verifying Data that is Accessed by TID . . . . . . . . . . . . . . . . 12-15
Considering Interactive User Applications . . . . . . . . . . . . . . . 12-16

Index

Contents-6



Figures

1-1. Creating an ALLBASE/SQL FORTRAN Application Program . . . . . . 1-1
1-2. Preprocess-Time Events . . . . . . . . . . . . . . . . . . . . . . . 1-8
1-3. Compile-Time and Link-Time Events . . . . . . . . . . . . . . . . . 1-12
1-4. Runtime Events . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
2-1. Developing a FORTRAN Program . . . . . . . . . . . . . . . . . . 2-2
2-2. Developing a FORTRAN Program with Subprograms . . . . . . . . . . 2-3
2-3. FORTRAN Preprocessor Input and Output . . . . . . . . . . . . . . 2-6
2-4. FORTRAN Compiler Input . . . . . . . . . . . . . . . . . . . . . 2-6
2-5. Runtime Dialog of Program forex2 . . . . . . . . . . . . . . . . . . 2-9
2-6. Program forex2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2-7. Modi�ed Source File for Program forex2 . . . . . . . . . . . . . . . . 2-20
2-8. Sample Variable Declaration Include File . . . . . . . . . . . . . . . 2-33
2-9. Sample SQLMSG Showing Error . . . . . . . . . . . . . . . . . . . 2-35
2-10. Sample SQLMSG Showing Warning . . . . . . . . . . . . . . . . . . 2-36
2-11. Information in SYSTEM.SECTION on Stored Sections . . . . . . . . . 2-39
2-12. UDC for Preprocessing SQLIN . . . . . . . . . . . . . . . . . . . . 2-47
2-13. UDC for Preprocessing, Compiling, and Preparing SQLIN . . . . . . . . 2-48
2-14. Sample UDC Invocation . . . . . . . . . . . . . . . . . . . . . . . 2-49
2-15. Sample Preprocessing Job File . . . . . . . . . . . . . . . . . . . . 2-50
3-1. Sample Source File . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
4-1. Host Variable Declarations . . . . . . . . . . . . . . . . . . . . . . 4-6
4-2. Declaring Host Variables for Single-Row Query Result . . . . . . . . . . 4-18
4-3. Declaring Host Variables for Multiple-Row Query Result . . . . . . . . . 4-19
4-4. Declaring Host Variables for Dynamic Commands . . . . . . . . . . . . 4-20
4-5. Declaring Host Variables for Savepoint Numbers . . . . . . . . . . . . 4-21
4-6. Declaring Host Variables for Message Catalog Messages . . . . . . . . . 4-22
4-7. Declaring Host Variables Passed From Subprograms . . . . . . . . . . . 4-23
4-8. Declaring Host Variables for MPE XL File Values . . . . . . . . . . . . 4-25
4-9. Declaring Host Variables for DBEnvironment Names . . . . . . . . . . 4-26
5-1. Program forex5: Implicit and Explicit Status Checking . . . . . . . . . 5-23
5-2. Explicitly Invoking Status-Checking Subprogram Units . . . . . . . . . 5-33
6-1. Sample Query Joining Multiple Tables . . . . . . . . . . . . . . . . . 6-6
6-2. E�ect of SQL Commands on Cursor and Active Sets . . . . . . . . . . 6-19
7-1. Flow Chart of Program forex7 . . . . . . . . . . . . . . . . . . . . 7-15
7-2. Runtime Dialog of Program forex7 . . . . . . . . . . . . . . . . . . 7-17
7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE . . . 7-21
8-1. Cursor Operation without the KEEP CURSOR Feature . . . . . . . . . 8-12
8-2. Cursor Operation Using KEEP CURSOR WITH LOCKS . . . . . . . . 8-13
8-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS . . . . . . . 8-14
8-4. Flow Chart of Program forex8 . . . . . . . . . . . . . . . . . . . . 8-19
8-5. Runtime Dialog of Program forex8 . . . . . . . . . . . . . . . . . . 8-20
8-6. Program forex8: Using UPDATE WHERE CURRENT . . . . . . . . . 8-22

Contents-7



9-1. Creation and Use of a Program that has a Stored Module . . . . . . . . 9-3
9-2. Creation and Use of a Program that has No Stored Module . . . . . . . 9-4
9-3. Procedure Hosting Dynamic Non-Query Commands . . . . . . . . . . . 9-7
9-4. Runtime Dialog for Program forex9a . . . . . . . . . . . . . . . . . 9-10
9-5. Program forex9a: Sample Program Using EXECUTE IMMEDIATE . . . . 9-11
9-6. Runtime Dialog of Program forex9b . . . . . . . . . . . . . . . . . . 9-18
9-7. Program forex9b: Sample Program Using PREPARE and EXECUTE . . . 9-19
10-1. Constraints Enforced on the Recreation Database . . . . . . . . . . . . 10-4
11-1. Flow of LONG Column Data and Related Information to the Database . . 11-3
11-2. Flow of LONG Column Data and Related Information from the Database . 11-3

Contents-8



Tables

4-1. Data Description Entries for Host Variables . . . . . . . . . . . . . . 4-8
4-2. Program Element Declarations . . . . . . . . . . . . . . . . . . . . 4-9
4-3. ALLBASE/SQL Floating Point Column Speci�cations . . . . . . . . . . 4-9
4-4. Data Type Equivalency and Compatibility . . . . . . . . . . . . . . . 4-14
6-1. How Data Manipulation Commands May Be Used . . . . . . . . . . . 6-1
10-1. Commands Used with Integrity Constraints . . . . . . . . . . . . . . 10-2
10-2. Constraint Test Matrix . . . . . . . . . . . . . . . . . . . . . . . 10-3
11-1. Commands You Can Use with LONG Columns . . . . . . . . . . . . . 11-1
11-2. LONG Column Descriptor . . . . . . . . . . . . . . . . . . . . . . 11-8
12-1. Where to Use Date/Time Functions . . . . . . . . . . . . . . . . . . 12-2
12-2. Host Variable Data Type Compatibility for Date/Time Functions . . . . . 12-3
12-3. Sample of User Requested Formats for Date/Time Data . . . . . . . . . 12-4
12-4. SQLTID Data Internal Format . . . . . . . . . . . . . . . . . . . . 12-14

Contents-9



1
Getting Started with ALLBASE/SQL Programming in
FORTRAN

The steps in creating a FORTRAN application program that accesses an ALLBASE/SQL
DBEnvironment are summarized in Figure 1-1.

Figure 1-1. Creating an ALLBASE/SQL FORTRAN Application Program

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-1



Using your favorite editor, create FORTRAN source code. The source code is a compilable
FORTRAN program or subprogram that contains SQL commands. The SQL commands
contained within the FORTRAN program are said to be embedded. Refer to the
ALLBASE/SQL Reference Manual for SQL terminology and usage rules.

Before compiling the source code, it must be preprocessed using the ALLBASE/SQL
FORTRAN preprocessor. The FORTRAN preprocessor:

Checks the syntax of the SQL commands.

Stores a module in the system catalog of the DBEnvironment to be accessed at runtime.
A module consists of ALLBASE/SQL instructions for executing SQL commands in your
program.

Creates an installable module �le. This �le contains a copy of the module stored in
the DBEnvironment at preprocessing time. This �le can be used to install the module
into another DBEnvironment so that the application program can be run in that
DBEnvironment.

Generates FORTRAN statements for executing the SQL commands and comments out the
SQL commands. Non-SQL statements are ignored. This modi�ed version of your source
code is placed into a �le created by the preprocessor, referred to as a modi�ed source code
�le.

Creates one include �le, which contains type declarations and initialization of variables used
by the preprocessor generated FORTRAN statements.

The FORTRAN compiler and system linker are used to create the executable program from
the modi�ed source code �le and the include �le. The executable program automatically
makes the appropriate database accesses at runtime in DBEnvironments where the related
module is stored.

ALLBASE/SQL FORTRAN Programs

To write a FORTRAN application that accesses an ALLBASE/SQL database, SQL commands
are be embedded in the FORTRAN source to:

Start or terminate a DBEnvironment session, either in single-user mode or multiuser mode.

Start or terminate a transaction.

Retrieve rows from or change data in tables in a database.

Create or drop objects, such as indexes or views.

Special SQL commands known as preprocessor directives may also be embedded in the
FORTRAN source. The FORTRAN preprocessor uses these directives to:

Identify FORTRAN variables referenced in SQL commands, known as host variables.

Set up a common block, known as the SQL Communications Area (SQLCA), for
communicating the status of executed SQL commands to your program.

Optionally automate program ow based on SQLCA information.

Identify cursor declarations.

1-2 Getting Started with ALLBASE/SQL Programming in FORTRAN



Program Structure

The following skeleton program illustrates the relationship between FORTRAN statements
and embedded SQL commands in an application program. SQL commands may appear
in a program at locations indicated by boldface notations. The SQLCA Common Block
Declaration may appear either before or after the FORTRAN type declaration section.
The SQLCA Common Block Declaration must appear, however, before the host variable
declaration section which must be the last of the type declarations in the program unit. Refer
to Chapter 3 for further clari�cation of program structure.

PROGRAM ProgramName

FORTRAN Statements

.

.

.

SQLCA Declaration

FORTRAN Type Declarations

Host Variable Declarations

.

.

.

FORTRAN Statements, some containing SQL Commands

.

.

.

END

SUBROUTINE SubroutineName

FORTRAN Statements

.

.

.

SQLCA Declaration

FORTRAN Type Declarations

Host Variable Declarations

.

.

.

FORTRAN Statements, some containing SQL Commands

.

.

RETURN

END

To delimit SQL commands for the preprocessor, each SQL command is pre�xed by EXEC
SQL:

EXEC SQL BEGIN WORK

SQL commands may appear in the main program or any subprogram unit where you establish
DBEnvironment access and manipulate data in a database.

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-3



DBEnvironment Access

You must always specify a DBEnvironment at preprocessing time. The preprocessor
needs to access the DBEnvironment you specify in the INFO string. It does so in order
to store a module containing permanent sections used by your application program at
runtime. In this example, the environment is SomeDBE which is in the group and account
SomeGroup.SomeAcct.

: RUN PSQLFOR.PUB.SYS; INFO = "SomeDBE.SomeGroup.SomeAcct"

Your application program needs to access the DBEnvironment to perform its work. The
CONNECT command starts a DBEnvironment session for a speci�c environment. The
RELEASE command terminates that session.

SUBPROGRAM Unit

.

.

.

EXEC SQL CONNECT TO 'SomeDBE.SomeGroup.SomeAcct'

.

.

.

EXEC SQL RELEASE

RETURN

END

At runtime, the program starts a DBE session in SomeDBE.SomeGroup.SomeAcct , where a
module for the program has been stored.

A program can accept a DBEnvironment name from the program user and dynamically
preprocess the SQL command that starts a DBEnvironment session. Refer to Chapter 9 for
more information on dynamically connecting to a database and refer to Chapter 4 for more
information on using a host variable to connect to a database.

No matter how you access a DBEnvironment (dynamic or stored sections), you must always
specify a DBEnvironment name when you preprocess.

In some cases an ALLBASE/SQL program is used with one or more DBEnvironments in
addition to the DBEnvironment accessed at preprocessing time. In these cases, you use
ISQL to install the installable module created by the preprocessor into each additional
DBEnvironment accessed by your program. See Chapter 2 for information on the installable
module.

An alternative method of accessing more than one DBEnvironment from the same program
would be to separate the program into separate compilable �les. Each source �le would access
a DBEnvironment. In each �le you start and terminate a DBE session for the DBEnvironment
accessed. You then preprocess and compile each �le separately. When you invoke the
preprocessor, you identify the DBEnvironment accessed by the source �le being preprocessed.

After a �le is preprocessed, it must be compiled so that no linking is performed before the
next source �le is preprocessed. When all source �les have been preprocessed and compiled,
you link them to create the executable program.

Note that a program which accesses more than one DBEnvironment must do so in sequence.
Such program design may adversely a�ect performance and requires special consideration.

1-4 Getting Started with ALLBASE/SQL Programming in FORTRAN



To preprocess or to use an already preprocessed ALLBASE/SQL application program, you
must satisfy the authorization requirements for each DBEnvironment accessed.

Authorization

ALLBASE/SQL authorization governs who can preprocess, execute, and maintain a program
that accesses an ALLBASE/SQL DBEnvironment.

To preprocess a program for the �rst time, you need CONNECT or DBA authority in the
DBEnvironment your program accesses. When you preprocess a program �le, ALLBASE/SQL
stores a module for that program �le in the DBEnvironment's system catalog and identi�es
your User@Account as the owner of that module. Subsequently, if you have OWNER or DBA
authority, you can re-preprocess the program �le.

To run a program accessing an ALLBASE/SQL DBEnvironment, you need the following
authorities:

If the program uses a CONNECT command to start a DBE session, you need both
CONNECT authority and either RUN or module OWNER authority to run the program.

If the program uses a START DBE command to start the DBE session, you need DBA
authority to run the program.

At runtime, any SQL command in the program, except for the command used to start the
DBE session, is executed only if the OWNER of the module has the authorization to execute
the command at runtime. However, any dynamic command is executed only if the individual
running the program has the authority to execute the command at run time. A dynamic
command is an SQL command entered by the user at runtime.

Maintaining an ALLBASE/SQL program includes such activities as modifying a program in
production use and keeping runtime authorization current as program users change. For these
activities, you need OWNER authority for the module or DBA authority. More on this topic
appears later in this chapter under \Maintaining ALLBASE/SQL Programs."

File Referencing

When you create a DBEnvironment, a Database Environment Con�guration (DBECon)
�le is created. The �le name of this DBECon �le is stored in the DBECon �le itself. In all
subsequent references to �les, you may use either a fully quali�ed �le name or a �le name
relative to that of the DBECon �le.

For example, if a DBEnvironment is created with the following command:

START DBE 'PartsDBE' NEW

and the user is currently in the SQL group of the DBSUPPORT account, the �le name
PARTSDBE.SQL.DBSUPPORT is stored in the DBECon �le. If the user subsequently creates
a DBEFile with the command:

CREATE DBEFILE ORDERS WITH PAGES=50, NAME='ORDERSFS'

the ORDERSFS �le is created in the same group and account as the DBECon �le with the
name ORDERSFS.SQL.DBSUPPORT. If however, the user creates a DBEFile with the
command:

CREATE DBEFILE ORDERS WITH PAGES=50, NAME='DBSUPPORT'

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-5



the name stored in the DBECon �le is ignored while creating this �le. The user then needs to
fully qualify this �le name each time the �le is referenced. Remember, a �le, group, or account
name can contain a maximum of 8 bytes. Fully quali�ed �le names, enclosed in quotes, are
restricted to a maximum length of 36 bytes.

In addition, if the DBEnvironment you want the preprocessor to access resides in a group and
account other than your current group and account, you will have to qualify the name of the
DBEnvironment.

For example, if the DBEnvironment you want the preprocessor to access resides in the SQL
group of account DBSUPPORT, you would invoke the preprocessor as follows:

RUN PSQLFOR.PUB.SYS;INFO = 'SOMEDBE.SQL.DBSUPPORT'

Native Language Support

ALLBASE/SQL lets you manipulate databases in a wide variety of native languages in
addition to the default language, known as NATIVE-3000. You can use either 8-bit or 16-bit
character data, as appropriate for the language you select. In addition, you can always include
ASCII data in any database, since ASCII is a subset of each supported character set. The
collating sequence for sorting and comparisons is that of the native language selected.

You can use native language characters in a wide variety of places, including:

Character literals.
Host variables for CHAR or VARCHAR data (but not variable names).
ALLBASE/SQL object names.
WHERE and VALUES clauses.

If your system has the proper message �les installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select, and it displays dates and time according
to local customs. In addition, ISQL accepts responses to its prompts in the native language
selected. However, regardless of the native language used, the syntax of ISQL and SQL
commands|including punctuation|remains in ASCII.

Note that MPE XL does not support native language �le names nor DBEnvironment names.

In order to use a native language other than the default, you must do the following:

1. Make sure your I/O devices support the character set you wish to use.

2. Set the MPE job control word NLUSERLANG to the number (LangNum) of the native
language you wish to use. Use the following MPE XL command:

SETJCW NLUSERLANG = LangNum

This language then becomes the current language. (If NLUSERLANG is not set, the
current language is NATIVE-3000.)

3. Use the LANG = LanguageName option of the START DBE NEW command to specify the
language when you create a DBEnvironment.

1-6 Getting Started with ALLBASE/SQL Programming in FORTRAN



Run the MPE XL utility program NLUTIL.PUB.SYS to determine which native languages
are supported on your system. Here is a list of some supported languages, preceded by the
LangNum for each:

0 NATIVE-3000 9 ITALIAN 52 ARABICW

1 AMERICAN 10 NORWEGIAN 61 GREEK

2 C-FRENCH 11 PORTUGUESE 71 HEBREW

3 DANISH 12 SPANISH 81 TURKISH

4 DUTCH 13 SWEDISH 201 CHINESE-S

5 ENGLISH 14 ICELANDIC 211 CHINESE-T

6 FINNISH 41 KATAKANAC 221 JAPANESE

7 FRENCH 51 ARABIC 231 KOREAN

8 GERMAN

Any one user would not be using all of these languages at one time, of course. The languages
you want need to be initialized on the MPE XL system and the MPE XL system rebooted.
Once that is done, the NLUTIL.PUB.SYS program might display the following, assuming that
the languages listed are those that have been initialized on MPE XL:

Lang Lang Char Char

ID Name ID Name

---- ---- ---- ----

0 NATIVE-3000 0 USASCII

1 AMERICAN 1 ROMAN8

5 ENGLISH 1 ROMAN8

7 FRENCH 1 ROMAN8

8 GERMAN 1 ROMAN8

Note that ENGLISH is British English and AMERICAN is American English.

Resetting NLUSERLANG while you are connected to a DBEnvironment has no e�ect on the
current DBE session.

The ALLBASE/SQL FORTRAN Preprocessor

The FORTRAN preprocessor that is part of ALLBASE/SQL is speci�cally for FORTRAN 77
programs. Although the preprocessor ignores FORTRAN statements in your source code, it
generates FORTRAN statements, based on embedded SQL commands.

Figure 1-2 summarizes the four main preprocess-time events:

Syntax checking of SQL commands and host variable declarations.

Creation of compilable �les: one modi�ed source code �le and one include �le.

Creation of an installable module.

Storage of a module in the system catalog.

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-7



Figure 1-2. Preprocess-Time Events

Effect of Preprocessing on Source Code

The FORTRAN preprocessor scans the source code for SQL commands. If the syntax of an
SQL command is valid, the preprocessor converts the command to compilable FORTRAN
statements that call ALLBASE/SQL external procedures at runtime. During preprocessing,
for example, the SQL command:

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice

4 FROM Purchdb.Parts

5 WHERE PartNumber = :PartNumber

1-8 Getting Started with ALLBASE/SQL Programming in FORTRAN



is converted into the following modi�ed source code statements:

C**** Start SQL Preprocessor ****

C EXEC SQL SELECT PartNumber, PartName, SalesPrice
C 1 INTO :PartNumber,

C 2 :PartName,

C 3 :SalesPrice :SalesPriceInd

C 4 FROM PurchDB.Parts

C 5 WHERE PartNumber = :PartNumber

C

C**** Start Inserted Statements ****

WRITE(SQLTMP,'(A16)')PartNumber

CALL SQLXFE(SQLCAID,SQLOWN,SQLMDN,1,SQLTMP,16,56,1)

IF (SQLCODE .EQ. 0) THEN

READ(SQLTMP,'(A16,A30,A8,A2)')PartNumber,PartName,SalesPrice,Sales

1PriceInd

ELSE

END IF

C**** End SQL Preprocessor ****

The embedded SELECT command has been converted into a FORTRAN comment, and
FORTRAN statements that enable ALLBASE/SQL to execute the SELECT command
at runtime have been inserted. The names that appear in the inserted FORTRAN code
(italicized in the above example) identify variables used by the ALLBASE/SQL external
procedures; in this example, the names identify variables used by the SQLXFE external
procedure. Some of these variables are derived from host variables. As shown in the
embedded SELECT command above, you precede a host variable with a colon when you use it
in SQL commands:

:PartNumber

Type declarations used by preprocessor generated code are de�ned and initialized in the
include �le the preprocessor creates. The preprocessor inserts INCLUDE statements that
reference this �le in each program unit of the modi�ed source code after the host variable
declarations. Even if you do not declare host variables you must still include the EXEC SQL
BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION commands in
order for the preprocessor to create and insert this include �le:

INCLUDE 'SQLVAR'

Caution Never modify the statements inserted by the preprocessor in the modi�ed
source code �le, or the include �le the preprocessor creates. Changes to
preprocessor generated information could damage your DBEnvironment or
your system.

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-9



Effect of Preprocessing on DBEnvironments

When you invoke the preprocessor, you name an ALLBASE/SQL DBEnvironment. The
preprocessor starts a DBE session for that DBEnvironment when preprocessing begins and
terminates that session when preprocessing ends.

When the preprocessor encounters a syntactically correct SQL command, it creates a section
and stores that section in the system catalog of the DBEnvironment being accessed. An
ALLBASE/SQL section is a group of stored ALLBASE/SQL instructions for executing one
SQL command.

All sections created during a preprocessing session constitute a module. The preprocessor
derives the name of the module from the PROGRAM statement or subroutine name unless
you supply a di�erent name when you invoke the preprocessor:

:RUN PSQLFOR.PUB.SYS;INFO = "DBEnvironmentName (MODULE(ModuleName))"

When the preprocessor terminates its DBEnvironment session, it issues a COMMIT WORK
command if it encountered no errors. Created sections are stored in the system catalog and
associated with the module name.

The Stored Section

A section consists of ALLBASE/SQL instructions for executing an SQL command. The
preprocessor creates a section and assigns a unique section number for all embedded
ALLBASE/SQL commands in a module except:

BEGIN DECLARE SECTION OPEN

BEGIN WORK PREPARE

CLOSE RELEASE

COMMIT WORK ROLLBACK WORK

CONNECT SAVEPOINT
DECLARE START DBE

DELETE WHERE CURRENT STOP DBE

END DECLARE SECTION SQLEXPLAIN

EXECUTE TERMINATE USER

EXECUTE IMMEDIATE UPDATE WHERE CURRENT

FETCH WHENEVER

INCLUDE

Purpose of Sections

A section serves two purposes:

Access validation: Before executing a stored section at runtime, ALLBASE/SQL ensures
that any objects referenced exist and that runtime authorization criteria are satis�ed.

Access optimization: If ALLBASE/SQL has more than one way to access data, it
determines the most e�cient method and creates the section based on that method.
Indexes, for example, can expedite the performance of some queries.

By creating and storing sections at preprocessing time rather than at runtime, you improve
runtime performance.

1-10 Getting Started with ALLBASE/SQL Programming in FORTRAN



Section Validity

A section is assigned one of two states at preprocessing time: valid or invalid. A section is
valid when access validation criteria are satis�ed. If the SQL command references objects
that exist at preprocessing time and the individual doing the preprocessing is authorized to
issue the command, the stored section is marked as valid. A section is invalid when access
validation criteria are not satis�ed. If the SQL command references an object that does not
exist at preprocessing time or if the individual doing the preprocessing is not authorized
to issue the command, the stored section is marked as invalid. After being stored by the
preprocessor, a valid section is marked as invalid when such activities as the following occur:

Changes in authorities of the module's owner.

Alterations to tables accessed by the program.

Deletions or creations of indexes.

Updating a table's statistics.

At runtime, ALLBASE/SQL executes valid sections and attempts to validate any sections
marked as invalid. If an invalid section can be validated, as when an altered table does not
a�ect the results of a query, ALLBASE/SQL marks the section as valid and executes it. If
an invalid section cannot be validated, as when a table reference is invalid because the table
owner name has changed, ALLBASE/SQL returns an error indication to the application
program, which in turn can determine what to do.

When a section is validated at runtime, it remains in the valid state until an event that
invalidates it occurs. Program execution during which validation occurs is slightly slower than
program execution following section validation.

The Compiler and the Linker

Figure 1-3 summarizes the steps in creating an executable ALLBASE/SQL FORTRAN
program from the �les created by the FORTRAN preprocessor.

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-11



Figure 1-3. Compile-Time and Link-Time Events

You must use native mode to compile and link your program.

You submit to the FORTRAN compiler a modi�ed source code �le and the related include
�le(s) created by the preprocessor. The compiler then generates an object code �le. To
convert one or more object code �les into an executable program, you link them by invoking
the linker. This step creates an executable program �le. Refer to the Chapter \Using the
ALLBASE/SQL FORTRAN Preprocessor" for more information on compiling and linking.

The following example illustrates the preprocessor storing a module in a DBEnvironment
located in a group other than that in which preprocessing was initiated. An executable
program named SOMEPROG is created in the GROUP1 group after a module named
SOMEMOD is stored by the FORTRAN preprocessor in a DBEnvironment named
SOMEDBE.GROUP2.ACCTDB. Note that PGMR1 must have appropriate ALLBASE/SQL
and operating system �le authorities as well.

1-12 Getting Started with ALLBASE/SQL Programming in FORTRAN



:HELLO PGMR1.ACCTDB.GROUP1

.

.

.

:RUN PSQLFOR.PUB.SYS; INFO = 'SOMEDBE.GROUP2 (MODULE(SOMEMOD))'

.

.

.

:CCXLLK Modi�edSourceFile,SOMEPROG,$NULL

The Executable Program

When an ALLBASE/SQL program is �rst created, it can only be executed by the module
OWNER or a DBA. In addition, it can only operate on the DBEnvironment used at
preprocessing time if a module was generated. If no module was generated because the SQL
commands embedded in the program are only commands for which no sections are created,
the program can be run against any DBEnvironment.

The program created in the previous example can be executed as follows by PGMR1.

:RUN SOMEPROG.GROUP1.ACCTDB

To make the program executable by other users in other DBEnvironments, you:

Load the executable program �le onto the machine where the production DBEnvironment
resides.

Install any related module(s) in the production DBEnvironment.

Ensure necessary module owner authorities exist.

Grant required authorities to program users.

Installing the Program Module

When the preprocessor stores a module in a DBEnvironment, it also creates a �le containing
a copy of the module, which can be installed into another DBEnvironment. You use the
INSTALL command in ISQL to install the module in another DBEnvironment.

isql=> CONNECT TO 'SOMEDBE.GROUP3.ACCTDB;

isql=> INSTALL SOMEMOD.GROUP2.ACCTDB;

Name of module in this file: PGMR1@ACCTDB.SOMEMOD

Number of sections installed: 6

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-13



ISQL copies the module from the installable module �le named
SOMEMOD.GROUP2.ACCTDB into a DBEnvironment named
SOMEDBE.GROUP3.ACCTDB. During installation, ALLBASE/SQL marks each
section in the module valid or invalid, depending on the current objects and authorities in
SOMEDBE.GROUP3.ACCTDB.

To use the INSTALL command, you need to be able to start a DBE session in the
DBEnvironment that is to contain the new module. If you are replacing a module with a new
one of the same name, make sure no other users are accessing the module. To avoid problems,
install modules while connected to the DBEnvironment in single-user mode.

Granting Required Owner Authorization

At runtime, embedded SQL commands are executed only if the original module owner has the
authority to execute them. Therefore, you need to grant required authorities to the module
owner in the production DBEnvironment.

If module PGMR1@ACCTDB.SOMEMOD contains a SELECT command for table
PURCHDB.PARTS, the following grant would ensure valid owner authorization:

isql=> GRANT SELECT on PURCHDB.PARTS TO PGMR1@ACCTDB;

If PGMR1@ACCTDB had DBA authority, he could have assigned ownership of the module to
another owner by using the OWNER parameter.

:RUN PSQLFOR.PUB.SYS;INFO='SOMEDBE.GROUPDB.ACCTDB &

(MODULE(SOMEMOD) OWNER(PURCHDB))'

In this case, ownership belongs to a class, PURCHDB. Only an individual with DBA
authority can maintain this program, and runtime authorization would be established as
follows:

isql=> GRANT SELECT ON PURCHDB.PARTS TO PURCHDB;

1-14 Getting Started with ALLBASE/SQL Programming in FORTRAN



Granting Program User Authorization

In order to execute an ALLBASE/SQL program you must be able to start any DBE
session initiated in the program. You must also have one of the following authorities in the
DBEnvironment accessed by the program:

RUN

module OWNER

DBA

A DBA must grant the authority to start a DBE session. In most cases, application programs
start a DBE session with the CONNECT command, so CONNECT authorization is su�cient:

isql=> CONNECT TO 'SOMEDBE.GROUP3.ACCTDB';

isql=> GRANT CONNECT TO SOMEUSER@SOMEACCT;

isql=> COMMIT WORK;

If you have module OWNER or DBA authority, you can grant RUN authority:

isql=> CONNECT TO 'SOMEDB.GROUP3.ACCTDB';

isql=> GRANT RUN ON PGMR1@ACCTDB.SOMEMOD TO SOMEUSER@SOMEACCT;

isql=> COMMIT WORK;

Now SOMEUSER@SOMEACCT can run program SOMEPROG.GROUP1.ACCTDB which
accesses module PGMR1@ACCTDB.SOMEMOD.

:HELLO SOMEUSER.SOMEACCT

.

.

.

:RUN SOMEPROG.GROUP1.ACCTDB

Note that if a program contains more than one module (multiple application source �les), you
need to GRANT RUN authority to the user for each module.

Running the Program

At runtime, two �le equations may be required, one for the ALLBASE/SQL message catalog
and one for the DBEnvironment to be accessed by the program.

If the program contains the SQLEXPLAIN command, the ALLBASE/SQL message catalog
must be available at runtime. SQLEXPLAIN obtains warning and error messages from the
message catalog (SQLCTxxx .PUB.SYS). If SQLCTxxx is installed in a di�erent group or
account on your system, you must use a �le equation to specify its location. See Chapter 2 for
further information on the ALLBASE/SQL message catalog.

If the program contains a CONNECT or START DBE command that uses a back referenced
DBEnvironmentName, submit a FILE command to identify the DBEnvironment to be
accessed by the program at runtime:

EXEC SQL CONNECT TO '*DBE'

This command initiates a DBE session in the
DBEnvironment identi�ed at runtime as follows:

:FILE DBE = SOMEDBE.SOMEGRP.SOMEACCT

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-15



Once you identify the ALLBASE/SQL message catalog and appropriate DBEnvironment, you
can run the program:

:RUN SOMEPROG.GROUP1.ACCTDB

You must specify the name of an executable program �le as SOMEPROG. Do not specify a
module name in the RUN command.

At runtime, an ALLBASE/SQL program interacts with the DBEnvironment as illustrated in
Figure 1-4.

All the FORTRAN constructs inserted by the preprocessor and the stored sections
automatically handle database operations, including providing the application program with
status information after each SQL command is executed. SQL commands that have a stored
section are executed if the section is valid at runtime or can be validated by ALLBASE/SQL
at runtime.

Dynamic commands are those not known until runtime. Such commands can be entered
by the user at runtime. ALLBASE/SQL converts these commands into executable
ALLBASE/SQL instructions at runtime rather than at preprocessing time. Sections and other
instructions created for dynamic data manipulation commands are deleted at the end of the
transaction. Dynamic commands are described in more detail in the chapter \Using Dynamic
Operations."

1-16 Getting Started with ALLBASE/SQL Programming in FORTRAN



Figure 1-4. Runtime Events

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-17



Maintaining ALLBASE/SQL Programs

After FORTRAN programs are in production use, changes in applications, personnel, or
databases may necessitate:

Updating application programs.

Changing program-related authorizations.

Obsoleting application programs.

Updating Application Programs

Minor modi�cations to programs in use can often be made right on the production machine
and production DBEnvironment, during hours the production DBEnvironment use is minimal.
Major program modi�cations, because they are more time-consuming, are usually made on a
development machine and development DBEnvironment.

In either case, the OWNER of the program's module or a DBA preprocesses the revised
program and replaces the old module with a new one. Existing RUN authorities can be either
preserved or revoked. Dropping old modules and preserving or revoking RUN authorities can
be done either by using the DROP MODULE command in ISQL or when you invoke the
preprocessor.

The PRESERVE option of the DROP MODULE command retains any existing RUN
authorities for the module when it is deleted from the system catalog:

isql=> DROP MODULE MYMOD PRESERVE;

While in ISQL, to delete a module and any existing RUN authorities for it simply omit the
PRESERVE option.

You can also drop a module and revoke any existing run authorities for it at preprocessing
time:

:RUN PSQLFOR.PUB.SYS;INFO="SomeDBE (MODULE(MYMOD) DROP REVOKE)"

This invocation line drops the module named MYMOD, and revokes any related RUN
authorities. To revoke the RUN authorities, you would specify the REVOKE option along
with the DROP option in the command string.

The DROP MODULE command is also useful in conjunction with revised programs whose
modules must be installed in a DBEnvironment di�erent from that on which preprocessing
occurred. Before using the INSTALL command to store the new module, you drop the
existing module using the DROP MODULE command, preserving or dropping related RUN
authorization as required.

1-18 Getting Started with ALLBASE/SQL Programming in FORTRAN



Changing Program-Related Authorization

Once a program is in production use, granting and revoking RUN and CONNECT authority
may be necessary as program users change.

Revoking CONNECT authority requires DBA authorization:

isql=> REVOKE CONNECT FROM OLD@USER;

Revoking RUN authority requires either module OWNER or DBA authority:

isql=> REVOKE RUN ON PGMR1@GROUPC.SOMEMOD FROM OLD@USER;

Obsoleting Programs

When an application program becomes obsolete, you use the DROP MODULE command to
both remove the module from any DBEnvironment where it is stored and revoke any related
RUN authorities:

isql=> DROP MODULE MYMOD

Related RUN authorities are automatically revoked when you do not use the PRESERVE
option of this command.

Getting Started with ALLBASE/SQL Programming in FORTRAN 1-19



2

Using The ALLBASE/SQL FORTRAN Preprocessor

ALLBASE/SQL FORTRAN application programs have the same stages of development
as any application program. They originate as FORTRAN source code �les that are
subsequently compiled with the FORTRAN compiler and linked by the system linker to
create an executable program �le. The development of ALLBASE/SQL programs, however,
requires that you preprocess those portions of the program that contain SQL commands before
compilation.

In the case illustrated in Figure 2-1, the ALLBASE/SQL FORTRAN program consists of
one source �le and one user include �le. The preprocessor merges any user include �le into
the source program, and preprocesses it. The result is a modi�ed source code �le and a
preprocessor generated include �le. This preprocessor include �le contains all of the de�nitions
of variables used by any FORTRAN statements in the modi�ed source code �le. These two
�les are then compiled to produce an object code module, and linked to produce an executable
program �le, in the same manner as any other FORTRAN program.

Using The ALLBASE/SQL FORTRAN Preprocessor 2-1



Figure 2-1. Developing a FORTRAN Program

In other cases, the ALLBASE/SQL application program might consist of a main program unit
and one or more subprogram units in separate �les. In these cases, only source �les containing
embedded SQL code need to be preprocessed, as illustrated in Figure 2-2. However, each
program unit which contains SQL commands must be preprocessed and compiled before
the next program unit is preprocessed. Separately preprocessed program units that are
not immediately compiled will write over each other's preprocessor created include �le and
consequently create an error when compiled. You invoke the FORTRAN preprocessor and
compiler as many times as necessary to create the desired number of object code modules.

2-2 Using The ALLBASE/SQL FORTRAN Preprocessor



Figure 2-2. Developing a FORTRAN Program with Subprograms

During preprocessing, the FORTRAN preprocessor actually accesses the same
DBEnvironment to be used by your main program or subprogram unit at runtime. The
preprocessor stores a module in the DBEnvironment which is executed at runtime. The
module is used at runtime to optimize and validate DBEnvironment operations.

Using The ALLBASE/SQL FORTRAN Preprocessor 2-3



FORTRAN Preprocessor

Compiler Directives

The FORTRAN preprocessor supports the following compiler directives:

$[option]SET (identi�erlist)
$[option]IF (conditionlist)
$[option]ELSE
$[option]ENDIF
$[option]INCLUDE '�lename'

The $IF directive does not support logical operators. (Note that the compiler and
preprocessor may not support the same things.) Only simple TRUE and FALSE logical
variables are supported. If the $INCLUDE directive is used and the user include �le contains
embedded SQL commands, there cannot be duplicate host variable type declaration sections.
The program unit being preprocessed and the �le that is included cannot both contain
BEGIN DECLARE SECTION and END DECLARE SECTION commands. However, one or
the other may contain a host variable type declaration section.

The $ must be the �rst character in the line, and must be followed by any compiler directives.
For the Series 900, refer to the HP FORTRAN 77/XL Reference Manual for MPE XL on HP
3000 Series 900 Computers (Part Number 31501-90010) for more information on FORTRAN
compiler directives.

Preprocessor Modes

You can use the preprocessor in two modes:

1. Syntax checking mode, which only checks your SQL syntax.

2. Full preprocessing mode, which includes SQL syntax checking, creating compilable output,
storing a module in a DBEnvironment, and creating a �le that contains an installable copy
of the stored module.

As you develop the SQL portions of your FORTRAN programs, syntax checking mode is quite
useful. Preprocessing is quicker in this mode than in full preprocessing mode. In addition, you
can start debugging your SQL commands before the DBEnvironment itself is in place.

How to run the preprocessor in both modes is described later in this chapter under \Invoking
the FORTRAN Preprocessor."

2-4 Using The ALLBASE/SQL FORTRAN Preprocessor



Preprocessor Input and Output

Regardless of the mode you use, the following input �les must be available when you invoke
the FORTRAN preprocessor, as shown in Figure 2-3:

source �le: a �le containing the source code of the FORTRAN program with embedded
SQL commands for one or more DBEnvironments. The default input �lename is:

SQLIN

An alternative name can be speci�ed by using a �le equation as shown later in this chapter.

ALLBASE/SQL message catalog: a �le containing preprocessor messages and
ALLBASE/SQL error and warning messages. The formal �le designator for the message
catalog is as follows, with xxx being the numeric representation for the current native
language:

SQLCTxxx .PUB.SYS

When you run the preprocessor in full preprocessing mode, also ensure that the
DBEnvironment accessed by the program is available.

As Figure 2-3 points out, the FORTRAN preprocessor creates the following output �les:

modi�ed source �le: a �le containing the modi�ed version of the source code in the source
�le. The default �lename for this �le is:

SQLOUT

An alternative name can be speci�ed by using a �le equation.

variable include �le: the name for this �le, which contains variable declarations used by
FORTRAN statements that the preprocessor inserts into the modi�ed source �le is:

SQLVAR

Both SQLOUT and SQLVAR are created as permanent �les in order to invoke the
FORTRAN compiler, as shown in Figure 2-4.

ALLBASE/SQL message �le: a �le containing the preprocessor banner, error, and warning
messages, and other messages. The �le name for this �le is:

SQLMSG

installable module �le: a �le containing a copy of the module created by the preprocessor.
The �le name for this �le is:

SQLMOD

When you run the preprocessor in full preprocessing mode, the preprocessor also stores a
module in the DBEnvironment accessed by your program. The module is used at runtime to
execute DBEnvironment operations.

Using The ALLBASE/SQL FORTRAN Preprocessor 2-5



Figure 2-3. FORTRAN Preprocessor Input and Output

Figure 2-4. FORTRAN Compiler Input

2-6 Using The ALLBASE/SQL FORTRAN Preprocessor



If you want to preprocess several ALLBASE/SQL application programs in the same group
and account and compile and link the programs later, or you plan to compile a preprocessed
program during a future session, you should do the following for each program:

Before running the preprocessor, equate SQLIN to the name of the �le containing the
application you want to preprocess:

:FILE SQLIN = InFile

After running the preprocessor, save and rename the output �les if you do not want them
overwritten. For example:

:SAVE SQLOUT

:RENAME SQLOUT, OutFile

:SAVE SQLMOD

:RENAME SQLMOD, ModFile

:SAVE SQLVAR

:RENAME SQLVAR, VarFile

When you are ready to compile the program, you must equate the include �le name to its
standard ALLBASE/SQL name (SQLVAR).

Using The ALLBASE/SQL FORTRAN Preprocessor 2-7



Source File

The preprocessor source �le must contain at a minimum the following statements:

PROGRAM Statement

AnyStatement

END

When parsing the source �le, the FORTRAN preprocessor ignores all FORTRAN statements
and any FORTRAN compiler directives that are not supported. Only the following
information is parsed by the FORTRAN preprocessor:

The PROGRAM Statement or SUBROUTINE name. Unless you specify a module name in
the preprocessor invocation line, the preprocessor uses the PROGRAM Statement or the
SUBROUTINE name to name the module it stores. A module name can contain as many
as 20 bytes and must follow the rules governing ALLBASE/SQL basic names (given in the
ALLBASE/SQL Reference Manual ).

Statements found after the pre�x EXEC SQL. Follow the rules given in Chapter 3 for how and
where to embed these statements.

Statements found between the BEGIN DECLARE SECTION and END DECLARE
SECTION commands. These commands delimit a declare section, which contains
FORTRAN data description entries for the host variables used in that program or
subprogram unit. All program units (both main and subprogram) that contain SQL
commands, regardless of whether or not they contain host variables, must include the
BEGIN DECLARE SECTION and the END DECLARE SECTION commands in order to
create the variable include �le. Host variables are described in Chapter 4.

The FORTRAN compiler directives $SET, $IF, $ELSE, $ENDIF, and $INCLUDE are
supported by the FORTRAN preprocessor. All other compiler directives are ignored.

Figure 2-6 illustrates a source �le containing a sample program using the following SQL
commands, highlighted with shading:

INCLUDE SQLCA
BEGIN DECLARE SECTION
END DECLARE SECTION
WHENEVER
CONNECT
BEGIN WORK
COMMIT WORK
RELEASE
SQLEXPLAIN
SELECT

As the following interactive sample dialog illustrates, the program begins a DBE session for
PartsDBE, the sample DBEnvironment. It prompts the user for a part number, then displays
information about the part from the table PurchDB.Parts. Warning and error conditions are
handled with WHENEVER and SQLEXPLAIN commands. The program continues to prompt
for a part number until the user enters a slash (/) or until a serious error is encountered:

2-8 Using The ALLBASE/SQL FORTRAN Preprocessor



Program to SELECT specified rows from the Parts table -- forex2

Event List:

CONNECT TO PartsDBE

BEGIN WORK

SELECT specified row from the Parts table until user enters a "/"

COMMIT WORK

RELEASE PartsDBE

CONNECT TO PartsDBE

Enter PartNumber from Parts table or / to STOP > 1123-P-01

BEGIN WORK

SELECT PartNumber, PartName, SalesPrice

Part Number: 1123-P-01

Part Name: Central Processor

Sales Price: 500.00

Was retrieved from the PurchDB.Parts table!

COMMIT WORK

Enter PartNumber from Parts table or / to STOP > 1323-D-01

BEGIN WORK

SELECT PartNumber, PartName, SalesPrice

Part Number: 1323-D-01

Part Name: Floppy Diskette Drive

Sales Price: 200.00

Was retrieved from the PurchDB.Parts table!

COMMIT WORK

Enter PartNumber from Parts table or / to STOP > 1954-LP-01

BEGIN WORK

SELECT PartNumber, PartName, SalesPrice

Row not found!

COMMIT WORK

Enter PartNumber from Parts Table or / to STOP > 1823-PT-01

BEGIN WORK

SELECT PartNumber, PartName, SalesPrice

Part Number: 1823-PT-01

Part Name: Graphics Printer

Sales Price: 450.00

Was retrieved from the PurchDB.Parts table!

COMMIT WORK

Enter PartNumber from Parts table or / to STOP > /

RELEASE PartsDBE

END OF PROGRAM

Figure 2-5. Runtime Dialog of Program forex2

Using The ALLBASE/SQL FORTRAN Preprocessor 2-9



PROGRAM forex2

C

C *********************************************************

C * This program illustrates the use of SQL's SELECT *

C * command to retrieve one row or tuple of data at *

C * a time. This program executes a BEGIN WORK command *

C * before the SELECT command, and a COMMIT WORK command *

C * after executing the SELECT command. An indicator *

C * variable is also used for SalesPrice. *

C *********************************************************

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

CHARACTER Done

CHARACTER Abort

INTEGER MultipleRows

INTEGER Deadlock
CHARACTER*16 Response

C

C ****************************************************

C * Data Type Conversions : *

C * Character = SQL Char(1) *

C * Character*n = SQL Char(n) *

C * Character*n = SQL VarChar *

C * Double Precision = SQL Float *

C * Double Precision = SQL Decimal *

C * Integer = SQL Integer *

C * Integer*2 = SQL SmallInt *

C ****************************************************

C

C (* Begin Host Variable Declarations *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

CHARACTER*80 SQLMessageNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C

C (* End Host Variable Declarations *)

C

C

C

C

Figure 2-6. Program forex2

2-10 Using The ALLBASE/SQL FORTRAN Preprocessor



C

C (* Beginning of the Main Program *)

C

WRITE (*,*) CHAR(27), 'U'

WRITE (*,*) 'Program to SELECT specified rows from the Parts Table

1 -- forex2'

WRITE (*,*) ' '

WRITE (*,*) 'Event List:'

WRITE (*,*) ' CONNECT TO PartsDBE'

WRITE (*,*) ' CONNECT TO ../sampledb/PartsDBE'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' SELECT specified row from the Parts table until use

1r enters a "/"'

WRITE (*,*) ' COMMIT WORK'

WRITE (*,*) ' RELEASE PartsDBE'

C

CALL ConnectDBE

CALL QueryTable
CALL ReleaseDBE

C

STOP

END

C

C (* Beginning of the Sub-Routines *)

C

SUBROUTINE ConnectDBE

C (* Subroutine to Connect to PartsDBE *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTIONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR GOTO 500

C

WRITE (*,*) ' '

WRITE (*,*) 'CONNECT TO PartsDBE'NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL CONNECT TO 'PartsDBE'

GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

CALL ReleaseDBE

C

Figure 2-6. Program forex2 (page 2 of 8)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-11



600 RETURNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End of ConnectDBE Subroutine *)

C

SUBROUTINE BeginTransaction

C (* Subroutine to Begin Work *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTIONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR GOTO 500

C

WRITE (*,*) 'BEGIN WORK'NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN WORK

GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction
CALL ReleaseDBE

600 RETURNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End BeginTransaction Subroutine *)

C

SUBROUTINE EndTransaction

C (* Subroutine to Commit Work *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTIONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR GOTO 500

WRITE (*,*) 'COMMIT WORK'

Figure 2-6. Program forex2 (page 3 of 8)

2-12 Using The ALLBASE/SQL FORTRAN Preprocessor



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL COMMIT WORK

GOTO 600

500 CALL SQLStatusCheck

CALL ReleaseDBE

C

600 RETURNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End EndTransaction Subroutine *)

C

SUBROUTINE ReleaseDBE

C (* Subroutine to Release PartsDBE *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTIONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR GOTO 500

C
WRITE (*,*) 'RELEASE PartsDBE'NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL RELEASE

GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

C

600 RETURNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End ReleaseDBE Subroutine *)

C

C

C

C

C

C

C

C

C

C

C

C

Figure 2-6. Program forex2 (page 4 of 8)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-13



C

SUBROUTINE DisplayRow (PartNumber,PartName,SalesPrice,

1SalesPriceInd)

C (* Subroutine to Display a Selected Row *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

CHARACTER*80 SQLMessageNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C

WRITE(*,100) PartNumber

WRITE(*,110) PartName
IF (SalesPriceInd .LT. 0) THEN

WRITE (*,*) 'Sales Price is NULL'

ELSE

WRITE(*,120) SalesPrice

ENDIF

WRITE (*,*) 'Was retrieved from the PurchDB.Parts table!'

100 FORMAT(' Part Number: ',A16)

110 FORMAT(' Part Name: ',A30)

120 FORMAT(' SalesPrice: ',F10.2)

C

RETURN

END

C (* End DisplayRow Subroutine *)

C

SUBROUTINE SQLStatusCheck

C (* Subroutine to Check the Status of DeadLocks *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

LOGICAL Abort

INTEGER DeadLock

C

Figure 2-6. Program forex2 (page 5 of 8)

2-14 Using The ALLBASE/SQL FORTRAN Preprocessor



C

C

C (* Begin Host Variable Declarations *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessageNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C

C (* End Host Variable Declarations *)

C

DeadLock = -14024

Abort = .TRUE.

WRITE (*,*) Abort

IF (SQLCode .LT. DeadLock) THEN

Abort = .TRUE.

ELSE

Abort = .FALSE.

ENDIF

DO WHILE (SQLCode .NE. 0)NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL SQLExplain :SQLMessage

WRITE (*,*) SQLMessage
END DO

IF (Abort) THEN

CALL EndTransaction

CALL ReleaseDBE

ENDIF

RETURN

END

C (* End of SQLStatusCheck Subroutine *)

C

SUBROUTINE QueryTable

C (* Subroutine to Query the Parts table *)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

INTEGER DeadLock

INTEGER MultipleRows

INTEGER NotFound

INTEGER OK

C

C

C

Figure 2-6. Program forex2 (page 6 of 8)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-15



C

C (* Begin Host Variable Declarations *)NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

CHARACTER*80 SQLMessageNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
EXEC SQL END DECLARE SECTION

C

C (* End Host Variable Declarations *)

C

MultipleRows = -10002

DeadLock = -14024

NotFound = 100

OK = 0

C

DO WHILE (PartNumber .NE. '/')

WRITE(*,100)

100 FORMAT(/$,' Enter PartNumber from Parts table or / to STOP > ')
READ(*,110) PartNumber

110 FORMAT (A16)

C

IF (PartNumber .NE. '/' ) THEN

C

CALL BeginTransaction

WRITE(*,*) 'SELECT PartNumber, PartName, SalesPrice'

C x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice :SalesPriceInd

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

C

IF ((SQLWarn(3) .EQ. 'w') .OR. (SQLWarn(3) .EQ. 'W')) THEN

WRITE (*,*) 'SQL WARNING has occurred. The following row'

WRITE (*,*) 'of data may not be valid!'

CALL DisplayRow (PartNumber,PartName,SalesPrice,

1 SalesPriceInd)

ENDIF

C

C

C

C

C

C

Figure 2-6. Program forex2 (page 7 of 8)

2-16 Using The ALLBASE/SQL FORTRAN Preprocessor



C

IF (SQLCode .EQ. OK) THEN

CALL DisplayRow (PartNumber, PartName, SalesPrice,

1SalesPriceInd)

ELSEIF (SQLCode .EQ. NotFound) THEN

WRITE (*,*) 'Row not found!'

ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE(*,*) 'WARNING: More than one row qualifies!'

ELSE

CALL SQLStatusCheck

ENDIF

CALL EndTransaction

ENDIF

END DO

RETURN

END

C (* End QueryTable Subroutine *)

Figure 2-6. Program forex2 (page 8 of 8)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-17



Output File Attributes

When the source �le illustrated in Figure 2-6 is preprocessed, the attributes of the output �les
are created as follows:

:listftemp,2

TEMPORARY FILES FOR SOMEUSER.SOMEACCT,SOMEGRP

ACCOUNT= SOMEACCT GROUP= SOMEGRP

FILENAME CODE ----------LOGICAL RECORD--------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX

SQLMOD 250W FB 3 1023 1 208 1 10 (TEMP)

SQLMSG 254B VA 14 1023 1 128 1 8 (TEMP)

SQLOUT 80B FA 646 10000 16 384 3 32 (TEMP)

SQLVAR 80B FA 8 2048 16 128 1 26 (TEMP)

Modified Source File

As the FORTRAN preprocessor parses the source �le, it copies lines from the source �le into
the modi�ed source �le, comments out embedded SQL commands, and inserts information
around each embedded SQL command. Figure 2-7 illustrates the modi�ed source �le
generated for the source �le pictured in Figure 2-6. The shaded lines contain information
generated by the FORTRAN preprocessor.

In both preprocessing modes, the FORTRAN preprocessor:

Inserts a C in column 1 on each line containing an embedded SQL command to comment
out the SQL command for the FORTRAN compiler.

Inserts one include FORTRAN compiler directive after the Type Declaration Section. This
directive references the preprocessor generated include �le (variable include �le) during
compilation.

Inserts a \Start SQL Preprocessor" comment before, and an \End SQL Preprocessor"
comment after code that it modi�es.

In full preprocessing mode, the preprocessor also:

Generates a FORTRAN COMMON BLOCK declaration of SQLCA following the EXEC
SQL INCLUDE SQLCA command.

Generates FORTRAN statements providing conditional instructions following SQL
commands encountered after one of the following SQL commands: WHENEVER
SQLERROR, WHENEVER SQLWARNING, and WHENEVER NOT FOUND.

Generates FORTRAN statements that call ALLBASE/SQL external procedures at runtime.
These calls reference the module stored by the preprocessor in the DBEnvironment for
execution at runtime. Variables used by these external calls are de�ned in the variable
declaration include �le.

Inserts a \Start Inserted Statements" comment before generated information.

2-18 Using The ALLBASE/SQL FORTRAN Preprocessor



Caution Although you can access the modi�ed source �le and the variable declaration
�le with an editor, you should never change the information generated by the
FORTRAN preprocessor. Your DBEnvironment or other �les on the system
could be damaged at runtime if preprocessor generated statements are altered.

If you change non-preprocessor generated statements in the modi�ed source �le, make the
changes to the source �le, re-preprocess the source �le, and re-compile the output �les before
putting the application program into production.

Using The ALLBASE/SQL FORTRAN Preprocessor 2-19



x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

x
x
x
x
x
x
x
x
x
x
x
x
x
x
W

C**** Start SQL Preprocessor ****

$ALIAS SQLXCNHF = 'SQLXCNHF' PASCAL \

$ (%REF,%REF,%VAL,%VAL)

$ALIAS SQLXCO = 'SQLXCO' PASCAL \

$ (%REF,%VAL,%REF)

$ALIAS SQLXEXIF = 'SQLXEXIF' PASCAL \

$ (%REF,%REF,%VAL)

$ALIAS SQLXEXUF = 'SQLXEXUF' PASCAL \

$ (%REF,%REF,%VAL,%REF,%VAL,%VAL,%REF,%VAL)

$ALIAS SQLXFE = 'SQLXFE' PASCAL \

$ (%REF,%REF,%REF,%VAL,%REF,%VAL,%VAL,%VAL)

$ALIAS SQLXID = 'SQLXID' PASCAL \
$ (%REF,%REF,%REF,%VAL,%REF,%VAL,%VAL)

$ALIAS SQLXOPKF = 'SQLXOPKF' PASCAL \

$ (%REF,%REF,%REF,%VAL,%REF,%VAL,%VAL)

$ALIAS SQLXPLNF = 'SQLXPLNF' PASCAL \

$ (%REF,%REF,%VAL,%VAL)

$ALIAS SQLXPREF = 'SQLXPREF' PASCAL \

$ (%REF,%REF,%VAL,%REF,%VAL)

$ALIAS SQLXSECF = 'SQLXSECF' PASCAL \

$ (%REF,%REF,%REF,%VAL)

$ALIAS SQLXST = 'SQLXST' PASCAL \

$ (%REF)

$ALIAS SQLXSVPF = 'SQLXSVPF' PASCAL \

$ (%REF,%VAL,%REF,%REF)

C**** End SQL Preprocessor ****

PROGRAM forex2

C *********************************************************

C * This program illustrates the use of SQL's SELECT *

C * command to retrieve one row or tuple of data at *

C * a time. This program executes a BEGIN WORK command *

C * before the SELECT command, and a COMMIT WORK command *

C * after executing the SELECT command. An indicator *

C * variable is also used for SalesPrice. *

C *********************************************************x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C (* Begin SQL Communication Area *)

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

INTEGER SQLERRD(6)

CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

Figure 2-7. Modified Source File for Program forex2

2-20 Using The ALLBASE/SQL FORTRAN Preprocessor



x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
�

CHARCTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,

1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

CHARACTER Done

CHARACTER Abort

INTEGER MultipleRows

INTEGER Deadlock

CHARACTER*16 Response

C

C ****************************************************

C * Data Type Conversions : *

C * Character = SQL Char(1) *

C * Character*n = SQL Char(n) *

C * Character*n = SQL VarChar *

C * Double Precision = SQL Float *

C * Double Precision = SQL Decimal *

C * Integer = SQL Integer *

C * Integer*2 = SQL SmallInt *

C ****************************************************

C (* Begin Host Variable Declarations *)

Cx
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

x
x
x
x
N

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

CHARACTER*16 PartNumber
CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

INTEGER*2 SalesPriceInd

C SQLIND SalesPriceInd

CHARACTER*80 SQLMessagex
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C

C (* End Host Variable Declarations *)

C

C (* Beginning of the Main Program *)

CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
C**** End SQL Preprocessor ****

Figure 2-7. Modified Source File for Program forex2 (page 2 of 13)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-21



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
INCLUDE 'SQLVAR'

WRITE (*,*) CHAR(27), 'U'

WRITE (*,*) 'Program to SELECT specified rows from the Parts Table

1 -- forex2'

WRITE (*,*) ' '

WRITE (*,*) 'Event List:'

WRITE (*,*) ' CONNECT TO PartsDBE'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' SELECT specified row from the Parts table until use

1r enters a "/"'

WRITE (*,*) ' COMMIT WORK'

WRITE (*,*) ' RELEASE PartsDBE'

C

CALL ConnectDBE

CALL QueryTable

CALL ReleaseDBE

C

STOP

END
C

C (* Beginning of the Sub-Routines *)

C

SUBROUTINE ConnectDBE

C (* Subroutine to Connect to PartsDBE *)

Cx
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C (* Begin Host Variable Declarations *)

Cx
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
�

C**** Start Inserted Statements ****
CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

INTEGER SQLERRD(6)

CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

Figure 2-7. Modified Source File for Program forex2 (page 3 of 13)

2-22 Using The ALLBASE/SQL FORTRAN Preprocessor



x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
�

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,
1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C

C**** End SQL Preprocessor ****

INCLUDE 'SQLVAR'

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR GOTO 500

C

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

WRITE (*,*) ' '

WRITE (*,*) 'CONNECT TO PartsDBE'x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

x
x
x
x
x
x
a

C**** Start SQL Preprocessor ****

C EXEC SQL CONNECT TO 'PartsDBE'

C**** Start Inserted Statements ****

CALL SQLXCO(SQLCAID,264,'00AE0000506172747344424520202020202020202

1020202020202020202020202020202020202020202020202020202020202020202

2020202020202020202020202020202020202020202020202020202020202020202

3020202020202020202020202020202020202020202020202020202020202020202

40202020202020202020202020')

IF (SQLCODE .LT. 0) THEN

GO TO 500

END IF

C**** End SQL Preprocessor ****

GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

CALL ReleaseDBE

C

600 RETURNx
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR CONTINUE

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

END

C (* End of ConnectDBE Subroutine *)

SUBROUTINE BeginTransaction

C (* Subroutine to Begin Work *)

Figure 2-7. Modified Source File for Program forex2 (page 4 of 13)
Using The ALLBASE/SQL FORTRAN Preprocessor 2-23



x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

C**** Start SQL Preprocessor ****
C EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

INTEGER SQLERRD(6)

CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,

1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT
C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C

C**** End SQL Preprocessor ****

INCLUDE 'SQLVAR'

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR GOTO 500

C

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

WRITE (*,*) 'BEGIN WORK'x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN WORK

C**** Start Inserted Statements ****

CALL SQLXCO(SQLCAID,16,'00A6007F00110061')

Figure 2-7. Modified Source File for Program forex2 (page 5 of 13)

2-24 Using The ALLBASE/SQL FORTRAN Preprocessor



x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

IF (SQLCODE .LT. 0) THEN

GO TO 500

END IF

C**** End SQL Preprocessor ****

GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

CALL ReleaseDBE

600 RETURNx
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR CONTINUE

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

END

C (* End BeginTransaction Subroutine *)

C

SUBROUTINE EndTransaction

C (* Subroutine to Commit Work *)x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)
C

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

INTEGER SQLERRD(6)

CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,

1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

Figure 2-7. Modified Source File for Program forex2 (page 6 of 13)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-25



x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
?

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C

C**** End SQL Preprocessor ****

INCLUDE 'SQLVAR'
C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR GOTO 500

C

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

WRITE (*,*) 'COMMIT WORK'

C**** Start SQL Preprocessor ****

C EXEC SQL COMMIT WORK

C**** Start Inserted Statements ****

CALL SQLXCO(SQLCAID,8,'00A10000')

IF (SQLCODE .LT. 0) THEN

GO TO 500

END IF

C**** End SQL Preprocessor ****

GOTO 600

500 CALL SQLStatusCheck

CALL ReleaseDBE

600 RETURNx
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR CONTINUE

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

END

C (* End EndTransaction Subroutine *)

C

SUBROUTINE ReleaseDBE

C (* Subroutine to Release PartsDBE *)x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C (* Begin Host Variable Declarations *)

Cx
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

x
x
x
x
�

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

Figure 2-7. Modified Source File for Program forex2 (page 7 of 13)

2-26 Using The ALLBASE/SQL FORTRAN Preprocessor



x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
?

INTEGER SQLERRD(6)

CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,

1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C

C**** End SQL Preprocessor ****
INCLUDE 'SQLVAR'

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR GOTO 500

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

WRITE (*,*) 'RELEASE PartsDBE'

C**** Start SQL Preprocessor ****

C EXEC SQL RELEASE

C**** Start Inserted Statements ****

CALL SQLXCO(SQLCAID,56,'00B200002020202020202020202020202020202020

1202020FFFFFFFF')

IF (SQLCODE .LT. 0) THEN

GO TO 500

END IF

C**** End SQL Preprocessor ****

GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

600 RETURNx
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR CONTINUE

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

END

C (* End ReleaseDBE Subroutine *)

Figure 2-7. Modified Source File for Program forex2 (page 8 of 13)
Using The ALLBASE/SQL FORTRAN Preprocessor 2-27



SUBROUTINE DisplayRow (PartNumber,PartName,SalesPrice,

1SalesPriceInd)

C (* Subroutine to Display a Selected Row *)

Cx
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C (* Begin Host Variable Declarations *)

C

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

INTEGER SQLERRD(6)
CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,

1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPricex
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�

INTEGER*2 SalesPriceInd

C SQLIND SalesPriceInd

CHARACTER*80 SQLMessagex
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C

C**** End SQL Preprocessor ****

INCLUDE 'SQLVAR'

WRITE(6,100) PartNumber

Figure 2-7. Modified Source File for Program forex2 (page 9 of 13)

2-28 Using The ALLBASE/SQL FORTRAN Preprocessor



NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
WRITE(6,110) PartName

IF (SalesPriceInd .LT. 0) THEN

WRITE (*,*) 'Sales Price is NULL'

ELSENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
WRITE(6,120) SalesPrice

ENDIF

WRITE (*,*) 'Was retrieved from the PurchDB.Parts table!'

100 FORMAT(' Part Number: ',A16)

110 FORMAT(' Part Name: ',A30)

120 FORMAT(' SalesPrice: ',F10.2)

C

RETURN

END

C (* End DisplayRow Subroutine *)

C

SUBROUTINE SQLStatusCheck

C (* Subroutine to Check the Status of DeadLocks *)

Cx
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
a

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

INTEGER SQLERRD(6)

CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,
1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

LOGICAL Abort

INTEGER DeadLock

Figure 2-7. Modified Source File for Program forex2 (page 10 of 13)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-29



C (* Begin Host Variable Declarations *)x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

CHARACTER*80 SQLMessagex
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

C

C**** End SQL Preprocessor ****

INCLUDE 'SQLVAR'

DeadLock = -14024

Abort = .TRUE.

WRITE (*,*) Abort

IF (SQLCode .LT. DeadLock) THEN

Abort = .TRUE.

ELSE

Abort = .FALSE.

ENDIF

DO WHILE (SQLCode .NE. 0)x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

C**** Start SQL Preprocessor ****

C EXEC SQL SQLExplain :SQLMessage

C**** Start Inserted Statements ****

CALL SQLXPLNF(SQLCAID,SQLTMP,80,0)

READ(SQLTMP,'(A80)')SQLMessage

C**** End SQL Preprocessor ****

WRITE (*,*) SQLMessage

END DO

IF (Abort) THEN

CALL EndTransaction

CALL ReleaseDBE

ENDIF

RETURN
END

C (* End of SQLStatusCheck Subroutine *)

C

SUBROUTINE QueryTable

C (* Subroutine to Query the Parts table *)

Cx
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

x
x
x
x
x
�

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC

INTEGER SQLCODE

Figure 2-7. Modified Source File for Program forex2 (page 11 of 13)

2-30 Using The ALLBASE/SQL FORTRAN Preprocessor



x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

x
x
x
x
x
x
x
x
x
x
a

INTEGER SQLERRL

CHARACTER SQLERRM*256

CHARACTER SQLERRP*8

INTEGER SQLERRD(6)
CHARACTER SQLWARN(0:7)

INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

2 (SQLWARN2,SQLWARN(2)),

3 (SQLWARN3,SQLWARN(3)),

4 (SQLWARN4,SQLWARN(4)),

5 (SQLWARN5,SQLWARN(5)),

6 (SQLWARN6,SQLWARN(6)),

7 (SQLWARN7,SQLWARN(7))

COMMON /SQLCA/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,

1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

INTEGER DeadLock

INTEGER MultipleRows

INTEGER NotFound

INTEGER OK

C (* Begin Host Variable Declarations *)x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a

C**** Start SQL Preprocessor ****

C EXEC SQL BEGIN DECLARE SECTION

C**** End SQL Preprocessor ****

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPricex
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�
x
�

INTEGER*2 SalesPriceInd

C SQLIND SalesPriceInd

CHARACTER*80 SQLMessagex
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

x
x
x
?

C**** Start SQL Preprocessor ****

C EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

C

C**** End SQL Preprocessor ****

INCLUDE 'SQLVAR'

MultipleRows = -10002

DeadLock = -14024

NotFound = 100

OK = 0

DO WHILE (PartNumber .NE. '/')NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
WRITE(6,100)

100 FORMAT(/$,' Enter PartNumber from Parts table or / to STOP > ')

READ(5,110) PartNumber

Figure 2-7. Modified Source File for Program forex2 (page 12 of 13)

Using The ALLBASE/SQL FORTRAN Preprocessor 2-31



110 FORMAT (A16)

C

IF (PartNumber .NE. '/' ) THEN

C

CALL BeginTransaction

WRITE(*,*) 'SELECT PartNumber, PartName, SalesPrice'

Cx
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

x
x
x
x
x
x
x
x
x
N

C**** Start SQL Preprocessor ****

C EXEC SQL SELECT PartNumber, PartName, SalesPrice

C 1 INTO :PartNumber,

C 2 :PartName,

C 3 :SalesPrice :SalesPriceInd

C 4 FROM PurchDB.Parts

C 5 WHERE PartNumber = :PartNumber

C

C**** Start Inserted Statements ****

WRITE(SQLTMP,'(A16)')PartNumber

CALL SQLXFE(SQLCAID,SQLOWN,SQLMDN,1,SQLTMP,16,56,1)

IF (SQLCODE .EQ. 0) THEN

READ(SQLTMP,'(A16,A30,A8,A2)')PartNumber,PartName,SalesPrice,Sales

1PriceInd

ELSE

END IF

C**** End SQL Preprocessor ****

IF ((SQLWarn(3) .EQ. 'w') .OR. (SQLWarn(3) .EQ. 'W')) THEN

WRITE (*,*) 'SQL WARNING has occured. The following row'

WRITE (*,*) 'of data may not be valid!'

CALL DisplayRow (PartNumber,PartName,SalesPrice,

1 SalesPriceInd)

ENDIF

C

IF (SQLCode .EQ. OK) THEN

CALL DisplayRow (PartNumber, PartName, SalesPrice,

1 SalesPriceInd)

ELSEIF (SQLCode .EQ. NotFound) THEN
WRITE (*,*) 'Row not found!'

ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE(*,*) 'WARNING: More than one row qualifies!'

ELSE

CALL SQLStatusCheck

ENDIF

CALL EndTransaction

ENDIF

END DO

RETURN

END

C (* End QueryTable Subroutine *)

Figure 2-7. Modified Source File for Program forex2 (page 13 of 13)

2-32 Using The ALLBASE/SQL FORTRAN Preprocessor



Variable Declaration Include File

The preprocessor generated include �le (SQLVAR), contains declarations for variables
referenced in preprocessor generated statements in the modi�ed source �le. Figure 2-8
illustrates the variable declaration include �le that corresponds to the modi�ed source �le
in Figure 2-7. Note in Figure 2-7 that just after inserting the EXEC SQL END DECLARE
SECTION declaration into the modi�ed source �le, the preprocessor inserted the following
FORTRAN compiler directive to reference the variable declaration include �le:

$INCLUDE 'SQLVAR'

This directive is always inserted after the Host Variable Type Declaration Section.

When you use �le equations to redirect the include �les, remember that the preprocessor
always inserts the same $INCLUDE directive. Therefore, insure that the applicable �le
equations are in e�ect when you preprocess and when you compile. When the preprocessor is
invoked, the following �le equation must be in e�ect.

:FILE SQLVAR = MYVAR

Then when the FORTRAN compiler is invoked, the following �le equation must be in e�ect:

:FILE SQLVAR = MYVAR

:FTNC MYSQLPRG, $NEWPASS, $NULL

C temporary area

CHARACTER*112 SQLTMP

C ownership information

CHARACTER*20 SQLOWN

CHARACTER*20 SQLMDN

DATA SQLOWN /'JOANN@HPSQL '/

DATA SQLMDN /'FOREX2 '/
C

Figure 2-8. Sample Variable Declaration Include File

Using The ALLBASE/SQL FORTRAN Preprocessor 2-33



ALLBASE/SQL Message File

Messages placed in SQLMSG come from the ALLBASE/SQL message catalog. The default
catalog is SQLCTxxx.PUB.SYS. For native language users, the name of the catalog is
SQLCT000.PUB.SYS, where NATIVE-3000 is the message catalog.

If the default catalog cannot be opened, ALLBASE/SQL returns an error message
indicating that the catalog �le is not available. If the native language catalog is available,
ALLBASE/SQL returns a warning message, indicating that the default catalog is being used.
SQLMSG messages come in four four parts:

1. A banner:

MON, JUL 10, 1991, 4:48 PM

HP36216-02A.E1.16 FORTRAN Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED

Banners are displayed when ISQL, SQLUtil, or a preprocessor is invoked.

2. A summary of the preprocessor invocation conditions:

SQLIN = FOREX2.SOMEGROUP.SOMEACCT

DBEnvironment = PartsDBE

Module Name = FOREX2

3. Warnings and errors encountered during preprocessing:

SELECT PartNumber, PartName, SalesPrice INTO :PartNumber, :SalesPrice

:SalesPriceInd FROM PurchDB.Parts WHERE PartNumber = :PartNumber;

****** ALLBASE/SQL errors (DBERR 10952)

****** in SQL statement ending in line 290

*** Selectlist has 3 items and host variable buffer has 2. (DBERR 2762)

There are errors. No sections stored.

4. A summary of the results of preprocessing:

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

2-34 Using The ALLBASE/SQL FORTRAN Preprocessor



Both the banner and the preprocessing summary output are echoed to the standard output,
the terminal.

As illustrated in Figure 2-9, a line number is often provided in SQLMSG. This line number
references the line in the modi�ed source �le containing the command in question. A message
accompanied by a number may also appear. You can refer to the ALLBASE/SQL Message
Manual for additional information on the exception condition when these numbered messages
appear.

:EDITOR

HP32201A.07.20 EDIT/3000 MON, JUL 10, 1990, 4:49 PM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG; L ALL UNN

FILE UNNUMBERED

SQLIN = FOREX2.SOMEGROUP.SOMEACCT

DBEnvironment = PartsDBE

Module Name = FOREX2

SELCT PartNumber, PartName, SalesPrice INTO :PartNumber,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE PartNumber =

:PartNumber;

****** ALLBASE/SQL errors (DBERR 10952)

****** in SQL statement ending in line 290

*** Selectlist has 3 items and host variable buffer has 2. (DBERR 2762)

There are errors. No sections stored.

1 ERRORS 0 WARNINGS

END OF PROCESSING.

:

Figure 2-9. Sample SQLMSG Showing Error

Using The ALLBASE/SQL FORTRAN Preprocessor 2-35



As Figure 2-10 illustrates, the preprocessor can terminate with the warning message:

****** ALLBASE/SQL warnings. (DBWARN 10602)

when the name of an object in the source �le does not match the name of any object in the
system catalog. Although a section is stored for the semantically incorrect command, the
section is marked as invalid and will not execute at runtime if it cannot be validated.

:EDITOR
HP32201A.07.20 EDIT/3000 MON, JUL 10, 1991, 4:49 PM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG; L ALL UNN

FILE UNNUMBERED

.

.

.

SQLIN = FOREX2.SOMEGROUP.SOMEACCT

DBEnvironment = PartsDBE

Module Name = FOREX2

SELECT ParNumber, PartName, SalesPrice INTO :PartNumber,

:PartName :SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE

ParNumber = :PartNumber;

****** ALLBASE/SQL warnings. (DBWARN 10602)

****** in SQL statement ending in line 290

*** Column PARNUMBER not found. (DBERR 2211)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS

END OF PREPROCESSING

Figure 2-10. Sample SQLMSG Showing Warning

2-36 Using The ALLBASE/SQL FORTRAN Preprocessor



Installable Module File

When the FORTRAN preprocessor stores a module in the system catalog of a
DBEnvironment at preprocessing time, it places a copy of the module in an installable
module �le. The name of this �le is SQLMOD. The module in this �le can be installed into a
DBEnvironment di�erent from the DBEnvironment accessed at preprocessing time by using
the INSTALL command in ISQL. For example:

:RUN PSQLFOR.PUB.SYS;INFO = "DBEnvironmentName&

(MODULE (InstalledModuleName) DROP)"

If you want to preserve the SQLMOD �le after

preprocessing, you must keep it as a permanent

�le. Rename SQLMOD after making it permanent.

:SAVE SQLMOD

:RENAME SQLMOD, MYMOD

Before invoking ISQL to install this module �le,

you may have to transport it and its related

program �le to the machine containing the target

DBEnvironment. After all the �les are restored

on the target machine, you invoke ISQL on the

machine containing the target DBEnvironment.

: isql

In order to install the module, you need CONNECT

or DBA authority in the target DBEnvironment:

isql=> CONNECT TO 'PartsDBE.SOMEGROUP.SOMEACCT';

isql=> INSTALL;

File name> MYMOD.SOMEGROUP.SOMEACCT;

Name of module in this file: JOANN@SOMEACCT.FOREX2

Number of sections installed: 1

COMMIT WORK to save to DBEnvironment.

isql=> COMMIT WORK;

isql=>

Using The ALLBASE/SQL FORTRAN Preprocessor 2-37



Stored Sections

In full preprocessing mode, the preprocessor stores a section for each embedded command
except:

BEGIN DECLARE SECTION OPEN

BEGIN WORK PREPARE

CLOSE RELEASE

COMMIT WORK ROLLBACK WORK

CONNECT SAVEPOINT

DECLARE START DBE

DELETE WHERE CURRENT STOP DBE

END DECLARE SECTION SQLEXPLAIN

EXECUTE TERMINATE USER
EXECUTE IMMEDIATE UPDATE WHERE CURRENT

FETCH WHENEVER

INCLUDE

The commands listed above either require no authorization to execute or are executed based
on information contained in the compilable preprocessor output �les.

When the preprocessor stores a section, it actually stores what are known as an input tree and
a run tree. The input tree consists of an uncompiled command. The run tree is the compiled,
executable form of the command.

If at runtime a section is valid , ALLBASE/SQL executes the appropriate run tree when
the SQL command is encountered in the application program. If a section is invalid ,
ALLBASE/SQL determines whether the objects referenced in the sections exist and whether
current authorization criteria are satis�ed. When an invalid section can be validated,
ALLBASE/SQL dynamically recompiles the input tree to create an executable run tree and
executes the command. When a section cannot be validated, the command is not executed,
and an error condition is returned to the program.

There are three types of sections:

Sections for executing the SELECT command associated with a DECLARE CURSOR
command.

Sections for executing the SELECT command associated with a CREATE VIEW command.

Sections for all other commands for which the preprocessor stores a section.

Figure 2-11 illustrates the kind of information in the system catalog that describes each type
of stored section. The query result illustrated was extracted from the system view named
SYSTEM.SECTION by using ISQL. The columns in Figure 2-11 have the following meanings:

NAME: This column contains the name of the module to which a section belongs. You
specify a module name when you invoke the preprocessor; the module name is by default
the program name from the PROGRAM Statement. If you are supplying a module name in
a language other than NATIVE-3000 (ASCII), be sure it is in the same language as that of
the DBEnvironment.

OWNER: This column identi�es the owner of the module. You specify an owner name when
you invoke the preprocessor; the owner name is by default the userid associated with the
preprocessing session. If you are supplying an owner name in a native language other than
NATIVE-3000 (ASCII), be sure it is in the same language as that of the DBEnvironment.

2-38 Using The ALLBASE/SQL FORTRAN Preprocessor



DBEFILESET: This column indicates the DBEFileSet with which DBEFiles housing the
section are associated.

SECTION: This column gives the section number. Each section associated with a module
is assigned a number by the preprocessor as it parses the related SQL command at
preprocessing time.

TYPE: This column identi�es the type of section:

1 = SELECT associated with a cursor.
2 = SELECT de�ning a view.
0 = All other sections.

VALID: This column identi�es whether a section is valid or invalid:

0 = invalid
1 = valid

isql=> SELECT NAME,OWNER,DBEFILESET,SECTION,TYPE,VALID FROM SYSTEM.SECTION;

---------------------------------------------------------------------------

NAME |OWNER |DBEFILESET |SECTION |TYPE |VALID

--------------------|------------|-----------------|---------|------|------

TABLE |SYSTEM |SYSTEM | 0 | 2| 0

COLUMN |SYSTEM |SYSTEM | 0 | 2| 0

INDEX |SYSTEM |SYSTEM | 0 | 2| 0

SECTION |SYSTEM |SYSTEM | 0 | 2| 0

DBEFILESET |SYSTEM |SYSTEM | 0 | 2| 0

DBEFILE |SYSTEM |SYSTEM | 0 | 2| 0

SPECAUTH |SYSTEM |SYSTEM | 0 | 2| 0

TABAUTH |SYSTEM |SYSTEM | 0 | 2| 0

COLAUTH |SYSTEM |SYSTEM | 0 | 2| 0

MODAUTH |SYSTEM |SYSTEM | 0 | 2| 0

GROUP |SYSTEM |SYSTEM | 0 | 2| 0

VIEWDEF |SYSTEM |SYSTEM | 0 | 2| 0

HASH |SYSTEM |SYSTEM | 0 | 2| 0

CONSTRAINT |SYSTEM |SYSTEM | 0 | 2| 0
CONSTRAINTCOL |SYSTEM |SYSTEM | 0 | 2| 0

CONSTRAINTINDEX |SYSTEM |SYSTEM | 0 | 2| 0

COLDEFAULT |SYSTEM |SYSTEM | 0 | 2| 0

TEMPSPACE |SYSTEM |SYSTEM | 0 | 2| 0

PARTINFO |PURCHDB |SYSTEM | 0 | 2| 0

VENDORSTATISTICS |PURCHDB |SYSTEM | 0 | 2| 0

FOREX2 |JOANN@ACCT |SYSTEM | 1 | 0| 1

FOREX7 |BILL@SOMEACT|SYSTEM | 1 | 1| 1

FOREX7 |BILL@SOMEACT|SYSTEM | 2 | 0| 1

---------------------------------------------------------------------------

Number of rows selected is 16.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

---------------------------------------------------------------------------

Figure 2-11. Information in SYSTEM.SECTION on Stored Sections

Using The ALLBASE/SQL FORTRAN Preprocessor 2-39



The �rst eleven rows in this query result describe the sections stored for the system views.
The next two rows describe the two views in the sample database: PurchDB.PartInfo and
PurchDB.VendorStatistics . Views are always stored as invalid sections, because the run tree is
always generated at run time.

The remaining rows describe sections associated with two preprocessed programs. FOREX2
contains only one section, for executing the SELECT command in the program illustrated
in Figure 2-5. Another program may contain two sections, one for executing the SELECT
command associated with a DECLARE CURSOR command and one for executing a FETCH
command.

Stored sections remain in the system catalog until they are deleted with the DROP MODULE
command or by invoking the preprocessor with the DROP option:

isql=> DROP MODULE FOREX2;

or

: RUN PSQLFOR.PUB.SYS;INFO = "PartsDBE (MODULE (FOREX2) DROP)

Stored sections are marked invalid when:

The UPDATE STATISTICS command is executed.

Tables accessed in the program are dropped, altered, or assigned new owners.

Indexes or DBEFileSets related to tables accessed in the program are changed.

Module owner authorization changes occur that a�ect the execution of embedded
commands.

When an invalid section is validated at run time, the validated section is committed when
the program issues a COMMIT WORK command. If a COMMIT WORK command is not
executed, ALLBASE/SQL must re-validate the section again the next time the program is
executed. For this reason, you should embed COMMIT WORK commands following SELECT
commands since COMMIT WORK may be needed to commit a section, even when data is not
changed by a program.

Invoking The Fortran Preprocessor

The FORTRAN preprocessor can be invoked in either

Syntax checking mode, or

Full preprocessing mode

This section describes how to invoke the preprocessor both interactively and in the
background.

2-40 Using The ALLBASE/SQL FORTRAN Preprocessor



Syntax Checking Mode

You use the following command to only check the syntax of the SQL commands embedded in
the source code �le.

Syntax

:RUN PSQLFOR.PUB.SYS;INFO="(SYNTAX)"

1. The preprocessor does not access a DBEnvironment when it is run in this mode.

2. When performing only syntax checking, the preprocessor does not convert the SQL
commands into FORTRAN constructs. Therefore the modi�ed source code �le does not
contain any preprocessor generated calls to ALLBASE/SQL external procedures.

3. The include and installable module �les are created, but incomplete.

Authorization

You do not need ALLBASE/SQL authorization when you use the preprocessor to only check
SQL syntax.

Using The ALLBASE/SQL FORTRAN Preprocessor 2-41



Example

:FILE SQLIN = FOREX2

:RUN PSQLFOR.PUB.SYS; INFO= "(SYNTAX)"

MON, JUL 10, 1989, 4:48 PM

HP36216-02A.E1.16 FORTRAN Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

:EDITOR

HP32201A.07.20 EDIT/3000 TUE, JUN 21, 1991, 2:00 PM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG; L ALL UNN

FILE UNNUMBERED
...

SQLIN = FOREX2.SOMEGROUP.SOMEACCT

SELCT PartNumber, PartName, SalesPrice INTO :PartNumber, :PartName,

:SalesPrice :SalesPriceInd FROM PurchDB.Parts WHERE PartNumber =

:PartNumber;

****** ALLBASE/SQL errors. (DBERR 10977)

****** in SQL statement ending in line 290

*** Syntax error. (DBERR 1001)

Syntax checked.

1 ERRORS 0 WARNINGS

END OF PREPROCESSING

The line 290 referenced in SQLMSG is the line in

the source �le where the erroneous SQL command ends.

2-42 Using The ALLBASE/SQL FORTRAN Preprocessor



Full Preprocessing Mode

You use the following command to both check the embedded SQL command syntax and create
compilable output �les that can be processed by the FORTRAN compiler. This command
also stores a module in the DBEnvironment named and creates a �le containing an installable
version of the module.

Syntax

:RUN PSQLFOR.PUB.SYS;

INFO="DBEnvironmentName

2
66664 (

8>>>><
>>>>:

MODULE(ModuleName)

OWNER (OwnerName )8<
:

DROP

�
PRESERVE

REVOKE

�

NODROP

9=
;

9>>>>=
>>>>;
| . . . |)

3
77775"

Parameters

DBEnvironmentName identi�es the DBEnvironment in which a module is to be stored.
You may use a backreference for a �le de�ned in a �le for this
parameter.

ModuleName Assigns a name to the stored module. Module names must follow
the rules governing ALLBASE/SQL basic names as described in
the ALLBASE/SQL Reference Manual . If a module name is not
speci�ed, the preprocessor uses the PROGRAM statement name as
the module name.

OwnerName Associates the stored module with a user's log-on name, a class
name, or a group name. You can specify an owner name for the
module if you have DBA authority in the DBEnvironment where
the module is to be stored. You can also specify a group as owner
if you are a member of the group. If not speci�ed, the owner name
is your log-on name (USER@ACCOUNT ). Any object names in
the source �le not quali�ed with an owner name are quali�ed with
this OwnerName.

DROP Deletes any module currently stored in the DBEnvironment by the
ModuleName and OwnerName speci�ed in the command string. If
not speci�ed, any module having these names is not dropped, and
existing RUN authorities for that module are preserved.

PRESERVE Is speci�ed when the program being preprocessed already has a
stored module and you want to preserve existing RUN authorities
for that module. If not speci�ed, PRESERVE is assumed.
PRESERVE cannot be speci�ed unless DROP is also speci�ed.

REVOKE Is speci�ed when the program being preprocessed already has a
stored module and you want to revoke existing RUN authorities
for that module. REVOKE cannot be speci�ed unless DROP is
also speci�ed.

NODROP Terminates preprocessing if any module currently exists in the
DBEnvironment with the ModuleName and OwnerName speci�ed
in the INFO string. If not speci�ed, NODROP is assumed.

Using The ALLBASE/SQL FORTRAN Preprocessor 2-43



Description

1. When the program being preprocessed already has a stored module, be sure to use the
DROP option, or else an error will result. Also, be sure that no one is currently executing
the module when you invoke the preprocessor. To avoid conicts, do your preprocessing in
single-user mode, during o� hours.

2. The preprocessor starts a DBE session in the DBEnvironment named in the preprocessor
command by issuing a CONNECT TO 'DBEnvironmentName' command. If the autostart ag
is OFF, the DBE session can be initiated only after a START DBE command has been
processed.

3. If the DBEnvironment to be accessed is operating in single-user mode, preprocessing can
occur only when another DBE session for the DBEnvironment does not exist.

4. When the preprocessor's DBE session begins, ALLBASE/SQL processes a BEGIN
WORK command. When preprocessing is completed, the preprocessor submits a
COMMIT WORK command, and any sections created are committed to the system
catalog. If the preprocessor detects an error in the source �le, it processes a ROLLBACK
WORK command before terminating, and no sections are stored in the DBEnvironment.
Preprocessor warnings do not prevent sections from being stored.

5. During preprocessing, system catalog pages accessed for embedded commands are
locked. In multiuser mode, other DBE sessions accessing the same objects must wait,
and the potential for a deadlock exists. Therefore minimize competing transactions
when preprocessing an application program. Refer to the ALLBASE/SQL Database
Administration Guide for information on operations that lock system catalog pages.

6. For improved runtime performance, use ISQL to submit the UPDATE STATISTICS
command before preprocessing for each table accessed in a data manipulation command
when an index on that table has been added or dropped and when data in the table is
often changed.

7. If you specify an OwnerName or ModuleName in a language other than NATIVE-3000
(ASCII), be sure that the language you are using is also the language of the
DBEnvironment in which the module will be stored.

Authorization

To preprocess a program for the �rst time in this mode, you need CONNECT or DBA
authority in the DBEnvironment the program accesses. After a stored module exists, you need
module OWNER or DBA authority in the DBEnvironment.

2-44 Using The ALLBASE/SQL FORTRAN Preprocessor



Example

:FILE SQLIN=FOREX2

:RUN PSQLFOR.PUB.SYS;INFO=&

"PartsDBE (MODULE(FOREX2) OWNER(OwnerP@SomeAcct) REVOKE DROP)"

MON, JUL 10, 1991, 4:48 PM

HP36216-02A.E1.16 FORTRAN Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED

0 ERRORS 1 WARNINGS

END OF PREPROCESSING.

END OF PROGRAM

:EDITOR

HP32201A.07.20 EDIT/3000 TUE, JUN 21, 1991, 2:00 PM

(C) HEWLETT-PACKARD CO. 1990

/T SQLMSG; L ALL UNN

FILE UNNUMBERED

MON, JUL 10, 1989, 5:00 PM

.

.

.

SQLIN = FOREX2.SOMEGROUP.SOMEACCT

DBEnvironment = PartsDBE

Module Name = FOREX2

****** SELECT PartNumber, PartName, SalesPrice INTO :PartNumber, :PartName,

:SalesPrice WHERE PartNumber = :PartNumber
****** ALLBASE/SQL warnings. (DBERR 10602) |

****** User SomeUser@SomeAcct does not have SELECT authority on PurchDB.Parts.

(DBERR 2301)

1 Sections stored in DBEnvironment.

0 ERRORS 1 WARNINGS

END OF PROCESSING

/

Using The ALLBASE/SQL FORTRAN Preprocessor 2-45



Using the Preprocessor UDC's

Two UDC's for invoking the FORTRAN preprocessor are provided with ALLBASE/SQL in
the HPSQLUDC.PUB.SYS �le:

PFOR, illustrated in Figure 2-12, invokes the preprocessor in full preprocessing mode. You
specify the source �le name, a DBEnvironment name, and a name for SQLMSG (if you do
not want preprocessor messages to go to $STDLIST).

:PFOR SourceFileName,DBEnvironment

The PFOR UDC uses the following preprocessor INFO string parameters:

ModuleName is the name of the source �le.

OwnerName is the log-on User@Account.

PRESERVE and DROP are in e�ect.

PPFOR, illustrated in Figure 2-13, invokes the preprocessor in full preprocessing mode, then
invokes the FORTRAN compiler if preprocessing is successful and the linker if compilation
is successful.

To use this UDC, you specify the source �le name, a DBEnvironment name, and an
executable �le name. You can specify a name for SQLMSG if you do not want preprocessor
messages to go to $STDLIST:

:PPFOR SourceFileName,DBEnvironment,ExecutableFileName

This UDC uses the following preprocessor INFO string parameters:

ModuleName is the source �le name.

OwnerName is the log-on User@Account.

PRESERVE and DROP are in e�ect.

If you make your own version of the UDC's, do not modify the record attributes for any of
the preprocessor output �les. Only modify the �le limit (disc=FileLimit) if required.

Note Because the UDC's purge the preprocessor message �le, if messages are
sent to $STDLIST an error message appears when you use the UDC's, but
preprocessing continues.

2-46 Using The ALLBASE/SQL FORTRAN Preprocessor



PFOR srcfile,dbefile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary

file sqlvar; disc=2048,32; rec=-80,16,f,ascii

continue

run psqlfor.pub.sys;info="!dbefile (drop)"
reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

Figure 2-12. UDC for Preprocessing SQLIN

Using The ALLBASE/SQL FORTRAN Preprocessor 2-47



PPFOR srcfile,dbefile,pgmfile,msgfile=$stdlist

continue

setvar _savefence hpmsgfence

setvar hpmsgfence 2

continue

purge !msgfile

purge sqlout

purge sqlmod

purge sqlvar

setvar hpmsgfence _savefence

deletevar _savefence

file sqlin = !srcfile

file sqlmsg = !msgfile; rec=-80,16,f,ascii

file sqlout; disc=10000,32; rec=-80,16,f,ascii

file sqlmod; disc=1023,10,1; rec=250,,f,binary

file sqlvar; disc=2048,32; rec=-80,16,f,ascii

continue

run psqlfor.pub.sys;info="!dbefile (drop)"
if jcw <= warn then

continue

ftnxllk sqlout,!pgmfile,$null

endif

reset sqlin

reset sqlmsg

reset sqlout

reset sqlmod

reset sqlvar

Figure 2-13. UDC for Preprocessing, Compiling, and Preparing SQLIN

2-48 Using The ALLBASE/SQL FORTRAN Preprocessor



The example in Figure 2-14 illustrates the use of PPFOR on an SQLIN that could be
successfully preprocessed, compiled, and linked.

:PPFOR FOREX2,PARTSDBE,FOREX2R

MON, JUL 10, 1989, 3:43

HP36216-02A.03.01 FORTRAN Preprocessor/3000 ALLBASE/SQL

(C) COPYRIGHT HEWLETT-PACKARD CO., 1982,1983,1984,1985,1986,1987,1988,

1989,1990,1991. ALL RIGHTS RESERVED

SQLIN = FOREX2.SOMEGRP.SOMEACCT

DBEnvironment = partsdbe

Module Name = FOREX2

1 Sections stored in DBEnvironment.

0 ERRORS 0 WARNINGS

END OF PREPROCESSING.

END OF PROGRAM

...

END OF COMPILE

HP Link Editor/XL (HP30315A.04.04) Copyright Hewlett-Packard Co 1986

LinkEd> LINK FROM=$OLDPASS;TO=FOREX2R

END OF PROGRAM

:

Figure 2-14. Sample UDC Invocation

If there are compiler errors or warnings, the line number referenced in the compiler output
messages is the FORTRAN statement number in the compiler output listing . Remember that
PPFOR UDC sends the compiler output listing to $null. Thus to identify the line in error,
you must reinvoke the compiler, sending the compiler listing to an output �le:

:BUILD FORLIST;DISC=10000,32;REC=-80,16,F,ASCII

:FTNXL SQLOUT,$OLDPASS,FORLIST

Using The ALLBASE/SQL FORTRAN Preprocessor 2-49



Running the Preprocessor in Job Mode

You can preprocess FORTRAN programs in job mode. Figure 2-15 illustrates a job �le that
uses the PPFOR UDC to preprocess several sample programs.

!JOB JOANN,MGR.HPDB,FORTRAN;OUTCLASS=,1
!ppfor forp01,PartsDBE,forp01r

!ppfor forp01a,PartsDBE,forp01ar

!ppfor forp02,PartsDBE,forp02r

.

.

!ppfor for50,PartsDBE,for50r

!TELL JOANN,MGR.HPDB; FORTRAN Preprocessing is complete!

!EOJ

Figure 2-15. Sample Preprocessing Job File

Preprocessing Errors

Several types of errors can occur while you are using the FORTRAN preprocessor:

Unexpected preprocessor or DBEnvironment termination.
Preprocessor invocation errors.
Source �le errors.
DBEnvironment errors.

Preprocessor or DBEnvironment Termination

Whenever the FORTRAN preprocessor stops running unexpectedly while you are using
it in full preprocessing mode, sections stored during the preprocessor's DBE session are
automatically dropped when the DBEnvironment is next started up. Unexpected preprocessor
session termination occurs, for example, when a DBA issues a STOP DBE command during a
preprocessor DBE session.

2-50 Using The ALLBASE/SQL FORTRAN Preprocessor



Preprocessor Invocation Errors

If the source �le speci�ed is currently being accessed, or if the source �le named cannot be
found, preprocessing terminates with the following messages:

Input source file not found. (DBERR 10921)

1 ERRORS 0 WARNINGS

END OF PREPROCESSING.

If the invocation line names a DBEnvironment that does not exist or contains erroneous
syntax, preprocessing terminates as follows:

ERRORS Processing terminated prematurely. (DBERR 10923)

Source File Errors

When the FORTRAN preprocessor encounters errors while parsing the source �le, messages
are placed in SQLMSG. Refer to the discussion earlier in this chapter under \SQL Message
File" for additional information on this category of errors.

DBEnvironment Errors

Some errors can be caused because:

A DBEnvironment is not started yet.
Resources are insu�cient.
A deadlock has occurred.

Refer to the ALLBASE/SQL Database Administration Guide for information on handling
DBEnvironment errors.

Using The ALLBASE/SQL FORTRAN Preprocessor 2-51



3

Embedding SQL Commands

In every FORTRAN program, you embed SQL commands in the main program unit and/or in
a subprogram unit in order to:

�1� Declare the SQL Communications Area (SQLCA).

�2� Declare host variables.

�3� Start a DBE session.

�4� �5� De�ne transactions.

�6� Implicitly check the status of SQL command execution.

�7� Terminate a DBE session.

�8� De�ne or manipulate data in a DBEnvironment.

�9� Explicitly check the status of SQL command execution.

�10� Obtain error and warning messages from the ALLBASE/SQL message
catalog.

The program listing shown in Figure 3-1 illustrates where in a program you can embed SQL
commands to accomplish the activities listed above.

This chapter is a high-level road map to the logical and physical aspects of embedding SQL
commands in a program. It addresses the reasons for embedding commands to perform the
above activities. It also gives general rules for how and where to embed SQL commands for
these activities. First however, it describes the general rules that apply when you embed any
SQL command.

Embedding SQL Commands 3-1



PROGRAM forex2

C

C *********************************************************

C * This program illustrates the use of SQL's SELECT *

C * command to retrieve one row or tuple of data at *

C * a time. This program executes a BEGIN WORK command *

C * before the SELECT command, and a COMMIT WORK command *

C * after executing the SELECT command. An indicator *

C * variable is also used for SalesPrice. *

C *********************************************************

C

EXEC SQL INCLUDE SQLCA

�1�

C

C (* Begin SQL Communication Area *)

C

CHARACTER Done

CHARACTER Abort

INTEGER MultipleRows

INTEGER Deadlock

CHARACTER*16 Response

C

C ****************************************************

C * Data Type Conversions : *

C * Character = SQL Char(1) *

C * Character*n = SQL Char(n) *

C * Character*n = SQL VarChar *

C * Double Precision = SQL Float *

C * Double Precision = SQL Decimal *

C * Integer = SQL Integer *

C * Integer*2 = SQL SmallInt *

C ****************************************************

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION �2�
CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION �2�
C

C (* End Host Variable Declarations *)

C

C

C

C

Figure 3-1. Sample Source File
Embedding SQL Commands 3-3



C

C (* Beginning of the Main Program *)

C

WRITE (*,*) CHAR(27), 'U'

WRITE (*,*) 'Program to SELECT specified rows from the

1Parts Table 1 -- forex2'

WRITE (*,*) ' '

WRITE (*,*) 'Event List:'

WRITE (*,*) ' CONNECT TO PartsDBE'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' SELECT specified row from the Parts

1table until use 1r enters a "/"'

WRITE (*,*) ' COMMIT WORK'

WRITE (*,*) ' RELEASE PartsDBE'

C

CALL ConnectDBE

CALL QueryTable

CALL ReleaseDBE

C

STOP

END

C

C (* Beginning of the Sub-Routines *)

C

SUBROUTINE ConnectDBE

C (* Subroutine to Connect to PartsDBE *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

EXEC SQL WHENEVER SQLERROR GOTO 500

C

WRITE (*,*) ' '

WRITE (*,*) 'CONNECT TO PartsDBE'

EXEC SQL CONNECT TO 'PartsDBE' �3�
GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

CALL ReleaseDBE

C

C

C

Figure 3-1. Sample Source File (page 2 of 8)

3-4 Embedding SQL Commands



600 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End of ConnectDBE Subroutine *)

C

SUBROUTINE BeginTransaction

C (* Subroutine to Begin Work *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

EXEC SQL WHENEVER SQLERROR GOTO 500

C

WRITE (*,*) 'BEGIN WORK'

EXEC SQL BEGIN WORK �4�
GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

CALL ReleaseDBE

C

600 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End BeginTransaction Subroutine *)

C

SUBROUTINE EndTransaction

C (* Subroutine to Commit Work *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

EXEC SQL WHENEVER SQLERROR GOTO 500

C

WRITE (*,*) 'COMMIT WORK'

C

C

Figure 3-1. Sample Source File (page 3 of 8)

Embedding SQL Commands 3-5



EXEC SQL COMMIT WORK �5�
GOTO 600

500 CALL SQLStatusCheck

CALL ReleaseDBE

C

600 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End EndTransaction Subroutine *)

C

SUBROUTINE ReleaseDBE

C (* Subroutine to Release PartsDBE *)

C

EXEC SQL INCLUDE SQLCA

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

EXEC SQL WHENEVER SQLERROR GOTO 500 �6�
C

WRITE (*,*) 'RELEASE PartsDBE'

EXEC SQL RELEASE �7�
GOTO 600

500 CALL SQLStatusCheck

CALL EndTransaction

C

600 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE �6�
END

C (* End ReleaseDBE Subroutine *)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Figure 3-1. Sample Source File (page 4 of 8)

3-6 Embedding SQL Commands



C

C

SUBROUTINE DisplayRow (PartNumber,PartName,SalesPrice,

1SalesPriceInd)

C (* Subroutine to Display a Selected Row *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

CHARACTER*80 SQLMessage
EXEC SQL END DECLARE SECTION

C

WRITE(*,100) PartNumber

WRITE(*,110) PartName

IF (SalesPriceInd .LT. 0) THEN

WRITE (*,*) 'Sales Price is NULL'

ELSE

WRITE(*,120) SalesPrice

ENDIF

WRITE (*,*) 'Was retrieved from the PurchDB.Parts table!'

100 FORMAT(' Part Number: ',A16)

110 FORMAT(' Part Name: ',A30)

120 FORMAT(' SalesPrice: ',F10.2)

C

RETURN

END

C (* End DisplayRow Subroutine *)

C

SUBROUTINE SQLStatusCheck

C (* Subroutine to Check the Status of DeadLocks *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

LOGICAL Abort

INTEGER DeadLock

C
C

C

Figure 3-1. Sample Source File (page 5 of 8)

Embedding SQL Commands 3-7



C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

C

C (* End Host Variable Declarations *)

C

DeadLock = -14024

Abort = .TRUE.

WRITE (*,*) Abort

IF (SQLCode .LT. DeadLock) THEN �9�
Abort = .TRUE.

ELSE

Abort = .FALSE.

ENDIF

DO WHILE (SQLCode .NE. 0)

EXEC SQL SQLExplain :SQLMessage �10�
WRITE (*,*) SQLMessage

END DO

IF (Abort) THEN

CALL EndTransaction

CALL ReleaseDBE

ENDIF

RETURN

END

C (* End of SQLStatusCheck Subroutine *)

C

SUBROUTINE QueryTable

C (* Subroutine to Query the Parts table *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

INTEGER DeadLock

INTEGER MultipleRows

INTEGER NotFound

INTEGER OK

C

Figure 3-1. Sample Source File (page 6 of 8)

3-8 Embedding SQL Commands



C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

C

C (* End Host Variable Declarations *)

C

MultipleRows = -10002

DeadLock = -14024

NotFound = 100

OK = 0

C

DO WHILE (PartNumber .NE. '/')

WRITE(*,100)

100 FORMAT(/$,' Enter PartNumber from Parts table

1or / to STOP > ')

READ(*,110) PartNumber

110 FORMAT (A16)

C

IF (PartNumber .NE. '/' ) THEN

C

CALL BeginTransaction

WRITE(*,*) 'SELECT PartNumber, PartName, SalesPrice'

C

EXEC SQL SELECT PartNumber, PartName, SalesPrice �8�
1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice :SalesPriceInd

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

C

IF ((SQLWarn(3) .EQ. 'w') .OR. (SQLWarn(3) .EQ. 'W')) THEN

WRITE (*,*) 'SQL WARNING has occured. The following row'

WRITE (*,*) 'of data may not be valid!'

CALL DisplayRow (PartNumber,PartName,SalesPrice,

1 SalesPriceInd)

ENDIF

C

C

C

C

C

C

C

Figure 3-1. Sample Source File (page 7 of 8)

Embedding SQL Commands 3-9



IF (SQLCode .EQ. OK) THEN �9�
CALL DisplayRow (PartNumber, PartName, SalesPrice)

ELSEIF (SQLCode .EQ. NotFound) THEN

WRITE (*,*) 'Row not found!'

ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE(*,*) 'WARNING: More than one row qualifies!'

ELSE

CALL SQLStatusCheck

ENDIF

CALL EndTransaction

ENDIF

END DO

RETURN

END

C (* End QueryTable Subroutine *)

Figure 3-1. Sample Source File (page 8 of 8)

3-10 Embedding SQL Commands



General Rules for Embedding SQL

Embedded SQL commands must appear in certain locations within the FORTRAN program.
Each embedded SQL command must be accompanied by the pre�x EXEC SQL. Comments
may be placed within an embedded command, and an embedded SQL command may continue
for several lines.

An embedded SQL command has no maximum length. A dynamic SQL command can be no
longer than 2048 bytes.

Location of SQL Commands

Put SQL commands, including their pre�x, within columns 7 through 72 of either the main
program unit or a subprogram unit:

INCLUDE SQLCA must appear in the Type Declaration Section of the program unit which
contains embedded SQL statements. The INCLUDE command must appear before the
BEGIN DECLARE SECTION command.

BEGIN DECLARE SECTION and END DECLARE SECTION must appear as the last
declaration in the Type Declaration Section of the program unit which contains embedded
SQL statements. No variable type declarations are allowed after the END DECLARE
SECTION command.

All other SQL commands may appear after the END DECLARE SECTION in either the
main program unit or a subprogram unit.

Prefix

Precede each SQL command with the pre�x EXEC SQL. Minimally the pre�x must be
speci�ed on the same line . For example, the following are legal:

EXEC SQL SELECT PartName INTO :PartName
1 FROM PurchDB.Parts WHERE PartNumber = :PartNumber

EXEC SQL

1 SELECT PartName

2 INTO :PartName

3 FROM PurchDB.Parts

4 WHERE PartNumber = :PartNumber

However, the following is not legal:

EXEC

1 SQL SELECT PartName INTO :PartName

2 FROM PurchDB.Parts WHERE PartNumber = :PartNumber

Embedding SQL Commands 3-11



FORTRAN Comments

You may insert FORTRAN comment lines within or between embedded SQL commands.
Denote comment lines by placing the letter C in column 1 and entering the comment in
columns 7 through 72:

EXEC SQL SELECT PartNumber, PartName

C put the data into the following host variables

1 INTO :PartNumber, :PartName

C find the data in the following table

2 FROM PurchDB.Parts

C retrieve only data that satisfies this search condition

3 WHERE PartNumber = :PartNumber

SQL Comments

SQL comments can be inserted in any line of an SQL statement, except the last line, by
pre�xing the comment character with at least one space followed by two hyphens followed by
one space:

EXEC SQL SELECT * FROM PurchDB.Parts -- This code selects Parts Table values.

WHERE SalesPrice > 500.;

The comment terminates at the end of the current line. (The decimal point in the 500
improves performance when being compared to SalesPrice, which also has a decimal; no data
type conversion is necessary.)

Continuation Lines

The FORTRAN preprocessor allows you to continue a non-numeric literal from one line to the
next. Enter any character other than the digit 0 or a blank in column 6 , and do not enter the
character C, *, or $ in column 1. The FORTRAN preprocessor supports up to 19 continuation
lines. The the FORTRAN/XL compiler allows you to extend the number of continuation
lines, the FORTRAN compiler on other systems where the preprocessor is used does not allow
more than 19 contination lines. Therefore, for consistency, the preprocessor only allows 19
contination lines.

IF (PREDEFINEDCOMMENT .EQ. '5') THEN

EXEC SQL INSERT INTO PURCHDB.VENDORS

1 (VendorRemarks)

2 VALUES ('This vendor is bad news. Definitely place

3 no orders.')

ELSE

EXEC SQL INSERT INTO PURCHDB.VENDORS

1 (VendorRemarks)

2 VALUES (:VendorRemarks)
ENDIF

3-12 Embedding SQL Commands



Declaring the SQLCA

The SQL Communication Area (SQLCA) is an ALLBASE/SQL data structure that contains
current information about a program's DBE session.

Every ALLBASE/SQL FORTRAN program unit that contains embedded SQL statements
must contain an SQLCA declaration. When a main program unit or a subprogram unit
starts a DBE session, the SQLCA declaration must be in its Type Declaration Section. If
a subprogram unit is called by a main program and each contains SQL commands to be
executed in the same DBE session, the SQLCA declaration must appear in both the main
program and the subprogram units.

As shown in Figure 3-1 at �1�, you declare the SQLCA by using the INCLUDE command:

EXEC SQL INCLUDE SQLCA

When the FORTRAN preprocessor parses this command in the source �le, it generates a
complete FORTRAN declaration for this area. Some of the �elds in the SQLCA are available
for programmers to use:

SQLCODE

SQLERRD(3)

SQLWARN(0)

SQLWARN(1)

SQLWARN(2)

SQLWARN(6)

Some values ALLBASE/SQL places into these �elds indicate warning and error conditions
that resulted when the immediately preceding SQL command was executed. Other values
simply provide information about normal command execution and are programmatically
useful. For example, when you submit an UPDATE command, the number of rows updated is
placed in SQLERRD(3). If this value is greater than 1, the program may want to advise the
user of that condition and process a ROLLBACK WORK or COMMIT WORK command
based on the user's response.

Examples discussed later in this chapter under \Implicit Status Checking" and \Explicit
Status Checking" illustrate how the program in Figure 3-1 uses some of the SQLCA �elds to
determine the success or failure of SQL command execution.

Embedding SQL Commands 3-13



Declaring Host Variables

Variables used in SQL commands are known as host variables. All host variables used in
either a main program unit or a subprogram unit must be declared in the Type Declaration
Section of the program unit where the host variable is used. The host variable declarations
must be the last declarations in the Type Declaration Section of the program unit which
contains the embedded SQL statements and must appear between the two following SQL
commands:

EXEC SQL BEGIN DECLARE SECTION

.

. Host variables are declared here

. in FORTRAN variable type descriptions.

.

EXEC SQL END DECLARE SECTION

In Figure 3-1, host variable declarations start at �2�.

You cannot put more than one such declaration section in a program unit. In addition, you
must include the BEGIN DECLARE SECTION and END DECLARE SECTION commands
even if there are no host variables used in the embedded SQL commands. This is because
the preprocessor includes the variable declaration �le after the END DECLARE SECTION
command.

The SELECT command shown at �8� in Figure 3-1 uses three host variables for data, one for
each of the columns in the PurchDB.Parts table. When used in an embedded SQL command,
host variables are preceded with a colon:

:PartNumber

:PartName

:SalesPrice

Because these host variables are for data from a DBEnvironment, the variable types must be
compatible with the ALLBASE/SQL data stored in the respective columns:

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

The host variable named SalesPrice is accompanied by a second host variable, SalesPriceInd .
Known as an indicator variable, this host variable is used to detect null values. If column
SalesPrice contains a null value, ALLBASE/SQL returns a negative number to SalesPriceInd .
The subprogram unit named DisplayRow examines the value in this indicator variable to
determine whether to display the announcement that a Sales Price is null or display the value
in SalesPrice.

Indicator variables are declared at �2� in Figure 3-1 as SQLIND . SQLIND is a special
declaration reserved for indicator variables.

3-14 Embedding SQL Commands



Starting a DBE Session

In most application programs you embed the CONNECT command to start a DBE session in
a program:

EXEC SQL CONNECT TO DBEnvironmentName

If autostart mode is ON at runtime, this command starts a DBE session. If autostart mode
is OFF, a DBA must issue a START DBE command before the program can be executed.
Regardless of the autostart mode in e�ect, the program user must have CONNECT and RUN
authority for this command to execute.

You can embed the START DBE command in a program to start a DBE session if the owner
of the program has DBA authority. However, only one copy of the program can be executed
at a time, by a user with DBA authority. For single-user DBEnvironments, this constraint
poses no problem. In a multiuser environment, however, once a DBEnvironment is started,
only the CONNECT command can be used to initiate additional DBE sessions.

Place the DBE session initiation command in a subprogram unit of your program such that it
executes at runtime before all other SQL commands in your program except a WHENEVER
command which may be executed before a CONNECT TO command is executed.

If the program uses either a dynamic command or a host variable to connect to a
DBEnvironment, the command or variable must have been entered by the program user prior
to attempting to execute any other embedded SQL command.

Embedding SQL Commands 3-15



Defining Transactions

You de�ne transactions in a program unit to control what changes get committed to a
DBEnvironment and when they get committed.

A transaction consists of all the SQL commands that are executed between a BEGIN WORK
command and either a COMMIT WORK command or a ROLLBACK WORK command.
When a COMMIT WORK command is successfully executed, all operations performed by the
transaction it ends have a permanent e�ect on the DBEnvironment. The opposite is true for
a ROLLBACK WORK command; no operations performed by the transaction it ends have a
permanent e�ect on the DBEnvironment.

The number and duration of transactions in an application program depend on such factors
as:

Concurrency: Concurrent DBE sessions may compete for data and index locks and bu�ers.

Update activities: Applications that are update-intensive should issue COMMIT WORK
commands more frequently to avoid data re-entry in the event of a failure.

Data consistency: Program changes to a table that are meaningful only if changes are
made to another table should be committed or undone at the same time to ensure the data
remains consistent.

The commands at �4� and �5� in subroutines BeginTransaction and EndTransaction in Figure
3-1 start and end a transaction that consists of a single execution of the SELECT command
at �8� in subroutine QueryTable.

The BEGIN WORK command in subprogram unit BeginTransaction is optional but
recommended. If you omit a BEGIN WORK command, ALLBASE/SQL automatically issues
a BEGIN WORK on your behalf before executing the �rst SQL command that requires that a
transaction be in progress.

The COMMIT WORK command in subprogram unit EndTransaction terminates the
transaction after each execution of the SELECT command. Because the program does no
DBEnvironment updates, this command is used to terminate the transaction even if an error
is encountered. In programs that update data in a DBEnvironment, a ROLLBACK WORK
command could be used to undo the e�ects of any database changes that occurred during a
transaction before the error occurred.

3-16 Embedding SQL Commands



Implicit Status Checking

You can use the WHENEVER command, as at �6� in Figure 3-1, to have ALLBASE/SQL
examine SQLCA values and cause a speci�c action to be taken. The WHENEVER command
is a preprocessor directive that speci�es the action to be taken for each subsequent SQL
command, if an error or warning condition occurs during execution of the SQL command.

EXEC SQL WHENEVER SQLERROR GOTO 500

| |

| |

| |

| the action

|

the condition

Preprocessor-generated statements for each WHENEVER command are embedded into the
preprocessed code after each subsequent SQL command found in the program's source code.
Because of this, you must either end each program unit which contains a WHENEVER
condition GOTO label statement with a WHENEVER condition CONTINUE statement,
or have a label in each subsequent program unit in the preprocessed source code which
corresponds to the appropriate WHENEVER condition GOTO label statement. If no label
exists and a WHENEVER condition CONTINUE statement is not entered, an error will occur
at compile time.

For example, if execution of the SELECT command at �8� or the SQLEXPLAIN command
at �10�, illustrated earlier in this chapter, were to cause an error condition, ALLBASE/SQL
would take no special action because the WHENEVER command shown at �6� precedes both
the SELECT and the SQLEXPLAIN commands in the source listing.

If, however, the WHENEVER SQLERROR CONTINUE statement was not entered and
an error occurred at �8�, there would be a compile time error as there is no label 500 in
Subroutine QueryTable. The WHENEVER SQLERROR CONTINUE command at �6� turns
o� the implicit status checking of the command that appears earlier in the source listing:

EXEC SQL WHENEVER SQLERROR GOTO 500

This WHENEVER command speci�es where to pass control when an error occurs during
execution of the CONNECT, BEGIN WORK, COMMIT WORK, or COMMIT WORK
RELEASE commands.

Although you can use a WHENEVER command to have ALLBASE/SQL examine the values
in certain �elds of the SQLCA, you can also examine the values yourself, as discussed under
\Explicit Status Checking" later in this chapter.

Embedding SQL Commands 3-17



Terminating a DBE Session

As illustrated at �7� in Figure 3-1, you can terminate a DBE session with the RELEASE
option of the COMMIT WORK command. The program in Figure 3-1 terminates its DBE
session whenever:

The user enters a slash (/) in response to the prompt in subprogram unit QueryTable.

The program encounters an error serious enough to set Abort to .TRUE. in subprogram
unit SQLStatusCheck .

The program encounters an error when processing the CONNECT, BEGIN WORK, or
COMMIT WORK commands.

Defining and Manipulating Data

You embed data de�nition and data manipulation commands in a subprogram unit.

Data Definition

You can embed the following SQL commands to create objects or change existing objects:

ALTER TABLE DROP DBEFILE

CREATE DBEFILE DROP DBEFILESET

CREATE DBEFILESET DROP GROUP

CREATE GROUP DROP INDEX

CREATE INDEX DROP MODULE

CREATE TABLE DROP TABLE

CREATE VIEW DROP VIEW

In a program, data de�nition commands are useful for such activities as creating temporary
tables or views to simplify data manipulation or creating an index that improves the
program's performance:

EXEC SQL CREATE INDEX PartNameINDEX

1 ON PurchDB.Parts (PartName)

The index created with this command expedites data access operations based on partial key
values:

EXEC SQL SELECT PartName

1 INTO :PartName

2 FROM PurchDB.Parts

3 WHERE PartName LIKE :partialkey

3-18 Embedding SQL Commands



Data Manipulation

SQL has four basic data manipulation commands:

SELECT: retrieves data.

INSERT: adds rows.

DELETE: deletes rows.

UPDATE: changes column values.

These four commands can be used for various types of data manipulation operations:

Simple data manipulation: operations that retrieve single rows, insert single rows, or delete
or update a limited number of rows.

Processing with cursors: operations that use a cursor to operate on a row at a time within a
set of rows. A cursor is a pointer the program advances through the set of selected rows.

Dynamic operations: operations speci�ed by the user or program at runtime.

In all data manipulation operations, you use host variables to pass data back and forth
between your program and the DBEnvironment. Host variables can be used in the data
manipulation commands wherever the syntax explained in the ALLBASE/SQL Reference
Manual allows them.

The SELECT command shown at �8� in Figure 3-1 retrieves the row from PurchDB.Parts
that contains a part number matching the value in the host variable named in the WHERE
clause (PartNumber). The three values in the row retrieved are stored in three host variables
named in the INTO clause (PartNumber , PartName, and SalesPrice). An indicator variable
(SalesPriceInd) is also used in the INTO clause, to ag the existence of a null value in column
SalesPrice:

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName

3 :SalesPrice :SalesPriceInd

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

You can also use host variables in non-SQL statements; in this case, omit the colon:

SalesPrice = response

EXEC SQL SELECT COUNT(PartNumber)

1 INTO :PART-COUNT

2 FROM PurchDB.Parts

3 WHERE SalesPrice > :SalesPrice

All host variables used in a program unit must be declared in the Type Declaration Section in
that program unit, as discussed earlier in this chapter under \Declaring Host Variables".

Embedding SQL Commands 3-19



Explicit Status Checking

In explicit status checking, shown at 9 in Figure 3-1, you explicitly examine an SQLCA �eld
for a particular value, then perform an operation depending on the �eld's value. In this
example the SQLCA �eld named SQLCode is examined to determine whether it contains a
value of:

0, indicating no error occurred.

100, indicating no rows quali�ed for the SELECT operation.

-10002, indicating more than one row quali�ed for the SELECT operation.

If SQLCode contains any other value, subprogram unit SQLStatusCheck is executed. Values
with greater negative values than -14024 indicate errors serious enough to warrant terminating
the program.

Obtaining ALLBASE/SQL Messages

As shown at �10� in Figure 3-1, you use the SQLEXPLAIN command to obtain a message from
the ALLBASE/SQL message catalog that describes the condition related to the SQLCA value:

EXEC SQL SQLEXPLAIN :SQLMessage

ALLBASE/SQL puts a message from the ALLBASE/SQL message catalog into the host
variable named SQLMessage , and the program displays the message.

Sometimes more than one message may be needed to completely describe how an SQL
command executed. To obtain multiple messages, the program in Figure 3-1 executes
SQLEXPLAIN until SQLCode contains a value of 0. ALLBASE/SQL sets SQLCode to 0
when no more messages are available.

If you use the value of SQLCode to control the ow of the program, you may need to save the
SQLCode value into a variable before the SQLEXPLAIN command is executed. The value of
SQLCode represents the result of only the previously executed SQL command.

You can use SQLEXPLAIN in conjunction with either implicit or explicit status checking. In
the program in Figure 3-1, the subprogram unit SQLStatusCheck is executed from the line
labeled 500, which is used in conjunction with the �rst WHENEVER SQLERROR command
in the program.

The default message catalog is SQLCTxxx.PUB.SYS. For native language users, the catalog
is SQLCT000.PUB.SYS, where NATIVE-3000 is the current language. If this catalog is not
available, ALLBASE/SQL issues a warning and uses the default catalog instead.

3-20 Embedding SQL Commands



4

Host Variables

Host variables are data items used in SQL commands in both the main program unit and in
subprogram units. They are used to pass the following information between an application
program and ALLBASE/SQL:

Data values.
Null value indicators.
Dynamic commands.
Savepoint numbers.
Messages from the ALLBASE/SQL message catalog.
DBEnvironment Names

All host variables used in either the main program unit or a subprogram unit of a FORTRAN
program must be declared in the Host Variable Declaration Section of the program unit where
the host variable is used. The type descriptions of host variables must be compatible with
ALLBASE/SQL data types . The type descriptions of host variables must also satisfy certain
preprocessor criteria.

This chapter �rst identi�es how and where in a program unit you can use host variables.
Then it discusses how to write variable declaration types that complement the way they are
used.

Using Host Variables

You use host variables in SQL commands as follows:

To pass data values , when using the following data manipulation commands:

SELECT

INSERT

DELETE

UPDATE

FETCH

DELETE WHERE CURRENT

UPDATE WHERE CURRENT

To hold null value indicators in four data manipulation commands:

SELECT

INSERT
FETCH

UPDATE

Host Variables 4-1



To pass dynamic commands at runtime, achieved by using the following commands:

PREPARE

EXECUTE IMMEDIATE

To hold savepoint numbers , which are used in the following commands:

SAVEPOINT

ROLLBACK WORK TO

To hold messages from the ALLBASE/SQL message catalog, obtained by using the
SQLEXPLAIN command.

This chapter provides examples illustrating where, in the commands itemized above, the SQL
syntax supports host variables. This chapter also takes a brief look at two special cases:

Using host variables in subprogram units.

Using host variables in conjunction with data in batch �les.

Some of the examples are numbered so later in this chapter, under \Declaring Host
Variables", you can quickly �nd declaration examples for the same host variables.

Host Variable Names

Host variable names in FORTRAN programs must:

Contain from 1 to 30 ASCII characters.

Conform to the rules for ALLBASE/SQL basic names.

Contain only characters chosen from the following set: the 26 letters of the ASCII alphabet,
the 10 decimal digits, or an underscore ( ).

Begin with an alpha character but not the pre�x EXEC SQL.

Not begin or end with a hyphen.

Not be the same as any ALLBASE/SQL or FORTRAN reserved word.

In all SQL commands containing host variables, the host variable name must be preceded by a
colon:

:HostVariableName

Input and Output Host Variables

Host variables can be used for input or for output:

Input host variables provide data for ALLBASE/SQL.

Output host variables contain data from ALLBASE/SQL.

When using an input host variable, you must initialize it before using it.

4-2 Host Variables



Data Values and Null Indicators

Host variables containing data values can be input or output host variables. In the following
SELECT command, the INTO clause contains two output host variables : PartNumber
and PartName; ALLBASE/SQL puts data from the PurchDB.Parts table into these
host variables. The WHERE clause contains one input host variable: PartNumber ;
ALLBASE/SQL reads data from this host variable to determine which row to retrieve.

EXEC SQL SELECT PartNumber, PartName

1 INTO :PartNumber,

2 :PartName

3 FROM PurchDB.Parts

4 WHERE PartNumber = :PartNumber

In this example, one host variable, PartNumber , is used for both input and output.

Indicator Variables

Host variables that contain null value indicators are called indicator variables. Indicator
variables are used in SELECT, FETCH, and INSERT commands to identify null values, and
in SELECT and FETCH commands to identify truncated output strings.

In SELECT and FETCH commands, an indicator variable is an output host variable
containing one of the following indicators, which describe the data ALLBASE/SQL returns:

0 value is not null

-1 value is null

>0 string value is truncated; number indicates string

length before truncation.

In the INSERT command, an indicator variable is an input host variable. You put one of the
following indicators into the indicator variable to tell ALLBASE/SQL when to insert a null
value in a column:

>=0 is not null

<0 value is null

An indicator variable must appear in an SQL command immediately after the host variable
whose data it describes. The following SELECT command uses an indicator variable,
PartNameInd , for data from the PartName column. When this column contains a null value,
ALLBASE/SQL puts a negative number into PartNameInd :

EXEC SQL SELECT PartNumber, PartName

1 INTO :PartNumber,

2 :PartName :PartNameInd

3 FROM PurchDB.Parts
4 WHERE PartNumber = :PartNumber

Host Variables 4-3



Any column not de�ned with the NOT NULL attribute may contain null values. In the
PurchDB.Parts table, ALLBASE/SQL prevents the PartNumber column from containing null
values, because it was de�ned as NOT NULL. In the other two columns, however, null values
may occur:

CREATE PUBLIC TABLE PurchDB.Parts

1 (PartNumber CHAR(16) NOT NULL,

2 PartName CHAR(30),

3 SalesPrice DECIMAL(10,2))

4 IN WarehFS

Null values have certain properties that you need to remember when manipulating data that
may be null. For example, ALLBASE/SQL ignores columns or rows containing null values
when evaluating an aggregate function (except that COUNT(*) includes all null values). Refer
to the ALLBASE/SQL Reference Manual for a complete account of the properties of null
values.

Be sure to use an indicator variable in the SELECT and FETCH commands whenever
columns accessed may contain null values. A runtime error results if ALLBASE/SQL
retrieves a null value and the program contains no indicator variable.

You can use an indicator variable to detect truncated strings in the SELECT and FETCH
commands. In the SELECT command illustrated above, PartNameInd contains a value
greater than zero (>0) when a part name is too long for the host variable declared to hold it.
The value in PartNameInd indicates the actual length of the string before truncation.

4-4 Host Variables



Declaring Host Variables

You must declare all host variables in the Host Variable Declaration Section of the program
unit where the host variable is used. In other words, a host variable used in the main program
unit must be de�ned in the Host Variable Declaration Section of the main program unit. A
host variable used in a subprogram unit must be de�ned in the Host Variable Declaration
Section of that subprogram unit.

Declaring Variables for Data Types

All FORTRAN program units that contain embedded SQL commands must have a Host
Variable Declaration Section. If your program unit does not use host variables but does
contain embedded SQL statements, it must still contain a Host Variable Declaration Section
to satisfy FORTRAN preprocessor requirements. If your program unit does not contain
embedded SQL statements then no Host Variable Declaration Section is needed. The Host
Variable Declaration Section is delimited by the EXEC SQL BEGIN DECLARE SECTION
and EXEC SQL END DECLARE SECTION commands.

Host variables must be declared in every program unit where they are used. A Type
Declaration Section may exist in any program or subprogram unit:

If the program unit uses host variables from a called program or subprogram unit, you
declare these host variables in the Host Variable Declaration Section of both the calling and
the called program units.

If host variable values come from an MPE XL data �le or are written to an MPE XL data
�le in the program, you also declare these host variables in the Host Variable Declaration
Section.

Regardless of where in a program unit the host variables are declared, they must appear
between the BEGIN DECLARE SECTION and END DECLARE SECTION commands, as
shown in Figure 4-1. These commands and any host variable declarations they delimit are
referred to as a Declare Section. No more than one Declaration Section can appear in any one
program unit.

Variable Declarations

Each host variable is declared by using a FORTRAN variable type declaration. The
declaration contains the same components as any FORTRAN variable type declaration:

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 OrderNumber

| |

| |

| a variable name

|

a variable type

EXEC SQL END DECLARE SECTION

The host variable name must be the same as the corresponding host variable name used in the
SQL commands of that program unit. The variable type must satisfy ALLBASE/SQL and
FORTRAN data type preprocessor requirements.

Host Variables 4-5



PROGRAM Main

.

.

.

EXEC SQL INCLUDE SQLCA

.

.

.

EXEC SQL BEGIN DECLARE SECTION

.

. Declarations for host variables

.

EXEC SQL END DECLARE SECTION

.

. Embedded SQL commands

.

END

SUBROUTINE Query

.

.

.

EXEC SQL INCLUDE SQLCA

.

.

.

EXEC SQL BEGIN DECLARE SECTION

.

. Declarations for host variables

.

EXEC SQL END DECLARE SECTION

.

. Embedded SQL commands

.

RETURN

END

Figure 4-1. Host Variable Declarations

4-6 Host Variables



Data Types

Table 4-1 summarizes how to write data descriptions for host variables holding each type
of ALLBASE/SQL data. It also illustrates how to declare indicator variables, and host
variables that hold dynamic commands, savepoint numbers, message catalog messages, and
DBEnvironment names. Only the type declarations shown in Table 4-1 are supported by the
FORTRAN preprocessor. The preprocessor does not support user de�ned data types.

You can also declare program variables that are not host variables within a declare section.
All variables that appear in a declare section, however, must have FORTRAN data types
among those illustrated in Table 4-1. Table 4-2 shows data descriptions for ALLBASE/SQL
program elements.

CHARACTER Data

You can insert strings ranging from 1 to 3996 bytes into a CHARACTER column.

When ALLBASE/SQL assigns data to a CHARACTER host variable, it adds blanks if
necessary on the right of the string to �ll up the accepting variable.

VARCHAR Data

VARCHAR strings can range from 1 to 3996 bytes. ALLBASE/SQL stores the actual length
of the string in a four-byte �eld preceding the string itself. In addition, ALLBASE/SQL stores
only the actual value of the string, not any trailing blanks.

The CHARACTER data type in FORTRAN is equivalent to the VARCHAR data type in
ALLBASE/SQL. The VendorRemarks column in the PurchDB.Vendors table is de�ned as
VARCHAR(60). It is therefore declared as follows:

CHARACTER*60 VendorRemarks

SMALLINT Data

You can assign values ranging from -32768 to 32767 to a column de�ned as SMALLINT.
The INTEGER*2 data type in FORTRAN is equivalent to the SMALLINT data type in
ALLBASE/SQL.

INTEGER*2 VariableName

INTEGER Data

You can assign values ranging from -2,147,483,648 to 2,147,483,647 to a column de�ned as
INTEGER.

Host Variables 4-7



Table 4-1. Data Description Entries for Host Variables

SQL DATA TYPES FORTRAN DATA DECLARATIONS

CHAR(1) CHARACTER DataName

CHAR(n) CHARACTER*n DataName

VARCHAR(n) CHARACTER*n DataName *

SMALLINT INTEGER*2 DataName

INTEGER INTEGER DataName

REAL REAL DataName or

REAL*4 DataName

FLOAT(1..24) REAL DataName or

REAL*4 DataName

FLOAT(1..53) DOUBLE PRECISION DataName or

REAL*8 DataName

DOUBLE PRECISION DOUBLE PRECISION DataName or

REAL*8 DataName

BINARY CHARACTER DataName or

CHARACTER*n DataName

VARBINARY CHARACTER*n DataName

DECIMAL DOUBLE PRECISION DataName or

REAL*8 DataName

DATE CHARACTER*10 DataName

TIME CHARACTER*8 DataName

DATETIME CHARACTER*23 DataName

INTERVAL CHARACTER*20 DataName

* This declaration is for non-dynamic commands only. Refer to the
chapter, \Using Dynamic Operations", for a description of how to use
VARCHAR dynamically.

4-8 Host Variables



Table 4-2. Program Element Declarations

PROGRAM ELEMENT FORTRAN DATA DECLARATIONS

Indicator variable SQLIND or INTEGER*2 IndVarName

Dynamic commands CHARACTER*n CommandName

Savepoint numbers INTEGER SavepointName

Message catalog messages CHARACTER*n MessageName

DBEnvironment name CHARACTER*n DBEnvironmentName

FLOAT Data

ALLBASE/SQL o�ers the option of specifying the precision of oating point data. You have
the choice of a 4-byte or an 8-byte oating point number. (This conforms to ANSI SQL86
level 2 speci�cations.) The keyword REAL, and FLOAT(1) through FLOAT(24), map to a
4-byte oat. The FLOAT(25) through FLOAT(53) and DOUBLE PRECISION speci�cations
map to an 8-byte oat.

The REAL data type could be useful when the number you are dealing with is very small, and
you do not require a great deal of precision. However, it is subject to overow and underow
errors if the value goes outside its range. It is also subject to greater rounding errors than
double precision. With the DOUBLE PRECISION (8-byte oat) data type, you can achieve
signi�cantly higher precision and have available a larger range of values.

By using the CREATE TABLE or ALTER TABLE command, you can de�ne a oating point
column by using a keyword from the following table. See the ALLBASE/SQL Reference
Manual for complete syntax speci�cations.

Table 4-3. ALLBASE/SQL Floating Point Column Specifications

Possible Keywords Range of Possible Values Stored In
and

Boundary
Aligned On

REAL
or
FLOAT(n)
where
n = 1 through 24

�3.402823 E+38 through �1.175495 E�38
and

1.175495 E�38 through 3.402823 E+38
and
0

4 bytes

DOUBLE PRECISION
or
FLOAT
or
FLOAT(n)
where
n = 25 through 53

�1.79769313486231 E+308 through �2.22507385850721 E�308
and

+2.22507385850721 E�308 through +1.79769313486231 E+308
and
0

8 bytes

Host Variables 4-9



Floating Point Data Compatibility. Floating point data types are compatible with each
other and with other ALLBASE/SQL numeric data types (DECIMAL, INTEGER, and
SMALLINT). All arithmetic operations and comparisons and aggregate functions are
supported.

BINARY Data

As with other data types, use the CREATE TABLE or ALTER TABLE command to de�ne
a binary or varbinary column. Up to 3996 bytes can be stored in such a column. Each byte
contains two hexadecimal digits. For example, suppose you insert data via a host variable
into a database column de�ned as binary. The host variable contains the digits, 1234. In the
database, these four digits are stored in two bytes. Each nibble (half byte) contains one digit
in hexadecimal format.

BINARY data is stored as a �xed length of left-justi�ed bytes. It is zero padded up to
the �xed length you have speci�ed. VARBINARY data is stored as a variable length of
left-justi�ed bytes. You specify the maximum possible length. (Note that CHAR and
VARCHAR data is stored in a similar manner except that CHAR data is blank padded.)

Binary Data Compatibility. BINARY and VARBINARY data types are compatible with each
other and with CHAR and VARCHAR data types. They can be used with all comparison
operators and the aggregate functions MIN and MAX; but arithmetic operations are not
allowed.

Using the LONG Phrase with Binary Data Types. If the amount of data in a given column of a
row can exceed 3996 bytes, it must be de�ned as a LONG column. Use the CREATE TABLE
or ALTER TABLE command to specify the column as either LONG BINARY or LONG
VARBINARY.

LONG BINARY and LONG VARBINARY data is stored in the database just as BINARY
and VARBINARY data, except that its maximum possible length is practically unlimited.

When deciding on whether to use LONG BINARY versus LONG VARBINARY, and if
space is your main consideration, you would choose LONG VARBINARY. However, LONG
BINARY o�ers faster data access.

LONG BINARY and LONG VARBINARY data types are compatible with each other, but not
with other data types. Also, the concept of inputting and accessing LONG column data di�ers
from that of other data types. Refer to the ALLBASE/SQL Reference Manual for detailed
syntax and to the chapter in this document titled \De�ning and Using Long Columns" for
information about using LONG column data.

DECIMAL Data

The DECIMAL data type is not supported by FORTRAN 77. The DECIMAL data type is
compatible with a FORTRAN DOUBLE PRECISION data type.

When you use DECIMAL values in arithmetic operations and certain aggregate functions, the
precision and scale of the result are functions of the precisions and scales of the values in the
operation. Refer to the ALLBASE/SQL Reference Manual for a complete account of how to
calculate the precision and scale of DECIMAL results.

4-10 Host Variables



DATE, TIME, DATETIME, and INTERVAL Data

DATE, TIME, DATETIME, and INTERVAL data types are declared as character strings.
(See the previous section, \CHARACTER Data.") For example:

EXEC SQL BEGIN DECLARE SECTION

C *** DATETIME DATA TYPE ***

CHARACTER*23 BatchStamp

C *** DATE DATA TYPE ***

CHARACTER*10 TestDate

SQLIND TestDateInd

C *** TIME DATA TYPE ***

CHARACTER*8 TestStart

SQLIND TestStartInd

C *** INTERVAL DATA TYPE ***

CHARACTER*20 LabTime

SQLIND LabTimeInd

EXEC SQL END DECLARE SECTION

C *** DECLARE and OPEN CURSOR C1 here. ***

C *** Nulls not allowed for BatchStamp. ***

EXEC SQL FETCH C1

1 INTO :BatchStamp,

2 :TestDate :TestDateInd,

2 :TestStart :TestStartInd,

4 :LabTime :LabTimeInd

Using Default Data Values

You can choose a default value other than NULL when you create or alter a table by using
the DEFAULT speci�cation. Then when data is inserted, and a given column is not in the
insert list, the speci�ed default value is inserted. Or when you alter a table, adding a column
to existing rows, every occurrence of the column is initialized to the default value. (This
conforms to ANSI SQL1 level 2 with addendum-1 and FIPS 127 standards.)

When a table or column is de�ned with the DEFAULT speci�cation, you will not get an error
if a column de�ned as NOT NULL is not speci�ed in the insert list of an INSERT command.
Without the DEFAULT speci�cation, if a column is de�ned as NOT NULL, it must have some
value inserted into it. However, if the column is de�ned with the DEFAULT speci�cation, it
satis�es both the requirement that it be NOT NULL and have some value, in this case, the
default value. If a column not in an insert list does allow a NULL, then a NULL is inserted
instead of the default value.

Host Variables 4-11



Your default speci�cation options are:

NULL.
USER (this indicates the current DBEUser ID).
A constant.
The result of the CURRENT DATE function.
The result of the CURRENT TIME function.
The result of the CURRENT DATETIME function.

Complete syntax for the CREATE TABLE and ALTER TABLE commands as well as
de�nitions of the above options are found in the ALLBASE/SQL Reference Manual .

In e�ect, by choosing any option other than NULL, you assure the column's value to be NOT
NULL and of a particular format, unless and until you use the UPDATE command to enter
another value.

In the following example, the OrderNumber column defaults to the constant 5, and it is
possible to insert a NULL value into the column:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DEFAULT 5 ,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

However, suppose you want to de�ne a column default and specify that the column cannot be
null. In the next example, the OrderNumber column defaults to the constant 5, and it is not
possible to insert a NULL value into this column:

CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DEFAULT 5 NOT NULL ,

VendorNumber INTEGER,

OrderDate CHAR(8))

IN OrderFS

Coding Considerations

Any default value must be compatible with the data type of its corresponding column. For
example, when the default is an integer constant, the column for which it is the default must
be created with an ALLBASE/SQL data type of INTEGER, REAL, or FLOAT.

In your application, you input or access data for which column defaults have been de�ned just
as you would data for which defaults are not de�ned. In this chapter, refer to the section,
\Declaring Variables," for information on using the data types in your program. Also refer to
the section, \Data Type Compatibility", for information relating to compatibility.

When the DEFAULT Clause Cannot be Used

You can specify a default value for any ALLBASE/SQL column except those de�ned as
LONG BINARY or LONG VARBINARY. For information on these data types, see the
section in this document titled \Using the LONG Phrase with Binary Data Types."

With the CREATE TABLE command, you can use either a DEFAULT NULL speci�cation
or the NOT NULL speci�cation. An error results if both are speci�ed for a column as in
the next example:

4-12 Host Variables



CREATE PUBLIC TABLE PurchDB.Orders (

OrderNumber INTEGER
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
DEFAULT NULL NOT NULL ,

VendorNumber INTEGER,

OrderDate CHAR(8))
IN OrderFS

Indicator Variable Declaration

Each indicator variable must be declared immediately following the host variable it describes.

SQLIND VariableNameInd

When the FORTRAN preprocessor encounters SQLIND, it generates the following declaration
in its place in the modi�ed source �le:

INTEGER*2 VariableNameInd

Dynamic Command Variable Declaration

The maximum size of the host variables used to hold dynamic commands is 32,762 bytes.

Savepoint Number Variable Declaration

Since the maximum savepoint number is 2,147,483,647, a host variable for holding a savepoint
number should be declared as an INTEGER.

Message Catalog Variable Declaration

The maximum size of host variables used to hold messages from the ALLBASE/SQL message
catalog is 32,762 bytes.

DBEnvironment Name

The maximum �le name, either relative or absolute, of a DBECon �le is 128 bytes. The
DBECon �le name is the same as the DBEnvironment name. The name you store in this host
variable does not have to be delimited by single quotation marks.

Data Type Compatibility

Under the following conditions, ALLBASE/SQL performs data type conversion when
executing SQL commands containing host variables:

When the data types of values transferred between your program and a DBEnvironment do
not match.

When data of one type is moved to a host variable of a di�erent type.

When values of di�erent types appear on the same expression.

Data types for which type conversion can be performed are called compatible data types.
Table 4-4 summarizes data type host variable compatibility. It also points out which data
type combinations are incompatible and which data type combinations are equivalent, i.e.,
require no type conversion. E describes an equivalent situation, C a compatible situation, and
I an incompatible situation.

Host Variables 4-13



Table 4-4. Data Type Equivalency and Compatibility

ALLBASE/SQL
DATA TYPE

CHARACTER*n INTEGER DOUBLE PRECISION
REAL*8

CHAR E I I

VARCHAR E I I

BINARY C I I

VARBINARY C I I

DATE C I I

TIME C I I

DATETIME C I I

INTERVAL C I I

SMALLINT I E C

INTEGER I E C

DECIMAL I C C

REAL I C C

FLOAT I C C

In some cases, data conversion may lead to truncation or overow.

Character Data Conversion

When ALLBASE/SQL moves string data of one type to a host variable declared as a
compatible type, the following occurs:

When moving CHAR data to a VARCHAR variable, ALLBASE/SQL places the length of
the string in the appropriate variable and pads the string on the right with spaces to �ll up
the VARCHAR string variable.

When moving VARCHAR data to a CHAR variable, ALLBASE/SQL pads the string on the
right with spaces to �ll up the CHAR string variable.

When ALLBASE/SQL stores the value of a string host variable into a CHARACTER column,
ALLBASE/SQL pads the value on the right with spaces to �ll up the column.

4-14 Host Variables



Character Data Truncation

If the target host variable used in a SELECT or FETCH operation is too small to hold an
entire string, the string is truncated. You can use an indicator variable to determine the
actual length of the string in bytes before truncation:

SUBROUTINE Select

.

.

.

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*40 LittleString

SQLIND LittleStringInd

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL SELECT BigString

1 INTO :LittleString :LittleStringInd

.

.

.

RETURN

END

When the string in column BigString is too long to �t in host variable LittleString ,
ALLBASE/SQL puts the actual length of the string in bytes into indicator variable
LittleStringInd .

If a column is too small to hold a string in an INSERT or an UPDATE operation, the string is
truncated and stored, but ALLBASE/SQL gives no error or warning indication.

It is possible to store native language data in a character column de�ned as ASCII. If this
happens, the results of truncation may be unpredictable. It is the programmer's responsibility
to verify the language de�nition of the column that is to receive data. If the character column
is de�ned for a native language, truncation will always occur on a proper character boundary
for that language.

Host Variables 4-15



Numeric Data Conversion

When you use numeric data of di�erent types in an expression or comparison operation, data
of the lesser type is converted into data of the greater type, and the result is expressed in
the greater type. ALLBASE/SQL numeric types available in FORTRAN have the following
precedence:

DOUBLE PRECISION

INTEGER

The following example illustrates numeric type conversion:

SUBROUTINE Select

.

.

.

EXEC SQL BEGIN DECLARE SECTION

INTEGER Discount

INTEGER PurchasePrice

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL SELECT (MAX)PurchasePrice * :Discount

1 INTO :PurchasePrice

2 FROM PurchDB.OrderItems

.

.

.

RETURN

END

The query illustrated contains an aggregate function, MAX , in the select list. The argument
of the function is the PurchasePrice column, de�ned in the PartsDBE DBEnvironment as
DECIMAL(10,2). Therefore, the FORTRAN result of the function is DOUBLE PRECISION,
a data type compatible with DECIMAL. Since the host variable named Discount is declared
as an INTEGER, a data type compatible with DOUBLE PRECISION, ALLBASE/SQL
converts the value in Discount to a DOUBLE PRECISION quantity.

After subtraction, data conversion occurs again before the DOUBLE PRECISION result is
stored in the INTEGER host variable MAXPurchasePrice. In this case, the fractional part of
the DOUBLE PRECISION value is truncated.

Refer to the ALLBASE/SQL Reference Manual for additional information on how type
conversion can cause truncation and overow of numeric values.

4-16 Host Variables



Declaring Host Variables for Data Values and Indicator Variables

As the following example illustrates, the INFO command available in ISQL provides
the information you need to declare host variables compatible with or equivalent to
ALLBASE/SQL data types. It also provides the information you need to determine whether
an indicator variable is needed to handle null values:

isql=> INFO PurchDB.OrderItems;

Column Name Data Type (length) Nulls Allowed

---------------------------------------------------------------------

OrderNumber Integer NO

ItemNumber Integer NO

VendPartNumber Char (16) YES
PurchasePrice Decimal (10,2) NO

OrderQty SmallInt YES

ItemDueDate Char (8) YES

ReceivedQty SmallInt YES

The declare section illustrated in Figure 4-2 contains variable types equivalent to the data
types in the PurchDB.OrderItems table:

PurchasePrice is declared as a DOUBLE PRECISION variable because it holds the
DECIMAL result of an aggregate function on a DECIMAL column.

Discount is declared as a DOUBLE PRECISION variable because it is used in an arithmetic
expression with a DECIMAL value column, PurchasePrice.

OrderQty is declared as an INTEGER*2 variable because it holds the SMALLINT column,
OrderQty.

OrderQtyInd is an indicator variable, necessary because the resulting of OrderQty can
contain only null values. Note in the INFO example above that this column allows null
values.

OrderNumber is declared as INTEGER because the column whose data it holds is
INTEGER.

Host Variables 4-17



SUBROUTINE Select

.

.

.

EXEC SQL BEGIN DECLARE SECTION

DOUBLE PRECISION Discount

DOUBLE PRECISION PurchasePrice

INTEGER*2 OrderQty

SQLIND OrderQtyInd

INTEGER OrderNumber

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL SELECT PurchasePrice * :Discount,

1 OrderQty

2 INTO :PurchasePrice,

3 :OrderQty :OrderQtyInd
4 FROM PurchDB.OrderItems

5 WHERE OrderNumber = :OrderNumber

.

.

.

RETURN

END

Figure 4-2. Declaring Host Variables for Single-Row Query Result

The declare section illustrated in Figure 4-3 depicts how to declare host variables used in a
SELECT command:

Discount is a DOUBLE PRECISION host variable because it is used in an arithmetic
expression with an aggregate function on a DECIMAL value. This eliminates any data
truncation in the arithmetic operation between compatible but not equivalent data types.

PurchasePrice is declared as a DOUBLE PRECISION host variable because it holds the
DECIMAL result of an aggregate function on a DECIMAL column, PurchasePrice.

OrderQty is declared as an INTEGER*2 variable because it holds the SMALLINT result of
an aggregate function on a SMALLINT column, OrderQty.

OrderQtyInd is an indicator variable, necessary because the result of OrderQty is null if
column OrderQty contains only null values. Note in the previous INFO command example
that the column OrderQty allows null values.

4-18 Host Variables



OrderNumber is an INTEGER variable because the column whose data it holds,
OrderNumber , is INTEGER.

LowValue and HighValue are both declared as INTEGER host variables because they hold
data compared with that in a column de�ned as INTEGER.

GroupCriterion is declared as an INTEGER host variable because its value is compared in
the HAVING clause with the result of a COUNT function, which is always an INTEGER
value.

SUBROUTINE Select
.

.

.

EXEC SQL BEGIN DECLARE SECTION

DOUBLE PRECISION Discount

DOUBLE PRECISION PurchasePrice

INTEGER*2 OrderQty

SQLIND OrderQtyInd

INTEGER OrderNumber

INTEGER LowValue

INTEGER HighValue

INTEGER GroupCriterion

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL DECLARE Maxcursor CURSOR FOR

1 SELECT PurchasePrice * :Discount,
2 OrderQty,

3 OrderNumber

4 FROM PurchDB.OrderItems

5 WHERE OrderNumber

6 BETWEEN :LowValue AND :HighValue

7 GROUP BY OrderQty, OrderNumber

8 HAVING COUNT(ItemNumber) > :GroupCriterion

.

.

.

EXEC SQL FETCH Maxcursor

1 INTO :PurchasePrice,

2 :OrderQty :OrderQtyInd,

3 :OrderNumber

.

.

.

RETURN

END

Figure 4-3. Declaring Host Variables for Multiple-Row Query Result

Host Variables 4-19



Declaring Host Variables for Dynamic Commands

The command illustrated in Figure 4-4 names a host variable, DynamicCommand , for
receiving an SQL command at runtime. This host variable should be declared as a
CHARACTER variable.

SUBROUTINE Prepare
.

.

.

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*1024 DynamicCommand

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL PREPARE CommandOnTheFly

1 FROM :DynamicCommand

.

.

.

RETURN

END

Figure 4-4. Declaring Host Variables for Dynamic Commands

4-20 Host Variables



Declaring Host Variables for Savepoint Numbers

The command illustrated in Figure 4-5 below sets a savepoint. The number associated with
the savepoint is the number ALLBASE/SQL places in the host variable named SavePoint1 .
This host variable should be declared as INTEGER.

SUBROUTINE SavePoint1
.

.

.

EXEC SQL BEGIN DECLARE SECTION

INTEGER SavePoint1

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL SAVEPOINT :SavePoint1

.

.

.

RETURN

END

Figure 4-5. Declaring Host Variables for Savepoint Numbers

Host Variables 4-21



Declaring Host Variables for Message Catalog Messages

The command illustrated in Figure 4-6 below puts a message from the ALLBASE/SQL
message catalog into a host variable named SQLMessage . The following example illustrates
how the host variable for holding the message might be declared.

SUBROUTINE SQLStatusCheck

.

.

.

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*132 SQLMessage

EXEC SQL END DECLARE SECTION

.

.

.
EXEC SQL SQLEXPLAIN :SQLMessage

WRITE(6,102)SQLMessage

10 FORMAT(A132)

.

.

.

RETURN

END

Figure 4-6. Declaring Host Variables for Message Catalog Messages

The host variable is declared as a CHARACTER data type. Regardless of how it is declared,
ALLBASE/SQL moves spaces into the host variable before returning the message. Therefore
the program does not have to initialize the host variable each time SQLEXPLAIN is executed.

4-22 Host Variables



Declaring Host Variables Passed from Subprograms

The example illustrated in Figure 4-7 below illustrates how to pass a host variable value
between one subprogram unit and another subprogram unit. The passed host variable must
be declared in both the CallingProgram's and the CalledProgram's type declaration section.
Variables that are not used in an SQL command in the program need to be declared outside
the Type Declaration Section for Host Variables.

SUBPROGRAM CallingProgram
.

.

.

LOGICAL*2 PositiveResponse

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL CONNECT TO 'PartsDBE'

.

.

.

IF (PositiveResponse) THEN

WRITE(6,102) 'INSERT rows into the Parts Table.'
102 FORMAT (A80)

CALL InsertSubpgm (PartNumber,PartName,SalesPrice)

WRITE(6,103) PartNumber,PartName,SalesPrice

103 FORMAT('Part Number is: ',A16,

1 'Part Name is: ',A30,

2 'Sales Price is: ',F10.2)

ENDIF

.

.

.

RETURN

END

Figure 4-7. Declaring Host Variables Passed From Subprograms

Host Variables 4-23



SUBROUTINE INSERTSubpgm (PartNumber,PartName,SalesPrice)

.

.

.

EXEC SQL INCLUDE SQLCA

.

.

.

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

EXEC SQL END DECLARE SECTION

.

.

.

EXEC SQL INSERT INTO PurchDB.Parts

1 (PartNumber,
2 PartName,

3 SalesPrice)

4 VALUES (:PartNumber,

5 :PartName

6 :SalesPrice)

.

.

.

RETURN

END

Figure 4-7. Declaring Host Variables Passed From Subprograms (page 2 of 2)

Note that the INCLUDE SQLCA clause is in both the calling and the called code. The
SQLCA Common Block must always be named in this clause in any program unit that
has SQL commands to be executed. If the SQLCA Common Block is not included, the
FORTRAN preprocessor will issue a warning message stating that the SQLCA Common Block
is not included.

Declaring Host Variables for MPE XL File Values

The example illustrated in Figure 4-8 below illustrates the use of a host variable to hold data
from an MPE XL �le. As shown below, the host variable from the �le is declared the same
way as a host variable entered from the terminal.

4-24 Host Variables



SUBROUTINE Dates

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*8 OrderDate

INTEGER OrderNumber

INTEGER ItemNumber

CHARACTER*30 PartName

CHARACTER*16 PartNumber

DOUBLE PRECISION PurchasePrice

EXEC SQL END DECLARE SECTION

.

.

.

OPEN (10, FILE = 'OrderDateFile',

1 ACCESS = 'sequential', STATUS = 'old')

READ (10,103) OrderDate
103 FORMAT(A8)

CLOSE (10)

EXEC SQL SELECT A.OrderNumber,

1 A.ItemNumber,

2 C.PartName,

3 A.PurchasePrice

4 INTO :OrderNumber,

5 :ItemNumber,

6 :PartName,

7 :PurchasePrice

8 FROM PurchDB.OrderItems A,

9 PurchDB.SupplyPrice B,

1 PurchDB.Parts C,

2 PurchDB.Orders D

3 WHERE A.VendPartNumber = B.VendPartNumber

4 AND B.PartNumber = C.PartNumber

5 AND A.OrderNumber = D.OrderNumber

6 AND D.OrderDate = :OrderDate

.

.

.

RETURN

END

Figure 4-8. Declaring Host Variables for MPE XL File Values

Host Variables 4-25



Declaring Host Variables for DBEnvironment Names

The DBEnvironment whose name is stored in the host variable named SomeDBE is declared
and initialized as illustrated in Figure 4-9.

EXEC SQL BEGIN DECLARE SECTION
.

.

.

CHARACTER*128 SomeDBE

.

.

.

EXEC SQL END DECLARE SECTION

.

.

.

WRITE (6,101) 'Enter DBEnvironment name >'

101 FORMAT (A80)

READ (5,102) SomeDBE

102 FORMAT (A128)

.

.

.

EXEC SQL CONNECT to :SomeDBE;

Figure 4-9. Declaring Host Variables for DBEnvironment Names

The host variable is declared as a CHARACTER. In this example, it is declared as a variable
large enough to hold the relative �le name of any DBECon �le. Note that in this case, the
DBEnvironment name does not have to be delimited by single quotation marks.

4-26 Host Variables



5

Runtime Status Checking and the SQLCA

When an SQL command is executed, ALLBASE/SQL returns information describing how the
command executed. This information signals one or more of the following conditions:

The command was successfully executed.

The command could not be executed because an error condition occurred, but the current
transaction may continue.

No rows quali�ed for a data manipulation operation.

A speci�c number of rows were placed into output host variables.

A speci�c number of rows quali�ed for an insert, update, or delete operation.

The command was executed, but a character string was truncated.

The command was executed, but a null value was eliminated from an aggregate function.

The command was executed, but a warning condition resulted.

The command could not be executed because an error condition necessitated rolling back
the current transaction.

Based on this runtime status information, a program can commit work, rollback work,
continue, terminate, display a message, or perform some other appropriate activity.

ALLBASE/SQL returns status information into a common data structure block known as the
SQLCA, which stands for SQL Communication Area. The SQLCA has four data items which
your programs can take advantage of:

SQLCode, which is set to 0 if a command executes successfully, to a negative number
identifying a speci�c error condition, or to 100 if no rows qualify for an SQL data
manipulation operation.

SQLErrd(3), which is set to the number of rows that ALLBASE/SQL put into output host
variables for data retrieval operations or the number of rows that ALLBASE/SQL processed
for data change operations. It is set to 0 when a single-row data change operation causes an
error condition or when SQLCode = 100.

SQLWarn(0), which is set to W when a warning condition occurs or when SQLWarn(6) is
set to W.

SQLWarn(1), which is set to W when a character string is truncated while being stored in a
host variable.

SQLWarn(2), which is set to W when a null value is eliminated from the argument set of an
aggregate function.

SQLWarn(6), which is set to W when an error occurs that caused ALLBASE/SQL to abort
the current transaction.

Runtime Status Checking and the SQLCA 5-1



These data items can be used in several ways to perform runtime status checking:

You can use the WHENEVER command to perform implicit status checking. When you use
this command, ALLBASE/SQL checks the SQLCode and SQLWarn(0) values for you, then
takes an action based on information you provide in the WHENEVER command.

You can write FORTRAN code that explicitly examines one or more of the SQLCA data
items, then proceeds on the basis of their values. This kind of status checking is called
explicit status checking.

You can use a combination of both implicit and explicit status checking.

In conjunction with status checking of any kind, you can use the SQLEXPLAIN command.
This command retrieves a message from the ALLBASE/SQL message catalog that describes
an error or warning. When several errors or warnings occur, you can use SQLEXPLAIN
to retrieve messages for all of them. Refer to the ALLBASE/SQL Message Manual for an
explanation of all error and warning messages.

This chapter examines the need for runtime status checking. It describes the SQLCA
COMMON block and the conditions under which its data items are set by ALLBASE/SQL.
It also gives several examples of implicit and explicit status checking, some of which use
SQLEXPLAIN to display a status message.

The Importance of Status Checking

Status checking is performed primarily for three reasons:

To gracefully handle runtime error and warning conditions.

To maintain data consistency.

To return information about the most recently executed command, such as how many rows
ALLBASE/SQL processed.

Handling Runtime Errors and Warnings

A program is said to be robust if it anticipates common runtime errors and handles them
gracefully. In on-line applications, robust programs may allow the user to decide what to do
when an error occurs rather than just terminating. This approach is useful, for example, when
a deadlock occurs.

If a deadlock occurs, SQLCode is set to -14024 and SQLEXPLAIN would retrieve the
following message:

Deadlock detected. (DBERR 14024)

ALLBASE/SQL rolls back the transaction containing the SQL command that caused the
deadlock. You may want to either give the user the option of restarting the transaction or
automatically re-execute the transaction a �nite number of times before notifying the user of
the deadlock.

5-2 Runtime Status Checking and the SQLCA



Maintaining Data Consistency

Two or more data values, rows, or tables are said to be consistent if they agree in some way.
Changes to such interdependent values are either committed or rolled back at the same
time in order to retain data consistency. In other words, the set of operations that form a
transaction are considered as an Atomic Operation; either all or none of the operations are
performed on the database. Status checking in this case determines whether to commit or roll
back work by transactions operating on tables having these dependencies.

In the case of the sample database, each order is de�ned by rows in two tables: one row in the
PurchDB.Orders table and one or more rows in the PurchDB.OrderItems table. A transaction
that deletes orders from the database has to delete all the rows for a speci�c order from both
tables in order to maintain data consistency. A program containing such a transaction should
commit work to the database only if it is able to delete the row from the PurchDB.Orders
table and delete all the rows for the same order from the PurchDB.OrderItems table:

EXEC SQL BEGIN WORK

EXEC SQL DELETE FROM PurchDB.Orders

1 WHERE OrderNumber = :OrderNumber

.

. If this command succeeds, the program

. submits the following command.

.

EXEC SQL DELETE FROM PurchDB.OrderItems

1 WHERE OrderNumber = :OrderNumber

If this command succeeds, the program

submits a COMMIT WORK command. If this

command does not succeed, the

program submits a ROLLBACK WORK command

to ensure that all rows related to the

order are deleted at the same time.

Runtime Status Checking and the SQLCA 5-3



Determining Number of Rows Processed

Knowing such information as the following about rows your program handles helps determine
the action to take in the program:

No rows qualify for a data retrieval or change operation.

A certain number of rows were retrieved by ALLBASE/SQL and placed in output host
variables.

A certain number of rows were inserted, deleted, or updated.

When no rows qualify for an SQL command that retrieves, inserts, or changes rows,
ALLBASE/SQL sets SQLCode to 100. In the following example, when a row in the
PurchDB.Orders table does not exist for the order number speci�ed in OrderNumber ,
SQLCode contains a 100 after ALLBASE/SQL processes the UPDATE command:

EXEC SQL UPDATE PurchDB.Orders

1 SET OrderDate = :OrderDate

2 WHERE OrderNumber = :OrderNumber

When this situation arises, the program can inform the user that the update operation could
not be performed and prompt for another order number.

When one or more rows do qualify for a data manipulation or retrieval operation,
ALLBASE/SQL sets SQLErrd(3) to the number of rows processed. In the following example,
the SQLErrd(3) value determines whether or not subprogram unit DisplayRow is executed:

.

.

EXEC SQL SELECT PartNumber, PartName

1 INTO :PartNumber

2 :PartName

3 FROM PurchDB.Parts

4 WHERE PartNumber = :PartNumber

.

.

.

IF (SQLErrd(3) .GT. 1) THEN

CALL SQLStatusCheck

ELSE

CALL DisplayRow

ENDIF

.

.

.

SUBROUTINE DisplayRow

.

. This subprogram unit displays one row

. and performs only one SQL command.

.

RETURN

END

5-4 Runtime Status Checking and the SQLCA



When more than one row quali�es for a SELECT operation, SQLCode is set to -10002, and
ALLBASE/SQL returns none of the rows. Your program can warn the user that no rows
could be displayed:

SUBROUTINE SQLStatusCheck

.

.

.

IF (SQLCode .EQ. -10002) THEN

WRITE(6,102) 'More than one row qualified for '

WRITE(6,102) 'this operation; none of the rows '

WRITE(6,102) 'can be displayed.'

102 FORMAT(A80)

ELSE

CALL DisplayRow

ENDIF

RETURN

END

If one or more rows qualify for a data INSERT, DELETE, or UPDATE operation,
ALLBASE/SQL sets SQLErrd(3) to that number. In the case of UPDATE and DELETE
operations, if SQLErrd(3) contains a value greater than one, you can warn the user that more
than one row will be updated or deleted and give the user the opportunity to COMMIT
WORK or ROLLBACK WORK.

The SQLCA COMMON Block

Every ALLBASE/SQL FORTRAN program unit must have the EXEC SQL INCLUDE
SQLCA statement before the Host Variable Declaration Section to declare the SQL
Communication Area:

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

.

C Host Variable Declaration Section

.

EXEC SQL END DECLARE SECTION

The FORTRAN preprocessor generates the following declaration in the modi�ed source �le
after it parses this SQL command:

C**** Start SQL Preprocessor ****

C EXEC SQL INCLUDE SQLCA

C

C**** Start Inserted Statements ****

CHARACTER SQLCAID*8

INTEGER SQLCABC,

1 SQLCODE

INTEGER SQLERRL

CHARACTER SQLERRM*254,

Runtime Status Checking and the SQLCA 5-5



1 SQLERRP*8

INTEGER SQLERRD(6)

CHARACTER SQLWARN(0:7)
INTEGER SQLEXT(2)

CHARACTER SQLWARN0,SQLWARN1,SQLWARN2,SQLWARN3,

1 SQLWARN4,SQLWARN5,SQLWARN6,SQLWARN7

EQUIVALENCE (SQLWARN0,SQLWARN(0)),

1 (SQLWARN1,SQLWARN(1)),

1 (SQLWARN2,SQLWARN(2)),

1 (SQLWARN3,SQLWARN(3)),

1 (SQLWARN4,SQLWARN(4)),

1 (SQLWARN5,SQLWARN(5)),

1 (SQLWARN6,SQLWARN(6)),

1 (SQLWARN7,SQLWARN(7))

COMMON /Sqlca/ SQLCAID,SQLCABC,SQLCODE,SQLERRL,

1 SQLERRM,SQLERRP,SQLERRD,SQLWARN,SQLEXT

C**** End SQL Preprocessor ****

The following �elds in this record are available for you to use in status checking.

SQLCODE

SQLERRD(3)

SQLWARN(0)

SQLWARN(1)

SQLWARN(2)

SQLWARN(6)

The other �elds are reserved for use by ALLBASE/SQL only .

As discussed in Chapter 4, the SQLCA COMMON block must be included whenever a
program unit executes SQL commands. If no EXEC SQL INCLUDE SQLCA statement is
included, the FORTRAN preprocessor will issue a warning message. If a program accesses
multiple DBEnvironments, each DBEnvironment requires a separate SQLCA. Consequently,
ensure that all program units that access the same DBEnvironment are preprocessed
separately from any program units that access a di�erent DBEnvironment.

SQLCODE

SQLCode can contain one of the following values:

0, when an SQL command executes without generating a warning or error condition.

A negative number, when an SQL command cannot be executed because an error condition
exists.

100, when no row quali�es for one of the following commands, but no error condition exists:

SELECT

INSERT

UPDATE

DELETE

FETCH

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

5-6 Runtime Status Checking and the SQLCA



Note that when you execute UPDATE or DELETE commands dynamically and no rows
qualify for the operation, SQLCode is not set to 100. You can use SQLErrd(3) to detect this
condition as discussed later in this chapter.

Negative SQLCode values are the same as the numbers associated with their corresponding
messages in the ALLBASE/SQL message catalog. For example, the error message associated
with an SQLCode of -2613 is:

Precision digits lost in decimal operation multiply. (DBERR 2613)

SQLCode is set by all SQL commands except the following directives:

BEGIN DECLARE SECTION

DECLARE CURSOR

END DECLARE SECTION

INCLUDE SQLCA

WHENEVER

When SQLCode is -4008, -14024, or a greater negative value than -14024, ALLBASE/SQL
automatically rolls back the current transaction. When this condition occurs, ALLBASE/SQL
also sets SQLWarn(6) to 'W'. Refer to the discussion later in this chapter on SQLWarn(6) for
more information on this topic.

More than one SQLCode is returned when more than one error occurs. For example, if you
attempt to execute the following SQL command, two negative SQLCode values result:

EXEC SQL ADD PUBLIC, GROUP1 TO GROUP GROUP1

The SQLCodes associated with the two errors are:

-2308, which indicates the reserved name PUBLIC is invalid.

-2318, which indicates you cannot add a group to itself.

To obtain all SQLCodes associated with the execution of an SQL command, you execute the
SQLEXPLAIN command until SQLCode is 0:

...
IF (SQLCode .EQ. 100) THEN

WRITE(6,102) 'No rows qualified for this operation.'

102 FORMAT(A80)

ELSEIF (SQLCode .LT. 0) THEN

CALL SQLStatusCheck

ENDIF...
SUBROUTINE SQLStatusCheck...
SQLCodeTmp = SQLCode

DO WHILE (SQLCode .NE. 0)

EXEC SQL SQLEXPLAIN :SQLMessage

CALL WriteOut (SQLMessage)

END DO

SQLCode = SQLCodeTmp

.

.
RETURN

END

Runtime Status Checking and the SQLCA 5-7



The subroutine named SQLStatusCheck is executed when SQLCode is a negative number .
Before executing SQLEXPLAIN for the �rst time, the program has access to the �rst
SQLCode returned. Each time SQLEXPLAIN is subsequently executed, the next SQLCode
becomes available to the program, and so on until SQLCode equals zero. If the user needs
to have further access to a SQLCode value, the SQLCode value needs to be saved into
another data variable. Each time SQLEXPLAIN or any other SQL command is executed, the
SQLCode value changes to reect the result of the previously executed command.

This example explicitly tests the value of SQLCode twice: �rst to determine whether it is
equal to 100, then to determine whether it is less than 0 . If the value 100 exists, no error will
have occurred and the program will display the message No rows qualify for this operation. It
is necessary for the program to display its own message in this case because only negative
SQLCodes and the SQLWarn(0) W ag have messages to describe their corresponding
conditions.

The SQLCode is also used in implicit status checking:

ALLBASE/SQL tests for the condition SQLCode less than zero (<0) when you use the
SQLERROR option of the WHENEVER command.

ALLBASE/SQL tests for the condition SQLCode equal to 100 (=100) when you use the
NOT FOUND option of the WHENEVER command.

In the following situation, when ALLBASE/SQL detects a negative SQLCode, the code
routine at Label 2000 in the same program unit is executed. When ALLBASE/SQL detects
an SQLCode of 100, the code routine at label 4000 in the same program unit is executed
instead:

EXEC SQL WHENEVER SQLERROR GOTO 2000

EXEC SQL WHENEVER NOT FOUND GOTO 4000

WHENEVER commands remain in e�ect for all SQL commands that appear sequentially
after them in the modi�ed source code until another WHENEVER command for the same
condition occurs. The following WHENEVER command, for example, changes the e�ect of an
SQLCode of 100. Instead of the code routine at Label 4000 in the same program unit being
executed, the code routine at label 4500 in the same program unit is executed:

EXEC SQL WHENEVER NOT FOUND GOTO 4500

The scope of WHENEVER commands is fully explained later in this chapter under \Implicit
Status Checking."

5-8 Runtime Status Checking and the SQLCA



SQLERRD(3)

SQLErrd(3) can contain one of the following values:

0, when SQLCode is 100 or when one of the following commands causes an error condition:

INSERT

UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

If an error occurs during execution of an INSERT, UPDATE, or DELETE command, one
or more rows may have been processed prior to the error. In these cases, you may want
to either COMMIT WORK or ROLLBACK WORK depending on the application. For
example, if for logical data consistency all or no rows should be deleted, use ROLLBACK
WORK. If logical data consistency is not an issue, COMMIT WORK may minimize
re-processing time.

A positive number that provides information about the number of rows processed in any
data manipulation command.

The meaning of any positive SQLErrd(3) value depends on the SQLCode value.

When SQLCode is 0 , SQLErrd(3) indicates:

The number of rows processed in one of the following operations:

INSERT

UPDATE

DELETE

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The number of rows put into output host variables when one of the following commands is
executed:

SELECT
FETCH

SQLWARN(0)

A W in SQLWarn(0) in conjunction with a 0 (zero) in SQLCode indicates that the SQL
command just executed caused a warning condition.

Warning conditions ag unusual but not necessarily important conditions. For example, if a
program attempts to submit an SQL command that grants an already-existing authority, a
message such as the following would be retrieved when SQLEXPLAIN is executed:

User PEG already has DBA authority. (DBWARN 2006)

In the case of the following warning, the situation may or may not indicate a problem:

A transaction in progress was aborted. (DBWARN 2010)

Runtime Status Checking and the SQLCA 5-9



This warning occurs when a program submits a RELEASE command without �rst
terminating a transaction with a COMMIT WORK or ROLLBACK WORK command. If
the transaction performed no UPDATE, INSERT, or DELETE operations, this situation
causes no work to be lost. If the transaction did perform UPDATE, INSERT, or DELETE
operations, the database changes are rolled back when the RELEASE command is processed.

An error and a warning condition may exist at the same time. In this event, SQLCode is set
to a negative number, but SQLWarn(0) is set to W only if SQLWarn(6) is set to W . Messages
describing all the warnings and errors can be displayed as follows:

.

.

IF (SQLCode .NE. 0) THEN

DO WHILE (SQLCode .NE. 0)

CALL DisplayMessage

END DO

ENDIF

.

.

SUBROUTINE DisplayMessage

EXEC SQL SQLEXPLAIN :SQLMessage

WRITE(6,102) SQLMessage

102 FORMAT(A120)

.

.

RETURN

END

If multiple warnings but no errors result when ALLBASE/SQL processes a command,
SQLWarn(0) is set to W and remains set until the last warning message has been retrieved
by SQLEXPLAIN or another SQL command is executed. In the following example,
DisplayWarning is executed when this condition exists:

...
IF ((SQLWarn(0) .EQ. 'W') .AND. (SQLCode .EQ. 0)) THEN

DO WHILE (SQLWarn(0) .EQ. 'W')

CALL DisplayWarning

END DO

ENDIF...
SUBROUTINE DisplayWarning...
EXEC SQL SQLEXPLAIN :SQLMessage

WRITE(6,102) SQLMessage

102 FORMAT(A120)...
RETURN

END

5-10 Runtime Status Checking and the SQLCA



When you use the SQLWARNING option of the WHENEVER command, ALLBASE/SQL
checks for a W in SQLWarn(0). You can use the WHENEVER command to do implicit
status checking equivalent to that done explicitly above as follows:

EXEC SQL WHENEVER SQLWARNING GOTO 3000

EXEC SQL WHENEVER SQLERROR GOTO 2000

When a warning condition that sets SQLWarn(0) occurs, SQLCode does not contain a value
that describes the warning. Therefore you cannot explicitly evaluate the contents of SQLCode
in order to conditionally handle warnings. You can either display the message SQLEXPLAIN
retrieves from the ALLBASE/SQL catalog or you can ignore the warning.

SQLWARN(1)

A W in SQLWarn(1) indicates truncation of at least one character string value when the
string was stored in a host variable. Any associated indicator variable is set to the value of the
string length before truncation.

For example:

EXEC SQL SELECT PartNumber,

PartName

INTO :PartNumber

:PartName :PartNameInd

FROM PurchDB.Parts

WHERE PartNumber = :PartNumber;

If PartName was declared as a character array of 20 bytes, and the PartName column in the
PurchDB.Parts table has a length of 30 bytes, then:

SQLWarn(1) is set to W.

PartNameInd is set to 30 (the length of PartName in the table).

SQLCode is set to 0.

SQLEXPLAIN retrieves the message:

Character string truncation during storage in host variable.

(DBWARN 2040)

SQLWARN(2)

A W in SQLWarn(2) indicates that at least one null value was eliminated from the argument
set of an aggregrate function.

For example:

EXEC SQL SELECT MAX(OrderQty)

INTO :MaxOrderQty

FROM PurchDB.OrderItems;

Runtime Status Checking and the SQLCA 5-11



If any OrderQty values are null:

:SQLWarn(2) is set to W.

SQLCode is set to 0.

SQLEXPLAIN retrieves the message:

NULL values eliminated from the argument of an aggregate

function. (DBWARN 2041)

SQLWARN(6)

When an error exists so serious that ALLBASE/SQL has to roll back the current transaction,
SQLWarn(6) is set to W . ALLBASE/SQL automatically rolls back transactions when
SQLCode is equal to -4008 or is -14024 or less:

An SQLCode of -4008 indicates that ALLBASE/SQL does not have access to the amount of
shared memory required to complete the execution of an open transaction:

ALLBASE/SQL Shared Memory allocation failed in DBCore. (DBERR 4008)

An SQLCode of -14024 indicates that a deadlock has occurred:

Deadlock detected. (DBERR 14024)

A deadlock exists when each of two transactions needs data that the other transaction
already has locked. When a deadlock occurs, ALLBASE/SQL rolls back the transaction
with the larger priority number. If two deadlocked transactions have the same priority,
ALLBASE/SQL rolls back the newer transaction.

An SQLCode with a greater negative value than -14024 indicates that the error is serious
enough to warrant terminating your program. For example, when the log �le is full, log
space needs to be reclaimed before ALLBASE/SQL can process any additional transactions:

Log full. (DBERR 14046)

When these errors occur, ALLBASE/SQL sets SQLWarn(6) to W , SQLWarn(0) to W , and
SQLCode to a negative number . You only need to examine SQLWarn(6) if you want to
terminate your program any time ALLBASE/SQL has to roll back the current transaction:

IF ((SQLCode .LT. 0) .AND. ( SQLWARN(6) .EQ. 'W')) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ELSE

CALL SQLStatusCheck

ENDIF

5-12 Runtime Status Checking and the SQLCA



In this example, the program executes subprogram unit SQLStatusCheck when an error
occurs. The program terminates whenever SQLWarn(6) is W , but continues if SQLWarn(6) is
not W .

If a deadlock or a shared memory problem occurs, the contention that caused it may not exist
if the transaction is restarted. In this case, you may want to examine both SQLWarn(6) and
SQLCode and terminate the program only when SQLCode is less than -14024:

.

.

.

100 CONTINUE

C This is the RESTART POINT

.

.

.

IF (SQLCode .GT. -14025) THEN

DO WHILE (SQLCode .NE. 0)

EXEC SQL SQLEXPLAIN :SQLMessage

CALL WriteOut (SQLMessage)

END DO

GOTO 100

ENDIF

IF ((SQLWARN(6) .EQ. 'W') .AND. (SQLCode .LT. -14024)) THEN

DO WHILE (SQLCode .NE. 0)

EXEC SQL SQLEXPLAIN :SQLMessage

CALL WriteOut (SQLMessage)

END DO

CALL TerminateProgram

ENDIF

If a deadlock or a shared memory problem occurs, the program displays all the messages,
then continues. The program also continues when an error exists but is not serious enough
to cause ALLBASE/SQL to roll back the current transaction. In the case of serious errors,
however, SQLCode is set to less than -14024, and the program terminates after displaying all
the messages.

If multiple SQLCodes result when ALLBASE/SQL processes a command that causes the
current transaction to be rolled back, SQLWarn(6) is set to W in conjunction with the �rst
available SQLCode. Therefore, if your program needs to examine SQLWarn(6), ensure that
you examine it before using SQLEXPLAIN for the second time or it will be reset.

Runtime Status Checking and the SQLCA 5-13



If one or more errors are detected before an automatic rollback occurs, the �rst SQLCode
available to your program will not be equal to -4008 or greater than or equal to -14024.
However, should one of these conditions occur, the corresponding SQLCode is guaranteed to
be the last SQLCode available to your program, since ALLBASE/SQL rolls back the current
transaction and does not continue to look for additional errors. You can use this characteristic
to construct a test such that a transaction is automatically reapplied behind the program
user's back only if a deadlock or a shared memory problem occurs but no other errors were
detected �rst:

TryCounter = 0

TryLimit = 3

.

.

100 IF (SQLCommandDone) THEN

.

. Program user is prompted for a part number.

.

SQLCommandDone = .TRUE.

.

. A SELECT command is attempted.

.

Trycounter = TryCounter +1

.

.

IF ((SQLCode .EQ. -14024).OR.(SQLCode .EQ. -4008)) THEN

IF (Trycounter .EQ. TryLimit) THEN

SQLCommandDone = .FALSE.

WRITE (*,*) 'Could not complete transaction.'

WRITE (*,*) 'Try again later if you want.'

ELSE

SQLCommandDone = .TRUE.

ENDIF
ELSE

Abort = .FALSE.

IF (SQLWarn(6) .EQ. 'W') THEN

Abort = .TRUE.

ENDIF

DO WHILE (SQLCode .NE. 0)

EXEC SQL SQLEXPLAIN :SQLMessage

WRITE (*,110) SQLMessage

110 FORMAT(A120)

END DO

IF (Abort) THEN

CALL TerminateProgram

ELSE

SQLCommandDone = .TRUE.

ENDIF

ENDIF

.

.

GOTO 100

5-14 Runtime Status Checking and the SQLCA



At this point, a SELECT command is executed. If an error occurs, and if the �rst
error detected was a deadlock or a shared memory problem, the SELECT command is
automatically re-executed as many as three times before the user is noti�ed of the situation. If
other errors occurred before the deadlock or shared memory problem, the transaction is not
automatically reapplied. If an error with an SQLCode less then -14024 occurred, the program
is terminated after the error messages are displayed.

Approaches to Status Checking

You can use one or both of the following approaches to checking SQLCA values:

Implicit status checking. This approach utilizes the WHENEVER command to check
SQLWarn(0) or SQLCode values. This type of status checking is most useful when control
can be passed to one prede�ned point in the program unit to handle warnings and errors.

Explicit status checking. This approach uses your own FORTRAN statements to explicitly
examine SQLWarn(0), SQLWarn(6), SQLCode, or SQLErrd(3). This type of status checking
is useful when you want to test for speci�c SQLCA values before passing control to one of
several locations in the program.

Error and warning conditions detected by either type of status checking can be conveyed to
the program user in several ways:

SQLEXPLAIN can be used one or more times after an SQL command is processed to
retrieve warning and error messages from the ALLBASE/SQL message catalog. The
ALLBASE/SQL message catalog has messages for every negative SQLCode and for every
condition that sets SQLWarn(0).

Your own messages can be displayed when a certain condition occurs.

No message may be displayed, as when a condition exists that is irrelevant to the program
user.

This section illustrates various ways to use explicit and implicit status checking and notify
program users of the results of status checking.

Implicit Status Checking

The WHENEVER command consists of two components: a condition and an action:

EXEC SQL WHENEVER Condition Action

There are three conditions:

SQLERROR. If WHENEVER SQLERROR is in e�ect, ALLBASE/SQL checks for the
existence of a negative SQLCode after processing any SQL command except:

BEGIN DECLARE SECTION INCLUDE

DECLARE CURSOR SQLEXPLAIN

END DECLARE SECTION WHENEVER

SQLWARNING. If WHENEVER SQLWARNING is in e�ect, ALLBASE/SQL checks for the
existence of a W in SQLWarn(0) after processing any SQL command except:

Runtime Status Checking and the SQLCA 5-15



BEGIN DECLARE SECTION INCLUDE

DECLARE CURSOR SQLEXPLAIN

END DECLARE SECTION WHENEVER

NOT FOUND. If WHENEVER NOT FOUND is in e�ect, ALLBASE/SQL checks for the
value 100 in SQLCode after processing a SELECT or FETCH command.

A WHENEVER command for each of these conditions can be in e�ect at the same time.

There are also three actions:

STOP. If WHENEVER Condition STOP is in e�ect, ALLBASE/SQL rolls back the current
transaction and terminates the DBE session and the program is terminated when the
Condition exists.

CONTINUE. If WHENEVER Condition CONTINUE is in e�ect, program execution
continues when the Condition exists. Any earlier WHENEVER command for the same
condition is cancelled.

GOTO Label. If WHENEVER Condition GOTO Label is in e�ect, the code routine located
at that numeric label is executed when the Condition exists. The label must appear in the
same program unit where the condition exists. GOTO and GO TO forms of this action
have exactly the same e�ect.

Any of these three actions may be speci�ed for any of these three conditions.

The WHENEVER command causes the FORTRAN preprocessor to generate status-checking
and status-handling code for each SQL command that comes after it sequentially in the
program. In the following program sequence, for example, the WHENEVER command in
SubprogramUnit1 is in e�ect for SQLCOMMAND1 , but not for SQLCOMMAND2 , even
though SQLCOMMAND1 is executed �rst at runtime:

5-16 Runtime Status Checking and the SQLCA



.

.

CALL SubprogramUnit1

CALL SubprogramUnit2

.

.

SUBROUTINE SubprogramUnit2

.

.

EXEC SQL SQLCOMMAND2

.

.

RETURN

END

SUBROUTINE SubprogramUnit1

.

.

EXEC SQL WHENEVER SQLERROR GOTO 2000

EXEC SQL WHENEVER SQLWARNING GOTO 3000

EXEC SQL WHENEVER NOT FOUND GOTO 4000

.

.

EXEC SQL SQLCOMMAND1

.

.

2000 CALL ErrorHandler

.

3000 CALL WarningHandler

.

4000 CALL NotFoundHandler

.

.

EXEC SQL WHENEVER SQLERROR CONTINUE

EXEC SQL WHENEVER SQLWARNING CONTINUE

EXEC SQL WHENEVER NOT FOUND CONTINUE

RETURN

END

The code generated reects the condition and action in a WHENEVER command. In the
example above, the preprocessor inserts both a test for a negative value in SQLCode, an
SQLCode value equal to 100, and an SQLWarn(0) value equal to W, and a statement that
invokes the error handling code routines located at Labels 2000, 3000, and 4000 respectfully:

Runtime Status Checking and the SQLCA 5-17



SUBROUTINE SubprogramUnit1

.

.

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR GOTO 2000

C EXEC SQL WHENEVER SQLWARNING GOTO 3000

C EXEC SQL WHENEVER NOT FOUND GOTO 4000

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

.

.

C **** Start SQL Preprocessor ***

C EXEC SQL SQLCOMMAND1

C **** Start Inserted Statements ****

IF (SQLCODE .EQ. 0) THEN

CALL SQLXCO(SQLCAID,Statements for executing

1 SQLCOMMAND1 appear here)

IF (SQLWARN(0) .EQ. 'W') THEN

GO TO 3000

END IF

ELSE IF (SQLCODE .EQ. 100) THEN

GO TO 4000

ELSE IF (SQLCODE .LT. 0) THEN

GO TO 2000

END IF

C **** End SQL Preprocessor ****

.

.

2000 CALL ErrorHandler

.

3000 CALL WarningHandler

.

4000 CALL NotFoundHandler

.

.

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLERROR CONTINUE

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER SQLWARNING CONTINUE

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

C**** Start SQL Preprocessor ****

C EXEC SQL WHENEVER NOT FOUND CONTINUE

C**** Start Inserted Statements ****

C**** End SQL Preprocessor ****

5-18 Runtime Status Checking and the SQLCA



RETURN

END

Runtime Status Checking and the SQLCA 5-19



As this example illustrates, you can pass control with a WHENEVER command to an
exception-handling code routine within the same program unit where the error condition
occurred. Because you use a GOTO statement rather than a CALL statement, after the
exception-handling subprogram unit is executed, control cannot automatically return to
the statement which caused the error to occur. You must use another GOTO or a CALL
statement to explicitly pass control to a speci�c point in your program:

SUBROUTINE ErrorHandler

.

.

IF (SQLCode .LT. -14024) THEN

CALL TerminateProgram

ELSE

DO WHILE (SQLCode .NE. 0)

EXEC SQL SQLEXPLAIN :SQLMessage

CALL WriteOut (SQLMessage)

END DO

CALL BeginningOfProgram

C (* CALL Restart/Reentry point of program *)

ENDIF

.

.

RETURN

END

This exception-handling subprogram unit explicitly checks the �rst SQLCode returned. The
program terminates or it continues from the Restart/Reentry point after all warning and error
messages are displayed. Note that a CALL statement had to be used in this code routine
in order to allow the program to transfer control to a speci�c point. A GOTO statement
transfers control only to another point in the same subprogram unit and a RETURN
statement returns control to the point in the program where the error handling subprogram
unit was called. Using a CALL statement may be impractical when you want execution to
continue from di�erent places in the program, depending on the part of the program that
provoked the error. How to handle this case is discussed under \Explicit Status Checking"
later in this chapter.

The FORTRAN preprocessor generates status-checking and status-handling code for
each SQL command that comes after a WHENEVER statement in the source code until
another WHENEVER statement is found. If the WHENEVER statement includes a GOTO,
there must be a corresponding label in each subsequent subprogram unit following the
WHENEVER statement that includes SQL commands, or until another WHENEVER
statement is encountered. It is recommended that a WHENEVER condition CONTINUE
statement be included at the end of each subprogram unit that contains a WHENEVER
condition GOTO statement to eliminate the possibility of having an unresolved external error
at compile time.

5-20 Runtime Status Checking and the SQLCA



Implicitly Invoking Status-Checking Subprogram Units

The program illustrated in Figure 5-1 contains �ve WHENEVER commands:

The WHENEVER command numbered 1 handles errors associated with the following
commands:

CONNECT

BEGIN WORK

COMMIT WORK

The WHENEVER command numbered 2 turns o� the previous WHENEVER command.

The WHENEVER commands numbered 3 through 5 handle warnings and errors associated
with the SELECT command.

The WHENEVER commands numbered 6 turns o� the previous WHENEVER commands.

The code routine located at Label 1000 is executed when an error occurs during the processing
of session-related and transaction-related commands. The program terminates after displaying
all available error messages. If a warning condition occurs during the execution of these
commands, the warning condition is ignored, because the WHENEVER SQLWARNING
CONTINUE command is in e�ect by default.

The code routine located at Label 2000 is executed when an error occurs during the processing
of the SELECT command. This code routine explicitly examines the SQLCode value to
determine whether it is -10002, in which case it displays a warning message. If SQLCode
contains another value, subprogram unit SQLStatusCheck is executed. SQLStatusCheck
explicitly examines SQLCode to determine whether a deadlock or shared memory problem
occurred (SQLCode = -14024 or -4008 respectively) or whether the error was serious enough
to warrant terminating the program (SQLCode < -14024).

If a deadlock or shared memory problem occurred, the program attempts to execute the
SelectQuery subprogram unit starting at Label 1001 as many as three times before notifying
the user of the deadlock or shared memory condition and terminating the program.

Runtime Status Checking and the SQLCA 5-21



If SQLCode contains a value less than -14024, the program terminates after all available
warnings and error messages from the ALLBASE/SQL message catalog have been displayed.

In the case of any other errors, the program displays all available messages, then returns to
subprogram unit SelectQuery and prompts the user for another PartNumber.

The code routine located at Label 3000 is executed when only a warning condition results
during execution of the SELECT command. This code routine displays a message and the row
of data retrieved, commits work, and then prompts the user for another PartNumber.

The NOT FOUND condition that may be associated with the SELECT command is handled
by the code routine located at Label 4000 . This code routine displays the message, Row not
found!, then passes control to subprogram unit EndTransaction. SQLEXPLAIN does not
provide a message for the NOT FOUND condition, so the program must provide one itself.

5-22 Runtime Status Checking and the SQLCA



PROGRAM forex5

C

C ******************************************************

C * This program illustrates the use of SQL's SELECT *

C * command to retrieve one row or tuple of data at *

C * a time. BEGIN WORK is executed before the SELECT *

C * and COMMIT WORK is executed after the SELECT. An *

C * indicator variable is used for SalesPrice. *

C * This program is like forex2 except this program *

C * handles deadlocks and error handling differently. *

C ******************************************************

C

C (* Begin SQL Communication Area *)

C

EXEC SQL INCLUDE SQLCA

C

C

C ****************************************************
C * Data Type Conversions : *

C * Character = SQL Char(1) *

C * Character*n = SQL Char(n) *

C * Character*n = SQL VarChar *

C * Double Precision = SQL Float *

C * Double Precision = SQL Decimal *

C * Integer = SQL Integer *

C * Integer*2 = SQL SmallInt *

C ****************************************************

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

C (* End Host Variable Declarations *)

C

C (* Beginning of the Main Program *)

C

WRITE (*,*) CHAR(27), 'U'

WRITE (*,*) 'Program to SELECT specified rows from the Parts table

1 -- forex5'

WRITE (*,*) 'Event List:'

WRITE (*,*) ' CONNECT TO PartsDBE'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' SELECT a specified row from the Parts table until u

1ser enters a "/"'

WRITE (*,*) ' COMMIT WORK'
WRITE (*,*) ' RELEASE PartsDBE'

Figure 5-1. Program forex5: Implicit and Explicit Status Checking

Runtime Status Checking and the SQLCA 5-23



C

CALL ConnectDBE

CALL SelectQuery

CALL TerminateProgram

C

STOP

END

C

C (* Beginning of the Sub-Routines *)

C

SUBROUTINE ConnectDBE

C (* Subroutine to Connect to PartsDBE *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)
C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

EXEC SQL WHENEVER SQLERROR GOTO 1000

C

WRITE (*,*) ' '

WRITE (*,*) 'CONNECT TO PartsDBE'

EXEC SQL CONNECT TO 'PartsDBE'

GOTO 1100

C

1000 CALL SQLStatusCheck

CALL TerminateProgram

C

1100 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End of ConnectDBE Subroutine *)

C

C

SUBROUTINE BeginTransaction

C (* Subroutine to Begin Work *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

Figure 5-1. Program forex5: Implicit and Explicit Status Checking (page 2 of 8)

5-24 Runtime Status Checking and the SQLCA



C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

EXEC SQL WHENEVER SQLERROR GOTO 1000

C

WRITE (*,*) 'BEGIN WORK'

EXEC SQL BEGIN WORK

GOTO 1100

C

1000 CALL SQLStatusCheck

CALL TerminateProgram

C

1100 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End BeginTransaction Subroutine *)
C

C

SUBROUTINE EndTransaction

C (* Subroutine to Commit Work *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

EXEC SQL WHENEVER SQLERROR GOTO 1000

C

WRITE (*,*) 'COMMIT WORK'

EXEC SQL COMMIT WORK

GOTO 1100

C

1000 CALL SQLStatusCheck

CALL TerminateProgram

C

1100 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

END

C (* End EndTransaction Subroutine *)

Figure 5-1. Program forex5: Implicit and Explicit Status Checking (page 3 of 8)

Runtime Status Checking and the SQLCA 5-25



C

C

SUBROUTINE TerminateProgram

C (* Subroutine to Release PartsDBE *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C

WRITE (*,*) 'RELEASE PartsDBE'

EXEC SQL RELEASE

WRITE (*,*) 'Terminating Program'

RETURN
END

C (* End ReleaseDBE Subroutine *)

C

C

SUBROUTINE SelectQuery

C (* Subroutine to prompt user for Query Input *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

LOGICAL SQLCommandDone

CHARACTER*16 response

INTEGER trycounter

INTEGER multiplerows

INTEGER deadlock

INTEGER OK

INTEGER notfound

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

EXEC SQL END DECLARE SECTION

Figure 5-1. Program forex5: Implicit and Explicit Status Checking (page 4 of 8)

5-26 Runtime Status Checking and the SQLCA



C

EXEC SQL WHENEVER SQLERROR GOTO 2000

EXEC SQL WHENEVER SQLWARNING GOTO 3000

EXEC SQL WHENEVER NOT FOUND GOTO 4000

C

trycounter = 0

multiplerows = -10002

1000 CONTINUE

DO WHILE (PartNumber .NE. '/')

SQLCommandDone = .TRUE.

WRITE (*,100)

100 FORMAT(/$,' Enter PartNumber from Parts table or / to STOP > ')

READ (5,110) PartNumber

110 FORMAT(A16)

IF (PartNumber .NE. '/') THEN

CALL BeginTransaction

C

DO WHILE (SQLCommandDone)
C

WRITE (*,*) 'SELECT PartNumber, PartName, SalesPrice'

C

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice :SalesPriceInd

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

C

SQLCommandDone = .FALSE.

CALL DisplayRow (PartNumber,PartName,SalesPrice,

1 SalesPriceInd)

END DO

CALL EndTransaction

ENDIF

END DO

GOTO 5000

C

Figure 5-1. Program forex5: Implicit and Explicit Status Checking (page 5 of 8)

Runtime Status Checking and the SQLCA 5-27



2000 IF (SQLCode .EQ. multiplerows) THEN

WRITE (*,*) 'WARNING: More than one row qualifies!'

ENDIF

CALL SQLStatusCheck (trycounter)

CALL DisplayRow (PartNumber,PartName,SalesPrice,SalesPriceInd)

CALL EndTransaction

GOTO 1000

C

3000 WRITE (*,*) 'An SQL WARNING has occurred. The following row'

WRITE (*,*) 'of data may not be valid! '

CALL DisplayRow (PartNumber,PartName,SalesPrice,SalesPriceInd)

CALL EndTransaction

GOTO 1000

C

4000 WRITE (*,*) 'Row not found!'

CALL EndTransaction

GOTO 1000

C
5000 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

EXEC SQL WHENEVER SQLWARNING CONTINUE

EXEC SQL WHENEVER NOT FOUND CONTINUE

END

C

C (* End QueryTable Subroutine *)

C

C

SUBROUTINE SQLExplain

C (* Subroutine to CALL SQLExplain *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

C

EXEC SQL SQLEXPLAIN :SQLMessage

WRITE (*,*) SQLMessage

C

RETURN

END

C
C (* End SQLExplain Subroutine *)

Figure 5-1. Program forex5: Implicit and Explicit Status Checking (page 6 of 8)

5-28 Runtime Status Checking and the SQLCA



SUBROUTINE SQLStatusCheck (trycounter)

C (* Subroutine to Check for DeadLocks *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

LOGICAL SQLCommandDone

LOGICAL Abort

INTEGER deadlock

INTEGER trycounter

INTEGER trycounterlimit

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION
C

deadlock = -14024

trycounterlimit = 3

SQLCommandDone = .FALSE.

C

IF (SQLCode .EQ. deadlock) THEN

IF (trycounter .EQ. trycounterlimit) THEN

SQLCommandDone = .TRUE.

WRITE (*,*) 'Deadlock occurred. You may want to try again'

ELSE

trycounter = trycounter + 1

SQLCommandDone = .FALSE.

ENDIF

ENDIF

Abort = .FALSE.

IF (SQLCode .LT. deadlock) THEN

Abort = .TRUE.

ENDIF

DO WHILE (SQLCode .NE. 0)

CALL SQLExplain

END DO

C

IF (Abort) THEN

CALL TerminateProgram

ENDIF

C

RETURN

END
C

C (* End DeadLockCheck Subroutine *)

Figure 5-1. Program forex5: Implicit and Explicit Status Checking (page 7 of 8)

Runtime Status Checking and the SQLCA 5-29



C

C

SUBROUTINE DisplayRow (PartNumber,PartName,SalesPrice,

1SalesPriceInd)

C (* Subroutine to Display a Selected Row *)

C

EXEC SQL INCLUDE SQLCA

C

C (* Begin SQL Communication Area *)

C

C (* Begin Host Variable Declarations *)

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

CHARACTER*80 SQLMessage
EXEC SQL END DECLARE SECTION

C

WRITE(*,100) PartNumber

WRITE(*,110) PartName

C

C IF (SalesPriceInd .LT. 0) THEN

IF (SalesPrice .LT. 0) THEN

WRITE (*,*) 'Sales Price is NULL'

ELSE

WRITE(*,120) SalesPrice

ENDIF

ENDIF

100 FORMAT(' Part Number: ',A16)

110 FORMAT(' Part Name: ',A30)

120 FORMAT(' Sales Price: ',F10.2)

C

WRITE (*,*) 'Was retrieved from the PurchDB.Parts table'

C

RETURN

END

C (* End DisplayRow Subroutine *)

Figure 5-1. Program forex5: Implicit and Explicit Status Checking (page 8 of 8)

5-30 Runtime Status Checking and the SQLCA



Explicit Status Checking

The example examined under \Implicit Status Checking" has already illustrated several uses
for explicit status checking:

PROGRAM SQLError...
C (* Restart/Reentry point *)

600 CONTINUE

.

. SQL SELECT Command

.

IF (SQLCode .EQ. MultipleRows) THEN
WRITE(6,602) 'WARNING: More than one row qualifies.'

602 FORMAT(A80)

ELSE

CALL SQLStatusCheck (trycounter)

ENDIF

CALL DisplayRow (PartNumber,PartName,SalesPrice,SalesPriceInd)

CALL EndTransaction

GOTO 600...
END

C

SUBROUTINE SQLStatusCheck (trycounter)...
IF (SQLCode .EQ. deadlock) THEN

IF (TryCounter .EQ. TryCounterLimit) THEN

WRITE(6,102) 'Deadlock occurred, you may want to try again.'

102 FORMAT(A80)

CALL TerminateProgram

ELSE

trycounter = trycounter + 1

ENDIF

ENDIF

Abort = .FALSE.

IF (SQLCode .LT. deadlock) THEN

Abort = .TRUE.

ENDIF

DO WHILE (SQLCode .NE. 0)

CALL SQLExplain :SQLMessage
CALL WriteOut (SQLMessage)

END DO

IF (Abort) THEN

CALL TerminateProgram

ENDIF...
RETURN

END

Runtime Status Checking and the SQLCA 5-31



SQLCA values are explicitly examined in this example in order to:

Isolate errors so critical that they caused ALLBASE/SQL to rollback the current
transaction.

Control the number of times SQLEXPLAIN is executed.

Detect when more than one row quali�es for the SELECT operation.

Detect when a deadlock condition exists and control program execution.

This section examines when you may want to invoke such status-checking code routines
explicitly rather than implicitly . In addition, this section illustrates how SQLErrd(3) and
several SQLCode values can be explicitly used to monitor the number of rows operated on by
data manipulation commands.

Explicitly Invoking Status-Checking Subprogram Units

The example in Figure 5-1 illustrates how status-checking code can be consolidated
within individual subprogram units. This approach can sometimes reduce the amount of
status-checking code. As the number of SQL operations in a program increases, however,
the likelihood of needing to return to di�erent places in the program after execution of such
a subprogram unit increases. In this case, you invoke the subprogram units after explicitly
checking SQLCA values rather than using the WHENEVER command to implicitly check
these values.

The example shown in Figure 5-2 contains four data manipulation operations: INSERT,
UPDATE, DELETE, and SELECT. Each of these operations is executed from its own
subprogram unit.

As in the program in Figure 5-1, one subprogram unit is used for explicit error handling:
SQLStatusCheck. Unlike the program in Figure 5-2; however, this subprogram unit is invoked
after explicit test of SQLCode is made, immediately following each data manipulation
operation. In the program in Figure 5-2, tests for warning conditions are omitted.

Because error handling is performed in a subprogram unit rather than in a code routine
following the embedded SQL command, control returns to the point in the program where
SQLStatusCheck is invoked.

5-32 Runtime Status Checking and the SQLCA



PROGRAM Main

.

.

.

CALL SelectActivity

.

.

.

STOP

END

SUBROUTINE SelectActivity

This subprogram unit prompts for a number that indicates

whether the user wants to SELECT, UPDATE, DELETE,

or INSERT rows, then invokes the subprogram unit that

accomplishes the selected activity. The DONE ag

is set when the user enters a slash.

.

.

.

RETURN

END

SUBROUTINE InsertData

.

.

.

Statements that accept data from the user appear here.

EXEC SQL INSERT

1 INTO PurchDB.Parts (PartNumber,

2 PartName,

3 SalesPrice)

4 VALUES (:PartNumber,

5 :PartName,

6 :SalesPrice)

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck �3�
ENDIF

.

.

.

RETURN

END

SUBROUTINE UpdateData

Figure 5-2. Explicitly Invoking Status-Checking Subprogram Units
Runtime Status Checking and the SQLCA 5-33



.

.

.

This subprogram unit veri�es that the row(s) to be changed

exist, then invokes subprogram unit DisplayUpdate to accept

new data from the user.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

IF (SQLCode .EQ. OK) THEN

CALL DisplayUpdate

ELSE

IF (SQLCode .EQ. MultipleRows) THEN

WRITE(6,102) 'Warning; more than one row qualifies!'

102 FORMAT (A80)

CALL DisplayUpdate

ELSE

IF (SQLCode .EQ. NotFound) THEN �5�
WRITE (6,103) 'Row not found!'

103 FORMAT (A80)

ELSE

CALL SQLStatusCheck �3�
ENDIF

ENDIF

ENDIF

.

SUBROUTINE DisplayUpdate

.

.

.

Statements that prompt user for new data appear here.

EXEC SQL UPDATE PurchDB.Parts

1 SET PartName = :PartName,

2 SalesPrice = :SalesPrice,

3 WHERE PartNumber = :PartNumber

IF (SQLCode .NE. OK) THEN �3�
CALL SQLStatusCheck

ENDIF

.

Figure 5-2. Explicitly Invoking Status-Checking Subprogram Units (page 2 of 5)5-34 Runtime Status Checking and the SQLCA



.

.

RETURN

END

SUBROUTINE DeleteData

.

.

.

This subprogram unit veri�es that the row(s) to be deleted

exist, then invokes subprogram unit DisplayDelete to delete

the row(s).

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

IF (SQLCode .EQ. OK) THEN

CALL DisplayDelete

ELSE

IF (SQLCode .EQ. MultipleRows) THEN

WRITE(6,102) 'Warning; more than one row qualifies!'

102 FORMAT(A80)

CALL DisplayDelete

ELSE

IF (SQLCode = NotFound) THEN �5�
WRITE (6,103) 'Row not found!'

103 FORMAT(A80)

ELSE

CALL SQLStatusCheck �3�
ENDIF

ENDIF

ENDIF

.

.

.

RETURN

END

SUBROUTINE DisplayDelete

.

.

.

Figure 5-2. Explicitly Invoking Status-Checking Subprogram Units (page 3 of 5)
Runtime Status Checking and the SQLCA 5-35



Statements that verify that the deletion should

actually occur appear here.

EXEC SQL DELETE FROM PurchDB.Parts

1 WHERE PartNumber = :PartNumber

IF (SQLCode .NE. OK) THEN �3�
CALL SQLStatusCheck

ENDIF

.

.

.

RETURN

END

SUBROUTINE SelectData

.

.

.

Statements that prompt for a partnumber appear here.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

IF (SQLCode .EQ. OK) THEN

CALL DisplayRow

ELSE

IF (SQLCode .EQ. MultipleRows) THEN

WRITE(6,102) 'Warning; more than one row qualifies!'

102 FORMAT(A80)

ELSE

IF (SQLCode = NotFound) THEN �5�
WRITE (6,103) 'Row not found!'

103 FORMAT(A80)

ELSE

CALL SQLStatusCheck �3�
ENDIF

ENDIF

ENDIF

.

.

RETURN

END

Figure 5-2. Explicitly Invoking Status-Checking Subprogram Units (page 4 of 5)
5-36 Runtime Status Checking and the SQLCA



SUBROUTINE SQLStatusCheck

.

.

.

IF (SQLCode .EQ. DeadLock) THEN

IF (trycounter .EQ. trycounterlimit) THEN

WRITE(6,102) 'Deadlock occurred; you may want to try again.'

102 FORMAT(A80)

CALL EndTransaction

ELSE

trycounter = trycounter + 1

ENDIF

ENDIF

Abort = .FALSE.

IF (SQLCode .LT. DeadLock) THEN

Abort = .TRUE.

ENDIF

DO WHILE (SQLCode .NE. 0)
EXEC SQL SQLEXPLAIN :SQLMessage

CALL WriteOut (SQLMessage)

END DO

IF (Abort) THEN

CALL TerminateProgram

ENDIF

.

.

.

RETURN

END

Figure 5-2. Explicitly Invoking Status-Checking Subprogram Units (page 5 of 5)

Runtime Status Checking and the SQLCA 5-37



Explicitly Checking for Number of Rows

SQLErrd(3) is useful in determining how many rows were processed in one of the following
operations when the operation could be executed without error:

SELECT

INSERT

UPDATE

DELETE

FETCH

UPDATE WHERE CURRENT

DELETE WHERE CURRENT

The SQLErrd(3) value can be used in these cases only when SQLCode does not contain
a negative number. When SQLCode is 0, SQLErrd(3) is always equal to 1 for SELECT,
FETCH, UPDATE WHERE CURRENT, and DELETE WHERE CURRENT operations.
SQLErrd(3) may be greater than 1 if more than one row quali�es for an INSERT, UPDATE,
or DELETE operation. When SQLCode is 100, SQLCA.SQLErrd(3) is 0.

The remainder of this chapter examines techniques for explicitly checking SQLErrd(3) as well
as using SQLCodes of 100 and -10002 in data manipulation logic.

Using SQLErrd(3) for UPDATE and DELETE Operations. The example in Figure 5-3 could be
modi�ed to display the number of rows updated or deleted by using SQLErrd(3). In the case
of the update operation, for example, the actual number of rows updated could be displayed
after the UPDATE command is executed:

5-38 Runtime Status Checking and the SQLCA



SUBROUTINE DisplayUpdate

.

.

EXEC SQL INCLUDE SQLCA

C

INTEGER OK

INTEGER NumberOfRows

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

EXEC SQL END DECLARE SECTION

.

.

Statements that prompt user for new data appear here.

EXEC SQL UPDATE PurchDB.Parts

1 SET PartName = :PartName,

2 SalesPrice = :SalesPrice,

3 WHERE PartNumber = :PartNumber

IF (SQLCode .EQ. OK) THEN

NumberOfRows = SQLErrd(3)

WRITE(6,102) 'The number of rows updated was: ', NumberOfRows

102 FORMAT(A80,I)

ELSE

WRITE(6,103) 'No rows could be updated!'

103 FORMAT(A80)

CALL SQLStatusCheck

ENDIF

.

.

RETURN

END

If the UPDATE command is successfully executed, SQLCode equals zero and SQLErrd(3)
contains the number of rows updated. If the UPDATE command cannot be successfully
executed, SQLCode contains a negative number and SQLErrd(3) contains a zero.

In the case of the delete operation, the actual number of rows deleted could be displayed after
the DELETE command is executed:

Runtime Status Checking and the SQLCA 5-39



SUBROUTINE DisplayDelete

.

.

EXEC SQL INCLUDE SQLCA

C

INTEGER OK

INTEGER NumberOfRows

CHARACTER response

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

EXEC SQL END DECLARE SECTION

.

.

Statements that verify that the deletion should

actually occur appear here.

EXEC SQL DELETE FROM PurchDB.Parts

1 WHERE PartNumber = :PartNumber

IF (SQLCode .EQ. OK) THEN

NumberOfRows = SQLErrd(3)

WRITE(6,102) 'The number of rows deleted was: ', NumberOfRows

102 FORMAT(A35,I)

WRITE(6,103) 'Do you want to COMMIT WORK? Y or N:'

103 FORMAT(A80)

READ(5,104) response

104 FORMAT(A1)

IF (response .EQ. 'Y') THEN

EXEC SQL COMMIT WORK

ELSE

EXEC SQL ROLLBACK WORK

ENDIF

ELSE

CALL SQLStatusCheck

ENDIF

.

.

RETURN

END

5-40 Runtime Status Checking and the SQLCA



If the DELETE command is successfully executed, SQLCode equals 0 and SQLErrd(3)
contains the number of rows deleted. If the DELETE command cannot be successfully
executed, SQLCode contains a negative number and SQLErrd(3) contains a 0.

Using SQLCode of 100. The programs already examined in this chapter have illustrated how
an SQLCode of 100 can be detected and handled for data manipulation commands that do
not use a cursor. When a cursor is being used, this SQLCode value is used to determine when
all rows in an active set have been fetched:

SUBROUTINE Cursor

.

.

EXEC SQL INCLUDE SQLCA

C

INTEGER OK

INTEGER NotFound

LOGICAL donefetch

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

EXEC SQL END DECLARE SECTION

.

.

CALL DeclareCursor

C

EXEC SQL OPEN Cursor1

.

.

DO WHILE (donefetch)

CALL FetchRow (donefetch)
END DO

.

.

RETURN

END

SUBROUTINE FetchRow (donefetch)

.

.

EXEC SQL FETCH Cursor1

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice

IF (SQLCode .EQ. OK) THEN

CALL DisplayRow

ELSE

IF (SQLCode .EQ. NotFound) THEN

donefetch = .FALSE.

WRITE(6,102) ' '

Runtime Status Checking and the SQLCA 5-41



WRITE(6,102) 'Row not found or no more rows!'

102 FORMAT(A80)

ELSE
CALL DisplayError

ENDIF

ENDIF

.

.

RETURN

END

In this example, the active set is de�ned when the OPEN command is executed. The cursor
is then positioned before the �rst row of the active set. When the FETCH command is
executed, the �rst row in the active set is placed into the program's host variables, then
displayed. The FETCH command retrieves one row at a time into the host variables until
the last row in the active set has been retrieved; after the last row has been fetched from the
active set the next attempt to FETCH sets SQLCode to a value of 100 . If no rows qualify for
the active set, SQLCode equals 100 the �rst time subprogram unit FetchRow is executed.

Using SQLCode of -10002. If more than one row quali�es for a SELECT or FETCH
operation, ALLBASE/SQL sets SQLCode to -10002. The program in Figure 5-3 contains an
explicit test for this value. When SQLCode is equal to MultipleRows (de�ned as -10002 in the
Type Declaration Section), a status checking subprogram unit is not invoked, but a warning
message is displayed:

SUBROUTINE UpdateData

.

.

EXEC SQL INCLUDE SQLCA

C

5-42 Runtime Status Checking and the SQLCA



INTEGER OK

INTEGER NotFound

INTEGER MultipleRows

LOGICAL donefetch

C

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

DOUBLE PRECISION SalesPrice

EXEC SQL END DECLARE SECTION

C

OK = 0

NotFound = 100

MultipleRows = -10002

.

.

This subprogram unit veri�es that the row(s) to be changed

exists, then invokes subprogram unit DisplayUpdate to accept

new data from the user.

.

.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName,

3 :SalesPrice

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

IF (SQLCode .EQ. OK) THEN

CALL DisplayUpdate

ELSE

IF (SQLCode .EQ. MultipleRows) THEN

WRITE(6,102) ' '

WRITE(6,102) 'Warning; more than one row will be changed!'

102 FORMAT(A80)

CALL DisplayUpdate

ELSE

IF (SQLCode .EQ. NotFound) THEN

WRITE(6,103) ' '

WRITE(6,103) 'Row not found.')

103 FORMAT(A80)

ELSE

CALL SQLStatusCheck

ENDIF

ENDIF

ENDIF

.

Runtime Status Checking and the SQLCA 5-43



.

RETURN

END

5-44 Runtime Status Checking and the SQLCA



6

Overview of Data Manipulation

To manipulate data in an ALLBASE/SQL DBEnvironment, you use one of the following SQL
commands:

SELECT: to retrieve one or more rows from one or more tables.

INSERT: to insert one or more rows into a single table.

DELETE: to delete one or more rows from a single table.

UPDATE: to change the value of one or more columns in one or more rows in a single table.

Three techniques exist for using these commands in a program:

In simple data manipulation, you retrieve or insert single rows or you delete or update one
or more rows based on a speci�c criterion.

In sequential table processing, you operate on a set of rows , one row at a time, using a
cursor. A cursor is a pointer that identi�es one row in the set of rows, called the active set.
You move through the active set, retrieving a row at a time and optionally updating or
deleting it.

In dynamic operations, you preprocess SQL commands at runtime, as when the program
accepts data manipulation commands from a user.

Table 6-1 summarizes which data manipulation commands can be used in each technique.
Note that the FETCH command is included in this table, since it must be used when you
manipulate data using a cursor.

Table 6-1. How Data Manipulation Commands May Be Used

USABLE SQL COMMANDS

TYPE OF SELECT FETCH INSERT DELETE UPDATE DELETE UPDATE

OPERATION WHERE WHERE

CURRENT CURRENT

Simple X X X X

Sequential X X X X

Dynamic X X X X

Overview of Data Manipulation 6-1



The remainder of this chapter briey examines each of the three data manipulation techniques
(each technique is discussed in detail in Chapters 7 through 9) and introduces the use of
a cursor for data manipulation. First, however, this chapter addresses the query, or the
description of data you want to retrieve. Queries are fundamental to ALLBASE/SQL data
manipulation because some of the elements of a query are also used to describe and limit data
when you update or delete it. In addition, it is common programming practice to retrieve and
display rows prior to changing or deleting them.

The Query

A query is a SELECT command that describes to ALLBASE/SQL the data you
want retrieved. You can retrieve all or only certain data from a table. You can have
ALLBASE/SQL group or order the rows you retrieve or perform certain calculations or
comparisons before presenting data to your program. You can retrieve data from multiple
tables. You can also retrieve data using views or combinations of tables and views.

The SELECT Command

The SELECT command identi�es the columns and rows you want in your query result as well
as the tables and views to use for data access. The columns are identi�ed in the select list.
The rows are identi�ed in several clauses (GROUP BY, HAVING, and ORDER BY). The
tables and views to access are identi�ed in the FROM clause. Data thus speci�ed is returned
into host variables named in the INTO clause:

EXEC SQL SELECT SelectList

1 INTO HostVariables

2 FROM TableNames

3 WHERE SearchCondition1

4 GROUP BY ColumnName

5 HAVING SearchCondition2

6 ORDER BY ColumnID

To retrieve all data from a table, the SELECT command need specify only the following:

EXEC SQL SELECT *

1 INTO :HostVariable1

2 :HostVariable2

3 .

4 .

5 .

6 FROM OwnerName.TableName

6-2 Overview of Data Manipulation



Although the shorthand notation * can be used in the select list to indicate you want all
columns from one or more tables or views, it is better programming practice to explicitly
name columns. Then, if the tables or views referenced are altered, your program will still
retrieve only the data its host variables are designed to accommodate:

EXEC SQL SELECT PartNumber,

1 PartName,

2 SalesPrice

3 INTO :PartNumber,

4 :PartName,

5 :SalesPrice

6 FROM PurchDB.Parts

The SELECT command has several clauses you can use to format the data retrieved from any
table:

the WHERE clause speci�es a search condition. A search condition consists of one or more
predicates. A predicate is a test each row must pass before it is returned to your program.

the GROUP BY clause and the HAVING clause tell ALLBASE/SQL how to group rows
retrieved before applying any aggregate function in the select list to each group of rows.

the ORDER BY clause causes ALLBASE/SQL to return rows in ascending or descending
order, based on the value in one or more columns.

The following SELECT command contains a WHERE clause that limits rows returned to
those not containing a salesprice; the predicate used in the WHERE clause is known as the
null predicate:

EXEC SQL SELECT PartName,

1 SalesPrice

2 INTO :PartName,

3 :SalesPrice

4 FROM PurchDB.Parts

5 WHERE SalesPrice IS NULL

Overview of Data Manipulation 6-3



In the UPDATE and DELETE commands, you may need a WHERE clause to limit the rows
ALLBASE/SQL changes or deletes. In the following case, the sales price of parts priced lower
than $1000 is increased 10 percent; the WHERE clause in this case illustrates the comparison
predicate:

EXEC SQL UPDATE PurchDB.Parts

1 SET SalesPrice = SalesPrice * 1.1

2 WHERE SalesPrice < 1000.00

The ALLBASE/SQL Reference Manual details the syntax and semantics for these and other
predicates.

When you use an aggregate function in the select list, you can use the GROUP BY clause
to indicate how ALLBASE/SQL should group rows before applying the function. You can
also use the HAVING clause to limit the groups to only those satisfying certain criteria. The
following SELECT command will produce a query result containing two columns: a sales price
and a number indicating how many parts have that price:

EXEC SQL SELECT SalesPrice,

1 COUNT(PartNumber)

2 INTO :SalesPrice,

3 :Count

4 FROM PurchDB.Parts
5 GROUP BY SalesPrice

6 HAVING AVG(SalesPrice) > 1500.00

The GROUP BY clause in this example causes ALLBASE/SQL to group all parts with the
same sales price together. The HAVING clause causes ALLBASE/SQL to ignore any group
having an average sales price less than or equal to $1500.00. Once the groups have been
de�ned, ALLBASE/SQL applies the aggregate function COUNT to each group.

Each null value in a GROUP BY column constitutes a separate group. Therefore a query
result having a null value in the column(s) used to group rows would contain a separate row
for each null value.

An aggregate function is one example of an ALLBASE/SQL expression. An expression
speci�es a value. An expression can be used in several places in the SELECT command as
well as in the other data manipulation commands. Refer to the ALLBASE/SQL Reference
Manual for the syntax and semantics of expressions, as well as the e�ect of null values on
them.

The rows in the query result obtained with the preceding query could be returned in a
speci�c order by using the ORDER BY clause. In the following case, the rows are returned in
descending sales price order :

EXEC SQL SELECT SalesPrice,

1 COUNT(PartNumber)

2 INTO :SalesPrice,

3 :Count

4 FROM PurchDB.Parts

5 GROUP BY SalesPrice

6 HAVING AVG(SalesPrice) > 1500.00

7 ORDER BY SalesPrice DESC

6-4 Overview of Data Manipulation



The examples shown so far have all included queries where results would most likely contain
more than one row. The sequential table processing technique using cursors could also be
used to handle multiple-row query results. Later in this chapter you'll �nd examples of this
technique, as well as examples illustrating simple data manipulation, in which only one-row
query results are expected.

Selecting from Multiple Tables

To retrieve data from more than one table or view, the query describes to ALLBASE/SQL
how to join the tables before deriving the query result:

In the FROM clause, you identify the tables and views to be joined.

In the WHERE clause, you specify a join condition. A join condition de�nes the
condition(s) under which rows should be joined.

To obtain a query result consisting of the name of each part and its quantity-on-hand, you
need data from two tables in the sample database: PurchDB.Parts and PurchDB.Inventory .
The join condition in this case is that you want ALLBASE/SQL to join rows in these tables
that have the same part number:

EXEC SQL SELECT PartName,

1 QtyOnHand
2 INTO :PartName,

3 :QtyOnHand

4 FROM PurchDB.Parts,

5 PurchDB.Inventory

6 WHERE PurchDB.Parts.PartNumber =

7 PurchDB.Inventory.PartNumber

Whenever two or more columns in a query have the same name but belong to di�erent tables,
you avoid ambiguity by qualifying the column names with table and owner names. Because
the columns speci�ed in the join condition shown above have the same name (PartNumber)
in both tables, they are fully quali�ed with table and owner names (PurchDB.Parts and
PurchDB.Inventory). If one of the columns named PartNumber were named PartNum, the
WHERE clause could be written without having the fully quali�ed column name as follows:

WHERE PartNumber = PartNum

ALLBASE/SQL creates a row for the query result whenever the PartNumber value in one
table matches that in the second table. Any row containing a null PartNumber is excluded
from the join, as are rows that have a PartNumber value in one table, but not the other:

Overview of Data Manipulation 6-5



Figure 6-1. Sample Query Joining Multiple Tables

You can also join a table to itself . This type of join is useful when you want to identify pairs
of values within one table that have certain relationships.

6-6 Overview of Data Manipulation



The PurchDB.SupplyPrice table contains the unit price, delivery time, and other data for
every vendor that supplies any part. Most parts are supplied by more than one vendor, and
prices vary with vendor. You can join the PurchDB.SupplyPrice table to itself in order to
identify for which parts the di�erence among vendor prices is greater than $50. The query and
its result would appear as follows:

The query:

EXEC SQL SELECT X.PartNumber,

1 X.VendorNumber,

2 X.UnitPrice,

3 Y.VendorNumber,

4 Y.UnitPrice

5 INTO :PartNumber,

6 :VendorNumber1,

7 :UnitPrice1,

8 :VendorNumber2,

9 :UnitPrice2

1 FROM PurchDB.SupplyPrice X,

2 PurchDB.SupplyPrice Y

3 WHERE X.PartNumber = Y.PartNumber AND

4 X.UnitPrice > (Y.UnitPrice + 50.00)

The result:

----------------+------------+--------------+------------+--------------

PARTNUMBER |VENDORNUMBER|UNITPRICE |VENDORNUMBER|UNITPRICE

----------------+------------+--------------+------------+--------------

1123-P-01 | 9007| 550.00| 9002| 450.00

1123-P-01 | 9012| 525.00| 9002| 450.00

1123-P-01 | 9007| 550.00| 9008| 475.00

1123-P-01 | 9007| 550.00| 9003| 475.00

1433-M-01 | 9007| 700.00| 9003| 645.00
1623-TD-01 | 9011| 1800.00| 9015| 1650.00

|___________________________|

|

These vendors charge

at least $50 more for

a part than the vendors

identi�ed in the next

two columns.

To obtain such a query result, ALLBASE/SQL joins one copy of the table with another copy
of the table, using the join condition speci�ed in the WHERE clause:

You name each copy of the table in the FROM clause by using a join variable. In this
example, the join variables are X and Y . Then you use the join variable to qualify column
names in the select list and other clauses in the query.

The join condition in this example speci�es that for each part number, the query result
should contain a row only when the price of the part from vendor to vendor di�ers by more
than $50.

Overview of Data Manipulation 6-7



Join variables can be used in any query as a shorthand way of referring to a table, but they
must be used in queries that join a table to itself so that ALLBASE/SQL can distinguish
between the two copies of the table.

Selecting Using Views

Views are used to restrict data visibility as well as to simplify data access:

Data visibility can be limited using views by de�ning them such that only certain columns
and/or rows are accessible through them.

Data access can be simpli�ed using views by creating views based on joins or containing
columns that are derived from expressions or aggregate functions.

The sample database has a view called PurchDB.VendorStatistics , de�ned as follows:

EXEC SQL CREATE VIEW PurchDB.VendorStatistics

1 (VendorNumber,

2 VendorName,

3 OrderDate,

4 OrderQuantity,

5 TotalPrice)

6 AS

7 SELECT PurchDB.Vendors.VendorNumber,

8 PurchDB.Vendors.VendorName,

9 OrderDate,

1 OrderQty,

2 OrderQty * PurchasePrice

3 FROM PurchDB.Vendors,

4 PurchDB.Orders,

5 PurchDB.OrderItems

6 WHERE PurchDB.Vendors.VendorNumber =

7 PurchDB.Orders.VendorNumber AND

8 PurchDB.OrderItems.OrderNumber =

9 PurchDB.OrderItems.OrderNumber

This view combines information from three base tables to provide a summary of data on
existing orders with each vendor. One of the columns in the view consists of a computed
expression: the total cost of an item on order with the vendor.

Note that the select list of the SELECT command de�ning this view contains some quali�ed
and some unquali�ed column names. Columns OrderDate, OrderQty, and PurchasePrice need
not be quali�ed, because these names are unique among the column names in the three tables
joined in this view. In the WHERE clause, however, both join conditions must contain fully
quali�ed column names since the columns are named the same in each of the joined tables.

You can use a view in a query without restriction. In the FROM clause, you identify the view
as you would identify a table. When you reference columns belonging to the view, you use
the column names used in the view de�nition. In the view above, for example, the column
containing quantity-on-order is called OrderQuantity, not OrderQty as it is in the base table
(PurchDB.OrderItems).

6-8 Overview of Data Manipulation



The VendorStatistics view can be used to quickly determine the total dollar amount of orders
existing for each vendor. Because the view de�nition contains all the details for deriving this
information, the query based on this view is quite simple:

EXEC SQL SELECT VendorNumber,

1 SUM(TotalPrice)

2 INTO :VendorNumber,

3 :Sum

4 FROM PurchDB.VendorStatistics

5 GROUP BY VendorNumber

The query result appears as follows:

------------+----------------------

VENDORNUMBER|(EXPR)

------------+----------------------

9001| 31300.00

9002| 6555.00

9003| 6325.00

9004| 2850.00

9006| 2010.00

9008| 12460.00

9009| 7750.00

9010| 9180.00

9012| 12280.00

9013| 8270.00

9014| 2000.00

9015| 17550.00

Although you can use views in queries without restriction, you can use only some views to
INSERT, UPDATE, or DELETE rows:

You cannot INSERT, UPDATE, or DELETE using a view if the view de�nition contains
one of the following:

Join operation
Aggregate function
DISTINCT option
GROUP BY clause

You cannot INSERT using a view if any column of the view is computed in an arithmetic
expression.

The PurchDB.VendorStatistics view cannot be used for any INSERT, UPDATE, or DELETE
operation because it is based on a three-table join and contains a column (TotalPrice) derived
from a multiplication operation.

Overview of Data Manipulation 6-9



Query Efficiency

Three clauses in the SELECT command have an e�ect on the execution speed of queries:

WHERE

GROUP BY

ORDER BY

As discussed earlier, the WHERE clause consists of one or more predicates. Predicates can be
evaluated more quickly when they can be optimized by ALLBASE/SQL.

The following predicates are optimizable when all the data types within them are the same (in
the case of DOUBLE PRECISION data, the precisions and scales of the di�erent values must
be the same). Note that after optimization, ALLBASE/SQL may perform an index scan to
access data; an index scan improves data access speed by making use of an index on one or
more of the columns in the predicate:

WHERE Column1 ComparisonOperator Column2 where ComparisonOperator is one of the
following: =, >, >=, <, or <=. An index may be used if Column1 and Column2 are in
di�erent tables and an index exists on either column:

WHERE PurchDB.Parts.PartNumber = PurchDB.SupplyPrice.PartNumber

WHERE Column1 ComparisonOperator fConstant or HostVariableg where
ComparisonOperator is one of the following: =, >, >=, <, or <=. An index may be used
if one exists on Column1 ; however, an index may be used if a host variable appears in the
predicate only if the comparison operator is an equal sign (=) :

WHERE SupplyPrice = :SupplyPrice

WHERE Column1 BETWEEN fColumn2 or Constant or HostVariableg AND fColumn2
or Constant or HostVariableg. An index may be used if Column1 is the only column name
in the predicate and an index exists on it.

WHERE Column1 <> fColumn2 or Constant or Host Variableg Although this kind of
predicate is optimizable, an index is never used:

WHERE VendorState <> :VendorState

The lower the cluster count of an index, the greater the chance ALLBASE/SQL will use
it when an appropriate index is available. Cluster count indicates the number of times
ALLBASE/SQL has to access a di�erent data page to retrieve the next row during an index
scan. Refer to the ALLBASE/SQL Database Administration Guide for information on how to
optimize the cluster count of an index.

6-10 Overview of Data Manipulation



The following predicates are not optimizable, and an index is never used:

Predicates containing arithmetic expressions:

WHERE Column1 > Column2 * :HostVariable

LIKE predicates:

WHERE Column1 LIKE :HostVariable

Predicates joined by the logical operator OR:

WHERE Column1 = Column2

OR Column1 > Constant

When a query does not contain a WHERE clause, an index is never used, because all rows
from tables in the FROM clause containing columns in the select list qualify:

EXEC SQL SELECT *

1 INTO :HostVariableList

2 .

3 .

4 .

5 FROM OwnerName.TableName

When an index is not used, ALLBASE/SQL performs what is known as a serial scan to locate
rows. When a serial scan is performed instead of an index scan, the entire table is locked,
regardless of the automatic locking mode of the table.

The optimization and locking ALLBASE/SQL performs for the WHERE clause in the
SELECT command also applies to the WHERE clause in the UPDATE and DELETE
commands.

When a query contains a GROUP BY and/or an ORDER BY clause, ALLBASE/SQL must
sort rows. The time required for sorting increases as the number of qualifying rows increases.

Sorting occurs in DBEFiles associated with the SYSTEM DBEFileSet. Therefore enough
�le space must be available in this DBEFileSet when the query is executed to accommodate
the sort operations. Guidelines on space requirements can be found in the ALLBASE/SQL
Database Administration Guide .

Overview of Data Manipulation 6-11



Simple Data Manipulation

In simple data manipulation, you retrieve or insert single rows or update one or more rows
based on a speci�c criterion. In most cases, the simple data manipulation technique is used
to support the random retrieval and/or change of speci�c rows. The duration of locks can be
minimized by making each data manipulation operation a separate transaction.

In the following example, if the user wants to perform a DELETE operation, the program
performs the operation only if a single row quali�es. If no rows qualify or if more than one
row quali�es, the program displays a message. Note that the host variables in this case are
designed to accommodate only a single row. In addition, two of the columns may contain null
values, so an indicator variable is used for these columns:

6-12 Overview of Data Manipulation



EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

SQLIND PartNameInd

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

EXEC SQL END DECLARE SECTION

.

.

.

SUBROUTINE DoQuery

. This procedure accepts a part number from the user,

. then executes a query to determine whether one or

. more rows containing that value actually exist.

EXEC SQL SELECT PartNumber, PartName, SalesPrice

1 INTO :PartNumber,

2 :PartName :PartNameInd,

3 :SalesPrice :SalesPriceInd

4 FROM PurchDB.Parts

5 WHERE PartNumber = :PartNumber

IF (SQLCode .EQ. 0) THEN

CALL DisplayDelete

ELSEIF (SQLCode .EQ.100) THEN

CALL WriteOut ('Row Not Found!')

ELSEIF (SQLCode .EQ. -10002) THEN

CALL WriteOut ('WARNING: More than one row qualifies!')

ELSE

CALL SQLStatusCheck

ENDIF

.

.

.

RETURN

END

Overview of Data Manipulation 6-13



SUBROUTINE DisplayDelete

. The qualifying row is displayed for the user to

. verify that it should be deleted before the following

. command is executed:

EXEC SQL DELETE FROM PurchDB.Parts

1 WHERE PartNumber = :PartNumber

.

.

.

RETURN

END

Chapter 7 provides more details about simple data manipulation.

6-14 Overview of Data Manipulation



Introducing the Cursor

You use a cursor to manage a query result that may contain more than one row when you
want to make all the qualifying rows available to the program user. Cursors are used in
sequential table processing as shown later in this chapter.

Like the cursor on a terminal screen, an ALLBASE/SQL cursor is a position indicator. It does
not, however, point to a column. Rather, it points to one row in an active set. An active set
is a query result obtained when a SELECT command associated with a cursor (de�ned in a
DECLARE CURSOR command) is executed (using the OPEN command).

Each cursor used in a program must be declared before it is used. You use the DECLARE
CURSOR command to declare a cursor. The DECLARE CURSOR command names the
cursor and associates it with a particular SELECT command:

EXEC SQL DECLARE Cursor1

1 CURSOR FOR

2 SELECT PartName,

3 SalesPrice

4 FROM PurchDB.Parts

5 WHERE PartNumber BETWEEN :LowValue AND :HighValue
6 ORDER BY PartName

All cursor names within one program must be unique. You use a cursor name when you
perform data manipulation operations using the cursor.

The SELECT command in the cursor declaration does not specify any output host variables .
The SELECT command can, however, contain input host variables , as in the WHERE clause
of the cursor declaration above.

Rows in the active set are returned to output host variables when the FETCH command is
executed:

EXEC SQL OPEN Cursor1

.

. The OPEN command examines any input host

. variables and determines the active set.

.

EXEC SQL FETCH Cursor1 INTO OutputHostVariables

. The FETCH command delivers one row of

. the active set into output host variables.

.

.

Overview of Data Manipulation 6-15



If a serial scan will be used to retrieve the active set, ALLBASE/SQL locks the table(s) when
the OPEN command is executed. If an index scan will be used, locks are placed when rows
are fetched. Any locks obtained are held until the transaction terminates or the CLOSE
command is executed.

Both the OPEN and the FETCH commands position the cursor:

The OPEN command positions the cursor before the �rst row of the active set.

The FETCH command advances the cursor to the next row of the active set and delivers
that row to the output host variables.

The row at which the cursor points at any one time is called the current row. When a row is
a current row, you can delete it as follows:

EXEC SQL DELETE FROM PurchDB.Parts

1 WHERE CURRENT OF Cursor1

When you delete the current row, the cursor remains between the row deleted and the next
row in the active set until you execute the FETCH command again:

EXEC SQL FETCH Cursor1

1 INTO :PartName :PartNameInd,

2 :SalesPrice :SalesPriceInd

When a row is a current row you can update it if the cursor declaration contains a FOR
UPDATE OF clause naming the column(s) you want to change. The following cursor, for
example, can be used to update the SalesPrice column of the current row by using the
WHERE CURRENT OF option in the UPDATE command:

6-16 Overview of Data Manipulation



EXEC SQL DECLARE Cursor2

1 CURSOR FOR

2 SELECT PartName, SalesPrice

3 FROM PurchDB.Parts

4 WHERE PartNumber BETWEEN :LowValue AND :HighValue

5 FOR UPDATE OF SalesPrice

.

. Because the DECLARE CURSOR command is not

. executed at runtime, no status checking code

. needs to appear here.

.

EXEC SQL OPEN Cursor2

.

. The OPEN command examines any input host

. variables and determines the active set.

. Then the program fetches one row at a time.

.

EXEC SQL FETCH Cursor2

1 INTO :PartName :PartNameInd,

2 :SalesPrice :SalesPriceInd

.

. If the program user wants to change the SalesPrice

. of the row displayed (the current row), the UPDATE

. command is executed. The new SalesPrice entered by

. the user is stored in an input host variable named

. NewSalesPrice.

.

EXEC SQL UPDATE PurchDB.Parts

1 SET SalesPrice = :NewSalesPrice

2 WHERE CURRENT OF Cursor2

. After the UPDATE command is executed, the updated

. row remains the current row until the FETCH command

. is executed again.

.

Overview of Data Manipulation 6-17



The restrictions that govern deletions and updates using a view also govern deletions and
updates using a cursor. You cannot delete or update a row using a cursor if the cursor
declaration contains any of the following:

Join operation

Aggregate function

DISTINCT

GROUP BY

ORDER BY

UNION

After the last row in the active set has been fetched, the cursor is positioned after the last row
fetched and the value in SQLCode is equal to 100. Therefore to retrieve all rows in the active
set, you execute the FETCH command until SQLCode is not 0:

DO WHILE (SQLCode .EQ. 0)

EXEC SQL FETCH Cursor3

1 INTO :PartNumber,
2 :PartName :PartNameInd,

3 :SalesPrice :SalesPriceInd

IF (SQLCode .EQ. 0) THEN

CALL DisplayRow

ELSEIF (SQLCA.SQLCode .EQ.100) THEN

CALL WriteOut ('Row Not Found or No More Rows!')

ELSE

CALL SQLStatusCheck

ENDIF

END DO

When you are �nished operating on an active set, you use the CLOSE command:

EXEC SQL CLOSE Cursor3

When you close a cursor, the active set becomes unde�ned and you cannot use the cursor
again unless you issue an OPEN command to reopen it. The COMMIT WORK and
ROLLBACK WORK commands also close any open cursors, automatically. Figure 6-2
summarizes the e�ect of the cursor-related commands on the position of the cursor and on the
active set.

6-18 Overview of Data Manipulation



Figure 6-2. Effect of SQL Commands on Cursor and Active Sets

Overview of Data Manipulation 6-19



Sequential Table Processing

In sequential table processing, you process an active set by fetching a row at a time and
optionally deleting or updating it. Sequential table processing is useful when the likelihood
of row changes throughout a set of rows is high and when a program user does not need to
review multiple rows to decide whether to change a speci�c row.

In the following example, rows for parts having the same SalesPrice are displayed one at a
time. The program user can delete a displayed row or change its SalesPrice. Note that the
host variable declarations are identical to those for the simple data manipulation example,
since only one row at a time is fetched. Rows are fetched as long as SQLCode is equal to 0:

SUBROUTINE GetActiveSet

EXEC SQL INCLUDE SQLCA

.

.

.

CHARACTER Response

OK = 0

NotFound = 100

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*16 PartNumber

CHARACTER*30 PartName

SQLIND PartNameInd

DOUBLE PRECISION SalesPrice

SQLIND SalesPriceInd

EXEC SQL END DECLARE SECTION

.

.

.

The cursor declared allows the user to change the SalesPrice of

the current row. It can also be used to delete the current row.

EXEC SQL DECLARE PriceCursor

1 CURSOR FOR

2 SELECT PartNumber, PartName, SalesPrice

3 FROM PurchDB.Parts

4 WHERE SalesPrice = :SalesPrice

5 FOR UPDATE OF SalesPrice

.

. The program accepts a salesprice value from the user.

.

EXEC SQL OPEN PriceCursor

IF (SQLCode .NE. OK) THEN

6-20 Overview of Data Manipulation



CALL SQLStatusCheck

CALL ReleaseDBE

ELSE

CALL GetRow

ENDIF

.

.

.

RETURN

END

SUBROUTINE GetRow

.

.

.

DO WHILE (SQLCode .EQ. OK)

EXEC SQL FETCH PriceCursor

1 INTO :PartNumber,

2 :PartName :PartNameInd,

3 :SalesPrice :SalesPriceInd

IF (SQLCode .EQ. OK) THEN

CALL DisplayRow

ELSEIF (SQLCode .EQ. NotFound) THEN

CALL WriteOut ('No More Rows!')

ELSE

CALL SQLStatusCheck

ENDIF

END DO

.

.

.

RETURN

END

SUBROUTINE DisplayRow

. Each row fetched is displayed. Depending on the user's response

. to a program prompt, the row may be deleted or its SalesPrice

. value changed.

IF (Response .EQ. 'D') THEN

EXEC SQL DELETE FROM PurchDB.Parts

1 WHERE CURRENT OF PriceCursor

.

. Status checking code appears here.

.

Overview of Data Manipulation 6-21



ELSEIF (response .EQ. 'U') THEN

.

. A new SalesPrice is accepted.

.

EXEC SQL UPDATE PurchDB.Parts

1 SET SalesPrice = :SalesPrice

2 WHERE CURRENT OF PriceCursor

6-22 Overview of Data Manipulation



.

. Status checking code appears here.

.

ENDIF

.

.

.

RETURN

END

More on sequential table processing can be found in Chapter 8.

Dynamic Operations

Dynamic operations o�er a way to execute SQL commands that cannot be completely
de�ned until runtime. You accept part or all of an SQL command that can be dynamically
preprocessed from the user, then use one of the following techniques to preprocess and execute
the command:

You can use the PREPARE command to preprocess it, then execute it later during the
same transaction using the EXECUTE command.

You can use the EXECUTE IMMEDIATE command to preprocess and execute the
dynamic command in one step.

FORTRAN does not support dynamic queries; only dynamic non-queries may be dynamically
prepared and executed.

The program accepts an SQL command from

the user and stores it in a host variable named

DynamicCommand.

EXEC SQL PREPARE DynamCommand FROM :DynamicCommand

After the command is prepared, the EXECUTE

command is executed.

EXEC SQL EXECUTE DynamCommand

.

.

.

Refer to the chapter, \Using Dynamic Operations", for further explanation of the use of
dynamic commands.

Overview of Data Manipulation 6-23



7

Simple Data Manipulation

Simple data manipulation is a programming technique used to SELECT or INSERT a single
row. It can also be used to INSERT, DELETE, or UPDATE one or more rows based on a
speci�c criterion. These types of data manipulation operations are considered simple because
they can be done with SQL data manipulation commands that:

Are not executed in conjunction with a cursor. Therefore additional SQL commands such as
FETCH and OPEN are not required.

Are not dynamically preprocessed. Therefore the amount of code required to execute them
is minimized.

This chapter reviews how to use the SELECT, INSERT, DELETE, and UPDATE commands
for simple data manipulation. It then examines transaction management considerations that
are relevant to simple data manipulation. Finally, this chapter examines two programs that
illustrate simple data manipulation.

Simple Data Manipulation Commands

The SQL commands used for simple data manipulation are:

SELECT

INSERT

DELETE

UPDATE

Refer to the ALLBASE/SQL Reference Manual for the complete syntax and semantics of
these commands.

The SELECT Command

In simple data manipulation, you use the SELECT command to retrieve a single row, i.e., a
one-row query result. The form of the SELECT command that describes a one-row query
result is:

SELECT SelectList

INTO HostVariables

FROM TableNames

WHERE SearchCondition

Note that the GROUP BY, HAVING, and ORDER BY clauses are not necessary, since these
clauses usually describe multiple-row query results.

Simple Data Manipulation 7-1



You may omit the WHERE clause from certain queries when the select list contains only
aggregate functions:

EXEC SQL SELECT AVG(SalesPrice)
1 INTO :AvgSalesPrice

2 FROM PurchDB.Parts

A WHERE clause may be used, however, to qualify the rows over which the aggregate
function is applied:

EXEC SQL SELECT AVG(SalesPrice)

1 INTO :AvgSalesPrice

2 FROM PurchDB.Parts

3 WHERE SalesPrice > :SalesPrice

If the select list does not contain aggregate functions, a WHERE clause is needed to restrict
the query result to a single row:

EXEC SQL SELECT PartName, SalesPrice

1 INTO :PartName, :SalesPrice

2 FROM PurchDB.Parts

3 WHERE PartNumber = :PartNumber

Because the host variables that hold query results for a simple SELECT command are not
arrays of records, they can hold only a single row. A runtime error occurs when multiple rows
qualify for a simple SELECT command. You can test for an SQLCode value of -10002 to
detect this condition:

.

.

.

SUBROUTINE GetRow

MultipleRows = -10002

.

.

.

The SELECT command is executed here.

IF (SQLCode .EQ. MultipleRows) THEN

WRITE(*,*) 'WARNING: More than one row qualifies.'

ENDIF

.

.

.

RETURN

END

When multiple rows qualify but the receiving host variables are not in an array of records,
none of the rows are returned.

7-2 Simple Data Manipulation



When a column named in the WHERE clause has a unique index on it, you can omit testing
for multiple-row query results if the column was de�ned NOT NULL. A unique index prevents
the key column(s) from having duplicate values. The following index, for example, ensures
that only one row will exist for any part number in PurchDB.Parts:

CREATE UNIQUE INDEX PartNumIndex

ON PurchDB.Parts (PartNumber)

If a key column of a unique index can contain a null value, the unique index does not
prevent more than one null value for that column, since each null value is considered unique.
Therefore if a query contains a WHERE clause using the null predicate for such columns,
multiple-row query results may occur.

It is useful to execute the SELECT command before executing the INSERT, DELETE, or
UPDATE commands in the following situations:

When an application updates or deletes rows, the SELECT command can retrieve the
target data for user veri�cation before the data is changed. This technique minimizes
inadvertent data changes:

This program accepts a part number from the user into

a host variable named PartNumber, then retrieves a row

for that part.

EXEC SQL SELECT PartNumber, BinNumber

1 INTO :PartNumber, :BinNumber

2 FROM PurchDB.Inventory

3 WHERE PartNumber = :PartNumber

The row is displayed, and the user is asked whether they

want to change the bin number. If so, the user is

prompted for the new bin number, which is accepted into the

host variable named BinNumber. Then the UPDATE command

is executed. If not, the user is prompted for another

part number.

EXEC SQL UPDATE PurchDB.Inventory

1 SET BinNumber = :BinNumber

2 WHERE PartNumber = :PartNumber

Another method of qualifying the rows you want to select is to use the LIKE speci�cation to
search for a particular character string pattern.

For example, suppose you want to search for all VendorRemarks that contain a reference to
6%. Since the percent sign (%) happens to be one of the wild card characters for the LIKE
speci�cation, you could use the following SELECT statement specifying the exclamation
point (!) as your escape character.

SELECT * FROM PurchDB.Vendors

WHERE VendorRemarks LIKE '%6!%%' ESCAPE '!'

In this example, the �rst and last percent signs are wildcard characters, and the percent
sign after the exclamation point is the percent sign that is part of the search pattern. The

Simple Data Manipulation 7-3



character following an escape character must be either a wild card character or the escape
character itself. Complete syntax is presented in the ALLBASE/SQL Reference Manual .

To prohibit the multiple-row changes possible if multiple rows qualify for an UPDATE
or DELETE operation, an application can use the SELECT command. If multiple rows
qualify for the SELECT operation, the UPDATE or DELETE would not be executed.
Alternatively, the user could be advised that multiple rows would be a�ected and given a
choice about whether to perform the change:

This program prompts the user for an order number and

a vendor part number in preparation for allowing the user

to change the vendor part number. The following SELECT

command determines whether more than one line item

exists on the order for the speci�ed vendor part number:

EXEC SQL SELECT ItemNumber

1 INTO :ItemNumber

2 FROM PurchDB.OrderItems

3 WHERE OrderNumber = :OrderNumber

4 AND VendPartNumber = :VendPartNumber

When more than one row quali�es for this query, the

program lets the user decide whether to proceed with

the update operation.

When an application lets the user INSERT a row that must contain a value higher than an
existing value, the SELECT command can identify the highest existing value:

EXEC SQL SELECT MAX(OrderNumber)

1 INTO :MaxOrderNumber

2 FROM PurchDB.Orders

This program can increment the maximum order number by

one, then provide the user with the new number and

prompt for information describing the new order.

The INSERT Command

In simple data manipulation, you use the INSERT command to either insert a single row or
copy one or more rows into a table from another table.

You use the following form of the INSERT command to insert a single row:

INSERT INTO TableName

(ColumnNames)

VALUES (DataValues)

You can omit column names when you provide values for all columns in the target table:

7-4 Simple Data Manipulation



EXEC SQL INSERT INTO PurchDB.Parts

1 VALUES (:PartNumber,

2 :PartName :PartNameInd,
3 :SalesPrice :SalesPriceInd)

Remember that when you do include column names but do not name all the columns in the
target table, ALLBASE/SQL attempts to insert a null value into each unnamed column. If an
unnamed column was de�ned as NOT NULL, the INSERT command fails.

To copy one or more rows from one or more tables to another table, you use the following
form of the INSERT command:

INSERT INTO TableName

(ColumnName)

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnName

HAVING SearchCondition2

Note that the SELECT command embedded in the INSERT command cannot contain
an INTO or ORDER BY clause. In addition, any host variables used must be within the
WHERE or HAVING clauses:

This program makes a copy of historical data for �lled

orders into the PurchDB.OldOrders table, then deletes

rows for these orders from PurchDB.Orders,

keeping that table minimal in size. The following

INSERT command copies rows from PurchDB.Orders

to PurchDB.OldOrders:

EXEC SQL INSERT INTO PurchDB.OldOrders

1 (OldOrder,OldVendor,OldDate)

2 SELECT OrderNumber, VendorNumber, OrderDate

3 FROM PurchDB.Orders

4 WHERE OrderNumber = :OrderNumber

Then the DELETE command deletes rows from PurchDB.Orders:

EXEC SQL DELETE FROM PurchDB.OldOrders

1 WHERE OrderNumber = :OrderNumber

The DELETE Command

In simple data manipulation, you use the DELETE command to delete one or more rows from
a table:

DELETE FROM TableName

WHERE SearchCondition

The WHERE clause speci�es a SearchCondition that all rows satisfying to be deleted:

EXEC SQL DELETE FROM PurchDB.Orders

1 WHERE OrderDate < :OrderDate

Simple Data Manipulation 7-5



If the WHERE clause is omitted, all rows in the table are deleted.

7-6 Simple Data Manipulation



The UPDATE Command

In simple data manipulation, you use the UPDATE command to change data in one or more
columns:

UPDATE TableName

SET Columname = :ColumnValue :ColumnValueInd

[,...]

WHERE SearchCondition

As in the case of the DELETE command, if you omit the WHERE clause, the value of any
column speci�ed is changed in all rows of the table.

If the WHERE clause is speci�ed, all rows satisfying the search condition are changed:

EXEC SQL UPDATE PurchDB.Vendors

1 SET VendorStreet = :VendorStreet,

2 VendorCity = :VendorCity,

3 VendorState = :VendorState,

4 VendorZipCode = :VendorZipCode

5 WHERE VendorNumber = :VendorNumber

In this example, all target columns were de�ned NOT NULL. If the UPDATE command
is used to change the value of a column that allows NULL values, you use a null indicator
variable directly following the variable holding the value of the column to be updated. The
values that get updated at runtime depend on whether or not the program user wants to
assign a null value to a column when the UPDATE command is executed:

If this program does allow the user to put a null

value into column ContactName, the following UPDATE

command is executed:

EXEC SQL UPDATE PurchDB.Vendors

1 SET ContactName = :ContactName :ContactNameInd

2 WHERE VendorNumber = :VendorNumber

If this program does not allow the user to put a null

value into the column, the following command is executed

instead:

EXEC SQL UPDATE PurchDB.Vendors

1 SET ContactName = :ContactName

2 WHERE VendorNumber = :VendorNumber

In the following application, the row is selected before the user enters the column data to be
updated. You can achieve the same e�ect by using the DELETE and INSERT commands:

Simple Data Manipulation 7-7



First retrieve all columns from the row to be updated.

EXEC SQL SELECT PartNumber,

1 PartName,

2 SalesPrice

3 INTO :PartNumber,

4 :PartName :PartNameInd,

5 :SalesPrice :SalesPriceInd

6 FROM :PurchDB.Parts

7 WHERE PartNumber = :PartNumber

Prompt the user for new values. If the user wants to

set a column to null, set the indicator variable for

that column to -1.

WRITE (*,*) 'Enter new PartName (or 0 for NULL)> '

READ(6,100) PartName

100 FORMAT (A30)

IF (PartName .EQ. '0') THEN

PartNameInd = -1

ELSE

PartNameInd = 0

ENDIF

C

WRITE (*,*) 'Enter new SalesPrice (or 0 for NULL)> '

READ(6,101) SalesPrice

101 FORMAT (F10.2)

IF (SalesPrice .EQ. 0) THEN

SalesPriceInd = -1

ELSE

SalesPriceInd = 0

ENDIF

After accepting new data values from the user,

UPDATE the existing row.

EXEC SQL UPDATE FROM PurchDB.Parts

1 SET PartNumber = :PartNumber,

2 PartName = :PartName :PartNameInd,

3 SalesPrice = :SalesPrice :SalesPriceInd

When an indicator variable contains a value less than 0,

ALLBASE/SQL assigns a null value to that column. When the

indicator variable contains a value of 0, ALLBASE/SQL assigns

the data entered by the user to the column.

The following combination of DELETE and INSERT commands would have accomplished the
same result, as long as all columns in the table were in the INSERT command:

7-8 Simple Data Manipulation



EXEC SQL DELETE FROM PurchDB.Parts

WHERE PartNumber = :PartNumber

EXEC SQL INSERT INTO PurchDB.Parts

1 (PartNumber,

2 PartName,

3 SalesPrice)

4 VALUES (:PartNumber,

5 :PartName :PartNameInd,

6 :SalesPrice :SalesPriceInd)

Transaction Management for Simple Operations

The major objectives of transaction management are to minimize the contention for locks
and to ensure logical data consistency. Minimizing lock contention implies short transactions
and/or locking small, unique parts of a database. Logical data consistency implies keeping
data manipulations that should all occur or all not occur within a single transaction. De�ning
your transactions should always be made with these two objectives in mind. For in depth
transaction management information, refer to the chapter, Programming for Performance.

Most simple data manipulation applications involve random operations on a minimal number
of related rows that satisfy very speci�c criteria. To minimize lock contention, you should
begin a new transaction each time these criteria change. For example, if an application
displays order information for random orders, delimit each new query with a BEGIN WORK
and a COMMIT WORK command:

The program accepts an order number from the user.

EXEC SQL BEGIN WORK;

EXEC SQL SELECT OrderNumber,

VendorNumber,

OrderDate

INTO :OrderNumber,

:VendorNumber :VendorNumberInd,

:OrderDate :OrderDateInd

FROM PurchDB.Orders

WHERE OrderNumber = :OrderNumber;

Error checking is done here.

EXEC SQL COMMIT WORK;

The program displays the row, then prompts for

another order number.

Simple Data Manipulation 7-9



Because SELECT commands are often executed prior to a related UPDATE, DELETE, or
INSERT command, you must decide whether to make each command a separate transaction
or combine commands within one transaction:

If you combine SELECT and DELETE operations within one transaction, when the
DELETE command is executed, the row deleted is guaranteed to be the same row retrieved
and displayed for the user. However, if the program user goes to lunch between SELECT
and DELETE commands, and the default isolation level (RR) is in e�ect, no other users can
modify the page or table locked by the SELECT command until the transaction terminates.

If you put the SELECT and DELETE operations in separate transactions, another
transaction may change the target row(s) before the DELETE command is executed.
Therefore the user may delete a row di�erent from that originally intended. One way to
handle this situation is as follows:

EXEC SQL BEGIN WORK;

The SELECT command is executed and the query result displayed.

EXEC SQL COMMIT WORK;

The program user requests that the row be deleted.

EXEC SQL BEGIN WORK;

The SELECT command is re-executed, and the program compares the

original query result with the new one. If the query results match, the

DELETE command is executed.

EXEC SQL COMMIT WORK;

If the new query result does not match the original query result, the

program re-executes the SELECT command to display the query result.

7-10 Simple Data Manipulation



In the case of some multi-command transactions, you must execute multiple data
manipulation commands within a single transaction for the sake of logical data consistency:

In the following example, the DELETE and INSERT commands are used in place of the
UPDATE command to insert null values into the target table.

EXEC SQL BEGIN WORK;

The DELETE command is executed.

If the DELETE command fails, the transaction can be terminated as

follows:

EXEC SQL COMMIT WORK;

If the DELETE command succeeds, the INSERT command is executed.

If the INSERT command fails, the transaction is terminated as follows:

EXEC SQL ROLLBACK WORK;

If the INSERT command succeeds, the transaction is

terminated as follows:

EXEC SQL COMMIT WORK;

Logical data consistency is also an issue when an UPDATE, INSERT, or DELETE command
may operate on multiple rows. If one of these commands fails after only some of the target
rows have been operated on, you must use a ROLLBACK WORK command to ensure that
any row changes made before the failure are undone:

EXEC SQL DELETE FROM PurchDB.Orders

WHERE OrderDate < :OrderDate;

IF (SQLCODE .LT. 0) THEN

EXEC SQL ROLLBACK WORK;

Simple Data Manipulation 7-11



Program Using SELECT, UPDATE, DELETE, and INSERT

The ow chart shown in Figure 7-1 summarizes the functionality of program forex7, which
uses the four simple data manipulation commands to operate on the PurchDB.Vendors
table. Forex7 uses a function menu to determine whether to execute one or more SELECT,
UPDATE, DELETE, or INSERT operations. Each execution of a simple data manipulation
command is done in a separate transaction.

The runtime dialog for program forex7 appears in Figure 7-2, and the source code in Figure
7-3.

The main program �1� �rst calls function ConnectDBE �3� to start a DBE session. This
function executes the CONNECT command for the sample DBEnvironment, PartsDBE . The
main program then displays a menu of selections. The next operation performed depends on
the number entered in response to this menu:

The program terminates if 0 is entered.

Function Select is executed if 1 is entered.

Function Update is executed if 2 is entered.

Function Delete is executed if 3 is entered.

Function Insert is executed if 4 is entered.

Select Function

Function Select �10� prompts for a vendor number or a zero. If a zero is entered, the function
menu is re-displayed. If a vendor number is entered, subroutine BeginTransaction �5� is
executed to issue the BEGIN WORK command. Then a SELECT command is executed to
retrieve all data for the vendor speci�ed from PurchDB.Vendors. The SQLCode returned is
examined to determine the next action:

If no rows qualify for the SELECT operation, a message is displayed and subroutine
CommitWork �6� terminates the transaction by executing the COMMIT WORK command.
The user is then re-prompted for a vendor number or a zero.

If more than one row quali�es for the SELECT operation, a di�erent message is displayed
and subroutine CommitWork �6� terminates the transaction by executing the COMMIT
WORK command. The user is then re-prompted for a vendor number or a zero.

If the SELECT command execution results in an error condition, subroutine
SQLStatusCheck �2� is executed. This subroutine executes SQLEXPLAIN to display
all error messages. If the error is serious, (less than -14024) a message is displayed and
subroutine TerminateProgram (4) is called to release the DBEnvironment and terminate
the entire program. If the error is not serious, subroutine CommitWork �6� terminates the
transaction by executing the COMMIT WORK command. The user is then re-prompted for
a vendor number or a zero.

If the SELECT command can be successfully executed, subroutine DisplayRow �9� is
executed to display the row. This subroutine examines the null indicators for each of the
three potentially null columns (ContactName, PhoneNumber , and VendorRemarks). If
any null indicator contains a value less than zero, a message indicating that the value
is null is displayed. After the row is completely displayed, subroutine CommitWork �6�
terminates the transaction by executing the COMMIT WORK command. The user is then
re-prompted for a vendor number or a zero.

7-12 Simple Data Manipulation



Update Function

Function Update �12� lets the user UPDATE the value of a column only if it contains a null
value. The function prompts for a vendor number or a zero. If a zero is entered, the function
menu is re-displayed. If a vendor number is entered, subroutine BeginTransaction �5� is
executed. Then a SELECT command is executed to retrieve data from PurchDB.Vendors for
the vendor speci�ed. The SQLCode returned is examined to determine the next action:

If no rows qualify for the SELECT operation, a message is displayed and subroutine
CommitWork �6� terminates the transaction by executing the COMMIT WORK command.
The user is then re-prompted for a vendor number or a zero.

If more than one row quali�es for the SELECT operation, a di�erent message is displayed
and subroutine CommitWork �6� terminates the transaction by executing the COMMIT
WORK command. The user is then re-prompted for a vendor number or a zero.

If the SELECT command execution results in an error condition, subroutine
SQLStatusCheck �2� is executed. Then subroutine CommitWork �6� terminates the
transaction by executing the COMMIT WORK command. The user is then re-prompted for
a vendor number or a zero.

If the SELECT command can be successfully executed, subroutine DisplayUpdate �11� is
executed. This subroutine executes subroutine DisplayRow �9� to display the row retrieved.
Function AnyNulls �8� is then executed to determine whether the row contains any null
values. This boolean function evaluates to TRUE if the indicator variable for any of the
three potentially null columns contains a non-zero value.

If function AnyNulls evaluates to FALSE, a message is displayed, no UPDATE is performed,
and subroutine CommitWork �6� terminates the transaction by executing the COMMIT
WORK command. The user is then re-prompted for a vendor number or a zero.

If function AnyNulls evaluates to TRUE, the null indicators are examined to determine
which of them contain negative values. If the null indicator is less than zero, the column
contains a null value, and the user is prompted for a new value. If the user enters a zero,
the program assigns a -1 to the null indicator so that when the UPDATE command
is executed, a null value is assigned to that column. If a non-zero value is entered,
the program assigns a 0 to the null indicator so that the value speci�ed is assigned to
that column. After the UPDATE command is executed, subroutine CommitWork �6�
terminates the transaction by executing the COMMIT WORK command. The user is then
re-prompted for a vendor number or a zero.

Delete Function

Function Delete �14� lets the user DELETE one row. The function prompts for a vendor
number or a zero. If a zero is entered, the function menu is re-displayed. If a vendor number
is entered, subroutine BeginTransaction �5� is executed. Then a SELECT command is
executed to retrieve all data for the vendor speci�ed from PurchDB.Vendors. The SQLCode
returned is examined to determine the next action:

If no rows qualify for the SELECT operation, a message is displayed and subroutine
CommitWork �6� terminates the transaction by executing the COMMIT WORK command.
The user is then re-prompted for a vendor number or a zero.

Simple Data Manipulation 7-13



If more than one row quali�es for the SELECT operation, a di�erent message is displayed
and subroutine CommitWork �6� terminates the transaction by executing the COMMIT
WORK command. The user is then re-prompted for a vendor number or a zero.

If the SELECT command execution results in an error condition, subroutine
SQLStatusCheck �2� is executed. Then subroutine CommitWork �6� terminates the
transaction by executing the COMMIT WORK command. The user is then re-prompted for
a vendor number or a zero.

If the SELECT command can be successfully executed, subroutine DisplayDelete �13� is
executed. This subroutine executes subroutine DisplayRow �9� to display the row retrieved.
Then the user is asked whether she wants to actually delete the row. If the user does
not wish to delete, subroutine CommitWork �6� terminates the transaction by executing
the COMMIT WORK command, and the user is re-prompted for a vendor number or a
zero. If the user does wish to delete, the DELETE command is executed, then subroutine
CommitWork �6� terminates the transaction by executing the COMMIT WORK command.
The user is then re-prompted for a vendor number or a zero.

Insert Function

Function Insert �15� lets the user INSERT one row. The subroutine prompts for a vendor
number or a zero. If a zero is entered, the function menu is re-displayed. If a vendor number
is entered, the user is prompted for values for each column. The user can enter a zero to
specify a null value for potentially null columns; to assign a null value, the program assigns
a -1 to the appropriate null indicator. Subroutine BeginTransaction is executed to start a
transaction, then an INSERT command is used to insert a row containing the speci�ed values.
If the INSERT operation results in an error condition, subroutine SQLStatusCheck �2� is
executed, and then subroutine RollBackWork �7� is executed to issue the ROLLBACK WORK
command. If the INSERT operation is successful, subroutine CommitWork �6� terminates the
transaction by executing the COMMIT WORK command. The user is then re-prompted for a
vendor number or a zero.

When the user enters a zero in response to the function menu display, the program terminates
by executing subroutine TerminateProgram �4�. This subroutine executes the RELEASE
command.

7-14 Simple Data Manipulation



Figure 7-1. Flow Chart of Program forex7

Simple Data Manipulation 7-15



Figure 7-1. Flow Chart of Program forex7 (page 2 of 2)

7-16 Simple Data Manipulation



: run forex7

Program for Simple Data Manipulation of

the Vendors Table -- forex7

Event List:

CONNECT TO PartsDBE

Prompt for type of transaction

Prompt for VendorNumber

BEGIN WORK

Display row

Perform specified function

COMMIT WORK or ROLLBACK WORK

Repeat the above five steps until user enters 0

Repeat the above seven steps until user enters 0

RELEASE PartsDBE

CONNECT TO PartsDBE

1....SELECT rows from PurchDB.Vendors table

2....UPDATE rows with null values in PurchDB.Vendors table

3....DELETE rows from PurchDB.Vendors table

4....INSERT rows into PurchDB.Vendors table

Enter your choice or a 0 to STOP > 4

Enter Vendor Number to INSERT or a 0 to STOP > 9016

Enter Vendor Name > Wolfe Works

Enter new ContactName (0 for NULL) > Stanley Wolfe

Enter new PhoneNumber (0 for NULL) > 408 975 6061

Enter new Vendor Street > 7614 Canine Way

Figure 7-2. Runtime Dialog of Program forex7

Simple Data Manipulation 7-17



Enter new Vendor City > San Jose

Enter new Vendor State > CA

Enter new Vendor Zip Code > 90016

Enter new VendorRemarks (0 for NULL) > 0

BEGIN WORK

INSERT new row into PurchDB.Vendors

COMMIT WORK

Enter Vendor Number to INSERT or a 0 to STOP > 0

1....SELECT rows from PurchDB.Vendors table

2....UPDATE rows with null values in PurchDB.Vendors table

3....DELETE rows from PurchDB.Vendors table

4....INSERT rows into PurchDB.Vendors table

Enter your choice or a 0 to STOP > 1

Enter Vendor Number to SELECT or a 0 to STOP > 9016

BEGIN WORK

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode:90016

VendorRemarks is NULL

COMMIT WORK

Figure 7-2. Runtime Dialog of Program forex7 (page 2 of 4)

7-18 Simple Data Manipulation



Enter Vendor Number to SELECT or a 0 to STOP > 0

1....SELECT rows from PurchDB.Vendors table

2....UPDATE rows with null values in PurchDB.Vendors table

3....DELETE rows from PurchDB.Vendors table

4....INSERT rows into PurchDB.Vendors table

Enter your choice or a 0 to STOP > 2

Enter Vendor Number to UPDATE or a 0 to STOP > 9016

BEGIN WORK

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061
VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode:90016

VendorRemarks is NULL

Enter new VendorRemarks (0 for NULL) > can expedite shipments

UPDATE the PurchDB.Vendors table

COMMIT WORK

Enter Vendor Number to UPDATE or a 0 to STOP > 0

1....SELECT rows from PurchDB.Vendors table

2....UPDATE rows with null values in PurchDB.Vendors table

3....DELETE rows from PurchDB.Vendors table

4....INSERT rows into PurchDB.Vendors table

Enter your choice or a 0 to STOP > 3

Figure 7-2. Runtime Dialog of Program forex7 (page 3 of 4)

Simple Data Manipulation 7-19



Enter Vendor Number to DELETE or a 0 to STOP > 9016

BEGIN WORK

SELECT * from PurchDB.Vendors

VendorNumber: 9016

VendorName: Wolfe Works

ContactName: Stanley Wolfe

PhoneNumber: 408 975 6061

VendorStreet: 7614 Canine Way

VendorCity: San Jose

VendorState: CA

VendorZipCode:90016

VendorRemarks:can expedite shipments

Is it OK to DELETE this row (N/Y)? > Y

DELETE row from PurchDB.Vendors!

COMMIT WORK

Enter Vendor Number to DELETE or a 0 to STOP > 0

1....SELECT rows from PurchDB.Vendors table

2....UPDATE rows with null values in PurchDB.Vendors table

3....DELETE rows from PurchDB.Vendors table

4....INSERT rows into PurchDB.Vendors table

Enter your choice or a 0 to STOP > 0

RELEASE PartsDBE

:

Figure 7-2. Runtime Dialog of Program forex7 (page 4 of 4)

7-20 Simple Data Manipulation



PROGRAM forex7

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * This program illustrates simple data manipulation. It *

C * uses the UPDATE command with indicator variables to *

C * update any row in the Vendors table that contains null *

C * values. It also uses indicator variables in *

C * conjunction with SELECT and INSERT. The DELETE *

C * command is also illustrated. *

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT NONE

LOGICAL*2 Done, ConnectDBE, Select, Update, Delete

LOGICAL*2 Insert

CHARACTER Response

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Beginning of the Main Program *) �1�

WRITE (*,*) CHAR(27),'U'

WRITE (*,*) 'Program for Simple Data Manipulation of Vendors

1 - table forex7'

WRITE (*,*) ' '

WRITE (*,*) 'Event List:'

WRITE (*,*) ' CONNECT TO PartsDBE'

WRITE (*,*) ' Prompt for type of transaction'

WRITE (*,*) ' Prompt for VendorNumber'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' Display row'

WRITE (*,*) ' Perform specified function'

WRITE (*,*) ' COMMIT WORK or ROLLBACK WORK'

WRITE (*,*) ' Repeat the above five steps until user enters 0'

WRITE (*,*) ' Repeat the above seven steps until user enters 0'

WRITE (*,*) ' RELEASE PartsDBE'

WRITE (*,*) ' '

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE

Simple Data Manipulation 7-21



IF (ConnectDBE()) THEN

Done = .FALSE.

DO WHILE (.NOT.Done)

WRITE (*,*) ' '

WRITE (*,*) '1....SELECT rows from PurchDB.Vendors table'

WRITE (*,*) '2....UPDATE rows with null values in PurchDB.Vend

1ors table'

WRITE (*,*) '3....DELETE rows from PurchDB.Vendors table'

WRITE (*,*) '4....INSERT rows into PurchDB.Vendors table'

WRITE (*,*) ' '

WRITE (*,100)

100 FORMAT($, ' Enter your choice or a 0 to STOP > ')

READ (*,110) Response

110 FORMAT(A1)

IF (Response .EQ. '0') THEN

Done = .TRUE.

ELSEIF (Response .EQ. '1') THEN

Done = Select()
ELSEIF (Response .EQ. '2') THEN

Done = Update()

ELSEIF (Response .EQ. '3') THEN

Done = Delete()

ELSEIF (Response .EQ. '4') THEN

Done = Insert()

ELSE

WRITE (*,*) ' Enter 0-4 only please!'

WRITE (*,*) ' '

ENDIF

END DO

CALL TerminateProgram

ELSE

WRITE (*,*) 'Cannot Connect to your DBEnvironment!'

ENDIF

STOP

END

C (* End of Main Program *)

C (* Beginning of the Sub-Routines *)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 2 of 21)

7-22 Simple Data Manipulation



SUBROUTINE SQLStatusCheck �2�
C**** SUBROUTINE SQLStatusCheck checks status of SQL commands

C**** and print HPSQL error messages.

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

LOGICAL*2 Abort, Check

INTEGER DeadLock

PARAMETER (DeadLock = -14024)

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

Abort = .FALSE.

IF (SQLCode .LT. DeadLock) THEN

Abort = .TRUE.

WRITE (*,*) 'A serious error has occured!'

ENDIF

Check = .TRUE.

DO WHILE (Check)

EXEC SQL SQLEXPLAIN :SQLMessage

WRITE(*, 100) SQLMessage

100 FORMAT(A120)

IF (SQLCode .EQ. 0) THEN

Check = .FALSE.

ENDIF

END DO

IF (Abort) THEN

CALL TerminateProgram

STOP 'Program Aborted'

END IF

RETURN

END

C (* End of Subroutine SQLStatusCheck *)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 3 of 21)
Simple Data Manipulation 7-23



LOGICAL*2 FUNCTION ConnectDBE() �3�
C**** FUNCTION to connect to PartsDBE

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE (*,*) 'CONNECT TO PartsDBE'

EXEC SQL CONNECT TO 'PartsDBE'

ConnectDBE = .TRUE.

IF (SQLCode .NE. OK) THEN

ConnectDBE = .FALSE.

CALL SQLStatusCheck

ENDIF

RETURN

END

C (* End of Function ConnectDBE *)

SUBROUTINE TerminateProgram �4�
C**** SUBROUTINE to release from PartsDBE

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE(*,*) ' '

WRITE(*,*) 'RELEASE PartsDBE'

EXEC SQL RELEASE

RETURN

END

C (* End of Subroutine TerminateProgram *)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 4 of 21)

7-24 Simple Data Manipulation



SUBROUTINE BeginTransaction �5�
C**** SUBROUTINE to begin work

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE (*,*) ' '

WRITE (*,*) 'BEGIN WORK'

EXEC SQL BEGIN WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ENDIF

RETURN

END

C (* End of Subroutine BeginTransaction *)

SUBROUTINE CommitWork �6�
C**** SUBROUTINE to commit work

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE(*,*) 'COMMIT WORK'

EXEC SQL COMMIT WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ENDIF

RETURN

END

C (* End of Subroutine CommitWork *)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 5 of 21)

Simple Data Manipulation 7-25



SUBROUTINE RollBackWork �7�
C**** SUBROUTINE to RollBack Work

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE(*,*) 'ROLLBACK WORK'

EXEC SQL ROLLBACK WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ENDIF

RETURN

END

C (* End of Subroutine RollBackWork *)

LOGICAL*2 FUNCTION AnyNulls(ContactNameInd,

1 PhoneNumberInd, VendorRemarksInd)

C****FUNCTION to test rows for NULL values �8�

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

SQLIND ContactNameInd, PhoneNumberInd, VendorRemarksInd

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

IF ((ContactNameInd .EQ. 0) .AND.

1 (PhoneNumberInd .EQ. 0) .AND.

2 (VendorRemarksInd .EQ. 0)) THEN

C (All columns that might be null contain non-null values)

WRITE (*,*) 'No null values exist for this vendor.'

WRITE (*,*) ' '

AnyNulls = .FALSE.

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 6 of 21)

7-26 Simple Data Manipulation



ELSE

AnyNulls = .TRUE.

ENDIF

RETURN

END

C (* End of Function AnyNulls *)

SUBROUTINE DisplayRow (VendorNumber, VendorName, ContactName,

1 PhoneNumber, VendorStreet, VendorCity,

2 VendorState, VendorZipCode, VendorRemarks,

3 ContactNameInd, PhoneNumberInd, VendorRemarksInd)

C**** SUBROUTINE to display Vendors table rows �9�

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER*4 VendorNumber

CHARACTER*30 VendorName

CHARACTER*30 ContactName

SQLIND ContactNameInd

CHARACTER*16 PhoneNumber

SQLIND PhoneNumberInd

CHARACTER*30 VendorStreet

CHARACTER*20 VendorCity

CHARACTER*2 VendorState

CHARACTER*10 VendorZipCode

CHARACTER*50 VendorRemarks

SQLIND VendorRemarksInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

WRITE(*,*) ' '

WRITE(*, '('' VendorNumber: '',I10)') VendorNumber

WRITE(*, '('' VendorName: '',A30)') VendorName

IF (ContactNameInd .LT. 0) THEN

WRITE(*,*) ' ContactName is NULL'

ELSE

WRITE(*, '('' ContactName: '',A30)') ContactName

ENDIF

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 7 of 21)

Simple Data Manipulation 7-27



IF (PhoneNumberInd .LT. 0) THEN

WRITE(*,*) ' PhoneNumber is NULL'

ELSE

WRITE(*, '('' PhoneNumber: '',A16)') PhoneNumber

ENDIF

WRITE(*, '('' VendorStreet: '',A30)') VendorStreet

WRITE(*, '('' VendorCity: '',A20)') VendorCity

WRITE(*, '('' VendorState: '',A2)') VendorState

WRITE(*, '('' VendorZipCode:'',A10)') VendorZipCode

IF (VendorRemarksInd .LT. 0) THEN

WRITE(*,*) ' VendorRemarks is NULL'

ELSE

WRITE(*, '('' VendorRemarks:'',A50)') VendorRemarks

ENDIF

WRITE(*,*) ' '

RETURN

END

C (* End of Subroutine DisplayRow *)

LOGICAL*2 FUNCTION Select() �10�
C**** FUNCTION to select rows from PurchDB.Vendors table.

INTEGER NotFound,MultipleRows,OK

LOGICAL*2 AnyNulls

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER*4 VendorNumber

CHARACTER*30 VendorName

CHARACTER*30 ContactName

SQLIND ContactNameInd

CHARACTER*16 PhoneNumber

SQLIND PhoneNumberInd

CHARACTER*30 VendorStreet

CHARACTER*20 VendorCity

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 8 of 21)

7-28 Simple Data Manipulation



CHARACTER*2 VendorState

CHARACTER*10 VendorZipCode

CHARACTER*50 VendorRemarks

SQLIND VendorRemarksInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

Select = .FALSE.

VendorNumber = 1

DO WHILE (VendorNumber .NE. 0)

WRITE (*,*) ' '

WRITE (*,100)

100 FORMAT($, ' Enter Vendor Number to SELECT or a 0 to STOP > ')

READ (*,110) VendorNumber

110 FORMAT(I4)

IF (VendorNumber .NE. 0) THEN
CALL BeginTransaction

WRITE (*,*) ' '

WRITE (*,*) 'SELECT * from PurchDB.Vendors'

EXEC SQL SELECT VendorNumber,

1 VendorName,

2 ContactName,

3 PhoneNumber,

4 VendorStreet,

5 VendorCity,

6 VendorState,

7 VendorZipCode,

8 VendorRemarks

9 INTO :VendorNumber,

1 :VendorName,

2 :ContactName :ContactNameInd,

3 :PhoneNumber :PhoneNumberInd,

4 :VendorStreet,

5 :VendorCity,

6 :VendorState,

7 :VendorZipCode,

8 :VendorRemarks :VendorRemarksInd

9 FROM PurchDB.Vendors

1 WHERE VendorNumber = :VendorNumber

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 9 of 21)

Simple Data Manipulation 7-29



IF (SQLCode .EQ. OK) THEN

CALL

DisplayRow(VendorNumber,VendorName,ContactName,

1 PhoneNumber,VendorStreet,VendorCity,

2 VendorState,VendorZipCode,VendorRemarks,

3 ContactNameInd,PhoneNumberInd,VendorRemarksInd)

ELSEIF (SQLCode .EQ. NotFound) THEN

WRITE (*,*) ' '

WRITE (*,*) 'Row not found!'

ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE (*,*) ' '

WRITE (*,*) 'WARNING: More than one row qualifies!'

ELSE

CALL SQLStatusCheck

ENDIF

CALL CommitWork

ENDIF

END DO

RETURN

END

C (* End of Function Select *)

SUBROUTINE DisplayUpdate(VendorNumber, VendorName, ContactName,

1 PhoneNumber, VendorStreet, VendorCity,

2 VendorState, VendorZipCode, VendorRemarks,

3 ContactNameInd, PhoneNumberInd, VendorRemarksInd)

C**** SUBROUTINE to display and update �11�
C**** a row from the PurchDB.Vendors table

INTEGER NotFound,MultipleRows,OK

LOGICAL*2 AnyNulls

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 10 of 21)

7-30 Simple Data Manipulation



C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER*4 VendorNumber

CHARACTER*30 VendorName

CHARACTER*30 ContactName

SQLIND ContactNameInd

CHARACTER*16 PhoneNumber

SQLIND PhoneNumberInd

CHARACTER*30 VendorStreet

CHARACTER*20 VendorCity

CHARACTER*2 VendorState

CHARACTER*10 VendorZipCode

CHARACTER*50 VendorRemarks

SQLIND VendorRemarksInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

CALL DisplayRow(VendorNumber, VendorName, ContactName,

1 PhoneNumber, VendorStreet, VendorCity,

2 VendorState, VendorZipCode, VendorRemarks,

3 ContactNameInd, PhoneNumberInd, VendorRemarksInd)

IF (AnyNulls(ContactNameInd, PhoneNumberInd,

1 VendorRemarksInd)) THEN

IF (ContactNameInd .LT. 0) THEN

WRITE(*,*)

WRITE(*,100)

100 FORMAT($, ' Enter new ContactName (0 for NULL) > ')

READ(*,110) ContactName

110 FORMAT (A30)

ENDIF

IF (PhoneNumberInd .LT. 0) THEN

WRITE (*,*) ' '

WRITE(*,120)

120 FORMAT($, ' Enter new PhoneNumber (0 for NULL) > ')

READ(*,130) PhoneNumber

130 FORMAT(A16)

ENDIF

IF (VendorRemarksInd .LT. 0) THEN

WRITE(*,*)

WRITE(*,140)

140 FORMAT($, ' Enter new VendorRemarks (0 for NULL) > ')

READ(*,150) VendorRemarks

150 FORMAT(A50)
ENDIF

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 11 of 21)

Simple Data Manipulation 7-31



IF (ContactName .EQ. '0') THEN

ContactNameInd = -1

ELSE

ContactNameInd = 0

ENDIF

IF (PhoneNumber .EQ. '0') THEN

PhoneNumberInd = -1

ELSE

PhoneNumberInd = 0

ENDIF

IF (VendorRemarks .EQ. '0') THEN

VendorRemarksInd = -1

ELSE

VendorRemarksInd = 0

ENDIF

WRITE (*,*) 'UPDATE the PurchDB.Vendors table'

EXEC SQL UPDATE PurchDB.Vendors

1 SET ContactName = :ContactName :ContactNameInd,

2 PhoneNumber = :PhoneNumber :PhoneNumberInd,

3 VendorRemarks = :VendorRemarks :VendorRemarksInd

4 WHERE VendorNumber = :VendorNumber

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

ENDIF

ENDIF

RETURN

END

C (End of Subroutine DisplayUpdate)

LOGICAL*2 FUNCTION Update() �12�
C**** FUNCTION to update rows from PurchDB.Vendors table.

INTEGER NotFound,MultipleRows,OK

LOGICAL*2 AnyNulls

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 12 of 21)
7-32 Simple Data Manipulation



C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER*4 VendorNumber

CHARACTER*30 VendorName

CHARACTER*30 ContactName

SQLIND ContactNameInd

CHARACTER*16 PhoneNumber

SQLIND PhoneNumberInd

CHARACTER*30 VendorStreet

CHARACTER*20 VendorCity

CHARACTER*2 VendorState

CHARACTER*10 VendorZipCode

CHARACTER*50 VendorRemarks
SQLIND VendorRemarksInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

Update = .FALSE.

VendorNumber = 1

DO WHILE (VendorNumber .NE. 0)

WRITE (*,*) ' '

WRITE (*,100)

100 FORMAT($, ' Enter Vendor Number to UPDATE or a 0 to STOP > ')

READ (*,110) VendorNumber

110 FORMAT(I4)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 13 of 21)

Simple Data Manipulation 7-33



IF (VendorNumber .NE. 0) THEN

CALL BeginTransaction

WRITE (*,*) ' '

WRITE (*,*) 'SELECT * from PurchDB.Vendors'

EXEC SQL SELECT VendorNumber,

1 VendorName,

2 ContactName,

3 PhoneNumber,

4 VendorStreet,

5 VendorCity,

6 VendorState,

7 VendorZipCode,

8 VendorRemarks

9 INTO :VendorNumber,

1 :VendorName,

2 :ContactName :ContactNameInd,

3 :PhoneNumber :PhoneNumberInd,

4 :VendorStreet,
5 :VendorCity,

6 :VendorState,

7 :VendorZipCode,

8 :VendorRemarks :VendorRemarksInd

9 FROM PurchDB.Vendors

1 WHERE VendorNumber = :VendorNumber

IF (SQLCode .EQ. OK) THEN

CALL DisplayUpdate (VendorNumber, VendorName, ContactName,

1 PhoneNumber, VendorStreet, VendorCity,

2 VendorState, VendorZipCode, VendorRemarks,

3 ContactNameInd, PhoneNumberInd, VendorRemarksInd)

ELSEIF (SQLCode .EQ. NotFound) THEN

WRITE (*,*) ' '

WRITE (*,*) 'Row not found!'

ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE(*,*) ' '

WRITE (*,*) 'WARNING: More than one row qualifies!'

CALL SQLStatusCheck

ENDIF

CALL CommitWork

ENDIF

END DO

RETURN

END

C (* End of Function Update *)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 14 of 21)

7-34 Simple Data Manipulation



C**** SUBROUTINE to Display and Delete a row �13�
C**** from the PurchDB.Vendors table

SUBROUTINE DisplayDelete(VendorNumber, VendorName, ContactName,

1 PhoneNumber, VendorStreet, VendorCity,

2 VendorState, VendorZipCode, VendorRemarks,

3 ContactNameInd, PhoneNumberInd, VendorRemarksInd)

CHARACTER Response

INTEGER NotFound,MultipleRows,OK

LOGICAL*2 AnyNulls

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER*4 VendorNumber

CHARACTER*30 VendorName

CHARACTER*30 ContactName

SQLIND ContactNameInd

CHARACTER*16 PhoneNumber

SQLIND PhoneNumberInd

CHARACTER*30 VendorStreet

CHARACTER*20 VendorCity

CHARACTER*2 VendorState

CHARACTER*10 VendorZipCode

CHARACTER*50 VendorRemarks

SQLIND VendorRemarksInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

CALL DisplayRow(VendorNumber, VendorName, ContactName,

1 PhoneNumber, VendorStreet, VendorCity,

2 VendorState, VendorZipCode, VendorRemarks,

3 ContactNameInd, PhoneNumberInd, VendorRemarksInd)>

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 15 of 21)

Simple Data Manipulation 7-35



WRITE (*,100)

100 FORMAT($, ' Is it OK to DELETE this row (N/Y)? >')

READ (*, 110) Response

110 FORMAT(A1)

IF ((Response .EQ. 'Y') .OR. (Response .EQ. 'y')) THEN

WRITE (*,*) ' '

WRITE (*,*) 'DELETE row from PurchDB.Vendors!'

EXEC SQL DELETE FROM PurchDB.Vendors

1 WHERE VendorNumber = :VendorNumber

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

ENDIF

ELSE

WRITE (*,*) ' '

WRITE (*,*) 'Row not deleted from PurchDB.Vendors!'

ENDIF

RETURN

END

C**** (End of Subroutine DisplayDelete)

LOGICAL*2 FUNCTION Delete() �14�
C**** FUNCTION to delete rows from PurchDB.Vendors table.

INTEGER NotFound,MultipleRows,OK

LOGICAL*2 AnyNulls

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER*4 VendorNumber

CHARACTER*30 VendorName

CHARACTER*30 ContactName

SQLIND ContactNameInd

CHARACTER*16 PhoneNumber

SQLIND PhoneNumberInd

CHARACTER*30 VendorStreet

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 16 of 21)

7-36 Simple Data Manipulation



CHARACTER*20 VendorCity

CHARACTER*2 VendorState

CHARACTER*10 VendorZipCode

CHARACTER*50 VendorRemarks

SQLIND VendorRemarksInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

Delete = .FALSE.

VendorNumber = 1

DO WHILE (VendorNumber .NE. 0)

WRITE (*,*) ' '

WRITE (*,100)

100 FORMAT($, ' Enter Vendor Number to DELETE or a 0 to STOP > ')

READ (*,110) VendorNumber

110 FORMAT(I4)
IF (VendorNumber .NE. 0) THEN

CALL BeginTransaction

WRITE (*,*) ' '

WRITE (*,*) 'SELECT * from PurchDB.Vendors'

EXEC SQL SELECT VendorNumber,

1 VendorName,

2 ContactName,

3 PhoneNumber,

4 VendorStreet,

5 VendorCity,

6 VendorState,

7 VendorZipCode,

8 VendorRemarks

9 INTO :VendorNumber,

1 :VendorName,

2 :ContactName :ContactNameInd,

3 :PhoneNumber :PhoneNumberInd,

4 :VendorStreet,

5 :VendorCity,

6 :VendorState,

7 :VendorZipCode,

8 :VendorRemarks :VendorRemarksInd

9 FROM PurchDB.Vendors

1 WHERE VendorNumber = :VendorNumber

IF (SQLCode .EQ. OK) THEN

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 17 of 21)

Simple Data Manipulation 7-37



CALL DisplayDelete (VendorNumber, VendorName, ContactName,

1 PhoneNumber, VendorStreet, VendorCity,

2 VendorState, VendorZipCode, VendorRemarks,

3 ContactNameInd, PhoneNumberInd, VendorRemarksInd)

ELSEIF (SQLCode .EQ. NotFound) THEN

WRITE (*,*) ' '

WRITE (*,*) 'Row not found!'

ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE (*,*) ' '

WRITE (*,*) 'WARNING: More than one row qualifies!'

ELSE

CALL SQLStatusCheck

ENDIF

CALL CommitWork

ENDIF

END DO

RETURN

END

C** (End of Function Delete)

LOGICAL*2 FUNCTION Insert() �15�
C** FUNCTION to insert a row into the Vendors table

INTEGER NotFound,MultipleRows,OK

LOGICAL*2 AnyNulls

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 18 of 21)

7-38 Simple Data Manipulation



EXEC SQL BEGIN DECLARE SECTION

INTEGER*4 VendorNumber

CHARACTER*30 VendorName

CHARACTER*30 ContactName

SQLIND ContactNameInd

CHARACTER*16 PhoneNumber

SQLIND PhoneNumberInd

CHARACTER*30 VendorStreet

CHARACTER*20 VendorCity

CHARACTER*2 VendorState

CHARACTER*10 VendorZipCode

CHARACTER*50 VendorRemarks

SQLIND VendorRemarksInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

Insert = .FALSE.

VendorNumber = 1

DO WHILE (VendorNumber .NE. 0)

WRITE (*,*) ' '

WRITE (*,100)

100 FORMAT($, ' Enter Vendor Number to INSERT or a 0 to STOP > ')

READ (*,110) VendorNumber

110 FORMAT(I4)

IF (VendorNumber .NE. 0) THEN

WRITE (*,*) ' '

WRITE (*,120)

120 FORMAT($,' Enter Vendor Name > ')

READ (*,130) VendorName

130 FORMAT(A30)

WRITE(*,*)

WRITE (*,140)

140 FORMAT($,' Enter new ContactName (0 for NULL) > ')

READ(*,150) ContactName

150 FORMAT (A30)

IF (ContactName .EQ. '0') THEN

ContactNameInd = -1

ELSE

ContactNameInd = 0

ENDIF

WRITE (*,*)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 19 of 21)

Simple Data Manipulation 7-39



WRITE (*,160)

160 FORMAT($,' Enter new PhoneNumber (0 for NULL) > ')

READ(*,170) PhoneNumber

170 FORMAT(A16)

IF (PhoneNumber .EQ. '0') THEN

PhoneNumberInd = -1

ELSE

PhoneNumberInd = 0

ENDIF

WRITE(*,*)

WRITE (*,180)

180 FORMAT($,' Enter new Vendor Street > ')

READ(*,190) VendorStreet

190 FORMAT(A30)

WRITE(*,*)
WRITE (*,200)

200 FORMAT($,' Enter new Vendor City > ')

READ(*,210) VendorCity

210 FORMAT(A20)

WRITE(*,*)

WRITE (*,220)

220 FORMAT($,' Enter new Vendor State > ')

READ(*,230) VendorState

230 FORMAT(A2)

WRITE(*,*)

WRITE (*,240)

240 FORMAT($,' Enter new Vendor Zip Code > ')

READ(*,250) VendorZipCode

250 FORMAT(A10)

WRITE(*,*)

WRITE (*,260)

260 FORMAT($,' Enter new VendorRemarks (0 for NULL > ')

READ(*,270) VendorRemarks

270 FORMAT(A50)

IF (VendorRemarks .EQ. '0') THEN

VendorRemarksInd = -1

ELSE

VendorRemarksInd = 0

ENDIF

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 20 of 21)

7-40 Simple Data Manipulation



CALL BeginTransaction

WRITE (*,*)'INSERT new row into PurchDB.Vendors'

EXEC SQL INSERT

1 INTO PurchDB.Vendors

2 (VendorNumber, VendorName, ContactName,

3 PhoneNumber, VendorStreet, VendorCity,

4 VendorState, VendorZipCode, VendorRemarks)

5 VALUES (:VendorNumber,

6 :VendorName,

6 :ContactName :ContactNameInd,

7 :PhoneNumber :PhoneNumberInd,

8 :VendorStreet,

9 :VendorCity,

1 :VendorState,

2 :VendorZipCode,

3 :VendorRemarks :VendorRemarksInd)

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck
CALL RollBackWork

ELSE

CALL CommitWork

ENDIF

ENDIF

END DO

RETURN

END

C (* End of Function Insert *)

Figure 7-3. Program forex7: Using INSERT, UPDATE, SELECT, and DELETE (page 21 of 21)

Simple Data Manipulation 7-41



8

Processing with Cursors

Sequential table processing is the programming technique you use to operate on a multiple-row
query result, one row at a time. The query result is referred to as an active set . You use a
pointer called a cursor to move through the active set, retrieving a row at a time into host
variables and optionally updating or deleting the row. Reporting applications may �nd this
technique useful. Update applications such as those that periodically operate on tables not
being concurrently accessed (e.g., inventory adjustments) may also �nd this technique useful.

This chapter reviews how to use SQL commands to perform sequential table processing.
It then examines transaction management considerations that are relevant to sequential
table processing. Finally, this chapter examines a program that uses this data manipulation
technique.

Sequential Table Processing Commands

The SQL commands used for sequential table processing are:

DECLARE CURSOR: de�nes a cursor and associates with it a query.

OPEN: de�nes the active set.

FETCH: retrieves one row of the active set into host variables; when a row resides in host
variables it is known as the current row . When a row is current and the active set is a
query result derived from a single table, you can use one of the following two commands to
change the row.

UPDATE WHERE CURRENT: updates the current row.

DELETE WHERE CURRENT: deletes the current row.

CLOSE: frees up ALLBASE/SQL intermal bu�er space used to handle the cursor.

Refer to the ALLBASE/SQL Reference Manual for the complete syntax and semantics
of these commands. Ensure that all the commands listed above for any single cursor are
contained within the same transaction.

Processing with Cursors 8-1



The DECLARE CURSOR Command

The DECLARE CURSOR command names a cursor and associates with it a particular
SELECT command:

DECLARE CursorName

[IN DBEFileSetName]

CURSOR FOR

SelectCommand

[FOR UPDATE OF ColumnName [,ColumnName...]]

Note that the DECLARE CURSOR command has two optional clauses:

The IN clause de�nes the DBEFileSet in which the section generated by the preprocessor for
this command is stored. If no IN clause is speci�ed, �le space in the SYSTEM DBEFileSet
is used.

The FOR UPDATE clause is used when you use the UPDATE WHERE CURRENT
command to update a current row. This command may o�er the simplest way to update
a current row, but it imposes certain restrictions on the SELECT command. Updating a
current row is fully discussed later in this chapter under the UPDATE WHERE CURRENT
command.

The SELECT command for cursor declarations that do not include the FOR UPDATE clause
can consist of any of the SELECT command clauses except the INTO clause:

SELECT SelectList

FROM TableNames

WHERE SearchCondition1

GROUP BY ColumnNames

HAVING SearchCondition2

ORDER BY ColumnIdenti�ers

A SELECT command associated with a cursor does not name output host variables , but
may name input host variables in the select list, the WHERE clause, and the HAVING
clause. In the following example, the rows qualifying for the query result will be those with a
CountCycle matching that speci�ed by the user in input host variable CountCycle :

EXEC SQL DECLARE Inventory

1 CURSOR FOR

2 SELECT PartNumber,

3 BinNumber,

4 QtyOnHand,

5 AdjustmentQty

6 FROM PurchDB.Inventory

7 WHERE CountCycle = :CountCycle

8 ORDER BY BinNumber

When performing sequential table processing, the ORDER BY clause may be useful. In the
example above, the rows in the query result will be in order by ascending bin number to help
the program user, who will be moving from bin to bin, taking a physical inventory.

8-2 Processing with Cursors



The DECLARE CURSOR command is actually a preprocessor directive. When
the FORTRAN preprocessor parses this command, it stores a section in the target
DBEnvironment. At runtime, the section is not executed when the DECLARE CURSOR
command is encountered, but when the OPEN command is executed. Because the DECLARE
CURSOR command is not executed at runtime, you do not need to perform status checking in
your program following this command.

The OPEN Command

The OPEN command examines any input host variables and determines the active set:

OPEN CursorName

The following command de�nes the active set associated with the cursor de�ned earlier:

EXEC SQL OPEN Inventory

You use the FETCH command to retrieve a row at a time from the active set.

You can use the KEEP CURSOR WITH NOLOCKS option for a cursor that involves sorting,
whether through the use of a DISTINCT, GROUP BY, or ORDER BY clause, or as the result
of a union or a join operation. However, for kept cursors involving sorting, ALLBASE/SQL
does not ensure data integrity. See the \Programming for Performance" chapter for more
information on ensuring data integrity.

The FETCH Command

The FETCH command de�nes a current row and delivers the row into output host variables:

FETCH CursorName INTO :OutputHostVariables

Remember to include indicator variables when one or more columns in the query result may
contain a null value:

EXEC SQL FETCH Inventory

1 INTO :PartNumber,

2 :BinNumber,

4 :QtyOnHand :QtyOnHandInd,

5 :AdjustmentQty :AdjustmentQtyInd

The �rst time you execute the FETCH command, the �rst row in the query result is the
current row. With each subsequent execution of the FETCH command, each succeeding row
in the query result becomes current. After the last row in the query result has been fetched,
ALLBASE/SQL sets SQLCode to 100. ALLBASE/SQL also sets SQLCode to 100 if no rows
qualify for the active set. You should test for an SQLCode value of 100 after each execution of
the FETCH command to determine whether to re-execute this command:

Processing with Cursors 8-3



SUBROUTINE GetARow

.

.

OK = 0

NotFound = 100

DoFetch = .TRUE.

DO WHILE (DoFetch)

.

. The FETCH command appears here.

.

IF (SQLCode .EQ. OK) THEN

CALL DisplayRow

ELSEIF (SQLCode .EQ. NotFound) THEN

DoFetch = .FALSE.

CALL CloseCursor

CALL CommitWork

ELSE

DoFetch = .FALSE.

CALL SQLStatusCheck

CALL CloseCursor

CALL RollBackWork

ENDIF

END DO

RETURN

END

When a row is current, you can update it by using the UPDATE WHERE CURRENT
command or delete it by using the DELETE WHERE CURRENT command.

8-4 Processing with Cursors



The UPDATE WHERE CURRENT Command

This command can be used to update the current row when the SELECT command
associated with the cursor does not contain one of the following:

DISTINCT clause in the select list.
Aggregate function in the select list.
FROM clause with more than one table.
ORDER BY clause.
GROUP BY clause.

The UPDATE WHERE CURRENT command identi�es the active set to be updated by
naming the cursor and the column(s) to be updated:

UPDATE TableName

SET ColumnName = ColumnValue

[,...]

WHERE CURRENT OF CursorName

Any columns you name in this command must also have been named in a FOR UPDATE
clause in the related DECLARE CURSOR command:

EXEC SQL DECLARE AdjustQtyOnHand

1 CURSOR FOR

2 SELECT PartNumber,

3 BinNumber,

4 QtyOnHand,

5 AdjustmentQty

6 FROM PurchDB.Inventory

7 WHERE QtyOnHand IS NOT NULL

8 AND AdjustmentQty IS NOT NULL

9 FOR UPDATE OF QtyOnHand,

1 AdjustmentQty

EXEC SQL OPEN AdjustQtyOnHand

.

. The output host variables do not need to include

. indicator variables, because the SELECT command

. associated with the cursor eliminates any rows having

. null values from the active set:

.

Processing with Cursors 8-5



EXEC SQL FETCH AdjustQtyOnHand

1 INTO :PartNumber,

2 :BinNumber,
3 :QtyOnHand,

4 :AdjustmentQty

.

.

.

EXEC SQL UPDATE PurchDB.Inventory

1 SET QtyOnHand = :QtyOnHand + :AdjustmentQty,

2 AdjustmentQty = 0

3 WHERE CURRENT OF AdjustQtyOnHand

In this example, the order of the rows in the query result is not important. Therefore the
SELECT command associated with cursor AdjustQtyOnHand does not need to contain an
ORDER BY clause and the UPDATE WHERE CURRENT command can be used.

In cases where order is important and the ORDER BY clause must be used, you can use the
form of the UPDATE command described in Chapter 6 to update values in the current row.
In this case, if more than one row quali�es for the search condition in the UPDATE command,
more rows than just the current row will be changed:

EXEC SQL DECLARE Inventory

1 CURSOR FOR

2 SELECT PartNumber,

3 BinNumber,

4 QtyOnHand,

5 AdjustmentQty

6 FROM PurchDB.Inventory

7 WHERE CountCycle = :CountCycle

8 ORDER BY BinNumber

.

.

.

EXEC SQL FETCH Inventory

1 INTO :PartNumber,

2 :BinNumber,

3 :QtyOnHand :QtyOnHandInd

4 :AdjustmentQty :AdjustmentQtyInd

.

. The program displays the current row. If the

. QtyOnHand value is not null, the program prompts

. the user for an adjustment quantity. Adjustment

. quantity is the di�erence between the quantity

. actually in the bin and the QtyOnHand in the row

. displayed. If the QtyOnHand value is null, the

. program prompts the user for both QtyOnHand and

. AdjustmentQty. Any value entered is used later to

8-6 Processing with Cursors



. update AdjustmentQty. The value(s) entered, as well

. as the current PartNumber and BinNumber, are saved

. until all rows have been fetched and other values

. accepted from the user. Then one of the following

. UPDATE commands is executed for each UPDATE requested

. by the user:

.

EXEC SQL UPDATE PurchDB.Inventory

1 SET AdjustmentQty = :AdjustmentQty

2 WHERE PartNumber = :PartNumber

3 AND BinNumber = :BinNumber

.

.

.

EXEC SQL UPDATE PurchDB.Inventory

1 SET QtyOnHand = :QtyOnHand,

2 AdjustmentQty = :AdjustmentQty

3 WHERE PartNumber = :PartNumber

4 AND BinNumber = :BinNumber

After either the UPDATE WHERE CURRENT or the UPDATE command is executed, the
current row remains the same until the FETCH command is re-executed.

The DELETE WHERE CURRENT Command

This command can be used to delete the current row when the SELECT command associated
with the cursor does not contain one of the following:

DISTINCT clause in the select list.
Aggregate function in the select list.
FROM clause with more than one table.
ORDER BY clause.
GROUP BY clause.

The DELETE WHERE CURRENT command has a very simple structure:

DELETE FROM TableName WHERE CURRENT OF CursorName

The DELETE WHERE CURRENT command can be used in conjunction with a cursor
declared with or without the FOR UPDATE clause:

The program displays the current row and asks

the user whether to update or delete it. If the

user wants to delete the row, the following command

is executed:

EXEC SQL DELETE FROM PurchDB.Inventory

1 WHERE CURRENT OF AdjustQtyOnHand

Even though the SELECT command associated with cursor Inventory names only some of the
columns in table PurchDB.Inventory , the entire current row is deleted.

Processing with Cursors 8-7



After the DELETE WHERE CURRENT command is executed, there is no current row. You
must re-execute the FETCH command to obtain another current row.

As in the case of the UPDATE WHERE CURRENT command, if the SELECT command
associated with the cursor contains an ORDER BY clause or other components listed earlier,
you can use the DELETE command to delete a row:

EXEC SQL DELETE FROM PurchDB.Inventory

1 WHERE PartNumber = :PartNumber

2 AND BinNumber = :BinNumber

If you use the DELETE command to delete a row while using a cursor to examine an active
set, remember that more than one row will be deleted if multiple rows satisfy the conditions
speci�ed in the WHERE clause of the DELETE command. In addition, the row that is
current when the DELETE command is executed remains the current row until the FETCH
command is re-executed.

The CLOSE Command

When you no longer want to operate on the active set, you use the CLOSE command:

CLOSE CursorName

The CLOSE command frees up ALLBASE/SQL internal bu�ers used to handle cursor
operations. This command does not release any locks obtained since the cursor was opened; to
release locks, you must terminate the transaction:

The program opens a cursor and operates

on the active set. After the last row has

been operated on, the cursor is closed:

EXEC SQL CLOSE Inventory

Additional SQL commands are executed, then

the transaction is terminated:

EXEC SQL COMMIT WORK

You also use the CLOSE command when you want to re-access the active set. In this case,
simply re-open the cursor after executing the CLOSE command. Because locks have not been
released, any changes to the rows in the active set will be those made by your program since
the cursor was �rst opened:

8-8 Processing with Cursors



Cursor Inventory is used to update information

in table PurchDB.Inventory. After the last row

in the active set has been fetched and its information

changed, the cursor is closed:

EXEC SQL CLOSE Inventory

The cursor is then re-opened to allow the program

user to review the information and optionally make

some last-minute adjustments:

EXEC SQL OPEN Inventory

After the user has reviewed all rows in the active

set, any changes made to the active set are

made permanent as follows:

EXEC SQL COMMIT WORK

Processing with Cursors 8-9



Transaction Management for Cursor Operations

The time at which ALLBASE/SQL obtains locks during cursor processing depends on
whether an index scan or a sequential scan is used to retrieve the query result.

When a cursor is based on a SELECT command for which an index scan is used, locks
are obtained when the FETCH command is executed. In the following example, an index
scan can be used, because the predicate is optimizable and an index exists on column
OrderNumber :

EXEC SQL DECLARE OrderReview

CURSOR FOR

SELECT OrderNumber,

ItemNumber,

OrderQty,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber = :OrderNumber;

When the cursor is based on a SELECT command for which a sequential scan is used, locks
are obtained when the OPEN command is executed. A sequential scan would be used in
conjunction with the following cursor:

EXEC SQL DECLARE OrderReview

CURSOR FOR

SELECT OrderNumber,

ItemNumber

OrderQty,

ReceivedQty

FROM PurchDB.OrderItems

WHERE OrderNumber > :OrderNumber;

The scope and strength of any lock obtained depends in part on the automatic locking mode
of the target table(s). If the lock obtained is a shared lock, as for PUBLIC or PUBLICREAD
tables, the lock is elevated to an exclusive lock when you update or delete a row in the active
set.

The use of lock types, lock granularities, and isolation levels is discussed in the the
ALLBASE/SQL Reference Manual .

As mentioned in the previous section, when a transaction terminates, any cursors opened
during that transaction are either automatically closed, or they remain open if you are using
the KEEP CURSOR option of the OPEN command. To avoid possible confusion, it is good
programming practice to always use the CLOSE command to explicitly close any open cursors
before ending a transaction with the COMMIT WORK or ROLLBACK WORK command.

When the transaction terminates, any changes made to the active set during the transaction
are either all committed or all rolled back , depending on how you terminate the transaction.

8-10 Processing with Cursors



Using KEEP CURSOR

Cursor operations in an application program let you manipulate data in an active set
associated with a SELECT command. The cursor is a pointer to a row in the active set. The
KEEP CURSOR option of the OPEN command lets you maintain the cursor position in an
active set beyond transaction boundaries. This means you can scan and update a large table
without holding locks for the duration of the entire scan. You can also design transactions
that avoid holding any locks around terminal reads. In general, use the KEEP CURSOR
option when you wish to release locks periodically in long or complicated transactions.

Using KEEP CURSOR

After you specify KEEP CURSOR in an OPEN command, a COMMIT WORK does not close
the cursor, as it normally does. Instead, COMMIT WORK releases locks held before the
cursor position and immediately begins a new transaction without changing the current cursor
position. This makes it possible to update tuples in a large active set, releasing locks as the
cursor moves from page to page, instead of requiring you to reopen and manually reposition
the cursor before the next FETCH. Locks held on the page of data corresponding to the
current cursor position are either held until the transaction ends (the default) or released
depending on whether you specify WITH LOCKS or WITH NOLOCKS.

If you use the KEEP CURSOR WITH NOLOCKS option for a cursor that involves sorting,
whether through the use of a DISTINCT, GROUP BY, or ORDER BY clause, or as the result
of a union or a join operation, ALLBASE/SQL does not ensure data integrity.

It is your responsibility to ensure data integrity by verifying the continued existence of a row
before updating it or using it as the basis for updating some other table. For an updatable
cursor, you can use either the REFETCH or SELECT command to verify the continued
existence of a row. For a cursor that is non-updatable, you must use the SELECT command.

A warning (DBWARN 2056) regarding the kept cursor on a sort with no locks is generated.
You must check for this warning if you want to detect the execution of this type of cursor
operation.

Figure 8-1 shows the operation of cursors when you do not select the KEEP CURSOR option.

Processing with Cursors 8-11



Figure 8-1. Cursor Operation without the KEEP CURSOR Feature

After the cursor is opened, successive FETCH commands advance the cursor position. Any
exclusive locks acquired along the way are retained until the transaction ends. If you have
selected the Cursor Stability option in the BEGIN WORK command, shared locks on pages
that have not been updated are released when the cursor moves to a tuple on a new data
page. Exclusive locks are not released until a COMMIT WORK, which also closes the cursor.

OPEN Command Using KEEP CURSOR WITH LOCKS

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, locks on the page that contains the current cursor
position are not released.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state and
prevent a new implicit BEGIN WORK.

8-12 Processing with Cursors



Figure 8-2 shows the e�ect of the KEEP CURSOR WITH LOCKS.

Figure 8-2. Cursor Operation Using KEEP CURSOR WITH LOCKS

OPEN Command Using KEEP CURSOR WITH NOLOCKS

The feature has the following e�ects:

A COMMIT WORK command does not close the cursor. Instead, it ends the current
transaction and immediately starts another one.

When you issue a COMMIT WORK, all locks on the page that contains the current cursor
position are released. This means that another transaction may delete or modify the next
tuple in the active set before you have the chance to FETCH it.

Successive FETCHES advance the cursor position, which is retained in between transactions
until the cursor is explicitly closed with the CLOSE command.

After the CLOSE command, you use an additional COMMIT WORK command. This step
is essential . The �nal COMMIT after the CLOSE is necessary to end the KEEP state and
prevent a new implicit BEGIN WORK.

You cannot use the KEEP CURSOR option WITH NOLOCKS for a cursor declared as a
SELECT with a DISTINCT or ORDER BY clause.

Processing with Cursors 8-13



When using KEEP CURSOR WITH NOLOCKS, be aware that data at the cursor position
may be lost before the next FETCH:

If another transaction deletes the current row, ALLBASE/SQL will return the next row.
No error message is displayed.

If another transaction deletes the table being accessed, the user will see the message
TABLE NOT FOUND (DBERR 137)

Figure 8-3 shows the e�ect of KEEP CURSOR WITH NOLOCKS.

Figure 8-3. Cursor Operation Using KEEP CURSOR WITH NOLOCKS

KEEP CURSOR and Isolation Levels

The KEEP CURSOR option retains the current isolation level (RR, CS, or RC) that you have
speci�ed in the BEGIN WORK command. Moreover, the exact pattern of lock retention and
release for cursors opened using KEEP CURSOR WITH LOCKS depends on the current
isolation level. With the READ COMMITTED isolation level, no locks are maintained across
transactions because locks are released at the end of the FETCH. Therefore, KEEP CURSOR
WITH LOCKS does not make sense at a RC isolation level.

For additional information on isolation levels, refer to the chapter \Controlling Performance"
in the ALLBASE/SQL Database Administration Guide.

8-14 Processing with Cursors



KEEP CURSOR and BEGIN WORK

ALLBASE/SQL automatically begins a transaction whenever you issue a command if a
transaction is not already in progress. Thus, although you can code an explicit BEGIN
WORK to start transactions, it is not necessary to do so unless you wish to specify an
isolation level other than RR.

With KEEP CURSOR, an implicit BEGIN WORK follows immediately after you perform
a COMMIT WORK, so if you do an explicit BEGIN WORK, ALLBASE/SQL returns an
error message stating that a transaction is already in progress. If this problem should arise,
re-code to eliminate the BEGIN WORK from the loop.

KEEP CURSOR and COMMIT WORK

When the KEEP CURSOR option of the OPEN command is activated for a cursor,
COMMIT WORK may or may not release locks associated with the cursor depending on
the setting of the WITH LOCKS/WITH NOLOCKS option.

COMMIT WORK does not close cursors opened with the KEEP CURSOR option.
COMMIT WORK does end the previous implicit transaction and starts an implicit
transaction with the same isolation level as that speci�ed with the BEGIN WORK
command.

Remember that COMMIT WORK will still close all cursors opened without the KEEP
CURSOR option.

KEEP CURSOR and ROLLBACK WORK

When the KEEP CURSOR option is activated for an opened cursor, all locks are released
when you ROLLBACK WORK, whether or not you have speci�ed WITH LOCKS or WITH
NOLOCKS. The position of the cursor is restored to what it was at the beginning of the
transaction being rolled back. The current transaction is ended and a new transaction is
implicitly started with the same isolation level as speci�ed in the BEGIN WORK command.

Remember that ROLLBACK WORK closes all cursors that you opened during the current
transaction, whether opened with or without the KEEP CURSOR option. Thus it is
important to do a COMMIT WORK after opening a cursor with the KEEP CURSOR
option.

When a cursor is opened with the KEEP CURSOR option, ROLLBACK WORK TO
SavePoint is not allowed.

KEEP CURSOR and Aborted Transactions

When a transaction is aborted by ALLBASE/SQL, the cursor position is retained, and a
new transaction begins, as with ROLLBACK WORK.

Remember that when a transaction aborts all cursors that you opened during the current
transaction are closed, whether opened with or without the KEEP CURSOR option. Thus
it is important to do a COMMIT WORK after opening a cursor with the KEEP CURSOR
option.

The use of multiple cursors may require frequent examination of several system catalog
tables. This means acquiring exclusive locks, which creates the potential for deadlock.
However, the behavior of aborted transactions with KEEP CURSOR lets you create

Processing with Cursors 8-15



automatic deadlock handling routines. Simply repeat the operation until deadlock does not
occur.

Writing Keep Cursor Applications

Because of the potential for deadlock, you must be careful to test for that condition frequently
in applications using KEEP CURSOR. Use the following steps to create your code:

1. Declare all cursors to be used in the application.

2. Use a loop to test for a deadlock condition as you open all cursors that will use the
KEEP CURSOR option. Start the loop with a BEGIN WORK statement that speci�es
the isolation level, then include a separate test for non-deadlock errors for each OPEN
statement. Create an SQLStatusCheck routine to display all error messages and RELEASE
the DBEnvironment in the event of fatal errors.

3. Use the COMMIT WORK command. If you do not COMMIT at this point, an aborted
transaction will roll back all the OPEN statements, and you will lose the cursor positions.
The COMMIT starts a new transaction and keeps the cursor positions.

4. Use a loop to scan your data until all rows have been processed.

First, open any non-kept cursors. Do not include a COMMIT WORK after opening
the non-kept cursors. If a deadlock is detected at this point, the transaction will
automatically be reapplied.

Next, execute any FETCH, UPDATE WHERE CURRENT, or DELETE WHERE
CURRENT commands. Be sure to test for unexpected errors and branch to
SQLStatusCheck to display messages and RELEASE in the event of a non-deadlock
error. In the event of deadlock, the transaction will automatically be reapplied.

At the end of the loop, include a COMMIT WORK. This will commit your data to the
database, and it will close any non-kept cursors opened so far in the program. It will also
start a new transaction and maintain the cursor position of all kept cursors.

Place any terminal or �le I/O after this COMMIT , in order to prevent duplicate
messages from appearing in the event of a rollback because of deadlock.

5. Once the program is �nished scanning the tables, you should close all kept cursors within a
�nal loop which tests for a deadlock condition. Once again, test for unexpected errors and
branch to SQLStatusCheck if necessary.

6. Execute a �nal COMMIT WORK to release the KEEP state.

8-16 Processing with Cursors



Program Using UPDATE WHERE CURRENT

The ow chart in Figure 8-4 summarizes the functionality of program forex8. This
program uses a cursor and the UPDATE WHERE CURRENT command to update column
ReceivedQty in table PurchDB.OrderItems . The runtime dialog for forex8 appears in Figure
8-5, and the source code in Figure 8-6.

The main program �1� �rst executes subroutine DeclareCursor �9�, which contains the
DECLARE CURSOR command. This command is a preprocessor directive and is not
executed at runtime. At runtime, subroutine DeclareCursor only displays the message Declare
Cursor . The DECLARE CURSOR command de�nes a cursor named OrderReview . The
cursor is associated with a SELECT command that retrieves the following columns for all
rows in table PurchDB.OrderItems having a speci�c order number but no null values in
column VendPartNumber :

OrderNumber (defined NOT NULL)

ItemNumber (defined NOT NULL)

VendPartNumber

ReceivedQty

Cursor OrderReview has a FOR UPDATE clause naming column ReceivedQty to allow the
user to change the value in this column.

Next, to establish a DBE session, program forex8 executes function ConnectDBE �3�. This
function evaluates to TRUE when the CONNECT command for the sample DBEnvironment,
PartsDBE , is successfully executed. The program then executes function FetchUpdate �13�
until the Done ag is set to TRUE.

FetchUpdate Function

Function FetchUpdate �13� prompts for an order number or a 0. When the user enters a 0,
FetchUpdate is set to FALSE, which in turn sets the Done ag to FALSE, and the program
terminates. When the user enters an order number, the program begins a transaction by
executing subroutine BeginTransaction �6�, which executes the BEGIN WORK command.

Cursor OrderReview is then opened by invoking function OpenCursor �10�. This function,
which executes the OPEN CURSOR command, evaluates to TRUE when the command is
successful.

A row at a time is retrieved and optionally updated until the Fetch ag is set to FALSE. This
ag becomes false when:

The FETCH command fails; this command fails when no rows qualify for the active set,
when the last row has already been fetched, or when ALLBASE/SQL cannot execute this
command for some other reason.

The program user wants to stop reviewing rows from the active set.

The FETCH command �13B� names an indicator variable for ReceivedQty, the only column
in the query result that may contain a null value. If the FETCH command is successful, the
program executes subroutine DisplayUpdate �12� to display the current row and optionally
update it.

Processing with Cursors 8-17



DisplayUpdate Subroutine

Subroutine DisplayUpdate �12� executes subroutine DisplayRow �8� to display the current row.
If column ReceivedQty in the current row contains a null value, the message ReceivedQty is
NULL is displayed.

The user is then asked whether he wants to update the current ReceivedQty value �12A�. If so,
the user is prompted for a new entry. Depending on the user's response, the program assigns
an appropriate value to the indicator variable ReceivedQtyInd , and then issues the UPDATE
WHERE CURRENT command �12B�. If the user enters a 0, the indicator variable is set to -1
and a null value is assigned to this column. If the user enters a non-zero value, the indicator
variable is set to 0 and the user-entered value is assigned to the column.

The program then asks whether to FETCH another row. If so, the FETCH command
is re-executed. If not, the program asks whether the user wants to make permanent any
updates he may have made in the active set. To keep any row changes, the program executes
subroutine CommitWork �6�, which executes the COMMIT WORK command. To undo
any row changes, the program executes subroutine RollBackWork �7�, which executes the
ROLLBACK WORK command.

The COMMIT WORK command is also executed when ALLBASE/SQL sets SQLCode to 100
following execution of the FETCH command. SQLCode is set to 100 when no rows qualify for
the active set or when the last row has already been fetched. If the FETCH command fails for
some other reason, the ROLLBACK WORK command is executed instead.

Before any COMMIT WORK or ROLLBACK WORK command is executed, cursor
OrderReview is closed. Although the cursor is automatically closed whenever a transaction
is terminated, it is good programming practice to use the CLOSE command to close open
cursors prior to terminating transactions.

When the program user enters a 0 in response to the order number prompt �13A�, the program
terminates by executing subroutine TerminateProgram �4�, which executes the RELEASE
command �2�.

Explicit status checking is used throughout this program. After each embedded SQL
command is executed, SQLCA.SQLCode is checked. If SQLCode is less than 0, the program
executes subroutine SQLStatusCheck �2�, which executes the SQLEXPLAIN command.

8-18 Processing with Cursors



Figure 8-4. Flow Chart of Program forex8

Processing with Cursors 8-19



:run forex8

Program to UPDATE OrderItems table via a CURSOR -- forex8

Event List:

CONNECT TO PartsDBE

Prompt for Order Number

BEGIN WORK

OPEN Cursor

FETCH a row

Display the retrieved row

Prompt for new Received Quantity

UPDATE row within OrderItems table

FETCH the next row, if any, with the same Order Number

Repeat the above five steps until no more rows qualify

CLOSE Cursor

COMMIT WORK or ROLLBACK WORK

Repeat the above eleven steps until user enters 0

RELEASE PartsDBE

Declare Cursor OrderReview

CONNECT TO PartsDBE

Enter Order Number or a 0 to STOP >30520

BEGIN WORK

OPEN the Declared Cursor OrderReview

OrderNumber: 30520

ItemNumber: 1

VendPartNumber: 9375

ReceivedQty: 9

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > y

OrderNumber: 30520

ItemNumber: 2

VendPartNumber: 9105

ReceivedQty: 3

Do you want to change ReceivedQty (Y/N)? > y

Enter New ReceivedQty or a 0 for NULL> 15

Do you want to see another row (Y/N)? > y

Figure 8-5. Runtime Dialog of Program forex8

8-20 Processing with Cursors



OrderNumber: 30520

ItemNumber: 3

VendPartNumber: 9135

ReceivedQty: 3

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > y

Row not found or no more rows!

Do you want to save your changes (Y/N)? > n

CLOSE the Declared Cursor OrderReview

ROLLBACK WORK

No Rows Changed!

Enter Order Number or a 0 to STOP > 30510

BEGIN WORK

OPEN the Declared Cursor OrderReview

OrderNumber: 30510

ItemNumber: 1

VendPartNumber: 1001

ReceivedQty: 3

Do you want to change ReceivedQty (Y/N)? > n

Do you want to see another row (Y/N)? > n

CLOSE the Declared Cursor OrderReview

COMMIT WORK

Enter Order Number or a 0 to STOP > 0

User entered a 0

RELEASE PartsDBE

:

Figure 8-5. Runtime Dialog of Program forex8 (page 2 of 2)

Processing with Cursors 8-21



PROGRAM forex8

C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C* This program illustrates the use of UPDATE WHERE CURRENT *

C* with a Cursor to update a single row at a time. *

C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT NONE

LOGICAL*2 Done, ConnectDBE, FetchUpdate

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Beginning of the Main Program *) �1�

WRITE (*,*) CHAR(27), 'U'

WRITE (*,*) 'Program to UPDATE OrderItems table via a

1CURSOR -- forex8'

WRITE (*,*) ' '

WRITE (*,*) 'Event List:'

WRITE (*,*) ' CONNECT TO PartsDBE'

WRITE (*,*) ' Prompt for Order Number'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' OPEN Cursor'

WRITE (*,*) ' FETCH a row'

WRITE (*,*) ' Display the retrieved row'

WRITE (*,*) ' Prompt for new Received Quantity'

WRITE (*,*) ' UPDATE row within OrderItems table'

WRITE (*,*) ' FETCH the next row, if any, with the

1same Order Num

1ber'

WRITE (*,*) ' Repeat the above five steps until no

1more rows qual

1ify'

WRITE (*,*) ' CLOSE Cursor'

WRITE (*,*) ' COMMIT WORK or ROLLBACK WORK'

WRITE (*,*) ' Repeat the above eleven steps until

1user enters 0'

WRITE (*,*) ' RELEASE PartsDBE'

CALL DeclareCursor

WRITE (*,*) ' '

IF (ConnectDBE()) THEN

Done = .TRUE.

DO WHILE (Done)

Done = FetchUpdate()

END DO

CALL TerminateProgram

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT

8-22 Processing with Cursors



ELSE

WRITE (*,*) 'Cannot Connect to your DBEnvironment!'

ENDIF

STOP

END

C (* End of Main Program *)

C (* Beginning of the Sub-Routines *)

SUBROUTINE SQLStatusCheck �2�
C**** SUBROUTINE SQLStatusCheck checks status of SQL commands

C**** and print HPSQL error messages.

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

LOGICAL*2 Abort, Check

INTEGER DeadLock

PARAMETER (DeadLock = -14024)

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

Abort = .FALSE.

IF (SQLCode .LT. DeadLock) THEN

Abort = .TRUE.

WRITE (*,*) 'A serious error has occurred.'

ENDIF

Check = .TRUE.

DO WHILE (Check)

EXEC SQL SQLEXPLAIN :SQLMessage

WRITE(*, 100) SQLMessage

100 FORMAT(A120)

IF (SQLCode .EQ. 0) THEN

Check = .FALSE.

ENDIF

END DO

IF (Abort) THEN

CALL TerminateProgram

STOP 'Program Aborted'

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 2 of 12)

Processing with Cursors 8-23



END IF

RETURN

END

C (* End of Subroutine SQLStatusCheck *)

LOGICAL*2 FUNCTION ConnectDBE() �3�
C**** FUNCTION to connect to PartsDBE

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE (*, *) 'CONNECT TO PartsDBE'

EXEC SQL CONNECT TO 'PartsDBE'

ConnectDBE = .TRUE.

IF (SQLCode .NE. OK) THEN

ConnectDBE = .FALSE.

CALL SQLStatusCheck

ENDIF

RETURN

END

C (* End of Function ConnectDBE *)

SUBROUTINE TerminateProgram �4�
C**** SUBROUTINE to release from PartsDBE

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE(*,*) ' '

WRITE(*,*) 'RELEASE PartsDBE'

EXEC SQL RELEASE

RETURN

END

C (* End of Subroutine TerminateProgram *)

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 3 of 12)

8-24 Processing with Cursors



SUBROUTINE BeginTransaction �5�
C**** SUBROUTINE to begin work

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE (*,*) 'BEGIN WORK'

EXEC SQL BEGIN WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ENDIF

RETURN

END

C (* End of Subroutine BeginTransaction *)

SUBROUTINE CommitWork �6�
C**** SUBROUTINE to commit work

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE(*,*) 'COMMIT WORK'

EXEC SQL COMMIT WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ENDIF

RETURN

END

C (* End of Subroutine CommitWork *)

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 4 of 12)

Processing with Cursors 8-25



SUBROUTINE RollBackWork �7�
C**** SUBROUTINE to RollBack Work

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE(*,*) 'ROLLBACK WORK'

EXEC SQL ROLLBACK WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ENDIF

RETURN

END

C (* End of Subroutine RollBackWork *)

SUBROUTINE DisplayRow (OrderNumber,ItemNumber,VendPartNumber,

1 ReceivedQty, ReceivedQtyInd) �8�
C**** SUBROUTINE to display OrderItems table rows

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER OrderNumber

INTEGER ItemNumber

CHARACTER*16 VendPartNumber

INTEGER ReceivedQty

SQLIND ReceivedQtyInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 5 of 12)

8-26 Processing with Cursors



WRITE(*,*) ' '

WRITE(*, '('' OrderNumber: '',I10)') OrderNumber

WRITE(*, '('' ItemNumber: '',I10)') ItemNumber

WRITE(*, '('' VendPartNumber: '',A16)') VendPartNumber

IF (ReceivedQtyInd .LT. 0) THEN

WRITE(*,*) ' ReceivedQty is NULL'

ELSE

WRITE(*, '('' ReceivedQty: '',I5)') ReceivedQty

ENDIF

WRITE(*,*) ' '

RETURN

END

C (* End of Subroutine DisplayRow *)

SUBROUTINE DeclareCursor �9�
C**** SUBROUTINE to declare the Cursor

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER OrderNumber

INTEGER ItemNumber

CHARACTER*16 VendPartNumber

INTEGER ReceivedQty

SQLIND ReceivedQtyInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

WRITE (*,*) ' '

WRITE (*,*) 'Declare Cursor OrderReview'

WRITE (*,*) ' '

EXEC SQL DECLARE OrderReview

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 6 of 12)

Processing with Cursors 8-27



1 CURSOR FOR

2 SELECT OrderNumber,

3 ItemNumber,

4 VendPartNumber,

5 ReceivedQty

6 FROM PurchDB.OrderItems

7 WHERE OrderNumber = :OrderNumber

8 AND VendPartNumber IS NOT NULL

9 FOR UPDATE OF ReceivedQty

RETURN

END

C (* End of Subroutine DeclareCursor *)

LOGICAL*2 FUNCTION OpenCursor(OrderNumber, ItemNumber, �10�
1 VendPartNumber, ReceivedQty, ReceivedQtyInd)

C**** FUNCTION to open the Cursor

INTEGER OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

OpenCursor = .TRUE.

WRITE (*,*) ' '

WRITE (*,*) 'OPEN the Declared Cursor OrderReview'

WRITE (*,*) ' '

EXEC SQL OPEN OrderReview

IF (SQLCode .NE. OK) THEN

OpenCursor = .FALSE.

CALL SQLStatusCheck

CALL RollBackWork

ENDIF

RETURN

END

C**** (End of Function OpenCursor)

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 7 of 12)

8-28 Processing with Cursors



SUBROUTINE CloseCursor �11�
C**** SUBROUTINE to close the Cursor

INTEGER OK

PARAMETER (OK = 0)

C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

WRITE (*,*) ' '

WRITE (*,*) 'CLOSE the Declared Cursor OrderReview'

WRITE (*,*) ' '

EXEC SQL CLOSE OrderReview

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL TerminateProgram

ENDIF

RETURN

END

C**** (End of Subroutine CloseCursor)

SUBROUTINE DisplayUpdate(OrderNumber, ItemNumber, �12�
1 VendPartNumber, ReceivedQty, ReceivedQtyInd,

2 RowCounter,Fetch)

C**** SUBROUTINE to Display and Update a row from PurchDB.OrderItems

LOGICAL*2 Fetch

CHARACTER Response

INTEGER NotFound,MultipleRows,OK,RowCounter

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

C (* Begin SQL Communication Area *)

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 8 of 12)

Processing with Cursors 8-29



EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER OrderNumber

INTEGER ItemNumber

CHARACTER*16 VendPartNumber

INTEGER ReceivedQty

SQLIND ReceivedQtyInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

CALL DisplayRow(OrderNumber, ItemNumber, VendPartNumber,

1 ReceivedQty, ReceivedQtyInd)

WRITE (*,100) �12A�
100 FORMAT (/$, ' Do you want to change ReceivedQty (Y/N)? > ')

READ (*, 110) Response

110 FORMAT(A1)

IF ((Response .EQ. 'Y') .OR. (Response .EQ. 'y')) THEN

WRITE (*,120)

120 FORMAT (/$,'Enter New ReceivedQty or a 0 for NULL > ')

READ (*,130) ReceivedQty

130 FORMAT(I5)

IF (ReceivedQty .EQ. 0) THEN

ReceivedQtyInd = -1

ELSE

ReceivedQtyInd = 0

ENDIF

EXEC SQL UPDATE PurchDB.OrderItems �12B�
1 SET ReceivedQty = :ReceivedQty :ReceivedQtyInd

2 WHERE CURRENT OF OrderReview

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

ELSE

RowCounter = RowCounter +1

ENDIF

ENDIF

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 9 of 12)

8-30 Processing with Cursors



WRITE (*,140)

140 FORMAT (/$, 'Do you want to see another row (Y/N)? > ')

READ (*, 150) Response

150 FORMAT (A1)

IF ((Response .EQ. 'N') .OR. (Response .EQ. 'n')) THEN

IF (RowCounter .GT. 0) THEN

WRITE (*,160)

160 FORMAT (/$, 'Do you want to save your changes (Y/N)? >')

READ (*, 170) Response

170 FORMAT (A1)

IF ((Response .EQ. 'N') .OR. (Response .EQ. 'n')) THEN

CALL CloseCursor

CALL RollBackWork

Fetch = .FALSE.

WRITE (*,*) 'No Row(s) Changed! '

ELSE

CALL CloseCursor

CALL CommitWork

Fetch = .FALSE.

WRITE (*, '('' Row(s) Changed: '',I2)') RowCounter

ENDIF

ELSEIF (RowCounter .EQ. 0) THEN

CALL CloseCursor

CALL CommitWork

Fetch = .FALSE.

ENDIF

ENDIF

RETURN

END

C**(End of Subroutine DisplayUpdate)

LOGICAL*2 FUNCTION FetchUpdate() �13�
C**FUNCTION to Fetch rows from PurchDB.OrderItems table.

CHARACTER Response

LOGICAL*2 Fetch,OpenCursor

INTEGER NotFound,MultipleRows,OK,RowCounter

PARAMETER (NotFound = 100,

1 MultipleRows = -10002,

2 OK = 0)

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 10 of 12)

Processing with Cursors 8-31



C (* Begin SQL Communication Area *)

EXEC SQL INCLUDE SQLCA

C (* Begin Host Variable Declarations *)

EXEC SQL BEGIN DECLARE SECTION

INTEGER OrderNumber

INTEGER ItemNumber

CHARACTER*16 VendPartNumber

INTEGER ReceivedQty

SQLIND ReceivedQtyInd

CHARACTER*120 SQLMessage

EXEC SQL END DECLARE SECTION

C (* End Host Variable Declarations *)

RowCounter = 0

FetchUpdate = .TRUE.

WRITE (*,100) �13A�
100 FORMAT(/$, 'Enter Order Number or a 0 to stop > ')

READ (*,110) OrderNumber

110 FORMAT(I10)

IF (OrderNumber .NE. 0) THEN

CALL BeginTransaction

IF (OpenCursor(OrderNumber,ItemNumber,

1 VendPartNumber,ReceivedQty,ReceivedQtyInd)) THEN

Fetch = .TRUE.

DO WHILE (Fetch)

EXEC SQL FETCH OrderReview �13B�
1 INTO :OrderNumber,

1 :ItemNumber,

2 :VendPartNumber,

3 :ReceivedQty :ReceivedQtyInd

IF (SQLCode .EQ. OK) THEN

CALL DisplayUpdate(OrderNumber,ItemNumber,VendPartNumber,

1 ReceivedQty, ReceivedQtyInd, RowCounter,Fetch)

ELSEIF (SQLCode .EQ. NotFound) THEN

Fetch = .FALSE.

WRITE (*,*) ' '

WRITE (*,*) 'Row not found or no more rows!'

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 11 of 12)

8-32 Processing with Cursors



IF (RowCounter .GT. 0) THEN

WRITE (*,120)

120 FORMAT (/$, 'Do you want to save your changes (Y/N)? > ' )

READ (*,130) Response

130 FORMAT(A1)

IF ((Response .EQ. 'N') .OR. (Response .EQ. 'n')) THEN

CALL CloseCursor

CALL RollBackWork

WRITE (*,*) 'No Row(s) Changed! '

ELSE

CALL CloseCursor

CALL CommitWork

WRITE (*, '('' Row(s) Changed: '',I2)') RowCounter

ENDIF

ELSEIF (RowCounter .EQ. 0) THEN

CALL CloseCursor

CALL CommitWork

ENDIF
ELSEIF (SQLCode .EQ. MultipleRows) THEN

Fetch = .FALSE.

WRITE(*,*) ' '

WRITE (*,*) 'WARNING: More than one row qualifies!'

CALL SQLStatusCheck

ELSE

Fetch = .FALSE.

CALL SQLStatusCheck

CALL CloseCursor

CALL RollBackWork

ENDIF

END DO

ELSE

FetchUpdate = .FALSE.

WRITE (*,*) 'Failed to Open Cursor'

ENDIF

ELSE

FetchUpdate = .FALSE.

WRITE (*,*) 'User entered an 0'

ENDIF

RETURN

END

C (* End of Subroutine FetchUpdate *)

Figure 8-6. Program forex8: Using UPDATE WHERE CURRENT (page 12 of 12)

Processing with Cursors 8-33



9

Using Dynamic Operations

Dynamic operations are used to execute SQL commands that are not preprocessed until run
time. Such commands, known as dynamic SQL commands, are submitted to ALLBASE/SQL
through several special SQL statements: PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE.

This chapter contrasts dynamic with non-dynamic operations and introduces the techniques
used to handle dynamic operations from a program. It then focuses on dynamic non-queries
and queries. The following topics are considered:

Review of Preprocessing Events.
Di�erences between Dynamic and Non-Dynamic Preprocessing.
Preprocessing of Dynamic Non-Queries.
Programs Using Dynamic Operations.

Review of Preprocessing Events

All embedded SQL statements must be preprocessed before they can be executed.
Preprocessing may be done by running the FORTRAN preprocessor during application
development, or it may be done for dynamic commands when the program is run.
Preprocessing does the following:

Checks syntax: The syntax of SQL commands and host variable declarations must be
correct.

Veri�es the existence of objects: Any object named in an SQL command must exist.

Optimizes data access: If the statement accesses data, the fastest way to access the data
must be determined.

Checks authorizations: Both the program owner and the executor must have the required
authorities.

Creates sections: ALLBASE/SQL creates sections for SQL commands when this is
appropriate. At run time, the section is executed.

These preprocessing events take place for all non-dynamic SQL commands when you run the
ALLBASE/SQL preprocessor. Non-dynamic commands are fully de�ned in the source code
and are preprocessed before run time. So far, most of the examples in this manual have shown
non-dynamic preprocessing.

ALLBASE/SQL completes the preprocessing of dynamic commands at run time, in an
event known as dynamic preprocessing. Any SQL command except the following can be
preprocessed at run time:

Using Dynamic Operations 9-1



BEGIN DECLARE SECTION FETCH

CLOSE CURSOR INCLUDE

DECLARE CURSOR OPEN CURSOR
DELETE WHERE CURRENT PREPARE

DESCRIBE SELECT

END DECLARE SECTION SQLEXPLAIN

EXECUTE UPDATE WHERE CURRENT

EXECUTE IMMEDIATE WHENEVER

Dynamic commands that are not queries can be preprocessed at run time using the
PREPARE and EXECUTE statements or the EXECUTE IMMEDIATE statement. Dynamic
queries are preprocessed using the PREPARE and DESCRIBE commands in conjunction with
the SQLDA or SQL Description Area and other data structures. These statements and data
structures, used with a cursor, are described further in a later section.

Differences between Dynamic and Non-Dynamic Preprocessing

The authorization checking and section creation activities for non-dynamic and dynamic
ALLBASE/SQL commands di�er in the following ways:

Authorization checking. A non-dynamic command is executed if the owner of the program
module has the proper authority at run time. A dynamic command is executed if the
program executor has the proper authority at run time.

Section creation. Any section created for a non-dynamic command becomes part of a
module permanently stored in a DBEnvironment by the FORTRAN preprocessor. The
module remains in the system catalog until you execute the DROP MODULE command
or invoke the preprocessor with the DROP option. Any section created for a dynamic
command is temporary. The section is created at run time, temporarily stored, then deleted
at the end of the transaction in which it was created.

Permanently Stored vs. Temporary Sections

In some instances, you could code the same SQL statement as either dynamic or non-dynamic,
depending on whether you wanted to store permanent sections. A program that has
permanently stored sections associated with it can be executed only against DBEnvironments
containing those sections. Figure 9-1 illustrates how you create and use such programs. Note
that the sections can be permanently stored either by the preprocessor or by using the ISQL
INSTALL command.

9-2 Using Dynamic Operations



Figure 9-1. Creation and Use of a Program that has a Stored Module

Programs that contain only SQL commands that do not have permanently stored sections
can be executed against any DBEnvironment without the prerequisite of storing a module in
the DBEnvironment. Figure 9-2 illustrates how you create and use programs in this category.
Note that the program must still be preprocessed in order to create compilable �les and
generate ALLBASE/SQL external procedure calls.

Using Dynamic Operations 9-3



Figure 9-2. Creation and Use of a Program that has No Stored Module

Examples of Non-Dynamic and Dynamic SQL Statements

The following example shows an embedded SQL statement that is coded so as to generate a
stored section before run time:

EXEC SQL UPDATE STATISTICS FOR TABLE PurchDB.Parts;

When you run the preprocessor on a source �le containing this statement, a permanent section
will be stored in the appropriate DBEnvironment.

The following example shows an SQL statement that is coded so as to generate a temporary
section at run time:

DynamicCommand := 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

EXEC SQL PREPARE MyCommand FROM :DynamicCommand;

EXEC SQL EXECUTE MyCommand;

9-4 Using Dynamic Operations



In this case, the SQL statement is stored in a host variable which is passed to ALLBASE/SQL
in the PREPARE statement at run time. A temporary section is then created and executed,
and the section is not stored in the DBEnvironment.

Why Use Dynamic Preprocessing?

In some cases, it may not be desirable to preprocess an SQL command before run time:

You may need to code an application that permits ad hoc queries requiring that SQL
commands be entered by the user at run time. (ISQL is an example of an ad hoc query
facility in which the command the user will submit is completely unknown at programming
time.)

You may need more specialized applications requiring SQL commands that are de�ned
partly at programming time and partly by the user at run time. An application may, for
example, perform UPDATE STATISTICS operations on tables the user speci�es at run
time.

You may wish to run an application on di�erent DBEnvironments at di�erent times without
the need to permanently store sections in those DBEnvironments.

You may wish to code only one dynamic command (a CONNECT, for instance) and then
preprocess or install the same application in several di�erent DBEnvironments.

Passing Dynamic Commands to ALLBASE/SQL

A dynamic command is passed to ALLBASE/SQL either as a string literal or as a host
variable containing a string. It must be terminated with a semicolon. The maximum length
for such a string is 2048 bytes.

To pass a dynamic command that can be completely de�ned at programming time, you can
use a delimited string:

EXEC SQL PREPARE MyCommand FROM 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

or

EXEC SQL EXECUTE IMMEDIATE 'UPDATE STATISTICS FOR TABLE PurchDB.Parts;';

Using Dynamic Operations 9-5



To pass a dynamic command that cannot be completely de�ned at programming time, you use
a host variable declared as a string of characters:

CHARACTER*2048 DynamicHostVar
.

.

EXECUTE IMMEDIATE :DynamicHostVar

Understanding Dynamic Operations

Dynamic Non-Queries are the only type of dynamic operations available to FORTRAN
programmers. Non-queries do not retrieve rows from the database. Note that dynamic
non-queries either do or do not require the use of sections at execution time. For example, a
CONNECT does not require a section, but a DELETE does.

The following paragraphs examine dynamic non-queries.

Preprocessing of Dynamic Non-Queries

There are two methods for dynamic preprocessing of a non-query:

Using EXECUTE IMMEDIATE.
Using PREPARE and EXECUTE.

The �rst method can be used with any non-query; the second is only for those non-query
commands that use sections at execution time.

Using EXECUTE IMMEDIATE

If you know in advance that a dynamic command will not be a query, you can dynamically
preprocess and execute the command in one step, using the EXECUTE IMMEDIATE
command. Figure 9-3 illustrates a procedure hosting a dynamic UPDATE STATISTICS
command that can be handled in this fashion.

Subroutine UpdateStatistics � 1 � prompts the user for a table name � 2 �. The table name
entered is assigned to the host variable CmdLine � 3 � to complete the UPDATE STATISTICS
command. After the command is prepared and executed � 4 �, the transaction is terminated
with a COMMIT WORK command � 5 � or a ROLLBACK WORK command � 6 �, depending
on the value in SQLCA.SQLCODE. Terminating the transaction before accepting another
table name and re-executing the UPDATE STATISTICS command releases any locks obtained
and improves concurrency.

9-6 Using Dynamic Operations



SUBROUTINE UpdateStatistics �1�

CHARACTER*50 TableName

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*1024 CmdLine

EXEC SQL END DECLARE SECTION

DO WHILE (TableName .NE. '/')

WRITE (*,*) 'Enter table name or a / to stop > ' �2�
READ(6,100) TableName

100 FORMAT(A50)

IF (TableName .NE. '/') THEN

CmdLine ='UPDATE STATISTICS FOR TABLE '// TableName // ;' �3�

EXEC SQL EXECUTE IMMEDIATE :CmdLine �4�

IF (SQLCode .EQ. 0) THEN

EXEC SQL COMMIT WORK �5�
ELSE

EXEC SQL ROLLBACK WORK �6�
ENDIF

ENDIF (* END OF IF TABLENAME *)

END DO

RETURN

END (* END OF UPDATESTATISTICS PROCEDURE *)

Figure 9-3. Procedure Hosting Dynamic Non-Query Commands

Using PREPARE and EXECUTE

Use the PREPARE command to create and store a temporary section for the dynamic
command:

PREPARE CommandName FROM CommandSource

Because the PREPARE command operates only on sections, it can be used to dynamically
preprocess only SQL commands executed by using sections. The DBE session management
and transaction management commands can only be dynamically preprocessed by using
EXECUTE IMMEDIATE.

With PREPARE, ALLBASE/SQL creates a temporary section for the command that you can
execute one or more times in the same transaction by using the EXECUTE command:

Using Dynamic Operations 9-7



EXEC SQL PREPARE MyNonQuery FROM :DynamicCommand;

I = MaxIterations
DO WHILE (I .NE. 0)

EXEC SQL EXECUTE MyNonQuery;

I = I - 1

END DO

As soon as you process a COMMIT WORK or ROLLBACK WORK command, the temporary
section is deleted.

The program examined later in this chapter under \Sample Program Using PREPARE and
EXECUTE" illustrates how to handle PREPARE and EXECUTE.

Programs Using Dynamic Operations

The rest of this chapter contains sample programs that illustrate the use of dynamic
preprocessing techniques for queries. There are two complete programs:

forex9a, which contains statements for using EXECUTE IMMEDIATE.

forex9b, which contains statements for using PREPARE and EXECUTE.

For each program, there is a description of the code, a display of the runtime dialog with user
input, and a listing.

9-8 Using Dynamic Operations



Sample Program Using EXECUTE IMMEDIATE

To preprocess and execute a dynamic command in only one step, you use the EXECUTE
IMMEDIATE command:

EXEC SQL EXECUTE IMMEDIATE :DynamicCommand

Program forex9a, whose runtime dialog is shown in Figure 9-4 and whose source code is given
in Figure 9-5, can be used to execute the UPDATE STATISTICS command on any table in
any DBEnvironment. This program prompts for both the DBEnvironment name and the
name of tables for which to execute the UPDATE STATISTICS command. The UPDATE
STATISTICS command is handled by using the EXECUTE IMMEDIATE command.

The main program �1� �rst performs function ConnectDBE �2� to start a DBE session.
ConnectDBE prompts for the name of a DBEnvironment �2A�. A READ command places the
DBEnvironment name in the host variable DBEnvironment , and the CONNECT command
is then executed. The program performs implicit status checking, which results in calls to
subroutine SQLStatusCheck �8� if an error occurs. Note that it is necessary either to include
the appropriate label in each subsequent subprogram unit that follows the WHENEVER
Condition GOTO commands or to turn implicit status checking o�.

The program then performs subroutine BeginWork �3� to begin a transaction. BeginWork
executes a BEGIN WORK command. Function Update �7� is then performed to execute
the UPDATE STATISTICS command. Update declares the host variables used to hold
information about the dynamic command. The static part of the UPDATE STATISTICS
command is placed into the variable Static, and then the user is prompted for the name of the
table to be updated �7A�. The TableName is then concatenated with the rest of the UPDATE
STATISTICS command in Static and placed into the variable Command . The full UPDATE
STATISTICS command is then preprocessed and executed with the EXECUTE IMMEDIATE
command �7B�. At the end of the function, implicit status checking is turned o�.

If function Update evaluates to TRUE, it prompts the user for another table name. Function
Update terminates when Update is set to FALSE by the user's entering a slash in response to
the prompt for a table name. When Update evaluates to FALSE, subroutine CommitWork
�4� is performed. CommitWork executes a COMMIT WORK command, then subroutine
ReleaseDBE is performed �5�. ReleaseDBE executes a RELEASE command to terminate the
DBE session. After ReleaseDBE has executed, the program terminates.

When ALLBASE/SQL returns a negative value or a value of 100 in SQLCode following the
execution of the embedded SQL commands, subroutine SQLStatusCheck �8� is performed.
This subroutine writes out messages based on the values of SQLCode and SQLWARN, then
calls subroutine SQLExplain �6� to display one or more messages. Subroutine SQLExplain
executes the SQLEXPLAIN command and prints out the error message. If an error is very
serious (SQLCode < -14024), a ag named Abort is set, and subroutines CommitWork �4� and
ReleaseDBE �5� are performed before the program is terminated.

Using Dynamic Operations 9-9



Program to illustrate the EXECUTE IMMEDIATE command -- forex9a

Event List:

Prompt for the DBEnvironment Name

CONNECT TO the DBEnvironment

BEGIN WORK

Prompt for the table name

EXECUTE IMMEDIATE UPDATE STATISTICS command

COMMIT WORK

Repeat the above 3 steps until the user enters a /

RELEASE from DBEnvironment

Repeat the above 8 steps until the user enters a /

Terminate the Program

Enter DBEnvironment to CONNECT TO or a / to STOP > PartsDBE

CONNECT TO DBEnvironment

Successful CONNECT

BEGIN WORK

Enter Table Name or a / to Stop > PurchDB.Vendors

Table to Update - PurchDB.Vendors

Command - UPDATE STATISTICS FOR TABLE PurchDB.Vendors ;

SQL command executed successfully.

Enter Table Name or a / to Stop > System.Table

Table to Update - System.Table

Command - UPDATE STATISTICS FOR TABLE System.Table ;

SQL command executed successfully.

Enter Table Name or a / to Stop > PurchDB.VendorStatistics

Table to Update - PurchDB.VendorStatistics

Command - UPDATE STATISTICS FOR TABLE PurchDB.VendorStatistics ;

HPSQL error!

Call SQLExplain

Command UPDATE STATISTICS is not allowed

for views (PURCHDB.VENDORSTATISTICS)

SQL command not successfully executed.

Enter Table Name or a / to Stop > /

No more tables to update.

COMMIT WORK

RELEASE DBEnvironment

Enter DBEnvironment to CONNECT TO or a / to STOP > /

Terminating the Program!

Figure 9-4. Runtime Dialog for Program forex9a

9-10 Using Dynamic Operations



PROGRAM forex9a

C * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * This program illustrates the use of SQL dynamic *

C * non-query commands executed from a FORTRAN program. *

C * This program demonstrates the use of the EXECUTE *

C * IMMEDIATE command. *

C * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT NOTE

LOGICAL*2 Update, Test, ConnectDBE

C (**** Begin SQL Communication Area ****)

EXEC SQL INCLUDE SQLCA

C (**** begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C (**** Beginning of Main Program ****) �1�
WRITE (*,*) CHAR(27), 'U'

WRITE (*,*) 'Program to illustrate the EXECUTE

1IMMEDIATE command -- forex9a'

WRITE (*,*) ' '

WRITE (*,*) 'Event List:'

WRITE (*,*) ' Prompt for the DBEnvironment Name:'

WRITE (*,*) ' CONNECT TO the DBEnvironment'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' Prompt for the table name:'

WRITE (*,*) ' EXECUTE IMMEDIATE UPDATE STATISTICS command'

WRITE (*,*) ' COMMIT WORK'

WRITE (*,*) ' Repeat the above 3 steps until the

1user enters a /'

WRITE (*,*) ' RELEASE from DBEnvironment'

WRITE (*,*) ' Repeat the above 8 steps until the

1user enters a /'

WRITE (*,*) ' Terminate the Program.'

DO WHILE (ConnectDBE())

CALL BeginWork

Test = .TRUE.

DO WHILE (Test)

Test = Update()

END DO

CALL CommitWork

CALL ReleaseDBE

Figure 9-5. Program forex9a: Sample Program Using EXECUTE IMMEDIATE

Using Dynamic Operations 9-11



END DO

WRITE (*,*) 'Connect was Unsuccessful!'

C

END

C (* Beginning of the Subroutines *)

LOGICAL*2 FUNCTION ConnectDBE() �2�
C (**** Subroutine to connect to user

entered DBEnvironment ****)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 DBEnvironment

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

EXEC SQL WHENEVER SQLERROR GOTO 1000

EXEC SQL WHENEVER SQLWARNING GOTO 1000

EXEC SQL WHENEVER NOT FOUND GOTO 1000

ConnectDBE = .FALSE.

DBEnvironment = '/'

WRITE (*,100) �2A�
100 FORMAT (/$,'Enter DBEnvironment to CONNECT TO or a /

1to STOP > ')

READ (*,110) DBEnvironment

110 FORMAT(A80)

IF (DBEnvironment .EQ. '/') THEN

WRITE (*,*) ' '

WRITE (*,*) 'Terminating the Program!'

STOP

ELSE

WRITE (*,*) ' '

WRITE (*,*) 'CONNECT TO DBEnvironment'

EXEC SQL CONNECT TO :DBEnvironment

ENDIF

IF (SQLCode .NE. 0) THEN

GOTO 1000

ENDIF

ConnectDBE = .TRUE.

WRITE (*,*) 'Successful CONNECT'

GOTO 2000

Figure 9-5. Program forex9a: Sample Program Using EXECUTE IMMEDIATE (page 2 of 6)

9-12 Using Dynamic Operations



1000 CALL SQLStatusCheck

ConnectDBE = .FALSE.

CALL ReleaseDBE

2000 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

EXEC SQL WHENEVER SQLWARNING CONTINUE

EXEC SQL WHENEVER NOT FOUND CONTINUE

END

SUBROUTINE BeginWork �3�
C (**** Subroutine to Begin a Transaction ****)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

EXEC SQL WHENEVER SQLERROR GOTO 1000

EXEC SQL WHENEVER SQLWARNING GOTO 1000

EXEC SQL WHENEVER NOT FOUND GOTO 1000

WRITE (*,*) 'BEGIN WORK'

EXEC SQL BEGIN WORK

GOTO 2000

1000 CALL SQLStatusCheck

CALL ReleaseDBE

2000 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

EXEC SQL WHENEVER SQLWARNING CONTINUE

EXEC SQL WHENEVER NOT FOUND CONTINUE

END

SUBROUTINE CommitWork �4�
C (**** Subroutine to Commit Work ****)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

EXEC SQL WHENEVER SQLERROR GOTO 1000

EXEC SQL WHENEVER SQLWARNING GOTO 1000

EXEC SQL WHENEVER NOT FOUND GOTO 1000

Figure 9-5. Program forex9a: Sample Program Using EXECUTE IMMEDIATE (page 3 of 6)

Using Dynamic Operations 9-13



WRITE (*,*) 'COMMIT WORK'

EXEC SQL COMMIT WORK

GOTO 2000

1000 CALL SQLStatusCheck

CALL ReleaseDBE

2000 RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

EXEC SQL WHENEVER SQLWARNING CONTINUE

EXEC SQL WHENEVER NOT FOUND CONTINUE

END

SUBROUTINE ReleaseDBE �5�
C (**** Subroutine to Release the DBEnvironment ****)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE (*,*) 'RELEASE DBEnvironment'

EXEC SQL RELEASE

RETURN

END

SUBROUTINE SQLExplain �6�
C (**** Subroutine to CALL SQLEXPLAIN ****)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

WRITE (*,*) 'Call SQLExplain'

EXEC SQL SQLEXPLAIN :SQLMessage

WRITE (*,*) ' '

WRITE (*,*) SQLMessage

RETURN

END

LOGICAL*2 FUNCTION Update() �7�
C (**** Function to Update the user entered tables ****)

Static = 'UPDATE STATISTICS FOR TABLE'

Figure 9-5. Program forex9a: Sample Program Using EXECUTE IMMEDIATE (page 4 of 6)

9-14 Using Dynamic Operations



C (**** Begin SQL Communication Area ****)

EXEC SQL INCLUDE SQLCA

CHARACTER*30 Static

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*50 TableName

CHARACTER*81 Command

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

EXEC SQL WHENEVER SQLERROR GOTO 1000

EXEC SQL WHENEVER SQLWARNING GOTO 1000

EXEC SQL WHENEVER NOT FOUND GOTO 1000

WRITE (*,100) �7A�
100 FORMAT (/$, 'Enter Table Name or a / to Stop > ')

READ (*,110) TableName

110 FORMAT(A50)

IF (TableName .EQ. '/') THEN

WRITE (*,*) 'No more tables to update.'

Update = .FALSE.

ELSE

WRITE(*, '(''Table to Update - '',A25)') TableName

Command = Static // TableName // ';'

WRITE (*, '(''Command - '',A56)') Command

EXEC SQL EXECUTE IMMEDIATE :Command �7B�
WRITE (*,*) 'SQL command executed successfully.'

Update = .TRUE.

ENDIF

GOTO 2000

1000 CALL SQLStatusCheck

WRITE (*,*) 'SQL command not successfully executed.'

2000 CONTINUE

RETURN

EXEC SQL WHENEVER SQLERROR CONTINUE

EXEC SQL WHENEVER SQLWARNING CONTINUE

EXEC SQL WHENEVER NOT FOUND CONTINUE

END

SUBROUTINE SQLStatusCheck �8�
C (**** Subroutine SQLStatusCheck checks status

of SQL commands ****)

C (**** and print HPSQL error messages. ****)

LOGICAL*2 Abort, Check

INTEGER MultipleRows, DeadLock, NotFound

PARAMETER (MultipleRows = -10002,

Figure 9-5. Program forex9a: Sample Program Using EXECUTE IMMEDIATE (page 5 of 6)

Using Dynamic Operations 9-15



1 DeadLock = -14024,

2 NotFound = 100)

C (**** Begin Communication Area ****)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

Abort = .FALSE.

Check = .TRUE.

IF (SQLWarn(0) .EQ. 'W') THEN

WRITE (*,*) 'HPSQL Warning!'

ELSEIF (SQLCode .EQ. NotFound) THEN

WRITE (*,*) 'No record found for this PartNumber!'
ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE (*,*) 'Multiple records exit for this PartNumber!'

ELSEIF (SQLCode .EQ. DeadLock) THEN

Abort = .TRUE.

WRITE (*,*) 'A DEADLOCK has occurred!'

ELSEIF (SQLCode .LT. DeadLock)THEN

Abort = .TRUE.

WRITE (*,*) 'Serious ALLBASE/SQL error!'

ELSEIF (SQLCode .LT. 0) THEN

WRITE (*,*) 'ALLBASE/SQL error!'

ENDIF

DO WHILE (Check)

CALL SQLExplain

IF (SQLCode .EQ. 0) THEN

Check = .FALSE.

ENDIF

END DO

IF (Abort) THEN

CALL CommitWork

CALL ReleaseDBE

ENDIF

RETURN

END

Figure 9-5. Program forex9a: Sample Program Using EXECUTE IMMEDIATE (page 6 of 6)

9-16 Using Dynamic Operations



Sample Program Using PREPARE and EXECUTE

To prepare a dynamic command for execution later during the current transaction, you use
the PREPARE command to dynamically preprocess the command. ALLBASE/SQL creates
a temporary section for the command that you can execute one or more times in the same
transaction by using the EXECUTE command:

EXEC SQL PREPARE MyCommand FROM :DynamicCommand

.

.

EXEC SQL EXECUTE :DynamicCommand

As soon as you process a COMMIT WORK or ROLLBACK WORK command, the temporary
section is deleted.

Figure 9-6 illustrates the runtime dialog for a program that uses the PREPARE and
EXECUTE commands, program forex9b. The program starts a DBE session in the
DBEnvironment named PartsDBE , then prompts for entry of an SQL command. After the
user enters a command, the program displays the entered SQL command, and the command is
dynamically preprocessed and executed. When the program user enters a slash (/) in response
to the prompt, the transaction is committed and the program terminates. Note what happens
when a SELECT command is entered.

As illustrated in Figure 9-7, the main program �1� �rst performs a function named
ConnectDBE �2� to start a DBE session. The CONNECT command starts the session in the
DBEnvironment named PartsDBE .

The program then performs subroutine BeginWork �3� to start a transaction with the BEGIN
WORK command. Once a transaction has been started, function PrepareExecute �7� is
performed until Check evaluates to FALSE.

PrepareExecute �rst declares a dynamic host variable DynamicCommand , which will hold the
dynamic command to be entered by the user.

Then the user is prompted for the non-query command �7A� to be dynamically prepared and
executed. The entered command is then prepared �7B�, and if the command preparation
is successful, it is executed �7C�. If the command was successfully executed, the user is
re-prompted for another non-query command. The function terminates when PrepareExecute
is set to FALSE by the user entering a slash (/) in response to the command prompt �7A�.

When PrepareExecute evaluates to FALSE, subroutine CommitWork �4� is performed.
This subroutine executes a COMMIT WORK command. Then subroutine ReleaseDBE
�5� executes a ROLLBACK WORK RELEASE command to terminate the DBE session.
After ReleaseDBE has executed, the program terminates. Explicit status checking is used
throughout this program. When ALLBASE/SQL returns a non-zero value in SQLCode
following the execution of each embedded SQL command, subroutine SQLStatusCheck
�8� is performed. This subroutine writes out messages based on the values of SQLCode
and SQLWARN, then calls SQLExplain �6� to display one or more messages. SQLExplain
executes the SQLEXPLAIN command and prints out the error messages. If an error is very
serious (SQLCode < -14024), a ag named Abort is set, and subroutines CommitWork and
ReleaseDBE are performed before the program is terminated.

Using Dynamic Operations 9-17



Program to illustrate the PREPARE and EXECUTE commands -- forex9b

Event List:

CONNECT TO PartsDBE

BEGIN WORK

Prompt for SQL command

PREPARE SQL command

EXECUTE SQL command

Repeat the above 3 steps until the user enters a /

COMMIT WORK

RELEASE from DBEnvironment

CONNECT TO PartsDBE

Successful CONNECT

BEGIN WORK

Successful BEGIN

Enter an SQL non-query command or a / to stop:

>UPDATE STATISTICS FOR TABLE PurchDB.Parts;

Dynamic command to PREPARE is: UPDATE STATISTICS FOR TABLE PurchDB.Parts

PREPARE successful.

EXECUTE the command.

EXECUTE successful.

Enter an SQL non-query command or a / to stop:

>SELECT * FROM PurchDB.Parts;

Dynamic command to PREPARE is: SELECT * FROM PurchDB.Parts;

PREPARE successful.

EXECUTE the command.

HPSQL error!

Call SQLExplain

Module TEMP.FOREX9B(1) is not a procedure. (DBERR 2752)

Enter an SQL non-query command or a / to stop:

> /

No more commands.

COMMIT WORK

Successful COMMIT

RELEASE DBEnvironment

Successful RELEASE

Figure 9-6. Runtime Dialog of Program forex9b

9-18 Using Dynamic Operations



C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * This program illustrates the use of SQL dynamic non-query *

C * commands executed from a FORTRAN program. *

C * This program demonstrates the use of the PREPARE and *

C * EXECUTE commands. *

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT NONE

LOGICAL*2 PrepareExecute, Check, ConnectDBE

C (**** Begin SQL Communication Area ****)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

C (**** Beginning of Main Program ****) �1�

WRITE (*,*) CHAR(27), 'U'

WRITE (*,*) 'Program to illustrate the PREPARE and EXECUTE

1command1s -- forex9b'

WRITE (*,*) ' '

WRITE (*,*) 'Event List:'

WRITE (*,*) ' CONNECT TO PartsDBE'

WRITE (*,*) ' BEGIN WORK'

WRITE (*,*) ' Prompt for SQL command:'

WRITE (*,*) ' PREPARE SQL command'

WRITE (*,*) ' EXECUTE SQL command'

WRITE (*,*) ' Repeat the above 3 steps until the user

1enters a /'

WRITE (*,*) ' COMMIT WORK'

WRITE (*,*) ' RELEASE from DBEnvironment'

WRITE (*,*) ' '

IF (ConnectDBE()) THEN

CALL BeginWork

Check = .TRUE.

DO WHILE (Check)

Check = PrepareExecute()

END DO

CALL CommitWork

CALL ReleaseDBE

ENDIF

STOP

END

Figure 9-7. Program forex9b: Sample Program Using PREPARE and EXECUTE

Using Dynamic Operations 9-19



C (* Beginning of the Subroutines *)

LOGICAL*2 FUNCTION ConnectDBE() �2�
C (**** Subroutine to CONNECT TO PartsDBE ****)

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE (*,*) 'CONNECT TO PartsDBE'

EXEC SQL CONNECT TO 'PartsDBE'

ConnectDBE = .TRUE.

IF (SQLCode .NE. OK) THEN

ConnectDBE = .FALSE.

CALL SQLStatusCheck

ELSE

WRITE (*,*) 'Successful CONNECT'

ENDIF

RETURN

END

SUBROUTINE BeginWork �3�
C (**** Subroutine to Begin a Transaction ****)

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

Figure 9-7. Program forex9b: Sample Program Using PREPARE and EXECUTE (page 2 of 6)

9-20 Using Dynamic Operations



WRITE (*,*) 'BEGIN WORK'

EXEC SQL BEGIN WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL ReleaseDBE

ELSE

WRITE (*,*) 'Successful BEGIN'

ENDIF

RETURN

END

SUBROUTINE CommitWork �4�
C (**** Subroutine to COMMIT WORK ****)

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

WRITE (*,*) 'COMMIT WORK'

EXEC SQL COMMIT WORK

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL ReleaseDBE

ELSE

WRITE (*,*) 'Successful COMMIT'

ENDIF

RETURN

END

SUBROUTINE ReleaseDBE �5�
C (**** Subroutine to RELEASE PartsDBE ****)

INTEGER*2 OK

PARAMETER (OK = 0)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

Figure 9-7. Program forex9b: Sample Program Using PREPARE and EXECUTE (page 3 of 6)

Using Dynamic Operations 9-21



WRITE (*,*) 'RELEASE DBEnvironment'

EXEC SQL ROLLBACK WORK RELEASE

IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

CALL ReleaseDBE

ELSE

WRITE (*,*) 'Successful RELEASE'

ENDIF

END

SUBROUTINE SQLExplain �6�
C (**** Subroutine to CALL SQLEXPLAIN ****)

C (* Begin Communication Area *)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

WRITE (*,*) 'Call SQLExplain'

EXEC SQL SQLEXPLAIN :SQLMessage

WRITE (*,*) ' '

WRITE (*,100) SQLMessage

100 FORMAT(A80)

RETURN

END

LOGICAL*2 FUNCTION PrepareExecute() �7�
C (**** Function to PREPARE and EXECUTE the ****)

C (**** user-entered command. ****)

CHARACTER*80 CMD1

INTEGER*2 OK

PARAMETER (OK = 0)

C (**** Begin SQL Communication Area ****)

EXEC SQL INCLUDE SQLCA

C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 DynamicCommand

EXEC SQL END DECLARE SECTION

Figure 9-7. Program forex9b: Sample Program Using PREPARE and EXECUTE (page 4 of 6)

9-22 Using Dynamic Operations



WRITE (*,100) �7A�
100 FORMAT(/'Enter an SQL non-query command or / to STOP '

1 ,//$,' > ')

READ (*,110) DynamicCommand

110 FORMAT(A80)

IF (DynamicCommand .EQ. '/') THEN

WRITE (*,*) 'No more commands.'

PrepareExecute = .FALSE.

ELSE

WRITE (*, 120) DynamicCommand

120 FORMAT (/'The dynamic command to PREPARE is: '//, A80)

EXEC SQL PREPARE CMD1 FROM :DynamicCommand �7B�
IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

WRITE (*,*) 'PREPARE failed.'

ELSE

WRITE (*,*) 'PREPARE successful.'

WRITE (*,*) 'EXECUTE the command.'

EXEC SQL EXECUTE CMD1 �7C�
IF (SQLCode .NE. OK) THEN

CALL SQLStatusCheck

ELSE

WRITE (*,*) 'EXECUTE successful.'

ENDIF

ENDIF

PrepareExecute = .TRUE.

ENDIF

RETURN

END

SUBROUTINE SQLStatusCheck �8�
C (**** Subroutine SQLStatusCheck checks status of SQL

1commands ****)

C (**** and print HPSQL error messages. ****)

LOGICAL*2 Abort, Check

INTEGER MultipleRows, DeadLock, NotFound

PARAMETER (MultipleRows = -10002,

1 DeadLock = -14024,

2 NotFound = 100)

C (**** Begin Communication Area ****)

EXEC SQL INCLUDE SQLCA

Figure 9-7. Program forex9b: Sample Program Using PREPARE and EXECUTE (page 5 of 6)

Using Dynamic Operations 9-23



C (**** Begin Host Variable Declarations ****)

EXEC SQL BEGIN DECLARE SECTION

CHARACTER*80 SQLMessage

EXEC SQL END DECLARE SECTION

Abort = .FALSE.

Check = .TRUE.

IF (SQLWarn(0) .EQ. 'W') THEN

WRITE (*,*) 'HPSQL Warning!'

ELSEIF (SQLCode .EQ. NotFound) THEN

WRITE (*,*) 'No record found for this PartNumber!'

ELSEIF (SQLCode .EQ. MultipleRows) THEN

WRITE (*,*) 'Multiple records exit for this PartNumber!'

ELSEIF (SQLCode .EQ. DeadLock) THEN

Abort = .TRUE.

WRITE (*,*) 'A DEADLOCK has occurred!'

ELSEIF (SQLCode .LT. DeadLock)THEN
Abort = .TRUE.

WRITE (*,*) 'Serious ALLBASE/SQL error!'

ELSEIF (SQLCode .LT. 0) THEN

WRITE (*,*) 'ALLBASE/SQL error!'

ENDIF

DO WHILE (Check)

CALL SQLExplain

IF (SQLCode .EQ. 0) THEN

Check = .FALSE.

ENDIF

END DO

IF (Abort) THEN

CALL CommitWork

CALL ReleaseDBE

ENDIF

RETURN

END

Figure 9-7. Program forex9b: Sample Program Using PREPARE and EXECUTE (page 6 of 6)

9-24 Using Dynamic Operations



10

Programming with Constraints

This chapter explains the use of statement level integrity versus row level integrity. Also,
methods of implementing schema level unique and referential integrity contraints in your
database are highlighted.

Integrity constraints allow you to have ALLBASE/SQL verify data integrity at the schema
level. Thus you can avoid coding complex veri�cation routines in application programs and
avoid the increased execution time of additional queries. Your coding tasks are simpli�ed, and
performance is improved.

The following sections are presented in the chapter:

Comparing Statement Level and Row Level Integrity.
Using Unique and Referential Integrity Constraints.
Designing an Application Using Statement Level Integrity Checks.

Comparing Statement Level and Row Level Integrity

In ALLBASE/SQL release E.1, enforcement of de�ned constraints is performed at statement
level rather than at the row level of previous releases. This is called statement level integrity.
Even though a constraint may be violated on a particular row, the check for that constraint
is not made until the statement has completed processing. At that time, if there are one or
more constraint errors, an error message is issued and the entire statement is rolled back with
no rows being processed. You do not need to detect constraint errors yourself and code your
program to respond to partially processed tables.

When a statement is rolled back, the appropriate sqlerrd �eld will be 0, reecting that no
rows were processed. If a constraint error is the cause of the rollback, this �eld will not
be greated than zero indicating a partially processed table. Thus, applications written for
ALLBASE/SQL may need to check for a di�erent value in the sqlerrd �eld.

For information on status checking, see the chapter, \Runtime Status Checking and the
SQLCA." For information on deferring constraint error checking to the transaction level
and other error checking enhancements related to releases after E.1, see the ALLBASE/SQL
Release F.0 Application Programming Bulletin for MPE/iX .

Programming with Constraints 10-1



Using Unique and Referential Integrity Constraints

Any database containing tables with interdependent data is a good candidate for the use of
integrity constraints. You can pro�t from their use whether your data is volatile or stable
in nature. For instance, your database might contain a table of employee and department
data that is constantly changing, or it could contain a table of part number data that rarely
changes even though it is frequently accessed. (Note that integrity constraints cannot be
assigned to LONG columns. LONG columns are described in the chapter, Programming with
LONG Columns.)

To implement unique and referential constraints, use the CREATE TABLE command and
optionally the GRANT REFERENCES command in your schema �le. The following table
lists the commands you might use in dealing with integrity constraints.

Table 10-1. Commands Used with Integrity Constraints

DDL Operations DCL Operations DML Operations

CREATE TABLE GRANT REFERENCES INSERT

DROP TABLE GRANT DBA UPDATE [WHERE CURRENT]

REMOVE FROM GROUP REVOKE REFERENCES DELETE [WHERE CURRENT]

DROP GROUP REVOKE DBA

The concepts and syntax of integrity contraints are fully discussed in the ALLBASE/SQL
Reference Manual , and database administration considerations are found in the
ALLBASE/SQL Database Administration Guide . This chapter contains techniques to use
when coding applications that manipulate data upon which integrity constraints have been
de�ned.

When executing the INSERT, UPDATE [WHERE CURRENT], or DELETE [WHERE
CURRENT] commands, ALLBASE/SQL considers applicable integrity constraints depending
on what the overall e�ect of a statement would be once it completes execution. The syntax
for UNIQUE or PRIMARY KEY requires unique constraint enforcement. The syntax for
REFERENCES requires referential constraint enforcement on the referencing and referenced
tables involved. For example, consider the following table showing what tests must be passed
for a DML command to successfully complete.

10-2 Programming with Constraints



Table 10-2. Constraint Test Matrix

DML Operations UNIQUE or
PRIMARY KEY

Referenced Table Referencing Table

INSERT or Type 2
INSERT

Must be unique in
the table.

Must match a unique key in
the referenced table.

UPDATE
[WHERE

CURRENT]

Must be unique in
the table.

No foreign key can reference
the unique key being
updated.

Must match a unique key in
the referenced table.

DELETE
[WHERE

CURRENT]

No foreign key can reference
the unique key being deleted.

Designing an Application Using Statement Level Integrity Checks

This section contains examples based on the recreation database, RecDB, which is supplied as
part of the ALLBASE/SQL software package. The schema �les used to create the database
are found in appendix C of the ALLBASE/SQL Reference Manual .

The recreation database is made up of three tables (Clubs, Members, and Events). Two
primary key constraints and two referential constraints were speci�ed (when the tables were
created) to secure the data integrity of these tables.

Figure 10-1 illustrates these contraint relationships by showing the name of each constraint
and its referencing or referenced columns. Referencing columns are shaded. Referenced
columns are clear white.

Programming with Constraints 10-3



Figure 10-1. Constraints Enforced on the Recreation Database

Suppose you designed an application program providing a user interface to the recreation
database. The interface gives choices for inserting, updating, and deleting data in any of the
three tables. Your application is user friendly and guides the user with informational messages
when their request is denied because it would violate data integrity. The main interface menu
might look like this:

Main Menu for Recreation Database Maintenance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. INSERT a Club 4. INSERT a Member 7. INSERT an Event

2. UPDATE a Club 5. UPDATE Member Info. 8. UPDATE Event Info.

3. DELETE a Club 6. DELETE a Member 9. DELETE an Event

When users make a selection (by number or by tabbing to a �eld), a screen displaying all the
appropriate information allows them to insert, update, or delete.

The next sections provide generic examples of how you can code such an application. The
error checking in these examples deals with constraint enforcement errors only. (For complete
explanation of these errors, see the ALLBASE/SQL Message Manual .) Your error checking
routine should also include a method of handling multiple errors per command and errors not
related to constraint enforcement. (For more information on error coding techniques, see the
chapter, \Runtime Status Checking and the SQLCA.")

10-4 Programming with Constraints



Insert a Member in the Recreation Database

The user chooses to insert a new member in the database. For this activity to complete, the
foreign key (Club) which is being inserted into the Members table must exist in the primary
key (ClubName) of the Clubs table.

Execute subroutines to display and prompt for information needed in the

Members table.

Place user entered information in appropriate host variables.

INSERT INTO RecDB.Members

VALUES (:MemberName,

:Club,

:MemberPhone :MemberPhoneInd)

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert

a new ClubName in the Clubs table, to reenter the Club for the new member,

or to exit to the main menu. Execute the appropriate subroutine.

If sqlcode equals �2295, indicating that the user tried to insert a non-unique

primary key, display the error message and prompt the user to enter a

unique MemberName/Club combination or to exit to the main menu.

Execute the appropriate subroutine.

Else, if sqlcode = 0, tell the user the member was inserted successfully,

and prompt for another new member or a return to the main menu display.

Programming with Constraints 10-5



Update an Event in the Recreation Database

The user now wants to update information in the Events table. For this activity to complete,
the SponsorClub and Coordinator being updated in the Events table must exist in the
primary key composed of MemberName and Club in the Members table.

Execute subroutines to display and prompt for information needed in the

Events table.

Place user entered information in appropriate host variables.

UPDATE RecDB.Events

SET SponsorClub = :SponsorClub :SponsorClubInd,

Event = :Event :EventInd,

Date = :Date :DateInd,

Time = :Time :TimeInd,

Coordinator = :Coordinator :CoordinatorInd

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating no primary key match, display the error

message and prompt the user to indicate whether or not to insert a new

MemberName/Club primary key in the Members table, to reenter update

information for the Events table, or to exit to the main menu. Execute

the appropriate subroutine.

Else, if sqlcode = 0, tell the user the event was updated successfully,

and prompt for another event or a return to the main menu display.

10-6 Programming with Constraints



Delete a Club in the Recreation Database

The user chooses to delete a club. For this activity to complete, no foreign key must reference
the primary key (ClubName) that is being deleted.

Execute subroutines to display and prompt for a ClubName in the Clubs table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE ClubName = :ClubName

Check the sqlcode �eld of the sqlca.

If sqlcode equals �2293, indicating that referencing data exists for ClubName,

display the error message and prompt the user to indicate whether or not

to delete the Members table row or rows that reference the ClubName,

to reenter the ClubName to be deleted, or to exit to the main menu.

Execute the appropriate subroutine.

(If you execute the subroutine to delete those rows in the Members table

which reference the Clubs table, be sure to test sqlcode.

Depending on the result, you can prompt the user to delete referencing

Events table rows, to reenter the Members table information, or to exit

to the main menu. Execute the appropriate subroutine.)

Else, if sqlcode = 0, tell the user the club was deleted successfully,

and prompt for another club or a return to the main menu display.

Delete an Event in the Recreation Database

The user chooses to delete an event. Because no primary key or unique constraints are de�ned
in the Events table, no constraint enforcement is necessary.

Execute subroutines to display and prompt for an Event in the Events table.

Place user entered information in appropriate host variables.

DELETE FROM RecDB.Clubs

WHERE Event = :Event

Check the sqlcode �eld of the sqlca.

If sqlcode = 0, tell the user the event was deleted successfully, and

prompt for another event or a return to the main menu display.

Programming with Constraints 10-7



11

Programming with LONG Columns

LONG columns in ALLBASE/SQL enable you to store a very large amount of binary data in
your database, referencing that data via a table column name. You might use LONG columns
to store text �les, software application code, voice data, graphics data, facsimile data, or
test vectors. You can easily SELECT or FETCH this data, and you have the advantages
of ALLBASE/SQL's recoverability, concurrency control, locking strategies, and indexes on
related columns.

You can use LONG columns in an application program to be preprocessed or with ISQL. This
discussion focuses on application programming concerns. As you will see, great exibility is
provided so that you can custom design your application.

The chapter highlights methods of implementing LONG columns in your database as follows:

General Concepts.
Restrictions.
De�ning LONG Columns with CREATE TABLE or ALTER TABLE.
De�ning Input and Output with the LONG Column I/O String.
Putting Data into a LONG Column with INSERT.
Changing a LONG Column with UPDATE [WHERE CURRENT].
Retrieving LONG Column Data with SELECT, FETCH, or REFETCH.
Using the LONG Column Descriptor.
Removing LONG Column Data with DELETE or DELETE WHERE CURRENT.
Coding Considerations.

For every DDL and DML command that can be used with LONG columns, examples
are included with discussion of related considerations. These examples pertain to the
same logical table (PartsTable) and set of columns. In contrast to other examples in this
document, PartsTable is a hypothetical table created and altered in this chapter. Refer to the
ALLBASE/SQL Reference Manual which contains complete syntax speci�cations for using
long columns.

Table 11-1. Commands You Can Use with LONG Columns

DDL Operations DML Operations

ALTER TABLE INSERT

CREATE TABLE UPDATE [WHERE CURRENT]

SELECT

FETCH

REFETCH

DELETE [WHERE CURRENT]

Programming with LONG Columns 11-1



General Concepts

ALLBASE/SQL stores LONG column data in a database for later retrieval. LONG column
data is not processed by ALLBASE/SQL. Any formatting, viewing, or other processing
must be accomplished by means of your program. For example, you might use a graphics
application to create an intricate graphic display (or set of graphic displays). You could then
write a program in which you embed ALLBASE/SQL commands to store each graphics �le
in your database along with related data in a given row. Your graphics application could be
called from another program, this time to select a row and display the graphic. The graphic
could be displayed on the upper portion of a screen, with related data from the same row
displayed on the lower portion of a screen. The related data in standard columns or LONG
columns could be a graphics explanation or an entire chapter.

LONG column data can occupy a practically unlimited amount of space in the database,
the maximum number of bytes being 231�1 (or 2,147,483,647) per LONG column per row.
Standard column data is restricted to 3996 bytes maximum.

The LONG speci�cation is used with a given ALLBASE/SQL data type when you create the
LONG column. Currently, LONG BINARY and LONG VARBINARY are available. Refer to
the chapter on \Host Variables" for the details of BINARY and VARBINARY data types.

The concept of how LONG column data is stored in a row and retrieved di�ers from that of
standard columns. Although LONG column data is associated with a particular row, it can be
stored separately from the row. Thus you can specify a DBEFileSet in which to store data for
a LONG column.

During an INSERT or UPDATE operation, you specify a LONG column I/O string to
indicate where LONG column input data is located and where that data is to be placed when
it is later selected or fetched. You indicate either an operating system �le or random random
heap space.

A LONG column descriptor (rather than the data itself ) is selected or fetched into a host
variable. Figure 11-1 and Figure 11-2 illustrate these concepts.

11-2 Programming with LONG Columns



Figure 11-1. Flow of LONG Column Data and Related Information to the Database

Figure 11-2. Flow of LONG Column Data and Related Information from the Database

Programming with LONG Columns 11-3



Restrictions

A LONG column can be referenced in a select list and/or a host variable declaration. Some
restrictions do apply to LONG columns. However, related standard columns are not a�ected
by these restrictions.

LONG columns cannot be used as follows:

In a WHERE clause.
In a type 2 INSERT command.
Remotely through ALLBASE/NET.
As hash or B-tree index key columns.
In a GROUP BY, ORDER BY, DISTINCT, or UNION clause.
In an expression.
In a subquery.
In aggregate functions (AVG, SUM, MIN, MAX).
As columns to which integrity constraints are assigned.
With the DEFAULT option of the CREATE or ALTER TABLE commands.

Defining LONG Columns with a CREATE TABLE or ALTER TABLE
Command

Following is the new portion of the CREATE TABLE or ALTER TABLE command syntax for
specifying a LONG column column de�nition . A maximum of 40 such LONG columns may be
de�ned for a single table.

(ColumnName LONG

�
BINARY

VARBINARY

�
(ByteSize)

�
IN DBEFileSet

� �
NOT NULL

�
)
�
, . . .

�

When you create or add a LONG column to a table you have the option of specifying the
DBEFileSet in which it is to be stored. Because LONG column data may take up a large
chunk of a given DBEFile's data pages, placing LONG column data in a separate DBEFileSet
is strongly advantageous from the standpoint of storage as well as performance.

If the IN DBEFileSetName clause is not speci�ed for a LONG column, this column's data is
by default stored in the same DBEFileSet as its related table.

Note It is recommended that you do not use the SYSTEM DBEFileSet in which to
store your data, as this could severely impact database performance.

In the following example, LONG column data for PartPicture will be stored in PartPictureSet
while data for columns PartName and PartNumber will be stored in PartsTableSet.

CREATE TABLE PartsTable (

PartName CHAR(10),

PartNumber INTEGER,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartPicture LONG VARBINARY(1000000) IN PartPictureSet)NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

IN PartsTableSet

11-4 Programming with LONG Columns



The next command speci�es that data for new LONG column, PartModule, be stored in
PartPictureSet.

ALTER TABLE PartsTable

ADD
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
PartModule LONG VARBINARY(70000) IN PartPictureSet

See the \BINARY Data" section of the \Host Variables" chapter for more information on
using BINARY and VARBINARY data types in long columns.

Now that you have de�ned our table, let's see how to put data into it and to specify where
data goes when it is retrieved.

Defining Input and Output with the LONG Column I/O String

Both the INSERT and the UPDATE commands allow you to de�ne various input and output
parameters for any LONG column. Parameters are speci�ed with a LONG column I/O string.
You'll need to understand this string in order to input, change, or retrieve LONG column
data. This section o�ers an overview. See the ALLBASE/SQL Reference Manual for complete
syntax.

Using the INSERT or UPDATE command, you pass the string to ALLBASE/SQL as either a
host variable or a literal. Host variables are covered in detail in the \Host Variables" chapter.

Note The input and output portions of the I/O string are not positional. In the
following examples, < indicates input, and > indicates output. See the
ALLBASE/SQL Reference Manual for a full description of I/O operations
with LONG columns.

The input portion of the LONG column I/O string speci�es the location of data that you
want written to the database. It is also referred to as an input device speci�cation. You can
indicate a �le name or a random heap address.

Use the output portion of the I/O string (output device speci�cation) to indicate where you
want LONG column data to be placed when you use the SELECT or FETCH command.
You have the option of specifying a �le name, part of a �le name, or having ALLBASE/SQL
specify a �le name. You also can direct output to a random random heap address. Additional
output parameters allow you to append to or overwrite an existing �le. Information in the
output device speci�cation is stored in the database table and is available to you when a
LONG column is selected or fetched (via a LONG column descriptor, discussed later in the
section, \Using the LONG Column Descriptor").

It's important to note that �les used for LONG column input and output are opened and
closed by ALLBASE/SQL for its purposes. You need not open or close such �les in your
program unless you use them for additional purposes. ALLBASE/SQL does not control input
or output device �les once they are on the operating system. So, any operation on the �le is
valid, whether by your application or another application or user of the system. Such �les are
your responsibility, even before the transaction is complete.

The syntax for the INSERT and UPDATE commands is identical except that the input device
is required for the INSERT command.

Programming with LONG Columns 11-5



Putting Data into a LONG Column with an INSERT Command

As with any column, use the INSERT command to initially put data into a LONG column.
At the time of the insert, all input devices must be on the system in the locations you have
speci�ed. Should your insert operation fail, nothing is inserted, a relevant error message is
returned to the program, and the transaction continues. Depending on your application, you
might want to write a veri�cation routine that reads a portion of each speci�ed input device
to make certain valid data exists prior to using the INSERT command.

The next examples are based on the PartsTable created and altered in the previous section,
\De�ning LONG Columns with CREATE TABLE or ALTER TABLE." Additional examples
of LONG column I/O string usage are found in the ALLBASE/SQL Reference Manual .

Insert Using Host Variables for LONG Column I/O Strings

When inserting a single row, use a version of the LONG Column I/O String for each LONG
column following the VALUES clause, as below.

INSERT INTO PartsTable VALUES (

'bracket',

200,

:PartPictureIO,

:PartModuleIO)

An example of the values that might be stored in the host variables, :PartPictureIO and :Part
ModuleIO, are shown in the last two �elds of a hypothetical record in the section, Example
Data File , which appears later in this chapter. In the above example, the values, bracket and
200, are coded as constants, rather than coming from the data �le.

bracket 200 0'<bracket.tools >bracket' 0'<mod88.module > mod88' 0

Example Data File

If your program reads the data from a data �le, the �le might look something like this. Note
that it is limited to 80 characters per record to facilitate documentation.

hammer 011 0'<hammer.tools >hammer' 0'<mod11.module > mod11' 0

file 022 0'<file.tools >file' 0'<mod22.module > mod22' 0

saw 033 0'<saw.tools > saw' 0'<mod33.module > mod33' 0

wrench 044 0'<wrench.tools >wrench' 0'<mod44.module > mod44' 0

lathe 055 0'<lathe.tools >lathe' 0'<mod55.module > mod55' 0

drill 066 0'<drill.tools >drill' 0'<mod66.module > mod66' 0

pliers 077 0'<pliers.tools >pliers' 0'<mod77.module > mod77' 0

.

.

.

11-6 Programming with LONG Columns



Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH
Command

The following syntax represents the available subset when your select list includes one or more
LONG columns. Remember, a LONG column can be referenced only in a select list and/or a
host variable declaration.

SELECT
�
ALL

�
8>><
>>:

*�
Owner.

�
Table.*

CorrelationName.*

CorrelationName.ColumnName

9>>=
>>;
�
, . . .

�

�
INTO HostVariableDeclaration

�
FROM

� �
Owner.

�
FromTableName

�
CorrelationName

� 	
�
, . . .

�
As noted earlier, the concept of how LONG column data is retrieved di�ers from that of
standard columns. The LONG column descriptor (rather than the data itself) is selected or
fetched into a host variable. In the case of a dynamic FETCH command, the LONG column
descriptor information goes to the data bu�er. In any case, the LONG column data is written
to a �le or random heap space.

When the following SELECT command is executed, :HostPartPic will contain the LONG
column descriptor information for column PartPicture. LONG column data will go to the
output device speci�ed when column PartPicture was last inserted or updated.

SELECT PartNumber, PartPicture

INTO :HostPartNum, :HostPartPic

FROM PartsTable

WHERE PartNumber = 200

Using the LONG Column Descriptor

ALLBASE/SQL does not swap LONG column data into or out of a host variable. Instead
a 96-byte descriptor is available to your program at select or fetch time. It contains LONG
column information for your program for which you must declare an appropriate host variable.

For example, if you do not know the output device type and its name or address, you obtain
this information from the descriptor. Then open the appropriate �le or call the operating
system to access random heap space.

Note The LONG column descriptor must be declared whether or not you access its
contents in your code.

Programming with LONG Columns 11-7



Table 11-2. LONG Column Descriptor

Description Possible Binary Values Byte Range

Name or Address of Output
Device

File name or random heap address 1 through 44

Output Device Options 0 = no output speci�ed
1 = overwrite
2 = append
3 = wildcard
4 = overwrite and wildcard
5 = append and wildcard

45

Output Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

46

Input Device Type 0 = no device speci�ed
1 = �le
3 = random heap space

47

Reserved for Internal Use 48

Size in Bytes of LONG Column
Data

1 to 231�1 (or 2,147,483,647) per LONG
column per row. Standard column data is
restricted to 3996 bytes maximum.

49 through 52

Reserved for Internal Use 53 through 96

Example LONG Column Descriptor Declaration

C Use this when you don't need to break down the descriptor.

CHARACTER*96 LongDesc

C Use this when you want to access a portion of the descriptor.

CHARACTER*44 OutputDevName

CHARACTER OutDevOption

CHARACTER OutDevType

CHARACTER InDevType

CHARACTER UnusedA

INTEGER ByteLength

CHARACTER*44 UnusedB

11-8 Programming with LONG Columns



Using LONG Columns with a SELECT Command

Should an error occur before completion of the SELECT command, any operating system
�les written before the error occurred remain on the system, and LONG column descriptors
written to a host variable array remain. It is your responsibility to remove such �les as
appropriate.

Using LONG Columns with a Dynamic FETCH Command

If you have the need to dynamically retrieve LONG column data, the sqlrowbuf column of
the sqlda, as always, contains the address of the data bu�er. However, the data bu�er, rather
than containing LONG column data, holds the 96-byte LONG column descriptor.

The sqltype �eld of the format array holds a data type ID number of 15 for a LONG BINARY
column and 16 for a LONG VARBINARY column. And the sqltotallen and sqlvallen columns
will always contain a value of 96 (indicating the length of the descriptor).

When a NULL is fetched as the LONG column value, no external �les are created, and the
associated indicator variable for the LONG column descriptor is set to �1.

Changing a LONG Column with an UPDATE [WHERE CURRENT]
Command

When you issue an UPDATE command on a LONG column, you have the following options:

Change the stored data as well as the output device name and/or options.
Change the stored data only.
Change the output device name and/or options only.

Specify a LONG column I/O string (discussed earlier in this chapter) following the SET
clause, for each LONG column to be updated. You must specify either the input device, the
output device, or both. Complete syntax with examples is found in the ALLBASE/SQL
Reference Manual .

In the following example, the LONG column I/O string is contained in host variable
PartPictureIO.

UPDATE PartsTable

SET PartPicture = :PartPictureIO

WHERE PartName = 'saw'

Programming with LONG Columns 11-9



Removing LONG Column Data with a DELETE [WHERE CURRENT]
Command

Syntax for the DELETE and DELETE WHERE CURRENT commands is unchanged for use
with LONG columns. It is limited for the DELETE command in that a LONG column cannot
be used in the WHERE clause.

In the following example, any rows in PartsTable with the PartName of hammer are deleted.

DELETE FROM PartsTable WHERE PartName = 'hammer'

When LONG column data is deleted, the space it occupied in the DBEnvironment is released
when your transaction ends. But any data �le selected earlier still exists on the operating
system. You may want to design a \cleanup" strategy for such �les that are no longer needed.

Coding Considerations

File versus Random Heap Space

Depending on your application, you might want to use a �le or random heap space as your
input or output device. Random heap space may provide faster data access. Consider how
much heap will be available.

What about using a �le as an I/O device? You might ask yourself the following questions.
Whom do you want to access the �le during and after the application transaction is complete?
How will it be \cleaned up" when it is no longer being used; perhaps the overwrite option
would be helpful or another maintenance procedure.

File Naming Conventions

When a LONG column is selected or fetched, data goes to the output device you have
speci�ed at insert or update time. In the case of a �le, because this output device name can
be completely de�ned by you, partially de�ned by you, or assigned by ALLBASE/SQL, you
may want to consider whether or not naming conventions are necessary. For instance, if your
application is such that you can always give the same name to your LONG column output
device as you give to the standard column you use in the WHERE clause, no need exists to
extract the device name from the LONG column descriptor when you select or fetch it. For
example, assuming your WHERE clause uses the PartsTable PartName column, the data �le
example in the previous section, \Example Data File," uses this strategy. (Your application
might still require information other than a �le name from the descriptor area.)

11-10 Programming with LONG Columns



Considering Multiple Users

With multiple users reading the same LONG column data, it is preferable for each user to run
the application in a local area. This can prevent �le access problems.

If several users must access the same data from the same group, you might want to use the
wildcard option ($) and avoid using the overwrite option (!).

Deciding How Much Space to Allocate and Where

Remember to consider the space requirements of any DBEFileSet used for LONG column
data. For example, suppose you execute an INSERT or UPDATE command for a LONG
column de�ned as VARBINARY. If inadequate space is available in the database for the new
data, an error message is returned to your program, and the transaction is rolled back. In this
case, you can CREATE another DBEFile and add it to the appropriate DBEFileSet.

You will also want to consider the amount of random heap space available for your use in
relation to the size and number of LONG columns to be selected or fetched.

Programming with LONG Columns 11-11



12

Programming with ALLBASE/SQL Functions

This chapter highlights functions available in ALLBASE/SQL. The functions return values
that can be used to access, search, update, and delete data. Refer to the \Expressions"
chapter of the ALLBASE/SQL Reference Manual for a discussion of other available
ALLBASE/SQL functions. The ALLBASE/SQL functions discussed in this chapter are as
follows:

Date/Time functions.
Tuple Identi�er (TID) function.

Programming with Date/Time Functions

Seven functions can be used with date/time data types. These functions provide exibility for
inputting and retrieving date/time data from the database.

These functions can be used with a preprocessed application or with ISQL. This chapter
outlines basic principles for using date/time functions in an application program. The
following sections are included:

Where Date/Time Functions Can Be Used.
De�ning and Using Host Variables with Date/Time Functions.
Using Date/Time Input Functions.
Using Date/Time Output Functions.
Using the Date/Time ADD MONTHS Function.
Coding Considerations.
Program Examples for Date/Time Data.

Date/time functions are used as you would use an expression. And when used in a select list,
all date/time functions produce data output. Refer to the section in this chapter, \De�ning
and Using Host Variables with Date/Time Functions."

Suppose for example that you are programming for an international corporation. Your
database tables contain various date/time columns and the data is used by employees in
several countries. You write a generic program on which you base a set of customized
programs, one for each geographical location. Each customized program allows the employees
at a given location to input and retrieve date/time information in the formats with which they
are most comfortable.

Refer to the \Host Variables" chapter for more information on date/time data types.
Complete syntax and format speci�cations for date/time functions are found in the
ALLBASE/SQL Reference Manual in the \Expressions" and \Data Types" chapters.

Programming with ALLBASE/SQL Functions 12-1



Note For all date/time functions, character input and output values are in
Native-3000 format.

Where Date/Time Functions Can Be Used

Use date/time functions, as you would an expression, in the DML operations listed below:

Table 12-1. Where to Use Date/Time Functions

DML Operation Clause

INSERT 1 VALUES

WHERE

UPDATE or SET

UPDATE WHERE CURRENT WHERE

DELETE or WHERE

DELETE WHERE CURRENT

SELECT Select list 2

WHERE

DECLARE Select list 2

WHERE

1 In the case of a INSERT, output functions, TO CHAR and TO INTEGER, and the ADD MONTHS function, are

limited to use in the select list and the WHERE clause of a Type 2 INSERT.

2 Input functions, TO DATE, TO TIME, TO DATETIME, and TO INTERVAL, are generally not appropriate in a

select list.

Defining and Using Host Variables with Date/Time Functions

Date/time functions can be used in the way an expression is used; that is, in a select list to
indicate the columns you want in the query result, in a search condition to de�ne the set
of rows to be operated on, and to de�ne the value of a column when using the UPDATE
command. (See the ALLBASE/SQL Reference Manual for in-depth information regarding
expressions.)

Whether you use host variables or literal strings to specify the parameters of the date/time
functions depends on the elements of your application and on how you are using the functions.
This section focuses on the use of host variables.

You can use host variables to specify input or output format speci�cations. Use them as well
to hold data input to and any resulting data output from the date/time functions. (Host
variables cannot be used to indicate column names.)

Host variables for format speci�cations must be de�ned in your application to be compatible
with ALLBASE/SQL CHAR or VARCHAR data types. The exception is the ADD MONTHS
function which requires an INTEGER compatible host variable.

12-2 Programming with ALLBASE/SQL Functions



As for host variables containing input and output data, de�ne them to be CHAR or
VARCHAR compatible with one exception. The TO INTEGER function requires an
INTEGER compatible host variable for its output.

Reference the chapter on de�ning host variables for additional information about de�ning
a host variable to be compatible with a speci�c ALLBASE/SQL data type. Note that the
declarations relate to the default format speci�cation for each date/time data type. Your
declaration must reect the length of the format you are using.

Table 12-2 shows host variable data type compatibility for date/time functions.

Table 12-2. Host Variable Data Type Compatibility for Date/Time Functions

Date/Time
Function

Input Format
Speci�cation

Output Format
Speci�cation

Input Data Output Data

TO DATE (VAR)CHAR (VAR)CHAR (VAR)CHAR 1

TO TIME

TO DATETIME

TO INTERVAL

TO CHAR (VAR)CHAR (VAR)CHAR

TO INTEGER (VAR)CHAR INTEGER

ADD MONTHS INTEGER (VAR)CHAR 1

1 Applies only when used in a select list.

Using Date/Time Input Functions

The new input functions are designed so that you can easily input data for a given date/time
data type in either the default format or a format of your choice. (When you do not include a
format speci�cation, the default is used.)

You have the option of choosing a literal string or a host variable to indicate a desired data
value and/or optional format speci�cation. See the ALLBASE/SQL Reference Manual for
detailed syntax.

Following is the general syntax for date/time input functions:

8>><
>>:

TO_DATETIME (DataValue
�
,FormatSpeci�cation

�
)

TO_DATE (DataValue
�
,FormatSpeci�cation

�
)

TO_TIME (DataValue
�
,FormatSpeci�cation

�
)

TO_INTERVAL (DataValue
�
,FormatSpeci�cation

�
)

9>>=
>>;

Input functions can be used in DML operations as shown in Table 12-1. It is most appropriate
to use date/time input functions in a WHERE, VALUES, or SET clause. Although they can
be used in a select list, it is generally not appropriate to do so. The data value returned to
the function in this instance is not a column value but is identical to the value you specify as
input to the function.

Programming with ALLBASE/SQL Functions 12-3



Examples of TO DATETIME, TO DATE, TO TIME, and TO INTERVAL Functions

Imagine a situation in which users will be inputting and retrieving date/time data in formats
other than the default formats. (Refer to the ALLBASE/SQL Reference Manual for default
format speci�cations.)

The data is located in the TestData table in the manufacturing database. (Reference
appendix C in the ALLBASE/SQL Reference Manual .)

You are to provide them with the capability of keying and retrieving data in the formats
shown in Table 12-3.

Table 12-3. Sample of User Requested Formats for Date/Time Data

Date/Time Data Type Desired Format Speci�cation Length of Format
Speci�cation in ASCII

Characters

DATETIME MM-DD-YYYY HH:MM:SS.FFF 23

DATE MM-DD-YYYY 10

TIME HH:MM:SS 1 8

INTERVAL DDDDDDD HH:MM:SS 16

1 This is the default time data format.

You might use the following generic code examples to meet their needs.

Example Using the INSERT Command.

Your application allows users to enter data in their desired formats with a minimum
of e�ort on your part.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format, :TestDate,

:TestDate-Format, :TestStart, :LabTime, and LabTime-Format) to be compatible

with data type CHAR or VARCHAR.

Declare input indicator variables (:TestDateInd and :LabTimeInd).

END DECLARE SECTION

.

.

.

12-4 Programming with ALLBASE/SQL Functions



INSERT

INTO MANUFDB.TESTDATA

(BatchStamp,

TestDate,

TestStart,

TestEnd,

LabTime,

PassQty,

TestQty)

VALUES
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(TO_DATETIME (:BatchStamp, :BatchStamp-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATE (:TestDate :TestDateInd, :TestDate-Format),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_TIME (:TestStart :TestStartInd),

:TestEnd :TestEndInd,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime :LabTimeInd, :LabTime-Format),

:PassQty :PassQtyInd,

:TestQty :TestQtyInd)

Note that the user requested time data format is the default format. Using the two time data
columns in the TestData table (TestStart and TestEnd), the above example illustrates two
ways of specifying a default format. Specify a date/time function without a format, or simply
do not use a date/time function.

Example Using the UPDATE Command.

These users want the capability of updating data based on the BatchStamp
column.

BEGIN DECLARE SECTION

Declare input host variables (:TestDate, :TestDate-Format, :BatchStamp,

and :BatchStamp-Format) to be compatible with data type CHAR or VARCHAR.

Declare input indicator variable (:TestDateInd).

END DECLARE SECTION

.

.

.

UPDATE MANUFDB.TESTDATA

SET TESTDATE =
NNNNNNNNNNNNNNNNNNNNNNN
TO_DATENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(:TestDate :TestDateInd, :TestDate-Format),

TestStart = :TestStart :TestStartInd,,

TestEnd = :TestEnd :TestEndInd,,

LabTime = :LabTime :LabTimeInd,

PassQty = :PassQty :PassQtyInd,

TestQty = :TestQty :TestQtyInd

Programming with ALLBASE/SQL Functions 12-5



WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIMENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(:BatchStamp, :BatchStamp-Format)

12-6 Programming with ALLBASE/SQL Functions



Example Using the SELECT Command.

The users are planning to select data from the TestData table based on the lab time
interval between the start and end of a given set of tests.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp, :BatchStamp-Format,

LabTime, and LabTime-Format) to be compatible with data type

CHAR or VARCHAR.

END DECLARE SECTION

.

.

.

SELECT BatchStamp

TestDate

TestStart,

TestEnd,

LabTime

PassQty,

TestQty

INTO :BatchStamp,

:TestDate :TestDateInd,

:TestStart :TestStartInd,

:TestEnd :TestEndInd,

:LabTime :LabTimeInd,

:PassQty : PassQtyInd,

:TestQty :TestQtyInd

FROM MANUFDB.TESTDATA

WHERE LabTime >
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTERVAL (:LabTime, :LabTime-Format)

AND
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format),

BETWEEN :StampOne AND :StampTwo

Example Using the DELETE Command.

The users want to delete data from the TestData table by entering a value for the
BatchStamp column.

BEGIN DECLARE SECTION

Declare input host variables (:BatchStamp and :BatchStamp-Format)

to be compatible with data type CHAR or VARCHAR.

END DECLARE SECTION

.

.

.

DELETE FROM MANUFDB.TESTDATA

Programming with ALLBASE/SQL Functions 12-7



WHERE BatchStamp =
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME (:BatchStamp, :BatchStamp-Format)

Using Date/Time Output Functions

Specify the output format of any type of date/time column by using a date/time output
function. Use an output function with any DML operation listed in Table 12-2 with one
exception. In the case of a INSERT command, output functions are limited to use in the
select list and the WHERE clause of a Type 2 INSERT command.

As with date/time input functions, use a host variable or a literal string to indicate a format
speci�cation. See the ALLBASE/SQL Reference Manual for detailed syntax.

Following is the general syntax for date/time output functions:

�
TO_CHAR (ColumnName

�
,FormatSpeci�cation

�
)

TO_INTEGER (ColumnName, FormatSpeci�cation)

�

Example TO CHAR Function

The default format for the DATETIME data type speci�es the year followed by the month
followed by the day. The default format for the TIME data type speci�es a 24-hour clock.
(Refer to the ALLBASE/SQL Reference Manual .)

Suppose users located in Italy want to input a speci�ed batch stamp to obtain the start and
end times of the related test in 12-hour format. They will key the batch stamp in this format,
\DD-MM-YYYY HH12:MM:SS:FFF AM or PM." The times returned will be in this format,
\HH12:MM:SS.FFF AM or PM."

Data is located in the TestData table in the manufacturing database. (Refer to appendix C in
the ALLBASE/SQL Reference Manual .) The following code could be used:

BEGIN DECLARE SECTION

Declare input host variables (:TwelveHourClockFormat, :BatchStamp,

:ItalianFormat, and :Speci�edInput) to be compatible with data type

CHAR or VARCHAR.

Declare output host variables (:TestStart and :TestEnd) to be compatible

with data type CHAR or VARCHAR .

Declare output indicator variables (:TestStartInd and :TestEndInd).

END DECLARE SECTION

.

.

.

SELECT
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestStart, :TwelveHourClock),NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_CHAR(TestEnd, :TwelveHourClock)

INTO :TestStart :TestStartInd,

:TestEnd :TestEndInd,

FROM ManufDB.TestData

12-8 Programming with ALLBASE/SQL Functions



WHERE
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_DATETIME(:BatchStamp, :ItalianFormat) = :SpecifiedInput

Note the use of indicator variables in the above example. Because the TO CHAR function is
used in the select list, no need exists to specify an indicator variable as part of the function.

Programming with ALLBASE/SQL Functions 12-9



Example TO INTEGER Function

The TO INTEGER format speci�cation is mandatory and di�ers from that of other
date/time functions in that it must consist of a single element only. See the ALLBASE/SQL
Reference Manual for detailed format speci�cations.

Perhaps you are writing a management report that indicates the quarter of the year in which
tests were performed. (As in the previous example, data is located in the TestData table in
the manufacturing database.) You could use the following code:

BEGIN DECLARE SECTION

Use the ALLBASE/SQL Reference Manual to determine your desired format

speci�cation. (In this case it is Q.)

Declare the input host variable, :QuarterlyFormat, to be compatible with data

types CHAR or VARCHAR.

Declare an output host variable (:TestDateQuarter)

to be compatible with data type INTEGER. Declare other output host

variables (:BatchStamp, :LabTime, :PassQty, and :TestQty) to be

compatible with data type CHAR or VARCHAR.

Remember to declare output indicator variables (:TestDateQuarterInd,

LabTimeInd, PassQtyInd, and :TestQtyInd).

END DECLARE SECTION

.

.

.

DECLARE ReportInfo CURSOR FOR

SELECT BatchStamp,NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
TO_INTEGER(TestDate, :QuarterlyFormat),

LabTime,

PassQty,

TestQty

FROM ManufDB.TestData

.

.

.

FETCH ReportInfo

INTO ReportBuffer :BatchStamp

:TestDateQuarter :TestDateQuarterInd

:LabTime :LabTimeInd

:PassQty :PassQtyInd

:TestQty :TestQtyInd

12-10 Programming with ALLBASE/SQL Functions



Using the Date/Time ADD MONTHS Function

This function allows you to add an integer number of months to a DATE or DATETIME
column. Do so by indicating the number of months as a positive, negative, or unsigned integer
value. (An unsigned value is assumed positive.) Also, you can specify the integer in a host
variable of type INTEGER.

The ADD MONTHS function can be used in both input and output operations as shown in
Table 12-1.

Following is the general syntax for the ADD MONTHS function:

�
ADD_MONTHS (ColumnName, IntegerValue)

	
As with date/time output functions, use the ADD MONTHS function with any DML
operation listed in Table 12-2 with one exception. In the case of a INSERT command, the
ADD MONTHS function is limited to use in the select list and the WHERE clause of a Type
2 INSERT command.

Example ADD MONTHS Function

Perhaps you want to increment each date in the TestDate column by one month in the
ManufDB.TestData table of the manufacturing database. The following command could be
used:

UPDATE ManufDB.TestData

SET TestDate = ADD_MONTHS (TestDate, 1);

Coding Considerations

The following list provides helpful reminders when you are using date/time functions:

Input functions require leading zeros to match the �xed format of an element. (Z is not
supported.)

For all date/time functions, when you provide only some elements of the complete format in
your format speci�cation, any unspeci�ed elements are �lled with default values.

Arithmetic operations are possible with functions of type INTEGER.

The length of the data cannot exceed the length of the format speci�cation for that data.
The maximum size of a format speci�cation is 72 bytes.

Because LIKE works only with CHAR and VARCHAR values, if you want to use LIKE
with date/time data, you must �rst convert it to CHAR or VARCHAR. For this you can
use the TO CHAR conversion function.

MIN, MAX, COUNT can be used with any DATE/TIME column type. SUM, AVG can be
used with INTERVAL data only.

Do not specify an indicator variable as a parameter of a date/time function used in the
select list of a query.

When using the ADD MONTHS function, if the addition of a number of months (positive
or negative) would result in an invalid day, the day �eld is set to the last day of the month
for the appropriate year, and a warning is generated indicating the adjustment.

Programming with ALLBASE/SQL Functions 12-11



Programming with TID Data Access

Each row (tuple) in an ALLBASE/SQL table is stored at a database address on disk. This
unique address is called the tuple identi�er or TID. When using a SELECT statement, you
can obtain the TID of any row. In turn, you can use this TID to specify the target row for a
SELECT, UPDATE, or DELETE statement. TID functionality provides the fastest possible
data access to a single row at a time (TID access) in conjunction with maximum coding
exibility. The following options are available:

Rapid read and write access to a speci�c row without the use of a cursor (less overhead).
Rapid update and delete capability based on TIDs returned by a nested query, a union
query, a join query, or a query specifying sorted data.

Other ALLBASE/SQL functionality provides a method of processing a multiple row query
result sequentially, one row at a time. This involves the use of a cursor with the UPDATE
WHERE CURRENT, DELETE WHERE CURRENT, and REFETCH commands which
internally utilize TID access. (See the ALLBASE/SQL Reference Manual for more details.)

The nature of your applications will determine how valuable TID functionality can be to you.
It could be most useful for applications designed for interactive users and applications that
must update a set of related rows atomically.

A TID function and host variable data type are provided. The TID function is used in the
select list and/or the WHERE clause of a SELECT statement and in the WHERE clause
of an UPDATE or DELETE statement. The new host variable data type is used in an
application program to hold data input to and output from the TID function.

Understanding TID Function Input and Output

The next sections describe how TID output is accessed via a select list and how you provide
TID input via a WHERE clause. Topics discussed are as follows:

Using the TID Function in a Select List.
Using the TID Function in a WHERE Clause.
Declaring TID Host Variables.
Understanding the SQLTID Data Format.

Using the TID Function in a Select List

When using the TID function in a select list, specify it as you would a column name. In an
application, you could use a statement like the following:

SELECT TID(), VendorNumber, VendorName, PhoneNumber

INTO :TidHostVar, :VendorNumber,

:VendorName, :PhoneNumber;

FROM Purchdb.Vendors

WHERE VendorName = :VendorName

The resulting TID and column data is placed in the host variable array, VendorsArray.

The next example illustrates how to obtain TID values for qualifying rows of a two table join.
Correlation names are used.

12-12 Programming with ALLBASE/SQL Functions



SELECT TID(sp), TID(o)

FROM PurchDB.SupplyPrice sp,

PurchDB.Orders o
WHERE sp.VendorNumber = :VendorNumber

AND o.VendorNumber = :VendorNumber

Using the TID Function in a WHERE Clause

When using the TID function in a WHERE clause, you provide an input parameter. For
application programs, this parameter can be speci�ed as a host variable, or a constant. The
input parameter is a constant. For example:

DELETE FROM PurchDB.Parts WHERE TID() = 3:3:30;

In an application, you could use a statement like the following to verify the data integrity of a
previously accessed row:

SELECT PartNumber, PartName, SalesPrice

INTO :PartNumber, :PartName, :SalesPrice

FROM purchdb.Parts

WHERE TID() = :PartsTID

You might use the following statement in an application to update a row:

UPDATE PurchDB.Parts

SET PartNumber = :PartNumber,

PartName = :PartName,

SalesPrice = :SalesPrice

WHERE TID() = :PartsTID

Declaring TID Host Variables

Host variables for TID function input and output must be declared in your application as
SQLTID host variables. You would declare an SQLTID host variable as follows:

SQLTID tidvarname;

Understanding the SQLTID Data Format

The data in SQLTID host variables has its own unique format which is not compatible with
any other ALLBASE/SQL data type. It is not necessary to know the internal format of
SQLTID data to use the TID function. The information in this section is provided in case you
require the TID value to be broken into its components.

For instance, you might want to know the page numbers of all TID's in a table in order to
analyze data distribution. To do this, you must parse the SQLTID host variable.

ALLBASE/SQL does allow you to unload SQLTID data. However, you cannot use the LOAD
command to load TID data back into a table. The TID is a unique identi�er generated
internally by ALLBASE/SQL, and cannot be assigned by users.

Programming with ALLBASE/SQL Functions 12-13



An SQLTID host variable consists of eight bytes of binary data and has the following format:

Table 12-4. SQLTID Data Internal Format

Content Byte Range

Version Number 1 through 2

File Number 3 through 4

Page Number 5 through 7

Slot Number 8

The SQLTID version number is an optional input parameter. If not speci�ed, the version
number defaults to 0. If you do specify the version, it must always be 0. If a version other
than 0 is speci�ed, no rows will qualify for the operation.

TID function application output always contains a version number of 0.

Transaction Management with TID Access

TID data access is fast, and it must be used with care. A great deal of exibility of use is
possible, and exactly how it should be used depends on your application programming needs.

The next sections look at performance, concurrency and data integrity issues involved in
designing database transactions that use TID access. Although a possible usage scenario is
given, you must decide how to combine the elements of transaction management to best suit
your purposes. The following concepts are highlighted:

Comparing TID Access to Other Types of Data Access.
Insuring that the Optimizer Chooses TID Access.
Verifying Data that is Accessed by TID.
Stable versus Volatile Data.
Using Isolation Levels with the TID Function.
Considering Interactive User Applications.
Coding Strategies.

TID access requires an initial SELECT or FETCH to obtain TID values. You can then
SELECT, UPDATE or DELETE data by TID.

12-14 Programming with ALLBASE/SQL Functions



Comparing TID Access to Other Types of Data Access

When using TID functionality, data access speed is always improved compared to the speed of
other ALLBASE/SQL access methods, for the following reasons:

Index access must lock more pages (i.e. index pages).
Relation access locks more pages to �nd the TID of any qualifying row.
Hash access employs more search overhead.

Note that use of the TID function in a WHERE clause does not guarantee that TID access
will be chosen by the optimizer. For example, the following statement would utilize TID
access:

DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID AND PartName = 'Winchester Drive'

However, in the next statement TID access would not be used:

DELETE FROM PurchDB.Parts

WHERE TID() = :PartsTID1 OR TID() = :PartsTID2

See the \Command Syntax" chapter in this document under the \Description" section for an
explanation of the above and additional optimization criteria.

Verifying Data that is Accessed by TID

It is important to note that a TID in ALLBASE/SQL is unique and is valid until its related
data is deleted. You must take precautions to assure that the data you are selecting or
changing exists when your statement executes. (Note that a TID can be reassigned after its
data has been deleted.)

You can rely on the existence of a given TID, if you know its data won't be deleted. That
is, you know the nature of the data is non-volatile. In this case, you can select the TID and
update by TID with the assurance that data integrity will be maintained. An example might
be a table that has been created as private. Another example might be a table that you know
is currently being accessed only by your application. (You have begun the transaction with
the RR isolation level, or you have used the LOCK TABLE command.)

By contrast, you may be dealing with data that changes frequently. In cases where you are
using the CS, RC, or RU isolation levels, you must verify that your data has not changed
between the time you select it and the time you update or delete it. A method is to end the
transaction in which you selected the data, and begin an RR transaction in which you use a
SELECT statement with the TID function in the WHERE clause. See the following section
titled \Coding Strategies" for an example.

When you attempt to access a row for update or delete, status checking procedure is the same
as for a statement that does not contain the TID function. An application must check the
sqlcode �eld of the sqlca for a value of 100. ISQL displays, \Number of rows selected is 0"
for a SELECT statement and \Number of rows processed is 0" for an UPDATE or DELETE
statement.

Status checking is discussed in detail in the ALLBASE/SQL application programming guides.
Refer to the guide for the language you are using.

Programming with ALLBASE/SQL Functions 12-15



Considering Interactive User Applications

Some transaction management basics that apply to TID functionality when used in interactive
applications are listed below:

Be sure to avoid holding locks against the database within a transaction driven by
interactive user input. This is sometimes termed \holding locks around terminal reads." It
means that the speed at which the user enters required data determines the execution time
of your transaction and thus the time span of transaction locks.
Does your transaction use the RR isolation level? If so, there is no need to verify your data
prior to updating or deleting within the same transaction.
Does your transaction use the CS, RC, or RU isolation level? If so, in order to maintain
data integrity, you must verify that the data has not changed before you attempt to
update or delete it. By verifying the data in this way, you insure that it still exists and can
determine whether or not it has changed from the time it was last presented to the user.

12-16 Programming with ALLBASE/SQL Functions



Index

Special characters

*
in SELECT, 6-3

A

active set
and cursors, 6-15
and sequential processing, 6-1
in sequential processing, 8-1
using the CLOSE command before re-accessing,

8-8
ADD MONTHS function
example with SELECT, 12-11
syntax, 12-11

aggregate function, 6-3, 6-9
and WHERE clause, 7-2
null values in, 4-4

ALTER TABLE command
syntax for LONG columns, 11-4

ANSI SQL1 level 2
specifying a default value, 4-11

ANSI SQL86 level 2
oating point data, 4-9

atomic operation
transaction as, 5-3

authority
DBA, 1-5

authorization
and program maintenance, 1-18
changing, 1-19
dynamic preprocessing, 9-2
granting, 1-14
to execute, 1-5, 1-15
to maintain, 1-5
to preprocess, 1-5

autostart mode, 3-15

B

base table, 6-8
BEGIN DECLARE SECTION, 3-11, 3-14
and include �les, 1-9
delimiting the declare section, 2-8

BEGIN WORK, 3-16
in transaction management, 7-9
issued by preprocessor, 2-44

binary data
compatibility, 4-10
host variable de�nition, 4-10
how stored, 4-10
using the LONG phrase with, 4-10

C

CHAR(1)
type description, 4-8

character data
conversion, 4-14
truncation, 4-15
type description, 4-8

CHAR(n)
type description, 4-8

clause
FOR UPDATE, 8-2, 8-5, 8-7
GROUP BY, 6-3, 6-9
HAVING, 6-3
IN, 8-2
ORDER BY, 6-3, 8-2
WHERE, 6-3, 7-5

CLOSE, 6-18, 8-1, 8-8
before ending a transaction, 8-10
with COMMIT WORK, 8-12
with KEEP CURSOR, 8-12

cluster count, 6-10
coding considerations
for date/time functions, 12-11
for LONG columns, 11-10, 11-11

colon
before host variable name, 4-2

column speci�cations for oating point data,
4-9

command, 4-8
BEGIN DECLARE SECTION, 3-11, 3-14
BEGIN WORK, 3-16
CLOSE, 6-18, 8-1, 8-8
COMMIT WORK, 3-16
CONNECT TO, 3-15
data de�nition, 3-18
data manipulation, 3-18, 3-19, 7-1
DECLARE CURSOR, 6-15, 8-1, 8-2
DELETE, 6-1, 7-5
DELETE WHERE CURRENT, 8-1, 8-7
dynamic, 4-2

Index-1



embedded SQL, 1-1
embedding SQL, 3-1
END DECLARE SECTION, 3-11, 3-14
EXECUTE, 6-23
EXECUTE IMMEDIATE, 6-23
FETCH, 5-42, 6-16, 8-1, 8-3
INCLUDE SQLCA, 3-11, 3-13, 4-24, 5-5
INSERT, 6-1, 7-4
OPEN, 6-16, 8-1, 8-3
PREPARE, 6-23
ROLLBACK WORK, 3-16
SELECT, 6-1, 6-2, 7-1
SQLEXPLAIN, 3-20, 5-2, 5-7, 5-15
UPDATE, 6-1, 7-7
UPDATE WHERE CURRENT, 8-1, 8-5
WHENEVER, 3-17, 5-8, 5-10
WHENEVER SQLERROR, 3-17

comments
in embedded SQL �les, 3-12

comments in ALLBASE/SQL commands, 3-12
COMMIT WORK, 2-40, 3-16
in transaction management, 7-9
issued by preprocessor, 2-44
with CLOSE, 8-12
with KEEP CURSOR, 8-12

common block, 4-24
SQLCA, 1-3

communication area
SQLCA, 3-13

comparison predicate
in WHERE clause, 6-4

compiler
and linker, 1-11
in program development cycle, 1-1
input �les, 2-6
separate compilable section, 1-4

compiler directive
ELSE, 2-4
ENDIF, 2-4
IF, 2-4
INCLUDE, 2-4
SET, 2-4

compiler message
line number, 2-49

concurrency, 3-16, 7-9
condition
in WHENEVER, 5-15
join, 6-5, 6-8
search, 6-3
types in WHENEVER, 5-15

CONNECT
in application programs, 1-15
issued by preprocessor, 2-44

CONNECT TO, 3-15
constant

as default data value, 4-11
constraint test matrix for integrity constraints,

10-3
continuation lines, 3-12
CONTINUE action
in WHENEVER, 5-16

CREATE TABLE command
syntax for LONG columns, 11-4

CURRENT DATE function result
used as default data value, 4-11

CURRENT DATETIME function result
used as default data value, 4-11

current language, 1-6
current row
and DELETE WHERE CURRENT, 8-7
of active set, 6-16

CURRENT TIME function result
used as default data value, 4-11

cursor, 3-18
and sequential processing, 6-1
e�ect of commands on, 6-19
in sequential processing, 8-1
managing a query result, 6-15

cursor processing
transaction management, 8-10

D

data access, 6-8
Database Environment Con�guration, 1-5
data compatibility
binary, 4-10
oating point, 4-10
for date/time function parameters, 12-2, 12-3
for default data values, 4-12
LONG binary, 4-10
LONG varbinary, 4-10

data consistency, 5-9
through status checking, 5-3

data de�nition commands
embedding in programs, 3-18

data input using date/time functions, 12-3
data integrity
changes to error checking , 10-1
introduction to, 10-1
number of rows processed , 10-1
row level versus statement level, 10-1
using SQLERRD(3) with FORTRAN, 10-1

data manipulation
embedded commands for, 3-19

data manipulation commands, 3-19, 6-1, 6-12,
7-1

embedding in programs, 3-18
data retrieval using date/time functions, 12-8
data storage
binary data, 4-10

Index-2



data structure, 3-13
data type compatibility, 4-13
data type conversion, 4-13
data types, 4-8
binary, 4-10
compatibility with ALLBASE/SQL types,

4-1
oating point, 4-9
for host variables, 4-7
used with LONG columns, 11-2

data values, 4-1
data visibility, 6-8
date/time ADD MONTHS function
overview, 12-11
where to use, 12-11

date/time functions
coding considerations, 12-11
data compatibility, 12-2, 12-3
examples using ManufDB database, 12-4,

12-8, 12-11
example using default format speci�cations,

12-5
how used, 12-2
introduction to, 12-1
leading zeros required for input functions,

12-11
parameters for, 12-2
unspeci�ed format elements default �lled,

12-11
used to add a number of months, 12-11
used when inputting data, 12-3
used when retrieving data, 12-8
using host variables for format speci�cations,

12-2
using host variables for input and output data,

12-2
using host variables with, 12-2
where to use ADD MONTHS, 12-11
where to use input functions, 12-3
where to use output functions, 12-8
where to use TO CHAR, 12-8
where to use TO DATE, 12-3
where to use TO DATETIME, 12-3
where to use TO INTEGER, 12-8
where to use TO INTERVAL, 12-3
where to use TO TIME, 12-3
where used, 12-2

date/time input functions
examples, 12-4
not intended for use in select list, 12-3
overview, 12-3
where to use, 12-3

date/time output functions
examples, 12-8, 12-10
overview, 12-8

where to use, 12-8, 12-11
DBA
authority, 1-5

DBECon �le
creating, 1-5

DBEnvironment
access, 1-4
accessed by preprocessor, 2-3
session, 3-15, 3-18
starting a session, 3-15
terminating a session, 3-18

DBEnvironment access
preprocessor, 1-4
program, 1-4

DBEnvironment Name
host variables and, 4-13

DBE session
in preprocessing, 2-44

DDL operations
used with integrity constraints, 10-2
used with LONG columns, 11-1

deadlock, 5-12
recovering from, 5-2
restarting transaction following, 5-13

deadlock detection, 5-12
DECIMAL
type description, 4-8

decimal data
and DOUBLE PRECISION variables, 4-10

declaration
section, 4-5

declaration of data
FLOAT, 4-9

DECLARE Command
BEGIN, 3-11
END, 3-11

DECLARE CURSOR, 6-15, 8-1, 8-2
declaring
arrays, 4-18
data variables, 4-17
dynamic command variables, 4-20
host variables, 3-14, 4-1, 4-5
indicator variables, 4-17
message variables, 4-22
passed host variables, 4-23
savepoint number variables, 4-21
SQLCA, 3-13, 5-5

default data values
constant, 4-11
data compatibility, 4-12
for columns allowing nulls, 4-11
in addition to null, 4-11
not used with LONG BINARY data, 4-12
not used with LONG columns, 4-12

Index-3



not used with LONG VARBINARY data,
4-12

NULL, 4-11
result of CURRENT DATE function, 4-11
result of CURRENT DATETIME function,

4-11
result of CURRENT TIME function, 4-11
USER, 4-11

default format speci�cation example
date/time functions, 12-5

de�ning integrity constraints, 10-2
de�ning LONG columns
in a table, 11-4
input and output speci�cation, 11-5
with the LONG column I/O string, 11-5

de�nitions
input device speci�cation, 11-5
LONG column I/O string, 11-5
output device speci�cation, 11-5
row level integrity, 10-1

DELETE, 7-5
basic use, 6-1

DELETE command
used with LONG columns, 11-10
with TO DATETIME function, 12-7

DELETE WHERE CURRENT, 8-1, 8-7
DELETE WHERE CURRENT command
used with LONG columns, 11-10

designing an application using statement level
integrity, 10-3

directive
compiler, 2-4

directives
preprocessor, 1-2

DISTINCT clause, 6-9
DML operations
used with date/time functions, 12-2
used with integrity constraints, 10-2
used with LONG columns, 11-1

DOUBLE PRECISION
type description, 4-8

DROP MODULE, 1-18, 1-19
DROP option
full preprocessing mode, 2-43

dynamic command, 9-1
host variables for, 4-20
passing to ALLBASE/SQL, 9-5
type description, 4-8
using host variables for, 4-2

dynamic FETCH command
used with LONG columns, 11-9

dynamic operation, 6-1
embedded commands for, 3-19
uses of, 6-23
using host variables with, 3-19

dynamic operations
dynamic commands, 9-1
handling non-queries, 9-6
sample programs, 9-9
techniques, 9-1

dynamic preprocessing, 9-1
authorization for, 9-2

E

editor
in program development cycle, 1-1

ELSE
compiler directive, 2-4

embedded SQL
de�ned, 1-2

embedded SQL Commands
in program development cycle, 1-1

embedding SQL commands
continuation lines, 3-12
general rules, 3-11
introduction, 1-3
overview, 3-1
pre�x, 1-3

END DECLARE SECTION, 3-11, 3-14
and include �les, 1-9
delimiting the declare section, 2-8

ENDIF
compiler directive, 2-4

error checking
changes for this release, 10-1
using SQLERRD(3) with FORTRAN, 10-1
with row level integrity, 10-1
with statement level integrity, 10-1

errors
preprocessing, 2-50

example
DELETE command with TO DATETIME

function, 12-7
FETCH command with TO INTEGER

function, 12-10
INSERT command with TO DATE function

, 12-4
INSERT command with TO DATETIME

function, 12-4
INSERT command with TO INTERVAL

function, 12-4
INSERT command with TO TIME function,

12-4
LONG column descriptor declaration, 11-8
SELECT command with ADD MONTHS

function, 12-11
SELECT command with TO CHAR function,

12-8
SELECT command with TO DATETIME

function, 12-7, 12-8

Index-4



SELECT command with TO INTERVAL
function, 12-7

UPDATE command with TO DATE function,
12-5

UPDATE command with TO DATETIME
function, 12-5

example application design
using integrity constraints, 10-3

example data �le
INSERT command with LONG columns, 11-6

examples of date/time input functions, 12-4
examples of date/time output functions, 12-8,

12-10
EXEC SQL, 3-11
command delimiter, 1-3
pre�x, 3-11

executable program, 1-2
in program development cycle, 1-1

EXECUTE, 6-23
non-dynamic queries, 9-7

EXECUTE IMMEDIATE, 6-23
executing a program, 1-5
executing programs, 1-15
explicit status checking, 5-2, 5-15, 5-31, 5-32
embedded commands for, 3-20

expression
de�ned, 6-4

external procedure, 1-9

F

FETCH, 5-42, 6-16, 8-1, 8-3
FETCH command
used dynamically with LONG columns, 11-9
used with LONG columns, 11-7
with TO INTEGER function, 12-10

�eld
SQLCode, 3-13
SQLErrd(3), 3-13
SQLWarn(0), 3-13
SQLWarn(6), 3-13

�le
Database Environment Con�guration, 1-5
DBECon, 1-5
include, 1-2, 2-1, 2-2
installable module, 1-2
modi�ed source code, 1-2

�le equations, 2-33
back referenced DBEnvironment, 1-15
message catalog, 1-15

�le IO
KEEP CURSOR, 8-16

�le name
fully quali�ed, 1-5
relative, 1-5

FLOAT

type description, 4-8
FLOAT data
host variables and, 4-9

FLOAT data declaration, 4-9
oating point data
4-byte, 4-9
8-byte, 4-9
column speci�cations, 4-9
compatibility, 4-10
REAL keyword, 4-9

forex2
sample program, 2-10

forex9a, 9-9
FOR UPDATE clause
in DECLARE CURSOR, 8-2
in DELETE WHERE CURRENT, 8-7
in UPDATE WHERE CURRENT, 8-5

full preprocessing mode
invocation, 2-43
preprocessor command, 2-4

fully quali�ed �le name, 1-5
function, 7-2
aggregate, 6-3

G

GOTO action
in WHENEVER, 5-16

GRANT
for required authorities, 1-14

GROUP BY clause, 6-9
in SELECT, 6-3

H

HAVING clause
in SELECT, 6-3

heap space input and output, 11-6
host variable
declaring for DBEnvironment names, 4-26

host variable declaration section, 4-5
host variable names, 4-2
host variables
data description entries, 4-7
data types, 4-7
data values, 4-3
declaring, 3-14, 4-5
de�ned, 4-1
embedded declarations for, 3-11
for dynamic commands, 4-20
indicator variables, 4-3
input, 4-2
naming, 4-1
null indicators, 4-3
output, 4-2
used for binary data, 4-10

Index-5



used for LONG column I/O strings, 11-6
used with date/time functions, 12-2
using, 4-1
with SELECT, 6-2

I

IF
compiler directive, 2-4

implicit status checking, 5-2, 5-8, 5-15
embedded commands for, 3-17

IN clause
in DECLARE CURSOR, 8-2

INCLUDE
compiler directive, 2-4

include �le, 2-1
as input �le, 2-5
created by preprocessor, 1-2
in program development cycle, 1-1
overwritten, 2-2
SQLVAR, 2-33

INCLUDE SQLCA, 3-11, 3-13, 4-24, 5-5
index, 6-11
count, 6-10
preventing duplicate values, 7-3

index scan, 6-10
and locking, 6-15

indicator variable, 4-3
declaring, 3-14
for null values, 7-7
setting a column to null with, 7-8
type description, 4-8
use of, 3-14
using host variables for, 4-1

indicator variable declaration, 4-13
input device speci�cation
de�nition, 11-5

input host variables, 4-2
input tree
part of section, 2-38

INSERT, 7-4
basic use, 6-1

INSERT command
used with LONG columns, 11-6
using host variables for LONG column I/O

strings, 11-6
with LONG columns:example data �le, 11-6
with TO DATE function, 12-4
with TO DATETIME function, 12-4
with TO INTERVAL function, 12-4
with TO TIME function, 12-4

INSTALL, 1-13, 1-18
installable module
created by preprocessor, 1-2
in program development cycle, 1-1

installable module �le, 2-5, 2-37

INTEGER
type description, 4-8

INTEGER*2
type description, 4-8

INTEGER data
host variables and, 4-7

integrity constraint de�nition, 10-2
integrity constraints
and statement level integrity, 10-3
commands used with, 10-2
constraint test matrix, 10-3
designing an application, 10-3
example application using RecDB database,

10-3
in RecDB database, 10-3
introduction to, 10-1
restrictions, 10-2
unique and referential, 10-2

ISQL
in program development cycle, 1-1

J

job mode
preprocessor running in, 2-50

join, 6-5
join condition, 6-5, 6-8
join operation, 6-9
join variable, 6-7

K

KEEP CURSOR
�le IO, 8-16
terminal IO, 8-16

KEEP CURSOR WITH NOLOCKS command
use with OPEN command , 8-3, 8-11

L

label
GOTO, 5-16
in error handling, 5-8
with WHENEVER commands, 3-17

language
current language, 1-6
native language support, 1-6, 2-34
of DBEnvironment, 2-44

line numbers
SQLMSG, 2-35

linker
and compiler, 1-11
in program development cycle, 1-1
separate linked objects, 1-4

locking
and scan types, 6-15
in WHERE clause, 6-11

Index-6



locks
releasing after a CLOSE, 8-8

log �le space
use during preprocessing, 2-44

logical data consistency, 5-9
LONG binary data
compatibility, 4-10
de�nition, 4-10
how stored, 4-10

LONG binary versus LONG varbinary data
usage, 4-10

LONG column de�nition
in a table, 11-4
input and output speci�cation , 11-5
with the LONG column I/O string, 11-5

LONG column descriptor
contents of, 11-7
example declarationtitle;, 11-8
general concept, 11-2
how used, 11-7
introduction to, 11-5

LONG column I/O string
general concept, 11-2
heap space input and output, 11-6
how used , 11-5
input device speci�cation, 11-5
output device speci�cation, 11-5
used with host variable, 11-6
used with INSERT command, 11-6

LONG columns
changing data, 11-9
coding considerations, 11-10
commands used with, 11-1
considering multiple users, 11-11
data types used with, 11-2
deciding on space allocation, 11-11
deleting data, 11-10
�le usage from an application, 11-5
general concepts, 11-2
input options, 11-5
introduction to, 11-1
maximum per table de�nition, 11-4
output options, 11-5
performance, 11-4
putting data in, 11-6
restrictions, 11-4
retrieving data from, 11-7
size maximum, 11-2
specifying a DBEFileSet, 11-4
storage, 11-4
storing and retrieving data, 11-2
used with DELETE [WHERE CURRENT]

command, 11-10
used with dynamic FETCH command, 11-9

used with FETCH or REFETCH commands,
11-7

used with INSERT command, 11-6
used with SELECT command, 11-7
used with UPDATE [WHERE CURRENT]

command, 11-9
using �le naming conventions, 11-10
using �le versus heap space, 11-10
using the LONG column descriptor, 11-7

LONG phrase
used with binary data, 4-10
used with varbinary data, 4-10

LONG varbinary data
compatibility, 4-10
de�nition, 4-10
how stored, 4-10

M

main program unit
in a separate �le, 2-2

maintaining ALLBASE/SQL programs, 1-18
ManufDB database
examples using date/time functions, 12-4,

12-8, 12-11
message catalog, 2-5, 4-2, 5-2
and SQLEXPLAIN, 3-20
and status checking, 3-20
defaults, 2-34
variables for messages, 4-22
with SQLEXPLAIN, 3-20

message catalog message
type description, 4-8

message catalog messages
host variables and, 4-13

message �le, 2-5
mode
autostart, 3-15

modi�ed source �le
created by preprocessor, 1-2
creation, 2-5
sample, 2-19
sample for forex2, 2-19

module
creation, 1-10
dropping, 2-43
installable, 1-1, 1-2, 2-37
installation, 1-13
name, 2-43
owner, 2-43
ownership, 1-14
storage, 9-2
stored by preprocessor, 1-2
updating, 1-18

module name
specifying with preprocessor, 1-10

Index-7



module owner
name, 2-38

multiple rows
detecting with SQLCode, 5-42

multiple users of LONG columns, 11-11
multiuser mode
commands with, 3-15

N

name
module, 2-43
module owner, 2-38

naming conventions for LONG column �les,
11-10

NATIVE-3000
de�ned, 1-6

native language
and SQLEXPLAIN, 3-20
current language, 1-6
defaults, 1-6

native language support
message catalog, 2-34
overview, 1-6
SQLMSG, 2-34

NODROP option
full preprocessing mode, 2-43

non-dynamic commands, 9-1
NOT FOUND condition
with WHENEVER, 5-16

NOT NULL
columns de�ned as, 4-4

NULL
as default data value, 4-11

null indicator variable
for updates, 7-7

null predicate
in WHERE clause, 6-3

NULL result of a dynamic fetch of a LONG
column, 11-9

null value
and GROUP BY clause, 6-4
indicating, 4-4
in UPDATE, 7-7

null value indicators
host variables for, 4-3
using host variables for, 4-1

number of rows processed
data integrity, 10-1

numeric data
conversion, 4-16

O

OPEN, 6-16, 8-1, 8-3
OPEN command
use with KEEP CURSOR WITH NOLOCKS

command, 8-3, 8-11
operation
join, 6-9

operations
using host variables with, 3-19

optimization, 6-10
in WHERE clause, 6-11

option
DISTINCT clause, 6-9

ORDER BY clause
in SELECT, 6-3
in SELECT command de�ning a cursor, 8-2

output device speci�cation
de�nition, 11-5

output �le attributes
preprocessor �les, 2-18

output host variables, 4-2
overow
from data conversion, 4-14

OWNER authority
granting, 1-14

OWNER option
full preprocessing mode, 2-43

P

passing SQLCA, 5-5
performance
integrity constraints, 10-1
LONG columns, 11-4

permanent section
and DBEnvironment, 9-2

predicate, 6-10
in a search condition, 6-3

pre�x
EXEC SQL, 3-11

PREPARE, 6-23
non-dynamic queries, 9-7

preprocess
de�ned, 1-2

preprocessing
log �le space, 2-44
single-user mode, 2-44

preprocessor
access to DBEnvironment, 1-4
authorization required, 1-5
directives, 1-2
e�ect of mode on modi�ed source, 2-18
e�ect on DBEnvironment, 1-10
e�ect on source code, 1-8
errors, 2-50

Index-8



full preprocessing mode, 2-4, 2-43, 2-44
functions, 1-2
in program development cycle, 1-1
input, 2-5
invocation, 2-40
modes and invocation, 2-41
options, 2-43
output, 2-5
output �le attributes, 2-18
parsing SQLIN, 2-8
permanent �les, 2-18
running in job mode, 2-50
syntax checking mode, 2-4, 2-41
temporary �les, 2-18
UDC's, 2-46
using, 2-1

preprocess-time events, 1-5
PRESERVE option
full preprocessing mode, 2-43

procedure
external, 1-9

program
DBEnvironment access, 1-4
development cycle, 1-1
executable, 1-2
execution, 1-5, 1-13, 1-15
FORTRAN application, 1-1
main program unit, 2-2
maintenance, 1-18
obsolescence, 1-19
structure,skeleton example, 1-3
subprogram units, 2-2
user authorization, 1-15

program development steps, 1-1
program segmentation, 2-1
PSQLC
DBEnvironment access, 1-4

Q

qualify
more than one row, 5-5
no rows qualify, 5-4
one or more rows qualify, 5-4

query
overview, 6-2

query e�ciency, 6-10
query result
and SELECT, 6-2

R

REAL*8
type description, 4-8

REAL keyword
oating point data, 4-9

RecDB database application design

example maintenance menu, 10-4
example of deleting data, 10-7
example of error checking, 10-4
example of inserting data, 10-5
example of updating data, 10-6
integrity constraints de�ned, 10-3

REFETCH command
used with LONG columns, 11-7

relative �le name, 1-5
restrictions
integrity constraints, 10-2
LONG columns, 11-4

retrieving LONG column data
with SELECT, FETCH, or REFETCH

commands, 11-7
REVOKE, 1-19
REVOKE option
full preprocessing mode, 2-43

ROLLBACK WORK, 3-16
issued by preprocessor, 2-44
to ensure data consistency, 7-11

row
more than one row quali�es, 5-5
multiple, 5-42
no rows qualify, 5-4
one or more rows qualify, 5-4

row level integrity
de�nition, 10-1

run authority
preserving, 2-43

RUN authority
revoking, 2-43

runtime
performance, 1-10
status checking, 5-1, 5-2

runtime events, 1-16
run tree
part of section, 2-38

S

sample modi�ed source �le, 2-19
sample program
dynamic queries, execute immediate, 9-9
forex2, 2-10

sample source�lename, 2-10, 3-2
sample SourceFileName.sql, 3-2
savepoint number
declaring variables for, 4-21
type description, 4-8
using host variables for, 4-2

scan, 6-10, 6-11
scan types
and locking, 6-15

search condition

Index-9



speci�ed by WHERE clause, 6-3
section
components of, 2-38
creation, 1-10
de�ned, 1-10
dynamic vs. non-dynamic, 9-2
identifying number, 1-10
number, 2-39
permanently stored, 9-2
purpose, 1-10
stored, 2-38
system catalog information, 2-38
SYSTEM.SECTION view, 2-38
temorarily stored, 9-2
temporary, 9-8
type, 2-38, 2-39
validity, 1-11, 2-38, 2-39, 2-40

SELECT, 7-1
basic use, 6-1
overview, 6-2

SELECT command
used with LONG columns, 11-7, 11-9
with ADD MONTHS function, 12-11
with TO CHAR function, 12-8
with TO DATETIME function, 12-7, 12-8
with TO INTERVAL function, 12-7

select list
with SELECT, 6-2

sequential table processing, 6-1
embedded commands for, 3-19
overview, 8-1
uses of, 6-20
using cursors, 6-15

serial scan, 6-11
and locking, 6-15

session
starting DBE, 3-15

SET
compiler directive, 2-4

shared memory
SQLCode indicating not enough, 5-12

shared memory problem
restarting after, 5-13

simple data manipulation, 6-1
commands, 7-1
de�ned, 6-12
embedded commands for, 3-19
transaction management, 7-9

single-user mode
commands with, 3-15

size maximum
LONG columns, 11-2

SMALLINT
type description, 4-8

source code

in program development cycle, 1-1
source�lename
sample, 2-10, 3-2

SourceFileName.sql, 3-2
space allocation for LONG column data, 11-11
SQL
Communication Area (SQLCA), 3-13
Communications Area (SQLCA), 1-2
EXEC SQL, 1-3, 3-11
SQLEXPLAIN, 5-15
SQLIND, 3-14

SQLCA, 1-2, 3-13, 5-5
common block, 1-3, 4-24
data items you can use, 5-1
embedded commands for, 3-11
�elds, 5-5
INCLUDE, 3-13, 4-24
SQLCode, 5-1, 5-41, 5-42, 6-18, 8-3
SQLErrd(3), 5-1, 5-9, 5-38
SQLWarn(0), 5-1, 5-9
SQLWarn(1), 5-1
SQLWarn(2), 5-1
SQLWarn(6), 5-1, 5-12

sqlca.sqlwarn(1)
usage, 5-11

sqlca.sqlwarn(2)
usage, 5-11

SQLCode, 3-13, 5-1, 5-4, 5-6, 5-41
0, 3-20
100, 3-20
-10002, 3-20
-14024, 3-20, 5-7
-4008, 5-7
after last row fetched, 6-18
after the last fetch, 8-3
and SQLErrd(3), 5-9
in creating a warning for users, 5-5
multiple values for, 3-20
of 100, 5-41
of -10002, 5-42
possible values of, 5-6

SQL command
length, 3-11
location, 3-11
pre�x, 3-11

SQL commands
BEGIN DECLARE SECTION, 2-8
COMMIT WORK, 2-40
END DECLARE SECTION, 2-8
WHENEVER NOT FOUND, 2-18
WHENEVER SQLERROR, 2-18
WHENEVER SQLWARNING, 2-18

SQL communication area, 5-5
SQLCTxxx.PUB.SYS, 2-5
SQLErrd(3), 3-13, 5-1

Index-10



determining number of rows with, 5-38
in creating a warning for users, 5-5
possible values of, 5-9
set to number of rows processed, 5-4

SQLERRD(3)
error checking with FORTRAN, 10-1

SQLERROR
WHENEVER, 3-17

SQLERROR condition
with WHENEVER, 5-15

SQLEXPLAIN, 3-20, 5-2
and approaches to status checking, 5-15
and message catalog, 1-15
obtaining multiple SQLCodes, 5-7

SQLIN
preprocessor input, 2-8

SQLIND, 3-14
host variables and, 4-13
type description, 4-8

SQLMOD, 2-5
SQLMSG, 2-5
defaults, 2-34
line numbers, 2-35

SQLOUT, 2-5
preprocessor output, 2-18

SQLVAR, 2-5
preprocessor output, 2-33
type declarations in, 1-9

SQLWarn0, 5-1
SQLWarn(0), 3-13
and warnings from ALLBASE/SQL, 5-9

SQLWarn1, 5-1
sqlwarn(1)
usage, 5-11

SQLWarn2, 5-1
sqlwarn(2)
usage, 5-11

SQLWarn6, 5-1
SQLWarn(6), 3-13
on rollback by ALLBASE/SQL, 5-12

SQLWarning, 5-10
SQLWARNING condition
with WHENEVER, 5-15

START DBE
and the preprocessor, 2-44

starting DBE session, 3-15
statement level integrity
and integrity constraints, 10-3

status checking, 3-18, 5-1
code generated by preprocessor, 5-20
embedded commands for, 3-17
explicit, 5-2, 5-15, 5-31, 5-32
implicit, 5-2, 5-8, 5-15
why do it?, 5-2

status checking action

in WHENEVER, 5-15
status handling
code generated by preprocessor, 5-20

status information, 5-1
STOP action
in WHENEVER, 5-16

storage
LONG columns, 11-4

stored section, 2-38
string
truncation of, 4-4

subprogram units
in separate �les, 2-2
passing variables, 4-23
preprocessing and compiling, 2-2

syntax checking mode
preprocessor command, 2-4
preprocessor invocation, 2-41

syntax for date/time functions
ADD MONTHS, 12-11
input functions, 12-3
output functions, 12-8
TO CHAR, 12-8
TO DATE, 12-3
TO DATETIME, 12-3
TO INTEGER, 12-8
TO INTERVAL, 12-3
TO TIME, 12-3

syntax for LONG columns
ALTER TABLE command, 11-4
CREATE TABLE command, 11-4
select list, 11-7

system catalog
information on sections, 2-38
pages locked during preprocessing, 2-44

SYSTEM.SECTION, 2-38

T

table, 6-8
table processing, 6-20
embedded commands for, 3-19
sequential, 6-1, 8-1

temporary section, 9-8
terminal IO
KEEP CURSOR, 8-16

terminating
DBE session, 3-18

TO CHAR function
example with SELECT command, 12-8
syntax, 12-8

TO DATE function
example with INSERT command, 12-4
example with UPDATE command, 12-5
syntax, 12-3

TO DATETIME function

Index-11



example with DELETE command, 12-7
example with INSERT command, 12-4
example with SELECT command, 12-7, 12-8
example with UPDATE command, 12-5
syntax, 12-3

TO INTEGER function
example with FETCH command, 12-10
syntax, 12-8

TO INTERVAL function
example with INSERT command, 12-4
example with SELECT command, 12-7
syntax, 12-3

TO TIME function
example with INSERT command, 12-4
syntax, 12-3

transaction, 3-16
embedded commands for, 3-16

transaction management
cursor processing, 8-10
simple data manipulation, 7-9

truncated strings
detecting with indicator variable, 4-4

truncation
from data conversion, 4-14
of character data, 4-15
of numeric data, 4-16

type conversion
character data, 4-14
numeric data, 4-16

type declarations
in include �les, 1-9

type declaration section, 3-14, 4-5

U

UDC's
PFOR, 2-46
PPFOR, 2-46
preprocess, compile, link, 2-46

unique index
on column named in a WHERE clause, 7-3

UPDATE, 7-7
basic use, 6-1

UPDATE command

used with LONG columns, 11-9
used with TO DATE function, 12-5
used with TO DATETIME function, 12-5

UPDATE STATISTICS
before preprocessing, 2-44

UPDATE WHERE CURRENT, 8-1, 8-5
UPDATE WHERE CURRENT command
used with LONG columns, 11-9

updating application programs, 1-18
USCs
preprocess, 2-46

USER
as default data value, 4-11

using default data values
introduction to, 4-11

V

varbinary data
using the LONG phrase with, 4-10

VARCHAR data
host variables and, 4-7

VARCHAR(n)
type description, 4-8

variable
join, 6-7

variable declaration include �le, 2-33
variable types
compatibile with ALLBASE/SQL, 3-14

view, 6-8

W

WHENEVER, 3-17, 5-8, 5-10
and implicit status checking, 5-15
CONTINUE, 5-16
GOTO, 5-16
NOT FOUND, 2-18
SQLERROR, 2-18, 3-17
SQLWARNING, 2-18
STOP, 5-16

WHERE clause
in DELETE, 7-5

in SELECT, 6-3

Index-12


	Contents
	Getting Started with ALLBASE/SQL Programming in FORTRAN
	ALLBASE/SQL FORTRAN Programs
	Program Structure
	DBEnvironment Access
	Authorization
	File Referencing

	Native Language Support
	The ALLBASE/SQL FORTRAN Preprocessor
	Effect of Preprocessing on Source Code
	Effect of Preprocessing on DBEnvironments

	The Stored Section
	Purpose of Sections
	Section Validity

	The Compiler and the Linker
	The Executable Program
	Installing the Program Module
	Granting Required Owner Authorization
	Granting Program User Authorization
	Running the Program

	Maintaining ALLBASE/SQL Programs
	Updating Application Programs
	Changing Program-Related Authorization
	Obsoleting Programs


	Using The ALLBASE/SQL FORTRAN Preprocessor
	FORTRAN Preprocessor
	Preprocessor Modes
	Preprocessor Input and Output
	Source File
	Output File Attributes
	Modified Source File
	Variable Declaration Include File
	ALLBASE/SQL Message File
	Installable Module File
	Stored Sections

	Invoking The Fortran Preprocessor
	Syntax Checking Mode
	Full Preprocessing Mode
	Using the Preprocessor UDC's
	Running the Preprocessor in Job Mode

	Preprocessing Errors
	Preprocessor or DBEnvironment Termination
	Preprocessor Invocation Errors
	Source File Errors
	DBEnvironment Errors


	Embedding SQL Commands
	General Rules for Embedding SQL
	Location of SQL Commands
	FORTRAN Comments
	SQL Comments
	Continuation Lines

	Declaring the SQLCA
	Declaring Host Variables
	Starting a DBE Session
	Defining Transactions
	Implicit Status Checking
	Terminating a DBE Session
	Defining and Manipulating Data
	Data Manipulation

	Explicit Status Checking
	Obtaining ALLBASE/SQL Messages

	Host Variables
	Using Host Variables
	Host Variable Names
	Input and Output Host Variables
	Data Values and Null Indicators

	Declaring Host Variables
	Variable Declarations
	Data Types
	Using Default Data Values
	Data Type Compatibility
	Declaring Host Variables for Data Values and Indicator Variables
	Declaring Host Variables for Dynamic Commands
	Declaring Host Variables for Savepoint Numbers
	Declaring Host Variables for Message Catalog Messages
	Declaring Host Variables Passed from Subprograms
	Declaring Host Variables for MPE XL File Values


	Runtime Status Checking and the SQLCA
	The Importance of Status Checking
	Handling Runtime Errors and Warnings
	Maintaining Data Consistency
	Determining Number of Rows Processed

	The SQLCA COMMON Block
	SQLCODE
	SQLERRD(3)
	SQLWARN(0)
	SQLWARN(1)
	SQLWARN(2)
	SQLWARN(6)

	Approaches to Status Checking
	Explicit Status Checking


	Overview of Data Manipulation
	The Query
	The SELECT Command
	Selecting from Multiple Tables
	Selecting Using Views
	Query Efficiency

	Simple Data Manipulation
	Introducing the Cursor
	Sequential Table Processing
	Dynamic Operations

	Simple Data Manipulation
	Simple Data Manipulation Commands
	The SELECT Command
	The INSERT Command
	The DELETE Command
	The UPDATE Command

	Transaction Management for Simple Operations
	Program Using SELECT, UPDATE, DELETE, and INSERT
	Update Function
	Delete Function
	Insert Function


	Processing with Cursors
	Sequential Table Processing Commands
	The DECLARE CURSOR Command
	The OPEN Command
	The FETCH Command
	The UPDATE WHERE CURRENT Command
	The DELETE WHERE CURRENT Command
	The CLOSE Command

	Transaction Management for Cursor Operations
	Using KEEP CURSOR
	OPEN Command Using KEEP CURSOR WITH LOCKS
	OPEN Command Using KEEP CURSOR WITH NOLOCKS
	KEEP CURSOR and Isolation Levels
	KEEP CURSOR and BEGIN WORK
	KEEP CURSOR and COMMIT WORK
	KEEP CURSOR and ROLLBACK WORK
	KEEP CURSOR and Aborted Transactions
	Writing Keep Cursor Applications

	Program Using UPDATE WHERE CURRENT
	FetchUpdate Function
	DisplayUpdate Subroutine


	Using Dynamic
	Review of Preprocessing Events
	Differences between Dynamic and Non-Dynamic Preprocessing
	Permanently Stored vs. Temporary Sections
	Examples of Non-Dynamic and Dynamic SQL Statements
	Why Use Dynamic Preprocessing?

	Passing Dynamic Commands to ALLBASE/SQL
	Understanding Dynamic Operations
	Preprocessing of Dynamic Non-Queries
	Using EXECUTE IMMEDIATE
	Using PREPARE and EXECUTE

	Programs Using Dynamic Operations
	Sample Program Using EXECUTE IMMEDIATE
	Sample Program Using PREPARE and EXECUTE

	Programming with Constraints
	Comparing Statement Level and Row Level Integrity
	Using Unique and Referential Integrity Constraints
	Designing an Application Using Statement Level Integrity Checks
	Insert a Member in the Recreation Database
	Update an Event in the Recreation Database
	Delete a Club in the Recreation Database
	Delete an Event in the Recreation Database


	Programming with LONG Columns
	General Concepts
	Defining LONG Columns with a CREATE TABLE or ALTER TABLE Command
	Defining Input and Output with the LONG Column I/O String
	Putting Data into a LONG Column with an INSERT Command
	Insert Using Host Variables for LONG Column I/O Strings

	Retrieving LONG Column Data with a SELECT, FETCH, or REFETCH Command
	Using the LONG Column Descriptor
	Using LONG Columns with a SELECT Command
	Using LONG Columns with a Dynamic FETCH Command

	Changing a LONG Column with an UPDATE [WHERE CURRENT] Command
	Removing LONG Column Data with a DELETE [WHERE CURRENT] Command
	Coding Considerations


	Programming with ALLBASE/SQL Functions
	Programming with Date/Time Functions
	Where Date/Time Functions Can Be Used
	Defining and Using Host Variables with Date/Time Functions
	Using Date/Time Input Functions
	Using the Date/Time ADD MONTHS Function

	Programming with TID Data Access
	Understanding TID Function Input and Output

	Transaction Management with TID Access
	Comparing TID Access to Other Types of Data Access
	Verifying Data that is Accessed by TID
	Considering Interactive User Applications


	Index

