
900 Series HP 3000 Computer Systems

Getting Started as an

MPE/iX Programmer

Programmer's Guide

ABCDE

HP Part No. 32650-90008

Printed in U.S.A. 1992

Second Edition

E0692

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1992 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition November 1987 A.01.00

Update 1 July 1988 A.10.00

Update 2 December 1988 A.20.00

Second Edition June 1992 B.40.00

iii

iv

Preface

Note MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest
in a series of forward-compatible operating systems for the HP 3000 line of
computers.

In HP documentation and in talking with HP 3000 users, you will encounter
references to MPE XL, the direct predecessor of MPE/iX. MPE/iX
is a superset of MPE XL. All programs written for MPE XL will run
without change under MPE/iX You can continue to use MPE XL system
documentation, although it may not refer to features added to the operating
system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating
system for HP 3000s, not based on PA-RISC architecture. MPE V software
can be run on the PA-RISC (Series 900) HP 3000s in what is known as
compatibility mode.

Getting Started as an MPE/iX Programmer is a manual designed to introduce a programmer
to the Hewlett-Packard MPE/iX operating system, which runs on 900 Series HP 3000
computers. It provides:

An overview of the operating system architecture, features, and facilities, explaining the
concepts necessary for a programmer to obtain a working knowledge of the system.

References to other manuals for detailed information, syntax, and advanced concepts.

As a prerequisite, you should review the self-paced training course HP 3000 Series 900
Advanced Skills (32650-60039).

Getting Started as an MPE/iX Programmer is part of the Programmer's Series. This series
consists of the MPE/iX Intrinsics Reference Manual (32650-90028) and a set of task-oriented
user's guides.

How to Use this Manual

If you are new to the subject of programming on the MPE/iX operating system, you should
read chapter 1 �rst. If you are familiar with MPE/iX, turn directly to the chapter that
contains the information you need.

For information on additional programming manuals refer to the MPE/iX Documentation
Guide (32650-90144).

v

Organization of this Manual

The guide contains the following chapters:

Chapter 1 Overview covers the basics of programming on MPE/iX. It introduces the
900 Series HP 3000, HP-PA architecture, and MPE operating systems. It
describes the following topics on a high level, suitable for management and
programming purposes: MPE/iX operating system features and
fundamentals, user interface, accounting structure, migration from the MPE
V/E operating system, and data conversion from MPE V/E.

Chapter 2 Utilities and Tools covers programmatic access to the MPE/iX Command
Interpreter and many other MPE/iX subsystems and utilities.

Chapter 3 Program Development covers writing, compiling, linking, loading, and
running a program on MPE/iX. It discusses the multiprogramming
environment, error detection, and control codes.

Chapter 4 Link Editor covers HP Link Editor/XL, which is a subsystem of MPE/iX
used to bring pieces of code together into executable program �les and
maintain libraries of sharable code.

Chapter 5 Optimizing a Program covers the Optimizer subsystem of MPE/iX, which
improves program performance.

Chapter 6 File System describes the MPE/iX File System, including �le and record
structure, File System services, �le speci�cations, �le domains, data
transfer, and �le security.

Chapter 7 Data Management covers data management concepts and subsystems on
MPE/iX, including KSAM, ALLBASE/SQL, TurboIMAGE, and QUERY.

vi

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vii

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

� In a syntax statement, the space symbol � shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

viii

Contents

1. OVERVIEW
Introduction to the HP 3000 . 1-1
900 Series HP 3000 . 1-1
HP Precision Architecture (HP-PA) 1-1

MPE Operating Systems . 1-2
MPE/iX and MPE V/E Operating Systems 1-3
Naming Conventions for HP 3000 Systems and Software 1-4
Native Mode and Compatibility Mode 1-5
MPE/iX Mixed Modes . 1-5

900 Series Migration . 1-5
Object Code Translator . 1-6
Native Mode Compilers . 1-6
Data Base Manipulations . 1-6
Migration Restrictions . 1-6
Cross-family Application Development 1-7

MPE/iX Features . 1-7
Multiprogramming . 1-8
Interactive and Batch Processing 1-8

MPE/iX Information Management 1-8
Self-adjusting System Tables . 1-9
On-line Diagnostics for Peripherals 1-9
Disc Failure Tolerance . 1-9
Automatic Power Fail Recovery . 1-9

MPE/iX Transaction Management Facility 1-10
Transaction Locking . 1-10
Transaction Logging and Recovery 1-10
Simplifying a Program . 1-11

DEBUG . 1-11
MPE/iX User Interface . 1-12
MPE/iX System Performance . 1-13
Mapped Files . 1-13
Directory Entries . 1-14

Native Mode System Components . 1-14
Terminal Keyboard Layouts . 1-15
Giving Commands to MPE/iX . 1-16
MPE/iX Commands . 1-16
MPE/iX Command Parameters 1-17
Continuing an MPE/iX Command to Another Line 1-18
On-line Help in Using an MPE/iX Command 1-18
Correcting or Modifying an MPE/iX Command 1-18
Referring to Several Files at Once 1-18

Command Files and User-de�ned Command Files 1-19

Contents-1

Break Mode . 1-21
Echo On/O� . 1-23
Accounting Structure Overview . 1-23
Logon and Logo� . 1-23
Account . 1-23
User . 1-24
Group . 1-25
File Speci�cations . 1-26
Referring to a File in a Di�erent Group 1-27
Referring to a File in a Di�erent Account 1-27

Session and Batch Modes . 1-27
Converting Data Files from MPE V/E to MPE/iX 1-29
Data Alignment Di�erences . 1-29
Converting Files . 1-32

Data Communications . 1-33
Network File Transfer (NFT) . 1-33
Remote Process Management (RPM) 1-33
Local Area Network (LAN) . 1-34
Remote File Access . 1-34
Remote Terminal Access . 1-34
Remote Data Base Access . 1-34

2. Utilities and Tools
Programmatic Access to the Command Interpreter 2-1
Concatenating Strings and String Substitution 2-2
Expression Evaluation . 2-2
Using Job Control Words (JCWs) 2-2
Job Control Word Name and Type 2-2
Changing the Value of a JCW 2-2
JCW and CIERROR . 2-3
Reserved-word Pre�xes . 2-3

Help Facility . 2-3
Toolset/XL . 2-4
Useful Tools . 2-5
Forms Design and Screen Handling Tools 2-5
Source Data Entry . 2-5
Transaction Processing . 2-5
VPLUS/V Features . 2-5

Report Generation Tools . 2-6
Business Report Writer/XL . 2-6
Report/V . 2-6
HP Visor . 2-6

System Dictionary/XL . 2-7
Editor . 2-8
SORT-MERGE/XL . 2-9
Key . 2-9
Ordering Sequence . 2-9
Collating Sequence . 2-9

DISCFREE . 2-10
FCOPY/XL . 2-10

Contents-2

3. Program Development
Writing a Program . 3-2
How to Use Intrinsics . 3-2

Compiling a Program . 3-3
Compiler Input . 3-3
Compiler Output . 3-4
Compiler Operation . 3-4
Compiled Code . 3-6
Data Variables Information . 3-6
Unresolved References . 3-6
Compiler Libraries . 3-6
Command to Compile Only . 3-6
Compiler Control . 3-7

Linking a Program . 3-7
Creating Executable Program Files 3-9
Symbol Listing . 3-9

Loading and Running a Program . 3-13
Program Auxiliary Header . 3-13
Using Executable Libraries . 3-14
Searching Executable Libraries . 3-14
UNSAT Procedure . 3-14
System Libraries . 3-15
Mixing Execution Modes . 3-15
Virtual Memory and Demand Paging 3-16
LMAP: Load MAP . 3-16
Load-time Binding Sequence . 3-16
Running a Program . 3-16

Multi-programming Environment . 3-17
Priority Levels . 3-17
Linear Subqueues . 3-17
Circular Subqueues . 3-18

Error Detection . 3-18
Command Interpreter Errors . 3-18
File System Errors . 3-18
Compiler, Link Editor, and Loader Errors 3-18
Run-time Errors . 3-19
Abort Message Information . 3-19
Typical Causes of Program Aborts 3-20
File Information Display (Tombstone) 3-20

Control Codes (JCWs) . 3-21
System JCW . 3-21
JCW Notation . 3-22
Using a System JCW . 3-23
User-de�ned JCWs . 3-24
Using a User-de�ned JCW . 3-24

Contents-3

4. HP Link Editor/XL
Common Uses of HP Link Editor/XL 4-3
Linking a Relocatable Object File . 4-3
Comparison of HP Link Editor/XL and MPE V/E Segmenter 4-4
How HP Link Editor/XL Works . 4-4
Files Used by HP Link Editor/XL . 4-4
HP Link Editor/XL Commands . 4-6
Case Sensitivity . 4-7
Keyword and Positional Parameters 4-7

Using an Indirect File . 4-7
Starting and Ending HP Link Editor/XL 4-8
Creating an Executable Program File 4-9
Comparison of Executable and Relocatable Libraries 4-11
Using a Relocatable Library . 4-12
Using an Executable Library . 4-13

5. Optimizing a Program
Optimizer Levels . 5-2
Use of MPE/iX Optimizer with Languages 5-3
Optimizer Assumptions . 5-3
Coding for Performance and Optimization 5-4
Reduce Aliasing . 5-4
Use Optimal Data Types . 5-4
Eliminate Common Subexpressions 5-5
Instructions Required for Operations on Simple Data Types 5-6
Optimize Arrays . 5-6
Reduce Procedure Calls . 5-7
Expand Small Procedures In-line 5-7
Extract Procedure Calls from Loops 5-8
Avoid Non-native Alignment . 5-8
Optimize HP COBOL II/XL Data Types 5-9
Optimize HP COBOL II/XL Data Types 5-9

6. File System
Records and Files in the File System 6-2
Device Files . 6-2
Disc Files . 6-3

Disc File Storage . 6-4
File Directory Structure . 6-5
Domains . 6-5
NEW Files . 6-7
TEMP Files . 6-7
PERMANENT Files . 6-7
E�ect of File Domain on Operations 6-7
Changing Domains . 6-8

File Speci�cations . 6-8
File Designators . 6-9
Backreferencing a File . 6-10
File Classes . 6-11

User-de�ned Files . 6-11
System Files . 6-12

Contents-4

Input/Output Sets . 6-14
Passed Files . 6-15
Searching File Directories . 6-16
Finding Files . 6-16
Types of Operations Allowed on Files 6-16
Opening a File . 6-16
Closing a File . 6-17

Using Files at Run Time . 6-20
Hierarchy of File Overrides . 6-21
Record Structure . 6-22
Storage Format . 6-22
Record Types . 6-22
Specifying a Record Size . 6-24

File Structure . 6-25
File Types . 6-25
File Codes . 6-26
Creating a File . 6-27
HPFOPEN and FOPEN Intrinsics 6-27
The :BUILD Command . 6-28

Deleting Files . 6-28
Renaming Files . 6-28
Saving Temporary Files . 6-28
Listing File Characteristics . 6-29
The :FILE Command . 6-29

Record Selection and Data Transfer 6-30
Record Pointers . 6-30
Pointer Initialization . 6-30
Record Selection . 6-30
Mapped Access to Disc Files . 6-31
Multiple Record Transfers . 6-31
Data Transfer Control Operations 6-32
Reading from a File . 6-32
Writing to a File . 6-33
Updating a File . 6-33
Using Mapped Access to a File . 6-34
Device File Bu�ers . 6-34

Sharing a File . 6-35
Maintaining File Security . 6-37
Lockwords . 6-38
MPE/iX File Access System . 6-38
Specifying and Restricting File Access by Access Mode 6-38
Specifying File Access by Type or User 6-39

Access Control De�nitions (ACDs) 6-42
Specifying and Restricting File Access 6-42
Managing ACDs with Commands and Intrinsics 6-42
Changing Disc File Security Provisions 6-43
Suspending and Restoring Security Provisions 6-44

Contents-5

7. Data Management
Data Management Subsystems . 7-1
KSAM/V . 7-2
FCOPY (KSAM Options) . 7-3
KSAM procedures . 7-5

ALLBASE/SQL . 7-6
HP SQL . 7-6
Security . 7-7
Logical Transaction . 7-7
Concurrency . 7-8
Recovery . 7-8
Database Creation . 7-8
Database Restructuring . 7-9

TurboIMAGE/XL Data Base . 7-11
Master Set . 7-12
Chain Head . 7-12
Automatic Master Set . 7-13
Manual Master Set . 7-13

TurboIMAGE/XL and QUERY/V 7-14
Creating a Schema . 7-14
Creating a Root File . 7-14

DBUTIL . 7-15
Creating a Data Base . 7-16

TurboIMAGE/XL Procedures . 7-16
Backing Up or Restructuring a Data Base 7-17
Changing an Existing Data Base Design 7-17
Recovering a Data Base . 7-18

QUERY/V . 7-18
TurboIMAGE DBchange/V . 7-20
Key DBchange/V Features . 7-20
DICTDBA . 7-21
DICTDBU . 7-21
DICTDBL . 7-21

Index

Contents-6

Figures

1-1. MPE/iX On-line Access Capabilities 1-2
1-2. 900 Series HP 3000 High-level Tools 1-3
1-3. HP 3000 Software Naming Conventions Example 1-4
1-4. Commanding MPE/iX . 1-16
1-5. UDC File Example . 1-20
1-6. Accounts Example . 1-24
1-7. User Example . 1-25
1-8. Groups Example . 1-26
1-9. Session and Job Commands . 1-28
1-10. Session and Job Characteristics . 1-28
1-11. HP FORTRAN 77/iX COMMON Block Data Alignment Example 1-30
1-12. IEEE Single-precision Real Number Format 1-31
1-13. IEEE Double-precision Real Number Format 1-32
3-1. MPE/iX Program Development . 3-1
3-2. Compiler Producing Relocatable Object Modules 3-5
3-3. Linking and Using User Libraries 3-8
3-4. UNSAT Procedure Example . 3-15
3-5. Job Control Word (JCW) Structure 3-21
3-6. JCW Notation Examples . 3-23
4-1. :LINK and HP Link Editor/XL on MPE/iX 4-2
4-2. Files Used by HP Link Editor/XL 4-5
4-3. Creating an Executable Program File 4-9
4-4. Linking to Create an Executable Program File 4-10
4-5. Executable Program File Commands 4-11
5-1. Reducing Aliasing . 5-4
5-2. Eliminating Common Subexpressions 5-5
5-3. Instructions Operations on Simple Data Types 5-6
5-4. Optimizing Arrays . 5-6
5-5. Reducing Procedure Calls . 5-7
5-6. Expanding Small Procedures In-line 5-7
5-7. Extracting Calls from Loops . 5-8
5-8. Avoiding Non-native Alignment . 5-8
6-1. File System Interface . 6-1
6-2. Records and Files Relationship . 6-2
6-3. Specifying Device File Characteristics 6-3
6-4. Identifying a Disc File using File Designators 6-10
6-5. Backreferencing a Previously Identi�ed File 6-11
6-6. System Files in Use . 6-13
6-7. Using a System File . 6-14
6-8. Passing Files between Program Runs 6-15
6-9. Directories Searched Based on File Domain 6-19
6-10. Nested HPFOPEN/FOPEN and FCLOSE Pairs 6-20

Contents-7

6-11. File System Hierarchy of Overrides 6-21
6-12. Record Types . 6-23
6-13. Odd-byte Record Sizes . 6-25
6-14. Creating a File . 6-27
6-15. Actions Resulting from Multiaccess of Files 6-37
6-16. Security Level for File Access . 6-40
7-1. Building a KSAM File . 7-2
7-2. Loading a KSAM File . 7-4
7-3. Reorganizing a KSAM File . 7-5
7-4. TurboIMAGE/XL Data Set Organization Example 7-13
7-5. Example of Creating a Root File 7-15
7-6. Creating a Data Base . 7-16

Contents-8

Tables

1-1. Word and Integer Conversions . 1-31
6-1. New, Temporary, and Permanent File Features 6-6
6-2. Valid File Domains . 6-6
6-3. Input Set . 6-14
6-4. Output Set . 6-15
6-5. Comparison of Logical Record Formats 6-24
6-6. Standard Default Record Sizes . 6-24
6-7. File Sharing Restriction Options 6-36
6-8. File Access Mode Types . 6-39
6-9. User Type De�nitions . 6-40
7-1. ALLBASE/SQL Speci�cations . 7-10
7-2. Data Base Terminology . 7-11
7-3. Data Management Considerations 7-19

Contents-9

1

OVERVIEW

This chapter introduces the 900 Series HP 3000 and the MPE/iX operating system, describing
how they �t into the HP 3000 family of computers and MPE operating systems, in general.
It describes hardware and software naming conventions and provides a brief overview of
migration to the 900 Series from MPE V/E-based systems. It describes MPE/iX dual
operating modes, features, and major subsystems.

It provides an overview of MPE/iX accounting structure, session and batch modes, how to
execute MPE/iX commands, and the considerations necessary to convert �les to MPE/iX.

Introduction to the HP 3000

The HP 3000 is a general-purpose multiprogramming machine, designed for the interactive,
transaction processing environment of business and industry. The HP 3000 family of
computers includes several models of the machine, each with a di�erent series number.

900 Series HP 3000

The newest high performance members of the 900 Series HP 3000 family are based on HP
Precision Architecture (HP-PA), a highly exible computer design that can meet current user
requirements and requirements arising during future growth.

HP Precision Architecture (HP-PA)

HP Precision Architecture (HP-PA) is based on Reduced Instruction Set Computer (RISC)
concepts with added extensions for a complete system. This increases computer performance
by reducing and simplifying the computer instruction set. HP-PA eliminates system overhead
associated with conventional computer microcode by directly implementing computer
instructions in hardware. The uniformity of HP-PA instructions enhances pipelining,
providing higher performance by overlapping execution of multiple instructions. Many
technologies can implement HP-PA; highly integrated VLSI designs can be achieved by
eliminating the chip space required for microcode.

High performance from HP-PA architecture results from the memory hierarchy design and the
use of optimizing compilers. Processor waiting time for memory accesses is minimized due to
the following architectural characteristics:

Frequently used instructions and data are stored in a large number of CPU registers.

High-speed bu�ering of code and data occurs.

Optimizing compilers generate e�cient object code, allocate registers, and schedule
instruction sequences to maintain e�cient pipeline operation.

OVERVIEW 1-1

MPE Operating Systems

All HP 3000 models run under the Multiprogramming Executive (MPE) operating system. It
is a disc-based operating system that manages all system resources and coordinates execution
of all programs running on the system. The version of MPE used varies from one model
to another. Figure 1-1 shows the on-line access capabilities common to all MPE operating
systems.

Figure 1-1. MPE/iX On-line Access Capabilities

The system simultaneously performs inquiry and update, program development, batch
processing, and communications to other systems. All functions are available on-line (in
sessions) or in batch mode (in jobs)submitted to the system. The same programs, �les, and
commands apply for both types of use. Figure 1-2 shows the high-level tools available on the
900 Series HP 3000.

1-2 OVERVIEW

Figure 1-2. 900 Series HP 3000 High-level Tools

MPE/iX and MPE V/E Operating Systems

Since the 900 Series HP 3000 was introduced, Hewlett-Packard supports two types of MPE
operating system; MPE V/E and MPE/iX, which stands for MPE with eXtended Large
addressing. The "V" in the name MPE V/E is the Roman numeral for "5." MPE V/E is
the operating system formerly called MPE. MPE V/E is supported on Series 37 through the
Series 70 systems. MPE/iX is the operating system for 900 Series systems. It is designed to
take full advantage of HP Precision Architecture (HP-PA). MPE/iX has the performance and
ease-of-use of MPE V/E, plus additional functions and capabilities. It is upwardly compatible
and has a user interface consistent with MPE V/E. MPE/iX is object code and source code
compatible for programs developed on MPE V/E. It has two run-time environments that are
transparent to the user:

OVERVIEW 1-3

Compatibility Mode (CM), which provides object-code compatibility with MPE V/E-based
applications.

Native Mode (NM), which provides full performance bene�ts and advanced capabilities of
HP-PA.

Naming Conventions for HP 3000 Systems and Software

When the 900 Series was added to the HP 3000 family of computers, Hewlett-Packard
instituted a new naming convention for HP 3000 software products; the addition of the su�x
"/V" or "/XL" to a product name. Software products that previously had the su�x "/3000"
now have the su�x "/V." For example, the product named IMAGE/3000 is now named
IMAGE/V, and the product named COBOL/3000 is now named HP COBOL/V.

The "/V" su�x indicates that a product is designed for use with the MPE V/E operating
system. This product can also be used with the MPE/iX operating system running in
Compatibility Mode. A compiler with the su�x "/V" (for example, RPG/V) generates object
code that runs under MPE V/E and MPE/iX (in Compatibility Mode).

The "/XL" su�x indicates that a product is designed for use with MPE/iX running in
Native Mode. A compiler with the su�x "/XL" (for example, HP COBOL II/XL) generates
object code that runs with MPE/iX in Native Mode. Figure 1-3 shows an example of naming
conventions.

Figure 1-3. HP 3000 Software Naming Conventions Example

Computers in the HP 3000 family that operate under the MPE V/E operating system are
frequently called "MPE V/E-based systems." Computers in the HP 3000 family that operate
under the MPE/iX operating system in native mode are frequently called "MPE/iX-based
systems." This includes 900 Series systems.

1-4 OVERVIEW

Native Mode and Compatibility Mode

MPE/iX provides two run-time execution environments: Native Mode (NM) and
Compatibility Mode (CM). MPE/iX dynamically and transparently coordinates and changes
modes as required by applications.

NM is the native MPE/iX run-time environment. Source code has been compiled into the 900
Series native instruction set. NM is the preferred environment for the 900 Series and provides
the highest performance from the systems through the use of demand paged virtual memory
and memory mapped �les.

CM provides object code compatibility between MPE V/E based systems and 900 Series
computers. CM allows you to move applications and data to 900 Series computers without
changes or recompilation.

MPE/iX is a compatible superset of MPE V/E. CM provides a working MPE V/E
environment, including MPE V/E code and stack structures and most callable MPE V/E
system intrinsics.

MPE/iX Mixed Modes

Applications can run partly in Native Mode (NM) and partly in Compatibility Mode (CM).
MPE/iX transparently switches between modes for system routines. MPE/iX has a Switch
Subsystem that determines if code is in NM or CM and automatically switches between them,
as needed, while the routine is running. When the called routines are in the other mode, users
must write their own switching routines.

900 Series Migration

The use of Compatibility Mode (CM) and migration utilities provides smooth, exible
migration to 900 Series systems. The high degree of object code compatibility between MPE
V/E and MPE/iX operating in CM allows you to store any MPE V/E based application
object code program written in a language supported on MPE V/E, restore it on a 900 Series
system, and run it in MPE/iX Compatibility Mode. You can move data bases to a 900 Series
system in the same way.

900 Series systems are fully upward compatible with other systems in the HP 3000 family.
Migration tools are provided to facilitate upgrading to the 900 Series in stages, as your
schedule permits, without interruption of operations. Migration to the 900 Series provides:

Object code compatibility: a simple store/restore procedure allows you to move MPE V/E
applications and data to the 900 Series. You can back up applications and databases on a
tape and restore them on a 900 Series system without modi�cation. The applications and
databases run on the 900 Series in CM.

Source code compatibility: you can recompile applications for maximum performance
by using Native Mode (NM) optimizing compilers, which improve performance. You can
achieve maximum database performance by using software utilities to transform databases
into NM.

OVERVIEW 1-5

Migration exibility: upgrading to the 900 Series is extremely exible because applications
and databases can access and communicate with each other when they are in di�erent
modes (in other words, when one is in CM and the other is in NM).

Operational exibility: MPE/iX is a functional superset of MPE V/E. They are nearly
identical in terms of user interface, system management, accounting, and security.

Peripheral compatibility: Because of common I/O mechanisms, the 900 Series supports
many of the same peripherals and workstations as other HP 3000 systems do.

Cross-family development: CM allows you to develop applications on the 900 Series that
can also be run on MPE V/E-based systems.

Migration to the 900 Series is exible because you can move some applications to NM and
move others to CM. Both kinds of applications can access the same database, and it can be
in CM or NM. You can immediately move all your applications and databases to CM and can
migrate applications to NM at convenient times.

Object Code Translator

MPE/iX provides an Object Code Translator (OCT) that can be used to translate MPE V/E
object code into native instructions for the 900 Series. This improves performance over that of
the MPE V/E object code.

Native Mode Compilers

To take full advantage of 900 Series performance capabilities, you can recompile MPE V/E
based applications using Native Mode (NM) compilers for the 900 Series. They provide source
code compatibility with the rest of the HP 3000 family of computers. Usually, applications
require little or no code modi�cation. The NM compilers available on MPE/iX include:

HP C/iX
COBOL II/XL
HP Pascal/iX
HP FORTRAN 77/iX

Data Base Manipulations

For improved performance of database manipulations, you can move to ALLBASE/SQL, the
Native Mode Database Management System for the 900 Series. Utilities are available for
converting to ALLBASE/SQL from TurboIMAGE/XL.

Migration Restrictions

Minor restrictions may apply to migrating MPE V/E-based applications to a 900 Series
system. An application may require modi�cation if it uses:

Undocumented intrinsics
Privileged machine instructions
Unsupported hardware
Architecture-dependent information

Applications written in SPL/V, the systems programming language for MPE V/E-based
systems, can run in Compatibility Mode (CM) on a 900 Series system, but cannot migrate to

1-6 OVERVIEW

Native Mode (NM) because SPL/V has a high dependence on the MPE V/E-based HP 3000
architecture. However, you can improve the performance of an SPL/V application running in
CM by using the MPE V/E Object Code Translator.

If you require NM performance, these applications should be rewritten in HP C/iX or HP
Pascal/iX, which are systems programming languages for MPE/iX. If an application written
in a high-level language calls SPL/V procedures, you can recompile it in NM. It runs in NM
and uses a user-supplied mode switching procedure to switch to CM to call SPL procedures.

For information on less frequently encountered exceptions, refer to the Migration Series of
manuals. For information on switching, refer to Switch Programming Guide (32650-90014).

Cross-family Application Development

You can develop applications on a 900 Series system for use on HP 3000 systems that use HP
Precision Architecture (HP-PA) by using a 900 Series for centralized development. You can
compile the source code for programs written to run on a Native Mode compiler on the 900
Series system and compile it to run on MPE V/E-based systems.

Similarly, you can compile source code written to run in Compatibility Mode on the 900 Series
and compile it to run on MPE V/E-based systems. The MPE V Segmenter is supplied with
MPE/iX to facilitate cross-family development in these languages.

MPE/iX Features

The main features of the MPE/iX operating system on a 900 Series computer include:

Multiprogramming: concurrent transaction processing, data communications, on-line
program development, and batch processing.

Extended large addressing: 48-bit virtual addressing.

Demand paged virtual memory, which transparently manages virtual memory and
eliminates the need for program segmentation.

Mapped disc �les, which eliminates the need for File System bu�ering for disc �les. This
increases system performance for I/O-intensive applications.

Concurrent multilingual capability, including HP-extended versions of C, COBOL, RPG,
FORTRAN, BASIC, and Pascal.

File System, which includes �le backup, user logging, security, and interprocess
communication (IPC).

Access security and complete accounting resources.

Command interpreter, which includes user-de�ned commands (UDCs), command �les,
conditional job control, extensive on-line help facility, and descriptive error messages.

Device and �le independence, which simpli�es application development and maintenance.

I/O System, which provides input/output spooling and a tape label facility.

Complete, automatic local and remote terminal management.

Power fail/automatic restart.

OVERVIEW 1-7

Interactive Debug facility, which provides windows that allow you to simultaneously see
the environment of the program being tested. It supports breakpoints, single stepping,
calculation of expressions, macros, and command �les.

Multiprogramming

MPE/iX supports multiprogramming, the concurrent execution of multiple programs. All
system resources are available to you as if you were the only user on the system. While
one program is waiting for input, the system shifts control of the CPU to the next highest
program in the queue. In this way, activities such as transaction processing, on-line program
development, interactive data entry, data communications, and batch processing can be
concurrently performed.

MPE/iX is a multiprogramming, multiuser system. On this kind of a system, multiple users
can share code. For example, when multiple users access the BASIC/V interpreter, a separate
process is created for each one. They all use the same code (because there is only one BASIC
interpreter on the system), but each user has a unique environment created by MPE/iX.
MPE/iX completely protects one program execution from interfering with another.

Interactive and Batch Processing

MPE/iX provides interactive and batch processing. An interactive process is called a session.
A batch process is called a job.

In a session, you enter commands and data at a terminal and receive an immediate response.
This is especially useful for data entry and retrieval, program development, text editing, and
any application that is expedited by direct dialogue with the computer.

In batch processing, you submit a job to the computer. A job is a single unit composed of
commands that request various operations, such as program compilation and execution, �le
manipulation, or utility functions. While a job is processing, there is no user interaction with
the computer unless the job is set up to request information. Jobs can be scheduled to run
at lower priorities than interactive sessions and at speci�c times (for example, when system
activities are low).

MPE/iX Information Management

Commercial applications primarily use database applications. The 900 Series provides
ALLBASE/SQL, which includes TurboIMAGE/XL, a network database management
product, and HP SQL, which has a relational interface to data. ALLBASE/SQL provides a
TurboIMAGE/XL cross-development environment. The relational interface, HP SQL, is fully
compatible with the version of SQL in most common use. It provides relational access for
increased exibility.

ALLBASE/SQL and other tools form Hewlett-Packard's information management framework.
These include:

Programming languages and tools.

Reporting and presentation tools that allow access to information without programming.

1-8 OVERVIEW

A common data dictionary that provides the integration necessary to tie the system
together.

The products that meet these needs on the 900 Series are:

System Dictionary/XL, which provides programmers and system administrators with
a single source for documenting all aspects of the system, from data de�nitions to
con�guration information. This central source of information aids in developing and
maintaining applications and e�ectively managing system resources. The System
Dictionary/XL has programmatic interfaces for easy integration with other software. You
can customize System Dictionary/XL to meet your needs.

Optimizing compilers, which use HP Precision Architecture (HP-PA) to allow all
programming on the 900 Series computers to be done in high-level languages. The compilers
are integrated with MPE/iX to provide convenient access to ALLBASE/SQL and other
information managements subsystems.

VPLUS/V, which is a forms design and screen-handling tool for programmers.

Toolset/XL, which includes facilities for full screen editing, symbolic source-level debugging,
and version management of source code. It provides a high-productivity, integrated
environment for application development.

Transact/XL, which is a procedural, high-level programming language for transaction
processing applications. It provides the functions of a high-level language, such as COBOL,
combined with a comprehensive set of powerful verbs that can perform several functions in a
single call.

Self-adjusting System Tables

Most system tables in MPE/iX are self-adjusting. MPE/iX continuously monitors and adjusts
tables to �t the workload. Usually, the system manager can do this without shutting down the
system.

On-line Diagnostics for Peripherals

Hewlett-Packard Customer Engineers (CEs) are equipped with on-line diagnostic tools for
many HP peripheral devices. A CE can remotely run diagnostics without shutting down the
system.

Disc Failure Tolerance

MPE/iX allows any system disc not critical to the functioning of the operating system to go
o�-line without a�ecting the system. Users cannot access �les on o�-line discs.

Automatic Power Fail Recovery

MPE/iX and the 900 Series hardware provide automatic power fail recovery. When a power
failure starts, the system initiates a power failure procedure to preserve the operating
environment before the complete loss of power. A battery pack ensures the validity of main
memory for a minimum of 15 minutes. If power is restored within 15 minutes, the system
automatically resumes processing from the point at which the power failure occurred, and jobs
continue from the point of interrupt.

OVERVIEW 1-9

MPE/iX Transaction Management Facility

The MPE/iX Transaction Management Facility provides the following functions for
transaction-oriented applications:

Automatic transaction locking

Automatic transaction logging

Automatic rollback recovery from "soft" failures

Semi-automatic rollforward recovery from "hard" failures

These functions are described in detail in the subsections below.

Transaction Locking

A transaction is a series of data updates that must be entirely completed to obtain logical
consistency; either all or none of the updates in the series must be done. To the user, a
transaction may appear to be a single change. However, internal to the system, it may require
many changes to records in several �les or data sets.

For example, if you enter a customer order on the system with a simple command, it may
internally require updating several �les containing data on orders, customers, and inventory
requirements. The multiple changes, all of which are required for logical consistency, form one
transaction.

The MPE/iX Transaction Management Facility ensures data consistency and integrity by
providing automatic transaction locking. Transaction locking meets two criteria:

Only one transaction at a time is allowed to update a given portion of data.

All changes that are part of a transaction must be completed before the changes are
committed to disc (permanently recorded). When a transaction is abnormally terminated
before it is completed, the changes made up to that point are not committed.

MPE/iX transaction locking is based on page-level protection of the system architecture and
does not require signi�cant CPU overhead.

Transaction Logging and Recovery

The Transaction Management Facility automatically generates and maintains a transaction log
�le that records all transaction updates. Maintaining a log �le facilitates recovery from the
abnormal end of transactions and system failures. In these cases, �les can be restored to a
consistent state by copying the contents of the log �le into the data �le. This "undoes" the
actions of partially committed transactions.

System failures are either hard or soft. When a soft failure occurs, data is not altered or lost,
but some incomplete transactions may exist. In this case, the Recovery Manager portion of
the Transaction Management Facility is automatically invoked to perform recovery of the
data �le when the system is restarted. Files are restored to their original state by copying the
"before image" of data from the log �le for incomplete transactions. This is called rollback
recovery. Recovery from a soft failure is e�cient and takes a maximum of only a few minutes.
Rollback recovery is automatically performed for abnormally ended transactions.

When a hard failure occurs (for example, a disc media failure), data is lost. At system
restart, you must mount a backup tape and issue the MPE/iX command :RECOVER. The

1-10 OVERVIEW

Transaction Management Facility returns data to a consistent state by reapplying all
committed transactions in the log �le to the checkpoint presented by the backup tape. This is
called "rollforward recovery."

Transaction logging requires little CPU overhead because it is designed as an integral part of
the MPE/iX File System, utilizing the addressing and protection features of HP Precision
Architecture (HP-PA).

Simplifying a Program

The Transaction Management Facility simpli�es development and maintenance of
transaction-oriented applications by:

Maintaining recovery routines, so a programmer does not have to develop and maintain
custom ones.

Simplifying the programming task of ensuring data integrity and increasing its e�ciency.

Providing locking and logging, thus requiring the programmer to mark only the beginning
and end of transactions.

DEBUG

DEBUG is a low-level assembly language debugger, requiring some knowledge and familiarity
in the following areas to utilize:

Assembly code
Procedure calling conventions
Parameter passing conventions
HP3000 and HP Precision Architecture (HP-PA)

Hewlett-Packard o�ers two source level, symbolic debuggers, SYMBOLIC DEBUG/XL and
Toolset/XL, which you can use if you do not require assembly language debugger features.

DEBUG is an intrinsic procedure, providing privileged and non-privileged users with an
interactive debugging facility for checking out their operating environments. Using DEBUG, it
is possible to:

Set, delete, and list breakpoints in a program. The program executes until a breakpoint
is reached, then stops and passes control to the user. When you set breakpoints, you can
specify a list of commands that will automatically be executed when the breakpoint is hit.

Single step (multiple steps) through a program.

Display and/or modify the contents of memory locations. A full set of addressing modes is
o�ered, including:

- absolute CM memory
- code segment relative
- data segment relative
- S relative
- Q relative
- DB relative
- HP-PA virtual addresses
- HP-PA real memory addresses

OVERVIEW 1-11

Display a symbolic procedure stack trace, optionally displaying interleaved Native Mode
(NM) and Compatibility Mode (CM) calls. You can also temporarily set the current debug
environment back to the environment that existed at any marker in the stack.

Calculate the value of expressions to determine the correct values of variables at a given
point in a program. Values can be custom formatted in several bases.

Use full screen displays (windows) that allow you to inspect registers, program code, the
current stack frame, and the top of stack. Groups of custom user windows can be aimed at
important data blocks to dynamically monitor changing values.

Display on-line help for all commands, prede�ned functions, and environment variables.

Create and reference user-de�ned variables.

De�ne powerful, parameterized macros. You can invoke macros as new commands to
perform sequences of commands or as functions within expressions that return single values.

De�ne aliases for command and macro names.

Execute commands from a �le, record all user input to a log�le, and record all DEBUG
output to a list�le.

MPE/iX User Interface

MPE/iX has a user interface that includes a command language, on-line HELP facility,
user-de�ned commands (UDCs), and command �les.

The MPE/iX command language is processed by the Command Interpreter. It contains all
necessary commands to direct and control the system.

You can enter identical MPE/iX commands during a session or through a job; MPE/iX has no
separate control language for jobs. You can also issue MPE/iX commands in a command �le.

Actions MPE/iX commands can perform include:

Initiate and terminate jobs and sessions.

Run system programs and utilities.

Compile, link, load, run, and debug programs.

Create, maintain, and delete �les.

Display �le information.

Display job, session, or device status.

Transmit messages.

Establish communication with local and remote computers.

Control and manage system resources.

If the command interpreter (CI) detects an error in command syntax in interactive mode
(during a session), it provides a descriptive error message specifying the erroneous parameter
and prompts you to correctly reenter the command. If it detects a syntax error while running,
it lists the error on the output device and halts the job.

1-12 OVERVIEW

You can use the command language to create batch �les (also called stream jobs) that contain
control statements and variables. Execution of the commands in the �le can be altered at
execution time by using these control statements.

MPE/iX System Performance

MPE/iX provides e�cient performance through use of the mapped �le technique and
concurrent directories described in the following subsections.

Mapped Files

MPE/iX employs the mapped �le technique for performing �le access. It is an improved
version of the disc caching-capability of MPE V/E. File access e�ciency is improved when
code and data portions of �les required for processing reside in memory. Accessing memory is
faster than performing physical disc I/O operations. The mapped �le technique eliminates �le
system bu�ering and optimizes global system memory management.

File mapping is based on MPE/iX demand paged virtual memory, which uses to advantage
the large amount of virtual memory on the system. When a �le is opened, it is logically
mapped into virtual memory. An open �le and its contents are referenced by virtual
addresses. Each byte of each opened �le has a unique virtual address.

File mapping improves I/O performance without imposing additional CPU overhead or
sacri�cing data integrity and protection. Traditional disc caching schemes for increasing
I/O performance impose a CPU overhead penalty. The 900 Series hardware and system
architecture allow MPE/iX to perform �le mapping without incurring this penalty. System
hardware performs the virtual to physical address translations for locating portions of the
mapped �les, thus eliminating CPU overhead for this function.

If the required pages are not in memory, the MPE/iX Memory Manager fetches them
directly from disc and places them in the user's area in memory. This eliminates File System
bu�ering. Pages are "prefetched" to reduce the amount of physical disc I/O. Prefetching
means that the page speci�ed for fetching and the group of pages surrounding it are a fetched
all at once. This improves e�ciency because the processor is likely to require pages that are
located near each other. Two bene�ts of this are:

Eliminating unnecessary data movement in memory improves system performance.

Memory space usage is optimized.

MPE/iX �le system access intrinsics are built on the mapped �le technique. Programs using
�le access methods supported by MPE �le types and intrinsics obtain the bene�ts of �le
mapping without requiring changes.

You can directly access mapped �les when programming in languages with pointers. For
example, you can obtain the advantage of File System naming and data protection for
accessing array type structures and developing specialized access methods.

You can write programs that address �les through virtual memory, instead of calling File
System intrinsics for disc reading and writing. The �le interface provides opening and closing
of user mapped �les with normal naming and security, but with improved LOAD and STORE

speed on �le references.

OVERVIEW 1-13

Directory Entries

On operating systems that have the system directory centralized on one disc, access to
directory services for �les on any disc on the system requires serial access to the system
directory. In other words, they must occur one at a time. At peak usage times, this creates
a bottleneck due to physical contention for one disc and logical contention for one directory
user.

The space for the directory structure is spread across the volume set, not necessarily located
on one volume. The locking mechanism allows multiple readers and ensures that the proper
locks for speci�c changes in the directory structure, such as �le name insertions and deletions.

MPE/iX uses directory entries that are spread across all members of the system volume set to
speed up �le access and eliminate the physical or logical serialization imposed by a centralized
directory.

With MPE/iX, each disc in a system volume set has a directory of �les located on it. Thus,
user requests automatically go through the directories and arrive at the disc containing
the requested �les without going through a centralized directory. Multiple users can
simultaneously access a system directory.

On nonsystem volume sets, the directory is restricted to the MASTER volume of the set, so
that it is not necessary to mount the entire set at one time.

Native Mode System Components

This section describes the MPE/iX operating system subsystems important for programming
only in Native Mode (NM). For programming information on MPE/iX operating in
Compatibility Mode (CM), refer to the Migration Series of manuals. Fundamental Operating
System (FOS) is the name for the MPE/iX operating system and associated software included
in a standard 900 Series HP 3000 installation. The software that automatically comes with
MPE/iX is a collection of high-level tools that make the system easier to use. In addition,
other high-level tools are optionally available for use with MPE/iX. Collectively, these tools
include:

MPE/iX operating system

Languages:

HP C/iX
COBOL II/XL
HP Pascal/iX
HP FORTRAN 77/iX
HP Business BASIC/V (CM only)
SPL/V (CM only)
RPG/V (CM only)

Forms design and screen handling:

- forms control
- VPLUS/V (formatted data entry application)

1-14 OVERVIEW

O�ce systems:

- TDP (text editor and formatting application)
- HPSLATE
- HPDESKMANAGER (electronic mail application)
- HPWORD
- Editor (text editor application)

Development aids:

- System Dictionary/XL
- Transact/V
- Inform/V
- Report/V

Data Management:

- ALLBASE/SQL
- TurboIMAGE/XL
- Query/V (subsystem for verifying and modifying data)
- Keyed Sequential Access Management (KSAM)
- MPE/iX File System
- SORT-MERGE/XL (utility for ordering records in a �le and merging records in sorted
�les. It can sort any character sequence using any data type.)

MPE/iX also provides special purpose utilities for system administration tasks.

For example, the MPE/iX Tape Labeling Facility allows you to place labels on magnetic
tapes for identi�cation and protection.

MPE/iX provides utilities to facilitate migration of applications and databases to the 900
Series systems.

Terminal Keyboard Layouts

Hewlett-Packard terminals contain keys for the entire ASCII character set. These characters
can be displayed on the CRT screen and printed on a printer. HP terminals have three modes
of operation:

Local (not connected to the HP 3000 system)
Remote character mode
Remote block mode

Non-printable keys include the SHIFT, BACKSPACE, RETURN, and TAB keys. The �ESC�
(escape) and �CTRL� (control) keys generate special codes for terminal operation. The most
frequently used codes are the following key combinations (not case sensitive):

�CTRL�-�Y� stop subsystem activity

�CTRL�-�S� suspend output

�CTRL�-�Q� resume output

OVERVIEW 1-15

Terminals come with various memory amounts. This a�ects the amount of information you
can access at one time. When each line of the screen is �lled, the top line scrolls up to make
room for a new line at the bottom. This continues until terminal memory is �lled. At this
point, information will be lost from view when you enter another line because the line scrolled
up at the top of the memory bu�er is no longer available.

Giving Commands to MPE/iX

There are several ways to command MPE/iX: commands, command �les, and user-de�ned
commands (UDCs). These alternatives are described in the subsections below and shown in
Figure 1-4.

Figure 1-4. Commanding MPE/iX

MPE/iX Commands

MPE/iX commands perform many di�erent functions: managing �les, compiling programs,
executing programs, and so on. Many commands actually invoke subsystems, causing other
programs to run. Some commands require that you have capabilities on the system beyond
that of the normal user. For example, they may require Account Manager (AM), System
Manager (SM), or System Supervisor (OP) capability.

In a session, the command interpreter uses a leading colon (:) as a prompt character to
indicate that it is expecting you to enter an MPE/iX command. In jobs, you enter the leading
colon before an MPE/iX command to identify it. In both cases, the system disregards blanks
between the leading colon and the MPE/iX command.

1-16 OVERVIEW

The list below shows some common MPE/iX commands grouped according to similar
function.

:HELLO
:BYE

:BUILD

:FILE

:LINK

:RUN

:COPY

:RENAME

:LISTF

:PURGE

:SHOWJOB

:SHOWME

:HELP

:REDO

:TELL

:TELLOP

:SETMSG

:CCXL

:COB85XL

:PASXL

:FTNXL

:RESUME

:ABORT

BREAK key

For detailed information, refer to the MPE/iX Commands Reference Manual Volumes 1 and 2
(32650-90003 and 32650-90364).

MPE/iX Command Parameters

Some commands require or can accept parameters. Parameters given in command syntax can
have two components:

Literal information that you must enter exactly as shown in documentation. For example, in
the command

:SHOWJOB JOB=@J

JOB= is literal information.

User-supplied variable information that is speci�c for the current invocation of the
command. For example, in the command above, @J is a user-supplied variable.

For detailed information on the conventions for documenting command syntax (including
parameters), refer to "Notation Conventions" in the front of this manual.

OVERVIEW 1-17

MPE commands can have positional or keyword parameter lists. The characteristics of a
positional parameter list are:

Location of a parameter in the list is signi�cant.

Each parameter is separated by a comma (,).

If a parameter is omitted from the list, a place-holding comma must replace it, unless the
parameter is at the end of the list.

For example:

:COBOLII SOURCE,,LISTOUT

The characteristics of a keyword parameter list are:

Location of a parameter in the list is not signi�cant.

Each parameter is preceded by a semicolon (;).

It can have a positional subparameter list.

For example,

:FILE OUTFILE;DEV=LP;CCTL

is the same as

:FILE OUTFILE;CCTL;DEV=LP

Continuing an MPE/iX Command to Another Line

The maximum number of characters in a command is 256. You can continue a command on
more than one line by entering an ampersand (&) as the last nonblank character on the line
to be continued. Enter the ampersand immediately before or after a delimiter (, ; . = / or
blank).

For example:

:BUILD MYFILE;DEV=DISC &

:REC=-80

On-line Help in Using an MPE/iX Command

MPE/iX provides an on-line help facility to aid you in using MPE/iX commands. You can
easily experiment with it by typing HELP at the colon (:) prompt.

Correcting or Modifying an MPE/iX Command

MPE/iX provides a correction facility to correct the previous MPE/iX command or modify it
to use again. The :REDO command allows you to modify the previously displayed command
without having to retype the entire command. It does not cancel any action performed by the
previously displayed command.

Referring to Several Files at Once

Several generic characters can be used like wildcards in specifying a �le set or volume set.
This is especially useful in listing operations, to avoid entering exact names when you are
performing the operation on many �les with similar names. Generic characters allow you to
process an entire set of �les in one MPE/iX command, by specifying a string or character that

1-18 OVERVIEW

is common to all members of the set. You can use generic characters with some MPE/iX
commands.

The generic characters (or portions of names) are described as follows:

@ All strings up to eight characters long, including a null string.
? A single alphanumeric character.
A single numeric character.

Examples of wildcard use are:

@A@ All �lenames (in the logon account and group) that include an A. For
example, it could include the �lenames:

AARDVARK

DELTA

BACCUS

@.@.PRR All �lenames in all groups of the PROG account. For example, it could include
the �lenames:

CONTENTS.PUB.PROG

CONTENTS.MKT.PROG

CONTENTS.ENG.PROG

ABC? All �lenames (in the logon account and group) starting with ABC and ending
with any single alphanumeric character. For example, it could include the
�lenames:

ABCX

ABCY

ABCZ

XYZ#@ All �lenames (in the logon account and group) starting with XYZ, followed
by a single numeric character, and possibly ending in other characters. For
example, it could include the �lenames:

XYZ1

XYZ23

XYZ2AAA

Command Files and User-defined Command Files

Command �les and user-de�ned commands (UDCs) are �les that allow programmers to
customize their environment. MPE/iX accepts numbered and unnumbered �les composed of
commands. The commands can consist of any number of MPE/iX commands. Each command
line can be a maximum of 279 characters long. To continue a line, place an ampersand (&) at
the end of the line, after the last nonblank character. A command line can be continued up
to a maximum of ten lines, not exceeding a total of 279 characters. The maximum number of
characters on a line is 80.

A Command File is a �le that contains a single command de�nition. It is executed by
specifying its �le name. A Command File does not have a command name and is not entered
in a catalog directory. For example, entering :COB85XL, followed by a source �le name,
executes a command de�nition that invokes the COBOL II/XL compiler.

OVERVIEW 1-19

A User-De�ned Command (UDC) �le is a text �le that contains one or more command
de�nitions and with a name for each de�nition. Each de�nition is a UDC. You can use a UDC
to perform several MPE/iX commands in succession by issuing only the name of the UDC.
You can also use a UDC to disable an MPE/iX command. You can create the UDC �le by
using Editor or TDP.

Each UDC �le command de�nition in a UDC has the following components:

Head: name of the UDC (required) and parameters and defaults (optional).

Options (this portion is optional):

LIST, which lists all commands executable when the UDC is invoked.

LOGON, which immediately executes the UDC at log on.

NOBREAK, which disables the BREAK key for UDC execution.

NOHELP, which disables :HELP for UDC execution (normally :HELP lists the entire UDC �le).

Body: one or more MPE/iX commands contained in this UDC.

Separator: one or more asterisks (*) alone on a line, separating command de�nitions.

Figure 1-5 shows an example of a UDC �le containing two UDCs.

Figure 1-5. UDC File Example

This UDC �le de�nes two UDCs that accept parameters when executed. The �rst UDC
purges one or more �les. The second one runs a program. The following rules apply to
parameter speci�cations:

Parameters can have any name that starts with an alphabetic character and has no special
characters, such as $ or %.

A parameter without a default value is required to execute the UDC.

An exclamation point (!) indicates that the following string is a parameter. If no
exclamation point appears, MPE/iX processes the string as part of the command.

If the default value speci�ed for a parameter contains a special character other than $ or #,
the default must be delimited by double quotation marks (").

1-20 OVERVIEW

If a UDC calls another UDC, the called UDC must be de�ned in the UDC catalog (see
below) after the calling UDC unless recursion is speci�cally enabled.

To activate the UDCs in a UDC �le, the �le must be identi�ed to MPE/iX as a catalog. Use
the :SETCATALOG command to catalog a UDC �le. Each time you execute :SETCATALOG, the
speci�ed �le becomes the only enabled UDC �le, unless you specify that more �les should be
appended. An enabled UDC �le is frequently called a UDC catalog.

Executing :SETCATALOG without any �le names disables all UDC catalogs. You must �rst
disable the UDC catalog to save a new version of a it to the same �le name. If you do not
want to disable the UDC catalog, you can save a new version of it under a di�erent �le name.
Executing :SHOWCATALOG shows a list of all UDC catalogs (enabled UDC �les) and the UDCs
within them.

The �le named COMMAND.PUB.SYS contains a table of UDC users and catalogs. Purging or
putting a lockword on this �le disables all UDCs.

When you use a UDC, catalogs are searched for the speci�ed command name in the following
order of catalogs set at:

User level (Us)
Account level (Ac)
System level (Sy)

The order in which UDC catalogs are searched within a level is determined by the order
in which they were speci�ed in the :SETCATALOG command. Command de�nitions are
sequentially searched for execution in order of appearance in a UDC catalog.

System resources are required to manage UDCs for each session in which they are enabled.
UDCs that are automatically executed at log on cause an increase in the time required to
complete the log on. A situation where many users have several UDC catalogs (enabled UDC
�les) can have a severe negative impact on system performance.

For detailed information on command �les and UDCs, refer to Command Interpreter Access
and Variables Programmer's Guide (32650-90011).

Break Mode

When a process is in control, it reads user input and acts according to its own rules and
conventions. It is possible to temporarily interrupt the process to go back to the command
interpreter (CI) without exiting the process and having to restart it. When this occurs, the CI
is executing in break mode.

Activating the BREAK key interrupts the data communication function of the terminal. This
can suspend or terminate the process currently executing (for example, a subsystem or user
program). The program currently running is interrupted, not the actual MPE/iX command
that started execution of the program; this command may have already completed execution.
In break mode, you can enter MPE/iX commands and user-de�ned commands (UDCs). When
you press the BREAK key, the colon prompt (:) appears, indicating that your session is in
break mode.

The following MPE/iX commands can be interrupted by pressing the BREAK key. This
action aborts the output of the command, not its action:

OVERVIEW 1-21

:BYE

:HELLO

:HELP
:LISTF

:LISTVS

:REDO

:REMOTE HELLO

:REPORT

:SHOWDEV

:SHOWIN

:SHOWJCW

:SHOWJOB

:SHOWME

:SHOWOUT

:STREAM

The following MPE/iX commands can by interrupted by pressing the BREAK key. This
action temporarily suspends execution of the command; execution can be resumed by entering
:RESUME.

:CCXL

:CCXLG
:CCXLK

:COB74XL

:COB74XLG

:COB74XLK

:COB85XL

:COB85XLG

:COB85XLK

:EDITOR

:FTNXL

:FTNXLGO

:FTNXLLK

:LINK

:LINKEDIT

:PASXL

:PASXLGO

:PASXLLK

:RESTORE

:RUN

:STORE

1-22 OVERVIEW

Echo On/Off

Normally, everything you type on the keyboard is shown on the screen. In other words, the
screen echoes your typing. However, in some situations, you may not want to see your typing
appear. For example, when you are typing a password, someone looking over your shoulder
may see it or observe it on the screen if you leave the terminal. It provides better security if
the password does not appear on the screen. You can turn o� the echo feature, so your typing
does not appear, by entering

:SET ECHO=OFF

You can turn on the echo feature, so you can see what you type, by entering

:SET ECHO=ON

Accounting Structure Overview

For programming on the 900 Series HP 3000, it is important that you understand the
accounting structure. Its major components are:

Accounts
Users
Groups
Files

The accounting structure on the HP 3000 family of computers is designed for business
and industrial purposes. The ability to account for system use on a department level is a
fundamental element in business accounting. HP 3000 systems record on an account basis
the amount of CPU time, elapsed time (connect time), and disc space used. An HP 3000
computer must have a system account named SYS. This is used to store the information
necessary to running the operating system. You can add more accounts for other purposes.

A user name identi�es a valid user for an account. A group is a partition in an account for
storing �les that are logically related.

Logon and Logoff

If you are not familiar with the HP 3000 accounting structure, you can still log on and o�
the system for simple use while you are learning about the accounting structure. Simple
instructions for logging on the system are provided in To log o� the system, simply enter the
MPE/iX command :BYE.

Account

An account on the 900 Series HP 3000 provides a billable entity for accounting purposes.
Accounts can be added to or removed from a system, as needed. A system always has a SYS

account, containing operating system software, subsystem software, and system data. A
SUPPORT account contains troubleshooting information useful for providing information for
proper system support. The SYS and SUPPORT accounts are part of the system when it is
delivered. On an account basis, the system can limit:

OVERVIEW 1-23

Amount of CPU time
Elapsed connect time
Disc space used

An account name can be from one to eight alphanumeric characters long, starting with an
alphabetic character. Following is an example of a logon for user John in the account PROG.

:HELLO JOHN.PROG

As a security provision, you can assign an account password to an account. When an account
has a password, MPE/iX prompts you to enter it after you enter the :HELLO command. When
you enter a password in response to this prompt, it is not echoed on the screen as you type it.

As a short cut, you can enter the account password in the :HELLO command instead of waiting
for MPE/iX to prompt you for it. To do this, type the account password after the account
name, separated by a slash (/). When you enter a password in this way, as part of the log on
line, it is echoed on the screen as you type it and may reduce system security because it is
visible. For example, if the account PROG has an account password of XYZ you can either
wait for the password prompt or log on by entering:

:HELLO JOHN.PROG/XYZ

Figure 1-6 shows an example of the types of accounts a company might have on a system.

Figure 1-6. Accounts Example

User

Each account can have many users. A valid user name is required to log onto an account. At
least one user must be designated for an account in order to log onto it. The SYS account
automatically comes with the user name MANAGER. User names can be added to or removed
from an account, as needed. An example of a logon for a user MARY in the FINANCE
account follows:

:HELLO MARY.FINANCE

1-24 OVERVIEW

As a security provision, you can assign a user password to a user. When a user has a
password, MPE/iX prompts you to enter it after you enter the :HELLO command and the
account password, if one exists. When you enter a password in response to this prompt, it is
not echoed on the screen as you type it.

As a short cut, you can enter the user password in the :HELLO command instead of waiting
for MPE/iX to prompt you for it. To do this, type the user password after the user name,
separated by a slash (/). When you enter a password in this way, as part of the log on line,
it is echoed on the screen as you type it and may reduce system security because it is visible.
For example, if the user JOHN has a user password of BDATA you can either wait for the
password prompt or log on as follows:

:HELLO JOHN/BDATA.PROG/XYZ

Figure 1-7 shows an example of several users on an account.

Figure 1-7. User Example

Group

A group in an account allows you to store sets of �les that have something in common. You
can think of a group as a �le folder holding any �les you wish to keep together. Groups
partition sets of �les in an account. You can execute the MPE/iX command :REPORT to see a
list of all groups in the logged on account.

When an account is created, it automatically has a group named PUB. Groups can be added
to or removed from an account, as needed. As a convenience, a user can be set up to have
a home group. If you have a home group, you need not specify the group when you log on.
Otherwise, you must specify the group at log on, or you will be logged onto the PUB group, by
default.

Following is an example of a logon to the group PROJ1:

:HELLO JOHN.PROG,PROJ1

As a security provision, you can assign a user password to a group. When a group has a
password, MPE/iX prompts you to enter it after you enter the :HELLO command and the

OVERVIEW 1-25

account and user passwords, if they exist. When you enter a password in response to this
prompt, it is not echoed on the screen as you type it.

As a short cut, you can enter the group password in the :HELLO command instead of waiting
for MPE/iX to prompt you for it. To do this, type the group password after the group name,
separated by a slash (/). When you enter a password in this way, as part of the log on line,
it is echoed on the screen as you type it and may reduce system security because it is visible.
For example, if the PROJ1 group shown above has a group password of MINE you can either
wait for the password prompt or log on by entering the password as part of your logon:

:HELLO JOHN.PROG,PROJ1/MINE

The following �gure shows an example of several groups and several users on an account.

Figure 1-8. Groups Example

File Specifications

You must use a standard �le reference format to refer to a �le. If you are logged into the
account and group where the �le resides, only the �le name and lockword (if it has one) are
required. A lockword is an optional, additional security provision that the MPE/iX File
System provides for individual �les. �le level. If a �le has a lockword, you must specify the
�le name and lockword to refer to the �le, using the following format:

�lename/lockword

where �lename is a valid �le name (refer to Chapter 7) and lockword is the lockword
associated with the �le. For example, you can refer to a �le named STATUS with the lockword
MY by specifying:

STATUS/MY

1-26 OVERVIEW

Referring to a File in a Different Group

To refer to a �le in a di�erent group in the account you are logged onto, use the following
standard �le reference format:

�lename/lockword.groupname

where groupname is the name of the group where the �le resides. For example, you can refer
to the �le described in the example above, residing in a group named SEPT, by specifying:

STATUS/MY.SEPT

Referring to a File in a Different Account

To refer to a �le in a di�erent account than the one you are logged onto, use the following
standard �le reference format:

�lename/lockword.groupname.accountname

where accountname is the name of the account where the �le resides. For example, you can
refer to the �le described in the example above, residing in an account named MANU, by
specifying:

STATUS/MY.SEPT.MANU

Session and Batch Modes

This section describes how to use sessions and jobs on a 900 Series HP 3000. A detailed
description of the steps involved in program development are given in Chapter 3 "Program
Development."

The two ways to perform tasks on a Series 900 HP 3000 system are session mode and batch
mode. Session mode is interactive. In other words, you log on to the system, it prompts you
with information displayed on the screen to determine what you want to do (or tell you what
it has done), you enter information telling it what you want to do, and the system executes
your commands. Session mode is dynamic; you can submit commands that can alter the
outcome of your task, as you go.

Batch mode requires that you set up a job that you can submit all at once to the system for
processing. The job contains all the information necessary for the system to perform your
task: a log on, a list of commands to execute, and an end-of-job signal. When you submit a
job in batch mode, you cannot alter the outcome of the task. The job will run to completion
(assuming it does not end abnormally) without any opportunity for you to change the
commands in the job.

You can use the MPE/iX command :STREAM to initiate a job, once you have placed all the
instructions for the job in a �le. This job stream is independent of the session or job that
originated the �le. You can use it to initiate a job directly from a current session or from a
disc �le.

Almost all MPE/iX commands execute in either mode. Some give slightly di�erent
information depending on the mode in which they are executed, and some are totally
interactive and are ignored in batch mode.

Figure 1-9 shows a comparison of the commands that begin and end a session and job.

OVERVIEW 1-27

Figure 1-9. Session and Job Commands

Figure 1-10 shows a comparison of characteristics of a session and a job. You may not yet
be familiar with all of the terms used, but you can get a general idea of the similarities and
di�erences and refer to this �gure again when you are more familiar with the 900 Series HP
3000.

Figure 1-10. Session and Job Characteristics

You can identify sessions and jobs currently running on the system by using the MPE/iX
command :SHOWJOB. This lists all sessions and jobs, identi�es them with a unique number
(sessions start with #S, jobs start with #J), gives their state of execution, input priority, and
other pertinent information.

1-28 OVERVIEW

Converting Data Files from MPE V/E to MPE/iX

When converting �les from MPE V/E to MPE/iX, you must consider several di�erences in
data storage, including:

Floating point di�erences

Floating point, single precision di�erences

Floating point, double precision di�erences

Floating point conversion intrinsic

HP FORTRAN 77/iX native alignment

HP Pascal/iX allocation alignment of independent variables

COBOL II/XL native alignment

MPE/iX has many data type di�erences from MPE V/E, in terms of concepts of data storage,
di�erences in data storage techniques, and implications for the programmer in handling
them. For an overview of data conversion, refer to Introduction to MPE/iX for MPE V
Programmers (30367-90005). For detailed information on MPE/iX data types, refer to Data
Types Conversion Programmer's Guide (32650-90015). It describes the utilities for converting
MPE V/E binary data �les to MPE/iX native mode format.

Di�erences integral to the conversion of MPE V/E data �les to MPE/iX are:

MPE V/E and MPE/iX data variables and data structures are di�erent. MPE V/E has a
16-bit native word length and MPE/iX has a 32-bit word length.

MPE V/E and MPE/iX oating point formats di�er.

MPE/iX is the same as MPE V/E for most data conversions, except for oating-point decimal
numbers. An intrinsic called HPFPCONVERT, included in MPE/iX, converts oating-point
decimal number formats.

Data alignment and real number storage formats di�er in MPE/iX from their MPE V/E
implementations.

Data Alignment Differences

MPE V/E and MPE/iX each have a di�erent word size; MPE/iX has a 32-bit word size, and
MPE V/E has a 16-bit word size. Therefore, applications to be compiled on MPE/iX to run
in Native Mode using MPE V/E-compatible data �les, may have to select the HP3000_16
compiler directive that is provided with Native Mode compilers. This option causes the
compiler to:

Align data in records on 16-bit boundaries (as in MPE V/E), instead of 32-bit boundaries.

Selects the MPE V/E representation mode for real numbers.

Many data structures that are aligned on 16-bit boundaries on MPE V/E are aligned
on 32-bit boundaries on MPE/iX. On MPE/iX, 32-bit data types are aligned on 32-bit
boundaries, by default, to improve performance. Figure 1-11 shows the di�erences in data
alignment between MPE V/E and MPE/iX with an HP FORTRAN 77/iX example.

OVERVIEW 1-29

Figure 1-11. HP FORTRAN 77/iX COMMON Block Data Alignment Example

Native alignment for some HP Pascal/iX, COBOL II/XL, and HP FORTRAN 77/iX
data types is di�erent than that used by languages running on MPE V/E. For tables
comparing alignment by data type, refer to Introduction to MPE/iX for MPE V Programmers
(30367-90005).

If an application uses both native aligned data �les and MPE V/E aligned data �les, an
alignment directive should be speci�ed in the program record de�nitions to force MPE/iX
or MPE V/E-aligned records on a structure-by-structure basis. MPE/iX compilers o�er two
directives to specify MPE/iX or MPE V/E alignment, HP3000_32 and HP3000_16. For more
information on these directives, refer to the programmer's guide for the appropriate language
in the Language Series .

Note The HP3000_16 compiler directive maintains data alignment and format
compatibility with MPE V/E and impacts the ability to use Native Mode
(NM) data structures. Unless speci�ed otherwise, all data elements are in the
mode of the program or as speci�ed by the compiler options in e�ect.

For example, to maintain Compatibility Mode (CM) data alignment and
format and create NM data structures, you should explicitly de�ne the
individual structures to be in NM format as HP3000_32 while operating
under the HP3000_16 compiler directive. The other alternative is to create a
program that will read data in one mode and write it in the other.

Native Mode (NM) words and integers are di�erent from Compatibility Mode (CM) words.
Table 1-1 shows the proper conversions. In this manual, NM words are implied, unless a CM
pre�x is added to a term.

1-30 OVERVIEW

Table 1-1. Word and Integer Conversions

Bits Native Mode (NM) Compatibility Mode (CM)

16 1 halfword or shortint 1 CM word or integer

32 1 word or integer 2 CM words, double integers, or
double words

64 2 words 4 CM words

Integers in MPE/iX can be 16 or 32 bits long, signed, or unsigned. Signed integers are in twos
complement form. Halfword integers (16-bit) are stored in memory at even byte addresses,
and word integers (32-bit) at addresses divisible by four.

Real numbers in MPE/iX are stored in one of two oating-point formats. The two methods
of storing oating-point numbers in the MPE/iX environment are: HP 3000 format, and
according to IEEE Task P854. The default MPE/iX Native Mode (NM) real number
representation conforms to IEEE Task P854. This standard speci�es a storage format di�erent
than that used in MPE V/E-based HP 3000 systems. The real number format for a particular
application can be forced to the HP 3000 representation by specifying the HP3000 16
compiler directive. Since this compiler directive selects both MPE V/E alignment and real
number format, native aligned data must then be aligned on a per record basis.

A single source module can use only one real number format, but the HPFPCONVERT intrinsic
converts real numbers between the various formats. Separate (external) procedures may use
di�erent formats. The formats have di�erent precisions and ranges for both single-precision
and double-precision real numbers.

Because of accuracy di�erences between IEEE and HP 3000 double real numbers, the least
signi�cant digit may be lost in 16-digit real numbers. Since the HP 3000 double precision
range is smaller than the IEEE double real range, conversion from a very large or small one in
IEEE to one in HP 3000 may cause an overow or underow.

For a comparison of the real number representation on MPE V/E and MPE/iX, refer to
Introduction to MPE/iX for MPE V Programmers (30367-90005).

Figure 1-12 and Figure 1-13 show the internal representation for oating-point numbers on
MPE/iX.

Figure 1-12. IEEE Single-precision Real Number Format

OVERVIEW 1-31

Figure 1-13. IEEE Double-precision Real Number Format

Conversion from HP 3000 format to IEEE format for a single-precision real number can
present a range problem, because the IEEE range is smaller. Thus, overow can occur in
performing either of the following conversions:

From an HP 3000 single-precision real number to an IEEE single-precision real number.

From an IEEE double-precision real number to an IEEE single-precision real number.

You may have to develop new error handling code to prevent overow.

The mantissa of an HP 3000 double-precision real number provides enough bits for 16 digits
of accuracy. The mantissa of an IEEE double-precision real number provides for 15.9 digits
of accuracy. Thus, converting double-precision real numbers from HP 3000 to IEEE format
can incur an extremely small loss of numeric precision. However, if the requirements of an
application depend on the ASCII representation of oating-point results, the e�ect of this
accuracy di�erence can be important.

For example, if a program assumes 16-digit accuracy and requests 16 digits for formatting
output, with trailing zero suppression, the number 64.4 appears as 64.4 when the system is
running in Compatibility Mode (CM) and 64.40000000000001 when the system is running in
Native Mode (NM).

Rounding is frequently necessary when formatting output. In HP 3000 format, a number
equidistant from two adjacent integers rounds to the integer of greater magnitude. For
example, 1.5 rounds to 2, and 2.5 rounds to 3. In IEEE format, a number equidistant from
two adjacent integers rounds to the integer that has a least signi�cant bit of zero (in other
words, the even integer). For example, 1.5 rounds to 2, and 2.5 also rounds to 2.

Converting Files

General procedures for converting data �les from MPE V/E to MPE/iX are described
below. For detailed information on conversion, refer to Introduction to MPE/iX for MPE V
Programmers (30367-90005) or the appropriate language manual in the Migration Series .

The procedure for converting HP FORTRAN 77 binary �les from MPE V/E to MPE/iX
format is as follows:

1. Read data from �le in a subroutine with $HP3000_16 ON.

2. Pass the data to a subroutine that has $HP3000_16 OFF.

1-32 OVERVIEW

3. Call the intrinsic HPFPCONVERT to convert REALs from MPE V/E to MPE/iX oating point
format.

4. Write the data out to a new �le.

Note A subroutine that has $HP3000_16 ON cannot call the HPFPCONVERT intrinsic.

Pascal on MPE V/E and MPE/iX has the following incompatibilities due to data alignment:

MPE V/E and IEEE oating point format
Data alignment of simple variables and record elements
String format
Pointers

COBOL II on MPE V/E and MPE/iX has incompatible indexed and synchronized data items.

Data Communications

Hewlett-Packard's networked, data communications and data management products are called
HP AdvanceNet. AdvanceNet provides network services (NS) software products, including
interactive and programmatic services. NS enables Hewlett-Packard and multivendor
computer systems to communicate with each other and share resources. For detailed
information, refer to NS3000/XL User/Programmer Reference Manual (36920-90001).

Network File Transfer (NFT)

Network File Transfer (NFT) is the network service that copies disc �les from one computer
system in a network to another. NFT can transfer a �le between any two systems in a local
area network. NFT can transfer �les between two systems remote from your own or perform
local transfers on a single HP 3000. You can use NFT interactively or programmatically.

Remote Process Management (RPM)

Remote Process Management (RPM) provides intrinsics that allow a process to create and kill
other processes (that is, initiate and terminate their execution). A created process may or
may not be dependent on the creator. If it is independent, it can continue to execute after
the creator has expired. RPM permits a process to create a process and send information
to it in the same intrinsic call. You can use RPM in conjunction with Network Interprocess
Communication (NetIPC) to manage distributed applications. For detailed information on
NetIPC, refer to NetIPC 3000/XL Programmers Reference Manual (5958-8600).

OVERVIEW 1-33

Local Area Network (LAN)

NS 3000/XL is Hewlett-Packard's local area network (LAN) software services for linking
multivendor computer equipment, including MPE/iX based HP 3000 processors. These
network services (NS) run in conjunction with either of the HP AdvanceNet link products
ThinLAN3000/XL Link and StarLAN/3000 Link. The LAN link supports the NS product and
consists of both hardware and software components. NS3000/XL software services and one of
these link products combine to form a high-speed, shared-access, IEEE 802.3 LAN.

Remote File Access

The Remote File Access service (RFA) allows access to remote �les and devices. Using RFA,
you can create, open, read, write, close, and perform other manipulations on a �le residing on
a remote HP 3000 system. Since a �le can be a peripheral device, you can, for example, read
from a tape mounted on a remote system or print local data on a remote printer.

The RFA uses the same MPE/iX File System intrinsics used on a local system. They are sent
to the remote environment and executed there. A local program can call them explicitly or
use the I/O procedures speci�c to the language in which the program is written.

You can interactively access a remote �le or device if you have previously issued a :FILE

command that speci�es the remote location of the �le. You cannot directly indicate the
location in the MPE/iX or subsystem command that accesses the �le.

You can programmatically access a remote �le from a local application program once you have
established an environment on the remote node by doing one of the following:

Calling standard MPE/iX File System intrinsics.

Using I/O procedures speci�c to the language in which the program is written. If you have
issued a :FILE command specifying a formal �le designator for a remote �le or device,
then an HPFOPEN or FOPEN call in a local program can use this formal �le designator in the
formaldesignator parameter.

Remote Terminal Access

You can use the Virtual Terminal (VT) and Remote File Access (RFA) services to access
remote terminals. Use a :FILE command or an HPFOPEN or FOPEN call to indicate that the
�le you wish to access is actually a remote terminal. The remote terminal functions as a
non-session I/O device.

Remote Data Base Access

TurboIMAGE/XL is a Hewlett-Packard database management system. You can use
TurboIMAGE/XL intrinsics and utilities to access a TurboIMAGE/XL database residing on a
remote HP 3000. TurboIMAGE/XL intrinsics are sent to the remote node and executed in the
remote environment. The database should reside on an HP 3000, since other TurboIMAGE
products are not fully compatible with TurboIMAGE/XL. The database must be located
entirely on a single node.

You can obtain the information required to open a remote TurboIMAGE/XL database in a
program in three ways:

1-34 OVERVIEW

Identify the database as a remote �le in a previously executed :FILE command.

Use the COMMAND intrinsic to include :FILE information in a program.

Create a database-access �le to supply :FILE, :DSLINE, and :REMOTE HELLO commands.

OVERVIEW 1-35

2

Utilities and Tools

This section describes the MPE/iX user interface to show how user programs can
programmatically access MPE/iX features and provides an introduction to utilities and tools.
The information is presented as an overview on a conceptual level. For detailed information
on programmatic access, refer to Command Interpreter Access and Variables Programmer's
Guide (32650-90011).

Programmatic access to MPE/iX allows you to use command interpreter (CI) features in a
program without having to enter break mode. With the available techniques, you can develop
sophisticated, automated subsystems to run under MPE/iX. The techniques include:

Using MPE/iX programmatic interfaces, command �les, and user-de�ned commands
(UDCs).

Performing variable dereferencing, concatenation, string substitution, recursive
dereferencing, and expression evaluation.

Using Job Control Words (JCWs) and variables.

Using the MPE/iX Help facility for commands, command �les, and UDCs.

Programmatic Access to the Command Interpreter

Three intrinsics, COMMAND, HPCICOMMAND, and MYCOMMAND, allow programmatic use of the
MPE/iX command interpreter (CI). They allow a program other than the CI to:

Perform system services (for example, building and purging �les).

Use the entire MPE/iX CI command set, command �les, and UDCs.

Parse MPE/iX commands.

Some interactive subsystems can programmatically perform these functions without �rst
having to exit their speci�c subsystem environment (that is, enter break mode).

The intrinsics for programmatic use of the CI are:

COMMAND, which provides access to the MPE V/E subset of CI commands.

HPCICOMMAND, which provides programmatic access to most of the MPE/iX CI command
set, command �les, and UDCs.

MYCOMMAND, which provides a programmatic ability to parse a line and return one or more of
its parameters.

Command �les and user-de�ned commands (UDCs) are �les that allow programmers to
develop their own environment. These are discussed in Chapter 1. For detailed information on
command �les and UDCs, refer to Command Interpreter Access and Variables Programmer's
Guide (32650-90011).

Utilities and Tools 2-1

Concatenating Strings and String Substitution

You can concatenate a string with a pre�x or su�x. String substitution in a Command File or
a UDC parameter takes precedence over substitution of Command Interpreter-level variables.
For example,

:SETVAR x 1

:WHILE x < 10 DO

:PURGE ACCT!x

:SETVAR x x+1

:ENDWHILE

:DELETEVAR x

purges �les ACCT1, ACCT2, . . . , ACCT9.

Expression Evaluation

You can specify an expression in a Command File or a UDC parameter and an appropriate
value will be assigned to it.

Using Job Control Words (JCWs)

A Job Control Word (JCW) is one type of prede�ned variable. On MPE/iX, JCWs are a
subset of session-level variables, restricted by values and naming conventions. MPE/iX stores
JCWs as integers in the session-level variable table. You can manipulate JCWs with

JCW commands and intrinsics
Variable commands and intrinsics
IF command

The commands SETJCW and SHOWJCW correspond to the commands SETVAR and SHOWVAR used
on standard variables. DELETEVAR is used to delete JCWs. The intrinsics GETJCW and PUTJCW

correspond to the intrinsics HPCIGETVAR and HPCIPUTVAR used on CI variables. MPE/iX
distinguishes between the table entries created by the SETJCW command (or the PUTJCW
intrinsic) and those created by the SETVAR command (or the HPCIPUTVAR intrinsic).

JCW commands and intrinsics usually function like the corresponding variable commands and
intrinsics, with a few exceptions, described below.

Job Control Word Name and Type

A JCW name can be a maximum of 255 characters long. The �rst character must be
alphabetic. Other characters can be alphabetic or numeric. A JCW name cannot contain the
underscore (_) or the wildcard parameters (#, ?, [, and]). A JCW must be of type integer,
with a value in the range 0 to 65535. This is the only di�erence between JCW names and
variable names. For detailed information on naming and dereferencing variables, refer to
Command Interpreter Access and Variables Programmer's Guide (32650-90011).

Changing the Value of a JCW

Once created, you can change the value of a JCW by using variable or JCW commands
and intrinsics. If you assign a value to a JCW that is outside the valid JCW range, then
MPE/iX reclassi�es it as a standard variable when you assign such a string value to it. You
can no longer use JCW commands and intrinsics on it; you must use variable commands and

2-2 Utilities and Tools

intrinsics to display, change, or delete it. You can force reclassi�cation of a JCW by assigning
it a large numeric value. For example,

SETJCW X 99

de�nes a variable named X as a JCW with value 99.

The statement:

SETVAR X 400

gives X the new value of 400, but X remains a JCW. However, when you assign a string value
ABC to X with the statement:

SETVAR X "ABC"

then X becomes a variable and not a JCW. MPE/iX informs you of the change with the
message:

JCW HAS BEEN RE-CLASSIFIED AS A STANDARD VARIABLE

JCW and CIERROR

Two special session-level JCWs named JCW and CIERROR are also system JCWs. Therefore,
they cannot be reclassi�ed as session-level variables or deleted. You can change their values
with the SETVAR and HPCIPUTVAR commands, but only to assign a new value in the legal range
for JCWs. If you attempt to assign a value outside the range, MPE/iX issues the message:

THE VALUE MUST BE AN INTEGER IN THE RANGE 0...65535

and the initial value remains unchanged.

Reserved-word Prefixes

JCWs with reserved-word pre�xes and numeric values are:

SYSTEM 49152

FATAL 32768

WARNING 16384

OK 0

Help Facility

The MPE/iX Help facility is available for commands, User-De�ned Commands (UDCs),
command �les, and program �les. Command �les and UDCs have two special options for
the Help facility: HELP and NOHELP. NOHELP disables the Help facility to provide increased
security for UDCs and command �les. When NOHELP is active, you can execute a UDC or
Command File, but cannot display its contents. HELP is the default option. For detailed
information on this topic, refer to Command Interpreter Access and Variables Programmer's
Guide (32650-90011).

Utilities and Tools 2-3

Toolset/XL

The Toolset/XL Program Development System is a product that provides a uniform
programming environment for use with COBOL II/XL, HP FORTRAN 77/iX, and HP
Pascal/iX on the 900 Series HP 3000. It combines an integrated set of programming tools
to facilitate all phases of program development, from source code creation and modi�cation
to program compilation, execution, and testing for COBOL II/XL and HP Pascal/iX. For
HP FORTRAN 77/iX, it provides programming tools for program testing on the symbolic
debugging level.

The major features of Toolset/XL are:

User interface provides easy access to all programming tools.

Workspace File Manager allows you to generate versions of source �les requiring a minimum
of disc utilization. It stores source �les using data compression to eliminate unnecessary
trailing blanks.

Full screen editor allows you to enter and modify source code on the screen.

Program Translation Management simpli�es program compilation and execution. The
latest compile listing is saved on-line, compile time errors are located in the compile listing
by using a \point and push" technique, and the source �le can be immediately edited by
accessing the full screen editor.

Symbolic Debug signi�cantly reduces time required to locate run-time errors. You can
symbolically reference variables and locations using names in the program. You can set and
clear program breakpoints with optional frequency and proceed counts, edit source �le at a
breakpoint, display values and move new values to any data item, trace and retrace program
ow, and trace changes in data item values between paragraphs.

COBOL II/XL COPY Library Editing and Management provides a reusable code feature.

COBOL II/XL and HP Pascal/iX Data De�nition Extractor allow you to extract de�nitions
from Dictionary/V and use them to generate data declarations.

In addition to the features described above, Toolset/XL provides an on-line help facility,
a recovery feature for system failure, and the ability to directly access many MPE/iX
commands.

2-4 Utilities and Tools

Useful Tools

Several useful programming tools are available to facilitate tasks common to system
administrators, programmers, and general users. You can reduce the tedious aspects of many
repetitious tasks by using Hewlett-Packard tools to expedite forms design, screen handling,
report generation, and system dictionaries, as described below.

Forms Design and Screen Handling Tools

VPLUS/V is a comprehensive software system that implements and controls source data
entry. It also provides an interface between a terminal and any transaction processing
program.

Source Data Entry

As a source data entry system, VPLUS/V provides easy forms design with data editing and
validation built into the forms. It also provides a ready-to-use data entry program called
ENTRY that you can use to enter data without any programming e�ort. ENTRY allows you
to browse the entered data and modify it as it is entered.

Thus, source data entry through VPLUS/V can be done without programming by simply
using ENTRY. However, if you need additional or di�erent capabilities, you can write your
own application incorporating VPLUS/V intrinsics.

Transaction Processing

As an interface to transaction processing applications, VPLUS/V provides a set of intrinsics
that allows you to control forms and data on a terminal from an application program. These
intrinsics are available to programs written in any of the supported programming languages.

VPLUS/V also provides a reformatting capability. You can enter speci�cations to control how
entered data is to be reformatted and then run a program to actually reformat the data.

VPLUS/V intrinsics and the reformatting capability, either singly or in combination, provide
a \front end" to existing transaction processing applications. Thus, VPLUS/V allows you to
concentrate on processing problems rather than on editing data or controlling the terminal.

VPLUS/V Features

The main features of the VPLUS/V system are:

Forms design program called FORMSPEC that allows quick and easy forms design by using
menus at a terminal.

Batch mode management of forms �les (through FORMSPEC) that allows a forms �le to be
updated, compiled, and listed without tying up a terminal.

Advanced forms design (through FORMSPEC) that edits, formats, moves, and computes
data when the form is executed. It uses the user's native language for alphabetic
information and the local customs for numeric and date information.

Ready-to-run data entry program called ENTRY that provides immediate data entry and
modi�cation with no programming e�ort.

Flexible data reformatting design program called REFSPEC that speci�es reformatting of
entered data.

Utilities and Tools 2-5

Batch program called REFORMAT that reformats the data according to the REFSPEC
formatting speci�cations and writes it to a �le for use by an application.

Set of intrinsics that provides a powerful programming language interface to terminals,
using FORMSPEC de�nitions, from applications written in any of the supported
programming languages.

Report Generation Tools

Several useful report generation tools are available. These are described in the subsections
below.

Business Report Writer/XL

Business Report Writer/XL facilitates report development and execution. It is a menu-driven
report writing system designed to streamline the development and maintenance of large
production reports.

Its capabilities include on-line report formatting, rotational views of data, multipass reporting,
advanced calculations, and performance tuning. It provides access to TurboIMAGE/XL,
databases, MPE �les, and KSAM �les. Business Report Writer/XL, together with System
Dictionary/XL or Dictionary/V transparently resolve data de�nitions, structures, and access
paths.

Business Report Writer/XL execution programs are part of the MPE XL Fundamental
Operating System (FOS). Reports developed on Business Report Writer/XL can be run on
other HP 3000 systems without access to Business Report Writer/XL or a dictionary. By
using intrinsics with user-speci�ed parameter values, you can run reports from applications
written in other languages. Business Report Writer/XL contains a conversion utility to
automatically translate Report/V programs into Business Report Writer/XL. For detailed
information, refer to Business Report Writer/XL Reference Manual.

Report/V

Report/V is a non-procedural report writing language operative only when MPE/iX is in
Compatibility Mode. It includes a high-level language that creates reports, a compiler, and a
processor to execute the reports. It provides access to TurboIMAGE/XL databases, MPE
�les, and KSAM �les. More advanced reporting capabilities are available in Native Mode
through Business Report Writer/XL, which can automatically translate Report/V programs.
For detailed information, refer to Report V Reference Manual (32245-90001).

HP Visor

HP Visor is a terminal-based interface to HP SQL/V and ALLBASE/XL (HP SQL)
databases. It allows end users or database administrators to perform queries and generate
their own reports, without involving a programmer. It provides facilities for programmers to
use in precon�guring complex tasks or to improve productivity when working with HP SQL
databases.

HP Visor has a forms-based interface that allows the user to mark boxes and press function
keys to step through tasks such as queries or custom report generation. It also provides
additional capabilities for experienced users to directly enter HP Visor or SQL commands.

Three modules are integrated with the HP Visor interface.

2-6 Utilities and Tools

EZAccess, which enables new or infrequent users of the database to generate queries.

SQLAccess, which enables users familiar with HP SQL to use a screen-based editor to
formulate SQL queries and perform many other database operations.

EZReport, which formats and displays query results from EZAccess or SQLAccess and
allows users to customize report formats and calculate additional statistcs using the data
retrieved by the query.

System Dictionary/XL

System Dictionary/XL provides programmers and system administrators with a single source
for documenting all aspects of the system, including:

Data de�nitions.

Descriptions of databases, application systems, accounting structures.

Con�guration information.

It ensures that the information is entered in a standard format, stored in an organized
structure, and easily available to users and programs. This central source of information aids
in developing and maintaining applications and e�ectively managing system resources. System
Dictionary/XL has a programmatic interface for easy integration with other software. You can
customize it to meet your needs. Major System Dictionary/XL features are:

Entity-relationship model provides a documentation structure closely matching the user's
conceptual model.

Extensibility allows customized documentation structure.

Programmatic access for automatic access and update.

Domains eliminate name conicts.

Separate test, production, and archival versions.

Uses synonyms and aliases to provide alternative names in the dictionary from those used
by external systems.

Interactive or batch mode interface.

Accepts macros and include �les.

Reports on dictionary contents.

Input, output, and all dictionary names can be converted to local languages.

Security provides restricted access to domains and dictionary objects and de�nes user
capabilities.

Automates conversion from Dictionary/V to System Dictionary.

Creates IMAGE schemas and root �les from dictionary de�nitions and produces dictionary
de�nitions from an IMAGE root �le.

Loads information about VPLUS/V forms �les into the dictionary.

Generates de�nitions for HP COBOL II/XL COPY libraries from System Dictionary
de�nitions (this is part of a separate product called COBOL II/XL De�nition Extractor).

Utilities and Tools 2-7

A data dictionary is not an alternative to a database management system (DBMS). A
dictionary manages information about data on the system, while a DBMS manages the data
itself. A DBMS schema may contain some information on the format and usage of the data.
However, dictionary information is more extensive and easily usable.

In addition to documenting IMAGE databases, System Dictionary can describe MPE �les,
KSAM �les, VPLUS/V forms �les, programs, network device con�gurations, and other system
components. It can also document the relationships among components.

For detailed information, refer to one of the following manuals in the Tools Series:

HP System Dictionary/XL COBOL De�nition Extractor Reference Manual (32256-90001).

HP System Dictionary/XL General Reference Manual (Volumes 1 and 2) (32256-90004 and
32256-90005).

HP System Dictionary/XL Intrinsics Reference Manual (32256-90002).

HP System Dictionary/XL SDMAIN Reference Manual (32256-90001).

HP System Dictionary/XL Utilities Reference Manual (32256-90003).

Editor

The Editor is an HP 3000 subsystem that runs on MPE operating systems. It is a
line-oriented text editor used to create and manipulate ASCII �les. Files can be source
programs, job streams, or text material.

You enter commands and lines of text through an input �le. The Editor sends messages and
prompts in an interactive session by writing to an output �le. You issue Editor commands
that operate on an Editor work �le, which is a temporary �le especially created for this
purpose. Each operation performed in the Editor manipulates the work �le. A permanent text
�le is created as the result of saving the work �le. Until you keep the contents of the work �le,
no permanent text �le exists. If you are updating an existing text �le, it remains unchanged
while you make the changes on the temporary work �le copy. The original permanent text �le
is overwritten only when you save the work �le.

The work �le is created as a temporary �le and is deleted when you make a normal, orderly
exit from the Editor. If your edit session ends abnormally, the temporary work �le is saved
as a specially named �le and is still available. This is called a \K" �le; the �le name has the
form

Kdddhhmm

where ddd is the Julian day, hh is the hour, and mm is the minute at which the session
abnormally ended.

You can use the Editor command VERIFY to determine all aspects of the Editor's operating
environment, including the location of the work �le pointer. For example, you can determine
the increment for line numbers, page margins, record length, total length of work �le,
format, tabs, and other attributes of the environment. Editor is described in the EDIT/3000
Reference Manual (03000-90012).

2-8 Utilities and Tools

SORT-MERGE/XL

SORT-MERGE/XL is an MPE/iX subsystem that allows you to sort one or more �les or
merge several sorted �les to form one �le in a speci�ed sequence. SORT-MERGE/XL changes
the order of the records from the input �le according to your speci�cations and writes them to
the output �le.

You can use SORT-MERGE/XL interactively or programmatically. Use the SORT-MERGE/XL
intrinsics for programmatic use. You must specify the input and output �les and the sorting
(or merging) keys. The collating sequence defaults to ASCII unless you specify otherwise. For
detailed information on SORT-MERGE/XL, refer to SORT-MERGE/XL Programmer's Guide
(32650-90080).

Key

A key is the section of the record that SORT-MERGE/XL uses to determine the order in
which input records are to be rearranged for output. It is a record �eld you specify by stating
the position of the �rst byte and the number of bytes in the �eld. The key applies to the same
portion of a record for each record in a �le. The data format for that portion must be of the
same type in all records.

You can specify multiple keys. The �rst one you enter becomes the major key. SORT-
MERGE/XL uses the major key to rearrange the records. If the content of two records is
the same in a key �eld, SORT-MERGE/XL uses the content of the next speci�ed key to
determine which is written to the output �le �rst. If the content of all the key �elds for two
records is identical, then SORT-MERGE/XL preserves the order found in the input �le when
it writes to the output �le.

Ordering Sequence

SORT-MERGE/XL arranges records in the output �le according to an ordering sequence
based on the value of data in the keys. The individual bytes in the key de�nitions determine
these values, based on their positions in a collating sequence.

Collating Sequence

The collating sequence can be ASCII, EBCDIC, a native language, or user-de�ned. ASCII and
EBCDIC are the basic collating sequences. Native language collating sequences apply to keys
of type CHARACTER. You can specify the rearrangement to be in ascending or descending order,
based on the appropriate collating sequence.

Utilities and Tools 2-9

DISCFREE

DISCFREE is a utility that reduces the amount of fragmentation on a disc. Fragmentation is
a term used to describe the extent to which �les are physically divided up on a disc. As disc
space becomes fragmented, smaller and smaller amounts of contiguous space are available, and
�les must be broken into smaller and smaller pieces to �t. Fragmentation has a negative e�ect
on system performance and is highly undesirable.

You can use DISCFREE to:

Determine free space on the disc.

Perform a START NORECOVERY to correct fragmentation.

Obtain a detailed format of free space (HISTOGRAM) or free space allocation
(ALLOCATION) on discs.

For more information on using DISCFREE, refer to Volume Management (32650-90045).

FCOPY/XL

FCOPY/XL is a utility program on MPE/iX that allows you to copy data from one �le to
another. You can copy the content of an entire �le or a selected portion of a �le from any
supported input device to any supported output device. Supported input devices are disc,
magnetic tape, terminal, and tape cartridge. Supported output devices are disc, magnetic
tape, terminal, tape cartridge, and line printer.

FCOPY/XL's basic functions include:

Making multiple copies of �les

Making account-independent magnetic tape copies of disc �les

Transferring programs or data from one medium to another (for example, from magnetic
tape to disc)

FCOPY/XL has many features that expedite �le manipulation. These include:

FCOPY/XL code translating function, which converts data from one computer code system
to another as part of a copying operation. FCOPY/XL can translate �les between ASCII
and EBCDIC or BCDIC formats. You can use this feature to prepare magnetic tapes to
be used at di�erent computer installations or to incorporate magnetic tapes from other
installations into your 900 Series HP 3000 system. FCOPY/XL can translate between
uppercase and lowercase alphabetic characters. This is useful for a peripheral that has only
an uppercase character set.

FCOPY/XL subset function, which allows you to perform operations using a speci�ed
portion of a �le. You can designate the �le subset as a range of contiguous records or as all
records containing a speci�ed data item in speci�ed columns. This is useful for separating a
�le into several separate �les or copying or displaying only speci�c records of a �le.

FCOPY/XL skip end-of-�le function, which allows you to position magnetic tape to the
exact �le where you want to read or write.

2-10 Utilities and Tools

FCOPY/XL display functions, which show numeric codes and corresponding character
symbols, thus allowing you to examine the contents of �les at a terminal or on a printer list.

You can also operate on multiple �les and multiple tapes. You can interactively invoke
FCOPY/XL. For detailed information on using FCOPY/XL and syntax, refer to FCOPY
Reference Manual (03000-90064).

Utilities and Tools 2-11

3

Program Development

The required elements for running a program are:

Data space (for input, output, and computations)

Instructions (machine readable code and constants)

System routines (for example, input and output)

Program development is a term for taking a program design, on paper, to the point where it is
machine readable and functions reliably.

Program components are data and code. When a program is running, instructions and data
are fetched from main memory to the CPU; data may be stored back into main memory
for later use. Code and data must be in main memory when required for execution. CPU
registers keep track of the location of such information as:

Next instruction to execute

Program status

Data calculations

The major steps for developing a program are:

1. Writing: design the program and enter the source code in a text �le.

2. Compiling: translate source code to machine readable instructions.

3. Linking: bind all resources necessary for the program's code to run the program.

4. Run: execute the program.

These steps are described in detail in the subsections below. Figure 3-1 shows a summary of
these steps.

Figure 3-1. MPE/iX Program Development

Program Development 3-1

Writing a Program

You can write a program with any text editor or word processor. MPE/iX provides two
facilities for entering text that you can use to create a source �le for a program: Editor and
Toolset/XL. For an overview of Editor and Toolset/XL, refer to Chapter 2, "Utilities and
Tools." Since these facilities can be used for writing documents, memos, and programs, the
output is called text �les. Although the source code for a program is a text �le, this guide
refers to it as a source �le for program development purposes.

How to Use Intrinsics

Many programs use low-level, system supplied procedures or subroutines to handle recurring
tasks. On MPE/iX, these are performed through a set of procedures called intrinsics, which
are an integral part of the operating system. Intrinsics are always available to any process
on the system and allow a program to gain access to system services. Tasks that intrinsics
provide include:

Accessing and alteration of �les (for example, writing to a �le)

Requesting of utility functions (for example, perform ASCII/binary number conversion)

Access to system resources (for example, obtain system timer information)

You can manipulate and manage processes and system resources by means of intrinsics,
provided you have the required execution privileges. Many intrinsics return values to the
caller. Most do this through parameters; some, through functional returns. Most intrinsics
are coded in HP Pascal/iX (one of the systems programming languages for the 900 Series HP
3000) and are de�ned by a procedure declaration consisting of:

Procedure header, containing the procedure name and type, procedure de�nitions, and other
information about the procedure.

Procedure body, containing executable statements and declarations local to this procedure.

Intrinsics work like user-written procedures, except that the details of performing the task are
invisible to you.

Note Most intrinsics are callable from any language supported on MPE/iX.

The MPE/iX intrinsic mechanism provides exible and convenient access to intrinsic routines
from various languages. In some programming languages, you need not (or cannot) give
descriptions for procedures that are external to your program. When you designate that an
external routine is an intrinsic, the compiler uses the Intrinsic Mechanism to correctly invoke
the routine by:

Providing a consistent intrinsic interface

Ensuring proper data type conversion

Generating proper reference parameter addresses

Ensuring that the intrinsic is properly called

3-2 Program Development

Although intrinsics usually refer to system routines, you can de�ne routines that you want
to access as if they were intrinsics and then place them in new or existing intrinsic �les and
libraries.

You invoke an intrinsic by calling it from within a program. In HP C/iX, HP Pascal/iX,
COBOL II/XL, and HP FORTRAN 77/iX programs, you explicitly call an intrinsic. The
Intrinsics Mechanism facilitates the declaration of system intrinsics. All MPE/iX intrinsics are
processed as external procedures by user programs.

Before you can call an intrinsic from a program, you must declare it in all languages by using
an intrinsic declaration statement. The format varies depending on the language. Refer to the
appropriate language programming guides for details on how to call intrinsics. For detailed
information on intrinsics and intrinsic declarations, refer to MPE/iX Intrinsics Reference
Manual (32650-90028).

Compiling a Program

When you have saved the program source code in a �le, it must be compiled; translated
into machine readable instructions in a program �le. The MPE/iX Native Mode language
compilers available for this purpose are HP C/iX, HP Pascal/iX, HP COBOL II/XL, and HP
FORTRAN 77/iX. Commands are available to:

Compile, link, and execute a program, in one command
Compile and link a program, in one command
Compile a program

An overview of these commands is given later in this section. For detailed information on
them, refer to :

HP C/iX Reference Manual Supplement (31506-90001).

HP Pascal Programmer's Guide (31502-90002).

HP COBOL II/XL Programmer's Guide (31500-90002).

HP FORTRAN 77/iX Programmer's Guide Supplement (31501-90002).

Compiler Input

Follow the appropriate instructions for the language you are using; HP C/iX, HP Pascal/iX,
HP COBOL II/XL, or HP FORTRAN 77/iX. For example, to compile a program named
MYPROG in HP Pascal/iX, enter:

:PASXL MYPROG

For further instructions on compiling, refer to:

HP C/iX Reference Manual Supplement (31506-90001).

HP Pascal Programmer's Guide (31502-90002).

HP COBOL II/XL Programmer's Guide (31500-90002).

HP FORTRAN 77/iX Programmer's Guide Supplement (31501-90002).

MPE/iX Commands Reference Manual Volumes 1 and 2 (32650-90003 and 32650-90364).

Program Development 3-3

Compiler Output

The compiler can write compiled code in a relocatable object �le, generate a source code
listing, and generate an error list. Unless you specify di�erently, the compiler writes the object
�le to the standard �le $NEWPASS, which is renamed $OLDPASS when the compile is completed
and $NEWPASS is closed. The compiler writes the source code and error list to $STDLIST.

Compiler Operation

The compiler reads a source �le as input, performs a translation to object code, and writes
the resulting compiled code in relocatable object modules. The number of modules in a �le is
compiler dependent. MPE/iX compilers usually produce one relocatable object module in a
relocatable object �le. The internal structure of a relocatable object module is common to all
compilers that generate Hewlett-Packard Precision Architecture (HP-PA) code. A relocatable
object module contains a combination of code and data for all procedures in the source
�le that was the compilation unit. A relocatable object module is the smallest unit that a
compiler can produce or the Link Editor can manipulate.

A source �le with several procedures in it compiles all of them into one relocatable object
module. The procedures within the relocatable object module cannot be replaced or purged
individually.

When a large program is divided into several source �les, each one can refer to external
procedures (subroutines or variables that are de�ned in another �le). Because MPE/iX
compilers process only one source �le at a time, external procedure references cannot be
resolved at compile time. They are resolved at link time, when all of the program components
are brought together. The compiler simply assigns a �x-up request (frequently called a
relocatable address) to each external reference, indicating the relative position of each
subroutine or variable in the relocatable object module.

Note A relocatable object module on MPE/iX corresponds to a relocatable binary
module (RBM) on MPE V/E, with the following exceptions:

A relocatable object module can contain zero, one, or several procedures,
while an RBM represents only one.

A relocatable object module is complete in itself and can stand alone as an
independent �le, while an RBM can exist only as part of an MPE V/E user
subprogram library (USL) or a relocatable library (RL).

To separate relocatable object modules for two procedures into di�erent relocatable object
�les, you must put the procedures in separate source �les and compile them individually. You
can gather them together at link time. Figure 3-2 shows an MPE/iX Native Mode compiler
producing a relocatable object module.

3-4 Program Development

Figure 3-2. Compiler Producing Relocatable Object Modules

A relocatable object module is an independent �le. It may not require resources such as
relocatable libraries (RLs) and links to other relocatable object modules, although these are
made, when necessary, at link time. External resources (usually system routines) are acquired
at run time.

A relocatable object module contains the following information, described in detail in the
subsections below:

Compiled code (machine instructions) for all procedures in the source �le

Information on data variables to be used

External references (resources required to run the program)

The compiler generates a symbol table in each relocatable object module. It lists all the
procedures and variables that are de�ned in the module and may be required by other
modules at link time and all those that are referenced in the module, but not de�ned there.

Program Development 3-5

The compiler assigns a �x-up address to each de�ned subroutine or variable symbol, indicating
its position relative to the beginning of the module.

Compiled Code

A compiler segregates code and data into separate areas in a relocatable object module. The
individual compiler determines how compiled code is organized within it and the content is
compiler dependent. Data constants are stored in the relocatable object module along with
code and, thus, are non-modi�able. To change compiled code, you must recompile the entire
relocatable object module.

Data Variables Information

A relocatable object module contains information on data requirements. Usually, it describes
data types and required data space. The exact type of information is compiler dependent.
It is used when initialization of variables is requested or when the data space has a common
variable, which is a variable that several pieces of code can share.

Unresolved References

Because a compiler processes one source �le at a time, it cannot resolve external references,
determine parameter compatibility with them, or analyze actual data. This must be resolved
at link time or run time. The compiler simply lists external references required for execution
in a symbol table located in the relocatable object module, allowing you to compile a program
in several pieces by separately compiling several source �les. The symbol table lists all
subroutines and variable names that are de�ned by the relocatable object module.

Compiler Libraries

Compiler libraries are used at run time by every program. On MPE/iX, they are stored in a
library named XL.PUB.SYS.

Command to Compile Only

The command to compile a program (without linking, loading, and running it) is the
command, followed by an optional list of �le names. The commands are:

:CCXL
:COB85XL
:FTNXL
:PASXL

If you omit a �le from the list, a standard default �le is used. The standard default �les are:

$STDIN text�le

$NEWPASS object�le

$STDLIST list�le

If you fail to supply a relocatable object module, a compiler opens a new �le named $NEWPASS
and designates it to be a relocatable object module. At the end of the compilation, $NEWPASS
is automatically renamed $OLDPASS and saved. Unless you designate di�erently, the compiler
listing produced by the compilation is output to your job or session list device, so you can see
any errors.

3-6 Program Development

You can obtain two types of output from a compiler, aside from the compiler listing of errors:

Source code translation of the output to a relocatable object module.

Source listing, with various map and table options.

Compiler Control

If you wish only to compile a program, without linking and running it, you can use the
"compile only" command for the appropriate language. These commands allow you to provide
several optional parameters that specify the name of the text�le (source �le), object�le
(relocatable object module), and list�le. The text �le contains the source code for the
program. The relocatable object module will contain the output from the compile. The
list�le, which is usually on a terminal or printer, will reect the progress of the compile.

When source code has been successfully compiled and you have an error-free relocatable
object module, you are ready to link a program �le from information in one or more
relocatable object modules. A software product called Link Editor performs this operation.

Linking a Program

Many executable programs are originally generated from more than one source �le. On
MPE/iX, each source �le is compiled separately to produce a relocatable object module.
The linking phase of program development makes a relocatable object �le into an executable
program �le. It can also bring together separately compiled relocatable object modules into
an executable program �le.

Use the MPE/iX command :LINK to automatically access Link Editor to create an executable
program �le from one or more relocatable object modules.

Note Link Editor on MPE/iX replaces Segmenter on MPE V/E. You can still use
Segmenter in MPE/iX Compatibility Mode. For detailed information, refer
to MPE Segmenter Reference Manual (30000-90011). For an explanation of
the di�erences between Link Editor and Segmenter, refer to Link Editor/XL
Reference Manual (32650-90030). :LINK is the MPE/iX counterpart to :PREP

on MPE V/E systems. However, it operates di�erently and has di�erent
options. For an explanation of the di�erences between :LINK and :PREP, refer
to Link Editor/XL Reference Manual (32650-90030). Figure 3-3 shows the role
of :LINK and Link Editor in MPE/iX.

Program Development 3-7

Figure 3-3. Linking and Using User Libraries

:LINK operates on one or more relocatable object modules created by a native compiler to
perform the following tasks:

Search one or more relocatable libraries (RLs) and resolve references to them in any of the
relocatable object modules being linked.

Resolve references among the relocatable object modules.

Merge all the relocatable object modules associated with one program to create an
executable program �le.

If you use language commands that compile, link, and execute in one command (for example,
:PASXLGO and :COB85XLG) or compile and link in one command (for example, :PASXLLK and
:FTNXLLK), then linking is automatic. When you compile separately, you can use the MPE/iX
command :LINK to produce an executable program �le. Use this method when you want
to use values di�erent from standard Link Editor defaults. :LINK invokes Link Editor and
passes the speci�ed parameters to it. (An analogous LINK command exists in Link Editor; the
MPE/iX command :LINK simply provides a short cut.)

3-8 Program Development

Creating Executable Program Files

The MPE/iX command :LINK creates a load module (an executable program �le). The
:LINK command invokes Link Editor, which is an MPE/iX subsystem that prepares compiled
programs for execution and maintains libraries. When invoked by using :LINK, Link Editor
resolves external references in relocatable object modules by merging relocatable object
modules to produce an executable program �le containing all of the code and data that was in
the relocatable object modules.

It assigns �nal addresses to each symbol (for a variable or procedure) to ensure that none
overlap each other in the executable program �le. These addresses are called virtual addresses,
because they are still subject to a �nal relocation when the program is loaded into physical
memory. Once virtual addresses are determined, Link Editor can resolve many of the
references that could not be resolved at compile time, because the symbol tables from all of
the relocatable object modules have been merged to one table. You can specify the relocatable
libraries to search for unresolved references at link time. Any remaining external calls must be
resolved at load time.

:LINK parameters can specify indirect �les. An indirect �le is a �le list contained in an ASCII
�le. For example, in the :LINK command, an indirect �le can be used to specify one of the
following lists:

Files to link

Relocatable libraries (RLs) to merge

Executable libraries (XLs) names to put in a program header

For an overview of Link Editor, refer to Chapter 4. For detailed information on :LINK and
Link Editor, refer to Link Editor/XL Reference Manual (32650-90030).

You can request options at link time to:

Produce a program �le map.

Search speci�ed relocatable libraries (RLs) for any required code not found in the
relocatable object module.

Give the executable program �le certain privileges and capabilities.

Symbol Listing

Example 3-1 shows a source �le named EX1SRC. An executable program �le has been created
for EX1SRC named EX1PROG.

Program Development 3-9

IDENTIFICATION DIVISION.

PROGRAM-ID. EX1

ENVIRONMENT DIVISION.

INPUT-OUTPUT DIVISION.

FILE-CONTROL.

SELECT IFILE ASSIGN "IFILE".

SELECT PFILE ASSIGN "PFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE.

01 IREC.

05 NAME PIC X(30).

05 SOC-SEC PIC X(9).

05 HIRE-DATE.

10 MO PIC XX.

10 DA PIC XX.

10 YR PIC XX.

05 SALARY PIC S9(6).
05 PIC X(29).

FD PFILE.

01 PREC.

05 SOC-SEC PIC X(9).

05 PIC XX.

05 NAME PIC X(30).

05 PIC XX.

05 HIRE-DATE.

10 MO PIC XX.

10 PIC X.

10 DA PIC XX.

10 PIC X.

10 YR PIC XX.

05 PIC X(81).

01 HREC.

05 HSOC-SEC PIC X(11).

05 HNAME PIC X(32).

05 HHIRE-DATE PIC X(89).

Example 3-1. Source File Example (page 1 of 2)

3-10 Program Development

WORKING STORAGE SECTION.

01 LNCNT PIC S9(4) BINARY VALUE 60.

01 W-DATE.

05 WYR PIC XX.

05 PIC X(4).

PROCEDURE DIVISION.

P1.

ACCEPT W-DATE FROM DATE.

OPEN INPUT IFILE OUTPUT PFILE.

PERFORM WITH TEST AFTER UNTIL SOC-SEC OF IREC = ALL "9"

READ IFILE

AT END MOVE ALL "9" TO SOC-SEC OF IREC

NOT AT END

IF WYR = YR OF IREC THEN

ADD 1 TO LNCNT

IF LNCNT > 50 PERFORM HEADINGS END-IF

MOVE SPACES TO PREC

MOVE CORR IREC TO PREC
WRITE PREC AFTER ADVANCING 1 LINE

END-IF

END-READ

END PERFORM

CLOSE IFILE PFILE

STOP RUN.

HEADINGS.

MOVE "SOC-SEC" TO HSOC-SEC.

MOVE "NAME" TO HNAME.

MOVE "HIRE DATE" TO HHIRE-DATE.

WRITE PREC AFTER ADVANCING PAGE.

MOVE 0 TO LNCNT.

Example 3-1. (page 2 of 2)

Program Development 3-11

The commands

:LINKEDIT

LinkEd> LISTPROG EX1PROG

invoke HP Link Editor/XL and create a program map displaying the symbols in EX1PROG, as
shown in the following example:

PROGRAM : EX1PROG

XL LIST

CAPABILITIES : BA, IA

HEAP SIZE :

STACK SIZE :

VERSION : 85082112

Sym C H X P Sym Sym Sym Lset

Name Type Scope Value Name

---- - - - - ---- ----- ----- ----

$START 0 3 3 sec_p univ 000059B7

_start 0 3 3 sec_p univ 00005A07

ex1 0 3 3 pri_p univ 000059EB

M$1 0 data local dp+00000000

In this program map, the portion preceding the symbol table is the header, which provides
general information about the executable program �le:

PROGRAM names the executable program �le.

XL LIST shows the names of executable libraries speci�ed in the XL parameter of the LINK
command.

CAPABILITIES shows the capabilities assigned to the program in the CAP parameter of the
LINK command.

HEAP SIZE shows the value speci�ed in the NMHEAP parameter of the LINK command.

STACK SIZE shows the value speci�ed in the NMSTACK parameter of the LINK command.

VERSION shows the executable program �le format version.

The header information is followed by a list of symbols in the executable program �le. For
information on understanding the symbol listing, refer to Link Editor/XL Reference Manual
(32650-90030).

3-12 Program Development

Loading and Running a Program

The loader performs the following tasks:

Loads the executable module into virtual memory locations.

Updates addresses contained in an executable object module with the actual memory
addresses.

Resolves unsatis�ed external references to executable libraries. If any unsatis�ed external
references remain, the loader aborts.

The loader loads executable libraries to resolve external references by linking the import
requests of the unresolved reference to an export de�nition contained in the executable
library. The actual link is made by pointer reference to shared code. No object module in an
executable library can have access to the caller's data without passing parameters.

The �rst step in running a program is to load it. The MPE/iX Loader performs the �nal step
in preparing a �le for execution in Native Mode and Compatibility Mode. When operating
in Compatibility Mode, the loader simulates the MPE V/E Loader, with only the changes
necessary to make it run.

MPE/iX Loader input consists of an executable program �le and an optional set of executable
libraries.

The loader initializes code and data to create table entries needed to execute or access the
code and data and creates links to connect program references to executable libraries.

A program load performs the following tasks:

Maps executable module into virtual memory by converting the code relative addresses to
absolute addresses. (Code relative addresses are those which are relative to the beginning of
the executable program �le.)

Changes the access rights of pages that contain code. Code is executed without copying it;
it is mapped to virtual memory. Write access to program code is not necessary on MPE/iX;
only read and execute access is granted to code pages.

Creates global data areas for the program and each module in referenced executable
libraries.

Copies global data initialization information into process data space and sets the
appropriate register to point to it.

Generates external reference list and attempts to locate all entries in the list.

Program Auxiliary Header

The MPE/iX program auxiliary header resides in an executable program �le, is generated by
HP Link Editor/XL, and is used by the loader. It speci�es the following information:

Primary entry point name
UNSAT procedure name
XL LIST (the list of XLs speci�ed at link time)
Program capabilities
Maximum stack and heap sizes

Program Development 3-13

MPE/iX allows you to change the speci�cations listed above at load time, except the primary
entry point name and program capabilities. Any information you specify at run time overrides
the speci�cations given by HP Link Editor/XL.

If the program auxiliary header is not speci�ed, the loader uses the default values for the :RUN
command. Libraries speci�ed at run time take precedence over those speci�ed at link time.

Using Executable Libraries

On MPE/iX, you can run a Native Mode program and specify the use of multiple libraries
with di�erent names, rather than just one executable library (XL) at a time.

The syntax for running a program that utilizes one or more executable libraries is as follows:

:RUN prog; XL = "xlib1[,xlib2][,xlib3] . . . "

In this syntax, xlib1 , xlib2 , xlib3 , . . . are replaced by the names of the libraries you want to
execute and prog is a Native Mode program name.

You can specify any number of XLs, up to a maximum limit of 288 characters for the
complete command. You can use any valid �le name for an XL. The system library is added
to the end of the list by default. However, if you specify it, you must make it the last library
listed. XLs that you specify at run time override those speci�ed at link time.

Searching Executable Libraries

The following guidelines apply to searching executable libraries (XLs):

The library list can be speci�ed at Link time, but is not actually used until run time.

Run-time libraries can appear only once in the :RUN command.

You must list libraries in order of increasing privilege level.

If the system library is not speci�ed, the system automatically adds XL.PUB.SYS and
NL.PUB.SYS as the last libraries to search.

UNSAT Procedure

You can load a program that has one or more referenced external procedures that cannot
be located by specifying an UNSAT procedure. This is a dummy procedure speci�ed in the
UNSAT parameter of the :LINK command. This procedure is substituted for the missing library
routine. You can set up the procedure to contain statements that facilitate program execution
in the absence of the real routine. For example, the execution of the UNSAT procedure could
print a statement informing you that it was called.

Note The content of an UNSAT procedure determines whether or not a program
can continue to run after the UNSAT procedure is called.

When the loader encounters an UNSAT procedure, it uses it to resolve all remaining
unresolved references. The UNSAT procedure iself may be written in any language; however,
it must be compiled and put into one of the executable libraries that is speci�ed at run time.
Figure 3-4 shows an example of using an UNSAT procedure in a program.

3-14 Program Development

Figure 3-4. UNSAT Procedure Example

System Libraries

System library characteristics include the following:

They are loaded in system space.

Processes using the same object module share code, global data, and binding.

Object modules can reference only themselves or other system library object modules.

Cannot use UNSAT procedures.

System libraries are the only libraries that can contain both system and nonsystem object
modules. (A nonsystem object module shares only the code with other processes. Its data
and binding are unique to each process that references it. A nonsystem object module
is loaded once for each process that uses it.) The Native Mode system library is named
NL.PUB.SYS. The Compatibility Mode system library is named SL.PUB.SYS.

Mixing Execution Modes

While the operating system is executing for a process, the process may switch execution
modes. It can alternate repeatedly between Native Mode (NM) and Compatibility Mode
(CM). MPE/iX provides switch stubs to allow NM programs to access CM intrinsics. The
operating system intrinsic call determines when to use the NM Executable Library (NL) or
the CM Segmented Library (SL).

The NM intrinsic �le is SYSINTR.PUB.SYS; the CM intrinsic �le is SPLINTR.PUB.SYS.

You can set up a Native mode program to call procedures that are in a CM Segmented
Library (SL) by using the switch intrinsics. This requires that the program specify the switch
stub. The switch intrinsic uses the LOADPROC procedure to �nd the CM procedure. For

Program Development 3-15

detailed information on the switch subsystem and programmatic access through switch stubs,
refer to Switch Programming Guide (32650-90014).

Virtual Memory and Demand Paging

When a program is running, only part of it is needed at any one time. To save space in main
memory, MPE/iX brings pieces of a program in, as needed for current execution. It divides a
program into �xed-length pieces called pages (for a description of pages, refer to Chapter 1).
The remainder of the program can be stored on a high-speed device (for example, a disc) that
can act as an extension of real memory. This extension is called virtual memory. The use of
virtual memory reduces to a minimum the problem of application program size compared to
available memory size, because it eliminates the requirement for loading all code and data into
main memory at once.

LMAP: Load MAP

An LMAP facilitates code management by listing a loaded program. It describes the spaces
loaded for a process and the linkages used to connect the external references of the process for
the program and each library speci�ed by the user. To produce a load map (map of a loaded
program), specify the LMAP parameter of the :RUN command. To print an LMAP, use :FILE
to de�ne the �le with the formal �le designator LOADLIST as a line printer device �le. For
detailed information refer to the MPE/iX Commands Reference Manual Volumes 1 and 2
(32650-90003 and 32650-90364). A load map can also help to determine if you have achieved
good localization. An LMAP shows:

File name and type of �le (program or library)
Number of external references a program �le makes
Type of library from which each call is resolved

Load-time Binding Sequence

The loader assigns virtual addresses and makes an executable program �le into a runnable
process.

Running a Program

When a program has been successfully linked, you can load it and execute the :RUN command.
At this stage of operation, the program is called a process. A process is a unique execution of
a particular program by a particular user at a particular time. If you change even one element
of a program, it becomes a di�erent process than it was before.

When you execute a program, a piece of software called the LOADER starts the process
on the system. The loader must resolve any external references in the program by using
executable libraries.

MPE/iX is a multiprogramming operating system, which has many processes competing for
CPU time. Only one process can execute at a given instant in time. When a program has had
external references resolved it is ready to execute. It can now compete with other processes
for the resources of main memory and CPU time.

The :RUN command requires you to specify the �lename of the program and allows you to
specify many other options, such as obtaining a program load map. You can specify values for
process stack and heap size to override values speci�ed at the link stage. There are facilities

3-16 Program Development

for passing information to a program at run time and determining which libraries are searched
to resolve external references.

Multi-programming Environment

MPE/iX is a multiprogramming environment in which one process has control of the CPU at
any given instant. All other processes are suspended to allow time for this to occur, and the
processes take turns. The frequency and duration of a turn is determined by the MPE/iX
Dispatcher and is dependent on the priority assigned to the process. Processes can voluntarily
suspend for many reasons. For example, a process may suspend because it is waiting for input
or output. The code and data for suspended processes is retained in memory until space is
needed by the executing process.

Priority Levels

A priority number identi�es the priority level for a process. The lower the number, the higher
the priority. Priorities range from 1 to 255. MPE/iX uses a mechanism of subqueues to
determine when to change the priority level of a process, if at all. Operating system processes
are given the highest priority to promptly service requests. The AS subqueue (used for most
operating system processes) receives the highest priorities, followed by the BS subqueue
(usually used for special user processes). The CS, DS, and ES subqueues (used for the
Command Interpreter, Editor, compilers, and standard user processes), as a group receive the
lowest priorities.

Operating system processes are given the highest priority to promptly service requests. At the
user level, processes are queued and given CPU control based on rules for the types of queue
used at the particular level of the process. The operating system always runs the highest
priority process that is ready to execute. A system manager can assign to users and accounts
privileges or restrictions of one subqueue over another. A system supervisor has some control
over the priority levels in CS, DS, and ES.

Linear Subqueues

The AS and BS subqueues are linear queues. The characteristics of a linear queue are:

MPE/iX does not change the priority level of a process.

Processes at a given priority level execute on a �rst come, �rst served basis.

An executing process controls the CPU until it voluntarily suspends or receives a higher
priority interrupt.

The AS subqueue should be reserved for operating system processes. A user process running
in AS can severely impair the operating system's ability to function. The BS subqueue is
for special high priority user processes. It is a recommended practice to run a special user
process at a priority of 140 or lower to avoid preempting important MPE/iX functions, such
as spooler operation.

Program Development 3-17

Circular Subqueues

The CS, DS, and ES subqueues are circular queues. The characteristics of a circular queue
are:

Priority levels are cycled.

An executing process controls the CPU until it voluntarily suspends, receives a higher
priority interrupt, or reaches the end of its quantum (time slice).

A circular queue lowers the priority of a process at the end of its quantum. After the drop,
the process eventually gets another opportunity to execute. The CS, DS, and ES subqueues
di�er in how low a priority can be dropped.

Error Detection

The types of errors that can occur on the MPE/iX operating system are in the categories
given below, along with suggested actions:

Command Interpreter Errors

Errors in using Command Interpreter (CI) are usually the simplest errors to detect. They
include typing errors and syntax mistakes. For correcting typing errors, use the :REDO
command. For syntax errors or misunderstandings in how the command works, use the
:HELP command or refer to the MPE/iX Commands Reference Manual Volumes 1 and 2
(32650-90003 and 32650-90364).

File System Errors

File System errors are common at all levels of user interface because �le access a�ects almost
every kind of operation. When you are unable to open, access, or close a �le, consider the
rules governing the �le's domain, access, and security. For detailed information, refer to
Accessing Files Programmer's Guide (32650-90017).

Compiler, Link Editor, and Loader Errors

You may have exceeded a con�gured system limit with program �les; ask the system manager
for information. If a program load fails, it is probably marked unrunnable, in which case you
must link it again or restore the �le.

Unresolved externals do not mark the �le unrunnable. If this problem occurs, check for errors
in the subprogram names and XL= names. Determine if the routines you requested actually
reside in the Executable Libraries you searched.

For errors reported by a compiler, refer to compiler information in the appropriate language
manual.

3-18 Program Development

Run-time Errors

Run-time errors present a challenging problem, frequently causing the program to end
abnormally (abort). To determine the answer to a run-time error, you must consider the
following aspects of the problem:

What is the cause or source?
What is the mechanism of the abort?
What information is provided to help trace and correct the problem?
What are typical abort situations?

The decision to abort a process can be made by:

User program
Library routine
MPE/iX intrinsic
MPE/iX operating system

A program's design can cause it to abort if bad input or some unrecoverable situation occurs.
The program can call the QUIT intrinsic or an equivalent compiler-determined statement.
In this case, the unrecoverable situation is by design; the programmer must provide code to
handle the problem or abort the program.

A process can abort because a subsystem library routine encountered a problem. For
example, if an HP FORTRAN 77/iX program performs a READ statement, an HP FORTRAN
77/iX library routine is called to perform the necessary I/O. If an end-of-�le condition is
encountered, a data format problem occurs. If the library routine cannot complete the
operation, it may abort the program.

An MPE/iX intrinsic can abort a program, depending on the individual intrinsic's
requirements. For example, it may encounter a missing parameter, an unusable parameter
value, or an unusable address. The intrinsic might require that the program �le have a special
capability to use the intrinsic.

900 Series HP 3000 hardware or software can detect errors. For example, if an arithmetic
operation exceeds a data value maximum, computer hardware detects an overow problem.
It may also detect a bad instruction or invalid address for code or data. MPE/iX aborts a
program when a stack requires more room than is available. This alerts you to a potential
problem with recursive calls and loops.

Abort Message Information

When MPE/iX carries out an abort for any reason, the process must terminate cleanly
(complete the operations it would have completed if it had ended normally). However,
because the termination is unexpected, information may be lost. For example, NEW �les
may not be retained. A message indicating the type of abort is printed before termination.
After termination, Command Interpreter prints the �nal message line. The information in the
message helps to identify the cause and guide you toward a solution to the problem.

An abort message appears in a standard format providing:

Program �le name
Location at which the abort occurred in the program �le
Message text describing the type of abort

Program Development 3-19

If the abort occurred during execution of an intrinsic, a subsystem library routine, or a user
library routine, then the location is given within the appropriate routine and the program �le
location indicates the location from which the routine was called in the user's program.

For detailed information on reading an abort message, refer to MPE/iX Intrinsics Reference
Manual (32650-90028)j or the MPE/iX Commands Reference Manual Volumes 1 and 2
(32650-90003 and 32650-90364).

Typical Causes of Program Aborts

Two causes of abort that occur frequently are data memory protection traps and aborts in
library routines.

A data memory protection trap occurs when a program attempts to address outside the
bounds of the code/data area. This can be caused by a faulty address or index used for a
subscript. For example, a parameter address may be passed as a byte address, rather than a
word-aligned address expected by the called routine. Address corruption can occur if an array
subscript goes out of the bounds of the array, but is still inside the bounds of the stack.

When an abort occurs in a library routine, the problem is most frequently in the user
program. Examine the program for �le equations that you may have overlooked. It is
possible, although considerably less frequent, that a bug actually exists in the library routine
itself.

File Information Display (Tombstone)

It is frequently necessary to obtain status information on a �le to determine the cause of an
error. A �le information display is frequently called a tombstone. It provides:

Actual physical and operational �le characteristics.

Current �le information, pertaining to end of �le, record pointer, and logical and physical
transfer count.

Information on the last error for the �le and the last HPFOPEN or FOPEN error.

When a �le is opened, the �nal characteristics may be di�erent from those originally requested
because of defaults, overrides, :FILE commands, and the �le label.

You can use the PRINTFILEINFO intrinsic to print a tombstone. It requires that you specify
the �le number returned when the �le is opened by HPFOPEN or FOPEN. The tombstone can
display either a full or short format. If the �le is open, it provides a full display. Otherwise, it
provides a short display. Calling this intrinsic does not automatically abort the program.

You can call the PRINTFILEINFO intrinsic from programs written in COBOL II/XL and HP
FORTRAN 77/iX. When calling from COBOL II/XL, use the FD �lename. You can call the
name PRINTFILEINFO directly from HP FORTRAN 77/iX programs. You can obtain the
required �le number by using the FNUM intrinsic.

3-20 Program Development

Control Codes (JCWs)

A Job Control Word (JCW) is one word (16 bits) of memory used to pass information
between job steps and to determine the status of the previous job step. Figure 3-5 shows the
structure of a JCW. It is composed of a 2-bit type and a 14-bit modi�er.

The space allowed for JCWs is determined by the space allowed for your session or job after
�le equations, temporary �les, and data space is taken. There is always one system JCW and
one user-de�ned JCW named CIERROR that is actually de�ned by Command Interpreter (CI).
You can de�ne as many user-de�ned JCWs as remaining space allows.

You can use the MPE/iX command :SHOWJCW to see the value of JCWs. If you have not
de�ned any JCWs of your own, this shows only the value of the system JCW and CIERROR.

Figure 3-5. Job Control Word (JCW) Structure

System JCW

The system JCW is set by MPE/iX and some subsystems. You can set the system JCW
programmatically by using intrinsics or interactively at the Command Interpreter (CI) level by
using the :SETJCW command.

MPE/iX checks the system JCW before each step (process) in a session or job is executed.
Based on the system JCW value, MPE/iX may abort the session or job. You can interactively
check the system JCW at the CI level by using the :SHOWJCW command. You can
programmatically check by intrinsics (calling :FINDJCW) or by using an :IF/THEN, :ELSE,
:ENDIF construct.

The system JCW type provides information on the severity of an error. The modi�er can be
set to identify the cause or to pass information to subsequent job steps. However, information
placed there by the user may not be preserved, because MPE/iX can change it. Thus it is
frequently expedient to place information that you want preserved in a user-de�ned JCW

Program Development 3-21

instead of in the system JCW. When set by the user, the modi�er may be modi�ed by
MPE/iX. The types are the bit settings given below, accompanied by their keywords, and
descriptions.

00:OK No error occurred in the previous step.

01:WARN An unusual event occurred, but not necessarily fatal.

10:FATAL Program aborts, under its own control.

11:SYSTEM System aborts user process due to a problem outside

the process's direct control.

The modi�er can be set to any number from 0 to 65535, inclusive. These numbers are divided
up for use by each of the four types given above:

OK 0-16383

WARN 16384-32767

FATAL 32768-49151

SYSTEM 49152-65535

JCW Notation

A JCW value can be described with three kinds of notation:

A keyword, followed by a constant. The constant is the decimal equivalent of the octal
number in the modi�er.

Modi�er appended to the type to form one constant.

The numerical value of the modi�er.

Figure 3-6 shows examples of JCW notations.

3-22 Program Development

Figure 3-6. JCW Notation Examples

Using a System JCW

The following job shows an example of using a system JCW:

:JOB STUDENT.INTRO/PASSWORD

:CONTINUE

:FTNXL ABC

:IF JCW<FATAL THEN

: LINK $OLDPASS,ABCPROG

: SAVE ABCPROG

: RUN ABCPROG

:ELSE

: SAVE $OLDPASS,ABCOBJ

:ENDIF

:SHOWJCW

:EOJ

This job compiles an HP FORTRAN 77/iX program. If it works, you want to link the object
�le to your program �le and run the program. If a problem occurs during the compile, you
want to save the �le and end the job.

If an error occurs, HP FORTRAN 77/iX sets JCW = FATAL, so the job tests the value of the
JCW against the value FATAL (FATAL is the same as FATAL0 or 32768). The :CONTINUE
command causes the job to proceed even if the

Program Development 3-23

next step produces an error. The :IF/THEN, :ELSE, :ENDIF structure allows you to make a
decision based on the JCW value following the :FTNXL job step. The system-de�ned JCW
that CI creates is called CIERROR. CI sets the JCW modi�er to the last CI error number.
Sometimes, CI aborts a job based on the value of the CIERROR modi�er.

User-defined JCWs

User-de�ned JCWs allow you to supply input to programs by using Command Interpreter
(CI) and get status from programs that can be examined in CI. Characteristics of user-de�ned
JCWs include:

Available to each process in the same session or job.

Have names di�erent from JCW or CIERROR.

Are created and set interactively with :SETJCW or programmatically with the PUTJCW
intrinsic.

Can be examined interactively with :SHOWJCW or programmatically with the FINDJCW
intrinsic.

MPE/iX does not examine user-de�ned JCWs. The value of a user-de�ned JCW has meaning
only to the user. Keywords and de�nitions assigned to the type and modi�er can be identical
to those assigned to system JCWs or di�erent. You determine what action to take based on
your own de�nitions.

Using a User-defined JCW

The following job shows an example of using a user-de�ned JCW.

:JOB STUDENT.INTRO/PASSWORD

:SETJCW UPDATE=OK

:RUN UPDATEDB

:IF UPDATE=OK THEN

: RUN REPORT

:ELSE

: SHOWJCW

: TELLOP REPORT NOT RUN

: TELLOP TOO MANY INPUT ERRORS

:ENDIF

:EOJ

In this example, the job stream begins by de�ning and setting a user-de�ned JCW called
UPDATE to the value OK (OK is the same as OK0 or 0). Running the program named UPDATEDB
edits a database. If too many errors occur, UPDATEDB changes the value of UPDATE by using
the PUTJCW intrinsic. The :IF/THEN, :ELSE structure tests the value of UPDATE. If the program
is successful (in other words, if there are not too many errors), it runs another program called
REPORT. If too many errors did occur in the UPDATEDB program, the job shows the JCW
values, sends two messages to the console operator, and ends.

3-24 Program Development

4

HP Link Editor/XL

HP Link Editor/XL is a software tool that prepares compiled programs for execution on
Series 900 HP 3000 computers and allows you to create and maintain libraries containing
subprograms that you frequently use.

Most MPE/iX compilers let you compile, link, and execute a program, all in one step, or just
compile and link in one step. In these cases, you do not directly execute HP Link Editor/XL
to perform the linking function; it is executed automatically.

This chapter describes the basic function of HP Link Editor/XL. For detailed information on
how to use HP Link Editor/XL, refer to Link Editor/XL Reference Manual (32650-90030).

HP Link Editor/XL uses one or more relocatable object modules produced by one or more
native compilers to create one of the following �les:

Relocatable library (RL), which is a collection of relocatable object modules that can be
used by many programs at link time.

Executable library (XL), which is a collection of executable modules that can be shared by
many programs at run time.

Executable program �le, which is the result of merging all relocatable object modules
associated with one program.

It can also operate on an existing RL or XL to update it. Figure 4-1 shows the role of :LINK
and HP Link Editor/XL on the MPE/iX operating system.

HP Link Editor/XL 4-1

Figure 4-1. :LINK and HP Link Editor/XL on MPE/iX

You automatically enter HP Link Editor/XL for the purpose of manipulating relocatable
object modules into an executable program �le by using the MPE/iX command :LINK. This
command is especially useful in program development, when you must link a large program
that calls many separately compiled routines or when you want to use values di�erent from
standard HP Link Editor/XL defaults for this process. For a :LINK overview, refer to the
"Linking a Program" subsection of Chapter 3. For detailed information on linking, refer to
Link Editor/XL Reference Manual (32650-90030).

You can enter HP Link Editor/XL to:

Create an executable program �le (the executable form of a program), which includes
several di�erent modules that have been compiled separately.

Change one or more of the default parameters associated with the program. For example,
you may need to change the execution stack size.

Use one or more library routines in your program. HP Link Editor/XL creates and
maintains two kinds of libraries: relocatable libraries and executable libraries. Routines in
relocatable libraries are in their compiled format. Routines in executable libraries are in
executable form. Libraries minimize duplication of programming e�ort, promote consistency
and standardization in a programming organization, and help to produce easily maintained
programs.

4-2 HP Link Editor/XL

Common Uses of HP Link Editor/XL

The most common ways to use HP Link Editor/XL are to:

Link one or more relocatable object �les.

Link relocatable object modules from a relocatable library.

Name executable modules from an executable library to be searched at load time.

Obtain program �le information by using the LISTPROG command.

Linking a Relocatable Object File

When you want to use �le names or run-time defaults that vary from the defaults provided by
the compiler, link a relocatable object �le yourself, rather than have it automatically linked.
(Run-time defaults include type checking levels, capability-class attributes, stack size, and
heap size.)

For example, you can compile, link, and execute a COBOL II/XL program named EX1SRC, by
using the command

:COB85XLG EX1SRC

This command is equivalent to invoking the following three commands:

:COB85XL EX1SRC

:LINK

:RUN $OLDPASS

Both of the methods given above use $OLDPASS for the relocatable object �le and for the
executable program �le.

The example below shows how to compile and link the COBOL II/XL source �le, EX1SRC,
using a di�erent relocatable object �le and a di�erent executable program �le. The compiler
creates the relocatable object �le named EX1OBJ, which the HP Link Editor/XL command
LINK uses to create the executable program �le named EX1PROG. The second line of this
example is the HP Link Editor/XL command line.

:COB85XL EX1SRC,EX1OBJ

:LINK FROM=EX1OBJ;TO=EX1PROG

For a listing of the source �le named EX1PROG and examples of linking several relocatable
object �les at once, refer to Link Editor/XL Reference Manual (32650-90030).

HP Link Editor/XL 4-3

Comparison of HP Link Editor/XL and MPE V/E Segmenter

HP Link Editor/XL on MPE/iX corresponds to Segmenter on an MPE V/E operating system,
with a few di�erences. The primary di�erences are:

A source �le must be recompiled to change any part of a relocatable object module.

You can create a relocatable library (RL) that contains one large relocatable object module;
or you can create RLs that contain several relocatable object modules, which can be
independently added, copied, or purged.

An executable library (XL) is similar to a segmented library (SL), except that it does not
require segmenting as it grows.

You can create an XL that contains one large executable object module; or you can create
XLs that contain several executable object modules, which can be independently added,
copied, or purged.

For a detailed description of the di�erences between HP Link Editor/XL on MPE/iX and
Segmenter on MPE V/E, refer to Link Editor/XL Reference Manual (32650-90030).

How HP Link Editor/XL Works

HP Link Editor/XL processes object code produced by high-level language compilers, such
as COBOL II/XL. Object code is saved in relocatable object �les. HP Link Editor/XL links
relocatable object �les for execution by assigning actual memory locations to them and to any
external subroutines that they use.

In addition to creating executable program �les, you can use HP Link Editor/XL to create
and maintain relocatable and executable libraries.

When you invoke the MPE/iX command :LINK, HP Link Editor/XL is automatically entered,
linking is completed, and HP Link Editor/XL is exited. Information required by HP Link
Editor/XL is passed to it as :LINK parameters.

Files Used by HP Link Editor/XL

HP Link Editor/XL can use three types of input �les:

Relocatable object �les.
Command input �le, containing commands for processing.
Relocatable library (RL) �les to be searched or manipulated

The command input �le is the standard �le $STDINX. For sessions, $STDINX is the terminal.
For batch jobs, $STDINX is the job �le. You can redirect $STDINX to another �le by using the
STDIN option of the MPE/iX command :RUN. For example, to use the �le named SCRIPT as
the standard input �le, enter the command

:RUN LINKEDIT.PUB.SYS;STDIN=SCRIPT

You can send one input command through the "INFO=string" parameter of the MPE/iX
command :RUN instead of using $STDINX. This starts HP Link Editor/XL, executes the

4-4 HP Link Editor/XL

command you speci�ed, and exits HP Link Editor/XL. Figure 4-2 shows the �les used by HP
Link Editor/XL.

Figure 4-2. Files Used by HP Link Editor/XL

Note A relocatable object �le produced by one of the MPE/iX compilers contains
one relocatable object module.

Types of HP Link Editor/XL output �les are:

$STDLIST, which is the terminal during a session and the output spool �le from a batch job,
unless you redirect it, as discussed below.

LINKLIST, which is a list �le.

An executable program �le.

An executable library �le (XL).

A relocatable library �le (RL).

A relocatable object �le.

HP Link Editor/XL 4-5

You can redirect $STDLIST to another device by using the STDLIST option of the MPE/iX
command :RUN. For example, the following commands send HP Link Editor/XL output to the
printer and runs HP Link Editor/XL:

:FILE LINKOUT;DEV=LP

:RUN LINKEDIT.PUB.SYS;STDLIST=*LINKOUT

LINKLIST information is sent to the $STDLIST device by default.

LINKLIST contains:

Symbol map produced by the MAP option of the LINK command.
Listing produced by the LISTPROG command.
Listing produced by the LISTOBJ command.
Listing produced by the LISTRL command.
Listing produced by the MAP option of the ADDXL command.
Listing produced by the LISTXL command.

HP Link Editor/XL creates a list �le named LINKLIST for commands that generate large
amounts of information. It usually writes the information to the $STDLIST device, but you
can redirect LINKLIST to a di�erent device by using the DEV option of the MPE/iX command
:FILE. For example, the following commands send the listing of a relocatable library named
LIBRL to a line printer:

:FILE LINKLIST;DEV=LP

:LINKEDIT

:LinkEd> LISTRL RL=LIBRL

:LinkEd> EXIT

HP Link Editor/XL Commands

HP Link Editor/XL commands that create and display executable program �les and display
symbols in a relocatable object �le are:

LINK, which creates an executable program �le.

LISTOBJ, which displays symbols in a relocatable object �le.

LISTPROG, which displays symbols in an executable program �le.

Other HP Link Editor/XL commands manage relocatable and executable libraries. They
allow you to add relocatable object modules to an RL or XL, purge modules from an RL or
XL, copy modules between two RLs or two XLs. Some frequently used HP Link Editor/XL
commands are:

COPYRL, which copies modules from one relocatable library to another.

EXTRACTRL, which extracts a relocatable object module or a group of object modules from a
relocatable library.

SHOWRL and SHOWXL, which display the name of the current (or working) library.

LISTPROG, which displays a symbol listing on LINKLIST.

For detailed information, refer to Link Editor/XL Reference Manual (32650-90030).

4-6 HP Link Editor/XL

Case Sensitivity

HP Link Editor/XL reads commands from the standard input �le $STDINX. It is not case
sensitive in commands or �le names. However, entry point (procedure) names are case
sensitive. For example, the COPY, EXTRACT, and PURGE commands allow you to specify an
ENTRY name, which is case sensitive. This name must correspond, character for character, to
the entry name in the symbol table, which indicates the name used in the relocatable object
module. Usually, a case-insensitive language compiler converts a procedure name to lowercase.
For relocatable object modules compiled in these languages, specify lowercase entry point
names.

Keyword and Positional Parameters

Most HP Link Editor/XL commands have one or more keyword or positional parameters.
These types of parameters are briey discussed in Chapter 1, "Overview." For a complete
discussion of keyword and positional parameters in HP Link Editor/XL commands, refer to
Link Editor/XL Reference Manual (32650-90030).

Note When specifying positional parameters, use only one �le name rather than a
�le name list, even if the command syntax permits a list. (For example, the
ADDRL command syntax allows a �le name list in the FROM= parameter.) To
obtain a �le name list, you must either specify keyword parameters or use an
indirect �le.

Using an Indirect File

An indirect �le is an ASCII �le containing a list of names. You can use indirect �le names
in HP Link Editor/XL commands instead of individually entering each name contained in
the �le. You can also mix indirect and regular �le names in commands. Indirect �les are
a convenient way to enter a long list of names for commands that you use frequently. You
can use indirect �les only with the following commands in the speci�c parameters given in
parentheses.

LINK (FROM=, RL=, and XL=)

ADDRL (FROM= and RL=)

COPYRL (ENTRY=, MODULE=, and LSET=)

EXTRACTRL (ENTRY=, MODULE=, and LSET=)

LISTRL (ENTRY=, MODULE=, and LSET=)

PURGERL (ENTRY=, MODULE=, and LSET=)

ADDXL (FROM=, RL=, ENTRY=, MODULE=, and LSET=)

COPYXL (ENTRY=, MODULE=, and LSET=)

LISTXL (ENTRY=, MODULE=, and LSET=)

PURGEXL (ENTRY=, MODULE=, and LSET=)

When you create an indirect �le, enter one or more names on each line, using as many lines as
necessary. Use a space or a comma to separate each name on a line. Make sure that HP Link
Editor/XL has read access to the �le.

To use an indirect �le in a command, precede its name by a caret.

HP Link Editor/XL 4-7

For example, if an ASCII �le named OBJLIST contained the lines

LIB1OBJ

LIB2OBJ
LIB3OBJ

LIB4OBJ

LIB5OBJ

you can use the indirect �le OBJLIST in the following commands to add the �ve relocatable
object �les named in OBJLIST to the relocatable library named LIBRL:

:LINKEDIT

LinkEd> BUILDRL LIBRL

LinkEd> ADDRL FROM=JLIST

LinkEd> EXIT

Starting and Ending HP Link Editor/XL

You automatically use HP Link Editor/XL when you execute one of the MPE/iX commands
that compiles and links a program in one step or compiles, links, and executes a program in
one step. You can directly start HP Link Editor/XL in one of the following ways:

Enter the :LINKEDIT command at the MPE/iX prompt:

:LINKEDIT

HP Link Editor/XL displays its command line prompt LinkEd>, and waits for you to enter a
command. Each time you enter a link editor command, it is executed and you are prompted
to enter another. This continues until you end HP Link Editor/XL with the EXIT command.

Enter a :LINK command at the MPE/iX prompt:

:LINK FROM=EX1OBJ;TO=EX1PROG;RL=LIBRL

The link editor performs the link operation, then ends. The :LINK command is discussed
in Chapter 3 and has the same syntax when used at the MPE/iX command level as when
entered at the link editor prompt.

Enter a :RUN or a :LINKEDIT command, with an INFO string, at the MPE/iX prompt.
Enter an INFO string that contains one link editor command:

:RUN LINKEDIT.PUB.SYS;INFO="LISTRL;RL=LIBRL"

Or you can use the short form:

:LINKEDIT "LISTRL;RL=LIBRL"

The command in the INFO string is executed and HP Link Editor/XL ends. You can execute
any link editor command in this manner.

4-8 HP Link Editor/XL

There are three situations that terminate HP Link Editor/XL:

When you explicitly end HP Link Editor/XL by entering the EXIT command:

LinkEd> EXIT

You can abbreviate the EXIT command as E, EX, or EXI. The commands QUIT, Q, and BYE also
terminate HP Link Editor/XL.

When end-of-�le in $STDINX is encountered.

When an error occurs in a batch job. An error message is printed, the system Job Control
Word (JCW) is set to indicate a fatal error, and HP Link Editor/XL ends.

Creating an Executable Program File

HP Link Editor/XL creates executable program �les from relocatable object �les and
relocatable libraries in the following way. First, it merges selected relocatable object �les
and libraries into one module and resolves inter-module references. Then, it searches selected
relocatable libraries, resolving external references to symbols unde�ned after the merge
operation. When a relocatable object module in the library resolves an external reference,
the module is merged into the executable program �le that is being built. In the last step,
HP Link Editor/XL assigns virtual addresses to all symbols, binds references to the known
symbols within each relocatable object module, and puts the resulting executable program in
a form that the loader can process. Figure 4-3 shows the �les HP Link Editor/XL uses when
it creates an executable program �le.

Figure 4-3. Creating an Executable Program File

HP Link Editor/XL 4-9

An executable program �le contains only one program entry point, which marks the
instruction where execution begins. Each language de�nes its own program entry point. For
example, HP FORTRAN 77/iX uses the main program as the entry point, while HP Pascal/iX
uses a program's outer block as the entry point. When creating an executable program �le,
HP Link Editor/XL separates code and data areas, as shown in Figure 4-4.

The functions of the LINK command are:

Binding
Merging relocatable object modules
Searching relocatable libraries (RLs)

Figure 4-4. Linking to Create an Executable Program File

4-10 HP Link Editor/XL

Figure 4-5 shows HP Link Editor/XL executable program �le commands along with the �les
that they use.

Figure 4-5. Executable Program File Commands

Comparison of Executable and Relocatable Libraries

Relocatable libraries (RLs) and executable libraries (XLs) share important characteristics.
Both are:

Created by programmers using HP Link Editor/XL commands.
Contain routines necessary for program execution.
Permit programs to share routines.

Their major di�erences are:

An RL stores routines in relocatable form, and an XL stores them in executable form.

An RL contains relocatable object code, which HP Link Editor/XL explicitly merges into an
object module for each program that calls the routine. An XL contains sharable code, and
each program refers to the same version of the code. When a program calls an XL routine,
the loader reads it from disc into computer memory prior to execution.

When HP Link Editor/XL merges object modules from an RL into a program �le, all the
modules become part of one executable object module. An RL routine can share global data
with a program. An XL routine can have its own global data area, but executable object
modules cannot share global data with the program or other executable modules.

HP Link Editor/XL merges RL routines into a program �le at link time. However, it only
reserves space for pointers to XL routines in the External Reference Table at link time, and
the loader resolves the references at run time.

HP Link Editor/XL can search a series of RLs during the linking phase. The loader can
search a series of XLs during the execution phase if you provide it with an XL list.

HP Link Editor/XL 4-11

Using a Relocatable Library

MPE/iX relocatable libraries (RLs) give you the ability to use one or more libraries to resolve
references at link time.

HP Link Editor/XL can build RLs from independent relocatable object modules and by
copying relocatable object modules from one RL to another. It can also extract a copies of
relocatable object modules from an RL and place them in a relocatable object �le.

On 900 Series HP 3000 systems, an RL automatically expands until it reaches the maximum
number of relocatable object modules it can contain. You can improve its structure and
increase the size of its internal tables to allow for an additional 25 percent expansion of the
library symbol table. If an RL reaches its relocatable object module limit, you can create a
new library with a larger limit and copy the contents of the old library to the new one.

When HP Link Editor/XL resolves an external reference, it merges the entire relocatable
object module containing that routine into the executable program �le, even if only one
procedure in that module is required. If the called procedure is one of several procedures
in the relocatable object module, the entire module is added to the program �le. To avoid
adding unnecessary code due to including unreferenced procedures in an executable program
�le, keep the library routines in separate source �les.

You can perform the following operations on RLs:

Build new RLs.

Add relocatable object modules to an existing RL.

Copy selected relocatable object modules from one RL to another or to a relocatable object
�le.

Purge selected relocatable object modules from an RL.

List RL contents.

You can copy a relocatable object module from a relocatable object �le into a relocatable
library (RL). Creating a searchable RL requires using HP Link Editor/XL to create the RL
and placing relocatable object �les in it. For example, the commands

LINKEDIT

LinkEd> BUILDRL NEWRL

LinkEd> ADDRL FROM=LIB1EX1

LinkEd> EXIT

enter HP Link Editor/XL, build a new RL named NEWRL, the contents of a relocatable
object �le named LIB1EX1 to it, and exit HP Link Editor/XL. For detailed information on
manipulating an RL, refer to Link Editor/XL Reference Manual (32650-90030).

4-12 HP Link Editor/XL

Using an Executable Library

You can use HP Link Editor/XL to create and maintain executable library �les (XLs). XLs
contain executable modules with the following characteristics:

Are in a form that can be directly executed.

Are shared, so that only one copy of the code need exist on the system. Programs that use
an executable module share the same physical copy of the code.

Have their own global data, separate from the program's global data.

Have external references between executable modules and calling programs resolved at run
time.

Cannot have outer blocks and are, thus not independently executable.

HP Link Editor/XL creates an XL by linking relocatable object �les or modules and placing
the resulting modules in a library �le. To be functional, an XL must be loaded with an
executable program �le containing an outer block and an entry point.

MPE/iX executable libraries (XLs) have the following characteristics:

They can have any valid MPE/iX �le name.

Many can be accessed in one command because you can specify several in the XL=
parameter of :LINK or :RUN.

Creating an XL is a process similar to creating a relocatable library (RL); build an empty XL
and add modules to it. For example, the commands

:LINKEDIT

LinkEd> BUILDXL MYXL

LinkEd> ADDXL FROM=MYOBJ

LinkEd> EXIT

enter HP Link Editor/XL, build a new XL named MYXL, add the contents of a relocatable
object �le named MYOBJ to it, and exit HP Link Editor/XL.

For detailed information on manipulating an XL, refer to Link Editor/XL Reference Manual
(32650-90030).

HP Link Editor/XL automatically pre-links relocatable object modules as you add them to an
XL. XLs are not searched at link time, but you can specify a list of them for the loader to
search when the program is run. MPE/iX system libraries are XLs. The loader automatically
searches system libraries after any libraries you specify at load time.

HP Link Editor/XL 4-13

5

Optimizing a Program

The Optimizer is a program that is an integrated part of an MPE/iX compiler. It is available
to use with HP C/iX, HP COBOL II/XL, HP FORTRAN 77/iX, and HP Pascal/iX. When
you compile a program, you can select an optimizer option that will use the MPE/iX
Optimizer to improve the code.

This chapter provides an overview of:

Techniques a programmer can use to program for best optimization.

How Optimizer aids in producing improved code.

For detailed information on how each compiler optimizes and actions necessary when an
optimized program fails, refer to the following manuals in the Language Series:

HP C/iX Reference Manual Supplement (31506-90001).

HP COBOL II/XL Programmer's Guide (31500-90002).

HP FORTRAN 77/iX Programmer's Guide Supplement (31501-90002).

HP Pascal/iX Programmer's Guide (31502-90002).

Note Symbolic debugging is not available when the optimizer option is selected.

The MPE/iX Optimizer can help a program take full advantage of the 900 Series HP
Precision Architecture (HP-PA) in the following ways:

The small instruction set and pipeline architecture allows concurrent execution of multiple
instructions. Thus, improved program execution speed can be achieved by using careful
instruction scheduling.

Many registers are available in the CPU for fast memory referencing. The Optimizer may
promote frequently used variables to reside in registers instead of in memory. On the 900
Series, you can optimize at a level lower than that which is expedient with most commercial
optimizers: at compile time, at the machine instruction level, after instruction selection.

The Optimizer may move loop-invariant instructions out of program loops, eliminate
redundant calculations, and eliminate unnecessary memory references.

E�cient instruction scheduling avoids hardware interlocks and eliminates branch delay slots,
fully utilizing fast instruction cycle time of the 900 Series. Hardware interlock occurs when
two pipelined instructions both require the same resource or when one instruction requires
a result of a previous instruction that has not completed. With a graph of program ow
to reveal instruction dependencies, instruction scheduling can attempt to avoid hardware
interlocks.

Optimizing a Program 5-1

On the 900 Series, a branch does not take e�ect until the second machine cycle after the
branch instruction. The instruction immediately after a branch instruction is called the
delay slot. Even when you do not select optimization, the compiler tries to schedule a useful
instruction in the delay slot. However, the MPE/iX Optimizer does a better job of branch
delay scheduling and may be able to completely eliminate some branches.

Optimizer Levels

The levels of code optimization that the MPE/iX Optimizer provides are Level 0, Level 1, and
Level 2.

Level 0 optimization is the default optimization level and provides simple optimizations that
minimize compile time. Use this level when debugging a program or running a program that
will not be run many times (for example, a student job program that is run a few times and
discarded). Level 0 functions include:

Simple branch delay slot scheduling.

Dead code elimination.

Faster register allocation (including copy elimination).

Level 1 optimization is local to basic blocks, but does not optimize globally. Use Level 1 to
achieve some optimization without spending excessive time compiling. Level 1 functions
include:

Branch optimization.

Dead code elimination.

Faster register allocation (including copy elimination).

Instruction scheduling.

Peephole optimization.

Level 2 optimization is global optimization. It provides the greatest saving of space and time
achievable with the Optimizer and produces the most compact and fastest running program of
all the levels. Use Level 2 when running a debugged program a large number of times. This is
the correct level to choose for most applications. Level 2 functions are:

All Level 1 optimizations.

Coloring register allocation.

Induction variable elaboration and strength reduction. (An induction variable is a variable
dependent on the value of a loop counter.)

Common subexpression elimination.

Constant folding.

Loop invariant code motion.

Unused de�nition elimination.

Promotion of variables to registers.

5-2 Optimizing a Program

Use of MPE/iX Optimizer with Languages

In MPE/iX Native Mode, HP C/iX, HP COBOL II/XL, HP FORTRAN 77/iX, and HP
Pascal/iX provide the optimizer option. Currently, HP COBOL II/XL provides only Levels 0
and 1. HP C/iX, HP Pascal/iX, and HP FORTRAN 77/iX provide Levels 0, 1, and 2.

Optimizer Assumptions

During compilation, a compiler gathers information about the use of variables and passes it
to the Optimizer. The MPE/iX Optimizer uses the information to ensure that each code
transformation it performs maintains the correctness of the program (at least to the extent
that the original unoptimized program is correct).

The compiler assumes that inside a subroutine or function, only the following variables can be
accessed directly, indirectly, or by another function call:

Common variables declared in this routine.

Local variables (static and dynamic).

Parameters to this routine.

Global variables visible in this routine.

If you have code that violates these assumptions, Optimizer can change the behavior of
the program in an undesirable way. Avoid the following coding practices to ensure correct
program execution in optimized code:

Referencing outside the described bounds of an array. This can cause address corruption or
cause the program to abort when it is run.

Using variables that can be accessed by a process other than the program, such as shared
common variables. The compiler assumes that the program is the only process accessing
the data. (HP FORTRAN 77/iX has some exceptions.) HP C/iX, HP Pascal/iX, and HP
FORTRAN 77/iX provide compiler options to change the assumptions about a routine.

Avoid using variables before they have been initialized. The optimized version of a program
may run di�erently than the unoptimized version.

For detailed information, refer to HP FORTRAN 77/iX Programmer's Guide Supplement
(31501-90002) and HP Pascal/iX Programmer's Guide (31502-90002).

Optimizing a Program 5-3

Coding for Performance and Optimization

The MPE/iX Optimizer modi�es code to use machine resources e�ciently, using less space
and running faster. It improves code, but does not alter the algorithm used in code. Coding
for good performance requires recognition of the following facts:

Coding practices alter performance.

Mismatches exist between programming languages and most architectures.

Coding techniques can enhance or inhibit optimization opportunities.

Coding for optimization provides the following methods of optimizing a program at the source
code level:

Reduces or avoids aliasing
Uses optimal data types
Identi�es common subexpressions
Reduces procedure calls
Avoids non-native alignment

Reduce Aliasing

The compiler must generate explicit loads and stores when programs use aliasing with
pointers. If you specify that the pointer does not change (for example, by using WITH in HP
Pascal/iX), you can eliminate some loads and stores. Thus, more optimization (such as using
registers) can occur. Figure 5-1 shows an example of reducing aliasing.

Figure 5-1. Reducing Aliasing

Use Optimal Data Types

Examples of optimal data types are 8-bit character and 32-bit integer. For detailed
information refer to the appropriate manual in the Language Series.

5-4 Optimizing a Program

Eliminate Common Subexpressions

You can improve the performance of optimized and unoptimized code by using programmer
identi�cation of common subexpressions. Figure 5-2 shows an example of common
subexpression elimination.

Figure 5-2. Eliminating Common Subexpressions

Optimizing a Program 5-5

Instructions Required for Operations on Simple Data Types

Comparison of oating point instructions and integer instructions is not valid because the
oating point instructions may execute in a di�erent cycle from the integer instructions and
may require synchronization. The instructions that compute oating-point arithmetic are
done in a coprocessor and do not execute in a single machine cycle. However, the instructions
that compute integer arithmetic are done in a CPU and complete in a single machine cycle.
Figure 5-3 shows examples of the instructions for operations on simple data types.

These examples assume the following characteristics are true:

Unoptimized code
Well aligned operands
No range or overow checking

Figure 5-3. Instructions Operations on Simple Data Types

Optimize Arrays

The compiler does not always initialize array elements when an array is created. Ensure that
all variables are properly initialized. Uninitialized variables that did not cause problems on
MPE V/E-based systems may cause programs to abort on MPE/iX-based systems. Figure 5-4
shows examples of array optimization.

Figure 5-4. Optimizing Arrays

5-6 Optimizing a Program

Reduce Procedure Calls

Procedure calls in code limit optimization because some registers cannot be kept live (retain
values) across calls. You can remove calls to user procedures from the main body of code and,
instead, branch to a common area. Figure 5-5 shows an example of reducing procedure calls.

Figure 5-5. Reducing Procedure Calls

Expand Small Procedures In-line

Expanding a small procedure in-line increases the scope for the optimizer, reduces procedure
call overhead, and allows additional constant folding of constant value parameters. You
should expand procedures shorter than �ve lines. Figure 5-6 shows an example of expanding
a procedure in FORTRAN 77/iX. In HP Pascal/iX, the you can use the compiler option
$OPTION INLINE$ to expand the code for a routine in-line at the point of call.

Figure 5-6. Expanding Small Procedures In-line

Optimizing a Program 5-7

Extract Procedure Calls from Loops

It is ine�cient to code a loop containing only a procedure call because of the required
overhead by each procedure call. It is a recommended programming practice to code the loop
inside the procedure. Figure 5-7 shows an example of extracting a procedure call from a loop.

Figure 5-7. Extracting Calls from Loops

Avoid Non-native Alignment

Figure 5-8 shows an example of avoiding non-native alignment.

Figure 5-8. Avoiding Non-native Alignment

5-8 Optimizing a Program

Optimize HP COBOL II/XL Data Types

Optimizing HP COBOL II/XL data types requires recognition of the following considerations:

32-bit binary integers are desirable. PIC S9(9) COMP SYNC speci�cation is optimal.

Relying on default speci�cations is undesirable. You must specify COMP to get a binary
integer. Otherwise, it defaults to a decimal integer. You must specify SYNC to guarantee
word alignment.

Decimal validation adds overhead.

Signed numeric �elds are preferable to unsigned numeric �elds.

Optimize HP COBOL II/XL Data Types

Optimizing HP COBOL II/XL data types requires recognition of the following considerations:

32-bit binary integers are desirable. PIC S9(9) COMP SYNC speci�cation is optimal.

Relying on default speci�cations is undesirable. You must specify COMP to get a binary
integer. Otherwise, it defaults to a decimal integer. You must specify SYNC to guarantee
word alignment.

Decimal validation adds overhead.

Signed numeric �elds are preferable to unsigned numeric �elds.

Optimizing a Program 5-9

6

File System

The File System is the part of the MPE/iX operating system that manages data access on
the 900 Series of the HP 3000 family of computers. The MPE/iX I/O System transfers
data between the File System and physical devices (for example, printers and tape drives).
Figure 6-1 shows the relationships of a program, the MPE/iX File System, the MPE/iX I/O
System and the system hardware. The File System is the interface between a program and the
rest of the system.

Figure 6-1. File System Interface

File System 6-1

Records and Files in the File System

The File System manages data being transferred or stored with peripheral devices. It handles
I/O operations, such as passing information to and from user processes, compilers, and
information management subsystems. Conceptually, information for data transfers is arranged
as elements of data in a record. The record is input, processed, and output as a single unit.
Logically related records are grouped into sets called �les, which can be kept in any storage
medium or sent to any I/O peripheral, as shown in Figure 6-2. In some cases, records may be
physically grouped together in blocks when they are in a �le residing on a non-disc device.

Figure 6-2. Records and Files Relationship

Since all I/O operations are done through the mechanism of �les, you can access di�erent
devices in a standard, consistent way. The names assigned to a �le when it is de�ned in a
program do not restrict that �le to residing on the same device every time the program is run;
the program is device independent.

The File System recognizes two basic types of �les, classi�ed by the media on which they
reside when processed: disc �les and device �les.

For detailed information on the File System interface, disc �les, device �les, and spooled
device �les, refer to Accessing Files Programmer's Guide (32650-90017).

Device Files

Device �les are �les currently being input to or output from any peripheral device, except a
system or private domain disc volume. A foreign disc or serial disc �le is considered to be a
device �le. A device �le is nonsharable; it is accessed exclusively by the job or session that
acquires it and is owned by that job or session until the job or session explicitly releases it or
terminates.

A device �le is a set of logically related records transferred to or from a non-random disc
device such as a terminal, magnetic tape, or line printer. A device �le is built di�erently from
a disc �le. You de�ne the physical and operational characteristics each time you access the
device. However, the File System is used to open, access, and close a device �le, just as it does
a disc �le. When you have a program that is written to use a disc �le and you want it to use
a device �le at run time, use the DEV= parameter of the :FILE command to specify a device
class (such as TAPE) or a speci�c logical device number that corresponds to a device on your

6-2 File System

system. If you do not use the DEV= parameter, the :FILE command defaults to de�ning a disc
�le. Magnetic tape has no mandatory settings. You can use the REC= parameter of the :FILE
command to specify physical characteristics.

The File System HPFOPEN and FOPEN intrinsics automatically set actual device characteristics
that override any speci�cations passed from the program or the :FILE command. For
example, the actual device characteristics of a line printer are always NEW, ASCII, UNDEFINED,
and WRITE ONLY access.

If a device �le characteristic is not speci�ed through one of the following, then it has a default
value:

Use of device characteristics.

:FILE command.

The way in which a program opens the �le.

Figure 6-3 shows an example of specifying device �le characteristics in a :FILE command.
In this �gure, the device speci�ed by :DEV= for the �le named PAYROLL is a line printer; the
output priority of the spool�le is 1; and the number of copies of output to print is 3. The
;FORMS= message is sent to the console when the �le is ready to be output to a device.

Figure 6-3. Specifying Device File Characteristics

The most common medium for storage of a device �le is magnetic tape. The File System
has several capabilities in handling magnetic tape labels, and the Labeled Tape Facility
provides for the handling of multireel tape sets. For detailed information on magnetic tape
labels, refer to the MPE/iX Commands Reference Manual Volumes 1 and 2 (32650-90003 and
32650-90364) and Accessing Files Programmer's Guide (32650-90017).

Disc Files

A disc �le is a set of logically related records that reside on disc. A disc �le is immediately
accessible by the system and is potentially sharable by several jobs or sessions at a time. The
structure of a disc �le is determined by the physical constraints of the disc, such as available
space, and user-de�ned elements of the �le. You use the File System to build, open, access,
and close a disc �le.

A disc �le resides on one or more volumes. A �le does not have to reside as a contiguous piece
on one volume, but can be broken into many extents distributed on di�erent volumes.

File System 6-3

The File System must store data on disc in an e�cient manner, since �les are constantly
manipulated: added, deleted, and updated. It uses demand paged virtual memory to manage
virtual memory and the user interface to �les. This occurs transparently from the user's
perspective. Page-sized portions of �les are swapped into memory only when needed.

The user-de�ned elements of a disc �le are those within your control. Elements you can
specify include:

Which disc (or discs) the �le will reside on.

Record type, size, and access.

For detailed information on record types and elements you can specify, refer to the \Record
Structure" subsection and Accessing Files Programmer's Guide (32650-90017).

Disc File Storage

The File System physically stores a �le on disc by breaking it into extents and maintaining
pointers to where each extent resides. It logically stores a �le based on where the �le reference
indicates the �le belongs in the directory structure. Both concepts are discussed in Chapter 1,
\Overview."

The group speci�ed for a �le in the standard �le reference format
(�lename.groupname.acctname) determines the volume set on which the �le resides.
You can select the volume set, volume name, and class for a �le by using the HPFOPEN
intrinsic.

Most common uses of �les do not require speci�cation of volume sets or classes, but it is
sometimes useful to restrict a �le to a particular volume or group of volumes. If a �le resides
on only one volume, then damage to other discs will not destroy the �le. However, when a
volume speci�cation is given, the File System distributes extents throughout a volume set to
prevent one physical disc from running out of space.

Disc storage is logically partitioned into:

Volume, which is a physical disc and a member of a volume set. It may also be a member
of one or more volume classes. It is removable while the system is running, is automatically
recognized and mounted by the system, and the operator is noti�ed when an unmounted
volume is requested.

Free space is tracked by a separate free space bit map on each individual disc volume. To
�nd space to put a new disc �le, several tables may be checked. You can display disc space
information by running DISCFREE.PUB.SYS.

Volume set, which consists of a maximum of 255 volumes or volume classes. It provides
a way of partitioning user data into removable entities and are used only for permanent
storage space.

The directory structure is spread across a volume set. Each volume has a label object, which
contains the �le labels for �les. The directory has no arbitrary limit to the number of �les per
volume. The system disc is usually con�gured to be LDEV 1.

Volume class, which can contain a maximum of 255 volumes and is optional within a volume
set. You cannot mount a disc by a volume class designation; it is used exclusively to
allocate disc storage space.

6-4 File System

You can specify disc volume restrictions in the following ways:

Use the volume name option or the volume class option of HPFOPEN or the device parameter
of FOPEN to specify either a volume name or a volume class name. This restricts the
placement of your �le s extents to either the speci�ed volume or the speci�ed volume class
within the volume set, thus facilitating �le portability.

Using FOPEN, you can restrict the placement of a �le extent to a speci�ed volume or a
speci�ed volume class within the volume set assigned to the group in which the �le will be
created.

Using FOPEN, you can specify a volume name or a volume class in a way that maintains
FOPEN compatibility with MPE V/E-based systems. For example, MPE/iX translates a
logical device number (LDEV) passed to FOPEN into the volume name currently mounted on
the disc drive and places the volume name in the �le label.

For more information on specifying disc volume restrictions, refer to Accessing Files
Programmer's Guide (32650-90017).

File Directory Structure

File directory structure is based on several �le characteristics that determine how the �le is
classi�ed and how it is handled during �le manipulation operations. These characteristics are
discussed in the following subsections.

Domains

Files can be classi�ed on the basis of domain. The domain of a �le determines if it is
permanent, is temporary (lasts only for the duration of the job or session), or exists only for
one particular process.

The File System maintains separate directories to record the location of PERMANENT and TEMP

�les. PERMANENT �les are recorded in the System File Directory; and TEMP �les, in the Job
Temporary File Directory. A permanent or temporary �le can be opened or closed with a �le
domain of OLD (although you cannot create a �le with an OLD domain by using the MPE/iX
command :BUILD).

This designation di�ers from PERMANENT only in the fact that �rst the Job Temporary File
Directory and then the System Permanent File Directory are searched for the �lename. OLD
�les are described in the \Closing a File" subsection. There is no File System directory for
�les that exist only to their creating process (NEW �les).

The subsections below de�ne domains and describe how to change, list, and search for the
domain of a �le and how to open and close �les with various domains. Table 6-1 summarizes
the features of NEW, TEMP, and PERMANENT �les.

File System 6-5

Table 6-1. New, Temporary, and Permanent File Features

NEW Files TEMPORARY Files PERMANENT Files

Exists only to creating process Exists as job temporary �le Exists as permanent �le in File
System

Space not yet allocated Some or all space already
allocated

Some or all space already
allocated

Physical characteristics not
previously de�ned

Physical characteristics de�ned Physical characteristics de�ned

Known only to creating session
or job

Known only to creating session
or job

Known system wide

Exists only for duration of
program execution

Exists only for duration of
creating session or job

Permanent

In some cases, the domain you specify for a �le may be restricted by the type of device on
which the �le resides. The domains permitted are summarized in Table 6-2.

Table 6-2. Valid File Domains

Device Type Valid Domains (see note below table)

Disc NEW, TEMPORARY, PERMANENT, or OLD

Magnetic tape device NEW, PERMANENT, or OLD

Terminal NEW, PERMANENT, or OLD

Line printer NEW

Plotter NEW

6-6 File System

Note When you specify a �le domain using HPFOPEN, you should open only disc
�les with the domain option set to NEW. Device �les can be opened with the
domain option set to NEW (to maintain compatibility with MPE V/E), but a
warning is returned in the status parameter.

NEW Files

When you create a �le, you can indicate to the File System that it is a NEW �le; it did not
previously exist. Space for this �le has not yet been allocated. As a NEW �le, only the program
that creates it knows about it, and it exists only while the program is executing. When the
program concludes, the �le vanishes, unless you take action to retain it.

TEMP Files

A TEMP �le is one that already exists, but only the job or session that created it knows about
it. Some or all of the space for the �le has been allocated, and its physical characteristics have
been de�ned. A �le in this domain is a job temporary �le; it has been created for a speci�c
purpose by its job or session. It may not be needed after the job or session ends. When the
job or session concludes, the �le automatically disappears, unless you take action to change it
to a PERMANENT �le. This is described in the \Changing Domains" subsection, below.

PERMANENT Files

A PERMANENT �le exists as a permanent �le in the File System. Its existence is not limited to
the duration of its creating job or session. Any job or session can access the �le when security
restrictions allow. Some or all of the space for the �le has been allocated, and its physical
characteristics have been de�ned. When the job or session concludes, the �le remains.

Effect of File Domain on Operations

You can select or change the domain disposition of a �le when you close the �le using the
FCLOSE intrinsic. This is called the closing disposition of the �le and follows these rules:

Any �le can be deleted when closed. This is the default for a NEW �le.

A NEW �le can be changed to a TEMP �le when closed.

A NEW or TEMP �le can be changed to PERMANENT when closed.

A PERMANENT �le can be changed to a TEMP when closed by a PM (privileged mode) user.

The File System action defaults to delete a NEW �le, temporarily keep a TEMP �le, and save a
PERMANENT �le. The way in which subsystems use �les a�ects these defaults. You can specify
a closing disposition with a :FILE command that overrides how the program or subsystem
closes the �le. Other commands such as :PURGE, :BUILD, and :SAVE provide various
mechanisms for changing �le domain. For detailed information on these commands, refer to
the MPE/iX Commands Reference Manual Volumes 1 and 2 (32650-90003 and 32650-90364).

The FCLOSE intrinsic is called for every �le on which an HPFOPEN or FOPEN has been
performed. The File System ensures that an opened �le is automatically closed at program
termination, without requiring an explicit statement. However, a subsystem must explicitly
call FCLOSE to ensure that the action taken will be as speci�ed in your program.

Determining �le disposition at close time can have consequences on running programs
(especially in batch mode). For example, a program can open a NEW �le by default, write data

File System 6-7

to the �le, and attempt to save the �le as OLD. A directory error (for example, a duplicate �le
name) can be detected only at close time; and data is lost, unless you have used one of the
following methods to check for or avoid the situation:

Create a NEW �le by using BUILD before executing the program in which the �le is opened as
an OLD �le.

Delete the previous copy of the �le before the run.

Rename the existing �le by using FRENAME.

The File System closes �les when it terminates a program, without requiring the program
to explicitly close them. This allows no recourse for accidentally losing data. It is a
recommended programming practice, when the content of a �le is important, to write the
program to properly handle closing disposition.

The CREATE domain of HPFOPEN creates a NEW �le and makes it PERMANENT when closed.
It eliminates the need to HPFOPEN or FOPEN it as a NEW �le, HPFCLOSE or FCLOSE it as a
PERMANENT �le, and open it with HPFOPEN or FOPEN again as an OLD �le.

Changing Domains

A �le's domain can be changed. Any disc �le can be made permanent or can be deleted after
it has served its purpose. You can use the disposition parameter of the FCLOSE intrinsic to
specify a di�erent domain for a �le as it closes. You can use the :FILE command to change
the domain of a �le; specifying the DEL, TEMP, or SAVE parameter determines the disposition of
a �le when it is closed after its next use. The DEL parameter deletes a �le after its next use.
The TEMP parameter changes the domain of a NEW �le to TEMP when it is closed. The SAVE
parameter changes the domain of a NEW or TEMP �le to PERMANENT when it is closed.

You can change the domain of a �le from TEMP to PERMANENT without opening and closing the
�le by using the :SAVE command. This command prompts you for the lockword if the �le has
one.

For examples of changing domains, refer to Accessing Files Programmer's Guide
(32650-90017). For detailed information on the :FILE and :SAVE commands, refer to the
MPE/iX Commands Reference Manual Volumes 1 and 2 (32650-90003 and 32650-90364).

File Specifications

File speci�cations allow you to identify a �le. This is necessary in order to:

Locate it in the directory structure

Refer to it from a command or program

Determine how to handle it during �le manipulations such as opening and closing

Transfer it during I/O

The File System uses several designations and classi�cations to facilitate �le identi�cation.
The use of �le designators and classes allows the File System to recognize a �le so that
commands and programs can reference it. MPE/iX allows you to designate a name for a �le
in several ways. Techniques for �le identi�cation are described in the subsections below.

6-8 File System

File Designators

A �le designator is a name used by the File System to reference a �le with great exibility.
It allows you to equate a name other than the �le name used in the standard �le reference
format, described below.

The two types of MPE/iX �le designators are:

Formal �le designator

Actual �le designator

A formal �le designator is the name by which a program recognizes a �le. It is speci�ed
programmatically or in a �le equation and is not the �le name found in the �le list of a
directory. It is the �le name coded into the program, along with the program's speci�cations
for the �le. The :FILE command refers to a �le by its formal �le designator. A formal �le
designator is frequently called a user �le name.

An actual �le designator is a �le name provided by the user for the File System to use in place
of the formal �le designator to accomplish a task. In many cases, the formal �le designator
and the actual �le designator are the same. The actual �le designator is the �le name given in
the �le list of a directory. It is described in the standard �le reference format:

filename[/lockword][.groupname][.accountname]

To read from an input �le, a program requires that a name for the �le must be speci�ed in
the program. However, it is desirable to allow a user at run time to provide a �le of any
name to be used for this purpose. This is accomplished by using �le designators to associate
the �le name the user provides with the �le name the program expects. Programmers can
use an arbitrary name as a formal �le designator and equate it to an appropriate actual �le
designator at run time, a technique facilitating maximum �le reference exibility. When used
in this way, the formal �le designator contains one to eight alphanumeric characters, beginning
with a letter.

Note HPFOPEN option (Item #38), the �le privilege option, when used to set a
NEW �le's privilege level to other than three (least-privileged, of user level),
disallows all subsequent access to that �le by the FOPEN intrinsic. (For
compatibility reasons, FOPEN can access only a �le whose �le privilege level is
three.)

The formal �le designator is the name passed to the HPFOPEN or FOPEN intrinsic and used
when HPFOPEN or FOPEN looks for a �le equation for that �le. When users invoke a :FILE

command, they can specify a �le name to equate to the formal �le designator. This �le name
is the actual �le designator. At run time, the program will �nd the actual �le designator
associated with the formal �le designator and open the user-speci�ed �le. Figure 6-4 shows
an example of using �le designators. In this example, the �le directory on disc shows an
actual �le designator PAYROLL5 and the REPORT program contains a formal �le designator
named PAYROLLX. At run time, a user can use the :FILE command to create a �le equation
associating the name PAYROLLX with the name PAYROLL5. When the user runs the REPORT
program, it uses the content of the PAYROLL5 �le wherever it performs an operation on
PAYROLLX.

File System 6-9

Figure 6-4. Identifying a Disc File using File Designators

Backreferencing a File

You can invoke a :FILE command that refers to a previously invoked :FILE command using
a technique called \backreferencing." Once you establish a set of speci�cations in a :FILE

command, you can apply them to other �le references in your job or session by using the
formal �le designator, preceded by an asterisk (*). For example, if you have de�ned a �le
named MYFILE in a :FILE command, you can later refer to all the same speci�cations by
stating *MYFILE. This is useful when you want to be sure the �le speci�cations for a �le
used by one program match those already set up for a �le in another program. It also saves
supplying the same parameters over again.

Whenever you reference a prede�ned �le in a File System command, you must enter the
asterisk before the formal �le designator if you want the prede�nition to apply.

Figure 6-5 shows an example of back referencing. In this example, a :FILE command equates
the formal �le designator EMPLOYEE in the PERSONEL program with the actual �le designator
MASTER. At run time, the program opens a �le named MASTER where it speci�es EMPLOYEE. If
you wanted to run a di�erent program, named FINANCE, with the �le MASTER, back referencing
allows access to it without requiring that you repeat all the parameters that were speci�ed
in the �rst :FILE command. The :FILE command for the FINANCE program simply back
references the actual �le designator given in the previous :FILE command by specifying the
string *EMPLOYEE. This allows access to the MASTER �le with all the same attributes speci�ed
in the �rst :FILE command.

6-10 File System

Figure 6-5. Backreferencing a Previously Identified File

For detailed information, refer to Accessing Files Programmer's Guide (32650-90017).

File Classes

The File System recognizes two general classes of �les:

User-de�ned �les, which users de�ne, create, and make available for their own purposes.

System-de�ned �les, which the File System de�nes and makes available to all users. For
example, they are used to indicate standard input/output devices.

The �le classes are distinguished by the �le names and other descriptors (such as group or
account name) that refer to them. You can use a �le name and descriptors, in combination, as
either:

A formal �le designator in a program or �le equation

An actual �le designator that identi�es the �le to the File System

User-defined Files

You can reference any user-de�ned �le by writing its name and descriptors in the standard �le
reference format, as follows:

filename[/lockword][.groupname][.accountname]

The maximum size of a �le designator written in this format is 35 characters, including
delimiters.

When you reference a �le that belongs to your logon account and group, you can use the
simplest form of the standard �le reference format; the user or system �le name. Specify both
the actual and formal �le designators in the standard �le reference format.

The �le name is from 1 to 8 alphanumeric characters, beginning with a letter (unless the �le
has a lockword, in which case you must specify the lockword and a delimiter). In the following
examples, both formal and actual �le designators appear in this format:

:FILE ALPHA=BETA

:FILE REPORT=OUTPUT

File System 6-11

:FILE X=AL126797

:FILE PAYROLL=SELFL

A �le name must be unique in its group. A reference to a �le is always quali�ed by adding to
the �le name the name of the group and account in which the �le resides. For example, if you
create a �le named FILX under GROUPA and ACCOUNT1, the system will recognize your �le as
FILX.GROUPA.ACCOUNT1. A �le with the same �le name created under a

GROUPB is recognized as FILX.GROUPB.ACCOUNT1. Thus, you need only to ensure that a �le
name is unique in its group.

Groups serve as the basis for your local �le references. When you log on, if the default File
System �le security provisions are in e�ect, you have unlimited access to all �les assigned to
your logon group and your home group. You are permitted to read and execute programs
residing in the public group of your log on account. This group, always named PUB, is
automatically created under every account to serve as a common �le base for all users of the
account. You can also read and execute programs residing in the PUB group of the System
Account. This special account, always named SYS, is available to all users on every system.

You can refer to �les that belong to di�erent logon accounts and groups by specifying
qualifying information in the optional parameters of the standard �le reference format. For
detailed information, refer to Accessing Files Programmer's Guide (32650-90017).

If you do not supply explicit group and account name information in a standard �le reference
format, MPE/iX supplies the defaults of the group and account in which you are currently
logged on.

When you create a disc �le, you can assign to it a lockword. It must later be supplied in the
standard �le reference format to access the �le in any way. The lockword is independent of,
and serves in addition to, the other File System security provisions governing the �le.

You assign a lockword to a new �le by specifying it in the �lereference parameter of the
:BUILD command or in the formalreference parameter of the HPFOPEN or FOPEN intrinsic used
to create the �le.

For detailed information on using lockwords and supplying lockwords in jobs and sessions,
refer to Accessing Files Programmer's Guide (32650-90017).

System Files

System-de�ned �les are:

$STDIN

$STDINX

$STDLIST

$NEWPASS

$OLDPASS

$NULL

$NEWPASS and $OLDPASS are disc �les that provide temporary �les for passing information
between job steps. $STDIN, $STDINX, and $STDLIST are device �les that provide default
input and output �les. The system-de�ned �le $NULL is in neither category because it is not
associated with a disc or device. Figure 6-6 shows system-de�ned �les in use.

6-12 File System

Figure 6-6. System Files in Use

System-de�ned �le designators indicate �les that the File System uniquely identi�es as
standard input/output devices for jobs and sessions.

These designators are:

$STDIN; the standard job or session input device from which your job or session is initiated.

$STDINX; the same as $STDIN, except handling of MPE/iX command images is di�erent.

$STDLIST; standard job or session listing device.

$NULL; name of a �le that is always treated as an empty �le.

These designators are useful in redirecting program input and output to standard devices.
For detailed information on system-de�ned �les, refer to Accessing Files Programmer's Guide
(32650-90017).

You can use a formal �le designator in a program to specify a system-de�ned �le. For
example, a program can specify the system-de�ned �le name $STDLIST to make output appear
on a terminal; or it can assign output to $NULL to test a program to see if it compiles and runs
to completion, where the actual output is not needed. Figure 6-7 shows examples of using a
system de�ned �le.

File System 6-13

Figure 6-7. Using a System File

Input/Output Sets

All �le designators can be classi�ed as an input set, use for input �les of an output set, used
for output �les. For your convenience, these sets are summarized in Table 6-3 and Table 6-4.
For information on interactive and duplicative input �les and output �les, refer to Accessing
Files Programmer's Guide (32650-90017).

Table 6-3. Input Set

File Designator Function or Meaning

$STDIN Job/session input device.

$STDINX Job/session input device allowing commands

$OLDPASS Last $NEWPASS �le closed.

$NULL Constantly empty �le that returns end-of-�le indication when read.

*formal- designator Back reference to a previously de�ned �le.

�lereference File name (including any account and group names and lockword, if
necessary). Indicates an old �le. May be a job/session temporary �le
created in a program (including the current one) run in the current
job/session. May be a permanent �le saved by any program or a :BUILD

or :SAVE command in any job/session.

6-14 File System

Table 6-4. Output Set

File Designator Function or Meaning

$STDLIST Job/session list device.

$OLDPASS Last �le passed.

$NEWPASS New temporary �le to be passed.

$NULL Constantly empty �le that returns end-of-�le indication when read.

*formal- designator Back reference to a previously de�ned �le.

�lereference File name (including any account and group names and lockword, if
necessary). Unless you specify otherwise, it is a temporary �le residing
on disc that is destroyed on termination of the creating program. If
closed as a job/session temporary �le, it is purged at the end of the
job/session. If closed as a permanent �le, it is saved until you purge it.

Passed Files

Programmers, particularly those writing compilers or other subsystems, sometimes create
a temporary disc �le that can be automatically passed to succeeding MPE/iX commands
within a job or session. This �le is always created under the special name $NEWPASS.
When the program closes the �le, MPE/iX automatically changes its name to $OLDPASS

and deletes any other �le named $OLDPASS from the job or session temporary �le domain.
(Domains are described in a subsection below). After the �le is closed, your commands and
programs reference the �le as $OLDPASS. Only one �le named $NEWPASS and one �le named
$OLDPASS can exist in the job or session domain at any one time. Figure 6-8 shows the
automatic passing of �les between program runs. For an example of �le passing and detailed
information, refer to Accessing Files Programmer's Guide (32650-90017).

Figure 6-8. Passing Files between Program Runs

File System 6-15

$NEWPASS and $OLDPASS are specialized disc �les with many similarities to other disc �les,
but with some di�erences. For example, the default close disposition of $NEWPASS includes
renaming it. For detailed comparisons of $NEWPASS to new �les and $OLDPASS to old �les refer
to Accessing Files Programmer's Guide (32650-90017).

Searching File Directories

There are two directories with addresses of �les: Job Temporary File Directory for the
addresses of TEMP �les, and System File Directory for the addresses of PERMANENT �les.

There is no directory for NEW �les. When a �le is opened, the File System may search both
directories, depending on the �le domain options speci�ed, starting with the Job Temporary
File Directory, until it �nds the �le address associated with the �le.

Finding Files

You can use the the following commands to see �le and �le equation lists:

:LISTFILE command for PERMANENT �les

:LISTFTEMP command for TEMP �les

:LISTEQ command for current �le equations

For a detailed description of the commands, refer to Getting System Information
Programmer's Guide (32650-90018).

Types of Operations Allowed on Files

The types of operations most frequently used on a �le involve reading, writing, saving,
appending, information to the end of a �le, updating a �le, and various combinations of
operations. The type of operation allowed is determined when a �le is opened. You can
override the operations allowed by system defaults with speci�cations in your program or the
:FILE command. The type of operation is not a permanent characteristic of a disc �le, so it
is not in the �le label. Thus, no overriding can take place at this level, although the physical
characteristics of a device �le may dictate the types of operations allowed. For example, a line
printer is always a write-only �le, and a real operation cannot be speci�ed for it.

Physical characteristics of a �le cannot be changed after it has been created. Thus it is logical
for the �le label to take precedence over all commands. Other determinants are e�ective only
when a new �le is being created.

Note :FILE commands, HPFOPEN calls, and FOPEN calls cannot alter physical
characteristics of an existing �le.

Opening a File

Before a process can read, write, or manipulate a �le, it must initiate access to the �le by
opening it with the HPFOPEN or FOPEN intrinsic call. This call applies to all disc and device
�les. When HPFOPEN or FOPEN is executed, it returns a �le number used to identify the �le in
subsequent intrinsic calls issued by the process.

If the �le is successfully opened, the �le number returned is a positive integer. If the �le
cannot be opened, the �le number returned is zero (0).

6-16 File System

If the process issues more than one HPFOPEN or FOPEN call for a �le before it is closed, it
results in multiple, logically separate accesses of that �le. In this case, MPE/iX returns a
unique �le number for each access and maintains a separate logical record pointer. (indicating
the next sequential record to be accessed) for each access where you did not request or permit
the multi-access option at HPFOPEN or FOPEN time.

When you open a �le, HPFOPEN or FOPEN establishes a communication link between the �le
and your program. The link is established by determining the device on which the �le resides,
allocating it to your process, verifying access right, and performing other required tasks.
These tasks include constructing control blocks required by MPE/iX for access to this �le. For
detailed information on establishing the communication link and determining the File System
hierarchy, refer to Accessing Files Programmer's Guide (32650-90017).

For an example of opening new and old disc �les, refer to Accessing Files Programmer's Guide
(32650-90017).

When a process opens a disc �le, the HPFOPEN or FOPEN call speci�es that the �le is OLD
(located in either the System Permanent File Directory or the Job Temporary File Directory)
or NEW. An OLD �le is an existing �le, and a NEW �le is a �le to be created during the process.
When a process accesses a �le residing on a non-sharable device, the device's attributes may
override the OLD or NEW speci�cation. Speci�cally, a device used only for input automatically
imposes a PERMANENT domain on a �le. A device used only for output, such as a line printer,
automatically imposes a NEW domain on a �le. Serial input/output devices, such as terminals
and magnetic tape units, follow the domain option speci�cation in the HPFOPEN or FOPEN call.

Note The HPFOPEN intrinsic assumes that all �les on non-sharable devices (device
�les) are PERMANENT �les. To maintain compatibility with MPE V/E, device
�les can be opened with the domain option set to NEW, but a warning is
returned in the status parameter.

When a job attempts to open a PERMANENT �le on a non-sharable device, MPE/iX searches
for the �le in its internal tables. If it does not �nd the �le, it requests the operator to locate
the �le. When a job opens a new �le on a non-sharable device (other than magnetic tape),
it uses the �rst available device. When a job opens a new �le on a magnetic tape unit, the
operator is usually required to make the tape available. The speci�cation of a device name or
device class when HPFOPEN or FOPEN is issued, implies a request for the initial allocation of an
unopened device.

For detailed information on, and examples of, opening a �le on a non-sharable device, refer to
Accessing Files Programmer's Guide (32650-90017).

Closing a File

You terminate access to a �le from a program with the FCLOSE intrinsic. It applies to �les on
all devices (disc �les and device �les) and deallocates the device on which the �le resides. If
your program has several concurrent HPFOPEN or FOPEN calls issued to the same �le, the device
is not deallocated until the last FCLOSE intrinsic is executed.

You can use the FCLOSE intrinsic to change the disposition of a disc or magnetic tape �le. For
example, a �le you open as a NEW �le can be closed and saved as an OLD �le with permanent or
temporary disposition. A disc �le you open as a TEMP �le can be closed as TEMP or saved as a
PERMANENT �le.

File System 6-17

When a program opens a NEW disc �le with an HPFOPEN or FOPEN call, the File System does
not search to determine if a �le of the same name exists. This occurs when you attempt to
save a �le with the FCLOSE intrinsic.

When a program opens a disc �le speci�ed as a NEW �le in the option of an HPFOPEN or
FOPEN call that determines the domain, and saves it with the FCLOSE intrinsic, the MPE/iX
File System conducts a search. If the �le is to be saved as a TEMP �le, it searches the Job
Temporary File Directory. If the �le is to be saved as a PERMANENT �le, it searches the System
Permanent File Directory. If the File System �nds a �le of the same name in a directory it
searches, it returns an error code to your program. Thus, you can open a NEW �le with the
same name as an existing �le, but an error occurs if an FCLOSE intrinsic attempts to save it in
the same domain with a �le of the same name.

Similarly, when a program opens a disc �le speci�ed as a TEMP �le in the domain option of an
HPFOPEN or FOPEN call and saves it with the FCLOSE intrinsic, only the Job Temporary File
Directory (not the System File Directory) is searched. Thus it is possible to have three �les
with the same name, a PERMANENT �le, a NEW �le, and a TEMP �le. If a �le opened as TEMP is
closed and saved as a PERMANENT �le with the FCLOSE intrinsic, MPE/iX searches the System
Permanent File Directory. If it �nds a �le of the same name, it returns an error code to the
program.

If a program opens a disc �le speci�ed as OLD in the domain option of an HPFOPEN or FOPEN
call and saves it with the FCLOSE intrinsic, the File System searches the Job Temporary File
Directory and the System Permanent File Directory to determine if a �le of the same name
already exists. If it �nds a �le of the same name in either directory, it returns an error code to
your program.

If your program does not issue an FCLOSE intrinsic call on �les that have been opened,
MPE/iX closes all �les automatically when the program's process terminates. In this case,
MPE/iX closes all opened �les with the same disposition they had before being opened. NEW
�les are deleted, OLD �les are saved and assigned to the domain in which they previously
belonged, either PERMANENT or TEMP. This can be altered with a :FILE command.

For examples of closing a new �le as either a TEMP or a PERMANENT �le, refer to Accessing Files
Programmer's Guide (32650-90017). Figure 6-9 shows the directories searched for �le names
when a �le is opened and closed, depending on the �le domain.

6-18 File System

Figure 6-9. Directories Searched Based on File Domain

The operation of the FCLOSE intrinsic used with unlabeled magnetic tape is dependent on
conditions within the process using the device. It is possible for a single process to HPFOPEN

(or FOPEN) a magnetic tape device using a device class and later HPFOPEN (or FOPEN) on the
same device again by using its device name/logical device number. You can do this in a way
that makes more than one tape �le open concurrently.

When no concurrent tape �les are open, a tape is closed with the temporary no-rewind
disposition, rewound, and unloaded. When �le open and �le close calls are nested, tape �les
can be closed without deallocating the physical device, as shown in Figure 6-10.

File System 6-19

Figure 6-10. Nested HPFOPEN/FOPEN and FCLOSE Pairs

Nesting of HPFOPEN or FOPEN and FCLOSE pairs keeps a tape that has been FCLOSEd from
rewinding. A tape closed with the TEMP, no-rewind disposition is rewound and unloaded unless
the process closing it has another �le currently open on the device.

For detailed information on �le disposition, end-of-�le marks, and use of FCLOSE with
magnetic tape, refer to Accessing Files Programmer's Guide (32650-90017).

Using Files at Run Time

At run time, you can perform the following operations with �les:

Identify disc �les to use
Use a system-de�ned �le
Use a device �le
Specify closing disposition of a �le
Create a �le, as needed
Determine operations allowed for a �le
De�ne �le accessibility

6-20 File System

Hierarchy of File Overrides

The :FILE command cannot override at run time any speci�cations in the disc �le label for an
existing disc �le. (The �le label speci�es physical characteristics of the �le; record structure,
�le structure, �le code, and actual �le name.) Anything in the disc �le label has precedence.
Similarly, device characteristics always prevail over a :FILE command invoked for a device �le.
:FILE can override the following:

Speci�cations that are not in a �le label for a disc �le.

Speci�cations that are not already given for a device �le.

Speci�cations given when an intrinsic in the program opens the �le.

If the program creates a disc �le at run time, then :FILE can override the opening
characteristics that the program was compiled to use and create a �le with di�erent
characteristics.

It is possible to use an intrinsic such as HPFOPEN or FOPEN to override �le equations. When
an intrinsic is set up to do this, the �le equation produced by invoking :FILE can be ignored
unless the �le name given in the intrinsic opening the �le is dereferenced (preceded by an
asterisk (*)). For detailed information on the hierarchy of overrides, and for information on
how this applies to labeled tapes, refer to Accessing Files Programmer's Guide (32650-90017).

When a :FILE command is entered that contradicts some of the HPFOPEN or FOPEN parameters
for a �le, The File System maintains a hierarchy of overrides, as shown in Figure 6-11.

Figure 6-11. File System Hierarchy of Overrides

File System 6-21

Record Structure

Record structures provide a de�nition of storage format, record type, and size.

Storage Format

Devices on the 900 Series HP 3000 can transmit information in ASCII (American Standard
Code for Information Interchange) and/or binary code, depending on the device. For example,
a line printer handles ASCII formatted data, while a disc can transmit and store data in
either format. You can use optional parameters in the HPFOPEN or FOPEN intrinsic to specify
the code (ASCII or binary) in which a new �le is to be recorded when it is written to a device
that supports both codes.

Examples of ASCII �les on the HP 3000 include program source �les, general text and
document �les, and MPE/iX stream �les containing MPE/iX commands. Examples of
binary �les include program �les containing linked object code and application data �les. For
detailed information, refer to Accessing Files Programmer's Guide (32650-90017).

Record Types

A �le can contain records written in one of three formats, called record types:

Fixed-length
Variable-length
Unde�ned-length

Figure 6-12 shows how the content of each record type appears.

6-22 File System

Figure 6-12. Record Types

You can specify the format for records by using one of the following:

HPFOPEN or FOPEN intrinsic
MPE/iX command :BUILD

MPE/iX command :FILE

Files residing on disc or magnetic tape can contain records in any of the three formats. For
�les on other devices, the File System overrides any speci�cations you supply for records and
handles them as having unde�ned length.

A comparison of logical record formats is given in Table 6-5. For a detailed discussion
of �xed-length, variable-length, and unde�ned-length records, refer to Accessing Files
Programmer's Guide (32650-90017).

File System 6-23

Table 6-5. Comparison of Logical Record Formats

Fixed-length Variable-length Unde�ned-length

File System knows data length File System knows data length File System does not know data
length

All records same length Record length varies Record length varies

Record space contains only data Record space contains data plus
byte count

Record space contains data plus
�ller

Request actual record size Request maximum record size Request maximum record size

Specifying a Record Size

You can specify the size of records in your �le by using one of the following:

MPE/iX command :BUILD (for disc �les)

MPE/iX command :FILE

HPFOPEN or FOPEN intrinsic

You can specify your own record size or accept the default size for the device you are
using. MPE/iX default record sizes for devices are shown in Table 6-6. Subsystem defaults
may be di�erent from MPE/iX defaults. For example, the Editor default can be 72 or 80
bytes, depending on the text format, while the MPE/iX standard default is the record size
con�gured for the device. For detailed information on specifying a record size, refer to
Accessing Files Programmer's Guide (32650-90017).

Table 6-6. Standard Default Record Sizes

Device Record Size (Bytes)

Disc 256

Magnetic tape unit 256

Terminals (most) 80*

Line printer 132*

Plotter 510

* Controlled by con�gured
record length.

The File System sets up all records (ASCII and binary) to begin on 2-byte boundaries for
device �les. Even if you specify an odd-byte record, the next record cannot begin in the next
byte. In this case, the File System adjusts the record size by adding one byte to make the
next record begin on a word boundary. If the �le is ASCII, the extra byte is made inaccessible

6-24 File System

for data. If the �le is binary, the byte is accessible. Figure 6-13 below, shows how the File
System handles odd-byte record sizes in Compatibility Mode for device

Figure 6-13. Odd-byte Record Sizes

The adjustment the File System makes for odd-byte record sizes is important

when reading tapes created on other systems. If the tape has actual odd-byte length records
that are blocked, you cannot specify the exact byte length and blocking factor and obtain
accurate results, because you will get a cumulative e�ect of each successive record being \o�"
by more bytes. It is a recommended practice to handle the block as one large logical record
in one block and then programmatically pull apart the odd byte lengths. You can use the
DEBLOCK option of FCOPY for this purpose.

File Structure

When you create a �le, the File System imposes a structure and access method on the content
of the �le. Access to records in a �le are dictated by the �le type speci�ed at �le creation.
Important factors in creating a �le are discussed below.

File Types

Depending on your intended use of the �le, you can specify the following �le types:

Standard �le, which is the most common type of �le. It is structured as a group of records,
beginning with record 0 and ending with record n-1 , where n is the maximum speci�ed in
the �lesize option. The Standard �le type is the default created when you �rst open a �le.
Examples of Standard �les are Editor �les and program �les.

KSAM �le. Keyed Sequential Access Method (KSAM) is a method of organizing records
based on the content of key �elds within the records. Each record in a KSAM �le contains
a primary key �eld; the contents of the primary key �eld determine the primary logical

File System 6-25

sequence of records in the �le. Other key �elds can be de�ned so that you can sequence
the �le in other orders. The order in which records are physically written to the �le is the
chronological order. The chronological order may be the same as the primary key sequence
or unrelated. For detailed information on the creation and use of KSAM �les, refer to
Chapter 7, \Data Management" and KSAM/3000 Reference Manual (30000-90079).

RIO �le. Relative I/O (RIO) is a random access method that permits individual �le records
to be deactivated. These inactive records retain their relative position in the �le. RIO �les
are intended for use primarily by COBOL programs; however, you can access these �les by
programs written in any language.

You can access RIO �les in two ways: RIO access and non-RIO access. RIO access ignores the
inactive records when the �le is read sequentially using the FREAD intrinsic. These records
are transparent; however, they can be read by random access using FREADDIR. They can be
overwritten serially and randomly using FWRITE, FWRITEDIR, or FUPDATE. With RIO access,
the internal structure of RIO blocks is transparent.

Circular �le, which is a wrap-around structure that behaves like a standard sequential �le
until it is full. As records are written to a circular �le, they are appended to the tail of the
�le; when the �le is �lled, the next record added causes the block at the head of the �le to
be deleted and all other blocks to be logically shifted toward the head of the �le. Circular
�les are particularly useful as history �les and debugging �les. For detailed information on
circular �les, refer to Accessing Files Programmer's Guide (32650-90017).

Message �le, which is used by Interprocess communication (IPC), a facility of the File
System that permits multiple user processes to communicate with one another easily and
e�ciently. Message �les act as �rst-in-�rst-out queues of records, with an entry made by
FWRITE and a deletion made by FREAD. One process can submit records to the �le with the
FWRITE intrinsic while another process takes records from the �le using the FREAD intrinsic.

For detailed information on the creation and use of Message �les, refer to Interprocess
Communication Programmer's Guide (32650-90019).

File Codes

MPE/iX subsystems often create special-purpose �les whose functions are identi�ed by
four-digit integers called �le codes, written in the system �le labels. HPFOPEN, FOPEN, :BUILD,
and :FILE have parameters for specifying a �le code for a �le when you create it.

File codes are useful when you want to run a program that produces an output �le several
times and need to be able to uniquely identify the output �les from separate runs (or sets of
runs). You can use a :FILE command to supply a unique �le code for each run (or set of
runs).

For user �les, you can use any number from 0 through 1023 for a �le code. If you do not
specify a �le code when you create a �le, MPE/iX automatically applies the default �le code
0. Numbers above 1023 are prede�ned by Hewlett-Packard for special system �les. You should
not rede�ne them. For detailed information, refer to Accessing Files Programmer's Guide
(32650-90017).

For detailed information on creating and using a �le code and on reserved �le codes, refer
to Accessing Files Programmer's Guide (32650-90017). For information on determining an
existing �le code, refer to Getting System Information Programmer's Guide (32650-90018).

6-26 File System

Creating a File

When creating a �le, you choose physical characteristics for it based on how the �le will be
used. These physical characteristics are determined by parameters you choose when you:

Create the �le with the HPFOPEN intrinsic, FOPEN intrinsic, or the :BUILD command.

Specify the �le with the :FILE command.

Once a �le has been created, you cannot change its physical characteristics. You can change
other characteristics by rede�ning them each time you open the �le. The :FILE command,
HPFOPEN intrinsic, and FOPEN intrinsic can alter the way a �le is to be used.

The physical characteristics include record format, record size, volume class, and many other
attributes. The intrinsics and commands for specifying the physical characteristics of a �le
are described below. (For detailed information on creating a �le, refer to Accessing Files
Programmer's Guide (32650-90017).

HPFOPEN and FOPEN Intrinsics

The HPFOPEN intrinsic is a programmatic tool that establishes access to a disc or device �le
and enables you to create a �le on a sharable device. Its optional parameters are a superset
of the options in the FOPEN intrinsic and provide more e�cient �le access. You can use
HPFOPEN parameters to specify record format, record size, volume class, and many other
physical characteristics. HPFOPEN and FOPEN allow �le names to include command
interpreter (CI) variables and expressions.

When a previously non-existent �le is created at run-time, the File System must set up the
physical characteristics of a NEW �le. You can use a :FILE command to specify the physical
characteristics of a NEW �le. These override any system defaults and any speci�cations given
in the program or subsystem when it opens the �le because no �le label has been de�ned
for this NEW �le. If you want to keep the NEW �le permanently, you should close it as a TEMP

or PERMANENT �le. Otherwise, it is deleted when the program or subsystem terminates.
Figure 6-14 shows an example of creating a �le.

Figure 6-14. Creating a File

File System 6-27

The FOPEN intrinsic is another programmatic tool for supplying the File System with
information about a �le. You can use optional parameters at �le creation to specify record
structure, �le identi�cation, �le domain, and �le usage characteristics.

For detailed information on the HPFOPEN and FOPEN intrinsics, refer to MPE/iX Intrinsics
Reference Manual (32650-90028) and Accessing Files Programmer's Guide (32650-90017).

The :BUILD Command

The :BUILD command creates a �le in much the same way as the HPFOPEN and FOPEN

intrinsics, except that they are used within a program and :BUILD is entered as an MPE/iX
command. The :BUILD parameters have meanings and applications that are similar to the
corresponding parameters for HPFOPEN and FOPEN. For detailed information on how to use
the :BUILD command, refer to the MPE/iX Commands Reference Manual Volumes 1 and 2
(32650-90003 and 32650-90364).

You can use the MPE/iX command :BUILD to create a �le and specify the physical
characteristics of the �le to the File System. When you invoke :BUILD, the File System sets
up the physical characteristics in the �le label and allocates space for a permanent �le on disc.
For detailed information, refer to the MPE/iX Commands Reference Manual Volumes 1 and 2
(32650-90003 and 32650-90364) and Accessing Files Programmer's Guide (32650-90017).

Deleting Files

You can use the :PURGE command to delete �les from disc. This command deletes the
speci�ed �le by removing the directory entry pointing to the �le. It can be used to delete
PERMANENT or TEMP �les. The :PURGE command does not accept wildcard characters.

Renaming Files

You can use the :RENAME command on a TEMP or PERMANENT �le if you are the creator of the
�le. :RENAME can be used to change the �le name and add or change a lockword. You can use
:RENAME to move a �le to a di�erent group in which you have SAVE access. Renaming the �le
does not change the �le domain, and you cannot rename a �le while it is in use.

Saving Temporary Files

You can use the :SAVE command on a temporary �le to make it permanent. This operation
requires you to provide the �le's lockword (if it has one). For example, you could save
$OLDPASS to a new name using the following syntax, where new�lereference is the name to
which you want to save $OLDPASS:

:SAVE $OLDPASS, new�lereference

6-28 File System

Listing File Characteristics

You can use the :LISTFILE command to see what the characteristics of a �le are. :LISTFILE
provides the following information:

File names and structure of permanent disc �les

Various levels of detail about each �le, depending on the user's capability on the system

Number of records in the �le

Number of extents

Maximum number of extents

Records per block

The :FILE Command

The :FILE command determines how a �le will be accessed. You can use :FILE to describe
any of the characteristics available with HPFOPEN, FOPEN, or :BUILD, but you cannot actually
create a �le with the :FILE command. While HPFOPEN, FOPEN, and :BUILD physically allocate
space for a �le and de�ne its characteristics, the :FILE command can de�ne only how a �le
will be accessed at run time.

FILE sets up an environment for the �le at run time and speci�es the �le's attributes when
it is opened. When you invoke a :FILE command, the Command Interpreter checks it for
syntactic correctness and saves a �le equation in a job or session table for use when the
referenced �le is opened. Another process, such as an HPFOPEN or FOPEN, performed on the
referenced �le activates the information speci�ed in the :FILE command. To be e�ective, the
:FILE command must be invoked before the �le is accessed because the parameters speci�ed
for :FILE take e�ect when the �le is accessed. They remain in e�ect until one of the following
conditions occurs:

The job or session ends.

A :RESET command is invoked.

The parameters are overridden by another :FILE command invoked for the same formal �le
designator.

File equations are kept track of by a table created for the job or session. You can use the
MPE/iX commands :LISTEQ to see a list of the current �le equations and and :LISTFTEMP to
see a list of the current temporary �le names.

For an example of using the :FILE command and a comparison of the parameters for
HPFOPEN, FOPEN, and :FILE, refer to the MPE/iX Commands Reference Manual Volumes 1
and 2 (32650-90003 and 32650-90364) and Accessing Files Programmer's Guide (32650-90017).

File System 6-29

Record Selection and Data Transfer

Data is transferred in the File System by a mechanism including records, record pointers, and
the intrinsics for transferring them.

Record Pointers

The File System uses record pointers to �nd speci�c records for use. Record pointers block
and deblock records and indicate speci�c records in a �le. A �le opened with the inhibit
bu�ering option parameter set to BUF (the default) is accessed by using a record pointer. (A
�le opened with the inhibit bu�ering option parameter set to NOBUF is accessed via a block
pointer.)

Note Bu�ering does not apply to ordinary disk �les.

Pointer Initialization

When you open a �le, the HPFOPEN or FOPEN intrinsic sets the record pointer to record 0 (the
�rst record in the �le) for all operations. If you have opened the �le with Append access
(using the access type option parameter), MPE/iX moves the record pointer to the end of the
�le prior to a write operation. This ensures that any data you write to the �le is added to
the end of the �le instead of written over existing data. (Append and other access types are
described later in this manual.) Following initialization, the record pointer can remain in
position at the head of your �le, or it can be moved by the intrinsics used in record selection
(for example, FREAD, FWRITE, and FPOINT).

Record Selection

Various File System intrinsics are designed to transfer records to and from �les. The record
pointer indicates the speci�c location where a �le can be accessed. Records can be transferred
to or from this location, or the pointer can be moved to another place in the �le you wish to
access.

There are �ve methods of record selection for accessing a �le:

Sequential access, in which you transfer data to and from the place the record pointer
currently indicates.

Random access, in which you use FPOINT to move the record pointer before transferring
data, or you use FREADDIR to choose it at access time.

Update access, in which you choose a record and write a new record over it.

RIO access, in which you access only records that are activated.

Mapped access is a special type of access available only through the HPFOPEN intrinsic, in
which you bypass File System data transfer mechanisms by referencing the �le by using a
pointer declared in your program.

For detailed information on record selection methods and the intrinsics used for data transfer,
refer to Accessing Files Programmer's Guide (32650-90017).

6-30 File System

Mapped Access to Disc Files

MPE/iX employs a \mapped �les" technique for performing disc �le access. File access
e�ciency is improved when code and data portions of �les required for processing reside in
memory. Accessing memory is faster than performing physical disc I/O operations. The
mapped �les technique eliminates �le system bu�ering and optimizes global system memory
management.

File mapping is based on MPE/iX demand paged virtual memory, which uses to advantage
the large amount of virtual memory on the system. When a �le is opened, it is logically
mapped into virtual memory. An open �le and its contents are referenced by virtual
addresses. Each byte of each opened �le has a unique virtual address.

File mapping improves I/O performance without imposing additional CPU overhead or
sacri�cing data integrity and protection. Traditional disc caching schemes for increasing
I/O performance impose a CPU overhead penalty. The 900 Series hardware and system
architecture allow MPE/iX to perform �le mapping without incurring this penalty. System
hardware performs the virtual to physical address translations for locating portions of the
mapped �les, thus eliminating CPU overhead for this function.

If the required pages are not in memory, the MPE/iX Memory Manager fetches them directly
from disc and places them in memory. This eliminates File System bu�ering. Pages are
\prefetched" to reduce the amount of physical disc I/O. Prefetching means that the page
speci�ed for fetching and the group of pages surrounding it are a fetched all at once. This
improves e�ciency because the processor is likely to require pages that are located near each
other. Two bene�ts of this are:

Eliminating unnecessary data movement in memory improves system performance.

Memory space usage is optimized.

MPE/iX File System access intrinsics are built on the mapped �le technique. Programs using
�le access methods supported by MPE �le types and intrinsics obtain the bene�ts of �le
mapping without requiring changes.

You can directly access mapped �les when programming in Native Mode languages with
pointers by using the HPFOPEN intrinsic. For example, you can obtain the advantage of File
System naming and data protection for accessing array type structures and developing
specialized access methods.

You can write programs that address �les through virtual memory, instead of calling File
System intrinsics for disc reading and writing. The �le interface provides opening and closing
of user mapped �les with normal naming and security, but with improved LOAD and STORE

speed on �le references.

Multiple Record Transfers

In most applications, programs conduct input and output in normal recording mode, where
each read or write request transfers one logical record to or from the stack. In specialized
applications, however, you may want a program to read or write, in a single operation, data
that exceeds the logical record length de�ned for the input or output �le. For example,
multirecord transfer may be preferable, as a good programming practice, for applications that
run only on MPE/iX.

File System 6-31

You can bypass the normal record-by-record input and output, instead receiving large data
transfers by specifying multirecord mode (MR) by using the multirecord option parameter
in the HPFOPEN or FOPEN call, or by using the :FILE command. For detailed information
and examples on multiple record transfers, refer to Accessing Files Programmer's Guide
(32650-90017).

Data Transfer Control Operations

To move a record pointer to a particular place without necessarily transferring data, the
following intrinsics perform three types of record selection:

FSPACE, provides spacing. It moves the record pointer backward or forward.

FPOINT, provides pointing. It resets the record pointer.

FCONTROL, provides rewinding. It resets the record pointer to record 0.

For detailed information and examples on spacing, pointing, and rewinding, refer to Accessing
Files Programmer's Guide (32650-90017). For detail information on FSPACE, FPOINT, and
FCONTROL, refer to MPE/iX Intrinsics Reference Manual (32650-90028).

Reading from a File

There are several ways to move data to a program from a disc �le or device �le. The File
System intrinsics used for reading data from a �le are:

FREAD reads a logical record or a portion of a record from a �le to a program.

FREADDIR reads a speci�c logical record or portion of a record from a random access opened
disc �le to a program.

READ reads a character string from the job or session input device ($STDIN) to a program.

READX reads a character string from the job or session input device, ($STDINX) to a program.

FREADLABEL reads a user �le label from a disc �le or labeled magnetic tape �le to a
program.

By referencing a pointer to an open mapped �le.

If the standard input device ($STDIN) and the standard list device ($STDLIST) are opened
with an HPFOPEN or FOPEN intrinsic call, the FREAD and FWRITE intrinsics can be used with
them. For example, you can use the FREAD intrinsic to transfer information entered from a
terminal to a bu�er in the stack, and you can use the FWRITE intrinsic to directly transfer
information from the stack to the standard list device.

You can use the FREADDIR intrinsic to read a record from a �le opened by the HPFOPEN or
FOPEN intrinsic and transfer the record to an array in the stack. When FREADDIR reaches the
end of a �le, the end-of-�le condition code CCG is returned. If FREADDIR does not successfully
read information, a CCL condition code is returned.

When a labeled tape �le has been opened, you can use the FREAD intrinsic to read data from
the opened �le. The system uses the block size, record size, and �le format on the tape label
to determine the amount of data to read. You can call FGETINFO or FFILEINFO to obtain
these values.

You can use the FREADLABEL intrinsic to read a user-de�ned label on a labeled magnetic
tape �le. To read a user-de�ned header, a program must call FREADLABEL before issuing the

6-32 File System

�rst FREAD for the �le. Execution of the �rst FREAD causes MPE/iX to skip past any unread
user-de�ned header labels.

Other specialized read intrinsics are READX and FREADLABEL.

For detailed information on reading a �le, refer to Accessing Files Programmer's Guide
(32650-90017).

Writing to a File

You can move data from a program to a disc �le or to a device �le in several ways. The File
System intrinsics used for writing the data are as follows:

FWRITE writes a logical or physical record or portion of a record from your program to a �le
on any device.

FWRITEDIR writes a speci�c logical record from a program to a disc �le.

PRINT prints a character string from a program to the job or session listing device,
$STDLIST.

FWRITELABEL writes a user �le label from your program onto a disc �le or labeled magnetic
tape �le.

By assigning a value to a location speci�ed by a pointer to an open mapped �le.

If the standard input device ($STDIN) and the standard list device ($STDLIST) are opened
with an HPFOPEN or FOPEN intrinsic call, the FREAD and FWRITE intrinsics can be used with
these devices. For example, the FWRITE intrinsic can be used to transfer information from a
bu�er in your process stack directly to the standard list device.

A program can use the FWRITEDIR intrinsic to read records from one �le and write them, in
reverse order, into a second �le. You can use the FGETINFO intrinsic to locate EOF in the �le to
be read. This information is returned to the program in a variable.

You can write to either a labeled or an unlabeled magnetic tape �le. Writing to a labeled tape
�le di�ers from writing to an unlabeled tape �le when the user program attempts to write
over or beyond the physical end-of-tape (EOT) marker.

For detailed information on writing to a �le, refer to Accessing Files Programmer's Guide
(32650-90017).

Updating a File

The FUPDATE intrinsic updates a logical record of a disc �le. It a�ects the last logical
record (or block for NOBUF �les) accessed by any intrinsic call for the �le named and writes
information from a bu�er in the stack into this record. Following the update operation, the
record pointer is set to indicate the next record position.

As a physical data storage device, magnetic tape is not designed to enable the replacement
of a single record in an existing �le. An attempt to perform this type of operation causes
problems in maintaining the integrity of records on the tape. Magnetic tape �les, therefore,
should not be maintained (updated) on an individual record basis, but should be updated
during copy operations from one �le to another. For detailed information on updating �les,
refer to Accessing Files Programmer's Guide (32650-90017).

File System 6-33

Using Mapped Access to a File

The MPE/iX File System employs access to mapped �les, accessible through the use of
pointers in the HPFOPEN intrinsic. A mapped �le is a �le that can be accessed directly through
machine loads and stores, bypassing File System intrinsics normally used for disc �les.

Mapped access is not available through the standard Input/Output statements of most
programming languages. Thus, the programmatic use of HPFOPEN adds capability to programs.
You can achieve mapped access to a �le by declaring a pointer in a program and passing it to
the HPFOPEN intrinsic. The pointer is initialized to point to the beginning of the data area of
the opened �le.

After HPFOPEN returns the address of the �le, simply reference the pointer as an array or any
type you want. The machine architecture translates the address to a �le page and ensures
integrity and protection of the �le.

Standard disc �les with �xed-length or unde�ned-length record formats are allowed any
type of access (Read, Write, Read/Write, and so on) when opened for mapped access. The
following �le types are allowed Read Only access when opened for mapped access:

Standard disc �les with variable-length record formats
KSAM �les (with COPY mode enabled)

The following �le types cannot be opened for mapped access:

Relative I/O (RIO) �les
Message (MSG) �les
Circular (CIR) �les
KSAM �les (with COPY mode disabled)
Device �les

The File System provides protection by keeping a list of �le rights. When a page fault or
protection fault occurs, it checks the list. If you pass the security check, your protection ID is
placed in a range of pages allowing access to the �le.

All File System and data transfer intrinsics applicable to the �le can be used with a mapped
�le. When mixing FREAD and FWRITE calls with mapped access, you must consider the �le's
data type (ASCII or binary), record format, and record size to ensure that data written to the
�le using mapped access makes sense when read by FREAD.

When you open a �le using mapped access and write data to it, you must use the FPOINT
and FCONTROL intrinsics to reset end-of-�le (EOF) before closing the �le. Otherwise, all data
written to the �le is lost when you close it. In the case of a newly created �le, the EOF initially
points to record zero. Mapped accessing of a �le bypasses File System services that, otherwise,
automatically set various File System pointers, including EOF and the logical record pointer.
You are responsible for resetting EOF prior to closing the �le.

For detailed information on the advantages of mapped access to �les, refer to Accessing Files
Programmer's Guide (32650-90017).

Device File Buffers

A bu�er is an area in memory used by the File System to hold one block (one physical record)
of a �le. When a program reads a record from a bu�ered �le, a block is brought into the
bu�er. For detailed information, refer to Accessing Files Programmer's Guide (32650-90017).

6-34 File System

Sharing a File

Accessing and controlling a �le that is open only to you is a relatively simple matter.
However, when several users are simultaneously accessing a �le, each user must be aware of
special considerations for sharing the �le:

How will others be allowed concurrent access to the �le?

Will concurrent access require special management?

When an HPFOPEN or FOPEN intrinsic call is issued for a �le, the File System regards the
request as an individual accessor of the �le and establishes a unique �le number and other
�le control information for the �le. Even when a program issues several di�erent HPFOPEN or
FOPEN intrinsic calls for the same �le, each call is treated as a separate accessor. Under the
normal (default) security provisions of MPE/iX, when an accessor opens a �le not currently
in use, the access restrictions that apply to this �le for other accessors depend on the access
mode this �rst accessor requested:

If the �rst accessor opens a �le for read-only access, then any other accessor can open it for
any other type of access (for example, write-only or append). However, the other accessors
are prohibited exclusive access.

If the �rst accessor opens a �le for any other access mode (for example, write-only, append,
or update), this accessor maintains exclusive access to the �le until it closes it; no other
accessor can access the �le in any mode.

A program can override the defaults by specifying other options in HPFOPEN and FOPEN

intrinsic calls. A user running this program can, in turn, override both the defaults and
programmatic options by using the :FILE command. Table 6-7 describes these options and
the actions MPE/iX takes when the options are in e�ect and simultaneous access is attempted
by other HPFOPEN or FOPEN intrinsic calls. The action depends on the current use of the �le
and the access requested.

File System 6-35

Table 6-7. File Sharing Restriction Options

Access Restrictions :FILE Parameters Description

Exclusive Access EXC After you open a �le, prohibits
concurrent access in any mode
through another HPFOPEN/FOPEN
request by any program
(including this one), until this
program issues FCLOSE or
terminates.

Exclusive Write Access SEMI After you open a �le, prohibits
concurrent write access through
another HPFOPEN/FOPEN request
by any program (including this
one), until this program issues
FCLOSE or terminates.

Sharable Access SHR After you open a �le, allows
concurrent access in any mode
through another HPFOPEN/FOPEN
request by any program
(including this one), in any
session or job (including this
one).

The Exclusive Access option is useful to update a �le and prevent other users or programs
from reading, writing, or altering information that is about to be changed.

The Exclusive-write Access option allows other accessors to read the �le but prevents them
from altering it. For example, it is useful for updating a parts list, where you want to append
new part numbers, without prohibiting other users from reading current part numbers.

The Sharable Access option allows a �le to be shared in all access modes by requests from
multiple programs. It is useful for allowing several users to read di�erent parts of the same
�le. E�ectively, each accessor accesses its own copy of the portion of the �le in the accessor's
bu�er.

For detailed information on Exclusive, Exclusive-write, and Sharable Access, refer to Accessing
Files Programmer's Guide (32650-90017).

The multi-access option extends the features of Sharable Access to allow a deeper level of
multiple access. It makes the �le simultaneously available to other accessors in the same job
or session and permits them to use the record pointer and other �le-control information.
When several concurrently running programs (processes) are writing to the �le, the e�ect on
the �le is the same as if one program were performing all output. Multi-access provides truly
sequential access by several concurrently running programs.

Global multi-access permits simultaneous access to a �le by processes in di�erent jobs or
sessions. Figure 6-15 shows the action resulting from multi-access of �les.

6-36 File System

For detailed information on the multi-access and global multi-access options, refer to Accessing
Files Programmer's Guide (32650-90017).

Figure 6-15. Actions Resulting from Multiaccess of Files

When a �le is shared among two or more processes and one or more of the processes is writing
to it, the processes must be properly interlocked to prevent undesirable results. The FLOCK
and FUNLOCK intrinsics provide the necessary interlocking by using a Resource Identi�cation
Number (RIN) as a ag to interlock multiple accessors. For detailed information on this topic,
refer to Accessing Files Programmer's Guide (32650-90017) and MPE/iX Intrinsics Reference
Manual (32650-90028).

Maintaining File Security

Three security features are available on the MPE/iX system to restrict access to a single �le
or all disc �les in a particular account or group: lockwords, the MPE/iX File Access System
matrix, and access control de�nitions (ACDs).

File System 6-37

Lockwords

Lockwords are �le \passwords" which provide a primary level of �le security by restricting
access to a �le to users not knowing the �le's lockword. These lockwords may be assigned to a
�le when the �le is created with the BUILD command or when the �le is renamed. To delimit
the lockword, enter a forward slash (/) following the �le name:

BUILD MYFILE/KEY

RENAME MYFILE/LOCK

For additional information, refer to the MPE/iX Commands Reference Manual Volumes 1 and
2 (32650-90003 and 32650-90364).

MPE/iX File Access System

The HP 3000 system includes a set of security provisions with each account, group, and
individual �le. This set speci�es restrictions on access to a single disc �le or to all disc �les in
a particular account or group.

The restrictions are based on three factors:

Modes of access (for example, reading, writing, or saving).

Types of user (for example, a user with Account Librarian capability, Group Librarian
capability, or a user to whom the access modes speci�ed are permitted.)

The security provisions for any �le describe the permitted access modes for various users of
the �le.

Specifying and Restricting File Access by Access Mode

When a program opens or creates a �le, it can de�ne the way the �le can be accessed by
specifying a particular access mode for the �le (for example, read-only, write-only, update,
and so on). These speci�cations apply to �les on any device, and only the creator of �le can
change or override them.

When specifying the access mode for a �le, it is important to know the location of the current
end-of-�le before and after the �le is opened and the location of the logical record pointer that
indicates where the next operation will begin. For example, the choice of the correct access
mode can write a record to a �le and:

Append it following the last record or overwrite an existing record.

Correct information in a �le rather than delete it.

Redirect output from one device to another.

For detailed information on this topic, refer to Accessing Files Programmer's Guide
(32650-90017).

Table 6-8 describes the �le access mode types.

6-38 File System

Table 6-8. File Access Mode Types

Access Mode :FILE Parameter Description

Read only IN Allows you to read a �le, but not to write on it.

Write only OUT Allows you to write on a �le, but not to read it.
Any data already in the �le is deleted when the
�le is opened.

Write (save) only OUTKEEP Allows you to write on a �le, but not to read it.
You can add new records both before and after
current end-of-�le indicator.

Append only APPEND Allows you to append information to a �le, but
not to overwrite the current information or read
the �le. You can add new records only after the
current end-of-�le indicator. Used when present
contents of a �le must be preserved.

Input/output INOUT Allows unrestricted input and output access of
�le. Information already on the �le is saved when
the �le is opened. (In general, it combines the
features of IN and OUTKEEP.)

Update UPDATE Allows use of FUPDATE intrinsic to alter records in
a �le. Record is read into your data stack, altered,
and rewritten to the �le. All data already in the
�le is saved when the �le is opened.

Specifying File Access by Type or User

Restrictions on accessing a �le are established when the �le is created according to the default
established for the group and account where the �le resides.

The capabilities of a user who accesses a �le can determine the security restrictions applied.
Table 6-9 describes the types of users recognized by the MPE/iX Security System, their
mnemonic codes, and de�nitions.

File System 6-39

Table 6-9. User Type Definitions

User Type Mnemonic Code Description

Any user ANY Any user de�ned in the system, including all
categories de�ned below.

Account librarian
user

AL User with account librarian capability, who can
manage certain �les within the account that may
or may not all belong to one group.

Group librarian
user

GL User with group librarian capability, who can
manage certain �les within his home group

Creating user CR User who created this �le

Group user GU Any user allowed to access this group as his logon
or home group, including all GL users applicable to
this group.

Account member AC Any user with authorized access under this
account, including access through AL, GU, GL, and
AC.

For detailed information on this topic, refer to Accessing Files Programmer's Guide
(32650-90017).

The user access modes to a �le are determined by four separate levels of security settings.
All four levels are checked and must be passed to grant a user access to a �le. The only two
levels over which a standard user has control are the �le and lockword levels. However, it
is important for a standard user to understand all levels of the security system, since the
combination of all the settings determines the user's access to the �le. Figure 6-16 shows the
security levels checked when a user attempts to gain access to a �le.

Figure 6-16. Security Level for File Access

6-40 File System

The default security at account, group, and �le levels are as follows:

Account level

SYS (R,X:ANY;W,A,L:AC)

other accounts (R,X,W,A,L:AC)

Group level

PUB (R,X:ANY;A,W,L,S:AL,GU)

other groups (R,W,A,L,X,S:GU)

File level

(R,X,W,A,L:ANY)

At the group level, the MPE/iX Security System recognizes six access modes:

Reading (R)
Appending (A)
Writing (W)
Locking (L)
Executing (X)
Saving (S)

It recognizes seven user types:

Any User (ANY)
Account Librarian User (AL)
Group Librarian User (GL)
Group User (GU)
Account Member (AC)
System Manager (SM)
Account Manager (AM)

For detailed information on this topic, refer to Accessing Files Programmer's Guide
(32650-90017).

When a �le is created, the security provisions that apply to it are the default provisions
assigned by MPE/iX at the �le level, coupled with the user-speci�ed or default provisions
assigned to the account and group to which the �le belongs. At any time, however, the creator
of the �le can change the �le level security provisions. Thus, the total security provisions for
a �le depend on speci�cations made at three levels: account, group, and �le. A user must
pass tests at the account, group, and �le levels (in order) to successfully access a �le in the
requested mode.

If no security provisions are explicitly speci�ed by the user, the following provisions are
assigned at the �le level by default:

Reading (R)
Appending (A)
Writing (W)
Locking (L)
Executing (X)
Any User (ANY)

Because the total security for a �le always depends on security at all three levels, a �le not
explicitly protected from a certain access mode at the �le level may bene�t from the default

File System 6-41

protection at the group level. For detailed information on this topic, refer to Accessing Files
Programmer's Guide (32650-90017).

Access Control Definitions (ACDs)

Access Control De�nitions (ACDs) allow the owner of a �le to specify permissions for access
to a �le or to a device. An ACD takes precedence over the previous access controls, namely
the MPE �le access matrix and lockwords. The owner of a �le is any of the following: the
creator of the �le, the account manager (AM capability) where the �le resides, or the system
manager (SM capability).

A device or �le can be paired with an ACD. When a user tries to acquire the device or to
open the �le, the system �rst checks the authorization list of the associated ACD. When a �le
is paired with an ACD, the ACD is put into its �le label extension. The ACD contains a list
of access modes paired with users.

Specifying and Restricting File Access

Similar to the MPE File Access System, ACDs use modes to specify the types of access to
grant or refuse to users as follows:

R read

W write

A append

L lock

X execute

NONE none (no access)

RACD read and copy the ACD permission �le

ACDs are de�ned in a similar manner as �le access modes. For example:

ACD = (R,W:MGR.ACCTING, DENNIS.LEE; R:@.PAYROLL; A:@.@

MGR.ACCTING and DENNIS.LEE can read and write to the �le associated with this
example ACD. Any user in PAYROLL can read it, and any user on the system can append to
it. If a user is not given a permission, the user does not have it.

Managing ACDs with Commands and Intrinsics

Use commands to manage ACDs interactively through the command interpreter. Use
intrinsics to manage ACDs in a program.

1. Creating ACDs

ACDs for �les may be created or owned by the system manager (SM capability), the
account manager (AM capability) where the �le resides, or by the creator of the �le. ACDs
for devices can only be created or owned by the system manager (SM capability).

When creating a new �le with the COPY, FCOPY, or RESTORE commands, use parameters to
create its ACD. Use the ALTSEC command or the HPACDPUT intrinsic to create an ACD for
an existing device or �le.

6-42 File System

2. Preserving ACDs Device ACDs are not permanent objects and must be rede�ned every
time the system is rebooted. The easiest ways to do this are to put ALTSEC commands into
the SYSTART �le, either directly or in a command �le.

File ACDs are permanent objects and survive a reboot. When storing �les to tape, FCOPY
and STORE store the �les' ACDs unless you specify otherwise.

3. Listing ACDs

To get information about ACDs interactively, use the SHOWDEV command for devices, and
the LISTFILE command for �les. To get information about ACDs programmatically, use
the HPACDINFO or HPACDPUT intrinsics.

Any user can �nd out whether an ACD exists for a particular device or �le, but only an
owner, or user granted RACD (read ACD) access, can get a listing of the ACD contents.

4. Copying ACDs

To copy an ACD from one �le to another, use the COPYACD parameter of the ALTSEC
command. Only the owner or user granted RACD (read ACD) access can copy an ACD.

5. Modifying ACDs

To change an ACD, use the ALTSEC command or the HPACDPUT intrinsic. Only an owner
can alter an ACD.

6. Deleting ACDs

To delete an ACD, use the ALTSEC command or the HPACDPUT intrinsic. Only an owner can
delete an ACD.

7. Migrating ACDs

Both MPE V/E and MPE/iX support the use of ACDs. MPE/iX, however, allows more
user-mode pairs than MPE V/E.

Note Device ACDs shold not be migrated because they are tied to their system's
con�guration.

Move �le ACDs between MPE V and MPE/iX by using the STORE and RESTORE

commands, where COPYACD is the default.

Note You must have authorization to use the COPYACD parameter of the STORE
and RESTORE commands. If you are not an owner of the �le and do not have
RACD permission, you will get an error.

Changing Disc File Security Provisions

The security provisions for the account and group levels are managed only by users with
System Manager or Account Manager capabilities, respectively. However, you can change the
security provisions for any disc �le you have created by using the :ALTSEC command. This
does not a�ect any account-level or group-level provisions that may cover the �le, and it does
not a�ect the security provided by a lockword. For detailed information on this topic, refer to
Accessing Files Programmer's Guide (32650-90017).

File System 6-43

Suspending and Restoring Security Provisions

You can temporarily suspend the security restrictions on any disc �le you create by using
the :RELEASE command. This allows any user to access the �le in any mode, thus providing
unlimited access to the �le. It does not remove lockword protection, and it does not modify
the �le security settings recorded in the system. It merely bypasses them temporarily.
:RELEASE remains in e�ect for a �le until you enter the :SECURE command in this or a later
job or session or until the �le is modi�ed.

For detailed information on this topic, refer to Accessing Files Programmer's Guide
(32650-90017).

6-44 File System

7

Data Management

Data management involves collecting data and reporting information. The following categories
describe the concept of data management on a 900 Series HP 3000 system:

Collecting data: the data entry process, including validating.

Organizing data: analysis of data and its relationships; development of an appropriate data
structure after analyzing the requirements of the application; for example, producing a
logical record layout or schema.

Storing data: the process of installing data in a meaningful form. This is the task of taking
raw data and reformatting it for application programs to use.

Accessing data: the retrieval of data for further processing. This includes additional
reorganization or reduction of data for reports or other uses of the data.

Data Management Subsystems

Data Management subsystems on the 900 Series HP 3000 are:

MPE/iX File System

KSAM/V (Keyed Sequential Access Method)

ALLBASE/SQL

- TurboIMAGE/XL

- HP SQL

QUERY/V

TurboIMAGE DBchange/V

Data Management 7-1

KSAM/V

KSAM is an acronym for Keyed Sequential Access Method. KSAM/V provides a disc �le
structure for organizing and accessing records in a �le according to the contents of key �elds.
It is Hewlett-Packard's implementation of indexed sequential processing. KSAM/V allows you
to access records in two ways:

Sequentially, according to a sequence de�ned by key values.

Randomly, by �nding the record that has a �eld matching a speci�c key value.

A KSAM �le consists of two associated MPE/iX �les:

A data �le containing all of the �le's data records

A key �le, containing one or more balanced trees that maintain primary and alternate
logical sequences for the data records.

The data �le contains the actual data. It can consist of �xed-length or variable-length records.
Each record in the data �le contains one primary key �eld and may have a maximum of 15
alternate key �elds. Data records are stored in a KSAM �le in chronological order (this is the
order in which they were written to the �le), without regard to key sequence. In KSAM mode,
you can specify standard access if you wish. In addition to KSAM mode, you can specify
standard (NOKSAM) mode.

The associated key �le must be used to access the data records.

KSAM procedures add, delete, read, and update KSAM records and are callable from user
applications.

KSAMUTIL allows you to manipulate, verify, and analyze KSAM �les. Because KSAM �le
structure is di�erent from MPE/iX �le structure, you cannot create a KSAM �le with the
MPE/iX command :BUILD. You can rename it with the MPE/iX command :RENAME, but it
is inadvisable because it destroys the cross reference between the data �le and the associated
key �le. Therefore, it is extremely useful to have KSAMUTIL commands that are designed to
operate speci�cally on KSAM �les and preserve the proper cross referencing.

Figure 7-1 shows an example of building a KSAM �le.

Figure 7-1. Building a KSAM File

7-2 Data Management

The KSAMUTIL command BUILD requires the following parameters:

Data �le name.

Key �le name.

One or more key types, with corresponding key location, and key size.

The �rst key speci�ed becomes the primary key. Each subsequent key speci�ed becomes
an alternate key. Notice in the example that the �rst alternate key allows records to have
duplicate values in that �eld. The fourth subparameter of the KEY �eld is the key blocking
factor. Default blocking is one record per block, which usually results in wasted disc space.
You can �nd the blocking factor by dividing the sector size (256) by the record length and
then rounding down.

FCOPY (KSAM Options)

You can use FCOPY with KSAM options that make it perform correctly for a KSAM �le
instead of an MPE/iX �le. FCOPY provides many �le manipulation services. For example,
you can use it to:

Load a KSAM �le by copying data from an MPE/iX or a KSAM �le into a KSAM �le.

Reorganize a KSAM �le by building another KSAM �le with keys speci�ed in a di�erent
order and copying the old KSAM �le into the newly built one.

Convert an ISAM (Indexed Sequential Access Method) �le to a KSAM �le by building a
KSAM �le and copying the magnetic tape containing the ISAM �le data to the newly built
KSAM �le.

Copy only active KSAM records (data records that are not logically deleted by having a ag
in the �rst word). This feature allows you to physically delete KSAM records from a �le
and compact the �le size. FCOPY defaults to copying only active records unless you specify
otherwise.

Recover logically deleted records by using the :NOKSAM option.

Write logically deleted records to a separate �le by using the :NOKSAM option and specifying
;SUBSET=#%377,%377#,1.

Write any KSAM �le to $STDLIST or a line printer. Thus, during a session, you can either
display the �le on the terminal or list it out on a line printer. During a job, you can list it
on a line printer.

Copy data in a KSAM �le to an MPE/iX �le in chronological, primary, or alternate key
sequence.

Recover corrupt key �les or �les with missing key �les.

Recover anomalies resulting from system interrupts by specifying ;KEY=0.

The FCOPY utility has three KSAM options:

;KEY=nn

- if omitted, copies in primary key sequence, retaining old key trees.

- if nn=0, copies in chronological sequence and rebuilds key trees.

- if nn>0, copies in sequence by key number nn , where the key numbers are assigned in
order of occurrence.

Data Management 7-3

;NOKSAM

- copies all records in chronological sequence, including deleted records.

- if omitted, only active records are copied.

FCOPY default, which copies active records in the primary key sequence

When using the KSAM options of FCOPY, consider the following information:

KEY and NOKSAM are mutually exclusive options; use them only when the FROM �le is a
KSAM �le.

NOKSAM processes the FROM �le as an MPE/iX �le. Use it to copy all data in a KSAM data
�le, including the logically deleted records.

Do not use the NOKSAM option to copy a KSAM �le with variable-length records.

If you use the NOKSAM option to reload a �le due to key�le corruption, you must also specify
NOUSERLABELS. Using the SUBSET option ensures that only valid (non-deleted) records are
copied.

When copying an existing KSAM �le, you can let FCOPY create a TO �le for you by using
the syntax:

>FROM=KSAMDATA;TO=(NDATA,NKEY)

where NDATA and NKEY are previously non-existent KSAM data and key �elds.

Figure 7-2 shows an example of loading a KSAM �le. The diagram shows how the key �le is
built on KSAM �le information speci�ed in the KSAMUTIL command BUILD.

Figure 7-2. Loading a KSAM File

7-4 Data Management

The steps required to reorganize a KSAM �le are:

1. Use KSAMUTIL to build a new KSAM �le with new key �elds.

2. Use FCOPY to copy the old KSAM �le to the new one, specifying whichever key in the old
�le is the primary key in the new �le.

3. Use KSAMUTIL to purge the old �le and rename the new copy to the old �le name.

Figure 7-3 shows an example of reorganizing a KSAM �le.

Figure 7-3. Reorganizing a KSAM File

KSAM procedures

KSAM procedures allow you to programmatically add, delete, read, and update KSAM �les.
The procedures vary depending on the language in which the program is written. You can
access KSAM �les through KSAM procedures in the native languages that run on the 900
Series HP 3000:

HP C/iX

COBOL II/XL

HP FORTRAN 77/iX, through calls to intrinsics (for example, HPFOPEN and FOPEN).

HP Pascal/iX, through calls to intrinsics (for example, HPFOPEN and FOPEN).

For detailed information on using KSAM procedures in HP C/iX, HP Pascal/iX, HP COBOL
II/XL, and HP FORTRAN 77/iX, refer to KSAM/V Reference Manual (30000-90079).

Data Management 7-5

ALLBASE/SQL

ALLBASE/SQL is designed for HP 3000 900 Series systems. ALLBASE/SQL contains both
a network model database management system, called TurboIMAGE, and a relational model
database management system, called HP SQL. It has been optimized for MPE/iX systems.
HP SQL, the relational model database management system used when MPE/iX is running in
Native Mode, is discussed in the subsection below. TurboIMAGE/XL is discussed later in this
chapter.

HP SQL

HP SQL is the relational model database management system (DBMS) module of
ALLBASE/SQL. (Table 7-1 shows ALLBASE/SQL speci�cations useful to programmers. For
detailed information on ALLBASE/SQL components, refer to the Data Management Series.)

HP SQL allows views to be created. A view is a table derived by de�ning a �lter over one
or more tables to let users or programs view only certain data in the tables. Views improve
security by allowing users to access only the data they have a need to know. Since the view is
not actually a physical table, use of views does not result in redundant data. When data in a
table is updated, all views that use the data are automatically updated.

An HP SQL query requires that the programmer specify only the data needed, minimizing the
amount of preplanning and coding necessary. A non-procedural interface allows the query
of HP SQL databases without specifying data access path information. You can operate on
entire sets of data at one time, rather than on one record at a time. The major features of HP
SQL are:

Relational data model allows you to specify required data, without specifying the retrieval
method.

Language preprocessors allow the same statements that are used for an interactive query to
be embedded in HP Pascal/iX and HP COBOL II/XL application programs.

Concurrent access allows multiple users to simultaneously access data.

Speci�cation of levels of access privileges maintain security for users and groups of users.

Data independence allows you to make changes to the database structure without requiring
modi�cation of applications.

You can de�ne views that allow a user or group of users to see parts of one or more tables
as a single, virtual, table. These act as a �lter to customize a table.

Query optimizer reduces requirement for query planning details.

B-tree indexes support fast data access.

User controlled transactions ensure that data is always in a consistent state.

Automatic locking ensures data integrity in a multiuser environment by preventing access to
data while it is being updated.

Automatic rollback recovery preserves logical data integrity due to a soft crash.

You can invoke rollback capability in a program to allow erroneous data, usually generated
in an on-line situation, to be removed before the transaction is completed.

7-6 Data Management

Rollforward recovery preserves logical and physical data integrity due to a hard crash.

Dynamic restructuring allows you to change data structure, table capacities, and security
without unloading and loading the database.

Null data values allow use of �elds that are relevant to some, but not all, records in a table.

HP SQL does not require you to de�ne explicit relationships between data sets. When you
perform a query, it determines relationships by matching values between �elds common to
two or more data sets. If you consider a data set to be analogous to a table, a given �eld
in the data set would occur as a column in the table. Data from any number of tables that
share a common column can be related, as needed, and you can de�ne them to be an HP SQL
database. The query optimizer determines the best data access strategy based on factors such
as the presence of indexes and the relative sizes of accessed tables.

Interactive SQL (ISQL) is the interactive interface to HP SQL. It provides the functionality
of a data de�nition language (DDL) and a data manipulation language (SQL). DDL allows
the database administrator to control all aspects of database creation and modi�cation. SQL
allows the programmer or frequent user to interactively query a database.

Security

Security is maintained by allowing speci�cation of appropriate levels of access privileges to
individual users or groups of users.

HP SQL allows read (SELECT) access and write access privileges to be assigned at the table
level. Read or write access restriction at a �ner granularity than the table level, such as at
the column level, may be obtained by de�ning a view of the table that omits the sensitive
information. Modi�cation (UPDATE) authority may be granted at the column level without
requiring that a view be speci�ed. Write access may be assigned to allow any combination of
the following capabilities:

Row modi�cation (UPDATE)
Row insertion (INSERT)
Row deletion (DELETE)

The database administrator (DBA) assigns access privileges by grouping users with common
access needs into authorization groups. The particular read and write authorities are then
assigned by the DBA to each of these groups. Users with unique access requirements may also
be granted privileges directly.

Logical Transaction

A logical transaction is a series of database modi�cations of which either all or none
must be performed to leave the database in a consistent state. The particular grouping of
modi�cations de�ned by the user to be a transaction varies depending on the particular
application. An example of a transaction is an accounting entry to pay a bill: the credit
to the cash account and debit to the accounts payable account must both be performed to
avoid leaving the accounts out of balance. This concept of a logical transaction is essential to
ensuring that data integrity is maintained when multiple users are concurrently accessing the
database or in the event of system failure.

Data Management 7-7

Concurrency

HP SQL preserves data integrity, when multiple users are accessing a database, through
a comprehensive locking scheme based on the transaction concept. When a user begins a
transaction, a lock is automatically granted for each page read or modi�ed by the transaction.
(A page is a unit of data storage that contains 4,096 characters.) This ensures that no one
else may update the data on those pages while the user is reading or updating them. If data is
only being read, then other users are not prevented from reading it simultaneously; they just
can't update it. If data is being updated, however, data integrity is ensured by preventing the
other users from reading or updating the data. When the user's transaction is completed, all
acquired locks are automatically released.

Tables (data sets) may also be blocked explicitly. This feature is provided to allow the
programmer greater exibility in applications where it is advantageous to lock large portions
of the database. Since explicit locks reduce concurrency, they are not recommended for
general use.

Recovery

HP SQL ensures that the logical and physical integrity of the database is protected in the
event of a program abort, system failure, or destruction of the media on which the database
resides.

Rollback recovery is an automatically activated recovery feature that ensures that the
database is always in a logically consistent state. HP SQL logs write transactions to a log
�le on disc. In the event of a system failure or program abort, HP SQL uses this log �le to
automatically back out any partially completed transactions.

The rollback capability may also be invoked in an HP SQL program. This is a particularly
valuable feature in an on-line application, as it allows a user who has entered incorrect
information to nullify the transaction before its completion.

Rollforward recovery protects the physical and logical integrity of the database against media
failure. In the event of a hardware or software failure, the transactions from the log �le are
reapplied to a backup copy of the data to bring it up to the current state.

A simultaneously updated copy of the log �les used for rollback or rollforward recovery may
be kept on another disc to provide additional protection in the case of disc failure.

Database Creation

As part of the database design process, the database administrator (DBA) must decide how
many databases should be included in each HP SQL DBEnvironment. A DBEnvironment may
contain one or more databases. Since the DBEnvironment is the maximum scope for recovery,
multiple databases that will be accessed by way of a single logical transaction should be
placed in the same DBEnvironment. The DBEnvironment is also the level at which the data
is backed up. Therefore, unrelated databases should be placed in separate DBEnvironments.

After the DBA has designed the database structure on paper, he may easily create the
database. A DBEnvironment must be con�gured for the database unless it will be included
with other databases in an existing DBEnvironment. The remaining step in creating an
HP SQL database is to create the tables (CREATE TABLE command), indexes (CREATE
INDEX command), and views (CREATE VIEW command) that make up the database.

7-8 Data Management

Database Restructuring

HP SQL provides a full set of database restructuring capabilities. HP SQL supports dynamic
restructuring for commonly required structural changes. Dynamic restructuring allows users
to continue to access data, except for the a�ected areas, during restructuring.

HP SQL provides dynamic restructuring for the following cases:

Expanding table capacities
Altering security designations
Adding columns
Adding or deleting indexes, views, and tables.

Data Management 7-9

Table 7-1. ALLBASE/SQL Specifications

Speci�cations HP SQL

Data Types: Packed decimal (IEEE standard)
double-precision oating point (8 byte)

Integer (2 & 4 byte)

Fixed length (<3996 bytes)

Character

Variable length (<3996 bytes)

Character

Languages: COBOL

Pascal

Passwords/Security Groups Unlimited Groups

Maximum Database Parameters

Tables (sets) per database Unlimited

Records per table (set) Unlimited

Record length 3996 bytes

Columns (items) per table (set) 255

Field (item) length 3996 bytes

Sub-items per item n/a

Children per parent n/a

Indexes per table Unlimited

Search items per set n/a

Columns per index 15

Sort items per path n/a

7-10 Data Management

TurboIMAGE/XL Data Base

A database is a collection of logically related data in one or more �les. The �les contain
both the data itself and structural information on how one piece of data relates to another.
Pointers in the database allow access to the actual data and indexing across the multiple �les
in the database. A network database ties together �elds containing information that may be
relevant to a single transaction even though they physically reside in di�erent records.

The terminology used to describe a database di�ers from that used to describe MPE/iX �les.
Table 7-2 shows the corresponding terms.

Table 7-2. Data Base Terminology

MPE/iX Network Data Base Relational Data Base

�eld data item column

record data entry row (or tuple)

�le data set table

�le de�nition schema - - -

collection of �les database database

application database applications database

environment

A network database consists of data sets. The structure of the database is a schema, which
the user writes. The schema is processed and kept in a special �le called a root �le, which is
also part of the database. The term database application refers to a complete data processing
application using a database management system and a database.

The database described in this chapter is a TurboIMAGE/XL data base. A TurboIMAGE/XL
database has two types of data sets:

Detail set, which is a collection of related data entries, each of which contains one or more a
forward pointers, one or more backward pointers, and the data itself. A standalone data set
contains no pointers. TurboIMAGE/XL uses the pointer information to tie together all data
entries whose search items have the same value.

Master set, which maintains indexing into detail data sets or into itself, if it is a manual
master set. Indexing consists of a key data item.

A given network database can have many detail sets and many master sets.

A key data item is frequently called simply a key item. It uniquely identi�es the related data
entries in a master data set. A search item value is not necessarily unique. In a master set, a
key item is the data item used to perform the search.

Data Management 7-11

Master Set

Each master set entry contains a key item pointing to a subset of detail set entries, all with
related values in a particular data item. Thus, you can quickly reference any subset of
entries by �nding its master key item (index pointer). Each master set can contain values
for one detail data item to search. (In other words, it can have only one �eld as a key item.)
However, each master set can provide indexing for a maximum of 16 detail sets by using a key
item in the master set as an index for a maximum of 16 detail sets. Each detail set can be
linked to 16 master sets and can contain a maximum of 16 searchable data items. A master
set can be automatic or manual.

Chain Head

In a master set data entry, the key item and the data items accompanying it are called a chain
head. It consists of:

A count number indicative of the number of detail entries with matching key item values.

The pointer to the last data entry in the detail set whose key item value matches the value
of the master set key item.

The pointer to the �rst data entry in the detail set whose key item value matches the value
of the master set key item.

The data itself.

In the detail set, the �rst and last data entry described by the pointers in the chain head are
the beginning and ending of the chain of data entries in the detail set that have the same
value for the associated data item as the master set key item. A chain can have a maximum
of 2**31 data entries. If more than one master set references a particular detail set, additional
pointers are made available in the detail set.

A chain can be searched in either a forward or backward direction. This is convenient, for
example, in an application that adds new invoice numbers to an existing data set. Otherwise,
you can follow the pointer directly to the last entry in the chain and add a new entry using
a minimum of disc overhead. New entries are automatically added at the end of the chain,
unless the chain is sorted. Although pointers occupy space, usually a database takes less
space than the MPE/iX �les it replaces. This is because the reduction in data redundancy
can outweigh the internal overhead of maintaining a TurboIMAGE/XL database. Figure 7-4
shows an example of how chain heads in a master set are used in TurboIMAGE/XL data set
organization.

7-12 Data Management

Figure 7-4. TurboIMAGE/XL Data Set Organization Example

Automatic Master Set

The characteristics of an automatic master set are:

Each data entry contains a chain head.

A data entry (record, in MPE/iX terms) can contain only the key item used as an index
pointer.

TurboIMAGE/XL automatically updates the master set when modi�cations are made to the
related detail sets. Changing a search item requires deleting the old one and adding the new
one. The master set is automatically done.

Use of an automatic master set saves time when key item values are unpredictable or so
numerous that it is not expedient to make manual additions and deletions of master data
entries. However, it may introduce data redundancy.

Manual Master Set

A manual master set data entry can contain not only a key item, but additional data items
that provide information in addition to the key item. The characteristics of a manual master
set are:

Each data entry contains a chain head.

You must explicitly add or delete all data entries.

You must add a key item in a master set data entry before adding a related detail set data
entry.

You must delete all related detail sets before adding a master set entry.

Allows control over data entries that an automatic master set does not.

Data Management 7-13

TurboIMAGE/XL and QUERY/V

Together, TurboIMAGE/XL and QUERY/V provide a database management system.
TurboIMAGE/XL is a set of programs and procedures you can use to de�ne, create, access,
and maintain a database. QUERY/V is a database inquiry facility that provides a simple
method of accessing a TurboIMAGE/XL database without requiring programming. You can
use QUERY/V interactively.

TurboIMAGE/XL components are:

DBSCHEMA, a subprogram that creates a root �le.

DBUTIL, a subprogram that you can use to create, purge, or report on a database, erase
data from data sets, and enable and disable logging and recovery options.

TurboIMAGE/XL procedures, a set of library routines that allow loading, accessing, and
manipulating of data in a database.

Creating a Schema

You can use DBSCHEMA to create a root �le containing the structural de�nition of a
database by using a schema. A schema analyzes data and formalizes data relationships. The
schema is a summary of all the data relationships in a data base and stored as a separate
text �le. The format used in a schema is TurboIMAGE/XL's database description language.
You can enter schema information in an MPE/iX text �le, following the database description
language format. Schema information includes:

Password and user class

Designation of read/write capability for data sets

Data items

Designation of read/write capabilities for data items

Manual master set

Automatic master set

Detail set

Paths from master sets to detail sets

Key items, identi�ed by path counts

Capacity for each set (speci�cation of a prime number is recommended for a master set)

Creating a Root File

Once you have created a schema in an MPE/iX text �le, you can use the schema processor,
DBSCHEMA, to create a root �le and store in it an internal description of the database,
based on the schema in the text �le. The root �le is part of a database and contains all the
database structural information required by TurboIMAGE/XL and QUERY/V.

The syntax for the command to run the schema processor is:

:RUN DBSCHEMA.PUB.SYS;PARM=n

where:

7-14 Data Management

if PARM= is omitted, the formal designator for the input �le, DBSTEXT, is equated to
$STDLIST. You would use this option, for example, if you wanted to enter the schema
directly from your terminal during a session and list the output to your terminal (in
addition to creating a root �le).

PARM=1 if DBSTEXT has been equated to an actual �le designator

PARM=2 if DBSLIST has been equated to an actual �le designator

PARM=3 if both DBSTEXT and DBSLIST have been equated to actual �le designators

Figure 7-5 shows an example of creating a root �le. In this case, both DBSTEXT and DBSLIST

are equated to actual �le designators: DBSTEXT is an existing MPE/iX text �le and DBSLIST is
the line printer.

Figure 7-5. Example of Creating a Root File

DBUTIL

DBUTIL is a TurboIMAGE/XL subprogram that has many capabilities. You can use it to:

Create a database
Purge a database
Erase a data set
Display information about a database
Enable and disable logging and recovery options
Activate, deactivate, and report on a database access �le

You must be the creator of the database or know its maintenance word to use the DBUTIL
commands PURGE and ERASE. The maintenance word is an optional ASCII string that you can
specify with the DBUTIL commands CREATE or SET. It de�nes a password to use for executing
DBUTIL commands, such as PURGE and ERASE, and to operate other database procedures. If
no maintenance word is de�ned, then only the database creator can operate them.

The DBUTIL command PURGE purges the root �le and all of the data sets in the database.
(You cannot use the MPE/iX command :PURGE to purge a root �le, detail set, or master set.

Data Management 7-15

TurboIMAGE/XL has a transaction logging and recovery system with the capability of
recovering a database from a transaction-oriented log �le in the event of a system failure.
DBUTIL allows you to enable or disable these options.

Creating a Data Base

Once you have created a root �le, you can use DBUTIL to create the database described
in the root �le. To create the database, you must be logged onto the system with the same
log-on used to create the root �le. DBUTIL creates data sets according to the speci�cations
in the internal description of the schema. When created, data sets are initialized to zero and
contain no data.

Figure 7-5 shows an example of creating a database. In this case, the manual master set,
CUSTOMER, has a primary key item named ACCOUNT pointing to the detail set SALES. The
automatic master set, DATE-MASTER, has a primary key item named DATE that also points to
the detail set SALES.

Figure 7-6. Creating a Data Base

TurboIMAGE/XL Procedures

TurboIMAGE/XL procedures are a set of library routines that allow you to load, access, and
manipulate data in the database. You can call them from HP C/iX, COBOL II/XL, HP
FORTRAN 77/iX, and HP Pascal/iX application programs.

You must be the creator of the database or know its database password word to use
TurboIMAGE/XL procedures. (The database password is an optional ASCII string that
you can specify with the DBUTIL commands CREATE or SET. It de�nes a password to use
for executing TurboIMAGE/XL procedures and DBUTIL commands, such as as PURGE and
ERASE. If no database password is de�ned, then only the database creator can operate them.)
The database creator can use a semicolon (;) as a database password to bypass all internal
database security. You need not be logged onto the same group and account that contains the
database root �le and the data sets. You can perform these procedures on a remote database.
TurboIMAGE/XL procedures are in the following categories:

Database access

DBOPEN

7-16 Data Management

DBCLOSE

DBLOCK

DBUNLOCK
DBCONTROL

Access data

DBINFO

DBGET

DBPUT

DBUPDATE

DBDELETE

Information and status

DBINFO

DBEXPLAIN

DBERROR

Logging

DBBEGIN

DBMEMO

DBEND

TurboIMAGE/XL subprograms are used for storing and loading. You must be the creator or
know the maintenance password to use them and you must be logged onto the account and
group where the database resides. The subprograms are:

DBSTORE

DBRESTOR

DBLOAD

DBUNLOAD

Backing Up or Restructuring a Data Base

DBSTORE and DBRESTOR copy a database to and from magnetic tape or serial disc. They copy
the entire database, including the root �le. You can use DBUNLOAD and DBLOAD to assist in
restructuring a database, but they copy only data, not the root �le or the data set structures.

Changing an Existing Data Base Design

You can change the design of an existing database without writing special programs to
transfer data from the old one to the new one. To restructure a database, follow these steps:

1. Run DBUNLOAD, specifying the old database.

2. Use the DBUTIL command PURGE to purge the old database.

3. Rede�ne the database using the same database name and use DBSCHEMA to create a new
root �le.

4. Use the DBUTIL command CREATE to create and initialize the new data sets.

5. Run DBLOAD on the new database to put the old data into it.

For detailed information on the types of design changes you can make using this method, refer
to TurboIMAGE/XL Reference Manual (30391-90050).

Data Management 7-17

Recovering a Data Base

TurboIMAGE/XL is designed to maintain the integrity of its data bases. However, it is
possible that data or structural information can be lost during a hardware failure or an
operating system crash. It is highly recommended that you regularly backup a database.

You can maintain the database by copying it to magnetic tape using DBSTORE at regular
intervals. If necessary, you can restore the database using DBRESTOR. This restores the
database to its state at the time it was last stored. You can use this method more often than
system backups are done to maintain recent copies of the database and minimize the number
of transactions that may be lost.

To recover changes made after the last backup, you must do one of the following:

Rerun all jobs that modi�ed the database since the last time it was stored.

If transaction logging was enabled, run the DBRECOV utility.

You can execute the transaction logging and recovery system to return a database to a state
near that at the time of system failure. The logging system provides a mechanism to log
database transactions to a log�le on magnetic tape or disc. If you must restore the database,
�rst restore the backup data base copy and then run the recovery program, DBRECOV. This
re-enters transactions from the log �le against the data base. It also allows you to create
individual user recovery �les, providing information to users that enables them to �gure out
where to resume transactions.

The database administrator is responsible for enabling and disabling the logging and recovery
processes and generating backup database copies. This makes logging a global function
controlled at the database level, rather than at the individual user level.

QUERY/V

QUERY/V is a database management subsystem used for retrieval and reporting of data. You
can use it to retrieve, report on, update, add, and delete data in a database and display the
database structure. It provides you with the ability to:

Inquire into a database without writing special programs

Make low-volume data modi�cation and load new data

Generate reports comparable to those that many languages produce

Debug new application programs

The report generation capability of QUERY/V allows you to select data on a basis of
compound logical comparison. Once selected, you can control which items are reported and
how they are formatted on the report.

You can run QUERY/V by entering:

:RUN QUERY.PUB.SYS

Frequently used QUERY/V commands are:

HELP, which explains QUERY/V commands

DEFINE, which prompts for needed environment information

7-18 Data Management

FORM, which displays a database structure

LIST, which displays data in a data set

FIND, which searches a data set for data items

REPORT, which displays data in a data set located by the FIND command in the format you
specify

XEQ, which executes QUERY/V commands stored in a text �le

EXIT, which terminates QUERY/V execution

Table 7-3 shows a comparison of data management considerations to help you determine
whether to set up a data base with TurboIMAGE/XL or KSAM.

The preferred choice of KSAM over TurboIMAGE/XL for generic key retrieval is based on the
fact that KSAM automatically handles partial key searches. A TurboIMAGE/XL database
requires de�ning an additional master set and detail set to handle the partial key search, as
well as requiring some additional programming.

Table 7-3. Data Management Considerations

TurboIMAGE/XL KSAM

Heavy sequential
processing

no yes

Unanticipated inquiries yes use FCOPY

Program-data
independence

yes no

Easy conversion from
ISAM

no yes

Privacy and security yes �le level only

Privileged �les
(protected)

yes no

Variable-length records no yes

Field access by name yes no

Generic (partial) key
retrieval

no yes

Sorted retrieval by key yes yes

Data Management 7-19

TurboIMAGE DBchange/V

DBchange/V is the interactive utility that allows dynamic restructuring and capacity
expansion of a TurboIMAGE database. Database changes are input using a menu format and
executed either on-line or in batch mode.

DBchange/V allows easy screen access and input of database restructuring requests for
TurboIMAGE databases. Because multiple restructuring changes can be requested during
one DBchange/V session, there is no need to run separate programs for each restructure
feature. DBchange/V allows you to review multiple change requests before actual updates are
processed.

DBchange/V provides the database administrator with an important tool to aid in the use
and support of TurboIMAGE databases. Additional bene�ts include ease of use and batch
capabilities. DBchange/V also includes the DICTDBA, DICTDBU, and DICTDBL database
utilities, which facilitate the control, maintenance, and restructuring of TurboIMAGE
databases.

Key DBchange/V Features

Key DBchange features include:

Interactive forms access allows exible database manipulation.

Two-stage update process allows input and review of changes before actual update.

Multiple changes can be made to the same database in one DBchange/V session.

Database restructure requests are input and stored in a change �le. DBchange/V uses the
change �le to process database modi�cations.

Modi�cations can be processed immediately or scheduled for later batch processing.

TurboIMAGE database modi�cations can be made in real-time, without requiring a
DBUNLOAD and DBLOAD.

On-line help facility provides information about commands and parameter requirements.

The Root File is checked for path information inconsistencies, allowing DBchange/V the
option to make corrections.

Interactive DBchange/V commands allow the user to:

Rename a database
Copy a database
Change database security
Restructure a database
Print schema
Change set capacity and blocking factors

All TurboIMAGE and MPE �le security and capacities are respected. DBchange/V veri�es
that the user has proper access before it allows changes.

7-20 Data Management

DICTDBA

DICTDBA checks the integrity of synonym chains and identi�es broken chains. It generates
reports on synonyms and chains for master sets and chain statistics for detail sets.

DICTDBU

DICTDBU unloads the contents of an existing TurboIMAGE database. It can unload the
database chained to either a disc or tape �le, thus organizing the records for e�cient chained
access. DICTDBU also provides the capability to unload only selected data sets.

DICTDBL

DICTDBL loads the stored contents of a TurboIMAGE database. It simpli�es and speeds up
the database load function when only a few sets must be loaded.

Data Management 7-21

Index

3

/3000 su�x, 1-4

9

900 Series, 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8,
1-9, 1-14, 1-23, 1-27, 3-2, 3-19, 4-1, 4-12,
5-1, 6-1, 6-22, 6-31, 6-37, 7-1, 7-5, 7-6

A

abort message, 3-19
access
mapped �le, 1-13, 6-30, 6-33
modes, 6-38
random, 6-30
RIO, 6-30
sequential, 6-30
update, 6-30

Access Control De�nitions. See ACDs
Access Control De�nitions (ACDs), 6-42
accessing a database, 7-13
accessing a �le, 6-25, 6-29, 6-34, 6-38, 6-39
user type de�nitions, 6-40

accessing an executable library, 3-9, 3-13
accessing a relocatable library, 3-8, 3-9
accessing system libraries, 3-14
access modes, 6-39
accounting resources, 1-8
accounting structure, 1-1, 1-23
accounts, 1-23, 1-26, 6-9, 6-11
SUPPORT, 1-23
SYS, 1-23, 1-24

accounts, SYS, 1-23
ACDs
access modes, 6-42
copying, 6-43
creating, 6-42
deleting, 6-43
listing, 6-43
managing, 6-42
migrating, 6-43
modes, 6-42
modifying, 6-43
preserving, 6-43

actual �le designator, 6-9, 6-10, 6-11
addressing

extended, 1-8
virtual, 1-13, 3-8, 3-16, 6-31

ALLBASE/SQL, 1-6, 1-8, 1-9, 1-14, 7-1, 7-6
logical transaction, 7-7
security, 7-7

ALLBASE/XL
interface to database, 2-6

ALTSEC, 6-43
array optimization, 5-6
ASCII, 1-15, 2-8, 6-2, 6-22, 6-24
automatic restart, 1-8

B

backing up a database, 7-17
backreferencing a �le, 6-10, 6-14
BASIC, 1-8
BASIC/V, 1-8
batch mode, 1-1, 1-2
batch processing, 1-2, 1-7, 1-8
binary data �les, 1-32, 6-22
binary records, 6-24
binding, 3-15
binding, load-time binding sequence, 3-16
blocks, 6-2, 6-25, 6-29, 6-32, 6-34
branch delay slot, 5-1, 5-2
branch optimization, 5-2
BREAK key, 1-21
Break mode, 1-21, 2-1
bu�ering, 6-30
bu�ers, 1-8, 6-34
BUILD, 6-7, 6-12, 6-14, 6-23, 6-24, 6-26, 6-28,

6-29
building a relocatable library, 3-9, 4-12
Business Report Writer/XL, 2-6
BYE, 1-23

C

C, 1-8
calls
intrinsics, 1-13, 1-34, 3-15, 6-32, 6-35, 7-5
procedure, 3-15

chain head, 7-12
changing a database design, 7-17
changing domains, 6-5, 6-7, 6-8, 6-16, 6-17, 6-28
changing �le security, 6-42
character code, 6-22

Index-1

CI, 1-12, 1-21
CIERROR, 2-3, 3-21, 3-24
circular �le, 6-26, 6-34
closing a �le, 6-15, 6-20
closing a �le with a domain, 6-5, 6-7, 6-16, 6-17
CM, 1-32
CM intrinsics, 3-15
CM pre�x, 1-4, 1-30
COBOL, 1-8, 1-9, 6-26
3000, 1-4

COBOL II, 1-33
COBOL II/V, 1-4
COBOL II/XL, 1-4, 1-6, 1-14, 1-29, 1-30, 2-3,

2-7, 3-3, 3-20, 4-3, 4-4, 5-1, 5-2, 5-9, 7-5,
7-6, 7-16

COBOL II/XL De�nition Extractor, 2-7
code
bu�ering, 1-1
compiled, 3-6
dead code elimination, 5-2
mapping, 3-15
object, 1-4, 1-6, 3-6, 3-13, 3-15, 4-4, 6-22
optimization, 5-1
shared, 1-8, 3-6, 3-13, 3-15
source code version management, 1-9
structure, 1-5
translated, 1-6

coding
for optimization, 5-4
for performance, 5-4

coloring register allocation, 5-2
COMMAND, 2-1
command �les, 1-8, 1-12, 1-16, 1-19, 2-1
command input �le, 4-4
command interpreter (CI), 1-8, 1-12, 1-21
command interpreter features, 2-1
COMMAND intrinsic, 1-35
COMMAND.PUB.SYS, 1-21
commands
ALTSEC, 6-43
BUILD, 6-7, 6-12, 6-14, 6-23, 6-24, 6-26, 6-28,

6-29
BYE, 1-23
DELETEVAR, 2-2
DSLINE, 1-35
FCOPY, 6-25
FILE, 1-34, 1-35, 3-16, 6-2, 6-7, 6-9, 6-10,

6-16, 6-21, 6-23, 6-24, 6-26, 6-27, 6-29,
6-31, 6-35

FRENAME, 6-8
HELLO, 1-24
LINK, 3-7, 3-8, 3-11, 3-12, 3-14, 4-1, 4-8
LINKEDIT, 3-11, 4-8
LISTEQ, 6-16, 6-29
LISTF, 6-16

LISTFILE, 6-28, 6-29
LISTFTEMP, 6-16, 6-29
MPE/iX, 1-1, 1-16
PREP, 3-7
PURGE, 6-28
REDO, 1-18, 3-18, 6-8
REMOTE HELLO, 1-35
RENAME, 6-28
REPORT, 1-25
RESET, 6-29
RESUME, 1-21
RUN, 3-14, 3-16, 4-4, 4-8
SAVE, 6-7, 6-14, 6-28
SETCATALOG, 1-21
SET, ECHO=OFF, 1-23
SET, ECHO=ON, 1-23
SETJCW, 2-2, 3-21
SETVAR, 2-2
SHOWJCW, 2-2, 3-21
SHOWJOB, 1-28
SHOWVAR, 2-2
STREAM, 1-27
user-de�ned, 1-8, 1-12

common subexpression elimination, 5-2
communications, 1-2, 1-7, 1-8, 1-33
Compatibility Mode, 1-3, 1-5, 1-6, 1-7, 1-14,

1-30, 1-32, 3-7, 3-13, 3-15
compiler commands, 6-2
compiler control, 3-7
compiler directives, 1-30, 1-31
compiler library, 3-6
compilers, 1-6, 3-3, 4-1
MPE/iX NM, 1-6, 3-3, 4-1
optimizing, 1-1, 1-9

compilers (MPE/iX CM)
COBOL II/V, 1-4
HP Business Basic/V, 1-14
RPG/V, 1-4, 1-14
SPL/V, 1-6, 1-14

compilers (MPE/iX NM)
COBOL II/XL, 1-4, 1-6, 1-14, 1-29, 1-30, 2-3,

2-7, 3-3, 3-20, 4-4, 5-1, 5-2, 7-5, 7-6, 7-16
HP C/iX, 1-6, 1-7, 1-14, 3-3, 5-1, 5-2, 7-5,

7-16
HP FORTRAN 77/iX, 1-6, 1-14, 1-29, 1-30,

2-3, 3-3, 3-19, 3-20, 5-1, 5-2, 5-7, 7-5,
7-16

HP Pascal/iX, 1-6, 1-7, 1-14, 1-29, 1-30, 2-3,
3-2, 3-3, 5-1, 5-4, 7-5, 7-6, 7-16

Compilers (MPE/iX NM)
COBOL II/XL, 4-3, 5-9
HP FORTRAN 77/iX, 3-23
HP Pascal/iX, 3-3

compiling a program, 1-16, 2-3, 3-1, 3-3, 3-4,
3-6, 4-1

Index-2

concatenating strings, 2-1
constant folding, 5-2
control code (JCW), 3-21
converting �les, 1-1, 1-32
converting �les from MPE V/E to MPE/iX,

1-29
copying a relocatable library, 3-9
copying �les across a local area network, 1-33
creating
a database, 7-13
a �le, 6-7, 6-12, 6-25, 6-26, 6-28, 6-29
a �le at run time, 6-27
a load module, 3-13
an executable library, 4-1, 4-2, 4-3, 4-4, 4-13
a relocatable library, 3-9, 4-1

creating a relocatable library, 4-3
cross-family development, 1-5, 1-7

D

data
accessing, 7-1, 7-6, 7-11
collecting, 7-1, 7-11
global, 3-13, 3-15
organizing, 7-1

data alignment, 1-29, 1-33, 5-4, 5-8, 6-24
data alignment di�erences, 1-29
database
accessing, 7-13
backing up, 7-17
changing a design, 7-17
creating, 7-13
dynamic restructuring, 7-7, 7-19
maintaining, 7-13
network, 1-8, 7-11
recovering, 7-17
relational, 7-11
restructuring, 7-17

data base access, remote, 1-34
database application, 7-11
database applications, 1-8
database management system
QUERY/V, 7-13
TurboIMAGE/XL, 7-13

data base manipulation, 1-6
data bu�ering, 1-1
data conversion, 1-29
data conversion considerations, 1-32
data, copying between �les, 2-10
data de�nition language (DDL), 7-7
data entry, 1-8, 7-1
source, 2-5

data �le, 1-29, 6-22, 7-2
data management, 1-14, 1-33, 7-1
collecting data, 7-1, 7-11
reporting information, 7-1

Data Management subsystems
ALLBASE/SQL, 7-1, 7-6
KSAM/V, 7-1, 7-19
MPE/iX File System, 7-1
QUERY/V, 7-1, 7-13, 7-18
TurboIMAGE DBchange/V, 7-1, 7-19
TurboIMAGE/XL, 7-1, 7-11, 7-13, 7-19

data reporting, 7-18
data retrieval, 7-1, 7-18
data set, 7-11
data storage, 1-29, 6-22, 7-1
data structure, 1-29, 6-22
data transfer, 6-1, 6-29, 6-30
data types, 1-29
ASCII, 6-2, 6-24
integers, 1-30
optimal, 5-4, 5-9
real numbers, 1-29

data validation, 7-1
data variables, 1-29, 3-6
DBEnvironment, 7-8
DBSCHEMA, 7-14
DBUTIL, 7-14, 7-15, 7-16
DDL, 7-7
debugging, 1-8, 1-9, 1-11, 2-3, 5-1, 5-2, 6-26
SYMBOLIC DEBUG/XL, 1-11
toolset: XL, 1-11

de�ning �le accessibility, 6-20
de�ning �le characteristics, 6-29
DELETEVAR, 2-2
deleting a �le, 6-28
demand paged virtual memory, 1-5, 1-8, 1-13,

3-16, 6-3, 6-31
dereferencing a �le, 6-21
detail set, 7-11
development
program, 1-2, 1-7, 1-8, 1-27, 2-1, 2-3, 3-1

device characteristics, 6-2
device dependence, 6-2, 6-6, 6-22, 6-24
device �le, 6-21
device �les, 6-2, 6-6, 6-17, 6-20, 6-23, 6-24, 6-29,

6-33, 6-34
device independence, 1-8
devices, 6-1, 6-6, 6-17, 6-22, 6-23, 6-24
I/O, 1-34, 6-13
plotter, 6-6, 6-24
printer, 1-34, 2-10, 6-3, 6-6, 6-22, 6-24
remote access, 1-34
tape, 1-8, 1-14, 1-34, 2-10, 6-3, 6-6, 6-19,

6-23, 6-24, 6-32, 6-33
terminal, 1-8, 1-15, 1-34, 2-10, 4-4, 6-6, 6-24

diagnostics, 1-9
DICTDBA, 7-20
DICTDBL, 7-20, 7-21
DICTDBU, 7-20, 7-21

Index-3

Dictionary/V, 2-6
directories
duplicate �le names, 6-7
errors, 6-7
Job Temporary File Directory, 6-5, 6-16, 6-17
searching, 6-16, 6-17, 6-18
System File Directory, 6-5, 6-16, 6-17

directories, location of entries, 1-14
directory structure, 1-26, 6-5, 6-9
accounts, 1-23, 1-26, 6-9, 6-11
groups, 1-23, 1-25, 1-26, 6-4, 6-9, 6-11
lockwords, 1-26, 6-9, 6-11
users, 1-23, 1-24, 1-26

disc, 2-10, 6-24
disc failure tolerance, 1-9
disc �les, 6-2, 6-3, 6-4, 6-17, 6-20, 6-21, 6-23,

6-28, 6-29, 6-33, 7-1
disc �le storage, 6-9
accounts, 1-23, 1-26, 6-9, 6-11
groups, 1-23, 1-25, 1-26, 6-4, 6-11
lockwords, 1-26, 6-9, 6-11

disc, fragmented, 2-9
DISCFREE.PUB.SYS, 6-4
DISCFREE utility, 2-9
disc volume classes, 6-4, 6-27
disc volumes, 6-2, 6-3, 6-4
disc volume sets, 6-4
distributed applications, managing, 1-33
domains
changing, 6-5, 6-7, 6-8, 6-16, 6-17, 6-28
closing a �le, 6-5, 6-7, 6-16, 6-17
e�ects on operations, 6-7, 6-16, 6-17
listing, 6-5, 6-7
NEW, 6-2, 6-5, 6-16, 6-17, 6-27
OLD, 6-5, 6-6, 6-17
opening a �le, 6-5, 6-16, 6-17
PERMANENT, 6-5, 6-16, 6-17, 6-27, 6-29
searching, 6-5
TEMP, 6-5, 6-16, 6-17, 6-27

DSLINE, 1-35

E

EBCDIC, 2-9
Echo on/o�, 1-23
Editor, 1-14, 1-19, 2-8, 3-2, 6-24, 6-25
error detection, 3-18
error message, 4-9
errors
Command Interpreter (CI), 3-18
compiler, 3-18
File System, 3-18
Link Editor, 3-18
Loader, 3-18
run-time, 3-18

executable �les, 3-7, 3-8, 3-9, 3-12, 3-13, 3-16,
4-1, 4-4, 4-9

executable library (XL), 3-9, 3-13, 3-14, 4-1,
4-3, 4-5, 4-11

executable object module, 3-13, 4-3
executable program �les, 3-7, 3-8, 3-9, 3-12,

3-13, 3-16, 4-1, 4-4, 4-9
create, 4-6
display, 4-6

executing a program, 1-16, 2-3, 3-1, 3-3, 3-13,
3-16, 4-1

expression evaluation, 2-1, 2-2
extended addressing, 1-8
extents, 6-29

F

FCLOSE, 6-7, 6-18
FCONTROL, 6-32, 6-34
FCOPY, 6-25
FCOPY, KSAM options, 7-3
FCOPY/XL, 2-10
FFILEINFO, 6-32
FGETINFO, 6-32
FILE, 1-34, 1-35, 3-16, 6-2, 6-7, 6-9, 6-10, 6-16,

6-21, 6-23, 6-24, 6-26, 6-27, 6-29, 6-31, 6-35
�le access, 6-42
�le characteristics, 6-21, 6-26, 6-28
listing, 6-28

�le classes
system-de�ned �les, 6-11, 6-12, 6-20
user-de�ned �les, 6-11

�le codes, 6-21, 6-26
�le content, 6-22
�le designators
actual, 6-8, 6-9, 6-10, 6-11
formal, 6-8, 6-9, 6-10, 6-11, 6-29

�le directory structure, 6-4
�le format, 6-32
�le independence, 1-8
File Information Display, 3-20
�le manipulation
FCOPY/XL, 2-10

�le names, 3-16, 6-2, 6-8, 6-9, 6-11, 6-21, 6-29
duplicate, 6-7
wildcards, 1-18

�le operations, 6-16
�le overrides, 6-21, 6-23
�les, 6-8, 6-22
access, 6-34, 6-38, 6-39
accessing, 6-29
accessing at run time, 6-29
access methods, 6-25
access security, 6-41
actual �le designator, 6-10, 6-11
backreferencing, 6-10

Index-4

binary data, 1-32, 6-22
circular, 6-26, 6-34
closing, 6-20
command, 1-8, 1-12, 1-16, 1-19, 2-1
command input, 4-4
content, 6-22
converting, 1-1, 1-32
converting from MPE V/E to MPE/iX, 1-29
creating, 6-7, 6-12, 6-25, 6-26, 6-29
data, 1-29, 6-22, 7-2
de�ning characteristics, 6-29
de�ning �le accessibility, 6-20
deleting, 6-28
dereferencing, 6-21
determining operations allowed, 6-20
device, 6-2, 6-21, 6-33, 6-34
disc, 6-2, 6-4, 6-21, 6-28, 6-29, 6-33, 6-34, 7-1
disc �le storage, 6-4
duplicate names, 6-7
executable, 3-7, 3-8, 3-9, 3-12, 3-13, 3-16, 4-1,

4-4, 4-9
executable program, 3-7, 3-8, 3-9, 3-12, 3-13,

3-16, 4-1, 4-4, 4-9
�nding, 6-16
formal �le designator, 6-10, 6-11, 6-29
identifying, 6-8
identifying disc �les, 6-20
indirect, 3-9, 4-7
ISAM, 7-3
KSAM, 2-6, 6-25, 6-34, 7-1
linking, 3-9
LINKLIST, 4-5
listing, 6-16
managing, 1-16
mapped, 1-8
merging, 2-8
message, 6-26, 6-34
NEW, 3-19, 6-2, 6-5, 6-16, 6-17, 6-27
$NEWPASS, 3-3, 3-6, 6-12, 6-15
$NULL, 6-12, 6-15
object, 3-4, 4-4, 4-5
obtaining status information, 3-20
OLD, 6-5, 6-6, 6-17
$OLDPASS, 3-3, 3-6, 6-12, 6-15, 6-28
opening, 6-25, 6-30
passed, 6-15
PERMANENT, 6-5, 6-16, 6-17, 6-27, 6-29
program, 3-7, 3-9, 3-12, 3-16, 4-1, 4-4, 4-9,

6-22, 6-25
reading, 6-32
relocatable object, 3-7, 3-8, 4-4, 4-5
relocatable program, 4-5
remote access, 1-34
renaming, 6-28
RIO, 6-26, 6-34

root, 7-11, 7-14
saving temporary �les, 6-28
security, 6-37
sharing, 6-34, 6-35
size, 6-25
sorting, 2-8
source, 3-6, 6-22
standard, 6-25, 6-34
standard �le reference format, 1-26
$STDIN, 3-6, 6-12, 6-15, 6-32, 6-33
$STDINX, 4-4, 4-7, 4-9, 6-12, 6-15, 6-32
$STDLIST, 3-3, 3-6, 4-5, 6-12, 6-15, 6-32,

6-33
system-de�ned, 6-11, 6-12, 6-20
TEMP, 6-5, 6-16, 6-17, 6-27
type, 3-16, 6-25
updating, 6-33
user-de�ned, 6-11
using a previously identi�ed �le, 6-10
wildcards in �le names, 1-18
work, 2-8
writing to a �le, 6-33

�le security, 6-38
ACDs, 6-42
changing, 6-42
suspending and restoring, 6-43

�le speci�cations, 1-26, 6-8, 6-10, 6-11, 6-21
�les to link, 3-9
�le structure, 6-21, 6-25, 6-29
�les used by HP Link Editor/XL, 4-4
File System, 1-8, 1-13, 1-14, 1-34, 6-1, 6-3, 6-4,

6-5, 6-7, 6-8, 6-11, 6-13, 6-18, 6-21, 6-23,
6-24, 6-25, 6-26, 6-30, 7-1

File System security, 1-8
�nding �les, 6-16
FINDJCW, 3-24
�xed-length records, 6-22, 6-23, 6-24
FLOCK, 6-37
FOPEN, 1-34, 3-20, 6-3, 6-4, 6-7, 6-9, 6-12,

6-16, 6-21, 6-22, 6-23, 6-24, 6-26, 6-27, 6-29,
6-30, 6-31, 6-32, 6-33, 6-35, 7-5

formal �le designator, 6-9, 6-10, 6-11, 6-29
format
records, 6-23, 6-24, 6-27

forms design, 1-9, 1-14, 2-5
FORTRAN, 1-8
FOS, 1-14
FPOINT, 6-30, 6-32, 6-34
FREAD, 6-26, 6-30, 6-32, 6-34
FREADDIR, 6-26, 6-30, 6-32
FREADLABEL, 6-32
FRENAME, 6-8
FSPACE, 6-32
Fundamental Operating System, 2-6
Fundamental Operating Systems, 1-14

Index-5

FUNLOCK, 6-37
FUPDATE, 6-26, 6-33
FWRITE, 6-26, 6-30, 6-32, 6-33, 6-34
FWRITEDIR, 6-26, 6-32, 6-33
FWRITELABEL, 6-33

G

GETJCW, 2-2
groups, 1-23, 1-25, 1-26, 6-4, 6-9, 6-11

H

hardware interlock, 5-1
header, program auxiliary, 3-13
heap size, 3-13, 3-16
HELLO, 1-24
Help Facility, 1-8, 1-12, 1-18, 2-1, 2-3
hierarchy of �le overrides, 6-21, 6-23
HP 3000, 1-1, 1-2, 1-3, 1-4, 1-7, 1-14, 1-23, 1-27,

1-31, 1-33, 1-34, 3-2, 3-19, 4-1, 4-12, 5-1,
6-1, 6-22, 6-31, 6-37, 7-1, 7-5, 7-6

900 Series, 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7,
1-8, 1-9, 1-14, 1-23, 1-27, 3-2, 3-19, 4-1,
4-12, 5-1, 6-1, 6-22, 6-31, 6-37, 7-1, 7-5,
7-6

HP 3000 oating-point format, 1-31
HP AdvanceNet, 1-33
HP Business BASIC/V, 1-14
HPCICOMMAND, 2-1
HPCIGETVAR, 2-2
HPCIPUTVAR, 2-2
HP C/iX, 1-6, 1-7, 1-14, 3-3, 5-1, 5-2, 7-5, 7-16
HPDESKMANAGER, 1-14
HPFCLOSE, 6-8
HPFOPEN, 1-34, 3-20, 6-3, 6-4, 6-7, 6-9, 6-12,

6-16, 6-21, 6-22, 6-23, 6-24, 6-26, 6-27, 6-29,
6-30, 6-31, 6-32, 6-33, 6-35, 7-5

CREATE domain, 6-8
HP FORTRAN 77, 1-29, 1-32
HP FORTRAN 77/iX, 1-6, 1-14, 1-29, 1-30,

2-3, 3-3, 3-19, 3-20, 3-23, 5-1, 5-2, 5-7, 7-5,
7-16

HPFPCONVERT, 1-29, 1-31, 1-33
HP Link Editor/XL, 3-7, 3-12, 3-13, 4-1, 4-3
case sensitivity, 4-6
parameters, 4-7
starting and ending, 4-8

HP-PA, 1-1, 1-3, 1-4, 1-7, 1-9, 1-11, 3-4, 5-1
HP Pascal/iX, 1-6, 1-7, 1-14, 1-29, 1-30, 2-3,

3-2, 3-3, 5-1, 5-2, 5-4, 7-5, 7-6, 7-16
HP Precision Architecture (HP-PA), 1-1, 1-3,

1-7, 1-9, 1-11, 3-4, 5-1
HPSLATE, 1-14
HP SQL, 1-8, 7-6, 7-8
concurrency, 7-7
database creation, 7-8

database restructuring, 7-8
recovery, 7-8

HP SQL interface, 7-7
HP SQL/V, 2-6, 7-6
HP SQL/XL
DBEnvironment, 7-8

HP Visor, 2-6
HPWORD, 1-14

I

identifying a �le, 6-8
identifying disc �les, 6-20
IEEE oating-point format, 1-31, 1-33
IMAGE, 2-7
IMAGE/3000, 1-4
IMAGE/V, 1-4
Indexed Sequential Access Method (ISAM), 7-3
indirect �le, 3-9, 4-7
induction variable elaboration, 5-2
information management, 1-8, 6-2
Inform/V, 1-14
initiating a job, 1-27
input/output sets, 6-14
instruction scheduling, 1-1, 5-1, 5-2
integers, 1-29, 1-30, 1-32, 2-2, 5-5, 5-9
interactive processing, 1-8
Interactive SQL (ISQL), 7-7
interface
network, 7-6
relational, 7-6

interprocess communication (IPC), 1-8, 6-26
intrinsic mechanism, 3-2
intrinsics, 1-5, 1-13, 1-29, 1-34, 2-1, 2-2, 3-2,

3-15, 3-19, 6-3, 6-4, 6-7, 6-9, 6-12, 6-16,
6-18, 6-21, 6-22, 6-23, 6-24, 6-26, 6-27, 6-29,
6-30, 6-31

COMMAND, 1-35, 2-1
FCLOSE, 6-7, 6-18
FCONTROL, 6-32, 6-34
FFILEINFO, 6-32
FGETINFO, 6-32
FINDJCW, 3-24
FLOCK, 6-37
FOPEN, 1-34, 3-20, 6-3, 6-4, 6-7, 6-9, 6-12,

6-16, 6-21, 6-22, 6-23, 6-24, 6-26, 6-27,
6-29, 6-30, 6-31, 6-32, 6-33, 6-35, 7-5

FPOINT, 6-30, 6-32, 6-34
FREAD, 6-26, 6-30, 6-32, 6-34
FREADDIR, 6-26, 6-30, 6-32
FREADLABEL, 6-32
FSPACE, 6-32
FUNLOCK, 6-37
FUPDATE, 6-26, 6-33
FWRITE, 6-26, 6-30, 6-32, 6-33, 6-34

Index-6

FWRITEDIR, 6-26, 6-32, 6-33
FWRITELABEL, 6-33
GETJCW, 2-2
HPCICOMMAND, 2-1
HPCIGETVAR, 2-2
HPCIPUTVAR, 2-2
HPFCLOSE, 6-8
HPFOPEN, 1-34, 3-20, 6-3, 6-4, 6-7, 6-9,

6-12, 6-16, 6-21, 6-22, 6-23, 6-24, 6-26,
6-27, 6-29, 6-30, 6-31, 6-32, 6-33, 6-35,
7-5

HPFPCONVERT, 1-29, 1-31, 1-33, 6-21
MYCOMMAND, 2-1
PRINT, 6-33
PRINTFILEINFO, 3-20
PUTJCW, 2-2, 3-24
QUIT, 3-19
READ, 6-32
READX, 6-32
SETJCW, 3-24
SHOWJCW, 3-24

I/O devices, 1-34, 6-13
I/O peripherals, 6-2, 6-3, 6-6
I/O procedures, 1-34
I/O system, 1-8, 6-1
IPC, 1-8, 6-26
ISAM �le, 7-3
ISQL, 7-7
/iX su�x, 1-4

J

JCW. See Job Control Word
Job Control Word (JCW), 2-1, 2-2, 3-21, 4-9
changing value of, 2-2
de�ned, 2-2
names, 2-2
notation, 3-22
session-level, 2-3
setting programmatically, 3-21
system, 2-3, 3-21
type, 2-2
user-de�ned, 3-21, 3-24
using a system JCW, 3-23

jobs, 1-8, 1-12, 1-27, 4-9, 6-2, 6-5, 6-7, 6-13,
6-14, 6-15, 6-17, 6-29

Job Temporary File Directory, 6-5, 6-16, 6-17

K

keyboard layouts, 1-15
Keyed Sequential Access Method (KSAM), 7-1
key �elds, 6-25, 7-1
key values, 7-1
keyword parameters, 1-17
KSAM, 1-14
KSAM �les, 2-6, 6-25, 6-34, 7-1

adding, 7-5
deleting, 7-5
reading, 7-5
updating, 7-5

KSAM procedures, 7-2, 7-5
KSAMUTIL, 7-2
KSAM/V, 7-1, 7-19

L

labeled Tape Facility, 6-3
LAN, 1-33
languages
programming, 1-6, 1-8, 1-9, 1-14

libraries
accessing an executable library, 3-9, 3-13
accessing a relocatable library, 3-8, 3-9
building a relocatable library, 3-9, 4-12
compiler run-time, 3-6
copying a relocatable library, 3-9
creating an executable library, 4-1, 4-2, 4-3,

4-4, 4-13
creating a relocatable library, 3-9, 4-1, 4-3
executable, 3-9, 3-13, 3-14, 4-1, 4-3, 4-5, 4-11
maintaining an executable library, 4-1, 4-4
maintaining a relocatable library, 3-8, 3-9,

4-4
merging a relocatable library, 3-8, 3-9, 4-1
relocatable, 3-8, 3-9, 4-1, 4-3, 4-4, 4-5, 4-11
run-time support, 3-13, 3-14
searching an executable library, 3-13, 3-14,

4-3
searching a relocatable library, 3-9, 4-4
segmented, 4-3
system library, 3-14, 3-15
using an executable library, 3-13, 3-14, 4-2,

4-12
using a relocatable library, 4-2, 4-11
using system libraries, 3-14, 3-15

library routine, 3-19
LINK, 3-7, 3-8, 3-11, 3-12, 3-14, 4-1, 4-8
UNSAT parameter, 3-14

LINKEDIT, 3-11, 4-8
linking a program, 3-1, 3-3, 3-4, 3-7, 4-1
linking relocatable libraries, 4-1
linking relocatable object �les, 4-3
linking relocatable object modules, 4-3
LINKLIST �le, 4-5
link time, 3-4, 3-6, 3-9, 3-14
LISTEQ, 6-16, 6-29
LISTFILE, 6-16, 6-28, 6-29
LISTFTEMP, 6-16, 6-29
listing domains, 6-5
listing �le characteristics, 6-28
listing �les, 6-16

Index-7

listing groups, 1-25
LMAP, 3-16
Loader, 3-13, 3-14, 3-16
loading a program, 3-13
Load MAP, 3-16
load module
creating, 3-13

LOADPROC procedure, 3-15
load time, 3-13
load-time binding sequence, 3-16
Local Area Network (LAN), 1-33
lockwords, 1-26, 6-9, 6-11, 6-38
logging o�, 1-23
logging on, 1-23
loop invariant code motion, 5-2

M

maintaining a database, 7-13
maintaining an executable library, 4-1, 4-4
maintaining a relocatable library, 3-8, 3-9, 4-4
managing distributed applications, 1-33
managing �les, 1-16
mapped �le access, 1-13, 6-30, 6-33
mapped �les, 1-8
mapped �les access, 1-5
master set, 7-11
memory
virtual, 3-13, 3-16, 6-3

Memory
virtual, 3-13

memory mapped �les, 1-5
memory referencing, 5-1
merging a relocatable library, 3-8, 3-9, 4-1
merging �les, 2-8
message �le, 6-26, 6-34
migration
cross-family development, 1-5, 1-7
exibility, 1-5
object code compatibility, 1-5
peripheral compatibility, 1-5
source code compatibility, 1-5, 1-6

migration restrictions, 1-6
migration tools, 1-5
mixing execution modes, 3-15
modes
Access Control De�nitions, 6-42
ACDs, 6-42
batch, 1-1, 1-2
break, 1-21
Compatibility, 1-3, 1-5, 1-6, 1-7, 1-14, 1-30,

1-32, 3-7, 3-13, 3-15
job, 1-27
mixing execution modes, 3-15
Native, 1-4, 1-5, 1-6, 1-7, 1-14, 1-30, 1-32,

3-13, 3-14, 3-15, 5-2, 6-31

session, 1-1, 1-2, 1-27
modules
creating a load module, 3-13
executable object, 3-13, 4-3
object, 3-4, 3-6, 3-8, 3-9, 3-13, 3-15, 4-1, 4-3,

4-5
relocatable object, 3-4, 3-6, 3-8, 3-9, 4-1, 4-3,

4-5, 4-12, 4-13
MPE/iX, 1-1, 1-3, 1-5, 1-6, 1-8, 1-9, 1-14, 1-31,

1-32, 1-34, 2-2, 3-7, 3-18, 3-19, 4-1, 5-2,
6-5, 6-15, 6-17, 6-24

data storage, 1-29, 6-24
oating-point numbers, 1-29, 1-31, 5-5
words, 1-29, 1-30

MPE/iX accounting structure, 1-1
MPE/iX-based system, 1-1
MPE/iX based system, 1-4, 1-5, 1-33
MPE/iX commands, 1-1, 1-16, 1-19, 1-21, 1-27,

2-1
correcting, 1-18
modifying, 1-18

MPE/iX features, 1-1, 1-2, 1-7
MPE/iX File Access System, 6-38
MPE/iX �le security, 6-37
MPE/iX File System, 7-1
MPE/iX information management, 1-8
MPE/iX intrinsic mechanism, 3-2
MPE/iX intrinsics, 3-2, 6-4, 6-7
MPE/iX programming modes, 1-1
MPE/iX programs
HP Link Editor/XL, 3-7, 3-12, 3-13, 4-1, 4-3
Loader, 3-13, 3-14, 3-16
Object Code Translator, 1-6

MPE/iX subsystems, 1-1, 2-1
MPE/iX subsystems, SORT-MERGE/XL, 2-8
MPE/iX system performance, 1-13
MPE/iX tools
Editor, 1-19, 2-8, 3-2, 6-24
Object Code Translator (OCT), 1-6
Optimizer, 5-1
TDP, 1-19

MPE/iX tools/Toolset/XL, 1-9, 2-3, 3-2
MPE/iX Transaction Management Facility, 1-10
MPE/iX user interface, 1-12
MPE operating systems
general information, 1-2
MPE/iX, 1-34

MPE V/E, 1-1, 1-3, 1-5, 1-6, 1-31, 1-32, 3-7,
6-7, 6-17

data storage, 1-29
oating-point numbers, 1-29, 1-31, 1-33
words, 1-29, 1-30

MPE V/E-based system, 1-1, 1-3, 1-6, 1-7, 6-5
MPE V/E based system, 1-4, 1-5
MPE V/E intrinsics, 6-4

Index-8

MPE V/E programs
Segmenter, 1-7, 3-7, 4-3

multilingual capability, 1-8
multiprogramming, 1-7, 1-8
MYCOMMAND intrinsic, 2-1

N

names
volume, 6-4

Native Mode, 1-4, 1-5, 1-6, 1-7, 1-14, 1-30, 1-32,
3-13, 3-14, 3-15, 5-2, 6-31

Native Mode system components, 1-14
NetIPC, 1-33
network database, 1-8, 7-11
network �le transfer (NFT), 1-33
Network Interprocess Communication (NetIPC),

1-33
network services (NS), 1-33
Network File Transfer (NFT), 1-33
NS 3000/XL, 1-33

NEW �les, 3-19, 6-2, 6-5, 6-16, 6-17, 6-27
$NEWPASS, 3-3, 3-6, 6-12, 6-15
NFT, 1-33
NL.PUB.SYS, 3-14, 3-15
NM, 1-32
NM intrinsics, 3-15
NM pre�x, 1-4, 1-30
NS, 1-33
NS3000/XL, 1-33
$NULL, 6-12, 6-15
numbers
oating-point, 1-29, 1-31, 1-33, 5-5
HP 3000 oating-point format, 1-31
IEEE oating-point format, 1-31, 1-33

O

object code, 1-4, 1-6, 3-6, 3-13, 3-15, 4-4, 6-22
object code compatibility, 1-5
Object Code Translator (OCT), 1-6
object �le, 3-4, 4-4, 4-5
object module, 3-4, 3-6, 3-8, 3-9, 3-13, 3-15,

4-1, 4-3, 4-5
o�ce systems, 1-14
OLD �les, 6-5, 6-6, 6-17
$OLDPASS, 3-3, 3-6, 6-12, 6-15, 6-28
opening a �le, 6-2, 6-25, 6-30
opening a �le with a domain, 6-5, 6-16, 6-17
operations on �les, 6-16
Optimizer, 5-1
branch delay slot, 5-1, 5-2
branch optimization, 5-2
coding for optimization, 5-4
coding for performance, 5-4
coloring register allocation, 5-2
common subexpression elimination, 5-2

constant folding, 5-2
dead code elimination, 5-2
hardware interlock, 5-1
induction variable elaboration, 5-2
instruction scheduling, 1-1, 5-1
Level 0, 5-2
Level 1, 5-2
Level 2, 5-2
loop invariant code motion, 5-2
memory referencing, 5-1
peephole elimination, 5-2
promotion of variables to registers, 5-2
register allocation, 1-1, 5-2
unused de�nition elimination, 5-2

optimizing
arrays, 5-6
code, 5-1
common subexpression elimination, 5-4
compilers, 1-1, 5-1
expanding procedures in-line, 5-7
extracting procedure calls, 5-8
non-native alignment, 5-4, 5-8
optimal data types, 5-4, 5-9
reduce aliasing, 5-4
reducing procedure calls, 5-4, 5-7

optimizing compilers, 1-1, 1-9
overow condition, 1-32

P

parameters
keyword, 1-17
positional, 1-17

parsing commands, 2-1
Pascal, 1-8, 1-33
passed �les, 6-15
passing information between job steps, 3-21
peephole elimination, 5-2
peripheral compatibility, 1-5
peripheral devices, 1-9
peripherals
I/O, 6-2, 6-6

PERMANENT �les, 6-5, 6-16, 6-17, 6-27, 6-29
plotter, 6-6, 6-24
positional parameters, 1-17
pre�xes
CM, 1-4, 1-30
NM, 1-4, 1-30
reserved-word, 2-3

PREP, 3-7
PRINT, 6-33
printer, 1-34, 2-10, 6-6, 6-22, 6-24
PRINTFILEINFO, 3-20
procedure calls, 3-15, 5-4, 5-7
procedures, 3-2

Index-9

extracting calls from loops, 5-8
LOADPROC, 3-15
UNSAT, 3-14, 3-15

procedures, expanding in-line, 5-7
process, 3-16, 3-17, 6-37
processes
creating, 1-33
killing, 1-33

processing
transaction, 1-1

process, priority level, 3-17
program auxiliary header, 3-13
program capabilities, 3-13
program development, 1-2, 1-7, 1-8, 1-27, 2-1,

2-3, 3-1
compiling, 2-3, 3-1, 3-3, 3-4, 3-6, 4-1
linking, 3-4, 3-7, 4-1
link time, 3-4, 3-6, 3-9, 3-14
MPE/iX NM compilers, 1-6, 3-3, 4-1
running, 3-1, 3-13, 3-16, 4-1
run time, 1-5, 3-6, 3-13, 3-14, 3-16, 6-20
run-time library support, 3-13, 3-14
writing, 2-3, 2-8, 3-1, 3-2

program �le, 3-7, 3-9, 3-12, 3-16, 4-1, 4-4, 4-9,
6-25

program �le MAP, 3-9, 3-12, 6-30
programmatic access to CI, 2-1
programmatic interfaces, 2-1
programming environment, 1-8, 2-3, 3-17
programming languages, 1-6, 1-8, 1-9, 1-14
programming tools, 1-8, 2-1, 2-3, 2-4, 3-2, 4-1,

6-24
programs
compiling, 1-16
executing, 1-16

Program Translation Management, 2-4
promotion of variables to registers, 5-2
PURGE, 6-28
PUTJCW, 2-2, 3-24

Q

QUERY/V, 7-1, 7-13, 7-18
QUIT, 3-19

R

random access, 6-30
RBM, 3-4
READ, 6-32
reading a �le, 6-32
READX, 6-32
real number accuracy, 1-32
real number format, 1-29, 1-33
real number overow, 1-32
real numbers, 1-29, 1-32, 5-5
real number to integer conversion, 1-32

record access, 6-4
record content, 6-22, 6-23, 6-24
record elements, 1-33
record format, 6-23, 6-24, 6-27
record format comparison, 6-23
record pointer, 6-16, 6-29, 6-30
record pointer initialization, 6-30
records, 6-2, 6-3, 6-22
�xed-length, 6-22, 6-23, 6-24
unde�ned-length, 6-22, 6-23, 6-24
variable-length, 6-22, 6-23, 6-24, 6-34

records and �les relationship, 6-2, 6-3, 6-4, 6-29,
6-30

record selection, 6-29, 6-30
records in a �le, number or, 6-29
record size, 6-4, 6-22, 6-27, 6-32
specifying, 6-23, 6-24

record storage format, 6-22
record structure, 6-21
record transfers, 6-31
record type, 6-4, 6-22
record types, 6-22, 6-24
recovering a database, 7-17
recovery, 1-9, 1-10, 7-6
Recovery Manager, 1-10
recursive dereferencing, 2-1
REDO, 1-18, 3-18, 6-8
reduce aliasing, 5-4
Reduced Instruction Set Computer (RISC)

concepts, 1-1
references, unresolved, 3-6
register allocation, 1-1, 5-2
relocatable binary module (RBM), 3-4
relocatable library (RL), 3-8, 3-9, 4-1, 4-3, 4-4,

4-5, 4-11
relocatable object �le, 3-7, 3-8, 4-4, 4-5
display symbols, 4-6

relocatable object module, 3-4, 3-6, 3-8, 3-9,
4-1, 4-3, 4-5, 4-12, 4-13

relocatable program �le, 4-5
remote data base access, 1-34
remote device access, 1-34
remote �le access (RFA), 1-34
Remote File Access (RFA), 1-34
REMOTE HELLO, 1-35
Remote Process Management (RPM), 1-33
remote terminal access, 1-34
remote terminal management, 1-8
RENAME, 6-28
renaming a �le, 6-28
REPORT, 1-25
report generation, 1-9, 1-14, 2-6
Report/V, 1-14, 2-6
reserved-word pre�xes, 2-3
RESET, 6-29

Index-10

resolving references at compile time, 3-6
resolving references at link time, 3-8
Resource Identi�cation Number (RIN), 6-37
restoring �le security, 6-43
restricting �le access, 6-42
restructuring a database, 7-17
RESUME, 1-21
RFA, 1-34
RIO access, 6-30
RIO �le, 6-26, 6-34
RISC, 1-1
root �le, 7-11, 7-14
rounding, 1-32
RPG, 1-8
RPG/V, 1-4, 1-14
RPM, 1-33
RUN, 3-14, 3-16, 4-4, 4-8
running a program, 3-1, 3-13, 3-16, 4-1
run time, 1-5, 3-6, 3-13, 3-14, 3-16, 6-27
using �les, 6-20

run-time library support, 3-13, 3-14

S

SAVE, 6-7, 6-14, 6-28
saving a temporary �le, 6-28
schema, 7-11, 7-14
screen handling, 1-9, 1-14, 2-5
searching
an executable library, 3-13, 3-14, 4-3
a relocatable library, 3-9, 4-4
domains, 6-5, 6-16
�le directories, 6-16, 6-17, 6-18

segmented library (SL), 4-3
Segmenter, 1-7, 3-7, 4-3
sequential access, 6-30
session mode, 1-1, 1-2
sessions, 1-8, 1-12, 1-27, 6-2, 6-5, 6-7, 6-13, 6-14,

6-15, 6-29
SETCATALOG, 1-21
SET, ECHO=OFF, 1-23
SET, ECHO=ON, 1-23
SETJCW, 2-2, 3-21, 3-24
sets
detail, 7-11
master, 7-11

SETVAR, 2-2
sharing a �le, 6-34, 6-35
SHOWJCW, 2-2, 3-21, 3-24
SHOWJOB, 1-28
SHOWVAR, 2-2
size
heap, 3-13, 3-16
stack, 3-13, 3-16, 4-2

SL.PUB.SYS, 3-15
sorting �les, 2-8

SORT-MERGE/XL, 1-14, 2-8
source code compatibility, 1-5, 1-6
source �le, 3-6, 6-22
speci�cations
�le, 6-11

specifying �le access, 6-42
specifying record size, 6-23, 6-24
SPLINTR.PUB.SYS, 3-15
SPL/V, 1-6, 1-14
SQL, 1-8
stack size, 3-13, 3-16, 4-2
stack structure, 1-5
standard �le, 6-25, 6-34
reference format, 1-26, 6-11

StarLAN/3000, 1-33
$STDIN, 3-6, 6-12, 6-15, 6-32, 6-33
$STDINX, 4-4, 4-7, 4-9, 6-12, 6-15, 6-32
$STDLIST, 3-3, 3-6, 4-5, 6-12, 6-15, 6-32, 6-33
STREAM, 1-27
strings
concatenating, 2-1

string substitution, 2-1
subexpressions, common, 5-4
subqueues
circular, 3-17
linear, 3-17

subsystems
Switch, 1-5

su�xes
/3000, 1-4, 1-30
/iX, 1-4
/V, 1-4
V/E, 1-3
/XL, 1-3

SUPPORT account, 1-23
suspending �le security, 6-43
switching execution modes, 1-5, 1-7, 3-15
switch stubs, 3-15
switch subsystem, 1-5
symbol listing, 3-9
symbol map, 4-6
symbol table, 3-12
SYS account, 1-23, 1-24
SYSINTR.PUB.SYS, 3-15
system components, 1-14
system-de�ned �les, 6-11, 6-12, 6-20
system dictionaries, 1-14
System Dictionary/XL, 1-9, 2-6, 2-7
System File Directory, 6-5, 6-16, 6-17
system library, 3-14, 3-15
system performance, 1-13
system services, 2-1
system tables, 1-9

Index-11

T

Table Labeling Facility, 1-14
tape, 1-8, 1-14, 1-34, 2-10, 6-6, 6-19, 6-23, 6-24,

6-32, 6-33
tape labeling facility, 1-8
TDP, 1-14, 1-19
TEMP �les, 6-5, 6-16, 6-17, 6-27
terminal, 1-8, 1-15, 1-34, 2-10, 4-4, 6-6, 6-24
ThinLAN3000/XL, 1-33
tombstone, 3-20
tools
high-level, 1-2
migration, 1-5
programming, 1-8, 2-1, 2-3, 2-4, 2-6, 3-2, 4-1,

6-24
Toolset/XL, 1-9, 2-3, 3-2
transaction, 7-11
locking, 1-10
logging, 1-10

transaction management, 1-10
locking, 1-10
logging, 1-10

transaction processing, 1-1, 1-7, 1-8, 1-9, 2-5
Transact/V, 1-14
Transact/XL, 1-9
translated code, 1-6
TurboIMAGE DBchange/V, 7-1, 7-19
DICTDBA, 7-20
DICTDBL, 7-20, 7-21
DICTDBU, 7-20, 7-21

TurboIMAGE/XL, 1-6, 1-8, 1-14, 1-34, 2-6, 7-1,
7-6, 7-11, 7-13, 7-19

DBSCHEMA, 7-14
DBUTIL, 7-14, 7-15, 7-16
procedures, 7-14, 7-16

U

UDC. See user de�ned command
UDC catalog, 1-21
UDCs, 1-8, 1-12, 1-16, 1-19, 1-21, 2-1
unde�ned-length records, 6-22, 6-23, 6-24
UNSAT
parameter, 3-14
procedure, 3-14, 3-15

unused de�nition elimination, 5-2
update access, 6-30
updating a �le, 6-33
user
interface, 1-12

logging, 1-8
program, 3-19

user-de�ned commands (UDCs), 1-8, 1-12, 1-16,
1-19, 1-21, 2-1

user-de�ned �les, 6-11
users, 1-23, 1-24, 1-26
user type de�nitions, 6-40
using an executable library, 3-13, 3-14, 4-2, 4-12
using a previously identi�ed �le, 6-10
using a relocatable library, 4-2, 4-11
using �les at run time, 6-20
using system libraries, 3-14, 3-15
utilities, 1-34

V

variable
dereferencing, 2-1
session-level, 2-2
standard, 2-3

variable length records, 6-22, 6-23, 6-24, 6-34
variables, initialized, 5-6
version management, 1-9
V/E su�x, 1-3
virtual addressing, 1-13, 3-8, 3-16, 6-31
virtual memory, 3-13, 3-16, 6-3
volume
classes, 6-4, 6-27
name, 6-4
sets, 6-4

VPLUS/V, 1-9, 2-4, 2-7
/V su�x, 1-4

W

wildcards, 1-18
words, 1-29, 1-30, 6-24
work �le, 2-8
Workspace File Manager, 2-4
writing
a job stream, 2-8
a program, 2-3, 2-8, 3-1, 3-2
memos, 3-2
source code, 3-2
text, 2-8, 3-2
to a �le, 6-33

X

XL LIST, 3-13, 3-14

XL.PUB.SYS, 3-6, 3-14

Index-12

	Top of Document
	Preface
	Contents
	OVERVIEW
	Introduction to the HP 3000
	MPE Operating Systems
	900 Series Migration
	MPE/iX Features
	MPE/iX Information Management
	MPE/iX Transaction Management Facility
	DEBUG
	MPE/iX User Interface
	MPE/iX System Performance
	Native Mode System Components
	Terminal Keyboard Layouts
	Giving Commands to MPE/iX
	Break Mode
	Echo On/Off
	Accounting Structure Overview
	Session and Batch Modes
	Converting Data Files from MPE V/E to MPE/iX
	Data Communications

	Utilities and Tools
	Programmatic Access to the Command Interpreter
	Toolset/XL
	Useful Tools
	Editor
	SORT-MERGE/XL
	DISCFREE
	FCOPY/XL

	Program Development
	Writing a Program
	Compiling a Program
	Linking a Program
	Loading and Running a Program
	Multi-programming Environment
	Error Detection
	Control Codes (JCWs)

	HP Link Editor/XL
	Common Uses of HP Link Editor/XL
	Linking a Relocatable Object File
	Comparison of HP Link Editor/XL and MPE V/E Segmenter
	How HP Link Editor/XL Works
	Files Used by HP Link Editor/XL
	HP Link Editor/XL Commands
	Using an Indirect File
	Starting and Ending HP Link Editor/XL
	Creating an Executable Program File
	Comparison of Executable and Relocatable Libraries
	Using a Relocatable Library
	Using an Executable Library

	Optimizing a Program
	Optimizer Levels
	Use of MPE/iX Optimizer with Languages
	Optimizer Assumptions
	Coding for Performance and Optimization

	File System
	Records and Files in the File System
	Disc File Storage
	File Directory Structure
	Using Files at Run Time
	Hierarchy of File Overrides
	Record Structure
	File Structure
	Record Selection and Data Transfer
	Sharing a File
	Maintaining File Security

	Data Management
	Data Management Subsystems
	KSAM/V
	ALLBASE/SQL
	HP SQL
	TurboIMAGE/XL Data Base
	TurboIMAGE/XL and QUERY/V
	QUERY/V
	TurboIMAGE DBchange/V

	Index

