
900 Series HP 3000 Computer Systems

Using KSAM XL

ABCDE

HP Part No. 32650-90168

Printed in U.S.A. 1994

Third Edition

E0394

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1994 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
version indicates the version of the software product at the time
this document was issued. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one
correspondence between product releases and document editions.

Edition Date Software
Version

First Edition April 1990 A.40.00

Second Edition June 1992 B.40.00

Third Edition March 1994 C.50.00

iii

iv

Preface MPE/iX, Multiprogramming Executive with Integrated POSIX, is
the latest in a series of forward-compatible operating systems for the
HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will
encounter references to MPE XL, the direct predecessor of MPE/iX.
MPE/iX is a superset of MPE XL. You can continue to use MPE XL
system documentation, although it may not refer to features added
to the operating system to support POSIX (for example, hierarchical
directories).

Finally, you may encounter references to MPE V, which is the
operating system for HP 3000s not based on the PA-RISC
architecture. MPE V software can be run on the PA-RISC (Series
900) HP 3000s in what is known as compatibility mode.

v

vi

In This Book This manual provides programmers with descriptions and examples
of the KSAM XL �le format and its accessing routines. The material
is organized into nine chapters and two appendixes.

The \Introduction" describes the KSAM XL �le, its indexing
mechanism, and its standard recovery methods.

\Creating a KSAM XL File" describes di�erent methods of creating
a KSAM XL �le. Standard commands have been adapted to create
and load a KSAM XL �le. Intrinsics are also available to create and
open a KSAM XL �le. The key characteristics of the �le are speci�ed
in command or intrinsic parameters.

\Obtaining File Information" describes the LISTFILE command and
two intrinsics that access �le and key characteristics of a KSAM XL
�le.

\Opening and Closing the File" describes the intrinsic opening and
closing routines. Note that a KSAM XL �le can also be created at
the time the �le is opened.

\Reading File Data" provides various methods of accessing records
both sequentially and randomly using di�erent intrinsics.

\Writing and Updating Record Data" provides the intrinsics that are
used to write and append records to a �le. File updates and deletions
are also described.

\Protecting the File and Its Data" provides several methods of
maintaining �le integrity through error checking routines and
regular �le backups. Special information is provided for protecting
data when access is shared. This section also describes recovering
from system and software aborts and from internal �le structure
corruption.

\Migration and Mixed Mode Processing" o�ers migration strategies
for transferring CM KSAM �les to an MPE/iX system and to the
KSAM XL �le format.

\KSAM XL Intrinsics" provides all syntax and operation notes
regarding the use of the KSAM intrinsics.

Two appendixes provide COBOL 68 intrinsics and BASIC/V
intrinsics that may be needed for program maintenance. These
intrinsics are not intended for use in new program development.
They are provided here only as a maintenance aid for COBOL 68 or
BASIC/V programs.

vii

viii

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

ix

Conventions
(continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.

�
A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the Y key while holding down the control key.

x

Contents

1. Introduction
KSAM XL File Format 1-1
Index Area 1-3
Data Area 1-4

Automatic Recovery 1-5

2. Creating a KSAM XL File
Creating the File With the BUILD Command . . . 2-1
KSAM XL File Characteristics 2-2
Key Characteristics 2-2
First Record Number 2-3
REUSE Option 2-3
Language ID 2-3
OPTMBLK/DEFBLK Option 2-4

Sample BUILD Command 2-5
Specifying an Indirect File 2-6

Loading Data to a KSAM XL File 2-7
Modifying Existing File Speci�cations While Copying 2-8
Building a KSAM XL File Programmatically 2-8
Language ID 2-9
Flag word 2-9
Number of Keys 2-11
Key Parameters 2-11

Using Related Commands 2-13
Deleting a KSAM XL File 2-14
Renaming a KSAM XL File 2-14
Modifying File Attributes 2-14

3. Obtaining File Information
Displaying File and Key Information 3-1
Accessing File Information from a Program 3-3
Accessing Key Information From a Program 3-4
Accessing User-De�ned Labels 3-4

Contents-1

4. Opening and Closing the File
Opening an Existing KSAM XL File 4-1
Using the HPFOPEN Intrinsic 4-1
Using the FOPEN Intrinsic 4-3

Opening a New File 4-4
Closing a KSAM XL File 4-8

5. Reading File Data
Sequential Access by Primary Key 5-2
Sequential Access by Primary and Alternate Key . . 5-3
Specifying the Record Number 5-3
Specifying a Key Value 5-3

Sequential Access by Partial Key Value 5-4
Random Access of a Single Record 5-5
Using a Key Value 5-5
Using the Relative Record Number 5-5
Using a Physical Record Number 5-5

Sequential Access in Physical Record Order 5-6
Shared File Access 5-6

6. Writing and Updating Record Data
Writing New Records 6-2
Updating Existing Records 6-2
Deleting a Record 6-3
Shared Access 6-3

7. Protecting the File and Its Data
Checking Error Information 7-1
Protecting Data When File Access is Shared 7-2
Writing Directly to Disk 7-3
Recovering from a System or Software Abort 7-3
Backing Up KSAM XL Files 7-4
Recovering from Index Corruption 7-4

8. Migration and Mixed Mode Processing
Similarities in KSAM File Features 8-1
Di�erences in KSAM File Features 8-2
Migrating KSAM Files 8-3
Mixed Mode Operation 8-5

9. KSAM XL Intrinsics
FCHECK 9-2
FCLOSE 9-4
FCONTROL 9-7
FERRMSG 9-10
FFILEINFO 9-11
FFINDBYKEY 9-27
FFINDN 9-29
FGETINFO 9-31
FGETKEYINFO 9-35
FLABELINFO 9-40

Contents-2

FLOCK . 9-49
FOPEN . 9-51
FPOINT 9-66
FREAD . 9-67
FREADBYKEY 9-69
FREADC 9-71
FREADDIR 9-73
FREADLABEL 9-75
FREMOVE 9-76
FRENAME 9-77
FSPACE 9-80
FUNLOCK 9-81
FUPDATE 9-82
FWRITE 9-84
FWRITELABEL 9-86
HPFOPEN 9-87

A. COBOL Intrinsics
Calling a KSAM Procedure A-1
Filetable Parameter A-2
Status Parameter A-4
KSAM Logical Record Pointer A-6
Shared Access A-7
Sample KSAM File A-8
CKCLOSE A-10
CKDELETE A-11
CKERROR A-15
CKLOCK A-16
CKOPEN A-18
CKOPENSHR A-23
CKREAD A-24
CKREADBYKEY A-27
CKREWRITE A-31
CKSTART A-36
CKUNLOCK A-40
CKWRITE A-42

Examples of KSAM File Access A-47
Sequential Write A-47
Sequential Read A-50
Random Update A-53

B. BASIC/V Intrinsics
Overview B-1
Calling a KSAM Procedure B-2
Optional Parameters B-2

Status Parameter B-3
KSAM Logical Record Pointer B-5
Shared Access B-6
BKCLOSE B-7
BKDELETE B-9
BKERROR B-12

Contents-3

BKLOCK B-14
BKOPEN B-16
BKREAD B-23
BKREADBYKEY B-27
BKREWRITE B-30
BKSTART B-34
BKUNLOCK B-39
BKWRITE B-41

C. HP C/iX Example Program

Index

Contents-4

Figures

1-1. General Representation of the KSAM XL Format . 1-2
1-2. A Simpli�ed View of the KSAM File Structure . . 1-3
1-3. Simple Index Tree Structure 1-4
2-1. Creating a KSAM XL �le using the OPTMBLK

parameter 2-4
2-2. Creating a KSAM XL �le with the data block size set

at 4K bytes (default) 2-5
2-3. Building the AR Master File 2-6
2-4. Using a Key Data File 2-7
2-5. KSAM XL Parameter Format 2-10
2-6. KSAM Parameter Settings 2-12
3-1. File Type Display 3-1
3-2. File Information Display 3-2
3-3. Key Information Display 3-3
4-1. Opening an Existing KSAM XL File with HPFOPEN 4-2
4-2. Opening a New KSAM XL File with HPFOPEN . 4-5
4-3. Opening a New KSAM XL File with FOPEN . . 4-7
5-1. FFINDN Intrinsic Sample 5-3
5-2. FFINDBYKEY Intrinsic Sample 5-4
5-3. Partial Key Search Sample 5-4
5-4. Accessing a Record by Key Value 5-5
7-1. Index Corruption Recovery 7-5
9-1. Foption Bit Summary 9-25
9-2. Aoption Bit Summary 9-26
9-3. FGETKEYINFO Parameter Format 9-36
9-4. FGETKEYINFO Control Parameter Format . . . 9-37
9-5. Foption Bit Summary 9-47
9-6. FOPEN KSAM XL Parameter Format 9-64
9-7. HPFOPEN KSAM XL Parameter Format 9-106
A-1. Filetable Structure A-2
A-2. Representation of KSAMFILE Used in COBOL

Examples A-8
A-3. Procedures Allowed for Input/Output Type/Access

Mode Combinations A-19
A-4. Sequential Write Using COBOL A-48
A-5. Sequential Read Using COBOL A-50
A-6. Random Update with COBOL A-54
B-1. Closing a KSAM File with BKCLOSE B-8
B-2. Deleting a Record With BKDELETE B-11
B-3. Dynamically Locking a KSAM File with BKLOCK B-15
B-4. Opening KSAM File with BKOPEN B-22
B-5. Reading From a KSAM File with BKREAD . . . B-26

Contents-5

B-6. Reading a Record Located by Key Value with
BKREADBYKEY B-29

B-7. Rewriting Record in KSAM File with BKREWRITE B-32
B-8. Positioning Pointer to Least-Valued Record with

BKSTART B-37
B-9. Positioning Pointer to Particular Record with

BKSTART B-38
B-10. Dynamically Unlocking a KSAM File B-40
B-11. Writing to a KSAM File with BKWRITE B-42

Contents-6

Tables

5-1. Pointer and Advance Flag Settings for Reading . . 5-2
6-1. Pointer and Advance Flag Settings for Writing . . 6-1
9-1. FCONTROL Itemnum/Item Values 9-8
9-2. FFILEINFO Itemnum/Item Values 9-12
9-3. FFILEINFO File Codes 9-22
9-4. FLABELINFO Itemnum/Item Values 9-43
9-5. FOPEN/HPFOPEN Parameter Equivalents . . . 9-62
9-6. HPFOPEN Itemnum/Item Values 9-88
9-7. FOPEN/HPFOPEN Parameter Equivalents . . . 9-104
A-1. Positioning the Logical Record Pointer A-7
B-1. Positioning the Logical Record Pointer B-6
B-2. Procedures Allowed by BKOPEN Access Parameter B-19
B-3. Relationship of Exclusive Parameter to Access

Parameter B-20

Contents-7

1

Introduction

The Keyed Sequential Access Method (KSAM) is a method of
organizing data records according to the content of key �elds within
the record. This method allows sequential processing of records
without relying on the physical location of the record in the �le.

Every record in a KSAM �le contains a primary key �eld. The
content of this �eld determines the logical sequence of each record.
Alternate keys o�er di�erent sequences for accessing the same
records.

KSAM XL is a KSAM �le format that functions in the native mode
(NM) environment of the MPE/iX operating system. It is a single
�le that consists of an index area that contains key indexes, and a
data area that contains data records.

A primary key and up to �fteen alternate keys can be de�ned for a
KSAM XL �le. Key values are arranged in ascending order based on
the data type of the �eld.

Note The MPE V/E KSAM �le format is also available on the MPE/iX
system and is referred to as CM KSAM. It is a two-�le format
consisting of a data �le and a key �le. Refer to the KSAM/3000
Reference Manual (30000-90079) for a description of the format, �le
building instructions, and maintenance information.

KSAM XL File
Format

A KSAM XL �le is a single �le consisting of an index portion and
a data portion. Figure 1-1 provides a general representation of the
contents of a KSAM XL �le.

Introduction 1-1

Figure 1-1. General Representation of the KSAM XL Format

1-2 Introduction

Index Area The index area contains a control block, bit mappings for the pages
of the index and data areas, and the key indexes. The control block
contains the �le speci�cations and key speci�cations established when
the �le was built. It also contains pointers to the index and data
page maps to manage the �le's space.

A key index contains a key value and pointer for each record. This
index data is arranged in ascending order based on the key value. If
alternate keys are identi�ed for the �le, alternate indexes are created
for each key.

When the �le is opened for sequential processing, records can be
accessed by physical location in the �le or by key sequence. The
selected key index supplies a pointer to the data record. Figure 1-2
shows how key index entries relate to the appropriate records in the
�le.

Figure 1-2. A Simplified View of the KSAM File Structure

Introduction 1-3

The index portion of the �le is organized in a tree structure.
Figure 1-3 provides a diagram of a simple structure. The entry point
of the structure, the root, either points to the location of an entry or
directs the search to branches of the structure for higher or lower
entries. The branches narrow the search, again, either to an entry
location or to an ever-decreasing number of higher or lower entries.
The lowest level, or leaves, provides pointers to the locations of the
remaining records. Root, branch, and leaf pages for each key are
contained in the index portion of the KSAM XL �le.

Figure 1-3. Simple Index Tree Structure

Data Area The data area of the �le follows the index area and contains all the
data records. A 4-byte record header precedes each record. The
�rst byte of this record header speci�es whether the record has been
deleted. When records are written to a KSAM XL �le, the data
record is written to the data area �rst. Keys are then inserted in the
appropriate indexes using the data area location for creating pointers.

By default, records are stored in chronological order. When new
records are appended, they are written at the end of the �le,
maintaining the chronological order. As records are deleted, the
record space is not recovered and reused.

If the REUSE option is speci�ed when the �le is built, new records
appended to the �le are written in available space throughout the

1-4 Introduction

�le, thus interrupting the chronological sequence. In this case,
physical location of a record does not represent the chronological
order of written records.

Any alterations to the data area of the �le, such as additions,
modi�cations, or deletions, are immediately available to subsequent
accesses by any process. The �le system guarantees the order of
concurrent data access.

Automatic Recovery Automatic recovery maintains minimal data loss, data consistency,
and recoverability from system software and hardware failures.
This recovery is provided by the transaction management facility.
If a failure occurs, all transactions in progress are backed out
automatically when the system is restarted. No data or key
inconsistencies result.

Introduction 1-5

2

Creating a KSAM XL File

You can create a KSAM XL �le in several di�erent ways:

Using the BUILD command. The �le name and �le characteristics
are speci�ed in the command parameters. The �le can then be
loaded with data by using the FCOPY subsystem to load existing
�le data or by directing program output to the �le.

Copying an existing �le using the FCOPY subsystem. File
characteristics can be defaulted to those of the existing �le or
modi�ed by using a �le equation.

Using HPFOPEN or FOPEN intrinsic parameters from within an
application program. The intrinsic call creates and opens the �le.
The program's output can then be written to the opened �le.

Creating the File
With the BUILD
Command

The BUILD command parameters de�ne standard �le characteristics,
such as the �le and record lengths, and �le, record, and data types.
For KSAM XL �les, you must also specify characteristics of each key
�eld and special KSAM options. The following list o�ers the most
common �le characteristics that you need to decide before building a
KSAM XL �le.

The �le name.

Size of the record.

Record type of F for �xed-length records (required for KSAM XL
�les).

Binary-coded or ASCII-coded data.

Permanent or temporary �le.

Device class DISC (required for KSAM XL �les).

The maximum number of records.

The language ID.

A �le type of KSAMXL (required for KSAM XL �les).

Information about each key (repeated up to sixteen times); at least
one key is required :

Type of key data.
The location of the �rst byte of the key.
The length of the key.

Creating a KSAM XL File 2-1

Random insertion or sequential insertion of the key, if
duplication is allowed.

Record numbering starting with 0 or 1.

Reuse of deleted record space or no reuse.

Specify default data block size or allow KSAM XL to select data
block size.

KSAM XL File
Characteristics

The key characteristics, the method of �le numbering, and the reuse
option are unique to KSAM XL �les. Each key must be de�ned in
the BUILD command's ;KEY= parameter. Record numbering and
the reuse option must be speci�ed if the default values are not
acceptable.

Key Characteristics

The ;KEY= parameter of the BUILD command encloses all key
characteristics in parentheses. Individual characteristics for a single
key are separated by commas. Each key description is separated
from the next by a semicolon. The following example shows a ;KEY=

parameter that de�nes two keys. Four characteristics are de�ned for
each key: key type, location, size, and duplication method.

;KEY=(B,9,5,RDUP;I,17,3,DUP)

The following descriptions list the available options for the de�nition
and use of keys. Four characteristics are de�ned for each key: key
type, location, size, and duplication method.

The key type de�nes the data type of the key �eld. The type is
identi�ed by a keyword or its abbreviation. In the previous example,
the �rst key �eld contains byte data and the second is an integer.
The following list provides the valid key types.

byte or B Byte data �eld.
integer or I Integer data �eld.
real or R Real number.
IEEE real or E IEEE oating-point decimal number.
numeric or N Numeric �eld.
packed or P Packed decimal �eld, odd number of digits.
*packed or * Packed decimal �eld, even number of digits.

The key's location is determined by the position of the �rst byte of
the �eld in relation to the beginning of the record. The �rst byte
of the record is considered to be 1. Only one key can start at a
particular location. In the previous example, the �rst key begins in
byte 9, the second in byte 17.

The size of the key must be speci�ed in bytes. Speci�c use of any key
is determined by its de�nition. The ranges listed below indicate the
maximum possible values. The maximum length of the key varies by
data type, as speci�ed in the following list:

2-2 Creating a KSAM XL File

byte 1 to 255 bytes.
integer 1 to 255 bytes of integer data.
real 1 to 255 bytes of real number data.
IEEE real 4, 8, or 16 bytes of IEEE real number data.
numeric 1 to 28 bytes of numeric data.
packed 1 to 14 bytes of packed decimal data (odd number of

characters).
*packed 2 to 14 bytes of signed packed decimal data (even

number of characters).

The duplication key characteristic is an optional �eld. If a key must
be unique, such as an account number or social security number, no
additional parameters are made. The default value is no duplication.
If the key can be duplicated, there are two methods of inserting
duplicate key values in the index's duplicate key chain.

DUP speci�es that each new duplicate key is inserted at the end of the
duplicate key chain, maintaining chronological order.

RDUP speci�es that each new duplicate key is inserted randomly in
the duplicate key chain. RDUP is used if the reuse option is selected.
With RDUP, chronological order is not maintained.

First Record Number

The ;FIRSTREC= parameter of the BUILD command speci�es the
number of the �rst record in the �le. Several record retrieval
methods use record numbers to identify the physical location of a
record. You can specify whether to use \0" or \1" to identify the
�rst record. The default value is 0.

REUSE Option

KSAM XL �les can reuse deleted record space if the REUSE option is
speci�ed. This option, however, increases the allocated space reserved
for the �le by 15 percent and distributes free space evenly throughout
the �le when the �le is initially loaded. When a record is to be added
to the �le, free space is available so that a search for record space is
not lengthy. When a record is deleted, its space is added to the free
space available.

The NOREUSE option, the default value, does not allow the reuse of
deleted record space. This option maintains physical record order. A
new record is appended to the end of the �le, even if other records
have been deleted. If many records are added and deleted, the �le
continues to expand in size. In such cases, it is recommended that
the �le be copied regularly to eliminate the unusable space if disk
space is needed.

Language ID

The optional ;LANG= parameter of the BUILD command 224 speci�es
the native language speci�es the native language of the data in the
�le. You can select the language by entering a code of up to three

Creating a KSAM XL File 2-3

digits or by entering the language name. To �nd out what languages
can be accessed on your system, enter RUN NLUTIL.PUB.SYS. Any
of the listed language IDs can be entered in this �eld. The default
language is Native-3000. Di�erent a�ectd languages may cause the
sequential ordering of records to be a�ected.

OPTMBLK/DEFBLK Option

Users can assure e�cient disk space utilization by using the
OPTMBLK option of the BUILD command. When speci�ed, OPTMBLK
allows KSAM XL to choose the optimal data block size based on
the record size of a �le. Refer to MPE/iX Commands Reference
Manual Volumes 1 and 2 (32650-90003 and 32650-90364) for more
information on using this option.

The LISTFILE, 7 command displays the optimal data block size and
the 8 bit value of the agword of the KSAM parameter.

d a

c b

:BUILD XOPTM;KSAMXL;KEY=(B,1,4);OPTMBLK

:LISTFILE XOPTM,7

KEY KEYTYPE KEY LOCATION KEY SIZE DUP/RDUP

--- ------- ------------ -------- --------

1 BYTE 1 4 NONE

NUM KSAM KEYS: 1 FIRST KSAM RECORD: 0

LANGUAGE : ENGLISH REUSE RECORD : NO

VERSION : 2 COMPUTE BLK SIZE : OPTMBLK

DATA :

Figure 2-1. Creating a KSAM XL file using the OPTMBLK parameter

The DEFBLK parameter of the BUILD command allows the user to
select a data block size of 4K bytes. If neither OPTMBLK nor DEFBLK
is speci�ed, the data block size defaults to DEFBLK (block size of 4K
bytes).

2-4 Creating a KSAM XL File

d a

c b

:BUILD XDEF;KSAMXL;KEY=(B,1,4)

:LISTFILE XDEF,7

KEY KEYTYPE KEY LOCATION KEY SIZE DUP/RDUP

--- ------- ------------ -------- --------

1 BYTE 1 4 NONE

NUM KSAM KEYS: 1 FIRST KSAM RECORD : 0

LANGUAGE : ENGLISH REUSE RECORD : NO

VERSION : 2 COMPUTE BLK SIZE : DEFBLK

DATA :

Figure 2-2. Creating a KSAM XL file with the data block size set at 4K bytes (default)

Use the FILE command along with the FCOPY command to copy a
new KSAM XL �le to one where the data block size is chosen using
OPTMBLK.

Users with existing KSAM XL �les of 4K bytes can convert their �les
by using FCOPY. Specify the OPTMBLK option in the �le equation. This
allows KSAM XL to select the data block size in the �le equation. If
a �le equation does not specify either option, FCOPY uses the FROM=
�le's setting of OPTMBLK or DEFBLK.

Sample BUILD
Command

Figure 2-3 builds a sample KSAM XL master �le to process 80-byte
accounts receivable records in English. The maximum size of the
�le is 100 records. Record numbering in the sample �le begins with
number 1. Reuse of deleted record space is allowed.

In this sample, four key �elds are de�ned to sequence data for various
programming functions:

A unique 6-digit account number as the primary key.

A 25-character �eld containing the client's last name.

A 5-digit zip code �eld.

A 3-character branch ID.

Figure 2-3 creates the ARMSTR �le with the preceding speci�cations
using the BUILD command. (Note that ampersands have been
included at the end of each line to continue the command on
subsequent lines to improve readability.)

Creating a KSAM XL File 2-5

d a

c b

:BUILD ARMSTR.MGR;REC=-80,,F,ASCII;&

DEV=DISC;DISC=100;KSAMXL;&

KEY=(N,4,6;& Specifies account number (primary) key

B,10,25,RDUP;& Defines the last name key

N,65,5,RDUP;& Defines the zip code key

B,70,3,RDUP);& Defines the branch ID key

FIRSTREC=1;REUSE ;LANG=5 Specifies that the first record is

identified by number 1,

that deleted record space can be reused,

and that the native language is English.

Figure 2-3. Building the AR Master File

Specifying an Indirect
File

To reduce errors, the characteristics for key data �elds can be
contained in an indirect �le and referred to in the BUILD command.
Such a �le can be created using an editor, such as HP EDIT. The
information is structured as it would be if it were included in the
command. The format of the key data in the indirect �le is shown in
the following example.

2-6 Creating a KSAM XL File

d a

c b

(N,4,6;&

B,10,25,RDUP;&

N,65,5,RDUP;&

B,70,3,RDUP)

Figure 2-4 shows the command for setting up the same accounts
receivable master �le as in Figure 2-3. The KEY= parameter,
however, refers to the indirect �le named KEYDATA for the key data
speci�cations. The character ^ speci�es that an indirect �le contains
the data.

d a

c b

:BUILD ARMSTR.MGR.AR;REC=-80,,F,ASCII;DEV=DISC;&

DISC=100;KSAMXL;KEY=^KEYDATA;&
FIRSTREC=1;REUSE ;LANG=5

Figure 2-4. Using a Key Data File

Loading Data to a
KSAM XL File

Once the �le has been created, you can load it with data from
another �le or from a program. The FCOPY subsystem is often used
to load data from one �le to another. Any type of �le can be used as
the input �le for this process. FCOPY is executed by entering the
subsystem name. It displays a prompt (>) while awaiting input.

:FCOPY

>

The FROM= command identi�es the source �le containing the data to
be copied. The TO= parameter speci�es the target �le to which the
data will be copied. The following example copies the existing master
�le records contained in OLDMSTR to the newly created KSAM XL �le,
ARMSTR.

>FROM=OLDMSTR.MGR.AR;TO=ARMSTR.MGR.AR

The FCOPY subsystem can also be used to copy a KSAM XL �le's
records in a di�erent sequence. The KEY= parameter identi�es the
relative record location of the key to be used to establish the new
sequence of records. The following example copies records from the
old master �le to the new �le in alphabetical order by client name.
The location of the client name �eld (10) is identi�ed in the KEY=
parameter.

>FROM=OLDMSTR.MGR.AR;TO=ARMSTR.MGR.AR;KEY=10

The FCOPY subsystem can create a new KSAM XL �le if the
source �le is a KSAM XL �le and if no �le characteristics need to
be changed. To identify the type of �le to be built as a KSAM XL

Creating a KSAM XL File 2-7

�le, the name is enclosed in parentheses. If the parentheses are not
included, a standard �le type is created.

The following example creates a new master �le, duplicating the �le
and key speci�cations from the original �le ARMSTR. Note that the �le
name is enclosed in parentheses, identifying the �le type of the new
�le as a KSAM XL �le type.

>FROM=ARMSTR.MGR.AR;TO=(ARMBACK.MGR.AR)

Modifying Existing
File Specifications
While Copying

A �le equation can be used to modify �le speci�cations of an existing
�le. The FCOPY subsystem can be used to copy data from an
existing �le into a new �le using a back reference to the �le equation
for the new speci�cations. The following example copies data from
the �le DOC to a new KSAM XL �le DOC1. The �le type and key
speci�cations for the new �le are speci�ed in the �le equation.

FILE DOC1=DOC1;KSAMXL;KEY=(b,1,4)

FCOPY FROM=DOC;TO=*DOC1;NEW

Building a
KSAM XL File
Programmatically

The HPFOPEN and FOPEN intrinsics can be used within a program to
create and open a KSAM XL �le in a single step. As with the BUILD
command, �le and key characteristics are provided as parameter
data.

Note The HPFOPEN intrinsic can be used only in an MPE/iX environment.
If a program is to be developed for both MPE/iX and MPE V/E
systems, the FOPEN intrinsic should be used. Refer to \Mixed
Mode Operation" in Chapter 8 for information regarding cross
development.

The unique KSAM XL �le and key characteristics are contained in
an array that varies in length from 40 to 162 words. The format of
the array is shown in Figure 2-5. Characteristics for a maximum
of sixteen keys need to be speci�ed in the array. Standard �le
characteristics are contained in the �le options parameter of the
intrinsic.

2-8 Creating a KSAM XL File

Language ID Enter the three digit code for the native language that you desire.
To �nd out what languages can be accessed on your system, enter
RUN NLUTIL.PUB.SYS. A list of languages and their IDs is displayed
on the screen. Any of the listed language IDs can be entered in this
�eld.

Flag word The ag word contains two bytes de�ning the KSAM XL �le
characteristics:

Bits Value/Meaning

15:1 Reserved.

14:1 Enter a 1 if record numbering is to start with 1.

Enter 0 if record numbering is to start with 0.

13:1 Enter 1 if only sequential writing by primary key is allowed.

Enter 0 if random writing by primary key is allowed.

12:1 Enter 1 if deleted record space can be reused.

Enter 0 if deleted record space cannot be used.

11:1 Enter 1 if a language type is speci�ed.

Enter 0 if a language type is not speci�ed.

10:1 Enter 1 if the primary key cannot be changed with the
FUPDATE intrinsic for �les that are opened for sequential
processing.

Enter 0 if the primary key can be changed with the FUPDATE
intrinsic for �les that are opened for sequential processing.

9:1 Enter 1 if the �le is programmatically accessed by the
COBOL programming language. Enter 0 if the �le is not
programmatically accessed by the COBOL programming
language. This enables KSAM to process COBOL
information according to COBOL standards.

8:1 Enter 1 if KSAM XL is to select the optimal data block size.
Enter 0 if KSAM XL is to use the default data block size.

0:9 Enter 0. These bits are reserved and must contain zeros.

Creating a KSAM XL File 2-9

Figure 2-5. KSAM XL Parameter Format

2-10 Creating a KSAM XL File

Number of Keys Enter a digit between 1 and 16 in word 16 to specify the number of
keys to be de�ned for this �le. Refer to Figure 2-5 for the location of
this �eld.

Key Parameters The following parameters are de�ned for each key. The information
about each key is similar to the BUILD command's KEY= parameter.

key type Enter one of the following codes specifying the type
of data the key will contain.

Code Key Data Type

1 Byte key (1 to 255 bytes)

2 Short integer key (255 bytes)

3 Integer key (255 bytes)

4 Real number key (255 bytes)

5 Long real number key (255 bytes)

6 Numeric display key (1 to 28 bytes)

7 Packed decimal key, odd number of digits (1
to 14 bytes)

8 Packed decimal key, even number of digits (2
to 14 bytes)

9 IEEE oating-point decimal key (4, 8, or 16
bytes)

key length Enter the length of the key in bytes. A maximum of
255 bytes is allowed, but the length is dependent on
the type of key data speci�ed.

key location Enter the relative location in bytes of the key �eld in
the record. Note that the �rst byte of the record is
considered 1.

duplicate key
ag

Enter 1 if duplicate key values are allowed for this
key.

Enter 0 if duplicate key values are not allowed for
this key.

random insert
ag

This �eld speci�es the method of inserting duplicate
key values. To use this feature, the previous
duplicate key ag must be set to 1.

Enter 0 if duplicate key values are to be inserted at
the end of the duplicate key chain.

Enter 1 if the duplicate key values are to be inserted
randomly in the duplicate key chain.

Figure 2-6 provides an example of the declarations that are needed
to de�ne and load a KSAM XL parameter array using Pascal/iX.

Creating a KSAM XL File 2-11

Chapter 4 provides an example of an HPFOPEN intrinsic call that
creates and opens a KSAM XL �le.

d a

c b

type

bit1=0..1;

bit4=0..15;

bit7=0..127;

bit8=0..255;

bit12=0..4095;

bit15=0..32767;

bit16=0..65535;

pac80 = packed array [1..80] of char;

ksam_rec = packed record

case integer of

1 : (bitword : bit16);

2 : (lang_id : bit16);

3 : (resrvd0 : bit8;

optm_blk: bit1;

cm : bit1;

chg_primary : bit1;
kslang : bit1;

ksreuse : bit1;

seq_random : bit1;

rec_numbering : bit1;

resrvd2 : bit1);

4 : (resrvd3 : bit8;

num_keys : bit8);

5 : (key_type : bit4;

key_length : bit12);

6 : (dflag : bit1;

maxkeyblk : bit15);

7 : (resrvd5 : bit8;

rflag : bit1;

resrvd6 : bit7);

8 : (key_location : bit16);

end;

ksam_struc = ARRAY[0..80] OF ksam_rec;...

Figure 2-6. KSAM Parameter Settings

2-12 Creating a KSAM XL File

d a

c b

var

ksam_param,

ksamparam : ksam_struc;

keylocation,

reserved : bit16;...
begin

ksamparam[10].lang_id := 5;

ksamparam[16].resrvd3 := 0;

ksamparam[16].num_keys := 1;

ksamparam[17].key_type := 2;

ksamparam[17].key_length := 5;

keylocation := 5;

ksamparam[18].bitword := keylocation;...

KSAM Parameter Settings (continued)

The HPFOPEN intrinsic uses item number pairs to identify intrinsic
parameters. Item number 54 is paired with the KSAM parameter
array to de�ne the KSAM XL key structure. Other item number
pairs that relate to KSAM XL �les speci�cally are listed below:

10 This item number identi�es the KSAM XL �le type. Enter 3 to
indicate that a KSAM XL �le is to be created.

17 A KSAM XL �le can be accessed only as its own type. Enter 0
for a KSAM XL �le.

The FOPEN intrinsic can also be used to create and open a KSAM XL
�le. The same KSAM parameter array is used as an FOPEN parameter
option. The FOPEN intrinsic uses parameter values rather than item
number pairs to identify �le characteristics and the KSAM key value
array. Refer to Chapter 4 for a description of the FOPEN intrinsic.

Using Related
Commands

Several MPE/iX commands can be used for KSAM XL �les. KSAM
XL �les can be deleted and renamed using the same commands
used with standard �les. File attributes can be modi�ed with a �le
equation.

Creating a KSAM XL File 2-13

Deleting a KSAM XL File KSAM XL �les can be deleted using the PURGE command. As with
standard �les, the �le named in the PURGE command is deleted. The
accounts receivable �le can be deleted using the following command.

PURGE ARMSTR.MGR.AR

Renaming a KSAM XL
File

The RENAME command can be used to change the name of an existing
KSAM XL �le. The �le name speci�ed in the command is deleted.
The parameters for the RENAME command are the same as for
standard �les. The �le name speci�ed in the command is deleted.
The �rst �le name is the current name of the KSAM XL �le. The
second �le name is the new name of the �le.

RENAME ARMSTR.MGR, OLDMSTR.MGR.

Modifying File
Attributes

The FILE command declares the �le attributes to be used when an
existing �le is opened. It can be used with KSAM XL �les as well
as standard �les. The FILE command's keywords (;KSAMXL, ;KEY,
;FIRSTREC, ;LANG, ;REUSE, ;NOREUSE, ;OPTMBLK and ;DEFBLK) perform
the same functions as they do for the BUILD command.

The FILE command can be used to override system default �le
speci�cations or speci�cations supplied with the HPFOPEN or FOPEN
intrinsic. The new speci�cations remain in e�ect for the entire job or
session unless they are revoked by the RESET command or superseded
by another FILE command.

2-14 Creating a KSAM XL File

3

Obtaining File Information

You can obtain �le information about an existing �le using the
LISTFILE command or the FGETINFO and FGETKEYINFO intrinsics.
You can also add speci�c information about your �le by writing it to
a user label. The FWRITELABEL and FREADLABEL intrinsics provide
access to user labels.

Displaying File and
Key Information

Use the LISTFILE command to display the �le speci�cations used to
build the �le. This command lists descriptions of one or more disk
�les at the level of detail you select. The level of display detail is
controlled by the option number or keyword parameter following the
�le name.

A KSAM XL �le does not have a unique �le code. The �le's
structure can be discerned from a LISTFILE display using option 1
(SUMMARY) or 2 (DISC). When displayed in this manner, the character
K is appended to the �le type of a KSAM XL �le to distinguish it
from standard �les. A �le code of KSAM identi�es a CM KSAM
data �le. A �le code of KSAMK identi�es a CM KSAM key �le. The
following example displays summary information for a KSAM XL �le,
a CM KSAM key �le, a CM KSAM data �le, and a standard �le.

d a

c b

:LISTFILE,1

ACCOUNT= AR GROUP= MGR

FILENAME CODE ------------LOGICAL RECORD-------

SIZE TYP EOF LIMIT

ARMSTR 160B FAK 0 115

EMPKEY KSAMK 128W FB 1742 1742

EMPLOYEE KSAM 256B FA 0 1023

CLIENT 80B FA 1 1

Figure 3-1. File Type Display

Obtaining File Information 3-1

Two options display the key speci�cations for a KSAM XL �le.
Option 5 (DATA) displays the �le speci�cations and key data for the
�le. Option 7 (UNIQUE) displays information that is unique to the
�le type. For KSAM �les, this displays the key data without the �le
speci�cations.

Figure 3-2 provides an example of the LISTFILE command using
option 5 (DATA) and the display it generates.

d a

c b

:LISTFILE ARMSTR.MGR.AR,5

FILE: ARMSTR.MGR.AR

FILE CODE : 0 FOPTIONS: ASCII,FIXED,NOCCTL,KSAMXL

BLK FACTOR: 1 CREATOR : **

REC SIZE: 160(BYTES) LOCKWORD: **

BLK SIZE: 160(BYTES) SECURITY--READ : ANY

EXT SIZE: 0(SECT) WRITE : ANY

NUM REC: 0 APPEND : ANY

NUM SEC: 2160 LOCK : ANY

NUM EXT: 2 EXECUTE : ANY

MAX REC: 115 **SECURITY IS ON

FLAGS : n/a

NUM LABELS: 0 CREATED : MON, NOV 13, 1989, 3:35 PM

MAX LABELS: 0 MODIFIED: MON, NOV 13, 1989, 3:35 PM

DISC DEV #: 16 ACCESSED: MON, NOV 13, 1989, 10:15 PM

CLASS : DISC LABEL ADDR: **

SEC OFFSET: 0

KEY KEY TYPE KEY LOCATION KEY SIZE DUP\RDUP

1 NUMERIC 4 6 NONE

2 BYTE 10 25 RDUP

3 NUMERIC 65 5 RDUP

4 BYTE 70 3 RDUP

NUM KSAM KEYS: 4 FIRST KSAM RECORD: 1

LANGUAGE : ENGLISH REUSE RECORDS : YES

PRIMARY KEY : RANDOM COBOL : NO

VERSION : 2 COMPUTEBLK SIZE : OPTMBLK

Figure 3-2. File Information Display

For a KSAM �le, the �le speci�cations, as well as the key information
speci�ed when the �le was built, is displayed. (Note that the
keyword DATA could have replaced the option number 5 in the
LISTFILE request in the preceding example.) This display could be
abbreviated to display only the key data by using option 7 (UNIQUE)
as shown in Figure 3-3.

3-2 Obtaining File Information

d a

c b

:LISTFILE ARMSTR.MGR.AR,7

FILE: ARMSTR.MGR.AR

KEY KEY TYPE KEY LOCATION KEY SIZE DUP\RDUP

1 NUMERIC 4 6 NONE

2 BYTE 10 25 RDUP

3 NUMERIC 65 5 RDUP

4 BYTE 70 3 RDUP

NUM KSAM KEYS: 4 FIRST KSAM RECORD: 1

LANGUAGE : ENGLISH REUSE RECORDS : YES

PRIMARY KEY : RANDOM COMPUTE BLK SIZE : OPTMBLK

VERSION : 2

Figure 3-3. Key Information Display

Accessing File
Information from a
Program

The FGETINFO intrinsic obtains a �le's access and status information
based on the parameters identi�ed in the intrinsic call. Embedded
parameters that are not desired are indicated by commas.
Parameters omitted from the end of the list do not need to be
indicated.

In the following example, the intrinsic call returns the end of �le in
the variable named LSTREC. This number represents the physical
number of the last record in the �le if the REUSE option has not been
speci�ed. This variable can be used to position a pointer to read the
last physical record with the FREADC or FREADDIR intrinsic.

FGETINFO(FILENO,,,,,,,,,,LSTREC);

The FGETINFO intrinsic returns the following �le information.

The fully quali�ed �le name.

The foptions speci�ed in the format of the FOPEN intrinsic.

The aoptions speci�ed in the format of the FOPEN intrinsic.

The logical record size associated with the �le.

The type and subtype of the device being used for the �le.

The logical device number associated with the device on which the
�le resides.

The hardware address of the device.

The data �le code.

The current physical record pointer setting.

Obtaining File Information 3-3

The number of logical records currently in the data �le.

The number of the last logical record that could be contained by
the �le.

The total number of logical records passed to and from the user
during the current access of the �le.

The block size of the �le.

The disk extent size associated with the �le.

The maximum number of disk extents allowed for the �le.

The number of user labels allowed for the �le.

The name of the user who created the �le.

The sector address of the label of the �le.

Accessing Key
Information From a
Program

Like the FGETINFO intrinsic, the FGETKEYINFO intrinsic provides
access and status information about the keys of a KSAM �le.
It provides detailed information about the key location, type,
and length in a parameter format similar to the FOPEN intrinsic
key parameter. The FGETKEYINFO intrinsic also provides access
information, such as a count of the number of times the key �le has
been accessed by various intrinsics, or the date and time the �le was
created, closed, updated, or written to.

Accessing
User-Defined Labels

A user label is an optional method of adding documentation to
your �le. You can write your own labels to a KSAM �le with the
FWRITELABEL intrinsic. For example, you can use a label to enter the
date and time of the last �le update. These labels are read with the
FREADLABEL intrinsic.

Specify the number of user labels to be created in the userlabel
parameter of the FOPEN intrinsic. In order to write labels, the
�le must be open. To do so, set the aoptions parameter of the
FOPEN intrinsic to one of the write, input/output, or update access
speci�cations.

The following example shows the intrinsic call to write information to
the second �le label.

FWRITELABEL(KFILNUM,LABELBUF,60,1);

In this example, the 60 halfwords of text contained in the variable
LABELBUF are to be written in the second user label. Note that
label numbering starts with zero. The second label is identi�ed by
the number 1 in the last parameter. If this parameter contains zero
or is omitted, the �rst label is written.

3-4 Obtaining File Information

You can read the contents of user labels using the FREADLABEL
intrinsic. During the normal reading of a �le, user labels are skipped.
The FREADLABEL intrinsic, therefore, should be called immediately
after the �le has been opened. To read a user label, the �le must be
opened with read, input/output, or update access, and the user labels
to be read must be identi�ed.

Issue the following FREADLABEL intrinsic call to read the user label
written in the previous example.

FREADLABEL(KFILNUM,LABEL2,,1)

The variable LABEL2 returns the contents of the second user label.
By default, the call returns 128 halfwords from the label.

Obtaining File Information 3-5

4

Opening and Closing the File

Some application programming languages o�er commands for
opening and closing KSAM �les (for example, the ORGANIZATION
IS INDEXED clause in COBOL). If not, use the HPFOPEN or FOPEN
intrinsic to open the �le, and the FCLOSE intrinsic to close the �le.
See the appropriate application language reference manual for details
on how to call intrinsics.

Opening an Existing
KSAM XL File

The HPFOPEN and FOPEN intrinsics both open KSAM XL �les, as
well as other �le types. HPFOPEN is designed to be more exible and
o�ers more options than the FOPEN intrinsic. HPFOPEN, however, can
be used only in an MPE/iX environment. If the program is to be
used in both MPE/iX and MPE V/E environments, use the FOPEN
intrinsic.

Using the HPFOPEN
Intrinsic

The HPFOPEN intrinsic uses pairs of item numbers and items for
optional parameter passing. An itemnum parameter passes an integer
by value to de�ne the parameter and expected data type of the value
passed in its corresponding item parameter.

To open an existing permanent �le, �le characteristics do not have
to be speci�ed. This information is obtained by the �le management
system from the �le's label.

Most often, the item number pairs that are needed to open an
existing KSAM XL �le include the �le designator, its domain, and
access options. The domain identi�es the location of the �le to be
opened. The access option de�nes the method of access allowable for
the �le. In some cases, the dynamic locking option and exclusive
option need to be speci�ed if more than one process is to access the
�le.

Figure 4-1 provides a portion of a Pascal program that calls the
HPFOPEN intrinsic to open the accounts receivable KSAM XL �le. It
presents the itemnum and item de�nitions and declarations as well
as the HPFOPEN intrinsic call. In the example, the �le is opened for
update access, allowing all intrinsic usage. It also allows dynamic
locking and shared access for concurrent use with other processes.

Opening and Closing the File 4-1

d a

c b

procedure open_permanent_KSAM_file;

const

formal_designator_option = 2;

domain_option = 3;

access_type_option = 11;

dynamic_locking_option = 12;

exclusive_option = 13;

ASCII_binary_option = 53;

type

pac160 = packed array [1..160] of char;

var

file_num : integer;

status : integer;

file_name : pac160;

permanent : integer;

update : integer;

lockable : integer;

shared : integer;

ascii : integer;

begin

file_num := 0;

status := 0;

file_name := '%ARMSTR.MGR.AR%';

permanent := 1;

update := 5;

lockable := 1;

shared := 3;

ascii := 1;

HPFOPEN(file_num, status,

formal_designator_option, file_name,

domain_option, permanent,

access_type_option, update,

dynamic_locking_option, lockable,

exclusive_option, shared,

ASCII_binary_option, ascii

);

if status <> 0 then handle_file_error (file_num, status);

end;

Figure 4-1. Opening an Existing KSAM XL File with HPFOPEN

4-2 Opening and Closing the File

The �le num parameter is used to return a �le number to the
calling program. This �le number is used to identify the �le in
subsequent intrinsic calls. The status parameter returns a numeric
code identifying the success or failure of the �le opening process.

For clarity, the itemnum parameters in the previous example have
been de�ned as constants. This is not necessary for intrinsic use.
The following HPFOPEN intrinsic call provides the same options as the
preceding example, but the itemnum parameters are identi�ed by
number. Note that the corresponding item parameters are variables
that contain the appropriate selections. These variables would have
to be de�ned and declared as in the previous sample.

d a

c b

HPFOPEN(file_num, status,

2, file_name,

3, permanent,

11, update,

12, lockable,

13, shared,

53, ascii

)

Using the FOPEN
Intrinsic

Only the �le designator and the domain need to be speci�ed to
open an existing �le with the FOPEN intrinsic. Rather than the
itemnum/item pairs in HPFOPEN, the FOPEN intrinsic parameters are
speci�ed as bit groupings. The domain must be speci�ed in the
foption parameter (bits 14:2). The aoption parameter must be set if
an access other than read needs to be speci�ed.

The FOPEN intrinsic uses positional parameters to specify options.
This means that the sequence of parameter data de�nes the
parameter to which it refers. For example, in an FOPEN intrinsic call,
the �le designator is followed by the foption parameter, which is
followed by the aoption parameter. The following example shows the
FOPEN intrinsic call to open an existing KSAM XL �le for read only
access:

file_num:=FOPEN(file_name,3)

The variable �le num returns the �le number for use in subsequent
intrinsic calls. The foption value 3 speci�es that an existing user
�le is to be opened (bits 14:2= (binary) 11). Because no aoption
parameter was speci�ed, the �le is opened with read only access, the
default.

To open an existing �le with update access, specify the access mode
in the aoption parameter. The other parameters remain the same.
The following example opens the �le with update access.

file_num:=FOPEN(file_name,3,5)

Opening and Closing the File 4-3

In this example, the aoption value 5 speci�es update access for the
�le (bits 12:4 = (binary) 0101). This level of access allows all other
intrinsic calls for this �le. Other binary access selections include:

binary 0000 or 0 To read the �le.

binary 0001 or 1 To write to the �le for the �rst time.

binary 0010 or 2 To append records to the �le.

binary 0100 or 4 To allow both read and write access.

binary 0101 or 5 To update records in the �le.

If your �le requires shared access and you are accessing records using
pointer-dependent procedures, you must allow dynamic locking in
the �le opening procedure and use the FLOCK and FUNLOCK intrinsics
to protect your transactions from access by another process. This
ensures that no other user changes or deletes the record after you
have positioned the pointer to it. In this case, the aoption parameter
must be set to allow both shared access and dynamic locking, as well
as to specify the access method. Note that the aoption parameter
can be entered in octal notation listing \%" instead of \binary". This
allows setting the shared and dynamic locking bits.

FILENUM:=FOPEN(FILNAME,3,OCTAL (`340')

The preceding example allows shared access (bits 8:2 = binary
11) and dynamic locking (bits 10:3=1) with read only access (bits
12:4=0) .

Opening a New File As discussed in Chapter 2, a �le can be created when it is opened
using the HPFOPEN or FOPEN intrinsics. The �le characteristics must
be speci�ed, as well as the formal �le designator, the domain, and the
access method. The most common item numbers used to create and
open KSAM XL �les with the HPFOPEN intrinsic include:

2 The �le designator.

10 A �le type of 3 for KSAM XL �les.

11 An access option of 1 for writing records to a new �le.

19 The record length.

35 The maximum �le length.

50 Either a disposition of 2 for a temporary �le or 1 for a
permanent �le.

53 ASCII or binary record data.

54 The KSAM key parameter de�ning primary and alternate
key descriptions.

Figure 4-2 presents a portion of a program that builds and opens a
KSAM XL �le.

4-4 Opening and Closing the File

d a

c b

type

bit1=0..1;

bit4=0..15;

bit7=0..127;

bit8=0..255;

bit12=0..4095;

bit15=0..32767;

bit16=0..65535;

pac80 = packed array [1..80] of char;

ksam_rec = packed record

case integer of

1 : (bitword : bit16);

2 : (lang_id : bit16);

3 : (resrvd0 : bit8;

select_blk_size;

cm : bit1;

chg_primary : bit1;

kslang : bit1;

ksreuse : bit1;

seq_random : bit1;

rec_numbering : bit1;

resrvd2 : bit1);
4 : (resrvd3 : bit8;

num_keys : bit8);

5 : (key_type : bit4;

key_length : bit12);

6 : (dflag : bit1;

maxkeyblk : bit15);

7 : (resrvd5 : bit8;

rflag : bit1;

resrvd6 : bit7);

8 : (key_location : bit16);

end;

ksam_struc = ARRAY[0..80] OF ksam_rec;...
var

file_num : integer;

status : integer;

file_name : pac80;

ksam_type : integer;

write_access : integer;

line_len : integer;

file_len : integer;

save_perm : integer;

ascii : integer;

ksamparam : ksam_struc;

keylocation,

reserved : bit16;

Figure 4-2. Opening a New KSAM XL File with HPFOPEN

Opening and Closing the File 4-5

d a

c b

...
begin

file_num := 0;

status := 0;

file_name := '%ARMSTR.MGR.AR%';

ksam_type := 3;

write_access := 1;

rec_len := 80;

file_len := 100;

save_perm := 1;

ascii := 1;...
ksamparam[10].lang_id := 5;

ksamparam[16].resrvd3 := 0;

ksamparam[16].num_keys := 1;

ksamparam[17].key_type := 2;

ksamparam[17].key_length := 5;

keylocation := 5;

ksamparam[18].bitword := keylocation;...
HPFOPEN(file_num, status,

2, file_name,
10, ksam_type

11, write_access

19, rec_len,

35, file_len

50, save_perm,

53, ascii

54, ksamparam

);

if status <> 0 then handle_file_error (file_num, status);

end;

Opening a New KSAM XL File with HPFOPEN (continued)

To create a new KSAM XL �le using the FOPEN intrinsic, �le
characteristics and KSAM key information are speci�ed in the
positional parameters. In most cases, the foption, aoption,
recsize , ksamparam, and �lesize parameters must be speci�ed.
Commas identify those positional parameters for which the default
speci�cations are used. Figure 4-3 provides an FOPEN intrinsic call
that creates a KSAM XL �le with write access to build the �le.

4-6 Opening and Closing the File

d a

c b

type

bit1=0..1;

bit4=0..15;

bit7=0..127;

bit8=0..255;

bit12=0..4095;

bit15=0..32767;

bit16=0..65535;

pac80 = packed array [1..80] of char;

ksam_rec = packed record

case integer of

1 : (bitword : bit16);

2 : (lang_id : bit16);

3 : (resrvd0 : bit8;

select_blk_size;

cm : bit1;

chg_primary : bit1;

kslang : bit1;

ksreuse : bit1;

seq_random : bit1;

rec_numbering : bit1;

resrvd2 : bit1);
4 : (resrvd3 : bit8;

num_keys : bit8);

5 : (key_type : bit4;

key_length : bit12);

6 : (dflag : bit1;

maxkeyblk : bit15);

7 : (resrvd5 : bit8;

rflag : bit1;

resrvd6 : bit7);

8 : (key_location : bit16);

end;

ksam_struc = ARRAY[0..80] OF ksam_rec;

var

file_num : integer;

file_name : pac80;

ksamparam : ksam_struc;

keylocation : bit16;

Figure 4-3. Opening a New KSAM XL File with FOPEN

Opening and Closing the File 4-7

d a

c b

begin

file_num := 0;

file_name := 'ARMSTR.MGR.AR ';

ksamparam[10].lang_id := 5;

ksamparam[16].resrvd3 := 0;

ksamparam[16].num_keys := 1;

ksamparam[17].key_type := 2;

ksamparam[17].key_length := 5;

keylocation := 5;

ksamparam[18].bitword := keylocation;

file_num:=FOPEN(file_name,6148,1,-80,,ksamparam,,,,100)

end;

Opening a New KSAM XL File with FOPEN (continued)

Closing a KSAM XL
File

The FCLOSE intrinsic terminates access to a �le. The disposition
and the security code parameters control the �le's retention and its
authorized users. When closing an existing �le, you usually close it
with both parameters set to zero.

FCLOSE(FILNUM,0,0)

You cannot change an existing permanent �le to a temporary �le
using the FCLOSE intrinsic. A temporary �le, however, can be closed
as a permanent �le by specifying the domain in the disposition �eld.
To close a newly created temporary �le, set the disposition parameter
(bits 13:3) to 1 to save it as a permanent �le, or 2 or 3 to keep it
as a temporary �le. Note that the disk space bit of the disposition
parameter (bits 11:2) should not be used for a KSAM XL �le.

FCLOSE(FILNUM,1,0)

The security code parameter (seccode) speci�es the level of access
security assigned to the �le. It is set only for a permanent �le.
A value of 1 gives you exclusive access to the �le; 0 allows access
by other users. Regardless of the value assigned to the seccode
parameter when closing an existing �le, the type of security applied
to the �le when it was created is maintained.

In the following example, a new �le is closed and saved as a
permanent �le in the system �le domain (disposition = 1), and access
to the �le is restricted to the �le's creator (seccode = 1).

FCLOSE(FILENUM,1,1)

4-8 Opening and Closing the File

5

Reading File Data

KSAM �les o�er multiple record retrieval options using primary
and alternate keys, and logical and physical record numbers. The
following list identi�es the methods of reading KSAM �le data:

Sequential access:

By primary key.
By alternate key.
In physical record order.

Random access:

By key value.
By logical record number.
By approximate key match.
By partial key.
By physical record number.

KSAM XL uses two types of pointers to identify the location of
records to be read: the logical record pointer and the physical record
pointer. The logical record pointer points to a key in the index,
which points to a data record. This pointer is used to locate records
by key. The physical record pointer points directly to a data record.
This pointer is used to locate records by their physical location in the
�le.

Intrinsics that use pointers are either pointer-dependent or
pointer-independent. Pointer-dependent intrinsics expect the pointer
to be positioned in order to execute correctly. Pointer-independent
intrinsics execute regardless of where the pointer is positioned.

KSAM XL maintains an advance ag to specify whether or not
to advance the pointers before the speci�c function. If the ag is
set to TRUE, pointers are advanced before performing the intrinsic
function. If the ag is set to FALSE, the intrinsic function is
performed without advancing the pointers �rst.

Intrinsics have been developed to position pointers and to read
records in sequence or randomly, by key value and by record number.
Table 5-1 identi�es the intrinsics used to access �les and identi�es
those pointers that are set by each.

Reading File Data 5-1

Table 5-1.

Pointer and Advance Flag Settings for Reading

Intrinsic Reads
Advance Flag

Sets Pointer Sets Advance
Flag

Pointer
Dependant

FFINDBYKEY no both no no

FFINDN no both no no

FPOINT no both no no

FREAD yes both yes yes

FREADBYKEY no both no no

FREADC yes PHYS yes yes

FREADDIR no PHYS yes no

FSPACE yes both no yes

Note COBOL II and Business BASIC provide KSAM �le access routines
that read records by key value. Refer to your programming language
manual for details.

Sequential Access
by Primary Key

Many processes retrieve records in a sequence, to systematically
perform a function on each record. The primary key sequence is
usually used for such routines. The �le opening routine (an HPFOPEN

or FOPEN intrinsic call) prepares for the most common record retrieval
method by positioning the pointers at the record containing the
lowest value of the primary key. A call to the FREAD intrinsic, after
the �le is opened, reads the �rst record in the primary key sequence.

After reading the �rst record, the logical record pointer remains in
the same position. The next FREAD repositions the logical pointer as
well as the physical record pointer to the next sequential record in
ascending key sequence and reads the record. Although FREAD may
position both pointers, it uses the logical date pointer to locate the
particular record. An end-of-data condition occurs when the last
logical record is passed. At this point, the CCG condition code is set
and returned to your process.

5-2 Reading File Data

Sequential Access
by Primary and
Alternate Key

Two intrinsics, FFINDN and FFINDBYKEY, can be used to set the
logical pointer to the lowest value of an alternate key �eld. The
FFINDN intrinsic identi�es the �rst record by using a logical record
number. The FFINDBYKEY intrinsic uses a key value to determine the
�rst record.

When the �rst record has been located, the FREAD intrinsic reads
the �rst record speci�ed by the alternate key. Subsequent reads
reposition the logical pointer and read the next logical record.

The FREADBYKEY intrinsic can also be used to position the logical
pointer by alternate key value. In this case, however, the user must
know the lowest value of the alternate key. An approximate value
cannot be used with this intrinsic.

Specifying the Record
Number

The FFINDN intrinsic positions the pointer to the record speci�ed by
the logical record number of the appropriate key. To position the
pointer to the particular record of a key, the intrinsic parameters
identify the particular key of interest and then the record number.

Depending on how the �le was built, the �rst record of any key is
identi�ed by 1 or 0. Use option 5 or 7 of the LISTFILE command to
determine how records are numbered in the �le you are accessing. A
negative record number also positions the pointer to the lowest value
in the key �eld.

The key location identi�es the key �eld to be used. Again, use option
5 or 7 of the LISTFILE command to determine the location of the
desired key (ffn_key_location). The following example identi�es
the record of an alternate key and reads the speci�ed record:

d a

c b

FFINDN(filenum,ffn_rec_number,ffn_key_location);...
lgth :=FREAD(filenum,fr_record,fr_tcount);

Figure 5-1. FFINDN Intrinsic Sample

Specifying a Key Value The FFINDBYKEY intrinsic can also be used to position the pointer to
an alternate key. This intrinsic is intended to position the pointer
to the �rst occurrence of a record value that matches or is greater
than the key value. This is referred to as an approximate match.
To position the pointer to the �rst record of the key, supply a key
value that is less than any value of the key and specify a relational
operator of 1 (greater than) or 2 (equal to or greater than). For
example, a relational operator of 1 locates the �rst record having a
key value greater than the key value provided.

Figure 5-2 sets the pointer to the lowest value of the alternate key by
searching for the �rst occurrence of a key value greater than (relop =
1) the value \0000":

Reading File Data 5-3

d a

c b

fby_keyvalue := '0000';

fby_keylocation := 1;

fby_keylength := 4;

fby_relop := 1;...
FFINDBYKEY(filenum,fby_keyvalue,fby_keylocation,fby_keylength,fby_relop);...
lgth := FREAD(filenum,fr_record,fr_tcount);

Figure 5-2. FFINDBYKEY Intrinsic Sample

Sequential Access
by Partial Key Value

The FFINDBYKEY intrinsic can be used to point to those records that
contain a common portion of a key �eld. The intrinsic parameters
(key value, key length, and relational operator) identify the partial
value to be matched, the number of characters to be compared in the
key �eld, and whether the record should equal the value or be greater
than the value.

Only the common portion of the key is speci�ed in the key value
�eld. For example, to list all records with a zip code beginning with
943 but ending in any combination of numbers, 943 is entered in the
key value �eld.

The key length parameter identi�es the portion of the key �eld to be
used in the comparison. For example, to list all records with a zip
code beginning with 943, a key length of 3 would be speci�ed. This
means that only the �rst three characters of the �ve-character �eld
are used in the comparison.

The relational operator limits the operation to only those records
that meet the criteria. The relational operators that can be speci�ed
are 0 (equal to), 1 (greater than), and 2 (equal to or greater than).
Figure 5-3 searches for the �rst occurrence of a record containing a
partial key of \M0".

d a

c b

fby_keyvalue := 'M0';

fby_keylocation := 1;

fby_keylength := 2;

fby_relop := 0;...
FFINDBYKEY(filenum,fby_keyvalue,fby_keylocation,fby_keylength,fby_relop);...
lgth := FREAD(filenum,fr_record,fr_tcount);

Figure 5-3. Partial Key Search Sample

5-4 Reading File Data

To read all records containing \M0", a series of freads would be
issued and a comparison made in the program to see when the key
�eld did not contain \M0" or the end of the �le reached.

Random Access of
a Single Record

A record can be accessed randomly by a particular key value or by its
relative or physical record number.

Using a Key Value The FREADBYKEY intrinsic is recommended for retrieving records
randomly. The desired key value and the key location are speci�ed in
the intrinsic parameters. The index of the speci�ed key is checked for
a matching key value and the appropriate record is read.

If an exact key value match is not found, an error condition
is returned. Because of this, the FREADBYKEY intrinsic is not
appropriate when searching for an approximate key value or the
lowest value of a key. Use the FFINDBYKEY intrinsic in such cases.

d a

c b

target := ' ';

tcount := -8;

keyvalue := '15 ';

keylocation := 5;

lgth :=FREADBYKEY(filenum,target,tcount,keyvalue,keylocation);

Figure 5-4. Accessing a Record by Key Value

Using the Relative
Record Number

Records can also be accessed randomly using the FFINDN intrinsic.
To use this intrinsic, however, you need to know the record's relative
record number in its key sequence.

Using a Physical
Record Number

The FREADDIR intrinsic reads a single record based on its physical
record number in the �le. The record number is supplied as
parameter data in the intrinsic call. Record numbering starts with
either 1 or 0, depending on the speci�cations made when the �le was
built.

The FPOINT and FREADC intrinsics can be used to read a record based
on its physical record number. The FPOINT intrinsic positions the
pointers to the record identi�ed by its physical record number in the
�le. The FREADC intrinsic is then used to read the record based on
the physical record pointer without reference to the record's index
location.

In this case, the FREAD intrinsic could also be used to read the record,
because the FPOINT intrinsic also sets the logical record pointer to
the record that it located by physical record number. By default,
the key used is the primary key for that record. An alternate key is

Reading File Data 5-5

used, however, if such a key was speci�ed by a previous call to the
FFINDBYKEY or FREADBYKEY intrinsic.

Note This is true for the reads on the previous examples of FFINDN
FFINDBYKEY, FREADBYKEY intrinsics that sets the key of reference for
succeeding reads.

Sequential Access
in Physical Record
Order

A sequential access in physical record order is really a series of
random accesses by physical record number. The FPOINT and FREADC

intrinsics are used to read records in order of their physical location
in the �le. The FPOINT intrinsic sets the physical record pointer to
the position speci�ed in its record number parameter. The FREADC
intrinsic reads the record speci�ed by the physical record pointer
without reference to the logical record pointer. A subsequent FREADC
intrinsic advances the physical record pointer to the next physical
record. Any record containing a delete ag is ignored and is not read.

The FREADDIR intrinsic also reads �les in physical record order. It
positions the pointer to the record speci�ed in the record number
parameter. A subsequent FREADDIR intrinsic call repositions the
physical record pointer to the next physical record. Note that deleted
records are not ignored with this intrinsic. It is recommended,
therefore, that you use the FPOINT and FREADC intrinsics to read
records sequentially in physical record order. Use the FREADDIR
intrinsic only to read a single record identi�ed by its physical record
number.

The FGETINFO intrinsic returns the physical record pointer setting, as
well as other information, for the record most recently accessed. This
number is returned in the record pointer parameter and can be used
in a subsequent FPOINT or FREADDIR intrinsic call.

Shared File Access If only one process is accessing a �le, setting a pointer and reading a
record in a two-step process does not present a problem. Shared �le
access, however, presents potential retrieval contention. If a pointer
is positioned to retrieve a particular record by one process, another
process could modify or delete the record before the original process
reads it. The FLOCK and FUNLOCK intrinsics should be used to ensure
proper record retrieval in any program that allows shared access to
its �le.

Note File locking keeps the �le inaccessible to other users until the �le is
unlocked. This could be a potential source of performance problems.
A di�erent �le structure may be more suitable for applications in a
shared environment, such as IMAGE/3000, etc.

5-6 Reading File Data

An FLOCK intrinsic call should be made prior to a pointer positioning
and record reading procedure to ensure that the proper retrieval
is executed. The FUNLOCK intrinsic restores shared access once the
retrieval is completed. Once the �le is unlocked, do not assume that
the pointer is still valid. Before using the pointer again, reposition it.
The following sequence shows the appropriate locking procedure to
ensure the proper sequence of records.

d a

c b

FLOCK

FFINDBYKEY (sets the logical pointer)

FREAD loop (reads records in key sequence)

FUNLOCK

Reading File Data 5-7

6

Writing and Updating Record Data

When records are written to a �le for the �rst time, they are usually
written sequentially. Following execution of an FWRITE intrinsic, the
logical record pointer is positioned at the next sequential record in
key sequence or at the end-of-�le marker if the record is the last in
sequence.

Updating and deleting records also rely on pointer positioning. The
logical and physical record pointers are usually positioned by a read
procedure, as discussed in Chapter 5. Typically, a read procedure
precedes an update or delete procedure to verify that the correct
record has been found. Table 6-1 speci�es the advance ag and
pointer usage of each of the writing, updating, and deletion intrinsics.

Table 6-1. Pointer and Advance Flag Settings for Writing

Intrinsic Reads
Advance Flag

Sets Pointer Sets Advance
Flag

Pointer
Dependant

FREMOVE no both no yes

FUPDATE

(keys
unchanged)

no none yes yes

FUPDATE

(keys
changed)

no both no yes

FWRITE no both no yes

Writing and Updating Record Data 6-1

Writing New
Records

The FWRITE intrinsic writes new records to a new or existing �le from
a bu�er in your program. Index entries for primary and alternate
keys are entered automatically for each record written.

Depending on how the �le was created, records may be written in
random or sequential order. If the REUSE option is speci�ed, each
record is written to the next available space. If the NOREUSE option is
speci�ed, all records are written at the end of the �le.

Records written to an existing �le either overwrite existing records or
are appended to existing records. This is determined by the access
option of the aoptions parameter, selected in the HPFOPEN or FOPEN
intrinsic call.

Following each write procedure, the logical record pointer is
positioned at the next sequential record in key sequence or at the
end-of-�le marker. When the physical bounds of either the data area
or index area of the �le is reached, a CCG condition code is returned
to your program.

Note that the control parameter of the FWRITE intrinsic must be
included in the intrinsic call for compatibility. It has no meaning for
KSAM XL �les.

When writing records to a �le that has shared access, �le locking
should be used. The HPFOPEN or FOPEN intrinsic call must allow
dynamic locking. An FLOCK intrinsic should be included before
pointers are positioned and records are written. Unlock the �le using
the FUNLOCK intrinsic when the write procedure is complete.

Updating Existing
Records

To update a record in a KSAM XL �le, the HPFOPEN or FOPEN
intrinsic call to open the �le must specify update access. This is set
by the aoption parameter. Normally, you would read the record with
one of the read intrinsics , to verify its contents before modi�cation.

The FUPDATE intrinsic writes the contents of the bu�er area over the
contents of the last record accessed. This bu�er area is identi�ed in
an FUPDATE intrinsic parameter. The written record must contain all
the key values expected by the �le. If only a portion of the record is
updated, speci�ed by the tcount parameter, this portion must contain
all primary and alternate key values. If it does not, a CCL condition
is returned and the update does not take place.

6-2 Writing and Updating Record Data

Deleting a Record The intrinsic FREMOVE e�ectively removes the current record from the
KSAM XL �le. When executed, the 4-byte record header is modi�ed,
identifying the record as deleted. All key entries pointing to this
record are deleted from the indexes. Although the data still occupies
record space in the �le, it is no longer possible to access the record
through standard read operations. Note that if deleted record space
can be reused, this area can be overwritten by a new record.

The FREMOVE intrinsic checks only the logical record pointer, not the
physical record pointer, to locate the record to be deleted. To delete
a record located by its physical record pointer, precede the call to the
FREMOVE intrinsic with the FPOINT intrinsic. The FPOINT intrinsic
locates the record by its physical record pointer but sets both the
logical and physical record pointers.

Note If you use the FREADDIR or FREADC intrinsic to locate the record, only
the physical record pointer is set. You may delete the wrong record
because the logical record pointer was not set by the read procedure.

Shared Access If access to the �le is shared with other processes, any of these
intrinsics should be preceded by FLOCK and FUNLOCK intrinsics.
This controls access to the records and reduces contention while a
modi�cation procedure is being performed. All pointer positioning,
read intrinsics, and writing, updating, and deletion procedures should
be bounded by the FLOCK and FUNLOCK intrinsics to guarantee that
the proper record is updated or deleted.

Note File locking keeps the �le inaccessible to other users until the �le is
unlocked. This could be a potential source of performance problems.
A di�erent �le structure may be more suitable for applications in a
shared environment.

Writing and Updating Record Data 6-3

7

Protecting the File and Its Data

Attention must be paid to protecting a KSAM XL �le's data. Check
an intrinsic's status after a call to �nd information about a failed
routine. The FCHECK and FERRMSG intrinsics provide error codes and
messages after an intrinsic call has failed.

Various intrinsics control �le access when a �le is shared by more
than one process. Locking and unlocking the �le controls access to a
shared �le during critical modi�cation operations.

The item numbers 2 and 6 of the FCONTROL intrinsic ensure that data
is written to the disk before processing is allowed to continue. This
protects the data from system and software aborts that may occur
between the time that data is written to the transaction log and the
time that it is actually written to the disk. Transaction management
provides automatic recovery from system and software aborts.

Regular maintenance and �le backups are needed for data protection
against hardware failures or improper processing. If index corruption
exists, �les can be restored quickly through the FCOPY facility.

Checking Error
Information

When a �le intrinsic returns a condition code indicating that a
physical input or output error has occurred, additional details can
be obtained by calling the FCHECK intrinsic. The parameters of the
FCHECK intrinsic can be designated to return the following error
information:

The error code that identi�es the type of error that occurred.

The transmission log value that speci�es the number of words not
read or written before the input or output error.

The relative number of the block involved with the error.

The number of logical records that were in the bad block at the
time of the error.

This error information can be expanded to include a description
of the error by calling the FERRMSG intrinsic. This intrinsic uses
the error code returned by the FCHECK intrinsic. By supplying the
returned FCHECK error code and de�ning a message bu�er in the
FERRMSG intrinsic call , a corresponding message can be displayed
from your program. The error code returned by FCHECK and its

Protecting the File and Its Data 7-1

corresponding message can also be found in the MPE/iX Intrinsics
Reference Manual (32650-90028).

Protecting Data
When File Access is
Shared

If a KSAM XL �le is shared with another process, you need to ensure
that the most current data and key index information is retrieved.
Locking �les controls other processes from accessing the �le while
a modi�cation routine is processing. Such a modi�cation routine
should include the pointer positioning and reading routines that
are associated with the modi�cation routine. The FUNLOCK intrinsic
allows the �le to be shared again, once modi�cations are complete.

In a shared environment, it is recommended that you lock and unlock
the �le for pointer-related activities, such as FREAD or FUPDATE
intrinsics using FFINDBYKEY or FFINDN intrinsics to locate the proper
record.

Note File locking keeps the �le inaccessible to other users for an
indeterminate length of time. This could be a potential source
of performance problems. A di�erent �le structure may be more
suitable for applications in a shared environment.

The following example shows how modi�cation routines can be locked
e�ectively by the placement of the FLOCK and FUNLOCK intrinsics.

d a

c b

FLOCK

FREADBYKEY

FUPDATE

FUNLOCK

FLOCK

FFINDBYKEY

FREAD loop

FUNLOCK

In many interactive processes, it is ine�cient to keep a �le locked
while a user retrieves a record, decides whether it needs to be
updated, makes appropriate changes, and writes the new record. In
such cases, a simple read could retrieve the record's contents for
the online user to see. Once a decision has been made to modify
the contents, a new retrieval redisplays the record for updating. By
rereading the �le, the program will be able to verify that the correct
record has been retrieved without locking the �le for an excessive
amount of time.

7-2 Protecting the File and Its Data

d a

c b

FLOCK

FREADBYKEY

FUNLOCK...
Other users can access and modify this record while

the user decides how to update it....
FLOCK

FREADBYKEY

FUPDATE

FUNLOCK

Writing Directly to
Disk

The FCONTROL intrinsic's controlcode parameter settings identify the
control operation desired. A setting of 2 ensures that the requested
output has been physically completed. (If the �le is shared, you must
lock the �le before calling the FCONTROL intrinsic with a control code
of 2.) A control code of 6 provides a similar function. It ensures that
the requested output has been physically completed and that the
end-of-�le has been written.

Recovering from a
System or Software
Abort

File recovery after a system or software abort is provided
automatically through transaction management. After a �le has
been created with the BUILD command or has been created and
loaded using the HPFOPEN or FOPEN intrinsics, it is attached to system
logging. If processing of a transaction is interrupted prior to its
logical completion, the transaction is rolled back before processing is
allowed to continue. A transaction is rolled back in the following
cases:

A system abort occurs.

A process with an active logical transaction aborts.

A transaction aborts.

A transaction causes a deadlock condition.

If a KSAM XL �le is created and loaded using FCOPY's NEW option,
or an HPFOPEN or FOPEN intrinsic call, transaction logging is not
attached until the �le is closed. This provides a fast load mode that
loads the �le more quickly than if transaction logging was invoked.
An abort during this load process, however, is not logged. If an abort
occurs when creating and loading a �le with FCOPY's NEW option or
with the HPFOPEN or FOPEN intrinsic, restart the �le loading process.

Protecting the File and Its Data 7-3

To protect initial loading, use the BUILD command to create the �le.
The �le is attached to transaction management when the BUILD
command is used. A �le can also be attached manually by creating
and loading the �le with the HPFOPEN intrinsic and specifying the
DOMAIN=CREATE option. With this option, the �le is attached and
system logging begins with the �rst access.

Backing Up KSAM
XL Files

A regularly scheduled backup of all �les is always advisable.
The STORE/RESTORE facility used for most other �les is also
appropriate for backing up KSAM XL �les to tape. The following
commands provide a backup routine for a KSAM XL �le.

FILE T=ARBACK;DEV=TAPE
STORE ARMSTR.MGR.AR;*T

Note Do not use the TRANSPORT option of the STORE command with KSAM
XL �les. The TRANSPORT option is intended as a migration option for
storing �les from MPE/iX to MPE V/E systems.

Use the following commands to restore the �le from tape:

FILE T=ARBACK;DEV=TAPE

RESTORE *T;ARMSTR.MGR.AR;KEEP;DEV=DISC;SHOW

The FCOPY utility can also be used to back up KSAM XL �les on
disk instead of tape. This allows a quick recovery with little delay. If
su�cient resources are available, this is an e�ective and rapid method
of backing up �les.

Recovering from
Index Corruption

If the �le management subsystem detects �le corruption, it does not
allow writing, updating, and deletion activities. The �le manager
attempts to honor read requests, but the attempt may not be
successful.

If index entries have been corrupted, create a new KSAM XL �le
using the BUILD command. When the �le is built, load the data from
the original �le using the FCOPY utility with the KEY=0 option.
The KEY=0 option does not access the indexes in the source �le. It
merely transfers data records from source to target, creating new
index entries after each record is copied.

The following routine creates a new �le and loads it with the data
records from the original accounts receivable �le.

7-4 Protecting the File and Its Data

d a

c b

:BUILD ARMSTR.MGR.AR;REC=-80,,F,ASCII;DEV=DISC;&

DISC=100;KSAMXL;KEY=(N,4,6;&

B,10,25,RDUP;&

N,65,5,RDUP;&

B,70,3,RDUP;&

FIRSTREC=1;REUSE

:FCOPY

>FROM=OLDMSTR.MGR.AR;TO=(ARMSTR.MGR.AR);KEY=0

>EXIT

Figure 7-1. Index Corruption Recovery

Protecting the File and Its Data 7-5

8

Migration and Mixed Mode Processing

MPE/iX o�ers two KSAM �le formats: CM KSAM and KSAM
XL. CM KSAM is the two-�le KSAM structure used on MPE V/E
systems.

KSAM XL, a single-�le KSAM structure, is used only on MPE/iX
systems. A KSAM XL �le o�ers a more convenient single-�le format.

Programs running in CM or NM can access either type of KSAM �le.
Use the FCOPY utility to migrate data and rebuild indexes from one
KSAM �le format to another.

Note RPG Programmers:

Record-level locking cannot be used for either type of KSAM �le on
MPE/iX.

Similarities in KSAM
File Features

Both �le formats allow multiple keys to access data records and
duplicate key values for speci�ed keys. You can access records by
various keys using constructs within the programming language. You
can also use KSAM intrinsics to access records in various sequences.

Record retrieval can be by direct match of speci�c key value, by
generic (or partial) key value, or by approximate match. Access of
data records by physical record location may or may not match the
primary key sequence, depending upon the order in which records
were initially loaded.

Migration and Mixed Mode Processing 8-1

Differences in KSAM
File Features

Unlike CM KSAM �les, KSAM XL data records and indexes
are combined in a single �le. The �le limit of KSAM XL �les is
substantially larger than CM KSAM �les. The physical size of the
KSAM �le is the same as the MPE/iX native mode at �le.

KSAM XL �les allow only �xed-length records. CM KSAM �les
allow �xed-length or variable-length records. When the data is
copied from CM KSAM variable-length records to KSAM XL
�xed-length records, shorter records are padded with a �ll character
to the de�ned �xed-length record size. The �ll character is speci�ed
during the �le creation. The default �ll character for an ASCII �le is
a blank. The default �ll character for a binary �le is a binary zero.

Both types of KSAM �les allow the reuse of index entry space for
deleted entries, but only KSAM XL allows the reuse of deleted record
space. If chronological order of the records is not necessary, deleted
record space can be reused.

KSAMUTIL, the utility used to create, rename, and purge CM KSAM
�les, does not support KSAM XL �les. Instead, KSAMUTIL functions
have been integrated into the following CI commands:

BUILD

PURGE

RENAME

LISTFILE

The FCOPY utility provides a method of migrating CM KSAM
�les to KSAM XL. KSAM XL �les, however, cannot use the NOKSAM
option in �le copying.

Transaction management guarantees consistency and recoverability
from system crashes. System logging provides this recoverability.
System logging is attached after the �rst FCLOSE of the �le. This
occurs automatically with the BUILD command. Files built with
HPFOPEN or FOPEN intrinsics are attached after the �rst FCLOSE
intrinsic call or with the DOMAIN=CREATE option of the HPFOPEN
intrinsic.

8-2 Migration and Mixed Mode Processing

Migrating KSAM
Files

The data records from an existing KSAM �le on an MPE V/E
system can be migrated to an existing KSAM XL �le on an MPE/iX
system. Perform the following steps to migrate an existing CM
KSAM �le with �xed-length records to a new KSAM XL �le:

1. Store both the CM KSAM key �le and data �le to tape using
the TRANSPORT option (used only if migrating to an MPE V/E
system).

2. Restore both �les to the MPE/iX machine (used only if migrating
from an MPE V/E system).

3. Create the new KSAM XL �le using the BUILD command.

4. Run the FCOPY utility.

5. Enter the appropriate FROM= and TO= parameters to copy the CM
KSAM �le to a KSAM XL �le.

6. Exit FCOPY.

7. Delete the original data �le and key �le from the MPE/iX
machine.

8. Rename the new KSAM XL �le to the original CM KSAM data
�le name.

Note KSAM XL �les require �xed-length records. If the source CM KSAM
�le contains variable-length records, de�ne the record length of the
target �le as the maximum length of the source records. When
copying the �le, FCOPY pads the source record with a �ll character
to create the target record size. The �ll character is speci�ed during
the �le creation. The default �ll character for an ASCII �le is a
blank. The default �ll character for a binary �le is a binary zero.

The following entries show the FCOPY commands needed to migrate
the CM KSAM �le named ARMSTR.MGR.AR to an existing KSAM XL
�le. Note that in this example, the KSAM XL �le structure already
exists. You can create the �le with the BUILD command or with the
FOPEN or HPFOPEN intrinsics.

d a

c b

:FCOPY

>FROM=ARMSTR.MGR.AR;TO=ARMSTRXL.MGR.AR

>EXIT

:PURGE ARMSTR.MGR.AR

:PURGE ARKEY.MGR.AR

:RENAME ARMSTRXL.MGR.AR, ARMSTR.MGR.AR

If record-level locking has not been used and no other migration
issues exist, the source program can be run in compatibility mode.
The program successfully accesses the new ARMSTR �le. Refer to the

Migration and Mixed Mode Processing 8-3

Migration Process Guide (30367-90007) for details about migrating
application programs.

You can create a new KSAM XL �le and copy the CM KSAM record
data in a single step. Enclose the new �le name in parentheses to
specify that this is a KSAM XL �le. If the KSAM XL �le does not
exist, a new �le is created. A new �le is also created by using the NEW
option.

If you create the �le and copy data to it using one command,
however, you are not able to change the key structure. This would
not be acceptable when copying variable-length records because
the record length and record type parameters must be modi�ed to
acceptable values.

d a

c b

:FCOPY

>FROM=ARMSTR.MGR.AR;TO=(ARMSTRXL.MGR.AR)

>EXIT

or

d a

c b

:FCOPY

>FROM=ARMSTR.MGR.AR;TO=(ARMSTRXL.MGR.AR);NEW

>EXIT

FCOPY copies data records from the source �le in the sequence
identi�ed by the primary key. Use the KEY= option to select a
di�erent sequence for copying the records. To retain the physical
layout of the source �le, specify KEY=0. This speci�cation copies the
records in the order that they reside in the source �le without regard
to a key.

Note The NOKSAM option is not allowed with KSAM XL �les.

8-4 Migration and Mixed Mode Processing

Mixed Mode
Operation

Application programs running in CM or NM can access either CM
KSAM or KSAM XL �les. If you are using an RPG application,
do not specify any record locking features. RPG will deafult to
�le-level locking. This is especially important for cross-development
for multiple environments.

In some organizations, cross development is necessary because
satellite o�ces operate di�erent types of systems. CM KSAM �les
can be used on both MPE V/E and MPE/iX systems. The KSAM
XL �le format can be used only on MPE/iX systems.

KSAM �les can be copied from one type to another using the
FCOPY utility. For detailed information on using the FCOPY
utility, refer to the FCOPY Reference Manual (32212-90003).

To create a new CM KSAM �le and copy data to it from an existing
CM KSAM �le , remember to identify both the data �le and the
key �le for the target CM KSAM �le. Use this method to back up
current �les or to create test �les on an MPE V/E system. This
process is described in detail in the KSAM/3000 Reference Manual
(30000-90079).

d a

c b

:FCOPY

>FROM=ARMSTR.MGR.AR;TO=(ARBACK.MGR.AR,ARBKEY.MGR.AR)

>EXIT

To create a new KSAM XL �le and copy data to it from a CM
KSAM �le, specify only a single �le name in the TO= parameter.
(KSAM XL �les include indexes and data records in a single �le.)
Enclose the new �le name in parentheses to indicate that it is to be a
KSAM XL �le. The ;NEW parameter is optional. Use this method to
migrate �les from an MPE V/E system to an MPE/iX system.

d a

c b

:FCOPY

>FROM=ARMSTR.MGR.AR;TO=(ARMSTRXL.MGR.AR)

>EXIT

or

d a

c b

:FCOPY

>FROM=ARMSTR.MGR.AR;TO=(ARMSTRXL.MGR.AR);NEW

Migration and Mixed Mode Processing 8-5

To copy from one KSAM XL �le to another existing KSAM XL �le,
enter a single �le name for the target �le. (KSAM XL �les include
indexes and data records in a single �le.) Use this type of copy to
back up current KSAM XL �les or to create a test �le on an MPE/iX
system.

d a

c b

:FCOPY

>FROM=ARMSTR.MGR.AR;TO=ARBACK.MGR.AR

>EXIT

To create a new CM KSAM �le and copy data to it from an existing
KSAM XL �le, remember that both the target data �le name and
the target key �le name must be speci�ed. Use this type of copy for
cross-development.

d a

c b

:FCOPY

>FROM=ARMSTRXL.MGR.AR;TO=(ARDATA.MGR.AR,ARKEY.MGR.AR)

>EXIT

8-6 Migration and Mixed Mode Processing

9

KSAM XL Intrinsics

The following section provides syntax and parameter de�nitions for
the KSAM XL intrinsics. For details regarding status usage and data
types, refer to the MPE/iX Error Message Manual Volumes 1, 2 and
3 (32650-90066, 32650-90152, and 32650-90368) and the MPE/iX
Intrinsics Reference Manual (32650-90028).

KSAM XL Intrinsics 9-1

FCHECK Returns speci�c details about error conditions that occurred when
a �le system intrinsic returned a condition code indicating an I/O
error. FCHECK applies to �les on any device.

Syntax

I16V I16 I16 I32 I16

FCHECK(�lenum,fserrorcode,translog,blocknum,numrecs);

Parameters �lenum 16-bit signed integer by value (optional)

Speci�es the �le number of the �le for which error
information is to be returned. If �lenum is not
speci�ed or set to zero, error information is returned
about the last failed FOPEN call.

fserrorcode 16-bit signed integer by reference (optional)

Returns a �le system error code indicating the type
of error that occurred.

translog 16-bit signed integer by reference (optional)

Returns the number of halfwords read or written if
an I/O error occurred. (This value is recorded in the
transmission log.)

blocknum 32-bit signed integer by reference (optional)

Returns the physical record count for a nonspool�le
or the logical record count for a spool�le:

For �xed-length and unde�ned-length record
�les, the physical count is the number of physical
records transferred to or from the �le since FOPEN.

For variable-length record �les, the physical count
is the last rewind, rewind/unload, space forward or
backward to tape mark.

numrecs 16-bit signed integer by reference (optional)

Returns the number of logical records in the bad
block (blocking factor).

Operation Notes FCHECK is used to determine the error conditions of the last failed
FOPEN intrinsic call (even if a �le number was not returned) by
setting the �lenum parameter to zero. In this case, only fserrorcode
returns valid information.

Do not use FCHECK to determine error conditions of a last failed
HPFOPEN call; error conditions are returned in the HPFOPEN status
parameter.

9-2 KSAM XL Intrinsics

FCHECK

Condition Codes CCE Request granted.

CCG Not returned.

CCL Request denied. The �le number passed by �lenum
is invalid, or a bounds violation occurred while
processing this request (fserrorcode=73).

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-3

FCLOSE Terminates access to a �le on any device.

Syntax

I16V I16V I16V

FCLOSE(�lenum,disposition,securitycode);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be closed.

disposition 16-bit signed integer by value (required)

Passes the disposition of the �le, signi�cant only for
�les on disk and magnetic tape.

Note This disposition can be overridden by a corresponding parameter in a
FILE command entered prior to program execution.

The disposition options are:

Bits Value/Meaning

13:3 Domain disposition:

000 No change. The disposition remains as
it was before the �le was opened. If
the �le is new, it is deleted by FCLOSE;
otherwise, the �le is assigned to the
domain it belonged to previously. An
unlabeled tape �le is rewound and a
labeled tape is rewound and unloaded.

001 Close as a permanent �le. If the �le is
a disk �le, it is saved in the system �le
domain. A new or old temporary �le
on disk has an entry created for it in
the system �le directory. If a �le of
the same name already exists in the
directory, an error code is returned and
the �le remains open. If the �le is a
permanent �le on disk, this domain
disposition has no e�ect.

010 Close as a temporary job �le
(rewound). The �le is retained in your
temporary (job/session) �le domain and
can be requested by any process within
your job/session. If the �le is a disk
�le, the �le name is checked. If a �le
of the same name already exists in the

9-4 KSAM XL Intrinsics

FCLOSE

temporary �le domain, an error code is
returned and the �le remains open.

011 Close as a temporary job �le (not
rewound). This option has the same
e�ect as domain disposition 010, except
that tape �les are not rewound.

100 Release the �le. The �le is deleted from
the system.

101 Makes a permanent standard disk �le
temporary (valid only for standard
disk �les with either �xed-length,
variable-length, or unde�ned-length
record formats). The �le is removed
from the permanent �le directory and
inserted into the TEMPORARY �le
directory. (PM capability is required
for this option.)

11:2 Disk space disposition (valid only for
standard disk �les with either �xed-length,
unde�ned-length, or variable-length record
formats):

00 Does not return any disk space
allocated beyond the end-of-�le marker.

01 Returns any disk space allocated
beyond the end-of-�le (EOF) marker to
the system. The EOF becomes the �le
limit; records cannot be added to the
�le beyond the EOF.

10 Returns any disk space allocated
beyond the end-of-�le (EOF) marker to
the system. The �le limit remains the
same; records can be added to the �le
beyond EOF, up to the �le limit. The
disk space disposition takes e�ect on
each FCLOSE.

0:11 Reserved for MPE/iX.

securitycode 16-bit signed integer by value (required)

Returns the type of security initially applied to the
�le (signi�cant for new permanent �les only). The
valid options are:

Value Meaning

0 Unrestricted access; can be accessed by any
user, unless prohibited.

1 Private �le creator security; can be accessed
only by the creator.

KSAM XL Intrinsics 9-5

FCLOSE

Operation Notes FCLOSE deletes bu�ers and control blocks where the process accessed
the �le. It also deallocates the device where the �le resides, and it
can change the disposition of the �le. If FCLOSE calls are not issued
for all �les opened by the process, the calls are issued automatically
by MPE/iX when the process terminates.

Condition Codes CCE Request granted.

CCG Not returned.

CCL Request denied. The �le was not closed; an incorrect
�lenum was speci�ed, or another �le with the same
name and disposition exists.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-6 KSAM XL Intrinsics

FCONTROL

FCONTROL Performs various control operations on a �le or on the device where
the �le resides, including:

Verifying I/O.
Reading the hardware status word for the device where the �le
resides.
Setting a terminal's timeout interval.
Repositioning a �le at its beginning.
Writing an end-of-�le marker.

Syntax

I16V I16V *

FCONTROL(�lenum,itemnum,item);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le for which the
control operation is to be performed.

itemnum 32-bit signed integer by value (required)

Speci�es which operation is to be performed. (Refer
to Table 9-1.)

item type varies (required)

Passes/returns a value associated with a control
operation as indicated by the corresponding itemnum
parameter. (Refer to Table 9-1.)

This parameter is ignored, but must be speci�ed to
satisfy internal requirements.

KSAM XL Intrinsics 9-7

FCONTROL

Table 9-1. FCONTROL Itemnum/Item Values

Itemnum Mnemonic Item Description

0 U16 General device control:

The value speci�ed is passed to the appropriate device driver. A value from the
driver is returned in item. Not valid for spooled device �les.

Not applicable to KSAM �les.

1 U16 Carriage control (CCTL):

Not applicable to KSAM �les.

2 I16 Complete I/O:

Ensures that requested I/O has been physically completed. Valid only for bu�ered
�les. Posts the block being written (full or not).

Item is ignored.

A checkpoint record is written. In the event of a system crash, recovery is done to
this state of the �les.

3 U16 Device status:

Returns a record containing information about the state of the device associated
with the �le immediately after the last I/O operation (including HPFOPEN/FOPEN)
on the �le. The record size and contents are device-dependent.

Not applicable to KSAM �les.

4 U16 Set timeout interval:

Passes the timeout interval, in seconds, to be applied to input from the speci�ed
�le. The maximum value allowed is 655.35 seconds. If input is requested from a �le
but is not received in this interval, the FREAD request terminates prematurely with
CCL. The interval is speci�ed in seconds and returned in item. If this interval is
zero, any previously established interval is cancelled, and no timeout occurs.

A timeout value should be used for programs reading from an unattended device
to prevent \hangs". Timeouts can be used to terminate binary reads, but only as a
safeguard to prevent a program from waiting too long for a read to complete.

Only valid for terminal and message �les. Only a�ects the next read if the
addressed �le is being read from the terminal; it must be reissued for each read. If
this code is applied to a message �le, item speci�es the length of time that a
process waits when reading from an empty �le or writing to a full one and the
timeout remains enabled until it is explicitly cancelled.

Denotes a halfword in the stack that contains the time-out interval, in seconds, to
be applied to input from the terminal.

During block mode reads, the timer halts when a DC2 character is received. The
block mode read timer is activated by the system software; these values are not
user changeable.

Not applicable to KSAM �les.

5 U16 Reposition �le at its beginning:

The �le is repositioned to the �rst logical record, the record with the lowest value
in the current key.

9-8 KSAM XL Intrinsics

FCONTROL

Table 9-1. FCONTROL Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

6 U16 Write end-of-�le:

Marks the end-of-�le (EOF) on disk. It performs the function of itemnum=2 and
writes the �le label. This guarantees that the end-of-�le is correct and the extent
bit map is updated.

Item is ignored.

7 U16 Space forward to tape mark:

Not used for KSAM XL �les. For CM KSAM �les, it clears the key and data
bu�ers of all information and reads the �rst two sectors of the key �le from disk to
bu�er.

Condition Codes CCE Request granted.

CCG Not returned.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-9

FERRMSG Returns a message corresponding to an FCHECK error number and
enables error messages to be displayed from a program.

Syntax

I16 CA I16

FERRMSG(fserrorcode,msgbu�er,msglength);

Parameters fserrorcode 16-bit signed integer by reference (required)

Passes an error code returned by the FCHECK
intrinsic, indicating which message to return in
msgbu�er .

msgbu�er character array (required)

Returns the error message identi�ed with fserrorcode.
To contain the longest possible message, msgbu�er
must be >= 72 bytes long.

msglength 16-bit signed integer by reference (required)

Returns the length of the error message in msgbu�er .
The length is returned in positive bytes.

Condition Codes CCE Request granted.

CCG Request denied. No error message exists for this
fserrorcode.

CCL Request denied. The msgbu�er address was out
of bounds, msgbu�er was not large enough, or
msglength was out of bounds.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-10 KSAM XL Intrinsics

FFILEINFO

FFILEINFO Returns information about a �le.

Syntax

I16V I16V *

FFILEINFO(�lenum[,itemnum,item] [...]);

Note Up to �ve itemnum/item pairs can be speci�ed.

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le for which
information is requested.

itemnum 16-bit signed integer by value (optional)

Speci�es which item value is to be returned. (Refer
to Table 9-2.)

item type varies (optional)

Returns the value of the item speci�ed in the
corresponding itemnum. (Refer to Table 9-2.)

KSAM XL Intrinsics 9-11

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values

Itemnum Item
Type

Item Description

1 CA File designator (28 bytes): Returns the �le designator of the �le being referenced in the
format:

�lename.groupname.accountname

Must be >=28 bytes in length. Unused bytes are �lled with right-justi�ed blanks and a
nameless �le returns an empty string.

The fully quali�ed name of the �le referenced by �lenum is returned as the value of this
itemnum. Only names which can be expressed using MPE-only semantics are returned
by this itemnum. If the name of the object referenced by �lenum can not be expressed
using MPE-name semantics a CCL condition code is returned. Calling FCHECK for
�lenum after this error occurs will result in error.

2 U16 File options: Returns �le characteristics (refer to the FFfoption �gure).

The record format extension bit is returned as the foption (1:1) bit. Byte stream record
format is represented as a record format extension of one with a variable record format
foption (8:2) bits equal to 01.

Directories, symbolic links, device links, pipes and FIFO's can not be represented by
foptions. If the object referenced by �lenum is one of these objects, a CCL condition
code is returned. Calling FCHECK for �lenum after this error occurs will result in error.

3 U16 Access options: Returns �le access information (refer to the FFaoption �gure).

4 I16 (CM) Record size: Returns the logical record size associated with the �le:

If the �le was created as a binary �le, this value is positive and is in halfwords.

If the �le was created as an ASCII �le, this value is negative and is in bytes.

For message �les, when there is call to FCONTROL with controlcode=46, the value
returned is the size of the data records, including the 4 byte header.

Maintained for compatibility with MPE V/E-based systems only. CM record sizes are
imposed when FGETINFO returns record size information on all �le types. If the record
size exceeds the limits, a zero is returned.

Note: If a zero is returned, use item 67.

5 I16 Device type/subtype: Returns the type and subtype of the device being used for a
KSAM, RIO, circular, or message �le, or devices such as a tape drive, printer, or
terminal where bits (0:8) indicate the device subtype, and bits (8:8) indicate the device
type.

If the �le is not spooled or is opened as a spool�le through the logical device, the actual
value is returned. If an output �le is spooled and was opened by device class name, the
type and subtype of the �rst device in its class is returned. (This may be di�erent from
the device actually used.)

9-12 KSAM XL Intrinsics

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

6 U16 Logical device number: Returns the logical device number of the device where the disk
�le label resides.

If the �le is a disk �le, the LDEV is the location of the �le label. (File data can reside
on the same device as the �le label.)

If the �le is spooled, the LDEV is a virtual device number that does not correspond to
the system con�guration I/O device list.

If the �le is located on a remote computer, linked by a DS point-to-point or X.25 link,
the left eight bits (0:8) are the LDEV of the distributed system (DS) device.

If the �le is located on a remote computer, linked by NS 3000/XL, the left eight bits
(0:8) are the remote environment of the connection. The right eight bits (8:8) are the
LDEV of the device on the remote computer where the �le label resides.

If the DS device for the RFA or the LDEV is 0, then a zero is returned.

Note: If a zero is returned, use item 50.

7 U16 Hardware device address: Returns 2048. Maintained to provide backward compatibility
with MPE V/E-based systems.

8 I16 File code: Returns the �le code of a disk �le (refer to FFILEINFO for �le codes).

9 I32 Current logical record pointer: Returns the current logical record pointer setting. This
value is the displacement in logical records from record number 0 in the �le and
identi�es the record that would be accessed next by FREAD or FWRITE.

10 I32 EOF: Returns the pointer setting of the last logical record currently in the �le
(equivalent to EOF). If the �le does not reside on disk, the value is zero. For message
�les, when a call is made to FCONTROL with itemnum=46, the number of records
returned includes open, close, and data records.

11 I32 File limit: Returns a number representing the last logical record that can exist in the �le
(equivalent to the �le limit). If the �le does not reside on disk, the value is zero.

12 I32 Log count: Returns the logical records passed to and from the program during the
current �le access.

13 I32 Physical count: Returns the number of bu�ered physical I/O operations performed since
the last FOPEN/HPFOPEN call (records).

KSAM XL Intrinsics 9-13

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

14 I16 Block size: Returns the �le block size:

If the �le is binary, the value is positive and the size is in halfwords.

If the �le is ASCII, the value is negative and the size is in bytes.

Maintained for compatibility with MPE V/E-based systems only. CM block size limits
are used when FGETINFO returns block size information on all �le types (STD, KSAM,
RIO, CIR, MSG). If the block size of the speci�ed �le exceeds the limits, zero is
returned.

Note: If a zero is returned, use item 68.

15 I16 Extent size: Returns the extent size; for compatibility with MPE V/E-based systems
only.

Note: If a zero is returned, use item 69. If extent size is speci�ed or the maximum
number of extents is speci�ed at �le creation, the size and number of extents are
determined by the operating system and the item values are not actual values; they are
calculated using system defaults.

16 U16 Maximum number of extents:

If the extent size or maximum number of extents is speci�ed as zero at �le creation, then
the size and number of extents are determined by the system. In that case, these item
values are calculated using system defaults defaults and do not reect actual values.

17 I16 User labels: Returns the number of user labels de�ned for the �le during creation. If the
�le is not a disk �le, this number is zero. When an old �le is opened for overwrite
output, the value is not reset and the old user label is not destroyed.

18 CA Creator: Returns the name of the �le creator (at least 8 bytes). If the �le does not
reside on disk, blanks are returned.

An unquali�ed form of the �le owner's name is returned as the value of this itemnum.
The �le owner is not neccessarily the �le's creator. File ownership may be changed using
(see engineer).

A symbolic zero (ASCII 48 in decimal) is returned as the �le owner for root directories,
accounts, and MPE groups created prior to the POSIX release.

If the �le is not located in the account in which the �le owner is a member, a blank �le
owner name is returned. Item number 85 should be used to obtain the full �le owner
name instead of item 18.

19 I32 Label address: Returns a zero. For compatibility with MPE V/E-based systems only.

9-14 KSAM XL Intrinsics

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

20 I16 Blocking factor

21 I16 Physical block size; indicates halfwords

22 I16 Data block size; indicates halfwords

23 I16 O�set to data in blocks; indicates halfwords

24 I16 O�set of active record table for RIO �les; indicates halfwords

25 I16 Size of active record table within the block; indicates halfwords

26 CA Volume ID (tape label)

27 CA Volume set ID (tape label)

28 U16 Expiration date (julian format)

29 I16 File sequence number

30 I16 Reel number

31 I16 Sequence type

32 U16 Creation date (julian format)

33 I16 Label type

34 I16 Current number of writers

35 I16 Current number of readers

36 U16 File allocation date, when the �le was last restored (CALENDAR format)

37 I32 File allocation time, when the �le was last restored (CLOCK format)

38 U16 Spool�le device �le number:

Bits (1:15) = Device �le number
Bit (0:1) = 1 Output spool�le
Bit (0:1) = 0 Input spool�le

If the spool�le device number is larger than 32767, itemnum 38 returns 0 (zero). Use
itemnum 78 instead for spool�le numbers larger than 32767.

40 I32 Disk device status: Returns a zero. For compatibility with MPE V/E-based systems
only.

KSAM XL Intrinsics 9-15

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

41 I16 Device type

42 I16 Device subtype: Always returns an 8. (Indicates a 7933 or 7935 disk drive)

43 CA Environment �le name (>=36 bytes)

44 I16 Number of disk extents currently allocated to the �le

45 CA File name from labeled tape header 1 record (>= 17 bytes)

46 I16 Tape density

47 I16 DRT number: Always returns an 8.

48 I16 Device unit number: Always returns a 0.

49 U16 Equivalent to a software interrupt PLABEL for message �les

50 U16 Real device number of the �le

51 I16 Remote environment number

Note: If using NS 3000/XL RFA (remote �le access), specify DSDEVICE ldev# when you
are using a DS (point-to-point or X.25) link.

52 I32 Last modi�cation time (CLOCK format) Zero is returned as the modi�cation time for root
directories, accounts, and MPE groups created prior to the POSIX release.

53 U16 Last modi�cation date (CALENDAR format) Zero is returned as the modi�cation time for
root directories, accounts, and MPE groups created prior to the POSIX release.

54 U16 File creation date (CALENDAR format) Zero is returned as the modi�cation time for root
directories, accounts, and MPE groups created prior to the POSIX release.

55 U16 Last access date (CALENDAR format) Zero is returned as the modi�cation time for root
directories, accounts, and MPE groups created prior to the POSIX release.

56 I32 Number of data blocks in a variable length �le

57 I16 Number of user labels written to the �le

58 I16 Number of accessors having output access (write) for a particular �le

59 I16 Number of accessors having input access (read/update) for a particular �le

60 I16 Terminal type:

0 File's associated device not a terminal
1 Standard hardwire or multipoint terminal
2 Terminal connected through phone-modem
3 DS pseudo-terminal
4 X.25 Packed Switching Network PAD (packet assembler/disassembler) terminal
5 NS virtual terminal

9-16 KSAM XL Intrinsics

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

61 CA NS 3000/XL remote environment ID name

Note: If using NS 3000/XL RFA (remote �le access), specify DSDEVICE ldev# when
using a DS (point-to-point or X.25) link. A bu�er must be provided for the node name
(or envid) with the required space of 52 bytes; otherwise, data corruption may occur on
variables following itemnum=61 or an FSERR 73, BOUNDS VIOLATION may be returned.

62 CA File lockword (8 bytes):

63 CA Unique �le identi�er (UFID) (20 bytes):

64 @64 Virtual address of the �le: Applicable for standard disk �les only. (Requesting
itemnums 64, 74, or 75 for any other �le type, RIO, MSG, CIR, causes an error and
returns CCL (1).)

65 Reserved for the operating system.

66 @32 Virtual address of global unique �le descriptor (GUFD):

67 U32 (NM) Record size (indicates bytes)

68 U32 Block size (indicates bytes)

69 U32 Extent size (indicates bytes)

74 @64 Virtual address of �le label: Applicable for standard disk �les only. (Requesting
itemnums 64, 74, or 75 for any other �le type (RIO, MSG, CIR) causes an error and
returns CCL (1).)

75 CA Hardware path: Applicable for standard disk �les only. (Requesting itemnums 64, 74, or
75 for any other �le type (RIO, MSG, CIR) causes an error and returns CCL (1).)

76 CA Volume restriction (34 bytes): The last two characters indicate the type:

0 File placed on the speci�ed volume at creation

1 File can be placed on any volume containing the speci�ed class at creation

2 File can be placed on any volume within the speci�ed volume set at creation
(Default)

77 U32 Transaction management log set ID If itemnum 77 = 0 (zero), the �le is not attached to
the XM (Transaction Management) log.

78 U32 Spool�le device �le number:

Bits (1:31) = Device �le number
Bit (0:1) = 1 Output spool�le
Bit (0:1) = 0 Input spool�le

KSAM XL Intrinsics 9-17

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

79 I16 File's pending disposition

0 = No change, the disposition is the same as before the �le was opened
1 = Permanent
2 = Temporary (tape �les rewound)
3 = Temporary (same as 2 except tape �les not rewound)
4 = Released (purged)
5 = Temporary (but the �le was previously a permanent �le)

80 This itemnum returns a null-terminated POSIX-syntax system absolute pathname for
the �le or directory referenced by �lenum. On input the �rst four bytes of this bu�er
are interpreted as a 32-bit unsigned integer specifying the maximum bu�er size in bytes.
This maximum bu�er size does not include the four bytes used to represent this size. On
output the �rst four bytes of the bu�er represent the pathname length excluding the
null-terminator as an unsigned integer. The pathname is returned in the bytes following
the pathname length. Bytes beyond the null-terminator should be considered unde�ned.
If the maximum bu�er length is incorrect on input, variables allocated near the bu�er
may be overwritten or a bounds violation may occur. A zero pathname length is
returned for unnamed new �les and when an error occurs. Zero is the mininum bu�er
length on input for this itemnum.

(add drawing of Format of the bu�er on input)

81 32-bit unsigned integer by reference. The current number of hard links to the �le.

82 32-bit signed integer by reference. Time of last �le access in clock format. The bit
assignments are:

Bits 0 7 hours

Bits 8 15 minutes

Bits 16 23 seconds

Bits 24 31 tenths of seconds

83 32-bit signed integer by reference. Time of last �le status change. (Clock format - See
item 82 for a description of the format).

84 16-bit unsigned integer by reference. Date of last �le status change in calendar format.
The bit assignements are:

Bits 0 - 7 Year of the century

Bits 8 - 15 Day of the year

85 32-byte character array by reference. File Owner:

The full �le owner name. Unused characters are blank �lled. A symbolic zero (ASCII 48
in decimal) is returned as the �le owner for root directories, accounts, and MPE groups
created prior to the POSIX release.

9-18 KSAM XL Intrinsics

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

86 32-bit signed integer by reference. File owner identi�er:

The �le owner identi�er (UID). Zero is returned as the �le owner ID for root directories,
accounts, and MPE groups created prior to the POSIX release.

87 32-byte character array by reference. File group:

The �le group name. Unused characters are blank �lled. A symbolic zero (ASCII 48 in
decimal) is returned as the �le group for root directories whose GID's have not been
assigned.

88 32-bit signed integer by reference. File group identi�er:

The �le group identi�er (GID). Zero is returned as the �le group ID for root directories
whose GID's have not been assigned.

89 32-bit unsigned integer by reference. File type:

The following valid �le types may be returned:

0 Ordinary File

1 KSAM/3000

2 RIO

3 KSAM XL

4 CIR

5 Native Mode Spool File

6 MSG

7-8 Not Applicable

9 Directory

10-11 Not Applicable

12 Pipe

13 FIFO

14 Symbolic link

15 Device link

KSAM XL Intrinsics 9-19

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

90 32-bit unsigned integer by reference. Record type:

The following valid record types may be returned:

0 Fixed

1 Variable

2 Unde�ned

3 Spool block

4 Root directory

5 Not applicable

6 Account directory

7 Group directory

8 Not applicable

9 Byte stream

10 Hierarchical directory

91 64-bit signed integer by reference. The current �le size in bytes. The value returned
represents the current position of the End-of-File (EOF) and may not reect the number
of bytes actually occupied by the �le on disk if the �le is sparsely allocated.

92 32-bit signed integer by reference. KSAM XL �le version:

This item returns a value indicating the version of a KSAM XL �le. A value of 1
indicates an original type KSAM XL �le, and a value of 2 indicates the next generation
KSAM XL �le. A value of zero is returned if the �le is not a KSAM XL �le.

93 32-bit unsigned integer by reference. NM Plabel:

This item returns a 32-bit NM Plabel of a message �le interrupt handler. Interrupts
may be enabled on message �les by calling the FCONTROL intrinsic with item 48 and the
Plabel address.

9-20 KSAM XL Intrinsics

FFILEINFO

Table 9-2. FFILEINFO Itemnum/Item Values (continued)

Itemnum Item
Type

Item Description

94 32-bit signed integer by reference. MPE/iX device type:

This item returns the following values for the following types of devices:

0 Disk device

1 Tape device

2 Terminal device

3 Printer device

4 Remote device

5 Ports device

6 Reserved

7 Streams device

8 Sockets device

95 32-bit signed integer by reference. Close-on-Exec:

This item returns a value indication whether or not this �lenum is closed if one the
POSIX.1 exec() family of functions if called. A value of 1 means that the �le is closed
on an exec() call, while a value of 0 indicates the �le will survive across exec() calls.

96 32-bit signed integer by reference. POSIX Append mode:

This item returns a value indicating whether or not this �lenum has the POSIX.1
append mode ag set. When the append mode ag is set on �les that support this
feature, all writes occur at the end of the �le, although reads may occur anywhere in the
�le. A value of 1 indicates that the POSIX.1 append mode is on, while a value of 0
indicates the append mode is o�.

The only time that the POSIX.1 append mode is valid is when a �le has been oepned
for byte stream access (HPFOPEN option 77 with a value of 2).

97 32-bit signed integer by reference. POSIX non-block mode:

This item returns a value indicating whether or not this �lenum has the POSIX.1
non-block ag set. When the non-block ag is set, on �les that support this feature,
reads, writes, and opens can be a�ected in a �le dependent manner. In general,
operations that would otherwise have impeded the caller results in immediate return
when this ag is set. A value of 1 indicates the non-block ag is set, while a value of
zero indicates the ag is not set.

The only time the non-block ag is valid is for pipes and FIFO's.

KSAM XL Intrinsics 9-21

FFILEINFO

Table 9-3. FFILEINFO File Codes

Integer Mnemonic Description

0 Default (unreserved)

1024 USL User subprogram library

1025 BASD Basic data

1026 BASP Basic program

1027 BASFP Basic fast program

1028 RL Compatibility mode relocatable library

1029 PROG Compatibility mode program �le

1030 NMPRG Native mode program �le

1031 SL Segmented library

1032 NMSL Native mode executable library

1033 NMRL Native mode relocatable library

1035 VFORM VPLUS forms �le

1036 VFAST VPLUS fast forms �le

1037 VREF VPLUS reformat �le

1040 XLSAV Cross loader ASCII �le (SAVE)

1041 XLBIN Cross loader relocated binary �le

1042 XLDSP Cross loader ASCII �le (DISPLAY)

1050 EDITQ Edit quick �le

1051 EDTCQ Edit KEEPQ �le (COBOL)

1052 EDTCT Edit TEXT �le (COBOL)

1054 TDPDT TDP diary �le

1055 TDPQM TDP proof marked QMARKED

1056 TDPP TDP proof marked non-COBOL �le

1057 TDPCP TDP proof marked COBOL �le

1058 TDPQ TDP work �le

1059 TDPXQ TDP work �le (COBOL)

1060 RJEPN RJE punch �le

1070 QPROC QUERY procedure �le

1080 KSAMK KSAM key �le

1083 GRAPH GRAPH speci�cation �le

1084 SD Self-describing �le

9-22 KSAM XL Intrinsics

FFILEINFO

Table 9-3. FFILEINFO File Codes (continued)

Integer Mnemonic Description

1090 LOG User logging log �le

1100 WDOC Hewlett-Packard WORD document

1101 WDICT Hewlett-Packard WORD hyphenation
dictionary

1102 WCONF Hewlett-Packard WORD con�guration �le

1103 W2601 Hewlett-Packard WORD attended printer
environment

1110 PCELL IFS 3000/XL character cell �le

1111 PFORM IFS 3000/XL form �le

1112 PENV IFS 3000/XL environment �le

1113 PCCMP IFS 3000/XL compiled character cell �le

1114 RASTR Graphics image in RASTR format

1130 OPTLF OPT/3000 log �le

1131 TEPES TEPE/3000 script �le

1132 TEPEL TEPE/3000 log �le

1133 SAMPL APS/3000 log �le

1139 MPEDL MPEDCP/DRP log �le

1140 TSR Hewlett-Packard Toolset root �le

1141 TSD Hewlett-Packard Toolset data �le

1145 DRAW Drawing �le for Hewlett-Packard DRAW

1146 FIG Figure �le for Hewlett-Packard DRAW

1147 FONT Reserved

1148 COLOR Reserved

1149 D48 Reserved

1152 SLATE Compressed SLATE �le

1153 SLATW Expanded SLATE work �le

1156 DSTOR RAPID/3000 DICTDBU utility store �le

1157 TCODE Code �le for TRANSACT/XL compiler

1158 RCODE Code �le for Report/3000 compiler

1159 ICODE Code �le for Inform/3000 compiler

1166 MDIST Hewlett-Packard Desk distribution list

1167 MTEXT Hewlett-Packard Desk text

KSAM XL Intrinsics 9-23

FFILEINFO

Table 9-3. FFILEINFO File Codes (continued)

Integer Mnemonic Description

1168 MARPA ARPA messages �le

1169 MARPD ARPA distribution list

1170 MCMND Hewlett-Packard Desk abbreviated
commands �le

1171 MFRTM Hewlett-Packard Desk diary free time list

1172 None Reserved

1173 MEFT Hewlett-Packard Desk external �le transfer
messages �le

1174 MCRPT Hewlett-Packard Desk encrypted item

1175 MSERL Hewlett-Packard Desk serialized
(composite) item

1176 VCSF Reserved

1177 TTYPE Terminal type �le

1178 TVFC Terminal vertical format control �le

1192 NCONF Network con�guration �le

1193 NTRAC Network trace �le

1194 NLOG Network log �le

1195 MIDAS Reserved

1211 ANODE Reserved

1212 INODE Reserved

1213 INVRT Reserved

1214 EXCEP Reserved

1215 TAXON Reserved

1216 QUERF Reserved

1217 DOCDR Reserved

1226 VC VC �le

1227 DIF DIF �le

1228 LANGD Language de�nition �le

1229 CHARD Character set de�nition �le

1230 MGCAT Formatted application �le

9-24 KSAM XL Intrinsics

FFILEINFO

Table 9-3. FFILEINFO File Codes (continued)

Integer Mnemonic Description

1236 BMAP Base map speci�cation �le

1242 BDATA BASIC data �le

1243 BFORM BASIC �eld order �le for VPLUS

1244 BSAVE BASIC saved program �le

1245 BCNFG Con�guration �le for default option BASIC
program

1258 PFSTA Pathow static �le

1259 PFDYN Pathow dynamic �le

1270 RFDCA Revisable form DCA data stream

1271 FFDCA Final form DCA data stream

1272 DIU Document interchange unit �le

1273 PDOC Hewlett-Packard WORD/150 document

1401 CWPTX Reserved

1421 MAP Hewlett-Packard MAP/3000 map
speci�cation �le

1422 GAL Reserved

1425 TTX Reserved

1461 NMOBJ Native mode object �le

1462 PASLB Pascal/XL source library

Figure 9-1. Foption Bit Summary

KSAM XL Intrinsics 9-25

FFILEINFO

Figure 9-2. Aoption Bit Summary

Condition Codes CCE (2) Request granted.

CCG (0) Not returned.

CCL (1) Request denied. Access or calling sequence error.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-26 KSAM XL Intrinsics

FFINDBYKEY

FFINDBYKEY Positions the record pointer at the beginning of the �rst record
matching the key value comparison in a KSAM �le.

Syntax

I16V CA I16V I16V I16V

FFINDBYKEY(�lenum,value,location,length,relop);

Parameters �lenum 16-bit integer by value (required)

Identi�es the �le number of the �le to be positioned.

value character array (required)

Contains a value that determines which record is
read. This value is compared to the data contained
in location in relation to the operator speci�ed in
relop.

location 16-bit integer by value (required)

Speci�es the relative byte location in the record of
the key being used. Bytes are numbered starting
with 1. If location=0, the primary key is used.

length 16-bit integer by value (required)

Speci�es the length of the key in bytes. If length=0,
then the entire key is used. If length is less than the
full key length (generic key), then only the length
speci�ed is used in the comparison with relop. The
length parameter must be equal to or less than the
full length of the key when the �le was created. For
numeric display keys or packed decimal keys, the full
key length must be used.

relop 16-bit signed integer by value (required)

Speci�es the relational operator for the comparison
of the key value of the �le to the value speci�ed in
value. The record where the �le is positioned has
this relation to key value:

Value Meaning

0 Equal

1 Greater than

2 Greater than or equal to

When relop is set to 1 or 2, the search is for an
approximate key.

KSAM XL Intrinsics 9-27

FFINDBYKEY

Operation Notes Split stack calls are permitted.

The FFINDBYKEY intrinsic does not read the advance ag. It positions
both the logical record pointer and the physical pointer to the
appropriate record. When the function is complete, it sets the
advance ag to FALSE.

To locate and read a single record, use the FREADBYKEY intrinsic.

Condition Codes CCE Request granted.

CCG Request denied. The requested position was beyond
the logical end-of-�le or beginning-of-�le.

CCL Request denied. An error occurred: an I/O error
occurred, the relop parameter could not be satis�ed,
a length less than the full length was speci�ed for a
key with numeric display or packed decimal format,
or a key was not found when relop=0.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-28 KSAM XL Intrinsics

FFINDN

FFINDN Positions the logical record pointer to the relative record number
according to the key sequence in a KSAM �le.

Syntax

I16V DV I16V

FFINDN(�lenum,number,location);

Parameters �lenum 16-bit signed integer (required)

Passes the �le number of the �le to be positioned.

number double by value (required)

Speci�es a record number relative to the �rst logical
record in the �le. Record numbers start with zero
or one depending on the record numbering scheme
speci�ed at �le creation. The lowest numbered
record applies to the record with the lowest value in
the speci�ed key �eld. A negative record number
positions the �le pointer to the record with the
smallest key value.

location 16-bit signed integer by value (required)

Passes the relative byte location in the record of
the key to be used. The �rst byte of the record is
considered 1. If location=0, the primary key is used.

Operation Notes Split stack calls are permitted.

This intrinsic does not read the advance ag. It sets both the logical
record pointer and the physical pointer to the appropriate record.
When its function is complete, it sets the advance ag to FALSE.

When the relative record number is speci�ed, be sure not to confuse
this number with the physical record number (the number of the
record as it is stored in the �le). The relative record number is based
on the value of a speci�ed key, not its location in a �le.

If FFINDN is used to position the pointer before calling another
procedure that reads or updates the �le in a shared environment,
FLOCK must be called before calling FFINDN. After performing the
read or update operation, unlock the �le. If the �le is locked after
calling FFINDN, another user can change the pointer position without
your program being aware of it.

KSAM XL Intrinsics 9-29

FFINDN

Condition Codes CCE Request granted.

CCG Request denied. The requested position was beyond
the logical end-of-�le.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-30 KSAM XL Intrinsics

FGETINFO

FGETINFO Returns access and status information about a �le.

Note FGETINFO is provided for compatibility with MPE V/E-based systems
only. It is recommended that FFILEINFO be used to access data.

Syntax

I16V CA U16 U16

FGETINFO(�lenum,formaldesig,foption,aoption

I16 I16 U16 U16 I16

lrecsize,devtype,ldevnum,hdaddr,�lecode,

I32 I32 I32 I32 I32 I16

lrecptr,eof,�lelimit,logcount,physcount,blksize,

U16 I16 I16 CA I32

extsize,numextent,userlabels,creatorid,labaddr);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le for which
information is requested.

formaldesig character array (optional)

Returns the actual designator of the �le being
referenced, in the following format:

�lename.groupname.accountname

The formaldesig array must be at least 28 bytes in
length. When the actual designator is returned,
unused bytes in the array are �lled with blanks on
the right. A nameless �le returns an empty string.

foption 16-bit unsigned integer by reference (optional)

Returns seven di�erent �le characteristics by setting
corresponding bit groupings. The �le characteristics
are those speci�ed for foptions in the FOPEN intrinsic.

aoption 16-bit unsigned integer by reference (optional)

Returns up to seven di�erent access options
represented by bit groupings as described for the
aoptions parameter of FOPEN.

lrecsize 16-bit signed integer by reference (optional)

Returns the logical record size associated with the
�le:

If the �le was created as a binary �le, this value is
positive and expresses the size in halfwords.

KSAM XL Intrinsics 9-31

FGETINFO

If the �le was created as an ASCII �le, this value is
negative and expresses the size in bytes.

devtype 16-bit signed integer by reference (optional)

Returns the type and subtype of the device being
used for a KSAM, RIO, circular, or message �le, or
devices such as a tape drive, printer, or terminal
where bit (0:8) indicate device subtype, and bit (8:8)
indicate device type. For standard disk �les, bit
(8:8)=00000011 and bit (0:8)=00001000 (indicate a
7933/35 disk drive).

ldevnum 16-bit unsigned integer by reference (optional)

Returns the logical device number (ldev) associated
with the device where the �le label resides:

If the �le is a disk �le, ldevnum is the location of
the �le label. (File data may reside on the same
device as the �le label.)

If the �le is spooled, ldevnum is a virtual device
number that does not correspond to the system
con�guration I/O device list.

If the �le is located on a remote computer, linked
by a DS point-to-point or X.25 link, the left eight
bit (0:8) are the logical device number of the
distributed system (DS) device.

If the remote computer is linked by NS 3000/XL,
the left eight bit (0:8) are the remote environment
of the connection. The right eight bit (8:8) are the
ldev of the device on the remote computer where
the �le label resides.

If the DS device for the RFA or the LDEV is 0,
then ldevnum returns a 0.

hdaddr 16-bit unsigned integer by reference (optional)

Returns 2048. Maintained to provide backward
compatibility with MPE V/E-based systems.

�lecode 16-bit signed integer by reference (optional)

Returns the �le code of a disk �le.

lrecptr 32-bit signed integer by reference (optional)

Returns the current physical record pointer setting.
Remember that physical record numbers can begin
with zero or one, depending on how the �le was
built.

eof 32-bit signed integer by reference (optional)

9-32 KSAM XL Intrinsics

FGETINFO

Returns the pointer setting of the last logical record
currently in the �le (equivalent to the number of
logical records currently in the �le). If the �le does
not reside on disk, this value is zero. For interprocess
communication (IPC), when a call to FCONTROL with
itemnum=46 is in e�ect, the number of records
returned in eof includes open, close, and data
records.

�lelimit 32-bit signed integer by reference (optional)

Returns a number representing the last logical record
that could exist in the �le (the physical limits of the
�le). If the �le does not reside on disk, this value is
zero.

logcount 32-bit signed integer by reference (optional)

Returns the total number of logical records passed to
and from the program during the current �le access.

physcount 32-bit signed integer by reference (optional)

Returns the total number of physical I/O operations
performed within the process, against the �le, since
the last FOPEN/HPFOPEN call.

blksize 16-bit signed integer by reference (optional)

Returns the �le block size:

If the �le is binary, the value is positive and the
size is in halfwords.

If the �le is ASCII, the value is negative and the
size is in bytes.

extsize 16-bit unsigned integer by reference (optional)

Maintained to provide backward compatibility with
MPE V/E-based systems.

numextent 16-bit signed integer by reference (optional)

Maintained to provide backward compatibility with
MPE V/E-based systems.

userlabels 16-bit signed integer by reference (optional)

Returns the number of user labels de�ned for the
�le during creation. If the �le is not a disk �le,
this number is zero. When an old �le is opened for
overwrite output, the value of userlabels is not reset,
and old user labels are not destroyed.

creatorid character array (optional)

Returns the name of the �le creator (8-character
array). If the �le is not a disk �le, blanks are
returned.

KSAM XL Intrinsics 9-33

FGETINFO

labaddr 32-bit signed integer by reference (optional)

Returns a zero. Maintained for backward
compatibility with MPE V/E-based systems.

Operation Notes Returns access and status information about a �le located on any
device. The �le must be opened by the calling process at the time of
the FGETINFO call.

Condition Codes CCE Request granted.

CCG Not returned.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-34 KSAM XL Intrinsics

FGETKEYINFO

FGETKEYINFO Requests access and status information about a KSAM �le.

Syntax

I16V BA BA

FGETKEYINFO(�lenum,param,control)

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le about which
information is requested.

param byte array (required)

Returns information describing the key information
for a KSAM �le. The length is 162 bytes.

control byte array (required)

Passes 256 bytes of control information about the key
�le.

Operation Notes The FGETKEYINFO parameter returns an array equivalent to the array
for the HPFOPEN and FOPEN intrinsics. (Refer to Figure 9-3.) Its
length must be 162 bytes.

KSAM XL Intrinsics 9-35

FGETKEYINFO

Figure 9-3. FGETKEYINFO Parameter Format

The control parameter provides dynamic information about the use
of the �le from the time it was created. It counts the number of
times the �le was referred to by intrinsics, and the date and time it
was created, closed, updated, or written to. Its format is shown in
Figure 9-4.

9-36 KSAM XL Intrinsics

FGETKEYINFO

Figure 9-4. FGETKEYINFO Control Parameter Format

KSAM XL Intrinsics 9-37

FGETKEYINFO

FGETKEYINFO Control Parameter Format (continued)

9-38 KSAM XL Intrinsics

FGETKEYINFO

Condition Codes CCE Request granted.

CCG Not returned.

CCL Request denied. An error occurred; insu�cient space
was declared for param or control , an illegal �le
number was speci�ed, or the DB register is not set to
the user stack.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-39

FLABELINFO Returns information from the �le label of a disk �le.

Syntax

CA I16V I16

FLABELINFO(formaldesig,mode,fserrorcode,

I16A REC I16A

itemnum,item,itemerror);

Parameters formaldesig character array (required)

Passes the name of the �le using either MPE syntax
(the default) or HFS syntax. The �le name must be
terminated by a nonalphanumeric character other
than a period (.), a slash (/), a hyphen (-), and an
underscore ().

If MPE syntax, the �le name can include password,
group, and account speci�cations. The �le name
can backreference a �le equation and optionally be
preceded by an asterisk.

If HFS syntax, the �le name must start with either
a dot (.) or a slash (/). For �les located in HFS
directories, traverse directory entries (TD) access is
required to all directories speci�ed in formaldesig . If
there is no TD access, FLABELINFO fails and a �le
system error code (398) is returned in the fserrorcode
parameter.

If the �le can be named using both MPE syntax and
HFS syntax (for example, FILEA.MYGROUP.MYACCT
and /MYACCT/MYGROUP/FILEA), the �le can be either
permanent or temporary. If a temporary and a
permanent �le have the same name, FLABELINFO
returns information about the temporary �le only.

mode 16-bit signed integer by value (required)

Passes an option specifying the valid backreferencing
to �le equations for the �le. Valid values are:

Value Meaning

0 Use �le equation (if one exists)

1 Must use �le equation (error if one does not
exist)

2 Ignore existing �le equations

9-40 KSAM XL Intrinsics

FLABELINFO

Bits Value/Meaning

0:11 Reserved for future use.

12:1 Symbolic Link Traversal

0 To traverse through symbolic links, if they
exist.

1 Do not traversing through symbolic links, if
they exist.

13:2 Caller Privilege Level Allows the caller to
pretend to be less privileged. The privilege level
is passed in this �eld.

15:2 File Equations

0 Use �le equations if they exist.

1 A �le equation must be used.

2 Do not use a �le equation.

fserrorcode 16-bit signed integer by reference (required)

Returns a value indicating whether an error or
warning occurred when FLABELINFO attempted to
return requested information:

A value of zero indicates that no errors were
encountered.

A positive value is a �le system error code and
indicates that an error was encountered and no
information was returned in item.

A -1 indicates that an item error or warning has
occurred. Check the itemerror parameter to
determine which item(s) has an error/warning and
what it is.

itemnum 16-bit signed integer array (required)

Speci�es which item value is to be returned. (Refer
to Table 9-4.)

To indicate the end of the list, place a zero in the
element following the last itemnum.

item record (required)

Returns the value of the item speci�ed in the
corresponding itemnum. (Refer to Table 9-4.)

Itemnum/items are paired such that the nth �eld of
the item record corresponds to the nth element of
the itemnum array.

KSAM XL Intrinsics 9-41

FLABELINFO

itemerror 16-bit signed integer array (required)

Returns an error number corresponding to the items
speci�ed in the itemnum array. The itemnum/item
and itemerror parameters are paired such that the
nth element of the itemerror array corresponds to
the nth element of the itemnum array.

If a value in the itemerror array is negative, a
warning exists for the corresponding item. If the
value is positive, an error was detected for the
corresponding item. The absolute value of each value
is a �le system error number.

9-42 KSAM XL Intrinsics

FLABELINFO

Table 9-4. FLABELINFO Itemnum/Item Values

Itemnum Mnemonic Item Description

1 CA File name (8 bytes): The �le name component for the �le referenced in formaldesig is
returned as the value. If the �le name is not expressible using MPE-only semantics, a
�le system error code (391) is returned in the associated itemerror .

2 CA Group name (8 bytes): The group name component for the �le referenced in formaldesig
is returned as the value. If the group name is not expressible using MPE-only semantics,
a �le system error code (391) is returned in the associated itemerror .

3 CA Account name (8 bytes): The account name component for the �le referenced in
formaldesig is returned as the value. If the account name is not expressible using
MPE-only semantics, a �le system error code (391) is returned in the associated
itemerror .

4 CA File creator name (8 bytes): An unquali�ed form of the �le owner's name is returned as
the value. The �le owner is not necessarily the �le's creator.

A symbolic zero (ASCII 48 in decimal) is returned as the �le owner for root directories,
MPE accounts, and MPE groups created prior to release 4.5.

If the �le is not located in the account where the �le owner is a member, a blank �le
owner name is returned. Use itemnum=43 to obtain the full �le owner name.

5 U32 Security matrix for access: Returns the �le's security matrix. This value does not
indicate the actual security enforced for a �le, since group and account security masks
can also restrict access. This �eld is ignored if an ACD is active on a �le.

6 U16 File creation date: The date in CALENDAR intrinsic format. Either creator (C) or
manager (AM if �le is within account, otherwise SM) access required.

Zero is returned as the creation date for root directories, MPE accounts, and MPE
groups created prior to release 4.5.

7 U16 Last access date: The date in CALENDAR intrinsic format. May not be up-to-date when
the �le is open.

Zero is returned as the last access date for root directories, MPE accounts, and MPE
groups created prior to release 4.5.

8 U16 Last modi�cation date: The date in CALENDAR intrinsic format. May not be up-to-date
when the �le is open.

Zero is returned as the modi�cation date for root directories, MPE accounts, and MPE
groups created prior to release 4.5.

9 I16 File code of disk �le

10 U16 Number of user labels written: May not be up-to-date when the �le is open.

11 U16 Number of user labels available: May not be up-to-date when the �le is open.

12 I32 Total number of logical records possible in the �le: Equivalent to the �le limit measured
in logical records.

KSAM XL Intrinsics 9-43

FLABELINFO

Table 9-4. FLABELINFO Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

13 U16 File options: The record format extension bit is returned as the foption (1:1) bit. Byte
stream record format is represented as a record format extension of one with a variable
record format (foption (8:2) bits equal to 01).

Directories, symbolic links, device links, pipes and FIFO's cannot be represented by
foption. If the object referenced by filenum is is an object, MPE error 399 is returned
in the associated itemerror .

Refer to the foption �gure.

14 I16 Record size: Maintained for compatibility with MPE V/E-based systems. (If a zero is
returned, use itemnum 30 instead.)

15 I16 Block size: Maintained for compatibility with MPE V/E-based systems. (If a zero is
returned, use itemnum 31 instead.)

16 I16 Maximum number of extents: Maintained for compatibility with MPE V/E-based
systems. (If a zero is returned, use itemnum 32 instead.)

17 I16 Last extent size: Indicates sectors. May not be up-to-date when the �le is open.

18 I16 Extent size: Indicates sectors. (If a zero is returned, use itemnum 32 instead.)

19 U32 Number of logical records in �le: Equivalent to EOF. May not be up-to-date when the
�le is open.

20 U32 File allocation time: The time when �le was last restored (in CLOCK intrinsic format).

Zero is returned as the �le allocation time for root directories, MPE accounts, and MPE
groups created prior to release 4.5.

21 U16 File allocation date: The date when the �le was last restored (in CALENDAR intrinsic
format).

Zero is returned as the �le allocation date for root directories, MPE accounts, and MPE
groups created prior to release 4.5.

22 I32 Number of open/close records: MSG �les only. May not be up-to-date when the �le is
open.

23 CA Device name (8 bytes)

24 U32 Last modi�cation time: The time when the �le was last modi�ed (in CALENDAR intrinsic
format). May not be up-to-date when the �le is open.

25 CA First user label (user label 0) (256 bytes): May not be up-to-date when the �le is open.
Manager (AM if �le is within account, otherwise SM) or read/write (R/W) access
required.

27 REC Unique �le identi�er (UFID) (20 bytes)

28 U32 Total number of bytes allowed in �le: Equivalent to the �le limit measured in bytes.
May not be up-to-date when the �le is open.

29 U32 Start of �le o�set: Indicates the byte o�set where user data starts.

9-44 KSAM XL Intrinsics

FLABELINFO

Table 9-4. FLABELINFO Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

30 U32 Record size (indicates bytes

31 U32 Block size (indicates bytes)

32 U32 Extent size (indicates bytes)

33 CA File lockword (8 bytes): Returned if you are the �le creator, account manager, or system
manager.

34 CA Volume restriction (34 bytes): The last two characters indicate the type of restriction, as
follows:

0 File is placed on the speci�ed volume at creation
1 File can be placed on any volume containing the speci�ed class at creation
2 File can be placed on any volume within the speci�ed volume set at creation

(Default)

35 CA Volume set names (32 bytes): No restrictions.

36 CA Transaction management log set id (4 bytes) No restrictions.

37 U16 Logical device number

38 REC Terminated HFS-syntax system absolute pathname: Upon input, the �rst four bytes are
interpreted as a 32-bit unsigned integer specifying the maximum available bu�er size in
bytes. This maximum available bu�er size does not include the four bytes used to
represent this size. Upon output, the �rst four bytes represent the pathname length
excluding the null terminator as a 32-bit unsigned integer. The pathname is returned in
bytes following the pathname length. Bytes beyond the pathname terminator are
unde�ned. If the maximum available bu�er size is incorrect upon input, variables
allocated near the bu�er can be overwritten or a bounds violation could occur. A zero
pathname length is returned for unnamed new �les and when an error occurs. Zero is
the minimum bu�er length upon input for this itemnum.

39 U32 The current number of hard links to the �le

40 I32 Time of last �le access (clock format): The bit assignments are:

bits 0-7 = hours

bits 8-15 = minutes

bits 16-23 = seconds

bits 24-31 = tenths of seconds

41 I32 Time of last �le status change (clock format): The bit assignments are:

bits 0-7 = hours

bits 8-15 = minutes

bits 16-23 = seconds

bits 24-31 = tenths of seconds

42 U16 Date of the last �le status change (calendar format): The bit assignments are:

bits 0-7 = year of century

bits 8-15 = day of the year

KSAM XL Intrinsics 9-45

FLABELINFO

Table 9-4. FLABELINFO Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

43 CA File owner (32 bytes): The full �le owner name. Unused characters are �lled with
blanks. A symbolic zero (ASCII 48 in decimal) is returned as the �le owner for root
directories, accounts, and MPE groups created prior to release 4.5.

44 I32 File owner identi�er: The �le owner identi�er (UID). Zero is returned as the �le owner
ID for root directories, MPE accounts, and MPE groups created prior to release 4.5.

45 CA File group (32 bytes): The �le group name. Unused characters are �lled with blanks. A
symbolic zero (ASCII 48 in decimal) is returned as the group for root directories where
GIDs have not been explicitly assigned.

46 I32 File group identi�er: The �le group identi�er (GID). Zero is returned as the group ID
for root directories where GIDs have not been explicitly assigned.

47 U32 File type: Following are valid �le types that can be returned:

0 = Ordinary file

1 = KSAM/3000

2 = RIO

3 = KSAM XL

4 = CIR

5 = Native Mode Spool File

6 = MSG

7 = N/A

8 = N/A

9 = Directory

10-11= N/A

12 = Pipe

13 = FIFO

14 = Symbolic Link

15 = Device Link

48 U32 Record type: Following are valid record types that can be returned:

0 = fixed

1 = variable

2 = undefined

3 = spool block

4 = root directory

5 = N/A

6 = account directory

7 = group directory

8 = N/A

9 = byte stream

10 = hierarchical directory

49 I64 Current �le size (in bytes): The value returned represents the current position of the
end-of-�le (EOF) and may not reect the number of bytes actually occupied by the �le
on disk if the �le is sparsely allocated.

9-46 KSAM XL Intrinsics

FLABELINFO

Table 9-4. FLABELINFO Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

50 I32 KSAM XL File Version: This item returns a value indicating the version number of a
KSAM XL �le. A value of 1 indicates an original type KSAM XL �le. A value of 2
indicates the next generation KSAM XL �le. A value of zero is returned if the �le is not
a KSAM XL �le.

51 I32 KSAM XL Parameters: This item returns �le information about KSAM XL.

52 I32 MPE/iX Device Type: This item returns the following values for the following types of
devices:

0=Disk device

1=Tape device

2=Terminal device

3=Printer device

4=Remote device

5=Ports device

6=Reserved

7=Streams device

8=Sockets device

53 I32 Secure/Release: This item returns a value indicating whether the �le is currently
secured or released. A value of 1 indicates that the �le is secured. A value of zero
indicates that the �le is released.

Figure 9-5. Foption Bit Summary

KSAM XL Intrinsics 9-47

FLABELINFO

Condition Codes CCE (2) Request granted.

CCG (0) Not returned.

CCL (1) Request denied. An error occurred. Refer to the
fserrorcode and itemerror parameters for more
information.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-48 KSAM XL Intrinsics

FLOCK

FLOCK Dynamically locks a �le. A call to FLOCK is required before any
attempt is made to read or modify a �le with shared access.

Note The �le system does not guarantee exclusive access, even when
FLOCK and FUNLOCK are used, unless all programs that access the
�le cooperate by using locking. A program that opens the �le with
dynamic locking enabled will still be allowed to modify the �le, even
if it never calls FLOCK.

Syntax

I16V U16V

FLOCK(�lenum,lockag);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le whose global
resource identi�cation number (RIN) is to be locked.

lockag 16-bit unsigned integer by value (required)

Specify either conditional or unconditional locking by
setting bit (15:1) as follows:

Value Meaning

0 Locking takes place only if the �le's global
RIN is not currently locked. If the RIN is
locked, control returns immediately to the
calling process, with condition code CCG.

1 Locking takes place unconditionally. If the
�le cannot be locked immediately, the calling
process suspends until the �le can be locked.

Condition Codes The following condition codes are possible when lockag bit
(15:1)=1:

CCE Request granted.

CCG Not returned.

CCL Request denied. This �le was not opened with the
dynamic locking aoption bit (10:1) speci�ed in the
FOPEN/HPFOPEN intrinsic.

The following condition codes are possible when lockag bit
(15:1)=0:

CCE Request granted.

CCG Request denied because the �le was locked by
another process.

KSAM XL Intrinsics 9-49

FLOCK

CCL Request denied. This �le was not opened with the
dynamic locking aoption bit (10:1) speci�ed in the
FOPEN/HPFOPEN intrinsic.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-50 KSAM XL Intrinsics

FOPEN

FOPEN Opens a �le.

Syntax

I16 CA U16V U16V I16V CA

�lenum:=FOPEN(formaldesig,foption,aoption,recsize,device,

CA I16V

formmsg,userlabels

I32V I16V I16V I16V

�lesize,numextent,initialloc,�lecode);

Functional Return �lenum 16-bit signed integer (assigned functional return)

Returns a unique �le number identifying the opened
�le.

Parameters formaldesig character array (optional)

Passes a formal �le designator, following �le
naming conventions. The �le name must begin
with a letter and contain alphanumeric characters,
slashes, or periods. Terminate the string by placing
a delimiter in the array element following the
last valid character. The delimiter can be any
nonalphanumeric character except a slash (/), period
(.), colon (:), or exclamation point (!).

If the �le name is the name of a user-de�ned �le, it
can begin with an asterisk (*). If the �le name is the
name of a system-de�ned �le, it can begin with a
dollar sign ($). The remote location of a device can
be speci�ed as �lename:envid . The �le, lockword,
group, and account names are each limited to eight
characters in length.

The formal �le designator can contain command
interpreter variables and expressions that are
evaluated before the formal �le designator is parsed
and validated.

Default: A nameless �le is assigned that can be read
or written to, but not saved. (The domain option of
a nameless �le must specify a new �le unless it is a
device �le.)

foption 16-bit unsigned integer by value (optional)

Speci�es up to eight di�erent �le characteristics, as
noted below, by setting corresponding bit groupings:

KSAM XL Intrinsics 9-51

FOPEN

Note For existing �les, default conditions are speci�ed in the �le label.

Device characteristics may override some foptions.

Bits Value/Meaning

14:2 Domain

Indicates which �le domain is searched to
locate a �le. A nameless disk �le must
always be a new �le. A device �le (such
as a tape or terminal) always resides in
the system �le domain (permanent �le
directory). Always specify a device �le as
old or permanent.

The following bit settings are valid:

00 The �le is new. No search is necessary.

01 The �le is a permanent �le. The system
�le domain (permanent �le directory) is
searched.

10 The �le is a temporary �le. The job �le
domain (temporary �le directory) is
searched.

11 The �le is an old (permanent or
temporary) �le. The job �le domain
(temporary �le directory) is searched.
If not found, the system �le domain is
searched.

Default: 00

13:1 ASCII/binary

Indicates which code, ASCII or binary,
a new �le is in when written to a device
that supports both codes. This option is
applicable only at �le creation. type

The following bit settings are valid:

0 Binary �le

1 ASCII �le

Default: 0

10:3 Designator

The actual �le designator is the same as
the formal �le designator (000). This is the
default and only setting allowed for KSAM
�les.

8:2 Record format

9-52 KSAM XL Intrinsics

FOPEN

Bit settings indicate internal record
structure for a �le. This option is applicable
only at �le creation.

KSAM XL supports �xed-length records
only (00). The �le contains logical records of
uniform length.

7:1 Carriage control

No carriage-control directive is expected for
KSAM �les.

5:1 Disallow �le equation option

Indicates whether or not to allow �le
equations. A leading * in a formal �le
designator can override the setting to
disallow FILE. The following bit settings are
valid:

0 Allow FILE equations to override
programmatic or system-de�ned �le
speci�cations.

1 Disallow FILE equations from
overriding programmatic or
system-de�ned �le speci�cations.

Default: 0

2:3 File type option

Indicates internal record structure used to
access records in a �le. KSAM XL �les are
identi�ed by a setting of 011.

0:2 Reserved for MPE/iX

aoption 16-bit unsigned integer by value (optional)

Speci�es up to eight di�erent �le access options, as
noted below, by setting corresponding bit groupings:

Bits Value/Meaning

12:4 Access type

Indicates the type of access intended for the
�le. This option restricts usage of �le system
intrinsics.

The following bit settings are valid:

0000 Allows read access only, provided
that the �le's security provisions
specify read access. FWRITE,
FUPDATE, and FREMOVE intrinsic
calls cannot reference this �le. The
end-of-�le (EOF) is not changed.

KSAM XL Intrinsics 9-53

FOPEN

0001 Allows write access only, provided
that the �le's security provisions
allow write access. Any data
written in the �le prior to the
current FOPEN request is deleted.
FFINDBYKEY, FFINDN, FPOINT,
FREAD, FREADBYKEY, FREADC,
FREADDIR, FREMOVE, FSPACE, and
FUPDATE intrinsic calls cannot
reference this �le. The EOF is set
to 0.

0010 Allows write-save access only, if the
�le's security provisions allow write
access. Previous data in the �le is
not deleted. FFINDBYKEY, FFINDN,
FPOINT, FREAD, FREADBYKEY,
FREADC, FREADDIR, FREMOVE,
FSPACE, and FUPDATE intrinsic calls
cannot reference this �le. The EOF
is not changed. Therefore, data is
overwritten if a call to FWRITE is
made. The system changes this
value to append for message �les.

0011 Allows append access only, if the
�le's security provisions allow
either append or write access.
FFINDBYKEY, FFINDN, FPOINT,
FREAD, FREADBYKEY, FREADC,
FREADDIR, FREMOVE, FSPACE, and
FUPDATE intrinsic calls cannot
reference this �le. For disk �les, the
EOF is updated after each FWRITE

call. Therefore, data cannot be
overwritten.

0100 Allows read/write (I/O) access only,
provided that the �le's security
provisions allows both read and
write access. If both read and
write access are not allowed, the
access type speci�ed in the security
provisions (either read or write) is
allowed. Any �le intrinsic except
FUPDATE and FREMOVE can be
called for this �le. The EOF is not
changed. This option is not valid
for message �les.

0101 Allows update access only, if the
�le's security provisions allows both
read and write access. If both read

9-54 KSAM XL Intrinsics

FOPEN

and write access are not allowed,
the access type speci�ed in the
security provisions (either read or
write) is allowed. All �le intrinsics
can be called for this �le. The EOF
is not changed. This option is not
valid for message �les.

0110 Allows execute access only, if the
�le's security provisions allow
execute access. This access allows
read/write access to any loaded �le.
The program must be running in
PM to specify execute access. This
option is not valid for message �les.

0111 Allows execute/read access only, if
the �le's security provisions allow
execute access. This access allows
only read access to any loaded �le.
The program must be running in
PM to specify execute/read access.
This access is changed to execute
(only) access for KSAM, CIR, and
RIO �les. This option is not valid
for message �les.

Default: 0000

10:1 Dynamic locking

Enables/disables �le locking for the �le.
When this option is speci�ed, the FLOCK
and FUNLOCK intrinsics can be used to
dynamically permit or restrict concurrent
access to a disk �le by other processes at
speci�ed times.

The following bit settings are valid:

0 Disallow dynamic locking/unlocking.

1 Allow dynamic locking/unlocking.

Default: 0

If several accessors are sharing the �le,
they must all specify, or not specify, this
option. For example, if a �le is opened
with the dynamic locking option enabled,
and a subsequent accessor tries to open
the �le with dynamic locking disabled, the
subsequent attempt to open fails.

KSAM XL Intrinsics 9-55

FOPEN

Note The �le system does not guarantee exclusive access, even when
FLOCK and FUNLOCK are used, unless all programs that access the
�le cooperate by using locking. A program that opens the �le with
dynamic locking enabled will still be allowd to modify the �le, even if
it never calls FLOCK.

8:2 Exclusive option

Indicates continuous exclusive access to this
�le, from open to close. Use this option
when performing a critical operation (for
example, updating the �le).

The following bit settings are valid:

00 If access type option (aoption bit
(12:4)) speci�es read only access,
then read-share access takes e�ect.
Otherwise, exclusive access takes e�ect.
Regardless of which access option was
selected, FFILEINFO reports zero.

01 Exclusive access. After the �le is
opened, any additional HPFOPEN/FOPEN
requests for this �le are prohibited
until this process issues the FCLOSE
request or terminates. If any process
is already accessing this �le when
an HPFOPEN/FOPEN call is issued
with exclusive access speci�ed, an
error status is returned. If another
HPFOPEN/FOPEN call is issued for this
�le while exclusive access is in e�ect,
an error code is returned to the process
that issued the call. Request exclusive
access only if the lock access mode is
allowed by the security provisions for
the �le.

10 Read-share access (semi-exclusive
access). After the �le is opened,
concurrent write access to this �le
through another HPFOPEN/FOPEN
request is prohibited, whether issued by
this process or another process, until
this process issues the FCLOSE request
or terminates. A subsequent request for
the read/write or update access type
option (aoption bit (12:4)) obtains read
access. However, other types of read
access are allowed. If a process already
has write access to the �le when this
call is issued, an error code is returned

9-56 KSAM XL Intrinsics

FOPEN

to the calling process. If another
HPFOPEN/FOPEN call that violates the
read only restriction is issued while
read-share access is in e�ect, that call
fails and an error code is returned to
the calling process. Request read-share
access only if the lock access mode is
allowed by the security provisions for
the �le.

11 Share access. After the �le is opened,
concurrent access to this �le by any
process is permitted, in any access
mode, subject to other security
provisions in e�ect.

Default: 00

5:2 Multiaccess mode option KSAM XL
supports no multiaccess (00).

Default: 00

4:1 NOWAIT I/O option KSAM XL does not
support NOWAIT I/O (0).

Default: 0

3:1 Copy mode option Determines whether a �le
should be treated as a standard sequential
�le (copy by logical record) or physical block
(copy to another �le).

KSAM XL does not allow the copy mode
option (0).

Default: 0

0:3 Reserved for MPE/iX.

recsize 16-bit signed integer by value (optional)

Passes the size, in halfwords or bytes, of the logical
records in the �le. Positive values are halfwords,
negative values are bytes. The valid range is
dependent on storage and record formats:

For �xed-length and unde�ned-length ASCII �les,
the valid range is 1 to 32,767 bytes.

For variable-length ASCII �les and �xed-length,
variable-length, and unde�ned-length binary
�les, the range is 1 to 32,766 bytes (1 to 16,383
halfwords). All odd values speci�ed are rounded
up to the next even value (the next halfword
boundary).

Default: Device dependent.

KSAM XL Intrinsics 9-57

FOPEN

device character array (optional)

Passes a string of ASCII characters terminating with
any nonalphanumeric character except a slash (/)
or period (.), designating the device where the �le
is to reside. For a KSAM �le, the device must be a
random access device such as a disk.

Default: DISC

ksamparam character array (optional)

Contains a description of the KSAM XL parameters
including the primary key and up to 15 alternate
keys. If a new �le is being created, this parameter
must be speci�ed. If this is an existing �le, check ag
word �eld to see if the default values are acceptable.
In the ag word �eld you can set bit 13 to sequential
write. For COBOL, set ag 9. If this is not an
existing �le, specify this �eld explicitly. (Refer to
Figure 9-6 for parameter format.)

Language ID Number

This three-digit code identi�es the native language
to be used for the �le. To display a list of native
languages that are available on your system, enter
RUN NLUTIL.PUB.SYS.

If the �le already exists, this �eld is ignored.

Flag word

The ag word contains a halfword de�ning the �le
characteristics.

Bits Value/Meaning

15:1 Reserved, do not use. Always set to 0.

14:1 Enter 1 if record numbering is to start with
1. Enter 0 if record numbering is to start
with 0.

13:1 Enter 1 if only sequential writing by primary
key is allowed. Enter 0 if random writing by
primary key is allowed.

12:1 Enter 1 if deleted record space can be
reused. Enter 0 if deleted record space
cannot be used.

11:1 Enter 1 if a language type is speci�ed. Enter
0 if a language type is not speci�ed.

10:1 Enter 1 if the primary key cannot be
changed with the FUPDATE intrinsic for �les
that are opened for sequential processing.
Enter 0 if the primary key can be changed

9-58 KSAM XL Intrinsics

FOPEN

with the FUPDATE intrinsic for �les that
are opened for sequential processing. This
enables KSAM processing of COBOL
information according to COBOL standards.

9:1 Enter 1 if the �le is programmatically
accessed by the COBOL programming
language. Enter 0 if the �le is not
programmatically accessed by the COBOL
programming language. This enables KSAM
to process COBOL information according to
COBOL standards.

8:1 Enter 1 if selecting optimal block size.

0:9 Enter 0. These bits are reserved and must
contain zeros.

Number of Keys

In bits 8:8, enter a number between 1 and 16
specifying the number of keys to be de�ned for this
�le.

Key De�nitions

Each key in the �le requires a 4-halfword word
de�nition. The �rst de�nition is always the primary
key. Up to 15 alternate keys are allowed for any
KSAM XL �le. The key de�nitions contain the key
type, key length, key location, duplicate key ag, and
random insert ag:

Key Type

Bits 0:4 specify the type of key:

Value Meaning

0001 Byte key (1 to 255 bytes)

0010 Short integer key (255 bytes)

0011 Integer key (255 bytes)

0100 Real number key (255 bytes)

0101 Long real number key (255 bytes)

0110 Numeric display key (1 to 28 bytes)

0111 Packed decimal key (1 to 14 bytes)

1000 Signed packed decimal key (2 to 14 bytes)

1001 IEEE oating-point decimal key (4, 8, or 16
bytes)

KSAM XL Intrinsics 9-59

FOPEN

Key Length

Bits 4:12 specify the key length. Enter the length
of the key in bytes. A maximum of 255 bytes is
allowed, but the length is dependent on the type of
key data speci�ed.

Key Location

Enter the relative location in bytes of the key �eld in
the record. Note that the �rst byte of the record is
considered 1.

Duplicate Key Flag

Bits 0:1 specify the duplicate key ag. Enter 1 if
duplicate key values are allowed for this key. Enter 0
if duplicate key values are not allowed for this key.

Random Insert Flag

Bits 8:1 specify the random insert ag. This �eld
speci�es the method of inserting duplicate key values.
To use this feature, the previous duplicate key ag
must be set to 1. Bits 0:8 and 9:7 are reserved and
always set to 0.

Enter 1 if duplicate key values are to be inserted
randomly in the duplicate key chain.

Enter 0 if duplicate key values are to be inserted at
the end of the duplicate key chain.

userlabels 16-bit signed integer by value (optional)

Passes the number, in the range 0 to 254, of
user-label records to be created for the �le.
Applicable to new disk �les only.

Default: 0

�lesize 32-bit signed integer by value (optional)

Passes the maximum �le capacity.

KSAM XL requires extra space for its index area.
The actual space needed is computed by the KSAM
XL type manager, based on the �le size speci�ed by
the user. If the space required to build a �le of the
user-speci�ed size exceeds 2 gigabytes, FOPEN returns
an error.

9-60 KSAM XL Intrinsics

FOPEN

numextent 16-bit signed integer by value (optional)

Passes a value in the range 1 to 32 that determines
the number of extents for the �le. If a value of 1 and
an initialloc value of 1 is speci�ed, the �le is created
as one contiguous extent of disk space. If a value
>1 is speci�ed, a variable number of extents (with
varying extent sizes) are allocated on a need basis.
Applicable only at �le creation.

Default: >=1 extents

initialloc 16-bit signed integer by value (optional)

Passes an integer value in the range 1 to 32 that
determines the number of extents to be allocated to
the �le initially. Applicable only at �le creation.

Default: 0

�lecode 16-bit signed integer by value (optional)

Passes a value that can be used as a �le code to
identify the type of �le. This code is recorded in the
�le label and is accessible through the FFILEINFO
intrinsic. Applicable only at �le creation (except
when opening an old �le that has a negative �le
code).

If the program is running in user mode, specify a
�le code in the range 0 to 32,767 to indicate the
�le type being created; programs running in user
mode can access �les with nonnegative �le codes. If
the program is running in privileged mode, specify
a �le code in the range -32,768 to 32,767; programs
running in privileged mode can access �les with a
�le code in the range -32,768 to 32,767. If an old
�le with a negative �le code is opened, the �le code
speci�ed must match the �le code in the �le label.

Default: 0

KSAM XL Intrinsics 9-61

FOPEN

Table 9-5. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item

�lenum (functional return) �lenum (parameter)

formaldesig 2,formaldesig

foption:

Bits (14:2) Domain
Bit (13:1) ASCII/binary
Bits (10:3) File designator
Bits (8:2) Record format
Bit (7:1) Carriage-control
Bit (6:1) Labeled tape
Bit (5:1) Disallow �le equation
Bits (2:3) File type

3, domain

53, ASCII/binary

5, �le designator

6, record format

7, carriage-control

8, labeled tape

9, disallow �le equation

10, �le type

aoption:

Bits (12:4) Access type
Bit (11:1) Multirecord
Bit (10:1) Dynamic locking
Bits (8:2) Exclusive
Bit (7:1) Inhibit bu�ering
Bits (5:2) Multiaccess mode
Bit (4:1) Nowait I/O
Bit (3:1) File copy

11, access type

15, multirecord

12, dynamic locking

13, exclusive

46, inhibit bu�ering

14, multiaccess mode

16, nowait I/O

17, �le copy

recsize 19, record size

device 20, device name

22, volume class

23, volume name

24, density

25, printer environment

26, remote environment

42, device class

48, reverse VT

formmsg 8, labeled tape label

28, spooled message

30, labeled tape type

31, labeled tape expiration

32, labeled tape sequence

54, KSAM parms

userlabels 33, user labels

blockfactor 40, block factor

9-62 KSAM XL Intrinsics

FOPEN

Table 9-5.

FOPEN/HPFOPEN Parameter Equivalents (continued)

FOPEN Parameter HPFOPEN Itemnum,Item

numbu�ers:

Bits (11:5) Numbu�ers
Bits (4:7) Spooler copies
Bits (0:4) Output priority

44, numbu�ers

34, spooler copies

27, output priority

�lesize 35, �lesize

numextent 47, numextent

initialloc 36, initial allocation

�lecode 37, �lecode

Operation Notes Figure 9-6 shows the format of the KSAM parameter.

KSAM XL Intrinsics 9-63

FOPEN

Figure 9-6. FOPEN KSAM XL Parameter Format

A �le can be referenced by its formal �le designator. When executed,
a unique �le number is returned to the process. This �le number,
rather than the formal �le designator, is used in subsequent calls to
this �le.

9-64 KSAM XL Intrinsics

FOPEN

Condition Codes CCE Request granted. The �le is open.

CCG Not returned.

CCL Request denied. For example, another process
already has exclusive or semi-exclusive access for this
�le, the privilege level of this �le is not user (3), or
an initial allocation of disk space cannot be made
due to lack of disk space. If the �le is not opened
successfully, the �le number value returned by FOPEN

is 0. Call the FCHECK intrinsic for more details.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-65

FPOINT Sets the logical and physical record pointers to the speci�ed record.

Syntax

I16V I32V

FPOINT(�lenum,lrecnum);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le where the pointer is
to be set.

lrecnum 32-bit signed integer by value (required)

Passes the relative physical record number where the
physical record pointer is to be positioned. Record
numbering starts with zero or one, depending on how
the �le was created.

Operation Notes This intrinsic does not read the advance ag. It positions both the
logical record pointer and the physical pointer to the appropriate
record. When its function is complete, it sets the advance ag to
FALSE.

Condition Codes CCE Request granted.

CCG Request denied. The physical record pointer position
is unchanged. Positioning was requested at a point
beyond the �le limit.

CCL Request denied. The physical record pointer position
is unchanged because of one of the following:

Invalid �lenum parameter.
The lrecnum parameter speci�ed a record marked
for deletion.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-66 KSAM XL Intrinsics

FREAD

FREAD Reads a logical record in key sequence from a �le to the bu�er.

Syntax

I16 I16V UDS I16V

lgth:=FREAD(�lenum,bu�er,length);

Functional Return lgth 16-bit signed integer (assigned functional return)

Returns the length of the data transferred to bu�er :

If a negative value is passed in the length
parameter, the lgth is a positive value indicating
the number of bytes transferred.

If a positive value is passed in the length
parameter, the lgth is a positive value indicating
the number of halfwords transferred.

If a value of 0 is passed in the length parameter,
the position is identi�ed, but the data is not
returned.

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be read.

bu�er user-de�ned structure (required)

Returns the record that was read. This structure
must be large enough to hold all of the information
to be transferred.

length 16-bit signed integer by value (required)

Passes the length of the data to be transferred to
bu�er . If this value is positive, it signi�es the length
in halfwords. If negative, it signi�es the length in
bytes. If zero, no transfer occurs.

If length is larger than the size of the logical record,
transfer is limited to the length of the logical record.
If less than the size of the logical record, the transfer
is limited to the length speci�ed.

KSAM XL Intrinsics 9-67

FREAD

Operation Notes This intrinsic reads the advance ag and advances to the next record
if the ag is set to TRUE. It positions the logical record pointer and
the physical pointer to the appropriate record. When its function is
complete, it sets the advance ag to TRUE.

When the logical end-of-data is encountered, CCG is returned to the
process.

Condition Codes CCE Request granted. The information was read.

CCG Request denied. The logical end-of-data was
encountered during reading.

CCL Request denied. The information was not read
because an error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-68 KSAM XL Intrinsics

FREADBYKEY

FREADBYKEY Reads a logical record based on key value from a KSAM �le to the
target.

Syntax

I16 I16V LA I16V CA

lgth:=FREADBYKEY(�lenum,bu�er,length,value,

I16V

location);

Functional Return lgth 16-bit signed integer by value (assigned functional
return)

Returns the length of the information transferred.

If lgth is positive, it is a halfword count.
If lgth is negative, it is a byte count.
If lgth is 0, the position is identi�ed, but the data
is not returned.

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be read.

bu�er logical array (required)

Returns the transferred record. It must be large
enough to hold all the information to be read.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be
transferred. If length is positive, it is the length in
halfwords. If negative, it is the length in bytes. If
zero, no transfer occurs.

If length is less than the size of the record to be
transferred, only the �rst length halfwords or bytes
are transferred from the record. If the length is
larger than the physical record size, only the physical
record length is transferred.

value character array (required)

Passes the key value determining the record to be
read. The �rst record found with an identical key
value speci�ed by location is the record read.

location 16-bit signed integer by value (required)

Passes the relative byte location in the record of
the key whose value determines which record is to
be read. The �rst byte is numbered as 1. If 0 is
speci�ed, the primary key is used.

KSAM XL Intrinsics 9-69

FREADBYKEY

Operation Notes This intrinsic does not read the advance ag. It positions the logical
record pointer and the physical pointer to the appropriate record.
When its function is complete, it sets the advance ag to FALSE.

Condition Codes CCE Request granted.

CCG Request denied. The logical end-of-data or
beginning-of-data was encountered during the read.

CCL Request denied. An error occurred. Either an I/O
error occurred or the key could not be located.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-70 KSAM XL Intrinsics

FREADC

FREADC Reads a logical record in physical sequence from a KSAM �le to the
target.

Syntax

I16 I16V LAI 16V

lgth:=FREADC(�lenum,bu�er,length);

Functional Return lgth 16-bit signed integer by value (assigned functional
return)

Returns the length of the information transferred.

If lgth is positive, it is a halfword count.
If lgth is negative, it is a byte count.
If lgth is 0, the position is identi�ed, but the data
is not returned.

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be read in
physical record sequence.

bu�er logical array (required)

Returns the transferred record. It must be large
enough to hold all the information to be read.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be
transferred. If length is positive, it is the length in
halfwords; if negative, it is the length in bytes. If,
zero, no transfer occurs.

If length is less than the size of the record to be
transferred, only the �rst length halfwords or bytes
are transferred from the record. If the length is
larger than the physical record size, only the physical
record length is transferred.

Operation Notes This intrinsic reads the advance ag and advances to the next record
if the ag is set to TRUE. It positions only the physical record
pointer to the appropriate record. Deleted records are skipped.
When its function is completed, it sets the advance ag to TRUE.

KSAM XL Intrinsics 9-71

FREADC

Condition Codes CCE Request granted.

CCG Request denied. The logical end-of-data was
encountered during the read.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-72 KSAM XL Intrinsics

FREADDIR

FREADDIR Reads a logical record located by its physical record number from a
�le to the bu�er.

Syntax

I16V UDS I16V I32V

FREADDIR(�lenum,bu�er,length,lrecnum);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be read.

bu�er user-de�ned structure (required)

Returns the record that was read. This structure
should be large enough to hold all of the information
to be transferred.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be
transferred. If this value is positive, it signi�es
halfwords. A negative value indictates a transfer in
bytes. If zero, no transfer occurs.

If length is less than the size of the logical record,
only the �rst length halfwords or bytes are read from
the record. If length is larger than the size of the
logical record, the transfer is limited to the length of
the logical record.

lrecnum 32-bit signed integer by value (required)

Indicates the relative physical record number to
which the physical pointer is positioned. Physical
record numbering for �xed-length records starts with
zero or one, as speci�ed when the �le was built.

Operation Notes This intrinsic reads the advance ag. It sets only the physical pointer
to the appropriate record. When its function is completed, it sets the
advance ag to TRUE.

This intrinsic is di�erent from the FREAD intrinsic. The FREAD
intrinsic reads only the record already pointed to by the logical
record pointer. FREADDIR inputs the speci�ed logical record. If
the record is inactive, the contents of the inactive record are
transmitted and a CCE is returned. There is no indication of the
block containing some inactive records. (FCHECK returns a nonzero
error number to distinguish active and inactive records.)

KSAM XL Intrinsics 9-73

FREADDIR

Condition Codes CCE Request granted. The information was read.

CCG Request denied. End-of-data was encountered.

CCL Request denied. The information was not read; an
error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-74 KSAM XL Intrinsics

FREADLABEL

FREADLABEL Reads a user-de�ned �le label.

Syntax

I16V UDS I16V I16V

FREADLABEL(�lenum,bu�er,length,labelid);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le whose label is to be
read.

bu�er user-de�ned structure (required)

Returns the label that was read. This structure must
be large enough to hold the number of halfwords
speci�ed by length.

length 16-bit signed integer by value (optional)

Passes the number of halfwords to be transferred
from the label. This �eld must not be greater than
128 halfwords.

Default: 128 halfwords

labelid 16-bit signed integer by value (optional)

Passes the label number. (The �rst label is numbered
zero.)

Default: Zero

Operation Notes When a disk �le is opened, user labels can be read from it, or written
to it, in any order, at any time, regardless of access capabilities to the
rest of the �le. A disk �le can have as many as 254 128-halfword
user-de�ned labels.

Condition Codes CCE Request granted. The label was read.

CCG Request denied. A label was referenced beyond the
last label written on the �le.

CCL Request denied. The label was not read; an error
occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-75

FREMOVE Marks the current record in a KSAM �le for deletion.

Syntax

I16V

FREMOVE(�lenum)

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le where the record is
to be deleted.

Operation Notes Split stack calls are permitted.

When executed, the �rst bit in the record header is set to 1.

This intrinsic does not read the advance ag. It sets the logical
record pointer and the physical physical pointer to the appropriate
record. When its function is completed, it sets the advance ag to
FALSE. When a record is deleted, the pointers are positioned at the
next sequential record of the speci�ed key.

Condition Codes CCE Request granted.

CCG Request denied. The logical end-of-data was
encountered.

CCL Request denied. An error was encountered, the
record is not deleted.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-76 KSAM XL Intrinsics

FRENAME

FRENAME Renames an open disk �le (and its lockword, if applicable). The �le
being renamed must be either:

A new �le.

An old �le (permanent or temporary), opened for exclusive access
with the exclusive option of the HPFOPEN/FOPEN intrinsics, and
with security provisions allowing write access.

Syntax

I16V CA

FRENAME(�lenum,formaldesig);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be renamed.

formaldesig character array (required)

Passes the new name of the �le. The maximum
number of characters allowed in the string is 36.
The ASCII string contained in formaldesig must
begin with a letter and can contain up to eight
alphanumeric characters for each of the �lename,
lockword, group, and account �elds. The string must
end with a nonalphanumeric character, including a
blank, but not a slash (/) or a period (.). The home
volume set of formaldesig must be the same as the
�le being renamed. Volume sets cannot be spanned
when renaming �les. The format of formaldesig is:

�lename/lockword.group.account

where:

�lename Is the new �le name for the �le.
(Required in formaldesig .)

lockword Is a lockword for the new �le name.
(Optional portion of formaldesig .)
To keep or add a lockword to the
�le, the lockword must be entered
in the ASCII string. If this part of
formaldesig is not speci�ed, the new
�le name has no lockword associated
with it.

group Is the group where the �le is
to reside. (Optional portion of
formaldesig .) If a group is not
speci�ed, the �le resides in the group
it was assigned before the FRENAME
intrinsic call.

KSAM XL Intrinsics 9-77

FRENAME

account Is the account name where the �le
is to reside. (Optional portion of
formaldesig .) If renaming a new or
temporary �le that was created,
specify any account that shares
the same volume set as the �le
being renamed. A permanent �le
cannot be renamed across account
boundaries. If other than the current
account name is speci�ed for a
permanent �le, the CCL (1) error
condition is returned and the �le
retains its old name.

Operation Notes The formaldesig parameter uses MPE-escaped semantics. If a �le is
referenced by �lenum, you can renamed it within the hierarchical
directory as long as the process invoking FRENAME has su�cient
access and the restrictions are sati�ed. FRENAME intrinsic fully
quali�es the �le owner name. Only �le owners and users with
appropriate privilege can manipulate a �le's lockword.

If renaming a �le, a process must have the following:

TD Traverse directory entry to access to all directories
speci�ed in formaldesig . If formaldesig is speci�ed as
file.group.account, the directories are the root directory,
the account, and the MPE group.

CD Create directory entry to access to the new parent directory.

DD Delete directory entry to access to the old parent directory.

SF Save �les capability.

The following restrictions apply to FRENAME:

Directories cannot be renamed.

Lockwords cannot be assigned to hierarchical directories.

Files cannot be renamed across volume sets.

Files with KSAM/3000, RIO, and CIR �le types may only be
assigned names in the MPE name space.

If a �le without an ACD is renamed from an MPE group to a
directory (although not within the same account), an ACD is
automatically assigned to the �le.

All errors will set the condition codes to CCL.

CM KSAM �les cannot be renamed, but KSAM XL �les can.

9-78 KSAM XL Intrinsics

FRENAME

Condition Codes CCE (2) Request granted.

CCG (0) Not returned.

CCL (1) Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-79

FSPACE Moves a record pointer forward or backward in a �le.

Syntax

I16V I16V

FSPACE(�lenum,displacement);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le on which spacing is
to be done.

displacement 16-bit signed integer by value (required)

Passes the number of logical records to be spaced
over, relative to the current position of the logical
record pointer.

A positive value signi�es forward spacing, a negative
value signi�es backward spacing. The maximum
positive value is 32,767. The maximum negative
value is �32,768.

Operation Notes The logical record pointer is repositioned in key sequence. The
spacing is based on the primary key unless an alternate key has been
speci�ed in a prior call to FFINDN, FFINDBYKEY, or FREADBYKEY.

This intrinsic reads the advance ag and advances to the next record
if the ag is set to TRUE. It sets the logical record pointer and the
physical pointer to the appropriate record. When its function is
completed, it sets the advance ag to FALSE.

Note that because this intrinsic reads the advance ag, spacing might
be a�ected by a preceding call to an FREAD or FREADC intrinsic.
FREAD and FREADC set the advance ag to TRUE. If the FSPACE
intrinsic is then called, it advances one record before moving back or
ahead the speci�ed number of records.

Condition Codes CCE Request granted.

CCG Request denied. A logical end-of-�le indicator was
encountered during spacing. The logical record
pointer is at the beginning-of-�le if displacement was
negative or at the end-of-�le if displacement was
positive.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-80 KSAM XL Intrinsics

FUNLOCK

FUNLOCK Dynamically unlocks a �le.

Syntax

I16V

FUNLOCK(�lenum);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le whose global RIN is
to be unlocked.

Condition Codes CCE Request granted.

CCG Request denied. The �le had not been locked by the
calling process.

CCL Request denied. The �le was not opened with the
dynamic locking aoption of the FOPEN/HPFOPEN
intrinsic, or the �lenum parameter is invalid.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-81

FUPDATE Updates the contents of a logical record in a �le.

Syntax

I16V UDS I16V

FUPDATE(�lenum,bu�er,length);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be updated.

bu�er user-de�ned structure (required)

Passes the record to be written in the update.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be
written to the �le. A positive value is in halfwords; a
negative value is in bytes.

If length is less than record size, the length is
transferred in halfwords or bytes and remaining
portions of the record will be padded with �ll
characters. If length equals zero, no transfer occurs
and the record address is overwritten with default �ll
characters (blanks for ASCII �les; null characters for
binary �les). If length is greater than record size,
CCL is returned and no transfer occurs.

Operation Notes This intrinsic does not read the advance ag. If the record's key
data is unchanged, it does not position any pointers, but sets the
advance ag to TRUE. If the record's key data changes, it positions
the logical record pointer and the physical pointer to the appropriate
record and sets the advance ag to FALSE. The act of updating the
keys advances the pointers to the next record.

The record to be updated is the record pointed to by the logical
data pointer. FUPDATE moves the speci�ed information from the
stack into this record. The �le containing this record must be opened
with the update aoption speci�ed in the FOPEN/HPFOPEN call and the
�le cannot have variable-length records. If RIO access is used, the
modi�ed record is set to the ACTIVE state.

9-82 KSAM XL Intrinsics

FUPDATE

Condition Codes CCE Request granted.

CCG Request denied. An end-of-�le condition was
encountered during updating.

CCL Request denied. An error occurred. The length
exceeds the size of the record, length does not include
all the keys, or a disk I/O error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-83

FWRITE Writes a logical record from the bu�er to a �le.

Syntax

I16V UDS I16V U16V

FWRITE(�lenum,bu�er,length,controlcode);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be written on.

bu�er user-de�ned structure (required)

Passes the record to be written.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be
written to the record. If this value is positive, it
signi�es halfwords; if negative, bytes. Zero indicates
that no transfer occurs.

If length is less than the record size, the remaining
portion of the record is padded with the �ll character
that is speci�ed during the �le creation. The default
for ASCII is blank. The default for binary is binary
zero.

If length is larger than the logical record size, the
FWRITE request is refused and CCL is returned.

controlcode 16-bit unsigned integer by value (required)

This parameter must be speci�ed to satisfy internal
requirements, but it is ignored.

Operation Notes This intrinsic does not read the advance ag. It positions the logical
record pointer and the physical pointer to the appropriate record.
When its function is completed, it sets the advance ag to FALSE.

When the FWRITE intrinsic is executed, the logical record pointer
is set to the record immediately following the record just written.
When an FWRITE call writes a record beyond the current logical
end-of-�le indicator, this indicator is advanced. If the physical
bounds of the �le are reached, CCG is returned.

9-84 KSAM XL Intrinsics

FWRITE

Condition Codes CCE Request granted.

CCG Request denied. The physical bounds of the �le
prevented further writing.

CCL Request denied. An error occurred: an I/O error
occurred;

a duplicate key value occurred when duplicates are
not allowed
length does not include all keys
sequential processing was speci�ed in the ag word
of the ksamparam in FOPEN and the primary key is
not in ascending order.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

KSAM XL Intrinsics 9-85

FWRITELABEL Writes a user-de�ned �le label.

Syntax

I16V UDS I16V I16V

FWRITELABEL(�lenum,bu�er,length,labelid);

Parameters �lenum 16-bit signed integer by value (required)

Passes the �le number of the �le to be labeled.

bu�er user-de�ned structure (required)

Passes the label to be written. If the �le is a labeled
magnetic tape �le, this label must be 40 halfwords in
length.

length 16-bit signed integer by value (optional)

Passes the number of halfwords or bytes to be
written. A positive value is in halfwords; a negative
value is in bytes.

labelid 16-bit signed integer by value (optional)

Passes the number of the label to be written. The
�rst label is zero. This parameter is ignored for
labeled tapes. The next sequential tape label is
written. The default is zero.

Operation Notes Once a disk �le is opened, it is possible to read from or write to
user-de�ned labels regardless of the access to the rest of the �le.

Condition Codes CCE Request granted.

CCG Request denied. The calling process attempted
to write a label beyond the limit speci�ed in the
FOPEN/HPFOPEN intrinsic when the �le was created.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual
(32650-90028) for other codes pertaining to KSAM �les.

9-86 KSAM XL Intrinsics

HPFOPEN

HPFOPEN Establishes access to a �le and creates a �le.

Syntax

I32 I32 I32V *

HPFOPEN(�lenum,status[,itemnum,item] [...]);

Note Up to 41 itemnum/item pairs can be speci�ed.

Parameters �lenum 32-bit signed integer by reference (required)

Returns a �le number used to identify the opened �le
in subsequent intrinsic calls.

Can be used safely with all �le system intrinsics
that require a 16-bit �le number to be passed in the
intrinsic call (for example, FREAD, FWRITE, FCLOSE).

status 32-bit signed integer by reference (optional)

Returns the status of the HPFOPEN call. If no errors
or warnings are encountered, status returns 32 bits of
zero. If errors or warnings are encountered, status is
interpreted as two 16-bit �elds:

Bits Value/Meaning

0:16 status.info

A negative value indicates an error
condition, and a positive value indicates a
warning condition.

16:16 status.subsys

The value represents the subsystem that
set the status information. Refer to the
MPE/iX Error Message Manual Volumes
1, 2 and 3 (32650-90066, 32650-90152, and
32650-90368) for status messages.

Caution If an error or warning is encountered and the status parameter was
not speci�ed, HPFOPEN causes the calling process to abort.

itemnum 32-bit signed integer by value (optional)

Passes the item number, refer to Table 9-6.

item type varies by reference (optional)

Passes and/or returns the option indicated by
the corresponding itemnum parameter, refer to
Table 9-6.

KSAM XL Intrinsics 9-87

HPFOPEN

Note An itemnum takes precedence over any previously speci�ed duplicate
itemnum. Any duplicated itemnum is agged as a warning.

Table 9-6. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description

0 End of option list: There is no corresponding item. The absence of an itemnum
after the last itemnum,item pair is equivalent to specifying this option.

2 CA Formal designator:

Passes a formal �le designator, following MPE/iX �le naming conventions. The �le
name must begin with an alphabetic character and contain alphanumeric
characters, slashes, or periods. If the �le name is the name of a user-de�ned �le, it
can begin with an asterisk (*). If the �le name is the name of a system-de�ned �le,
it can begin with a dollar sign ($). Specify the remote location of a device as
�lename:envid. The �le, lockword, group, and account names are each limited to
eight characters in length. The formal �le designator may contain command
interpreter variables and expressions that are evaluated by HPFOPEN before the
formal �le designator is parsed and validated.

A character placed in the �rst element designates the delimiter used by HPFOPEN to
search for the end of the character array. The delimiter can appear again only
following the last valid character of the character array, for example:

%devname% (% is the delimiter, devname is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

For a KSAM �le, the device must be a random access device such as a disk.

The following are examples of valid MPE/iX formal �le designators:

&file/lock.group.account:node.dest.level&

&filename&

&!myfile&

&!afile/![FINFO("!afile",33)]&

The following are examples of invalid formal �le designators:

"filename.group (missing delimiter ("))
file.group" ('f' is used as delimiter, missing at end)

Default: A nameless �le is assigned that can be read from or written to, but not
saved. (The domain of a nameless �le must be new.)

Only one of the following options can be in e�ect when a �le is opened:

itemnum=2
itemnum=51

9-88 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

3 I32 Domain:

Passes a value indicating which �le domain MPE/iX searches to locate the �le. A
nameless disk �le must always be a new �le. A device �le (such as a tape or
terminal) always resides in the system �le domain (permanent �le directory).
Always specify a device �le as old or permanent.

The following values are valid:

0 The �le is a new temporary �le. It is not placed in a directory.

1 The �le is a permanent �le, found in the system �le domain.

2 The �le is a temporary �le, found in the job �le domain.

3 The �le is an old (permanent or temporary) �le. The job �le domain is
searched �rst. If the �le is not found, the system �le domain is searched.

4 The �le is created, placed in the permanent �le directory, and becomes a
permanent �le.

Default: 0

5 I32 Designator:

Passes a value indicating a special �le opening. Any of the following special �les
can be speci�ed with the itemnum=2. For example, a �le name of $STDLIST opens
the standard list device. The following values are valid:

0 Allows all other options to specify the �le.

1 The actual �le designator is $STDLIST.

2 The actual �le designator is $NEWPASS.

3 The actual �le designator is $OLDPASS.

4 The actual �le designator is $STDIN.

5 The actual �le designator is $STDINX.

6 The actual �le designator is $NULL.

Default: 0

For example, passing &MYFILE& in itemnum=2 and using itemnum=5 and item=4
to equate it with $STDIN is equivalent to the �le equation FILE MYFILE=$STDIN.

This option is not equated with itemnum=2 if both of the following conditions are
true:

The itemnum=9 option allows �le equations for the �le opening.

An explicit or implicit FILE command equating the formal �le designator to a
di�erent actual �le designator occurs in the job or session.

A leading * in a formal �le designator passed by itemnum=2 overrides an
itemnum=9 option.

KSAM XL Intrinsics 9-89

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

6 I32 Record format:

Passes a value indicating the internal record structure desired for the �le. This
option is applicable only at �le creation.

Only a �xed-length record is allowed for KSAM XL �les (0).

Default: 0

9 I32 Disallow �le equation:

Passes a value indicating whether or not MPE/iX �le equations are allowed. A
leading * in a formal �le designator overrides the setting to disallow FILE

equations.

The following values are valid:

0 Allow FILE equations to override programmatic or system-de�ned �le
speci�cations.

1 Disallow FILE equations from overriding programmatic or system-de�ned �le
speci�cations.

Default: 0

10 I32 File type:

Passes a value indicating the internal record structure used to access records in the
�le. If the �le is old, this option is ignored. Specifying an itemnum=5 value other
than zero overrides this option. This option is applicable only at �le creation.

The following values are valid:

0 Standard (STD) �le

1 KSAM/3000 �le

2 Relative I/O (RIO) �le

3 KSAM XL �le

4 Circular (CIR) �le

6 Message (MSG) �le

Default: 0

9-90 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

11 I32 Access type:

Passes a value indicating the type of access intended for the �le. This option
restricts usage of the �le system intrinsics.

The following values are valid:

0 Read access only, if the �le's security provisions allow read access. FWRITE,
FUPDATE, and FREMOVE intrinsic calls cannot reference this �le. The
end-of-�le (EOF) is not changed. (Default)

1 Write access only, if the �le's security provisions allow write access. Any data
written in the �le prior to the current HPFOPEN request is deleted.
FFINDBYKEY, FFINDN, FPOINT, FREAD, FREADBYKEY, FREADC, FREADDIR,
FREMOVE, FSPACE, and FUPDATE intrinsic calls cannot reference this �le. The
EOF is set to zero.

2 Write-save access only, if the �le's security provisions allow write access.
Previous data in the �le is not deleted. FFINDBYKEY, FFINDN, FPOINT, FREAD,
FREADBYKEY, FREADC, FREADDIR, FREMOVE, FSPACE, and FUPDATE intrinsic
calls cannot reference this �le. The EOF is not changed. Therefore, data is
overwritten if FWRITE is called. The system changes this value to append for
message �les.

3 Append access only, if the �le's security provisions allow either append or
write access. FFINDBYKEY, FFINDN, FPOINT, FREAD, FREADBYKEY, FREADC,
FREADDIR, FREMOVE, FSPACE, and FUPDATE intrinsic calls cannot reference this
�le. The record pointer is set to EOF prior to each FWRITE. For disk �les, the
EOF is updated after each FWRITE call. Therefore, data cannot be
overwritten.

4 Read/write (I/O) access only, if the �le's security provisions allow both read
and write access. If both read and write access are not allowed, the access
type is limited to that speci�ed in the security provisions (either read or
write). Any �le intrinsic except FUPDATE and FREMOVE can be called for this
�le. The EOF is not changed. This option is not valid for message �les.

5 Update access only, if the �le's security provisions allow both read and write
access. If both read and write access are not allowed, the access type is
limited to that speci�ed in the security provisions (either read or write). All
�le intrinsics can be called for this �le. The EOF is not changed. This option
is not valid for message �les.

6 Execute access only, if the �le's security provisions allow execute access. This
allows read/write access to any loaded �le. The program must be running in
privileged mode to specify execute access. This option is not valid for
message �les.

7 Execute-read access only, if the �le's security provisions allow execute access.
This allows only read access to a loaded �le. The program must be running
in PM to specify execute-read access. This is changed to execute access for
KSAM, CIR, and RIO �les. Not valid for message �les.

KSAM XL Intrinsics 9-91

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

12 I32 Dynamic locking:

Passes a value enabling or disabling �le locking for the �le. When speci�ed, the
FLOCK and FUNLOCK intrinsics can be used to dynamically permit or restrict
concurrent access to a disk �le by other processes at speci�ed times.

The following values are valid:

0 Disallow dynamic locking/unlocking

1 Allow dynamic locking/unlocking

Default: 0

The process can continue this temporary locking or unlocking until it closes the
�le. If several accessors are sharing the �le, they must all specify, or not specify,
this option. For example, if a �le is opened with the dynamic locking option
enabled, and a subsequent accessor tries to open the �le with dynamic locking
disabled, that subsequent attempt to open fails.

Dynamic locking and unlocking are possible through the equivalent of a global
resource identi�cation number (RIN) assigned to the �le and temporarily acquired
by HPFOPEN.

Accessors that have opened a �le with the dynamic locking option enabled must
access the �le through the FLOCK and FUNLOCK intrinsics to ensure exclusive use of
the �le. These accessors are allowed concurrent access even when not using FLOCK

and FUNLOCK, but exclusive access is not guaranteed.

Note: The �le system does not guarantee exclusive access, even when FLOCK and
FUNLOCK are used, unless all programs that access the �le cooperate by using
locking. A program that opens the �le with dynamic locking enabled will still be
allowd to modify the �le, even if it never calls FLOCK.

Lock access must be at the account, group, and �le levels for HPFOPEN to grant this
option. (Lock access is available if lock, execute, append, or write access is set at
these levels.) This option is ignored for �les not residing on disk.

9-92 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

13 I32 Exclusive:

Passes a value indicating continuous exclusive access to the �le, from open to close.
Use this option when performing a critical operation (for example, updating the
�le).

The following values are valid:

0 If itemnum=11 speci�es read only access, read-share access takes e�ect.
Otherwise, exclusive access takes e�ect. Regardless of which access option
was selected, FFILEINFO reports zero.

1 Exclusive access. After the �le is opened, any additional HPFOPEN/FOPEN
requests for this �le, whether issued by this process or another process, are
prohibited until this process issues the FCLOSE request or terminates. If any
process is already accessing this �le when an HPFOPEN/FOPEN call is issued
with exclusive access speci�ed, an error status is returned to the process. If
another HPFOPEN/FOPEN call is issued for this �le while exclusive access is in
e�ect, an error code is returned to the process that issued that
HPFOPEN/FOPEN call. Request exclusive access only if the lock access mode is
allowed by the security provisions for the �le. For message �les, specifying
this value means that there can be only one reader and one writer.

2 Read-share access (semi-exclusive access). After the �le is opened, concurrent
write access to this �le through another HPFOPEN/FOPEN request is
prohibited, whether issued by this process or another process, until this
process issues the FCLOSE request or terminates. A subsequent request for
the read/write or update itemnum=11 obtains read access. However, other
types of read access are allowed. If a process already has write access to the
�le when this HPFOPEN call is issued, an error code is returned to the calling
process. If another HPFOPEN/FOPEN call that violates the read-only restriction
is issued while read-share access is in e�ect, that call fails and an error code
is returned to the calling process. You can request read-share access only if
you are allowed the lock access mode by the security provisions for the �le.
For message �les, specifying this value means that there can be multiple
readers, but only one writer.

3 Share access. After the �le is opened, this permits concurrent access to this
�le by any process, in any access mode, subject to other basic MPE/iX
security provisions in e�ect. For message �les, specifying this value means
that there can be multiple readers and multiple writers.

Default: 0

KSAM XL Intrinsics 9-93

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

17 I32 Copy mode:

Passes a value that determines if any �le should be treated as a standard
sequential �le so it can be copied by logical record or physical block to another �le.

The following values are valid:

0 The �le is accessed as its own �le type (for example, a message �le is treated
as a message �le).

1 The �le is to be treated as a standard (STD) �le, with variable-length
records. For message �les, this allows nondestructive reading of an old
message �le at either the logical record or physical block record level. Only
block-level access is permitted if the �le is opened with write access. This
prevents incorrectly formatted data from being written to the message �le
while it is unprotected. To access a message �le in copy mode, a process
must have exclusive access to the �le.

Default: 0

18 @32 Short-mapped:

Returns a short pointer to the beginning of the data area of the �le. This option
maps the �le into short pointer space. A short-mapped �le can be 4-megabytes in
length. The calling process can have up to 6-megabytes of short mapped �les open
at a time. Use the pointer as a large array of any type to e�ciently access the �le.

A �le previously opened normally (not mapped) or with the long-mapped option is
not accessible with the short-mapped option. If this option is speci�ed with the
�le already opened into long pointer space, an error results.

A loaded program �le or a loaded library �le is not accessible with the
short-mapped option. A �le cannot be loaded that is currently opened with the
short-mapped option.

Sharing of short pointer �les is provided through normal �le system sharing
mechanisms, for example, use of the exclusive option. With the short-mapped �le,
all �le system intrinsics, applicable to the �le, can be used. FREAD and FWRITE

calls can be mixed with the short-mapped access.

Standard (STD) type disk �les of �xed or unde�ned record length can be accessed
short-mapped with the access type option set to any value. Standard type disk
�les of variable record length can be accessed short-mapped only if the access type
option is set to read-only access. KSAM �les can be accessed short-mapped only if
the access type option is set read-only access and the copy mode option is set to 1.

Default: No short pointer returned

9-94 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

19 I32 Record size:

Passes the size, in bytes, of the logical records in the �le. Valid range is dependent
upon both storage format (ASCII or binary) and record format. For �xed-length
and unde�ned-length ASCII �les, a record size can be speci�ed in the range 1 to
32,767. For variable-length ASCII �les, and for �xed-length, variable-length, and
unde�ned-length binary �les, a record size can be speci�ed in the range 1 to 32,766.

HPFOPEN rounds up odd values to the next highest even number (equivalent to the
nearest halfword boundary) if the �le is ASCII with variable-length record format,
or binary with �xed-length, variable-length, or unde�ned-length record format.

For example, if a record size of 105 is speci�ed for a �xed-length binary �le,
HPFOPEN sets the record size to 106; if a record size of 233 is speci�ed for a
�xed-length ASCII �le, the record size remains the same as it was when speci�ed.

Default: 256

20 CA Device name:

Passes the logical device number, in ASCII form, of a speci�c device. The �le is
assumed to be permanent. If the device name option is speci�ed, the nonshareable
device should be ready prior to the HPFOPEN call (otherwise, an error results).

Only one of the following options can be in e�ect when a �le is opened:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: disk �le located on the volume class disc associated with the group in
which �le resides.

A character placed in the �rst element designates the delimiter used by HPFOPEN to
search for the end of the character array. The delimiter can appear again only
following the last valid character of the character array, for example:

%devname% (% is the delimiter, devname is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

For a KSAM �le, the device must be a random access device such as a disk.

KSAM XL Intrinsics 9-95

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

22 CA Volume class:

Passes a character array representing a volume class name where the �le space is
to be restricted. This option is applicable only at �le creation.

A volume class is a subset of volumes within a volume set. The volume class name
must be a valid volume class name residing on the volume set bound to the volume
(the volume set is an attribute of the group in which the �le resides).

Only one of the following options can be in e�ect when a �le is opened with this
option:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: A disk �le located on the volume class DISC associated with the group in
which the �le resides.

A character placed in the �rst element designates the delimiter used by HPFOPEN to
search for the end of the character array. The delimiter can appear again only
following the last valid character of the character array, for example:

%volclass% (% is the delimiter, volclass is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

23 CA Volume name:

Passes a character array representing a volume name that restricts the �le
speci�ed to a speci�c volume. The volume must reside within the volume set of
the group where the �le resides. This option is applicable only at �le creation.

Only one of the following options can be in e�ect when a �le is opened with this
option:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: A disk �le located on the volume class DISC associated with the group in
which the �le resides.

A character placed in the �rst element designates the delimiter used by HPFOPEN to
search for the end of the character array. The delimiter can appear again only
following the last valid character of the character array, for example:

%volclass% (% is the delimiter, volclass is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

9-96 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

26 CA Remote environment:

Passes the node name of the remote computer where the �le is located. This
option is used when referencing a �le located on a remote computer.

Default: No node name passed (local �le access)

A character placed in the �rst element designates the delimiter used by HPFOPEN to
search for the end of the character array. The delimiter can appear again only
following the last valid character of the character array, for example:

%envname% (% is the delimiter, envname is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

29 I32 Privileged access:

Passes a value that temporarily restricts access to the �le number returned from
HPFOPEN to a calling process whose execution level is equal to or less than the
value speci�ed in this option. This restriction lasts until the �le associated with
the restricted �le number is closed. Do not specify a value less than the execution
level of the calling process.

The following values are valid:

0 Privilege level zero (most privileged level)

1 Privilege level one

2 Privilege level two

3 Privilege level three (least privileged level)

Default: The execution level of the calling process

33 I32 User labels:

Passes the number, in the range 0 to 254, of user-label records to be created for
the �le. Applicable for new disk �les only.

Default: 0

35 I32 File size:

Passes the maximum �le capacity:

For variable-length records, the capacity is expressed in blocks
(blockitem#=recordsize * blockfactor).
For �xed-length and unde�ned-length records, the capacity is expressed in
logical records.
The maximum �le size for standard and KSAM �les is 2-gigabytes.
The maximum �le size of 500-megabytes, for RIO, circular, and message �les, is
dependent upon both the record size and the number of extents de�ned for the
�le:
For circular and RIO �les, recsize=256 bytes and numextent=32.
For message �les, recsize=128 bytes and numextent=32.

This option is applicable only at �le creation.

Default: 2-gigabytes

KSAM XL Intrinsics 9-97

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

36 I32 Initial allocation:

Passes a positive integer value indicating the number of extents to be allocated to
the �le initially. This option is applicable only at �le creation.

Default: 0

37 I32 Filecode:

Passes a value that can be used as a �le code to identify the type of �le. This code
is recorded in the �le label and is accessible through the FFILEINFO intrinsic. This
option is applicable only at �le creation (except when opening an old �le that has
a negative �le code).

If the program is running in user mode, specify a �le code in the range 0 to 32,767
to indicate the �le type being created. Programs running in user mode can access
�les with positive �le codes only.

If the program is running in privileged mode, specify a �le code in the range
-32,768 to 32,767. Programs running in privileged mode can access �les with a �le
code in the range -32,768 to 32,767. If an old �le is opened that has a negative �le
code in its �le label, the �le code speci�ed must match the �le code in the �le label
(otherwise, an error results).

Default: 0

38 I32 File privilege:

Passes a value that determines a permanent privilege level to be associated with a
newly created �le. This option permanently restricts �le access to a process whose
execution level is less than or equal to the speci�ed value. A value cannot be
speci�ed for less than the execution level of the calling process. This option is
applicable only at �le creation.

The following values are valid:

0 Privilege level zero (most privileged level)
1 Privilege level one
2 Privilege level two
3 Privilege level three (least privileged level)

Default: 3

A �le created with levels 0, 1, or 2 can be opened only with the HPFOPEN intrinsic;
the FOPEN intrinsic cannot be used.

41 Reserved for MPE/iX.

9-98 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

42 CA Device class:

Passes a device class where the �le will reside. The �le system uses the device class
name to select a nonshareable device from a con�gured list of available devices.
The name can have a length of up to eight alphanumeric characters, beginning
with a letter (for example, TAPE). If a device class is speci�ed, the �le is allocated
to any available device in that class.

Only one of the following options can be in e�ect when a �le is opened:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: A disk �le located on the volume class DISC associated with the group in
which the �le resides.

A character placed in the �rst element designates the delimiter used by HPFOPEN to
search for the end of the character array. The delimiter can appear again only
following the last valid character of the character array, for example:

%devclass% (% is the delimiter, devclass is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

43 record UFID:

Passes a unique �le identi�er (UFID) to provide a fast opening of an old disk �le.
A UFID is a record structure, 20 bytes in length, that uniquely identi�es a disk
�le. Using this option avoids a directory search. Obtain the UFID of an opened
�le by calling FFILEINFO. The UFID can then be passed to HPFOPEN. The �le
represented by the UFID must be accessible to the process calling HPFOPEN (all �le
system security checks are made). New �les cannot be opened with this option. If
the �le to be opened by the UFID contains a lockword, use itemnum=2 to specify
the �le name with the lockword.

Default: No UFID passed (a directory search is performed)

45 CA Fill character:

Passes two ASCII characters that determine what padding character to use at the
end of blocks or unused pages, and the padding used by itemnum=53. Do not use
delimiter characters for this option. The �ll character must be a 2-byte array. The
�rst character only is used as the padding character. The second character is
reserved for future use. This option is applicable only at �le creation.

Default: Null characters for a binary �le and ASCII blanks for an ASCII �le.

KSAM XL Intrinsics 9-99

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

47 I32 Numextents:

Passes a value in the range 1 to 32 that determines the number of extents for the
�le. This parameter is kept mainly for compatibility with MPE/V. Its main
usefulness is that a �le may be created with 1 contiguous extent. If a value of 1 is
speci�ed, the �le is created as one contiguous extent of disk space. If a value
greater than 1 is speci�ed, a variable number of extents (with varying extent sizes)
is allocated on a need basis. This option is applicable only at �le creation. To get
one initially allocated continuous extent, specify both numextent=1 and
initialloc=1.

Default: 1

49 Reserved for MPE/iX.

9-100 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

50 I32 Final disposition:

Passes a value indicating the �nal disposition of the �le at close time (signi�cant
only for �les on disk and magnetic tape). A corresponding parameter in a FILE

command can override this option, unless �le equations are disallowed with
itemnum=9.

The following values are valid:

0 No change. The disposition remains as it was before the �le was opened. If
the �le is new, it is deleted by FCLOSE; otherwise, the �le is assigned to the
domain it belonged to previously. An unlabeled tape �le is rewound. If the
�le resides on a labeled tape, the tape is rewound and unloaded.

1 Permanent �le. If the �le is a disk �le, it is saved in the system �le domain.
A new or temporary �le on disk has an entry created for it in the system
(permanent) �le directory. Should a �le of the same name already exist in the
directory, an error code is returned at close time and the �le remains open. If
the �le is a permanent �le on disk, this domain disposition has no e�ect.
Also, if the �le is stored on magnetic tape, the tape is rewound and unloaded.

2 Temporary job �le (rewound). The �le is retained in your temporary (job or
session) �le domain and can be requested by any process within your job or
session. If the �le is a disk �le, the uniqueness of the �le name is checked.
Should a �le of the same name already exist in the temporary �le domain, an
error code is returned at close time and the �le remains open. When a �le
resides on unlabeled magnetic tape, the tape is rewound. However, if the �le
resides on labeled magnetic tape, the tape is backspaced to the beginning of
the presently opened �le.

3 Temporary job �le (not rewound). This value has the same e�ect as
specifying �nal disposition option, except that tape �les are not rewound. In
the case of unlabeled magnetic tape, if the FCLOSE is the last done on the
device (with no other FOPEN/HPFOPEN calls outstanding), the tape is rewound
and unloaded. If the �le resides on a labeled magnetic tape, the tape is
positioned to the beginning of the next �le on the tape.

4 Released �le. The �le is deleted from the system.

5 Convert a permanent �le to a temporary �le. The �le is removed from the
permanent �le directory and placed in the temporary �le directory.
(Privileged mode capability is required to use this option.)

Default: 0

For more information on �le disposition at close time, refer to the description of
the FCLOSE intrinsic.

KSAM XL Intrinsics 9-101

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

51 Pascal XL string:

Passes a formal �le designator, following MPE/iX �le naming conventions, but
using the Pascal/iX STRING type format. This option is identical to itemnum=2
except for the type of item. No delimiters are needed.

Default: No string passed

Only one of the following options can be in e�ect when a �le is opened:

itemnum=2
itemnum=51

52 CA File equation string:

Passes a character string that matches the MPE/iX �le equation speci�cation
syntax exactly. This option allows the speci�cation of options available in the FILE
command.

The formaldesig parameter and �lereference parameter can contain embedded
command interpreter variables and expressions. However, there cannot be more
than eight characters in each of these components (�lename, lockword, groupname,
accountname) including the command interpreter variable and expression
characters.

Default: No string passed

A character placed in the �rst element designates the delimiter used by HPFOPEN to
search for the end of the character array. The delimiter can appear again only
following the last valid character of the character array, for example:

%�leequation% (% is the delimiter, �leequation is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

53 I32 ASCII/binary:

Passes a value indicating whether ASCII or binary code is to be used for a new �le
when it is written to a device that supports both codes. For disk �les, this may
a�ect padding that can occur when issuing a direct-write intrinsic call
(FWRITEDIR) to a record that lies beyond the current logical end-of-�le indicator.
The �ll character is speci�ed during the �le creation. Default for ASCII is blank.
Default for binary is binary 0. By default, magnetic tape and �les are treated as
ASCII �les. This option is applicable only at �le creation.

The following values are valid:

0 Binary �le

1 ASCII �le

Default: 0

9-102 KSAM XL Intrinsics

HPFOPEN

Table 9-6. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

54 REC KSAM parm:

Passes a record that de�nes the keys for a new KSAM �le. The format of the
parameter is the same as the FOPEN intrinsic ksamparam �eld.

Default: No record passed

55 Reserved for MPE/iX

56 I32 Object class:

Passes a user object class number, in the range 0 to 10, that is associated with the
�le.

Default: Determined by the �le code for system and subsystem �les, and by the
�le type and record type for normal user �les.

57 Reserved for MPE/iX.

58 Reserved for MPE/iX.

59 Reserved for MPE/iX.

60 Reserved for MPE/iX.

61 Reserved for MPE/iX.

64 ACD.

KSAM XL Intrinsics 9-103

HPFOPEN

Table 9-7. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item

�lenum (functional return) �lenum (parameter)

formaldesig 2,formaldesig

foption:

Bits (14:2) Domain
Bit (13:1) ASCII/binary
Bits (10:3) File designator
Bits (8:2) Record format
Bit (7:1) Carriage-control
Bit (6:1) Labeled tape
Bit (5:1) Disallow �le equation
Bits (2:3) File type

3, domain

53, ASCII/binary

5, �le designator

6, record format

7, carriage-control

8, labeled tape

9, disallow �le equation

10, �le type

aoption:

Bits (12:4) Access type
Bit (11:1) Multirecord
Bit (10:1) Dynamic locking
Bits (8:2) Exclusive
Bit (7:1) Inhibit bu�ering
Bits (5:2) Multiaccess mode
Bit (4:1) Nowait I/O
Bit (3:1) File copy

11, access type

15, multirecord

12, dynamic locking

13, exclusive

46, inhibit bu�ering

14, multiaccess mode

16, nowait I/O

17, �le copy

recsize 19, record size

device 20, device name

22, volume class

23, volume name

24, density

25, printer environment

26, remote environment

42, device class

48, reverse VT

formmsg 8, labeled tape label

28, spooled message

30, labeled tape type

31, labeled tape expiration

32, labeled tape sequence

54, KSAM parms

userlabels 33, user labels

blockfactor 40, block factor

9-104 KSAM XL Intrinsics

HPFOPEN

Table 9-7.

FOPEN/HPFOPEN Parameter Equivalents (continued)

FOPEN Parameter HPFOPEN Itemnum,Item

numbu�ers:

Bits (11:5) Numbu�ers
Bits (4:7) Spooler copies
Bits (0:4) Output priority

44, numbu�ers

34, spooler copies

27, output priority

�lesize 35, �lesize

numextent 47, numextent

initialloc 36, initial allocation

�lecode 37, �lecode

Operation Notes Enables creation of a new �le on a shareable device and de�nes the
physical characteristics of that �le prior to access. Enables access
to existing �les. Returns a �le number to the calling process that
uniquely identi�es the �le. Use the �le number to reference the �le in
calls to other intrinsics.

The format of the KSAM parameter is shown in Figure 9-7.

KSAM XL Intrinsics 9-105

HPFOPEN

Figure 9-7. HPFOPEN KSAM XL Parameter Format

9-106 KSAM XL Intrinsics

A

COBOL Intrinsics

COBOL compilers (COBOL 68 and earlier) required special intrinsics
to access keyed �les. The following intrinsics are provided only for
the maintenance of COBOL 68 or earlier COBOL programs using
KSAM structures.

Note Do not use these intrinsics for new programming. Current COBOL
�le access modules provide KSAM �le access.

Calling a KSAM
Procedure

KSAM �les are accessed from COBOL programs through calls to
a set of procedures. These procedures allow you to open, open for
shared access, write records to, read records from, lock, unlock,
update, position, and close a KSAM �le. The COBOL procedures
provided with KSAM/3000 correspond to the INDEXED I/O module
statements in COBOL 74.

In HP COBOL/3000, the procedures that are used to access KSAM
�les di�er in form from the COBOL input/output statements
used to access non-KSAM �les. The KSAM interface procedures
use parameters for information that would otherwise be speci�ed
in the FILE-CONTROL paragraph and the FD entry of the
DATA DIVISION. These parameters are themselves de�ned in the
WORKING-STORAGE section of the DATA DIVISION. The main
restriction on the KSAM interface call parameters is that they must
be 16 bit aligned.

The KSAM interface procedures are called using a CALL statement of
the following general form.

CALL "name" USING �letable,status [,parameter[, . . .]]

Where:

"name" identi�es the procedure to which control is
transferred.

�letable an 8-halfword table that identi�es the �le by name
and in which access mode and input/output type are
speci�ed, and to which is returned the �le number on
open, and a code identifying the previous operation.

status One halfword to which a two-character code
is returned that indicates the status of the

COBOL Intrinsics A-1

input/output operation performed on the �le by the
called procedure.

parameter One or more parameters, depending on the particular
procedure called, that further de�ne operations to be
performed on the �le.

The �rst two parameters, �letable and status , are included in every
KSAM procedure call except CKERROR; other parameters may be
speci�ed depending on the particular procedure. If a parameter is
included in the procedure format, then it must be included in the
procedure call. All parameters are required.

Another characteristic of KSAM procedure call parameters is that
they must always start on a halfword boundary. In order to ensure
this, the parameters should be de�ned in the WORKING-STORAGE
SECTION as 01 record items, 77 level elementary items, or else the
SYNCHRONIZED clause should be included in their de�nition.

A literal value cannot be used as a parameter to these procedures.
Any value assigned to a data item used as a parameter is passed to
the procedure, but a literal value causes an error.

Depending on the procedure, certain data items may be assigned
values as a result of executing the procedure.

Note There are no COBOL procedures to read a KSAM �le in physical
order or to access a record by its physical record number. (Physical
order is the order in which the data records were written to the �le.)

Filetable Parameter The �rst parameter in every KSAM procedure call must be �letable,
a table describing the �le and its access. This table is de�ned in
the WORKING-STORAGE SECTION of the COBOL program. It
requires eight halfwords as illustrated in Figure A-1.

Figure A-1. Filetable Structure

A-2 COBOL Intrinsics

�lenumber A number identifying the �le returned by the
CKOPEN procedure after the �le named in halfwords
2-5 has been successfully opened. After the �le
is closed by CKCLOSE, �lenumber is reset to 0.
(This number should be set to zero when the �le
table is initially de�ned.) It must be de�ned as a
COMPUTATIONAL item.

�lename The name of the KSAM �le. This name is the actual
designator assigned to the �le when it is created
with the KSAMUTIL or MPE/iX BUILD command;
�lename may be a formal designator if it is equated
to the actual designator in a FILE command.

input/output
type

A code that limits the �le access to input only,
output only, or allows both input and output:

0 input only

1 output only

2 input/output

It must be de�ned as a COMPUTATIONAL item.

access mode A code that indicates how the �le will be processed:
sequentially only, randomly only, or either
(dynamically):

0 sequential only

1 random only

2 dynamic (sequential or random)

It must be de�ned as a COMPUTATIONAL item.

previous
operation

A code in the right byte of halfword 8 of the �le
table indicating the previous successful operation:

0 previous operation unsuccessful or there has
been no previous operation on this �le

1 CKOPEN successful

2 CKSTART successful

3 CKREAD successful

4 CKREADBYKEY successful

5 CKDELETE successful

6 CKWRITE successful

7 CKREWRITE successful

8 CKCLOSE successful

9 CKOPENSHR successful

This �eld should be set to zero when the �le table
is initially de�ned and thereafter should not be

COBOL Intrinsics A-3

altered by the programmer. It must be de�ned as a
COMPUTATIONAL item.

lock/unlock A code in the left byte of halfword 8 of the �le table
that indicates whether a CKLOCK or CKUNLOCK has
been performed successfully since the operation
speci�ed in previous operation:

10 CKLOCK successful

11 CKUNLOCK successful

A sample �le table de�nition might be:

d a

c b

WORKING-STORAGE SECTION.

FILE_TABLE.
01 KSAM_FILE.

02 FILENUMBER PIC S9(4) COMP VALUE 0.

02 FILENAME PIC X(8) VALUE "KSAMFILE".

02 I-O-TYPE PIC S9(4) COMP VALUE 0.

02 A-MODE PIC S9(4) COMP VALUE 0.

02 PREV-0P PIC S9(4) COMP VALUE 0.

The �le table identi�es a �le created with the name KSAMFILE as a
�le to be opened for sequential input only. The values of I-O-TYPE
and A-MODE can be changed following a call to CKCLOSE for the �le.

Status Parameter The status parameter is a two-character item to which the status
of the input/output operation is returned. It is always the second
parameter in a KSAM procedure call. The status parameter must be
de�ned in the WORKING-STORAGE SECTION of the COBOL
program.

Status consists of two separate characters: the left character is known
as status-key-1, and the right is known as status-key-2.

/---left character----\/----right character-----\

|----------------------|------------------------|

| | |

| "status-key-1 | "status-key-2" |<---status word

|----------------------|------------------------|

Combining status-key-1 with status-key-2, the following values may
be returned to the status parameter as a whole:

00 Successful completion|

The current input/output operation was completed successfully;
no duplicate keys were read or written.

A-4 COBOL Intrinsics

02 Successful completion; Duplicate key|

For a CKREAD or a CKREADBYKEY call, the current alternate key
has the same value as the equivalent key in the sequentially
following record; duplicate keys are allowed for the key. For
a CKWRITE or CKREWRITE call, the record just written created
a duplicate key value for at least one alternate key for which
duplicates are allowed.

10 At End condition|

In a sequential read using CKREAD, no next logical record was in
the �le.

21 Invalid key; Sequence error|

A call to CKWRITE attempted to write a record with a key that
is not in sequentially ascending order, to a �le opened for
sequential access.

A call to CKREWRITE was attempted but the primary key value
was changed by the program since the previous successful call to
CKREAD.

22 Invalid key; Duplicate key|

An attempt was made to write or rewrite a record with CKWRITE

or CKREWRITE and the record would create a duplicate key value
for a key where duplicates are prohibited.

23 Invalid key; No record found|

An attempt was made with CKSTART or CKREADBYKEY to access
a record identi�ed by key, but no record is found with the
speci�ed key value at the speci�ed location.

24 Invalid key; Boundary violation|

An attempt was made with a call to CKWRITE to write past the
externally de�ned boundaries of the �le; that is, to write past
the end-of-�le.

30 Lock denied|

An attempt was made to lock a �le already locked by another
process; or �le was not opened with dynamic locking allowed.

31 Unlock denied|

An attempt was made to unlock a �le with CKUNLOCK, but the
�le had not been locked by CKLOCK.

9n File system error|

A call to an input/output procedure was unsuccessful as a result
of a �le system error, not one of the error conditions de�ned
for the other status values. The value of status-key-2 (n) is a
binary number between 0 and 255 that corresponds to an MPE
�le system error code. To convert this binary value to numeric
display format, call the CKERROR routine.

COBOL Intrinsics A-5

The value of status can be tested as a whole, or the two characters
can be tested separately as status-key-1 and status-key-2 . In any
case, the status of each call should be tested immediately following
execution of the call. Unless the �rst character of status = 0, the call
was not successful.

For example, a sample status parameter de�nition might be:

d a

c b

WORKING-STORAGE SECTION....
01 STAT.

02 STATUS-KEY-1 PIC X.

02 STATUS-KEY-2 PIC X.

These items can then be referenced in the PROCEDURE DIVISION.
For example: to test only the �rst character:

d a

c b

IF STATUS-KEY-1 NOT = "0" THEN

GO TO "ERROR-ROUTINE".

To test the entire status word:

d a

c b

IF STAT = "23" THEN

DISPLAY "RECORD NOT FOUND".

Note that the word STATUS is reserved.

KSAM Logical
Record Pointer

Many of the KSAM procedures use a logical record pointer to indicate
the current record in the �le. This pointer points to a key value in
the index area that identi�es the current record in the data area.
The particular key used, if the �le has more than one key, is the
key speci�ed in the current procedure or the last procedure that
referenced a key.

Procedures that use pointers are either pointer-dependent or
pointer-independent . Pointer-dependent procedures expect the
pointer to be positioned at a particular record in order to execute
correctly. Pointer-independent procedures, on the other hand,
execute regardless of where the pointer is positioned and, in most
cases, they position the pointer.

A-6 COBOL Intrinsics

Table A-1. Positioning the Logical Record Pointer

Procedure
Name

Pointer-
Dependent

Position of Pointer After
Execution of Procedure

CKSTART NO Points to key whose value was speci�ed in call.

CKREADBYKEY NO Points to key whose value was speci�ed in call.

CKWRITE NO Points to key whose value is next in key sequence to key value
in record just written.

CKREAD YES Pointer remains positioned to key value for record just read;
unless next call is to CKREAD, or to CKREWRITE followed by
CKREAD, in which case, next CKREAD moves pointer to next key
in key sequence before reading the record.

CKDELETE YES Points to next key value in ascending sequence following key
value in record just deleted.

CKREWRITE YES
(sequential
mode)

NO
(random or
dynamic
mode)

Pointer remains positioned to key value for record just
modi�ed, unless any key value in record was changed; in this
case, it points to next key in ascending sequence after the key
in the modi�ed record.

Shared Access Particular care must be taken when using the logical record pointer
during shared access (the �le was opened with CKOPENSHR). If more
than one user opens the same �le, one user may modify the record
pointer. This causes other users to access the data record.

To avoid this problem, you should always lock the �le in a shared
environment before calling a procedure that sets the pointer and
leave the �le locked until all procedures that depend on the pointer
have been executed. Thus, if you want to read the �le sequentially,
delete a record, or modify a record, you should lock the �le, call a
procedure that sets the pointer (such as CKSTART), and then call
CKREAD, CKDELETE, or CKREWRITE. When the operation is complete,
you can then unlock the �le to give other users access to it.

COBOL Intrinsics A-7

Sample KSAM File The �le KSAMFILE illustrated in Figure A-2 is used in all subsequent
examples associated with the COBOL procedure calls.

Figure A-2. Representation of KSAMFILE Used in COBOL Examples

A File Description in Working Storage for Figure A-2 appears on the
following page.

A-8 COBOL Intrinsics

File Description in Working Storage (Figure A-2).

WORKING-STORAGE SECTION
77 RECSIZE PIC S9(4) COMP VALUE 74.

77 RESULT PIC 9(4) VALUE 0.

01 REC.

03 FILLER PIC XX VALUE SPACES.

03 NAME PIC X(20).

03 PHONE PIC X(8).

03 OTHERDATA PIC X(44).

01 DAT.

03 NAME PIC X(20).

03 PHONE PIC X(8).

03 OTHERDATA PIC X(44).

01 FILETABLE.

03 FILETABLE PIC S9(4) COMP VALUE 0.

03 FILENAME PIC X(8) VALUE "KSAMFILE".

03 I-O-TYPE PIC S9(4) COMP VALUE 0.

03 A-MODE PIC S9(4) COMP VALUE 0.

03 PREV-OP PIC S9(4) COMP VALUE 0.

01 STAT.

03 STATUS-KEY-1 PIC X.

03 STATUS-KEY-2 PIC X.

COBOL Intrinsics A-9

CKCLOSE A call to CKCLOSE terminates �le processing for the speci�ed KSAM
�le.

CALL "CKCLOSE" USING �letable, status

When processing is completed, a KSAM �le should be closed with a
call to CKCLOSE. No further processing is allowed on the �le until a
CKOPEN procedure call opens the �le.

CKCLOSE can be executed only for a �le that is open.

Parameters �letable An 8 halfword record containing: the name of the
�le, its input/output type, access mode, the �le
number given the �le when it was last opened, and a
code indicating whether the previous operation on
the �le was successful and if so what it was. (Refer
to Filetable Parameter discussion earlier in this
section.)

status One-halfword (two 8-bit characters) set to a pair
of values upon completion of the call to CKCLOSE.
It indicates whether or not the �le was successfully
closed and if not, why not. The left character is set
to 0 if CKCLOSE is successful, to 9 if not. The right
character is set to 0 if CKCLOSE is successful, to
the �le system error code if not. (Refer to Status
Parameter discussion earlier in this section.)

Operation Notes Upon successful completion of CKCLOSE, the �le identi�ed by �letable
is no longer available for processing. Note that a KSAM �le can be
closed and then reopened in order to specify a di�erent access mode
or input/output type.

d a

c b

FINISH.

CALL "CKCLOSE" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKCLOSE ERROR NO. ", RESULT;

ELSE DISPLAY "CKCLOSE SUCCESSFUL".

A-10 COBOL Intrinsics

CKDELETE

CKDELETE This procedure logically deletes a record from a KSAM �le.

CALL "CKDELETE" USING �letable, status

In order to logically delete records from a KSAM �le, you can use the
procedure CKDELETE. If reuse is not speci�ed, then a logically deleted
record is marked for deletion, but is not physically removed from the
�le. The deletion mark makes such a record inaccessible but does not
physically reduce the size of the �le. The utility program FCOPY
can be used to compact a KSAM �le by copying only active records,
excluding deleted records, to a new KSAM �le.

CKDELETE deletes the record at which the logical record pointer is
currently positioned. Therefore, CKDELETE must be preceded by a call
that positions the pointer.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
was successful and if so what it was. (Refer to
Filetable Parameter discussion earlier in this section.)

status One halfword (two 8-bit characters) set to a pair
of values upon completion of the call to CKDELETE
indicating whether the call was successful and if not,
why not. (Refer to Status Parameter discussion
earlier in this section.)

Operation Notes In order to delete a record, you should �rst read the record into the
working storage section of your program with a call to CKREAD if in
sequential mode, a call to CKREADBYKEY if in random mode, or a call
to either if in dynamic mode. CKDELETE can be called only if the
�le is currently open for both input and output (input/output type
=2). This allows the record to be read into your program's data area
and then written back to the �le with the delete mark. Following
execution of CKDELETE, the deleted record can no longer be accessed.

If the �le was opened for shared access with CKOPENSHR, you must
lock the �le with CKLOCK before you can delete any records with
CKDELETE. Because CKDELETE depends on the logical record pointer,
the call to CKLOCK should precede the call that positions the pointer.
The call to CKUNLOCK is then called after the call to CKDELETE. To
illustrate, the sequence of calls in shared access should be:

COBOL Intrinsics A-11

CKDELETE

d a

c b

CKLOCK <--- to lock �le

CKSTART or CKREADBYKEY <--- to position pointer
...

CKDELETE<--- to delete record at which pointer is positioned

CKUNLOCK<--- to unlock �le

Following the call to CKDELETE, the pointer is positioned to the next
key following the key in the deleted record.

The following examples show the use of CKDELETE for sequential
access using CKREAD and for random access using CKREADBYKEY. The
WORKING-STORAGE SECTION from Figure A-2 and the FINISH
procedure from the CKCLOSE example are assumed for these examples.

Note If access is shared, the �le must be opened with a call to CKOPENSHR

and then locked before the call to CKSTART that initially sets the
pointer. The �le must remain locked while the records to be deleted
are read and then marked for deletion. If the �le is not locked before
CKSTART is called, other users can change the �le so that the record
pointer points to the wrong record.

In the �rst example, to delete all records whose primary key begins
with \P", �rst position the �le to the start of these records with
CKSTART and then read each record with CKREAD and delete it with
CKDELETE.

d a

c b

WORKING-STORAGE SECTION.

77 RELOP PIC S9(4) COMP.

77 KEYVAL PIC X(20).

77 KEYLOC PIC S9(4) COMP.

77 KEYLENGTH PIC S9(4) COMP....
PROCEDURE DIVISION.

START.

MOVE 2 TO I-O-TYPE.

MOVE 0 TO A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT....

A-12 COBOL Intrinsics

CKDELETE

d a

c b

FIND-REC.

MOVE 0 TO RELOP.<--- test for equality between

primary key and KEY

MOVE "P" TO KEYVAL.

MOVE 3 TO KEYLOC.

MOVE 1 TO KEYLENGTH.<--- check �rst character only

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,

KEYLENGTH.

IF STATUS-KEY-1 = "0" THEN

GO TO READ-REC.

IF STAT = "23" THEN

DISPLAY "NO RECORD FOUND"

GO TO FINISH.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.=", RESULT

GO TO FINISH.

READ-REC.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1 = "1" THEN

DISPLAY "END OF FILE REACHED"

GO TO FINISH.

IF STATUS-KEY-1 = "0" THEN

IF NAME OF REC NOT LESS THAN "Q "THEN

DISPLAY "DELETIONS COMPLETED"

GO TO FINISH;

ELSE GO TO DELETE-REC;

ELSE

DISPLAY "CKREAD ERROR, STATUS =", STAT

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.", RESULT.

GO TO READ-REC.

DELETE-REC.

CALL "CKDELETE" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "0" THEN

DISPLAY "DELETED"

GO TO READ-REC;

ELSE

DISPLAY "CKDELETE ERROR, STATUS = ", STAT

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY"CKERROR NO.=", RESULT

GO TO READ-REC.

COBOL Intrinsics A-13

CKDELETE

In the second example, a �le containing the primary keys of those
records to be deleted from a KSAM �le is read into the working
storage area DAT. These key values are used by CKREADBYKEY to
locate and read the items to be deleted by CKDELETE.

d a

c b

PROCEDURE DIVISION.

START.

MOVE 2 TO I-O-TYPE, A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT....
READ-KEY.

READ DATA-FILE INTO DAT;

AT END GO TO FINISH.

CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT, KEYLOC,

RECSIZE.

IF STATUS-KEY-1 = "0" THEN

GO TO DELETE-RECORD.

DISPLAY "CKREADBYKEY ERROR, STATUS = ",STAT.

IF STATUS-KEY-1 = "9" THEN
CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR ", RESULT

GO TO READ-KEY.

DELETE-RECORD.

CALL "CKDELETE" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "0" THEN

DISPLAY REC, " DELETED"

GO TO READ-KEY.

DISPLAY "CKDELETE ERROR, STATUS =",STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO. =", RESULT.

GO TO READ-KEY.

Note If access is shared, the �le must be opened with a call to CKOPENSHR.
A call to CKLOCK must precede the call to CKREADBYKEY. A call to
CKUNLOCK must follow the CKDELETE error tests and should precede
the return to READ-KEY.

A-14 COBOL Intrinsics

CKERROR

CKERROR Converts KSAM �le system error code returned in status to a display
format number.

CALL "CKERROR" USING status, result

Whenever a 9 is returned as the left character of the status
parameter following any call to a KSAM procedure, you can call the
procedure CKERROR to convert the MPE �le system error code in the
right character of status from a binary number to a display format
number. This allows you to display the error code.

Parameters status The status parameter to which a value was returned
by a previous KSAM procedure call. The entire
status parameter, both left and right characters,
must be speci�ed.

result An item to which the error number is returned right
justi�ed in display format. The item must have a
picture of 4 numeric characters (PIC 9(4)).

Operation Notes The following example shows the WORKING-STORAGE SECTION
entries needed to check for errors and a call to CKERROR in the
PROCEDURE DIVISION that checks for and displays the error
number if a �le system error occurred in a call to process a KSAM
�le.

d a

c b

DATA DIVISION....
WORKING-STORAGE SECTION.

77 RESULT PIC 9(4) VALUE ZERO.

01 STAT.

03 STATUS-KEY-1 PIC X.

03 STATUS-KEY-2 PIC X....
PROCEDURE DIVISION.

START....
IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT.

DISPLAY "ERROR NUMBER ",RESULT.

COBOL Intrinsics A-15

CKLOCK A call to CKLOCK dynamically locks a KSAM �le.

CALL "CKLOCK" USING �letable, status, lockcond

When access is shared, you must lock the �le before calling CKWRITE,
CKREWRITE, or CKDELETE. This ensures that another user cannot
attempt to modify the �le at the same time. It guarantees that the
most recent data is available to each user who accesses the �le.

In order to call CKLOCK, the �le must have been opened with a call to
CKOPENSHR, not CKOPEN.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
was successful and if so, what it was. (Refer to
Filetable Parameter discussion earlier in this section.)

status One halfword (two 8-bit characters) set to a pair
of values upon completion of the call to CKLOCK. It
indicates whether or not the �le was successfully
locked and if not, why not. The status word = 00 if
the call was successful. It = 30 if the �le was locked
by another process. It = 9n, where n is a �le system
error code, if the call failed for some other reason.
(Refer to the Status Parameter discussion earlier in
this section.)

lockcond One halfword computational item whose value
determines the action taken if the �le is locked by
another user when CKLOCK is executed. The value is
either zero (0) or one (1).

0 locking is conditional; if the �le is already
locked, control is returned to your program
immediately with the status word set to \30".

1 locking is unconditional; if the �le cannot be
locked immediately because another use has
locked it, your program suspends until the �le
can be locked.

Operation Notes In order to call CKLOCK, the �le must be opened with dynamic access
enabled. This can be done only with the CKOPENSHR procedure.
CKOPEN will not open the �le for shared access with dynamic locking.

When users are sharing a �le, it is essential to lock the �le before
modifying it. An error is returned if any user attempts to write,
rewrite, or delete records without �rst locking the �le. It is also
important to avoid situations where one user locks the �le and forgets
to unlock it. If the �le is already locked when you call CKLOCK with
lockcond set to zero, the call will fail with 30 returned to status , and

A-16 COBOL Intrinsics

CKLOCK

your process will continue. If, however, lockcond is set to 1, your
process suspends until the other user unlocks the �le or logs o�.

The following example opens �le KSAMFILE for shared access with
dynamic locking allowed. It then locks the �le unconditionally. If
another user has locked the �le, the process suspends until the �le is
unlocked and then continues by locking your �le. The status value is
checked as soon as control returns to your process to ensure that the
�le has been locked before continuing.

d a

c b

DATA DIVISION.

77 LOCKCOND PICTURE S9(4) COMP VALUE 1.

77 RESULT PICTURE 9(4) VALUE 0.

01 STATUSKEY.

02 STATUS-KEY1 PICTURE X VALUE " ".

02 STATUS-KEY2 PICTURE X VALUE " ".

01 FILETABLE.

02 FILENUMBER PICTURE S9(4) COMP VALUE 0.

02 FILENAME PICTURE X(8) VALUE "KSAMFILE".

02 I-O-TYPE PICTURE S9(4) COMP VALUE 0.
02 A-MODE PICTURE S9(4) COMP VALUE 0.

02 PREV-OP PICTURE S9(4) COMP VALUE 0.

PROCEDURE DIVISION.

START.

CALL "CKOPENSHR" USING FILETABLE, STATUSKEY.

IF STATUS-KEY1 = "0" THEN GO TO LOCK-FILE.

IF STATUS-KEY1 = "9" THEN

CALL "CKERROR" USING STATUSKEY, RESULT

DISPLAY "ERROR NO. ",RESULT.

LOCK-FILE.

CALL "CKLOCK" USING FILETABLE, STATUSKEY, LOCKCOND.

IF STATUSKEY="00"

THEN DISPLAY "CKLOCK IS OK"

ELSE IF STATUSKEY = "30"

THEN DISPLAY "FILE LOCKED BY ANOTHER PROCESS"

ELSE IF STATUS-KEY1="9"

THEN CALL "CKERROR" USING STATUSKEY, RESULT

DISPLAY "ERROR NO.", RESULT.

COBOL Intrinsics A-17

CKOPEN A call to procedure CKOPEN initiates KSAM �le processing.

CALL "CKOPEN" USING �letable, status

In order to process a KSAM �le, it must be opened with a call to the
CKOPEN procedure. CKOPEN initiates processing, speci�es the type
of processing and the access mode; the �le must have been created
previously.

To open a �le means to make it available for processing, to specify
the type of processing (input only, output only, or both), and to
specify the access method (sequential, random, or dynamic). If a
di�erent type of processing or access method is needed, the �le must
be closed and opened again with the parameters set to new values.

Note If you want to open the �le for shared access, you must use a call to
CKOPENSHR, rather than CKOPEN.

Parameters �letable An 8 halfword record containing the name of the
�le, its input/output type, and access mode. When
the open is successful, the �rst word of this table is
set to the �le number that identi�es the opened �le.
(Refer to Filetable Parameter discussion earlier in
this section.)

status One halfword (two 8-bit characters) set to a pair
of values upon completion of the call to CKOPEN to
indicate whether or not the �le was successfully
opened and if not why not. The left character is
set to 0 if open is successful, to 9 if not. The right
character is set to 0 if the open is successful, to
the �le system error code if not. (Refer to Status
Parameter discussion earlier in this section.)

Operation Notes Upon successful execution of CKOPEN, the �le named in �letable is
available for the type of processing speci�ed in �letable. Before the
�le is successfully opened with CKOPEN, no operation can be executed
that references the �le either explicitly or implicitly.

The input/output procedures that can be called to process the
�le depend on the value of the halfwords in �letable that specify
input/output type and access mode. (Refer to Figure A-3 for the
procedures allowed with the various combinations of input/output
type and access mode.)

A �le may be opened for input, output, or input/output, and for
sequential, random, or dynamic access in the same program by
specifying a di�erent call to CKOPEN for each change in input-output
type or access mode. Following the initial execution of CKOPEN, each
subsequent call to CKOPEN for the same �le must be preceded by a
call to CKCLOSE for that �le.

A-18 COBOL Intrinsics

CKOPEN

When �les are opened for input or input/output, the call to CKOPEN

sets the current record pointer to the �rst record in the primary key
chain.

Figure A-3. Procedures Allowed for Input/Output Type/Access Mode Combinations

Halfword 6 of �letable must be set to one of the following values
before calling CKOPEN:

0 input only

1 output only

2 input/output

In general, if you want to allow records to be read or the �le to be
positioned without allowing any new records to be written or any
existing records to be changed, you should set the input/output type
to 0. This input/output type allows you to call CKREAD or CKSTART
in sequential processing mode, CKREADBYKEY in random mode, or all
three in dynamic mode.

If you want to cause all existing records to be deleted when the �le
is opened and then allow new records to be written, you should set
the input/output type to 1. This type of open deletes all existing
records so that records are written to an empty �le. When a �le is
opened for output only, you can call CKWRITE in any of the three
access modes: sequential, random, or dynamic, but you cannot call
any other of the KSAM procedures.

COBOL Intrinsics A-19

CKOPEN

If you want unrestricted �le access, you should set the input/output
type to 2. This access type allows records to be read, positioned,
written, rewritten, or deleted. You may call CKREAD, CKSTART,
CKREWRITE, and CKDELETE (but not CKWRITE) when opened in
sequential mode; you may call CKREADBYKEY, CKWRITE, CKREWRITE,
or CKDELETE (but not CKREAD or CKSTART) when opened in random
mode. In dynamic mode, any of the KSAM procedures may be
called. With this type of input/output, existing records are not
cleared when you write a record with CKWRITE.

Halfword 7 of �letable must be set to one of the following values
before calling CKOPEN:

0 sequential access

1 random access

2 dynamic access

With sequential access, records in the �le are read in ascending
order based on the value of a key within each record. The key is the
primary key unless an alternate key was speci�ed with CKSTART.
Reading starts with the �rst record in sequence unless a particular
record was speci�ed with CKSTART. Each time a call to CKREAD is
executed, the next record in sequence is read from the �le. CKREAD
and CKSTART are the only procedures that can be called in input
mode. CKREADBYKEY cannot be speci�ed for any input/output type if
the access mode is sequential.

In output mode, CKWRITE is the only procedure that can be called.
When access is sequential, the record to be written must contain
a unique primary key that is greater in value than the key of any
previously written record. If it is not in sequence, an invalid key
sequence error 21 is returned to status .

In input/output mode, CKREWRITE and CKDELETE can be speci�ed as
well as CKREAD and CKSTART, but CKWRITE cannot.

Random access allows you to read, write, replace, or delete a
record with any value for its primary key. To read a record,
the CKREADBYKEY procedure must be called in either input or
input/output mode. CKREAD and CKSTART cannot be speci�ed for any
input/output type when access mode is random.

When writing a record with CKWRITE in output or input/output
mode, the value of the primary key in the record need not be greater
than the keys of previously written records; that is, records can be
written in any order.

In input/output mode, CKREWRITE can be used to replace any record
whose primary key matches the primary key in the record being
written. CKDELETE can be used to delete a record speci�ed in a
previous CKREADBYKEY call.

CKWRITE can be used to write a record following existing records in
the �le if you position to follow the last sequential record before

A-20 COBOL Intrinsics

CKOPEN

writing. Use this input/output type if you want to save existing data
in a �le to which you are writing.

Dynamic access allows you to use any call to process a �le opened for
input/output. When the �le is opened in dynamic mode, and a call is
made to CKREAD or CKSTART, the �le can be read, but not updated,
sequentially. For all other calls, dynamic mode is treated as if the
�le had been opened in random mode. The reason to open a �le in
dynamic mode is to allow both sequential and random processing on
the same �le without closing it and then opening it again each time
access switches from sequential to random or vice versa.

To open a �le initially for sequential read:

d a

c b

WORKING-STORAGE SECTION.

77 RESULT PIC 9(4) VALUE ZERO.

01 FILETABLE.

03 FILENUMBER PIC S9(4) COMP VALUE ZERO.

03 FILENAME PIC X(8) VALUE "KSAMFILE".

03 I-O-TYPE PIC S9(4) COMP VALUE ZERO.<--- input only

03 A-MODE PIC S9(4) COMP VALUE ZERO.<----- sequential access

03 PREV-OP PIC S9(4) COMP VALUE ZERO.

01 STAT.

03 STATUS-KEY-1 PIC X.

03 STATUS-KEY-2 PIC X.
...

PROCEDURE DIVISION.

START.

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 ="0" THEN GO TO S-READ.

IF STATUS-KEY-1 ="9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKOPEN FAILED. . .ERROR NO.", RESULT

STOP RUN.

S-READ.
...

COBOL Intrinsics A-21

CKOPEN

If you subsequently want to write in sequential order to the same �le,
you should close the �le with a call to CKCLOSE (described below),
move the value 1 (output to I-O-TYPE and then reopen the �le:

d a

c b

CALL "CKCLOSE" USING FILETABLE, STAT.

IF STATUS-KEY-1 ="9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKCLOSE FAILED -- ERROR NO.",

STOP RUN.

MOVE 1 TO I-O-TYPE.<--- output only

CALL "CKOPEN" USlNG FILETABLE, STAT.

Similarly, to update records in random order in the same �le, �rst
close the �le, then use the following MOVE statement to alter the
input/output type and access mode in FILETABLE and reopen the �le:

d a

c b

CALL "CKCLOSE" USING FILETABLE, STAT.
...

MOVE 2 TO I-O-TYPE.<--- input/output

MOVE 1 TO A-MODE.<--- random access

CALL "CKOPEN" USING FILETABLE, STAT.

A-22 COBOL Intrinsics

CKOPENSHR

CKOPENSHR A call to CKOPENSHR initiates KSAM �le processing with dynamic
locking and shared access allowed.

CALL "CKOPENSHR" USING �letable, status

In order to process a KSAM �le with shared access and dynamic
locking, the �le must be opened with a call to CKOPENSHR. CKOPENSHR
is exactly like CKOPEN in that it initiates processing, speci�es the type
of processing, and speci�es the access mode. The �le must have been
created previously.

To open a �le for shared access means to make it available for
processing by more than one user. Shared access allows all users to
read or position the �le, but only one user at a time can modify the
�le by writing new records, or rewriting or deleting existing records.
To ensure that more than one user does not attempt to modify the
�le at the same time, you must call CKLOCK to dynamically lock the
�le before calling the procedures CKWRITE, CKREWRITE, or CKDELETE.
After modifying the �le, you should call CKUNLOCK so that it can be
accessed by other users.

Parameters �letable An 8 halfword record containing the name of the �le,
its input/output type, and access mode. When the
open is successful, the �rst halfword of this table is
set to the �le number that identi�es the opened �le.

status One halfword (two 8-bit characters) set to a pair
of values upon completion of the call to CKOPENSHR

to indicate whether or not the �le was successfully
opened and if not why not. The left character is
set to 0 if the open is successful, to 9 if not. The
right character is to 0 if open is successful, to the �le
system error code if not.

Operation Notes A call to CKOPENSHR operates like the call to CKOPEN, except that
CKOPENSHR allows shared access and dynamic locking. Upon
successful execution of CKOPENSHR, the �le named in �letable is
available for the type of processing speci�ed in �letable. Before
the �le is opened successfully, no operation can be performed that
references the �le either explicitly or implicitly.

A �le may be opened by CKOPENSHR for any of the access modes
(sequential, random, or dynamic) and for any input/output type
(input only, output only, or input/output) allowed with CKOPEN.

Refer to the description of using CKOPEN for the speci�c e�ects of
opening a KSAM �le with the various input/output types and access
modes.

COBOL Intrinsics A-23

CKREAD A call to procedure CKREAD makes available the next logical record
from a KSAM �le.

CALL "CKREAD" USING �letable, status, record, recordsize

In order to read records in sequential order by key value, call
procedure CKREAD. The �le must have been opened in input or
input/output mode with access mode speci�ed as either sequential or
dynamic.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
was successful and if so, what it was.

status One halfword (two 8-bit characters) set to a pair
of values upon completion of the call to CKREAD to
indicate whether or not the record was successfully
read and if not, why not.

record A record de�ned in the WORKING-STORAGE
SECTION into which the contents of the next
sequential KSAM record is read.

recordsize An integer (S9(4)COMP) containing the length in
characters of the record being read. It must not
exceed the maximum record length established for
the �le when it was created.

Operation Notes The �le from which the record is read must be opened for sequential
or dynamic access (access mode = 0 or 2). It may be opened for
input only or input/output (input/output type = 0 or 2), but not for
output only.

When the �le is opened initially for input or input/output, the logical
record pointer is positioned at the �rst sequential record; that is, at
the record with the lowest key value. The key used is the primary
key unless a previous call to CKSTART has speci�ed an alternate key.
When a call to CKREAD is executed, the record at which the record
pointer is currently positioned is read into the location speci�ed by
record .

If, when CKREAD is executed, there is no next logical record in the �le,
the at end condition is returned to status ; that is, status is set to 10.
Note that a call to the procedure CKSTART can be used to reposition
the pointer for subsequent sequential access according to primary or
alternate key order.

In order to update records in sequential order, CKREAD must be called
before executing either of the update procedures CKREWRITE or
CKDELETE. When access is shared, it is important to include the call
to CKREAD within the same locked portion of code that includes the

A-24 COBOL Intrinsics

CKREAD

call to CKREWRITE or CKDELETE. This ensures that the correct record
is modi�ed or deleted.

Because CKREAD is a pointer-dependent procedure, the actual
record read depends on the current position of the logical record
pointer. When access is shared, this pointer position can be made
incorrect by other users without your program being aware of it.
For this reason, you should lock the �le, position the pointer with
a pointer-independent procedure, and then call CKREAD. When the
last record is read, you should then unlock the �le so other users can
access the �le. Example 2 below illustrates how you should read the
�le sequentially when access is shared.

Using the WORKING-STORAGE SECTION from Figure A-2
and the FINISH procedure in the CKCLOSE example, the following
procedures read records in sequential order from �le KSAMFILE and
display them on the standard output device.

d a

c b

PROCEDURE DIVISION.

START....
MOVE 0 TO I-O-TYPE, A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "9"

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKOPEN ERROR NO. ", RESULT.

IF STATUS-KEY-1 NOT = "0"

DISPLAY "CKOPEN FAILED"

STOP RUN.

READ-NEXT.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1 = "1" GO TO NEW-POSITION.

IF STATUS-KEY-1 = "0"

DISPLAY REC;

ELSE

DISPLAY "CKREAD ERROR, STATUS =", STAT.

IF STATUS-KEY-1 ="9"

CALL "CKERROR" USING STAT, RESULT

DISPLAY "FILE ERROR =", RESULT.

GO TO READ-NEXT.

NEW-POSITION....

COBOL Intrinsics A-25

CKREAD

The following example provides a sequential read with shared access.

d a

c b

PROCEDURE DIVISION.

START.
...

MOVE 0 TO I-O-TYPE, A-MODE.

CALL "CKOPENSHR" USING FILETABLE, STAT <--- open �le for shared

access
... <--- test status

FIND-RECORD.

MOVE 2 TO RELOP.

MOVE "000-0000" TO KEYVAL.

MOVE 23 TO KEYLOC,

MOVE 8 TO KEYLENGTH.

MOVE 1 TO LOCKCOND.

CALL "CKLOCK" USING FILETABLE, STAT, LOCKCOND.<--- lock �le

unconditionally

CALL "CKSTART" USING FILETABLE,

STAT, RELOP, KEYVAL, KEYLOC, KEYLENGTH.<--- position pointer to

lowest key value
... <--- test status

READ-RECORD.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE<--- read record

IF STATUS-KEY-1 ="1"<--- end of �le

GO TO END-OF-READ.

IF STATUS-KEY-1 ="0"<--- if successful, display record read

DISPLAY REC.
... <--- test status for errors

TO TO READ-RECORD.

END-OF-READ.

CALL "CKUNLOCK" USING FILETABLE, STAT.<----- unlock �le

A-26 COBOL Intrinsics

CKREADBYKEY

CKREADBYKEY A call to CKREADBYKEY makes available a record identi�ed by key
value from a KSAM �le.

CALL "CKREADBYKEY" USING �letable, status, record, key, keyloc, recordsize

Records can be read from a KSAM �le in an order determined by key
value. This order need not be sequential; in fact, it can be any order
you specify. This type of access is used to access individual records in
random order by key value.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
was successful and if so what it was.

status One halfword (two 8-bit characters) set to a pair of
values upon completion of the call to CKREADBYKEY

indicating whether the call was successful and if not
why not.

record A record de�ned in the WORKING-STORAGE
SECTION into which the contents of a record
located by key value is read.

key An item whose value is used by CKREADBYKEY to
locate the record to be read. Key values in the �le
identi�ed by �letable are compared to the value of
key until the �rst record with an equal value is
found.

keyloc One halfword integer (S9(4)COMP) set to the
starting character position of the key in the KSAM
data record (�rst position is character 1). The keyloc
parameter identi�es the �le key to be compared with
key .

recordsize An integer (S9(4)COMP) containing the length
in characters of the record being read; it must be
less than or equal to the maximum record length
established for the �le at creation.

Operation Notes In order to use the CKREADBYKEY procedure, the �le must be opened
for either input or input/output. The access mode can be either
random or dynamic, but must not be sequential.

Execution of CKREADBYKEY causes the value of key to be compared
to the value of the key at location keyloc in the KSAM �le data
records. When a key is found whose value is identical to that of key ,
the record pointer is moved to the beginning of that record and the
record is read into the location record .

If no record can be found whose key value equals that of key , an
invalid key condition is diagnosed and status is set to the value 23.

COBOL Intrinsics A-27

CKREADBYKEY

Successful execution of CKREADBYKEY is indicated by the value 0 in
the left byte of status . Unsuccessful execution is indicated by either
the invalid key return or by a value of 9 in the left byte of status .

In order to delete records in random or dynamic mode, CKREADBYKEY
must be called before executing CKDELETE. It is not required prior to
CKREWRITE.

In the following examples, update information is read into the area
called DAT in the WORKING-STORAGE SECTION. (Note that
in this as in the preceding examples, the WORKING- STORAGE
SECTION from Figure A-2 continues to be useful.) In the �rst
example, the primary keys of records in KSAMFILE are searched for
values matching the value read into NAME in the DAT record; in the
second example, an alternate key at location 23 is searched for values
matching the value read into PHONE in the DAT record.

A-28 COBOL Intrinsics

CKREADBYKEY

Read a record located by its primary key value:

d a

c b

DATA DIVISION.
...

WORKING-STORAGE SECTION.

77 KEYLOC PIC S9(4) COMP.
...

PROCEDURE DIVISION.

START.
...

MOVE 2 TO I-O-TYPE, A-MODE.<--- prepare to open for input/output, dynamic access

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKOPEN ERROR NO. ", RESULT.

IF STATUS-KEY-1 NOT="O" THEN

DISPLAY "CKOPEN FAILED"

STOP RUN.

FIND-RECORD.

READ NEW-DATA INTO DAT;<--- read update records

AT END GO TO FINISH.

MOVE 3 TO KEYLOC.

CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT,

KEYLOC, RECSIZE.

IF STAT = "00" THEN

DISPLAY "RECORD FOUND", REC

GO TO FIND-RECORD.

IF STAT = "23" THEN

DISPLAY "RECORD NOT FOUND,KEY=", NAME OF DAT

GO TO FIND-RECORD.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NO. ", RESULT

GO TO FIND-RECORD.

COBOL Intrinsics A-29

CKREADBYKEY

To �nd a record by the value of an alternate key, simply change two
statements in the preceding example so that KEYLOC contains the
location of the alternate key and the key value for comparison is
found in item PHONE OF DAT rather than in NAME OF DAT :

d a

c b

FIND RECORD.

READ NEW-DATA INTO DAT;

AT END GO TO FINISH.

MOVE 23 TO KEYLOC.

CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, PHONE OF DAT,

KEYLOC, RECSIZE.

A-30 COBOL Intrinsics

CKREWRITE

CKREWRITE The procedure CKREWRITE replaces a record existing in a KSAM �le
with another record having a matching primary key.

CALL "CKREWRITE" USING �letable, status, record, recordsize

You can replace an existing record in a KSAM �le with the
procedure CKREWRITE. This procedure replaces a record previously
read from the �le with another record whose primary key matches
the primary key of the record being replaced.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
was unsuccessful and if so what it was.

status One halfword (two 8-bit characters) set to a pair of
values upon the completion of the call to CKREWRITE

indicating whether or not the call was successful
and if not why not. (Refer to Status Parameter
discussion earlier in this section.)

record A record de�ned in the WORKING-STORAGE
SECTION containing data to be written as a
logical record to the �le replacing the record with a
matching primary key.

recordsize An integer (S9(4)COMP) containing the length in
characters of the record to be written. It must not
exceed the maximum record length established for
the �le when it was created.

Operation Notes In order to call procedure CKREWRITE, the �le must be open for
both input and output (input/output type=2). The access mode
can be sequential, random, or dynamic. If access mode is sequential,
CKREAD must have been executed successfully just prior to the call to
CKREWRITE. In random or dynamic mode, no prior read is required;
the system searches the �le for the record to be rewritten.

When the �le is opened in sequential mode (access mode = 0),
CKREAD must be executed before CKREWRITE. The primary key in the
record to be written by CKREWRITE must be identical to the primary
key in the record read by CKREAD. A simple way to ensure that the
keys match is to read a record into WORKING-STORAGE, modify
it without altering the primary key, and then write it back to the �le
using CKREWRITE. Since the primary key is not changed, the sequence
of records in the �le is not a�ected.

If you want to rewrite in sequential mode all the records in a chain
of records with duplicate keys, use either CKSTART or CKREADBYKEY
to position to the �rst record in the chain. Then call CKREWRITE to
update the �rst record in the chain. Subsequent calls depend on
whether you are changing any key value in the record (not necessarily
the selected key).

COBOL Intrinsics A-31

CKREWRITE

If no key in the record is changed, the record pointer continues to
point to the current record. Only a subsequent CKREAD advances the
pointer to the next record in the duplicate key chain. In this case,
you can issue CKREAD and CKREWRITE calls until all records with the
duplicated key value have been rewritten.

If any key in the record is changed, the new key is written to the end
of the chain of duplicate keys in the index area. After the �rst call to
CKREWRITE, the record pointer points to the record whose key value
follows the changed key. Since this key is now at the end of the chain
of duplicate keys, a subsequent call to CKREWRITE skips all records
with keys in the duplicate key chain and rewrites the record with the
next higher key value. In this case, you must precede each call to
CKREWRITE with a call to CKSTART or CKREADBYKEY in order to update
all subsequent records with duplicate keys.

If you are updating a primary key value that is duplicated, it is good
practice to use CKDELETE to delete the selected record and then
rewrite it as a new record with CKWRITE.

When the �le is opened in random or dynamic mode (access mode
= 1 or 2), no prior call to a read procedure is needed. You specify
the record to be written in WORKING-STORAGE and then call
CKREWRITE. However, you must use the primary key to position
to the record to be modi�ed. When the procedure is executed, the
�le is searched for a record whose primary key matches that of the
record to be written. If such a record is found, it is replaced by the
record speci�ed in CKREWRITE. If not found, an invalid key condition
is diagnosed and status is set to 23.

A call to CKREWRITE in random mode updates only the �rst record
with a key in the chain of duplicate keys.

Regardless of the mode, after any call to CKREWRITE that does not
modify a key value, the record pointer is positioned to the key of
the record just modi�ed. However, if any key in the modi�ed record
was changed, the record must be deleted and then rewritten by a
write procedure. If the access mode is sequential and a key was
modi�ed, the pointer is moved to the record with the next key value
in ascending sequence after the modi�ed key. If the access mode is
random or dynamic, and a key was modi�ed, the pointer is moved to
the record with the next key in ascending sequence after the primary
key in the modi�ed record. This means that in random or dynamic
mode the key pointer may change if it was pointing to an alternate
key before the call to CKREWRITE.

If the �le was opened for shared access with CKOPENSHR, then you
must lock the �le with a call to CKLOCK before rewriting any records
with CKREWRITE. After the records are rewritten, you should unlock
the �le with CKUNLOCK.

To ensure that you are updating the correct record in sequential
mode, you should call CKLOCK before positioning the pointer with
CKSTART or CKREADBYKEY, then specify the sequential calls to CKREAD

A-32 COBOL Intrinsics

CKREWRITE

and CKREWRITE before unlocking the �le with CKUNLOCK. This ensures
that no other users change the position of the pointer while you are
sequentially updating the �le.

In sequential mode, the invalid key condition exists when the record
just read by CKREAD and the record to be written by CKREWRITE do
not have the same primary key value. In random or dynamic mode,
an invalid key condition exists if no record can be found in the
�le whose primary key matches that of the record to be written by
CKREWRITE. In either case, status is set to the value 23.

Regardless of mode, an invalid key condition occurs if an alternate
key value in the record to be written duplicates a corresponding
alternate key for which duplicates are prohibited. When rewriting
a record, try to avoid specifying an alternate key value that may
duplicate a value existing in the �le unless duplicates are allowed for
the key. A duplicate key condition where duplicates are not allowed
causes status to be set to 22 and the procedure is not executed.

Use CKSTART to position the current record pointer to the start of the
�le. Then read each record in sequence and set its non-key items to
blanks.

The �rst example is of a sequential update that clears the value of an
item in each record of the �le. The second example searches the �le
for a record whose primary key has a particular value in order to
change the alternate key for that record. Both examples assume the
WORKING-STORAGE SECTION from Figure A-2 and the FINISH
procedure from CKCLOSE.

Note If the �le was opened for shared access with a call to CKOPENSHR,
then the �le should be locked with a call to CKLOCK before the call to
CKSTART. The �le should be unlocked with a call to CKUNLOCK only
when the �nal record is updated, probably in the FINISH procedure.

COBOL Intrinsics A-33

CKREWRITE

d a

c b

DATA DIVISION.
...

WORKING-STORAGE SECTION. \

77 RELOP PIC S9(4) COMP.|

77 KEYVAL PIC X(20). |<--- items required by CKSTART

77 KEYLOC PIC S9(4) COMP.|

77 KEYLENGTH PIC S9(4) COMP.|
...

PROCEDURE DIVISION.

START.

MOVE 2 TO I-O-TYPE.

MOVE 0 TO A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT.
... <--- check status

UPDATE-FILE.

MOVE 1 TO RELOP.

MOVE "000-0000" TO KEYVAL.<--- set up CKSTART parameters to start

MOVE 23 TO KEYLOC. reading at lowest alternate key

value

MOVE 8 TO KEYLENGTH.

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,

KEYLENGTH.

IF STATUS-KEY-1="0" THEN

GO TO READ-RECORD;

ELSE

DISPLAY "CKSTART ERROR, STATUS", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.", RESULT

GO TO FINISH.

READ-RECORD.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1 = "1" THEN

GO TO FINISH. <------------------ end of �le

IF STATUS-KEY-1 = "0" THEN

GO TO WRITE-RECORD

ELSE

DISPLAY "CKREAD ERROR,STATUS =", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO. ", RESULT

GO TO READ-RECORD.

A-34 COBOL Intrinsics

CKREWRITE

d a

c b

WRITE-RECORD.

MOVE SPACES TO OTHERDATA OF REC.

CALL "CKREWRITE" USING FILETABLE,

IF STATUS-KEY-1 = "0" THEN

DISPLAY NAME OF"DATA CLEARED"

GO TO READ-RECORD.

DISPLAY "CKREWRITE ERROR, STATUS=",

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT,

DISPLAY "CKERROR NO.=",

GO TO READ-RECORD.

The second example �nds the record with the primary key
\ECKSTEIN, LEO "and changes the value of the secondary key to
\257-5137":

d a

c b

PROCEDURE DIVISION.

START....
MOVE 2 TO I-O-TYPE, A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "0" THEN

GO TO F-UPDATE.

DISPLAY "CKOPEN ERROR, STA", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.=", RESULT

GO TO FINISH.

F-UPDATE.

MOVE "ECKSTEIN, LEO "TO NAME OF REC.

MOVE "257-5137" TO PHONE OF REC.

MOVE SPACES TO OTHERDATA OF REC.

CALL "CKREWRITE" USING FILETABLE, STAT, REC, RECSlZE.

IF STATUS-KEY-1="0" THEN

DISPLAY REC "UPDATED"

GO TO FINISH.

IF STAT = "23" THEN

DISPLAY NAME OF REC "NOT FOUND"

GO TO FINISH.

DISPLAY "CKREWRITE ERROR, STATUS =", STAT.
IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.=", RESULT.

GO TO FINISH.

COBOL Intrinsics A-35

CKREWRITE

CKSTART A call to procedure CKSTART allows you to position the record pointer
to a particular record in a KSAM �le de�ned by its primary or
alternate key value.

CALL "CKSTART" USING �letable, status, relop, key, keyloc, keylength

In order to position the current record pointer to a location in the
�le de�ned by a key value, call CKSTART. Since CKSTART is used in
preparation for sequential retrieval of records with CKREAD, the �le
must be open for sequential or dynamic access, not random, and for
input or input/output, not output only.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
was successful and if so, what it was.

status One halfword (two 8-bit characters) set to a pair of
values upon completion of the call to CKSTART to
indicate whether or not the call was successful and if
not why not. (Refer to Status Parameter discussion
earlier in this section.)

relop One halfword integer (S9(4)COMP) code that
speci�es a relation between the key value speci�ed in
the call to CKSTART and the key value in the record
to which the record pointer is to be positioned:

0|record key is equal to key
1|record key is greater than key
2|record key is greater than or equal to key

key An item whose value is used by CKSTART to locate
the record at which to position the record pointer.
The values of a speci�ed �le key are compared in
ascending order to the value of key according to the
relation speci�ed by relop.

keyloc One halfword integer (S9(4)COMP) set to the
starting character location of a key in the KSAM �le
data record (�rst position is character 1). The key at
keyloc is compared to key .

keylength One halfword integer (S9(4)COMP) set to the length
of key ; the length must be less than or equal to the
length of the key de�ned by keyloc.

A-36 COBOL Intrinsics

CKSTART

Operation Notes When CKSTART is executed, the index area is searched for the �rst
key in the set of keys at location keyloc whose value when compared
with key satis�es the comparison speci�ed by relop. The current
record pointer is positioned to the beginning of the record in the data
area associated with the key found by CKSTART.

The speci�ed length of key (key length) may be less than the length
of the key in the �le; if so, the comparison proceeds as if the �le key
were truncated on the right to the same length as key length. If no
record can be found whose key value satis�es the comparison, an
invalid key condition is returned to status ; that is, status is set to 23.

If you use CKSTART to position the pointer before reading or updating
the �le sequentially in a shared environment, you must lock the �le
with a call to CKLOCK before calling CKSTART. Then, after you have
completed the sequential operations, you can unlock the �le with a
call to CKUNLOCK. If you wait to lock the �le until after the call to
CKSTART, another user can change the structure of the index area so
that the position of the pointer becomes invalid for any subsequent
call to a procedure that depends on the pointer position.

For the following examples, four new items must be added to the
WORKING-STORAGE SECTION in Figure A-2; otherwise, the
same WORKING-STORAGE SECTION is used. The new items are:

d a

c b

77 RELOP PIC S9(4) COMP.

77 KEYVAL PIC X(20).

77 KEYLOC PIC S9(4) COMP.

77 KEYLENGTH PIC S9(4) COMP.

Each of these items is assigned the value appropriate to the operation
to be performed by statements in the PROCEDURE DIVISION.
Note that the length of array KEYVAL can be made shorter by
assigning a value less than 20 to KEYLENGTH but it cannot be
made longer than 20 characters. Since there is no key in KSAMFILE
longer than 20 characters, this allows comparison to be made on the
longest key.

The following example shows the statements needed to display the
records in KSAMFILE in order by the alternate key PHONE that
starts in location 23 and has a length of 8 characters. It assumes the
�le is open for input or input/output and that the access mode is
sequential. It also assumes the FINISH procedure from the CKCLOSE
example.

COBOL Intrinsics A-37

CKSTART

d a

c b

NEW-POSITION.

MOVE 2 TO RELOP.<--- �nd key value greater than or equal to

KEYVAL

MOVE "000-0000" TO KEYVAL.

MOVE 23 TO KEYLOC.

MOVE 8 TO KEYLENGTH.

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,

KEYLENGTH.

IF STAT = "23" THEN GO TO FINISH.<--- no record found

IF STATUS-KEY-1 = "0" THEN GO TO READ-BY-PHONE.<--- lowest key

value found

DISPLAY "CKSTART ERROR, STATUS", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUM", RESULT.

GO TO FINISH.

READ-BY-PHONE.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE,

IF STATUS-KEY-1 = "1" THEN GO TO FINISH.<---- end-of-�le

IF STATUS-KEY-1 = "O" THEN

DISPLAY REC;

ELSE DISPLAY "CKREAD ERROR,STATUS=", STAT

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUMBER", RESULT.

GO TO READ-BY-PHONE.

A-38 COBOL Intrinsics

CKSTART

In the next example, CKSTART is used to position to the beginning of
the series of names beginning with the letter \T". The KSAM �le
key is located at character position 3 (NAME key); the parameter
KEYVAL is set to the value \T"; the key length for purposes of
comparison is set to 1; and RELOP is set to 0. Thus the record
pointer is positioned at the �rst key found whose value (when the key
is truncated to 1 character) is equal to \T". Note that this example
reads not only all names beginning with \T", but also reads all
names that begin with letters following \T". To read only the names
beginning with \T", the program must add a test for the end of the
\T" names.

d a

c b

POSITION.

MOVE 0 TO RELOP.<--- �nd key equal to KEY value

MOVE "T" TO KEYVAL.

MOVE 3 TO KEYLOC.

MOVE 1 TO KEYLENGTH.

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,

KEYLENGTH.

IF STAT = "23" THEN GO TO FINISH.

IF STATUS-KEY-1 = "0" THEN

GO TO READ-NAMES.

DISPLAY "CKSTART ERROR, STATUS=",STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUMBER=", RESULT.

GO TO FINISH.

READ-NAMES.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSlZE.

IF STATUS-KEY-1 ="1" THEN GO TO FINISH.

IF STATUS-KEY-1 ="0" THEN

DISPLAY REC;

ELSE

DISPLAY "CKREAD ERROR, STATUS",STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUM", RESULT.

GO TO READ-NAMES.

COBOL Intrinsics A-39

CKUNLOCK A call to CKUNLOCK unlocks a KSAM �le dynamically locked by
CKLOCK.

CALL "CKUNLOCK" USING �letable, status

A �le locked by CKLOCK is released for use by other users with a call
to CKUNLOCK. (If you log o� from any connection with the system,
the �le is also unlocked.) Since dynamic locking takes place during
shared access to the same �le by more than one user, it is important
that any �le locked by CKLOCK be unlocked as soon as possible by
CKUNLOCK.

To use CKUNLOCK, the �le must be opened for shared access
with dynamic locking allowed. This can be done only by calling
CKOPENSHR to open the �le, not CKOPEN.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
was successful and if so, what it was.

status One halfword (two 8-bit characters) set to a pair
of values upon completion of the call to CKUNLOCK.
It indicates whether or not the �le was successfully
unlocked and if not, why not. The status word is set
to 00 if the �le was unlocked successfully; to 31 if
the �le was not locked; or to 9n where n is a binary
�le system error code if the call fails for any other
reason.

Operation Notes After calling CKUNLOCK, you should always check the status parameter
to make sure that the procedure was executed successfully. When
successful, the �le locked by CKLOCK is again made available for
access by other users. If the �le was not locked by CKLOCK, when
CKUNLOCK is called, status is set to 31.

The following example unlocks a �le previously locked by CKLOCK.
(Refer to the CKLOCK example.)

A-40 COBOL Intrinsics

CKUNLOCK

d a

c b

DATA DIVISION....
77 RESULT PICTURE 9(4) VALUE 0.

01 STATUSKEY.

02 STATUS-KEY1 PICTURE X VALUE " ".

02 STATUS-KEY2 PICTURE X VALUE " ".

01 FILETABLE.

02 FILENUMBER PICTURE S9(4) COMP VALUE 0.

02 FILENAME PICTURE X(8) VALUE "KSAMFILE".

02 I-O-TYPE PICTURE S9(4) COMP VALUE 0.

02 A-MODE PICTURE S9(4) COMP VALUE 0.

02 PREV-OP PICTURE S9(4) COMP VALUE 0.

PROCEDURE DIVISION....
CALL "CKUNLOCK" USING FILETABLE, STATUSKEY.

IF STATUSKEY ="00"

THEN DISPLAY "CKUNLOCK IS OK"

ELSE IF STATUSKEY ="31"

THEN DISPLAY="FILE NOT PREVIOUSLY LOCKED BY THIS PROCESS"

ELSE IF STATUS-KEY1 ="9"

THEN CALL"CKERROR" USING STATUSKEY, RESULT
DISPLAY "ERROR NO.", RESULT.

COBOL Intrinsics A-41

CKWRITE Procedure CKWRITE copies a logical record from the program's data
area to an output or an input/output KSAM �le.

CALL "CKWRITE" USING �letable, status, record, recordsize

A call to procedure CKWRITE may be used to write records to a
KSAM �le either in sequential order or randomly by key value. The
�le must have been opened for output or for input/output, but not
for input only.

Parameters �letable An 8 halfword record containing the number and
name of the �le, its input/output type, access mode,
and a code indicating whether the previous operation
on the �le was successful and if so what, it was.

status One halfword (two 8-bit characters) set to a pair of
values upon completion of the call to CKWRITE to
indicate whether or not the record was successfully
written and if not, why not.

record A record de�ned in the WORKING-STORAGE
SECTION containing data to be written to the �le
by CKWRITE.

recordsize An integer (S9(4)COMP) containing the length in
characters of the record to be written. It must not
exceed the maximum record length established for
the �le when it was created, and it must be long
enough to contain all the keys.

Operation Notes The �le to which the content of record is written must be open for
output only if sequential mode is speci�ed. It may be opened for
output or input/output if the access mode at open is random or
dynamic.

When the �le is opened for sequential access (access mode = 0) and
for output only (I-O type = 1), then records must be written to the
�le in ascending sequential order by primary key value. The value of
the primary key in the record to be written must be greater than
the value of the primary key in any record previously written to the
�le. This ensures that the records written to the �le are initially in
ascending order physically as well as logically.

When I-O type = 1, CKWRITE writes records starting at the beginning
of the �le, thereby e�ectively clearing any records previously written
to the �le.

In a �le opened for random or dynamic access (access mode = 1 or 2)
and for output only or for input/output (I-O type = 1 or 2), records
can be written in any order. The value of the primary key need not
be in any particular relation to the primary key values of previously
written records.

A-42 COBOL Intrinsics

CKWRITE

If you want to preserve existing records in the �le, you should open
the �le with the input/output type equal to 2; when input/output
type = 1, all existing records are cleared prior to the write.

If the �le was opened for shared access with CKOPENSHR, then you
must lock the �le with a call to CKLOCK before writing any records.
After the records are written, you should unlock the �le with a call to
CKUNLOCK.

The invalid key condition (left byte of status=2) can occur as a result
of the following circumstances:

File was opened for sequential access in output mode and the
value of the primary key in the record being written is less than or
equal to the value of the primary key in the record just written;
status=21.

File was opened for sequential or random access in output or
input/output mode and the value of the primary key is equal to
the value of the primary key in an existing record; status=22.

File was opened for sequential or random access in output or
input/output mode and the value of an alternate key for which
duplicates are prohibited equals the value of a corresponding key in
an existing record; status=22.

File was opened for sequential or random access in output or
input/output mode and an attempt was made to write a record
beyond the physical bounds of the �le; status=24.

Assume a KSAM �le called KSAMFILE with records containing 74
characters, one primary key containing a name, and an alternate
key containing a phone number. The data is read from an input �le
called DATA-FILE. (Refer to Figure A-2 for a diagram of the structure
of this �le.)

The �rst example writes data to KSAMFILE in sequential order by the
primary key.

COBOL Intrinsics A-43

CKWRITE

d a

c b

DATA DIVISION...
WORKING-STORAGE SECTION.

77 RECSIZE PIC S9(4) COMP VALUE 74.

77 RESULT PIC 9(4) VALUE 0.

01 REC.

03 FILLER PIC XX VALUE SPACES.

03 NAME PIC X(20).

03 PHONE PIC X(8).

03 OTHERDATA PIC X(44).

01 DAT.

03 NAME PIC X(20).

03 PHONE PIC X(8).

03 OTHERDATA PIC X(44).

01 FILETABLE.

03 FILENUMBER PIC S9(4) COMP VALUE 0.

03 FILENAME PIC X(8) VALUE "KSAMFILE".

03 I-O-TYPE PIC S9(4) COMP VALUE 0.

03 A-MODE PIC S9(4) COMP VALUE 0.

03 PREV-OP PIC S9(4) COMP VALUE 0.

01 STAT.

03 STATUS-KEY-1 PIC X.
03 STATUS-KEY-2 PIC X....

PROCEDURE DIVISION.

START....

A-44 COBOL Intrinsics

CKWRITE

d a

c b

MOVE 1 TO I-O-TYPE,<--- set type to output only

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1="O" THEN GO TO WRITE-F.

DISPLAY "CKOPEN ERROR, STATUS = ", STAT.

IF STATUS-KEY-1= "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO. ", RESULT.

STOP RUN.

WRITE-F.

READ DATA-FILE INTO DAT;

AT END GO TO FINISH.

MOVE CORRESPONDING DAT TO REC.

CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1="0" THEN

DISPLAY REC.

GO TO WRITE-F.

IF STAT="21" THEN

DISPLAY "SEQUENCE ERROR IN", NAME OF REC

GO TO WRITE-F.

IF STAT = "22" THEN

DISPLAY "DUPLICATE KEY", NAME OF REC

GO TO WRITE-F.

IF STAT = "24" THEN

DISPLAY "END OF FILE"

GO TO FINISH.
...

FINISH

CLOSE DATA-FILE.

CALL "CKCLOSE" USING FILETABLE, STAT.

IF STATUS-KEY-1="9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKCLOSE ERROR NO. ", RESULT.

STOP RUN.

COBOL Intrinsics A-45

CKWRITE

The second example, using the same DATA DIVISION and the
same FINISH procedure, writes one record to the �le containing
\ADAMSON JOHN" as its primary key value.

d a

c b

PROCEDURE DIVISION.

START.
...

MOVE 1 TO I-O TYPE.<--- output only

MOVE 2 TO A-MODE.<--- random access

CALL "CKOPEN"USING FILETABLE, STAT.
... check status

FIND-REC.

READ DATA-FILE INTO DAT;

AT END GO TO FINISH.

IF NAME OF DAT = "ADAMSON JOHN" THEN

GO TO WRlTE-REC;

ELSE GO TO FIND-REC.

WRITE-REC.

MOVE CORRESPONDING DAT TO REC.

CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1="0" THEN

DISPLAY REC," RECORD WRITTEN"

GO TO FINISH.

IF STAT = "22" THEN

DISPLAY "DUPLICATE KEY"

GO TO FINISH.

IF STAT = "24" THEN

DISPLAY "NO ROOM IN FILE"

GO TO FINISH.

A-46 COBOL Intrinsics

Examples of KSAM
File Access

The following three examples illustrate KSAM �le access from
a COBOL program. The �le accessed in each example is called
KSAMFILE. It was created previously with BYTE type keys: the
primary key containing the name of a person and the alternate key
containing his telephone number. The remaining data in each record
is his address.

Sequential Write The �rst example reads data from an input �le into working storage
and then writes it to a KSAM �le. Access mode is sequential so
that as each record is written, the keys are linked in sequential
order although the records are not physically written in sequence.
Input/output type is output only, the only type allowed for the
procedure CKWRITE. The following procedures are illustrated:

CKOPEN

CKWRITE

CKCLOSE

COBOL Intrinsics A-47

d a

c b

Input to EXAMP1:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94012

SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053

ROBERT GERRY 258-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

END OF INPUT FOR EXAMP1

Program EXAMP1

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. EXAMP1.

001200 ENVIRONMENT DIVISION.

001300 INPUT-OUTPUT SECTIONS

001400 FILE-CONTROL.

001500 SELECT SEQ-DATA ASSIGN TO "SEQDATA".

001600 DATA DIVISION.
001700 FILE SECTION.

001800 FD SEQ-DATA

001900 LABEL RECORDS ARE STANDARD.

002000 01 INPUT-REC.

002100 05 REAL-DATA PIC X(72).

002200 WORKING-STORAGE SECTION.

002300 77 RECSIZE PIC S9(4) COMP VALUE 74.

002400 77 RESULT PIC 9(4) VALUE ZERO.

002500 01 DATA-REC.

002600 05 FILLER PIC XX VALUE SPACES.

002700 05 REAL-DATA PIC X(72).

002800 01 FILETABLE.

002900 02 FILENUMBER PIC S9(4) COMP VALUE 0.

003000 02 FILENAME PIC X(8) VALUE "KSAMFILE".

003100 02 I-O-TYPE PIC S9(4) COMP VALUE 1.

003200 02 A-MODE PIC S9(4) COMP VALUE 0.

003300 02 PREV-OP PIC S9(4) COMP VALUE 0.

003400 01 STATUSKEY.

003500 02 STATUS-KEY-1 PIC X.

003600 02 STATUS.KEY-2 PIC X.

003700

Figure A-4. Sequential Write Using COBOL

A-48 COBOL Intrinsics

d a

c b

003800 PROCEDURE DIVISION.

003900 START.

004000 OPEN INPUT SEQ-DATA

004100 CALL "CKOPEN" USING FILETABLE, STATUSKEY.

004200 IF STATUS-KEY-1="9" THEN

004300 CALL "CKERROR" USING STATUSKEY, RESULT

004400 DISPLAY "CKOPEN ERROR NO.", RESULT.

004500 IF STATUS-KEY-1 NOT = "0" THEN

004600 DISPLAY "CKOPEN FAILED"

004700 STOP RUN.

004800 LOOP.

004900 READ SEQ-DATA

005000 AT END GO TO FINISH.

005100 MOVE CORP INPUT-REC TO DATA-REC.

005200 CALL "CKWRITE" USING FILETABLE, STATUSKEY, DATA-REC,

005300 RECSIZE.

005400 IF STATUSKEY = "02" THEN

005500 DISPLAY "DUPLICATE KEY".

005600 IF STATUS-KEY-1 = "0" THEN

005700 DISPLAY DATA-REC

005800 GO TO LOOP.

005900 IF STATUS-KEY-1 = "9" THEN
006000 CALL "CKERROR" USING STATUSKEY, RESULT

006100 DISPLAY "CKWRITE ERROR NO.", RESULT

006200 DISPLAY DATA-REC

006300 GO TO LOOP.

006400 FINISH.

006500 CLOSE SEQ-DATA.

006600 CALL "CKCLOSE" USING FILETABLE, STATUSKEY.

006700 IF STATUS-KEY-1 = "9" THEN

006800 CALL "CKERROR" USING STATUSKEY, RESULT

006900 DISPLAY "CKCLOSE ERROR NO. ". RESULT.

007000 STOP RUN.

Output from EXAMP1 Execution:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94012

SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053

ROBERT GERRY 258-5535 12345 TELEGRAPH AVE . BERKELEY CA. 90871

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

END OF PROGRAM

Sequential Write Using COBOL(continued)

COBOL Intrinsics A-49

Sequential Read The second example reads the �le KSAMFILE in sequential order by
primary key (NAME) and prints each record as it is read. It then
repositions the �le to the �rst sequential record according to the
alternate key (PHONE) and prints each of the records as it is read in
this order. The �le is opened in sequential mode for input only. The
following procedures are illustrated:

CKOPEN

CKREAD

CKSTART

CKCLOSE

d a

c b

Program EXAMP2:

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. EXAMP2.

001200 ENVIRONMENT DIVISION.

001300 INPUT-OUTPUT SECTION.

001400 FILE-CONTROL.

001500 SELECT SEQ-DATA ASSIGN TO "SEQDATA".

001600 DATA DIVISION.

001700 WORKING-STORAGE SECTION.

001800 77 RECSIZE PIC S9(4) COMP VALUE 74.

001900 77 RESULT PIC 9(4) VALUE ZERO.

002000 77 KEY-LOC PIC S9(4) COMP VALUE 23.

002100 77 RELOP PIC S9(4) COMP VALUE 2.

002200 77 KEYLENGTH PIC S9(4) COMP VALUE 8.

002300 77 KEY-VALUE PIC X(8) VALUE "000-0000".

002400 01 DATA-REC.
002500 05 FILLER PIC XX.

002600 05 NAME PIC X(20).

002700 05 PHONE PIC X(8).

002800 05 OTHER-DATA PIC X(44).

002900 01 FILETABLE.

003000 02 FILENUMBER PIC S9(4) COMP VALUE o.

003100 02 FILENAME PIC X(8) VALUE "KSAMFILE".

003200 02 I-O-TYPE PIC S9(4) COMP VALUE o.

003300 02 A-MODE PIC S9(4) COMP VALUE o.

003400 02 PREV-OP PIC S9(4) COMP VALUE o.

003500 01 STATUSKEY.

003600 02 STATUS-KEY-l PIC X.

003700 02 STATUS-KEY-2 PIC X.

003800

Figure A-5. Sequential Read Using COBOL

A-50 COBOL Intrinsics

d a

c b

003900 PROCEDURE DIVISION.

004000 START.

004100 CALL "CKOPEN" USING FILETABLE, STATUSKEY.

004200 IF STATUS-KEY-1 = "9" THEN

004300 CALL "CKERROR" USING STATUSKEY, RESULT

004400 DISPLAY "CKOPEN ERROR NO.", RESULT.

004500 IF STATUS-KEY-1 NOT = "0" THEN

004600 DISPLAY "CKOPEN FAILED"

004700 STOP RUN.

004800 DISPLAY "ALPHABETICAL ORDER"

004900 DISPLAY " ".

005000 L00P1.

005100 CALL "CKREAD" USING FILETABLE, STATUSKEY, DATA-REC,

005200 RESIZED.

005300 IF STATUS-KEY-1= "1" THEN GO TO PART2.

005400 IF STATUS-KEY-1 = "0" THEN

005500 DISPLAY DATA-REC

005600 ELSE

005700 DISPLAY "CKREAD ERROR, STATUS = ", STATUSKEY

005800 IF STATUS-KEY-1 = "9" THEN

005900 CALL "CKERROR" USING STATUSKEY, RESULT

006000 DISPLAY "ERROR NO.", RESULT.
006100 GO TO LOOP.

006200 PART2.

006300 DISPLAY " ".

006400 DISPLAY "PHONE NO. ORDER:"

006500 DISPLAY " ".

006600 CALL "CKSTART" USING FILETABLE, STATUSKEY, RELOP,

006700 KEY-VALUE, KEY-LOC, KEYLENGTH.

006800 IF STATUSKEY = "23" THEN GO TO FINISH.

006900 IF STATUS-KEY-1 = "0" THEN GO TO LOOP2.

007000 DISPLAY "CKSTART ERROR, STATUS = ", STATUSKEY.

007100 IF STATUS-KEY-1 = "9" THEN

007200 CALL "CKERROR" USING STATUSKEY, RESULT

007300 DISPLAY "ERROR NO.", RESULT.

007400 GO TO FINISH.

Sequential Read Using COBOL (continued)

COBOL Intrinsics A-51

d a

c b

007500 LOOP2.

007600 CALL "CKREAD" USING FILETABLE, STATUSKEY, DATA-REC,

007700 RECSIZE.

007800 IF STATUS-KEY-1 = "1" THEN GO TO FINISH.

007900 IF STATUS-KEY-1 = "0" THEN

008000 DISPLAY DATA-REC

008100 ELSE

008200 DISPLAY "CKREAD ERROR, STATUS =", STATUSKEY

008400 IF STATUS-KEY-1 ="9" THEN

008400 CALL "CKERROR" USING STATUSKEY, RESULT

008500 DISPLAY "ERROR NO. ", RESULT.

008600 GO TO LOOP2.

008700 FINISH.

008800 CALL "CKCLOSE" USING FILETABLE, STATUSKEY.

008900 IF STATUS-KEY-1 = "9" THEN

009000 CALL "CKERROR" USING STATUSKEY, RESULT

009100 DISPLAY "CKCLOSE ERROR NO.", RESULT.

009200 STOP RUN.

Output from EXAMP2 Execution:

ALPHABETICAL ORDER:

CARDIN RICK 587-7018 11100 WOLFE ROAD CUPERTINO CA. 94053
ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

HOS0DA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

Sequential Read Using COBOL (continued)

A-52 COBOL Intrinsics

d a

c b

PHONE NO. ORDER:

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

END OF PROGRAM

Sequential Read Using COBOL (continued)

Random Update This example reads a set of new data containing update information
into the WORKING-STORAGE SECTION. Each record read is
followed by a U for update, a D for delete, or an A for add. Records
to be added are written to the �le KSAMFILE using CKWRITE in
random mode. Records to be updated are copied to the appropriate
record with CKREWRITE. Records to be deleted are �rst read into
the WORKING-STORAGE SECTION with CKREADBYKEY and
then deleted with CKDELETE. The �le is opened in random mode for
input/output.

The procedures illustrated by this example are:

CKOPEN

CKREADBYKEY

CKDELETE

CKREWRITE

CKWRITE

CKCLOSE

COBOL Intrinsics A-53

d a

c b

Program EXAMP3:

001000 IDENTIFICATION DIVISION,

001100 PROGRAM-ID. EXAMP3.

001200 ENVIRONMENT DIVISION.

001300 INPUT-OUTPUT SECTION.

001400 FILE-CONTROL.

001500 SELECT NEW-DATA ASSIGN TO "NEWDATA".

001600 DATA DIVISION.

001700 FILE SECTION.

001800 FD NEW-DATA

001900 LABEL RECORDS ARE STANDARD.

002000 01 INPUT-REC PIC X(73),

002100 WORKING-STORAGE SECTION,

002200 77 RECSIZE PIC S9(4) COMP VALUE 74.

002300 77 RESULT PIC 9(4) VALUE ZERO.

002400 77 KEY-LOC PIC S9(4) COMP VALUE 3.

002500 01 MASTER-REC.

002600 05 FILLER PIC XX.

002700 05 NAME PIC X(20).

002800 05 PHONE PIC X(8).

002900 05 OTHER-DATA PIC X(44).
003000 01 DATA-REC.

003100 05 NAME PIC X(20).

003200 05 PHONE PIC X (8).

003300 05 OTHER-DATA PIC X(44).

003400 05 TRANSACTION-CODE PIC X.

003500 01 FILETABLE.

003600 02 FILENUMRER PIC S9(4) COMP VALUE o.

003700 O2 FILENAME PIC X(8) VALUE "KSAMFILE".

003800 02 I-O-TYPE PIC S9(4) COMP VALUE 2.

003900 02 A-MoDE PIC S9(4) COMP VALUE 1.

004000 02 PHEV-OP PIC S9(4) COMP VALUE 0.

004100 01 STATUSKEY.

004200 02 STATUS-KEY-1 PIC X.

004300 02 STATUS-KEY-2 PIC X.

004400

Figure A-6. Random Update with COBOL

A-54 COBOL Intrinsics

d a

c b

004500 PROCEDURE DIVISION.

004600 START.

004700 OPEN INPUT NEW-DATA.

004800 CALL "CKOPEN" USING FILETABLE, STATUSKEY.

004900 IF STATUS-KEY-1 = "9" THEN

005000 CALL "CKERROR" USING STATUSKEY, RESULT

005100 DISPLAY "CKOPEN ERROR NO.", RESULT.

005200 IF STATUS-KEY-1 NOT ="0" THEN

005300 DISPLAY "CKOPEN FAILED"

005400 STOP RUN.

005500 LOOP.

005600 READ NEW-DATA INTO DATA-REC;

005700 AT END GO TO FINISH.

005800 IF TRANSACTION-CODE = "A" THEN GO TO ADD-REC,

005900 IF TRANSACTION-CODE NOT = "D" AND "U" THEN

006000 DISPLAY "ILLEGAL TRANSACTION CODE"

006100 DISPLAY DATA-REC

006200 GO TO LOOP.

006300 CALL "CKREADBYKEY" USING FILETABLE, STATUSKEY, MASTER-REC,

006400 NAME OF DATA-REC, KEY-LOC, RECSIZE.

006500 IF STATUS-KEY-1 NOT = "0" THEN

006600 DISPLAY "CKREADBYKEY ERROR, STATUS =", STATUSKEY,
006700 "; KEY =", NAME OF DATA-REC

006800 IF STATUS-KEY-1 = "9" THEN

006900 CALL "CKERROR" USING STATUSKEY, RESULT

007000 DISPLAY "ERROR NO.", RESULT

007100 GO TO LOOP

007200 ELSE

007300 GO TO LOOP.

007400 IF TRANSACTION-CODE = "D" THEN GO TO DELETE-REC.

007500 MOVE CORR DATA-REC TO MASTER-REC.

007600 CALL "CKREWRITE" USING FILETABLE, STATUSKEY, MASTER-REC,

007700 RECSIZE.

007800 IF STATUS-KEY-1 = "0" THEN

007900 DISPLAY MASTER-REC, "UPDATED"

008000 GO TO LOOP.

008100 DISPLAY "CKREWRITE ERROR, STATUS =", STATUSKEY, "; KEY ="

008200 NAME OF MASTER-REC.

008300 IF STATUS KEY-1= "9" THEN

008400 CALL "CKERROR" USING STATUSKEY, RESULT

008500 DISPLAY "ERROR NO.", RESULT

008600 GO TO LOOP.

Random Update with COBOL (continued)

COBOL Intrinsics A-55

d a

c b

008700 DELETE-REC.

008800 CALL "CKDELETE" USING FILETABLE, STATUSKEY.

008900 IF STATUS-KEY-1 = "0" THEN

009000 DISPLAY MASTER-REC, "DELETED"

009100 GO TO LOOP.

009200 DISPLAY "CKDELETE ERROR, STATUS =" STATUSKEY.

009300 IF STATUS-KEY-1 = "9" THEN

009400 CALL "CKERROR", USING STATUSKEY, RESULT

009500 DISPLAY "ERROR NO.", RESULT.

009600 GO TO LOOP.

009700 ADD-REC.

009800 MOVE CORR DATA-REC TO MASTER-REC.

009900 CALL "CKWRITE" USING FILETABLE, STATUSKEY, MASTER-REC.

010000 RECSIZE.

010100 IF STATUSKEY = "02" THEN

010200 DISPLAY "DUPLICATE KEY",

010300 IF STATUS-KEY-1 = "0" THEN

010400 DISPLAY MASTER-REC, "ADDED"

010500 GO TO LOOP.

010600 DISPLAY "CKWRITE ERROR, STATUS = ", STATUSKEY.

010700 IF STATUS-KEY-1 = "9" THEN

010800 CALL "CKERROR" USING STATUSKEY, RESULT
010900 DISPLAY "ERROR NO. ", RESULT.

011000 DISPLAY MASTER-REC,

011100 GO TO LOOP.

011200 FINISH.

011300 CLOSE NEW-DATA.

011400 CALL "CKCLOSE" USING FILETABLE, STATUSKEY,

011500 IF STATUS-KEY-1 = "9" THEN

011600 CALL "CKERROR" USING STATUSKEY, RESULT

011700 DISPLAY "CKCLOSE ERROR NO.", RESULT

011800 STOP RUN.

Random Update with COBOL (continued)

A-56 COBOL Intrinsics

d a

c b

Input to EXAMP3:

NOLAN JACK 923-4975 1 ANY STREET. SUNNYVALE CA. 94O87U

SMITH JOHN 555-1212 102 FIRST ST. OUR TOWN CA. 94099A

ECKSTEIN LEO D

CARDIN RICK 257-7000 11100 WOLFE ROAD CUPERTINO CA. 94041U

PASBY LINDAL D

JANE MARY 565-9090 1776 BICENTENNIAL ST. AMAHEIM CA. 91076A

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 94704U

TURNEW IVAN D

FORD GERALD 555-1976 1600 PENNSYLVANIA WASHINGTON DC. 20001U

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 94309A

Output from Execution of EXAMP3:

NOLAN JACK 923-4975 1 ANY STREET. SUNNYVALE CA. 94087

UPDATED

SMITH JOHN 555-1212 102 FIRST ST. OUR TOWN CA. 94099

ADDED

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

DELETED

CARDIN RICK 257-7000 11100 WOLFE ROAD CUPERTINO CA. 94014
UPDATED

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

DELETED

JANE MARY 565-9090 1776 BICENTENNIAL ST. ANAHEIM CA. 91076

ADDED

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 94704

UPDATED

CKREADBYKEY ERROR, STATUS = 23; KEY = TURNEW IVAN

CKREADBYKEY ERROR, STATUS = 23; KEY = FORD GERALD

CKWRITE ERROR, STATUS = 22

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 94309

Random Update with COBOL (continued)

Note Note that the input contains data that results in error messages.
The name IVAN TURNEW is spelled incorrectly and cannot be
found. The name GERALD FORD does not exist in the original �le
and also cannot be found. On the other hand, the name ELDER
WESTER already exists in the �le and cannot be added since it is a
primary key for which duplicates are not allowed.

COBOL Intrinsics A-57

B

BASIC/V Intrinsics

The BASIC/V interpreter and compiler require special intrinsics to
access existing KSAM �les. The following intrinsics were developed
for these BASIC/V programs.

Note These intrinsics are provided to allow BASIC/V programs to run in
compatibility mode. Do not use these intrinsics when writing new
programs in other languages or when porting BASIC/V programs.
If you are porting to Business BASIC/XL, use the standard �le
intrinsics discussed in this manual.

Overview KSAM �les are accessed from BASIC/V programs through calls to
a set of input/output procedures. These procedures allow you to
open, write records to, read records from, update and delete records,
position, lock, unlock, and close KSAM �les.

A KSAM �le must already exist before it can be accessed from a
BASIC/V program. The BASIC/V procedures for accessing KSAM
�les do not provide a means to create a KSAM �le.

The BASIC/V procedures to access KSAM �les perform
input/output activities di�erently from the BASIC/V input/output
commands. The KSAM procedures read and write records in their
entirety. Once part of a record has been read or written by one of the
KSAM �le access procedures, the entire record has, in actuality, been
read or written. A subsequent call will access another record.

Character substrings are expressions when used in the BASIC/V
KSAM procedures. As such, no values can be returned to them. A
copy of the substring is passed as the actual parameter.

BASIC/V Intrinsics B-1

Calling a KSAM
Procedure

The KSAM interface procedures are called from a BASIC program
with a CALL statement of the following general form:

statementlabel CALL procname (�lenumber, status [,parameterlist])

Where:

statementlabel The number of the statement in the program.

procname The KSAM access procedure to which control is
transferred.

�lenumber A numeric variable whose value identi�es an open
KSAM �le. This parameter must be present. Its
value is assigned when the �le is opened and must
not be changed until the �le is closed.

status A 4-character string variable to which a code is
returned that indicates whether the current operation
was successful or not, and if not, the reason for
failure.

parameterlist A set of one or more parameters that, if present,
further de�ne input/output operations on this �le.

The �rst two parameters, �lenumber and status are included in
every KSAM procedure call, except BKERROR and BKVERSION. The
parameters in parameterlist depend on the procedure in which they
are used. Some parameterlist parameters are optional and, if omitted,
default values are assigned by KSAM. Such parameters are indicated
by brackets in the procedure call format. The required parameters
�lenumber and status are both variables, the �rst numeric, the
second string. Other parameters are either variables or expressions.
Expressions are either variables or constants, or a combination of
both. The data type of the parameter depends on its de�nition in the
procedure. The procedure call formats specify the data type of each
parameter.

Depending on the procedure, certain variables can be assigned values
as a result of executing the procedure. The procedure itself is never
assigned a value.

Optional Parameters When parameters in parameterlist are optional, those parameters
are surrounded by brackets. In a series of optional parameters, the
enclosing brackets are nested. For example:

CALL name (�lenum,status[,param1[,param2[,param3]]])

This notation tells you that parameters can be omitted only from
the end of the optional list; parameters cannot be omitted from the
middle or beginning of the list. For example, if you want to specify
param3 , you must also specify the preceding parameters, param1 and
param2 . If you specify param2 , you can omit the following parameter
param3 , but not the preceding param1 .

B-2 BASIC/V Intrinsics

Status Parameter The status parameter is a four-character string variable to which the
status of the input/output operation is returned. It is the second
parameter in every KSAM procedure call except BKERROR, in which it
is the �rst parameter.

The �rst character of the status string determines its general type.
The other three characters supply speci�c codes to further de�ne the
status. The operation of a called procedure is successful only if the
�rst character returned in status is zero. Other values returned to
status indicate the reason an operation was not successful. You can
convert any status value to a printable message by calling BKERROR.
By combining the two parts of the status code, the following values
may be returned to the status parameter:

00 Successful completion|

The current input/output operation was completed
successfully; no duplicate keys read or written.

02 Successful completion; Duplicate key|

In a call to BKREAD or BKREADBYKEY, the current key has
the same value as the equivalent key in the next sequential
record; duplicate keys are allowed for the key.

In a call to BKWRITE or BKREWRITE, the record just written
created a duplicate key value for at least one key for which
duplicates are allowed.

10 At end condition|

A sequential read was attempted with BKREAD and there was
no next logical record in ascending sequence according to the
primary key value or the current alternate key value. Or an
attempt was made by BKSTART or BKREADBYKEY to position
the pointer to a record whose key value was less than the
lowest key value or higher than the highest key value.

21 Invalid key; Sequence error|

In a call to BKWRITE for a �le opened with sequence
checking, the record being written contains a primary key
that is less than a key in a previously written record.

In a call to BKREWRITE, the primary key value was changed
in the program since a successful execution of BKREAD
de�ned the record to be rewritten.

22 Invalid key; Duplicate key error|

An attempt was made to write or rewrite a record with
BKWRITE or BKREWRITE and the record would create a
duplicate key value in a key for which duplicates are not
allowed.

BASIC/V Intrinsics B-3

23 Invalid key; No record found|

An attempt was made to locate a record by a key value with
BKSTART or BKREADBYKEY and the record cannot be found.

24 Invalid key; Boundary violation|

An attempt was made with BKWRITE to write beyond the
externally de�ned boundaries of the �le; that is, to write
past the end-of-�le.

71 Request denied; File already locked|

An attempt was made to lock a �le with BKLOCK and the �le
is already locked.

81 Invalid call; Invalid number of parameters|

Too many or too few parameters were speci�ed in the
procedure call just made.

82 Invalid call; Invalid parameter|

The speci�ed parameter is not the correct type. For
example, a string variable was selected where only a numeric
variable or expression is allowed.

83 Invalid call; Insu�cient internal bu�er space|

The data speci�ed in the parameterlist to be read or written
will not �t into the con�gured internal bu�er space. You
may need to have certain operating system parameters
revalued.

9xxx File system error|

An MPE �le system error occurred for which the
three-character value, xxx is the error code. You can call
procedure BKERROR to convert the error code returned here
to a printable message.

The value of status can be tested as a whole, or the �rst character
can be tested separately from the remaining characters. For example:

B-4 BASIC/V Intrinsics

d a

c b

10 DIM S$(4)...
50 IF S$(1;1) = "0" THEN PRINT "SUCCESS"

60 ELSE PRINT "ERRORCODE=";S$...
100 IF S$(1;1)= "9" THEN DO

110 PRINT "FILE ERROR=";S$(2)

120 DOEND...
200 IFS$ = "22" THEN DO

210 PRINT "DUPLICATE KEY ERROR"

220 DOEND

300 IF S$(2)= "2" THEN PRINT "DUPLICATE KEY"

For any status value, you can call the BKERROR procedure and a
message is returned that gives the meaning of the status code. You
can then print this message rather than writing your own.

KSAM Logical
Record Pointer

Many of the KSAM procedures use a logical record pointer to indicate
the current record in the �le. This pointer points to a key value in
the index area that identi�es the current record in the data area.
The particular key used, if the �le has more than one key, is the key
last speci�ed in the current or a previous procedure call. By default,
it is the primary key.

Procedures that use pointers are either pointer-dependent or
pointer-independent . Pointer-dependent procedures expect the
pointer to be positioned at a particular record in order to execute
properly. Pointer-independent procedures, on the other hand, execute
regardless of where the pointer is positioned and, in most cases, they
position the pointer.

BASIC/V Intrinsics B-5

Table B-1. Positioning the Logical Record Pointer

Procedure
Name

Pointer-
Dependent

Position of Pointer After
Execution of Procedure

BKSTART NO Points to key whose value was speci�ed in
call.

BKREADBYKEY NO Points to key whose value was speci�ed in
call.

BKWRITE NO Points to key whose value is next in
ascending key sequence to key value in
record just written.

BKREAD YES Pointer remains positioned to key value for
record just read; unless the next call is to
BKREAD, or to BKREWRITE followed by
BKREAD, in which case, the pointer is
moved to the next record in key sequence
before the read.

BKDELETE YES Points to next key value in ascending
sequence following key value in record just
deleted.

BKREWRITE YES Pointer remains positioned to key value for
record just modi�ed; unless any key value
in record was changed, in which case, it
points to next key in ascending sequence
after the key in the modi�ed record.

BASIC procedures do not access a KSAM �le in physical sequence or
by record number; they ignore the physical pointer.

Shared Access Particular care must be taken when using the logical record pointer
during shared access. Since the record pointer is maintained in a
separate control block for each open �le, one user may cause the
record pointer to be inaccurate without other users being aware of it.
To avoid this problem, you should always lock the �le in a shared
environment before calling any procedure that sets the pointer and
leave the �le locked until all procedures that depend on that pointer
have been executed. Thus, if you want to read the �le sequentially,
delete a record, or modify a record, you should lock the �le, call a
procedure that sets the pointer (such as BKSTART), and then call
BKREAD, BKDELETE, or BKREWRITE. When the operation is complete,
you can then unlock the �le to give other users access to it.

B-6 BASIC/V Intrinsics

BKCLOSE

BKCLOSE A call to BKCLOSE terminates �le processing for the speci�ed KSAM
�le.

CALL BKCLOSE (�lenum, status)

When processing is completed, a KSAM �le should be closed with a
call to BKCLOSE. No further processing is allowed on the �le until a
BKOPEN procedure call reopens the �le.

BKCLOSE can be executed only for a �le that is open.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le; this number was returned by the
last call to BKOPEN. It should not be altered until
the �le is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the �le was
successfully closed and if not, why not. The �rst
character is set to 0 if the close is successful, to
another value if not. (Required parameter)

Operation Notes After calling BKCLOSE, you should check the status parameter to
determine if the �le was closed successfully. A successfully closed �le
is no longer available for processing until it is reopened. Note that
a KSAM �le can be closed and then reopened in order to specify a
di�erent access mode or type of processing.

The BKCLOSE procedure does not remove the �le from the system.
To do this, you should use the PURGE command of KSAMUTIL or
MPE/iX.

The example in Figure B-1 closes a �le identi�ed by the �le number
in F. It then checks the status and prints a message if the status
shows any code except the zero for successful completion.

BASIC/V Intrinsics B-7

BKCLOSE

d a

c b

3610 REM **

3620 REM * CLOSE A KSAM FILE *

3630 REM **

3640 REM

3650 REM F IS THE FILE NUMBER OF A KSAM FILE

3660 REM DEFINED BY A CALL TO BKOPEN

3670 REM

3680 CALL BKCLOSE(F,S$)

3690 REM

3700 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED

3710 REM

3720 IF S$[1,1]<>"0" THEN DO

3730 REM N$ CONTAINS THE NAME OF THE KSAM FILE

3740 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

3750 PRINT "UNABLE TO CLOSE ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

376O CALL BKERROR(S$,M$)

3770 PRINT M$

3780 DOEND

Figure B-1. Closing a KSAM File with BKCLOSE

B-8 BASIC/V Intrinsics

BKDELETE

BKDELETE Logically deletes a record from a KSAM �le.

CALL BKDELETE (�lenum, status)

A call to BKDELETE logically deletes the record referenced by the
logical record pointer. If reuse is not speci�ed, then a logically
deleted record is marked for deletion, but is not physically removed
from the �le. The connection between a data record marked for
deletion and the index area is severed.

When a �le with deleted records is copied by FCOPY to a new
KSAM �le, records marked for deletion by BKDELETE are not copied.
This use of FCOPY provides a means to compact a �le in which
many records have been marked for deletion but physically use space
in the �le.

To use BKDELETE, the �le must be open in the access mode that
allows update. If access is shared, the �le must also be opened with
dynamic locking allowed (lock=1), and the �le must be locked by
BKLOCK before records are deleted.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le; this number was returned by the
last call to BKOPEN. It should not be altered unless
the �le is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKREWRITE was successful and if not, why not. The
�rst character is set to zero if the call succeeds, to
another value if not.

Operation Notes Before calling BKDELETE, you can read the record to be deleted from
the KSAM �le into the BASIC program. Using either BKREAD or
BKREADBYKEY, read the record into variables named in the read call.
When BKDELETE is successfully executed, the record is marked for
deletion. If reuse is not speci�ed, then a logically deleted record is
marked for deletion, but is not physically removed from the �le. Any
connections between the record and key entries in the index area are
severed. The associated key entries are physically deleted from the
index area although the data record remains in the data area. Data
space is not reused in order to maintain the chronological order of the
�le. Because BKDELETE requires that the record be both read and
written, you must open the �le for update (access = 4) before calling
this procedure.

After calling BKDELETE, you should check the status parameter to
make sure that the delete was successful.

FCOPY can also be used to permanently remove any records that
were logically deleted with BKDELETE. When you use FCOPY to copy
your KSAM �le to a newly created KSAM �le, only active records

BASIC/V Intrinsics B-9

BKDELETE

are copied. Records marked for deletion are dropped from the data
area during the copy. The new �le is more compact, particularly if
many records had been deleted from the old �le.

When access is shared, the call that positions the pointer to
the record to be deleted should be included in the same pair of
BKLOCK/BKUNLOCK calls as the call to BKDELETE. This ensures that no
other user alters the record position between the call that locates the
record and the call that deletes it.

Figure B-2 contains an example illustrating the logical deletion of a
record from a KSAM �le.

B-10 BASIC/V Intrinsics

BKDELETE

d a

c b

3240 REM **

3250 REM * REMOVE A RECORD FROM A KSAM FILE *

3260 REM **

3270 REM

3280 REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY A CALL TO BKOPEN

3290 REM NOTE THAT FOR BKDELETE, BKOPEN ACCESS MODE MUST = 4 FOR UPDATE

3295 REM

3300 REM THE RECORD TO BE DELETED MUST FIRST BE READ...

3305 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

3310 REM AND DELETED CONTAINS THE SAME INFORMATION THAT WAS

3320 REM WRITTEN IN THE BKWRITE EXAMPLE.

3330 REM

3340 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

3350 REM

3360 REM NOW DETERMINE WHETHER THE CALL WAS SUCCESSFUL

3370 REM

3380 IF S$[1;1]<>"0" THEN DO

3390 REM N$ CONTAINS THE NAME OF THE KSAM FILE

3400 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

3410 PRINT "UNABLE TO READ ";N$" ERROR ";S$[1;1];" DETAIL ";S$[2]

3420 CALL BKERROR(S$,M$)

3430 PRINT M$
3435 GOTO 3620

3440 DOEND

3450 REM

3460 CALL BKDELETE(F,S$)

3470 REM

3480 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED

3490 REM

3500 IF S$[1;1]<>"0" THEN DO

3510 REM N$ CONTAINS THE NAME OF THE KSAM FILE

3520 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

3530 PRINT "UNABLE TO DELETE RECORD FROM ";N$;

3535 PRINT "ERROR ";S$[1;1];"DETAIL ";S$[2]

3540 CALL BKERROR(S$,M$)

3550 PRINT M$

3560 GOTO 3620

3570 DOEND

3575 PRINT "DELETED RECORD CONTAINS ";B1$;B2$;

3576 MAT PRINT A5

3577 MAT PRINT A3,A2

3580 REM

3590 REM THE PROGRAM CONTINUES

Figure B-2. Deleting a Record With BKDELETE

BASIC/V Intrinsics B-11

BKERROR A call to BKERROR returns a message corresponding to the status
value.

CALL BKERROR (status, message)

Call this procedure in order to get a printable string of characters
that describes the condition that corresponds to the value of the
status parameter. The string of ASCII characters returned in
message can be printed as an error message.

Parameters status A four-character string variable to which is returned
a numeric value in printable form following execution
of any of the procedures described in this section.
The value in status is used to derive the text in
message. (Required parameter)

message A string variable which will contain the text
describing the error whose code has been returned
to status . This parameter should be dimensioned
to at least 72 characters in length. If the message
length exceeds the dimensioned length of message, a
truncated text is provided. (Required parameter)

Operation Notes The following example illustrates the use of BKERROR. Two strings are
dimensioned for message; one (M$) is su�ciently long, the other (N$)
causes truncation of the message. Assume that the status code in S$
is the value 22.

d a

c b

10 DIM S$(4),M$(72),N$(24)

20 REM..S$ IS THE STATUS STRING

30 REM..M$ IS A SUFFICIENTLY LARGE STRING

40 REM..N$ IS TOO SMALL FOR THE MESSAGE

50 REM..ASSUME S$ CONTAINS THE VALUE "22"

60 REM.....
100 CALL BKERROR (S$,MS)
110 PRINT "ERROR";S$(1;1);"DETAIL";S$(2);"";M$

120 CALL BKERROR (S$,M$)

130 PRINT "ERROR "S$(1;1);"DETAIL";S$(2);"";N$

RUN

ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPLICATED KEY VALUE

ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPL

B-12 BASIC/V Intrinsics

BKERROR

In another example, BKERROR is called to retrieve the message
corresponding to the MPE �le system error code returned when the
�rst character of status is 9.

d a

c b

10 DIM S$(4),M$(72)...
50 IF S$(1;1)="9" THEN DO

60 CALL BKERROR(S$,M$)

70 PRINT"FILE ERROR";S$(2);"MEANS";M$

80 DOEND

Suppose the value returned in status is 9172. The routine above
prints the following message when the program is run:

FILE ERROR 172 MEANS KEY NOT FOUND; NO SUCH KEY VALUE

BASIC/V Intrinsics B-13

BKLOCK Dynamically locks KSAM �le during shared access.

CALL BKLOCK(�lenum,status[,condition])

When more than one user accesses the same �le, BKLOCK can be used
to make access to the �le exclusive for one user while he writes to or
updates the �le. In order to use BKLOCK, the �le must be opened with
dynamic locking allowed by all users who are sharing the �le. When
�nished with the changes that required exclusive access, the user who
has locked the �le with BKLOCK should unlock it with BKUNLOCK.

Note Note that a �le opened for shared access must be locked by BKLOCK

before the �le can be modi�ed by BKWRITE, BKREWRITE, or BKDELETE.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le; this number was returned to
�lenum by the last call to BKOPEN. It should not
be altered unless the �le is successfully closed by
BKCLOSE. (Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKLOCK was successful and if not, why not. The �rst
character is set to zero when the call succeeds, to
another value if it fails. (Required parameter)

condition A numeric expression whose value determines the
action taken if the �le is locked by another user when
BKLOCK is executed. If the value of condition is:

Zero-locking is unconditional.

If the �le cannot be locked immediately because
another user has locked it, your program suspends
execution until the �le can be locked. (default
value)

Non-zero-locking is conditional.

If the �le is already locked, control returns
immediately to your program with status set to 71.

(Optional parameter) Default: If omitted, locking is
unconditional .

B-14 BASIC/V Intrinsics

BKLOCK

Operation Notes In order to call BKLOCK, the �le must be opened with dynamic locking
allowed. That is, the parameter lock in the BKOPEN procedure must
be set to 1. Also, since dynamic locking is useful only when access
is shared, probably the �le will have been opened with the exclusive
parameter in BKOPEN set to 3.

Users who share the same �le should cooperate on how they will
share the �le. Unless they all agree to allow locking, no one will be
able to lock the �le. Also, it is important to avoid situations where
one user locks the �le and forgets to unlock it. If this occurs when
condition is set to a non-zero value, the calling process is not halted.
But if the �le is locked already and you attempt to lock a �le with
condition omitted or set to zero, your process is halted until the
other user either unlocks the �le or logs o�.

You should always check the status parameter immediately following
a call to BKLOCK in order to determine if the call was completed
successfully. If you locked with condition set to a nonzero value, you
should check if the �le was locked before continuing. If it was locked,
status will have a 0 in the �rst character, but if another user had
locked the �le preventing your call to BKLOCK from working, then
status contains the value 71.

Figure B-3 contains an example of locking a �le with BKLOCK.

d a

c b

830 REM **

840 REM * LOCK A KSAM FILE *
850 REM **

855 REM

860 REM F IS THE FILE NUMBER OF A KSAM FILE

870 REM OPENED BY A CALL TO BKOPEN

890 REM

900 REM THE THIRD PARAMETER INDICATES THAT LOCKING IS

910 REM TO TAKE PLACE UNCONDITIONALLY

920 REM

930 CALL BKLOCK(F,S$,0)

940 REM

950 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

960 REM

970 IF S$[1;1]<>"0" THEN DO

980 REM N$ CONTAINS THE NAME OF THE KSAM FILE

990 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

1000 PRINT "UNABLE TO LOCK ";$N;" ERROR ";N$;" "LS$[1;1];" DETAIL ";S$[2]

1010 CALL BKERROR(S$,M$)

1020 PRINT M$

1030 DOEND

Figure B-3. Dynamically Locking a KSAM File with BKLOCK

BASIC/V Intrinsics B-15

BKOPEN A call to procedure BKOPEN initiates KSAM �le processing.

CALL BKOPEN (�lenum,status,name [,access[,lock[,exclusive[,sequence]]]])

In order to process a KSAM �le, it must be opened with a call to
the BKOPEN procedure. BKOPEN initiates processing, and optionally
speci�es how the �le is to be processed. BKOPEN does not create the
�le; it must have been created previously.

To open a �le means to make it available for processing. You can
also specify how the �le is to be accessed (whether for input, output,
input/output, or for update), whether dynamic locking is allowed,
whether access to the �le can be shared, and whether records written
to the �le are to be checked for primary key sequence. Default values
are assigned for the optional parameters. If you want to change the
current processing or access method, you must close the �le and then
open it again with the parameters set to new values.

Parameters �lenum A numeric variable whose value identi�es the �le
opened by the call to BKOPEN. Since the value of
�lenum identi�es the �le in other CALL statements,
it must not be changed while the �le is open.
(Required parameter)

status A four-character string variable to which is returned
a code to indicate whether or not the �le was
successfully opened and if not, why not. The �rst
character is 0 if the open is successful, to another
value if not. (Required parameter)

name A string expression containing the name of the
KSAM �le to be processed. This name is the actual
designator assigned to the �le when it was created,
or else it is a back reference to a formal designator
speci�ed in a FILE command, in which case,
name has the form *formal designator . (Required
parameter)

B-16 BASIC/V Intrinsics

BKOPEN

access A numeric expression whose value indicates one of
the permissible access types:

0 Read only . Use of procedures BKWRITE,
BKREWRITE, and BKDELETE are prohibited.

1 Write only . Overwrites previously written data.
Use of the procedures BKREAD, BKREADBYKEY,
BKREWRITE, BKDELETE, and BKSTART are
prohibited.

2 Write only . Saves previously written data
and adds data. Use of the procedures BKREAD,
BKREADBYKEY, BKREWRITE, BKDELETE, and
BKSTART are prohibited.

3 Read and write. Use of procedures BKREWRITE
and BKDELETE prohibited. (Default value.)

4 Update access . Allows all procedures described
in this section.

(Optional parameter) Default: If omitted or out of
range, access is 3, read and write access.

lock A numeric expression whose value indicates whether
dynamic locking can take place. Acceptable values
are:

0 Disallow dynamic locking and unlocking. Use
of procedures BKLOCK and BKUNLOCK prohibited.
(Default value.)

1 Allow dynamic locking and unlocking.
Procedures BKLOCK and BKUNLOCK may be used
to permit or restrict concurrent access to the
�le.

(Optional parameter) Default: If omitted or out of
range, lock equals 0 to disallow dynamic locking.

exclusive A numeric expression whose value indicates the
kind of exclusive access desired for this �le. If this
parameter is omitted or is not one of the following
acceptable values, the default is assumed:

0 Depends on access parameter. If access = 0
(read only), then users share access to this �le
as if exclusive were set to 3. If access is not
= 0, then access to this �le is exclusive as if
exclusive were set to 1.

1 Exclusive. Prohibits other access to this �le
until either the �le has been closed or the
process terminated. Only the user who opened
the �le can access it while it is currently open.

BASIC/V Intrinsics B-17

BKOPEN

2 Semi-exclusive. Other users can access this �le,
but only for read access. The �le cannot be
accessed to write, rewrite, or delete records
until it is closed or the process is terminated.
(Default value.)

3 Shared. Once the �le is opened, it can be
accessed concurrently by any user in any
access mode, subject only to the MPE security
provisions in e�ect.

(Optional parameter) Default: If omitted or out of
range, exclusive equals 2, semi-exclusive access.

sequence A numeric expression whose value indicates whether
records written to the �le will be checked for primary
key sequence or not. Acceptable values are:

0 No sequence checking. When records are written
to the �le, primary key values can be in any
order; their sequence is not checked. (Default
value.)

1 Sequence checking. As each record is written to
the �le, KSAM checks to ensure that its primary
key value is greater than the primary key value
of any previously written records. If duplicates
are allowed for this key, then the primary key
can be equal to that of the previously written
record.

(Optional parameter) Default: If omitted or out of
range, sequence = 0, no sequence checking.

Operation Notes After calling BKOPEN, you should always check the status parameter
to determine whether the open was successful. Upon successful
execution of BKOPEN, the �le named in name is available for
processing. An identi�cation number is assigned to this �le and
returned to �lenum where it is available to identify the open �le in
other calls. Until the �le is successfully opened with BKOPEN, no
operation can be executed that references the �le either explicitly or
implicitly.

If only the �rst three parameters are speci�ed and the �le is opened
successfully, the �le has the following default characteristics:

Read and write access: you can read from and write to but not
update the �le.

Semi-exclusive access: other users can read from but not write to
or update the �le.

Dynamic locking not allowed: you cannot lock or unlock a �le.

No sequence checking: records can be written in any order without
checking sequence of primary key values.

B-18 BASIC/V Intrinsics

BKOPEN

There are two types of write only access. One clears any existing
records before writing the speci�ed records to the �le (access = 1).
The other saves existing records and writes the new records after
those already written (access = 2). Both these access modes do not
permit any read or update access to the �le.

Read-only access (access = 0) can be speci�ed if you want to ensure
that the �le is not changed. This mode prohibits the writing of new
records, and rewriting or deleting of existing records. In read-only
mode, you can position the �le and read records in either sequential
or random order.

The default access mode (access = 3) allows you both to read records
from and write records to a �le, but not to change or delete existing
records. If you plan to read and write records during the same
process but do not want to alter existing records, use this access
mode.

If you want to rewrite or delete existing records in a KSAM �le,
you must open with access = 4. This mode allows you to use
the BKREWRITE and BKDELETE procedures, as well as all the other
procedures described in this section.

Table B-2 summarizes the procedures you may call depending on the
access parameter value you specify in BKOPEN.

Table B-2.

Procedures Allowed by BKOPEN Access Parameter

Procedure Read-only
(access=0)

Write-only
with Clear
(access=1)

Write-only
with Save
(access=2)

Read/Write
(access=3)

Update
(access=4)

BKREAD X X X

BKREADBYKEY X X X

BKSTART X X X

BKWRITE X X X X

BKREWRITE X

BKDELETE X

BKCLOSE X X X X X

BKERROR X X X X X

By default in a multi-user environment, all users whose MPE security
restrictions allow them to access your �le can read the �le, but they
cannot change the �le or add new records to it. This is the default
speci�cation of the exclusive parameter in BKOPEN (exclusive=2). It
is independent of the value of the access parameter.

BASIC/V Intrinsics B-19

BKOPEN

If you want to prevent other users from reading the �le as well as
writing to it, you must specify this by setting exclusive=1. This
setting allows only you to read from, write to, or alter the �le.

Another alternative is to set exclusive=0, thereby allowing other
users access to the �le only when it is opened for read only
(access=0). This setting of the exclusive parameter prevents any
access by other users when the �le is opened for any form of write or
update (accesss 6= 0). This means that you and other users share
read access to the �le, but only you can write to or change the �le.

You can choose to completely share access to the �le, reading and/or
writing and updating, by setting the exclusive parameter to 3.

(Refer to Table B-3 for a summary of the relation between the
exclusive parameter and the access parameter.)

Table B-3.

Relationship of Exclusive Parameter to Access

Parameter

exclusive=0 exclusive=1 exclusive=2
(default)

exclusive=3

access=0
(read only)

shared exclusive semi-exclusive shared

access 6=0
(write only,
read/write,
or update)

exclusive exclusive semi-exclusive shared

When access is shared, it is good practice to allow dynamic
locking so that individual users can dynamically lock the �le while
performing any updates to the �le. The �le can be unlocked as soon
as the update is complete. An update to a �le is when you write a
new record, delete a record, or rewrite an existing record. When
access is exclusive or semi-exclusive, there is no need for dynamic
locking since only the user who has opened the �le can update the
�le.

Dynamic locking should also be allowed if access is shared and you
plan to read the �le sequentially. This is because the sequential read
procedure (BKREAD) is dependent on the position of the logical record
pointer and, in a shared environment, this pointer can be changed by
other users unless the �le is locked. (Refer to Table B-1 for a list of
the pointer-dependent procedures.)

When sequence checking is speci�ed, you must write records to the
�le in primary key sequence. An attempt to write a record out of
sequence causes the write to fail and the value 21 is returned to
status following a call to BKWRITE. As a result of sequence checking,
the physical and the primary key sequence of records in your �le is
the same. Since the BASIC KSAM procedures have no provision to

B-20 BASIC/V Intrinsics

BKOPEN

read the �le in physical sequence, you may want to specify sequence
checking for any �le that you will want to read in that order. With
sequence checking, a �le read in logical order by primary key (the
default for BKREAD) is also read in physical order.

The example in Figure B-4 shows how to use BKOPEN to open a
KSAM �le for input and output (default access), with dynamic
locking (lock=1), for shared access (exclusive=3), and without
sequence checking (default sequence).

BASIC/V Intrinsics B-21

BKOPEN

d a

c b

10 DIM S$[4] <-------- status \

20 DIM N$[26] <------------- �lename |- variable dimensions

30 DIM M$[72] <-------- message /

40 INTEGER A[10]

50 DIM B$[12]

55 INTEGER J

60 DIM B1$[1]

65 DIM B2$[2]

70 INTEGER A2[2],A3[3],A5[5]

80 REM

90 REM THE KSAM/3000 FILE WAS BUILT WITH:

100 REM REC=-80,16,F,ASCII

110 REM KEY=B,2,2,,DUP

120 REM SO,RECORD LENGTH IS 80 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK.

130 REM THE KEY IS 2 CHARACTERS LONG,STARTING IN CHARACTER 2 OF RECORD

135 REM

140 REM **

145 REM * OPEN A KSAM FILE *

150 REM **

160 REM

170 REM THE FILE NAME IS IN N$

175 REM THE STATUS OF THE CALL IS RETURNED IN S$

180 REM WHEN SUCCESSFUL, BKOPEN RETURNS A FILE NUMBER IN F

190 REM INPUT-OUTPUT ACCESS IS SPECIFIED IN J

200 REM DYNAMIC LOCKING IS ALLOWED IN D

210 REM SEMI-EXCLUSIVE ACCESS IS INDICATED IN E

220 REM

240 N$="KNAME,ACCOUNT,GROUP" <---------- �le name

250 J=3 <-------- access is read/write

260 D=1 <------------------------------- dynamic locking allowed

270 E=3 <-------- access shared

280 CALL BKOPEN(F,S$,N$,J,D,E)

290 REM

300 REM NOW DETERMINE WHETHER THE CALL SUCCEEDED:

310 REM

320 IF S$[1;1]<>"0" THEN DO

330 REM S$ IS THE STATUS CODE SET BY THE CALL TO BKOPEN

340 REM N$ IS THE NAME OF THE FILE

350 PRINT "UNABLE TO OPEN ";N$;" ERROR ";S$[1;1];"DETAIL "LS$[2]

360 CALL BKERROR(S$,M$)

370 PRINT M$

380 GOTO 3620 <-------- to close the �le

390 DOEND

400 REM

410 REM THE PROGRAM CONTINUES

Figure B-4. Opening KSAM File with BKOPEN
B-22 BASIC/V Intrinsics

BKREAD

BKREAD Transfers the next logical record from a KSAM �le to a BASIC
program.

CALL BKREAD(�lenum,status[,parameterlist])

A call to BKREAD transfers the contents of a record from a KSAM
�le to a storage area de�ned by a list of variables in a BASIC
program. The record read is that at which the logical record pointer
is currently positioned. In a series of calls to BKREAD, records are read
in ascending order by key value. The primary key is used unless a
previous call to BKSTART or BKREADBYKEY has positioned the pointer
to an alternate key. The �le must have been opened with an access
mode that allows reading.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le. This number was returned by the
last call to BKOPEN. It should not be altered unless
the �le is closed by a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKREAD was successful and if not, why not. The �rst
character is set to zero when the call succeeds, to
another value if not. (Required parameter)

parameterlist A list of variables separated by commas into which
the data in the record is read. The contents of the
record are read into the variable (or variables) until
the physical length (or combined physical lengths)
of parameterlist is exhausted, or the end of the
record is reached. (Optional parameter) Default: If
omitted, the logical record pointer is positioned to
the beginning of the next record in key sequence.

Operation Notes After calling BKREAD, you should always check the status parameter
to determine whether the read was successful. Upon successful
completion of BKREAD, the variables speci�ed in parameterlist contain
data read from the record at which the record pointer was positioned
when BKREAD was called. Note that if parameterlist is omitted, the
record pointer is positioned to the beginning of the next logical
record, e�ectively skipping the current record.

In order to use BKREAD, the �le must be opened for input. The
BKOPEN access parameter should be zero if you plan to only read or
position a record. To both read from and write to the same open �le,
you either omit the access parameter or set it to 3. If you want to
rewrite or update as well as read records, you must set access to 4.

BASIC/V Intrinsics B-23

BKREAD

Values are read from the current record into the variables speci�ed in
parameterlist according to the type and length of the variable. For
example, consider the following code:

d a

c b

10 DIM G$(3),H$(3),S$(4)

20 INTEGER L,F

30 CALL BKREAD (F,S$,G$,H$,L)

If the record being read contains only the word SCRABBLE, this
word is read into the speci�ed variables as if they were assigned by
the statements:

d a

c b

100 G$="SCR"

110 H$="ABB"

120 L=NUM("LE")

Note Each variable in the parameterlist is �lled to its current physical
length before proceeding to the next variable.

The following calls omit the parameterlist in order to skip forward
two records:

d a

c b

210 CALL BKREAD(F,S$)

220 CALL BKREAD(F,S$)

The records skipped are not the next records physically placed on the
�le, but are the next two in logical sequence according to the value of
the current key. The particular key used for the read sequence can
be selected with a call to BKSTART or BKREADBYKEY. BKSTART can also
be used to position the �le to the beginning of the record with the
lowest key value in the selected key.

The example in Figure B-5 assumes that the record pointer has
been positioned to the beginning of the �rst record in primary key
sequence. Assume that the �le being read was opened in the example
in Figure B-4, the records read were written in the example in
Figure B-11.

Each record contains �ve integers followed by �ve unde�ned words
followed by a string of three characters. The record is read into:

B-24 BASIC/V Intrinsics

BKREAD

A5 a 5-word integer array

A2 a 2-word integer array

A3 a 3-word integer array

B1$ a 1-character string

B2$ a 2-character string

The �ve integers that were written to the beginning of each record
are read into array A5. The next two arrays A2 and A3 receive the
unde�ned values that �lled the next �ve words of the record. The
�rst string character is read into B1$, the next two into B2$.

If you open the �le for read-only access (access=0), and the exclusive
parameter is allowed to default to zero, then more than one user
can share read access to the �le. In this case, or if you speci�cally
indicate shared access, you should also allow dynamic locking in
order to read records from the �le in key sequence. This is necessary
because BKREAD depends on the current position of the logical record
pointer. (Refer to Table B-1 for a list of the pointer-dependent
procedures.)

For example, if you plan to read the �le sequentially starting from a
particular key value, use the following sequence of calls:

d a

c b

BKOPEN <-------- open �le for read-only, shared access, allow dynamic locking

BKLOCK <-------- lock �le

BKSTART <-------- position pointer

BKREAD loop <-------- read �le in sequence from original pointer position

BKUNLOCK <-------- unlock �le when last record read

BASIC/V Intrinsics B-25

BKREAD

d a

c b

10 DIM S$[4]

20 DIM N$[26]

30 DIM M$[72]

40 INTEGER A[10]

50 DIM B$[12]

55 INTEGER J

60 DIM B1$[1]

65 DIM B2$[2]

70 INTEGER A2[2],A3[3],A5[5]...
1310 REM **

1320 REM * READ FROM A KSAM FILE * o

1330 REM **

1350 REM F IS THE FILE NUMBER OF A KSAM FILE

1360 REM OPENED BY A CALL TO BKOPEN

1370 REM

1380 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

1390 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN TO

1400 REM THE FILE BY THE EXAMPLE TO WRITE A KSAM FILE

1410 REM

1420 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

1430 REM
1440 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

1450 REM

1460 IF S$[1;1]<>"0" THEN DO

1470 REM N$ CONTAINS THE NAME OF THE KSAM FILE

1480 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

1490 PRINT "UNABLE TO READ ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

l500 CALL BKERROR(S$,M$)

1510 PRINT M$

1520 REM

1530 REM TEST FOR END OF FILE

1540 REM AND POSITION TO LEAST VALUED PRIMARY KEY

1550 IF S$[1;1]="1" THEN 1080

1560 GOTO 3620

1570 DOEND

1580 REM

1590 REM ECHO WHAT WAS READ

1600 REM

1610 PRINT "RECORD CONTAINS";B1$,B2$

1620 MAT PRINT A5

1622 MAT PRINT A3,A2

1630 REM

1650 REM THE CONTENTS OF B1$="1", OF B2$="23"

1660 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE 1 THROUGH 5.

1670 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN.

1680 REM

1690 REM THE PROGRAM CONTINUES

Figure B-5. Reading From a KSAM File with BKREAD

B-26 BASIC/V Intrinsics

BKREADBYKEY

BKREADBYKEY Transfers record identi�ed by particular key value from KSAM �le to
BASIC program.

CALL BKREADBYKEY(�lenum,status,keyvalue,keylocation,parameterlist)

A call to BKREADBYKEY locates and reads a record into a storage
area identi�ed by a list of variables in the BASIC program. The
record to be read is located by matching the speci�ed keyvalue with
an identical value stored in the record starting at keylocation. The
record value and the value speci�ed in keyvalue must match exactly,
or an error code is returned to status . To use BKREADBYKEY, the �le
must be open in an access mode that allows reading.

You cannot use BKREADBYKEY to locate a record by generic or
approximate key values. For this purpose you can call BKSTART
followed by a call to BKREAD.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le. This number was returned by the
last call to BKOPEN. It should not be altered unless
the �le is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKREADBYKEY was successful and if not, why not. The
�rst character is set to zero if the call succeeds, to
another value if not. (Required parameter)

keyvalue A string or numeric expression whose value is
compared to a key value in the record. The record
pointer is positioned to the �rst record with a key
value at keylocation that is exactly equal to the
speci�ed keyvalue. In order to match exactly, the
record value and keyvalue must have the same logical
length. (Required parameter)

keylocation A numeric expression whose value indicates the
starting character position in each record of the key
used to locate the record to be read by BKREADBYKEY.
The characters in a record are counted starting with
1. If the value of keylocation is zero, the primary key
is assumed. The primary key also may be speci�cally
indicated by its location in the record. (Required
parameter)

parameterlist A list of variables separated by commas into which
the data in the record is read. The contents of the
record are read into the variable (or variables) until
the physical length (or combined physical lengths)
of parameterlist is exhausted, or until the end of the
record is reached. (Required parameter)

BASIC/V Intrinsics B-27

BKREADBYKEY

Operation Notes After calling BKREADBYKEY, you should always check the status
parameter to determine whether the read was successful. Upon
completion of BKREADBYKEY, the variables speci�ed in parameterlist
contain data read from the record located through the keyvalue and
keylocation parameters.

The key value in the record to be read must exactly match the
speci�ed keyvalue. Unlike BKSTART, the only relation between the
value in the record and the value in the call is that of equality. If
duplicate key values are allowed in the key being sought, then the
�rst record with a matching key value is read by BKREADBYKEY. To
read the remaining records with duplicate key values, you should use
BKREAD.

Note Each variable in parameterlist is �lled to its current physical length
before proceeding to the next variable.

The example in Figure B-6 uses BKREADBYKEY to read the �rst
record found with the value 23 starting in byte 2. Since this is the
�le written by BKWRITE in Figure B-11, the records in the �le are
identical including the keys and only the �rst record is read.

B-28 BASIC/V Intrinsics

BKREADBYKEY

d a

c b

2220 REM ***

2230 REM * READ BY KEY FROM A KSAM FILE *

2240 REM ***

2250 REM

2260 REM F IS THE FILE NUMBER OF A KSAM FILE

2270 REM OPENED BY A CALL TO BKOPEN

2280 REM

2290 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

2300 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN IN THE

2310 REM WRITE EXAMPLE.

2320 REM

2330 REM AN ADDITIONAL ASSUMPTION IS THAT THE DESIRED KEY VALUE

2340 REM STARTS AT CHARACTER 2 AND HAS THE VALUE "23".

2350 REM

2360 CALL BKREADBYKEY(F,S$,"23",2,B1$,B2$,A5[*],A3[*],A2[*])

2370 REM

2380 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

2390 REM

2400 IF S$[1;1]<>"0" THEN DO

2410 REM N$ CONTAINS THE NAME OF THE KSAM FILE

2420 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

2430 PRINT "UNABLE TO READBYKEY ";N$;" ERROR ";S$[1;1];" DETAIL "S$[2]
2440 CALL BKERROR(S$,M$)

2450 PRINT M$

2460 GOTO 3620

2470 DOEND

2480 REM

2490 REM THE CONTENTS OF B1$="1", OF B2$="23".

2500 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE INTEGERS 1 THROUGH 5

2510 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN.

2520 REM

2530 REM ECHO WHAT WAS READ

2540 REM

2550 PRINT "RECORD READ = ";B1$,B2$

2560 MAT PRINT A5

2562 MAT PRINT A3,A2

2570 REM

2580 REM THE PROGRAM CONTINUES

Figure B-6. Reading a Record Located by Key Value with BKREADBYKEY

BASIC/V Intrinsics B-29

BKREWRITE Changes the contents of a record in a KSAM �le.

CALL BKREWRITE (�lenum, status, parameterlist)

A call to BKREWRITE replaces the contents of an existing record with
new values. The record to be rewritten is the last record accessed by
a call to BKREAD, BKREADBYKEY, or BKSTART. To use BKREWRITE, the
�le must be open in the access mode that allows update. If access is
shared, it must also be opened with dynamic locking allowed, and the
�le must be locked by BKLOCK before records are rewritten.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le. This number was returned by the
last call to BKOPEN. It should not be altered unless
the �le is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKREWRITE was successful and if not, why not. The
�rst character is set to zero if the call succeeds, to
another value if not. (Required parameter)

parameterlist A list of variables or constants, separated by
commas, that contains the data to be written to the
�le replacing the last record read or written. The
total length of the new record is derived from the
total number, data type, and length in characters
of each item in parameterlist . Although this length
need not be the same as the record it replaces, it
should be long enough to contain all the keys, but
not exceed the de�ned record length. (Required
parameter)

Operation Notes After calling BKREWRITE, you should always check the status
parameter to make sure that the rewrite was successful. Upon
successful completion of BKREWRITE, new values replace the data in
the last record read to or written from the BASIC program. The new
data may change every value in the previously read record including
the primary key value.

If you want to replace a record with a particular key value, you
should locate and read the record with BKREADBYKEY or BKSTART. To
rewrite a series of records you should read the records with BKREAD.

When the data in the parameterlist of BKREWRITE is shorter in total
length than the data in the record being rewritten, there is less total
data in the rewritten record. In order to maintain the key sequence
of all keys, de�ned values should be written to the location of all
keys, both the primary key and any alternate keys.

B-30 BASIC/V Intrinsics

BKREWRITE

Note Items written to a KSAM �le with the BKREWRITE procedure are
concatenated; rounding to halfword boundaries does not occur.

The example in Figure B-7 writes new values to a record originally
written in Figure B-11 and read in Figure B-5. The new values �ll an
array that had unde�ned values in the last �ve elements, now de�ned
as two arrays A3 and A2 by the BKREAD call. The primary key
value 23 in location 2 is unchanged.

The record read by BKREAD contained the following values:

After being rewritten by BKREWRITE, it contains the following values:

When access is shared, the call to BKREAD, BKREADBYKEY, or BKSTART
that locates the record to be rewritten should be included in the
same pair of BKLOCK/BKUNLOCK calls as the call to BKREWRITE. This
ensures that no other user alters the record pointer between the call
that locates the record and the call that rewrites it.

If you want to sequentially rewrite all records in a chain of records
with duplicate keys, locate the �rst record in the chain with
BKREADBYKEY. Then call BKREWRITE to modify this record. If no key
value (the selected key or any other) is modi�ed, subsequent calls to
BKREWRITE will modify the next sequential records in the chain of
duplicate keys. If, however, any key has been changed, the modi�ed
key is written to the end of the chain and the next sequential record
is one with the next higher key value. In this case, to rewrite all
records with duplicate keys, precede each call to BKREWRITE by a call
to BKREADBYKEY.

BASIC/V Intrinsics B-31

BKREWRITE

d a

c b

2600 REM

2610 REM ***

2620 REM * REVISE THE CONTENTS OF A RECORD READ FROM A KSAM FILE *

2630 REM **

2640 REM

2650 REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY A CALL TO BKOPEN

2660 REM NOTE THAT FOR BKREWRITE,BKOPEN ACCESS MODE MUST=4 FOR UPDATE.

2670 REM

2680 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

2690 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN TO THE

2700 REM KSAM FILE IN THE BKWRITE EXAMPLE,,

|------------------ parameterlist

2710 REM /------------------------\

2720 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

2730 REM

2740 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED.

2750 REM

2760 IF S$[1;1]<>"0" THEN DO

2770 REM N$ CONTAINS THE NAME OF THE KSAM FILE

2780 REM S$ CONTAINS THE STATUS CALL SET BY THE PRECEDING CALL

2790 PRINT "UNABLE TO READ ";N$;" ERROR ";S$[1;1]" DETAIL ";S$[2]

2800 CALL BKERROR(S$,M$)

2810 PRINT M$

2820 GOTO 3620

2830 DOEND

2900 REM THE CONTENTS OF B1=1", OF B2$="23"

2910 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE 1 THROUGH 5

2920 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN

2930 REM

2940 REM STORE VALUES 1 THROUGH 3 INTO A3(1) THROUGH A3(3)

2950 REM STORE VALUES 1 AND 2 INTO A2(1) AND A2(2).

2960 REM

2970 FOR I=1 TO 2

2980 A2[I]=I

2990 A3[I]=I

3000 NEXT I parameterlist

3010 A3[3]=3 |

3020 REM /------------------------\

3030 CALL BKREWRITE(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

3040 REM

3050 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED

3060 REM

Figure B-7. Rewriting Record in KSAM File with BKREWRITE

B-32 BASIC/V Intrinsics

BKREWRITE

d a

c b

3070 IF S$[1;1]<>"0 THEN DO

3080 REM N$ CONTAINS THE NAME OF THE KSAM FILE

3090 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

3100 PRINT "UNABLE TO REWRITE ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

3110 CALL BKERROR(S$,M$)

3120 PRINT M$

3130 GOTO 3620

3140 DOEND

3150 REM

3160 REM ECHO WHAT WAS UPDATED

3170 REM

3180 PRINT "REWRITTEN RECORD = ";B1;B2

3190 MAT PRINT A5,A3,A2

3200 REM

3210 REM THE PROGRAM CONTINUES

Rewriting Record in KSAM File with BKREWRITE (continued)

BASIC/V Intrinsics B-33

BKSTART Positions a KSAM �le to a particular record based on a key value.

CALL BKSTART(�lenum,status[,keyvalue[,keylocation [,relation]]])

By calling BKSTART, you can position the record pointer to any record
in the �le based on the value of a key in that record. The key can
be the primary key or any alternate key, since BKSTART also allows
you to select the key for positioning and for subsequent sequential
reads. If you want to read all the keys in a key sequence, you can use
BKSTART to position the pointer to the record with the lowest key
value in the selected key.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le. This number was returned by the
last call to BKOPEN. It should not be altered unless
the �le is closed with a successful call to BKCLOSE.
(Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKSTART was successful and if not, why not. The �rst
character is set to zero when the call succeeds, to
another value when it fails. (Required parameter)

keyvalue A string or numeric expression whose value is
compared to a key value in this record. The record
pointer is positioned to the �rst record with a key
value that bears the relation speci�ed by relation
to the value in keyvalue. If the value is a string, its
logical length is used for the comparison; otherwise,
the physical or dimensioned length is used. The
length of this value must be less than or equal to
the length of the key as speci�ed when the �le was
created. If keyvalue is a null string (""), the �le is
positioned to the beginning of the �rst logical record
according to the value of the key in keylocation.
(Optional Parameter)

Default: If omitted, the value assumed for keyvalue
is the lowest value for the speci�ed key type.

keylocation A numeric expression whose value indicates the
starting character location in each record of the key
used for positioning by BKSTART. The characters in a
record are counted starting with one. If set to zero,
the primary key is assumed. (Optional parameter)

Default: If omitted, the primary key is assumed.

B-34 BASIC/V Intrinsics

BKSTART

relation A numeric expression whose value speci�es the
relation between the speci�ed keyvalue and the
value of the key at keylocation. The record pointer
is positioned to the �rst record with a key value
satisfying this relation:

0 The value of the record key is equal to
keyvalue

1 The value of the record key is greater than
keyvalue

2 The value of the record key is greater than
or equal to keyvalue (default).

> 2 Any value greater than 2 is treated as if it
were 2. (Optional parameter)

Default If omitted, the relation is assumed to be 2,
record key is greater than or equal to the
keyvalue.

Operation Notes After calling BKSTART, you should check the status parameter to
determine if the procedure was executed successfully. If successful,
the record pointer is positioned at the beginning of the �rst record
with a value at keylocation that has the relation speci�ed in relation
to the value speci�ed in keyvalue.

If default values are assumed for all three optional parameters, the
pointer is positioned to the record with the lowest value for its type
in the primary key location.

If the relation speci�ed is equality (relation = 0), then a record
must be located that has the same key value as that speci�ed in the
BKSTART call. When the record is found, the pointer is positioned
to it. If duplicate values are allowed for the key, then the pointer is
positioned at the �rst record with the particular key value.

When the speci�ed relation is greater than (relation = 1), the �le is
searched until a record is found with a key value greater than the
speci�ed key value. The search passes over any record with a key
value equal to the speci�ed value. This relation allows you to retrieve
items by an approximate key . Thus, if you specify a key value of \R",
a call to BKSTART will position the pointer to the �rst record with a
key value that starts with the letter R. A subsequent series of calls
to BKREAD allows you to read the remaining records in the �le or, by
including a test, to read only the records beginning with R.

When the speci�ed relation is greater than or equal to (relation = 2),
BKSTART looks for a record containing a value equal to the speci�ed
value. If found, it positions the pointer to that record. If not found,
it continues looking and positions the pointer to the �rst record
that is greater than the speci�ed value. This type of search can be
used to locate records by generic key . A generic, or partial, key is a
value that matches characters at the beginning of the key, but not
necessarily the end.

BASIC/V Intrinsics B-35

BKSTART

Whenever a record cannot be found with a key that satis�es the
relation and value speci�ed, the value 23 for invalid key is returned to
status .

BKSTART allows you to specify a key other than the primary key
assumed by BKREAD. Called prior to a series of calls to BKREAD, it
prepares for a sequential read of the �le in alternate key order. For
example, assuming a �le with an alternate key in location 21, the
following call positions the pointer to the �rst record in that key
sequence:

d a

c b

100 DIM A$(10),S$(4)

150 A$=" " <------------------- assign null string to keyvalue

160 L=21 <-------------------- assign alternate key location to keylocation

170 CALL BKSTART(F,S$,A$,21)

The default for relation is 2 (greater than or equal to) and need not
be speci�ed except for documentation purposes.

Figure B-8 illustrates the use of BKSTART with default values for all
optional parameters. Speci�ed in this minimal form, it positions to
the least valued primary key.

B-36 BASIC/V Intrinsics

BKSTART

d a

c b

1080 REM ***

1090 REM * POSITION TO LEAST VALUED PRIMARY KEY *

1100 REM ***

1110 REM

1120 REM F IS THE FILE NUMBER OF A KSAM FILE

1130 REM OPENED BY A CALL TO BKOPEN

1140 REM

1150 CALL BKSTART(F,S$)

1160 REM

1170 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

1180 REM

1190 IF S$[1;1]<>"0" THEN DO

1200 REM N$ CONTAINS THE NAME OF THE KSAM FILE

1210 REM S$ CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL

1220 PRINT "UNABLE TO POSITION FILE TO LEAST VALUED PRIMARY KEY"

1230 PRINT "ERROR ";S$[1;1]," DETAIL";S$[2]

1240 CALL BKERROR,(S$,M$)

1250 PRINT M$

1260 GOTO 3620

1270 DOEND

1280 REM

1290 REM THE PROGRAM CONTINUES
1300 REM

Figure B-8. Positioning Pointer to Least-Valued Record with BKSTART

BASIC/V Intrinsics B-37

BKSTART

The example in Figure B-9 positions the record pointer to a record
containing a speci�c key value. The value is 23; it is located starting
in the second character of each record. The value for relation is zero
indicating that the key must contain exactly the value 23, not a value
larger than 23.

d a

c b

1920 REM

1930 REM ***************************************

1940 REM * POSITION A KSAM FILE *

1950 REM ***************************************

1960 REM

1970 REM F IS THE FILE NUMBER OF A KSAM FILE

1989 REM OPENED BY A CALL TO BKOPEN

1990 REM

2000 REM AN ASSUMPTION HAS BEEN MADE THAT THE POSITIONING TO BE

2010 REM DONE IS TO THE RECORD WRITTEN IN THE WRITE EXAMPLE,

2020 REM AND THAT THE DESIRED KEY STARTS AT CHARACTER 2.

2060 REM

2070 CALL BKSTART(F,S$,"23",2,0)

2080 REM
2090 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

2100 REM

2110 IF S$[1;1]<>"0" THEN DO

2120 REM N$ CONTAINS THE NAME OF THE KSAM FILE

2130 REM S$ CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL

2140 PRINT "UNABLE TO START ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

2150 CALL BKERROR(S$,M$)

2160 PRINT M$

2170 GOTO 3620

2180 DOEND

2190 REM

2200 REM THE PROGRAM CONTINUES

2210 REM

Figure B-9. Positioning Pointer to Particular Record with BKSTART

B-38 BASIC/V Intrinsics

BKUNLOCK

BKUNLOCK Unlocks a KSAM �le dynamically locked by BKLOCK.

CALL BKUNLOCK(�lenum,status)

A �le locked by BKLOCK is released for use by other users with a call
to BKUNLOCK. (If you log o� from any connection with the system,
the �le is also unlocked.) Since dynamic locking takes place during
shared access to the same �le by more than one user, it is important
that any �le locked by BKLOCK be unlocked as soon as possible by
BKUNLOCK.

To use BKUNLOCK, the �le must be opened with dynamic locking
allowed by all users who share access to the �le.

Parameters �lenum A numeric variable containing the �le number that
identi�es the �le. This number was returned to
�lenum by the last call to BKOPEN. It should not
be altered until the �le is successfully closed by
BKCLOSE. (Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKLOCK was successful and if not, why not. The �rst
character is set to zero when the call succeeds, to
another value if it fails. (Required parameter)

Operation Notes After calling BKUNLOCK, you should always check the status parameter
to make sure that the procedure was successfully executed. When
successful, a �le locked by BKLOCK is again made available for access
by other users. If the �le is not locked by BKLOCK when BKUNLOCK is
called, the �le is not a�ected.

Figure B-10 illustrates the use of BKUNLOCK to unlock the �le after it
is updated.

BASIC/V Intrinsics B-39

BKUNLOCK

d a

c b

1700 REM ***

1710 REM * UNLOCK A KSAM FILE *

1720 REM ***

1730 REM

1740 REM F IS THE FILE NUMBER OF A KSAM FILE

1750 REM OPENED BY A CALL TO BKOPEN

1760 REM

1770 CALL BKUNLOCK(F,S$)

1780 REM

1790 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED

1800 REM

1810 IF S$(1;1)<>"0" THEN DO

1820 REM N$ CONTAINS THE NAME OF THE KSAM FILE

1830 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

1840 PRINT "UNABLE TO UNLOCK ";N$;" ERROR ";S$(1;1);"DETAIL ";S$[2]

1850 CALL BKERROR(S$,M$)

1860 PRINT M$

1870 GOTO 3620

1880 DOEND

1890 REM

1900 REM THE PROGRAM CONTINUES

Figure B-10. Dynamically Unlocking a KSAM File

B-40 BASIC/V Intrinsics

BKWRITE

BKWRITE Writes data from a BASIC program to a KSAM �le.

CALL BKWRITE (�lenum,status,parameterlist)

A call to procedure BKWRITE writes a record to a KSAM �le from a
BASIC program. This call provides the only way to create a KSAM
record from a BASIC program. The �le must have been opened with
an access mode that allows writing. If access is shared, the �le also
must be opened for dynamic locking (lock = 1), and the �le locked
with BKLOCK before any records are written.

Parameters �lenum A numeric variable containing the �le number value
that identi�es the �le. This number was returned
by the last call to BKOPEN. It should not be altered
unless the �le is closed by a successful call to
BKCLOSE. (Required parameter)

status A four-character string variable to which is returned
a code that indicates whether or not the call to
BKWRITE was successful and if not, why not. The �rst
character is set to zero when the call succeeds, to
another value if not. (Required parameter)

parameterlist A list of variables or constants, separated by
commas, that contain the data to be written to
the �le as a record. The total length of the record
contents is derived from the total number, the
type, and the length in characters of the items in
parameterlist . The parameterlist must contain a
value for each location de�ned as a key location in
the record. (Required parameter)

Operation Notes After calling BKWRITE, you should always check the status
parameter to ensure that the write was successful. Upon successful
completion of BKWRITE, one record containing the values speci�ed in
parameterlist is written to the opened KSAM �le.

Two parameters that are set when the �le is opened a�ect how
BKWRITE operates. These are the access and sequence parameters.

In order to write to a �le, the �le must be opened with access greater
than 0. If the access parameter is set to 1, all existing data in the �le
is cleared before the �rst record is written to the �le. If access is
set to 2 or greater, the �rst record written by BKWRITE immediately
follows any existing records; the �le is not cleared.

The sequence parameter determines whether records must be
written in primary key sequence, or not. If sequence is 0, records
can be written in any order; no check is made on the sequence of the
primary key �eld. If sequence is set to 1, you must write each record
with a value in the primary key �eld that is greater than the primary
key value in the previous record. Primary key values may equal the

BASIC/V Intrinsics B-41

BKWRITE

previous primary key value only if the �le was created with duplicate
key values permitted.

Note Items written to a KSAM �le from a BASIC program are
concatenated; rounding to halfword boundaries does not occur.

Figure B-11 is an example of writing one string and one integer array
to each record of the KSAM �le.

d a

c b

10 DIM S$[4]

20 DIM N$[26]

30 DIM M$[72]

40 INTEGER A[10]

50 DIM B$[12]

55 INTEGER J

60 DIM B1$[1]

65 DIM B2$[2]

70 INTEGER A2[2],A3[3],A5[5]

80 REM

90 REM THE KSAM/3000 FILE WAS BUILT WITH:

100 REM REC=-80,16,F,ASCII

110 REM KEY=B,2,2,,DUP

120 REM SO,RECORD LENGTH IS 2 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK.

130 THE KEY IS 2 CHARACTERS LONG,STARTING IN CHARACTER 2 OF RECORD

135 REM...
430 REM **

440 REM * WRITE TO A KSAM FILE *

450 REM **

460 REM

470 REM ASSIGN VALUES TO OUTPUT VARIABLES

480 REM

490 FOR I=1 TO 5

500 A[I]=I

510 NEXT I

520 RS="123"

530 REM

540 REM F IS THE FILE NUMBER OF A KSAM FILE

550 REM OPENED BY A CALL TO BKOPEN

560 REM

Figure B-11. Writing to a KSAM File with BKWRITE

B-42 BASIC/V Intrinsics

BKWRITE

d a

c b

570 REM NOTE THAT ONLY THREE BYTES "123" ARE WRITTEN FROM B$

580 REM WHEREAS TEN WORDS ARE WRITTEN FROM NUMERIC ARRAY A.

620 REM

630 REM THREE IDENTICAL RECORDS ARE BEING OUTPUT SO THAT

640 REM SUBSEQUENT EXAMPLES OF THIS PROGRAM WILL EXECUTE

650 REM .

660 FOR I=1 TO 3

670 CALL BKWRITE(F,S$,BS,A[*])

680 REM

690 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED

700 REM

710 IF S$[1;1]<>"0" THEN DO

720 REM N$ CONTAINS THE NAME OF THE KSAM FILE

730 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CODE

740 PRINT "UNABLE TO WRITE TO ";N$;"ERROR "[S$]; DETAIL ";S$[2]

750 CALL BKERROR(S&,Ms)

760 PRINT M$

770 GOTO 3620

780 DOEND

790 NEXT I

800 REM

810 REM THE PROGRAM CONTINUES

Writing to a KSAM File with BKWRITE (continued)

BASIC/V Intrinsics B-43

C

HP C/iX Example Program

The following example program shows how a KSAM XL �le can be
created, accessed, and updated from an HP C/iX program. This
program uses features of ANSI C. Compile with INFO=-Aa + e.

This example program uses the assert macro to do quick error
checking. In a production program, more comprehensive error
checking and reporting would be desirable.

The KSAM XL �le has the following layout:

1 - 5 Employee number (primary key)
6 - 25 Name (secondary key)
26 - 34 Social Security Number
35 - 38 Department Number (secondary key)
39 - 44 Date of hire

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <mpe.h>

#pragma intrinsic FCLOSE, FFINDN, FLOCK

#pragma intrinsic FREAD, FREADBYKEY, FREMOVE

#pragma intrinsic FUNLOCK, FUPDATE, FWRITE

#pragma intrinsic HPCICOMMAND, HPFOPEN

#define FILENAME "KSAMD"

typedef char record_t[44];

static int filenum;

static void close_file(void);

static void create_file(void);

static void delete_records(void);

static void dump_file(void);

static void list_sequential(void);

static void list_sequential_primary(void);

static void list_sequential_secondary(int location);

static void lock_file(void);

static void open_file(void);

static void unlock_file(void);

static void update_records(void);

static void write_new_records(void);

static void write_record(const char *record);

main(void)

{
create_file();

HP C/iX Example Program C-1

open_file();

dump_file();

write_new_records();
update_records();

delete_records();

dump_file();

close_file();

return EXIT_SUCCESS;

}

static void close_file(void)

{

/* Close file */

FCLOSE(filenum, 0, 0);

assert(ccode()==CCE);

}

static void create_file(void)

{

/* Create sample KSAM XL file and load initial test data */

int status; short cmderror;

const int ksamxl=3, out=1, recsize=sizeof(record_t),

filesize=100, save=1, ascii=1;

const struct

{

short filler_1[10];

unsigned short language_id : 16;

short filler_2[4];

struct

{

unsigned short filler_1 : 10;

unsigned short chg_primary : 1;

unsigned short kslang : 1;
unsigned short ksreuse : 1;

unsigned short seq_random : 1;

unsigned short rec_numbering : 1;

unsigned short filler_2 : 1;

} flagword;

unsigned short filler_3 : 8;

unsigned short num_keys : 8;

struct

{

unsigned short key_type : 4;

unsigned short key_length : 12;

unsigned short key_location : 16;

unsigned short dflag : 1;

unsigned short filler_1 : 15;

unsigned short filler_2 : 8;

unsigned short rflag : 1;

unsigned short filler_3 : 7;

} keyparms[16];

} ksamparam = { {0}, 0, {0}, {0,0,1,0,0,0,0}, 0, 3,

{ {1, 5, 1,0,0,0,0,0},

C-2 HP C/iX Example Program

{1,20, 6,1,0,0,0,0},

{1, 4,35,1,0,0,0,0} } };

const record_t test_data[] =
{

"11111DOE JOHN 1230067898540821201",

"03452CUSTER HERB 3218800003160821203",

"28766WORKMAN DEBBIE 0006612341520850601",

"33678MORSE EUGENE 8760098763160850715"

} ;

const int test_items = sizeof test_data / sizeof test_data[0];

int i;

/* First, purge file if it already exists */

HPCICOMMAND("PURGE " FILENAME "\r", &cmderror, , 2);

assert(!cmderror || cmderror==-383);

/* Create new KSAM XL file, output access, 44-byte

ASCII records, limit = 100, save disposition */

HPFOPEN(&filenum, &status,

2, "-" FILENAME "-",

10, &ksamxl,

11, &out,

19, &recsize,

35, &filesize,

50, &save,

53, &ascii,

54, &ksamparam);

assert(!status);

/* Write test data to file */

for (i=0; i<test_items; ++i)

write_record(test_data[i]);

printf("\n");

/* Close file */
FCLOSE(filenum, 0, 0);

assert(ccode()==CCE);

}

static void delete_records(void)

{

/* Delete records for several employees */

const char delete_data[][5] = {"33678", "03452"};

const int delete_items =

sizeof delete_data / sizeof delete_data[0];

int i;

record_t buffer;

for (i=0; i<delete_items; ++i)

{

printf("Deleting employee %.5s: ", delete_data[i]);

lock_file();

FREADBYKEY(filenum, buffer, - sizeof buffer,

delete_data[i], 0);

assert(ccode()==CCE);

printf("%.20s\n", buffer+5);

FREMOVE(filenum);

HP C/iX Example Program C-3

assert(ccode()==CCE);

unlock_file();

}
printf("\n");

}

static void dump_file(void)

{

/* List the file several different ways */

list_sequential_primary();

list_sequential_secondary(6);

list_sequential_secondary(35);

}

static void list_sequential(void)

{

/* List the file, looping on FREAD until end-of-data */

int save_ccode;

record_t buffer;

for (;;)

{

FREAD(filenum, buffer, - sizeof buffer);

if ((save_ccode=ccode()) == CCG)

break;

assert(save_ccode==CCE);

printf(" %.5s %.20s %.3s-%.2s-%.4s "

"%.4s %.2s/%.2s/%.2s\n",

buffer, buffer+5, buffer+25, buffer+28, buffer+30,

buffer+34, buffer+40, buffer+42, buffer+38);

}

printf("\n");

}

static void list_sequential_primary(void)
{

/* List file in sequence on primary key */

printf("In sequence by primary key:\n");

lock_file();

/* Following call to FFINDN not necessary if this

is the first access since the file was opened */

FFINDN(filenum, -1, 0);

assert(ccode()==CCE);

list_sequential();

unlock_file();

}

static void list_sequential_secondary(const int location)

{

/* List file in sequence on specified secondary key */

printf("In sequence by secondary key in location %d:\n",

location);

lock_file();

FFINDN(filenum, -1, location);

assert(ccode()==CCE);

list_sequential();

C-4 HP C/iX Example Program

unlock_file();

}

static void lock_file(void)
{

/* Lock the file unconditionally */

FLOCK(filenum, 1);

assert(ccode()==CCE);

}

static void open_file(void)

{

/* Open file for shared update access with locking */

int status;

const int old=1, update=5, lock=1, shr=3;

HPFOPEN(&filenum, &status,

2, "-" FILENAME "-",

3, &old,

11, &update,

12, &lock,

13, &shr);

assert(!status);

}

static void unlock_file(void)

{

/* Unlock the file */

FUNLOCK(filenum);

assert(ccode()==CCE);

}

static void update_records(void)

{

/* Update department code for several employees */

const struct {char empno[5]; char new_dept[4];} update_data[] =
{{"28766", "9901"}, {"11111", "9905"}};

const int update_items =

sizeof update_data / sizeof update_data[0];

int i;

record_t buffer;

for (i=0; i<update_items; ++i)

{

printf("Updating employee %.5s to department %.4s: ",

update_data[i].empno, update_data[i].new_dept);

lock_file();

FREADBYKEY(filenum, buffer, - sizeof buffer,

update_data[i].empno, 0);

assert(ccode()==CCE);

printf("%.20s\n", buffer+5);

memcpy(buffer+34, update_data[i].new_dept, 4);

FUPDATE(filenum, buffer, - sizeof buffer);

assert(ccode()==CCE);

unlock_file();

}

printf("\n");

HP C/iX Example Program C-5

}

static void write_new_records(void)

{
/* Add some entries to the file */

const record_t test_data[] =

{

"77777NEWMAN GEORGE 7770066661520871012",

"55555GOODMAN BRIAN 5553300008540880815",

"66666MANLEY SHAUNA 0003526143360890930"

} ;

const int test_items = sizeof test_data / sizeof test_data[0];

int i;

for (i=0; i<test_items; ++i)

{

lock_file();

write_record(test_data[i]);

unlock_file();

}

printf("\n");

}

static void write_record(const char * const record)

{

/* Write one record to the file */

printf("Writing record for %.5s, %.20s\n", record, record+5);

FWRITE(filenum, record, - sizeof(record_t), 0);

assert(ccode()==CCE);

}

C-6 HP C/iX Example Program

Index

A abort recovery, 7-3
access options, 4-1, 4-3
access selections, 4-4
advance ag, 5-1
alternate key, 1-1, 5-3
approximate key match, 5-3
automatic recovery, 1-5

B BASIC/V intrinsics
BKCLOSE, B-7
BKDELETE, B-9
BKERROR, B-12
BKLOCK, B-14
BKOPEN, B-16
BKREAD, B-23
BKREADBYKEY, B-27
BKREWRITE, B-30
BKSTART, B-34
BKUNLOCK, B-39
BKWRITE, B-41

BKCLOSE
BASIC/V intrinsic, B-7

BKDELETE
BASIC/V intrinsic, B-9

BKERROR
BASIC/V intrinsic, B-12

BKLOCK
BASIC/V intrinsic, B-14

BKOPEN
BASIC/V intrinsic, B-16

BKREAD
BASIC/V intrinsic, B-23

BKREADBYKEY
BASIC/V intrinsic, B-27

BKREWRITE
BASIC/V intrinsic, B-30

BKSTART
BASIC/V intrinsic, B-34

BKUNLOCK
BASIC/V intrinsic, B-39

BKWRITE
BASIC/V intrinsic, B-41

BUILD command, 2-1, 2-2, 2-6, 7-3, 7-4, 8-2

Index-1

C chronological order, 1-4
CKCLOSE
COBOL 68 intrinsic, A-10

CKDELETE
COBOL 68 intrinsic, A-11

CKERROR
COBOL 68 intrinsic, A-15

CKLOCK
COBOL 68 intrinsic, A-16

CKOPEN
COBOL 68 intrinsic, A-18

CKOPENSHR
COBOL 68 intrinsic, A-23

CKREAD
COBOL 68 intrinsic, A-24

CKREADBYKEY
COBOL 68 intrinsic, A-27

CKREWRITE
COBOL 68 intrinsic, A-31

CKSTART
COBOL 68 intrinsic, A-36

CKUNLOCK
COBOL 68 intrinsic, A-40

CKWRITE
COBOL 68 intrinsic, A-42

CM KSAM, 1-1, 8-1
CM KSAM display, 3-1
COBOL 68 intrinsics
CKCLOSE, A-10
CKDELETE, A-11
CKERROR, A-15
CKLOCK, A-16
CKOPEN, A-18
CKOPENSHR, A-23
CKREAD, A-24
CKREADBYKEY, A-27
CKREWRITE, A-31
CKSTART, A-36
CKUNLOCK, A-40
CKWRITE, A-42

commands
BUILD, 2-1, 2-2, 2-6, 7-3, 7-4, 8-2
FILE, 2-14
LISTFILE, 3-1, 3-2, 8-2
PURGE, 2-14, 8-2
RENAME, 2-14, 8-2

control block, 1-3
control code, 7-3
copying data, 2-1
cross development, 8-5

Index-2

D data area, 1-4
data block size
specifying, 2-4

DEFBLK option, 2-4
deleting records, 6-3
device class, 2-1
Disk �le �le label information returned
FLABELINFO, 9-40

disk �le, remove
FRENAME, 9-77

disposition, 4-8
domain, 4-1, 4-3, 4-8, 7-3, 8-2
DUP parameter, 2-3
dynamic locking, 4-1, 4-4, 5-6, 6-2, 6-3, 7-2

E error information, 7-1

F FCHECK intrinsic, 7-1, 9-2
FCLOSE intrinsic, 4-8, 9-4
FCONTROL intrinsic, 7-3, 9-7
FCOPY subsystem, 2-7, 7-3, 8-3
KEY= parameter, 2-7

FERRMSG intrinsic, 7-1, 9-10
FFILEINFO
Intrinsic, 9-11
Returns information about a �le, 9-11

FFINDBYKEY intrinsic, 5-3, 5-4, 9-27
FFINDN intrinsic, 5-3, 5-5, 9-29
FGETINFO intrinsic, 3-1, 3-3, 5-6, 9-31
FGETKEYINFO intrinsic, 3-1, 3-4
�le
backup, 7-4
characteristics, 2-1, 2-2, 2-8, 3-1
closing, 4-8
corruption, 7-4
creation, 2-1, 4-4
deletion, 2-14
designator, 4-1, 4-3
information, 3-1
locking, 7-2
modi�cations, 2-14
opening, 4-1
recovery, 7-3
renaming, 2-14
type, 2-1, 2-13

FILE command, 2-14
File information returned
FFILEINFO, 9-11

File label information, disk �le returned
FLABELINFO, 9-40

FIRSTREC= parameter, 2-3
FLABELINFO
Intrinsic, 9-40
Return information from �le label, disk �le, 9-40

Index-3

ag word, 2-9
FLOCK intrinsic, 4-4, 5-6, 6-2, 6-3, 7-2, 9-49
FOPEN intrinsic, 2-1, 2-8, 2-13, 4-1, 4-3, 4-6, 7-3, 9-50
FPOINT intrinsic, 5-5, 5-6, 9-66
FREADBYKEY intrinsic, 5-5
FREADC intrinsic, 5-5, 5-6
FREADDIR intrinsic, 5-5, 5-6, 9-73
FREAD intrinsic, 9-67
FREADLABEL intrinsic, 3-4, 9-75
FREMOVE intrinsic, 6-3
FRENAME
Intrinsic, 9-77
Remove disk �le, 9-77

FROM= parameter, 2-7
FSPACE intrinsic, 9-80
FUNLOCK intrinsic, 4-4, 5-6, 6-2, 6-3, 7-2, 9-81
FUPDATE intrinsic, 6-2, 9-82
FWRITE intrinsic, 6-2, 9-84
FWRITELABEL intrinsic, 3-4, 9-86

H HPFOPEN intrinsic, 2-1, 2-8, 2-13, 4-1, 4-4, 7-3, 9-87

I index area, 1-3, 1-4
index corruption, 7-4
indirect �le, 2-6
Intrinsic
FFILEINFO, 9-11
FLABELINFO, 9-40
FRENAME, 9-77

intrinsics
FCHECK, 7-1, 9-2
FCLOSE, 4-8, 9-4
FCONTROL, 7-3, 9-7
FERRMSG, 7-1, 9-10
FFINDBYKEY, 5-3, 5-4, 9-27
FFINDN, 5-3, 5-5, 9-29
FGETINFO, 3-1, 3-3, 5-6, 9-31
FGETKEYINFO, 3-1, 3-4
FLOCK, 4-4, 5-6, 6-2, 6-3, 7-2, 9-49
FOPEN, 2-1, 2-8, 2-13, 4-1, 4-3, 4-6, 7-3, 9-50
FPOINT, 5-5, 5-6, 9-66
FREAD, 9-67
FREADBYKEY, 5-5
FREADC, 5-5, 5-6
FREADDIR, 5-5, 5-6, 9-73
FREADLABEL, 3-4, 9-75
FREMOVE, 6-3
FSPACE, 9-80
FUNLOCK, 4-4, 5-6, 6-2, 6-3, 7-2, 9-81
FUPDATE, 6-2, 9-82
FWRITE, 6-2, 9-84
FWRITELABEL, 3-4, 9-86
HPFOPEN, 2-1, 2-8, 2-13, 4-1, 4-4, 7-3, 9-87

item number pairs, 2-13, 4-1, 4-4

Index-4

K key
duplication, 2-2, 2-11
duplication method, 2-3
length, 2-11, 3-4
location, 2-2, 2-11, 3-4
size, 2-2
type, 2-2, 2-11, 3-4

key characteristics, 2-8
key data, 2-1
key �eld, 1-1
key index, 1-3
KEY= parameter, 2-2
key parameters, 2-11
key sequence, 1-3
key speci�cations, 3-2, 3-4
KSAMUTIL utility, 8-2
KSAM XL, 8-1
data area, 1-4
de�nition, 1-1
index area, 1-3

KSAM XL display, 3-1

L language ID, 2-9, 9-58
LISTFILE, 2-4
LISTFILE command, 3-1, 3-2, 8-2
LISTFILE options, 3-1
loading data, 2-7
logical record number, 5-3
logical record pointer, 5-1, 6-1, 6-3

M migration, 8-2, 8-3
mixed mode operation, 8-5
modifying �le speci�cations, 2-8

N native language ID, 2-9, 9-58
NOREUSE option, 2-3, 6-2
number of keys, 2-11

O options
REUSE, 1-4

OPTMBLK option, 2-4

P partial key value, 5-4
physical location, 1-3
physical record number, 5-5, 5-6
physical record pointer, 5-1, 5-6, 6-1
pointer-dependent intrinsics, 5-1
pointer-independent intrinsics, 5-1
positional parameters, 4-3, 4-6
primary key, 1-1, 5-2
protecting records, 7-1
PURGE command, 2-14, 8-2

Index-5

R random access, 5-5
by key, 5-5
by physical record number, 5-5
by relative record number, 5-5

RDUP parameter, 2-3
record deletion, 6-3
record header, 1-4, 6-3
record-level locking, 8-1
record numbering, 2-1, 2-3, 2-9, 5-3
record protection, 7-1
record retrieval, 5-1
record sequence change, 2-7
record space reuse, 2-1, 2-3, 2-9
record updates, 6-2
record writing, 6-2
recoverability, 8-2
recovered data space, 1-4
recovery, 1-5
relational operator, 5-4
relative record location, 2-7
relative record number, 5-5
Remove disk �le
FRENAME, 9-77

RENAME command, 2-14, 8-2
Return �le label information of disk �le
FLABELINFO, 9-40

Returns information about a �le
FFILEINFO, 9-11

REUSE option, 1-4, 2-3, 6-2

S security code, 4-8
sequential access, 5-2, 5-3, 5-6
shared access, 4-4, 5-6, 6-2, 6-3, 7-2
software abort, 7-3
specifying data block size, 2-4
STORE/RESTORE facility, 7-4
subsystems
FCOPY, 2-7, 7-3, 8-3

system abort, 7-3
system logging, 7-3, 8-2

T TO= parameter, 2-7
transaction management, 1-5, 7-3, 8-2
tree structure, 1-4

Index-6

U update access, 6-2
updating records, 6-2
user label, 3-4
utilities
KSAMUTIL, 8-2

V variable-length records, 8-3

W writing records, 6-2

Index-7

