
900 Series HP 3000 Computer Systems

Command Interpreter

Access and Variables

Programmer's Guide

ABCDE

HP Part No. 32650-90011

Printed in U.S.A. 1994

Fourth Edition

E0494

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1994 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
version indicates the version of the software product at the time
this document was issued. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one
correspondence between product releases and document editions.

Edition Date Software

Version

First Edition November 1987 A.01.00

First Edition Update 1 July 1988 A.10.00

Second Edition April 1990 A.40.00

Third Edition June 1992 B.40.00

Fourth Edition April 1994 C.50.00

iii

iv

Preface MPE/iX, Multiprogramming Executive with Integrated POSIX, is
the latest in a series of forward-compatible operating systems for the
HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will
encounter references to MPE XL, the direct predecessor of MPE/iX.
MPE/iX is a superset of MPE XL. All programs written for MPE
XL will run without change under MPE/iX. You can continue to
use MPE XL system documentation, although it may not refer
to features added to the operating system to support POSIX (for
example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the
operating system for HP 3000s, not based on PA-RISC architecture.
MPE V software can be run on the PA-RISC (Series 900) HP 3000s
in what is known as compatibility mode.

This manual provides a programmer's view of the command
interpreter (CI) and its programming capabilities. Through
command �les and user-de�ned commands (UDCs), the programmer
can develop scripts to accomplish many system-oriented tasks simply
and e�ciently.

This manual presents these capabilities and examples of their use in
the following sequence:

Chapter 1, \Introduction," describes the CI and how it is viewed by
all system users. It further describes the unique attributes that make
it especially useful to programmers.

Chapter 2, \Accessing the Command Interpreter," presents the
various methods of invoking commands. It describes command �les
and UDCs in detail.

Chapter 3, \Setting and Manipulating Variables," describes
user-de�ned variables and prede�ned variables. It details the
methods of setting and modifying any variable, as well as creating,
naming, and deleting user-de�ned variables.

Chapter 4, \Evaluating Expressions," describes the expression
evaluator and its numerous functions. It provides examples of
performing arithmetic and bit operations, and evaluating strings and
�le characteristics.

Chapter 5, \Using Language Constructs Available with the CI,"
presents key functions that provide variations in receiving input and
delivering output. It provides the basis for conditional branching and
looping structures.

Chapter 6, \Accessing Variables and CI Commands in Applications,"
describes the intrinsics that provide communication between
application programs and built-in CI commands, command �les, and
UDCs.

v

Chapter 7, \Sample Command Files," provides samples of actual
command �les o�er suggested uses of many of the CI functions.
A short description of each points out some of the key processing
techniques that can be accomplished with the CI.

Chapter 8, \Command Input/Output Redirection (CIOR)," describes
how to de�ne di�erent �les for command input and command output.

Two appendixes provide lists of commonly used prede�ned variables
and evaluator functions. Detailed explanations of all prede�ned
variables, evaluator functions, and CI commands can be found in the
MPE/iX Commands Reference Manual (32650-90003).

vi

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(filename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vii

Conventions
(continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.

�
A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

viii

Contents

1. Introduction
What Is the Command Interpreter? 1-1
How Is the Command Interpreter Used? 1-2
How Programmers Use the CI 1-2

2. Accessing the Command Interpreter
Issuing Commands Directly 2-1
Reissuing and Modifying Commands 2-2
Issuing Commands Through UDCs 2-2
Creating a UDC File 2-2
Executing a UDC 2-3
Specifying UDC Options 2-3

Issuing Commands Through Command Files 2-5
Creating a Command File 2-5
Executing a Command File 2-5
Specifying Options for Command Files 2-6

Issuing Commands from an Application Program . . 2-6
Parameter Handling 2-6
ANYPARM 2-7

3. Setting and Manipulating Variables
Setting User-De�ned Variables 3-1
De�ning Variable Type 3-2
Displaying User-De�ned Variables 3-2
Naming Variables 3-2
Deleting User-De�ned Variables 3-2

Using Prede�ned Variables 3-3
Displaying Values 3-3
Modifying Values 3-4

Accessing Variable Values 3-4
Implicit Dereferencing 3-4
Explicit Dereferencing 3-5
Recursive Dereferencing 3-5

Substituting Strings 3-6

Contents-1

4. Evaluating Expressions
Using Expressions in CI Commands 4-1
Performing Arithmetic Operations 4-1
Evaluating Strings 4-2
Performing Bit Operations 4-3
Converting Numbers 4-4
Evaluating File Characteristics 4-4
Comparing Results 4-10

Expression Substitution 4-10

5. Using Language Constructs Available with CI
Obtaining Input 5-1
Identifying Parameters 5-1
Prompting for Input 5-3
Retrieving Input from a File 5-3

Branching After Evaluation 5-4
Creating Processing Loops 5-5
Reporting Results 5-6
Displaying Output to the Terminal 5-6
Redirecting Output to a File 5-6

Returning to Calling Environment 5-7

6. Accessing Variables and CI Commands in Applications
Using Intrinsics to Set Variables 6-1
Using Intrinsics to Retrieve Variables 6-4
Using Intrinsics to Execute CI Commands 6-7

7. Sample Command Files
To Center a String 7-1
To Set a Function Key 7-2
To Add User Capabilities 7-3
To Retrieve File Information 7-4
To Create a Calculator 7-6
To Create a Menu of Options 7-8
To List Multiple Files 7-9

8. Command Input/Output Redirection (CIOR)
Redirecting Command Input and Output 8-1
Redirecting Command Input 8-2
Redirecting Command Output 8-2
Redirecting Both Command Input and Output . . 8-2
Redirecting I/O with a File Backreference 8-3
Appending Redirected Command Output 8-3
Redirecting Output to a Device File 8-4
The Append Option with Device Files 8-4

Stacked I/O Redirection 8-5
Things to Remember about Redirection Constructions 8-6
Escaping Redirection 8-7
Redirection File Defaults 8-8
Determining Redirection: HPSTDIN and HPSTDLIST 8-8

Contents-2

A. Prede�ned Variables

B. Evaluator Functions

Index

Contents-3

Figures

6-1. HPCIPUTVAR Intrinsic Example 6-3
6-2. HPCIGETVAR Intrinsic Example 6-6
7-1. Center Command File 7-1
7-2. Center Command File with the Repeat Function . 7-1
7-3. Function Key Command File 7-2
7-4. FKEY Sample Output 7-2
7-5. Additional Capability Command File 7-3
7-6. ADDCAP Sample Output 7-4
7-7. File Information Command File 7-5
7-8. FILINFO Sample Output 7-6
7-9. Calculator Command File 7-7
7-10. Menu Command File 7-8
7-11. List Command File 7-9

Tables

4-1. FINFO Speci�cations 4-6
A-1. Prede�ned Variables A-2
B-1. Expression Evaluator Functions B-1

Contents-4

1

Introduction

The user's interface to the operating system (MPE/iX) provides
a exible, productive environment for all users. The command
interpreter (CI) is an integral part of this interface.

What Is the
Command
Interpreter?

The CI is an executable program that acts as an interface between
the user and MPE/iX.

It consists of two parts: a centralized scanner/parser that scans a
command string for valid syntax, and an interpreter that invokes the
appropriate command executor based on command input.

The scanner/parser analyzes the command string for proper syntax.
If the syntax is incorrect, it is returned for correction. If correct, the
command string is passed to the interpreter portion of the CI.

The interpreter identi�es the command as a user-de�ned command,
prede�ned system command, program �le, or command �le. It then
invokes the appropriate procedure to process the command or to run
the speci�ed program �le or command �le.

The CI and many of its commands operate on HFS (hierarchical �le
system) �le names and directories. In addition, several commands
are dedicated to operations on HFS �les and directories. Refer
to New Features of MPE/iX: Using The Hierarchical File System
(32650-90351) and to MPE/iX Commands Reference Manual
(32650-90003).

In addition, a CM (compatibility mode) command (plus its
parameters and objects) can consist of 253 characters for commands
invoking a relative pathname; or it can consist of as many as 255
characters for commands invoking an absolute path name. The
maximum size for native mode commands is 511 characters, less the
length of the command and and other parameters.

Note If a POSIX (HFS) object is directly under root or an MPE group, its
name length is reduced to a maximum of 16 characters.

Introduction 1-1

How Is the
Command
Interpreter Used?

The CI is used by everyone on the system. Entering CI commands
is the primary method of communication between the user and the
operating system. Every logon invokes the CI.

General users access the operating system through logon and logo�
commands. A user obtains �le information and runs subsystems
through CI commands. The general user's view of the CI is described
in the self-paced tutorial Using the 900 Series HP 3000: Fundamental
Skills (32650-60037).

System administrators and operators rely on the CI in many of
their duties. System startups, shutdowns, and updates are driven
by CI commands to the operating system. Daily maintenance of
�les, accounts, groups, and users' capabilities are accomplished with
CI commands. The CI commands used most often in operational
and administrative tasks are described in the Performing System
Management Tasks (32650-90004) and the Performing System
Operations Tasks (32650-90137).

Programmers access the CI to compile, link, and run application
programs. They can access system information and routines
through the CI and the intrinsic mechanism. The CI also o�ers a
programming environment that accesses system-speci�c information
more e�ciently than most application languages. This manual
concentrates on the CI features that apply to programmers.

How Programmers
Use the CI

The CI contains a set of features that provides the key functions of a
programming language:

Command �les and user-de�ned commands|A mechanism for
executing multiple CI commands in a prescribed sequence, similar
to a procedure.

Variables|User-de�ned and prede�ned variables that can be
accessed by the CI and application programs within the same
session.

Expression evaluator|A command processing phase that resolves
all arithmetic, string, and boolean expressions.

Language constructs|Command structures that simulate the
branching, looping, input, and output structures needed for
programmatic control.

CI intrinsics|An interface mechanism providing programmatic
access to the CI from applications programs.

The programming capability of the CI can be used to simplify
tasks. Complicated routines requiring multiple commands can be
made transparent to users through the use of command �les and
user-de�ned commands (UDCs).

1-2 Introduction

Some programming tasks can be coded more simply and e�ciently
with CI commands than with a standard application language.
Routines can be written with CI commands and accessed from
application programs through the intrinsic facility. Variables can
be used by both CI routines and application programs to pass
information between routines.

Introduction 1-3

2

Accessing the Command Interpreter

Command images are routed to the CI through several di�erent
paths. You can issue CI commands in several ways:

From a job or session.

Through the REDO and DO commands.

Through user-de�ned commands (UDCs) and command �les.

From application programs using CI intrinsics.

From the INFO= string when a second level of the CI is run.

From an input �le when a second level of the CI is run with its
$STDIN �le redirected.

Issuing Commands
Directly

Most often, commands are issued directly from a job or session. The
CI is invoked automatically for each interactive session. Its prompt
indicates that it is active and awaiting command input. Once a
command is entered, the CI parses and executes it, displays requested
output, and prompts for another command.

The CI is also activated for each active job stream. CI commands
contained in a job stream must be preceded by a \pseudo" CI
prompt, usually an exclamation point (!). When the job is streamed,
commands preceded by the prompt are identi�ed as input to the CI.
The CI veri�es the command syntax and executes it. Processing
returns to the jobstream for the next executable statement.

Refer to the MPE/iX Commands Reference Manual (32650-90003)
for a detailed explanation of each command, its purpose, and its
parameters.

Accessing the Command Interpreter 2-1

Reissuing and
Modifying
Commands

By using the DO and REDO commands, you can modify and reissue a
command that has been entered interactively from a session. These
commands are especially helpful to correct typing errors or to avoid
retyping complicated command input.

The command history stack retains the latest commands that have
been issued from the session or job. Usually, the last 20 commands
that have been issued are kept in the stack.

The LISTREDO command displays the command history stack. A
command can be selected by referring to its position in the stack.
Elements of the command image can be changed or deleted as
needed. The command can then be reissued.

There are several ways of selecting a command from the stack. Refer
to the self-paced tutorial Using the 900 Series HP 3000: Fundamental
Skills (32650-60037) for details regarding the REDO, LISTREDO, and DO

commands and examples of their use.

Issuing Commands
Through UDCs

A user-de�ned command (UDC) saves time and reduces errors. It
allows a commonly used command string or multiple command
strings to be issued with a single entry.

Creating a UDC File A UDC �le is a specially identi�ed �le containing one or more UDCs.
Each UDC is composed of a unique name, required and optional
parameter speci�cations, selected options controlling its execution,
and one or more command lines. In a UDC �le, each UDC is
separated from the next by a line of one or more asterisks beginning
in column 1. You can use any editor to create a UDC �le. The
following example shows multiple UDCs in a single �le.

SJ

OPTION LOGON

SHOWJOB

LF

LISTFILE

ABXYZ A,B=B

OPTION LIST

RUN !A.PUB.SYS

RUN !B.PUB.SYS

RUN XYZ

CF1

CMDFL1

2-2 Accessing the Command Interpreter

To distinguish a UDC �le from other �les, it must be cataloged, using
the SETCATALOG command. This process identi�es the contents of the
�le as UDCs, so that any UDC name within the �le is interpreted as
a command by the CI. UDC �les can be created at the user level, the
account level, or the system level. UDCs can be added to or deleted
from an existing UDC �le, but must be uncataloged �rst. (Refer to
the self-paced tutorial Using the 900 Series HP 3000: Fundamental
Skills (32650-60037) for details about cataloging, adding to, and
deleting from a UDC �le.)

Executing a UDC The UDC �le in the preceding example contains four UDCs. The
user can enter a UDC name and parameters, if appropriate, at the CI
prompt to execute its associated routine. For example, by entering
LF at the CI prompt, the UDC named LF is executed. Its associated
commands execute the LISTFILE command.

When executing a command, the CI �rst searches cataloged UDC
�les for a UDC name that matches the command string. UDC �les
are searched in the following sequence:

1. User-level UDCs.

2. Account-level UDCs.

3. System-level UDCs.

If the speci�ed command does not match a UDC name, the built-in
MPE/iX commands are searched. UDCs, therefore, provide a method
of superceding standard MPE/iX commands.

Note When a UDC or command �le is used to invoke a program while
in BREAK from another program invoked from within a UDC or
command �le, MPE/iX returns CIERR 9065.

Specifying UDC Options Several options are available to control UDC processing. These
options are especially useful to programmers to allow or prohibit
certain features. (Refer to the self-paced tutorial Using the 900 Series
HP 3000: Fundamental Skills (32650-60037) for a detailed description
of each UDC option.)

LIST or NOLIST Controls the display of each command image
as it is executed.

HELP or NOHELP Controls the ability to display the contents of
the UDC in help mode.

BREAK or NOBREAK Controls the ability to stop execution of a
UDC.

LOGON or NOLOGON Controls the automatic execution of a UDC
at logon.

RECURSION or
NORECURSION

Controls the search for UDCs called from
another UDC.

Accessing the Command Interpreter 2-3

PROGRAM or NOPROGRAM Controls the ability of a UDC to be executed
from a program.

The contents of a UDC can be listed as each command is executed
using the LIST option. All or any portion of the UDC can be kept
from listing by specifying the NOLIST option. The NOLIST option is
often used to eliminate unnecessary display or to maintain security.
The NOHELP option similarly limits the listing of a UDC's contents
within the Help facility.

The NOBREAK option limits the ability of the user to break the
processing of UDC commands. This option is often used to protect
a series of processing steps or to ensure that an error procedure is
completed. The NOBREAK option is also used as a security measure
by keeping the user from gaining control of the CI by breaking a
procedure.

UDCs can be invoked automatically when the user logs on to the
system if the LOGON option is set. This feature can be used to restrict
users to a particular application environment or to automatically
perform a routine commonly performed at the beginning of a session.
In the previous example, the �rst UDC (SJ) contains the logon
option. This UDC is performed automatically when you log on. Your
logon is followed immediately by the list of all active jobs, the output
of the SHOWJOB command. The CI prompt is displayed following the
job display. Note that only one UDC in the UDC �le can contain the
LOGON option.

The search for a UDC starts at the beginning of the search sequence
to the point where a matching UDC name is encountered. If one
UDC is called from another, the search for the second UDC begins
where the previous search ended. The RECURSION option provides a
method of specifying that the search must start at the beginning of
the standard search sequence.

The NOPROGRAM option controls UDC calls from an application
program. A UDC can be executed through the HPCICOMMAND intrinsic
if the PROGRAM option is speci�ed in the UDC. This option is often
used to control execution of UDCs and built-in commands that have
the same name.

2-4 Accessing the Command Interpreter

Issuing Commands
Through Command
Files

Command �les, like UDCs, can be created to execute single or
multiple commands. Unlike UDCs, only one routine can be included
in a command �le.

Creating a Command
File

Any editor can be used to create a command �le and to modify or
delete a portion of it. The �le name is used to invoke the command
�le. There is no cataloging procedure for a command �le.

Command �les are often used to test a new user command before
establishing it as a UDC. Because they are easier to create and
modify than UDCs, command �les are also used to execute user
commands that change frequently. Command �les are not as secure
as UDC �les because they can be deleted inadvertently with the
PURGE command (unless it is protected with a lockword, program
security, or access rights).

The PURGE command permits you to delete �les using wildcard
speci�cations, with levels of con�rmation. Refer to MPE/iX
Commands Reference Manual (32650-90003).

For information on HFS (hierarchical �le system) security provisions,
refer to New Features of MPE/iX: Using The Hierarchical File
System (32650-90351).

Executing a Command
File

To execute a command �le, enter the command �le name at the CI
prompt. In processing any command, the CI �rst checks the UDC
�les and MPE/iX built-in commands. If no match is found, the CI
automatically searches for a program �le or command �le of the same
name. The CI uses the following sequence to identify the command
input it has received:

1. User-, account-, and system-level UDCs.
2. Built-in MPE/iX commands.
3. Program and command �les.

If no group or account is speci�ed for the command �le name, a
search pathway determines the group and account sequence for the
search. By default, the current group is checked �rst, followed by the
PUB group of the logon account, followed by PUB.SYS. This search
pathway can be altered by modifying the prede�ned variable HPPATH.
(Modifying prede�ned variables is described in the following chapter.)

Note To change the HPPATH variable to contain your current working
directory|in HFS (hierarchical �le system) syntax|execute this
command:

SETVAR HPPATH "!!HPCWD:"

Accessing the Command Interpreter 2-5

Specifying Options for
Command Files

The RECURSION and LOGON options speci�ed for UDCs are not
applicable to command �les. Other options available with UDCs can
be used in command �les.

If a command, UDC, or another command �le is called from a
command �le, the standard search path is used: UDCs, built-in
MPE/iX commands, command or program �les. The RECURSION
option, therefore, is unnecessary for command �les.

Command �les cannot be invoked automatically when a user logs on
to the system. A command �le can be executed at logon, however, by
calling the command �le through a logon UDC.

Issuing Commands
from an Application
Program

The intrinsic mechanism allows applications to call system-de�ned
functions. The mechanism is implemented di�erently for each
application language. (Refer to the appropriate programming
language user's manual for details.)

The CI can be invoked from an application program by using the
HPCICOMMAND or COMMAND intrinsics. The HPCICOMMAND intrinsic
activates the CI to execute the command identi�ed in the intrinsic's
parameters. Any built-in MPE command, UDC, or command �le can
be executed this way. When completed, control is returned to the
calling program. The COMMAND intrinsic works in a similar manner,
but only built-in MPE/iX commands can be executed.

Parameter Handling The rules for the user command header (PARM line and OPTIONs)
have been relaxed, command �les can now be variable record width
�les (UDCs still cannot), and a new parameter type, ANYPARM,
supports syntax-free user commands.

The reserved words PARM, ANYPARM and OPTION begin statements
which constitute the user command header. For UDCs only,
parameters may be de�ned in the same line as the UDC name, with
additional parameters described in subsequent PARM or ANYPARM lines.
Parameter and option lines may be interspersed. There is a limit
of 255 parameters per user command. If ANYPARM is speci�ed it
must be the last parameter de�nition statement, meaning that PARM
cannot follow an ANYPARM declaration. The user command header is
terminated by the �rst non-PARM, non-ANYPARM, non-OPTION record.
For example:

OPTION logon PARM

flag=" doit

PARM p1, p2=hi PARM

p3=there OPTION

nohelp doit

OPTION list PARM p1

PARM p2="what's up,

doc?" ANYPARM

p3=what's up, doc?

2-6 Accessing the Command Interpreter

ANYPARM ANYPARM causes all normal delimiters to be ignored. That is,the
meaning and delimiters are now considered part of the parameter's
value. This de�nition forces ANYPARM to be the last parameter
declared, since the equal sign (=), comma (,), semicolon (;), quotes
("), etc. are treated as part of the ANYPARM parameter's value.

A bene�t of ANYPARM can be seen in the following example:

MYTELL user, word1=",w2=",w3=",w4=",w5=",w6=",w7=",w8=",w9=",w10="
tell !user; !hpdatef (!hptimef) -- !word1 !w2 !w3 !w4 !w5 !w6 !w7 !w8 !w9 !w10

:mytell zinta.ui This will work; however, we may need some better examples?

FROM/S505 JEFF.UI/MON, OCT 30, 1989 (3:11 PM) -- This will work however we...

Note A longer message requires quoting, and the \;" and \," are lost since
they are delimiters.

Then with the use of ANYPARM.

MYTELL user

ANYPARM message=<no message>

tell !user; !hpdatef (!hptimef)-- !message

:mytell mikep.uis Will woff;tr,i,d;lev 0,1;mr sp sp-40;mr pc r2 work??

FROM/S505 JEFF.UI/MON, OCT 30, 1989 (3:11 PM) -- Will woff;tr,i,d;lev 0,1;...

The �rst example is limited to 10 words, unless quoting is used. The
ANYPARM version does not require the user to quote or count
parameters, and all normal delimiters are ignored, and thus treated
as data.

Accessing the Command Interpreter 2-7

3

Setting and Manipulating Variables

The CI provides a method of setting, displaying, and deleting
variables for each session. Variables are de�ned by the numeric,
string, or boolean values assigned to them. Job control words
(JCWs), 16-bit numeric variables, are a subset of MPE/iX variables.

Variables are maintained in the session's variable table, a list of
currently de�ned variables and their values that is established and
maintained for each session or job. A variable can be accessed by any
command issued from the session. Prede�ned variables are supplied
by the CI to access system information easily from a session or job.
You can also establish user-de�ned variables as needed for your
session or job.

Setting User-Defined
Variables

Variables are easily set using the SETVAR command. The command
parameters are the variable name and its value. The value can be
speci�ed as a single numeric value, a character string, a boolean
value, an expression, or the value of another variable. The SHOWVAR
command displays the current value of a variable.

In the following example, several variables are set to numeric, string,
and boolean values. The SHOWVAR command is used to display the
current value of speci�ed variables. Note that wildcard characters,
such as the at sign (@), question mark (?), and pound sign (#), can
be used to display multiple variables that have similar names.

:SETVAR CM_PAY_AMT 1000

:SETVAR CM_FIRST_NAME "CAROL"

:SETVAR CM_LAST_NAME "SMITH"

:SETVAR CM_DONE FALSE

:SHOWVAR CM_PAY_AMT,@NAME

CM_PAY_AMT = 1000

CM_FIRST_NAME = CAROL

CM_LAST_NAME = SMITH

Setting and Manipulating Variables 3-1

Defining Variable Type The variable type is de�ned by your input. Quotation marks specify
that the enclosed phrase is a character string. In the previous
example, the �rst and last names are interpreted as string variables.
The value 1000, an unquoted numeric string, is interpreted as an
integer value. The unquoted word, FALSE, sets the variable to a
boolean value. Expressions can also be used to set variable values.

An unquoted string is interpreted as a variable name, not a character
string. In such cases, the �rst variable is loaded with the value of
the second variable. The content of the second variable determines
the variable type of the new one. In the following example, one new
variable CM_NAME is set to the current value of CM_FIRST_NAME, which
was set in a previous example.

:SETVAR CM_NAME CM_FIRST_NAME

:SHOWVAR CM_NAME

CM_NAME = CAROL

Displaying User-Defined
Variables

As shown in the previous examples, the SHOWVAR command displays
the current value of speci�ed user-de�ned variables. If no parameter
information is provided, all user-de�ned variables for the session are
displayed in the order they were created.

:SHOWVAR
CM_DONE = FALSE

CM_FIRST_NAME = CAROL

CM_LAST_NAME = SMITH

CM_PAY_AMT = 1000

CM_NAME = CAROL

Naming Variables Variables remain set for the duration of the session unless they
are deleted or reset to a new value. To avoid collisions with
variable names used in command �les and UDCs, develop a naming
convention that creates unique variable names.

The naming convention used in the preceding examples adds a
common pre�x to all variables in the command �le. In this case, all
variables are preceded by CM_. Such a pre�x could be the name or
abbreviated name of the command �le itself. This would provide
immediate recognition of the command �le that set the variable.

Deleting User-Defined
Variables

The DELETEVAR command deletes user-de�ned variables. It is easier
to delete variables in a single maintenance step if each variable name
is preceded by a command �le identi�er. The following example
shows how all user-de�ned variables in the CM command �le are
deleted by specifying the command �le identi�er and a wildcard
character.

:DELETEVAR CM_@

3-2 Setting and Manipulating Variables

Using Predefined
Variables

The CI provides prede�ned variables, giving the user access to system
information. The names and default values are preset in the session
variable table.

The following list categorizes the type of system information available
and some of the prede�ned variables that access it. (A listing of
commonly used prede�ned variables is provided in Appendix A. Refer
to the MPE/iX Commands Reference Manual (32650-90003) for a
listing of all prede�ned variables available.)

Directory information HPACCOUNT, HPGROUP, HPUSER, HPCWD

User's capabilities HPUSERCAP, HPUSERCAPF, HPACCTCAP,
HPGROUPCAP

User's environment HPREDOSIZE, HPPATH, HPPROMPT,
HPERRDUMP, HPTYPEAHEAD, HPPIN,
HPFILE

Input/output speci�cations HPLDEVIN, HPINTERACTIVE, HPSTDLIST

Error handling information CIERROR, JCW, HPCIERRMSG,
HPMSGFENCE, HPCIERR, HPFSERR

Job information HPJOBFENCE, HPSESLIMIT, HPJOBTYPE,
HPJOBNAME

System con�guration
information

HPCONSOLE, HPCPUNAME, HPSYSNAME

System date and time HPDATE, HPDATEF, HPTIMEF, HPYEAR

Displaying Values A list of all variables and their current values can be displayed with
the SHOWVAR command followed by the wildcard character @. Both
prede�ned variables and any user-de�ned variables in the session
table are displayed.

:SHOWVAR @

As with user-de�ned variables, the current value of speci�c prede�ned
variables can be displayed using the SHOWVAR command and the
variable name. In the following example, the HPREDOSIZE, HPPATH,
HPCWD, and HPPROMPT variables are displayed.

:SHOWVAR HPPROMPT

HPPROMPT = :

:SHOWVAR HPPATH, HPREDOSIZE

HPPATH = !HPGROUP,PUB,PUB.SYS

HPREDOSIZE = 20

:SHOWVAR HPCWD

HPCWD = /SK72NM/PUB/somehfsdir

Setting and Manipulating Variables 3-3

In this last example, /SK72NM/PUB is an /ACCOUNT/GROUP
path (in hierarchical �le system) that corresponds to an MPE/iX
GROUP.ACCOUNT, and somehfsdir is a directory (below PUB).

Modifying Values No prede�ned variables can be deleted by the user, however, some of
them are modi�able. (Refer to the MPE/iX Commands Reference
Manual (32650-90003) for a list of prede�ned variables that cannot
be modi�ed.) You can change the default setting of any modi�able
prede�ned variable to better suit your needs. The following example
alters the CI prompt and the size of the command history stack using
the SETVAR command.

:SHOWVAR HPPROMPT

HPPROMPT = :

:SETVAR HPPROMPT "==>"

==>

:SHOWVAR HPREDOSIZE

HPREDOSIZE = 20

:SETVAR HPREDOSIZE 25

:SHOWVAR HPREDOSIZE
HPREDOSIZE = 25

Accessing Variable
Values

The value of a variable can be accessed by dereferencing the variable
by name. This substitutes the value of the variable for the variable
name. Variables can be dereferenced in three ways: implicitly,
explicitly, and recursively.

Implicit Dereferencing Implicit dereferencing is simply the substitution of the variable's
value for the variable name. Only certain commands use implicit
dereferencing. Variables used in expressions in the IF, WHILE,
SETVAR, and CALC commands are dereferenced implicitly.

In these commands, any non-numeric or unquoted string in any
expression is assumed to be a variable name. (Exceptions to this are
the boolean values TRUE and FALSE, and other special cases, such
as WARN, FATAL, and SYSTEM.) In the following example, the
variable CM_NAME is set implicitly with the contents of the variable
CM_FIRST_NAME, set in a previous example.

:SETVAR CM_NAME CM_FIRST_NAME

:SHOWVAR CM_NAME

CM_NAME = CAROL

3-4 Setting and Manipulating Variables

Explicit Dereferencing Any variable can be dereferenced explicitly by preceding the variable
name with an exclamation point. Explicit dereferencing is available
with every CI command. The variable's value rather than its name is
substituted in the statement or expression. Explicit dereferencing is
often used to include a variable value in an expression.

:SETVAR X "Blue"

:SETVAR Y "!X is the best color."

:SHOWVAR X,Y
X = Blue

Y = Blue is the best color.

In the preceding example, the value of variable X is substituted when
the value of variable Y is set. The word \Blue" is inserted in the
expression where the variable name is dereferenced.

Recursive
Dereferencing

Recursive dereferencing is used to set a variable with the dynamic
value of another variable. The existing variable's value is not loaded
into the new variable until the new variable itself is explicitly
dereferenced, guaranteeing that the current value is inserted.
Recursive dereferencing is valid only when explicit dereferencing is
being used. To specify recursive dereferencing, precede the variable
name with two or more exclamation points.

In the following example, the ECHO command demonstrates how
a variable is dereferenced. ECHO requires explicit dereferencing to
display the contents of a variable. The SHOWVAR command displays
the variable name and the value it contains. Using the variables X
and Y set in the previous example, notice how recursive dereferencing
provides the most current value.

:SETVAR Y "!X is the best color."

:SETVAR Z "!!X is best."

:SHOWVAR Y

Y = Blue is the best color.

:SHOWVAR Z

Z = !X is best.

:ECHO !Y

Blue is the best color.

:ECHO !Z

Blue is best.

:SETVAR X "Red"
:SHOWVAR Y

Y = Blue is the best color.

:SHOWVAR Z

Z = !X is best.

:ECHO !Y

Blue is the best color.

:ECHO !Z

Red is best.

Setting and Manipulating Variables 3-5

Note that X was not dereferenced fully when the variable Z was
set because recursive dereferencing of the variable was speci�ed.
The value of X was substituted only when the ECHO command was
executed, requiring the dereferencing of Z itself.

For the variable Y, however, X was dereferenced when its value was
loaded to Y. The value of Y always remained the same and did not
reect any change when X was reset to a new value.

The prede�ned variable HPPATH is the default search path used
to locate UDCs and command �les when �le names are not fully
quali�ed. By default, it is composed of the current group, the current
account's PUB group, and the PUB.SYS group. The current group is
identi�ed as the dereferenced value of the variable, HPGROUP. The
following example shows that by using recursive dereferencing, the
value of HPGROUP remains current.

:SHOWVAR HPPATH

HPPATH = !HPGROUP,PUB,PUB.SYS

:SETVAR HPPATH "!!HPGROUP,SCRIPTS.SYS,PUB.SYS"

:SHOWVAR HPPATH

HPPATH = !HPGROUP,SCRIPTS.SYS,PUB.SYS

If the user changes groups, the search path automatically adjusts to
the current location. The variable value is not substituted until the
variable is explicitly dereferenced at command execution.

Substituting Strings Variables are dereferenced from left to right. Their values are
substituted by the CI before the command is parsed or executed.
String variables and constants can be concatenated to create a new
string. Variables and strings can be joined to create a new variable
value.

To concatenate a string variable with a pre�x, place the pre�x
immediately before the exclamation point for the variable. If spacing
is desired, the appropriate number of blanks must be inserted
between the two values.

In the following example, the ECHO command is used to display a
string made up of a string literal and the value of a variable that was
set in a previous example. Note that the ECHO command requires
explicit dereferencing to display the contents of a variable.

:ECHO GRADUATE: !CM_LAST_NAME
GRADUATE: SMITH

3-6 Setting and Manipulating Variables

If a dereferenced variable is enclosed in quotation marks, any
dereferencing within the quotation marks is performed �rst. The
following example demonstrates the di�erence between string
substitution sequences.

:SETVAR VAR1 "ABC"

:SETVAR VAR 'hello'

:SETVAR A 1

:ECHO !VAR!A

hello1

:ECHO !"VAR!A"

ABC

The �rst ECHO command is dereferenced from left to right. The value
of the variable VAR (hello) is concatenated with the value of the
variable A (1). No space was inserted between the two variables.

Since VAR!A in the second ECHO command is enclosed in quotes, the
A is dereferenced �rst. The result, the variable name VAR1, is then
dereferenced to its value ABC.

Variables can be loaded with a string value composed of other
variables and strings. It is important to remember that the type of
variable is de�ned by the data loaded into it. String data must be
enclosed in quotes to de�ne its type. In this way, explicit or recursive
dereferencing must be performed to di�erentiate between variable
names and strings. The following example creates a single variable
for a name by combining the contents of the �rst and last name
variables.

SETVAR CM_NAME "!CM_FIRST_NAME !CM_LAST_NAME"

SHOWVAR CM_NAME

CM_NAME = CAROL SMITH

Expressions can also be used to set a variable value. The following
example uses an algebraic equation to create the same result as in
the previous example.

:SETVAR CM_NAME CM_FIRST_NAME + `` '' + CM_LAST_NAME

SHOWVAR CM_NAME

CM_NAME = CAROL SMITH

Note that the string \ " was added to the equation to maintain the
proper spacing. Without this, adding the two variables would have
concatenated the variable values.

Setting and Manipulating Variables 3-7

4

Evaluating Expressions

Expression results can be used to de�ne complex functions. They
form the basis of comparison structures in establishing branches and
loops. Expressions can also be used to set variables based on an
equation of prede�ned variables, user-de�ned variables, constants,
and arithmetic or logical operators.

Using Expressions
in CI Commands

The CI provides an expression evaluator that supports a large
selection of arithmetic operations; number conversions; �le
information; and string, bit, and variable operations. (Appendix B
provides a table of commonly used functions. Refer to the MPE/iX
Commands Reference Manual (32650-90003) for a complete list of
expression evaluator functions.)

Performing Arithmetic
Operations

Standard addition, subtraction, multiplication, and division
functions, as well as exponentiation, absolute value, and modulo
arithmetic functions, are valid arithmetic operations in the CI.
The standard expression symbols are used in the CI as in other
programming languages.

The following examples show the common arithmetic symbols used
by the CI.

Description Example Result

Addition 1 + 3 4

Subtraction 3 - 1 2

Multiplication 2 * 4 8

Division 16 / 8 2

Absolute Value ABS(-3) 3

Exponentiation 2^3 8

Multiple Functions 2 * 3 + 6 12

The expression evaluator performs integer algebra. Functions are
executed from left to right, in the following order of operations.

1. Exponentiation and absolute value.

2. Multiplication and division.

3. Addition and subtraction.

Evaluating Expressions 4-1

The following example sets the variable EXP with the result of an
expression. Note the order in which the operations are performed.

:SETVAR A 1
:SETVAR B 2

:SETVAR C 3

:SETVAR D 4

:SETVAR EXP A+B*C/D

:SHOWVAR EXP

EXP = 2

The multiplication and division functions are performed �rst from
left to right. The integer result is added to A. Note that division is an
integer function; results are truncated, not rounded.

Parentheses can be inserted to clarify or to alter the logical order of
operations. The following example provides the expression from the
previous example with parentheses included for clari�cation.

:SETVAR EXP A+((B*C)/D)

Evaluating Strings String functions provide a means of analyzing strings. These
functions include adding and subtracting characters in a string,
determining the length of a string, determining the position of a
particular character in a string, adjusting the case of characters,
repeating a a character in a string, and removing leading or trailing
characters from a string.

Strings are evaluated character by character from left to right.
Adding two strings concatenates the contents of the second string to
the end of the �rst.

:SETVAR ANS "abcd" + "efg"

:SHOWVAR ANS

ANS = abcdefg

Subtracting characters from a string deletes the �rst occurrence of
the speci�ed characters from the original string.

:SETVAR ANS "abcabc" - "ab"

:SHOWVAR ANS

ANS = cabc

The case of string data can be altered with the downshift (DWNS) or
upshift (UPS) functions. These functions are used in case-sensitive
comparisons.

:SETVAR ANS UPS("abcdEFG")

:SHOWVAR ANS

ANS = ABCDEFG

:SETVAR ANS DWNS("abcdEFG")

:SHOWVAR ANS

ANS = abcdefg

4-2 Evaluating Expressions

The length of a string can be determined with the LEN function.

:SETVAR ANS LEN("abcdefg")

:SHOWVAR ANS
ANS = 7

The RPT function repeats a string a speci�ed number of times. This
is often used to pad another string with blanks or zeros.

:SETVAR ANS RPT("A",3)

:SHOWVAR ANS

ANS = AAA

The LTRIM and RTRIM functions trim leading or trailing characters
from the left or right of a string. Blanks are trimmed from the string
unless a trim character is speci�ed in the command.

:SETVAR ANS RTRIM("ABC ") + LTRIM(".....DEF",".")

:SHOWVAR ANS

ANS = ABCDEF

ASCII characters can be de�ned by their ordinal representation.
Note that if the parameter of the ordinal function consists of more
than one character, the ordinal representation of only the �rst
character is returned. The other characters are ignored.

:SETVAR ANS ORD("AbcD")

:SHOWVAR ANS

ANS = 65

Ordinal numbers can likewise be de�ned by their ASCII character
representation. This is often used for escape sequences and control
sequences that have no printable counterpart.

:SETVAR ANS CHR(65)

:SHOWVAR ANS
ANS = A

Performing Bit
Operations

Integer data can be evaluated and adjusted by using the bit
operations provided with the CI. These include bit shift left (LSL),
bit shift right (LSR), and circular shifts (CSL and CSR). Also, logical
OR, AND, NOT, and XOR operations are available.

Because AM capability is identi�ed by a 1 in the second bit of the
prede�ned variable HPUSERCAP, either of the following expressions can
be used to see if a user has AM capability.

IF ((HPUSERCAP LSR 30) BAND 1) = 1 THEN ...

or

IF ODD(HPUSERCAP LSR 30) THEN ...

Evaluating Expressions 4-3

Note that the preceding examples show the use of the bit operations.
A simpler way of determining if a user has AM capability would be
the following method.

IF POS("AM",HPUSERCAPF) > 0 THEN...

Converting Numbers Numeric values can be converted from decimal representation to octal
or hexadecimal string equivalents. Numeric output is identi�ed by
three pre�xes: # represents decimal, $ represents hexadecimal, and
% represents octal. If no pre�x is speci�ed, decimal is assumed.

In the following example, the decimal number 329 is converted to its
hexadecimal and octal string representations.

SETVAR ANS HEX(329)

SHOWVAR ANS

ANS = $149

SETVAR ANS OCTAL(329)

SHOWVAR ANS

ANS = %511

Note The results of converting numbers using the HEX and OCTAL functions
are character strings. The result cannot be used in numeric
calculations.

Evaluating File
Characteristics

The FINFO function retrieves �le speci�cations for the identi�ed
�le. This is useful in creating �les, verifying that a �le exists, or
identifying �le speci�cations.

The type of �le information requested is identi�ed by a numeric
entry or an alias for the numeric entry, similar to the parameters
of the FINFO function. Note that aliases are strings and must be
enclosed in parentheses. String, boolean, or numeric data is returned
depending on the option speci�ed.

FINFO recognizes HFS (hierarchical �le system) names and supports
the FLABELINFO intrinsic items relating to POSIX. Examples
include:

number of hard links

time of last �le access

�le owner (full user.account name and numeric ID)

�le type (directory, symbolic link, pipe, FIFO, device link, etc.)

record type (�xed, root, spool, byte stream, directory, etc.)

�le size in bytes

4-4 Evaluating Expressions

KSAM XL version

device type (disk, tape, port, streams, sockets, etc.)

whether the �le has been released.

Refer to New Features of MPE/iX: Using The Hierarchical File
System (32650-90351).

The following table provides some of the most commonly used FINFO

options, by number and alias, and a description of the results. FINFO
passes the name of the �le using either MPE syntax (the default)
or HFS syntax. You can enter CALC FINFO('.1',0) and receive
TRUE as output, and �lename in HFS can end in any character.

If MPE syntax, the �le name can include password, group, and
account speci�cations. The �le name can backreference a �le
equation and optionally be preceded by an asterisk.

If HFS syntax, the �le name must start with either a dot (.) or a
slash (/). For �les located in HFS directories, traverse directory
entries (TD) access is required to all directories speci�ed in the
formal design. If there is no TD access, FINFO fails.

If the �le can be named using both MPE syntax and HFS syntax (for
example, FILEA.MYGROUP.MYACCT and /MYACCT/MYGROUP/FILEA),
the �le can be either permanent or temporary. If a temporary and a
permanent �le have the same name, FINFO returns information about
the temporary �le only. Refer to the MPE/iX Commands Reference
Manual (32650-90003) for a complete description of the FINFO
options.

Evaluating Expressions 4-5

Table 4-1. FINFO Specifications

Number Alias Data

Type

Item Description

0 EXIST Boolean Existence of �le

1 FILENAME ONLY
FNAME
FULL FILENAME
FULLFNAME
FULLY QUALIFIED FILENAME

String File name

2 GROUP
GROUPNAME

String Group name

3 ACCOUNT
ACCT
ACCOUNTNAME

String Account name

4 CREATOR String File creator name

5 SECURITY MATRIX String Security matrix for access

-5 SECURITY MATRIX Integer Security matrix for access

6 CREATED
CREATION DATE
FMTCREATED

String File creation date

-6 CREATION DATE INTEGER
INTCREATED

Integer File creation date

7 ACCESSED
FMTACCESSED
LAST ACCESS DATE

String Last access date

-7 LAST ACCESS DATE INTEGER
INTACCESSED

Integer Last access date

8 MODIFIED
LAST MOD DATE
FMTMODDATE

String Last modi�cation date

-8 LAST MOD DATE INTEGER
INTMODDATE

Integer Last modi�cation date

9 FILE CODE
MNEMONIC
FMTFCODE

String File code of disk �le

-9 FCODE
INTFCODE

Integer File code of disk �le

10 USER LABELS WRITTEN Integer Number of user labels written

11 USER LABELS AVAIL Integer Number of user labels available

12 FILE LIMIT
LIMIT

Integer Total number of logical records possible in the
�le

4-6 Evaluating Expressions

Table 4-1. FINFO Specifications (continued)

Number Alias Data

Type

Item Description

13 FOPTIONS
FMTFOPT

String File options

-13 FORMATTED FOPTIONS
INTFOPT

Integer File options

14 RECORD SIZE
RECSIZE

Integer Record size

15 BLOCK SIZE
BLKSIZE

Integer Block size

16 MAX EXTENTS
MAXEXT

Integer Maximum number of extents

17 LAST EXTENT SIZE
LASTEXTSIZE

Integer Last extent size

18 EXTENT SIZE
EXTSIZE

Integer Extent size

19 END OF FILE
EOF

Integer Number of logical records in �le

20 ALLOC TIME
FMTALLOCTIME

String File allocation time

-20 ALLOC TIME INTEGER
INTALLOCTIME

Integer File allocation time

21 ALLOC DATE
FMTALLOCDATE
ALLOCATED

String File allocation date

-21 ALLOC DATE INTEGER
INTALLOCDATE

Integer File allocation date

22 NUM OPEN CLOSE RECS Integer Number of open/close records

23 DEVICE NAME
DEV NAME

String Device name (8 bytes

24 FMTMODTIME
LAST MOD TIME

String Last modi�cation time

-24 INTMODTIME
LAST MOD TIME

Integer Last modi�cation time

25 FIRST USER LABEL String First user label (user label 0)

27 UNIQUE FILE ID
UFID

REC Unique �le identi�er (UFID)

28 BYPE FILE SIZE
BYTEFILESIZE

Integer Total number of bytes allowed in �le

Evaluating Expressions 4-7

Table 4-1. FINFO Specifications (continued)

Number Alias Data

Type

Item Description

29 BYTE DATA OFFSET
DATASTART

Integer Start of �le o�set

30 BYTE RECORD SIZE
BYTERECSIZE

Integer Record size (indicates bytes)

31 BYTE BLOCK SIZE
BYTEBLKSIZE

Integer Block size (indicates bytes)

32 BYTE EXTENT SIZE
BYTEEXTSIZE

Integer Extent size (indicates bytes)

33 LOCKWORD String File lockword

34 VOLUME RESTRICTION
VOLRESTR

String Volume restriction

35 VOLUME SET NAME String Volume set names

36 LOGSET ID String Transaction management log set id

37 LDEV
LOGICAL DEVICE NUMBER

Integer Logical device number

38 POSIX FULL FILE NAME
POSIXFULLFNAME

REC Terminated HFS-syntax system absolute
pathname

39 NUM HARD LINKS
NUMHARDLINKS

Integer The current number of hard links to the �le

40 ACCESS TIME
FMTACCESSTIME
LAST ACCESS TIME

String Time of last �le access (clock format)

-40 LAST ACCESS TIME INTEGER
INTACCESSTIME

Integer Time of last �le access (clock format)

41 STATUS CHANGE TIME
FMTSTATUSCHANGETIME

String Time of last �le status change (clock format)

-41 INTSTATUSCHANGETIME Integer Change Time Integer

42 STATUS CHANGE DATE
FMTSTATUSCHANGEDATE

String Date of the last �le status change (calendar
format)

-42 CHANGE DATE INTEGER
INTSTATUSCHANGEDATE

Integer Date of the last �le status change (calendar
format)

43 FILE OWNER NAME
OWNER

String File owner

44 FILE OWNER ID
UID

Integer File owner identi�er

45 FILE GROUP NAME
FILEGROUP

String File group

4-8 Evaluating Expressions

Table 4-1. FINFO Specifications (continued)

Number Alias Data

Type

Item Description

46 FILE GROUP ID
GID

Integer File group identi�er

47 FILE TYPE
FILETYPE

String File type

-47 FILE TYPE INTEGER
INTFILETYPE

Integer File type

48 RECORD TYPE
RECTYPE

Integer Record type

49 BYTE FILE SIZE
BYTEFILESIZE

Integer Current �le size (in bytes)

50 KSAM VERSION
KSAMVERS

Integer KSAM XL �le version

51 KSAM LABEL
KSAMPARAM

some
type by
reference

KSAM XL parameters

52 DEVICE TYPE
DEVTYPE

String MPE/iX device type

-52 DEVICE TYPE INTEGER
INTDEVTYPE

Integer MPE/iX device type

53 RELEASED Boolean Secured/Released

Evaluating Expressions 4-9

The FINFO function is often used in �le maintenance routines to
create, delete, or determine certain characteristics of a �le. The
following examples demonstrate the responses to several FINFO
requests about the �le X.PUB.SYS.

:CALC FINFO('X',0)

TRUE

:CALC FINFO('X','EXISTS')

TRUE

:CALC FINFO('X',13)

ASCII, FIXED, NOCCTL, STD

:CALC FINFO('X','FMTFOPT')

ASCII, FIXED, NOCCTL, STD

:CALC FINFO('X',1)

X.PUB.SYS

:CALC FINFO('X','FULLFNAME')

X.PUB.SYS

:CALC FINFO('X',38)

/SYS/PUB/X

The last example asks for the absolute pathname of the �le \X"
(HFS syntax). Compare this with the example immediately
preceding it, which asks for the �le name in MPE syntax.

Comparing Results The comparison operators, equal (=), less than (<), greater than
(>), not equal to (<>), less than or equal to (<=), and equal to
or greater than (>=), are provided in the CI expression evaluator.
These expressions produce a boolean result that can be used to set
the criteria for a conditional branch or a looping structure.

Expression
Substitution

Variables are dereferenced implicitly when used in the SETVAR, IF,
WHILE, and CALC commands. Variables within an expression are also
implicitly dereferenced. A variable can be implicitly dereferenced in
any command, therefore, by including it in an expression.

The result of an expression, however, must be dereferenced explicitly.
To do this, the expression is enclosed in brackets and preceded by an
exclamation point. By explicitly dereferencing the expression and
using implicit dereferencing of variables within the expression, the
expression is more readable. The following examples demonstrate the
use of explicit and implicit dereferencing when using expressions.

:BUILD X;REC=![-2*40]

4-10 Evaluating Expressions

:BUILD Y;DISC=![FINFO(FILE1,'EOF')*110]

:ECHO ![UPS(FILE1)] does not exist.

Expressions are evaluated from left to right within the operator
hierarchy. This sequence can be altered, however, by including
parentheses in the expression. Parentheses can be nested to provide a
speci�c sequence for evaluation.

The following example shows the expression that centers the variable
TEXT on an 80-character line. Note that TEXT is implicitly
dereferenced within the brackets and explicitly dereferenced outside
the brackets.

:ECHO ![RPT(" ",(80-LEN(TEXT))/2)]!string

In this example, a string is centered on an 80-character line by
repeating the spacing character a number of times and concatenating
the original string to it. Note the use of parentheses to override
operator hierarchy and compute results in the proper sequence.

1. Evaluates the length of the string named TEXT .

2. Subtracts this length from the width of the line (80 characters).

3. Divides the remaining number of characters by 2.

4. Repeats the spacing character the speci�ed number of times.

5. Dereferences the expression results.

6. Concatenates the expression results to the original string.

Evaluating Expressions 4-11

5

Using Language Constructs Available with CI

The CI programming structures provide standard programming
routines for input, output, looping, and branching. These structures
provide the basis for sophisticated programming. Several of the most
common structures are described and demonstrated in the following
sections. (Chapter 7 provides complete command �le routines that
have been excerpted in this chapter.)

Obtaining Input Input to a command �le or UDC can be supplied through parameter
speci�cations entered when the command �le or UDC is issued.
Interactive prompts and responses can be embedded in the command
�le to receive input from the caller. Prede�ned command input can
also be retrieved from an input �le.

Identifying Parameters PARM statements can be inserted in a command �le or UDC to
de�ne parameter data that is entered when the command �le or UDC
is issued. The following example shows the command input to invoke
the FILINFO command �le. The �le name A is provided when the
command �le name is issued.

FILINFO A

If parameter data is desired, one or more PARM statements can be
included in the command �le. For UDCs, parameters can be de�ned
using the UDC name line, PARM statements, or both. Each entry
de�nes one or more required or optional parameters. The following
example de�nes the parameter input, a �le name, in a PARM
statement. The subsequent FINFO statement uses the parameter
value to verify the existence of the named �le. Note that a parameter
must be explicitly dereferenced in all commands and expressions.

PARM FNAME

IF NOT (FINFO("!FNAME","EXISTS")) THEN...

Using Language Constructs Available with CI 5-1

In this example, the �le name is a required parameter since no
default value has been provided for the parameter �eld. In processing
the command �le, the �le name is inserted in any expression
where the parameter FNAME is dereferenced, such as in the FINFO
statement.

Note Parameters must be accessed by explicit dereferencing. Implicit
dereferencing will result in either a message stating that the variable
does not exist or insertion of a variable value of the same name.

Parameter data is optional if a default value is provided in the
PARM statement or UDC name line. The following example of the
LIST command �le de�nes six parameters and supplies default values
for �ve of them. Note that the two PARM statements are used to
di�erentiate between required and optional parameters.

PARM F1

PARM F2=$NULL,F3=$NULL,F4=$NULL,F5=$NULL,F6=$NULL

This example allows up to six �le names to be entered when the
command �le is invoked. The �rst �le name is the only required
parameter. The value $NULL is substituted as the default value for
the optional parameters. The following example shows how the LIST
command �le could be invoked.

LIST A,B,C

Each of the three parameters is matched with its associated
parameter name. The �le name A is identi�ed as F1, the �rst
parameter. File name B is F2, and �le name C is F3. Because no
other parameters were supplied in the call, F4, F5, and F6 contain the
default value $NULL. This method of coding is often used in looping
constructs to provide input to multiple iterations of a process with a
single invocation.

In a UDC, parameter data can be speci�ed in two ways. Parameters
can be de�ned in the UDC header on the line containing the UDC
name, as shown in the following example.

LIST F1,F2=$NULL,F3=$NULL,F4=$NULL,F5=$NULL,F6=$NULL

Parameters can also be entered on the line after the UDC name and
identi�ed by the PARM keyword, as in command �les.

LIST

PARM F1,F2=$NULL,F3=$NULL,F4=$NULL,F5=$NULL,F6=$NULL

Note that both of these methods can be used within a single UDC, as
shown in the following example.

LIST F1

PARM F2=$NULL,F3=$NULL

PARM F4=$NULL,F5=$NULL,F6=$NULL

5-2 Using Language Constructs Available with CI

Prompting for Input The INPUT command prompts the user for input data and reads user
input from $STDIN, the user's terminal, into a de�ned variable. The
data received with the INPUT command is considered string, even if it
consists of numeric data.

The INPUT command allows three parameters. The �rst parameter
speci�es the variable name for the input data. The second speci�es
a character string to be used as the prompt. The length of time
allowed for the user to enter input data can be speci�ed by entering a
third parameter.

In the following example, the echoed statements and the prompt
for the user's selection create a menu of run variations. The user's
selection at the prompt triggers a branch to the appropriate routine.

ECHO Enter 0 to exit.

ECHO 1 to review database.

ECHO 2 to update database.

INPUT CHOICE,"Which number do you select?",15

In the preceding example, the options in the ECHO commands and
the prompting phrase from the INPUT command are displayed at the
user's terminal. The variable, CHOICE, receives the user's response,
to be analyzed in later processing. Fifteen seconds (,15) speci�es the
length of time to wait for a reply.

Retrieving Input from a
File

By using redirection indicators, most CI statements can retrieve
input from a �le rather than from parameter data or direct user
input. The name of the �le containing the input data is preceded
by the redirection indicator for input (<) and added to the
appropriate statement. Only a single �le name can be speci�ed for
input redirection; wildcard characters, therefore, cause errors. The
following example shows how the editor is invoked and its input �le
speci�ed in a single statement.

:EDITOR <INSFILE

When input is redirected, the �le must exist. Unless otherwise
speci�ed in a �le equation, the CI searches for a TEMP �le �rst, then
a permanent �le. By default, it opens the �le for read and share
access. These defaults can be overridden by using a backreference to
a �le equation.

Redirection supports HFS (hierarchical �le system) names. ECHO Hi
There! >> ./somefile appends to the �le ./somefile

The following example receives processing input by redirecting the
INPUT command's source from the user's terminal to a �le named
INFILE. The �rst record of INFILE is read into the variable named
RECORD .

INPUT RECORD <INFILE

Because of possible confusion with the less than (<) character,
redirection cannot be performed with the IF, WHILE, CALC,

Using Language Constructs Available with CI 5-3

SETVAR, REMOTE, or COMMENT statements. All other CI
statements can perform input redirection.

Branching After
Evaluation

Sequence within a command �le or UDC can be controlled with the
IF, ELSEIF, ELSE, and ENDIF statements. When the conditions
speci�ed in the IF statement are met, the actions following this
statement are performed. When the conditions are not met, an
optional ELSEIF or ELSE statement provides an alternative. Each
IF construct must be ended with its associated ENDIF statement.

IF statements can be nested, providing subsequent levels of
conditions. When nested, however, each IF statement must be ended
by a matching ENDIF statement. The following example is from the
MENU command �le shown in the previous example. In this segment,
the user's response to the input prompt is evaluated to run the
appropriate database processing program.

IF CHOICE = "1" THEN

DBREVIEW

ELSE

IF CHOICE = "2" THEN

DBUPDATE

ENDIF

ENDIF

The ELSEIF statement provides a combination of the ELSE
and IF statements and simpli�es a nested IF construction. The
MENU command �le could have been written using the ELSEIF
construction. The following example demonstrates how the ELSEIF
statement simpli�es the branching construct in the MENU command
�le.

IF CHOICE = "1" THEN

DBREVIEW

ELSEIF CHOICE = "2" THEN

DBUPDATE

ENDIF

5-4 Using Language Constructs Available with CI

Creating Processing
Loops

The CI provides a looping structure through the WHILE and
ENDWHILE statements. Combined with the expression evaluator
functions, a series of statements can be repeated as long as a
particular condition exists. The MENU command �le provides a
processing loop that continues prompting for the user's response and
selecting the proper subroutine until the user selects 0 to exit the
routine.

SETVAR CHOICE " "

WHILE CHOICE <> "0" DO

ECHO Enter 0 to exit.

ECHO 1 to review database.

ECHO 2 to update database.

INPUT CHOICE,"Which number do you select?",15

IF CHOICE = "1" THEN

DBREVIEW

ELSEIF CHOICE = "2" THEN

DBUPDATE

ENDIF

ENDWHILE

Often an index is set and evaluated for processing elements of an
array. Although the CI does not support data arrays or tables,
variable names can be constructed so that a portion of the name can
be incremented to access several variables in a sequence, similar to
array or table processing.

In the following example, a simulated array of data has been created
by appending sequential numbers to a common variable name. The
variables range from RM_ARRAY1 to RM_ARRAYn, depending on the
number of elements needed. In this example, the variable RM_ARRAY0
contains the number of elements used in the sequence.

Each variable in this example is accessed in turn by concatenating
the common portion of the variable name with an incremented index
variable, creating the sequence of variable names. The processing
loop continues to access consecutive variables until the index exceeds
the value of RM_ARRAY0.

SETVAR RM_INDEX 1

WHILE RM_INDEX <= RM_ARRAY0 DO

ECHO Purging !"RM_ARRAY!RM_INDEX" now.

PURGE !"RM_ARRAY!RM_INDEX"

SETVAR RM_INDEX RM_INDEX+1

ENDWHILE

Using Language Constructs Available with CI 5-5

Reporting Results Usually, output from a command �le or UDC is displayed on the
user's terminal. The ECHO command and, in some situations, the
PRINT command display output from a command �le or UDC to
the terminal. In some instances, output can be used as input for a
subsequent procedure. This is easily accomplished by redirecting
output from a command �le or a UDC to a �le.

Displaying Output to
the Terminal

The ECHO command displays information to the user's terminal.
All text following the command name is displayed. Variables and
expressions can be dereferenced to insert their values or results in the
display.

ECHO FOR FILE !FILE:

ECHO RECSIZE: ![FINFO(FILE,14)], EOF: &

![FINFO(FILE,19)], FLIMIT: ![FINFO(FILE,12)].

The dereferenced values are substituted into the string to be
displayed on the user's terminal. The following example shows the
result of this ECHO command for the �le A.PUB.SYS.

FOR FILE A.PUB.SYS:

RECSIZE: -80, EOF: 5, FLIMIT: 5.

The PRINT command accepts the MPE escape syntax that permits
you to access HFS (hierarchical �le system) �les and directories.
Refer to New Features of MPE/iX: Using The Hierarchical File
System (32650-90351).

Redirecting Output to a
File

By using redirection indicators, most CI statements can send output
to a �le rather than display it on the user's terminal. A redirection
speci�cation for an output �le is added to the appropriate statement.
The name of the �le to receive the output is preceded by the
redirection indicator (either > or >>). Only a single �le name can
be speci�ed for a single output redirection speci�cation; wildcard
characters, therefore, cause errors. The following example shows how
the output of the SHOWCATALOG command is sent to the �le UDCNAMES.

:SHOWCATALOG >UDCNAMES

In the previous example, the redirection indicator, >, creates a new,
temporary �le to which the SHOWCATALOG output is sent. The �le is
created with the following default characteristics:

80-byte, variable length, ASCII records.

DISC=10000.

TEMP �le.

NOCCTL.

5-6 Using Language Constructs Available with CI

The �le is created with write, shared, and multiaccess. These default
values can be overridden by using a backreference to a �le equation.
Note that if the �le exists and the output redirection indicator is >,
the output from the statement overwrites any existing data in the
�le.

To open an existing �le and append new output, the output
redirection indicator is >>. The following example creates a �le
for the SHOWME command output. It then appends output from the
SHOWOUT command to the same �le.

:PURGE ABC

:SHOWME >ABC

:SHOWOUT >>ABC

In this example, the �le ABC is created, and the SHOWME output is
written to it. The �le is then closed. It is reopened for append access
to receive output from the SHOWOUT command.

Output redirection works di�erently if the output destination is a
device �le, such as a spool�le or tape �le. The same commands as in
the previous example are sent to a spool�le in the following example:

:FILE lp602;DEV=EPOC;ENV=lp602.hpenv.sys

:SHOWME >*lp602

:SHOWOUT >>*lp602

As with the prior example, the spool�le is created based on
speci�cations in the �le equation, and the output from the SHOWME
command is written to it. The spool�le is then closed and becomes
ready to print. A second spool�le is created for the SHOWOUT
command output and is opened with append access. A spool�le
is completed and ready to print when it is closed; it cannot
be reopened. The append access of the SHOWOUT command is
unnecessary in this case.

Returning to Calling
Environment

The RETURN command exits a command �le or UDC and returns to
the calling process, whether it is the CI, an application, or another
UDC or command �le. This provides a mechanism for creating an
error routine. The following routine tests that a parameter is a
positive integer. If not, an error message is displayed, and control is
returned to the calling environment.

PARM COUNT, P2=" ", P3=" "
IF TYPEOF(!COUNT) <> 1 OR !COUNT < 0 THEN

ECHO Expected a positive integer for COUNT

RETURN

ENDIF

The ESCAPE command can also be used to exit a command �le or
UDC. Unlike RETURN, ESCAPE causes control to leave all UDCs or
command �les, regardless of nesting levels, and returns to the CI

Using Language Constructs Available with CI 5-7

prompt. If a jobstream invokes the command, the job is ushed from
the system.

5-8 Using Language Constructs Available with CI

6

Accessing Variables and CI Commands in Applications

The intrinsic mechanism provides a means of communicating with
the CI from an application program. Several intrinsics manipulate
user-de�ned and prede�ned variables from within an application.
User-de�ned and prede�ned variables can be set and retrieved within
an application as a means of communicating with another process in
the same session.

Intrinsics can also execute a CI command, UDC, or command �le
from within an application. This method can be used to supply
system information to the application or to perform a routine more
e�ciently through CI commands.

Note that each programming language calls an intrinsic in a unique
manner. Refer to the appropriate application language guide for
details about calling intrinsics.

Using Intrinsics to
Set Variables

Any user-de�ned variable can be set from within an application
program using the HPCIPUTVAR intrinsic. Variables set in this way are
available to any process within the speci�ed session. The variable
name speci�ed in the intrinsic must be a valid variable name.
An optional STATUS parameter can be speci�ed to receive status
information on the success of the intrinsic call.

Item number and item pairs identify the type of data that is to be
stored in the variable. The item number and item pairs that are
de�ned for the HPCIPUTVAR intrinsic are listed below:

0 Ignored by the intrinsic.

1 Indicates that the following parameter contains an integer
value to be assigned to the speci�ed variable name. (No
other item number and item pair is needed.)

2 Indicates that the following parameter contains the string
value to be assigned to the speci�ed variable name. (Item
number 11 is also required for string variables.)

3 Indicates that the following parameter contains a nonzero
value if the variable value is to be boolean TRUE. It holds
a zero if the value is to be boolean FALSE. (No other item
number and item pair is needed.)

11 Indicates that the following parameter contains the length of
the string value to be assigned to the variable name. (This

Accessing Variables and CI Commands in Applications 6-1

item number and item pair is required when item number 2
has been speci�ed.)

14 Indicates that the following parameter contains a nonzero
value if the string value speci�ed by item number 2 is
to be stored as entered. It contains a zero if the string
value speci�ed by item number 2 is to be interpreted. If
interpreted, a string containing a number within the range of
-2147483648 to 2147483648 is interpreted as a numeric value.
A string containing TRUE or FALSE (upper or lower case)
is interpreted as a boolean value.

It is possible to set variables on both a process local and a job or
session global basis. For a list of variables whose modi�cations exist
only for the locality of the process see Appendix A of the MPE/iX
Commands Reference Manual 32650-90003.

If you wish to modify session or job level variables then the
HPCIGETVAR and HPCISETVAR intrinsics should be called rather than
calling the COMMAND intrinsic to execute the SETVAR and SHOWVAR

commands. The COMMAND intrinsic SETVAR will not set a session level
variable.

The following example uses the HPCIPUTVAR intrinsic to set a variable
named ANS. It also loads it with numeric data (1) contained in the
parameter ANS_INPUT. Status on the success of the HPCIPUTVAR
intrinsic call is returned in the parameter named STATUS.

HPCIPUTVAR(ANS,STATUS,1,ANS_INPUT)

The next example speci�es that the variable named ANS2 is loaded
with data from ANS_INPUT. The length of the string is speci�ed in
ANS_LEN. Note that the STATUS parameter has been omitted, signi�ed
by the two commas after the variable name.

HPCIPUTVAR(ANS2,,2,ANS2_INPUT,11,ANS2_LEN,14,ANS2_INT)

The data type of the variable in this example depends on the
contents of the ANS2_INT parameter. If this �eld contains a nonzero
character, the data is considered string character data. If the
ANS2_INT �eld contains a zero, the input, ANS_INPUT, is interpreted
to determine whether the variable contains numeric or boolean data.

The following sample program creates a variable named MYVAR using
the HPCIPUTVAR intrinsic.

6-2 Accessing Variables and CI Commands in Applications

Procedure Create_CI_Variable;

Const

KeyWord_StringValue = 2; { keyword #2 in the intrinsic manual }

KeyWord_StringLength = 11; { Keyword #11 in the intrinsic manual }

StringLength = 34;

CIVarNameLen = 6; { Length of variable name to be created }

Type

StatusType = Record

Case Boolean Of

True : (Error_Num : Integer);

False : (Info,

SubSys : ShortInt);

End;

CIVarNameType = Packed Array[1..CIVarNameLen] Of Char;

ToBeWrittenType = Packed Array[1..StringLength] Of Char;

CIVarValueType = ToBeWrittenType;

Var

Status : StatusType;
CIVarName : CIVarNameType;

KeyValue_ActualStringContents : CIVarValueType;

KeyValue_ActualStringLength : Integer;

Procedure HPCIPUTVAR; INTRINSIC;

Procedure TERMINATE; INTRINSIC;

Procedure Check_Status(Var Status : StatusType);

Begin {Check_Status}

With Status Do

If Info <> 0 Then

Begin

Writeln('Subsystem Number: ', SubSys);

Writeln('Info : ', Info);

TERMINATE;

End;

End; {Check_Status}

Begin {Create_CI_Variable}

CIVarName := 'MyVar '; { Name of the variable to be created }

KeyValue_ActualStringContents := 'Programmatically Created Variable';

KeyValue_ActualStringLength := StringLength;

{ Create MyVar variable. }

HPCIPUTVAR(CIVarName, Status,

KeyWord_StringValue, KeyValue_ActualStringContents,

KeyWord_StringLength, KeyValue_ActualStringLength);

Check_Status(Status);

End; {Create_CI_Variable}

Begin {Main}

Create_CI_Variable;

End. {Main}

Figure 6-1. HPCIPUTVAR Intrinsic Example

Accessing Variables and CI Commands in Applications 6-3

The HPCIPUTVAR intrinsic can also be used to modify the value of
a prede�ned variable. The prede�ned variable to be modi�ed is
identi�ed by specifying the variable name in the intrinsic call. Its
value is determined by item number and item pairs specifying the
data type and the value to be inserted. Note that some prede�ned
variables cannot be modi�ed. (Refer to the MPE/iX Commands
Reference Manual (32650-90003) for a list of prede�ned variables
that can be modi�ed.)

The HPCIDELETEVAR intrinsic deletes any user-de�ned variables
within the appropriate session. The variable to be deleted is speci�ed
by its variable name. Wildcard characters can be used to delete
multiple variables. The STATUS parameter returns the status of
the intrinsic call to the calling program. Note that no prede�ned
variables can be deleted. The following example deletes the variable
named ANS.

HPCIDELETEVAR(ANS,STATUS)

The PUTJCW intrinsic sets and loads a job control word (JCW), a
16-bit unsigned integer variable. The SETJCW intrinsic sets only
the prede�ned variable named JCW. Both of these functions can
be accomplished with the HPCIPUTVAR intrinsic by specifying the
appropriate variable name and loading a numeric value within
the range of 0 to 65,535. To ensure program readability, use the
HPCIPUTVAR intrinsic in all cases.

Using Intrinsics to
Retrieve Variables

The HPCIGETVAR intrinsic returns the current value of the speci�ed
variable from the session variable table. HPCIGETVAR requires only a
variable name. The STATUS parameter is optional. If speci�ed, the
success of the intrinsic call is returned in the STATUS parameter.

Item number and item pairs identify the parameters to receive the
retrieved value. The item number and item pairs that are de�ned for
the HPCIGETVAR intrinsic are listed below:

0 Ignored by the intrinsic.

1 Indicates that the following parameter receives the integer
value of the variable. If the variable is not an integer, a zero
is returned.

2 Indicates that the following parameter receives the string
value of the variable. If the variable is not a string, ASCII
zero is returned.

3 Indicates that the following parameter receives a 1 if the
value is the boolean TRUE or a 0 if the value is the boolean
FALSE. If the variable is not a boolean, a 0 is returned.

6-4 Accessing Variables and CI Commands in Applications

10 Indicates that the following parameter contains the length
of the byte array receiving the variable's string value. If a
length is passed and a byte array is not, an error is returned.

11 Indicates that the following parameter receives the actual
length (in bytes) of the variable's string value.

12 Indicates that the following parameter contains a nonzero
value to dereference the variable recursively. A zero value in
this parameter retrieves the level-1 value of the variable.

13 Indicates that the following parameter receives a 1 if the
variable found is an integer, 2 if the variable found is a
string, or 3 if the variable found is a boolean.

The following example retrieves the current value of the string
variable ANS. The STATUS parameter returns the status of the
intrinsic call. The parameter ANS_LEN returns the length of the string
retrieved.

HPCIGETVAR(ANS,STATUS,2,ANS_STRING,11,ANS_LEN);

When you are unsure of the data type of the variable to be retrieved,
several parameters can be included in the intrinsic call. The value is
retrieved and loaded into the appropriate parameter �eld based on its
type. The variable type parameter (13) is also speci�ed to identify
the actual data type and, therefore, the location of the retrieved
value. The following example identi�es parameters for each data
type and a variable type parameter to identify the data type of the
retrieved value. Note that the STATUS parameter has been omitted in
this intrinsic call.

HPCIGETVAR(ANS2,,1,ANS2_INTEG,2,ANS2_BYTE,3,ANS2_BOOL,10,ANS2_LEN,13,ANS2_VARTYPE);

Another method of retrieving a variable value when the data type
is not known is shown in the following example. Initially, the
HPCIGETVAR intrinsic call is executed to determine only the data type
of the variable. The retrieved data type is then used to branch to the
appropriate intrinsic statement to retrieve the variable value. In the
following example, the variable type is retrieved and analyzed. If the
ANS2_VARTYPE parameter contains 1, the second intrinsic call is used
to retrieve the integer value.

HPCIGETVAR(ANS2,STATUS,13,ANS2_VARTYPE);...
HPCIGETVAR(ANS2,STATUS,1,ANS2_INTEG);

The following program sample retrieves the logical device number of
the user's terminal.

Accessing Variables and CI Commands in Applications 6-5

Function At_Physical_Console : Boolean;

Const

PhysicalConsoleLDev = 20;

KeyWord_GetIntegerValue = 1; { keyword #2 in the intrinsic manual }

CIVarNameLen = 9;

Type

StatusType = Record

Case Boolean Of

True : (Error_Num : Integer);

False : (Info,

SubSys : ShortInt);

End;

CIVarNameType = Packed Array[1..CIVarNameLen] Of Char;

CIVarValueType = Integer; { See constant KeyWord_GetIntegerValue }

Var

Status : StatusType;

CIVarName : CIVarNameType;

KeyValue_CIVarValue : CIVarValueType;
Procedure HPCIGETVAR; INTRINSIC;

Procedure TERMINATE; INTRINSIC;

Procedure Check_Status(Var Status : StatusType);

Begin {Check_Status}

With Status Do

If Info <> 0 Then

Begin

Writeln('Subsystem Number: ', SubSys);

Writeln('Info : ', Info);

TERMINATE;

End;

End; {Check_Status}

Begin {At_Physical_Console}

CIVarName := 'HPLDEVIN '; { Retrieve the ldev number associated }

{ with this terminal }

{ Read the contents of HPLDEVIN variable. }

KeyValue_CIVarValue := 0;

HPCIGETVAR(CIVarName, Status,

KeyWord_GetIntegerValue, KeyValue_CIVarValue);

Check_Status(Status);

At_Physical_Console := KeyValue_CIVarValue = PhysicalConsoleLDev;

End; {At_Physical_Console}

Begin {Main}

If At_Physical_Console Then

Writeln('Execution of this application on the console is not allowed.')

Else

Writeln('Not on console -- run the application.');

End. {Main}

Figure 6-2. HPCIGETVAR Intrinsic Example

6-6 Accessing Variables and CI Commands in Applications

The FINDJCW intrinsic retrieves the value of a speci�ed JCW
variable. The GETJCW intrinsic retrieves the current value of only
the prede�ned variable named JCW. Both of these functions can
be accomplished with the HPCIGETVAR intrinsic by specifying the
appropriate variable name. To ensure program readability, use the
HPCIGETVAR intrinsic in all cases.

Using Intrinsics to
Execute CI
Commands

The HPCICOMMAND intrinsic provides programmatic access to the CI
command set, command �les, and UDCs. Most CI commands can
be invoked from an application program by calling this intrinsic
and specifying the command name and appropriate parameters.
(Commands that cannot be called from an application program
include: ABORT, BYE, CHGROUP, DATA, DO, EOD, EOJ, EXIT, HELLO, JOB,
LISTREDO, OPTION, REDO, RESUME, and SETCATALOG.)

The command and its parameters are passed as a command string
through the �rst parameter of the HPCICOMMAND intrinsic. This
command string must be terminated by a carriage return character.
A prompt character is not included. Any error code set by the
command is returned in the command error parameter.

The HPCICOMMAND can be used to invoke a command �le or UDC
from an application program. This allows multiple commands or
frequently used routines to be called with a single intrinsic reference.

The COMMAND intrinsic functions similarly to the HPCICOMMAND
intrinsic. Its command set, however, is limited to the MPE/iX
built-in commands. You cannot access UDCs or command �les
with this intrinsic. In most instances, the HPCICOMMAND intrinsic
is preferred because of its ability to execute multiple commands
through UDCs and command �les.

Accessing Variables and CI Commands in Applications 6-7

7

Sample Command Files

Samples of the command �les that have been excerpted in the
previous text are provided in the following section. They provide
examples of how the CI's programming elements can be used to
create sophisticated sequential routines. An explanation of each
routine's purpose, a sample of its use, and highlights of the routine
are supplied.

To Center a String The CENTER command �le is an example of string manipulation
functions. It centers a supplied string and displays it on $STDLIST,
usually the user's terminal screen.

A character string is entered as parameter data when the command
�le is invoked. The variable CENT_SPC is de�ned as a string variable
of 40 blank spaces. A portion of this string of blanks is inserted on
the left side of the original text string to center it. The expression
determines the number of blanks to be entered and adds them to the
character string before echoing the phrase. Note that parameters
must always use explicit dereferencing.

PARM STRING
SETVAR CENT_SPC " "

ECHO ![LFT(CENT_SPC,(80-LEN("!STRING"))/2)]!STRING

DELETEVAR CENT_SPC

COMMENT ** END OF CENTER **

Figure 7-1. Center Command File

The repeat function can also be used to simplify this routine.

PARM STRING
ECHO ![RPT(" ",(80-LEN("!STRING"))/2)]"!STRING"

COMMENT ** END OF CENTER **

Figure 7-2. Center Command File with the Repeat Function

Sample Command Files 7-1

To Set a Function
Key

The FKEY command �le sets a single function key. It demonstrates
setting escape sequences with string concatenation and variable
dereferencing.

Parameter input de�nes the key to be set by the command �le (KEY),
the label (L1), the string to be generated when the function key is
pressed (S1), and the key attribute parameter (A1). The possible
entries for the key attribute parameter are:

0 = NORMAL

1 = LOCAL

2 = TRANSMIT

The commands contained in FKEY are provided in the following
example. (Note that an ampersand is used to continue a lengthy
command on a second line. The CI will concatenate the �rst and
second lines to execute the command.)

PARM KEY,L1=" ",S1=" ",A1=2
IF HPJOBTYPE="S" AND HPDUPLICATIVE THEN

ECHO ![CHR(27)]&f!"A1"a!"KEY"k&

![LEN"!L1"]d![LEN("!S1")]L!L1!S1

ECHO ![CHR(27)]&jB

ENDIF

COMMENT ** END OF FKEY **

Figure 7-3. Function Key Command File

To set the F1 key to perform a test and display a message, the
following command string would be entered.

FKEY 1,test,'echo this is a test'

Once the command string has been entered, pressing the F1 key
results in the following display:

d a

c b

:echo this is a test

this is a test

Figure 7-4. FKEY Sample Output

7-2 Sample Command Files

To Add User
Capabilities

The ADDCAP command �le adds capabilities to a user's capability list.
The ALTUSER command is used to alter the capability list. The AM
capability, therefore, is required to execute this command �le. Since
the new capability does not become e�ective until the user logs on
again, the user is o�ered the option of being logged on automatically.
This command also permits an authorized user to change the UID of
a user. Refer to New Features of MPE/iX: Using The Hierarchical
File System (32650-90351).

PARM CAP=""

IF ("!CAP"="") THEN

ECHO (ADDCAP): Your capabilities are: !HPUSERCAPF.

RETURN

ENDIF

IF (POS(UPS("!CAP"),HPUSERCAPF) <> 0) THEN

ECHO (ADDCAP): You already have : !CAP.

ECHO (ADDCAP): The capabilities are: !HPUSERCAPF.

RETURN

ENDIF

SETVAR CIERROR 0

CONTINUE

ALTUSER !HPUSER;CAP=![HPUSERCAPF + ",!CAP"]

IF CIERROR <> 0 THEN

ECHO (ADDCAP): The capabilities remain: !HPUSERCAPF.
ELSE

ECHO (ADDCAP): !HPUSER new capabilities are: ![HPUSERCAPF + ",!CAP"].

SETVAR ADDCAP_TEMP "N"

INPUT ADDCAP_TEMP,"(ADDCAP): Log off/on now (Y/N) ==>",10

IF HPCIERR = -9003 THEN

COMMENT ** TIMED READ EXPIRED **

ECHO

ECHO (ADDCAP): Timed 10-second read expired. &

Logon cancelled.

ELSEIF NOT(UPS(LFT(ADDCAP_TEMP,1)) = "Y") THEN

ECHO (ADDCAP): New capabilities take effect at next &

logon.

ELSE

HELLO !HPJOBNAME,!HPUSER.!HPACCOUNT,!HPGROUP

ENDIF

ENDIF

DELETEVAR ADDCAP_TEMP

COMMENT ** END OF ADDCAP **

Figure 7-5. Additional Capability Command File

An error routine is triggered by the contents of CIERROR. If an
unacceptable parameter is entered, the CIERROR �eld is updated and
the capabilities remain as they were.

Sample Command Files 7-3

There are three possible outcomes in running this command �le using
acceptable input:

No capability was entered as a parameter value. The user's current
capabilities are listed.

The user already has the capability.

The capability is added to the user's list. Note that a relogging
option prompts the user to relog automatically or to wait until the
next logon to activate the new capabilities.

The following examples illustrate these three possibilities.

d a

c b

:ADDCAP

(ADDCAP): Your capabilities are: AM,BA,IA

:ADDCAP AM

(ADDCAP): You already have : AM

(ADDCAP): The capabilities are: AM,BA,IA

:ADDCAP DS

(ADDCAP): SAMPLE new capabilities are: AM,BA,IA,DS

(ADDCAP): Log off/on now Y/N ==>

(ADDCAP): Timed 10-second read expired. Logon cancelled.

Figure 7-6. ADDCAP Sample Output

To Retrieve File
Information

The FILINFO command �le displays �le label information for a given
�le. This command �le provides an extensive routine that analyzes
the �le name if the �le is not found. A fully quali�ed �le name is
returned even if the parameter input was not quali�ed.

7-4 Sample Command Files

PARM FILE

IF NOT (FINFO("!FILE","EXISTS")) THEN

COMMENT ** FILE DOES NOT EXIST **

IF LFT("!FILE",1) <> "*" AND LFT("!FILE",1) <> "$" THEN

COMMENT **QUALIFY FILE BEFORE REPORTING NON-EXISTENCE**

IF POS(".","!FILE") > 0 THEN

COMMENT ** A GROUP NAME IS SPECIFIED **

IF POS(".","!FILE",2) > 0 THEN

COMMENT ** FILE NAME IS FULLY QUALIFIED **

ECHO ![UPS("!FILE")] does not exist.

ELSE

ECHO ![UPS("!FILE")].!HPACCOUNT does not exist.

ENDIF

ELSE

ECHO ![UPS("!FILE")].!HPGROUP.!HPACCOUNT &

does not exist.

ENDIF

ELSE
ECHO !FILE does not exist.

ENDIF

RETURN

ENDIF

COMMENT ** FORMAL FILE DESIGNATOR **

ECHO (FINFO): Full file description for &

![FINFO("!FILE",1)] follows:

COMMENT ** CREATOR AND CREATE/MODIFY DATES **

ECHO Created by ![FINFO("!FILE",4)] on &

![FINFO("!FILE",6)].

ECHO Modified on ![FINFO("!FILE",8)] at &

![FINFO("!FILE",24)].

COMMENT ** FILE CODE **

IF FINFO("!FILE",9) = "" THEN

ECHO FCODE: ![FINFO("!FILE",-9)].

ELSE

ECHO FCODE: ![FINFO("!FILE",9)] &

(![FINFO("!FILE",-9)]).

ENDIF

COMMENT ** RECORD SIZE, END OF FILE, FILE LIMIT **

ECHO RECSIZE: ![FINFO("!FILE",14)], EOF: &

![FINFO("!FILE",19)], FLIMIT: ![FINFO("!FILE",12)].

COMMENT ** FILE OPTIONS **

SETVAR _FOPT FINFO("!FILE,-13)

ECHO FOPTIONS: ![FINFO("!FILE",13)] (#!_FOPT, &

![OCTAL(FOPT)], !HEX(_FOPT)]).

DELETEVAR _FOPT

Figure 7-7. File Information Command File

Sample Command Files 7-5

This command �le searches for a designated �le. If found, its formal
�le designator, creator and creation date, modi�cation information,
�le code, record size, end of �le, �le limit, and �le options are
displayed. The following example provides a sample of the display
provided by the FILINFO command �le.

d a

c b

:FILINFO SAMPLE

(FINFO): Full description for SAMPLE.PUB.MILL follows:

Created by CLM on WED, MAY 10, 1989.

Modified on WED, MAY 10, 1989 at 3:21 PM.

FCODE: 0.

RECSIZE: -80, EOF: 5, FLIMIT:5.

FOPTIONS: ASCII, FIXED, NOCCTL, STD (#5, %5, $5).

Figure 7-8. FILINFO Sample Output

If the �le is not found, an extensive routine determines the fully
quali�ed �le name under which the search was performed. This
routine determines if the speci�ed �le name is a backreferenced �le
name or a system-de�ned �le name. It also determines whether a
group or account designator was included in the original speci�cation.
If necessary the group or account are added to the �le name to fully
qualify it in a response to the user.

To Create a
Calculator

The CALCIT command �le provides the user with an interactive
calculator. The user is prompted for an equation to be solved or an
MPE/iX command to execute. To exit CALCIT, the user enters a
carriage return.

Note that the CENTER command �le is called to center the display
headings on the user's terminal. After an equation is solved,
the result is displayed on the terminal using escape sequences to
append the result to the original input line and to underline it. The
prede�ned variable HPMSGFENCE is used to suppress error messages.

The CALCIT prompt is based on the command �le name. By
dereferencing the latest command entered in the history stack
(!-1), the name that called this command �le becomes a part of
the prompt. If the command �le name is changed to COMPUTE, for
example, the prompt automatically becomes COMPUTE ==>.

7-6 Sample Command Files

PARM ENH_CH=D

COMMENT Interactive calculator using calc and input

ECHO ![CHR(27) + "h" + CHR(27) + "J"]

CENTER "MPE/iX INTERACTIVE CALCULATOR"

CENTER ": executes any MPE/iX command!"

CENTER "Type [RETURN] to exit"

ECHO

SETVAR CALCIT_ESC CHR(27) + "A" + RPT(CHR(27) + "C", 64)

SETVAR CALCIT_PROMPT LFT(UPS("!-1"), POS(' ',"!-1" + ' ')-1) + ' ==> '

WHILE SETVAR (CALCIT_EXPR, RTRIM(INPUT(CALCIT_PROMPT))) <> '' DO

COMMENT Save length before trimming leading blanks

SETVAR CALCIT_LEN LEN(CALCIT_EXPR)

SETVAR CALCIT_EXPR LTRIM(CALCIT_EXPR)

IF LFT(CALCIT_EXPR,1) = ":" THEN

CONTINUE

![RHT(CALCIT_EXPR,LEN)CALCIT_EXPR)-1)]

ELSE

SETVAR HPMSGFENCE 2
SETVAR CIERROR 0

CONTINUE

SETVAR HPRESULT !CALCIT_EXPR

SETVAR HPMSGFENCE 0

IF CIERROR <> 0 THEN

COMMENT User entered an invalid expression.

COMMENT Display error.

ECHO ![RPT(' ',LEN(CALCIT_PROMPT) + HPCIERRCOL-17)]^

ECHO !HPCIERRMSG

ELSE

ECHO ![LFT(CALCIT_ESC, 2 + (LEN(CALCIT_PROMPT) + CALCIT_LEN) * 2) +&

' = ' + CHR(27) + '&d!ENH_CH']!HPRESULT

ENDIF

ENDIF

ENDWHILE

DELETEVAR CALCIT_@

Figure 7-9. Calculator Command File

Sample Command Files 7-7

The following example shows the terminal display to calculate the
equation 5 + 7.

d a

c b

:CALCIT

MPE/iX INTERACTIVE CALCULATOR

: executes any MPE/iX command

Type [RETURN] to exit

CALCIT ==> 5+7 = 12

CALCIT ==>

:

To Create a Menu of
Options

The MENU command �le provides a mechanism for running two
programs, DBREVIEW and DBUPDATE. The user's response of 1 or 2
performs the proper program and prompts the user for another
selection. A response of 0 to exit the routine ends the WHILE loop
and ends the command �le execution.

SETVAR CHOICE ""

WHILE CHOICE <> "0" DO

ECHO Enter 0 to exit

ECHO 1 to review database

ECHO 2 to update database
INPUT CHOICE,"Which number do you select?",15

IF CHOICE = "1" THEN

DBREVIEW

ELSEIF CHOICE = "2" THEN

DBUPDATE

ENDIF

ENDWHILE

Figure 7-10. Menu Command File

7-8 Sample Command Files

To List Multiple Files The LIST command �le prints the contents of multiple �les to device
class LP. Up to six �les can be speci�ed as parameters when invoking
the command �le.

PARM F1,F2=$NULL,F3=$NULL,F4=$NULL,F5=$NULL,F6=$NULL

SETVAR LIST_I 1

SETVAR LIST_F "!!F1"

WHILE LIST_I <= 6

IF UPS("!LIST_F") <> "$NULL"

FILE !LIST_F;DEV=LP

ECHO (LIST): Printing of !LIST_F is in progress.

PRINT !LIST_F,*LIST_F

RESET !LIST_F

SETVAR LIST_I LIST_I+1
SETVAR LIST_F "!!F!LIST_I"

ENDIF

ENDWHILE

DELETEVAR LIST_I, LIST_F

Figure 7-11. List Command File

Sample Command Files 7-9

8

Command Input/Output Redirection (CIOR)

Command Input/Output Redirection (CIOR) enables you to
de�ne di�erent �les for command input and command output.
Without CIOR, command input and output defaults to $STDIN or
$STDLIST. For sessions, $STDIN and $STDLIST are your terminal.
For jobs, $STDIN and $STDLIST are spool�les although $STDLIST
is most commonly seen as a printed job output (spool�le) listing.

CIOR provides independent management of redirection by the
command interpreter. This means that command executors, user
commands (user de�ned commands (UDCs) and command �les) need
not be modi�ed to take advantage of CIOR. Redirection is available
from sessions, jobs, programmatically (via the COMMAND and
HPCICOMMAND intrinsics) and in break mode. CIOR provides
defaults for redirection �le attributes; however, you can override the
defaults with �le equation backreferences.

Redirection �les are written to the temporary �le domain unless this
default is overidden with a �le equation. (Other defaults are covered
later in this section).

Redirecting
Command Input and
Output

Redirection is accomplished with the use of the following simple
redirection indicators <, > or >>, followed by a �le name, or
backreference to a �le equation.

The < sign indicates that CI input comes from the speci�ed �le. The
> sign indicates that CI output goes to the speci�ed �le. The >>
sign also indicates that CI output goes to the speci�ed �le; however,
output is appended to the �le (if it exists) so existing data is not
overwritten.

Redirection is supported for single �les only; therefore, wildcarding
on the �le name is meaningless and returns an error.

The following are examples of CIOR.

Command Input/Output Redirection (CIOR) 8-1

Redirecting Command
Input

To redirect command input you would enter:

command < infile

Command can be any MPE/iX command except for the following:

CALC

COMMENT

ELSEIF

IF

REMOTE

SETVAR

SETJCW

TELL

TELLOP

WARN

WHILE

and infile is the �le that contains the input to that command.

For example:

editor < edinput

This invokes the EDITOR and instructs it to read data from the �le
edinput. The data is used by EDITOR as if it was being typed as
input at the terminal.

Redirecting Command
Output

To redirect command output you would enter:

command > outfile

Once again, command is as described above and outfile is the �le
which contains the output of the command.

For example:

showme > userfile

This invokes the showme command and instructs it to write its
output to a �le called userfile.

Redirecting Both
Command Input and

Output

CIOR enables you to redirect both input and output at the same
time.

To accomplish this, you would enter:

command <infile >outfile

For example,

editor <edinput >$null

8-2 Command Input/Output Redirection (CIOR)

This invokes EDITOR, instructs it to read input from �le edinput
and to write output to $NULL. Output from EDITOR for includes the
banner, the prompt and all other EDITOR output.

Redirecting I/O with a
File Backreference

Backreferencing a �le equation with CIOR is both simple and useful.
To accomplish it you enter:

file formaldesig1;parm . . . ;parm . . .
file formaldesig2;parm . . . ;parm . . .
command <*formaldesig1 >*formaldesig2

Note The FILE command accepts the MPE escape syntax, allowing you
to reference HFS (hierarchical �le system) �le names, but only on
the right hand side of the equation. Refer to MPE/iX Commands
Reference Manual (32650-90003) for more information about using
the FILE command with HFS names.

You may backreference both input and output to di�erent �le
equations or either input or output to a single �le equation.

For example:

file sourclst;save;rec=-80,,f,ascii

listfile S@, qualify > *sourclst

This example �rst establishes �le equations to override redirection �le
defaults. It then issues a listfile command and directs its output
to the �le sourclst. The ;save option in the �le equation keeps the
�le in the permanent domain. Without ;save the �le sourclst would
stay in the default (temporary) �le domain.

Redirection �le defaults are discussed in a later section in this
chapter.

Note The LISTFILE command accepts the MPE escape syntax, allowing
you to reference HFS (hierarchical �le system) �le names, but only
on the right hand side of the equation. Refer to MPE/iX Commands
Reference Manual (32650-90003) for more information about using
the LISTFILE command with HFS names.

Appending Redirected
Command Output

When the > sign is used, command output is redirected to the
speci�ed �le and it begins writing output at the beginning of the
�le. When the >> sign is used, command output is redirected to the
speci�ed �le, but it is appended to the �le, so information already
contained in the �le is not overwritten. If >> is used and the �le
does not exist, it will be created.

The append form of output redirection (>> sign) is useful when the
output is a logging message or has a logging function, or when the
user is creating a �le with several commands. If your goal is to create
a �le containing only the output of the current command you should
use the > sign and not the >> sign.

Command Input/Output Redirection (CIOR) 8-3

Redirection supports HFS (hierarchical �le system) names. ECHO Hi

There! >> ./somefile appends to the �le ./somefile

To append redirected output enter:

command >>outfile

For example:

echo text file1 > edinput

echo find "patt1" >> edinput

echo delete >> edinput

echo keep >> edinput

echo exit >> edinput

The �rst line in this example produces the temporary �le edinput.
The next four lines append edit commands to this �le. The result is
a �le of commands that might be read by the EDITOR subsystem
with CIOR in the following command:

editor <edinput >$null

This command invokes the EDITOR and causes it to read the
commands previously written to the �le edinput. Command output,
in this case, is redirected to $NULL.

Printing the edinput �le shows the commands that the EDITOR
would read as input:

print edinput

text file1

find "patt1"

delete

keep

exit

Redirecting Output to a
Device File

To redirect output to a device �le (such as a printer), simply
backreference a �le equation for the device as follows:

file formaldesig;dev= . . .
command >*formaldesig

For example:

file lp602;dev=epoc;env=lp602.hpenv.sys

listfile @.@.myaccount,-2 > *lp602

This example would send a listing of all access control de�nition
(ACD) data to the printer de�ned by the �le equation with formal
�le designator lp602.

The Append Option with Device Files

The redirection append option (use of the >> sign) produces a
di�erent result with device �les than with disk �les. For example,
you could enter:

8-4 Command Input/Output Redirection (CIOR)

file lp602;dev=epoc;env=lp602.hpenv.sys

listfile @.@.myaccount,-2 > *lp602

listfile @.@.myaccount,4 >> *lp602

Both listfile commands are directed to a printer in this example.
When the �rst listfile command �nishes, its spool�le is closed and
made ready for printing. Once this happens to a spool�le it cannot
be reopened. For this reason, the second listfile command cannot
append to the �rst �le even though the >> sign has been used. The
second listfile command simply writes another spool�le.

Stacked I/O
Redirection

I/O redirection may be done even if I/O has already been redirected.

For example, say you have created a command �le named SHOW,
which contains the following:

parm showdest="$STDLIST"
showme

showout >!showdest

showvar

showjob >>!showdest ;job=!hpuser.!hpaccount

Now let's say you set a �le equation for printer LP602 and invoke
SHOW as follows:

show outfile >*lp602

After variable substitution and I/O redirection, this results in the
following sequence of commands and output destinations:

showme output to lp602 (spool�le)
showout output to a temporary �le named out�le
showvar output to lp602 (a new spool�le)
showjob output appended to the temporary �le out�le

Output from the showme and showvar commands goes to the device
de�ned by the �le equation for lp602.

Output from the showout command is redirected to the �le outfile
and output from showjob is appended to outfile. This occurs
because the entire show command �le has its output redirected to
LP602. But inside the command �le, the showout and showjob

commands redirect output (again) to the temporary �le name
outfile.

Command Input/Output Redirection (CIOR) 8-5

Things to Remember
about Redirection
Constructions

When creating redirection constructions it is important to remember
that the redirection speci�cation is stripped from the command line
after string substitution (variable and expression substitution) but
before the command is actually executed.

For example, suppose you entered:

editor <myfile >$null newfile

With CIOR, this command works without problems because both
redirection speci�cations, <myfile and $null, are removed from the
command line before it is invoked. This leaves:

editor newfile

Input, however, would be read from myfile and command output
would be sent to $null. An o�ine listing would go to newfile

however, because that's the function of this parameter in the
EDITOR subsystem.

To further illustrate how string substitution works, let's revisit an
example already used in this chapter which has a command �le with
the following contents:

parm showdest="$stdlist"

showme

showout >!showdest

showvar

showjob >>!showdest ;job=!hpuser.!hpaccount

The default value for the showdest parameter is $stdlist in
this example. If the user does not enter a parameter the showout
command becomes

showout >$stdlist

The redirection speci�cation is stripped from the command line and
no redirection is done because none is necessary. $STDIN behaves
similarly. (In fact the capability to specify >$STDLIST and <$STDIN

as redirection speci�cations is provided to handle this type of
defaulting).

But this example also illustrates why the scan for redirection
speci�cations is done after string substitution. If the redirection scan
were done before string substitution, or at the same time, the user
couldn't specify an input or output redirection �le using parameters
or variables as in the last example. This ordering always allows the
following:

setvar dest ">abc"

listf !dest

Because string substitution occurs �rst listf becomes listf >abc

and then redirection sends the output to �le abc.

8-6 Command Input/Output Redirection (CIOR)

Expression substitution is also done in the string substitution pass
and would, therefore, also be performed before the redirection scan.
For example, the LISTF command might be invoked as follows:

listsf ![input(`ENTER THE FILESET TO BE DISPLAYED:')],6 &

>![input(`ENTER THE FILE NAME FOR THE OUTPUT OF THE LISTF:')]

During the string substitution scan the user is prompted �rst for the
�le set, and then for the output �le name. If the user entered abc@ef

and then outfile the command line would be the following after the
string substitution pass:

listf abc@ef,6 > outfile

Next, the output would be redirected and then the listf would be
invoked.

Escaping
Redirection

If, for any reason, you want to use the IO redirection indicators <,>
or >> without having them function as such, you can precede them
with the ! sign.

For example, suppose you wanted to construct a command �le to
explain how to use I/O redirection which contained the following
echo command:

echo To redirect $STDLIST use the construct, >filename.

This would cause filename to be a newly-created, temporary �le
containing the string preceding it.

To prevent this from happening, insert ! before >filename, as
follows:

echo To redirect $STDLIST use the construct !>filename

The resulting display would be:

To redirect $STDLIST use the construct >filename

The ! can be used in the same way to escape the other redirection
indicators (< and >>) also.

Command Input/Output Redirection (CIOR) 8-7

Redirection File
Defaults

If a �le equation is not used to specify the characteristics of an
output redirection, �le the following are taken as defaults:

256-byte, variable length, ASCII records

DISC=10000

Temporary �le domain

NOCCTL

When output is redirected using the > �lename redirection
speci�cation to a temporary �le which already exists, the following
defaults apply to the open:

WRITE

SHARED access

MULTI access

If the >>�lename speci�cation is used instead, APPEND access is
requested instead of WRITE.

A default also exists for input redirection. A �le to which input has
been redirected is opened by �rst attempting to open a temporary
�le with the name speci�ed. This makes default input redirection
consistent with default output redirection. If no such temporary �le
exists, an attempt is made to open a permanent �le with that name.

When input is redirected, the �le must exist and is opened with the
following defaults:

Look for a temporary �le �rst, then an old permanent �le

READ, SHARED access

Determining
Redirection:
HPSTDIN and
HPSTDLIST

CIOR provides two prede�ned MPE/iX string variables to reect the
state of I/O redirection. These variables can be used within User
Commands or programs that need to detect if their input or output
has been redirected. HPSTDIN will default to the string "$STDIN".
HPSTDLIST will default to the string value "$STDLIST". These
values also indicate whether or not input or output is currently
redirected. If input is redirected, HPSTDIN will contain the name
of the �le to which input has been redirected. If input has been
redirected through a �le equation backreference, HPSTDIN will
contain the formal �le designator of the �le equation. Similarly,
HPSTDLIST will contain the �lename or formal �le designator of the
�le or �le equation to which output has been redirected.

8-8 Command Input/Output Redirection (CIOR)

A

Predefined Variables

Various abbreviations are used in the type column of the following
table to distinguish a variable's type and characteristics. The data
types are identi�ed as follows:

I - Integer format.
B - Boolean format (TRUE/FALSE).
S - String (ASCII) format.

No prede�ned variables can be deleted. The following abbreviations
specify whether a variable can be modi�ed or not:

R - Read only variable (cannot be modi�ed).
W - Read/write variable (can be modi�ed).

Any variables that cannot be altered or retrieved programmatically
through the HPCIGETVAR or HPCIPUTVAR intrinsics are identi�ed
by the notation (NP). (Note that these variables can be accessed
through the HPCICOMMAND and COMMAND intrinsics.)

Job control words are identi�ed in the following table by the
abbreviation JCW. They may be considered integer variables with
legal values ranging from 0 to 65,535 and with bits 16 and 17 (bit 0
being the leftmost bit of 32 bits) having special interpretations. (For
example, if bit 16 is set, the JCW setting is FATAL.)

Predefined Variables A-1

Table A-1. Predefined Variables

Variable Type De�nition Initial Value

CIERROR W JCW last CI error number zero

HPACCOUNT R S user's account name logon account

HPACCTCAP R I current account capability mask logon account capabilities

HPACCTCAPF R S current account capability formatted, for
example, \AM, AL, GL, ND, SF, BA, IA"

formatted logon account

HPAUTOCONT W B
(NP)

enables (TRUE) / disables (FALSE) the
automatic CONTINUE feature

FALSE

HPCIDEPTH R I number of nested CIs 1(=Root CI)

HPCIERR W I contains the most recent CI related error;
similar to CIERROR except warnings are
negative numbers and errors are posistive
numbers

zero

HPCIERRCOL W I contains the column number of the
o�ending parameter for the most recent CI
command error

zero

HPCIERRMSG R S textual message for the most recent
CIERROR (length of message is 0 for
nonexistent CIERROR values)

(null)

HPCMDNUM R I (NP) current command sequence number 1

HPCMDTRACE (subject to
change in future releases)

W B
(NP)

enables (TRUE) /disables (FALSE) the
User Command Tracing facility

FALSE

HPCMEVENTLOG W I when set to n $STDLIST displays the
following n occurrences of tos/reg trap

zero

HPCONNMINS R I current session connect time in minutes zero

HPCONNSECS R I current session connect time in seconds zero

HPCONSOLE R I LDEV of the console console ldev at logon

HPCONTINUE R B (NP) CI's continue state: FALSE=inactive,
TRUE=active

FALSE

HPCPUNAME R S name of computer model, for example,
\SERIES 960"

name of your logon
computer model

HPCPUMSECS R I from root CI = current session CPU time
in milliseconds; from other CI or process =
current process CPU time in milliseconds

zero

HPCPUSECS R I from root CI = current session CPU time
in seconds; from other CI or process =
current process CPU time in seconds

zero

A-2 Predefined Variables

Table A-1. Predefined Variables (continued)

Variable Type De�nition Initial Value

HPCWD R S The HPCWD variable displays your current
working directory name in the HFS
(Hierarchical File System) convention.
Because your current working directory is
not shown by the SHOWME command, you
may want to display it in your prompt by
executing this command:

SETVAR hpprompt "!!hpcwd:"

HFS syntax of logon group

HPDATE R I current day of month logon day of the month

HPDATEF R S current formatted date logon date

HPDAY R I current day of the week (1=SUNDAY) logon day of the week

HPDTCPORTID R S port id of data terminal null string

HPDUPLICATIVE R B duplicative (TRUE)/ nonduplicative
(FALSE)

as appropriate

HPERRDUMP W I (NP) number of errors to be dumped from
process error stack

zero

HPERRSTOLIST W B destination to which errors are to be
written: TRUE=$STDLIST;
FALSE=$STDERR

TRUE

HPEXECJOBS R I number of jobs and sessions currently in
EXEC (executing) state

number of jobs and
sessions in EXEC state

HPFILE R S contains the fully quali�ed �le name of the
currently executing command �le or UDC
�le. If you are not in a UDC or command
�le, HPFILE returns an empty string.

empty string

HPFSERR W I �le system error number for last CI
command to generate �le system error or
warning

zero

HPGROUP R S current group name logon group name

HPGROUPCAP R I current group capability mask logon group caps

HPGROUPCAPF R S current group formatted capability mask,
for example, \IA,BA,PH"

logon group caps

HPHGROUP R S home group name home group

HPHOUR R I current hour number (24-hour clock) logon hour

HPINBREAK R B (NP) FALSE=not in BREAK, TRUE=in
BREAK mode (includes process BREAK
and rit BREAK)

FALSE

HPINPRI R I input priority logon input priority

Predefined Variables A-3

Table A-1. Predefined Variables (continued)

Variable Type De�nition Initial Value

HPINTERACTIVE R B interactive (TRUE)/ noninteractive
(FALSE)

as appropriate

HPINTRODATE R S formatted job/session logon date date of logon

HPINTROTIME R S formatted job/session logon time time of logon

HPJOBCOUNT R I number of jobs executing logon number of executing
jobs

HPJOBFENCE R I fence value for waiting jobs logon jobfence

HPJOBLIMIT R I current job limit job limit at logon

HPJOBNAME R S name of current job/session logon job name

HPJOBNUM R I job/session number, for example, 12 your job/session number

HPJOBTYPE R S \S"=session, \J"=job your job type

HPLDEVIN R I LDEV number for $STDIN logon input LDEV

HPLDEVLIST R I LDEV number for $STDLIST logon output LDEV

HPMINUTE R I current minute number logon minute

HPMONTH R I current month number logon month

HPMSGFENCE W I (NP) fence for the level of error messages printed
by the CI: 0=errors/warnings, 1=errors
only, 2=no error/warning messages

0=all errors and warnings
are printed

HPNCOPIES R I number of $STDLIST copies for jobs copies subparm of the
outclass= parm of the
JOB command

HPOUTCLASS R S output device class logon output device class

HPOUTFENCE R I output fence value logon output fence value

HPPATH W S search path for command �les and implied
RUN

"!hpgroup,pub,

pub.sys"

HPPIN R I returns the process identi�cation number of
the currently executing process.

empty string

HPPROMPT W S CI's prompt string \:" (colon)

HPQUIET R B boolean indicating if session is accepting
messages: FALSE = accepting messages;
TRUE = not accepting messages

TRUE

HPREDOSIZE W I number of entries in the CI's redo stack 20

HPRESULT W S, W
I, or W B

value of the most recent CALC command
evaluated (for example, \abc", 12, TRUE)

zero

A-4 Predefined Variables

Table A-1. Predefined Variables (continued)

Variable Type De�nition Initial Value

HPSCHEDJOBS R I number of jobs currently in SCHED state
(scheduled state)

number of jobs in SCHED
state

HPSESCOUNT R I number of sessions executing logon number of sessions
executing

HPSESLIMIT R I current session limit session limit at logon

HPSTDIN R S �le name or formal �le designator to which
input has been redirected, names for
$STDIN

$STDIN

HPSTDLIST R S �le name or formal �le designator to which
output has been redirected, names for
$STDLIST

$STDLIST

HPSUSAN R S unique serial number assigned at the
factory to each system for use by software

unique serial number
assigned to your system at
manufacture

HPSUSPJOBS R I current number of jobs in SUSP state
(suspended)

numbers of jobs in SUSP
state at logon

HPSYSNAME W S name of computer system (user-de�nable) null string (" ")

HPSYSTIMEOUT R I reads from the sysgen con�guration �le
what the minimum timeout is on the
system. Works with HPTIMEOUT which
controls the CI timed reads. HPSYSTIMEOUT
is a minimum cap on HPTIMEOUT.
HPTIMEOUT cannot be less than
HPSYSTIMEOUT.

zero, means unlimited
time.

HPTIMEF R S current formatted time logon time

HPTIMEOUT W I number of minutes for CI reads
(HPTIMEOUT=0 means no timeout)

zero

HPTYPEAHEAD W B boolean indicating if typeahead is turned
on

FALSE

HPUSER R S current user name logon user

HPUSERCAP R I current user's capability mask logon user caps

HPUSERCAPF R S current user's formatted capability mask,
for example, \IA,BA,PH"

logon user caps

HPUSERCMDEPTH R I (NP) number of nested UDCs and/or command
�les

zero

HPUSERCOUNT R I current number of licensed users accessing
the system

licensed users

HPUSERLIMIT R I legal (licensed) limit of concurrent users
allowed access to the system, can be
accessed programmatically

legal user limit

Predefined Variables A-5

Table A-1. Predefined Variables (continued)

Variable Type De�nition Initial Value

HPVERSION R S MPE XL version ID (v.uu.�) current MPE XL version

HPWAITJOBS R I current number of jobs waiting number of jobs waiting at
logon time

HPYEAR R I last two digits of the current year logon year number

JCW W JCW job control word (variable) zero

A-6 Predefined Variables

B

Evaluator Functions

The following table identi�es most of the expression evaluator
functions. For a list of the latest evaluator functions, refer to the
MPE/iX Commands Reference Manual (32650-90003).

Table B-1. Expression Evaluator Functions

Symbol Function Example Result

+(numeric) addition 4 + 5 9

+(string) concatenate "abc" + "de" abcde

-(numeric) subtraction 12 - 6 6

-(string) deletion of �rst occurrence "abc" - "b" ac

* multiplication 4 * 5 20

/ integer division 79/ 10 7

^ exponentiation (0^0 yields 1) 2^3 8

either " or ' string identi�er either "abc" or 'abc' abc

() parentheses (3 + 4) * 2 14

< less than (Strings are compared
character by character, until an
inequality exists.)

5 < 6
'abcc' < 'abdc'
'abcd' &> 'abc'

TRUE
TRUE
TRUE

<= less than or equal "abc" <= "abc" TRUE

> greater than "xyz" > "abc" TRUE

>= greater than or equal "abc" >= "abc" TRUE

<> not equal 5 <> 6 TRUE

= equal \xyz"= \xyz" TRUE

ABS(integer) absolute value ABS(-4) 4

ALPHA(string) check if a string is alphabetic ALPHA('abcd')
ALPHA('ab3d ef')

TRUE
FALSE

ALPHANUM(string) check if a string is only alphabetics
and digits

ALPHANUM('abCd')
ALPHANUM('45abd')
ALPHANUM('3d ef')

TRUE
TRUE
FALSE

AND logical and 7=7 AND 5=5 TRUE

Evaluator Functions B-1

Table B-1. Expression Evaluator Functions (continued)

Symbol Function Example Result

BAND bitwise and 7 BAND 13 5

BNOT bitwise not BNOT 5 -6

BOR bitwise or 5 BOR 2 7

BOUND(varname) variable de�nition test (Returns
TRUE if varname has been de�ned.)

BOUND(HPPATH) TRUE

BXOR bitwise exclusive or 7 BXOR 5 2

CHR(integer) ASCII value (integer) ===>
character

CHR(65) A

CSL circular shift left -2 CSL 2 -5

CSR circular shift right -7 CSR 1 -4

DWNS(string) shift string to lowercase (Operates on
ASCII characters in ranges of 'a'
through 'z' and 'A' through 'Z' only.)

DWNS('aBC&#dE') abc&#de

FINFO(�lename,option) �le information FINFO('x.pub',0) TRUE

HEX(integer) convert to hexadecimal string HEX(329) $149

INPUT([prompt][,wait]) accept user input INPUT('Enter choice:',20) Enter choice: Y
�Return� \Y"

LEN(string) string length LEN("abc") 3

LFT(string, # chars) left string extraction LFT('abc',2) ab

LSL logical shift left 7 LSL 1 14

LSR logical shift right -7 LSR 1 2,147,483,644

LTRIM(string [,trimstr]) trim left end of string 'X'+LTRIM(' abc')
\X"+LTRIM(' . . . abc',
'.')

Xabc
Xabc

MAX(num1 [,num2 . . .]) �nd largest of several integers MAX(5,4-3,70,0) 70

MIN(num1 [,num2 . . .]) �nd smallest of several integers MIN(5,4,-3,70,0) -3

MOD modulo 25 MOD 2 1

NOT logical not NOT(2>1) FALSE

NUMERIC(string) check is a string is all digits NUMERIC('12345')
NUMERIC('$a234ef')

TRUE
FALSE

OCTAL(integer) convert to octal string OCTAL(329) %511

ODD(integer) determine if integer is odd ODD(233)
ODD(-2)

TRUE
FALSE

OR logical or 5=5 OR 2=3 TRUE

B-2 Evaluator Functions

Table B-1. Expression Evaluator Functions (continued)

Symbol Function Example Result

ORD(string) ordinal ORD('AbcD') 65

POS(�nd str,source

str [,n])
�nd Nth occurrence of �nd str in
source str (-N searches from right)

POS('ab','cgabd')
POS('.','�le.grp.acct',2)
POS('.','�le.grp.acct',-1)

3
9
9

RHT(string, # chars) right string extraction RHT("abc",2) bc

RPT(string,count) repeat a string (-count reverses
string)

RPT('aBc',3)
RPT('aBc',-3)

aBcaBcaBc
cBacBacBa

RTRIM(string [,trimstr]) trim right end of string RTRIM('abc ')+'X'
RTRIM('abc . . .
','.')+\X"

abcX
abc X

SETVAR(varname,expr) return result of expr and set varname

to result
SETVAR(myvar ,2*3+5) sets variable

myvar to 11
and returns 11

STR(string,start pos, #
chars)

general string extraction STR('abcde',2,3) bcd

TYPEOF(expression) type of variable or expression (0 =
invalid, 1 = integer, 2 = string, 3 =
Boolean value)

TYPEOF(HPPATH) 2 (string)

UPS(string) shift string to uppercase (Operates on
ASCII characters in range of 'a'
through 'z' and 'A' through 'Z'.)

UPS('aBc5d') ABC5D

XOR logical exclusive or 7=7 XOR 5=5 FALSE

Evaluator Functions B-3

Index

A arithmetic operations, 4-1

B bit operations, 4-3
branching, 5-4
BREAK option, 2-3

C CHR function, 4-3
CI command length, 1-1
CI de�nition, 1-1
CIOR, 8-1{8
appending redirected command output, 8-3
command exceptions, 8-2
construction, 8-6{7
defaults, 8-1
determining redirection, 8-8
escaping redirection, 8-7
examples, 8-1{8
�le backreferencing, 8-3
redirecting output to a device �le, 8-4
redirection �le defaults, 8-8
redirection indicators, 8-1
stacked redirection, 8-5
wildcarding, 8-1

command �les, 1-2, 2-5
execution, 2-5
options, 2-6
parameters, 5-1
search pathway, 2-5
search sequence, 2-5

command history stack, 2-2
Command Input/Output Redirection (CIOR), 8-1{8
command interpreter, 8-1. See also CI
COMMAND intrinsic, 2-6, 6-7
commands
DELETEVAR, 3-2
DO, 2-2
ECHO, 5-6
ELSE, 5-4
ELSEIF, 5-4
ENDIF, 5-4
ENDWHILE, 5-5
ESCAPE, 5-7
IF, 5-4
INPUT, 5-3

Index-1

LISTREDO, 2-2
PARM, 5-1
PRINT, 5-6
REDO, 2-2
RETURN, 5-7
SETCATALOG, 2-2
SETVAR, 3-1
SHOWVAR, 3-1, 3-3
WHILE, 5-5

comparison operators, 4-10
conditional branching, 5-4
CSL function, 4-3
CSR function, 4-3

D decimal representation, 4-4
DELETEVAR command, 3-2
dereferencing
explicit, 3-5
expressions, 4-10
implicit, 3-4
parameters, 5-2
recursive, 3-5

device �le output, 5-7
DO command, 2-2
DWNS function, 4-2

E ECHO command, 5-6
ELSE command, 5-4
ELSEIF command, 5-4
ENDIF command, 5-4
ENDWHILE command, 5-5
ESCAPE command, 5-7
escaping CIOR redirection, 8-7
explicit dereferencing, 3-5
expression
evaluation, 4-11
evaluator, 1-2
substitution, 4-10
symbols, 4-1

F �le defaults for CIOR redirection, 8-8
�le input, 5-3
�le output, 5-6
FINDJCW intrinsic, 6-6
FINFO
function, 4-4
options, 4-5

FINFO function
example, 7-4

functions
CHR, 4-3
CSL, 4-3
CSR, 4-3
DWNS, 4-2

Index-2

FINFO, 4-4
HEX, 4-4
LEN, 4-3
LSL, 4-3
LSR, 4-3
LTRIM, 4-3
OCTAL, 4-4
ORD, 4-3
RPT, 4-3
RTRIM, 4-3
UPS, 4-2

G GETJCW intrinsic, 6-6

H HELP option, 2-3, 2-4
hexadecimal representation, 4-4
HEX function, 4-4
HPCICOMMAND intrinsic, 2-6, 6-7
HPCIDELETEVAR intrinsic, 6-4
HPCIGETVAR intrinsic, 6-4, 6-5
HPCIPUTVAR intrinsic, 6-1, 6-3
HPSTDIN, 8-8
HPSTDLIST, 8-8

I IF command, 5-4
implicit dereferencing, 3-4
index variable, 5-5
input
from a �le, 5-3
interactive, 5-3
parameter, 5-1
redirection, 5-3

INPUT command, 5-3
integer algebra, 4-1, 4-2
intrinsics
COMMAND, 2-6, 6-7
FINDJCW, 6-6
GETJCW, 6-6
HPCICOMMAND, 2-6, 6-7
HPCIDELETEVAR, 6-4
HPCIGETVAR, 6-4, 6-5
HPCIPUTVAR, 6-1, 6-3
PUTJCW, 6-4
SETJCW, 6-4

I/O redirection, 5-3, 5-6
item number pairs, 6-1, 6-4

Index-3

J JCW, 3-1, 6-4, 6-6
job control word. See JCW

L LEN function, 4-3
LIST option, 2-3, 2-4
LISTREDO command, 2-2
logical operations, 4-3
LOGON option, 2-3, 2-4
looping construct, 5-5
LSL function, 4-3
LSR function, 4-3
LTRIM function, 4-3

N nested IFs, 5-4
NOBREAK option, 2-3, 2-4
NOHELP option, 2-3, 2-4
NOLIST option, 2-3, 2-4
NOLOGON option, 2-3
NOPROGRAM option, 2-3, 2-4
NORECURSION option, 2-3

O OCTAL function, 4-4
octal representation, 4-4
order of operations, 4-1, 4-2
ORD function, 4-3
output
device �le, 5-7
redirection, 5-6
to �le, 5-6
to terminal, 5-6

P parameter
example, 7-2
in command �le, 5-1
input, 5-1
in UDC, 5-1, 5-2
optional, 5-2
required, 5-2

PARM command, 5-1
prede�ned variable, 3-1, 3-3, 6-3
example, 7-3

PRINT command, 5-6
processing loop, 5-5
example, 7-8, 7-9

programmatic access, 6-7
PROGRAM option, 2-3, 2-4
PUTJCW intrinsic, 6-4

Index-4

R RECURSION option, 2-3, 2-4
recursive dereferencing, 3-5
redirection, command input and output, 8-1{8
redirection speci�cation
stripping from command line, 8-6

REDO command, 2-2
repeat function
example, 7-1

RETURN command, 5-7
RPT function, 4-3
RTRIM function, 4-3

S search sequence
command �les, 2-5
UDC, 2-3

session variable table, 3-1, 3-3
SETCATALOG command, 2-2
SETJCW intrinsic, 6-4
SETVAR command, 3-1
SHOWVAR command, 3-1, 3-3
spool�le, 8-1
string
case shifting, 4-2
example, 7-1, 7-6
ordinal representation, 4-3
repeated, 4-3
subtraction, 4-2
trim, 4-3

string evaluation, 4-2
string length, 4-3
string substitution, 3-6

U UDC
cataloging, 2-2
creating, 2-2
de�nition of, 2-2
execution, 2-3
�le, 2-2
options, 2-3
parameters, 5-1, 5-2
search sequence, 2-3

UPS function, 4-2
user-de�ned commands. See UDC
user-de�ned variable, 3-1, 3-1, 6-1, 6-4

Index-5

V variable, 1-2
current value, 3-2, 3-3
deletion, 3-2, 6-4
in expression, 4-10
naming convention, 3-2
prede�ned, 3-1, 3-3, 6-3
retrieval, 6-4
setting, 3-1, 6-1, 6-3
type, 3-1, 3-2
user-de�ned, 3-1, 3-1, 6-1, 6-4
wildcard character, 3-1

variable table, 3-1, 3-3

W WHILE command, 5-5
wildcard character, 3-1

wildcarding, 8-1

Index-6

	Top of Document
	Preface
	Contents
	Introduction
	What Is the Command Interpreter?
	How Is the Command Interpreter Used?
	How Programmers Use the CI

	Accessing the Command Interpreter
	Issuing Commands Directly
	Reissuing and Modifying Commands
	Issuing Commands through UDCs
	Issuing Commands through Commands files
	Issuing Commands from an Application Program
	Parameter Handling
	Setting and Manipulating Variables
	Setting User-Defined Variables
	Using Predefined Variables
	Accessing Variable Values
	Substituting Strings

	Evaluating Expressions
	Using Expressions inCI Commands
	Expression Substitution

	Using Language Constructs Available with CI
	Obtaining Input
	Branching After Evaluation
	Creating Processing Loops
	Reporting Results
	Returning to Calling Environment

	Accessing Variables and CI Commands in Applications
	Using Intrinsics to Set Variables
	Using Intrinsics to Retrieve Variables
	Using Intrinsics to Execute Commands

	Sample Command Files
	To Center a String
	To Set a Function Key
	To Add User Capabilities
	To Retrieve File Information
	To Create a Calculator
	To Create a Menu of Options
	To List Multiple Files

	Command Input/Output Redirection (CIOR)
	Redirecting Command Input and Putput
	Stacked I/O Redirection
	Things to Remember about Redirection Constructions
	Escaping Redirection
	Redirection File Defaults
	Determining Redirection: HPSTDIN and HPSTDLIST

	App. A - Predefined Variables
	App. B - Evaluator Functions
	Index

