
HP 3000 MPE/iX Computer Systems

KSAM/3000 Reference Manual

ABCDE

HP Part No. 30000-90079

Printed in U.S.A. August 1986

Edition 2

E0886

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced or translated to
another language without the prior written consent of Hewlett-Packard Company.

c
 1979,1981,1986

PREFACE

This publication is the reference manual for KSAM/3000. KSAM stands for Keyed Sequential
Access Method, a method of accessing �les indexed by keys. KSAM/3000 operates on the HP
3000 Computer System.

The methods used to access a KSAM/3000 �le di�er depending on the particular language
used. A COBOL user, an RPG user, a BASIC user, and an SPL user each has his own set
of procedures with which to access a KSAM �le; a FORTRAN user can choose to access
a KSAM �le with either COBOL or SPL procedures. All users can create, copy, purge, or
perform other utility functions with the KSAMUTIL and FCOPY programs.

This manual is organized so that the more general functions available to all users are
described in the �rst two sections followed by a section describing KSAM access from each
of the four languages: COBOL, SPL, FORTRAN, and BASIC. Access to KSAM from a
COBOL II program is through COBOL II's indexed I/O Module and is not documented in
this manual. Access to KSAM �les from an RPG program is not described in this manual, but
is included as part of the RPG manual:

RPG/3000 Compiler Application & Reference Manual (32104-90001, Second Edition, 2/77)

In order to use this manual e�ectively, you should be familiar with the MPE Operating
System and with FCOPY. Also, it is assumed that you are familiar with the language in
which you are programming.

SECOND EDITION

The second edition of the KSAM manual provides the following new information:

Full syntax for and description of how to use the new KSAMUTIL commands: KEYSEQ,
KEYDUMP, and KEYINFO. (section II)

Enhancements to the KSAMUTIL utility to allow abbreviated command names, o�ine
listing of displays, and entry of MPE commands from KSAMUTIL. (section II)

Discussion of record pointer positioning in all languages; with special emphasis on using the
record pointers for shared access. (sections III, IV, VI)

Description of how pointers are set internally. (appendix B)

Discussion of recovery procedures in case of system failure. (appendix E)

In addition, there are minor corrections throughout the manual as well as documentation of
minor enhancements.

This edition covers the version of KSAM number A.02.04 release on the 1918 IT.

iii

Contents

1. INTRODUCING KSAM/3000
OVERVIEW . 1-1
FILE STRUCTURE . 1-1
FILE ACCESS . 1-2

KSAM/3000 FEATURES . 1-2
MULTIPLE KEYS . 1-3
DUPLICATE KEYS . 1-3
GENERIC KEYS . 1-3
APPROXIMATE MATCH . 1-4
DATA RECORD FORMAT . 1-4

HOW TO USE KSAM FILES . 1-5
CREATING A KSAM FILE . 1-6
WRITING RECORDS TO A KSAM FILE 1-6
RETRIEVING RECORDS FROM A KSAM FILE 1-6
UPDATING RECORDS IN A KSAM FILE 1-7
POSITIONING IN A KSAM FILE 1-7
DELETING RECORDS FROM A KSAM FILE 1-7
REORGANIZING A KSAM FILE 1-7
SHARED ACCESS TO KSAM FILES 1-8
RECOVERY AND ANALYSIS OF KSAM FILES 1-8
USING FILE EQUATIONS WITH KSAM FILES 1-8

HOW TO USE THIS MANUAL . 1-9
RPG PROGRAMMER . 1-9
COBOL II PROGRAMMER . 1-9
COBOL PROGRAMMER . 1-9
SPL PROGRAMMER . 1-10
FORTRAN PROGRAMMER . 1-11
BASIC PROGRAMMER . 1-11
ALL PROGRAMMERS . 1-12

2. USING KSAM UTILITIES
USING KSAM UTILITIES . 2-1
OVERVIEW . 2-1
KSAMUTIL UTILITY . 2-3
RUNNING KSAMUTIL . 2-3
COMMAND ABBREVIATIONS. 2-3
RUNNING MPE COMMANDS FROM KSAMUTIL. 2-3
OPTION TO LIST DISPLAYS ON LINE PRINTER. 2-3
OPTIONAL PARAMETERS. 2-4
EXITING FROM KSAMUTIL . 2-4

HELP . 2-5
REQUESTING HELP . 2-5

Contents-1

BUILD . 2-7
PARAMETERS . 2-8
KEY DESCRIPTION . 2-13
CREATING A KSAM FILE . 2-15

ERASE . 2-18
PARAMETERS . 2-18
CLEARING A KSAMFILE . 2-18

PURGE . 2-19
PARAMETERS . 2-19
PURGING A KSAM FILE . 2-19

RENAME . 2-20
PARAMETERS . 2-20
RENAMING A KSAM FILE . 2-20

SAVE . 2-22
PARAMETERS . 2-22
SAVING A KSAM FILE . 2-22

VERIFY . 2-23
PARAMETERS . 2-23
DISPLAY KSAM FILE CHARACTERISTICS 2-23
TERMINATING THE >VERIFY COMMAND 2-25
DIRECTING VERIFY OUTPUT TO LINE PRINTER 2-25
USING VERIFY FOR RECOVERY 2-25

KEYSEQ . 2-26
PARAMETERS . 2-26
VERIFY KEY SEQUENCE . 2-27

KEYDUMP . 2-29
PARAMETERS . 2-29
DUMPING THE KEY FILE . 2-31
DUMPING A SUBSET OF THE KEY FILE 2-33
SORTING DUMP BY RECORD POINTER 2-34

KEYINFO . 2-35
PARAMETERS . 2-35
REQUESTING KEY FILE INFORMATION 2-36
RECOVERING AFTER SYSTEM FAILURE 2-38

USING KSAMUTIL IN BATCH MODE 2-41
FCOPY UTILITY . 2-43
RUNNING FCOPY . 2-43
EXITING FROM FCOPY . 2-43

FCOPY FROM COMMAND . 2-44
PARAMETERS . 2-44
KSAM OPTIONS . 2-44
USING FCOPY . 2-46
FCOPY WITH KEY = OPTIONS. 2-49
COPYING VARIABLE-LENGTH KSAM FILES 2-51

:STORE AND :RESTORE COMMANDS 2-54
STORE . 2-54
PARAMETERS . 2-54
USING THE :STORE COMMAND 2-55

RESTORE . 2-56
PARAMETERS . 2-56
USING THE :RESTORE COMMAND 2-57

Contents-2

3. USING KSAM FILES IN COBOL PROGRAMS
OVERVIEW . 3-1
CALLING A KSAM PROCEDURE 3-3
FILETABLE PARAMETER . 3-4
FILETABLE . 3-5
EXAMPLE . 3-5

STATUS PARAMETER . 3-6
STATUS . 3-7

STATUS . 3-8
USING STATUS . 3-8

KSAM LOGICAL RECORD POINTER 3-8
SHARED ACCESS . 3-9
SAMPLE KSAM FILE . 3-10

CKCLOSE . 3-11
PARAMETERS . 3-11
USING CKCLOSE . 3-11
EXAMPLES . 3-11

CKDELETE . 3-12
PARAMETERS . 3-12
USING CKDELETE . 3-12
EXAMPLES . 3-13

CKERROR . 3-15
PARAMETERS . 3-15
USING CKERROR . 3-15

CKLOCK . 3-16
PARAMETERS . 3-16
USING CKLOCK . 3-16
EXAMPLES . 3-17

CKOPEN . 3-17
PARAMETERS . 3-18
USING CKOPEN . 3-18
EXAMPLES . 3-21

CKOPENSHR . 3-22
PARAMETERS . 3-22
USING CKOPENSHR . 3-22

CKREAD . 3-23
PARAMETERS . 3-23
USING CKREAD . 3-23
EXAMPLE . 3-24

CKREADBYKEY . 3-25
PARAMETERS . 3-25
USING CKREADBYKEY . 3-26
EXAMPLES . 3-26

CKREWRITE . 3-27
PARAMETERS . 3-27
USING CKREWRITE . 3-28
EXAMPLES . 3-29

CKSTART . 3-31
PARAMETERS . 3-31
USING CKSTART . 3-32
EXAMPLES . 3-32

Contents-3

CKUNLOCK . 3-34
PARAMETERS . 3-34
USING CKUNLOCK . 3-34
EXAMPLES . 3-34

CKWRITE . 3-35
PARAMETERS . 3-35
USING CKWRITE . 3-35
EXAMPLES . 3-36

EXAMPLES OF KSAM FILE ACCESS FROM COBOL PROGRAM 3-38
EXAMP1. SEQUENTIAL WRITE 3-38
EXAMP2. SEQUENTIAL READ 3-41
EXAMP3. RANDOM UPDATE 3-44

4. USING KSAM FILES IN SPL PROGRAMS
KSAM FILE SYSTEM INTRINSICS 4-1
CALLING INTRINSICS FROM SPL 4-4
KSAM INTRINSIC SUMMARY 4-5
INTRINSIC FORMAT . 4-5
PASSING PARAMETERS . 4-5
OPTIONAL PARAMETERS . 4-6

KSAM RECORD POINTERS . 4-7
SHARED ACCESS . 4-9

FCHECK . 4-10
PARAMETERS . 4-10
CONDITION CODES . 4-11
SPECIAL CONSIDERATIONS . 4-11

FCLOSE . 4-15
PARAMETERS . 4-15
CONDITION CODES . 4-16
SPECIAL CONSIDERATIONS . 4-17
USING FCLOSE . 4-17
CLOSING A NEW KSAM FILE 4-17
CLOSING AN EXISTING KSAM FILE 4-18
DELETING A KSAM FILE . 4-18

FCONTROL . 4-20
PARAMETERS . 4-20
CONDITION CODES . 4-20
SPECIAL CONSIDERATIONS . 4-21
USING FCONTROL . 4-21
USING CONTROL CODE 2 . 4-21
USING CONTROL CODE 5 . 4-21
USING CONTROL CODE 6 . 4-22
USING CONTROL CODE 7 . 4-22

FERRMSG . 4-23
PARAMETERS . 4-23
CONDITION CODES . 4-23
USING FERRMSG . 4-23

FFINDBYKEY . 4-24
PARAMETERS . 4-24
CONDITION CODES . 4-25
SPECIAL CONSIDERATIONS . 4-25

Contents-4

USING FFINDBYKEY . 4-25
USING APPROXIMATE KEYS 4-25
USING PARTIAL (GENERIC) KEYS 4-25
SHARED ACCESS . 4-26

FFINDN . 4-29
PARAMETERS . 4-29
CONDITION CODES . 4-29
SPECIAL CONSIDERATIONS . 4-29
USING FFINDN . 4-29
SHARED ACCESS . 4-30

FGETINFO . 4-31
PARAMETERS . 4-31
CONDITION CODES . 4-34
USING FGETINFO . 4-34

FGETKEYINFO . 4-38
PARAMETERS . 4-38
CONDITION CODES . 4-38
USING FGETKEYINFO . 4-38

FLOCK . 4-41
PARAMETERS . 4-41
CONDITION CODES . 4-41
SPECIAL CONSIDERATIONS . 4-42
USING FLOCK . 4-42

FOPEN . 4-44
FUNCTIONAL RETURN . 4-44
PARAMETERS . 4-44
CONDITION CODES . 4-47
USING FOPEN . 4-47
FOPTIONS PARAMETER . 4-47
AOPTIONS PARAMETER . 4-49
KEY FILE DEFINITION . 4-50

OPENING A NEW FILE . 4-54
DECLARATIONS FOR FOPEN 4-54
DEFINING KSAMPARAM . 4-54
CALLING FOPEN . 4-57

OPENING AN EXISTING FILE 4-58
OPENING FILE FOR READ ACCESS 4-59
OPENING FILE FOR WRITE ACCESS 4-61
OPENING KSAM FILE AS MPE FILE 4-61
OPENING FILE FOR SHARED ACCESS 4-62

FPOINT . 4-63
PARAMETERS . 4-63
CONDITION CODES . 4-63
SPECIAL CONSIDERATIONS . 4-63
USING FPOINT . 4-64
SHARED ACCESS . 4-64

FREAD . 4-65
FUNCTIONAL RETURN . 4-65
PARAMETERS . 4-65
CONDITION CODES . 4-65
SPECIAL CONSIDERATIONS . 4-66

Contents-5

USING FREAD . 4-66
SHARED ACCESS . 4-66

FREADBYKEY . 4-71
FUNCTIONAL RETURN . 4-71
PARAMETERS . 4-71
CONDITION CODES . 4-72
USING FREADBYKEY . 4-72
SHARED ACCESS . 4-72
DUPLICATE KEYS . 4-73

FREADC . 4-76
FUNCTIONAL RETURN . 4-76
PARAMETERS . 4-76
CONDITION CODES . 4-76
USING FREADC . 4-77
SHARED ACCESS . 4-77

FREADDIR . 4-80
PARAMETERS . 4-80
CONDITION CODES . 4-81
SPECIAL CONSIDERATIONS . 4-81
USING FREADDIR . 4-81

FREADLABEL . 4-85
PARAMETERS . 4-85
CONDITION CODES . 4-85
SPECIAL CONSIDERATIONS . 4-85
USING FREADLABEL . 4-86

FREADSEEK . 4-87
FRELATE . 4-88
FREMOVE . 4-89
PARAMETERS . 4-89
CONDITION CODES . 4-90
SPECIAL CONSIDERATIONS . 4-90
USING FREMOVE . 4-90
SHARED ACCESS . 4-91

FRENAME . 4-95
FSETMODE . 4-96
PARAMETERS . 4-96
CONDITION CODES . 4-96
SPECIAL CONSIDERATIONS . 4-96
USING FSETMODE . 4-97

FSPACE . 4-98
PARAMETERS . 4-98
CONDITION CODES . 4-98
SPECIAL CONSIDERATIONS . 4-98
USING FSPACE . 4-98
POINTER POSITION . 4-99
SHARED ACCESS . 4-100

FUNLOCK . 4-101
PARAMETERS . 4-101
CONDITION CODES . 4-101
SPECIAL CONSIDERATIONS . 4-101
USING FUNLOCK . 4-101

Contents-6

FUPDATE . 4-102
PARAMETERS . 4-102
CONDITION CODES . 4-102
SPECIAL CONSIDERATIONS . 4-103
USING FUPDATE . 4-103
SHARED ACCESS. 4-103
UPDATING RECORDS WITH DUPLICATE KEYS. 4-104

FWRITE . 4-108
PARAMETERS . 4-108
CONDITION CODES . 4-109
SPECIAL CONSIDERATIONS . 4-109
USING FWRITE . 4-109
SHARED ACCESS . 4-109

FWRITEDIR . 4-112
FWRITELABEL . 4-113
PARAMETERS . 4-113
CONDITION CODES . 4-113
SPECIAL CONSIDERATIONS . 4-113
USING FWRITELABEL . 4-113

HP32208 . 4-115
FUNCTIONAL RETURN . 4-115
CONDITION CODES . 4-115
USING HP32208 . 4-115

5. USING KSAM FILES IN FORTRAN PROGRAMS
OVERVIEW . 5-1
CALLING FILE SYSTEM INTRINSICS 5-2
CALLING COBOL PROCEDURES 5-3
CREATING A KSAM FILE WITH A CALL TO FOPEN 5-4
DEFINING KSAMPARAM . 5-4
CALLING FOPEN . 5-4

CREATING A KSAM FILE WITH KSAMUTIL 5-7
OPENING A KSAM FILE WITH A COBOL PROCEDURE 5-8
WRITING TO A KSAM FILE . 5-9
READING A KSAM FILE IN KEY ORDER 5-10
PRIMARY KEY SEQUENCE . 5-10
ALTERNATE KEY SEQUENCE 5-10
RANDOM ORDER . 5-10

READING A KSAM FILE IN CHRONOLOGICAL ORDER 5-13

6. USING KSAM FILES IN BASIC PROGRAMS
OVERVIEW . 6-1
CALLING A KSAM PROCEDURE 6-2
OPTIONAL PARAMETERS . 6-2

STATUS PARAMETER . 6-4
KSAM LOGICAL RECORD POINTER 6-6
SHARED ACCESS . 6-7

BKCLOSE . 6-7
PARAMETERS . 6-7
USING BKCLOSE . 6-7

BKDELETE . 6-8

Contents-7

PARAMETERS . 6-9
USING BKDELETE . 6-9
Shared Access . 6-9

BKERROR . 6-11
PARAMETERS . 6-11
USING BKERROR . 6-11

BKLOCK . 6-12
PARAMETERS . 6-12
USING BKLOCK . 6-13

BKOPEN . 6-14
PARAMETERS . 6-14
USING BKOPEN . 6-16
Access Modes . 6-16
Shared Access . 6-17
Dynamic Locking . 6-18
Sequence Checking . 6-18

BKREAD . 6-20
PARAMETERS . 6-20
USING BKREAD . 6-20
Shared Access . 6-21

BKREADBYKEY . 6-24
PARAMETERS . 6-24
USING BKREADBYKEY . 6-25

BKREWRITE . 6-27
PARAMETERS . 6-27
USING BKREWRITE . 6-27
Shared Access . 6-28
Duplicate Keys . 6-28

BKSTART . 6-30
PARAMETERS . 6-30
USING BKSTART . 6-31

BKUNLOCK . 6-33
PARAMETERS . 6-34
USING BKUNLOCK . 6-34

BKVERSION . 6-35
PARAMETERS . 6-35
USING BKVERSION . 6-35

BKWRITE . 6-36
PARAMETERS . 6-36
USING BKWRITE . 6-36

A. ERROR MESSAGES AND RECOVERY PROCEDURES

Contents-8

B. KSAM/3000 INTERNAL STRUCTURE AND TECHNIQUES
OVERVIEW . B-1
KSAM FILE STRUCTURE . B-1
B-TREE STRUCTURE . B-2
ADDING OR DELETING KEYS. B-3

KSAM KEY FILE STRUCTURE B-6
CONTROL BLOCK. B-6
KEY DESCRIPTOR BLOCK. B-6
KEY ENTRY BLOCKS. B-8

RELATION OF KEY TO DATA FILE B-10
KSAM FILE SIZE . B-12
KEY BLOCK SIZE . B-12
CALCULATING KEY BLOCK SIZE. B-13

KEY FILE SIZE . B-14
KSAM EXTRA DATA SEGMENTS B-18
NUMBER OF EXTRA DATA SEGMENTS B-18
EXTRA DATA SEGMENT SIZE B-19
NUMBER OF KEY BLOCK BUFFERS. B-21

EXTRA DATA SEGMENTS WITH SHARED ACCESS B-22

C. ASCII CHARACTER SET IN COLLATING SEQUENCE

D. CONVERSION TO KSAM FILES
USING KSAMUTIL AND FCOPY D-1
USING RTOKSAM . D-1

E. RECOVERY FROM SYSTEM FAILURE
OVERVIEW . E-1
END-OF-FILE ON KSAM FILES E-2
DATA FILE . E-2
KEY FILE . E-4

END-OF-FILE AND THE EXTRA DATA SEGMENT E-6
NORMAL OPERATION - FILE IS CLOSED E-7
SYSTEM FAILURE - FILE IS OPEN E-7

SITUATIONS IN WHICH RECOVERY IS REQUIRED E-8
EXAMPLE OF FILE RECOVERY E-9

RELOADING A KSAM FILE . E-14
EXPAND KEY BLOCK BUFFER AREA E-15

F. NATIVE LANGUAGE SUPPORT AND KSAM
OVERVIEW . F-1
CREATING KSAM FILES WITH KSAMUTIL F-1
ERROR MESSAGES . F-3
CREATING KSAM FILES PROGRAMMATICALLY F-4
MODIFYING KSAM FILES . F-4
GENERIC KEYS . F-5
USING FCOPY WITH NLS KSAM FILES F-9
COPYING FROM A KSAM FILE TO ANOTHER KSAM FILE F-9
CHANGING THE LANGUAGE ATTRIBUTE OF A KSAM FILE F-9
MOVING NLS KSAM FILES TO PRE-NLS MPE F-9

Contents-9

Figures

1-1. A Simpli�ed View of the KSAM File Structure 1-5
2-1. EDITOR Listing of Job to be Streamed 2-42
3-1. Filetable Structure . 3-4
3-2. Representation of KSAMFILE Used in COBOL Examples 3-10
3-3. Sequential Write Using COBOL 3-39
3-4. Sequential Read Using COBOL . 3-41
3-5. Random Update with COBOL . 3-44
4-1. FCLOSE Example . 4-18
4-2. FFINDBYKEY Example . 4-27
4-3. File Position with FFINDN . 4-30
4-4. FGETINFO Example . 4-35
4-5. FOPEN Example|; Building a KSAM �le 4-56
4-6. FOPEN Example|; Opening an Existing File 4-60
4-7. FREAD Example . 4-68
4-8. FREADBYKEY Example . 4-74
4-9. FREADC Example . 4-78
4-10. FREADDIR Example . 4-82
4-11. FREMOVE Example . 4-92
4-12. File Position with FSPACE . 4-99
4-13. FUPDATE Example . 4-105
4-14. FWRITE Example . 4-110
5-1. Creating and Writing to KSAM File in FORTRAN 5-5
5-2. Opening KSAM File with CKOPEN 5-8
5-3. Reading KSAM File in Key Sequence Using FORTRAN 5-11
5-4. Reading KSAM File in Chronological Sequence Using FORTRAN 5-13
6-1. Closing a KSAM File with BKCLOSE 6-8
6-2. Deleting a Record With BKDELETE 6-10
6-3. Dynamically Locking a KSAM File with BKLOCK 6-13
6-4. Opening KSAM File with BKOPEN 6-19
6-5. Reading From a KSAM File with BKREAD 6-23
6-6. Reading a Record Located by Key Value with BKREADBYKEY 6-26
6-7. Rewriting Record in KSAM File with BKREWRITE 6-29
6-8. Positioning Pointer to Least-Valued Record with BKSTART 6-32
6-9. Positioning Pointer to Particular Record with BKSTART 6-33
6-10. Dynamically Unlocking a KSAM File 6-34
6-11. Writing to a KSAM File with BKWRITE 6-39
B-1. Two-Level B-Tree Structure . B-2
B-2. Split Causes New Level in Tree . B-4
B-3. Tree Growth from Two to Three Levels B-5
B-4. KSAM Key File Structure With Two Keys B-7
B-5. Control Block and Key Descriptor Block B-8
B-6. Key Entry Block Structure . B-9

Contents-10

B-7. Data File/Key File Relation . B-11
B-8. Formula to Determine File Space per Key B-16
B-9. Calculation of Total Key File Size with Two Keys B-17
B-10. Extra Data Segments for Shared Access B-19
B-11. KSAM Extra Data Segment . B-20
E-1. KSAM File and an Extra Data Segment E-6
F-1. KSAM File Test Program . F-2
F-2. Results Returned By The NLKEYCOMPARE Intrinsic F-5
F-3. Generic Key Searches . F-7
F-4. Generic Key Searches . F-8
F-5. KSAM Recovery Procedure . F-9

Contents-11

Tables

2-1. Summary of KSAM Utilities . 2-2
2-2. Key Types . 2-14
2-3. Character Equivalent to Signed Digit for NUMERIC Keys 2-15
2-4. FCOPY Functions with KSAM Files 2-45
2-5. KSAM Options of FCOPY . 2-46
3-1. KSAM Procedures for COBOL Interface 3-2
3-2. Valid status Parameter Character Combinations 3-6
3-3. Positioning the Logical Record Pointer 3-9
3-4. Procedures Allowed for Input-Output Type/Access Mode Combinations . . 3-19
4-1. KSAM File System Intrinsics . 4-2
4-2. Positioning the Pointers . 4-8
4-3. FCHECK errorcode Parameter Format 4-11
4-4. FCLOSE disposition Parameter Bit Settings 4-16
4-5. FGETKEYINFO ksamcontrol Parameter Format 4-39
4-6. FOPEN foptions Parameter Format 4-47
4-7. FOPEN aoptions Parameter Format 4-49
4-8. FOPEN ksamparam Parameter Format 4-51
6-1. KSAM Procedures for BASIC Interface 6-3
6-2. Values Returned to status Parameter 6-4
6-3. Positioning the Logical Record Pointer 6-6
6-4. Procedures Allowed by BKOPEN access Parameter 6-17
6-5. Relation of exclusive Parameter to access Parameter 6-17
A-1. File System Error Codes . A-2
A-2. COBOL Status Parameter Return Values A-6
A-3. BASIC Status Parameter Return Values A-8
A-4. KSAMUTIL Error Codes and Messages A-10
A-5. FCOPY Warning and Error Messages A-18
B-1. Number of Key Block Bu�ers Assigned by Default B-21
B-2. Pointer Dependence . B-23
B-3. Record Pointer Summary . B-24
C-1. ASCII Characters in Sequence . C-2
F-1. KSAMUTIL Error Messages . F-3
F-2. KSAM File System Error Messages F-4

Contents-12

1

INTRODUCING KSAM/3000

OVERVIEW

The Keyed Sequential Access Method (KSAM) is a method of organizing records in a �le
according to the content of key �elds within each record. As implemented for the HP 3000
computer system, KSAM/3000 is similar to and competitive with other indexed sequential
access methods.

Every record in a KSAM �le contains a primary key �eld whose contents determine the
primary logical sequence of records in the �le. Other key �elds can also be de�ned so that the
�le can be sequenced in alternate orders. The order in which records are physically written to
the �le, the chronological order, can be the same as the primary key sequence or it can be
unrelated to any logical sequence.

KSAM/3000 �les can be accessed by programs written in any of these languages:

RPG/3000
COBOL II/3000
COBOL/3000
SPL/3000
FORTRAN/3000
BASIC/3000

KSAM/3000 �les can be copied, listed, and otherwise manipulated with the utility programs:

FCOPY/3000
KSAMUTIL

FILE STRUCTURE

A KSAM/3000 �le is organized into two distinct MPE �les, a data �le and a key �le. The key
�le contains only key entries, the data �le only data. Each record in the data �le contains at
least one item that is designated as a key. The value of each key is duplicated in the key �le
where all keys are ordered in ascending sequence. This organization allows records in the data
�le to be stored in any order since the key �le maintains the logical order of records according
to key value.

Although it is not necessary to understand KSAM �le structure in order to use a KSAM �le,
you may want to refer to appendix B for a detailed discussion of the relation between data
and key �les and the structure of the key �le.

Note Each open KSAM �le uses three �le numbers; two for the data and keys and
one for internal maintenance. The maximum number of KSAM �les that can
be opened for a process depends upon the stack of that process.

INTRODUCING KSAM/3000 1-1

FILE ACCESS

Although separate in fact, the two �les that comprise a KSAM �le are treated as one �le by
the procedures that reference the �le. The data �le is the only �le directly referenced by a
user; the key �le is updated by the system to re
ect any changes to the data �le and is not
directly accessed by the user. Thus , from the user's point of view , accessing a KSAM �le is
very similar to accessing any other MPE �le .

KSAM/3000 provides the following ways to store and retrieve data:

You can write records in logical sequence determined by primary key value or you can write
records without regard to key sequence.

You can read records in logical sequence determined by either the primary or an alternate
key value.

You can read a record selected at random by the value of its primary or alternate keys.

You can read records in the order they were written, that is, in chronological sequence,
unless the program is written in COBOL or BASIC.

You can read a record selected by the value of its chronological record number, unless the
program is written in COBOL or BASIC.

You can update all the contents of an existing record including the contents of the primary
key �eld.

You can position to a record in the �le according to its key value, its chronological record
number, or its record number in key sequence.

Note KSAM �les are sequenced in ascending order only, not in descending order.
Character keys are ordered by the ASCII collating sequence where numbers
precede letters, not in the EBCDIC sequence where letters precede numbers.
Numeric keys are ordered in algebraic order.

KSAM/3000 FEATURES

KSAM/3000 provides a number of features beyond the standard indexed sequential access
method. These include:

Multiple Keys

Duplicate Key Values

Retrieval by Generic Key

Retrieval by Approximate Match

Fixed or Variable Length Data Records

1-2 INTRODUCING KSAM/3000

MULTIPLE KEYS

Each data record can contain from one to sixteen keys. Of these keys, one is required, called
the primary key; any others are alternate keys. For example, in an employee record, the
primary key could be the employee's social security number; alternate keys might be the
employee's name, phone number, or zip code. The values in these key �elds determine the
orders in which data records are sequenced.

PRIMARY KEY. One �eld in each data record is de�ned to contain the primary key. The
value in this �eld determines the primary sequence of records in the data �le. Records
are sequenced according to this primary key unless sequencing by an alternate key or in
chronological order is speci�cally requested.

ALTERNATE KEYS. Other �elds within each data record can be designated as alernate keys
to be used for alternate sequencing of records. Up to 15 alternate keys can be designated
for each record, however, each additional alernate key adds to the overhead and can a�ect
performance when accessing and maintaining a �le. The �le can be sequenced in a di�erent
order for each alternate key de�ned for the �le.

Note that alternate keys bear no hierarchical relation to each other or to the primary key.
Each key is ordered in sequence by its value and type with no relation to other keys. In
KSAM, sequence always means ascending sequence according to the ASCII collating sequence,
(refer to appendix C.)

DUPLICATE KEYS

Sometimes it is essential that key values be unique (for example, a social security number),
and at other times duplicate key values should be allowed (for example, a zip code). To
provide for both cases, KSAM allows you to declare that any key may have a duplicate value
while disallowing duplicate key values as the default condition. Allowing or disallowing
duplicate key values applies to both primary and alternate keys. Duplicates can be allowed for
one or more keys while being disallowed for other keys.

Note Duplicate keys can greatly increase the time required to load or access a
record with a duplicated key value. This is particularly true when there are
a large number of duplicated key values in a large �le. As a result, duplicate
keys should only be used when other methods are not practical. For example,
you should not make a key of an item that can only have two values, as
\MALE" or \FEMALE."

GENERIC KEYS

During retrieval by key value you can choose to use part of a key rather than the entire key.
Called generic keys, such partial keys allow you to retrieve a set of records whose key values
di�er in their entirety but share a common value at the beginning. Generic keys must begin
at the �rst character of the de�ned key held and be shorter, not longer, than the de�ned
key length; also, the key type must be BYTE, INTEGER, or DOUBLE. Suppose a key �eld
containing a zip code is de�ned as �ve characters long. By specifying only the �rst three
characters for retrieval it is possible to read all records whose zip code begins with a particular
group of numbers.

INTRODUCING KSAM/3000 1-3

Note Generic keys cannot be used when accessing KSAM �les through RPG.

APPROXIMATE MATCH

When retrieving by key value, you can specify that the key you are looking for have a value
that exactly matches a speci�ed value, or you can specify that it bear a certain relation to
a speci�ed value. The choices are: equal to, equal to or greater than, or greater than. The
last two relations let you search for an approximate match. For example, you can retrieve all
records with a date greater than or equal to a given date:

DATA RECORD FORMAT

Every key entry in the key �le contains, in addition to the key value, a pointer to the
corresponding data record in the data �le. The data records can be either �xed length or
variable length. If they are �xed, the data record pointer speci�es a record number relative to
the beginning of the �le. If the records are variable length, then the pointer indicates the start
of the data record as a word o�set from the beginning of the �le.

1-4 INTRODUCING KSAM/3000

Figure 1-1. A Simplified View of the KSAM File Structure

HOW TO USE KSAM FILES

Although a KSAM �le consists physically of two separate �les, a data and a key �le, it is
treated as one �le for most purposes. For example, reading from a KSAM �le in primary key
sequence is equivalent to reading sequentially from a non-KSAM �le. Similarly, creating the
data �le portion of a KSAM �le is equivalent to creating a non-KSAM �le.

INTRODUCING KSAM/3000 1-5

CREATING A KSAM FILE

A KSAM �le can be created in two ways: interactively with the > BUILD command of the
utility program KSAMUTIL, or programmatically with a call to the MPE �le system intrinsic
FOPEN. (A COBOL or BASIC programmer can create a KSAM �le only through the >
BUILD command, not FOPEN.) Whether > BUILD or FOPEN is used, �le creation consists
of creating a data �le in very much the same way you would create any HP 3000 �le. The
name assigned to the data �le is the name by which the KSAM �le is known. Then, as part of
the �le creation procedure, a key �le is created and each of its keys de�ned by type, location
in the data record, and size. If duplicate key values are to be allowed, this is speci�ed as part
of the key de�nition.

WRITING RECORDS TO A KSAM FILE

You can write records to a KSAM �le in either of two ways. In one, records are written in any
order regardless of primary key values. In the other, records are written in order according to
the value of the primary key in each record. In the �rst case, the chronological sequence in
which records are written di�ers from the logical record sequence determined by primary key.
In the second, the chronological and logical record sequence is the same. When you specify
that records are to be written in primary key sequence, KSAM checks to make sure that this
sequence is followed and issues an error message if not.

You can specify that the �le be cleared of any existing records before writing new records to
the �le, or you can write records following any previously written records. The choice is made
when you open the �le.

In any case, when records are written to the data �le, the key �le structure is modi�ed
automatically in order to place all keys in the new record into their proper sequence.

Records cannot be written directly to a KSAM �le according to a relative record number.

RETRIEVING RECORDS FROM A KSAM FILE

Records can be retrieved in a variety of ways:

Sequentially in the order determined by key value; either the primary or an alternate key
can be selected to determine the order.

At random according to the value of a speci�ed key; either the primary or an alternate key
can be selected for the matching process.

Chronologically in the order the data records were written.*

At random by chronological record number.*

*The starred access methods are not available to a COBOL or BASIC programmer.

Whenever duplicate keys are used and retrieval is by key value, the �rst key encountered
determines the record read. When generic keys are used, the smallest key value is selected
�rst. Again, if there are duplicates in generic key values, the �rst key encountered is selected.

1-6 INTRODUCING KSAM/3000

UPDATING RECORDS IN A KSAM FILE

You can change the contents of an existing record by program calls that read the record into
storage where you update it and then write it back to the �le. The updated record overwrites
the existing record in its current location if the new record and the old record are the same
length. Otherwise, the new record is written to the end of the �le and the old record is
marked for deletion.

POSITIONING IN A KSAM FILE

Record pointers can be positioned:

To a record determined by key value using either the primary or an alternate key.

To a record determined by its record number relative to the �rst record in key sequence,
where the key is either primary or an alternate.**

To a record determined by its record number relative to the �rst record written to the �le
(chronological sequence).**

**Not available in COBOL or BASIC program.

DELETING RECORDS FROM A KSAM FILE

Records are not physically deleted from the data �le. In order to delete a record, you call a
procedure that marks the record for deletion by writing a delete code (octal 177777) in the
�rst word of the record. Any subsequent access to the �le skips such records, treating them
as if they were not there. In addition, the key �le is automatically reorganized so that keys in
the deleted record are no longer in the path that de�nes the key sequence. The space in the
key �le created by the deleted entries is reused. However, to maintain the �le's chronological
order, the space occupied by deleted entries in the data �le is not reused.

Because data records are not physically deleted, you can reconstruct deleted records by
copying the data �le using FCOPY with the NOKSAM and SUBSET options. In this way,
you can restore �les in which you deleted, records by mistake.

To prevent records from being deleted by mistake, do not place binary or numeric data that
could result in octal 177777 (the deletion code) in the �rst word of a data record. The best
practice is to always keep the �rst word of each data record blank. Doing so helps you identify
deleted records and prevents KSAM from writing delete codes over recoverable data.

REORGANIZING A KSAM FILE

If many records have been deleted, thereby using a great deal of physical space in the �le,
you can compact the �le by using FCOPY/3000 to copy only the active records, those not
tagged for deletion, to a new KSAM �le. You can also use FCOPY to delete, add, or change
alternate keys by copying the �le to a new KSANI �le with a di�erent key de�nition. When
the key de�nition is di�erent, you must �rst create the new �le with the >BUILD command
of KSAMUTIL.

INTRODUCING KSAM/3000 1-7

SHARED ACCESS TO KSAM FILES

Several programs can access the same KSAM �le simultaneously. Shared access is assumed
when the �le is only being read, exclusive access is assumed when the �le is being written to
or updated. Thus, you can choose to make all your access shared or all exclusive. Note that
shared access uses more memory than exclusive access since each open KSAM �le requires a
separate extra data segment.

When access to the �le is shared, it is each user's responsibility to dynamically lock the �le
before changing it in any way. The �le must be locked before any records in the �le are
written, updated, or deleted, and then unlocked immediately after such action. By requiring
this action, the system makes sure that the most recent values are brought into each user's
bu�er at each access. Any call to read or position to a record for sake of subsequent access
should be within the locked portion of code that includes the actual update call.

(Refer to appendix E for a full discussion of shared access.)

RECOVERY AND ANALYSIS OF KSAM FILES

The utility program KSAMUTIL provides several commands that can be used to analyze
KSAM �les. These commands allow you to check any key sequence to obtain a formatted
dump of the key �le, and in the event of a system failure, to check key �le structural damage,
determine whether key values are missing, and recover key values and data records by
resetting end-of-�le pointers. The command, KEYINFO, that performs these recovery
functions must be run in case of a system failure while a KSAM �le is open. (A full discussion
of these commands is found in section II; also refer to appendix E for a discussion of KSAM
�le recovery iii the event of system failure.)

USING FILE EQUATIONS WITH KSAM FILES

KSAM opens the key and data �le allowing �le equations for both. KSAM accesses the �les
in a very speci�c way. Since �le equations will override any aoptions that KSAM uses, it
is possible to specify access parameters on the �le equation which will cause unpredictable
results. The following should not be used on a �le equation which references a KSAM �le:

BUF=numbers of buffers

NOMR

WAIT

Refer to \Dynamic Locking" and \Exclusive Access" in Table 4-7, and the section on using
FCOPY to add data to an existing �le for further information.

1-8 INTRODUCING KSAM/3000

HOW TO USE THIS MANUAL

There are some di�erences in the way in which KSAM �les can be accessed depending on the
language in which you are programming. You should read the paragraphs below appropriate
to your programming language and then turn to the last paragraph of this section, For All
Programmers.

RPG PROGRAMMER

This manual does not describe the code required to access a KSAM �le using RPG. For this
information, you must refer to:

RPG/3000 Compiler Applications & Reference Manual

COBOL II PROGRAMMER

If you are programming in COBOL II, you can access KSAM �les through COBOL II's
Indexed I/O Module. To do so you declare a �le's organization to be INDEXED. Refer to the
COBOL II Reference Manual (32233-90001) for documentation of this procedure.

You can optionally access KSAM �les using MPE Intrinsics (Section IV) and COBOL
procedures (Section III).It is recommended that you use COBOL procedures only when
compatibility with COBOL is required.

COBOL PROGRAMMER

If you are programming in COBOL, you should read section II in order to learn how to:

Create, purge, rename, clear the contents, display the status of, or save a KSAM �le. These
functions are provided by the KSAMUTIL program.

Copy a KSAM �le to another KSAM �le in any key order.

Display the contents of a KSAM �le in any key order on the standard list device. These
functions are provided by the FCOPY program.

You should read section III in order to learn how to:

Open and close the KSAM �le.

Open the �le for shared access and dynamic locking.

Write the records to the �le in sequential key order or in random order.

Read records from the �le in sequential order by key value or at random by key value.

Change the key in preparation for a sequential read.

Rewrite or delete an existing record.

Dynamically lock or unlock the �le.

Note the following limitations for COBOL:

You cannot programmatically create a KSAM �le. You must use the > BUILD command of
the KSAMUTIL utility program in order to create the �le.

You cannot read a KSAM �le in chronological sequence. You can, however, use FCOPY to
copy the �le to a non-KSAM �le and then read it in chronological sequence.

INTRODUCING KSAM/3000 1-9

For ANSII standard COBOL, only alternate keys, not primary keys, can be duplicated.

SPL PROGRAMMER

If you are programming in SPL, you should read section II in order to learn how to:

Create, purge, rename, clear the contents, display the status of, or save a KSAM �le. These
functions are provided by KSAMUTIL.

Copy a KSAM �le to another KSAM �le in any key order.

Display the contents of a KSAM �le in any key order on the standard list device. These
functions are provided by FCOPY.

You may skip sections III, V, and VI, which apply to programming in COBOL, FORTRAN,
and BASIC respectively. You should read section IV to learn how to:

Create, open, and close a KSAM �le.

Write records to the �le in sequential primary key order or in random order.

Read records from the �le in primary or altenate key order or in chronological order.

Read records at random by key value.

Read records directly according to a record number relative to the �rst chronological record.

Position record pointer forward or backward a speci�ed number of records in any speci�ed
key sequence.

Position to a record de�ned by key value.

Position to a relative record number in key sequence or in chronological sequence.

Update or delete an existing record.

Request access and status information on the KSAM �le.

Verify that input/output is completed, and verify that critical output is complete.

Dynamically lock or unlock the �le.

Write or read user labels.

In general, SPL programmers can use all the �le system intrinsics provided for HP 3000
standard �les with the following exceptions:

A KSAM �le cannot be renamed with the FRENAME intrinsic.

A KSAM �le cannot be positioned to a relative record number with FREADSEEK. (Similar
functions are performed by the KSAM intrinsics FFINDBYKEY and FFINDN).

A record cannot be written to a KSAM �le according to relative record number with
FWRITEDIR.

The relation between two �les (interactive or duplicative) cannot be determined with
FRELATE.

1-10 INTRODUCING KSAM/3000

FORTRAN PROGRAMMER

If you are programming in FORTRAN, you should read section II in order to learn how to:

Create, purge, rename, clear the contents, display the status of, or save a KSAM �le using
KSAMUTIL.

Copy a KSAM �le to another KSAM �le in any key order with FCOPY.

Display the contents of a KSAM �le in any key order on the standard list device using
FCOPY.

As a FORTRAN programmer can call either the COBOL procedures described in section III
(and summarized above) or the intrinsics described in section IV (also summarized above).
You should, therefore, read both these sections. Depending on your program requirements,
you can then choose to use either the COBOL procedures or the �le system intrinsics. Since
these methods di�er signi�cantly in how the �le is created and accessed, you should not
attempt to combine calls to COBOL procedures with calls to the �le system intrinsics. In
general, the intrinsics provide more capabilities than the COBOL procedures.

You should also read section V, which illustrates, by means of annotated examples, how to
access a KSAM �le through FORTRAN calls to the �le system intrinsics. The examples
illustrate:

Programmatically creating a KSAM �le.

Writing records to a new KSAM �le.

Reading the records in sequential order by primary key value and then by alternate key
value.

Reading the records in chronological order.

BASIC PROGRAMMER

As a BASIC programmer you should read section II in order to learn how to:

Create, purge, rename, clear the contents, display the status of, or save a KSAM �le using
KSAMUTIL.

Copy a KSAM �le to another KSAM �le in any key order with FCOPY.

Display the contents of a KSAM �le in any key order on the standard list device using
FCOPY.

Since a BASIC programmer, like the COBOL programmer, cannot create a KSAM �le
programmatically, it is especially important to note how �les are created with the BUILD
command of program KSAMUTIL. Note also that BASIC programs cannot read a KSAM
�le in chronological sequence. You can, however, use FCOPY to copy the data �le to a
non-KSAM �le and then read it in chronological sequence.

You can skip sections III, IV, and V, which apply to COBOL, SPL, and FORTRAN
programming respectively, and read section VI, which describes the BASIC procedures to
access KSAM �les. These procedures enable you to:

Open and close a KSAM �le.

Write records to a KSAM �le in primary key or in random order.

Read records from the �le in sequential order by key value, or at random by key value.

INTRODUCING KSAM/3000 1-11

Change the key in preparation for a sequential read.

Rewrite or delete an existing record.

Dynamically lock and then unlock the �le during shared access.

ALL PROGRAMMERS

Programmers using any of the languages that access KSAM �les will probably need to refer
to appendix A. This appendix contains an explanation of the error messages, condition codes,
and status returns that can result from �le access.

Appendix B describes the internal structure of KSAM �les. It illustrates how key entries are
stored in a special B-Tree structure, and how KSAM �le size is determined. It also explains
how �les are accessed through the extra data segments allocated to each open �le. This
appendix provides information for the sophisticated programmer who wants to know how
KSAM �les operate in order to improve performance. For the average user, the information in
appendix B is not needed in order to create and use KSAM �les.

Appendix C provides the ASCII collating sequence used by KSAM /3000 to determine
character key sequence; (numeric key sequence is in algebraic order). Note that the KSAM
key sequence is in ascending order only, the order in which the ASCII characters are shown in
appendix C.

Appendix D provides instructions that will help you convert your �les to KSAM /3000 �les. It
tells you how to convert any serially accessible �le to a KSAM �le. If you are already using
INDEX �les, it describes use of the conversion program RTOKSAM for converting from
INDEX to KSAM. Note that INDEX �les were previously called RSAM �les.

Appendix E describes the recovery procedures to be used if the system fails when KSAM �les
are open. It explains what happens when a �le is closed normally as opposed to what happens
when a system failure prevents normal closing, and then tells the user exactly what to do
when a system failure a�ects open KSAM �les.

1-12 INTRODUCING KSAM/3000

2

USING KSAM UTILITIES

USING KSAM UTILITIES

A pair of utility programs and a set of commands allow you to create and manipulate KSAM
�les.

OVERVIEW

The program KSAMUTIL provides MPE capabilities that allow you to manipulate KSAM
�les. With KSAMUTIL commands, you can create a KSAM �le, rename both the data and
key �les, save a temporary �le as a permanent �le, clear all data from a �le, purge a �le, and
verify the contents and access history of an existing �le.

The HP 3000 �le copier, FCOPY, is adapted to copy KSAM �les. FCOPY allows you to
copy from a KSAM �le to another �le (KSAM or non-KSAM), in primary or alternate key
sequence; to copy an entire �le or a subset of a �le, and to copy either the data or key �le.

The MPE commands :STORE and :RESTORE can be used with KSAM �les to transfer the
�les from disc to magnetic tape and vice versa.

The utility functions that can be performed on KSAM �les are summarized in Table 2-1.

Both KSAMUTIL and FCOPY are programs resident in the system library that can be
executed with the MPE :RUN command. When run in a session, each program responds
by issuing a greater-than (>) prompt. You may then enter commands to control further
operation of the program. Both programs may be operated in batch mode as well as in a
session. In batch mode, the greater-than prompt is not required. :STORE and :RESTORE
are commands directed to the MPE command interpreter and can be included in either a job
or a session.

USING KSAM UTILITIES 2-1

Table 2-1. Summary of KSAM Utilities

UTILITY OPTION/COMMAND FUNCTION

KSAMUTIL >BUILD or >B

>ERASE

>PURGE

>RENAME or >R

>SAVE or >S

>VERIFY or >V

>HELP or >H

>EXIT or >E

>KEYSEQ or >KS

>KEYDUMP or >KD

>KEYINFO or >K1

Create KSAM �le consisting of a data �le and key
�le.

Clear contents of KSAM data �le and reset key
�le pointers.

Remove KSAM �le from system.

Change name of KSAM key or data �le to a new
name.

Save session/job temporary KSAM �le as a
permanent �le.

Display information on current status of data and
keys in KSAM �le.

Request description of KSAMUTIL commands.

Exit from KSAMUTIL program.

Check the sequence of any key (primary or
alternate) in key �le.

Display a formatted, structural key �le dump.

Display information on current status of key �le;
in case of system failure, attempt recovery.

FCOPY ;KEY=keylocation

;NOKSAM

Copy KSAM �le in key sequence by a key speci�ed
by its beginning location in record.

Copy contents of key or data �le in consecutive
(physical) order.

If both these parameters are omitted, the data �le
is copied in sequence by primary key; the key �le
is established with all links maintained. Other
FCOPY options apply to KSAM �les with minor
exceptions (refer to Table 2-4).

MPE :STORE data�le, key�le

:RESTORE data�le, key�le

Store KSAM data and key �les from disc to
magnetic tape.

Restore KSAM data and key �les from magnetic tape.

2-2 USING KSAM UTILITIES

KSAMUTIL UTILITY

KSAMUTIL provides a number of capabilities, among which is the essential capability
to create KSAM �les. For a COBOL, BASIC, or RPG programmer, KSAM �les can be
created only through the BUILD command of the program KSAMUTIL. Although SPL and
FORTRAN programmers can create KSAM �les with the FOPEN intrinsic (described in
section IV), the BUILD command may still provide these users with the simplest method for
creating a KSAM �le.

RUNNING KSAMUTIL

To pass control to KSAMUTlL, use the MPE command:

:RUN KSAMUTIL.PUB.SYS

In a session, KSAMUTIL prompts with the greater-than sign (>) in column 1 to which you
respond with the command you want to execute. In a job, you enter the command in column
1 of the record following the RUN command. No prompt character precedes the KSAMUTIL
commands in batch mode.

Refer to Table 2-1 for a list of the KSAMUTIL commands and their functions.

COMMAND ABBREVIATIONS.

All KSAMUTIL commands, except ERASE and PURGE, can be abbreviated. Most
abbreviations allow the �rst letter of the command name. For example, >BUILD can be
speci�ed as >B, and >EXIT can be speci�ed as >E. The three command names beginning
with K (>KEYDUMP, >KEYSEQ, and >KEYINFO) are abbreviated to two letters to
distinguish one from the other. As shown in Table 2-1, these abbreviations are, respectively,
>KD, >KS, and >KI.

RUNNING MPE COMMANDS FROM KSAMUTIL.

Once you are running KSAMUTIL and you want to use an MPE command, you need not
exit from KSAMUTIL and return to MPE; simply type the colon prompt (:) following the
KSAMUTIL prompt (>) and then enter the MPE command. For instance, if you want to list
the �les in your account and group from KSAMUTIL, enter the LISTF command as shown:

>:LISTF

OPTION TO LIST DISPLAYS ON LINE PRINTER.

Four KSAMUTIL commands display �le information; these are VERIFY, KEYDUMP,
KEYSEQ, and KEYINFO. Each of these has an option that allows you to list the information
on a line printer rather than display it on your terminal. If you include the keyword
OFFLINE as an option in any of these commands, the requested information is sent to
the line printer. If you want the list sent to a particular line printer, you can use a :FILE
command naming the KSAM list �le \KSAMLIST" as the formal designator. For example,
suppose you are running KSAMUTIL and want to list the current information on a KSAM �le
and you want this information listed on a particular line printer:

>:FILE KSAMLIST; DEV=SLOWLP <---- select particular line printer

>VERIFY MYFILE; OFFLINE<--------- specify output to go to an o�ine device

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)? 4 request all information||-

USING KSAM UTILITIES 2-3

The resulting output is sent to the line printer identi�ed as SLOWLP.

OPTIONAL PARAMETERS.

Wherever a command parameter is shown with brackets, [], that parameter can be omitted.
For certain commands, SAVE, VERIFY, KEYDUMP, KEYSEQ, and KEYINFO, the
�lereference parameter is optional if no other parameters are speci�ed. When this parameter
is omitted, it assumes a prior command has speci�ed a �lereference and it uses the last
�lereference to identify the selected �le. For example, assume you use the VERIFY command
twice in a row, once to list the requested output on the line printer, and then to display it at
your terminal. To do this, you can use the following command sequence:

:RUN KSAMUTIL

>VERIFY MYFILE; OFFLINE

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?4

(output is sent to the line printer)

>V<------------------------------ previous �le reference to MYFILE is assumed

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)? 4

(output appears at your terminal)

Note that you cannot issue these commands in reverse order because the �lereference
parameter can be omitted only if there are no other parameters. Thus, it is not legal to use
command >VERIFY MYFILE followed by >VERIFY; OFFLINE.

EXITING FROM KSAMUTIL

When you have �nished using KSAMUTIL in a session, you can return to the MPE operating
system with the command:

>EXIT or >E

In a batch job, the EXIT command is speci�ed in column 1 of the record that terminates the
program; the greater-than sign is not included. The keyword EXIT can be abbreviated as E.

2-4 USING KSAM UTILITIES

HELP

Requests help using KSAMUTIL

>

�
HELP

H

�

This command returns a summary description of each of the KSAMUTIL commands when
entered at a terminal. The keyword \HELP" can be abbreviated to \H" .

REQUESTING HELP

The HELP command lists all the valid KSAMUTIL commands and then asks if you need
information on a particular command. When you enter the name of a KSAMUTIL command,
HELP displays the command syntax. HELP is terminated by entering N in response to the
prompt MORE (Y/N)?.

The following example illustrates the HELP command.

>H

VALID COMMANDS ARE:

BUILD[B].......TO CREATE A FILE

ERASE..........TO RESET A FILE TO INITIAL CONDITIONS

EXIT[E]........TO LEAVE THIS ROUTINE

PURGE..........TO DELETE A FILE

RENAME[R]......TO RENAME A FILE

SAVE[S]........TO RETAIN A TEMPORARY FILE

VERIFY[V]......TO DESCRIBE FILE CHARACTERISTICS

KEYINFO[KI]....TO OBTAIN KEY FILE INFORMATIONS

KEYDUMB[KD]....TO OBTAIN FORMATTED KEY FILE STRUCTURAL DUMP

KEYSEQ[KS].....TO CHECK THE SEQUENCE OF KEY FILE

MORE (Y/N)?Y

ENTER COMMAND NAME: B

BUILD <DATAFILEREF>

[;DEV= <DEVICE>]

[;DISC=[<NUMREC>][, <NUMEXTENTS>][, <INITAL-OC>]]]

(REC=[<RECSIZE>][,[<BLOCKFACTOP>][,[F \V][,BINARY \,ASCII]]]]

[;TEMP]

[;CODE= <FILECODE>]

;KEY= <TYPE>, <POSITION>[,[<LENGTH>][,[<BLOCKING>][,DUPLICATE]]]

[,RDUP]

[;KEY= <TYPE>, <POSITION>[,[<LENGTH>][,[<BLOCKING>][,DUPLICATE]]] ...]

[,RDUP]]]...]

[;LABELS= <NUMBERLABELS>]

[;FIRSTREC=0\-1]

[;KEYDEV= <DEVICE>]

;KEYFILE =FILEREFERENCE2

[;KEYENTPIES= <NUMBER>]

<TYPE>::=B\D\I\R\L\N\P*

MORE (Y/N)?Y

ENTER COMMAND NAME: E

EXIT

MORE (Y/N)?Y

ENTER COMMAND NAME: ERASE

USING KSAM UTILITIES 2-5

ERASE <FTLEREFERENCE>

MORE (Y/N)?Y

ENTER COMMAND NAME: PURGE

PURGE <FILEREFERENCE>[,TEMP]

MORE (Y/N)?Y

ENTER COMMAND NAME: R

RENAME <OLDFILEREF>, <NEWFILEREF>[,TEMP]

MORE (Y/N)?Y

ENTER COMMAND NAME: S

SAVE [<TEMPFILEREF>]

MORE (Y/N)?Y

ENTER COMMAND NAME: V

VERIFY [<FILFREFERENCE>]

[;OFFLINE]

[;NOCHECK]

MORE (Y/N)?Y

ENTER COMMAND NAME: KD

KEYDUMP [<FILEREFERENCE>]

[;SEQ= <KEYSEQUENCE>]

[;SUBSET=[[minus;] <POSITION>][, <NUMBER>]]

I I

["CHAR-STRING"]

[;FILE = <FILEREFERENCE1>]

I I

[;OFFLINE]

[;SORT]

MORE (Y/N)?Y

ENTER COMMAND NAME: KI

KEYINFO [<FILEREFERENCE>]

[;OFFLINE]

[;RECOVER]

MORE (Y/N)?Y

ENTER COMMAND NAME: KS

KEYSEQ [<FILEREFERENCE>]

[;SEQ= <KEYSEQENCE>]

(;OFFLINE]

[;NOLIST]

MORE (Y/N)?N <---------------- terminate HELP display

>E

END OF PROGRAM

2-6 USING KSAM UTILITIES

BUILD

Creates a KSAM �le.

> B

BUILD �lereference 1

[;REC=[recsize] [,[blockfactor] [,F ,BINARY

V ,ASCII]]]

[;TEMP]

[;DEV=device]

[;CODE=�lecode]

[;DISC=[numrec] [,[numextents] [,initialloc]]]

;KEYENTITY =�lereference 2

,DUPLICATE

,DUP

;KEY=keytype, keylocation, keysize[,[keyblocking] ,RDUPLICATE

,RDUP

,DUPLICATE

;KEY=keytype, keylocation, keysize[,[keyblocking] ,DUP

,RDUPLICATE

,RDUP

[;KEYENTRIES=numentries]

[;LABELS=numlabels]

[;KEYDEV=device]

[;FIRSTREC=recnum]

[;LANG=parameter]

[;NODUPLOCKS]

The BUILD command of the KSAMUTIL utility program is used to create a KSAM �le
and allocate the �le to a mass storage device. Although this command is similar to the
MPE :BUILD command, it has been modi�ed for KSAM �les. You can specify the BUILD
command with the abbreviation, B.

Note You cannot create a KSAM �le with the MPE :BUILD command.

If you are programming in COBOL, BASIC, or RPG, you must use the KSAMUTIL BUILD
command to create a KSAM �le; in SPL or FORTRAN, you can create a KSAM �le either
with the BUILD command or with the FOPEN intrinsic (described in section IV).

USING KSAM UTILITIES 2-7

PARAMETERS

�lereference1 Actual �le designator. This is the name that identi�es the KSAM �le
(both data and key �les) and also identi�es the data �le when speci�ed
independently of the key �le. It has the form:

�lename [/lockword] [.groupname [.accountname]]

All four sub-parameters are names that contain from 1 to 8 alphanumeric
characters, beginning with a letter.

Note If speci�ed, account name must be that of your log-on account; you cannot
create a �le in another account.

If �le has no lockword and belongs to your log-on group, only �lename is
necessary. You cannot backreference �les.

(Required parameter.)

REC=recsize Size of logical records in �le. If a positive number, this represents words;
characters are represented by a negative number, If the records are variable
length, recsize indicates the maximum length allowed for a logical record.

Block size is determined by multiplying the speci�ed recsize by blockfactor .
For binary �les or ASCII �les with �xed-length records, an odd character
count is rounded up to the next highest even number to insure that the
record starts on a word boundary. The rounded number should be used in
calculating block size since a block always starts on a word boundary.

(Optional parameter.)

Default: The con�gured record size of the particular device is used when recsize
is omitted; for disc �les, the value used is 256 characters or 128 words .

blockfactor An integer equal to the number of logical data records in each block. This
integer should result in a data block size smaller than 4096 (4K) words. The
blockfactor is used to calculate the bu�er size established for transfer of data
to and from the �le.

For �xed-length records, blockfactor is the actual number of records in a
block. For variable-length records, blockfactor is a multiplier used with recsize
to calculate block size:

block size = ((recsize+1) * blockfactor)+1

The calculation is performed in words, not characters.

(Optional parameter.)

Default: calculated by dividing the speci�ed recsize into the con�gured block
size; the result is rounded down to an integer never less than 1.

F Data �le contains �xed-length records.

(Optional parameter.)

V Data �le contains variable-length records. Since KSAM performs its own
blocking and deblocking, a KSAM data �le speci�ed as variablelength is

2-8 USING KSAM UTILITIES

treated by MPE as a �le with �xed-length records, each record the size of
a KSAM block (refer to blockfactor above for calculation of block size).
Although the MPE LISTF command shows the data �le as �xed-length, the
KSAMUTIL VERIFY command, option 3, shows DATA FIXED as FALSE
when the �le is a variable-length KSAM �le.

(Optional parameter.)

Default: If both F and V are omitted, records are �xed-length.

BINARY Data �le contains binary-coded records.

(Optional parameter.)

ASCII Data �le contains ASCII-coded records.

(Optional parameters.)

Default: If both BINARY and ASCH are omitted, records are binary .

TEMP File is created as a session/job temporary �le; when the session or job
terminates, the �le is deleted from the session/job temporary �le directory.

(Optional parameter.)

Default: If TEMP is omitted, �le is declared permanent and is saved in the
system �le domain.

DEV=device device designates the device on which the data �le resides. (The key �le
device is speci�ed in the KEYDEV parameter.) device can be speci�ed as a
device class name of up to 8 alphanumeric characters beginning with a letter
and terminated by any non-alphanumeric character such as a blank, or as a
logical device number consisting of a three-character numeric string, or it can
be a remote device identi�er consisting of the device class name or logical
device number followed by a pound sign (#) and a remote device class name
or logical device number.

Device class names and logical device numbers are assigned to devices during
system con�guration. (See System Manager/System Supervisor Reference
Manual).

For KSAM �les, the device must be a random access device such as the disc.
If the �le is a newly-created disc �le speci�ed as a device class name, then all
extents to the �le must be members of the same class. Similarly, if the device
is identi�ed by a logical device number then all extents must have the same
logical device number.

(Optional parameter.)

Default: If omitted, the device class name DISC is used .

CODE=
�lecode

Code indicates that the data �le is specially formatted. The code is recorded
in the �le label and is available to processes through the FGETINFO intrinsic.
It must be speci�ed as a positive integer in the range 0 through 1023.

(Optional parameter.)

Default: If CODE is omitted, the �le code is 0 .

USING KSAM UTILITIES 2-9

Note The CODE parameter applies only to data �les; the key �le code value is
always 1080.

DISC=numrec Total maximum �le capacity, in terms of logical records (for �les containing
�xed-length records). For �les containing variable-length records, this is the
maximum �le capacity if all the records are maximum length. Maximum �le
capacity allowed is 2,097,120 sectors.

(Optional parameter.)

Default: If omitted, 1024 records is the default.

numextents Number of extents (continguously-located disc sectors) that can be
dynamically allocated to the �le as logical records are written to it. The size
of each extent (in terms of records) is determined by the numrec parameter
value divided by the numextents parameter value. Extents can allocated on
any disc in the device class speci�ed in the device parameter. If you want to
ensure that all extents for a �le reside on the same disc, use the logical device
number of that disc or a device class name relating to a single disc device, in
the device parameter. If speci�ed, numextents must be integer value from 1 to
32.

(Optional parameter.)

Default: 8 .

initalloc Number of extents to be allocated to the �le at the time it is opened . Must be
an integer from 1 to 32. If attempt to allocate requested space fails, an error
message appears.

(Optional parameter.)

Default: 1 .

KEYFILE
=�lereference2

Actual �le designator. This is the name that identi�es the KSAM key �le. It
has the format: �lename, which is 1-8 alphanumeric characters beginning with
a letter. Unlike �lereference1 (the data �lename) �lereference2 may not be
quali�ed by account or group names, nor may it contain a lockword. The key
�le contains all the key entries and key control information, whereas the data
�le contains the actual data. A KSAM �le is always referenced by the data
�le name, �lereference1 , not the key �le name, �lereference2 .

(Required parameter.)

KEY= One KEY speci�cation must be included for each key in the KSAM �le. The
�rst occurrence of the KEY speci�cation describes the primary key; each
subsequent KEY speci�cation describes an alternate key. There may be up to
15 alternate key descriptions in addition to the primary key description.

(Required parameter.)

keytype keytype is speci�ed as BYTE,INTEGER, DOUBLE, REAL, LONG,
NUMERIC, PACKED, or *PACKED. The whole word or only the �rst letter
need be speci�ed (for example, B is equivalent to BYTE). If more than the
�rst letter is used, the word must be spelled correctly. (Refer to Table 2-2 for
a full description of each key type.) (Required parameter.)

2-10 USING KSAM UTILITIES

keylocation Location of the �rst character of the key within the data record counting from
the �rst character in the record. The �rst character in the data record is
always numbered 1. Only one key can start at the same location. (Required
parameter.)

keysize Length of the key in characters. The length depends on keytype as follows:

BYTE 1 to 255 characters

INTEGER 1 to 255 characters (default = 2)

DOUBLE 1 to 255 characters (default = 4)

REAL 1 to 255 characters (default = 4)

LONG 1 to 255 characters (default = 8)

NUMERIC 1 to 28 characters

PACKED 1 to 14 characters (odd number of digits)

*PACKED 2 to 14 characters (even number of digits)

(Required parameter for BYTE, NUMERIC, PACKED, and *PACKED key
types: defaults are provided for INTEGER, DOUBLE, REAL, and LONG key
types, as noted above.)

keyblocking Number of keys per block. The keyblocking value is an even number greater
than or equal to 4. It is used with the key entry size (keysize paramater) to
determine the size of each key block according to the followign formula:

5 + (keysize+1) + 4)keyblocking = key block size in words

2

Five words are used for control information in each block, keysize speci�ed in
characters is divided by 2 to get the key size in words, and 4 words are added
for the pointers in each key entry. This key entry size in words is multiplied
by the keyblocking factor to determine key block size. If the keyblocking value
generates a key block size greater than 2048 (2K) words, the �le cannot be
created.

The resulting key block size is rounded up to a multiple of 128 words. If
the �le has multiple keys, KSAM forces all key blocks to the same size and
adjusts the number of keys per block accordingly.

Note that the value you specify for keyblocking may be increased (never
decreased) by the system in order to produce a blocking factor that does not
waste disc space. Refer to appendix B for a discussion of how the system
determines the most e�cient blocking factor based on the value you enter for
keyblocking.

Key blocking can a�ect access time in that the smaller the key block, the
more time it may take to retrieve a record using the key �le. In many cases,
the default blocking factor produces the most e�cient key blocking.

(Optional parameter.)

Default: key blocking is set to a value that produces a key block size of 1024
(1K) words. (Maximum size is 2K.)

USING KSAM UTILITIES 2-11

DUPLICATE
DUP

In order to allow duplicate key values, this word must be included in the
KEY speci�cation. If DUPLICATE (or DUP) is not speci�ed, records with
duplicate key values are rejected and an error message issued when such
records are written to the �le. DUP is a legal abbreviation of DUPLICATE.
When you use this option to specify duplicate keys, each new duplicate
key is inserted at the end of the duplicate key chain. This maintains the
chronological order of duplicate keys.

RDUPLI-
CATE
RDUP

This option speci�es that duplicate keys are allowed and are to be inserted
randomly in the duplicate key chain. This method makes insertion of such
keys faster, but does not maintain the chronological order of the duplicate key
chain.

(Optional parameter.)

Default: If omitted, duplicate keys are prohibited .

KEYEN-
TRIES=
numentries

The value of numentries is used to determine the key �le size. The value
speci�ed for numentries should be the maximum number of primary key
entries expected. When there are alternate keys, KSAM automatically adjusts
the key �le size to accomodate each key in addition to the primary key.

Normally, this parameter can be omitted since KSAM assigns it the value
of numrec (number of �xed-length data records or blocks of variable-length
records). If, however, the data records are variable length and there are many
small records, the value of numrec may be too small. In this case, you should
specify a value for numentries greater than the value of numrec.

The number of key entries determines the size of the key �le, the �le limit.
When a new KSAM �le is created, the MPE end-of-�le marker is set to this
�le limit rather than to the end-of-data as is normal for MPE �les. This
allows any key block to be accessed in case of system failure. To determine
where the actual end-of-data is, use the KSAMUTIL VERIFY command,
option 3, and look at the heading KEY FILE EOF. This shows the record
number of the next available key block (one record past the last used key
block).

(Optional parameter.)

Default: the value of numrec in the DISC= parameter or its default value 1024
if it too is omitted .

LABELS=
numlabels

The number of user label records to be created for the KSAM data �le. Up
to 254 labels (1 less than the MPE maximum) can be speci�ed; COBOL
programmers are restricted to 8 labels.

(Optional parameter.)

Default: if omitted, numlabels is equal 0.

KEY-
DEV=device

The device on which the key �le resides, speci�ed as a device class name or
a logical device number. A device class name indicates the general type of
the device as a string of one to eight alphanumeric characters beginning with
a letter and terminated by a non-alphanumeric character such as a blank.
The logical device number is the threecharacter numeric string identifying a
particular device. If the data �le is created on a remote device, the key �le

2-12 USING KSAM UTILITIES

is assigned to the same machine, and the key �le device is speci�ed in the
KEYDEV= parameter.

Device class names and logical device numbers are assigned to devices during
system con�guration.

For KSAM �les, the device must be a random-access device such as the disc.

(Optional parameter.)

Default: If omitted, the device class name DISC is used .

FIRSTREC=
recnum

Determines whether record numbers in the data �le are to start with zero or
one. If the integer 1 is speci�ed, then records are numbered beginning with 1;
otherwise they will start with 0. The only acceptable values for recnum are 1
and 0.

Normally, record numbering in MPE �les starts with zero, the default value
for recnum. In order to be consistent with most commercial applications, you
can specify FIRSTREC=1 to change the record numbering scheme so that
data records are numbered starting with 1.

(Optional parameter.)

Default: if omitted, record numbering starts with zero.

LANG=
parameter

The name or identi�cation number of the language to use in determining the
key sequence. The language speci�ed by parameter must be installed on the
system. See Appendix F for detailed information on using Native Language
Support (NLS) with KSAM �les.

(Optional parameter.)

Default: if omitted, NATIVE-3000 is used .

NODUP
LOCKS

Prevents duplicate �le locks ftom the same process. NODUPLOCKS controls
\Lock" access to a KSAM �le. Each time a process opens a �le more than
once and locks the �le through a di�erent open path, KSAM checks the �le's
lock access. If NODUPLOCKS was speci�ed when the �le was created, the
process is not allowed to lock the �le more than once. File locks from the
same open path are always allowed.

(Optional parameter)

Default: if omitted, duplicate �le locks from the same process are allowed .

KEY DESCRIPTION

Each key is described by specifying key type, key position, key size, and, optionally, the
blocking factor and whether duplicates are allowed. Key type and size are de�ned in
Table 2-2. Note that default values are provided for keysize when key type is speci�ed as
INTEGER, DOUBLE, REAL, or LONG. Only BYTE,INTEGER, and DOUBLE type keys
can be used as generic keys.

USING KSAM UTILITIES 2-13

Table 2-2. Key Types

keytype keysize
(In Characters)

Format

BYTE 1-255 Each character requires 8 bits of a computer word. A
character may contain any of the HP ASCII character set
consisting of letters of the alphabet, numbers, and special
characters. (Refer to appendix C.)

INTEGER 1-255 (default = 2) Single-word �xed-point format permits two's complement
representation of positive and negative integers. Bit 0 is a
sign bit and the remaining 15 bits de�ne a quantity ranging
from �32768 through +32767.

DOUBLE 1-255 (default = 4) Double-word �xed-point format is the same as the integer
format except that two words are linked together to allow a
32-bit quantity with a range between approximately �2
billion and +2 billion.

REAL 1-255 (default = 4) Floating-point format with bit zero as a sign bit, an
exponent (biased by +256) in bits 1 through 9, and a
positive fraction in the remaining 22 bits of the double word.
This type cannot be used as a generic key.

LONG 1-255 (default = 8) Long
oating-point format uses four words; an exponent
(biased by +256) in bits 1-9, as with the real number, and a
positive fraction in the remaining 54 bits. This type cannot
be used as a generic key.

NUMERIC 1-28 External decimal format in which each decimal digit requires
one 8-bit character and the sign is combined with the least
signi�cant digit. (Refer to Table 2-3 for the list of characters
representing the digit/sign combinations.) This type cannot
be used as a generic key.

PACKED 1-14 Packed decimal format in which each digit requires only 4
bits and the sign is speci�ed as a hexadecimal number in the
least signi�cant 4 bits (1100 or C is plus and 1101 or D is
minus). This type cannot be used as a generic key.

*PACKED 2-14 Same as PACKED except this key type contains an even
number of digits. This type cannot be used as a generic key,

2-14 USING KSAM UTILITIES

Table 2-3. Character Equivalent to Signed Digit for NUMERIC Keys

POSITIVE
VALUES

POSITIVE
VALUES

NEGATIVE
VALUES

NEGATIVE
VALUES

SIGNED DIGIT CHARACTER SIGNED DIGIT CHARACTER

+0 f -0 g

+1 A -1 J

+2 B -2 K

+3 C -3 L

+4 D -4 M

+5 E -5 N

+6 F -6 O

+7 G -7 P

+8 H -8 Q

+9 I -9 R

CREATING A KSAM FILE

Creating a KSAM �le with the KSAMUTIL BUILD command is very similar to creating a
standard HP 3000 �le with the MPE command :BUILD except that a KSAM �le includes a
key �le description. As with standard �les, the default values can be assumed for many of the
�le description parameters.

To create a KSAM �le from the KSAMUTIL program, you can start by simply naming the �le
as the �rst parameter of the BUILD command. The �le name de�nes the data �le portion of
the KSAM �le with the default options: �xed-length, 128-word, binary-coded records, blocked
1 record per block.

To fully de�ne a KSAM �le, you must also:

name the key �le

de�ne at least one key (the primary key) in terms of:

type
location in the data �le
size

These parameters provide your minimum KSAM �le description from which the �le can be
created. To illustrate:

:RUN KSAMUTIL.PUB.SYS

>BUILD KSAMFILE;KEYENTITY =KFILE;KEY=I,21,2

This command assigns the name KSAMFILE to the KSAM data �le; it names the key �le
KFILE, and de�nes the primary key as an integer that starts in character 21 of the record,
and is two characters long. By default, the blocking factor of the key�le provides key blocks
1024 words long, the maximum number of primary keys is set to 1023 (the same as the

USING KSAM UTILITIES 2-15

maximum number of data records), duplicate keys are prohibited, and record numbering starts
with zero.

File KSAMFILE is now created. Default values were used where possible so that the BUILD
command speci�cation shown above is the minimum needed to create a KSAM �le. You
could create the same �le, KSAMFILE, with the following BUILD command in which default
parameters are speci�ed.

recsize

|

>BUILD KSAMFILE;REC=128,,F,BINARY& <------ line continuation character

> ;DEV=DISC&

> ;CODE=0&

> ;LABELS=0&

> ;FIRSTREC=0> ;DISC=1023,8,1& <------numrec,numextents,initialloc

> ;KEYFILE=KFILE&

> ;KEY= I,21,2& <------ key description

> ;KEYENTRIES=1023& <----- numentries

> ;KEYDEV=DISC

This speci�cation of the BUILD command, although initially more cumbersome, documents
the default values with which the �le is created. Since the default keyblocking factor is a value
calculated from the key size so that each key block is 1K words long, it is not speci�ed here.
You can use the VERIFY command to �nd the value KSAM has assigned as a key blocking
factor for any �le you create using a default for this value.

Only a primary key is de�ned for this �le. Within the data �le, this key is an integer that
occupies characters 21 and 22 (word 11) of each data record.

In the key �le, the values in any key are ordered sequentially so that the next higher value can
always be located. The key should not begin in the �rst two characters of the data record
since these characters are set to all 1's when the record is deleted. If the key value of deleted
records need never be recovered, then this restriction can be ignored.

For each alternate key in addition to the primary key, another KEY= clause must be
included. Suppose a personnel �le with a primary key containing an employee number, an
alternate key containing a name, and another alternate key containing the person's age. The
�rst two keys are speci�ed as BYTE keys, the third is an INTEGER. The key �le is blocked
with 10 keys per block and the maximum number of primary keys expected is 3000:

:RUN KSAMUTIL.PUB.SYS

>BUILD EMPLOYEE;REC=,,,ASCII;KEYENTITY =EMPKEY;KEYENTRIES=3000;&

> KEY=B,3,11,10;&<---------- primary key (employee number)

2-16 USING KSAM UTILITIES

> KEY=B,15,30,10;&<--------- alternate key (employee name)

> KEY=I,51,2,10&<----------- alternate key (employee age)

The keys are located in the data record as follows:

Note that the keys need not be contiguous. In this example, the primary key is located nearer
to the beginning of the record than the other keys. This is not a requirement; the primary key
can physically follow any alternate keys in the record, although the primary key is always the
�rst key speci�ed in the BUILD command. For example, in the �le FSAMPLE, the primary
key starts in character 21 following a secondary key in character 3:

USING KSAM UTILITIES 2-17

ERASE

Clears the contents of a KSAM �le.

>ERASE �lereference

The contents of a KSAM �le, both the data and key �les, can be cleared to an empty state
with the KSAMUTIL ERASE command.

PARAMETERS

�lereference Actual �le designator that identi�es the KSAM data �le. It is speci�ed
exactly like �lereference1 in the >BUILD command.

(Required parameter.)

CLEARING A KSAMFILE

EXECUTE access is required to erase a KSAM �le. If the group in which the KSAM �le
resides does not have EXECUTE access, any attempt to erase a �le results in an error and the
message, \FSERR 93 SECURITY VIOLATION."

When ERASE is speci�ed for a KSAM �le, the end-of-�le pointer that follows all data is reset
to point to the �rst record in the data �le. This position of the pointer is identical to its
position when the �le is created and before any data is written to the �le.

All pointers and control words in the key �le are reset to indicate that the data �le is empty.

Note that the �le is still created and new data may be written to it.

For example, to clear the contents from the �le identi�ed as KSAMFILE:

>ERASE KSAMFILE

2-18 USING KSAM UTILITIES

PURGE

Purges a KSAM �le from the system.

>PURGE �lereference [,TEMP]

The KSAMUTIL PURGE command can be used to remove a KSAM �le, both data and
key �les, from the system. Although the MPE :PURGE command can also be used, it must
be speci�ed twice, once for the data �le and once for the key �le. If you are programming
in COBOL, BASIC, or RPG, you should use the KSAMUTIL PURGE command to purge
a KSAM �le. In SPL or FORTRAN you could also use the FCLOSE intrinsic (described in
section IV) to purge a KSAM �le.

PARAMETERS

�lereference Actual �le designator identifying the KSAM data �le. Speci�ed exactly like
�lereference1 in the >BUILD command.

(Required parameter.)

TEMP Must be speci�ed if �le is a temporary �le in session/job temporary �le
domain. If omitted, a permanent �le is assumed.

(Optional parameter.)

PURGING A KSAM FILE

When PURGE is executed, the speci�ed KSAM data �le and its associated key �le are
removed from the system and can no longer be referenced.

For example, to purge a temporary KSAM �le called KTEMP:

>PURGE KTEMP,TEMP

KTEMP.KSAM.DATAMGT & KKEY PURGED.

To purge the permanent �le KSAMFILE:

>PURGE KSAMFILE

KSAMFILE.KSAM.DATAMGT & KFILE PURGED.

The system prints the data and key �le names of a successfully purged KSAM �le. It also
prints the group and account names in which the �le was created (in this case KSAM and
DATAMGT).

USING KSAM UTILITIES 2-19

RENAME

Renames either the data or key �le of a KSAM �le.

>

�
RENAME

R

�
old�lereference, new�lereference

�
,TEMP

�

The KSAMUTIL RENAME command can be used to change either the KSAM data �le name
or the KSAM key �le name to a new name. Following execution of RENAME, the data and
key �les retain their relation to each other. Note that if the MPE :RENAME command is
used, this relation is severed. The FRENAME intrinsic cannot be used to rename a KSAM
�le.

PARAMETERS

old�le-
reference

Current actual �le designator identifying the KSAM data �le or the KSAM
key �le, speci�ed exactly like �lereference1 or �lereference2 in the BUILD
command.

(Required parameter.)

new�le-
reference

New actual �le designator in same format as old�lereference. The �le named
by old�lereference will be given the name speci�ed by new�lereference.

(Required parameter.)

TEMP Indicates that old �le was, and new �le will be, a temporary �le in the
session/job temporary �le domain.

(Optional parameter.)

Default: If omitted, permanent �le is assumed.

RENAMING A KSAM FILE

You may rename either the data �le or the key �le, not both, with one >RENAME command.
To rename the entire �le, you must specify the RENAME command twice. Thus, to rename
the data �le KSAMFILE and its associated key �le KFILE:

>RENAME KSAMFILE,NEWDATA

>RENAME KFILE, NEWKEY

The relation between keys and data in the newly named �les is the same as that in the �les
KSAMFILE and KFILE.

If the data �le being renamed was protected by a lockword, then this lockword must be
speci�ed on both the old and new �les if it is to be retained. If the lockword is omitted, it is
removed when the �le is renamed. Note that a lockword is never speci�ed when renaming the
key �le; the key�le is protected automatically by any lockword assigned to its associated data
�le. For example, to assign a new lockword to the data �le DATAFIL:

>RENAME DATAFIL/LOCKA, DATAFIL/LOCKB <----------- new lockword

Note that the new �le name need not be in the same group as the old �le name. RENAME
provides a way to move a �le from one group to another. For example, to move the KSAM �le
DATAFILE with its associated key �le KEYFILE from GROUPA to GROUPB:

>RENAME DATAFILE.GROUPA,DATAFILE.GROUPB

2-20 USING KSAM UTILITIES

Note that only one RENAME command is used. This one command insures that both the
data �le and the key �le are in the same group.

USING KSAM UTILITIES 2-21

SAVE

Saves a temporary KSAM �le as a permanent �le.

>

�
SAVE

S

��
�lereference

�

A temporary KSAM data �le and its associated key �le are made permanent with the
KSAMUTIL SAVE command. The keyword \SAVE" can be abbreviated to \S".

PARAMETERS

�lereference Actual �le designator identifying the session/job temporary �le to be saved,
speci�ed exactly like �lereference1 in the >BUILD command.

(Optional parameter.) Default: If omitted, last �lereference is assumed .

SAVING A KSAM FILE

Assume that KSAM data �le KDATA and its associated key �le was created as a session/job
temporary �le; to save this �le as a permanent �le:

>SAVE KDATA

Both the data and key �les are saved.

2-22 USING KSAM UTILITIES

VERIFY

Displays access and status information about KSAM �le.

>

�
VERIFY

V

��
�lereference

��
;OFFLINE

��
;NOCHECK

�

With the VERIFY command, you can request a display of the characteristics of a KSAM data
�le, both the static information de�ned at �le creation and dynamic �le access information.
The abbreviation V can be used instead of the keyword VERIFY.

PARAMETERS

�lereference Actual �le designator identifying the �le whose characteristics are to be
displayed. The actual designator can be a back reference to a �le name in an
MPE :FILE command; in this case, the actual designator must be preceded by
an asterisk (*). Either the data �le name or the key �le name may be used to
identify the KSAM �le.

(Optional parameter only if no parameters.)

Default: If omitted, last �lereference is assumed.

OFFLINE Display output on line printer. An MPE :FILE command may be used to
specify a particular line printer.

(Optional parameter.)

Default: If omitted, display is sent to terminal.

NOCHECK Allows speci�ed KSAM �le to be opened for read-only access by the VERIFY
command; use when a system failure prevents the KSAM �le from being
opened.

(Optional parameter.)

Default: If omitted, VERIFY cannot open �le that was open when system
failed.

DISPLAY KSAM FILE CHARACTERISTICS

In a session, you will be asked to select one of four possible displays:

1. File information (de�nitions from �le creation plus �le access statistics)

2. KSAM parameters (de�nitions of keys from �le creation)

3. KSAM control (key �le access statistics)

4. All three of the above displays

In a job, the entire set of displays is printed exactly as if option 4 had been selected in a
session.

To illustrate the interaction, the following VERIFY commands select each of the three
separate displays; if option 4 were selected, these displays would be printed consecutively with
no halt until they were �nished. User entries are underlined:

>RUN KSAMUTIL.PUB.SYS

USING KSAM UTILITIES 2-23

HP32208A.2,4 TUE, APR 17, 1979, 11:23 AM KSAMUTIL VERSION:A.2.4

>VERIFY TESTFILE

select �le information only--------------------------|

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?1

TESTFILE,JOAN.MORRIS CREATOR=JOAN

FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM

AOPTIONS(000400)=DEFAULT, NOBUF, DFFAULT, NO FLOCK, NO MR, IN

RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-128: 9: 0: 2: 4: 1: 0: 0: 5: 1023

LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:

1: 1: -128: 129: 8: 0: 2:00000117760:

The infomation returned by selecting �le information is the same as that returned by
FGETINFO (described in section IV).

select key �le information only-------------------------|

|

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?2

KEY FILE=TESTKEY KEY FILE DEVICE=3 SIZE= 386 KEYS= 2

FLAGWORD(000000)=RANDOM PRIMARY, FIRST RECORD=0, PERMANENT

KEY TY LENGTH LOC. D KEY BF LEVEL

1 B 20 3 Y 72 1<----- primary key is listed �rst,

2 B 8 24 R 126 1<----- alternate keys follow

______________________/

^

|

|----------------------- random insertion of duplicate key

corresponds to KEY= descriptions in BUILD command

The actual number of keys per block (the blocking factor) is listed in this display under
the heading KEY BF. Note that this number may be greater than the blocking factor you
speci�ed during �le creation. This occurs if KSAM adjusts the speci�ed blocking factor
to generate a block size that makes optimum use of disc space, KSAM only increases the
speci�ed blocking factor, it never decreases it. (Refer to appendix B for full particulars on the
calculation of block size and the adjustment of the blocking factor.)

The maximum number of levels in the key �le structure for each key is noted under the
heading LEVEL.

select dynamic KSAM �le information------------|

|

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?3

DATA FILE = TESTFILE VERSION= A.2.4

KEY CREATED=107/'79 10:58:17.4 KEY ACCESS= 107/'79 11:23:35.9

KEY CHANGED=107/'79 11:21: 7.7 COUNT START=107/'79 11:21: 8.0

DATA RECS = 5 DATA BLOCKS= 4 END BLK WDS= 64

DATA BLK SZ= 64 DATA REC SZ= 128 ACCESSORS= 0

FOPEN 1 FREAD 0 FCLOSE 1

FREADDIR 0 FREADC 0 FRFADBYKEY 0

FREMOVE 0 FSPACF 0 FFINDBYKEY 0

FGETINFO 3 FGETKEYINFO 1 FREADLABEL 0

FWRITELABEL 0 FCHECK 0 FFINDN 0

FWRITE 5 FUPDATE 0 FPOINT 0

FLOCK 0 FUNLOCK 0 FCONTROL 0

FSETMODE 0

KEYBLK READ 3 KEYBLK WROTE 2 KEYBLK SPLIT 0

KEY FILE EOF 18 FREE KEY HD 0 SYSTEM FAILURE 0

2-24 USING KSAM UTILITIES

MIN PRIME 3 MAX PRIME 1 RESET DATE

DATA FIXED TRUE DATA B/F 1 TOTAL KFYS 2

FIRST RECNUM 0 MIN PECSIZE 31

The dynamic key �le information displayed by option 3 together with the static key �le
information displayed by option 2 comprise the information displayed by the FGETINFO
intrinsic described in section IV. Note that the version number displayed by VERIFY is the
version of KSAM under which the �le was created. The intrinsic HP32208 described in section
IV can be used to determine the current version of KSAM.

TERMINATING THE >VERIFY COMMAND

In order to terminate the VERIFY command in a session, you must press the RETURN key
(CR) in response prompt:

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?

Any other response either causes a display followed by reiteration of this prompt or else causes
this prompt to be issued. For example:

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?6

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?0

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?CR

|

>EXIT |

|

END OF PROGRAM only response to terminate VERIFY.----------|

DIRECTING VERIFY OUTPUT TO LINE PRINTER

If you want a \hard copy" of the information displayed by VERIFY, you should use the
OFFLINE option. When included, OFFLINE directs the VERIFY information to a line
printer. You can use the :FILE command to specify a di�erent output device or a particular
line printer.

USING VERIFY FOR RECOVERY

In case of a system failure when a KSAM �le is open, the VERIFY command provides the
following useful information:

EOF marker on the data �le (END OF FILE header in option 1)

EOF marker on key �le (KEY FILE EOF header in option 3)

Flag indicating whether system failure occurred (SYSTEM FAILURE heading in option 3)

Number of processes that had opened the �le for non read-only access when the system
failure occurred (ACCESSORS heading in option 3).

Note that you must use the NOCHECK option in order to run VERIFY when a system
failure prevents KSAM �les from being opened. This option overrides the restriction on
opening �les after a system failure and allows a �le to be opened for read-only access in order
to get the VERIFY information. (This access is not counted in the ACCESSORS count.)

(Refer to the KEYINFO command description for an example of how the VERIFY
information can be used for recovery after system failure.)

USING KSAM UTILITIES 2-25

KEYSEQ

Veri�es sequence of key values in KSAM �le.

>

�
KEYSEQ

KS

��
�lereference

��
;SEQ=keysequence

��
;OFFLINE

��
;NOLIST

�

This command compares all the key values in a particular key (primary or alternate) to
determine whether they are in ascending sequence. If any values are out of sequence, a list of
numbers identifying such values is displayed, unless NOLIST is speci�ed. In any case, the
number of outquence values is returned. Note that if key values are out of sequence, the key
�le is damaged and the KSAM �le must be reloaded.

The abbreviation KS may be used instead of the keyword KEYSEQ.

PARAMETERS

�lereference Actual �le designator identifying the KSAM �le whose key values are to
be veri�ed. Either the data �le name or the key �le name can be used to
identify a KSAM �le. Also, a back reference to a �le named in an MPE :FILE
command may be used.

(Optional parameter if no parameters are speci�ed.)

Default: If omitted, the last �le referenced is assumed .

SEQ=
keysequence

Identi�es particular key whose key values are to be checked. Keys are
numbered from 1. The �rst key (SEQ=1) is always the primary key;
subsequent keys are alternate keys numbered in the order they appear in the
record, such that the �rst alternate key in the record is SEQ=2, the second
alternate key is SEQ=3, and so forth.

(Optional parameter.)

Default: If omitted, the primary key is assumed.

OFFLINE Directs list of out-of-sequence keys to the line printer. An MPE :FILE
command may be used to indicate a di�erent output device than the line
printer, or a particular line printer.

(Optional parameter.)

Default: If omitted, the list of out-of-sequence keys is displayed at user's
terminal .

NOLIST Suppresses display of the particular key numbers whose values are out of
sequence. A count of the out-of-sequence values is displayed even if NOLIST
is speci�ed.

(Optional parameter.)

Default: If omitted, list of key numbers for out-of-sequence key ualues is
displayed.

2-26 USING KSAM UTILITIES

VERIFY KEY SEQUENCE

If you suspect that your key �le has out of order key values in any key, you can run KEYSEQ.
If any key values are not in ascending sequence, the key numbers associated with those key
values are displayed. Note that the number of a key value refers to its position in the key �le.
For example, if the third, fourth, and �fth key values of a particular key are out of sequence,
the numbers 3, 4, and 5 are displayed.

If the list of out-of-sequence key numbers is long, you can terminate it by holding down the
CNTL key while typing Y (CNTL/Y). The total number of out-of-sequence key values will be
displayed even if you terminate the list with CNTL/Y or suppress it altogether with NOLIST.

Consider the following partiallist of key values in the primary key of the KSAM �le MYFILE:

If you run KSAMUTIL and use the KEYSEQ command, as shown below, you can determine
which keys are out of order:

:RUN KSAMUTIL.PUB.SYS

>KEYSEQ MYFILE ;SEQ=1<----------- test primary key sequence

KEYSEQ displays the following:

KEY VALUE # (FOR VALUE OUT OF SEQUENCE)

3 ------ key number of keys with out-of-sequence values

4 -------|

TOTAL # OF KEY VALUES READ 30

OF KEY VALUES OUT OF KEY SEQUENCE ORDER 2

KEY FILE STRUCTURE DAMAGED, KSAM FILE HAS TO BE RELOADED

Regardless of the number of key values that are out of sequence, you should reload the KSAM
�le to restore its integrity.

Consider a second example. Suppose MYFILE has two alternate keys, one starting in location
11 (11th character of record) and another starting in location 33. To verify the sequence of
key values in the second alternate key, execute KEYSEQ as follows:

>KS MYFILE ;SEQ=3 ;NOLIST <----- suppress list of key numbers

|

|------ second alternate key

TOTAL # OF KEY VALUES READ 30

#OF KEY VALUES OUT OF KEY SEQUENCE ORDER 0 <--- key values in sequence

In this case all the key values were in correct sequence. Unless other keys in this �le have
values that are out of sequence, you need not reload the �le.

USING KSAM UTILITIES 2-27

Note that NOLIST was speci�ed. In general this is good practice. If any key values are not in
sequence, the �le should be reloaded, so it is seldom important to know which keys are out of
sequence.

2-28 USING KSAM UTILITIES

KEYDUMP

Provides formatted, structural dump of key �le.

>

�
KEYDUMP

KD

��
�lereference

��
;SEQ=keysequence

�
�
;SUBSET=

� �
�
�
position "string"

	�
,number

� � �
;FILE =formaldesignator

�
�
;OFFLINE

��
;SORT

�
The key �le dump consists of three items of information for each key value:

1. Key Value The actual value of each key in ascending order

2. Record
Pointer

The record number (�xed-length �les) or word o�set (variable-length �les) of
the data record to which the associated key value points.

3. Key Block
Address

Relative record number of the �rst record in the key block containing the
associated key value, followed within parentheses by the number of key values
in the block. The addresses of key blocks at di�erent levels are indented.

This dump is very useful for examining the contents of any key �le. Since key blocks are
physically scattered throughout the key �le, linked by pointers, it is di�cult to follow an
unstructured dump of a key �le. The KEYDUMP display shows the contents of the key �le,
not as they are actually stored, but in a way that makes it much simpler to read than a dump
of the actual �le.

One key at a time is dumped by KEYDUMP. If there is more than a primary key, you must
run KEYDUMP for each key in order to dump the entire key �le.

Note that you can use CNTL/Y (the CNTL key held down while pressing the Y key) to stop
display of this dump at any time. This is particularly useful if you display the dump at the
terminal. Usually, however, you will use the OFFLINE option to list the dump on a line
printer (see Parameter description, below).

You can choose to dump a subset of the key �le contents based on the key number or a key
value. You can send the dump to a particular �le and, if so, you can sort the key �le contents
by the record number in the data �le rather than by key value. You can also send the dump
to a line printer.

PARAMETERS

�lereference Actual �le designator identifying the KSAM �le whose key �le is to be
dumped; either the data �le name or the key �le name can be speci�ed.
The �lereference can be a back reference to a �le named in an MPE :FILE
command.

(Optional parameter if no parameters are speci�ed.)

Default: If omitted, the last �le referenced is assumed.

SEQ=
keysequence

Specify a particular key whose contents are to be dumped. The primary key,
whatever its location in the data record, is always key number 1 (SEQ=1).
Alternate keys are numbered according to the order in which they are
speci�ed in the BUILD command (or in ksamparam at FOPEN). The �rst
alternate key is speci�ed as SEQ=2, the next alternate key as SEQ=3, and so
forth.

USING KSAM UTILITIES 2-29

(Optional parameter.)

Default: If omitted, the primary key is selected.

SUBSET= Select a portion of the key �le to dump, based on the numeric position of the
key or the key value, and the number of key values.

[�]position Start dump with key whose number is speci�ed. This number is the same as
the key number issued by KEYSEQ. It corresponds to the position of the key
value in the �le in ascending sequence. Thus the �rst key value is position 1,
the second is position 2, and so forth.

The optional minus sign suppresses the normal indentation by key levels of
the key block address display.

\string" Start dump with �rst key value greater than or equal to the speci�ed string.

,number Indicates the number of key values to be dumped starting with the key at the
indicated position or whose value is indicated by \string".

(Optional parameter.)

Default: If omitted, all the key ualues for selected keys are dumped.

FILE
=�lename

Direct key �le dump to speci�ed disc �le. A disc �le (�lename) will be
created with a record size equal to the size of a key entry, that is keylength
(rounded up to full words) + four words.

The four words are needed for the record pointer (2 words) plus the key block
address (2 words). Note that a new �le is always created, so do not name an
existing �le.

The �le has a default block size of 1K words. Any of the �le characteristics
except the record size can be changed by a :FILE statement. For example:

>:FlLE FILEDUMP ;REC=,100 ;DEV=TAPE

>KEYDUMP MYFILE ;ENTITY =*FILEDUMP

These commands dump the primary key sequence to a tape with 100 records
per block.

(Optional parameter.)

Default: If omitted, key dump is sent to terminal.

OFFLINE Direct output to a line printer. An MPE :FILE command can be used to
indicate a di�erent output device or a particular line printer.

(Optional parameter.)

Default: If omitted, the dump is sent to the user's terminal.

SORT Sort dump by record pointers rather than key values. The record pointers
indicate the record number of the records in a data �le with �xed length
records or the word o�set of the records in a data �le with variable-length
records.

Note that this option can be used only when the dump is directed to a speci�c
�le with the ENTITY = option.

(Optional parameter.)

2-30 USING KSAM UTILITIES

Default: If omitted, key dump is in ascending sequence by key value.

DUMPING THE KEY FILE

The dump produced by KEYDUMP consists of three columns: the �rst contains the key
value, the second a pointer to a record number in the data �le, and the third contains the key
block address and the number of key values in that block. The key block address is given as
the record number of the �rst record in any block.

For example, assume that TESTFILE contains an INTEGER type primary key whose values
we want to see. Run KEYDUMP as follows:

:RUN KSAMUTIL.PUB.SYS
>KEYDUMP TESTFILE

The resulting dump consists essentially of three columns: one contains the key values in
ascending sequence, another contains the record number (or word o�set if record size is
variable) of the associated record in the data �le, and the third gives the record address of the
key block. A sample dump is shown below:

This dump lists under the heading \KEY" 14 integer key values in ascending order from 0001
through 0014. The next column under \REC.PTR." lists the record number of the data
record associated with the key value|thus, key value 0001 is in record number 3 of the data
�le (the fourth record in chronological sequence), and key value 0006 is in the �rst record in
the data �le, record number 0. The third column under \KEY BLOCK ADR." shows the
address of the key block in which each key value resides, The key block address is shown as
the record number of the �rst record in the key block. (Note that KSAM key �les use �xed

USING KSAM UTILITIES 2-31

length records each one sector long|128 words. Thus, the record number is also the sector
number. A keyblock consists of more than one sectors|default is 8 sectors).

Key values are organized into blocks using a B-Tree structure (refer to appendix B for
details). This structure has one or more levels where the �rst or highest level, is known as the
\root" and lower level are \leaves". This dump shows the level structure of the key �le by
indenting the key block addresses to correspond to levels. The highest or root level address
is in the rightmost column, lower levels are listed to the left. By looking at the key block
address, we see that the key block starting at record (sector) 6 is the root block, and that
there are three key blocks at a lower level whose addresses start, respectively, at records 2, 18,
and 24. This key �le has two levels; a key �le with more levels would have correspondingly
more columns under the key block address heading.

The �rst time a key block address is listed, it is followed in parentheses by the number of key
values in that block. Looking at the dump, we see that the block starting at record 2 has 4
key values, the block at record 6 has 2 values, the block at record 18 has 5 values, and the
block at record 24 has 3.

With this dump, we can picture the structure of the key �le associated with the �le
TESTDUMP:

The key values are shown within their key blocks; the dashed lines show the pointers that link
key blocks in ascending sequence.

2-32 USING KSAM UTILITIES

DUMPING A SUBSET OF THE KEY FILE

If you want to dump a selected number of key values rather than all the values in a key,
you can use the SUBSET option of KEYDUMP. The starting key value can be located in
two ways: if you know the key number of the �rst key value you want displayed, use the
SUBSET=position format; if you know the actual key value (or a value less than the key
value), then you can use the SUBSET=\string" format. In either case, the second SUBSET
parameter is always an integer that indicates the number of key values you want dumped.

BY KEY NUMBER

The key number is the sequential number associated with each key value in a particular key.
If the KEYSEQ command has listed key numbers that are out of sequence, you may want to
dump only these values. Suppose that TESTFILE has out of sequence values, the following
example runs KEYSEQ �rst and then runs KEYDUMP to dump the key values shown as out
of sequence. (ln order to see the last value in correct sequence, the key preceding the �rst key
out of sequence is selected as the �rst key to dump.)

>KS TESTFlLE

KEY VALUE # (FOR KEY VALUE OUT OF SEQUENCE)

6<-------------------------|

7 |

8 |values used for SUBSET= of KEYDUMP

9 |------------|

TOTAL # OF KEY VALUES READ 14 |

OF KEY VALUES OUT OF KEY SEQUENCE ORDER 4 -- values used for SUBSET= of KEYDUMP

KEY FILE STRUCTURE DAMAGED, KSAM FILE HAS TO BE RELOADED

>KD TESTFILE ;SUBSET=5,5 <------- number of key ualues out of sequence (Plus 1)

|

|----- key preceding �rst key # out of sequence

The following dump shows the last key value in sequence followed by the key values that are
out of sequence:

KEY REC.PTR. KEY BLOCK ADR.

1st key out 0005 3 12(2)

of sequence--->0008 9 18 (5)

0007 4 18

0009 7 18

0006 0 18

BY KEY VALUE

The second version of SUBSET= speci�es an actual key value followed by the number of key
values. You need not specify the exact key value; it can be a value less than an actual Integer
or Double type key value (approximate match) or only the �rst part of a Byte type key value
(generic match). For example, suppose TESTFILE has an alternate key that contains names
in alphabetic order and you want to look at the ten key values that start \GI" or the next
greater value. Specify the following command:

>KD TESTFILE ;SEQ=2 ;SUBSET="GI",10

| ____/----

| |

| ---------- dump 1st 10 values

| starting with or

| greater than "GI"

----- 1st alternate key

The dump appears as follows:

USING KSAM UTILITIES 2-33

KEY REC.PTR. KEY BLOCK ADR.

GIBBS 3 2 (4)

GILLESPIE 12 2

GLADSTONE 4 2

HERTZ 8 2

HIGGINS 0 - 8(3)

JONES 7 16(4)

LOOMIS 13 16

MORRIS 5 16

MYERS 6 16

NOLAN 1 - 8

SORTING DUMP BY RECORD POINTER

If you use the SORT option of KEYDUMP, you must also specify ENTITY =�lename , where
the speci�ed �le name is that of a disc �le. (Note that you must not name an existing �le; a
new �le is created for the dump.) In this case, you might also want to suppress the indention
of the key block address levels. To do this, enter the following command:

|------suppress key block address indentation

|

|

>KD TESTFILE;FILE =MYFILE;SUBSET=-1,500;SORT <--- sort by record pointer

|

|---- dump is sent to MYFILE, created with default values

The resulting dump is sent to a disc �le MYFILE, created with a default block size of 10
words, one record per key entry. The key entries are sorted by the pointers to the records
in the data �le. Indentation of the key block address is suppressed. The key values, record
pointers, and key block addresses are not converted to ASCII but are dumped to the speci�ed
�le in binary format. In case of a �le with 500 or fewer key values, the entire �le is dumped.

The SORT option is useful if you want to look at key values in terms of the data records to
which the key values point. For example, in order to determine whether any key values are
missing, you can dump all the keys in a �le using the SORT option, and compare the record
numbers in each dump to make sure each record has the same number of key values pointing
to it.

2-34 USING KSAM UTILITIES

KEYINFO

Displays information about the key �le, and attempts recovery of a KSAM �le in case of
system failure when the �le is open.

>

�
KEYINFO

K1

��
�lereference

��
;OFFLINE

��
;RECOVER

�

KEYINFO performs two operations: it collects and displays information about the key �le,
and it takes steps to recover the KSAM �le in case a system crash occurred when the �le
was open. The second operation is performed only after a system crash or if the RECOVER
parameter is speci�ed.

The key information displayed by KEYINFO consists of:

Number of levels in key block structure:

Number of key blocks

Number of sectors per key block

Number of keys in root block

Number of keys in all blocks of the key �le

Percent of each key block used

Largest key block address

The crash recovery performed by KEYINFO depends on the type of damage to the �le.

If MPE end-of-�le does not match end-of-�le for KSAM data �le, KEYINFO resets the
MPE end-of-�le to match the KSAM end-of-�le.

If key �le contains values that point to records past the KSAM end-of-�le, KEYINFO
deletes these key values.

If the key �le end-of-�le marker does not match the actual end of the key �le, KEYINFO
corrects the key �le end-of-�le marker.

If records in the data �le do not have associated key values in the key �le, KEYINFO issues
a warning that key values are missing.

PARAMETERS

�lereference Actual �le designator of the KSAM �le; either the data �le name or the key
�le name may be speci�ed. The �lereference can be a back reference to a �le
named in an MPE :FILE command.

(Optional parameter if no parameters are speci�ed.)

Default: If omitted, the last �le referenced is assumed.

OFFLINE Directs output to the line printer. An MPE :FILE command can be used
to indicate a di�erent output device or a particular line printer. (Optional
parameter.)

Default: If omitted, output is sent to user's terminal.

RECOVER Forces KEYINFO to perform recovery procedures even though no system
crash occurred.

USING KSAM UTILITIES 2-35

(Optional parameter.)

Default: If omitted, recovery performed only if system crashed with �le open.

REQUESTING KEY FILE INFORMATION

Information is displayed by KEYINFO for each key in the key �le, in key order starting with
the primary key. For example, request KEYINFO for the �le DATAFIL which has three keys:

>KI DATAFIL

--------- INFO FOR KEY 1 ---------

OF LEVELS OF B-TREE 1

OF KEY BLOCKS 1

OF SECTORS PER KEY BLOCK 8

OF KEYS IN ROOT KEY BLOCK 20

OF KEYS IN B-TREE 20

% OF KEY BLOCK UTILIZATION 38.4

THE LARGEST KEY BLOCK ADDRESS 2

--------- INFO FOR KEY 2 ---------

OF LEVELS OF B-TREE 1

OF KEY BLOCKS 1

OF SECTORS PER KEY BLOCK 8

OF KEYS IN ROOT KEY BLOCK 20

OF KEYS IN B-TREE 20

% OF KEY BLOCK UTILTZATION 9.9

THE LARGEST KEY BLOCK ADDRESS 10

--------- INFO FOR KEY 3 ---------

OF LEVELS OF B-TREE 1

OF KEY BLOCKS 1

OF SECTORS PER KEY BLOCK 8

OF KEYS IN ROOT KEY BLOCK 20

OF KEYS IN B-TREE 20

% OF KEY BLOCK UTILIZATION 13.8

THE LARGEST KEY BLOCK ADDPESS 18

>EXIT

OF LEVELS OF B-TREE - Key �les are organized in a structure known as a \B-Tree".
This structure may have one or more levels (for details refer to appendix B). The �le
DATAFIL has only one level.

OF KEY BLOCKS - Key values are stored in blocks; this entry gives the total number of
key blocks in the �le. DATAFIL has only one key block .

OF SECTORS PER KEY BLOCK - A key block may require one or more 128-word sectors.
DATAFIL uses eight sectors for its key block (the default value).

OF KEYS IN ROOT BLOCK - This speci�es the number of key values stored in the root
block (in this case the only block). If this number is equal to the key blocking factor (see
KEY BF header in VERIFY output), then the next key block split will increase the number
of levels in the B-Tree by one. DATAFIL has 20 key values in its root block, and the blocking
factor allows 52, 202, or 144 (see VERIFY printout below).

>VERIFY DATAFIL

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?2

2-36 USING KSAM UTILITIES

KEY ENTITY=KEYFIL KEY FILE DEVICE=2 SIZE= 50 KEYS= 3

FLAGWORD(000000)=RANDOM PRIMARY, FIRST RECORD=0, PERMANENT

KEY TY LENGTH LOC. D KEY BF LEVEL

|

|----------- blocking factor, keys/block

1 B 30 1 Y 52 1

2 B 2 31 Y 202 1

3 B 6 33 Y 144 1

OF KEYS IN B-TREE - This is the total number of key values in the key �le for each
key. This number should be the same for each key and should also be the same as the
number of active records in the data �le (to determine this, use the FCOPY command
>FROM=DATAFIL;TO=$NULL ;KEY=O. FCOPY is described later in this section).
DATAFIL has 20 key values in each B-Tree, and this is the same number as the number of
active data records (see FCOPY output below).

:RUN FCOPY.PUB.SYS

HP32212A.3.08 FILE COPTER (C) HEWLETT-PACKARD CO. 1978

>FROM=DATAFIL;TO=$NULL;KEY=0

EOF FOUND IN FROMFILE AFTER RECORD 19 <---- records numbered from 0

20 RECORDS PROCESSED *** 0 ERRORS

% OF KEY BLOCK UTILIZATION - Average percent of use of all key blocks (percent of use
means how much of the block contains key values). Note that the root block of a multi-level
tree is omitted from this average. For multi-level trees the percent is between 50% and 100%,
for single-level trees between 0% and 100%. The higher the percentage, the faster the retrieval
of data. But, also the higher the percentage, the greater the chance of block splits when
records are added. DATAFIL uses 38.4% for its primary hey, 9.9% and 13.8% each for its two
alternate keys.

THE LARGEST KEY BLOCK ADDRESS - This is the largest key block address found for
each key. The key �le end-of-�le should never be less than the largest block address for the �le
plus the number of sectors per key block. The largest block address for DATAFIL is 18 (the
largest block address for DATAFIL is 18 (the largest block address of key 3). Since the number
of sectors per block is 8, the key �le end-of-�le should be at least 26 (see VERIFY output
below).

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL? 4=ALL)?3

DATA FILE = DATAFIL VERSION= A.2.1

KEY CREATED=292/'78 10:19: 7.4 KEY ACCESS= 107/'79 12: O: 2.9

KEY CHANGED= 93/'79 14:18: 7.6 COUNT START=292/,78 10:19:53.6

DATA RECS = 20 DATA BLOCKS= 19 END BLK WDS= 19

DATA BLK SZ= 19 DATA REC SZ= 38 ACCESSORS= 0

FOPEN 2 FREAD 0 FCLOSE 2

FREADDIR 0 FREADC 0 FREADBYKEY 0

FREMOVE 0 FSPACF 57 F'FINDBYKEY 0

FGETINFO 2 FGETKEYINFO 1 FREADLABEL 0

FWRITELABEL 0 FCHECK 0 FFTNDN 3

FWRITE 20 FUPDATF 0 FPOINT 0

FLOCK 0 FUNLOCK 0 FCONTROL 0

FSETMODE 0

KEYBLK BEAD 7 KFYBLK WROTE 0 KEYBLK SPLTT 0

KEY FILE EOF 26 FREE KEY HD 0 SYSTEM FAILURE 0

|-----------------�le end-of-�le for DATAFIL

USING KSAM UTILITIES 2-37

MIN PRIME 11 MAX PRIME 5 RESET DATE 67/'79

DATA FIXED TRUE DATA B/F 1 TOTAL KEYS 3

FIRST PECNUM 0 MIN PECSIZE 38

RECOVERING AFTER SYSTEM FAILURE

KEYINFO only performs the recovery operations if there has been a system failure or if you
specify the RECOVER parameter.

If there has been a system failure while the KSAM �le is open for non-read access, a
ag
is set that prevents the �le from being opened. Whenever this occurs, KEYINFO must be
used in order to reset this
ag so that the �le can be opened. KEYINFO also recovers from
any damage done to the �le as a result of the system failure. It resets end-of-�le markers for
both the data and key �les, and deletes any key values that point to records beyond the data
�le end-of-�le. It also stores in the key �le the user, group, account, and home group of the
user who runs KEYINFO to recover the �le. (When there has been a system failure or when
KEYINFO is run with the RECOVER option, the KSAM �le is opened for exclusive access;
otherwise it is opened for shared access.)

When KEYINFO is run after a system failure, the SYSTEM FAILURE count displayed by
option 3 of VERIFY is incremented by 1. If there was no system failure but KEYINFO was
run with the RECOVER option, this count is not incremented.

When KEYINFO resets the \crash"
ag, the date of this reset is saved and can be recovered
through the VERIFY command, option 3 under the heading RESET DATE. Note that the
NOCHECK option of VERIFY allows that command to open a KSAM �le for read-only
access even if a system failure prevents the �le from being opened for all other access.

For example, assume a �le TEST that was open when a system failure occurred. In this case,
KEYINFO must be run. Also, assume the following:

The data �le end-of-�le (at the end of the data) is beyond the MPE end-of-�le (not yet
written to �le when system failed).

There are key values beyond the key �le end-of-�le (internal key �le EOF).

There are data values with no associated key values.

Running KEYINFO will correct the end-of-�le markers and, if any keys point to data records
beyond the data �le end-of-�le, it will delete these key values. KEYINFO cannot, however,
restore missing key values. To do this, you must reload the �le with FCOPY. To illustrate,
KEYINFO operates as shown below:

2-38 USING KSAM UTILITIES

>KI TEST

RECOVERY BEGINS

DATA FILE EOF DAMAGED reset end-of-�le

for data �le

DATA FILE MPE EOF HAS BEEN RESET TO KSAM EOF

-------- INFO FOR KEY 1 ---------

OF LEVELS OF B-TREE 2

OF KEY BLOCKS 16

OF SECTORS PER KEY BLOCK 8

OF KEYS IN ROOT KEY BLOCK 14

OF KEYS IN B-TREE 1000<------|

OF KEY BLOCK UTILIZATION 52.1 |

THE LARGEST KEY BLOCK ADDRESS 210 |

|

--------- INFO FOR KEY 2 --------- # of keys

should match

OF LEVELS OF B-TREE 2 |

OF KEY BLOCKS 11 |

OF SECTORS PER KEY BLOCK 8 |

OF KEYS IN ROOT KEY BLOCK 9 |

OF KEYS IN B-TREE 997<------|

OF KEY BLOCK UTILIZATION 68.6

THE LARGEST KEY BLOCK ADDRESS 202

WARNING: THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING

OR KEY VALUE(S) POINTING TO DATA RECORD BEYOND EOF

KEY FILE EOF(INTERNAL) DAMAGED

reset key �le end-of-�le

KEY FILE (INTERNAL)EOF HAS BFEN RESET

--------- KEY SEQUENCE 1---------

OF INVALID KEY VALUES DELETED 10 keys pointing to non-existent

data records are deleted

--------- KEY SEQUENCE 2 ---------

OF INVALID KEY VALUES DELETED 10

RECOVERY ENDS

WARNING: THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING

THE KSAM FILE HAS TO BE RELOADED

In this case, the �le must be reloaded in order to add the missing key values to the key �le.
For a full discussion of recovery procedures in case of system failure, including how to reload
your �le, refer to appendix E.

USING RECOVER OPTION

Even if a system failure does not occur, you can run KEYINFO with the RECOVER option in
order to check the �le structure.

The RECOVER option forces KEYINFO to correct any end-of-�le inconsistency, including
the key �le end-of-�le, and to delete any invalid key values. This option sets the RESET
DATE �eld of the VERIFY output to the current date, and saves your user name, account,

USING KSAM UTILITIES 2-39

group, and home group, but does not increment the SYSTEM FAILURE count displayed by
VERIFY.

Note that checking each record and key in a �le with a lot of data is very time consuming.
Therefore, you should not use RECOVER unless it is necessary to reconstitute your �le.

For example, use KEYINFO with RECOVER to validate �le TEST:

>KI TEST;RECOVER

RECOVERY BEGINS

--------- INFO FOR KEY 1 ----------

OF LEVELS OF B-TREE 1

OF KEY BLOCKS 1

OF SECTORS PER KEY BLOCK 8

OF KEYS IN ROOT KEY BLOCK 10

OF KEYS IN B-TREE 10

% OF KEY BLOCK UTILIZATION 4.9

THE LAPGEST KEY BLOCK ADDRESS 2

--------- KEY SEQUENCE 1 ----------

OF INVALID KEY VALUES DELETED 0

RECOVERY ENDS

If you now run VERIFY, using option 3, you will see that the date of recovery is displayed
following the heading RESET DATE.

>V

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?3

DATA FILE = TEST VERSION= A.2.4

KEY CREATED= 86/'79 13:55:23.6 KEY ACCESS= 114/'79 14: 1:14.9

KEY CHANGED=114/'79 13:55:48.8 COUNT START= 96/'79 13:55:49.2

DATA RECS = 10 DATA BLOCKS= 9 END BLK WDS= 8

DATA BLK SZ= 8 DATA REC SZ= 16 ACCESSORS= 0

FOPEN 2 FREAD 0 FCLOSE 2

FPEADDIR 0 FPEADC 0 FREADBYKEY 0

FPEMOVE 0 FSPACE 9 FFINDBYKEY 0

FGETINFO 2 FGETKEYINFO 1 FREADLABEL 0

FWRITELABEL 0 FCHECK 0 FFINDN 1

FWRITE 10 FUPDATE 0 FPOINT 0

FLOCK 0 FUNLOCK 0 FCONTROL 0

FSETM0DE 0

KEYBLK READ 3 KEYBLK WROTE 1 KEYBLK SPLIT 0

KEY FILE EOF 10 FREE KEY HD 0 SYSTEM FAILURE 0

MIN PRIME 0 MAX PRIME 9 RESET DATE 114/'79

DATA FIXED TRUE DATA B/F 1 TOTAL KEYS 1

FIRST RECNUM 0 MIN PECSIZE 2

2-40 USING KSAM UTILITIES

USING KSAMUTIL IN BATCH MODE

A batch job can be developed on the text editor (EDITOR) and then executed with the MPE
:STREAM command. In order to distinguish the MPE commands within a streamed batch
job from those external to the job, an exclamation point (!) is used as the command pre�x
rather than a colon (:). KSAMUTIL commands have no command pre�x when executed in a
batch job.

In the job illustrated in Figure 2-1, the �rst step after job initialization with the !JOB
command is to purge all KSAM and non-KSAM �les that will be created within the job. This
insures that there are no �les in the account with names duplicating �les that will be created
programmatically with the job.

Following initialization, the �rst program in the job is run. Since this program uses a KSAM
�le, MANPN, this �le is created with the KSAMUTIL BUILD command before the program
is executed. Note that the program is purged immediately before calling BUILD to create it.
This is done to make sure that no duplicate key or data �le exists in the account.

The newly created KSAM �le is used in program MAN1, which was previously compiled and
is input from the �le CARDIN; output from the program goes to the �le REPORT associated
with the line printer. An !EOD command follows the program. If data is entered here rather
than from the input �le, then the !EOD follows the data. Any other programs in the job
stream follow the !EOD each with its own terminating !EOD. The entire job is terminated by
an !EOJ command.

Figure 2-1 is an EDITOR listing of a job entered to a �le through the EDITOR program.
This job could also have been punched on cards or any other device that accepts jobs, but
in that case, the standard command pre�x, the colon (:), would be used. (Refer to the
EDIT/3000 Reference Manual for instructions on using the EDITOR.)

In order to run this job, you can enter the command:

:STREAM �lename

where �lename identi�es the EDITOR �le where the job was saved.

Batch jobs need not be streamed, but can be entered entirely as a card deck or through some
other input device. Streaming allows you to develop and execute the job interactively at your
terminal. For a full discussion of using the :STREAM command to introduce jobs in a session,
refer to the MPE Commands Reference Manual .

Batch jobs do not support the OFFLINE parameter for the KEYDUMP, KEYINFO,
KEYSEQ, and VERIFY commands.

USING KSAM UTILITIES 2-41

Figure 2-1. EDITOR Listing of Job to be Streamed

2-42 USING KSAM UTILITIES

FCOPY UTILITY

FCOPY/3000 is the standard HP 3000 utility program that allows you to copy data from one
�le to another, creating a new KSAM �le is desired, to copy selected data, to make multiple
copies of the same �le, or to display data in a variety of formats. With some exceptions, the
same FCOPY functions used to copy other HP 3000 �les can be used to copy KSAM �les.

Table 2-4 contains a summary of the FCOPY function parameters that apply to copying
KSAM �les. The function parameters: SKIPEOF,IGNERR, and SUBSET alone, are not
included in this list since they are not applicable to KSAM �les. Two functions are included
that apply only to copying from KSAM �les: these are KEY= and NOKSAM. Otherwise, this
table includes all the standard FCOPY functions. Note that this summary is meant only to
refresh your memory and that it assumes a knowledge of FCOPY. (For a complete description
of FCOPY and its operation, refer to the FCOPY/ 3000 reference manual .)

RUNNING FCOPY

The FCOPY utility program is executed by the MPE command:

:RUN FCOPY.PUB.SYS

Program FCOPY prompts for command input with a greater-than sign (>) in column 1 of the
next line. You may then enter an FCOPY command in response to the prompt. If you are
executing FCOPY in a batch job rather than in a session, you enter the command (omitting
the prompt) in column 1 of the line following the :RUN FCOPY.PUB.SYS command.

EXITING FROM FCOPY

In order to terminate FCOPY and retum to the MPE Operating System, enter the following
command:

>EXIT or >E

USING KSAM UTILITIES 2-43

FCOPY FROM COMMAND

Copies data from one �le to another.

> FROM= [from�le] ;TO= [to�le] [;functionlist]

The FROM command speci�es the �le from which data is copied and the �le to which
it is copied. It optionally includes one or more function speci�cations in the functionlist
parameter.

PARAMETERS

from�le Speci�es the �le to be copied. For a KSAM �le this should be the actual
�le designator. An asterisk (*), indicating the \from" �le designated in the
immediately preceding FCOPY command should not be used to copy KSAM
�les. If from�le is omitted, the standard input device $STDIN is assumed.

to�le Speci�es the �le to receive the data. For a KSAM �le this should be the
actual �le designator. If to�le is speci�ed as (d�le,k�le) where d�le is a data
�le name and k�le is a key �le name, a new KSAM �le is created with the
same characteristics as the from�le. The data and key values are copied from
the existing �le to the new �le excluding any data records tagged for deletion.

If to�le is omitted, the standard list device $STDLIST is assumed. Using this
device as a \to�le" is a good way to display the contents of a KSAM �le at
your terminal during a session and on the line printer in a batch job.

functionlist One or more keyword parameters separated by semicolons that specify
particular FCOPY functions. (Refer to Table 2-4 for a complete list.)

KSAM OPTIONS

Two keyboard options may be used with FCOPY to copy KSAM �les: the KEY= option
and the NOKSAM option. These two options are mutually exclusive; they cannot both be
speci�ed in the same FCOPY FROM command. When neither option is speci�ed, the KSAM
from�le is copied to another �le in primary key sequence. This is exactly like copying any HP
3000 �le to another with FCOPY.

Table 2-5 summarizes the results of using, or omitting, the KSAM options KEY= and
NOKSAM.

KEY= OPTION. KEY= speci�es a key whose value determines the sequence in which the
�le is copied. The object of KEY= is a positive integer that identi�es the key by its starting
character location in the data �le. The indicated key may be either the primary or an
alternate key. If the object of KEY= is zero, then the �le is copied in chronological sequence
rather than in key sequence.

If KEY= and NOKSAM are both omitted, the KSAM �le is copied in primary key sequence.
In this case and in the case where KEY= is speci�ed, only active records, not those tagged for
deletion are copied.

2-44 USING KSAM UTILITIES

Table 2-4. FCOPY Functions with KSAM Files

FUNCTION LIST ENTRY* ACTION PERFORMED

;KEY=nn Copy active records from KSAM �le in sequence
by key located at nn; if omitted, copy �le in
primary key sequence; if nn is zero, copy �le in
chronological order. The KSAM EOF is used.

;NOKSAM Copy all records, including deleted records, from
data �le of KSAM �le to any other �le. Copy is in
chronological sequence; records must be �xed
length. The data �le being copied is opened as an
MPE �le and the MPE end-of-�le is used. Unless
the TO �le is an MPE �le created with l user
label, specify NOUSER LABELS.

;NEW Copy active records and associated key values
from KSAM �le to new KSAM �le speci�ed as
TO= (d�le,k�le).

�
;EBCDICIN

;BCDICIN

� �
;EBCDICOUT

;BCDICOUT

� Translate copied data from EBCDIC to BCDIC
code to ASCII. Translate copied data from ASCII
code to EBCDIC or BCDIC.

;UPSHIFT ;SUBSET=

�
"string"

#pattern#

�
�
,
�
column

�
�
,EXCLUDE

�
�

;SUBSET=
�
�rst-record

�
��

,#records

:last record

��

Convert any copied lower-case characters to
uppercase.

Copy from data �le only records containing
speci�ed \string" or #pattern# starting search in
speci�ed column or column 1. If EXCLUDE
speci�ed, copy all data �le records except those
containing \string" or #pattern#

Copy from data �le as many records as are
speci�ed in #records starting with �rst-record ; or
copy from �rst-record through last-record
inclusive. If �rst- record omitted, start at �rst
sequential record in �le; if #records or last-record
omitted, copy through last sequential record in
�le.

;VERIFY =#errors]

;COMPARE [= #errors]

Verify accuracy of copy where both �les are on
disc; terminate if #errors exceeded;

Compare without copying the from�le to the
to�le, terminate if di�erences exceed #errors.
Comparison applies only to KSAM data �les.

USING KSAM UTILITIES 2-45

Table 2-4. FCOPY Functions with KSAM Files (continued)

FUNCTION LIST ENTRY* ACTION PERFORMED

;OCTAL
�
;CHAR

��
;NORECNUM

�
�
;TITLE="title"

�
;HEX

�
;CHAR

�
�
;NORECNUM

��
;TITLE="title"

�
;CHAR��

;OCTAL

;HEX

���
;NORECNUM

�
�
;TITLE="title"

�

Display contents of \from" �le as octal images on
a word-by-word basis.

Display contents of \from" �le as hexadecimal
images on a word-by-word basis.

Display contents of \from" �le as character images
on a word-by-word basis.

*IGNERR, SKIPEOF, and SUBSET without parameters do not apply to \from" �les.

Table 2-5. KSAM Options of FCOPY

OPTION RESULT

KEY=omitted Copy KSAM �le in primary key sequence.

KEY=n (n>0) Copy KSAM �le in sequence by the key (primary or alternate) located
starting at character n of each data record (counting from �rst character =

1).

KEY=0 Copy KSAM �le in chronological sequence (the sequence in which records
were actually stored in the �le); copy excludes records marked for deletion.

NOKSAM Copy the data �le of a KSAM �le to any �le in chronological sequence; copy
includes records marked for deletion.

NOKSAM OPTION. NOKSAM allows you to copy the data �le of a KSAM �le with
�xed-length records to any MPE �le, including KSAM �les. All indicated records of the data
�le are copied, including those tagged for deletion. When you copy a �le using the NOKSAM
option, you should also specify the NOUSERLABELS option. The only exception to this rule
is if the TO �le is an MPE �le that you have already created with one user label.

USING FCOPY

FCOPY is useful in order to compact a KSAM �le that has many records tagged for deletion.
When a �le has been used for a period of time, changes and deletions may result in a high
percentage of inactive records. In order to recover the space occupied by such records, you can
copy the �le to a new �le with FCOPY. Since FCOPY copies only active records, records that
are not tagged for deletion, the new KSAM �le has no unused space embedded among the
data records.

FCOPY can also be used to recover records tagged for deletion in a KSAM �le. The FCOPY
NOKSAM option copies all records including those tagged for deletion. The �rst two
characters of such records will contain the delete code rather than their original values, but
otherwise are recovered intact. This can be a useful feature in order to recover records deleted
by mistake.

Another use of FCOPY is to reload data from a damaged �le to a new �le. This may be
required as a result of a system failure. If you decide to reload a KSAM �le following a system

2-46 USING KSAM UTILITIES

failure, you should �rst run the KEYINFO command of KSAMUTIL to reset the end-of-�le
markers and delete any invalid key values. If the �le is still damaged and you choose to reload
it, you should use FCOPY to transfer existing records to a new undamaged KSAM �le. In
this case, you use the KEY=0 option rather than the NOKSAM option, unless you want to
keep all the deleted records or the key �le was lost.

FCOPY WITH NO OPTIONS. Assume a �le named KSAMFILE created with one primary
key, an integer located at character 21. Since many records were tagged for deletion in the �le,
it is time to copy the active records to a new �le, You may either create a new KSAM �le
with the BUILD command as shown in example 1, or use FCOPY to create the new KSAM
�le as shown in example 2. In either case, you should purge the original �le (KSAMFILE in
the examples) and then rename the new �le (KSAMFIL2) with the data and key �le names of
the original �le so that any programmatic references to the �le need not be changed.

You may also use FCOPY to create an empty KSAM �le with all the characteristics of an
existing �le, but with no data. The method for doing this is shown in example 3.

1. Create new �le with BUILD:

:RUN KSAMUTIL.PUB.SYS

>BUILD KSAMFIL2;KEYENTITY =KFIL2;KEY=I,21,2 <-------- create "to"�le

>EXIT

:RUN FCOPY.PUB.SYS

>FROM=KSAMFILE;TO=KSAMFIL2 <----------- copy in primary key sequence

>EXIT

:RUN KSAMUTIL.PUB.SYS

>PURGE KSAMFILE <----------------- purge "from" �le after copy

KSAMFILE.KSAM.DATAMGT & KFILE PURGED

>RENAME KSAMFIL2,KSAMFILE|

| <--------- rename copied �le with old �le names

>RENAME KFIL2,KFILE |

>EXIT

:

2. Use FCOPY to create new �le:

:RUN FCOPY.PUB.SYS

>FROM=KSAMFILE;TO=(KSAMFIL2,KFIILE2)

>EXIT

:RUN KSAMUTIL.PUB.SYS

>PURGE KSAMFILE

KSAMFILE.KSAM,DATAMGT & KFILE PURGED

>RENAME KSAMFIL2,KSAMFILE

>RENAME KFILE2,KFILE

>EXIT

:

You may specify the ;NEW function in the FCOPY FROM command for purposes of
documentation. Its inclusion or omission does not a�ect the command in any way.

This method not only creates the new KSAM �le, but also copies all the data from the
existing �le to the new �le (except records marked for deletion). Example 3 below, shows
how you can create a KSAM �le with exactly the same speci�cations as an existing �le but
with no data.

3. Use FCOPY to build a new �le with no data:

:RUN FCOPY.PUB.SYS

>FROM=KSAMFILE; TO=(KSAMFIL3,KFILE3); SUBSET=1,0 <---- copy 0 records

0 RECORDS PROCESSED *** 0 ERRORS

USING KSAM UTILITIES 2-47

The new �le, KSAMFIL3, is created with exactly the same speci�cations as the existing
�le KSAMFILE, but with no data. This is easier than building the �le with the BUILD
command, but should be used only if the new �le is to have keys in the same position and
the same length as the existing �le.

Following any of these operations, only active records are contained in the new KSAM
�les. These records are stored in primary key sequence in the data �le; that is, the new
chronological and the primary key sequences axe the same. If you prefer to maintain the
original chronological sequence, then you can use the KEY=0 option.

4. Use FCOPY to add data to an existing �le:

Before running FCOPY to add new records to a �le that contains data, make sure that �le
(the TO �le) is opened for either APPEND or INOUT access. Otherwise, FCOPY will
open the TO �le for write-only access causing the end-of-�le to be reset to zero and any
existing data to be lost. For example:

:FILE A = KSAMFILE,OLD;ACC = APPEND

or

ACC = INOUT

:RUN FCOPY.PUB.SYS

>FROM = NEWDATA ;TO = *A

The data in the �le NEWDATA is appended to the data in the existing �le, KSAMFILE,
in primary key sequence (the default).

2-48 USING KSAM UTILITIES

FCOPY WITH KEY = OPTIONS.

1. Assume that a company's employee records have been maintained in sequence by
social-security-number in a KSAM �le, EMPLOY, but a new policy requires that they be
maintained in sequence by employee number. FCOPY can be used to transfer the data
to a new �le, EMPLOY2, in which all employees are re-ordered by their unique employee
numbers.

Assume EMPLOY was created with the following command:

:RUN KSAMUTIL.PUB.SYS

>BUILD EMPLOY;REC=3000;KEYENTITY =EMPKEY;&

> KEY=B,3,11;& <--------------- primary key (social-security-number)

> KEY=B,14,5;& <------------ alternate key (employee number)

> KEY=B,19,30,,DUP <------ alternate key (name)

>EXIT

Before copying and resequencing �le EMPLOY, a new KSAM �le is built:

:RUN KSAMUTIL.PUB.SYS

>BUILD EMPLOY2;REC=3000;KEYENTITY =EMPKEY2;&

> KEY=B,14,5;& <------------ primary key (employee number)

> KEY=B,19,30,,DUP <----- alternate key (name)

>EXIT

There is no need for the new key �le to retain the same structure as the key �le of the
copied �le. The primary key in EMPLOY has been dropped from EMPLOY2; although the
socialsecurity-number remains in the data �le, it is no longer a key. An alternate key in
EMPLOY, the employee's identi�cation number, is the primary key in EMPLOY2.

Once the new KSAM �le has been created, you can copy the old �le EMPLOY to the new
�le EMPLOY2 in the new sequence:

:RUN FCOPY.PUB.SYS

>FROM=EMPLOY;TO=EMPLOY2;KEY=14

>EXIT |

|-----------------------|

|column number of key used to sequence EMPLOY2

To avoid changing programs that reference the �le EMPLOY, you can rename EMPLOY2
with the name EMPLOY, �rst purging the old �le EMPLOY:

:RUN KSAMUTIL.PUB.SYS

>PURGE EMPLOY

KSAMFILE EMPLOY.KSAM.DATAMGT & EMPKEY PURGED

>RENAME EMPLOY2,EMPLOY <-------------- rename data �le

>RENAME EMPKEY2,EMPKEY <-------------- rename key �le

>EXIT

2. Another use of FCOPY is to copy a selected portion of one KSAM �le to another. For
example, using the same �le EMPLOY used in previous examples, you can copy all the
employee records whose last names begin with the letter A into a new �le sequenced by
employee name:

:RUN KSAMUTIL.PUB.SYS

>BUILD EMPLOYA;KEYENTITY =AKEY;KEY=B,19,30,,DUP

>EXIT

:RUN FCOPY.PUB.SYS

>FROM=EMPLOY;TO=EMPLOYA;KEY=19;SUBSET="A",19

>EXIT

USING KSAM UTILITIES 2-49

The new �le EMPLOY is sequenced by the key starting in column 19 (employee name) and
only contains records for employees whose last names start with A.

3. If you want to copy the KSAM �le in chronological sequence, you can use the KEY=0
option. Since this option copies only active records, it can be used to compact a �le in
which many records are tagged for deletion while retaining the chronological order in which
the �le was created. It is also the preferred option for reloading a KSAM �le after a system
failure.

Assume the new �le EMPLOYX has the identical structure to the �le EMPLOY used in
the previous examples:

:RUN FCOPY.PUB.SYS

>FROM=EMPLOY;TO=EMPLOYX;KEY=0

>EXIT

The new �le is identical in its chronological sequence to the old �le, but contains only
active records.

4. To �nd out how many records are currently active in a KSAM �le, you can use FCOPY as
follows:

:RUN FCOPY.PUB.SYS

> FROM=KSAMFILE ;TO=$NULL

N RECORDS PROCESSED *** 0 ERRORS (where N is the number of active records

in the KSAM file)

>EXIT

Only the active records (those not marked for deletion) will be listed as present in the �le.
(You can also calculate the number of active records by looking at the VERIFY listing,
option 3, and subtracting the number of FREMOVEs from the FWRITES.)

FCOPY WITH NOKSAM OPTION.

1. Using NOKSAM, you can copy the data �le of a KSAM �le to another �le. The records are
copied in chronological sequence. Since NOKSAM copies records marked for deletion as
well as active records, it provides a method for recovering the data in any records marked
for deletion. For example, if certain records in �le EMPLOY were incorrectly marked for
deletion, the NOKSAM option could be used to copy the entire data �le to a new �le
including the inactive records.

Using the SUBSET parameter of FCOPY, you can copy only those records marked for
deletion. In the following example, all deleted records are listed on the line printer:

pattern of all 1's in 1st 2 characters

|

|

:FILE X; DEV=LP |

:RUN FCODY.PUB.SYS ESC/---------/>FROM=EMPLOY;TO=*X;SUBSET=#%377,%377#,1;NOKSAM;OCTAL;CHAR;NORECNUM;&

>TITLE="RECOPDS DELETED FROM THE FILE, EMPLOY"

When records are deleted from a KSAM data �le, a pattern of all 1's is written to the �rst
two characters of the deleted record. (ln each character this pattern can be represented as
the octal value %377.) If you want to be able to recover key data from deleted records in
this manner, you should avoid placing key data in the �rst two characters of a data record.

Note that you should not use the NOKSAM option to copy a KSAM �le with variable-length
records to another KSAM �le. Also, if NOKSAM must be used to reload a �le after a system
crash (for instance, because the key �le was lost), you should use the SUBSET option to copy

2-50 USING KSAM UTILITIES

only valid records. Normally, you use the KEY=0 option to reload KSAM �les after a system
failure.

(Refer to appendix E, Recovery From System Failure, for a full discussion of using FCOPY to
reload a KSAM �le following a system failure.)

COPYING VARIABLE-LENGTH KSAM FILES

You can copy a variable-length KSAM data �le by �rst copying it to an MPE �le and then
copying the MPE �le to a new KSAM �le.

First use the MPE :LISTF,2 command to list the attributes of the KSAM data �le. Then
use the MPE :BUILD command to build an MPE �le with a record length two words less
than that of the KSAM data �le, a blocking factor the same as the data �le (always 1),
variable-length records, and the same record limit as the KSAM data �le.

Copy the KSAM data �le to the MPE variable-length �le on a block-by-block basis, as follows:

:FILE DATAFILE; NOBUF

:FILE MPEFILE; NOBUF

:FCOPY FROM= *DATAFILE; TO= *MPEFILE; NOKSAM;NOUSERLABELS

Copy the variable-length records from the MPE �le to a newly created KSAM �le omitting
the deleted records.

FCOPY FROM= MPEFILE;TO= KSAMFILE;SUBSET= #%377, %377#,,EXCLUDE

DISPLAY COPIED FIIES ON $STDLIST. When you omit the \to" �le from the TO=
speci�cation, the standard output device is assumed. This allows you to list the contents of
the KSAM �le at your terminal in a session or on the line printer in a job.

Assume the �le JNAMES with a primary key (last name) starting in character 11 and three
alternate keys: a phone number starting in character 21, a city name starting in character 53,
and a zip code starting in character 67.

1. If KEY= is omitted, the �le is listed in primary key, order:

>FROM=JNAMES:TO=;KEY=)

JEANNE /ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 95054

POLLY |CHROMATIC 267-1412 1148 COLORFUL CT SAN JOSE 95130

ANNA |FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131

ANNE |HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112

HY |KUVERSE 267-8961 650 LOTUS BLOSSOM WY SAN JOSE 95136

ANNA |--|LOGUE 224-8934 1707 INVERSE WY MOUNTAINVIEW 95051

ARTHUR| |MOMITER 443-5346 1554 MERCURY ST. MILPITAS 94173

CLARA | |NETTE 243-4493 2667 GOODMAN DR ALVISO 95143

RHEA | |PREYSELLE 365-8551 10879 REVIEW ROAD SAN JOSE 95070

KURT | |REMARQUE 243-1043 34 BRIEF ST MILPITAS 94062

MIKE | |ROMETER 269-1712 1681 MACHINIST SUNNYVALE 95112

TRUDY | \TEKTIFF 255-1005 17155 POIROT PL CAMPBELL 95121

EOF FOUND IN FROMFILE AFTER RECORD 11

|

|

12 RECORDS PROCESSED *** 0 ERRORS

|

|

|

ascending order by primary key

Use SUBSET to list selected portions of the �le, for example, to list the �rst two records in
primary key sequence:

USING KSAM UTILITIES 2-51

>FROM=JNAMES;TO=;KEY=11;SUBSET=0,2

JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 95054

POLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95030

2 RECORDS PROCESSED *** 0 ERRORS

2. If KEY=\primary key location", the �le is listed in primary hey order:

>FROM=JNAMES:TO=;KEY=)

JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 95054

POLLY CHROMATIC 267-1412 1148 COLORFUL CT SAN JOSE 95130

ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131

ANNE HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112

HY KUVERSE 267-8961 650 LOTUS BLOSSOM WY SAN JOSE 95136

ANNA LOGUE 224-8934 1707 INVERSE WY MOUNTAINVIEW 95051

ARTHUR MOMITER 443-5346 1554 MERCURY ST. MILPITAS 94173

CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO 95143

RHEA PREYSELLE 365-8551 10879 REVIEW ROAD SAN JOSE 95070

KURT REMARQUE 243-1043 34 BRIEF ST MILPITAS 94062

MIKE ROMETER 269-1712 1681 MACHINIST SUNNYVALE 95112

TRUDY |>TEKTIFF 255-1005 17155 POIROT PL CAMPBELL 95121

EOF FOUND IN FROMFILE AFTER RECORD 11

|

|

12 RECORDS PROCESSED *** 0 ERRORS

|

|

|

|byte location 11 (same sequence as previous example)

3. If KEY=\alternate key location", the �le is listed in sequence by that key:

>FROM=JNAMES; TO=; KEY=67 /

KURT REMARQUE 243-1043 34 BRIEF ST MILPITAS /94062

ARTHUR MOMITER 443-5346 1554 MERCURY ST MILPITAS |94173

DOLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE |95030

ANNA LOGUE 224-9934 1707 INVERSE WY MOUNTAIN VIEW |95051

JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE |95054

RHEA PREYSELLE 365-9551 10879 REVIEW ROAD SAN JOSE |95070

ANNE HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL |95112

MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE |95112

TRUDY TEKTIFF 255-1005 17155 POIROT PL CAMPBELL |---|95121

ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE | |95131

HY KUVERSE 267-8961 650 LOTUS BLOSSOM WY SAN JOSE | |95136

CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO | \95143

EOF FOUND IN FROMFILE AFTER RECORD | |

| |

12 RECORDS PROCESSED *** 0 ERRORS | |

| |

output in ascending order--------| |

by key in byte location 67--------------|

Use SUBSET= to list all the records with the characters \SUNNYVALE" starting in
column 53; sequence is by alternate key in location 67:

>FROM=JNAMES;TO=;KEY=67;SUBSET="SUNNYVALE",53

JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 95054

MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112

EOF FOUND IN FROMFILE AFTER RECORD 11

2 RECORDS PROCESSED *** 0 ERRORS

2-52 USING KSAM UTILITIES

Another example using SUBSET= lists �ve records starting with the fourth record;
sequence is by alternate key in location 67:

records numbered from O

|

|

|

>FROM=JNAMES;TO=;KEY=67;SUBSET=3,5

ANNA LOGUE 224-9934 1707 INVERSE WY MOUNTAIN VIEW 95051

JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 95054

RHEA PREYSELLE 365-8551 10789 REVIEW ROAD SAN JOSE 95070

ANNE HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112

MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112

5 RECORDS PROCESSED *** 0 ERRORS

4. If KEY=O, the �le is copied in chronological order:

>FROM=JNAMES; TO=; KEY=0

ARTHUR MOMITER 443-5346 1554 MERCURY ST MILPITAS 94173

TRUDY TEKTIFF 255-1005 17155 POIROT PL CAMPBELL 95121

ANNA LOGUE 224-8934 1707 INVERSE WY MOUNTAIN VIEW 95051

CLARA NETTE 243-4493 2667 GOODMAN DR ALVISO 95143

ANNE HOWE 372-4328 6547 EXUBERANCE WY CAMPBELL 95112

JEANNE ALOGICAL 226-0295 4942 COUSIN CT SUNNYVALE 95054

HY KUVERSE 267-8961 650 LOTUS BLOSSOM WY SAN JOSE 95136

MIKE ROMETER 269-1712 1681 MACHINIST DR SUNNYVALE 95112

ANNA FORA 253-5246 9283 TROCHAIC TRAIL SAN JOSE 95131

POLLY CHROMATIC 267-1413 1148 COLORFUL CT SAN JOSE 95130

RHEA PREYSELLE 365-9551 10879 REVIEW ROAD SAN JOSE 95070

KURT REMARQUE 243-1043 34 BRIEF ST MILPITAS 94262

EOF FOUND IN FROMFILE AFTER RECORD 11

12 RECORDS PROCESSED *** 0 ERROR

USING KSAM UTILITIES 2-53

:STORE AND :RESTORE COMMANDS

The :STORE and :RESTORE commands are used primarily to provide back-up for user
disc �les. The �le or set of �les is copied to magnetic tape or serial disc by the :STORE
command in a special format that permits the serial device to be read back onto disc with the
:RESTORE command. The use of these two commands for KSAM �les is identical to their
use with any HP 3000 �les. (Refer to the MPE Commands Reference Manual for a complete
description of the :STORE and :RESTORE commands.)

STORE

Stores KSAM �le on magnetic tape or serial disc.

:STORE �lereference1,�lereference2 [,...] ; store�le

[;SHOW] [;FILES=max�les]

This command is used to store one or more disc �les onto magnetic tape or serial disc. When
used to store KSAM �les, both the data �le and the key �le must be speci�ed.

PARAMETERS

�lereference1 Actual �le designator of data �le; speci�ed in the following format:

�lename [/lockword] [.groupname [.accountname]]

where each subparameter is a name consisting of from 1 to 8 alphanumeric
characters beginning with a letter.

(Required parameter for KSAM �les.)

�lereference2 Actual �le designator of key �le; speci�ed in exactly the same format as
�lereference1 .

(Required parameter for KSAM �les.)

store�le Name of destination device �le onto which the stored �les are written. This
can be any magnetic tape or serial disc �le from the output set. This �le
must be referenced in the back-reference (*) format; this format references a
previous :FILE command that identi�es the �le as a magnetic tape or serial
disc �le.

(Required parameter.)

SHOW Request to list names of �le stored. If SHOW is omitted, total number of �les
stored, names of �les not stored, and number of �les not stored are listed.

(Optional parameter.)

FILES=
max�les

Maximum number of �les that may be stored. If omitted, 4000 is speci�ed by
default.

(Optional parameter.)

2-54 USING KSAM UTILITIES

USING THE :STORE COMMAND

Before issuing a :STORE command, you must identify the store�le as a magnetic tape or as a
serial disc with the :FILE command using the following format:

:FILE formaldesignator [=�lereference] ;DEV=device

The device parameter must indicate the device class name or logical unit number of a
magnetic tape or serial disc unit, All other parameters for store�le are supplied by the
:STORE command executor; if you attempt to supply any of these yourself, MPE rejects the
:STORE command.

If you press the BREAK key during the store operation, the operation stops after storing the
current �le and further output is suppressed.

For example, to copy KSAM �le KSAMDATA to a magnetic tape �le named SAVE FILE

:FILE T=SAVEFILE;DEV=TAPE

:STORE KSAMDATA,KSAMKEY;*T

^ ^

| |

| |

data �le key �le

Note that both the data and key �le must be speci�ed in order to store the entire KSAM �le.

If you want to copy this same �le to a serial disc, use the following command sequence:

:FILE SD=SAVEFILE;DEV=SDISC

:STORE KSAMDATA, KSAMKEY;*SD

USING KSAM UTILITIES 2-55

RESTORE

Restores KSAM �le from magnetic tape or serial disc.

:RESTORE restore�le ;�lereference1,�lereference2[, . . .] [;KEEP]

[;DEV=device] [;SHOW] [;FILES=maxfiles]

Restores to disc, one or more �les stored o�-line to magnetic tape or serial disc by the
:STORE command. To restore a KSAM �le, both the data �le and the key �le names must be
speci�ed.

PARAMETERS

restore�le Name of magnetic tape or serial disc �le on which �les to be retrieved now
reside. This �le must be referenced in the backence (*) format; this format
references a previous :FILE command that de�nes the �le as a magnetic tape
or serial disc �le. A message is output to the Console Operator requesting
him to mount the magnetic tape or serial disc platter identi�ed by the
�lereference parameter in the :FILE command, and allocate the tape unit or
disc platter to you.

(Required parameter.)

�lereference1 Acual �le designator identifying the KSAM data �le, speci�ed in the format:

�lename [/lockword] [.groupname [.accountname]]

where each subparameter is a name consisting of from 1 to 8 alphanumeric
characters beginning with a letter.

(Required for KSAM �les.)

�lereference2 Actual �le designator identifying the KSAM key �le, speci�ed in the same
format as �lereference1 .

(Required for KSAM �les.)

KEEP Speci�cation that if a �le referenced in the :RESTORE command currently
exists on disc, the �le on disc is kept and the corresponding �le on tape
or serial disc is not copied into the system. If KEEP is omitted, and an
identically-named �le exists in the system, that �le is replaced with the one on
the tape or serial disc. If KEEP is omitted, and a �le on tape or serial disc is
eligible for restoring and a �le of the same name exists on disc, and this disc
�le is busy, the disc �le is kept and the tape or serial disc �le is not restored.

(Optional parameter.)

DEV=device Device class name or logical number of device on which �les are to be
restored. (This name is also written on the label of each �le restored.) If you
omit this parameter, MPE attempts to replace the �les on a device of the
same class (or logical device number) as that of the device on which the �le
was created, If this attempt fails, perhaps because the device class speci�ed
does not exist or the tape or serial disc was created on a previous version of
this computer, MPE attempts to replace each �le on a disc of the same type
(�xed or moving -head) and subtype as that on which it was created. If this
fails, MPE attempts to restore the �le to a device of class name DISC. If this
fails, the �le is not restored. If the KSAM �le was created with the data �le

2-56 USING KSAM UTILITIES

and the key �le on di�erent devices, then RESTORE twice using di�erent
DEV=device in each RESTORE.

(Optional parameter.)

SHOW Request to list names of restored �les. If you omit SHOW, only total number
of �les restored, list of �les not restored (and the reason each was not
restored), and count of �les not restored, are listed.

(Optional parameter.)

FILES=
max�les

Maximum number of �les that may be restored. If omitted, 4000 is assigned
by default.

(Optional parameter.)

USING THE :RESTORE COMMAND

Before issuing a :RESTORE command you must identify tape�le as a magnetic tape or serial
disc �le with the :FILE command:

:FILE formaldesignator [=�lereference] ;DEV=device

The device parameter must indicate the device class name or logical unit number of a
magnetic tape or a serial disc unit. No other parameters than these may be supplied. If you
attempt to supply more, the :RESTORE command is rejected.

To retrieve from the magnetic tape �le SAVEFILE, the KSAM �le KSAMDATA that includes
data �le (KSAMDATA) and key �le (KSAMKEY):

:FILE T=SAVEFILE;DEV=TAPE

:RESTORE *T;KSAMDATA,KSAMKEY;KEEP;DEV=DISC;SHOW

To retrieve this same �le from the serial disc STORDISC, enter the commands:

:FILE SD=STORDISC; DEV=SDISC

:RESTORE*SD;KSAMDATA,KSAMKEY;KEEP;DEV=DISC;SHOW

Note that both the data �le and the key �le must be speci�ed in order to restore the entire
KSAMI �le.

If the KSAM �le currently saved on magnetic tape or serial disc was originally created with
the data �le resident on one device and the key �le resident on a di�erent device, then this
capability can be retained only if you RESTORE twice using di�erent DEV= speci�cations in
each command.

For example:

:FILE T:DEV=TAPE

:RESTORE *T;KSAMDATA;DEV=DISCONE

:RESTORE *T;KSAMKEY;DEV=DISCTWO

Upon successful completion, KSAMDATA will be restored from tape �le T to a device class
identi�ed as DISCONE, and KSAMKEY will be restored from tape �le T to a device class
identi�ed as DISCTWO. You would do this only in the case where the �le was originaly
created using the BUILD command speci�cation DEV=DISCONE for the data �le, and
KEYDEV=DISCTWO for the key �le.

USING KSAM UTILITIES 2-57

3

USING KSAM FILES IN COBOL PROGRAMS

OVERVIEW

KSAM �les are accessed from COBOL programs through calls to a set of procedures.
These procedures allow you to open, open for shared access, write records to, read records
from, lock, unlock, update, position, and close a KSAM �le. (Refer to Table 3-1 for a list
of the procedures and their associated functions.) The COBOL procedures provided with
KSAM/3000 correspond to the INDEXED I-O module statements in COBOL 74.

Note: The following applies when using KSAM with COBOL.

The KSAM �le must be created with KSAMUTIL's >BUILD command.

To access a KSAM �le in chronological order, the KSAM �le must be copied to a
non-KSAM �le.

KSAM permits duplicate primary keys as an extension to the ANSII standards.

In HP COBOL/3000, the procedures that are used to access KSAM �les di�er in form
from the COBOL input/output statements used to access non-KSAM �les. The KSAM
interface procedures use parameters for information that would otherwise be speci�ed in the
FILE-CONTROL paragraph and the FD entry of the DATA DIVISION. These parameters are
themselves de�ned in the WORKING-STORAGE section of the DATA DIVISION. The main
restriction on the KSAM interface call parameters is that they must start on word boundaries.

USING KSAM FILES IN COBOL PROGRAMS 3-1

Table 3-1. KSAM Procedures for COBOL Interface

PROCEDURE
NAME

PARAMETERS FUNCTION PAGE

CKCLOSE �letable
status

Terminates processing of KSAM �le identi�ed by
�letable.

3-12

CKDELETE �letable
status

Logically removes record from KSAM �le; deleted
record is identi�ed by previous read.

3-13

CKERROR status,
result

Converts numeric value returned in status to
character string result .

3-17

CKLOCK �letable
status

lockcond

Dynamically locks �le opened for shared access,
conditionally depending on lockcond.

3-18

CKOPEN �letable
status

Initiates processing of �le named in �letable;
returns �le number to �rst word of �letable.

3-20

CKOPENSHR �letable
status

Initiates processing with dynamic locking and
shared access of �le named in �letable.

3-25

CKREAD �letable
status
record

recordsize

Reads next sequential record from KSAM �le
identi�ed by �letable into record .

3-26

CKREADBYKEY �letable
status
record
key

keyloc
recordsize

Reads into record �rst record with a key in
location keyloc whose value matches that of key ,
from KSAM �le identi�ed by �letable.

3-29

CKREWRITE �letable
status
record

recordsize

Replaces last sequential record read by CKREAD,
or replaces record whose primary key matches the
value of key item in record , with the contents of
record .

3-32

CKSTART �letable
status
relop
key

keyloc
keylength

Positions record pointer in preparation for a
sequential read to the �rst record with a key in
location keyloc whose value has the relation relop
to the value of key .

3-36

CKUNLOCK �letable
status

Unlocks �le dynamically locked by CKLOCK. 3-40

CKWRITE �letable
status
record

recordsize

Writes record of length recordsize from record to a
KSAM �le identi�ed by �letable.

3-42

3-2 USING KSAM FILES IN COBOL PROGRAMS

CALLING A KSAM PROCEDURE

The KSAM interface procedures (refer to Table 3-1 for a complete list) are called using a
CALL statement of of the following general form:

CALL "name" USING �letable,status [,parameter[,. . .]]

Where:

\name" identi�es the procedure to which control is transferred.

�letable an 8-word table that identi�es the �le by name and in which access mode and
input-output type are speci�ed, and to which is returned the �le number on
open, and a code identifying the previous operation.

status one word to which a two-character code is returned that indicates the status
of the input/output operation performed on the �le by the called procedure.

parameter one or more parameters, depending on the particular procedure called, that
further de�ne operations to be performed on the �le.

The �rst two parameters, �letable and status , are included in every KSAM procedure call
except CKERROR; other parameters may be speci�ed depending on the particular procedure.
If a parameter is included in the procedure format, then it must be included in the procedure
call. All parameters are required.

Another characteristic of KSAM procedure call parameters is that they must always start
on a word boundary. In order to assure this, the parameters should be de�ned in the
WORKING-STORAGE SECTION as 01 record items, 77 level elementary items, or else the
SYNCHRONIZED clause should be included in their de�nition.

A literal value cannot be used as a parameter to these procedures. Any value assigned to a
data item used as a parameter is passed to the procedure, but a literal value causes an error.

Depending on the procedure, certain data items may be assigned values as a result of
executing the procedure.

Note There are no COBOL procedures to read a KSAM �le in chronological order
or to access a record by its chronological record number. (Chronological order
is the order in which the data records were written to the �le.)

USING KSAM FILES IN COBOL PROGRAMS 3-3

FILETABLE PARAMETER

The �rst parameter in every KSAM procedure call must be �letable , a table describing the �le
and its access. This table is de�ned in the WORKING-STORAGE SECTION of the COBOL
program. It requires eight words as illustrated in Figure 3-1.

Figure 3-1. Filetable Structure

�lenumber A number identifying the �le returned by the CKOPEN procedure after
the �le named in words 2-5 has been successfully opened. After the �le is
closed by CKCLOSE, �lenumber is reset to 0. (This number should be
set to zero when the �le table is initially de�ned.) It must be de�ned as a
COMPUTATIONAL item.

�lename The name of the KSAM �le. This name is the actual designator assigned to
the �le when it is created with the KSAMUTIL BUILD command; �lename
may be a formal designator if it is equated to the actual designator in a :FILE
command.

input-output
type

A code that limits the �le access to input only, output only, or allows both
input and output:

0 = input only
1 = output only
2 = input-output

It must be de�ned as a COMPUTATIONAL item.

access mode A code that indicates how the �le will be processed: sequentially only,
randomly only, or either (dynamically):

0 = sequential only
1 = random only
2 = dynamic (sequential or random)

It must be de�ned as a COMPUTATIONAL item.

3-4 USING KSAM FILES IN COBOL PROGRAMS

FILETABLE

previous
operation

A code in the right byte of word 8 of the �le table indicating the previous
successful operation:

0 = previous operation unsuccessful or there has been no previous operation
on this �le
1 = CKOPEN successful
2 = CKSTART successful
3 = CKREAD successful
4 = CKREADBYKEY successful
5 = CKDELETE successful
6 = CKWRITE successful
7 = CKREWRITE successful
8 = CKCLOSE successful
9 = CKOPENSHR

This �eld should be set to zero when the �le table is initially de�ned and
thereafter should not be altered by the programmer. It must be de�ned as a
COMPUTATIONAL item.

lock/unlock A code in the left byte of word 8 of the �le table that indicates whether
a CKLOCK or CKUNLOCK has been performed successfully since the
operation speci�ed in previous operation:

10 = CKLOCK successful
11 = CKUNLOCK successful

EXAMPLE

A sample �le table de�nition might be:

WORKING-STORAGE SECTION.

01 KSAM FILE.

02 FILENUMBER PIC S9(4) COMP VALUE 0.

02 FILENAME PIC X(8) VALUE "KSAMFILE".

02 I-O-TYPE PIC S9(4) COMP VALUE 0.

02 A-MODE PIC S9(4) COMP VALUE 0.

02 PREV-0P PIC S9(4) COMP VALUE 0.

The �le table identi�es a �le created with the name KSAMFILE as a �le to be opened for
sequential input only. The values of I-O-TYPE and A-MODE can be changed following a call
to CKCLOSE for the �le.

USING KSAM FILES IN COBOL PROGRAMS 3-5

STATUS PARAMETER

The status parameter is a two-character item to which the status of the input-output
operation is returned. It is always the second parameter in a KSAM procedure call. The
status parameter must be de�ned in the WORKING-STORAGE SECTION of the COBOL
program.

Status consists of two separate characters: the left character is known as status-key-1, and the
right is known as status-key-2.

/---left character----\/---right character----\

|----------------------|------------------------|

| | |

| "status-key-1" | "status-key-2" |<-----status word

|----------------------|------------------------|

The possible combinations of the left and right characters of parameter status are shown in
Table 3-2 The values of status-key-2 (the right character) shown in the table are the only valid
values for status-key-2.

Table 3-2. Valid status Parameter Character Combinations

If left character of status
(status-key-1) equals:

Then right character of status
(status-key-2) may equal:

\0" (successful completion) \0" (no further information)

\2" (duplicate key)

\1" (at end) \0" (no further information)

\2" (invalid key) \1" (sequence error)

\2" (duplicate key)

\3" (no record found)

\4" (boundary violation)

\3" (request denied) \0" (lock denied)

\1" (unlock denied)

\9" (�le system error) \n" where n is the MPE �le system error code.

Combining status-key-1 with status-key-2, the following values may be returned to the status
parameter as a whole:

If status =
\00"

Successful completion|

The current input/output operation was completed successfully; no duplicate
keys were read or written.

= \02" Successful completion; Duplicate key|

For a CKREAD or a CKREADBYKEY call, the current alternate key has the
same value as the equivalent key in the sequentially following record; duplicate
keys are allowed for the key. For a CKWRITE or CKREWRITE call, the
record just written created a duplicate key value for at least one alternate key
for which duplicates are allowed.

3-6 USING KSAM FILES IN COBOL PROGRAMS

STATUS

If status =
\10"

At End condition|

In a sequential read using CKREAD, no next logical record was in the �le.

= \21" Invalid key; Sequence error|

A call to CKWRITE attempted to write a record with a key that is not in
sequentially ascending order, to a �le opened for sequential access.

A call to CKREWRITE was attempted but the primary key value was
changed by the program since the previous successful call to CKREAD.

= \22" Invalid key; Duplicate key|

An attempt was made to write or rewrite a record with CKWRITE or
CKREWRITE and the record would create a duplicate key value for a key
where duplicates are prohibited.

= \23" Invalid key; No record found|

An attempt was made with CKSTART or CKREADBYKEY to access a
record identi�ed by key, but no record is found with the speci�ed key value at
the speci�ed location.

= \24" Invalid key; Boundary violation|

An attempt was made with a call to CKWRITE to write past the externally
de�ned boundaries of the �le; that is, to write past the end-of-�le.

= \30" Lock denied|

An attempt was made to lock a �le already locked by another process; or �le
was not opened with dynamic locking allowed.

= \31" Unlock denied|

An attempt was made to unlock a �le with CKUNLOCK, but the �le had not
been locked by CKLOCK.

= \9n" File system error|

A call to an input/output procedure was unsuccessful as a result of a �le
system error, not one of the error conditions de�ned for the other status
values. The value of status-key-2 (n) is a binary number between 0 and 255
that corresponds to an MPE �le system error code (refer to appendix A).
To convert this binary value to numeric display format, call the CKERROR
routine (described next in this section).

USING KSAM FILES IN COBOL PROGRAMS 3-7

STATUS

USING STATUS

The value of status can be tested as a whole, or the two characters can be tested separately
as status-key-1 and status-key-2 . In any case, the status of each call should be tested
immediately following execution of the call. Unless the �rst character of status = \0", the call
was not successful.

For example, a sample status parameter de�nition might be:

WORKING-STORAGE SECTION.

.

.

.

01 STAT.

02 STATUS-KEY-1 PIC X.

02 STATUS-KEY-2 PIC X.

These items can then be referenced in the PROCEDURE DIVISION. For example: to test
only the �rst character:

IF STATUS-KEY-1 NOT = "0" THEN

GO TO "ERROR-ROUTINE".

To test the entire status word:

IF STAT = "23" THEN

DISPLAY "RECORD NOT FOUND".

Note that the word STATUS is reserved.

KSAM LOGICAL RECORD POINTER

Many of the KSAM procedures use a logical record pointer to indicate the current record in
the �le. This pointer points to a key value in the key �le that identi�es the current record in
the data �le. The particular key used, if the �le has more than one key, is the key speci�ed in
the current procedure or the last procedure that referenced a key.

Procedures that use pointers are either pointer-dependent or pointer-independent . Pointerent
procedures expect the pointer to be positioned at a particular record in order to execute
correctly. Pointer-independent procedures, on the other hand, execute regardless of where the
pointer is positioned and, in most cases, they position the pointer. (Refer to Table 3-3 for a
summary of those procedures that either position the pointer or are dependent on the pointer
position.)

3-8 USING KSAM FILES IN COBOL PROGRAMS

Table 3-3. Positioning the Logical Record Pointer

Procedure
Name

Pointer-
Dependent

Position of Pointer After
Execution of Procedure

CKSTART NO Points to key whose value was speci�ed in call.

CKREADBYKEY NO Points to key whose value was speci�ed in call.

CKWRITE NO Points to key whose value is next in key sequence to
key value in record just written.

CKREAD YES Pointer remains positioned to key value for record just
read; unless next call is to CKREAD, or to
CKREWRITE followed by CKREAD, in which case,
next CKREAD moves pointer to next key in key
sequence before reading the record.

CKDELETE YES Points to next key value in ascending sequence
following key value in record just deleted.

CKREWRITE YES (sequential
mode)

Pointer remains positioned to key value for record jus
modi�ed; unless any key value in record was changed,
in which case, it points to next key in ascending
seuence after the key in the modi�ed record.

NO (random or
dynamic mode)

SHARED ACCESS

Particular care must be taken when using the logical record pointer during shared access (the
�le was opened with CKOPENSHR). Since the record pointer is maintained in a separate
control block for each open �le, if more than one user opens the same �le, one user may
modify the key �le causing the record pointers of other users to point to the wrong key.

To avoid this problem, you should always lock the �le in a shared environment before calling
a procedure that sets the pointer and leave the �le locked until all procedures that depend
on the pointer have been executed. Thus, if you want to read the �le sequentially, delete a
record, or modify a record, you should lock the �le, call a procedure that sets the pointer
(such as CKSTART), and then call CKREAD, CKDELETE, or CKREWRITE. When the
operation is complete, you can then unlock the �le to give other users access to it.

USING KSAM FILES IN COBOL PROGRAMS 3-9

SAMPLE KSAM FILE

The �le KSAMFILE illustrated in Figure 3-2 is used in all subsequent examples associated
with the COBOL procedure calls.

Figure 3-2. Representation of KSAMFILE Used in COBOL Examples

3-10 USING KSAM FILES IN COBOL PROGRAMS

CKCLOSE

A call to CKCLOSE terminates �le processing for the speci�ed �le.

CALL "CKCLOSE" USING �letable, status

When processing is completed, a KSAM �le should be closed with a call to CKCLOSE. No
further processing is allowed on the �le until a CKOPEN procedure call opens the �le.

CKCLOSE can be executed only for a �le that is open.

PARAMETERS

�letable an 8-word record containing: the name of the �le, its input-output type,
access mode, the �lenumber given the �le when it was last opened, and a code
indicating whether the previous operation on the �le was successful and if so
what it was. (Refer to Filetable Parameter discussion earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion of
the call to CKCLOSE. It indicates whether or not the �le was successfully
closed and if not, why not. The left character is set to \0" if CKCLOSE is
successful, to \9" if not. The right character is set to \0" if CKCLOSE is
successful, to the �le system error code if not. (Refer to Status Parameter
discussion earlier in this section.)

USING CKCLOSE

Upon successful completion of CKCLOSE, the �le identi�ed by �letable is no longer available
for processing. Note that a KSAM �le can be closed and then reopened in order to specify a
di�erent access mode or input-output type.

EXAMPLES

Assuming the same �letable and status de�nitions used to de�ne the sample �le in Figure 3-2:

FINISH.

CALL "CKCLOSE" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKCLOSE ERROR NO. ", RESULT;
ELSE DISPLAY"CKCLOSE SUCCESSFUL".

USING KSAM FILES IN COBOL PROGRAMS 3-11

CKDELETE

This procedure logically deletes a record from a KSAM �le.

CALL "CKDELETE" USING �leable, status

In order to logically delete records from a KSAM �le, you can use the procedure CKDELETE.
A logically deleted record is marked by a code of binary 1's in the �rst two characters of the
record, but is not physically removed from the �le. The deletion mark makes such a record
inaccessible but does not physically reduce the size of the �le. The utility program FCOPY
(described in section II) can be used to compact a KSAM �le by copying only active records,
excluding deleted records, to a new KSAM �le.

CKDELETE deletes the record at which the logical record pointer is currently positioned.
Therefore, CKDELETE must be preceded by a call that positions the pointer (see Table 3-3).

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation was
successful and if so what it was. (Refer to Filetable Parameter discussion
earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion of the
call to CKDELETE indicating whether the call was successful and if not, why
not. (Refer to Status Parameter discussion earlier in this section.)

USING CKDELETE

In order to delete a record, you should �rst read the record into the working storage section
of your program with a call to CKREAD if in sequential mode, a call to CKREADBYKEY
if in random mode, or a call to either if in dynamic mode. CKDELETE can be called only
if the �le is currently open for both input and output (input-output type =2). This allows
the record to be read into your program's data area and then written back to the �le with
the delete mark. Following execution of CKDELETE, the deleted record can no longer be
accessed.

SHARED ACCESS. If the �le was opened for shared access with CKOPENSHR, you must
lock the �le with CKLOCK before you can delete any records with CKDELETE. Because
CKDELETE depends on the logical record pointer, the call to CKLOCK should precede
the call that positions the pointer. The call to CKUNLOCK is then called after the call to
CKDELETE. To illustrate, the sequence of calls in shared access should be:

CKLOCK <----- to lock �le

CKSTART or CKREADBYKEY <-------------- to position pointer

.

.

.

CKDELETE<----- to delete record at which pointer is positioned

CKUNLOCK<----- to unlock �le

Following the call to CKDELETE, the pointer is positioned to the next key following the key
in the deleted record.

3-12 USING KSAM FILES IN COBOL PROGRAMS

EXAMPLES

The following examples show the use of CKDELETE for sequential access using CKREAD
and for random access using CKREADBYKEY. The WORKING-STORAGE SECTION from
Figure 3-2 and the FINISH procedure from the CKCLOSE example are assumed for these
examples.

1. Sequential Delete.

In order to delete all records whose primary key begins with \P", �rst position the �le to
the start of these records with CKSTART and then read each record with CKREAD and
delete it with CKDELETE.

WORKING-STORAGE SECTION.

77 RELOP PIC S9(4) COMP.

77 KEYVAL PIC X(20).

77 KEYLOC PIC S9(4) COMP.

77 KEYLENGTH PIC S9(4) COMP.

.

.

.

PROCEDURE DIVISION.

START.

MOVE 2 TO I-O-TYPE.

MOVE 0 TO A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT.

.

. <---------- check status

.

FIND-REC.

MOVE 0 TO RELOP.<-------------------- test for equality between

primary key and KEY

MOVE "P" TO KEYVAL.

MOVE 3 TO KEYLOC.

MOVE 1 TO KEYLENGTH.<----- check �rst character only

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,

KEYLENGTH.

IF STATUS-KEY-1 = "0" THEN

GO TO READ-REC.

IF STAT = "23" THEN

DISPLAY "NO RECORD FOUND"

GO TO FINISH.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.=", RESULT

GO TO FINISH.

READ-REC.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1 = "1" THEN

DISPLAY "END OF FILE REACHED"

GO TO FINISH.

IF STATUS-KEY-1 = "0" THEN

IF NAME OF REC NOT LESS THAN "Q "THEN

DISPLAY "DELETIONS COMPLETED"

GO TO FINISH;

ELSE GO TO DELETE-REC;

ELSE

DISPLAY "CKREAD ERROR, STATUS =", STAT

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

USING KSAM FILES IN COBOL PROGRAMS 3-13

DISPLAY "CKERROR NO.", RESULT.

GO TO READ-REC.

DELETE-REC.

CALL "CKDELETE" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "0" THEN

DISPLAY "DELETED"

GO TO READ-REC;

ELSE

DISPLAY "CKDELETE ERROR, STATUS = ", STAT

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY"CKERROR NO.=", RESULT

GO TO READ-REC.

Note If access is shared, the �le must be opened with a call to CKOPENSHR and
then locked before the call to CKSTART that initially sets the pointer. The
�le should remain locked while the records to be deleted are read and then
marked for deletion. If the �le is not locked before CKSTART is called, other
users can change the �le so that the record pointer points to the wrong record.

2. Random Delete.

A �le containing the primary keys of those records to be deleted from a KSAM �le is read
into the working storage area DAT. These key values are used by CKREADBYKEY to
locate and read the items to be deleted by CKDELETE.

PROCEDURE DIVISION.

START.

MOVE 2 TO I-O-TYPE, A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT.

.

. check status

.

READ-KEY.

READ DATA-FILE INTO DAT;

AT END GO TO FINISH.

CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT, KEYLOC, RECSIZE.

IF STATUS-KEY-1 = "0" THEN

GO TO DELETE-RECORD.

DISPLAY "CKREADBYKEY ERROR, STATUS = ",STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR ", RESULT

GO TO READ-KEY.

DELETE-RECORD.

CALL "CKDELETE" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "0" THEN

DISPLAY REC, " DELETED"

GO TO READ-KEY.

DISPLAY "CKDELETE ERROR, STATUS =",STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO. =", RESULT.

GO TO READ-KEY.

3-14 USING KSAM FILES IN COBOL PROGRAMS

Note Note: If access is shared, the �le must be opened with a call to
CKOPENSHR; a call to CKLOCK must precede the call to CKREADBYKEY
and a call to CKUNLOCK must follow the CKDELETE error tests and
should precede the return to READ-KEY.

CKERROR

Converts �le system error code returned in status to a display format number.

CALL "CKERROR" USING status, result

Whenever a \9" is returned as the left character of the status parameter following any call to
a KSAM procedure, you can call the procedure CKERROR to convert the MPE �le system
error code in the right character of status from a binary number to a display format number.
This allows you to display the error code.

PARAMETERS

status is the status parameter to which a value was returned by a previous KSAM
procedure call. The entire status parameter, both left and right characters,
must be speci�ed.

result is an item to which the error number is returned right justi�ed in display
format. The item must have a picture of 4 numeric characters (PIC 9(4)).

USING CKERROR

The following example shows the WORKING-STORAGE SECTION entries needed to check
for errors and a call to CKERROR in the PROCEDURE DIVISION that checks for and
displays the error number if a �le system error occurred in a call to process a KSAM �le.

DATA DIVISION.

.

.

.

WORKING-STORAGE SECTION.

77 RESULT PIC 9(4) VALUE ZERO.

01 STAT.

03 STATUS-KEY-1 PIC X.

03 STATUS-KEY-2 PIC X.

.

.

.

PROCEDURE DIVISION.

START.

.

.

.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT.

DISPLAY "ERROR NUMBER ",RESULT.

.

.

.

USING KSAM FILES IN COBOL PROGRAMS 3-15

CKLOCK

A call to CKLOCK dynamically locks a KSAM �le.

CALL "CKLOCK" USING �letable, status, lockcond

When access is shared, you must lock the �le before calling CKWRITE, CKREWRITE, or
CKDELETE. This insures that another user cannot attempt to modify the �le at the same
time, and it guarantees that the most recent data is available to each user who accesses the
�le.

In order to call CKLOCK, the �le must have been opened with a call to CKOPENSHR, not
CKOPEN.

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation was
successful and if so, what it was. (Refer to Filetable Parameter discussion
earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion of the
call to CKLOCK. It indicates whether or not the �le was successfully locked
and if not, why not. The status word =\00" if the call was successful. It
=\30" if the �le was locked by another process; it = \9n," where n is a �le
system error code, if the call failed for some other reason. (Refer to the Status
Parameter discussion earlier in this section.)

lockcond one-word computational item whose value determines the action taken if the
�le is locked by another user when CKLOCK is executed. The value is either
zero (0) or one (1).

0 locking is conditional; if the �le is already locked, control is
returned to your program immediately with the status word
set to \30".

1 locking is unconditional; if the �le cannot be locked
immediately because another use has locked it, your program
suspends until the �le can be locked.

USING CKLOCK

In order to call CKLOCK, the �le must be opened with dynamic access enabled. This can
be done only with the CKOPENSHR procedure. CKOPEN will not open the �le for shared
access with dynamic locking.

When users are sharing a �le, it is essential to lock the �le before modifying it. An error is
returned if any user attempts to write, rewrite, or delete records without �rst locking the �le.
It is also important to avoid situations where one user locks the �le and forgets to unlock it. If
the �le is already locked when you call CKLOCK with lockcond set to zero, the call will fail
with \30" returned to status , and your process will continue. If, however, lockcond is set to 1,
your process suspends until the other user unlocks the �le or logs o�.

3-16 USING KSAM FILES IN COBOL PROGRAMS

EXAMPLES

The following example opens �le KSAMFILE for shared access with dynamic locking allowed.
It then locks the �le unconditionally. If another user has locked the �le, the process suspends
until the �le is unlocked and then continues by locking your �le. The status value is checked
as soon as control returns to your process to insure that the �le has been locked before
continuing.

DATA DIVISION.

77 LOCKCOND PICTURE S9(4) COMP VALUE 1.

77 RESULT PICTURE 9(4) VALUE 0.

01 STATUSKEY.

02 STATUS-KEY1 PICTURE X VALUE " ".

02 STATUS-KEY2 PICTURE X VALUE " ".

01 FILETABLE.

02 FILENUMBER PICTURE S9(4) COMP VALUE 0.

02 FILENAME PICTURE X(8) VALUE "KSAMFILE".

02 I-O-TYPE PICTURE S9(4) COMP VALUE 0.

02 A-MODE PICTURE S9(4) COMP VALUE 0.

02 PREV-OP PICTURE S9(4) COMP VALUE 0.

PROCEDURE DIVISION.

START.

CALL "CKOPENSHR" USING FILETABLE, STATUSKEY.

IF STATUS-KEY1 = "0" THEN GO TO LOCK-FILE.

IF STATUS-KEY1 = "9" THEN

CALL "CKERROR" USING STATUSKEY, RESULT

DISPLAY "ERROR NO. ",RESULT.

LOCK-FILE.

CALL "CKLOCK" USING FILETABLE, STATUSKEY, LOCKCOND.

IF STATUSKEY="0"

THEN DISPLAY "CKLOCK IS OK"

ELSE IF STATUSKEY = "30"

THEN DISPLAY"FILE LOCKED BY ANOTHER PROCESS"

ELSE IF STATUS-KEY1="9"

THEN CALL "CKERROR" USING STATUSKEY, RESULT

DISPLAY "ERROR NO.", RESULT.

CKOPEN

A call to procedure CKOPEN initiates �le processing.

CALL "CKOPEN" USING �letable, status

In order to process a KSAM �le, it must be opened with a call to the CKOPEN procedure.
CKOPEN initiates processing, speci�es the type of processing and the access mode; the
�le must have been created previously. You can create a KSAM �le through the BUILD
command of the KSAMUTIL program (refer to section II).

To open a �le means to make it available for processing, to specify the type of processing
(input only, output only, or both), and to specify the access method (sequential, random, or
dynamic). If a di�erent type of processing or access method is needed, the �le must be closed
and opened again with the parameters set to new values.

USING KSAM FILES IN COBOL PROGRAMS 3-17

Note If you want to open the �le for shared access, you must use a call to
CKOPENSHR, rather than CKOPEN.

PARAMETERS

�letable an 8-word record containing the name of the �le, its input-output type, and
access mode. When the open is successful, the �rst word of this table is set to
the �le number that identi�es the opened �le. (Refer to Filetable Parameter
discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion of the
call to CKOPEN to indicate whether or not the �le was successfully opened
and if not why not. Left character is set to \0" if open is successful, to \9" if
not. Right character is set to \0" if open is successful, to �le system error
code if not. (Refer to Status Parameter discussion earlier in this section.)

USING CKOPEN

Upon successful execution of CKOPEN, the �le named in �letable is available for the type
of processing speci�ed in �letable . Before the �le is successfully opened with CKOPEN, no
operation can be executed that references the �le either explicitly or implicitly.

The input-output procedures that can be called to process the �le depend on the value of the
words in �letable that specify input-output type and access mode. (Refer to Table 3-4 for the
procedures allowed with the various combinations of input-output type and access mode.)

A �le may be opened for input, output, or input-output, and for sequential, random, or
dynamic access in the same program by specifying a di�erent call to CKOPEN for each
change in inputoutput type or access mode. Following the initial execution of CKOPEN, each
subsequent call to CKOPEN for the same �le must be preceded by a call to CKCLOSE for
that �le.

When �les are opened for input or input-output, the call to CKOPEN sets the current record
pointer to the �rst record in the primary key chain.

3-18 USING KSAM FILES IN COBOL PROGRAMS

Table 3-4.

Procedures Allowed for Input-Output Type/Access Mode Combinations

ALLOWED PROCEDURES ACCESS MODE INPUT-OUTPUT
TYPE

CKREAD
CKSTART

0
(sequential)

2
(dynamic)

0
(open for input)

CKREADBYKEY 1
(random)

2
(dynamic)

0
(open for input)

CKWRITE 0
(sequential)

2
(dynamic)

1
(open for output)

1
(random)

2
(dynamic)

1
(open for output)

CKREAD
CKSTART

CKREWRITE
CKDELETE

0
(sequential)

2
(dynamic)

2
(open for input/output)

CKREADBYKEY
CKWRITE

CKREWRITE
CKDELETE

1
(random)

2
(dynamic)

2
(open for input/output)

INPUT-OUTPUT TYPE. Word 6 of �letable must be set to one of the following values before
calling CKOPEN:

0 input only

1 output only

2 input-output

Input Only. In general, if you want to allow records to be read or the �le to be positioned
without allowing any new records to be written or any existing records to be changed, you
should set the input-output type to 0. This input-output type allows you to call CKREAD or
CKSTART in sequential processing mode, CKREADBYKEY in random mode, or all three in
dynamic mode.

Output Only. If you want to cause all existing records to be deleted when the �le is opened
and then allow new records to be written, you should set the input-output type to 1. This
type of open deletes all existing records so that records are written to an empty �le. When
a �le is opened for output only, you can call CKWRITE in any of the three access modes:
sequential, random, or dynamic, but you cannot call any other of the KSAM procedures.

Input-Output. If you want unrestricted �le access, you should set the input-output type to
2. This access type allows records to be read, positioned, written, rewritten, or deleted. You
may call CKREAD, CKSTART, CKREWRITE, and CKDELETE (but not CKWRITE) when
opened in sequential mode; you may call CKREADBYKEY, CKWRITE, CKREWRITE, or
CKDELETE (but not CKREAD or CKSTART) when opened in random mode. In dynamic

USING KSAM FILES IN COBOL PROGRAMS 3-19

mode, any of the KSAM procedures may be called. With this type of input-output, existing
records are not cleared when you write a record with CKWRITE.

ACCESS MODE. Word 7 of �letable must be set to one of the following values before calling
CKOPEN:

0 sequential access

1 random access

2 dynamic access

Sequential Access. With this type of access, records in the �le are read in ascending order
based on the value of a key within each record. The key is the primary key unless an alternate
key was speci�ed with CKSTART. Reading starts with the �rst record in sequence unless a
particular record was speci�ed with CKSTART. Each time a call to CKREAD is executed,
the next record in sequence is read from the �le. CKREAD and CKSTART are the only
procedures that can be called in input mode. CKREADBYKEY cannot be speci�ed for any
input-output type if the access mode is sequential.

In output mode, CKWRITE is the only procedure that can be called. When access is
sequential, the record to be written must contain a unique primary key that is greater in value
than the key of any previously written record. If it is not in sequence, an invalid key sequence
error \21", is returned to status .

In input-output mode, CKREWRITE and CKDELETE can be speci�ed as well as CKREAD
and CKSTART, but CKWRITE cannot.

Random Access. This type of access allows you to read, write, replace, or delete a record with
any value for its primary key. To read a record, the CKREADBYKEY procedure must be
called in either input or input-output mode. CKREAD and CKSTART cannot be speci�ed for
any input-output type when access mode is random.

When writing a record with CKWRITE in output or input-output mode, the value of the
primary key in the record need not be greater than the keys of previously written records;
that is, records can be written in any order.

In input-output mode, CKREWRITE can be used to replace any record whose primary key
matches the primary key in the record being written. CKDELETE can be used to delete a
record speci�ed in a previous CKREADBYKEY call.

CKWRITE can be used to write a record following existing records in the �le if you position
to follow the last sequential record before writing. Use this input-output type if you want to
save existing data in a �le to which you are writing.

Dynamic Access. Dynamic access allows you to use any call to process a �le opened for
inputoutput. When the �le is opened in dynamic mode, and a call is made to CKREAD or
CKSTART, the �le can be read, but not updated, sequentially. For all other calls, dynamic
mode is treated as if the �le had been opened in random mode. See Random Mode discussion,
above. The reason to open a �le in dynamic mode is to allow both sequential and random
processing on the same �le without closing it and then opening it again each time access
switches from sequential to random or vice versa.

3-20 USING KSAM FILES IN COBOL PROGRAMS

EXAMPLES

To open a �le initially for sequential read:

WORKING-STORAGE SECTION.

77 RESULT PIC 9(4) VALUE ZERO.

01 FILETABLE.

03 FILENUMBER PIC S9(4) COMP VALUE ZERO.

03 FILENAME PIC X(8) VALUE "KSAMFILE".

03 I-O-TYPE PIC S9(4) COMP VALUE ZERO.<------ input only

03 A-MODE PIC S9(4) COMP VALUE ZERO.<------ sequential access

03 PREV-OP PIC S9(4) COMP VALUE ZERO.

01 STAT.

03 STATUS-KEY-1 PIC X.

03 STATUS-KEY-2 PIC X.

.

.

.

PROCEDURE DIVISION.

START.

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 ="0" THEN GO TO S-READ.

IF STATUS-KEY-1 ="9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKOPEN FAILED. . .ERROR NO.", RESULT

STOP RUN.

S-READ.

.

.

.

If you subsequently want to write in sequential order to the same �le, you should close the �le
with a call to CKCLOSE (described below), move the value 1 (output to I-O-TYPE and then
re-open the �le:

CALL "CKCLOSE" USING FILETABLE, STAT.

IF STATUS-KEY-1 ="9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKCLOSE FAILED -- ERROR NO.",

STOP RUN.

MOVE 1 TO I-O-TYPE.<------ output only

CALL "CKOPEN" USlNG FILETABLE, STAT.

.

.

.

Similarly, to update records in random order in the same �le, �rst close the �le, then use the
following MOVE statement to alter the input-output type and access mode in FILETABLE
and reopen the �le:

CALL "CKCLOSE" USING FILETABLE, STAT.

.

.

.

MOVE 2 TO I-O-TYPE.<----------- input-output

MOVE 1 TO A-MODE.<------------- random access

CALL "CKOPEN" USING FILETABLE, STAT.

.

.

.

USING KSAM FILES IN COBOL PROGRAMS 3-21

CKOPENSHR

A call to CKOPENSHR initiates �le processing with dynamic locking and shared access
allowed.

CALL "CKOPENSHR" USING �letable, status

In order to process a KSAM �le with shared access and dynamic locking, the �le must be
opened with a call to CKOPENSHR. CKOPENSHR is exactly like CKOPEN in that it
initiates processing, speci�es the type of processing, and speci�es the access mode. The �le
must have been created previously with the BUILD command of program KSAMUTIL (refer
to section II).

To open a �le for shared access means to make it available for processing by more than one
user. Shared access allows all users to read or position the �le, but only one user at a time
can modify the �le by writing new records, or rewriting or deleting existing records. To
insure that more than one user does not attempt to modify the �le at the same time, you
must call CKLOCK to dynamically lock the �le before calling the procedures CKWRITE,
CKREWRITE, or CKDELETE. After modifying the �le, you should call CKUNLOCK so
that it can be accessed by other users.

PARAMETERS

�letable an 8-word record containing the name of the �le, its input-output type, and
access mode. When the open is successful, the �rst word of this table is set to
the �le number that identi�es the opened �le. (Refer to Filetable Parameter
discussion earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion of
the call to CKOPENSHR to indicate whether or not the �le was successfully
opened and if not why not. Left character is set to \0" if open is successful, to
\9" if not. Right character is to\0" if open is successful, to �le system error
code if not. (Refer to Status Parameter discussion earlier in this section.)

USING CKOPENSHR

Except that CKOPENSHR allows shared access and dynamic locking, and CKOPEN does
not, a call to CKOPENSHR operates exactly like the call to CKOPEN. Upon successful
execution of CKOPENSHR, the �le named in �letable is available for the type of processing
speci�ed in �le- table. Before the �le is opened successfully, no operation can be performed
that references the �le either explicitly or implicitly.

A �le may be opened by CKOPENSHR for any of the access modes (sequential, random, or
dynamic) and for any input-output type (input only, output only, or input-output) allowed
with CKOPEN.

Refer to the description of using CKOPEN for the speci�c a�ects of opening a KSAM �le with
the various input-output types and access modes.

3-22 USING KSAM FILES IN COBOL PROGRAMS

CKREAD

A call to procedure CKREAD makes available the next logical record from a �le.

CALL "CKREAD" USING �letable, status, record, recordsize

In order to read records in sequential order by key value, call procedure CKREAD. The �le
must have been opened in input or input-output mode with access mode speci�ed as either
sequential or dynamic.

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation was
successful and if so, what it was. (Refer to Filetable Parameter discussion
earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion of
the call to CKREAD to indicate whether or not the record was successfully
read and if not, why not. (Refer to Status Parameter discussion earlier in this
section.)

record a record de�ned in the WORKING-STORAGE SECTION into which the
contents of the next sequential KSAM record is read.

recordize an integer (S9(4)COMP) containing the length in characters of the record
being read. It must not exceed maximum record length established for the �le
when it was created.

USING CKREAD

The �le from which the record is read must be open for sequential or dynamic access (access
mode = 0 or 2.) It may be opened for input only or input-output (input-output type = 0 or
2), but not for output only.

When the �le is opened initially for input or input-output, the logical record pointer is
positioned at the �rst sequential record; that is, at the record with the lowest key value. The
key used is the primary key unless a previous call to CKSTART has speci�ed an alternate
key. When a call to CKREAD is executed, the record at which the record pointer is currently
positioned is read into the location speci�ed by record .

If, when CKREAD is executed, there is no next logical record in the �le, the at end condition
is returned to status ; that is, status is to\10". Note that a call to the procedure CKSTART
can be used to reposition the pointer for subsequent sequential access according to primary or
alternate key order.

In order to update records in sequential order, CKREAD must be called before executing
either of the update procedures CKREWRITE and CKDELETE. When access is shared, it
is important to include the call to CKREAD within the same locked portion of code that
includes the call to CKREWRITE or CKDELETE. This insures that the correct record is
modi�ed or deleted.

SHARED ACCESS. Because CKREAD is a pointer-dependent procedure (refer to Table 3-3),
the actual record read depends on the current position of the logical record pointer. When
access is shared, this pointer position can be made incorrect by other users without your

USING KSAM FILES IN COBOL PROGRAMS 3-23

program being aware of it. For this reason, you should lock the �le, position the pointer with
a pointerdent procedure, and then call CKREAD. When the last record is read, you should
then unlock the �le so other users can access the �le. Example 2 below illustrates how you
should read the �le sequentially when access is shared.

EXAMPLE

Using the WORKING-STORAGE SECTION from Figure 3-2 and the FINISH procedure in
the CKCLOSE example, the following procedures read records in sequential order from �le
KSAMFILE and display them on the standard output device.

1. Example of Sequential Read

PROCEDURE DIVISION.

START.

.

.

.

MOVE 0 TO I-O-TYPE, A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "9"

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKOPEN ERROR NO. ", RESULT.

IF STATUS-KEY-1 NOT = "0"

DISPLAY "CKOPEN FAILED"

STOP RUN.

READ-NEXT.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1 = "1" GO TO NEW-POSITION.

IF STATUS-KEY-1 = "0"

DISPLAY REC;

ELSE

DISPLAY "CKREAD ERROR, STATUS =", STAT.

IF STATUS-KEY-1 ="9"

CALL "CKERROR" USING STAT, RESULT

DISPLAY "FILE ERROR =", RESULT.

GO TO READ-NEXT.

NEW-POSITION.

.

.

. see CKSTART example

2. Example of Sequential Read with Shared Access

PROCEDURE DIVISION.

START.

.

.

.

MOVE 0 TO I-O-TYPE, A-MODE.

CALL "CKOPENSHR" USING FILETABLE, STAT <----- open �le for shared access

.

.<----- test status

.

FIND-RECORD.

MOVE 2 TO RELOP.

MOVE "000-0000" TO KEYVAL.

MOVE 23 TO KEYLOC,

MOVE 8 TO KEYLENGTH.

MOVE 1 TO LOCKCOND.

3-24 USING KSAM FILES IN COBOL PROGRAMS

CALL "CKLOCK" USING FILETABLE, STAT, LOCKCOND.<----- lock �le unconditionally

CALL "CKSTART" USING FILETABLE,

STAT, RELOP, KEYVAL, KEYLOC, KEYLENGTH.<--- position pointer to lowest key value

.

. <----- test status

.

READ-RECORD.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE<----- read record

IF STATUS-KEY-1 ="1"<------- end of �le

GO TO END-OF-READ.

IF STATUS-KEY-1 ="0"<------- if successful, display record read

DISPLAY REC.

.

.<----- test status for errors

.

TO TO READ-RECORD.

END-OF-READ.

CALL "CKUNLOCK" USING FILETABLE, STAT.<----- unlock �le

CKREADBYKEY

A call to CKREADBYKEY makes available a record identi�ed by key value from a KSAM
�le.

CALL "CKREADBYKEY" USING �letable, status, record, key, keyloc, recordsize

Records can be read from a KSAM �le in an order determined by key value. This order need
not be sequential; in fact, it can be any order you specify. This type of access is used to access
individual records in random order by key value.

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation was
successful and if so what it was. (Refer to Filetable Parameter discussion
earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion of the
call to CKREADBYKEY indicating whether the call was successful and if not
why not. (Refer to Status Parameter discussion earlier in this section.)

record a record de�ned in the WORKING-STORAGE SECTION into which the
contents of a record located by key value is read.

key an item whose value is used by CKREADBYKEY to locate the record to be
read. Key values in the �le identi�ed by �letable are compared to the value of
key until the �rst record with an equal value is found.

keyloc one-word integer (S9(4)COMP) set to the starting character position of the
key in the KSAM data record (�rst position is character 1). keyloc identi�es
the �le key to be compared with key .

recordsize an integer (S9(4)COMP) containing the length in characters of the record
being read; it must be less than or equal to the maximum record length
established for the �le at creation.

USING KSAM FILES IN COBOL PROGRAMS 3-25

USING CKREADBYKEY

In order to use the CKREADBYKEY procedure, the �le must be opened for either input or
inputoutput. The access mode can be either random or dynamic, but must not be sequential.

Execution of CKREADBYKEY causes the value of key to be compared to the value of the key
at location keyloc in the KSAM �le data records. When a key is found whose value is identical
to that of key , the record pointer is moved to the beginning of that record and the record is
read into the location record .

If no record can be found whose key value equals that of key , an invalid key condition is
diagnosed and status is set to the value \23". Successful execution of CKREADBYKEY is
indicated by the value \0" in the left byte of status , unsuccessful execution is indicated by
either the invalid key return or by a value of \9" in the left byte of status .

In order to delete records in random or dynamic mode, CKREADBYKEY must be called
before executing CKDELETE. It is not required prior to CKREWRITE.

EXAMPLES

In the following examples, update information is read into the area called DAT in the
WORKINGSTORAGE SECTION. (Note that in this as in the preceding examples, the
WORKING-STORAGE SECTION from Figure 3-2 continues to be useful.) In the �rst
example, the primary keys of records in KSAMFILE are searched for values matching the
value read into NAME in the DAT record; in the second example, an alternate key at location
23 is searched for values matching the value read into PHONE in the DAT record.

1. Read a record located by its primary key value:

DATA DIVISION.

.

.

.

WORKING-STORAGE SECTION.

77 KEYLOC PIC S9(4) COMP.

.

.

.

PROCEDURE DIVISION.

START.

.

.

.

MOVE 2 TO I-O-TYPE, A-MODE.<--- prepare to open for input-output, dynamic access

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKOPEN ERROR NO. ", RESULT.

IF STATUS-KEY-1 NOT="O" THEN

DISPLAY "CKOPEN FAILED"

STOP RUN.

FIND-RECORD.

READ NEW-DATA INTO DAT;<------- read update records

AT END GO TO FINISH.

MOVE 3 TO KEYLOC.

CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT,

KEYLOC, RECSIZE.

IF STATUS = "00" THEN

3-26 USING KSAM FILES IN COBOL PROGRAMS

DISPLAY "RECORD FOUND", REC

GO TO FIND-RECORD

IF STATUS = "23" THEN

DISPLAY "RECORD NOT FOUND,KEY=", NAME OF DAT

GO TO FIND-RECORD.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NO. ", RESULT

GO TO FIND-RECORD.

To �nd a record by the value of an alternate key, simply change two statements in the
preceding example so that KEYLOC contains the location of the alternate key and the key
value for comparison is found in item PHONE OF DAT rather than in NAME OF DAT:

FIND RECORD.

READ NEW-DATA INTO DAT;

AT END GO TO FINISH.

MOVE 23 TO KEYLOC.

CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, PHONE OF DAT,

KEYLOC, RECSIZE.

.

.

.

CKREWRITE

The procedure CKREWRITE replaces a record existing in a KSAM �le with another record
having a matching primary key.

CALL "CKREWRITE" USING �letable, status, record, recordsize

You can replace an existing record in a KSAM �le with the procedure CKREWRITE. This
procedure replaces a record previously read from the �le with another record whose primary
key matches the primary key of the record being replaced.

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation was
unsuccessful and if so what it was. (Refer to Filetable parameter discussion
earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon the completion of
the call to CKREWRITE indicating whether or not the call was successful
and if not why not. (Refer to Status Parameter discussion earlier in this
section.)

record a record de�ned in the WORKING-STORAGE SECTION containing data to
be written as a logical record to the �le replacing the record with a matching
primary key.

recordsize an integer (S9(4)COMP) containing the length in characters of the record to
be written. It must not exceed the maximum record length established for the
�le creation.

USING KSAM FILES IN COBOL PROGRAMS 3-27

USING CKREWRITE

In order to call procedure CKREWRITE, the �le must be open for both input and output
(inputoutput type=2). The access mode can be sequential, random, or dynamic. If access
mode is sequential, CKREAD must have been executed successfully just prior to the call to
CKREWRITE. In random or dynamic mode, no prior read is required; the system searches
the �le for the record to be rewritten.

REWRITE IN SEQUENTIAL MODE. When the �le is opened in sequential mode (access
mode = 0), CKREAD must be executed before CKREWRITE, The primary key in the
record to be written by CKREWRITE must be identical to the primary key in the record
read by CKREAD. A simple way to insure that the keys match is to read a record into
WORKING-STORAGE, modify it without altering the primary key, and then write it back to
the �le using CKREWRITE. Since the primary key is not changed, the sequence of records in
the �le is not a�ected.

Rewriting Records With Duplicate Keys. If you want to rewrite in sequential mode all the
records in a chain of records with duplicate keys, use either CKSTART or CKREADBYKEY
to position to the �rst record in the chain. Then call CKREWRITE to update the �rst record
in the chain. Subsequent calls depend on whether you are changing any key value in the
record (not necessarily the selected key).

If no key in the record is changed, the record pointer continues to point to the current record.
Only a subsequent CKREAD advances the pointer to the next record in the duplicate key
chain. In this case, you can issue CKREAD and CKREWRITE calls until all records with the
duplicated key value have been rewritten.

If any key in the record is changed, the new key is written to the end of the chain of duplicate
keys in the key �le. After the �rst call to CKREWRITE, the record pointer points to the
record whose key value follows the changed key. Since this key is now at the end of the
chain of duplicate keys, a subsequent call to CKREWRITE skips all records with keys in the
duplicate key chain and rewrites the record with the next higher key value. In this case, you
must precede each call to CKREWRITE with a call to CKSTART or CKREADBYKEY in
order to update all subsequent records with duplicate keys.

If you are updating a primary key value which is duplicated, it is good practice to use
CKDELETE to delete the selected record and then rewrite it as a new record with
CKWRITE.

REWRITE IN RANDOM MODE. When the �le is opened in random or dynamic mode
(access mode = 1 or 2), no prior call to a read procedure is needed. You specify the record to
be written in WORKING-STORAGE and then call CKREWRITE. However, you must use
the primary key to position to the record to be modi�ed. When the procedure is executed, the
�le is searched for a record whose primary key matches that of the record to be written. If
such a record is found, it is replaced by the record speci�ed in CKREWRITE. If not found, an
invalid key condition is diagnosed and status is set to the \23".

A call to CKREWRITE in random mode only updates the �rst record with a key in the chain
of duplicate keys.

POSITION OF POINTER. Regardless of the mode, after any call to CKREWRITE that does
not modify a key value, the record pointer is positioned to the key of the record just modi�ed.
However, if any key in the modi�ed record was changed, the record must be deleted and then
rewritten by a write procedure. If the access mode is sequential and a key was modi�ed,
the pointer is moved to the record with the next key value in ascending sequence after the

3-28 USING KSAM FILES IN COBOL PROGRAMS

modi�ed key. If the access mode is random or dynamic, and a key was modi�ed, the pointer
is moved to the record with the next key in ascending sequence after the primary key in the
modi�ed record. This means that in random or dynamic mode the key pointer may change if
it was pointing to an alternate key before the call to CKREWRITE,

REWRITE WITH SHARED ACCESS. If the �le was opened for shared access with
CKOPENSHR, then you must lock the �le with a call to CKLOCK before rewriting any
records with CKREWRITE. After the records are rewritten, you should unlock the �le with
CKUNLOCK.

To insure that you are updating the correct record in sequential mode, you should call
CKLOCK before positioning the pointer with CKSTART or CKREADBYKEY, then
specify the sequential calls to CKREAD and CKREWRITE before unlocking the �le with
CKUNLOCK. This insures that no other users change the position of the pointer while you
are sequentially updating the �le.

INVALID KEY. In sequential mode, the invalid key condition exists when the record just
read by CKREAD and the record to be written by CKREWRITE do not have the same
primary key value. In random or dynamic mode, an invalid key condition exists if no record
can be found in the �le whose primary key matches that of the record to be written by
CKREWRITE. In either case, status is set to the value \23".

Regardless of mode, an invalid key condition occurs if an alternate key value in the record to
be written duplicates a corresponding alternate key for which duplicates are prohibited. When
rewriting a record, try to avoid specifying an alternate key value that may duplicate a value
existing in the �le unless duplicates are allowed for the key. A duplicate key condition where
duplicates are not allowed causes status to be set to \22" and the procedure is not executed.

EXAMPLES

The �rst example is of a sequential update that clears the value of an item in each record
of the �le. The second example searches the �le for a record whose primary key has a
particular value in order to change the alternate key for that record. Both examples assume
the WORKING-STORAGE SECTION from Figure 3-2 and the FINISH procedure from
CKCLOSE.

1. Sequential Update.

Use CKSTART to position the current record pointer to the start of the �le. Then read
each record in sequence and set its non-key items to blanks:

DATA DIVISION.

.

.

.

WORKING-STORAGE SECTION. \

77 RELOP PICS9(4) COMP.|

77 KEYVAL PIC X(20). |--------- items required by CKSTART

77 KEYLOC PIC S9(4) COMP.|

77 KEYLENGTH PIC S9(4) COMP.|

. /

.

.

PROCEDURE DIVISION.

START.

MOVE 2 TO I-O-TYPE.

MOVE 0 TO A-MODE.

USING KSAM FILES IN COBOL PROGRAMS 3-29

CALL "CKOPEN" USING FILETABLE, STAT.

.

.<---------------------------- check status

.

UPDATE-FILE.

MOVE 1 TO RELOP.

MOVE "000-0000" TO KEYVAL.<---------- set up CKSTART parameters to start

MOVE 23 TO KEYLOC. reading at lowest alternate key value

MOVE 8 TO KEYLENGTH.

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC, KEYLENGTH.

IF STATUS-KEY-1="0" THEN

GO TO READ-RECORD;

ELSE

DISPLAY "CKSTART ERROR, STATUS", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.", RESULT

GO TO FINISH.

READ-RECORD.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1 = "1" THEN

GO TO FINISH. <------------------ end of �le

IF STATUS-KEY-1 = "0" THEN

GO TO WRITE-RECORD

ELSE

DISPLAY "CKREAD ERROR,STATUS =", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO. ", RESULT

GO TO READ-RECORD.

WRITE-RECORD.

MOVE SPACES TO OTHERDATA OF REC.

CALL "CKREWRITE" USING FILETABLE,

IF STATUS-KEY-1 = "0" THEN

DISPLAY NAME OF"DATA CLEARED"

GO TO READ-RECORD.

DISPLAY "CKREWRITE ERROR, STATUS=",

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT,

DISPLAY "CKERROR NO.=",

GO TO READ-RECORD.

Note If the �le was opened for shared access with a call to CKOPENSHR, then the
�le should be locked with a call to CKLOCK before the call to CKSTART.
The �le should be unlocked with a call to CKUNLOCK only when the �nal
record is updated, probably in the FINISH procedure.

2. Random Update. Find the record with the primary key \ECKSTEIN, LEO "and change
the value of the secondary key to \257-5137":

PROCEDURE DIVISION.

START.

.

.

.

MOVE 2 TO I-O-TYPE, A-MODE.

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1 = "0" THEN

GO TO F-UPDATE.

DISPLAY "CKOPEN ERROR, STA", STAT.

3-30 USING KSAM FILES IN COBOL PROGRAMS

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.=", RESULT

GO TO FINISH.

F-UPDATE.

MOVE "ECKSTEIN, LEO "TO NAME OF REC.

MOVE "257-5137" TO PHONE OF REC.

MOVE SPACES TO OTHERDATA OF REC.

CALL "CKREWRITE" USING FILETABLE, STAT, REC, RECSlZE.

IF STATUS-KEY-1="0" THEN

DISPLAY REC "UPDATED"

GO TO FINISH.

IF STAT = "23" THEN

DISPLAY NAME OF REC "NOT FOUND"

GO TO FINISH.

DISPLAY "CKREWRITE ERROR, STATUS =", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO.=", RESULT.

GO TO FINISH.

CKSTART

A call to procedure CKSTART allows you to position the record pointer to a particular record
de�ned by its primary or alternate key value.

CALL "CKSTART" USING �letable, status, relop, key, keyloc, keylength

In order to position the current record pointer to a location in the �le de�ned by a key value,
call CKSTART. Since CKSTART is used in preparation for sequential retrieval of records with
CKREAD, the �le must be open for sequential or dynamic access, not random, and for input
or input-output, not output only.

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation was
successful and if so, what it was. (Refer to Filetable Parameter discussion
earlier in this section.)

status one word (two 8-bit characters) set to a pair of values upon completion of the
call to CKSTART to indicate whether or not the call was successful and if not
why not. (Refer to Status Parameter discussion earlier in this section.)

relop one-word integer (S9(4)COMP) code that speci�es a relation between the key
value speci�ed in the call to CKSTART and the key value in the record to
which the record pointer is to be positioned:

0|record key is equal to key
1|record key is greater than key
2|record key is greater than or equal to key

key an item whose value is used by CKSTART to locate the record at which to
position the record pointer. The values of a speci�ed �le key are compared
in ascending order to the value of key according to the relation speci�ed by
relop.

USING KSAM FILES IN COBOL PROGRAMS 3-31

keyloc one-word integer (S9(4)COMP) set to the starting character location of a key
in the KSAM �le data record (�rst position is character 1). The key at keyloc
is compared to key .

keylength one-word integer (S9(4)COMP) set to the length of key ; the length must be
less than or equal to the length of the key de�ned by keyloc.

USING CKSTART

When CKSTART is executed, the key �le is searched for the �rst key in the set of keys at
location keyloc whose value when compared with key satis�es the comparison speci�ed by
relop. The current record pointer is positioned to the beginning of the record in the data �le
associated with the key found by CKSTART.

The speci�ed length of key (key length) may be less than the length of the key in the �le; if so,
the comparison proceeds as if the �le key were truncated on the right to the same length as
key length.

If no record can be found whose key value satis�es the comparison, an invalid key condition is
returned to status ; that is, status is set to \23".

SHARED ACCESS. If you use CKSTART to position the pointer before reading or updating
the �le sequentially in a shared environment, you must lock the �le with a call to CKLOCK
before calling CKSTART. Then, after you have completed the sequential operations, you can
unlock the �le with a call to CKUNLOCK. If you wait to lock the �le until after the call to
CKSTART, another user can change the structure of the key �le so that the position of the
pointer becomes invalid for any subsequent call to a procedure that depends on the pointer
position. (Refer to Table 3-3 for a list of the pointer-dependent procedures.)

EXAMPLES

Four new items must be added to the WORKING-STORAGE SECTION in Figure 3-2;
otherwise, the same WORKING-STORAGE SECTION is used. The new items are:

77 RELOP PIC S9(4). COMP.

77 KEYVAL PIC X(20).

77 KEYLOC PIC S9(4) COMP.

77 KEYLENGTH PIC S9(4) COMP.

Each of these items is assigned the value appropriate to the operation to be performed by
statements in the PROCEDURE DIVISION. Note that the length of array KEYVAL can be
made shorter by assigning a value less than 20 to KEYLENGTH but it cannot be made longer
than 20 characters. Since there is no key in KSAMFILE longer than 20 characters, this allows
comparison to be made on the longest key.

The following example shows the statements needed to display the records in KSAMFILE in
order by the alternate key PHONE that starts in location 23 and has a length of 8 characters.
It assumes the �le is open for input or input-output and that access mode is sequential. It
also assumes the FINISH procedure from the CKCLOSE example.

1. Position by alternate key sequence:

NEW-POSITION.

MOVE 2 TO RELOP.<-------- �nd key value greater than or equal to KEYVAL

MOVE "000-0000" TO KEYVAL.

MOVE 23 TO KEYLOC.

3-32 USING KSAM FILES IN COBOL PROGRAMS

MOVE 8 TO KEYLENGTH.

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC, KEYLENGTH.

IF STATUS = "23" THEN GO TO FINISH.<-------- no record found

IF STATUS-KEY-1 = "0" THEN GO TO READ-BY-PHONE.<--- lowest key value found

DISPLAY "CKSTART ERROR, STATUS", STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUM", RESULT.

GO TO FINISH.

READ-BY-PHONE.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE,

IF STATUS-KEY-1 = "1" THEN GO TO FINISH.<---- end-of-�le

IF STATUS-KEY-1 = "O" THEN

DISPLAY REC;

ELSE DISPLAY "CKREAD ERROR,STATUS=", STAT

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUMBER", RESULT.

GO TO READ-BY-PHONE.

.

.

.

In the next example, CKSTART is used to position to the beginning of the series of names
beginning with the letter \T". The KSAM �le key is located at character position 3
(NAME key); the parameter KEYVAL is set to the value \T"; the key length for purposes
of comparison is set to 1; and RELOP is set to 0. Thus the record pointer is positioned at
the �rst key found whose value (when the key is truncated to 1 character) is equal to \T".
Note that this example reads not only all names beginning with \T", but also reads all
names that begin with letters following \T". To read only the names beginning with \T",
the program must add a test for the end of the \T" names.

2. Using a Generic Key

POSITION.

MOVE 0 TO RELOP.<------------ �nd key equal to KEY value

MOVE "T" TO KEYVAL.

MOVE 3 TO KEYLOC.

MOVE 1 TO KEYLENGTH.

CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC, KEYLENGTH.

IF STATUS = "23" THEN GO TO FINISH.

IF STATUS-KEY-1 = "0" THEN

GO TO READ-NAMES.

DISPLAY "CKSTART ERROR, STATUS=",STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUMBER=", RESULT.

GO TO FINISH.

READ-NAMES.

CALL "CKREAD" USING FILETABLE, STAT, REC, RECSlZE.

IF STATUS-KEY-1 ="1" THEN GO TO FINISH.

IF STATUS-KEY-1 ="0" THEN

DISPLAY REC;

ELSE

DISPLAY "CKREAD ERROR, STATUS",STAT.

IF STATUS-KEY-1 = "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "ERROR NUM", RESULT.

GO TO READ-NAMES.

USING KSAM FILES IN COBOL PROGRAMS 3-33

CKUNLOCK

A call to CKUNLOCK unlocks a KSAM �le dynamically locked by CKLOCK.

CALL "CKUNLOCK" USING �letable, status

A �le locked by CKLOCK is released for use by other users with a call to CKUNLOCK. (If
you log o� from any connection with the system, the �le is also unlocked.) Since dynamic
locking takes place during shared access to the same �le by more than one user, it is
important that any �le locked by CKLOCK be unlocked as soon as possible by CKUNLOCK.

To use CKUNLOCK, the �le must be opened for shared access with dynamic locking allowed.
This can only be done by calling CKOPENSHR to open the �le, not CKOPEN.

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation was
successful and if so, what it was. (Refer to Filetable Parameter discussion
earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion of
the call to CKUNLOCK. It indicates whether or not the �le was successfully
unlocked and if not, why not. The status word is to\00" if the �le was
unlocked successfully; to \31 "if the �le was not locked; or to \9n" where n is
a binary �le system error code if the call fails for any other reason. (Refer to
Status Parameter discussion earlier in this section.)

USING CKUNLOCK

After calling CKUNLOCK, you should always check the status parameter to make sure that
the procedure was executed successfully. When successful, the �le locked by CKLOCK is
again made available for access by other users. If the �le was not locked by CKLOCK, when
CKUNLOCK is called, status is set to \31."

EXAMPLES

The following example unlocks a �le previously locked by CKLOCK. (Refer to the CKLOCK
example.)

DATA DIVISION.

.

.

.

77 RESULT PICTURE 9(4) VALUE 0.

01 STATUSKEY.

02 STATUS-KEY1 PICTURE X VALUE " ".

02 STATUS-KEY2 PICTURE X VALUE " ".

01 FILETABLE.

02 FILENUMBER PICTURE S9(4) COMP VALUE 0.

02 FILENAME PICTURE X(8) VALUE "KSAMFILE".

02 I-O-TYPE PICTURE S9(4) COMP VALUE 0.

02 A-MODE PICTURE S9(4) COMP VALUE 0.

02 PREV-OP PICTURE S9(4) COMP VALUE 0.

PROCEDURE DIVISION.

.

3-34 USING KSAM FILES IN COBOL PROGRAMS

.

.

CALL "CKUNLOCK" USING FILETABLE, STATUSKEY.

IF STATUSKEY ="00"

THEN DISPLAY "CKUNLOCK IS OK"

ELSE IF STATUSKEY ="31"

THEN DISPLAY="FILE NOT PREVIOUSLY LOCKED BY THIS PROCESS"

ELSE IF STATUS-KEY1 ="9"

THEN CALL"CKERROR" USING STATUSKEY, RESULT

DISPLAY "ERROR NO.", RESULT.

CKWRITE

Procedure CKWRITE copies a logical record from the program's data area to an output or an
input-output �le.

CALL "CKWRITE" USING �letable, status, record, recordsize

A call to procedure CKWRITE may be used to write records to a KSAM �le either in
sequential order or randomly by key value. The �le must have been opened for output or for
input-output, but not for input only.

PARAMETERS

�letable an 8-word record containing the number and name of the �le, its input-output
type, access mode, and a code indicating whether the previous operation on
the �le was successful and if so what it was. (Refer to Filetable Parameter
discussion earlier in this section.)

status one-word (two 8-bit characters) set to a pair of values upon completion of
the call to CKWRITE to indicate whether or not the record was successfully
written and if not why not. (Refer to Status Parameter discussion earlier in
this section.)

record a record de�ned in the WORKING-STORAGE SECTION containing data to
be written to the �le by CKWRITE.

recordsize an interger (S9(4)COMP) containing the length in characters of the record to
be written.lt must not exceed the maximum record length established for the
�le when it was created, and it must be long enough to contain all the keys.

USING CKWRITE

The �le to which the content of record is written must be open for output only if sequential
mode is speci�ed. It may be opened for output or input-output if the access mode at open is
random or dynamic.

WRITING IN SEQUENTIAL MODE. When the �le is opened for sequential access (access
mode = 0) and for output only (I-O type = 1), then records must be written to the �le in
ascending sequential order by primary key value. The value of the primary key in the record
to be written must be greater than the value of the primary key in any record previously
written to the �le. This insures that the records written to the �le are initially in ascending
order physically as well as logically.

USING KSAM FILES IN COBOL PROGRAMS 3-35

When I-O type = 1, CKWRITE writes records starting at the beginning of the �le, thereby
e�ectively clearing any records previously written to the �le.

WRITING IN RANDOM MODE. In a �le opened for random or dynamic access (access
mode = 1 or 2) and for output only or for input-output (I-O type = 1 or 2), records can be
written in any order; the value of the primary key need not be in any particular relation to
the primary key values of previously written records.

If you want to preserve existing records in the �le, you should open the �le with the
input-output type equal to 2; when input-output type = 1, all existing records are cleared
prior to the write.

WRITING WHEN ACCESS IS SHARED. If the �le was opened for shared access with
CKOPENSHR, then you must lock the �le with a call to CKLOCK before writing any
records. After the records are written, you should unlock the �le with a call to CKUNLOCK.

INVALID KEY. The invalid key condition (left byte of status=\2") can occur as a result of
the following circumstances:

File was opened for sequential access in output mode and the value of the primary key in
the record being written is less than or equal to the value of the primary key in the record
just written; status=\21".

File was opened for sequential or random access in output or input-output mode and the
value of the primary key is equal to the value of the primary key in an existing record;
status=\22".

File was opened for sequential or random access in output or input-output mode and
the value of an alternate key for which duplicates are prohibited equals the value of a
corresponding key in an existing record; status=\22".

File was opened for sequential or random access in output or input-output mode and an
attempt was made to write a record beyond the physical bounds of the �le; status=\24".

EXAMPLES

Assume a KSAM �le called KSAMFILE with records containing 74 characters (72 characters
of data following two characters reserved for the delete code), one primary key containing a
name, and an alternate key containing a phone number. The data is read from an input �le
called DATA-FILE. (Refer to Figure 3-2 for a diagram of the structure of this �le.)

The �rst example writes data to KSAMFILE in sequential order by the primary key. The
second example, using the same DATA DIVISION and the same FINISH procedure, writes
one record to the �le containing the \ADAMSON JOHN" as its primary key value.

1. Example of Sequential Write.

DATA DIVISION

.

.

.

WORKING-STORAGE SECTION.

77 RECSIZE PIC S9(4) COMP VALUE 74.

77 RESULT PIC 9(4) VALUE 0.

01 REC.

03 FILLER PIC XX VALUE SPACES.

03 NAME PIC X(20).

03 PHONE PIC X(8).

3-36 USING KSAM FILES IN COBOL PROGRAMS

03 OTHERDATA PIC X(44).

01 DAT.

03 NAME PIC X(20).

03 PHONE PIC X(8).

03 OTHERDATA PIC X(44).

01 FILETABLE.

03 FILENUMBER PIC S9(4) COMP VALUE 0.

03 FILENAME PIC X(8) VALUE "KSAMFILE".

03 I-O-TYPE PIC S9(4) COMP VALUE 0.

03 A-MODE PIC S9(4) COMP VALUE 0.

03 PREV-OP PIC S9(4) COMP VALUE 0.

01 STAT.

03 STATUS-KEY-1 PIC X.

03 STATUS-KEY-2 PIC X.

.

.

.

PROCEDURE DIVISION.

START.

.

.

.

MOVE 1 TO I-O-TYPE,<----------------- set type to output only

CALL "CKOPEN" USING FILETABLE, STAT.

IF STATUS-KEY-1="O" THEN GO TO WRITE-F.

DISPLAY "CKOPEN ERROR, STATUS = ", STAT.

IF STATUS-KEY-1= "9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKERROR NO. ", RESULT.

STOP RUN.

WRITE-F.

READ DATA-FILE INTO DAT;

AT END GO TO FINISH.

MOVE CORRESPONDING DAT TO REC.

CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1="0" THEN

DISPLAY REC.

GO TO WRITE-F.

IF STAT="21" THEN

DISPLAY "SEQUENCE ERROR IN", NAME OF REC

GO TO WRITE-F.

IF STAT = "22" THEN

DISPLAY "DUPLICATE KEY", NAME OF REC

GO TO WRITE-F.

IF STAT = "24" THEN

DISPLAY "END OF FILE"

GO TO FINISH.

.

.

.

FINISH

CLOSE DATA-FILE.

CALL "CKCLOSE" USING FILETABLE, STAT.

IF STATUS-KEY-1="9" THEN

CALL "CKERROR" USING STAT, RESULT

DISPLAY "CKCLOSE ERROR NO. ", RESULT.

STOP RUN.

2. Example of random write.

PROCEDURE DIVISION.

USING KSAM FILES IN COBOL PROGRAMS 3-37

START.

.

.

.

MOVE 1 TO I-O TYPE.<------------- output only

MOVE 2 TO A-MODE.<-------------- random access

CALL "CKOPEN"USING FILETABLE, STAT.

.

. check status

.

FIND-REC.

READ DATA-FILE INTO DAT;

AT END GO TO FINISH.

IF NAME OF DAT = "ADAMSON JOHN" THEN

GO TO WRlTE-REC;

ELSE GO TO FIND-REC.

WRITE-REC.

MOVE CORRESPONDING DAT TO REC.

CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE.

IF STATUS-KEY-1="0" THEN

DISPLAY REC," RECORD WRITTEN"

GO TO FINISH.

IF STAT = "22" THEN

DISPLAY "DUPLICATE KEY"

GO TO FINISH.

IF STAT = "24" THEN

DISPLAY "NO ROOM IN FILE"

GO TO FINISH.

.

.

.

EXAMPLES OF KSAM FILE ACCESS FROM COBOL PROGRAM

The following three examples illustrate KSAM �le access from a COBOL program. The �le
accessed in each example is called KSAMFILE. It was created previously by the KSAMUTIL
>BUILD command with BYTE type keys: the primary key containing the name of a person
and the alternate key containing his telephone number; the remaining data in each record is
his address.

EXAMP1. SEQUENTIAL WRITE

The �rst example reads data from an input �le into working storage and then writes it to a
KSAM �le. Access mode is sequential so that as each record is written, the keys are linked in
sequential order although the records are not physically written in sequence. Input-output
type is output only, the only type allowed for the procedure CKWRITE. The following
procedures are illustrated:

CKOPEN

CKWRITE

CKCLOSE

3-38 USING KSAM FILES IN COBOL PROGRAMS

Input to EXAMP1:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ECKSTEIN LEO 287-5137 5303 STEEVENS CREEK SANTA CLARA CA. 95050

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94012

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

ROBERT GERRY 258-5535 12345 TELEGRAPH AVE . BERKELEY CA. 90871

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

END OF INPUT FOR EXAMP1

Program EXAMP1

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. EXAMP1.

001200 ENVIRONMENT DIVISION.

001300 INPUT-OUTPUT SECTIONS

001400 FILE-CONTROL.

001500 SELECT SEQ-DATA ASSIGN TO "SEQDATA".

001600 DATA DIVISION.

001700 FILE SECTION.

001800 FD SEQ-DATA

001900 LABEL RECORDS ARE STANDARD.

002000 01 INPUT-REC.

002100 05 REAL-DATA PIC X(72).

002200 WORKING-STORAGE SECTION.

002300 77 RECSIZE PIC S9(4) COMP VALUE 74.

002400 77 RESULT PIC 9(4) VALUE ZERO.

002500 01 DATA-REC.

002600 05 FILLER PIC XX VALUE SPACES.

002700 05 REAL-DATA PIC X(72). l

Figure 3-3. Sequential Write Using COBOL

USING KSAM FILES IN COBOL PROGRAMS 3-39

002800 01 FILETABLE.

002900 02 FILENUMBER PIC S9(4) COMP VALUE 0.

003000 02 FILENAME PIC X(8) VALUE "GKSAMFIL".

003100 02 I-O-TYPE PIC S9(4) COMP VALUE 1.

003200 02 A-MODE PIC S9(4) COMP VALUE 0.

003300 02 PREV-OP PIC S9(4) COMP VALUE 0.

003400 01 STATUSKEY.

003500 02 STATUS-KEY-1 PIC X.

003600 02 STATUS.KEY-2 PIC X.

003700

003800 PROCEDURE DIVISION.

003900 START.

004000 OPEN INPUT SEQ-DATA@

004100 CALL "CKOPEN" USING FILETABLE, STATUSKEY.

004200 IF STATUS-KEY-1="9" THEN

004300 CALL "CKERROR" USING STATUSKEY, RESULT

004400 DISPLAY "CKOPEN ERROR NO.", RESULT.

004500 IF STATUS-KEY-1 NOT = "0" THEN

004600 DISPLAY "CKOPEN FAILED"

004700 STOP RUN.

004800 LOOP.

004900 READ SEQ-DATA

005000 AT END GO TO FINISH.

005100 MOVE CORP INPUT-REC TO DATA-REC.

005200 CALL "CKWRITE" USING FILETABLE, STATUSKEY, DATA-REC,

005300 RECSIZE.

005400 IF STATUSKEY = "02" THEN

005500 DISPLAY "DUPLICATE KEY".

005600 IF STATUS-KEY-1 = "0" THEN

005700 DISPLAY DATA-REC

005800 GO TO LOOP.

005900 IF STATUS-KEY-1 = "9" THEN

006000 CALL "CKERROR" USING STATUSKEY, RESULT

006100 DISPLAY "CKWRITE ERROR NO.", RESULT

006200 DISPLAY DATA-REC

006300 GO TO LOOP.

006400 FINISH.

006500 CLOSE SEQ-DATA.

006600 CALL "CKCLOSE" USING FILETABLE, STATUSKEY.

006700 IF STATUS-KEY-1 = "9" THEN

006800 CALL "CKERROR" USING STATUSKEY, RESULT

006900 DISPLAY "CKCLOSE ERROR NO. ". RESULT.

007000 STOP RUN.

Output from EXAMP1 Execution:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ECKSTEIN LEO 287-5137 5303 STEEVENS CREEK SANTA CLARA CA. 95050

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94012

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

ROBERT GERRY 258-5535 12345 TELEGRAPH AVE . BERKELEY CA. 90871

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

END OF PROGRAM

Figure 3-3. Sequential Write Using COBOL(continued)

3-40 USING KSAM FILES IN COBOL PROGRAMS

EXAMP2. SEQUENTIAL READ

The second example reads the �le KSAMFILE in sequential order by primary key (NAME)
and prints each record as it is read. It then repositions the �le to the �rst sequential record
according to the alternate key (PHONE) and prints each of the records as it is read in this
order. The �le is opened in sequential mode for input only. The following procedures are
illustrated:

CKOPEN

CKREAD

CKSTART

CKCLOSE

Program EXAM2:

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. EXAMP2.

001200 ENVIRONMENT DIVISION.

001300 INPUT-OUTPUT SECTION.

001400 FILE-CONTROL.

001500 SELECT SEQ-DATA ASSIGN TO "SEQDATA".

001600 DATA DIVISION.

001700 WORKING-STORAGE SECTION.

001800 77 RECSIZE PIC S9(4) COMP VALUE 74.

001900 77 RESULT PIC 9(4) VALUE ZERO.

002000 77 KEY-LOC PIC S9(4) COMP VALUE 23.

002100 77 RELOP PIC S9(4) COMP VALUE 2.

002200 77 KEYLENGTH PIC S9(4) COMP VALUE 8.

002300 77 KEY-VALUE PIC X(8) VALUE "000-0000".

002400 01 DATA-REC.

002500 05 FILLER PIC XX.

002600 05 NAME PIC X(20).

002700 05 PHONE PIC X(8).

002800 05 OTHER-DATA PIC X(44).

002900 01 FILETABLE.

003000 02 FILENUMBER PIC S9(4) COMP VALUE o.

003100 02 FILENAME PIC X(8) VALUE "GKSAMFIL".

003200 02 I-O-TYPE PIC S9(4) COMP VALUE o.

003300 02 A-MODE PIC S9(4) COMP VALUE o.

003400 02 PREV-OP PIC S9(4) COMP VALUE o.

003500 01 STATUSKEY.

003600 02 STATUS-KEY-l PIC X.

003700 02 STATUS-KEY-2 PIC X.

003800

003900 PROCEDURE DIVISION.

004000 START.

004100 CALL "CKOPEN" USING FILETABLE, STATUSKEY.

004200 IF STATUS-KEY-1 = "9" THEN

004300 CALL "CKERROR" USING STATUSKEY, RESULT

004400 DISPLAY "CKOPEN ERROR NO.", RESULT.

004500 IF STATUS-KEY-1 NOT = "0" THEN

004600 DISPLAY "CKOPEN FAILED"

004700 STOP RUN.

004800 DISPLAY "ALPHABETICAL ORDER"

004900 DISPLAY " ".

005000 L00P1.

005100 CALL "CKREAD" USING FILETABLE, STATUSKEY, DATA-REC,

005200 RESIZED.

005300 IF STATUS-KEY-1= "1" THEN GO TO PART2.

Figure 3-4. Sequential Read Using COBOL

USING KSAM FILES IN COBOL PROGRAMS 3-41

005400 IF STATUS-KEY-1 = "0" THEN

005500 DISPLAY DATA-REC

005600 ELSE

005700 DISPLAY "CKREAD ERROR, STATUS = ", STATUSKEY

005800 IF STATUS-KEY-1 = "9" THEN

005900 CALL "CKERROR" USING STATUSKEY, RESULT

006000 DISPLAY "ERROR NO.", RESULT.

006100 GO TO LOOP.

006200 PART2

006300 DISPLAY " ".

006400 DISPLAY "PHONE NO. ORDER:"

006500 DISPLAY " ".

006600 CALL "CKSTART" USING FILETABLE, STATUSKEY, RELOP,

006700 KEY-VALUE, KEY-LOC, KEYLENGTH.

006800 IF STATUSKEY = "23" THEN GO TO FINISH.

006900 IF STATUS-KEY-1 = "0" THEN GO TO LOOP2.

007000 DISPLAY "CKSTART ERROR, STATUS = ", STATUSKEY.

007100 IF STATUS-KEY-1 = "9" THEN

007200 CALL "CKERROR" USING STATUSKEY, RESULT

007300 DISPLAY "ERROR NO.", RESULT.

007400 GO TO FINISH.

007500 LOOP2

007600 CALL "CKREAD" USING FILETABLE, STATUSKEY, DATA-REC,

007700 RECSIZE.

007800 IF STATUS-KEY-1 = "1" THEN GO TO FINISH.

007900 IF STATUS-KEY-1 = "0" THEN

008000 DISPLAY DATA-REC

008100 ELSE

008200 DISPLAY "CKREAD ERROR, STATUS =", STATUSKEY

008400 IF STATUS-KEY-1 ="9" THEN

008400 CALL "CKERROR" USING STATUSKEY, RESULT

008500 DISPLAY "ERROR NO. ", RESULT.

008600 GO TO LOOP2.

008700 FINISH.

008800 CALL "CKCLOSE" USING FILETABLE, STATUSKEY.

008900 IF STATUS-KEY-1 = "9" THEN

009000 CALL "CKERROR" USING STATUSKEY, RESULT

009100 DISPLAY "CKCLOSE ERROR NO.", RESULT.

009200 STOP RUN.

Figure 3-4. Sequential Read Using COBOL (continued)

3-42 USING KSAM FILES IN COBOL PROGRAMS

Outtput from EXAMP2 Execution:

ALPHABETICAL ORDER:

CARDIN RICK 587-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

HOS0DA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

PHONE NO. ORDER:

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

END OF PROGRAM

Figure 3-4. Sequential Read Using COBOL (continued)

USING KSAM FILES IN COBOL PROGRAMS 3-43

EXAMP3. RANDOM UPDATE

This example reads a set of new data containing update information into the WORKING-
STORAGE SECTION. Each record read is followed by a U for update, a D for delete, or an A
for add. Records to be added are written to the �le KSAMFILE using CKWRITE in random
mode. Records to be updated are copied to the appropriate record with CKREWRITE.
Records to be deleted are �rst read in the WORKING-STORAGE SECTION with
CKREADBYKEY and then deleted with CKDELETE. The �le is opened in random mode for
input-output.

The procedures illustrated by this example are:

CKOPEN

CKREADBYKEY
CKDELETE

CKREWRITE

CKWRITE

CKCLOSE

Program EXAMP3:

001000 IDENTIFICATION DIVISION,

001100 PROGRAM-ID. EXAMP3.

001200 ENVIRONMENT DIVISION.

001300 INPUT-OUTPUT SECTION.

001400 FILE-CONTROL.

001500 SELECT NEW-DATA ASSIGN TO "NEWDATA".

001600 DATA DIVISION.

001700 FILE SECTION.

001800 FD NEW-DATA

001900 LABEL RECORDS ARE STANDARD.

002000 01 INPUT-REC PIC X(73),

002100 WORKING-STORAGE SECTION,

002200 77 RECSIZE PIC S9(4) COMP VALUE 74.

002300 77 RESULT PIC 9(4) VALUE ZERO.

002400 77 KEY-LOC PIC S9(4) COMP VALUE 3.

002500 01 MASTER-REC.

002600 05 FILLER PIC XX.

002700 05 NAME PIC X(20).

002800 05 PHONE PIC X(8).

002900 05 OTHER-DATA PIC X(44).

003000 01 DATA-REC.

003100 05 NAME PIC X(20).

003200 05 PHONE PIC X (8).

003300 05 OTHER-DATA PIC X(44).

003400 05 TRANSACTION-CODE PIC X.

003500 01 FILETABLE.

003600 02 FILENUMRER PIC S9(4) COMP VALUE o.

003700 O2 FILENAME PIC X(8) VALUE "GKSAMFIL".

003800 02 I-O-TYPE PIC S9(4) COMP VALUE 2.

003900 02 A-MoDE PIC S9(4) COMP VALUE 1.

004000 02 PHEV-OP PIC S9(4) COMP VALUE 0.

004100 01 STATUSKEY.

004200 02 STATUS-KEY-1 PIC X.

004300 02 STATUS-KEY-2 PIC X.

004400

Figure 3-5. Random Update with COBOL

3-44 USING KSAM FILES IN COBOL PROGRAMS

004500 PROCEDURE DIVISION.

004600 START.

004700 OPEN INPUT NEW-DATA.

004800 CALL "CKOPEN" USING FILETABLE, STATUSKEY.

004900 IF STATUS-KEY-1 = "9" THEN

005000 CALL "CKERROR" USING STATUSKEY, RESULT

005100 DISPLAY "CKOPEN ERROR NO.", RESULT.

005200 IF STATUS-KEY-1 NOT ="0" THEN

005300 DISPLAY "CKOPEN FAILED"

005400 STOP RUN.

005500 LOOP.

005600 READ NEW-DATA INTO DATA-REC;

005700 AT END GO TO FINISH.

005800 IF TRANSACTION-CODE = "A" THEN GO TO ADD.REC,

005900 IF TRANSACTION-CODE NOT = "D" AND "U" THEN

006000 DISPLAY "ILLEGAL TRANSACTION CODE"

006100 DISPLAY DATA-REC

006200 GO TO LOOP.

006300 CALL "CKREADBYKEY" USING FILETABLE, STATUSKEY, MASTER-REC,

006400 NAME OF DATA-REC, KEY-LOC, RECSIZE.

006500 IF STATUS-KEY-1 NOT = "0" THEN

006600 DISPLAY "CKREADBYKEY ERROR, STATUS =", STATUSKEY,

006700 "1 KEY =", NAME OF DATA-REC

006800 IF STATUS-KEY-1 = "9" THEN

006900 CALL "CKERROR" USING STATUSKEY, RESULT

007000 DISPLAY "ERROR NO.", RESULT

007100 GO TO LOOP

007200 ELSE

007300 GO TO LOOP.

007400 IF TRANSACTION-CODE = "D" THEN GO TO DELETE-REC.

007500 MOVE CORR DATA-REC TO MASTER-REC.

007600 CALL "CKREWRITE" USING FILETABLE, STATUSKEY, MASTER-REC,

007700 RECSIZE.

007800 IF STATUS-KEY-1 = "0" THEN

007900 DISPLAY MASTER-REC, "UPDATED"

008000 GO TO LOOP.

008100 DISPLAY "CKREWRITE ERROR, STATUS =", STATUSKEY, "1 KEY ="

008200 NAME OF MASTER-REC.

008300 IF STATUS KEY-1= "9" THEN

008400 CALL "CKERROR" USING STATUSKEY, RESULT

008500 DISPLAY "ERROR NO.", RESULT

008600 GO TO LOOP.

Figure 3-5. Random Update with COBOL (continued)

USING KSAM FILES IN COBOL PROGRAMS 3-45

008700 DELETE-REC.

008800 CALL "CKDELETE" USING FILETABLE, STATUSKEY.

008900 IF STATUS-KEY-1 = "0" THEN

009000 DISPLAY MASTER-REC, "DELETED"

009100 GO TO LOOP.

009200 DISPLAY "CKDELETE ERROR, STATUS =" STATUSKEY.

009300 IF STATUS-KEY-1 = "9" THEN

009400 CALL "CKERROR", USING STATUSKEY, RESULT

009500 DISPLAY "ERROR NO.", RESULT.

009600 GO TO LOOP.

009700 ADD-REC.

009800 MOVE CORR DATA-REC TO MASTER-REC.

009900 CALL "CKWRITE" USING FILETABLE, STATUSKEY, MASTER-REC.

010000 RECSIZE.

010100 IF STATUSKEY = "02" THEN

010200 DISPLAY "DUPLICATE KEY",

010300 IF STATUS-KEY-1 = "0" THEN

010400 DISPLAY MASTER-REC, "ADDED"

010500 GO TO LOOP.

010600 DISPLAY "CKWRITE ERROR, STATUS = ", STATUSKEY.

010700 IF STATUS-KEY-1 = "9" THEN

010800 CALL "CKERROR" USING STATUSKEY, RESULT

010900 DISPLAY "ERROR NO. ", RESULT.

Figure 3-5. Random Update with COBOL (continued)

3-46 USING KSAM FILES IN COBOL PROGRAMS

011000 DISPLAY MASTER-REC,

011100 GO TO LOOP.

011200 FINISH.

011300 CLOSE NEW-DATA.

011400 CALL "CKCLOSE" USING FILETABLE, STATUSKEY,

011500 IF STATUS-KEY-1 = "9" THEN

011600 CALL "CKERROR" USING STATUSKEY, RESULT

011700 DISPLAY "CKCLOSE ERROR NO.", RESULT

011800 STOP RUN.

Input to EXAMP3:

NOLAN JACK 923-4975 1 ANY STREET. SUNNYVALE CA. 94O87U

SMITH JOHN 555-1212 102 FIRST ST. OUR TOWN CA. 94099A

ECKSTEIN LEO D

CARDIN RICK 257-7000 11100 WOLFE ROAD CUPERTINO CA. 94041U

PASBY LINDAL D

JANE MARY 565-9090 1776 BICENTENNIAL ST. AMAHEIM CA. 91076A

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 94704U

TURNEW IVAN D

FORD GERALD 555-1976 1600 PENNSYLVANIS WASHINGTON DC. 20001U

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 94309A

Output from Execution of EXAMP3:

NOLAN JACK 923-4975 1 ANY STREET. SUNNYVALE CA. 94087

UPDATED

SMITH JOHN 555-1212 102 FIRST ST. OUR TOWN CA. 94099

ADDED

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

DELETED

CARDIN RICK 257-7000 11100 WOLFE ROAD CUPERTINO CA. 94014

UPDATED

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

DELETED

JANE MARY 565-9090 1776 BICENTENNIAL ST. ANAHEIM CA. 91076

ADDED

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 94704

UPDATED

CKREADBYKEY ERROR, STATUS = 231 KEY = TURNEW IVAN

CKREADBYKEY ERROR, STATUS = 231 KEY = FORD GERALD

CKWRITE ERROR, STATUS = 22

WESTER ELDER 287-44598 1256 KINGFISHER ST. SUNNYVALE CA. 9430A

Figure 3-5. Random Update with COBOL (continued)

Note Note that the input contains data that results in error messages. The name
IVAN TURNEWR is spelled incorrectly and cannot be found. The name
GERALD FORD does not exist in the original �le and also cannot be found.
On the other hand, the name ELDER WESTER already exists in the �le and
cannot be added since it is a primary key for which duplicates are not allowed.

USING KSAM FILES IN COBOL PROGRAMS 3-47

4

USING KSAM FILES IN SPL PROGRAMS

KSAM FILE SYSTEM INTRINSICS

The Multi-Programming Executive Operating System (MPE) provides a set of procedures,
known as intrinsics. A subset of these intrinsics makes up the �le system, a set of procedures
used to manipulate �les. KSAM �les are processed using these same intrinsics with the
following exceptions: seven new intrinsics are added for KSAM �les, and four of the �le
system intrinsics do not apply to KSAM �les. (Refer to Table 4-1 for a list of the KSAM �le
system intrinsics.)

USING KSAM FILES IN SPL PROGRAMS 4-1

Table 4-1. KSAM File System Intrinsics

INTRINSIC
NAME

KSAM
ONLY

NOT USED
BY KSAM

DIFFERENCES IN
FORMAT

FUNCTION

FOPEN ksamparam replaces formmsg
as sixth parameter.

Opens a KSAM �le for
access and assign �le
number to �le.

FCLOSE none Closes a KSAM �le to
further access.

[FRENAME] X | If called for KSAM �le,
returns CCL error code.

FREAD none Reads next record in
sequential order by key.

*FREADC X all new Reads next record in
chronological sequence.

*FREADBYKEY X all new Reads record identi�ed
by key value.

FREADDIR none Reads record identi�ed
by chronological
position.

[FREADSEEK] X If called for KSAM �le,
returns CCL error code.

FWRITE control parameter included
for compatibility only.

Writes record to KSAM
�le.

[FWRITEDIR] X | If called for KSAM �le,
returns CCL error code.

*FREMOVE X all new Deletes current record
from KSAM �le.

FUPDATE none Updates last referenced
record.

FSPACE none Spaces forward or
backward in �le.

*FFINDBYKEY X all new Positions current record
pointer to record
located by key value.

4-2 USING KSAM FILES IN SPL PROGRAMS

Table 4-1. KSAM File System Intrinsics (continued)

INTRINSIC
NAME

KSAM
ONLY

NOT USED
BY KSAM

DIFFERENCES IN
FORMAT

FUNCTION

*FFINDN X all new Positions current record
pointer to relative
record number in key
sequence.

FPOINT none Positions current record
pointer to relative
record number in
chronological sequence.

FGETINFO none Requests �le access and
status information.

*FGETKEYINFO X all new Requests access and
status information on
KSAM �le.

[FRELATE] X | If called for KSAM �le,
returns CCE and false
condition.

FCHECK none Requests details of �le
input/output errors.

FERRMSG none Prints message
corresponding to
FCHECK error code.

FCONTROL param parameter included
for compatibility only

Ensures that
input/output is
complete or positions to
�rst sequential record
by key value; other
options not available for
KSAM �le.

FSETMODE none Veri�es critical output
as part of write
operation; other options
not available for KSAM
�le.

FLOCK none Dynamically locks �le.

FUNLOCK none Dynamically unlocks
�le.

FREADLABEL none Reads user's �le label.

FWRITELABEL none Writes user's �le label.

USING KSAM FILES IN SPL PROGRAMS 4-3

KSAM File System Intrinsics (continued)

INTRINSIC
NAME

KSAM
ONLY

NOT USED
BY KSAM

DIFFERENCES IN
FORMAT

FUNCTION

*HP32208 X all new Identi�es the KSAM
version.

FDELETE X Deactivates a RIO
record.

FDEVICE-
CONTROL

X Provides control
operations to a printer,
Workstation
Con�gurator, or a
spooled device.

FFILEINFO none Provides access to �le
information.

FLABELINFO The information returned
may not match what is
returned from FFILEINFO.

Returns information
from the �le label of a
disc �le.

FPARSE none Passes and validates �le
designators.

FREAD-
BACKWARD

X Reads a logical record
backward from the
current record pointer.
Data is presented to the
user as if read forward.

CALLING INTRINSICS FROM SPL

An intrinsic used in an SPL program must be declared at the beginning of the program
following all other declarations. There are two ways to declare an intrinsic: one is to make an
external procedure declaration, and the other is to use the INTRINSIC declaration. Since
declaring an external procedure is a long process, you can save space and time by using the
INTRINSIC declaration as follows:

INTRINSIC intrinsicname, intrinsicname,..., intrinsicname;

You name all the intrinsics used in your program in the intrinsicname list. When more than
one intrinsic is named, the names must be separated by commas.

You call an intrinsic by writing the intrinsic name followed by a list of parameters enclosed in
parentheses. These parameters must be in the order established for each intrinsic as shown in
the intrinsic formats later in this section. Every parameter that is speci�ed as a variable or
an array must be declared before the intrinsic is called. The formats that describe intrinsics
de�ne the variable or array type of each parameter; specify whether it can be passed by value
or must be passed by reference; and indicate whether any parameters are optional and if so
which ones.

In summary, to call an intrinsic from an SPL program:

1. Refer to the intrinsic format to determine the parameter type and position.

4-4 USING KSAM FILES IN SPL PROGRAMS

2. Declare any variable or array names to be passed as parameters at the beginning of the
program.

3. Declare the intrinsic name in an INTRINSIC statement.

4. Issue the intrinsic call where appropriate in your program.

KSAM INTRINSIC SUMMARY

Table 4-1 is provided to give an overview of the intrinsics available for accessing KSAM
�les. In this table, the intrinsics are organized into functional groupings. In the body of
this section, however, the intrinsic descriptions are in alphabetic order so that they may be
referenced easily.

In Table 4-1, an asterisk (*) preceding an intrinsic name indicates that this intrinsic applies
only to KSAM �les. A bracket around an intrinsic name indicates that the intrinsic should
not be used for KSAM �les.

INTRINSIC FORMAT

Intrinsic format is illustrated below using FCHECK as an example.

IV I I D I O-V

FCHECK(�lenum,errorcode,tlog,blknum,numrec);

Optional parameters are indicated by an underline under each option and by the superscript
O-V. The parameter type and whether it is passed by value is shown by the superscript over
each parameter. Possible parameter types are:

BA Byte array
BP Byte pointer
D Double
DA Double array
DV Double by value
I Integer
IA Integer array
IV Integer by value
L Logical
LA Logical array
LV Logical by value
R Real

PASSING PARAMETERS

Integer,logical and double type parameters can be passed by value. This means that the
actual value can be speci�ed in the intrinsic call instead of a variable or array name. When a
parameter is passed by reference (default for all parameter types), the address in the caller's
data area of the named variable or array is made available to the intrinsic. If the variable or
array is modi�ed by execution of the intrinsic, the storage in the caller's data area is updated.
When a parameter is passed by value, the corresponding variable in the calling routine is
unchanged.

USING KSAM FILES IN SPL PROGRAMS 4-5

OPTIONAL PARAMETERS

If any parameters can be omitted, the superscripts that describe individual parameters are
followed by the superscript O-V, option variable. O-V means that at least one parameter
in the list is optional. Since all parameters are recognized by their position in the list, a
parameter may be omitted but its preceding comma must be included. If one or more
parameters are omitted from the end of the list, this is indicated by placing the terminating
parenthesis after the last speci�ed parameter.

For example:

FCHECK(FILEX , , , , REC) only the �rst and �fth parameters are included

FCHECK(2,ERR) the last three parameters are omitted; note that

�lenum is passed by value

4-6 USING KSAM FILES IN SPL PROGRAMS

KSAM RECORD POINTERS

Certain KSAM procedures use pointers that indicate the current record position in the �le.
Depending on the procedure, either of two pointers may be used:

* Logical Record Pointer Points to a key in the key file that

identifies a particular record in

the data file.

* Chronological Record Points directly to a record in the data

Pointer file based on its chronological record number.

Procedures that use these pointers are either pointer-dependent or pointer-independent .
Pointerdependent procedures expect the pointer to be positioned in order to execute correctly.
Pointerindependent procedures, on the other hand, execute regardless of where the pointer is
positioned, and in most cases, they position the pointer. Because the position of the pointer
is signi�cant for pointer-dependent procedures, Table 4-2 de�nes exactly where each pointer
is located following successful execution of those procedures that either depend on or position
the pointer.

USING KSAM FILES IN SPL PROGRAMS 4-7

Table 4-2. Positioning the Pointers

PROCEDURE
NAME

POINTER
TYPE

POINTER-
DEPENDENT

POSITION OF POINTER AFTER
EXECUTION OF PROCEDURE

FFINDBYKEY Logical NO Points to key whose value was speci�ed in call.

FFINDN Logical NO Points to key whose relative record number was
speci�ed in call.

FREADBYKEY Logical NO Points to key whose value was speci�ed in call.

FWRITE Logical NO Points to key whose value is next in ascending key
sequence to the key value in the record just
written.

FPOINT Chrono-
logical

NO Points to record whose relative record number was
speci�ed in call.

FREADDIR* Chrono-
logical

NO Points to record whose relative record number was
speci�ed in call.

FREAD Logical YES Pointer remains positioned to key for the record
just read; unless next call is to FREAD or to
FUPDATE followed by FREAD, in which case,
pointer is advanced to next key in sequence before
the next FREAD reads the record. (This permits
sequential reads and updates.)

FSPACE Logical YES Positioned forward or backward, in key sequence,
the number of records speci�ed in call.

FREMOVE Logical YES Points to next key value, in ascending sequence,
to the key value in the record just deleted.

FUPDATE Logical YES Pointer remains positioned to key of the record
just modi�ed; unless any key value is changed, in
which case, it points to next key in ascending
sequence after the key in the modi�ed record.

FREADC Chrono-
logical

YES Pointer remains positioned to the record just
read; unless next call is to FREADC, in which
case, it points to next record in ascending
chronological sequence.

* Except for FREADDIR, each of these procedures positions both pointers. That is, all
procedures that position the logical pointer also position the chronological pointer, and all
calls (except FREADDIR) that position the the chronological poiner also position the logical
pointer.

(Refer to appendix B, Extra Data Segments With Shared Access, for details of how KSAM
determines pointer position.)

4-8 USING KSAM FILES IN SPL PROGRAMS

SHARED ACCESS

The position of the record pointers is crucial during shared access because the pointers are
maintained in separate control blocks (extra data segments) for each open �le. Thus, if the
same �le is opened by di�erent users, any user may change the key �le structure by adding
or deleting records so that other users' pointers become invalid. To avoid this problem, it is
good practice to lock the �le in a shared environment before calling a procedure that positions
the pointer and leave the �le locked until any pointer-dependent operation is complete. This
means that you should lock the �le, call a procedure that sets the pointer, and then call a
procedure that reads the �le sequentially or updates the �le, and then unlock the �le so other
users may access it. Once the �le is unlocked, no user should assume that his pointers will still
be valid. Before using a pointer again, it must be re-established.

USING KSAM FILES IN SPL PROGRAMS 4-9

FCHECK

INTRINSIC NUMBER 10

Requests details about �le input/output errors.

IV I I D I O-V

FCHECK(filenum,errorcode,tlog,blknum,numrecs);

When a �le intrinsic returns a condition code indicating a physical input/output error,
additional details may be obtained by calling FCHECK. This intrinsic applies to �les on any
device.

FCHECK accepts zero as a legal �lenum parameter value. When zero is speci�ed, the
information returned in errorcode re
ects the status of the last call to FOPEN. When an
FOPEN fails, there is no �le number that can be referenced in �lenum . Therefore, when
an FOPEN fails, a �lenum of zero can be used in the FCHECK intrinsic call to obtain the
errorcode only. If the tlog , blknum, or numrecs parameters are speci�ed, a zero value is
returned to these parameters. If a �lenum of zero is used for a �le which has been opened but
not yet closed, the returned errorcode is meaningless.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le for which error
information is to be returned.

errorcode integer (optional)

A word to which is returned the error code specifying the type of error that
occurred. If no error occurred errorcode is set to zero. (Refer to Table 4-3 for
the errorcode values.) The intrinsic FERRMSG returns a displayable message
that corresponds to the value of errorcode.

Default: The error code is not returned .

tlog integer (optional)

A word to which is returned the transmission log value recorded when an
erroneous data transfer occurs. This word speci�es the number of words not
read or written (those left over) as the result of an input/ output error.

Default: The transmission log value is not returned.

blknum double (optional)

A double word to which is returned the relative number of the block involved
in the error.

Default: The block number is not returned.

numrecs integer (optional)

A word to which is returned the number of logical records in the bad block.

Default: The number of logical records is not returned.

4-10 USING KSAM FILES IN SPL PROGRAMS

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because �lenum was invalid and errorcode is 72, or a bounds
violation occurred while processing this request and errorcode is 73.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

Table 4-3. FCHECK errorcode Parameter Format

Table 4-3. FCHECK errorcode Parameter Format (continued)

USING KSAM FILES IN SPL PROGRAMS 4-11

Table 4-3. FCHECK errorcode Parameter Format (continued)

4-12 USING KSAM FILES IN SPL PROGRAMS

Table 4-3. FCHECK errorcode Parameter Format (continued)

USING KSAM FILES IN SPL PROGRAMS 4-13

4-14 USING KSAM FILES IN SPL PROGRAMS

FCLOSE

INTRINSIC NUMBER 9

Closes a �le.

IV IV IV

FCLOSE(�lenum,disposition,seccode);

The FCLOSE intrinsic terminates access to a �le. This intrinsic applies to �les on all devices.
FCLOSE deletes the bu�ers and control blocks through which the user process accessed the
�le. It also deallocates the device on which the �le resides and it may change the disposition
of the �le. If you do not issue FCLOSE calls for all �les opened by your process, such calls are
issued automatically by MPE when the process terminates.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be closed.

disposition integer by value (required)

Indicates the disposition of the �le, signi�cant only for �les on disc. This
disposition can be overridden by a corresponding parameter in a :FILE
command entered prior to program execution. The disposition options are
de�ned in Table 4-4

Default: disposition is zero for no change, no return of disc space.

seccode integer by value (required)

Denotes the type of security initially applied to the �le, signi�cant only for
new permanent �les. The options are:

0|Unrestricted access|the �le can be accessed by any user, unless prohibited
by current MPE provisions.

1|Private �le creator security|the �le can be accessed only by its creator.

Default: seccode is zero for unrestricted access.

Note Both parameters are required when FCLOSE is speci�ed in a program; the
default values are used when MPE closes any open �les at the end of a job or
session.

USING KSAM FILES IN SPL PROGRAMS 4-15

Table 4-4. FCLOSE disposition Parameter Bit Settings

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15

Disc Space Domain

Set shaded areas to zero for KSAM �les.

BITS OPTION SETTINGS

13:3 Domain 000 = No change. (default) The disposition code remains as it
was before the �le was opened. Thus, if the �le is new,
it is deleted by FLCOSE: otherwise, the �le is assigned
the domain to which it previously belonged.

001 = Permanent �le. If a disc �le, it is saved in the system
domain. If the �le is a new or temporary �le, an entry is
created for it in the system �le directory. An error code
is returned if a �le of the same name already exists in
the directory. This disposition has no e�ect when the
�le is an old permanent �le on disc.

010 = Temporary job �le. This �le is retained in the user's
temporary (job/session) �le domain. It can be requested
by any process within the job/session. The uniqueness
of the �le name is checked and if a �le of the same name
already exists, an error code is returned.

011 = Temporary job �le. This option has the same e�ect as
disposition code 010.

100 = Released �le. The �le is deleted from the system.

12:1 Disc Space
Disposition

0 = No return. (default) Any disc space allocated to the �le
that is beyond the end-of-�le indicator is not returned
to the system. This option is recommended for KSAM
�les.

1 = Return disc space. Any disc space allocated beyond the
end-of-�le indicator is returned to the system. This
option is not recommended for KSAM users since the
returned space cannot be recovered.

CONDITION CODES

CCE The �le was closed successfully.

CCG Not returned by this intrinsic.

CCL The �le was not closed, perhaps because an incorrect �lenum was speci�ed, or
because another �le with the same name and disposition exists in the system.

4-16 USING KSAM FILES IN SPL PROGRAMS

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FCLOSE

The FCLOSE intrinsic terminates access to a �le so that it cannot be accessed again by the
current program until it is re-opened. FCLOSE can also be used to change the disposition
currently assigned to a �le by a previous FOPEN.

Because of the special structure of KSAM �les, it is not good practice to set the disc space bit
in the disposition parameter in an attempt to save disc space. For this reason, 4 is the largest
value that should be assigned to the disposition parameter when using FCLOSE to close a
KSAM �le.

When a �le is opened by the FOPEN intrinsic, a �le count maintained by the system is
incremented by one. When the �le is closed with FCLOSE, the �le count is decremented by
one. If more than one FOPEN is in e�ect for a particular �le, its disposition is recorded by
the FCLOSE call but is not put into e�ect until the �le count is zero. The e�ective disposition
at that time is the smallest non-zero disposition parameter speci�ed among all the FCLOSE
calls issued against the �le. For example, a �le XYZ is opened three successive times by a
process. The �rst FCLOSE disposition is 1, the second FCLOSE disposition is 4, and the
third and last FCLOSE disposition is 2. The �nal disposition of the �le XYZ is 1, that is, it is
saved as a permanent �le with no return of disc space.

The use of FCLOSE di�ers slightly in its application to new �les or to existing �les.

CLOSING A NEW KSAM FILE

When a new �le is created by FOPEN, the job temporary and system �le domains are not
searched to determine whether a �le of the same name exists already. Only when a �le is
closed and saved as a permanent or temporary �le with FCLOSE, is such a search conducted.
The job temporary �le domain is searched if the �le is closed with the domain �eld of
disposition set to 2 or 3 (save as temporary �le); the system �le domain is searched if the �le
is closed with domain set to 1 (save as permanent �le). If a �le of the same name is found in
either directory, an error code is returned. Thus it is possible to open a new �le with the same
name as an existing �le, but an error results if FCLOSE is used to save such a �le in the same
domain with a �le of the same name.

In general, unless you plan to use the �le once and then delete it, a newly created �le should
be closed using FCLOSE with the disposition parameter set to 1, 2, or 3. There is no need to
set disposition to 4 in order to delete a new �le since a new �le is deleted when it is closed
with a disposition of 0.

The security code parameter (seccode) is set only when the disposition parameter is set to
1. If you want exclusive access to a �le being saved as a new permanent �le, you should set
seccode to 1 when you close the �le for the �rst time. Otherwise, the �le can be accessed by
any other user.

In Figure 4-1, a new �le is closed and saved as a permanent �le in the system �le domain
(disposition = 1), and access is permitted to the �le by other users (seccode = 0).

USING KSAM FILES IN SPL PROGRAMS 4-17

CLOSING AN EXISTING KSAM FILE

Unless you plan to change the domain where a �le is saved, you usually close an existing �le
with both FCLOSE parameters set to zero. There are two limitations: you cannot change an
existing permanent �le to a temporary �le, and you cannot change the security code that was
assigned to a permanent �le at creation.

<<**************************************>>

<<* READ DATA FROM $STDIN DEVICE *>>

<<**************************************>>

L1 :

READ(INPUT,-72): <<READ ONE RECORD FROM $STDIN>>

IF >

THEN BEGIN <<END OF FILE ON $STDIN>>

FCLOSE(FILNUM,1,0); <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN <<CANNOT CLOSE THE KSAM FILE>>

MOVE MESSAGE:="CANNOT CLOSE THE KSAM FILE":

PRINT (MESSAGE,-29,0):

FCHECK(FILNUM,ERRORCODE): <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH):<<GET MESSAGE STRING>>

PRINT(MESSAGE,-LENGTH,0)1 <<PRINT ERROR MESSAGE>>

END;

TERMINATE;

END;

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING INPUT";

PRINT(MESSAGE,-34,0);

TERMINATE;

END;

PRINT(OUTPUT,-72,0); <<ECHO CHECK>>

Figure 4-1. FCLOSE Example

Assume, for example, that a �le was closed as a job temporary �le. Should you want to make
the �le permanent, close the �le with the following call:

FCLOSE(FILENUM,1,0) close job temporary �le as permanent �le

If, however, you want to maintain this �le with its cu� ent disposition, you would close it with
the following call:

FCLOSE(FILENUM,0,0) close �le with current disposition

Regardless of the value assigned to seccode, the type of security initially applied to the �le
when it is closed as a new permanent �le is not subsequently changed.

DELETING A KSAM FILE

The FCLOSE intrinsic can be used to delete a KSAM �le from the system. If you intend to
use a new �le once only, you can delete it at the same time you close it for the �rst time by
setting the FCLOSE parameters to zero:

FCLOSE(FILNUM,0,0) delete a new �le

In this case, because disposition is zero, the �le is returned to its domain before FCLOSE is
executed. Since the �le is not assigned a domain until it is closed the �rst time, this e�ectively
deletes the �le.

4-18 USING KSAM FILES IN SPL PROGRAMS

A �le that has been assigned to a domain by a previous FCLOSE, can be deleted by the call:

FCLOSE(FILNUM,4,0) delete an existing �le

Note that the only other methods for deleting a KSAM �le are to use the
KSAMUTIL>PURGE command, or to issue two MPE :PURGE commands, one for
the data �le and one for the key �le.

USING KSAM FILES IN SPL PROGRAMS 4-19

FCONTROL

INTRINSIC NUMBER 13

Performs control operations on a KSAM �le.

IV IV L

FCONTROL(�lenum,controlcode,param);

The FCONTROL intrinsic performs various control operations on a KSAM �le. When
speci�ed for a KSAM �le, these control operations are limited to the following:

Complete input/output

Rewind the �le

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le for which the control
operation is to be performed.

controlcode integer by value (required)

An integer identifying the operation to be performed:

2 = Complete Output. This insures that requested output has been physically
completed; that is, that the key bu�ers, data bu�ers, and KSAM control
information are all written to disc.

When access is shared, you must lock the �le with FLOCK before calling
FCONTROL with control code 2.

5 = Rewind File. This repositions the �le at its beginning, so that the next
record read or written is the �rst logical record in the �le. When this code is
used for KSAM �les, the �le is not repositioned to the �rst physical record
but to the �rst logical record. The �rst logical record is the record with the
lowest value in the current key (primary or alternate)

[***text removed at this point***]

param logical (required)

This parameter may be speci�ed as any variable or word identi�er; it is
needed by FCONTROL to satisfy internal requirements of the intrinsic, but
serves no other purpose and is not modi�ed by the instrinsic.

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because an error occurred. Returned if any control code
other than 2, 5, 6, or 7 is speci�ed for a KSAM �le; or the �le was opened for
shared access, but was not locked for control code 2 or 6.

4-20 USING KSAM FILES IN SPL PROGRAMS

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FCONTROL

FCONTROL provides four control functions for KSAM �les. These allow you to write the
key and data bu�ers and all KSAM control information to disc; to position the logical record
pointer to the �rst logical record in the �le; to write the bu�ers, KSAM control information,
plus the MPE endof-�le and the latest extent bit map, to disc; and to clear all the data
bu�ers and the latest control information from disc.

The control functions that write the bu�ers to disc (2 and 6) require that you lock the �le
before calling them in a shared access environment.

USING CONTROL CODE 2

When you use control code 2, the data block and key block bu�ers and the KSAM control
information (including the KSAM end-of-�le) are written to disc. (The data written is that
contained in the Extra Data Segment for the open �le|refer to Figure B-11 for details.)
This control code is particularly useful to make sure the KSAM �le re
ects current changes.
Suppose, for instance, that you open a KSAM �le exclusively for a long period of time and
that your data bu�er holds many records. In this case, you can call FCONTROL with code
2 after writing or updating a certain number of records to insure that no more than that
number of records will be lost in case of a system failure.

For example, you could call FCONTROL every 10 records:

IF COUNT = 10 counter set by each FWRITE or FUPDATE

THEN BEGIN

FCONTROL(FILNUM,2,DUMMY);

END;

Note Note that the parameter DUMMY has no function. It is supplied because all
FCONTROL parameters are required. It should be declared in the program as
a word variable: LOGICAL DUMMY;

As a result of the call shown above, you can never lose more than 10 records in case of a
system failure. When a system failure occurs with a KSAM �le open, you must run the
KSAMUTIL command KEYINFO to allow the �le to be reopened. KEYINFO also sets
the MPE end-of-�le to the current position of the KSAM end-of-�le. Control code 2 of
FCONTROL makes sure that the KSAM end-of-�le follows the last record written to your �le.

In a shared environment, be sure to lock your �le before calling FCONTROL with control
code 2. Otherwise, the call will fail.

USING CONTROL CODE 5

This control code repositions the �le to the �rst logical record, that is, the record with
the lowest key value. The key that determines this position can be the primary key or an
alternate key, depending on which key was accessed last. Suppose you want to read the
KSAM �le in sequence starting with the record containing the lowest primary key value, you
can position to this record using FCONTROL as follows:

USING KSAM FILES IN SPL PROGRAMS 4-21

FCONTROL(FILNUM,5,DUMMY); positions to 1st record in primary key sequence

USING CONTROL CODE 6

This control code performs the same functions as control code 2, except that it also writes
the MPE end-of-�les for the KSAM �les and the latest extent bit map to disc. Because it
must access the MPE control blocks as well as the KSAM control block, this code takes more
time than code 2. Also, since the MPE end-of-�les and the extent bit map are written to disc
automatically whenever a new extent is allocated, this code is useful primarily when a series of
updates changes the bu�ers but does not cause new extents to be allocated, and when access
to the �le is exclusive. If access is shared, you must lock the �le before using control code 6.

USING CONTROL CODE 7

This control code clears the bu�ers so that the next call to a read instrinsic must get the
record from disc rather than from the bu�ers. It also forces the latest control information to
be read from disc to the bu�ers. Note that a call to FLOCK will also clear the bu�ers. The
advantage of FCONTROL with code 7 over FLOCK is that it saves time|the bu�ers are
cleared without locking and then unlocking the �le. Thus, you can call FCONTROL with
code 7 immediately before calling a read instrinsic in a shared environment in order to get the
latest information from disc. However, this does not guarantee that this latest information
is not changed (modi�ed or deleted) by other users while you are calling FCONTROL. The
only complete safeguard is to lock the �le before the read. In any case, if you are making
modi�cations, you should lock the �le. For example:

FCONTROL(FILNUM,7,DUMMY); clear bu�ers

FREAD(FILNUM,DATA,-72); read record from �le
...

FLOCK(FILNUM,TRUE);

lock �le

FREAD(FILNUM,DATA,-72);

FUPDATE(FILNUM,DATA,-72);

rewrite record just read

FUNLOCK(FILNUM); unlock �le

4-22 USING KSAM FILES IN SPL PROGRAMS

FERRMSG

INTRINSIC NUMBER 307

Returns message corresponding to FCHECK error number.

I LA I

FERRMSG(errorcode,msgbuf,msglgth);

A call to FERRMSG causes a message to be returned to msgbuf that corresponds to an
FCHECK error or number. This makes it possible to display an error message from your
program. The message describes the error associated with the error number provided in the
parameter errorcode.

PARAMETERS

errorcode integer (required)

A word identi�er containing the error code for which a message is tobe
returned. It should contain an error number returned by FCHECK.

msgbuf logical array (required)

A logical array to which the message associated with errorcode is returned by
FERRMSG. In order to contain the message string, msgbuf must be de�ned
as at least 72 characters (36 words) long.

msglgth integer (required)

A word identi�er to which is returned the length of the msgbuf string. The
length is returned as a positive byte count.

CONDITION CODES

Condition codes are not returned by this procedure.

USING FERRMSG

This intrinsic is called usually following a call to FCHECK. The error code returned in the
call to FCHECK can then be used as a parameter in the call to FERRMSG.

For example, suppose a CCL condition is returned by a call to FCLOSE, a call to FCHECK
requests the particular e� or code, then a call to FERRMSG can be used to retrieve a
printable message associated with the code.

FCLOSE(FILNUM,1,0);

IF<

THEN BEGIN

FCHECK(FILNUM,ERRNUM);

FERRMSG(ERRNUM,MESSAGE,LENGTH);

PRINT(MESSAGE,-LENGTH,0);

END

TERMINATE;

The message printed explains the FCHECK code. If the FCHECK code has no assigned
meaning, the following message is returned:

UNDEFINED ERROR errorcode

USING KSAM FILES IN SPL PROGRAMS 4-23

FFINDBYKEY

INTRINSIC NUMBER 302

Positions record pointer to record located by a key value.

IV BA IV IV IV

FFINDBYKEY(�lenum,keyvalue,keylocation,keylength,relop);

When FFINDBYKEY is executed, the logical record pointer is set to the beginning of a
record located by this intrinsic. The particular key is de�ned by the keylocation parameter,
The pointer is positioned to the �rst record containing a key value that bears the relation
speci�ed by relop to the value speci�ed by keyvalue. A partial key can be speci�ed by a
keylength value less than the de�ned key length. If, however, the key type speci�ed at �le
creation was numeric display or packed decimal, a type where the sign is stored in the least
signi�cant byte, partial keys cannot be speci�ed.

FFINDBYKEY also positions the chronological pointer.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be positioned.

keyvalue byte array (required)

A byte array containing a value that is used to locate the record at which
the pointer is positioned. The key value in the record must be in the relation
speci�ed by relop to the value in array keyvalue.

keylocation integer by value (required)

The keylocation parameter speci�es the relative byte location of the key being
used. Bytes are numbered starting with 1. If keylocation is zero, then the
primary key is used.

keylength integer by value (required)

This parameter speci�es the length of the key in bytes. If it equals zero, the
entire key is used. If less than the full key length (generic key), then only the
length speci�ed here is used in the comparison with relop. The keylength
parameter must be equal to or less than the full length of the key when the
�le was created. For keys of type numeric display or packed decimal, the full
key length must be used.

relop integer by value (required)

A relational operator that speci�es the relation of the key value in the �le to
the value speci�ed in keyvalue. The record to which the �le is positioned will
have this relation to keyvalue following execution of FFINDBYKEY:

0 - equal
1 - greater than
2 - equal to or greater than

When relop is set to 1 or 2, the search is for an approximate key.

4-24 USING KSAM FILES IN SPL PROGRAMS

CONDITION CODES

CCE Request granted.

CCG The requested position was beyond the logical end-of-�le or beginning of �le.

CCL Request denied because an error occurred. The error could be a disc
input/output error; the relational operator (relop) could not be satis�ed; a
keylength less than the fulllength was speci�ed for a key with numeric display
or packed decimal format; or a key is not found in the key �le when the
relational operator is equal.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FFINDBYKEY

The intrinsic FFINDBYKEY allows you to position the �le to a record containing a
particular key value. Usually, you will do this in order to read in ascending sequence from
that particular record. If you simply want to locate and read a single record, you should use
FREADBYKEY.

In Figure 4-2, FFINDBYKEY is used to position the �le to the record containing the lowest
value of an 8-byte alternate key in which a telephone number is stored. After FFINDBYKEY
positions the �le to this record, a series of FREAD statements read the records in ascending
order according to the value of the key speci�ed by FFINDBYKEY. (Refer to shaded portions
of the program for the FFINDBYKEY declarations and statements).

FFINDBYKEY can also be used prior to a call to FREADC in order to position the
chronological pointer to the record located by the speci�ed key.

USING APPROXIMATE KEYS

In order to �nd the lowest-valued telephone number, keyvalue is set to the value \000-0000".
The key to be searched for this value is identi�ed by its position in the record. In this case,
the alternate key containing the telephone number starts in byte position 21, and keylocation
is set to the value 21. The fulllength of the key is speci�ed in keylength as the value 8.
In order to position to the record whose alternate key value is equal to or greater than
\000-0000", the value of relop is set to 2.

When executed, FFINDBYKEY will locate the record with an 8-byte value starting in byte
21 that is either equ\000-0000" or is the lowest value greater \000-0000". Since the value
\000-0000" is not a valid telephone number, the value of relop could be set to 1 indicating the
lowest value greater than \000-0000". An error condition is returned if the value in keyvalue
cannot be located. For this reason, relop should not be set to 0 unless it is expected that the
value being sought exists.

USING PARTIAL (GENERIC) KEYS

If the value of keylength is less than the length of the key at creation, this allows a search for
a partial (generic) key. For example, assume a �le with a 20- byte key starting in byte 2 of
each record. This key contains a name entered last name �rst. If you want to �nd and read

USING KSAM FILES IN SPL PROGRAMS 4-25

all records starting with the letter \R" through the last record in sequence by key, you could
assign the following FFINDBYKEY values:

INTEGER FILNUM;
BYTE ARRAY FILNAME(0:9):="KSAMFILE ";

BYTE ARRAY KEYVALUE(0:4):="R";

INTEGER KEYLENGTH:=1;

INTEGER KEYLOCATION:=2;

INTEGER RELOP:=2;...
INTRINSIC FOPEN,FCLOSE,FREAD,FWRITE,FFINDBYKEY;...
FFINDBYKEY(FILNUM,KEYVALUE,KEYLOCATION,KEYLENGTH,RELOP)

When executed, FFINDBYKEY will position to the �rst record with a key value whose �rst
(leftmost) character is the letter \R". A subsequent series of FREADs will read that record
and position to the next record in sequence by the same key.

SHARED ACCESS

If you use FFINDBYKEY to position the pointer before calling another procedure to read or
update the �le in a shared environment, you must call FLOCK to lock the �le before calling
FFINDBYKEY. Then, after performing the read or update operation, you can unlock the
�le. If you call FFINDBYKEY and then lock the �le before an operation that depends on the
record pointer, another user could move the pointer between the call to FFINDBYKEY and
FLOCK.

4-26 USING KSAM FILES IN SPL PROGRAMS

<<**>>

<<* *>>

<<* EXAMPLE 2 *>>

<<* READ A KSAM FILE SEQUENTIALLY *>>

<<* *>>

<<**>>

INTEGER FILNUM:

INTEGER ERRORCODE,LENGTH;

BYTE ARRAY FILNAME(0:9)="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

BYTE ARRAY KEYVALUE(0:7):="000-0000";

INTEGER KEYLENGTH:=8;

INTEGER KEYLOCATION:21;

INTEGER RELOP:=2;

INTRINSIC FOPEN,FCLOSE,FREAD,FFINDBYKEY,READ,PRINT,

FCHECK,FERRMSG,TERMINATE;

<<************************>>

<<* OPEN THE KSAM FILE *>>

<<************************>>

FILNUM:=FOPEN(FILNAME,3); <<OPEN THE KSAM FILE>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,-21,0);

FCHECK(FILNUM,ERRORCODE),; <<GET THE ERROR NUMBER>>

FEERMSG(ERRORCODE,MESSAGE,LENGTH); <<GET MESSAGE STRING>>

PRINT(MESSAGE,-LENGTH,0); <<PRINT ERROR MESSAGE>>

TERMINATE;

END;

<<***>>

<<* READ DATA FROM KSAM FILE IN TELEPHONE # SEQUENCE *>>

<<***>>

L2:

FFINDBYKEY(FILNUM,KEYVALUE,KEYLOCATION,KEYLENGTH,RELOP);

MOVE MESSAGE:="** LIST IN TELEPHONE NO. SEQUENCE";

PRINT (MESSAGE,-33,0);

L3:

FREAD(FILNUM,INPUT,-72); <<READ SEQUENTIALLY BY ALTERNATE KEY>>

IF >

THEN BEGIN <<END OF FILE>>

Figure 4-2. FFINDBYKEY Example

USING KSAM FILES IN SPL PROGRAMS 4-27

FCLOSE(FILNUM,0,0); <<CLOSE THE KSAM FILE>>

IF < > THEN

BEGIN <<CLOSE UNSUCCESSFUL>>

MOVE MESSAGE:="CANNOT CLOSE THE KSAM FILE";

PRINT(MESSAGE,-29,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH) <<GET MESSAGE STRING>>

PRINT(MESSAGE,-LENGTH,0); <<PRINT ERROR MESSAGE>>

END;

TERMINATE;

END;

IF <

THEN BEGIN

MOVE MESSAGE;="ERROR OCCURRED WHILE READING INPUT";

PRINT(MESSAGE,-34,0);

TERMINATE;

END;

PRINT(OUTPUT,-72,0);

<<**********************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<**********************************>>

GO TO L3:

Figure 4-2. FFINDBYKEY Example (continued)

4-28 USING KSAM FILES IN SPL PROGRAMS

FFINDN

INTRINSIC NUMBER 301

Positions the logical record pointer to relative record number according to key sequence.

IV DV IV

FFINDN(�lenum,number,keylocation)

When FFINDN is executed, it positions the KSAM logical record pointer to the record whose
relative record number is speci�ed in the parameter number . Records are numbered from the
record with the lowest key value in the key that starts at keylocation in each record. Record
numbering starts with zero unless the
agword in the FOPEN ksamparam parameter speci�es
that record numbering starts with 1, or the FIRSTREC parameter in the >BUILD command
is set to 1.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be positioned.

number double by value (required)

Relative record number counting from the �rst logical record in the �le.
Record numbers start with zero or one depending on the record numbering
scheme speci�ed at �le creation; the lowest numbered record applies to the
record with the lowest value in the speci�ed key �eld. A negative record
number positions the �le pointer to the record with the smallest key value.

keylocation integer by value (required)

The relative byte location in the record of the key to be used. The �rst byte
is byte 1. If keylocation is set to zero, the primary key is assumed.

CONDITION CODES

CCE Request granted.

CCG The requested position was beyond the logical end-of-�le.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FFINDN

When you specify the relative record number, it is important not to confuse this number
with the chronological record number, the number of the record as it is stored in the �le. To
illustrate, assume a �le in which records have been stored in chronological order from the
beginning of the �le (BOF). Each record has a key starting in byte 3 that contains a name.
The relative record number is based on the value of this key, not the relative location of the
record in the �le.

For example:

USING KSAM FILES IN SPL PROGRAMS 4-29

FFINDN(FILNUM,4D,3)

This call positions the logical record pointer (as shown in Figure 4-3) to record number 4 of
the key at location 3. Note that record number 4 is the �fth record in the sequence of key
values:

ABLE relative record 0D

BAKER relative record 1D

CHARLIE relative record 2D

DOG relative record 3D

EASY relative record 4D

FOX relative record 5D

If you want to position the chronological record pointer to the relative record number in
chronological sequence from the beginning of the �le, you can use the intrinsic FPOINT,
discussed later in this section. Chronological order is the order in which records are written.
In Figure 4-3, record number 4 in key order, to which FFINDN positioned the �le pointer, is
also record number 2 in chronological order.

Figure 4-3. File Position with FFINDN

Note that FFINDN is useful to reset the pointer to an alternate key. For example, when you
open the �le, the primary key is selected by default. If you want to select another key starting
in location 23 and position to the �rst record in key sequence, you can use the following
command:

FFINDN(FILNUM,-1,23)

SHARED ACCESS

If you use FFINDN to position the pointer before calling another procedure that reads or
updates the �le in a shared environment, you must call FLOCK before calling FFINDN.
Then, after performing the read or update operation, you should unlock the �le so other users
can access it. If you lock the �le after calling FFINDN, another user can change the pointer
position without your program being aware of it.

4-30 USING KSAM FILES IN SPL PROGRAMS

FGETINFO

INTRINSIC NUMBER 11

Requests access and status information about a �le.

IV BA L L I I L L

FGETINFO (�lenum,�lename,foptions,aoptions,recsize,devtype,ldnum,hdaddr,

I D D D D D I L

�lecode,recpt,eof,
imit,logcount,physcount,blksize,extsize,

I I BA D O-V

numextents,userlabels,creatorid,labaddr);

Once a �le is opened on any device, the FGETINFO intrinsic can be used to request access
and status information about that �le.

PARAMETERS

�lenum integer by value (required) A word identi�er supplying the �le number of the
�le about which information is requested.

�lename byte array (optional) A byte array to which is returned the actual designator
of the �le being referenced, in this format:

f.g.a

where

f = the local �le name
g = the group name (supplied or implicit).
a = the account name (supplied or implicit).

The byte array must be 28 bytes long. When the actual designator is
returned, unused bytes in the array are �lled with blanks on the right.

Default: The actual designator is not returned .

foptions logical (optional) The foptions parameter returns seven di�erent �le
characteristics by setting corresponding bit groupings in a 16-bit word.
Correspondence is from right to left. The �le characteristics returned are
the same as those speci�ed for foptions in the FOPEN intrinsic (refer to
Table 4-6, in the FOPEN description). Note that bit 4 is set to 1 to indicate a
KSAM �le.

Default: Foptions are not returned.

aoptions logical (optional) The aoptions parameter returns up to seven di�erent access
options represented by bit groupings in a 16-bit word, as described for the
aoptions parameter of FOPEN (refer to Table 4-7 in the FOPEN description).

Default: Aoptions are not returned.

recsize integer (optional) A word to which is returned the logical record size
associated with the �le. If the �le was created as a binary type, this value is

USING KSAM FILES IN SPL PROGRAMS 4-31

positive and expresses the size in words. If the �le was created as an ASCII
type, this value is negative and expresses the size in bytes.

Default: The logical record size is not returned.

devtype integer (optional) A word to which is returned the type and subtype of device
being used for the �le, where

bits (0:8) = device subtype, and
bits (8:8) = device type.

If the �le is not spooled, which can be determined from hdaddr (0:8), the
returned devtype is actual. The same is true if the �le is spooled and was
opened via logical device number. However, if an output �le is spooled and
was opened by device class name, devtype contains the type and subtype of
the �rst device in its class, which may be di�erent from the device actually
used.

Default: The device type and subtype are not returned.

ldnum logical (optional) A word to which is returned the logical device number
associated with the device on which the �le resides.

If the �le is a disc �le, then the logical device number will be that of the �rst
extent. If the �le is spooled, then ldnum will be a virtual device number
which does not correspond to the system con�guration I/O device list.

Default: The logical device number is not returned.

hdaddr logical (optional) A word to which the hardware address of the device is
returned, where

bits (0:8) = the Device Reference Table (DRT) number, and
bits (8:8) = the unit number.

If the device is spooled, the DRT number will be zero and the unit number is
unde�ned.

Default: The hardware address is not returned.

�lecode integer (optional) A word to which is returned the value recorded with the �le
as its data �le code (for disc �les only).

Default: The �le code is not returned.

recpt double (optional) A double word to which a double integer representing the
current chronological record pointer setting is returned. Following a call to
FREADC for example, recpt would be the chronological record number of
the record just read by the FREADC intrinsic. Remember that chronological
record numbers can begin with 0 or 1, depending on how the �le was built.

Default: The chronological record pointer setting is not returned.

eof double (optional)

A double word to which is returned a double positive integer equal to the
number of logical records currently in the data �le. If the �le does not reside
on disc, this value is zero.

Default: The number of logical records in the �le is not returned.

4-32 USING KSAM FILES IN SPL PROGRAMS

imit double (optional) A double word to which is returned a double positive integer
representing the number of the last logical record that could ever exist in the
data �le because of the physical limits of the �le.

Default: The �le limit information is not returned.

logcount double (optional) A double word to which is returned a double positive integer
representing the total number of logical records passed to and from the user
during the current access of the �le.

Default: The logical record count is not returned.

physcount double (optional) A double word to which is returned a double positive integer
representing the total number of physical input/output operations performed
within this process against the �le since the last FOPEN call.

Default: The number of I/O operations is not returned.

blksize integer (optional) A word to which is returned the block size associated with
the �le. If the �le was created as a binary type, this value is positive and
expresses the size in words. If the �le was created as an ASCII type, this
value is negative and shows the size in bytes.

Default: The block size is not returned.

extsize logical (optional) A word to which is returned the disc extent size associated
with the data �le (in sectors).

Default: The disc extent size is not returned.

numextent integer (optional) A word to which is returned the maximum number of disc
extents allowable for the data �le.

Default: The maximum allowable number of extents is not returned.

userlabels integer (optional) A word to which is returned the number of user header
labels de�ned for the �le when it was created. When an old �le is opened for
overwrite output, the value of userlabels is not reset and old user labels are
not destroyed.

Default: The number of user labels is not returned.

creatorid byte array (optional) A type array to which is returned the eight-byte name of
the user who created the �le. If the �le is not a disc �le, blanks are returned.

Default: The user name is not returned.

labaddr double (optional) A double word to which is returned the sector address of the
label of the �le. The high-order eight bits show the logical device number.
The remaining 24 bits show the absolute disc address.

Default: The label address is not returned.

USING KSAM FILES IN SPL PROGRAMS 4-33

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because an error occurred.

USING FGETINFO

By calling FGETINFO you can return to your program any or all of the items listed as
parameters. Except for the identifying �lenumber , each of these parameters is optional. When
omitted, embedded parameters are indicated by commas. Parameters omitted from the end of
the list need not be so indicated. For example, to locate the number of records in the �le by
�nding the end of �le, you can call FGETINFO as follows:

FGETINFO(FILNUM , , , , , , , , , , LSTREC);

_______________ eof parameter

The value returned to LSTREC is the number of records in the �le. The value LSTREC is
also the chronological number of the last record in the �le. This number can be used to read
the last chronological record with FREADC or FREADDIR.

Another useful parameter of FGETINFO is recpt. This parameter returns the chronological
record number of the record last read. The example in Figure 4-4 illustrates both these
parameters. First, FGETINFO is used to determine the total number of records in the �le
using the parameter eof. Then, each record in the �le is read in sequential order by primary
key. Following each sequential read, FGETINFO retrieves the chronological record number of
the record just read.

In the output from the program (refer to Figure 4-4), note that the record number returned
by FGETINFO is the chronological number. For instance, the �rst record written to the �le
was the record with record number 1. This record, which contains the primary key value
\NOLAN JACK", is the fourth consecutive record in key sequence.

4-34 USING KSAM FILES IN SPL PROGRAMS

$CONTROL MAIN=JEXAMPLS

<<***>>

<<* *>>

<<* EXAMPLE 5 *>>

<<* FIND NUMBER OF RECORDS & RECORD NUMBER *>>

<<* *>>

<<***>>

INTEGER FILNUM:

INTEGER ERRORCODE,LENGTH;

BYTE ARRAY FILNAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

DOUBLE EOP,RECPTR;

INTRINSIC FOPEN,FCLOSE,FREAD,FGETINFO,DASCII;

INTRINSIC PRINT,TERMINATE,FCHECK,FERRMSG;

<<************************>>

<<* OPEN THE KSAM FILE *>>

<<************************>>

FILNJM:=FOPEN(FILNAME,3); <<OPEN THE KSAM FILE>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT (MESSAGE,-21,0);

FCHECK(FILNUM,ERRORCODE): <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH0;<<CONVERT TO STRING>>

PRINT (MESSAGE,-LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<**>>

<<* FIND NUMBER OF RECORDS WRITTEN TO FILE *>>

<<**>>

FGETINFO(FILNUM,,,,,,,,,,EOF);

IF < >

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED FINDING NUMBER

OF RECORDS";

PRINT(MESSAGE,-40,00;

FCHECK(FILNUM,ERRORCODE);

FERRMSG(ERRORCODE,MESSAGE,LENGTH);

PRINT(MESSAGE,-LENGTH,0);

TERMINATE;

END;

Figure 4-4. FGETINFO Example

USING KSAM FILES IN SPL PROGRAMS 4-35

<<**>>

<<* PRINT NUMBER OF RECORDS IN FILE *>>

<<**>>

MOVE MESSAGE:="RECORDS IN ENTITY = ";

DASCII(EOF,10,MESSAGE(9));

PRINT(MESSAGE,-20,0);

L1;

<<**>>

<<* READ KSAM SEQUENTIALLY *>>

<<**>>

FREAD(FILNUM,INPUT,-72);

IF > <<END OF DATA>>

THEN BEGIN

FCLOSE(FILNUM,0,0); <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN

MOVE MESSAGE:="CANNOT CLOSE THE KSAM FILE";

PRINT(MESSAGE,-22,0);

FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CINVERT TO STRING>>

PRINT(MESSAGE,-LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

END;

TERMINATE#

END;

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING KSAM FILE":

PRINT(MESSAGE,�37,0);

FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMRER>>

FERRMSG(ERRORCODE,MESSAGE.LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE#�LENGTH,0): <<PRINTOUT ERRUR MESSAGE>>

TERMINATE;

END#

<<**>>

<<* WRITE THE DATA JUST READ FROM KSAM FILE *>>

<<**>>

PRINT(OUTPUT;�72,0):

Figure 4-4. FGETINFO Example (continued)

4-36 USING KSAM FILES IN SPL PROGRAMS

<<**>>

<<* TO FIND OUT RECORD NUMBER OF THE RECORD JUST READ *>>

<<**>>

FGETINFO(FTLENUM,,,,,,,,,RECPTR):

IF < >

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED FINDING RECORD NUMBER":

PRINT(MESSAGE,�36,0);

FCHECK(FILNUM,ERRORCODE);

FERRMGG(ERRORCODE,MESSAGE,LENGTH);

PRINT(MESSAGE,�LENGTH,0);

TERMINATE;

END;

<<***>>

<<* PRINT THE RECORD NUMBER OF LAST RECORD READ *>>

<<***>>

MOVE MESSAGE:="RECORD# = ";

DASCII(RECPTR,10,MESSAGE(5));

PRINT(MESSAGE,�12,0);

<<***********************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<***********************************>>

GO TO L1;

!EOD;

!EOD

When Executed, the Following Output is Printed:

RECORDS IN FILE= 10

CARDIN RICK 578-7018 11100 WOLFF ROAD CUPERTINO CA. 94053

RECORD# = 4

ECKSTETN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

RECORD# = 3

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

RECORD# = 2

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

RECORD# = 1

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGEF SAN JOSE CA. 94102

RECORD# = 5

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE BERKELEY CA. 90871

RECORD# = 7

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

RECORD# = 6

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

RECORD# = R

WESTEP ELDER 287-4598 1256 KTNGFISHER ST. SUNNYVALE CA. 43098

RECORD# = 10

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

RECORD# = 9

END OF PROGRAM

Figure 4-4. FGETINFO Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-37

FGETKEYINFO

INTRINSIC NUMBER 303

Requests access and status information about a KSAM �le,

IV A A

FGETKEYINFO(�lenum,ksamparam,ksamcontrol)

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �lenumber of the �le about which information
is requested.

ksamparam array (required)

An array of the same format and size as the byte array of the same name in
FOPEN (refer to Table 4-8), except that key �le size is given as the number of
sectors. The length of the array depends on the number of keys in the KSAM
�le; its length is 17 words plus 4 words for each key. Note that the device
(words 6-14) is not returned as a device class name but as an ASCII string
containing the logical device number.

ksamcontrol array (required)

An array whose size is 128 words containing control information about the key
�le. Refer to Table 4-5 for the de�nition of the array contents.

CONDITION CODES

CCE Request granted.

CCG (not retuned)

CCL Request denied because an error occurred such as: insu�cient space declared
for ksamparam or ksamcontrol ; or an illegal �le number; or the DB register is
not set to the user stack.

USING FGETKEYINFO

Once a KSAM �le is opened, you can request information about the key �le through this
intrinsic. The ksamparam return provides static information de�ned for the key �le at the
time it was created. The ksamcontrol parameter provides dynamic information about the use
of the key �le from the time it was created. In particular, it provides a count of the number of
times the key �le was referenced by various intrinsics, the date and time it was created, closed,
updated or written to, and so forth.

4-38 USING KSAM FILES IN SPL PROGRAMS

Table 4-5. FGETKEYINFO ksamcontrol Parameter Format

USING KSAM FILES IN SPL PROGRAMS 4-39

Table 4-5. FGETKEYINFO ksamcontrol Parameter Format (continued)

4-40 USING KSAM FILES IN SPL PROGRAMS

FLOCK

INTRINSIC NUMBER 15

Dynamically locks a �le.

IV LV

FLOCK(�lenum,lockcond);

The FLOCK intrinsic dynamically locks a �le and transfers the latest control information
from disc to the bu�ers. A call to FLOCK is required before any attempt is made to read or
modify a �le opened for shared access.

Warning Always unlock a locked file (refer to FUNLOCK) after reading or modifying it.

Not following this practice may result in corruption of the file.

PARAMETERS

�lenum integer by value (required)

A word supplying the �le number of the �le to be locked.

lockcond logical by value (required)

A word specifying conditional or unconditional locking:

TRUE| Locking will take place unconditionally. If the �le cannot be
locked immediately, the calling process suspends until the �le
can be locked.

Bit 15 = 1

FALSE| Locking will take place only if the �le's Resource
Identi�cation Number (RIN) is not currently locked. If the
RIN is locked, control returns immediately to the calling
process, with condition code CCG.

Bit 15 = 0

CONDITION CODES

The condition codes possible when lockcond = TRUE are

CCE Request granted.

CCG Not returned when lockcond = TRUE.

CCL Request denied because this �le was not opened with the dynamic locking
aoption speci�ed in the FOPEN intrinsic, or the request was to lock more
than one �le and the calling process does not possess the Multiple RIN
Capability.

The condition codes possible if lockcond = FALSE are

CCE Request granted.

CCG Request denied because the �le was locked by another process.

USING KSAM FILES IN SPL PROGRAMS 4-41

CCL Request denied because: this �le was not opened with the dynamic locking
aoption speci�ed in the FOPEN intrinsic; or the request was to lock more
than one �le and the calling process does not possess the Multiple RIN
Capability.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

Standard Capability su�cient if only one �le is to be locked dynamically.

If more than one �le is to be locked dynamically, the Multiple RIN Capability is required.

USING FLOCK

The dynamic locking and unlocking capability allows you to complete any update to a �le
when it is possible for other users to access the �le. When dynamic locking is allowed (bit
10 of FOPEN aoptions parameter is set to allow dynamic locking); then you must use the
FLOCK intrinsic to lock the �le before writing, rewriting, or deleting any records. This
requirement insures that another user does not attempt to change the same record at the
same time. FLOCK also insures that the most recent data is available in the �le. A locked �le
can be unlocked following the update with the FUNLOCK intrinsic.

When FLOCK is executed, it clears all the bu�ers and transfers the latest control information
from the KSAM �le to the bu�ers. This insures that any subsequent read of the �le retrieves
the latest information from disc rather than from the bu�ers. (Note that FCONTROL control
code 7 also clears the bu�ers.)

If you use the Multiple RIN capability, a sequence of �le locking should be agreed upon or
you should use conditional locking (lockcond = FALSE). Otherwise, it is possible to lock
other users from the �le. Consider the situation where one program unconditionally locks
�le A and then attempts to lock �le B. If another program unconditionally locks �le B and
then attempts to lock �le A, both programs will wait inde�nitely to lock the second �le in
sequence. To avoid this, both programs should agree to lock the �les in the sequence A �rst,
then B; or both programs should use only conditional locks.

For example, suppose you open a KSAM �le called DATA1 for shared access in update mode
and allow dynamic locking and unlocking:

FIL1:=FOPEN(DATA1,7,%345);

The parameters speci�ed are:

�lenum File number of DATA1, which is assigned to FIL1 when the �le is opened.

formal-
designator

Name identifying the �le contained in DATA1.

foptions The value 7 speci�es that this is an old user �le (bits 14,15 = 11) and that it
is coded in ASCII (bit 13 = 1).

aoptions The octal value 345 indicates that the �le was opened for update (bits 12
through 15 = 0101), that dynamic locking/unlocking is allowed (bit 10 = 1),
and that access is shared (bits 8 and 9 = 11).

This �le can then be locked as follows:

4-42 USING KSAM FILES IN SPL PROGRAMS

FLOCK(FIL1,1)

The parameters speci�ed are:

�lenum File number of �le DATA1 contained in the variable FIL1.

lockcond = 1 which means the �le is to be locked unconditionally. If the �le cannot
be locked immediately, the calling process is suspended until the �le can be
locked.

USING KSAM FILES IN SPL PROGRAMS 4-43

FOPEN

INTRINSIC NUMBER 1

Opens a �le.

I BA LV LV IV BA BA

�lenum:=FOPEN(formaldesignator,foptions,aoptions,recsize,device,ksamparam,

IV IV IV DV IV

userlabels,blockfactor,numbu�ers,�lesize,numextents,

IV IV O-V

initialloc,�lecode);

The FOPEN intrinsic makes it possible to access a KSAM �le. In the FOPEN intrinsic call, a
particular �le may be referenced by its formal �le designator . When the FOPEN intrinsic is
executed, it returns to the user's process a �le number by which the system uniquely identi�es
the �le. This �le number, rather than the �le designator, then is used by subsequent intrinsics
in referencing the �le.

FUNCTIONAL RETURN

This intrinsic returns an integer �le number used to identify the opened �le in other intrinsic
calls.

PARAMETERS

formal-
designator

byte array (required)

Contains a string of ASCII characters interpreted as a formal �le designator.
This string must begin with a letter, contain alphanumeric characters, slashes,
or periods, and terminate with any nonnumeric character except a slash
or a period. If the string names a userprede�ned �le, it can begin with an
asterisk (*). Note: The DEL, SAVE, or TEMP parameters should not be used
to prede�ne a KSAM �le in a :FILE command; they will cause deletion or
duplication of the �le.

foptions logical by value (optional)

The foptions parameter allows you to specify di�erent �le characteristics, by
setting corresponding bit groupings in a 16-bit word. If the �le is new, bit 4
must be set to 1 to indicate that this is a KSAM �le. Refer to Table 4-6 for
the foption bit settings.

Default: All bits are set to zero.

aoptions logical by value (optional)

The aoptions parameter permits you to specify the various access options
established by bit groupings in a 16-bit word. These access options are
de�ned in Table 4-7.

Default: All bits are set to zero.

recsize integer by value (optional)

4-44 USING KSAM FILES IN SPL PROGRAMS

An integer indicating the size of the logical records in the data �le. If a
positive number, this represents words; bytes are represented by a negative
number. If the �le is a newly-created �le, this value is recorded permanently
in the �le label. If the records in the �le are of variable length, this value
indicates the maximum logical record length allowed.

Binary �les are word oriented. A record size specifying an odd byte count for
a binary �le is rounded up by FOPEN to the next highest even number.

ASCII �les may be created with logical records which are an odd number
of bytes in length. Within each block, however, records begin on word
boundaries.

For either ASCII or binary �les with �xed-length records, the record size is
rounded up to the nearest word boundary. For example, a recsize speci�ed as
�106 for an ASCII �le is 106 characters (53 words) in length. A recsize of
�113 for a binary �le is 114 characters (57 words) in length. The rounded
sizes should be used in computations for blockfactor or block size.

Default: The default value is the con�gured physical record width of the
associated device.

device byte array (optional)

Contains a string of ASCII characters terminated by any nonalphanumeric
character (except a slash or period) that designates the device on which the
�le is to reside. It may be a device class name of up to eight alphanumeric
characters beginning with a letter; or a logical device number consisting of
a three-byte numeric string; or a remote device identi�er consisting of the
device class name or logical device number followed by a pound sign (#) and
a remote device class name or logical device number.

Device class names and logical device numbers are assigned to devices during
system con�guration.

For KSAM �les, the device must be a random access device such as the disc.
If the �le is a newly-created disc �le speci�ed as a device class name, then all
extents to the �le must be members of the same class. Similarly, if the device
is identi�ed by logical device number, then all extents must have the same
logical device number.

Default: Disc.

ksamparam byte array (optional)

Contains information describing the key �le of a KSAM �le. It includes the
key �le name, size and device plus an entry for the primary key and up to 15
alternate keys. If the �le is new (is being created by FOPEN) then this array
must be included. If the �le is an old �le, it can be omitted. Note that if the
parameter is included and the �le is not a KSAM �le, an error can result.
Refer to Table 4-8 for a full description of ksamparam.

Default: key �le description is omitted.

userlabels integer by ualue (optional)

Speci�es the number of user-label records to be written for the data �le. If
there are no user labels, this parameter can be omitted.

USING KSAM FILES IN SPL PROGRAMS 4-45

Default: The default number of user-label records is zero.

blockfactor integer by value (optional)

Establishes the size of each block in the data �le by specifying the number of
logical records per block. It also establishes the size of the data �le bu�er
in KSAM's extra data segment . For �xed-length records, blockfactor is the
actual number of records in a block; for variablelength records, blockfactor is
a multiplier used to compute block size from record size; ((maximum recsize
+1) * blockfactor) +1 = blocksize. The value of blockfactor should be an
integer that results in a block size less than 4K words. The blockfactor is
from 1 through 255. If you specify a negative value or zero, the default value
is used. Values greater than 255 are defaulted to the speci�ed blockfactor
modulo 256.

Default: 1

numbu�ers integer by value (optional)

An integer between 1 and 20 that speci�es the number of key block bu�ers in
the extra data segment used by KSAM �les for bu�ering data and key blocks.
The number of bu�ers is speci�ed in bits 4-10; the rest of the word must be
set to zeros:

This number should only be speci�ed if the default number assigned by
KSAM a�ects performance. Refer to appendix B, under KSAM Extra Data
Segments for a discussion of how the key block bu�ers are used.

Default: Between 1 and 20 bU�ers depending on access type, number of keys,
and number of levels per hey. (Refer to appendix B.)

�lesize double by value (optional)

A double-word integer specifying the maximum data �le size as the number
of logical records in the �le. A zero or negative value results in the default
�lesize setting. The maximum �le capacity is over two million (221) sectors; a
sector contains 128 words.

Default: 1024 logical records

numextents integer by value (optional)

An integer specifying the number of extents (integral number of
contiguously-located disc sectors) that can be dynamically allocated to the �le
as logical records are written to it. The number of extents applies equally
to the data and key �les on the assumption that there is a proportional
expansion in each. The size of each extent is determined by the �lesize
parameter value divided by the numextents parameter value. If speci�ed,

4-46 USING KSAM FILES IN SPL PROGRAMS

numextents must be an integer from 1 to 32. A zero or negative value results
in the default setting.

Default: 8 extents .

Note Extents are allocated on any disc in the device class speci�ed in the device
parameter when the �le was created. If it is necessary to insure that all
extents of a �le are on a particular disc, a single disc device class or a logical
device number must be used in the device parameter.

initialloc integer by value (optional)

An integer specifying the number of extents to be allocated to the data �le
when it is opened. (For a key �le, this parameter is forced equal to the value
of numextents .) This must be an integer from 1 to 32. If an attempt to
allocate the requested disc space fails, the FOPEN intrinsic returns an error
condition code to the calling program.

Default: 1 extent.

�lecode integer by value (optional)

An integer recorded in the �le label and made available for general use to
anyone accessing the �le through the FGETINFO intrinsic. This parameter is
used for new data �les only. The �lecode applies to data �les only; the key �le
code is always 1080 and need not be speci�ed. For this parameter, any user
can specify a non-negative integer.

Default: 0

CONDITION CODES

CCE Request granted. The �le is open.

CCG Not returned by this intrinsic.

CCL Request denied. This may be because another process already has exclusive or
semi-exclusive access for this �le, or an initial allocation of disc space cannot
be made due to lack of disc space. The �le number value returned by FOPEN
if the �le is not opened successfully is zero. The FCHECK intrinsic should be
called for more details.

USING FOPEN

FOPTIONS PARAMETER

Table 4-6. FOPEN foptions Parameter Format

USING KSAM FILES IN SPL PROGRAMS 4-47

4-48 USING KSAM FILES IN SPL PROGRAMS

AOPTIONS PARAMETER

Table 4-7. FOPEN aoptions Parameter Format

Table 4-7. FOPEN aoptions Parameter Format (continued)

USING KSAM FILES IN SPL PROGRAMS 4-49

KEY FILE DEFINITION

The ksamparam array de�nes the key �le for a new KSAM �le. If the �le has already been
created, this parameter can be set to all zeros or omitted. Otherwise, it must be assigned
values to de�ne the key �le as shown in Table 4-8.

When a new KSAM �le is created, the MPE end-of-�le for the key �le is set to the �le limit.
The �le limit is based on the key �le size (see words 4-5 of ksamparam). The location of the
key �le end-of-�le can be determined by executing the VERIFY command of KSAMUTIL and
looking at the heading KEY FILE EOF. A call to FGETKEYINFO returns the key �le size as
the number of sectors used by the �le.

4-50 USING KSAM FILES IN SPL PROGRAMS

Table 4-8. FOPEN ksamparam Parameter Format

This array de�nes the key �le portion of a new KSAM �le being created by the FOPEN call.
The values are:

Key File Name 8-byte �le name that must be present if this is a new �le. Only the name is
speci�ed; the account, group, and security are taken from the data �le formal
�le designator.

USING KSAM FILES IN SPL PROGRAMS 4-51

Key File Size Double-word specifying the maximum number of primary keys expected from
which the key �le size is derived. If zero, the data �le size is used.

(Note that a call to FGETKEYINFO returns the key �le size as the number
of sectors in the �le.)

Key Device 8-byte array that speci�es the device on which the key �le resides. Speci�ed
as a device class name of 1-8 alphanumeric characters beginning with a letter
and terminated by a non-alphanumeric character such as a blank; or it is
speci�ed as a logical device number (3-byte numeric string) identifying a
particular device. If the data �le is assigned to a remote device the key �le is
automatically allocated to the same machine. Default is DISC.

Language
Identi�cation-
Number

The number of the language to use in determining the key sequence. Bit 11 in
the
agword must be set to 1 to use any language other than NATIVE-3000.If
bit 11 is set to 0, NATIVE-3000 (the default) is used and the language
identi�cation number in word 10 is ignored. If the language is not con�gured,
FOPEN returns condition code CCL. For detailed information on using Native
Language Support (NLS) with KSAM �les, refer to Appendix F.

Flagword 1-word that speci�es �le characteristics as shown below:

| 0 1 2 3 4 5 6 7 8 9 10 11 12|13|14|15 |

| reserved |DL|NL| |SW|RN|JT |

JT bit 15:1 = 1 if �le is job temporary �le

= 0 if �le is a permanent �le (default)

RN 14:1 = 1 if record numbering starts with 1.

0 if record numbering starts with 0. (default)

SW 13:1 = 1 if only sequential writing by primary key value is
allowed.

= 0 if random writing by primary key value is allowed.
(default)

0:9 = 0 all reserved bits must be set to 0.

NL bit 11:1 = 1 if a con�gured language is speci�ed.

= 0 if the default language (NATIVE-3000) is to be used.

DL bit 10:1 = 1 Duplicate �le locks from di�erent open paths of
the same PIN are not allowed.

= 0 Duplicate �le locks from the same PIN are always
allowed.

Number of
Keys

1 byte providing the total number of keys for the �le, speci�ed as a numeric
digit between 1 and 16, (left byte of word must be zero).

Key
De�nitions

Each key in the �le requires a 4-word de�nition. The �rst de�nition is always
of the primary key. Subsequent de�nitions describe any alternate keys. Up to

4-52 USING KSAM FILES IN SPL PROGRAMS

15 alternate keys are allowed in any one key �le. The key de�nitions each
contain the following information:

bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--

| Key Type | Key Length |

|--|

| Key Location |

|--|

| D | Minimum (Maximum) Number of Keys per Block |

|--|

| (reserved) | R | (reserved) |

--

The information for each key has the form shown above starting in word 17 of
ksamparam. It is de�ned as follows:

Key Type 4 bits specifying the type of the key by the following code:

bits 0:4 = 0001 (1) = Byte key (1 to 255 bytes)

0010 (2) = Integer key (2 bytes)

0011 (3) = Double Integer key (4 bytes)

0100 (4) = Real key (4 bytes)

0101 (5) = Long key (8 bytes)

0110 (6) = Numeric Display key (1 to 28 bytes)

0111 (7) = Packed Decimal key, odd number of digits (1 to 14
bytes)

1000 (8) = Packed Decimal key, even number of digits (2 to
14 bytes)

Refer to Table 2-2 in section II for a full description of key type.

Key Length 12 bits specifying length of the key in bytes. Length is a function of key type
(see key type) but must never exceed 255 bytes.

Key Location 1 word specifying the location of the �rst byte of the key in the record. Bytes
in a record are numbered starting with 1. (Note that it is good practice to
leave the �rst two bytes of a record empty of keys since these bytes are used
by FREMOVE for the record delete code.)

D(Duplicate
Flag)

1 bit that determines if duplicate values are allowed for this key: = 0 if
duplicate key values are not allowed (default) = 1 if duplicate key values are
allowed.

Minimum
(Maximum)-
Number of
Keys per-
Block

15 bits that specify the minimum number of keys allowed per key block. The
value must be an even -numbered integer greater than or equal to 4. The
resulting key block size must be less than 2048 words. If the resulting key
block size is greater than 2048 words, the system will print the error message
\INVALID KEY BLOCKING FACTOR VALUE (FSERR 190)" and will
not open the �le. In order to make optimum use of disc space, KSAM may
increase the value speci�ed here. If KSAM increases the number of keys
per block, this new value is the maximum size of the key block. (Refer to

USING KSAM FILES IN SPL PROGRAMS 4-53

appendix B for particulars on the calculation of block size and the adjustment
of the blocking factor). The default generates a block size of 1K (1024) words .

R(Random
Insert Flag)

1 bit (8:1) that determines whether duplicate key is to be inserted randomly
in duplicate key chain or is to be added to the end of the chain; the duplicate

ag (D bit) must be set to 1 in order to use this
ag.

= 0 if duplicate key values are to be inserted at the end of the chain
(default)
= 1 if duplicate key values are to be inserted randomly. If inserted
randomly, the chronological order of duplicate keys is no longer maintained,
but the addition of keys is faster.

OPENING A NEW FILE

When FOPEN is used to open a new KSAM �le, you must provide all the information needed
to create the two �les that make up a KSAM �le: the key �le and the data �le. To inform the
system that this is a KSAM �le, the KSAM bit must be set in the foptions parameter; and
the ksamparam parameter must be included to de�ne the key �le.

Figure 4-5 is a short SPL program that builds a KSAM �le. The �le has two keys; the
primary key starting in column 1 is 20 characters long, and the alternate key starting in
column 21 is 8 characters long. The primary key will contain a name, the alternate a phone
number.

The �rst step is to declare all arrays and variables needed by the program followed by the
intrinsic declaration for FOPEN. The shaded declarations in Figure 4-5 show these required to
open the �le; others are used in parts of the program not shown in this �gure.

The next step is to move the necessary values to ksamparam in order to de�ne the key �le.

The last step is to call the FOPEN intrinsic, passing any previously de�ned variables or arrays
by reference and passing all others by value.

DECLARATIONS FOR FOPEN

The array ksamparam is de�ned three di�erent ways: as a numeric array containing 25 words
(KSAMPARAMA), as a byte array equivalenced to the numeric array (KSAMPARAM), and
as a double array also equivalenced to the numeric array (KSAMPARAMD). These three
de�nitions allow the array to be addressed by word, by byte, or by double word as required.

The variable to which the �le number is returned is declared to be an integer.

The two arrays that will contain the formal designator and device parameter values are
declared and assigned these values. In this case, the formal designator is assigned the value
JEXAMFIL. This name identi�es both the KSAM �le in its entirety and the data �le if
referenced separately. The device class name assigned to the device parameter is DISC.

Finally, the intrinsic itself is declared in an INTRINSIC statement.

DEFINING KSAMPARAM

The ksamparam parameter is assigned a variety of values that, for the sake of clarity, are
assigned in separate statements. The values assigned to ksamparam de�ne the key �le. The
statements that move values to ksamparam (refer to Figure 4-5) tell the system everything it
needs to know in order to build the key �le.

4-54 USING KSAM FILES IN SPL PROGRAMS

The �rst item moved to ksamparam is the key �le name, up to 8 characters enclosed in quotes.
In this case, the key �le name is JKEYFILE.

Next, the size of the key �le is de�ned in terms of the maximum number of primary keys
expected. The size is speci�ed as a double word integer and is assigned to the third double
word in the array, speci�ed by an index of 2 counting from double word 0. The maximum
number of primary keys should be the same as the maximum number of records speci�ed
in the �lesize parameter of FOPEN. KSAM assigns a key �le size based on this value. If
there are alternate keys, the key �le size is made proportionately larger. If the key �le size is
speci�ed as zero, KSAM uses the value of the FOPEN �lesize parameter as the key �le size.

The device class name is assigned in the 8 bytes starting in byte 12 that are allocated to
device description. In this case, the device class name is DISC, the same as the device class
name speci�ed in the device parameter of FOPEN for the data �le.

USING KSAM FILES IN SPL PROGRAMS 4-55

$CONTROL MAIN-JEXAMPL1

<<***>>

<<* *>>

<<* EXAMPLE l *>>

<<* BUILD A KSAM FILE *>>

<<* *>>

<<***>>

ARRAY KSAMPARAMA(0:25);

BYTE ARRAY KSAMPARAM (*)=KSAMPARAMA;

DOUBLE ARRAY KSAMPARAMD(*)=KSAMPARAMA;

INTEGER FILNUM;

INTEGER ERRORCODE;

INTEGER LENGTH;

BYTE ARRAY FILENAME(0:9):="JEXAMFIL ";

BYTE ARRAY DEVICE(0:9):="DISC ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

INTRINSIC FOPEN,FCLOSE,PWRITE,READ,PRINT,TERMINATE;

INTRINSIC FCHECK,FERRMSG;

<<*******************************>>

<<* SETUP KSAMPARAM FOR FOPEN *>>

<<*******************************>>

MOVE KSAMPARAM;="JKEYFILE"; <<THE KEY FILE NAME>>

KSAMPARAMD(2):=100D; <<THE MAX. # OF PRIMARY KEYS>>

MOVE KSAMPARAM(12):="DISC"; <<THE KEY FILE DEVICE TYPE>>

KSAMPARAMA(15):=&%(2)000000000000010; <<THE FLAG WORD>>

KSAMPARAMA(16):=2; <<PRIMARY KEY & ONE ALTERNATE>>

MOVE KSAMPARAMA(17):=([4/1,12/20], <<TYPE=ASCII; LENGTH=20 BYTES>>

1, <<KEY LOCATION START FROM COL 1>>

[1/0,15/4], <<DUP NOT ALLOW; 4 KEY/BLOCK>>

0); <<RESERVED>>

MOVE KSAMPARAMA(21):=([4/1,12/8], <<TYPE=ASCII; LENGTH=20 BYTES>>

21, <<KEY LOCATION START FROM COL 21>>

[1/0,15/4], <<DUP NOT ALLOW; 4 KEY/BLOCK>>

0); <<RESERVED>>

<<************************>>

<<* OPEN THE KSAM FILE *>>

<<************************>>

FILNJM:=FOPEN(FILENAME, <<THE DATA FILE NAME>>

&%(2)0000100000000100, <<KSAM,ASCII,NEW FILE>>

&%(2)0000000001000001, <<KSAM ACCESS,EXCLUSIVE,WRITE>>

�72, <<RECORD 72 BYTES LONG>>

DEVICE, <<DEVICE=DISC>>

KSAMPARAM, <<THIS DESCRIBES THE KEYS>>

Figure 4-5. FOPEN Example|; Building a KSAM file

4-56 USING KSAM FILES IN SPL PROGRAMS

,

NO USERLABELS

10,

BLOCK 10 RECORDS

,

NUMBUFFERS NOT USED

100D);

THIS FILE CAN HOLD 100 RECORD

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,�21,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH); <<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

TERMINATE;

END;

Figure 4-5. FOPEN Example|; Building a KSAM file (continued)

Word 15, the
ag word, is set next, It uses bits 13,14, and 15 to de�ne three conditions of the
key �le. In this example, bit 14 is the only bit set. This means that record numbers in the �le
start with 1 rather than 0 (bit 14=1), that the �le is a permanent �le saved in the system
directory (bit 15=0), and that records may be written to the �le in random order rather than
being restricted to ascending sequence by primary key (bit 13=0).In Figure 4-5 the
ag word
is speci�ed as a binary value for clarity; it could have been speci�ed as octal 2 (2 or %2) for
brevity.

The right byte of the 16th word (byte 33) is set to 2 to specify that two keys are to be used:
the primary key and one alternate.

This completes the general description of the �le. Its name, size, device type, special
conditions, and number of keys are now speci�ed. The remainder of ksamparam de�nes each
key in 4-word entries. The �rst entry always describes the primary key. Subsequent entries
de�ne up to 15 alternate keys. In this case, one primary and one alternate are de�ned.

Starting in word 17, the primary key is de�ned as type ASCII, 20 bytes long, its location
starting in the �rst character of each record, and duplicate values are not allowed. It is
blocked with four keys per block.

Starting in word 21, the altemate key is de�ned as type ASCII, 8 bytes long, located starting
in character 21 of the record, duplicate values not allowed, and blocked four keys per block.

Refer to Table 4-8 for an illustration of the bit patterns used to de�ne the ksamparam entries.

CALLING FOPEN

When all the variables and arrays that pass values by reference have been de�ned, the
intrinsic FOPEN can be called. In Figure 4-5, each parameter is shown on a separate line and
documented for clarity, but the call could also be speci�ed as:

USING KSAM FILES IN SPL PROGRAMS 4-57

FILNUM:=FOPEN(FILNAME,%4004,%101,--72,DEVICE,KSAMPARAM,,10,0,100D);

This call is identical to the call in Figure 4-5 except that octal values are used for foption and
aoption.

foptions

The value of foptions is set to octal 4004, for which the bit pattern is:

This speci�cation de�nes the following �le options:

New KSAM �le (bit 4=1)
Allow: FILE (bit 5=0)
Fixed-Length Records (bits 8,9=00)
ASCII code (bit 13=1)
New �le (bits 14,15=00)

aoptions

The value of aoptions is set to octal 101, for which the bit pattern is:

This speci�cation de�nes the following access options:

KSAM access expected (bit 3=0)
Exclusive access (bits 8,9=01)
Dynamic locking not allowed (bit 10=0)
Access type is write only (bits 12-15=0001)

OPENING AN EXISTING FILE

Once the �le has been created, opening it again after it has been closed is a simple process.
The record size, device, blocking, bu�ersize, and �le size are all de�ned for the data �le.
Therefore, these parameters need not be repeated. The key �le has already been de�ned
so that ksamparam need not be speci�ed. This leaves the �rst three parameters to specify.
Of these, only the formal-designator and the domain and KSAM options of the foptions
parameter are always required. The formal-designator provides the �le name in order to
identify the �le. The domain option speci�es where to locate the �le; if domain is set to zeros,
the system expects a new �le. Set the foptions KSAM option (bit 4:1) to 0 to indicate that

4-58 USING KSAM FILES IN SPL PROGRAMS

the �le is not new If the �le is to be read only, the access mode parameter, aoptions , can be
omitted. For any other type of access, aoptions should be speci�ed.

OPENING FILE FOR READ ACCESS

The example in Figure 4-6 illustrates opening a �le for readonly access.

USING KSAM FILES IN SPL PROGRAMS 4-59

%CONTROL MAIN=JEXAMPL2

<<***>>

<<* *>>

<<* *>>

<<***>>

INTEGER FILNUM;

INTEGER ERRORCODE,LENGTH;

BYTE ARRAY FILNAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

BYTE ARRAY KEYVALUE(0:7):="000-0000";

INTEGER KEYLENGTH:=8;

INTEGER KEYLOCATION:=21;

INTEGER RELOP:=2;

INTRINSIC FOPEN,FCLOSE,FREAD,FFINDBYKEY,READ,PRINT,

FCHECK,FERRMSG,PRINT'FILE'INFO,TERMINATE;

<<************************>>

<<* OPEN THE KSAM FILE *>>

<<************************>>

FFILNUM:=OPEN(FILNAME,3);

OPEN THE KSAM FILE

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,�21,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH); <<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

TERMINATE;

END;

Figure 4-6. FOPEN Example|; Opening an Existing File

The �le name is speci�ed in the FILNAME array declaration as JEXAMFIL. This is the �le
that was created and opened for write-only access in Figure 4-5. It is opened for read-only
access with the call:

FILNUM:=FOPEN(FILNAME,3);

The value of foptions is set to the value 3, for which the bit pattern is:

This speci�cation de�nes the following �le options:

Not a new KSAM �le (bit 4=0)
Old user �le (bits 14-15=11)

Because this is an existing (old) user �le, other foptions settings de�ned when the �le was
created need not be respeci�ed. For example, at creation the �le was de�ned as containing
ASCII code (bit 13=1). In subsequent FOPEN calls this bit can be 0 without changing the
code to binary.

4-60 USING KSAM FILES IN SPL PROGRAMS

When an old user �le is opened, the job �le domain is searched �rst and then the system �le
domain is searched for the �le speci�ed in the formal designator.

The access parameter, aoptions , is not speci�ed, but by default it speci�es the following access
mode:

KSAM access expected
Share access (default for read-only)
Read-only access

OPENING FILE FOR WRITE ACCESS

To open an existing �le for write access, you use the same foptions values as you do to open
the �le for read-only access. The di�erent access mode is speci�ed in the aoptions parameter.

For example, assuming FILNUM and FILNAME have been declared:

FILNUM:=FOPEN(FILNAME,3,1)

The foptions speci�cation is the same as described above. The aoptions speci�cation is:

This bit pattem de�nes the following access options:

KSAM access expected (bit 3=0)
Exclusive access (default for all access modes except read-only) (bits 8-9=00)
Disallow dynamic locking (bit 10=0)
Write only access (bits 12-15=0001)

This opens the �le for write-only access in which all previous data is deleted. It is the access
mode to use when writing to a �le for the �rst time. If you want to write to the end of an
existing �le then bits 12-15 should equal 0010 and aoptions could be speci�ed as 2 if other
aoptions values are defaulted. To open the �le for both reading and writing, bits 12-15 should
be set to 0100, or the value 4. For update, these bits are set to 0101, or the value 5.

OPENING KSAM FILE AS MPE FILE

You may want to open either the key �le or the data �le as a standard MPE �le. To do this,
name the �le you want to open in the formaldesignator parameter, set foptions bit 4:1 to 1,
and then set aoptions bit 3:1 to 1. These settings indicate that the �le is a KSAM �le, but is
to be treated as an MPE �le. The remaining parameter settings depend on what you want to
do with the open �le. For example, if you want to read the key �le, JKEYFILE, as an MPE
�le, you call FOPEN as follows:

INTEGER FILNUM;

BYTE ARRAY FILNAME(0:9):="JKEYFILE ";...
INTRINSIC FOPEN,...;...

USING KSAM FILES IN SPL PROGRAMS 4-61

FILNUM:=FOPEN(FILNAME,%4003,%10000);

The value of foptions de�nes the following �le options:

Speci�ed as KSAM �le (bit 4=1)
Old user �le (bits 14-15=11)

The value of aoptions indicates the following:

Non-KSAM access expected (bit 3=1)
Share access (default for read only bits 8-9=00)
Read-only access (default bits 12-15=0000)

Normally, the only time you need to set bit 4 of foptions to 1 is when you are originally
creating a KSAM �le. However, when you are opening an existing KSAM �le for non-KSAM
access, you must set this bit to 1 so that the system can distinguish the KSAM data or key
�le from an MPE �le.

OPENING FILE FOR SHARED ACCESS

When a �le is opened for shared access (aoptions bits 8,9=11), and you plan to modify the �le
in any way, you must enable dynamic locking (aoptions bit 10=1). This is necessary since you
cannot call FWRITE, FUPDATE, or FREMOVE to modify a shared �le without �rst calling
FLOCK to lock the �le.

Even if you are not planning to modify the �le, but only plan to read it sequentially, you
should allow dynamic locking when you open the �le. This is because FREAD (as well
as FUPDATE and FREMOVE) is a pointer-dependent procedure. Any time you call a
pointer-dependent procedure (refer to Table 4-2), you must precede it with a call to a
pointer-independent procedure that positions the pointer. It is important to call FLOCK to
lock the �le before setting the pointer with the pointer-independent procedure and leave it
locked until you have completed the sequential read or update. This insures that no other user
changes the position of the pointer between the call that positions the pointer and the call
that depends on the pointer.

4-62 USING KSAM FILES IN SPL PROGRAMS

FPOINT

INTRINSIC NUMBER 6

Sets the chronological (and logical) record pointer for a KSAM �le.

IV DV

FPOINT(�lenum,recnum);

The FPOINT intrinsic sets the chronological record pointer for a KSAM disc �le. The �le
may contain either �xed-length or variable-length records. When the next FREADC request is
issued for this �le, the record to which FPOINT positioned the pointer is read. Note that this
intrinsic positions the logical record pointer as well as the chronological pointer.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le on which the pointer is
to be set.

recnum double by value (required)

A positive double integer representing the record number of a �xedlength
�le or the word pointer to a variable-length �le. Word numbering always
starts with word 0, whereas record numbering starts with 0 or 1 depending
on how the �le was created. In either case, the number is in terms of the
chronological (consecutive) order in which the data �le records were written.
It has no relation to the logical record pointer that is based on key values.

CONDITION CODES

CCE Request granted.

CCG Request denied. The chronological record pointer position is unchanged.
Positioning was requested at a point beyond the physical end-of-�le.

CCL Request denied. The chronological record pointer position is unchanged
because of one of the following:

Invalid �lenum parameter.
recnum parameter speci�ed a record marked for deletion.
A key value for speci�ed record not found in key �le.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING KSAM FILES IN SPL PROGRAMS 4-63

USING FPOINT

The FPOINT intrinsic is generally used prior to an FREADC intrinsic in order to read a
record without reference to the key �le. FPOINT sets the chronological record pointer to the
position in the �le speci�ed by recnum. A subsequent FREADC reads the record (or portion
of a record) to which the pointer is positioned. It then sets the pointer to the next record that
was written to the �le in chronological order,

For example, in order to read the 39th record written to the �le identi�ed by FILENUM:

FPOINT(FILNUM,39D); <<set pointer>>

FREADC(FILNUM,BUFFER,COUNT); <<read record>>

Following execution of FREADC, the contents of the 39th record are transferred to the array
BUFFER and the chronological pointer remains positioned at record 39. A
ag is set so that
the next call to FREADC moves the pointer forward to the beginning of record 40, the next
record in chronological order.

Note that the combination of FPOINT followed by an FREADC intrinsic is identical in
e�ect to the FREADDIR intrinsic that positions to a chronological record number and then
reads that record. The FGETINFO intrinsic can be used to recover the chronological record
number of the record most recently accessed. (Refer to FGETINFO and FREADDIR for more
information on accessing records by chronological record number.)

Since the FPOINT intrinsic positions the logical pointer as well as the chronological pointer, it
can be used prior to an FUPDATE or FREAD intrinsic to identify the record to be updated
or read. FPOINT sets the logical record pointer to a key in the key �le that points to the
record it located by record number. The key is by default the primary key for that record,
though an alternate key is used if such a key was selected by a prior call to FFINDBYKEY or
FREADBYKEY.

SHARED ACCESS

When you use FPOINT to position the chronological pointer in a shared access environment,
you must lock the �le with a call to FLOCK before calling FPOINT. You should leave the
�le locked until you have completed any calls that read or update the �le in chronological
sequence, and then call FUNLOCK to unlock the �le for the other users. This insures that
the pointer is not moved by other users between the pointer-independent procedure FPOINT
and any subsequent pointer-dependent procedure. (Refer to Table 4-2 for a list of the
pointer-independent and pointer-dependent procedures.)

4-64 USING KSAM FILES IN SPL PROGRAMS

FREAD

INTRINSIC NUMBER 2

Reads a logical record in key sequence from a KSAM �le to the user's stack.

I IV LA IV

lgth:=FREAD(�lenum,target,tcount);

FREAD reads a logical record in sequential order by key value. The primary key determines
key sequence unless a prior call to FFINDN (or FFINDBYKEY or FREADBYKEY) has
speci�ed an alternate key. If the �le is opened without KSAM access (FOPEN aoptions bit
3=1), then FREAD reads the data �le as if it were not a KSAM �le.

The record read by FREAD depends on the current position of the logical record pointer.

FUNCTIONAL RETURN

The FREAD intrinsic returns a positive integer value to lgth showing the length of the
information transferred. If the tcount parameter in the FREAD call is positive, the positive
value returned represents a word count; if the tcount parameter is negative, the positive value
returned represents a byte count.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be read.

target logical array (required)

An array to which the record is to be transferred. This array should be large
enough to hold all of the information to be transferred.

tcount integer by value (required)

An integer specifying the number of words or bytes to be transferred. If this
value is positive, it signi�es the length in words ; if it is negative, it signi�es
the length in bytes ; if it is zero, no transfer occurs.

If tcount is less than the size of the record, only the �rst tcount words or
bytes are read from the record. If tcount is larger than the size of the physical
record, transfer is limited to the length of the physical record.

CONDITION CODES

CCE The information was read.

CCG The logical end-of-data was encountered during reading.

CCL The information was not read because an error occurred.

USING KSAM FILES IN SPL PROGRAMS 4-65

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FREAD

The FREAD intrinsic reads the record at which the logical record pointer is currently
positioned. When a �le is opened, this pointer is positioned to the beginning of the �rst
record in primary key sequence. That is, it is positioned to the record containing the lowest
value in those bytes containing the primary key.

Following each FREAD , the record pointer remains positioned at the record just read. Any
subsequent FREAD call positions the pointer to the next sequential record in ascending key
sequence. Also, if an FREAD call is followed by an FUPDATE and another FREAD, the
pointer is advanced before the second FREAD.

A key other than the primary key can be selected as the basis of the sequential read by
executing FFINDN, FFINDBYKEY, or FREADBYKEY before executing the FREAD
intrinsic.

When the logical end-of-data is encountered during reading, the CCG condition code is
returned to your process. The end-of-data occurs when the last logical record of the �le
is passed . Note that the last logical record of a KSAM �le is the record containing the
maximum key value in the key on which the key sequence is based.

SHARED ACCESS

In order to be sure that you are reading the record you want, you should call either FLOCK
or FCONTROL with control code 7 before calling FREAD. FLOCK prevents other users from
changing or deleting the record until the �le is unlocked with FUNLOCK. FCONTROL with
control code 7 clears the data and key block bu�ers so that the record must be read directly
from the �le, and also transfers the latest control information from the �le to the extra data
segment. Because the logical pointer is part of this control information, you can be sure that
is is set correctly by calling FCONTROL with code 7.

FCONTROL uses less overhead than FLOCK, but it cannot prevent other users from
modifying the record you want to read while you are calling FCONTROL. FLOCK, on the
other hand, fully protects the information to be read from changes by other users but requires
more time.

Because FREAD is a pointer-dependent procedure, you must call one of the procedures that
position the pointer before calling FREAD. When you are reading the �le in sequential
key order, it is important to lock the �le before calling the procedure that positions the
pointer, and to leave it locked while you are reading the �le. This insures that the pointer
is not moved by another user between the call that positions the pointer and FREAD or
between sequential FREAD calls. (Refer to Table 4-2 for a list of the pointer-independent and
pointer-dependent procedures.)

For example, the following sequence of calls guarantees that you will read the �le in sequential
order starting with a speci�ed key:

FLOCK

FFINDBYKEY <<sets logical pointer>>

FREAD loop <<read records in key sequence>>
FUNLOCK

4-66 USING KSAM FILES IN SPL PROGRAMS

Note that FREAD advances the record pointer only if it is followed by another FREAD (or
an FUPDATE followed by another FREAD). A single call to FREAD leaves the pointer at
the record just read; a subsequent call to FREAD causes the pointer to be positioned to
the next record in key sequence. This permits sequential reading of the �le without calling
a pointer-independent procedure before each FREAD. Also, in order to allow sequential
updates, the pointer is advanced for each FREAD in an FUPDATE/FREAD sequence with no
other intervening calls (see FUPDATE discussion).

In the example in Figure 4-7, FREAD is used �rst to read the KSAM �le in sequence by
primary key. When the end of data is reached, the program uses FFINDBYKEY to specify
an alternate key and FREAD then reads the �le in sequence by that altemate key. When the
end of data is reached again, the �le is closed. (Note that this program is opened for exclusive
access so that locking is not necessary).

USING KSAM FILES IN SPL PROGRAMS 4-67

$CONTROL MAIN=JEXAMPL2

<<***>>

<<* *>>

<<* EXAMPLE 2 *>>

<<* READ A KSAM FILE SEQUENTIALLY *>>

<<* *>>

<<***>>

INTEGER FILNUM;

INTEGER ERRORCODE,LENGTH;

BYTE ARRAY FILNAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

BYTE ARRAY KEYVALUE(0:7:="000-0000";

INTEGER KEYLENGTH"=8;

INTEGER KEYLOCATION:21;

INTEGER RELOP:2;

INTRINSIC FOPEN,FCLOSE, FREAD,FFINDBYKEY ,READ,PRINT,

FCHECK,FERRMSG,PRINT'FILE'INFO,TERMINATE;

<<*************************>>

<<* OPEN THE KSAM FILE *>>

<<*************************>>

FILENUM:=FOPEN(FILNAME,3,200); <<OPEN KSAM FILE

FOR EXCLUSIVE READ-ONLY ACCESS>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,�21,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH); <<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

TERMINATE;

END;

MOVE MESSAGE:="LIST IN LAST NAME SEQUENCE";

PRINT(MESSAGE,�26,0);

<<**********************************>>

<<* READ KSAM IN NAME SEQUENCE *>>

<<**********************************>>

L1:

FREAD(FILNUM,INPUT,�72);

READ SEQUENTIALLY BY PRI-
MARY KEY

IF >

THEN GO TO L2;

GO TO ALTERNATE KEY ORDER

Figure 4-7. FREAD Example

4-68 USING KSAM FILES IN SPL PROGRAMS

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING INPUT";

PRINT(MESSAGES,�34,0);
TERMINATE;

END;

<<***>>

<<* WRITE THE DATA JUST READ FROM KSAM FILE *>>

<<***>>

PRINT(OUTPUT,�72,0);
<<***********************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<***********************************>>

GO TO L1;

<<***>>

<<* READ DATA FROM KSAM FILE IN TELEPHONE # SEQUENCE *>>

<<***>>

L2:
FFINDNYKEY(FILNUM,KEYVALUE,KEYLOCATION,KEYLENGTH,RELOP);

MOVE MESSAGE:="LIST IN TELEPHONE NO. SEQUENCE";

PRINT(MESSAGE,�30,0);
L3:

FREAD(FILNUM,INPUT,�72);

READ SEQUENTIALLY BY ALTERNATE KEY

IF >

THEN BEGIN <<END OF FILE>>

FCLOSE(FILNUM,0,0); <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN <<CLOSE UNSUCCESSFUL>>

MOVE MESSAGE:"CANNOT CLOSE THE KSAM FILE":

PRINT(MESSAGE,�29,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENSTH;<<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

END;

TERMINATE;

END;

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING INPUT";

PRINT(MESSAGE,�34,0);

TERMINATE;

END;

Figure 4-7. FREAD Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-69

<<***>>

<<* WRITE THE DATA JUST READ FROM KSAM FILE *>>

<<***>>

PRINT(OUTPUT,�72,0);

IF <>

THEN BEGIN <<ERROR OCCURRED WHILE PRINTING OUTPUT>>

MOVE MESSAGE,="ERROR OCCURRED WHILE PRINTING OUTPUT";

PRINT(MESSAGE,�36,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH),<<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

TERMINATE;

END;

<<************************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<************************************>>

GO TO L3;

END;

Output from Program Execution:

LIST IN LAST NAME SEQUENCE

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

ECKSTEIN LEO 287-5137 5303 STEVENS SANTA CLARA CA. 95050

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

ROBERT GERRY 259-5535 12345 TELEGRAPH BERKELEY CA. 90871

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WESTER ELDER 287-4598 1256 KINGFISHER SUNNYVALE CA. 43098

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

LIST IN TELEPHONE NO. SEQUENCE

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ROBERT GERRY 259-5535 12345 TELEGRAPH BERKELEY CA. 90871

WESTER ELDER 267-4598 1256 KINGFISHER SUNNYVALE CA. 43098

ECKSTEIN LEO 287-5137 5303 STEVENS SANTA CLARA CA. 95050

SEELY HENRY 293-4220 1144 LEBERTY EL CERRITO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

CARDIN RICK 578-7018 11100 WOLFE CUPERTINO CA. 94O53

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

END OF PROGRAM

Figure 4-7. FREAD Example (continued)

4-70 USING KSAM FILES IN SPL PROGRAMS

FREADBYKEY

INTRINSIC NUMBER 304

Reads a logical record randomly from a KSAM �le to the user's data stack.

I IV LA IV BA IV

lgth:=FREADBYKEY(�lenum,target,tcount,keyvalue,keylocation);

FREADBYKEY reads a logical record selected by key value. The record to be read must have
the same value as keyvalue in the bytes that start at keylocation. Following execution, the
logical record pointer is still positioned to the record in the �le located through the value of
the key at keylocation.

FUNCTIONAL RETURN

The FREADBYKEY intrinsic returns a positive integer value to lgth showing the length of
the information transferred. If the tcount parameter in the FREADBYKEY call is positive,
the positive value returned represents a word count; if the tcount parameter is negative, the
positive value returned represents a byte count.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be read randomly.

target logical array (required)

An array to which the record is to be transferred. It should be large enough
to hold all the information read.

tcount integer by value (required)

An integer specifying the number of words or bytes to be transferred. If this
value is positive, it signi�es the length in words; if negative, it signi�es the
length in bytes; if zero, no transfer takes place.

If tcount is less than the size of the record, only the �rst tcount words are
read from the record. If tcount is larger than the physical record size, transfer
is limited to the length of the physical record.

keyvalue byte array (required)

A byte array containing the value that will determine which record is read.
The �rst record found with this identical value in the key identi�ed by
keylocation is the record read.

keylocation integer by value (required)

The relative byte location in the record of the key whose value determines
which record is read. The �rst byte is numbered 1; if a value of zero is
speci�ed, the primary key is used.

USING KSAM FILES IN SPL PROGRAMS 4-71

CONDITION CODES

CCE The information speci�ed was read.

CCG The logical end-of-data or beginning-of-data was encountered during the read.

CCL The information was not read because an error occured, such as an
input/output error, or the key could not be located.

USING FREADBYKEY

The intrinsic FREADBYKEY allows you to locate and read a single record according to a
speci�ed key value, Like FFINDBYKEY, it de�nes the key that is to be used for determining
record sequence and, following execution, remains positioned at the same record. Unlike
FFINDBYKEY , FREADBYKEY cannot specify a key length di�erent from the full length of
the key at creation, nor can it search for approximate key values .

In the example in Figure 4-8, the keylocation and keyvalue values are read from the standard
input device. As each is read, it is printed to test the read. The �rst set of values read into
the word array INFOW is:

01 ROBERT GERRY

\/\------------/

| |

%%keylocation%% %%keyvalue%%

The �rst two ASCII characters contain the keylocation; the characters starting in byte 2
contain the keyvalue to be found at the speci�ed keylocation. Since keylocation is an integer
parameter, the �rst two bytes of the byte array INFO (equivalenced to the word array
INFOW) must be converted to a binary value. This is done with the statement:

KEYLOCATION:=BINARY(INFO,2);

The value to be used for keyvalue is contained in the byte array INFO starting in the third
byte (byte 2 numbered from byte 0). In the declarations at the beginning of the program, the
byte array KEYVALUE is equivalenced to the portion of the byte array INFO that starts in
byte 2.

The intrinsic FREADBYKEY can be called with the following statement:

FREADBYKEY(FILNUM,INPUT,�72,KEYVALUE,KEYLOCATION);

This locates and reads the �rst record with the value ROBERT GERRY in the key located
starting in byte 1 of the record. The program prints this record and then returns to get the
next pair of values input for keyvalue and keylocation. When there are no more values in the
input �le, the KSAM �le is closed and the program terminates.

SHARED ACCESS

If you use FREADBYKEY to position the pointer for subsequent calls that read or
update the speci�ed record, you should lock the �le with a call to FLOCK before calling
FREADBYKEY. Then, after calling the read or update procedure, you should unlock the �le
so other users can access it. Locking the �le before calling FREADBYKEY insures that other
users do not change the position of the pointer between the call to FREADBYKEY and any
subsequent procedure that depends on the pointer position. (Refer to Table 4-2 for a list of
the pointerpendent procedures and also those that set the pointer.)

4-72 USING KSAM FILES IN SPL PROGRAMS

To illustrate, the following sequence of calls makes sure that the correct record is updated:

FLOCK to lock the �le

FREADBYKEY to position the pointer

FUPDATE to modify the record to which the pointer points

FUNLOCK to unlock the �le for other users

DUPLICATE KEYS

FREADBYKEY always positions to the �rst key in a chain of duplicate keys. If you want
to read or update the remaining keys in a duplicate key chain, you should use FREAD. For
example, to update all the records with a particular key, use the following code sequence:

FREADBYKEY to locate 1st key in chain of duplicates

FUPDATE update that record

FREAD read next sequential record

test if this is correct key value

FUPDATE update record

return to read next record

USING KSAM FILES IN SPL PROGRAMS 4-73

$CONTROL MAIN=JEXAMPL3

<<***>>

<<* *>>

<<* EXAMPLE 3 *>>

<<* READ A KSAM FILE RANDOMLY *>>

<<* *>>

<<***>>

INTEGER FILNUM;

INTEGER ERRORCODE,LENGTH;

BYTE ARRAY FILNAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

BYTE ARRAY INFO(0:35);

ARRAY INFOW(*)=INFO

BYTE ARRAY KEYVALUE(*)INFO(2);

INTEGER KEYLOCATION;

INTRINNSIC FOPEN,FCLOSE,FREAD,FREADBYKEY,READ,PRINT,

FCHECK,FERRMSG,BINARY,TERMINATE;

<<***>>

<<* OPEN THE KSAM FILE *>>

<<***>>

FILNUM:=FOPEN(FILNAME,3); <<OPEN THE KSAM FILE>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:"CANNOT OPEN KSAM FILE"

PRINT(MESSAGE,�21,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<GET MESSAGE STRING>>

PRINTIMESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

TERMINATE;

END;

<<***>>

<<* READ IN KEYVALUE AND KEYLOCATION INFOMATION *>>

<<***>>

L1:

READ(INFOW,�36);

IF >

THEN BEGIN

FCLOSE(FILNUM,0,0); <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN

MOVE MESSAGE:="CANNOT CLOSE THE KSAM FILE"

PRINT (MESSAGE,�26,0);

Figure 4-8. FREADBYKEY Example

4-74 USING KSAM FILES IN SPL PROGRAMS

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODES;MESSAGE,LENGTH);<<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

END;

TERMINATE;

END;

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING INPUT";

PRINT(MESSAGE,�34,0);
TERMINATE;

PRINT(INFOW,�36,0); <<TEST READ>>

KEYLOCATION;=BINARY(INFO,2); <<CONVERT FROM ASCII TO BINARY>>

<<***>>

<<* READ KSAM ACCORDING TO KEYVALUE AND KEYLOCATION *>>

<<***>>

FREADBYKEY(FILNUM,INPUT,�72,KEYVALUE,KEYLOCATION);
IF <>
THEN BEGIN <<ERROR OCCURRED IN FREADDBYKEY>>

MOVE MESSAGE:="ERROR OCCURRED IN FREADBYKEY";

PRINT(MESSAGE,�28,0);
FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

GO TO L1;

END;

<<**>>

<<* WRITE THE DATA JUST READ FROM KSAM FILE *>>

<<**>>

PRINT(OUTPUT,�72,0);
<<***********************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<***********************************>>

GO TO L1;

END;

Output from Program Execution:

01ROBERT GERRY

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

21287-5137

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

END OF PROGRAM

Figure 4-8. FREADBYKEY Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-75

FREADC

INTRINSIC NUMBER 305

Reads a logical record in chronological sequence from KSAM �le to user's stack.

I IV LA IV

lgth:=FREADC(�lenum,target,tcount);

FREADC reads a logical record in chronological sequence. Chronological sequence means the
sequence in which the records were originally written to the data �le.

When FREADC is executed, the key �le is not accessed. This read is similar to the standard
FREAD for non-KSAM �les except that FREADC skips any data records that are marked
for deletion. Following execution, the chronological pointer remains positioned at the same
record.

FUNCTIONAL RETURN

The FREADC intrinsic returns a positive integer value to lgth showing the length of the
information transferred. If the tcount parameter in the FREADC call is positive, the positive
value returned represents a word count; if the tcount parameter is negative, the positive value
returned is a byte count.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be read in
chronological sequence.

target logical away (required)

An array to which the record is to be transfered. This array should be large
enough to hold all the information to be transferred.

tcount integer by value (required)

An integer specifying the number of words or bytes to be transferred. If this
value is positive, it signi�es the length in words; if negative, it signi�es the
length in bytes; if zero, no transfer occurs.

If tcount is less than the size of the record, only the �rst tcount words are
transfered from the record. If tcount is larger than the physical record size,
transfer is limited to the length of the physical record.

CONDITION CODES

CCE The information was read.

CCG The logical end-of-data was encountered during reading.

CCL The information was not read because an error occurred.

4-76 USING KSAM FILES IN SPL PROGRAMS

USING FREADC

This intrinsic allows you to read the records in the data �le in the order in which they are
physically stored in the �le. The end-of-data is encountered following the last record in the
�le. If any records have been marked for deletion (refer to the FREMOVE intrinsic), these
records are not read; otherwise, this intrinsic reads the data from the data �le exactly as it
was stored.

Following execution of FREADC, the chronological pointer remains positioned at the record
just read, unless it is followed by another call to FREADC. In a series of calls to FREADC,
the pointer is advanced automatically so you can read the �le in chronological sequence
without resetting the pointer for each record.

Because FUPDATE only checks the logical pointer, you cannot update a record located by
FREADC or FREADDIR. To update a record located by its chronological record number, you
must precede the call to FUPDATE with a call to FPOINT. Unlike FREADC or FREADDIR,
FPOINT sets the logical pointer as well as the chronological pointer.

In Figure 4-9, the FREADC intrinsic is used to read the data from the KSAM data �le in
chronological order. Compare this order to the sequential order by primary key in which the
same �le is read by FREAD. (Refer to Figure 4-10 for an example showing the chronological
record number printed in association with each record listed in sequential key order.)

SHARED ACCESS

Because FREADC is a chronological pointer-dependent procedure, you must call one of the
procedures that position the pointer before calling FREADC. (Refer to Table 4-2 for a list
of the pointer-dependent and pointer-independent procedures.) When access is shared, it is
essential that you lock the �le before calling the procedure that positions the pointer, and
then leave the �le locked while it is being read by FREADC. This insures that no other user
changes the information in the record.

For example, the following sequence of calls guarantees that you will read the �le in
chronological sequence starting with a speci�ed record number:

FLOCK <----------- lock �le

FPOINT <------------- position the chronological pointer

FREADC loop <----------------- read records in chronological sequence

FUNLOCK <--------------- unlock �le

USING KSAM FILES IN SPL PROGRAMS 4-77

$CONTROL MAIN=JEXAMPL4

<<***>>

<<* *>>

<<* EXAMPLE 4 *>>

<<* READ A KSAM FILE CHRONOLOGICALLY *>>

<<* *>>

<<***>>

INTEGER FILNUM;

INTEGER LENGTH;

INTEGER ERRORCODE;

BYTE ARRAY FILENAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE (0:35);

ARRAY INPUT(0:39);

ARAY OUTPUT(*)=INPUT;

INTRINSIC FOPEN,FCLOSE,FREADC,FCHECK,FERRMSG,PRINT,TERMINATE;

<<************************>>

<<* OPEN THE KSAM FILE *>>

<<************************>>

FILNUMI=FOPEN(FILNAME,3); <<OPEN THE KSAM FILE>>

IF FILNUM=0

THEN BEGIN

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,�21,0);

FCHECK(FILNUM,ERRORCIDE); <<GET THE ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH):<<GET MESSAGE STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

TERMINATE;

END;

L1;

<<**>>

<<* READ KSAM ACCORDINGTO CHRONOLOGICAL ORDER *>>

<<**>>

FREADC(FILNUM,INPUT,�72);

IF >

THEN BEGIN <<END OF FILE>>

FCLOSE(FILNUM,0,0); <<CLOSE THE KSAM FILE>>

IF <>

THEN BEGIN

MOVE MESSAGE:="CANNOT CLOSE KSAM FILE";

PRINT(MESSAGE,�22,0);

FCHECK(FILNUM,ERRORCODE); <<GET THE ERROR NUMBER>>

FFERRMSG(ERRORCODE,MESSAGE,LENGTH);<<GET MESSAGE STRING>>>

PRINT(MESSAGE,�LENGTH,0); <<PRINT ERROR MESSAGE>>

END;

TERMINATE;

END;

Figure 4-9. FREADC Example

4-78 USING KSAM FILES IN SPL PROGRAMS

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING KSAM FILE";

PRINT(MESSAGE,�37,0);
TERMINATE;

END;

<<***>>

<<* WRITE THE DATA JUST READ FROM KSAM FILE *>>

<<***>>

PRINT(OUTPUT,�72,0);
<<************************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<************************************>>

GO TO L1;

END;

Output from Program Execution:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

CARDIN RICK 578-7015 11100 WOLFE ROAD CUPERTINO CA. 94053

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

END OF PROGRAM

Figure 4-9. FREADC Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-79

FREADDIR

INTRINSIC NUMBER 7

Reads a logical record located by its chronological record number from a KSAM �le to the
user's stack.

IV LA IV DV

FREADDIR(�lenum,target,tcount,recnum);

The FREADDIR intrinsic reads a speci�c logical record, or a portion of such a record, from a
KSAM �le to the user's data stack. The particular record read is speci�ed by its chronological
record number. This number is determined by the order in which the record was written to
the �le; it is not the logical record number determined by ascending key sequence. When the
�le has �xed-length records, recnum is the actual record number counting from the �rst record
in the �le. When the �le has variable-length records, recnum is a word pointer to the �rst
word in the record counting from the �rst word in the �le, word zero.

After FREADDIR has been executed, the chronological record pointer remains positioned at
the record just read. FREADDIR does not change the position of the logical record pointer.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be read.

target logical array (required)

An array to which the record is to be transferred. This array should be large
enough to hold all of the information to be transferred.

tcount integer by value (required)

An integer specifying the number of words or bytes to be transferred. If this
value is positive, it signi�es words ; if negative, it signi�es bytes ; and if it is
zero, no transfer occurs.

If tcount is less than the size of the record, only the �rst tcount words or
bytes are read from the record. If tcount is larger than the size of the logical
record, the transfer is limited to the length of the logical record.

recnum double by value (required)

A double-word integer indicating the relative chronological record number (or
word number for variable-length records) to which the chronological pointer
is positioned. Chronological record numbering for �xed-length records starts
with zero or one, as speci�ed in ksamparam or by FIRSTREC in BUILD.

4-80 USING KSAM FILES IN SPL PROGRAMS

CONDITION CODES

CCE The speci�ed information was read.

CCG The end-of-data was encountered during reading.

CCL The information was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FREADDIR

You can use the FREADDIR intrinsic to position to a particular record in chronological
sequence and then read that record. Following execution, the record pointer remains
positioned at the same record. This intrinsic is similar in e�ect to the pair of intrinsics
FPOINT and FREADC, with one exception: FREADDIR does not skip records marked for
deletion. You might use FREADDIR to read one record and then reposition the pointer;
you might use FPOINT and FREADC to position to a particular record and then continue
reading in chronological order from that position.

You can use the FGETINFO intrinsic to determine the relative chronological number of the
record most recently accessed. This number is returned in the FGETINFO parameter recpt.
The example in Figure 4-10 determines the chronological record of each record as it is read
in sequence by primary key value. The chronological record number is printed, and then
FREADDIR uses this number to read the record to which it points. The output shows the
chronological record number followed by the record to which it points. To see these records
listed in chronological order, refer to the output in example 4-9 illustrating FREADC.

Note that execution of those intrinsics that position the KSAM data �le by means of the
chronological record pointer (FPOINT, FREADC, FREADDIR), do not access the key �le.
This type of access only a�ects the data �le. It is, therefore, much faster than those intrinsics
that use key sequence to position the data �le and must access the key �le.

USING KSAM FILES IN SPL PROGRAMS 4-81

$CONTROL MAIN=JEXAMPL6

<<**>>

<<* *>>

<<* EXAMPLE 6 *>>

<<* READ A KSAM FILE BY CHRONOLOGICAL RECORD NUMBER *>>

<<* *>>

<<**>>

INTEGER FILNUM;

INTEGER ERRORCODE;

INTEGER LENGTH;

BYTE ARRAY FILNAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

DOUBLE RECPTR;

INTRINSIC FOPEN,FCLOSE,FREAD,FGETINFO,FREADDIR,

PRTNT,TERMINATE,DASCII,FCHECK,FERRMSG;

<<*************************>>

<<* OPEN THE KSAM FILE *>>

<<*************************>>

FILNUM,=FOPEN(FILNAME,3); <<OPEN THE KSAM FILE>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,�21,0);

FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRTNTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<***>>

<<* READ KSAM SEQUENTIALLY *>>

<<****************#************************************>>

L1:

FREAD(FILNUM,INPUT,�72);

IF >

THEN BEGIN

FCLOSE(FILNUM,0,0); <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN

MOVE MESSAGE:="CANNOT CLOSE THE KSAM FILE";

PRINT(MESSAGE,�22,0);

Figure 4-10. FREADDIR Example

4-82 USING KSAM FILES IN SPL PROGRAMS

FCHECK(FILNUM,ERRORCOOE); <<GET ERROR NUMBER>>

FFRRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

END;

TERMINATE;

END;

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING KSAM FILE";

PRINT(MESSAGE,�37,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<***>>

<<* TO FIND OUT RECORD NUMBER OF THE RECORD JUST READ *>>

<<***>>
FGETINFO(FINUM,,,,,,,,RECPTR);

MOVE MESSAGE:="RECORD# = ";

DASCII(RECPTR,10,MESSAGE(5));

PRINT(MESSAGE,�14,0);
<<**>>

<<* READ THE KSAM FILE BY USING RECORD NUMBER *>>

<<**>>

FREADDIR(FILNUM,INPUT,�72,RECPTR);
IF <>

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED DURING FREADDIR";

PRINT(MESSAGE,�30,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<***>>

<<* WRITE THE DATA JUST READ BY FREADDIR *>>

<<***>>

PRINT(OUTPUT,�72,0);
<<**********************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<**********************************>>

GO TO L1;

END;

Figure 4-10. FREADDIR Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-83

Output from Program Execution:

RECORD# = 4

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

RECORD# = 3

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050

RECORD# = 2

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022

RECORD# = 1

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

RECORD# = 5

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102

RECORD# = 7

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871

RECORD# = 6

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO CA. 94053

RECORD# = 8

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234
RECORD# = 10

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098

RECORD# = 9

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

END OF PROGRAM

Figure 4-10. FREADDIR Example (continued)

4-84 USING KSAM FILES IN SPL PROGRAMS

FREADLABEL

INTRINSIC NUMBER 19

Reads a user �le label.

IV LA IV IV O-V

FREADLABEL(�lenum,target,tcount,labelid);

The FREADLABEL intrinsic reads a user-de�ned label from a disc �le. Before reading
occurs, the user's read-access capability is veri�ed. Note that MPE automatically skips over
any unread user labels when the �rst FREAD intrinsic call is issued for a �le; therefore the
FREADLABEL intrinsic should be called immediately after the FOPEN intrinsic has opened
the �le.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le whose label is to be
read.

target logical array (required)

An array in the stack to which the label is to be transferred. This array
should be large enough to hold the number of words speci�ed by tcount.

tcount integer by value (optional)

An integer specifying the number of words to be transferred from the label.
Tcount must not be greater than 128 words.

Default: 128 words.

labelid integer by ualue (optional) An integer specifying the label number where the
�rst user label is numbered 0.

Default: A default value of 0 is assigned.

CONDITION CODES

CCE The label was read

CCG The intrinsic referenced a label beyond the last label written on the �le.

CCL The label was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING KSAM FILES IN SPL PROGRAMS 4-85

USING FREADLABEL

If the KSAM �le contains one or more user labels (written with FWRITELABEL), you
can read these labels with the FREADLABEL intrinsic. During the normal �le reads with
FREAD, FREADC, FREADBYKEY, or FREADDIR, any user labels are ignored. The
number of user labels that can be written to the �le is speci�ed by the userlabels parameter of
FOPEN, or in the BUILD command of KSAMUTIL.

Since MPE checks to insure that you have opened the �le with read access before executing
FREADLABEL, you must open the �le with an FOPEN aoptions setting that permits
reading. It must be one of the following:

bits 12:4 = 0000 (octal 0) read only access

= 0100 (octal 4) input/output access

= 0101 (octal 5) update access

In addition, the FOPEN userlabels parameter must be set to a value of 1 or greater depending
on the number of labels that may be written to the �le.

Suppose you have opened the �le KDATA with the following call:

KFILNUM:=FOPEN(KDATA,3,4,,,,2);

/ ^ \

/ | \

/ | number of labels

old user/ |
domain |

|

|

input/output access

You might read the second label with the following call:

FREADLABEL(KFILNUM,LABELBUF,,1)

This reads the second label into the array LABELBUF. Note that label numbering begins
with 0; if the labelid parameter were zero or omitted, then the �rst label would be read. By
default, the number of words read from the label is 128.

4-86 USING KSAM FILES IN SPL PROGRAMS

FREADSEEK

INTRINSIC NUMBER 12

Moves a record from a disc �le to a bu�er in anticipation of a FREADDIR intrinsic call.

Note This intrinsic may not be used for KSAM �les. If called for a �le created as a
KSAM �le, the intrinsic returns a CCL condition code.

USING KSAM FILES IN SPL PROGRAMS 4-87

FRELATE

INTRINSIC NUMBER 18

Determines whether a �le pair is interactive, duplicative, or both interactive and duplicative.

Note This intrinsic may not be used for KSAM �les. If called for a �le created as
a KSAM �le, the functional return is set to zero (FALSE) and the condition
code CCE is returned.

4-88 USING KSAM FILES IN SPL PROGRAMS

FREMOVE

INTRINSIC NUMBER 306

Marks the current record in KSAM �le for deletion.

IV

FREMOVE(�lenum);

The intrinsic FREMOVE e�ectively removes the current record from the KSAM �le. When
executed, the �rst two characters of the current record in the data �le is set to all 1's, and all
key entries pointing to this record are deleted from the key �le. Although the space required
by the record remains in the data �le, it is no longer possible to access the record through
KSAM intrinsics.

In order to position the �le to the record to be deleted, FREMOVE must be preceded by
one of the intrinsics that positions the logical record pointer: FFINDN, FFINDBYKEY,
FREADBYKEY, FREAD, FPOINT, or a previous FREMOVE. Following execution of
FREMOVE, the logical record pointer is positioned at the next record in ascending key
sequence.

FREMOVE checks only the logical record pointer, not the chronological pointer, to locate the
record to be deleted. Therefore, if you want to delete a record located by its chronological
position in the �le, precede the call to FREMOVE with a call to FPOINT. FPOINT locates
the record by its record number and sets the logical, as well as the chronological pointer, to
that record. If you try to locate a record for FREMOVE by calling FREADDIR or FREADC,
which only set the chronological pointer, you will delete the wrong record.

When FREMOVE is executed, a check is made to make sure the record to be deleted actually
contains the key value to which the pointer is positioned. If the record does not contain that
value, then a condition code (CCL, error=191) is issued and the record is not deleted.

If the �le was opened for shared access (aoptions bits 8,9 = 11) then you must call FLOCK
before calling FREMOVE. Note that the �le must also have been opened with dynamic
locking allowed (aoptions bit 10 = 1).

Note If you want to recover the data in deleted records through nonKSAM access
(using FCOPY with the NOKSAM option), do not place any data in the �rst
two bytes since these bytes are overwritten by FREMOVE.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le from which the record is
to be deleted.

USING KSAM FILES IN SPL PROGRAMS 4-89

CONDITION CODES

CCE The current record is deleted.

CCG The logical end-of-data was encountered.

CCL An error was encountered or record does not contain requested key value; the
record is not deleted.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FREMOVE

When FREMOVE is executed, it sets the �rst word (bytes 1 and 2) of the current record to
all 1's. It does not physically delete the record from the �le. When the �le is read by any of
the KSAM read intrinsics, the deleted records are skipped as if they were not there. Since all
references to them are deleted from the key �le, the speed of execution is not usually a�ected
by the records physically remaining in the �le. However, they do take up space and if a great
many records are deleted, then you might want to build a new KSAM �le and copy the old �le
to the new �le with FCOPY. Since FCOPY does not copy records marked for deletion (except
with the NOKSAM option), the new �le will be shorter and have no space used by deleted
records. (Refer to section II for a description of copying KSAM �les with FCOPY.)

The example in Figure 4-11 deletes all records with a telephone number in the alternate key
�eld that is equal to or greater than \500-0000". The FFINDBYKEY intrinsic positions
the �le to the record containing the lowest alternate key value that is greater than or equal
to \500-0000". This record is then read and printed prior to being deleted by FREMOVE.
Following FREMOVE, the program loops back to read the next sequential record, print it,
and then delete it. When an end of data is reached, the program terminates. In all, the
program deletes three records. You can check the deleted records against the list of records
printed in telephone number sequence by the program illustrating FREAD in Figure 4-7.

In practice, an FREAD prior to an FREMOVE is useful because it allows you to test the
record contents prior to deleting the record. For example, you might want to delete only those
records with the zip code 90871 in bytes 75 through 79 of the record, assuming the same �le
as in Figure 4-11:

4-90 USING KSAM FILES IN SPL PROGRAMS

BYTE ARRAY INPUTB(*)=INPUT; <---- Equate the byte array INPUTB to INPUT
...

L1:

FREAD(FILNUM,INPUT,�72);

IF>

.

. <----- test for end of data

.

IF<

.

.<------ test for read error

.

IF INPUTB(75)="90871"

THEN BEGIN

FREMOVE(FILNUM);

IF<

.

. <----- test for delete error

.

END;

GO TO L1; <--------------- return for next record

SHARED ACCESS

In a shared environment, you must always lock the �le with a call to FLOCK before calling
FREMOVE. Furthermore, since the logical record pointer must be positioned before the call
to FREMOVE, you should lock the �le before calling the procedure that positions the pointer.
This prevents other users from a�ecting the pointer position by adding or deleting records
between the time you position the pointer and call FREMOVE. The following sequence of
calls illustrates the correct method for deleting a record in a shared environment:

FLOCK <------------- lock the �le

FREADBYKEY <------------- position pointer and read record

FREMOVE <-- mark the record for deletion

FUNLOCK <-- unlock �le to allow access to other users

Remember to open the �le for shared access and allow dynamic locking whenever you plan to
delete records from a �le in a shared environment.

USING KSAM FILES IN SPL PROGRAMS 4-91

$CONTROL MAIN=JEXAMPL7

<<**>>

<<* EXAMPLE 7 *>>

<<* DELETE SELECTED RECORDS *>>

<<**>>

INTEGER FILNUM;

INTEGER LENGTH;

INTEGER ERRORCODE;

BYTE ARRAY FILNAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

BYTE ARRAY KEYVALUE (0:7):="500-0000";

INTEGER KEYLENGTH:=8;

INTEGER KEYLOCATION;=21;

INTEGER RELOP;=2; << GREATER THAN OR EQUAL TO >>

INTRINSIC FOPEN,FCLOSE,FREAD,FREMOVE,FFINDBYKEY,

READ,PRINT,TERMINATE,CHECK,FERRMSG;

<<************************>>

<<* OPEN THE KSAM FILE *>>

<<************************>>

FILNUM:=FOPEN(FILNAME,3,5); <<OPEN THE KSAM FILE FOR UPDATE>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE:=�21,0);

FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<**>>

<<* POSITION KSAM FIL IN TELEPHONE # SEQUENCE *>>

<<**>>

FFINDBYKEY(FILNUM,KEYVALUE,LEYLOCATION,LEYLENGTH,RELOP);

MOVE MESSAGE:="DELETE FOLLOWING RECORDS:";

PRINT(MESSAGE,�25,0);

<<**********************************>>

<<* READ RECORD BEFORE DELETING *>>

<<**********************************>>

L2:

FREAD(FILNUM,INPUT,�72); << READ RECORDS TO BE DELETED>>

Figure 4-11. FREMOVE Example

4-92 USING KSAM FILES IN SPL PROGRAMS

IF >

THEN BEGIN <<END OF FILE>>

FCLOSE(FILNUM,0,0) <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN <<CLOSE UNSUCCESSFUL>>

MOVE MESSAGE:="CANNOT CLOSE THE KASM FILE";

PRINT(MESSAGE,�29,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

END;

TERMINATE;

END;

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING INPUT";

PRINT(MEEAGE,�34,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>
FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<***>>

<<* WRITE THE RECORD JUST READ FROM KSAM FILE *>>

<<***>>

PRINT(OUTPUT,�72,0);
<<***>>

<<* REMOVE RECORD JUST READ FROM FILE *>>

<<***>>

FREMOVE(FILNUM); <<DELETE RECORD>>

IF <

THEN BEGIN

MOVE MESSAGE:=ERORROR OCCURRED DURING DELETE";

PRINT(MESSAGE,�28,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<************************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<************************************>>

GO TO L2;

END,

Figure 4-11. FREMOVE Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-93

Output from Program Execution:

DELETE FOLLOWING RECORDS:

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

END 0F PROGRAM

Figure 4-11. FREMOVE Example (continued)

4-94 USING KSAM FILES IN SPL PROGRAMS

FRENAME

INTRINSIC NUMBER 17 Renames a disc �le.

Note This intrinsic may not be used for KSAM �les. If called for a �le created as a
KSAM �le, the intrinsic returns a CCL condition code.

To rename a KSAM �le, use the KSAMUTIL RENAME command.

USING KSAM FILES IN SPL PROGRAMS 4-95

FSETMODE

INTRINSIC NUMBER 14

Activates or deactivates critical output veri�cation

IV LV

FSETMODE(�lenum,mode
ags);

The FSETMODE intrinsic activates or deactivates the access mode option that permits
critical output veri�cation. This means that all output must be veri�ed as physically complete
before control returns from an output intrinsic (FWRITE,FUPDATE, or FREMOVE) to your
program.

The access mode established by the FSETMODE intrinsic remains in e�ect until another
FSETMODE call is issued or until the �le is closed.

PARAMETERS

�lenum integer by value (required) A word identi�er supplying the �le number of the
�le to which the call applies.

mode
ags logical by value (required) A 16-bit value that denotes the access mode options
in e�ect. For KSAM �les only bit 14 is used; all the remaining bits are set to
zeros.

Bit 14=1|; Activate Critical Output Veri�cation When this bit is set, all
output to the �le is veri�ed as physically complete before an
FWRITE, FUPDATE, or FREMOVE intrinsic returns control
to the user. As soon as a logical record is written, a CCE
condition is returned to the user.

Bit 14=0|; Deactivate Critical Output Veri�cation When the bit is
cleared, output is no longer veri�ed.

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

4-96 USING KSAM FILES IN SPL PROGRAMS

USING FSETMODE

When FSETMODE is executed with the mode
ags parameter equal to 2 (bit 14=1),
then each logical record written by an output intrinsic is physically transferred to the �le
immediately. Control is not returned to the user program until the transfer has been made.
At that time a CCE condition code is returned to the program.

When FSETMODE is executed with the mode
ags parameter equal to zero (bit 14=0),
output is treated in the standard manner. That is, when an output intrinsic writes a logical
record, the record is physically transferred to the �le only when the entire physical record
(block) of which it is a part is transferred. (Calls to FWRITE, FUPDATE, and FREMOVE
send output to the KSAM �le.)

For example, the following intrinsic call activates critical output veri�cation:

FSETMODE(FILNUM,2);

If you want to return to normal output mode, you can use the call:

FSETMODE(FILNUM,0);

When the �le is �rst opened and when it is opened subsequently following an FCLOSE call,
the critical output veri�cation mode is deactivated.

USING KSAM FILES IN SPL PROGRAMS 4-97

FSPACE

INTRINSIC NUMBER 5

Spaces forward or backward on a �le.

IV IV

FSPACE(�lenum,displacement);

The FPSACE intrinsic allows you to space forward or backward a speci�ed number of records
on a KSAM �le. The logical record pointer is repositioned by FSPACE in key sequence. The
spacing is based on primary key sequence unless an alternate key has been speci�ed in a prior
call to FFINDN, FFINDBYKEY, or FREADBYKEY.

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le on which spacing is to
be done.

displacement integer by value (required)

An integer indicating the number of logical records to be spaced over, relative
to the current logical record pointer position. Record sequence for spacing is
based on key sequence. A positive value signi�es forward spacing, a negative
value signi�es backward spacing; zero signi�es no spacing, but sets a
ag so
that the next call to FREAD does not move the logical record pointer before
reading the record. The maximum positive value is 32767; the maximum
negative value is �32768. The sign is optional for positive values.

CONDITION CODES

CCE Request granted.

CCG A logical end-of-�le indicator was encountered during spacing. The logical
record pointer is at the beginning-of-�le if displacement was negative, to the
end-of-�le if displacement was positive.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FSPACE

If you want to space back a particular number of records in key sequence, you would specify
a negative value for the displacement parameter in a call to FSPACE. To space forward,
you would use a positive or unsigned integer as the displacement value. In either case, the
displacement indicates the number of records to space over.

For example, suppose the following sequence of primary key values:

ABLE

4-98 USING KSAM FILES IN SPL PROGRAMS

BAKER <---------- (2) pointer after FSPACE(FILNUM,�2);

CHARLIE

DOG <------------ (1) current record pointer

EASY

FOX <------------ (3) pointer after FSPACE(FILNUM,4);

Suppose the current record pointer is at the beginning of the record whose primary key
contains the value DOG. To position the pointer to the beginning of the record with a
primary key value BAKER:

FSPACE(FILNUM,�2);

To space forward from the beginning of the record with BAKER as the key value to the
beginning of the record with FOX as the key value:

FSPACE(FILNUM,4);

Figure 4-12 shows that the movement of the pointer bears no relation to the physical
placement of records in the �le.

Figure 4-12. File Position with FSPACE

POINTER POSITION

FSPACE checks a
ag to determine whether to advance the pointer before it moves the
pointer the speci�ed number of records. If FSPACE follows a call that reads the �le (FREAD
or FREADBYKEY) then it advances the pointer to the record in key sequence following the

USING KSAM FILES IN SPL PROGRAMS 4-99

record just read. After advancing the pointer, FSPACE positions the pointer as indicated
in the call. If, on the other hand, FSPACE follows FPOINT, FFINDBYKEY, or FFINDN,
the pointer remains positioned to the record speci�ed in one of these calls until FSPACE is
executed.

To illustrate, consider the following calls:

FREAD <------------- read record, set
ag to advance pointer

FSPACE(�1) <--------------- test
ag, advance pointer, then move pointer back 1 record

FREAD <---------------- reread record just read

SHARED ACCESS

Because FSPACE is a pointer-dependent procedure (see Table 4-2), it is essential to lock the
�le before the call that determines the original pointer position, then call FSPACE, then call
any other procedures that depend on where FSPACE positioned the pointer. When all the
pointer-dependent procedures are complete, then unlock the �le for other users. To illustrate:

FLOCK <-------------- lock �le

FFINDBYKEY <---------------- locate a particular key ualue

FSPACE <------------- move pointer relative to that key position

FREAD <-------------- read the record to which pointer is positioned

FUNLOCK <-------------- unlock the �le

4-100 USING KSAM FILES IN SPL PROGRAMS

FUNLOCK

INTRINSIC NUMBER 16

Dynamically unlocks a KSAM �le.

IV

FUNLOCK(�lenum);

The FUNLOCK intrinsic dynamically unlocks a KSAM �le (Resource Identi�cation Number)
that has been locked with the FLOCK intrinsic.

PARAMETERS

�lenum integer by value (required)

A word supplying the �le number of the �le to be unlocked.

CONDITION CODES

CCE Request granted.

CCG Request denied because the �le had not been locked by the calling process.

CCL Request denied because the �le was not opened with the dynamic locking
aoption of the FOPEN intrinsic, or the �lenum parameter is invalid.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FUNLOCK

A �le that has been locked with FLOCK in order to allow exclusive updating should be
unlocked with FUNLOCK as soon as the update is complete. Dynamic locking and unlocking
apply to �les opened for this capability. In the aoptions parameter of FOPEN, bit 10 must be
set to 1 in order to use either FLOCK or FUNLOCK. (For more discussion of dynamic locking
and unlocking, refer to the FLOCK intrinsic description.)

Suppose a �le has been locked to allow update of a record. To unlock the �le following
completion of the update, use the call:

FUNLOCK(FILNUM);

When FUNLOCK is executed, all output written while the �le was locked is transferred to the
�le so that other users have the most recent data.

USING KSAM FILES IN SPL PROGRAMS 4-101

FUPDATE

INTRINSIC NUMBER 4

Updates the contents of a logical record in a KSAM �le.

IV LA IV

FUPDATE(�lenum,target,tcount);

The FUPDATE intrinsic can be used to update a logical record in a KSAM �le. The entire
record including primary and any alternate keys can be updated with FUPDATE. The record
to be updated is the record last referenced by the intrinsics FREAD, FREADBYKEY,
FFINDBYKEY, or FPOINT. The new values for the record are moved from the user's
stack into this record. The �le containing this record must have been opened with the
aoption parameter of FOPEN set to update access. FUPDATE can be used to update both
�xed-length and variable-length records. FUPDATE can be used to modify key values or to
change record size, but if key values or the record size are changed, the update operation
causes the entire record to be deleted and then rewritten. After an update, a subsequent call
to FREAD will read the next record in ascending key sequence after the record just written.

FUPDATE checks only the logical record pointer, not the chronological pointer, in order to
determine which record to update. Therefore, if you want to update a record based on its
chronological position, precede the call to FUPDATE by a call to FPOINT. FPOINT locates
the record by its record number and sets the logical, as well as the chronological, pointer. If
you try to locate a record for FUPDATE by calling FREADDIR or FREADC, which only set
the chronological pointer, the wrong record will be updated.

If the �le was opened for shared access (aoptions bits 8,9 = 11), then you must call FLOCK
to lock the, �le before calling FUPDATE. Note that the �le must also have been opened with
dynamic locking allowed (aoptions bit 10 = 1).

PARAMETERS

�lenum integer by value (required) A word identi�er supplying the �le number of the
�le to be updated.

target logical array (required) Contains the record to be written in the updating.

tcount integer by value (required) An integer specifying the number of words or bytes
to be written from the record. If this value is positive, it signi�es words; if
it is negative, it signi�es bytes. If tcount is less than the recsize parameter
associated with the record, only the �rst tcount bytes or words are written.

CONDITION CODES

CCE Request granted.

CCG An end-of-�le condition was encountered during updating.

CCL Request denied because of an error, such as tcount exceeds the record size
de�ned for the KSAM �le; or tcount does not include all the keys; or a disc
input/output error.

4-102 USING KSAM FILES IN SPL PROGRAMS

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FUPDATE

In order to update a record in a KSAM �le, you must open the �le for update. This access
mode is speci�ed by setting bits 12 through 15 of the FOPEN aoptions parameter to the octal
value 5 (binary value 0101). You must then access the record to be updated. Normally, you
would read the record with one of the read intrinsics and then modify the record just read.

The record to be updated by FUPDATE is the last record accessed. FUPDATE writes the
contents of a user bu�er area (target) over the existing contents of the last record accessed.
The record written by FUPDATE must contain all the key values expected by the �le. If only
a portion of the record is speci�ed by a tcount parameter less than the original record size,
then this portion must contain all primary and alternate key values or a CCL condition is
returned and the update does not take place.

The example in Figure 4-13 shows an update of an alternate key, the telephone number
located in bytes 21 through 28 of the record. In order to locate the record to be updated,
FREADBYKEY is executed before FUPDATE. The data input through the standard input
device contains the keylocation and keyvalue values for FREADBYKEY as well as the new
value for the update:

byte | 0 1 | 2 21 | 22 29 |

|-----|----------------------------------|----------------|

| | | |

| | name | phone number |

|-----|----------------------------------|----------------|

^ ^ ^

| | |

keylocation keyvalue new value

(starting byte) (primary key) (alternate key)

Note that bytes are numbered from zero in the standard input or output device, but bytes in
the KSAM record are numbered starting from 1 for the keylocation parameter.

SHARED ACCESS.

When access is shared, it is essential to lock the �le with a call to FLOCK before rewriting
any records. After the update, you should unlock the �le with FUNLOCK. To make sure
you are updating the correct record, include both the intrinsic that locates the record and
FUPDATE between the same pair of FLOCK and FUNLOCK intrinsics.

For example, suppose you use FREADBYKEY to examine the record to be updated, you
should lock the �le before calling the intrinsic that locates the record to be updated and
unlock if after the update:

FLOCK

FREADBYKEY (or FFINDBYKEY) <----------- locate record to be updated
...

FUPDATE <------- update record

FUNLOCK <----------- all key bu�ers, data bu�ers and control information written to disc

USING KSAM FILES IN SPL PROGRAMS 4-103

If you perform operations on a record between locating it and updating it, and you do not
want to lock the �le during this process (between the read and the update), then you can use
the following code sequence:

FLOCK

FREADBYKEY (or FFINDBYKEY) <----- locate record

FUNLOCK

.

. <----------------- while you decide whether to update record,

. other users can modify or delete it

(decide to update)

FLOCK

FREADBYKEY (or FFINDBYKEY) <----------- reread record

FUPDATE

FUNLOCK

UPDATING RECORDS WITH DUPLICATE KEYS.

If you want to sequentially update all the records in a chain of records with duplicate keys,
locate the �rst record in the chain with FFINDBYKEY, FREADBYKEY, or FPOINT. Then
call FUPDATE to modify this record. If no key value (the selected key or any other) is
modi�ed, subsequent calls to FUPDATE will modify the next sequential records in the chain
of records with duplicate keys. If, however, any key has been changed, the modi�ed key is
written to the end of the chain and the next sequential record is one with the next higher key
value. In this case, to update all records with duplicate keys, precede each call to FUPDATE
with a call to FFINDBYKEY, FREADBYKEY, or FPOINT to position to the beginning of
the chain.

If you are in the middle of a duplicate key chain and FUPDATE modi�es a key value, you can
position back to the next duplicate key in the chain with the following sequence of calls:

FSPACE(FILNUM,1); <-------- position to next sequential record

FGETINFO(FILNUM,,,,,,,,,RECPTR); <--------------- retrieve current record number

FSPACE(FILNUM,�1); <--------------- backspace to current record

FUPDATE(FILNUM,OUTPUT,�72); <------------ modify key, positioning to end of key chain

.

.

.

FPOINT(FILNUM,RECPTR); <-------- position to next duplicate key using record number

retrieved by FGETINFO

Note that if the KSAM �le has �xed-length records or if the updated record is the same size
as the old record, the space in the data �le is reused. Otherwise, the updated record is written
to the end of the data �le.

4-104 USING KSAM FILES IN SPL PROGRAMS

$CONTROL MAIN=JEXAMPL8

<<**>>

<<* *>>

<<* EXAMPLE 8 *>>

<<* UPDATE A RECORD IN A KSAM FILE *>>

<<* *>>

<<**>>

INTEGER FILUM;

INTEGER ERRORCODE;

INTEGER LENGTH;

BYTE ARRAY FILNAME (0:9);="JEXAMPLE ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

BYTE ARRAY OUTPUTB(*)=OUTPUT;

BYTE ARRAY INFO(0:35);

ARRAY INFOW(*)=INFO;

BYTE ARRAY KEYVALUE(*)=INFO(2);

INTEGER KEYLOCATION;

INTRINSIC FOPEN,FCLOSE,FUPDATE,FREADBYKEY,READ,PRINT,

BINARY,FCHECK,FERRMSG,TERMINATE;

<<************************>>

<<* OPEN THF KSAM FILE *>>

<<************************>>

FILNUM:=FOPEN(FILNAME,3,5); <<OPEN THE KSAM FILE FOR UPDATE>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,�21,0);

FCHECK (FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<***>>

<<* READ IN KEYVALUE AND KEYLOCATION INFOMATION *>>

<<***>>

L1:

READ(INFOW,�36);

Figure 4-13. FUPDATE Example

USING KSAM FILES IN SPL PROGRAMS 4-105

IF >

THEN BEGIN

FCLOSE(FILNUM,0,0,); <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN

MOVE MESSAGE:="CANNOT CLOSE THE KSAM FILE";

PRINT (MESSAGE,�26,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

END

TERMINATE;

END;

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING INPUT";

PRINT(MESSAGE,�34,0);
TERMINATE;

END;

PRINT(INFOW,�36,0); <<TEST READ>>

KEYLOCATION:=BINARY(INFO,2); <<CONVERT FROM ASCII TO BINARY>>

<<***>>

<<* READ KSAM ACCORDING TO KEYVALUE AND KEYLOCATION *>>

<<***>>

FREADBYKEY(FTLNUM,INPUT,�72,KEYVALUE,KEYLOCATION);
IF <>

THEN BEGIN <<ERROR OCCUPRED IN FREADBYKEY>>

MOVE MESSAGE:="ERROR OCCUPRED IN FREADBYKEY";

PRINT(MESSAGE,�28,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

GO TO L1;

END;

<<**>>

<<* UPDATE THE RECORD JUST READ *>>

<<**>>

MOVE OUTPUTB(20):=INFO(22),(8);

FUPUATE(FILNUM,OUTPUT,�72);
IF <>

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED DURING UPDATE";

PRINT(MESSAGE,�28,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>
TERMINATE;

END;

Figure 4-13. FUPDATE Example (continued)

4-106 USING KSAM FILES IN SPL PROGRAMS

<<***>>

<<* PRINT THE RECORD JUST UPDATED *>>

<<***>>

PRINT(OUTPUT,�72,0);

<<***********************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<***********************************>>

GO TO L1;

END;

Output from Program Execution:

read from $STDIN

/

/ /updated record

/ /

01WHITE GORDON 428-2498 /

WHITE GORDON 428-2498 4350 ASHBY AVE. BERKELEY CA. 91234

01ECKSTEIN LEO 263-2464

ECKSTEIN LEO 263-2464 5303 STEVENS CREEK SANTA CLARA CA. 95050

Figure 4-13. FUPDATE Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-107

FWRITE

INTRINSIC NUMBER 3

Write a logical record from the user's stack to a KSAM �le.

IV LA IV LV

FWRITE(�lennum,target,tcount,control);

The FWRITE intrinsic writes a logical record from the user's stack to the KSAM �le. The
record contents are contained in the array target in the user's program and include all key
values. FWRITE uses the primary key value to update the key �le so that the new record is
in sequence by primary key value. Any alternate keys are also entered into their appropriate
positions in the key �le. No separate key speci�cation is required since all the key values are
contained in the record to be written.

Following execution of FWRITE, the logical record pointer is positioned at the next sequential
record in key sequence or at the end-of-�le if the record is the last in sequence. The particular
key is the current key being used when FWRITE is called.

If sequential processing was speci�ed for the �le in the
agword of ksamparam when the �le
was opened by FOPEN, then the records must be written in ascending order by primary key.
If duplicate keys are not allowed, any record with a key duplicating a key in an existing record
is not written and a CCL condition code is returned.

When the physical bounds of either the data �le or the key �le prevent further writing (all
allowable extents are �lled), an end-of-�le condition code (CCG) is returned to the user's
program.

If the �le was opened for shared access (aoptions bits 8,9 = 11), then you must dynamically
lock the �le with FLOCK before calling FWRITE. Note that the �le must also have been
opened for dynamic locking (aoptions bit 10 = 1).

PARAMETERS

�lenum integer by value (required)

A word identi�er supplying the �le number of the �le to be written on.

target logical array (required)

Contains the record to be written.

tcount integer by value (required)

An integer specifying the number of words or bytes to be written to the
record. If this value is positive, it signi�es words; if it is negative, it signi�es
bytes; if it is zero, no transfer occurs. If tcount is less than the recsize
parameter associated with the record, only the �rst tcount words or bytes are
written.

If tcount is larger than the recsize value, the write request is refused and
condition code CCL is returned.

control logical by value (required)

4-108 USING KSAM FILES IN SPL PROGRAMS

A logical value representing a carriage control code. This parameter has no
meaning for KSAM �les but must be included for compatibility. Whatever
value is speci�ed will be ignored.

CONDITION CODES

CCE Request granted.

CCG The physical bounds of the �le prevented further writing; all disc extents are
�lled.

CCL Request denied because an error occurred, such as: an input/output error
occurred; a duplicate key value occurred when duplicates are not allowed;
tcount does not include all keys; or sequential processing was speci�ed in the

agword of ksamparam in FOPEN and the primary key is not the next in
ascending order.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FWRITE

The FWRITE intrinsic writes records from an array in your program to a KSAM �le. All the
key information is contained in this target array. The record is written to the data �le and the
key�le is updated to re
ect the primary key and any alternate keys in the new record.

Depending on how the �le was opened, you can write records at random regardless of primary
key order, or you may be constrained to write records in sequential order by primary key
value. The examples in this manual use the �le JEXAMFIL that is created for writing at
random. If you refer to Figure 4-5, the
agword of the ksamparam parameter is set to the
binary value 0000000000000010. Bit 14, indicating that record numbers start with 1, is the
only bit set. If bit 13 had also been set to 1 then all records written to the �le would have to
be in ascending order by primary key value. In such a case, the chronological order of records
and the sequential order would be the same.

When you write a record to a KSAM �le, FWRITE either overwrites any records previously
written to the �le or else writes new records following existing records. The choice is made
when you open the �le. If you set bits 12 through 15 of the aoptions parameter of FOPEN to
the binary value 0001 (octal or decimal 1), then all records written to the �le before this open
are deleted and FWRITE writes records to a cleared �le . If you set bits 12 through 15 of
aoptions to 0010 or 0011 (octal or decimal 2 or 3), then any previously written data is saved.
The example in Figure 4-14 deletes any data written to �le JEXAMFIL before it was opened.
The �le will have no data other than that written by this program. If, after closing the �le,
you want to open it to write more data without deleting existing data, then you must set the
aoptions access type (bits 12-15) to 0010 or 0011.

SHARED ACCESS

When access is shared, it is essential that you lock the �le before writing new records. This
means opening the �le with dynamic locking allowed and calling FLOCK before calling
FWRITE. You should also unlock the �le with FUNLOCK after writing the records.

USING KSAM FILES IN SPL PROGRAMS 4-109

$CONTR0L MAIN=EXAMPLE9

<<**>>

<<* *>>

<<* EXAMPLE 9 *>>

<<* WRITE TO EXISTING KSAM FILE *>>

<<* *>>

<<**>>

INTEGER FILNUM;

INTEGER ERRORCODE;

INTEGER LENGTH;

BYTE ARRAY FILNAME(0:9):="JEXAMFIL ";

ARRAY MESSAGE(0:35);

ARRAY INPUT(0:39);

ARRAY OUTPUT(*)=INPUT;

INTRINSIC FOPEN,FCLOSE,FWRITE,READ,PRINT,FCHECK,FERRMSG;

INTRINSIC TERMINATE;

<<************************>>

<<* OPEN THE KSAM FILE *>>
<*************************>>

FILNUM:=FOPEN(FILNAME,3,2); <<OPEN FILE FOR WRITE>>

IF FILNUM=0

THEN BEGIN <<CANNOT OPEN KSAM FILE>>

MOVE MESSAGE:="CANNOT OPEN KSAM FILE";

PRINT(MESSAGE,�21,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

TERMINATE;

END;

<<**********************************>>

<<* READ DATA FROM $STDIN DEVICE *>>

<<**********************************>>

L1;

READ(INPUT,�72); <<READ ONE RECORD FROM $STDIN>>

IF >

THEN BEGIN <<END OF FILE ON $STDIN>>

FCLOSE(FILNUM,1,0); <<CLOSE THE KSAM FILE>>

IF <> THEN

BEGIN <<CANNOT CLOSE THE KSAM FILE>>

MOVE MESSAGE:="CANNOT CLOSE THE KSAM FILE";

PRINT(MESSAGE,�29,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMRER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>

END;

TERMINATE;
END;

Figure 4-14. FWRITE Example

4-110 USING KSAM FILES IN SPL PROGRAMS

IF <

THEN BEGIN

MOVE MESSAGE:="ERROR OCCURRED WHILE READING INPUT";

PRINT(MESSAGE,�34,0);
TERMINATE;

END;

PRINT(OUTPUT,�72,0); <<ECHO CHECK>>

<<***>>

<<* WRITE THE DATA JUST READ TO THE KSAM FILE *>>

<<***>>

FWRITE(FILNUM,OUTPUT,�72,0);
IF <>

THEN BEGIN <<ERROR OCCURRED WHILE WRITING KSAM>>

MOVE MESSAGE:="ERROR OCCURRED WHILE WRITING KSAM FILE";

PRINT(MESSAGE,�38,0);
FCHECK(FILNUM,ERRORCODE); <<GET ERROR NUMBER>>

FERRMSG(ERRORCODE,MESSAGE,LENGTH);<<CONVERT TO STRING>>

PRINT(MESSAGE,�LENGTH,0); <<PRINTOUT ERROR MESSAGE>>
TERMINATE;

END;

<<***********************************>>

<<* GO BACK TO GET ANOTHER RECORD *>>

<<***********************************>>

GO TO L1;

END;

Figure 4-14. FWRITE Example (continued)

USING KSAM FILES IN SPL PROGRAMS 4-111

FWRITEDIR

INTRINSIC NUMBER 8

Writes a speci�c logical record from the user's stack to a disc �le.

Note This intrinsic may not be used for KSAM �les. If called for a �le created as a
KSAM �le, the intrinsic returns a CCL condition code.

4-112 USING KSAM FILES IN SPL PROGRAMS

FWRITELABEL

INTRINSIC NUMBER 20

Writes a user �le label.

IV LA IV IV O-V

FWRITELABEL(�lenum,target,tcount,labelid);

The FWRITE LABEL intrinsic writes a user-de�ned label onto a disc �le. This intrinsic
overwrites old user labels.

PARAMETERS

�lenum integer by value (required)

A word identi�er specifying the �le number of the �le to which the label is to
be written.

target logical array (required)

Contains the label to be written to the disc �le.

tcount integer by value (optional) An integer specifying the number of words to be
transferred from the array.

Default: 128 words.

labelid integer by value (optional) An integer specifying the number of the label to be
written. The �rst label is 0.

Default: A default value of 0 is assigned.

CONDITION CODES

CCE Request granted.

CCG Request denied because the calling process attempted to write a label beyond
the limit speci�ed in FOPEN when the �le was opened.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

USING FWRITELABEL

You can write your own labels to a KSAM �le with the FWRITELABEL intrinsic. Such
labels are useful to hold information related to the �le but not part of it. For example, you
might use a label to contain the date and time of the last update to the �le.

The number of labels that are allowed to be written to any �le must be speci�ed in the
userlabels parameter of the FOPEN intrinsic when the �le was created. If an attempt is made
to write more labels than are speci�ed for the �le at creation, a CCG condition is returned.

USING KSAM FILES IN SPL PROGRAMS 4-113

In order to write labels, as with any other write request, the �le must be opened for write
access. This means that the aoptions parameter of FOPEN must be set to one of the
following:

bits 12:4 = 0001 (octal 1) \

0010 (octal 2) |- write only access

0011 (octal 3) /

= 0100 (octal 4) <------ input/output access

= 0101 (octal 5) <------ update access

Suppose �le KDATA has been created as follows:

KFILNUM:=FOPEN(KDATA,%4004,4,,,,2);

/ | |

/ | |

/ | |

new KSAM file, | number of labels

ASCII coded |

input/output access

Then a total of two labels, each with a maximum of 128 words, can be written to this �le
with FWRITELABEL. To write a second label consisting of 60 words stored in the array
LABELBUF, use the following call:

FWRITELABEL(KFILNUM,LABELBUF,60,1);

Note that label numbering starts with zero, so the second label is identi�ed by the number 1.

4-114 USING KSAM FILES IN SPL PROGRAMS

HP32208

INTRINSIC NUMBER 308

Returns current version, update, and �x level of KSAM/3000.

D

version:=HP32208

The double word result returned by HP32208 contains the version number in ASCII, the
update number in binary, and the �x-level number in binary of the KSAM/3000 version
currently in use.

FUNCTIONAL RETURN

version Double word returned by HP32208 in the form:

0 7 8 15

--

| Version, in ASCII | Update #, in binary | word 1

--

| Fix-level #, in binary | word 2

--

CONDITION CODES

Condition codes are not a�ected by execution of this intrinsic.

USING HP32208

You may call this intrinsic in order to get the current version, update, and �x numbers of the
KSAM/3000 that is currently being used. The intrinsic FGETKEYINFO returns the version,
update, and �x number of a KSAM �le at the time the �le is created (refer to words 16/17
of the ksamcontrol parameter, Table 4-4). The version, update, and �x number of a KSAM
�le at creation is also returned by the VERIFY command (refer to section II). You can call
HP32208 to get the KSAM version you are using in order to compare it with the version at
�le creation of a �le you are accessing.

Another reason for calling HP32208 is if you want to convert the version, update, and �x
numbers to display values so they can be listed for documentation purposes.

USING KSAM FILES IN SPL PROGRAMS 4-115

5
USING KSAM FILES IN FORTRAN
PROGRAMS

OVERVIEW

The FORTRAN language has no input/output statements that can be used to access or create
a KSAM �le directly. In order to reference KSAM �les for input or output, the FORTRAN
progammer can choose between using MPE �le system intrinsics (as described in section IV)
or using COBOL procedures (described in section III). He can create a KSAM �le with the
KSAMUTIL utility program (described in section II) or with a call to the FOPEN intrinsic,
but not with a COBOL procedure.

If you are programming in FORTRAN, you can use the CALL statement to call any of the
COBOL procedures or any of the �le system intrinsics that access KSAM �les. In order to
determine which to use, you should refer to Table 3-1 for a list of the COBOL procedures that
provide KSAM interface and to Table 4-1 for a similar list of the �le system intrinsics used for
KSAM interface. You will note that there are di�erences in the functions provided.

Since the COBOL procedures are described in detail in section III and the �le system
intrinsics are described in detail in section IV, these descriptions are not repeated here. This
section merely describes how to call the COBOL procedures or the �le system intrinsics, and
provides examples of �le creation and access along with brief commentaries.

USING KSAM FILES IN FORTRAN

PROGRAMS

5-1

CALLING FILE SYSTEM INTRINSICS

To the FORTRAN user, some of the �le system intrinsics are treated as functions and others
as subroutines. A function is called implicitly by being referenced in a FORTRAN statement.
A subroutine is called explicitly with the FORTRAN CALL statement. A further distinction
is that a function can return a value to the calling program as a functional return, whereas a
subroutine can return values only through the parameters (arguments) speci�ed in the call.

To illustrate, the FOPEN intrinsic is called as a function:

FILNUM=FOPEN(FILENAME,%4004L,%101L,�72,DEVICE,KSAMPARAM,,10,,100J)

When this statement is executed, a value is returned to the integer variable FILNUM. Note
that the word CALL is not used. On the other hand, the FWRITE intrinsic is a subroutine
that must be called with the CALL statement:

CALL FWRITE(FILNUM,OUTPUT,�72,%OL)

In order to determine quickly which is which, look up the intrinsic de�nition in section III;
if it has a functional return it should be called as a function, if not it should be called as a
subroutine.

MPE/3000 system intrinsics di�er from FORTRAN/3000 language procedures: System
intrinsics can have optional parameters (arguments) whereas all parameters must be speci�ed
in a call to a FORTRAN procedure. Another di�erence is that parameters can be passed by
value to a system intrinsic but they must be passed by reference to a FORTRAN procedure.
To pass a parameter by value, use the literal value as a parameter (the parameter �72 in the
FOPEN call above); to pass by reference, the value is assigned to a parameter speci�ed as a
variable or array name (FILENAME in the FOPEN call).

In order to take advantage of the capabilities of the system intrinsics, you should declare the
names of any intrinsics you plan to use in a SYSTEM INTRINSIC statement. This statement
must appear as one of the declaration statements that precede executable statements in a
FORTRAN/3000 program. For example, if you plan to call FOPEN, FCLOSE, FWRITE, and
FCHECK then these intrinsics should be declared in the statement:

SYSTEM INTRINSIC FOPEN,FCLOSE,FWRITE,FCHECK

Declared in this way, you can then omit optional parameters from the call and pass
parameters by value. If you do not declare the intrinsics in a SYSTEM INTRINSIC call, then
a function call such as that illustrated above for FOPEN would generate an error because it
omits some parameters and passes others by value.

5-2 USING KSAM FILES IN FORTRAN

PROGRAMS

CALLING COBOL PROCEDURES

Like the FORTRAN/3000 procedures, COBOL/3000 procedures do not allow you to omit
any parameters from the parameter list or to pass parameters by value. Thus no special
provisions need be made in order to call COBOL procedures from a FORTRAN program.
Since the COBOL procedure call di�ers in format from the FORTRAN procedure call, you
must translate from the COBOL format when calling a COBOL procedure in a FORTRAN
program. The translation is simple:

CALL "CKOPEN" USING �letable, status. <-------------- COBOL format

| | |----|

| | |

procedure parameters

name | |

| | |

| | |

CALL CKOPEN (�letable, status) <--------------------- FORTRAN format

USING KSAM FILES IN FORTRAN

PROGRAMS

5-3

CREATING A KSAM FILE WITH A CALL TO FOPEN

A KSAM �le can be created with the >BUILD command of the KSAMUTIL program or it
can be created programmatically through a call to the �le system intrinsic FOPEN. Figure 5-1
contains a FORTRAN program that uses the intrinsic FOPEN to create and open a Ele, and
the intrinsic FWRITE to write to the open �le. It checks for errors with the FCHECK and
FERRMSG intrinsics, and closes the �le with a call to FCLOSE.

The �le is named FEXAMFIL and the associated key �le is named FKEYFILE. Two keys are
used, a primary key of 20 characters starting in byte 1 of each data record, and an alternate
key of eight characters starting in byte 21 of the data record. The primary key contains a
name, the alternate key a phone number (refer to the input data in Figure 5-1).

DEFINING KSAMPARAM

The parameter ksamparam describes the key �le in an array that contains many di�erent
types of data (refer to Table 4-7). Because the data di�ers, the EQUIVALENCE statement
is used to equate the word-array KSAMPARAMA to the byte-array KSAMPARAM to
the double-word-array KSAMPARAMD. The key�le name is in the �rst eight bytes and
this is equivalenced to the beginning of the array. The key device is de�ned in word 7 of
KSAMPARAMA, and the key descriptions begin in word 18.

The
ag word (word 17) has the octal value 2. This means that only bit 14 is set to 1. The

agword de�nes the following options for the KSAM �le:

bit 13 = 0 �le is permanently saved in system directory

bit 14 = 1 record numbers in �le start with 1, not zero

bit 15 = 0 records can be written in random order

If you compare this ksamparam de�nition to that in the SPL sample program (Figure 4-5),
you will note that the index values into the array di�er. This is because, SPL arrays begin
numbering with zero whereas FORTRAN arrays begin numbering with one.

CALLING FOPEN

In the FOPEN call, the �rst parameter is the KSAM �le name that identi�es the data �le
and the KSAM �le as a whole. The second parameter speci�es the �le options (foptions)
parameter as octal 4004:

This de�nes the following �le options:

5-4 USING KSAM FILES IN FORTRAN

PROGRAMS

New KSAM �le (bit 4=1)

Allow :FILE (bit 5=0)

Fixed-Length Records (bits 8,9=00)

ASCII code (bit 13=1)

New �le (bits 14,15=00)

C***

C *

C EXAMPLE 1 * *

C BUILD A KSAM FILE * *

C *

**

SYSTEM INTRINSIC FOPEN,FCLOSE,FWRITE,FERRMSG,FCHECK

INTEGER KSAMPARAMA(26)

INTEGER KEYDESCRIPTION(8)

CHARACTER KSAMPARAM(52)

INTEGER*4 KSAMPARAMD(13)

CHARACTER*8 KEYFILENAME

CHARACTER*17 KEYDEVICEE

EQUIVALENCE ((KSAMPARAMA,KSAMPARAM,KSAMPARAMD,KEYFILENAME)

EQUIVALENCE (KEYDEVICE,KSAMPARAMA(7))

EQUIVALENCE (KSAMPARAMA(18),KEYDESCRIPTION)

INTEGER FILNUM

INTEGER LENGTH

CHARACTER FILENAME*10

CHARACTER DEVICE*10

CHARACTER*72 INPUT

LOGICAL OUTPUT(36)

CHARACTER MESSAGE(72)

EQUIVALENCE MESSAGEW(36)

EQUIVALENCE (MESSAGE,MESSAGEW)

EQUIVALENCE (INPUT,OUTPUT)

DATA FILENAME/"FEXAMFIL "/ <---------- �lename

DATA DEVICE/"DISC "/ device

DATA KEYDEVICE/"DISC "/ device

DATA KEYFILENAME/"FKEYFILE"

DATA KSAMPARAMD(3)/100J/ <-------------- �le size

DATA KSAMPARAMA(16)/2/ <----------------
agword

DATA KSAMPARAMA(17)/2/ <--------------------- no. of keys

DATA KEYDESCRIPTION/%{4/1,12/20], 1,%[1/0,15/4],0, key

1 %[4/1,12/ 8],21,%[1/0,15/4], 0/ descriptions

C***

C *

C OPEN THE KSAM FILE *

C *

C***

FILNUM=FOPEN(FILENAME,*4004L,%101L,�72,DEVICE,KSAMPARAM,M,

1 ,10,,100J)

IF (FILNUM .EQ. 0) GO TO 400

Figure 5-1. Creating and Writing to KSAM File in FORTRAN

USING KSAM FILES IN FORTRAN

PROGRAMS

5-5

**

C *

C READ DATA FROM $STDIN *

C *

**

20 READ (5,300,END=30,ERR=40) INPUT

**

C *

C WRITE THE DATA JUST READ TO THE KSAM FILE *

C *

C***

50 DISPLAY INPUT

CALL FWRITE(FILNUM,OUTPUT,�72,%0L)

IF (.CC.) 70,20,70

Creating and Writing to KSAM File in FORTRAN

**

C *

C ERROR MESSAGE *

C *

C***

70 STOP "ERROR OCCURRED WHILE WRITING KSAM FILE"

100 STOP "END OF JOB"

30 CALL FCLOSE(FILNUM,0,0)

IF (.CC.) 33,100,33

33 STOP "CAN NOT CLOSE THE KSAM FILE"

40 STOP "ERROR OCCURRED WHILE READING INPUT"

400 CALL FCHECK (FILNUM,IERRNUM)

CALL FERRMSG (IERRNUM,MESSAGEW,LENGTH)

WRITE(6,200) (MESSAGE(I),I=1,LENGTH)

STOP "CAN NOT OPEN KSAM FILE"

300 FORMAT(A72)

200 FORMAT(1X,72A1)

END

Output from Program Execution:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERLELEY

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY

WESTEP ELDER 387-4598 1256 KINGFISHER ST. SUNNYVALE

STOP END OF JOP

The next parameter de�nes the access options (aoptions) as the octal value 101:

5-6 USING KSAM FILES IN FORTRAN

PROGRAMS

This de�nes the following access options:

KSAM access expected bit 3=0)

Exclusive access bits 8,9=01)

No dynamic locking bit 10=0)

Write only access bits 12-15=0001)

A new �le contains no information and is always opened for write access. Before accessing the
�le for reading or update, it must be reopened. Such an open speci�es that the �le is an old
�le in the foptions parameter. Depending on the type of access expected, aoptions can be
omitted or can specify a particular access type.

CREATING A KSAM FILE WITH KSAMUTIL

Instead of using the �le system intrinsic FOPEN to create the KSAM �le, you can create the
�le with the >BUILD command of the KSAMUTIL program. Once created, the �le can be
opened with a call to FOPEN or CKOPEN. (Note that CKOPEN cannot be used to create a
�le.)

The same �le created in Figure 5-1 with FOPEN could be created in KSAMUTIL as follows:

:RUN KSAMUTIL.PUB.SYS

>BUILD FEXAMFIL;REC=�72,10,F,ASCII;DEV=DISC;DISC=100;&

KEYFILE =FKEYFILE;KEY=B,1,20;KEY=B,21,8;FIRSTREC=1

USING KSAM FILES IN FORTRAN

PROGRAMS

5-7

OPENING A KSAM FILE WITH A COBOL
PROCEDURE

The CKOPEN procedure requires two parameters: one is a table that identi�es the �le and
speci�es the type of access; the other is a two-byte item to which the status of the call is
returned. When calling this procedure from a FORTRAN program, the �letable parameter
must be de�ned as an eight-word array containing both integer and character values.

Any item that is de�ned as COMPUTATIONAL or COMP in a COBOL program is declared
as an INTEGER in a FORTRAN program when it contains four bytes or less. Thus, the
following are equivalent:

02 FILENUM PIC S9(4) COMP. <---------------------- COBOL description

INTEGER FILENUM <--------------------------------- FORTRAN description

Any data items de�ned with a picture of X in COBOL would be declared as CHARACTER
items in FORTRAN. Thus, the following are equivalent:

02 FILENAME PIC X(8). <------------------------- COBOL description

CHARACTER *8 FILENAME <---------------------- FORTRAN description

Assuming that �le FEXAMFIL has been created by the >BUILD command, the FORTRAN
statements in Figure 5-2 open that �le for output only and sequential access.

INTEGER FILETABLE(8)

CHARACTER FILETABLC(16)

INTEGER FILENUM

CHARACTER*8 FILENAME

CHARACTER*2 FSTAT

INTEGER IOTYPE

INTEGER AMODE

INTEGER PREVOP

EQUIVALENCE (IFSTAT,FSTAT)

EQUIVALENCE (FILETABLE,FILETABLC,FILENUM)

EQUIVALENCE (FILETABLC(3),FILENAME)

EQUIVALENCE (FILETABLE(6),IOTYPE)

EQUIVALENCE (FILETABLE(7),AMODE)

EQUIVALENCE (FILETABLE(8),PREVOP)

DATA FILENAME/"FEXAMFIL"/,PREVOP/0/

C**

C OPEN KSAM FILE FOR SEQUENTIAL INPUT *

C**

IOTYPE=1 I/O type is output only

AMODE=0 access mode is sequential

CALL CKOPEN(FILETABLE,IFSTAT)

Figure 5-2. Opening KSAM File with CKOPEN

5-8 USING KSAM FILES IN FORTRAN

PROGRAMS

WRITING TO A KSAM FILE

Once a KSAM �le has been created and opened for output access, you can write to the �le
with a call to FWRITE or a call to CKWRITE. You may choose to write records in primary
key sequence and have that sequence checked. To do this, you can open the �le for sequential
access with CKOPEN or else call FOPEN with bit 13 of the
agword in ksamparam set to 1.
If the sequence in which records are written doesn't matter, you can open the �le for random
access in COBOL or open the �le by calling FOPEN with bit 13 of the ksamparam
agword
cleared to zero.

The example in Figure 5-1 uses FWRITE to write records to the KSAM �le in the order in
which they are read from the standard input device; they are not written in primary key
order.

Since duplicate primary keys are never allowed by the COBOL KSAM procedures, you should
use the �le system intrinsics if you want to allow duplicate primary keys. Duplicate alternate
keys are allowed by both the �le system and COBOL if so speci�ed when the �le was created.

USING KSAM FILES IN FORTRAN

PROGRAMS

5-9

READING A KSAM FILE IN KEY ORDER

PRIMARY KEY SEQUENCE

Reading a �le in primary key order requires no other preparation than to open the �le (�le
system) or to open the �le for sequential input (COBOL). In the �le system, sequential logical
read is the default and the aoptions parameter can be omitted from the FOPEN call. In
a COBOL procedure, input type and sequential access are indicated by zero values in the
appropriate words of the �letable table.

Once opened for input, the �le system FREAD intrinsic or the COBOL CKREAD procedure
can be called to read the �le in sequence by primary key.

ALTERNATE KEY SEQUENCE

To read a �le in sequence by an alternate key, that alternate key must be speci�ed in a
call prior to the call to a read procedure or intrinsic. In COBOL, you would use a call to
CKSTART; with the �le system intrinsics you would use FFINDBYKEY.

The example in Figure 5-3 illustrates use of the �le system intrinsics FREAD and
FFINDBYKEY to read a KSAM �le in sequence �rst by primary key and then by alternate
key.

RANDOM ORDER

A particular record in the �le can be selected for access according to the value of a key
�eld in the record. This can be a primary or alternate key �eld. In COBOL, a call to
CKREADBYKEY reads a record speci�ed by the key value parameters. The �le system uses
the intrinsic FREADBYKEY for the same purpose. The main di�erence here is that the �le
must be opened for random access before calling the COBOL procedure; no distinction is
made by the MPE �le system between a �le opened for sequential access and one opened for
random access.

5-10 USING KSAM FILES IN FORTRAN

PROGRAMS

C***

C EXAMPL2 *

C READ KSAM FILE SEQUENTIALLY *

C***

SYSTEM INTRINSIC FOPEN,FCLOSE,FWRITE,FERRMSG,FCHECK

SYSTEM INTRINSIC FWREAD,FFINDBYKEY

INTEGER FILNUM

CHARACTER FILENAME*10

CHARACTER OUTPUT*72

CHARACTER MESSAGE(72)

LOGICAL INPUT (36)

LOGICAL MESSAGEW(36)

EQUIVALENCE (MESSAGE,MESSAGEW)

EQUIVALLNCE (OUTPUT,INPUT)

CHARACTER KEYVAL*8

DATA FILENAME/"FEXAMFIL " /

DATA KEYVAL/"000-0000"/

C***

C OPEN KSAM FILE FOR INPUT *

C***

FILNUM=FOPEN(FILENAME,%7L)

IF (FILNUM .EQ. 0) GO TO 200

C***

C READ DATA FROM FILE IN *

C SEQUENTIAL ORDER *

C***

DISPLAY "PRINT RECORDS IN NAME ORDER"

20 ILEN=FREAD(FILNUM,TNPUT,�72)

IF (.CC.) 300,30,35

30 DISPLAY OUTPUT

GO TO 20

C***

C READ IN SEQUENCE BY ALTERNATE KEY *

C***

35 DISPLAY "PRINT RECORDS IN PHONE # ORDER"

CALL FFINDBYKEY(FILNUM,KEYVAL,21,8,2)

IF (.CC.) 400,40,400

40 ILEN=FREAD(FILNUM,INPUT,�72)

IF (.CC.) 500,45,500

45 DISPLAY OUTPUT

GO TO 40

C***

C CLOSE FILE *

C***

50 CALL FCLOSE(FILNUM,0,0)

IF (.CC.) 600,55,600

55 STOP "END OF JOB"

Figure 5-3. Reading KSAM File in Key Sequence Using FORTRAN

USING KSAM FILES IN FORTRAN

PROGRAMS

5-11

C***

C ERROR MESSAGES *

C***

200 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

STOP "CANNOT OPEN KSAM FILE"

300 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

400 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRMUN,MESSAGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

STOP " ERROR OCCURRED WHILE USING FIFINDBYKEY"

500 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

STOP "ERROR OCCURRED READING BY ALTERNATE KEY"

600 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRNUM,MESSGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

STOP "CANNOT CLOSE FILE"

250 FORMAT(1X,72A1)

END

Output from Program Execution:

PRINT RECORDS IN NAME ORDER

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO

ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA

HOSODA JOE 227-6214 1180 SAINT PETER CT. LOS ALTOS

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY

PRINT RECORDS IN PHONE # ORDER

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY

WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE

ECKSTEIN LEO 287-5l37 5303 STEVENS CREEK SANTA CLARA

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY

CAPDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND

STOP END OF JOB

Figure 5-3. Reading KSAM File in Key Sequence Using FORTRAN (continued)

5-12 USING KSAM FILES IN FORTRAN

PROGRAMS

READING A KSAM FILE IN CHRONOLOGICAL
ORDER

The order in which records are physically written to a data �le is called chronological order.
This order is not necessarily the same as a sequence by key value although it may be. In
particular, if the records were written by a COBOL procedure to a �le opened for sequential
access, then the chronological sequence and the primary key sequence are the same. If,
however, these orders di�er, then the �le system provides an intrinsic that allows you to read
a KSAM �le in chronological order.

Figure 5-4 is a program that uses the intrinsic FREADC to read the records in the order they
were stored in the �le.

Other �le system intrinsics allow you to position the �le to a particular record number
in chronological order (FPOINT), to retrieve the current chronological record number
(FGETINFO), and to read a record located by its chronological record number (FREADDIR).

The COBOL procedures for KSAM interface do not provide the means to access records by
chronological record number.

C***

C EXAMPL3 *

C READ KSAM FILE CHRONOLOGICALLY *

C **

SYSTEM INTRINSIC F0PEN,FCLOSE,FERRMSG,FCHECK

SYSTEM INTRINSIC FREADC

INTEGER FILNUM

CHARACTER FILENAME*10

CHARACTER OUTPUT*72

CHARACTER MESSAGE(72)

LOGICAL INPUT (36)

LOGICAL MESSAGEW(36)

EQUIVALENCE (MESSAGE,MESSAGEW)

EQUIVALENCE (OUTPUT,INPUT)

DATA FILENAME/"FEXAMFIL "/

C**

C OPEN KSAM FILE FOR INPUT *

C**

FILENUM=FOPEN(FILNAME,%7L)

IF (FILNUM .EQ. 0) GO TO 200

C**

C READ DATA FROM FlLE IN *

C CHRONOLOGICAL ORDER *

C**

DISPLAY "PRINT RECORDS IN CHRONOLOGICAL ORDER"

20 ILEN=FREADC(FILNUM,INPUT,�72)

IF (.CC.) 300,30,50

30 DISPLAY OUTPUT

GO TO 20

C**

C CLOSE FILE *

C**

50 CALL FCLOSE(FILNUM,0,0)

IF (.CC.) 600,55,600

55 STOP "END OF JOB"

Figure 5-4. Reading KSAM File in Chronological Sequence Using FORTRAN

USING KSAM FILES IN FORTRAN

PROGRAMS

5-13

C**

C ERROR MESSAGES *

C**

200 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

STOP "CANNOT OPEN KSAM FILE"

300 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

STOP "ERROR OCCURRED READING IN CHRONOLOGICAL ORDER"

600 CALL FCHECK(FILNUM,IERRNUM)

CALL FERRMSG(IERRNUM,MESSAGEW,LENGTH)

WRITE(6,250)(MESSAGE(I),I=1,LENGTH)

STOP "CANNOT CLOSE FILE"

250 FORMAT(IX,72A1)

END

Output from Program Execution:

PRINT RECORDS IN CHRONOLOGICAL ORDER

NOLAN JACK 923-4975 967 REED AVE, SUNNYVALE

HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS

ECKSTEIN LEO 287-5137 5303 STEVE'S CREEK SANATA CLARA

CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO

PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE

SEELY HENRY 293-4220 1144 LEBERTY ST. EL CERRITO

ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY

TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND

WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY

WEBSTER ELDER 287-4598 1256, KINGFIDHER ST. SUNNYVALE

STOP END OF JOB

Figure 5-4. Reading KSAM File in Chronological Sequence Using FORTRAN (continued)

5-14 USING KSAM FILES IN FORTRAN

PROGRAMS

6
USING KSAM FILES IN
BASIC PROGRAMS

OVERVIEW

KSAM �les are accessed from BASIC programs through calls to a set of input-output
procedures. These procedures allow you to open, write records to, read records from, update
and delete records, position, lock, unlock, and close KSAM �les. (Refer to Table 6-1 for a list
of the procedures and their associated functions.)

A KSAM �le must already exist before it can be accessed from a BASIC program. It is
usually created with the KSAMUTIL program BUILD command. (Refer to section II for a
description of BUILD.) The BASIC procedures for accessing KSAM �les do not provide a
means to create a KSAM �le.

Note The BASIC procedures to access KSAM �les perform input-output activities
di�erently from the BASIC input-output commands. The KSAM procedures
read and write records in their entirety. Once part of a record has been read
or written by one of the KSAM �le access procedures, the entire record has, in
actuality, been read or written. A subsequent call will access another record.

Note Character substrings are expressions when used in the BASIC KSAM
procedures. As such, no values can be returned to them. A copy is passed.

USING KSAM FILES IN

BASIC PROGRAMS

6-1

CALLING A KSAM PROCEDURE

The KSAM interface procedures are called from a BASIC program with a CALL statement of
the following general form:

statement label CALL procedure name (�lenumber, status [,parameterlist])

Where

statement label is the number of the statement in the program.

procedure
name

identi�es the KSAM access procedure to which control is transferred. (Refer
to Table 6-1 for a complete list of the procedure names.)

�lenumber is a numeric variable whose value identi�es an open KSAM �le. This
parameter must be present. Its value is assigned by KSAM/3000 when the �le
is opened and must not be changed until the �le is closed.

status is a 4-character string variable to which a code is returned that indicates
whether the current operation was successful or not, and if not, the reason for
failure.

parameterlist is a set of one or more parameters that, if present, further de�ne input-output
operations on this �le.

The �rst two parameters, �lenumber and status are included in every KSAM procedure
call, except BKERROR and BKVERSION. The parameters in parameterlist depend on the
procedure in which they are used. Some parameterlist parameters are optional and, if omitted,
default values are assigned by KSAM. Such parameters are indicated by brackets in the
procedure call format. The required parameters �lenumber and status are both variables,
the �rst numeric, the second string. Other parameters are either variables or expressions.
Expressions being either variables, constants, or a combination of both. The data type of the
parameter depends on its de�nition in the procedure. The procedure call formats specify the
data type of each parameter.

Depending on the procedure, certain variables can be assigned values as a result of executing
the procedure. The procedure itself is never assigned a value (unlike a function, which may be
assigned a value).

Refer to Table 6-1 for a complete list of the KSAM interface procedures that can be called
from a BASIC program.

OPTIONAL PARAMETERS

When parameters in parameterlist are optional, those parameters are surrounded by brackets,
In a series of optional parameters, the enclosing brackets are nested. For example:

CALL name (�lenum,status[,param1[,param2[,param3]]])

This notation tells you that parameters can be omitted only from the end of the optional list;
parameters cannot be omitted from the middle or beginning of the list. For example, if you
want to specify param3 , you must also specify the preceding parameters, param1 and param2 ;
if you specify param2 , you can omit the following parameter param3 , but not the preceding
param1 .

6-2 USING KSAM FILES IN

BASIC PROGRAMS

Table 6-1. KSAM Procedures for BASIC Interface

PROCEDURE
NAME

PARAMETERS FUNCTION PAGE

BKCLOSE �lenum,
status

Terminates processing of KSAM �le identi�ed by
�lenum.

6-8

BKDELETE �lenum,
status

Logically removes record from KSAM �le; the
record to be deleted is the record at which the
logical record pointer is currently positioned.

6-10

BKERROR status,
message

Converts numeric value returned in status
parameter to character string message.

6-12

BKLOCK �lenum,
status
[,condtion]

Dynamically locks KSAM �le during shared
access, conditionally depending on condition.

6-14

BKOPEN �lenum,
status,
�lename
[,access
[,dynamic lock
[,exclusive
[,sequence]]]]

Initiates processing of �le identi�ed by �lenum,
named by �lename. Type of access, whether
dynamic locking is allowed, whether access is
exclusive, and whether primary key sequence is
checked are options of BKOPEN.

6-16

BKREAD �lenum,
status
[,parameter- list]

Reads data from current sequential record of �le
identi�ed by �lenum into variables named in
parameterlist .

6-22

BKREADBYKEY �lenum,
status,
keyvalue,
keylocation,
parameterlist

Reads data from a record identi�ed by keyvalue in
the key speci�ed by keylocation of the �le
identi�ed by �lenum into variables named in
parameterlist .

6-26

BKREWRITE �lenum,
status,
parameterlist

Writes data from parameterlist to record at which
pointer is positioned in �le identi�ed by �lenum.

6-29

BKSTART �lenum,
status
[,keyvalue
[,keylocation
[,relation]]]

Positions �le identi�ed by �lenum in preparation
for a sequential read to the �rst record with a key
in keylocation whose value bears the speci�ed
relation to keyvalue.

6-32

BKUNLOCK �lenum,
status

Unlocks �le identi�ed by �lenum that has been
previously locked by BKLOCK.

6-36

BKVERSION status,
message

Identi�es version of KSAM/3000 currently being
used returns version number in message.

6-38

BKWRITE �lenum,
status,
parameterlist

Writes data from parameterlist to record in �le
identi�ed by �lenum.

6-39

USING KSAM FILES IN

BASIC PROGRAMS

6-3

STATUS PARAMETER

The status parameter is a four-character string variable to which the status of the
input-output operation is returned. It is the second parameter in every KSAM procedure
call except BKERROR, in which it is the �rst parameter. The �rst character of the status
string determines its general type. The other three characters supply speci�c codes to further
de�ne the status. The operation of a called procedure is successful only if the �rst character
returned in status is zero. Other values returned to status indicate the reason an operation
was not successful. You can convert any status value to a printable message by calling
BKERROR. (Refer to Table 6-2 for possible status values).

Table 6-2. Values Returned to status Parameter

FIRST CHARACTER REMAINING CHARACTERS

\0" successful completion \0" no further information
\2" duplicate key value

\1" at end or beginning of �le \0" no further information

\2" invalid key \1" sequence error
\2" duplicate key error
\3" no record found
\4" boundary violation

\7" request denied \1" �le already locked

\8" invalid call \1" invalid number of parameters
\2" invalid parameter
\3" insu�cient space for data in
parameterlist

\9" �le system error \0" through \255"
corresponding to �le system error codes
(Refer to complete list in Appendix A.)

Combining the two parts of the status code, the following values may be returned to the
status parameter:

if status=\00" Successful completion|; The current input-output operation was completed
successfully; no duplicate keys read or written.

=\02" Successful completion; Duplicate key|;

In a call to BKREAD or BKREADBYKEY, the current key has the same
value as the equivalent key in the next sequential record; duplicate keys are
allowed for the key.

In a call to BKWRITE or BKREWRITE, the record just written created a
duplicate key value for at least one key for which duplicates are allowed.

=\10" At end condition|; A sequential read was attempted with BKREAD and
there was no next logical record in ascending sequence according to the
primary key value or the current altemate key value. Or an attempt was
made by BKSTART or BKREADBYKEY to position to a record whose key
value was less than the lowest key value or higher than the highest key value.

6-4 USING KSAM FILES IN

BASIC PROGRAMS

=\21" Invalid key; Sequence error|;

In a call to BKWRITE for a �le opened with sequence checking, the record
being written contains a primary key that is less than a key in a previously
written record.

In a call to BKREWRITE, the primary key value was changed in the
program since a successful execution of BKREAD de�ned the record to be
rewritten.

=\22" Invalid key; Duplicate key error|; An attempt was made to write or rewrite
a record with BKWRITE or BKREWRITE and the record would create a
duplicate key value in a key for which duplicates are not allowed.

=\23" Invalid key; No record found|; An attempt was made to locate a record by
a key value with BKSTART or BKREADBYKEY and the record cannot be
found.

=\24" Invalid key; Boundary violation|; An attempt was made with BKWRITE to
write beyond the externally de�ned boundaries of the �le; that is, to write
past the end-of-�le.

=\71" Request denied; File already locked|; An attempt was made to lock a �le with
BKLOCK and the �le is already locked.

=\81" Invalid call; Invalid number of parameters|; Too many or too few parameters
were speci�ed in the procedure call just made.

=\82" Invalid call; Invalid parameter|; The speci�ed parameter is not the correct
type. For example, a string variable was selected where only a numeric
variable or expression is allowed.

=\83" Invalid call; Insu�cient internal bu�er space|; The data speci�ed in the
parameterlist to be read or written will not �t into the con�gured internal
bu�er space. You may need to have certain operating system parameters
re-valued.

=\9xxx" File system error|; An MPE �le system error occurred for which the
three-character value, xxx is the error code. (Refer to Table A-1 for a list of
these codes.) You can call procedure BKERROR to convert the error code
returned here to a printable message.

The value of status can be tested as a whole, or the �rst character can be tested separately
from the remaining characters. For example:

10 DIM S$(4) <-------- dimension status string S$

.

. /-------------------- test �rst character only

50 IF S$(1;1) = "0" THEN PRINT "SUCCESS"

60 ELSE PRINT "ERRORCODE=";S$ <--------- print entire string

.

.

. /---------------------------- test �rst character

100 IF S$(1;1)= "9" THEN DO

110 PRINT "FILE ERROR=";S$(2)

120 DOEND \--------------------- print remaining characters

USING KSAM FILES IN

BASIC PROGRAMS

6-5

.

.

. /-------------------- test entire string

200 IFS$ = "22" THEN DO

210 PRINT "DUPLICATE KEY ERROR"

220 DOEND

300 IF S$(2)= "2" THEN PRINT "DUPLICATE KEY"

\------------------------ test only remaining characters

For any status value, you can call the BKERROR procedure and a message is returned that
gives the meaning of the status code. You can then print this message rather than writing
your own.

KSAM LOGICAL RECORD POINTER

Many of the KSAM procedures use a logical record pointer to indicate the current record in
the �le. This pointer points to a key value in the key �le that identi�es the current record
in the data �le. The particular key used, if the �le has more than one key, is the key last
speci�ed in the current or a previous procedure call; by default it is the primary key.

Procedures that use pointers are either pointer-dependent or pointer-independent .
Pointer-dependent procedures expect the pointer to be positioned at a particular record
in order to execute properly. Pointer-independent procedures, on the other hand, execute
regardless of where the pointer is positioned and, in most cases, they position the pointer.
(Refer to Table 6-3 for a summary of those procedures that either position the pointer or are
dependent on that position.)

Table 6-3. Positioning the Logical Record Pointer

Procedure
Name

Pointer-
Dependent

Position of Pointer After
Execution of Procedure

BKSTART NO Points to key whose value was speci�ed in call.

BKREADBYKEY NO Points to key whose value was speci�ed in call.

BKWRITE NO Points to key whose value is next in ascending key
sequence to key value in record just written.

BKREAD YES Pointer remains positioned to key value for record just
read; unless next call is to BKREAD, or to BKREWRITE
followed by BKREAD, in which case, the pointer is moved
to the next record in key sequence before the read.

BKDELETE YES Points to next key value in ascending sequence following
key value in record just deleted.

BKREWRITE YES Pointer remains positioned to key value for record just
modi�ed; unless any key value in record was changed, in
which case, it points to next key in ascending sequence
after the key in the modi�ed record.

6-6 USING KSAM FILES IN

BASIC PROGRAMS

Note BASIC procedures do not access a KSAM �le in chronological sequence or by
record number; they ignore the chronological pointer.

SHARED ACCESS

Particular care must be taken when using the logical record pointer during shared access.
Since the record pointer is maintained in a separate control block for each open �le, one user
may cause the record pointer to be inaccurate without other users being aware of it. To
avoid this problem, you should always lock the �le in a shared environment before calling
any procedure that sets the pointer and leave the �le locked until all procedures that depend
on that pointer have been executed. Thus, if you want to read the �le sequentially, delete a
record, or modify a record, you should lock the �le, call a procedure that sets the pointer
(such as BKSTART), and then call BKREAD, BKDELETE, or BKREWRITE. When the
operation is complete, you can then unlock the �le to give other users access to it.

BKCLOSE

A call to BKCLOSE terminates �le processing for the speci�ed �le.

CALL BKCLOSE (�lenum,status)

When processing is completed, a KSAM �le should be closed with a call to BKCLOSE. No
further processing is allowed on the �le until a BKOPEN procedure call re-opens the �le.

BKCLOSE can be executed only for a �le that is open.

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le; this
number was returned by the last call to BKOPEN. It should not be altered
until the �le is closed with a successfull call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the �le was successfully closed and if not, why not. The
�rst character is set to \0" if the close is successful, to another value if not.
(Refer to the Status Parameter discussion earlier in this section.) (Required
parameter)

USING BKCLOSE

After calling BKCLOSE, you should check the status parameter to determine if the �le was
closed successfully. A successfully closed �le is no longer available for processing until it is
re-opened. Note that a KSAM �le can be closed and then re-opened in order to specify a
di�erent access mode or type of processing.

The BKCLOSE procedure does not remove the �le from the system. To do this, you should
use the PURGE command of the KSAMUTIL program.

USING KSAM FILES IN

BASIC PROGRAMS

6-7

The example in Figure 6-1, closes a �le identi�ed by the �lenumber in F. It then checks
the status and prints a message if the status shows any code except the zero for successful
completion.

3610 REM **
3620 REM * CLOSE A KSAM FILE *

3630 REM **

3640 REM

3650 REM F IS THE FILE NUMBER OF A KSAM FILE

3660 REM DEFINED BY A CALL TO BKOPEN

3670 REM

3680 CALL BKCLOSE(F,S$)

3690 REM

3700 REM NOW DETERMINE WHETHER THTS CALL SUCCEEDED

3710 REM

3720 IF S$[1,1]<>"0" THEN DO

3730 REM N$ CONTAINS THE NAME OF THE KSAM FILE

3740 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

3750 PRINT "UNABLE TO CLOSE ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

376O CALL BKERROR(S$,M$)
3770 PRINT M$

3780 DOEND

Figure 6-1. Closing a KSAM File with BKCLOSE

BKDELETE

Logically deletes a record from a KSAM �le.

CALL BKDELETE (�lenum, status)

A call to BKDELETE logically deletes the record referenced by the logical record pointer.
A logically deleted record is marked by two delete characters (ASCII code 255) in the �rst
two character positions in the record. The deletion characters indicate that the record is
inaccessible, although it is not physically removed from the �le. The connection between a
data record marked for deletion and the key �le is severed.

When a �le with deleted records is copied by FCOPY to a new KSAM �le, records marked for
deletion by BKDELETE are not copied. This use of FCOPY provides a means to compact a
�le in which many records have been marked for deletion but physically use space in the �le.

To use BKDELETE, the �le must be open in the access mode that allows update. If access is
shared, the �le must also be opened with dynamic locking allowed (lock=1), and the �le must
be locked by BKLOCK before records are deleted.

6-8 USING KSAM FILES IN

BASIC PROGRAMS

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le; this
number was returned by the last call to BKOPEN. It should not be altered
unless the �le is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREWRITE was successful and if not, why not.
The �rst character is set to zero if the call succeeds, to another value if not.
(Refer to Status Parameter discussion earlier in this section.)

USING BKDELETE

Before calling BKDELETE, you can read the record to be deleted from the KSAM �le into
the BASIC program. Using either BKREAD or BKREADBYKEY, read record into variables
named in the read call. When BKDELETE is successfully executed, the �rst two characters of
the record just read are marked for deletion. Then the record is written back to the �le. Any
connections between the record and key entries in the key �le are severed. The associated key
entries are physically deleted from the key �le although the data record remains in the data
�le. Data space is not reused in order to maintain the chronological order of the �le. Because
BKDELETE requires that the record be both read and written, you must open the �le for
update (access = 4) before calling this procedure.

After calling BKDELETE, you should check the status parameter to make sure that the delete
was successful.

In the event that you deleted a record in error, you can recover the information in the data
record by copying the data �le with the NOKSAM option of FCOPY. You can copy the data
�le to another non-KSAM �le or to the list device. With this FCOPY option, the deleted
records as well as active records are copied. In order to make use of this recovery procedure,
you may want to leave the �rst two characters of any KSAM record empty of data. In
particular, you should not specify keys in those two characters.

FCOPY can also be used to permanently remove any records that were logically deleted with
BKDELETE. When you use FCOPY to copy your KSAM �le to a newly created KSAM �le,
only active records are copied. Records marked for deletion are dropped from the data �le
during the copy. The new �le is more compact, particularly if many records had been deleted
from the old �le. (Refer to FCOPY description in section II for more information.)

Shared Access

When access is shared, the call that positions the pointer to the record to be deleted should
be included in the same pair of BKLOCK/BKUNLOCK calls as the call to BKDELETE. This
insures that no other user alters the record position between the call that locates the record
and the call that deletes it. (Refer to Table 6-3 for a list of the procedures that position the
pointer and those that depend on the pointer.)

Figure 6-2 contains an example illustrating the logical deletion of a record from a KSAM �le.

USING KSAM FILES IN

BASIC PROGRAMS

6-9

3240 REM **

3250 REM * REMOVE A RECORD FROM A KSAM FILE *

3260 REM **

3270 REM

3280 REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY A CALL TO BKOPEN

3290 REM NOTE THAT FOR BKDELETE, BKOPEN ACCESS MODE MUST = 4 FOR UPDATE

3295 REM

3300 REM THE RECORD TO BE DELETED MUST FIRST BE READ...

3305 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

3310 REM AND DELETED CONTAINS THE SAME INFORMATION THAT WAS

3320 REM WRITTEN IN THE BKWRITE EXAMPLE.

3330 REM

3340 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

3350 REM

3360 REM NOW DETERMINE WHETHER THF CALL WAS SUCCESSFUL

3370 REM

3380 IF S$[1;1]<>"0" THEN DO

3390 REM N$ CONTAINS THE NAME OF THE KSAM FILE
3400 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

3410 PRINT "UNABLE TO READ ";N$" ERROR ";S$[1;1];" DETAIL ";S$[2]

3420 CALL BKERROR(S$,M$)

3430 PRINT M$

3435 GOTO 3620

3440 DOEND

3450 REM

3460 CALL BKDELETE(F,S$)

3470 REM

3480 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED

3490 REM

3500 IF S$[1;1]<>"0" THEN DO

3510 REM N$ CONTAINS THE NAME OF THE KSAM FILE

3520 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

3530 PRINT "UNABLE TO DELETE RECORD FROM ";N$;

3535 PRINT "ERROR ";S$[1;1];"DETAIL ";S$[2]

3540 CALL BKERROR(S$,M$)

3550 PRINT M$

3560 GOTO 3620

3570 DOEND

3575 PRINT "DELETED RECORD CONTAINS ";B1$;B2$;

3576 MAT PRINT A5

3577 MAT PRINT A3,A2

3580 REM

3590 REM THE PROGRAM CONTINUES

Figure 6-2. Deleting a Record With BKDELETE

6-10 USING KSAM FILES IN

BASIC PROGRAMS

BKERROR

A call to BKERROR returns a message corresponding to the status value.

CALL BKERROR (status, message)

Call this procedure in order to get a printable string of characters that describes the condition
that corresponds to the value of the status parameter. The string of ASCII characters
returned in message can be printed as an error message.

PARAMETERS

status is a four-character string variable to which is returned a numeric value in
printable form following execution of any of the procedures described in this
section. The value in status is used to derive the text in message. (Required
parameter)

message is a string variable which will contain the text describing the error whose code
has been returned to status . This parameter should be dimensioned to at
least 72 characters in length. If the message length exceeds the dimensioned
length of message, a truncated text is provided. (Required parameter)

USING BKERROR

The following example illustrates the use of BKERROR. Two strings are dimensioned for
message; one (M$) is su�ciently long, the other (N$) causes truncation of the message.
Assume that the status code in S$ is the value \22".

10 DIM S$(4),M$(72),N$(24)

20 REM..S$ IS THE STATUS STRING

30 REM..M$ IS A SUFFICIENTLY LARGE STRING

40 REM..N$ IS TOO SMALL FOR THE MESSAGE

50 REM..ASSUME S$ CONTAINS THE VALUE "22"

60 REM..
...

100 CALL BKERROR (S$,MS)

110 PRINT "ERROR";S$(1;1);"DETAIL";S$(2);"";M$

120 CALL BKERROR (S$,M$)

130 PRINT "ERROR "S$(1;1);"DETAIL";S$(2);"";N$

RUN /----------------- full message

/-------------------------------------\

ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPLICATED KEY VALUE

ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPL

\----------------------/

\---------------- truncated message

In another example, BKERROR is called to retrieve the message corresponding to the MPE
�le system error code returned when the �rst character of status is \9".

10 DIM S$(4),M$(72)...
50 IF S$(1;1)="9" THEN DO

USING KSAM FILES IN

BASIC PROGRAMS

6-11

60 CALL BKERROR(S$,M$)

70 PRINT"FILE ERROR";S$(2);"MEANS";M$

80 DOEND

Suppose the value returned in status is \9172", then the routine above prints the following
message when the program is run:

FILE ERROR 172 MEANS KEY NOT FOUND; NO SUCH KEY VALUE

A list of the MPE �le system error codes and their meaning is contained in Table A-1 of
appendix A.

BKLOCK

Dynamically locks KSAM �le during shared access.

CALL BKLOCK(�lenum,status[,condition])

When more than one user accesses the same �le, BKLOCK can be used to make access to the
�le exclusive for one user while he writes to or updates the �le. In order to use BKLOCK, the
�le must be opened with dynamic locking allowed by all users who are sharing the �le. When
�nished with the changes that required exclusive access, the user who has locked the �le with
BKLOCK should unlock it with BKUNLOCK.

Note Note that a �le opened for shared access must be locked by BKLOCK before
the �le can be modi�ed by BKWRITE, BKREWRITE, or BKDELETE.

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le; this
number was returned to �lenum by the last call to BKOPEN. It should
not be altered unless the �le is successfully closed by BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKLOCK was successful and if not, why not. The
�rst character is set to zero when the call succeeds, to another value if it fails.
(Refer to the Status Parameter discussion earlier in this section.) (Required
parameter)

condition A numeric expression whose value determines the action taken if the �le is
locked by another user when BKLOCK is executed. If the value of condition
is:

zero-locking is unconditional; if the �le cannot be locked immediately because
another user has locked it, your program suspends execution until the �le can
be locked. (default value)

non-zero-locking is conditional ; if the �le is already locked, control returns
immediately to your program with status set to \71".

(Optional parameter) Default: If omitted, locking is unconditional .

6-12 USING KSAM FILES IN

BASIC PROGRAMS

USING BKLOCK

In order to call BKLOCK, the �le must be opened with dynamic locking allowed. That is, the
parameter lock in the BKOPEN procedure must be set to 1. Also, since dynamic locking is
useful only when access is shared, probably the �le will have been opened with the exclusive
parameter in BKOPEN set to 3.

Note All users who share access to the Ele must agree to allow dynamic locking in
order for any user to dynamically lock the �le with BKLOCK.

The note above points out that users who share the same �le should cooperate on how they
will share the �le. Unless they all agree to allow locking, no one will be able to lock the �le.
Also, it is important to avoid situations where one user locks the �le and forgets to unlock it.
If this occurs when condition is set to a non-zero value, the calling process is not halted. But
if the �le is locked already and if you attempt to lock a �le with condition omitted or set to
zero your process is halted until the other user either unlocks the �le or logs o�.

You should always check the status parameter immediately following a call to BKLOCK in
order to determine if the call was completed successfully. If you locked with condition set to
a nonzero value, you should check if the �le was locked before continuing. If it was locked,
status will have a \0" in the �rst character, but if another user had locked the �le preventing
your call to BKLOCK from working, then status contains the value \71".

Figure 6-3 contains an example of locking a �le with BKLOCK.

830 REM **

840 REM * LOCK A KSAM FILE *

850 REM **

855 REM

860 REM F IS THE FILE NUMBER OF A KSAM FILE

870 REM OPENED BY A CALL TO BKOPEN

890 REM
900 REM THE THIRD PARAMETER INDTCATES THAT LOCKING IS

910 REM TO TAKE PLACE UNCONDITIONALLY

920 REM

930 CALL BKLOCK(F,S$,0)

940 REM

950 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

960 REM

970 IF S$[1;1]<>"0" THEN DO

980 REM N$ CONTAINS THE NAME OF THE KSAM FILE

990 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

1000 PRINT "UNABLE TO LOCK ";$N;" ERROR ";N$;" "LS$[1;1];" DETAIL ";S$[2]

1010 CALL BKERROR(S$,M$)

1020 PRINT M$

1030 DOEND

Figure 6-3. Dynamically Locking a KSAM File with BKLOCK

USING KSAM FILES IN

BASIC PROGRAMS

6-13

BKOPEN

A call to procedure BKOPEN initiates �le processing.

CALL BKOPEN (�lenum,status,name [;access[,lock[,exclusive[,sequence]]]])

In order to process a KSAM �le, it must be opened with a call to the BKOPEN procedure.
BKOPEN initiates processing, and optionally speci�es how the �le is to be processed.
BKOPEN does not create the �le; it must have been created previously. You can create a
KSAM �le through the BUILD command of the KSAMUTIL program (refer to section II).

To open a �le means to make it available for processing. You can also specify how the �le is
to be accessed (whether for input, output, input and output, or for update), whether dynamic
locking is allowed, whether access to the �le can be shared, and whether records written to the
�le are to be checked for primary key sequence. Default values are assigned for the optional
parameters. If you want to change the current processing or access method, you must close
the �le and then open it again with the parameters set to new values.

PARAMETERS

�lenum A numeric variable whose value identi�es the �le opened by the call to
BKOPEN. Since the value of �lenum identi�es the �le in other CALL
statements, it must not be changed while the �le is open. (Required
parameter)

status A four-character string variable to which is returned a code to indicate
whether or not the �le was successfully opened and if not, why not. The �rst
character is \0" if the open is successful, to another value if not. (Refer to
Status Parameter discussion earlier in this section.) (Required parameter)

name A string expression containing the name of the KSAM �le to be processed.
This name is the actual designator assigned to the �le when it was created,
or else it is a back reference to a formal designator speci�ed in a :FILE
command, in which case, name has the form *formal designator . (Required
parameter)

6-14 USING KSAM FILES IN

BASIC PROGRAMS

access A numeric expression whose value indicates one of the permissible access
types:

0 Read only . Use of procedures BKWRITE, BKREWRITE, and BKDELETE are
prohibited.

1 Write only . Deletes previously written data. Use of the procedures BKREAD,
BKREADBYKEY, BKREWRITE, BKDELETE, and BKSTART are
prohibited.

2 Write only . Saves previously written data. Use of the procedures prohibited by the
access=1, above, are also prohibited by access=2.

3 Read and write . Use of procedures BKREWRITE and BKDELETE prohibited.
(Default value.)

4 Update access. Allows all procedures described in this section.

(Optional parameter) Default: If omitted, or out of range, access is 3, read and
write access .

lock A numeric expression whose value indicates whether dynamic locking can take
place. Acceptable values are:

0 Disallow dynamic
locking and
unlocking.

Use of procedures BKLOCK and BKUNLOCK prohibited. (Default
value.)

1 Allow dynamic
locking and
unlocking.

Procedures BKLOCK and BKUNLOCK may be used to permit or
restrict concurrent access to the �le.

(Optional parameter) Default: If omitted, or out of range, lock = 0 to disallow
dynamic locking

exclusive A numeric expression whose value indicates the kind of exclusive access
desired for this �le. If this parameter is omitted or is not one of the following
acceptable values, the default is assumed:

0 Depends on access
parameter .

If access = 0 (read only), then users share access to this �le as if
exclusive were set to 3. If access is not = 0, then access to this �le is
exclusive as if exclusive were set to 1.

1 Exclusive. Prohibits other access to this �le until either the �le has been closed or
the process terminated. Only the user who opened the �le can access it
while it is currently open.

2 Semi-exclusive. Other users can access this �le, but only for read access. The �le
cannot be accessed to write, rewrite, or delete records until it is closed
or the process is terminated. (Default value.)

3 Shared . Once the �le is opened, it can be accessed concurrently by any user in
any access mode, subject only to the MPE security provisions in e�ect.

(Optional parameter) Default: If omitted, or out of range, exclusive = 2,
semi-exclusive access .

USING KSAM FILES IN

BASIC PROGRAMS

6-15

sequence A numeric expression whose value indicates whether records written to the �le
will be checked for primary key sequence or not. Acceptable values are:

0 No sequence
checking.

When records are written to the �le, primary key values can be in any
order; their sequence is not checked. (Default value.)

1 Sequence checking . As each record is written to the �le, KSAM checks to insure that its
primary key value is greater than the primary key value of any
previously written records; if duplicates are allowed for this key, then
the primary key can be equal to that of the previously written record.

(Optional parameter) Default: If omitted, or out of range, sequence = 0, no
sequence checking

USING BKOPEN

After calling BKOPEN, you should always check the status parameter to determine whether
the open was successful. Upon successful execution of BKOPEN, the �le named in name
is available for processing; an identi�cation number is assigned to this �le and returned to
�lenum where it is available to identify the open �le in other calls. Until the �le is successfully
opened with BKOPEN, no operation can be executed that references the �le either explicitly
or implicitly.

If only the �rst three parameters are speci�ed, and the �le is opened successfully, the �le has
the following default characteristics:

Read and Write access; you can read from and write to but not update the �le.

Semi-exclusive access; other users can read from but not write to or update the �le.

Dynamic locking not allowed; you cannot lock or unlock a �le.

No sequence checking; records can be written in any order without checking sequence of
primary key values.

Access Modes

There are two types of write only access: one clears any existing records before writing the
speci�ed records to the �le (access = 1); the other saves existing records and writes the new
records after those already written (access = 2). Both these access modes do not permit any
read or update access to the �le.

Read-only access (access = 0) can be speci�ed if you want to insure that the �le is not
changed. This mode prohibits the writing of new records, and rewriting or deleting of existing
records. In read-only mode, you can position the �le, and read records in either sequential or
random order.

The default access mode (access = 3) allows you both to read records from and write records
to a �le, but not to change or delete existing records. If you plan to read and write records
during the same process, but do not want to alter existing records, use this access mode.

If you want to rewrite or delete existing records in a KSAM �le, you must open with access =
4. This mode allows you to use the BKREWRITE and BKDELETE procedures, as well as all
the other procedures described in this section.

6-16 USING KSAM FILES IN

BASIC PROGRAMS

Table 6-4 summarizes the procedures you may call depending on the access parameter value
you specify in BKOPEN.

Table 6-4. Procedures Allowed by BKOPEN access Parameter

Read-only
(access=0)

Write-only
with Clear
(access=1)

Write-only
with Save
(access=2)

Read/Write
(access=3)

Update
(access=4)

Pro-
cedures
Allowed

BKREAD
BKREADBYKEY
BKSTART

BKWRITE BKWRITE BKREAD
BKREADBYKEY
BKSTART
BKWRITE

BKREAD
BKREADBYKEY
BKSTART
BKWRITE
BKREWRITE
BKDELETE

BKCLOSE
BKERROR

BKCLOSE
BKERROR

BKCLOSE
BKERROR

BKCLOSE
BKERROR

BKCLOSE
BKERROR

Shared Access

By default in a multi-user envornment, all users whose MPE security restrictions allow them
to access your �le can read the �le, but they cannot change the �le or add new records to it.
This is the default speci�cation of the exclusive parameter in BKOPEN (exclusive=2). It is
independent of the value of the access parameter.

If you want to prevent other users from reading the �le as well as writing to it, you must
specify this by setting exclusive=1. This setting allows only you to read from, write to, or
alter the �le.

Another alternative is to set exclusive=0, thereby allowing other users access to the �le only
when it is opened for read only (access=0). This setting of the exclusive parameter prevents
any access by other users when the �le is opened for any form of write or update (accesss 6= 0)
. This means that you and other users share read access to the �le, but only you can write to
or change the �le.

You can choose to completely share access to the �le, reading and/or writing and updating, by
setting the exclusive parameter to 3.

(Refer to Table 6-5 for a summary of the relation between the exclusive parameter and the
access parameter.)

Table 6-5. Relation of exclusive Parameter to access Parameter

exclusive=0 exclusive=1 exclusive=2
(default)

exclusive=3

access=0
(read only)

shared exclusive semi-exclusive shared

access 6=0
(write only,
read/write,
or update)

exclusive exclusive semi-exclusive shared

USING KSAM FILES IN

BASIC PROGRAMS

6-17

Dynamic Locking

When access is shared, it is good practice to allow dynamic locking so that individual
users can dynamically lock the �le while performing any updates to the �le. The �le can
be unlocked as soon as the update is complete. An update to a �le is when you write a
new record, delete a record, or rewrite an existing record. When access is exclusive or
semi-exclusive, there is no need for dynamic locking since only the user who has opened the
�le can update the �le.

Dynamic locking should also be allowed if access is shared and you plan to read the �le
sequentially. This is because the sequential read procedure (BKREAD) is dependent on
the position of the logical record pointer and, in a shared environment, this pointer can
be changed by other users unless the �le is locked (Refer to Table 6-3 for a list of the
pointer-dependent procedures.)

Sequence Checking

When sequence checking is speci�ed, you must write records to the �le in primary key
sequence. An attempt to write a record out of sequence causes the write to fail and the value
\21" is returned to status following a call to BKWRITE. (Refer to the description of Status
earlier in this section.) As a result of sequence checking, the chronological and the primary
key sequence of records in your �le is the same. Since the BASIC KSAM procedures have no
provision to read the �le in chronological sequence, you may want to specify sequence checking
for any �le that you will want to read in that order. With sequence checking, a �le read in
logical order by primary key (the default for BKREAD) is also read in chronological order.

The example in Figure 6-4 shows how to use BKOPEN to open a KSAM �le for input and
output (default access), with dynamic locking (lock=1), for shared access (exclusive=3), and
without sequence checking (default sequence).

6-18 USING KSAM FILES IN

BASIC PROGRAMS

10 DIM S$[4] <-------- status \

20 DIM N$[26] <------------- �lename |- variable dimensions

30 DIM M$[72] <-------- message /

40 INTEGER A[10]

50 DIM B$[12]

55 INTEGER J

60 DIM B1$[1]

65 DIM B2$[2]

70 INTEGER A2[2],A3[3],A5[5]

80 REM

90 REM THE KSAM/3000 FILE WAS BUILT WITH:

100 REM REC=80,16,F,ASCII

110 REM KEY=B,2,2,,DUP

120 REM SO,RECORD LENGTH IS 2 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK.

130 REM THE KEY IS 2 CHARACTERS LONG,STARTING IN CHARACTER 2 OF RECORD

135 REM

140 REM **

145 REM * OPEN A KSAM FILE *

150 REM **

160 REM

170 REM THE FILE NAME IS IN N$

175 REM THE STATUS OF THE CALL IS RETURNED IN S$

180 REM WHEN SUCCESSFUL, BKOPEN RETURNS A FILE NUMBER IN F

190 REM INPUT-OUTPUT ACCESS IS SPECIFIED IN J

200 REM DYNAMIC LOCKING IS ALLOWED IN D

210 REM SEMI-EXCLUSIVE ACCESS IS INDICATED IN E

220 REM

240 N$="KNAME,ACCOUNT,GROUP" <---------- �le name

250 J=3 <-------- access is read/write

260 D=1 <------------------------------- dynamic locking allowed

270 E=3 <-------- access shared

280 CALL BKOPEN(F,S$,N$,J,D,E)

290 REM

300 REM NOW DETERMINE WHETHER THE CALL SUCCEEDED:

310 REM

320 IF S$[1;1]<>"0" THEN DO

330 REM S$ IS THE STATUS CODE SET BY THE CALL TO BKOPEN

340 REM N$ IS THE NAME OF THE FILE

350 PRINT "UNABLE TO OPEN ";N$;" ERROR ";S$[1;1];"DETAIL "LS$[2]

360 CALL BKERROR(S$,M$)

370 PRINT M$

380 GOTO 3620 <-------- to close the �le

390 DOEND

400 REM

410 REM THE PROGRAM CONTINUES

Figure 6-4. Opening KSAM File with BKOPEN

USING KSAM FILES IN

BASIC PROGRAMS

6-19

BKREAD

Transfers the next logical record from a KSAM �le to a BASIC program.

CALL BKREAD(�lenum,status[,parameterlist])

A call to BKREAD transfers the contents of a record from a KSAM �le to a storage area
de�ned by a list of variables in a BASIC program. The record read is that at which the logical
record pointer is currently positioned. In a series of calls to BKREAD, records are read in
ascending order by key value. The primary key is used unless a previous call to BKSTART or
BKREADBYKEY has positioned the pointer to an alternate key. The �le must have been
opened with an access mode that allows reading.

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le;
this number was returned by the last call to BKOPEN. It should not be
altered unless the �le is closed by a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREAD was successful and if not, why not. The
�rst character is set to zero when the call succeeds, to another value if not.
(Refer to the Status Parameter discussion earlier in this section.) (Required
parameter)

parameterlist A list of variables separated by commas into which the data in the record
is read, The contents of the record are read into the variable (or variables)
until the physical length (or combined physical lengths) of parameterlist is
exhausted, or the end of the record is reached. (Optional parameter) Default:
If omitted, the logical record pointer is positioned to the beginning of the next
record in key sequence.

USING BKREAD

After calling BKREAD, you should always check the status parameter to determine whether
the read was successful. Upon successful completion of BKREAD, the variables speci�ed in
parameterlist contain data read from the record at which the record pointer was positioned
when BKREAD was called. Note that if parameterlist is omitted, the record pointer is
positioned to the beginning of the next logical record, e�ectively skipping the current record.

In order to use BKREAD, the �le must be opened for input. The BKOPEN access parameter
should be zero if you only plan to read or position a record. To both read from and write to
the same open �le, you either omit the access parameter or set it = 3. If you want to rewrite
or update as well as read records, you must set access = 4.

Values are read from the current record into the variables speci�ed in parameterlist according
to the type and length of the variable. For example, consider the following code:

10 DIM G$(3),H$(3),S$(4)

20 INTEGER L,F

30 CALL BKREAD (F,S$,G$,H$,L)

/ | \-----/

/ | |

6-20 USING KSAM FILES IN

BASIC PROGRAMS

filenum | parameterlist

|

status

If the record being read contains only the word SCRABBLE, this word is read into the
speci�ed variables as if they were assigned by the statements:

100 G$="SCR"

110 H$="ABB"

120 L=NUM("LE") <------------ assigns numeric equivalent of string "LE" to L

Note Each variable in the parameterlist is �lled to its current physical length before
proceeding to the next variable.

The following calls omit the parameterlist in order to skip forward two records:

210 CALL BKREAD(F,S$) <-----------------------------------\

--skip two records

220 CALL BKREAD(F,S$) <-----------------------------------/

The records shipped are not the next records physically placed on the �le, but are the next two
in logical sequence according to the value of the current key . The particular key used for the
read sequence can be selected with a call to BKSTART or BKREADBYKEY. BKSTART can
also be used to position the �le to the beginning of the record with the lowest key value in the
selected key (Refer to BKSTART following BKREAD discussion.)

The example in Figure 6-5 assumes that the record pointer has been positioned to the
beginning of the �rst record in primary key sequence. Assume that the �le being read
was opened in the example in Figure 6-4, the records read were written in the example in
Figure 6-11.

Each record contains �ve integers followed by �ve unde�ned words (garbage) followed by a
string of three characters. The record is read into

A5 a 5-word integer array

A2 a 2-word integer array

A3 a 3-word integer array

B1$ a 1-character string

B2$ a 2-character string

The �ve integers that were written to the beginning of each record are read into array A5.
The next two arrays A2 and A3 receive the unde�ned values that �lled the next �ve words of
the record. The �rst string character is read into B1$, the next two into B2$.

Shared Access

If you open the �le for read-only access (access=0), and the exclusive parameter is allowed
to default to zero, then more than one user can share read access to the �le. In this case,
or if you speci�cally indicate shared access, you should also allow dynamic locking in order
to read records from the �le in key sequence. This is necessary because BKREAD depends
on the current position of the logical record pointer. (Refer to Table 6-3 for a list of the
pointer-dependent procedures.)

USING KSAM FILES IN

BASIC PROGRAMS

6-21

For example, if you plan to read the �le sequentially starting from a particular key value, use
the following sequence of calls:

BKOPEN <-------- open �le for read-only, shared access, allow dynamic locking

BKLOCK <-------- lock �le

BKSTART <-------- position pointer

BKREAD loop <-------- read �le in sequence from original pointer position

BKUNLOCK <-------- unlock �le when last record read

6-22 USING KSAM FILES IN

BASIC PROGRAMS

10 DIM S$[4]

20 DIM N$[26]

30 DIM M$[72]

40 INTEGER A[10]

50 DIM B$[12]

55 INTEGER J

60 DIM B1$[1]

65 DIM B2$[2]

70 INTEGER A2[2],A3[3],A5[5]...
1310 REM **

1320 REM * READ FROM A KSAM FILE * o

1330 REM **

1340 REM

1350 REM F IS THE FILE NUMBER OF A KSAM FILE

1360 REM OPENED BY A CALL TO BKOPEN

1370 REM

1380 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ
1390 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN TO

1400 REM THE FILE BY THE EXAMPLE TO WRITE A KSAM FILE

1410 REM

1420 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

1430 REM

1440 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

1450 REM

1460 IF S$(1;1]<>"0" THEN DO

1470 REM N$ CONTAINS THE NAME OF THE KSAM FILE

1480 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

1490 PRINT "UNABLE TO READ ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

l500 CALL BKERROR(S$,M$)

1510 PRINT M$

1520 REM

1530 REM TEST FOR END OF FILE

1540 REM AND POSITION TO LEAST VALUED PRIMARY KEY

1550 IF S$[1;1]="1" THEN 1080

1560 GOTO 3620

1570 DOEND

1580 REM

1590 REM ECHO WHAT WAS READ

1600 REM

1610 PRINT "RECORD CONTAINS";B1$,B2$

1620 MAT PRINT A5

1622 MAT PRINT A3,A2

1630 REM

1650 REM THE CONTENTS OF B1$="1", OF B2$="23"

1660 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE 1 THROUGH 5.
1670 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN.

1680 REM

1690 REM THE PROGRAM CONTINUES

Figure 6-5. Reading From a KSAM File with BKREAD

USING KSAM FILES IN

BASIC PROGRAMS

6-23

BKREADBYKEY

Transfers record identi�ed by particular key value from KSAM �le to BASIC program.

CALL BKREADBYKEY(�lenum,status,keyvalue,keylocation,parameterlist)

A call to BKREADBYKEY locates and reads a record into a storage area identi�ed by a list
of variables in the BASIC program. The record to be read is located by matching the speci�ed
keyvalue with an identical value stored in the record starting at keylocation. The record value
and the value speci�ed in keyvalue must match exactly, or an error code is returned to status .
To use BKREADBYKEY, the �le must be open in an access mode that allows reading.

You cannot use BKREADBYKEY to locate a record by generic or approximate key values.
For this purpose you can call BKSTART followed by a call to BKREAD. (Refer to the
discussion of BKSTART.)

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le; this
number was returned by the last call to BKOPEN. It should not be altered
unless the �le is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREADBYKEY was successful and if not, why
not. The �rst character is set to zero if the call succeeds, to another value
if not. (Refer to the Status Parameter discussion earlier in this section.)
(Required parameter)

keyvalue A string or numeric expression whose value is compared to a key value in the
record. The record pointer is positioned to the �rst record with a key value at
keylocation that is exactly equal to the speci�ed keyvalue. In order to match
exactly, the record value and keyvalue must have the same logical length.
(Required parameter)

keylocation A numeric expression whose value indicates the starting character
position in each record of the key used to locate the record to be read by
BKREADBYKEY. The characters in a record are counted starting with 1. If
the value of keylocation is zero, the primary key is assumed. The primary
key also may be speci�cally indicated by its location in the record. (Required
parameter)

parameterlist A list of variables separated by commas into which the data in the record
is read. The contents of the record are read into the variable (or variables)
until the physical length (or combined physical lengths) of parameterlist is
exhausted, or until the end of the record is reached. (Required parameter)

6-24 USING KSAM FILES IN

BASIC PROGRAMS

USING BKREADBYKEY

After calling BKREADBYKEY, you should always check the status parameter to determine
whether the read was successful. Upon completion of BKREADBYKEY, the variables
speci�ed in parameterlist contain data read from the record located through the keyvalue
andkeylocation parameters.

The key value in there cord to be read must exactly match the speci�ed keyvalue. Unlike
BKSTART, the only relation between the value in the record and the value in the call is that
of equality. If duplicate key values are allowed in the key being sought, then the �rst record
with a matching key value is read by BKREADBYKEY. To read the remaining records with
duplicate key values, you should use BKREAD.

Note Each variable in parameterlist is �lled to its current physical length before
proceeding to the next variable.

The example in Figure 6-6 uses BKREADBYKEY to read the �rst record found with the
value \23" starting in byte 2. Since this is the �le written by BKWRITE in Figure 6-11, the
records in the �le are identical including the keys and only the �rst record is read.

USING KSAM FILES IN

BASIC PROGRAMS

6-25

2220 REM ***

2230 REM * READ BY KEY FROM A KSAM FILE *

2240 REM ***

2250 REM

2260 REM F IS THE FILE NUMBER OF A KSAM FILE

2270 REM OPENED BY A CALL TO BKOPEN

2280 REM

2290 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

2300 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN IN THE

2310 REM WRITE EXAMPLE.

2320 REM

2330 REM AN ADDITIONAL ASSUMPTION IS THAT THE DESIRED KEY VALUE

2340 REM STARTS AT CHARACTER 2 AND HAS THE VALUE "23".

2350 REM

2360 CALL BKREADBYKEY(F,S$,"23",2,B1$,B2$,A5[*],A3[*],A2[*])

2370 REM

2380 PEM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

2390 REM
2400 IF S$[1;1]<>"0" THEN DO

2410 REM N$ CONTAINS THE NAME OF THE KSAM FILE

2420 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

2430 PRINT "UNABLE TO READBYKEY ";N$;" ERROR ";S$[1;1];" DETAIL "S$[2]

2440 CALL BKERROR(S$,M$)

2450 PRINT M$

2460 GOTO 3620

2470 DOEND

2480 REM

2490 REM THE CONTENTS OF B1$="1", OF B2$="23".

2500 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE INTEGERS 1 THROUGH 5

2510 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN.

2520 REM

2530 REM ECHO WHAT WAS READ

2540 REM

2550 PRINT "RECORD READ = ";B1$,B2$

2560 MAT PRINT A5

2562 MAT PRINT A3,A2

2570 REM

2580 REM THE PROGRAM CONTINUES

Figure 6-6. Reading a Record Located by Key Value with BKREADBYKEY

6-26 USING KSAM FILES IN

BASIC PROGRAMS

BKREWRITE

Changes the contents of a record in a KSAM �le.

CALL BKREWRITE (�lenum, status, parameterlist)

A call to BKREWRITE replaces the contents of an existing record with new values. The
record to be rewritten is the last record accessed by a call to BKREAD, BKREADBYKEY,
or BKSTART. To use BKREWRITE, the �le must be open in the access mode that allows
update. If access is shared, it must also be opened with dynamic locking allowed, and the �le
locked by BKLOCK before records are rewritten.

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le; this
number was returned by the last call to BKOPEN. It should not be altered
unless the �le is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREWRITE was successful and if not, why not.
The �rst character is set to zero if the call succeeds, to another value if not.
(Refer to the Status Parameter discussion earlier in this section. (Required
parameter)

parameterlist A list of variables or constants, separated by commas, that contain the data
to be written to the �le replacing the last record read or written. The total
length of the new record is derived from the total number, data type, and
length in characters of each item in parameterlist . Although this length
need not be the same as the record it replaces, it should be long enough to
contain all the keys, but not so long that it exceeds the de�ned record length.
(Required parameter)

USING BKREWRITE

After calling BKREWRITE, you should always check the status parameter to make sure that
the rewrite was successful. Upon successful completion of BKREWRITE, new values replace
the data in the last record read to or written from the BASIC program. The new data may
change every value in the previously read record including the primary key value.

If you want to replace a record with a particular key value, you should locate and read the
record with BKREADBYKEY or BKSTART. To rewrite a series of records you should read
the records with BKREAD.

When the data in the parameterlist of BKREWRITE is shorter in total length than the data
in the record being rewritten, there is less total data in the rewritten record. In order to
maintain the key sequence of all keys, de�ned values should be written to the location of all
keys, both the primary key and any alternate keys.

Note Items written to a KSAM �le with the BKREWRITE procedure are
concatenated; rounding to word boundaries does not occur.

USING KSAM FILES IN

BASIC PROGRAMS

6-27

The example in Figure 6-7 writes new values to a record originally written if Figure 6-11 and
read in Figure 6-5. The new values �ll an array that had unde�ned values in the last �ve
words, now de�ned as two arrays A3 and A2 by the BKREAD call. The primary key value
\23" in location 2 is unchanged.

The record read by BKREAD contained the following values:

After being rewritten by BKREWRITE, it contains the following values:

Shared Access

When access is shared, the call to BKREAD, BKREADBYKEY, or BKSTART that locates
the record to be rewritten should be included in the same pair of BKLOCK/BKUNLOCK
calls as the call to BKREWRITE. This insures that no other user alters the record pointer
between the call that locates the record and the call that rewrites it.

Duplicate Keys

If you want to sequentially rewrite all records in a chain of records with duplicate keys,
locate the �rst record in the chain with BKREADBYKEY. Then call BKREWRITE to
modify this record. If no key value (the selected key or any other) is modi�ed, subsequent
calls to BKREWRITE will modify the next sequential records in the chain of duplicate
keys. If, however, any key has been changed, the modi�ed key is written to the end of the
chain and the next sequential record is one with the next higher key value. In this case,
to rewrite all records with duplicate keys, precede each call to BKREWRITE by a call to
BKREADBYKEY.

6-28 USING KSAM FILES IN

BASIC PROGRAMS

2600 REM

2610 REM ***

2620 REM * REVISE THE CONTENTS OF A RECORD READ FROM A KSAM FILE *

2630 REM **

2640 REM

2650 REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY A CALL TO BKOPEN

2660 REM NOTE THAT FOR BKREWRITE,BKOPEN ACCESS MODE MUST=4 FOR UPDATE.

2670 REM

2680 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ

2690 REM CONTAINS THE SAME INFORMATION THAT WAS WRITEM TO THE

2700 REM KSAM FILE IN THE BKWRITE EXAMPLE,,

|------------------ parameterlist

2710 REM /------------------------\

2720 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

2730 REM

2740 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED.

2750 REM

2760 IF S$(1;1]<>"0" THEN DO

2770 REM N$ CONTAINS THE NAME OF THE KSAM FILE

2780 REM S$ CONTAINS THE STATUS CALL SET BY THE PRECEDING CALL

2790 PRINT "UNABLE TO READ ";N$;" ERROR ";S$[1;1]" DETAIL ";S$[2]

2800 CALL BKERROR(S$,M$)

2810 PRINT M$

2820 GOTO 3620

2830 DOEND

2900 REM THE CONTENTS OF B1=1", OF B2$="23"

2910 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE 1 THROUGH 5

2920 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN

2930 REM

2940 REM STORE VALUES 1 THROUGH 3 INTO A3(1) THROUGH A3(3)

2950 REM STORE VALUES 1 AND 2 INTO A2(1) AND A2(2).

2960 REM

2970 FOR I=1 TO 2

2980 A2[I]=I

2990 A3[I]=I

3000 NEXT I parameterlist

3010 A3[3]=3 |

3020 REM /------------------------\

3030 CALL BKREWRITE(F,S$,B1$,B2$,A5[*],A3[*],A2[*])

3040 REM

3050 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED

3060 REM

3070 IF S$[1;1]<>"0 THEN DO

3080 REM N$ CONTAINS THE NAME OF THE KSAM FILE

3090 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

Figure 6-7. Rewriting Record in KSAM File with BKREWRITE

USING KSAM FILES IN

BASIC PROGRAMS

6-29

3100 PRINT "UNABLE TO REWRITE ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

3110 CALL BKERROR(S$,M$)

3120 PRINT M$

3130 GOTO 3620

3140 DOEND

3150 REM

3160 REM ECHO WHAT WAS UPDATED

3170 REM

3180 PRINT "REWRITTEN RECORD = ";B1;B2

3190 MAT PRINT A5,A3,A2

3200 REM

3210 REM THE PROGRAM CONTINUES

Figure 6-7. Rewriting Record in KSAM File with BKREWRITE (continued)

BKSTART

Positions a KSAM �le to a particular record based on a key value.

CALL BKSTART(�lenum,status[,keyvalue[,keylocation [,relation]]])

By calling BKSTART, you can position the record pointer to any record in the �le based on
the value of a key in that record. The key can be the primary key or any altemate key, since
BKSTART also allows you to select the key for positioning and for subsequent sequential
reads. If you want to read all the keys in a key sequence, you can use BKSTART to position
to the record with the lowest key value in the selected key.

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le; this
number was returned by the last call to BKOPEN. It should not be altered
unless the �le is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKSTART was successful and if not, why not. The
�rst character is set to zero when the can succeeds, to another value when
it fails. (Refer to the Status Parameter discussion earlier in this section.)
(Required parameter)

keyvalue A string or numeric expression whose value is compared to a key value in this
record. The record pointer is positioned to the �rst record with a key value
that bears the relation speci�ed by relation to the value in keyvalue. If the
value is a string, its logical length is used for the comparison; otherwise, the
physical or dimensioned length is used. The length of this value must be less
than or equal to the length of the key as speci�ed when the �le was created.
If keyvalue is a null string (""), the �le is positioned to the beginning of the
�rst logical record according to the value of the key in keylocation. (Optional
Parameter)

6-30 USING KSAM FILES IN

BASIC PROGRAMS

Default: If omitted, the value assumed for keyvalue is the lowest value for the
speci�ed hey type.

keylocation A numeric expression whose value indicates the starting character location in
each record of the key used for positioning by BKSTART. The characters in a
record are counted starting with 1. If set to zero, the primary key is assumed.
(Optional parameter)

Default: If omitted, the primary key is assumed .

relation A numeric expression whose value speci�es the relation between the speci�ed
keyvalue and the value of the key at keylocation. The record pointer is
positioned to the �rst record with a key value satisfying this relation:

0|; the value of the record key is equal to keyvalue
1|; the value of the record key is greater than keyvalue
2|; the value of the record key is greater than or equal to keyvalue.
(default)
Any value greater than 2 is treated as if it were 2. (Optional parameter)
Default: If omitted, the relation is assumed to be 2, record key is
greater than or equal to the keyvalue.

USING BKSTART

After calling BKSTART, you should check the status parameter to determine if the procedure
was executed successfully. If successfully executed, the record pointer is positioned at the
beginning of the �rst record with a value at keylocation that has the relation speci�ed in
relation to the value speci�ed in keyvalue.

If default values are assumed for all three optional parameters, the pointer is positioned to the
record with the lowest value for its type in the primary key location.

If the relation speci�ed is equality (relation = 0), then a record must be located that has
the exact same key value as that speci�ed in the BKSTART call. When found, the pointer
is positioned to that record. If duplicate values are allowed for the key, then the pointer is
positioned at the �rst record with the particular key value.

When the speci�ed relation is greater than (relation = 1), the �le is searched until a record is
found with a key value greater than the speci�ed key value. The search passes over any record
with a key value equal to the speci�ed value. This relation allows you to retrieve items by an
approximate key . Thus, if you specify a key value of \R", a call to BKSTART will position
the pointer to the �rst record with a key value that starts with the letter R. A subsequent
series of calls to BKREAD allows you to read the remaining records in the �le or, by including
a test, to read only the records beginning with R.

When the speci�ed relation is greater than or equal to (relation = 2), BKSTART looks for a
record containing a value equal to the speci�ed value. If found, it positions the pointer to that
record. If not found, it continues looking and positions the pointer to the �rst record that is
greater than the speci�ed value. This type of search can be used to locate records by generic
key . A generic, or partial, key is a value that matches characters at the beginning of the key,
but not necessarily the end. For example, in a key containing a date in the form yymmdd , by
specifying only the �rst two characters as keyvalue and a relation = 2, you can position to the
�rst record with a key for that year; by specifying the �rst four characters, you can position to
the �rst record for a particular year and month.

USING KSAM FILES IN

BASIC PROGRAMS

6-31

Whenever a record cannot be found with a key that satis�es the relation and value speci�ed,
the value \23" for invalid key is returned to status .

BKSTART allows you to specify a key other than the primary key assumed by BKREAD.
Called prior to a series of calls to BKREAD, it prepares for a sequential read of the �le in
alternate key order. For example, assuming a �le with an alternate key in location 21, the
following call positions the pointer to the �rst record in that key sequence:

100 DIM A$(10),S$(4)

150 A$=" " <------------------- assign null string to keyvalue

160 L=21 <--------------------------- alternate key location to keylocation

170 CALL BKSTART(F,S$,A$,21)

The default for relation is 2 (greater than or equal to) and need not be speci�ed except for
documentation purposes.

Figure 6-8 illustrates the use of BKSTART with default values for all optional parameters.
Speci�ed in this minimal form, it positions to the least valued primary key.

1080 REM ***
1090 REM * POSITION TO LEAST VALUED PRIMARY KEY *

1100 REM ***

1110 REM

1120 REM F IS THE FILE NUMBER OF A KSAM FILE

1130 REM OPENED BY A CALL TO BKOPEN

1140 REM

1150 CALL BKSTART(F,S$)

1160 REM

1170 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

1180 REM

1190 IF S$[1;1]<>"0" THEN DO

1200 REM N$ CONTAINS THE NAME OF THE KSAM FILE

1210 REM S$ CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL

1220 PRINT "UNABLE TO POSITION FILE TO LEAST VALUED PRIMARY KEY"

1230 PRINT "ERROR ";S$[1;1]," DETAIL";S$[2]

1240 CALL BKERROR,(S$,M$)

1250 PRINT M$

1260 GOTO 3620

1270 DOEND
1280 REM

1290 REM THE PROGRAM CONTINUES

1300 REM

Figure 6-8. Positioning Pointer to Least-Valued Record with BKSTART

The example in Figure 6-9 positions the record pointer to a record containing a speci�c key
value. The value is \23"; it is located starting in the second character of each record. The
value for relation is zero indicating that the key must contain exactly the value \23," not a
value larger than \23."

6-32 USING KSAM FILES IN

BASIC PROGRAMS

1920 REM

1930 REM ***************************************

1940 REM * POSITION A KSAM FILE *

1950 REM ***************************************

1960 REM

1970 REM F IS THE FILE NUMBER OF A KSAM FILE

1989 REM OPENED BY A CALL TO BKOPEN

1990 REM

2000 REM AN ASSUMPTION HAS BEEN MADE THAT THE POSITIONING TO BE

2010 REM DONE IS TO THE RECORD WRITTEN IN THE WRITE EXAMPLE,

2020 REM AND THAT THE DESIRED KEY STARTS AT CHARACTER 2.

2060 REM

2070 CALL BKSTART(F,S$,"23",2,0)

2080 REM

2090 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED

2100 REM

2110 IF S$[1;1]<>"0" THEN DO

2120 REM N$ CONTAINS THE NAME OF THE KSAM FILE
2130 REM S$ CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL

2140 PRINT "UNABLE TO START ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]

2150 CALL BKERROR(S$,M$)

2160 PRINT M$

2170 GOTO 3620

2180 DOEND

2190 REM

2200 REM THE PROGRAM CONTINUES

2210 REM

Figure 6-9. Positioning Pointer to Particular Record with BKSTART

BKUNLOCK

Unlocks a �le dynamically locked by BKLOCK

CALL BKUNLOCK(�lenum,status)

A �le locked by BKLOCK is released for use by other users with a call to BKUNLOCK. (If
you log o� from any connection with the system, the �le is also unlocked.) Since dynamic
locking takes place during shared access to the same �le by more than one user, it is
important that any �le locked by BKLOCK be unlocked as soon as possible by BKUNLOCK.

To use BKUNLOCK, the �le must be opened with dynamic locking allowed by all users who
share access to the �le.

USING KSAM FILES IN

BASIC PROGRAMS

6-33

PARAMETERS

�lenum A numeric variable containing the �le number that identi�es the �le; this
number was returned to �lenum by the last call to BKOPEN. It should not be
altered until the �le is successfully closed by BKCLOSE. (Required parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKLOCK was successful and if not, why not. The
�rst character is set to zero when the call succeeds, to another value if it
fails. (Refer to Status Parameter discussion earlier in this section.) (Required
parameter)

USING BKUNLOCK

After calling BKUNLOCK, you should always check the status parameter to make sure that
the procedure was successfully executed. When successful, a �le locked by BKLOCK is
again made available for access by other users. If the �le is not locked by BKLOCK when
BKUNLOCK is called, the �le is not a�ected.

Figure 6-10 illustrates the use of BKUNLOCK to unlock the �le after it is updated.

1700 REM ***

1710 REM * UNLOCK A KSAM FILE *

1720 REM ***

1730 REM

1740 REM F IS THE FILE NUMBER OF A KSAM FILE

1750 REM OPENED BY A CALL TO BKOPEN

1760 REM

1770 CALL BKUNLOCK(F,S$)

1780 REM

1790 REM NOW DETERHINE WHETHER THE CALL HAS SUCCEEDED

1800 REM

1810 IF S$(1;1)<>"0" THEN DO
1820 REM N$ CONTAINS THE NAME OF THE KSAM FILE

1830 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL

1840 PRINT "UNABLE TO UNLOCK ";N$;" ERROR ";S$(1;1);"DETAIL ";S$[2]

1850 CALL BKERROR(S$,M$)

1860 PRINT M$

1870 GOTO 3620

1880 DOEND

1890 REM

1900 REM THE PROGRAM CONTINUES

Figure 6-10. Dynamically Unlocking a KSAM File

6-34 USING KSAM FILES IN

BASIC PROGRAMS

BKVERSION

Retrieves the version, update number and �x number of the current KSAM/3000.

CALL BKVERSION(status, message).

A call to BKVERSION retrieves a printable string of characters that identi�es the current
version of the KSAM/3000 procedures used to process KSAM �les. The string of characters
returned by BKVERSION can be printed.

PARAMETERS

status A four-character string variable to which is returned the code that indicates
whether or not the call to BKVERSION was successful and if not, why not.
The �rst character is set to zero when the call succeeds, to another value if
it fails. (Refer to the Status Parameter discussion earlier in this section.)
(Required parameter)

message A string variable to which is returned the identi�cation of the current
KSAM/3000 procedures. It is in the form:

version.update.�x

where version is an ASCllletter, update is an ASCII integer, and �x is also
an ASCII integer. The three terms are separated by periods. (Required
parameter)

USING BKVERSION

You may call BKVERSION in order to get the version, update, and �x numbers of the
KSAM/3000 currently being used. This identi�cation can be compared to the version, update,
and �x numbers that identify the version in which a KSAM �le was created, as returned by
the VERIFY command of program KSAMUTIL (refer to section II). The following example
illustrates use of BKVERSION. Note that two strings are needed.

10 DIM S$(4) <-------- status

20 DIM V$(72) <---- message
...

100 CALL BKVERSION(S$,V$)

110 PRINT "THE CURRENT KSAM/3000 IS HP32208.";V$
...

RUN

THE CURRENT KSAM/3000 IS HP32208.A.1.23

\-----/

|

contents of V$

USING KSAM FILES IN

BASIC PROGRAMS

6-35

BKWRITE

Writes data from a BASIC program to a KSAM �le.

CALL BKWRITE (�lenum,status,parameterlist)

A call to procedure BKWRITE writes a record to a KSAM �le from a BASIC program. This
call provides the only way to create a KSAM record from a BASIC program. The �le must
have been opened with an access mode that allows writing. If access is shared, the �le also
must be opened for dynamic locking (lock = 1), and the �le locked with BKLOCK before any
records are written.

PARAMETERS

�lenum A numeric variable containing the �le number value that identi�es the �le;
this number was returned by the last call to BKOPEN. It should not be
altered unless the �le is closed by a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKWRITE was successful and if not, why not. The
�rst character is set to zero when the call succeeds, to another value if not.
(Refer to the Status Parameter discussion earlier in this section.) (Required
parameter)

parameterlist A list of variables or constants, separated by commas, that contain the data
to be written to the �le as a record. The total length of the record contents
is derived from the total number, the type, and the length in characters of
the items in parameterlist . The parameterlist must contain a value for each
location de�ned as a key location in the record. (Required parameter)

USING BKWRITE

After calling BKWRITE, you should always check the status parameter to insure that the
write was successful. Upon successful completion of BKWRITE, one record containing the
values speci�ed in parameterlist is written to the opened KSAM �le.

Two parameters that are set when the �le is opened a�ect how BKWRITE operates. These
are the access and sequence parameters.

In order to write to a �le, the �le must be opened with access greater than 0. If the access
parameter is set to 1, all existing data in the �le is cleared before the �rst record is written to
the �le. If access is set to 2 or greater, the �rst record written by BKWRITE immediately
follows any existing records; the �le is not cleared.

The sequence parameter determines whether records must be written in primary key sequence,
or not. If sequence is zero, records can be written in any order; no check is made on the
sequence of the primary key �eld. If sequence is set to 1, you must write each record with
a value in the primary key �eld that is greater than the primary key value in the previous
record. Primary key values may equal the previous primary key value only if the �le was
created with duplicate key values permitted. To illustrate, assume that the record illustrated
by the following example was the �rst record written to the �le. It has the value 1 as its
primary key. If the �le was opened with sequence = 1, the next record written must have a

6-36 USING KSAM FILES IN

BASIC PROGRAMS

value of 2 or more in the primary key �eld. It may have the same value only if duplicates are
allowed for that key �eld, and must not have a value less than the previous primary key.

The values written to the record depend on the type of the items in parameterlist . To
illustrate, consider the following statements:

10 DIM D$(20),E$(10),S$(4)

20 INTEGER I,J

30 D$="MITCHELL"<------------------ logical length = 8 characters

40 E$="JAMES" <------------------------- logical length = 5 characters

50 I=0<------------|

each integer requires 2 characters

60 J=1<------------|

70 CALL BKWRITE (F,S$,I,J,D$,E$)

/ | \-------/

/ | |

filnum | parameterlist

status

This set of statements writes one record to the KSAM �le. The record has the form:

Assuming a �le created with one key starting in the third character, two characters long, the
value 1 is the key value. Each integer requires 2 characters, the two strings use a total of 13
characters, resulting in values that take up 17 characters of the record. The remainder of the
record is unde�ned. Record size is speci�ed at �le creation.

When writing from numeric arrays, the dimensioned length is used; when writing from strings
the logical length is used. The logical length of a string variable or string array element, is the
number of characters actually stored in the variable or element. It determines the length of
the item written to the record. A numeric array, on the other hand, uses the dimensioned
length as the length of the item written to the record. For example, suppose a numeric array
A is added to the parameterlist in the previous example:

5 INTEGER A(10) <------------------------- dimensioned length of A is 10 words

10 DIM D$(20),E$(10),S$(4)

20 INTEGER I,J,F

30 D$="MARSHALL"

40 D$="MILLY"

50 FOR I=1 TO 5 \

60 A(I)=1 |--------------------- Move 5 words to array A

70 NEXT I &/

80 I=0

USING KSAM FILES IN

BASIC PROGRAMS

6-37

90 J=3

100 CALL BKWRITE(F,S$,I,J,A(*),D$,E$)

This set of statements results in a record with the following values:

Note Items written to a KSAM �le from a BASIC program are concatenated;
rounding to word boundaries does not occur.

Figure 6-11 is an example of writing one string and one integer array to each record of the
KSAM �le opened in Figure 6-4. The three records written contain the following data:

6-38 USING KSAM FILES IN

BASIC PROGRAMS

10 DIM S$[4]

20 DIM N$[26]

30 DIM M$[72]

40 INTEGER A[10]

50 DIM B$[12]

55 INTEGER J

60 DIM B1$[1]

65 DIM B2$[2]

70 INTEGER A2[2],A3[3],A5[5]

80 REM

90 REM THE KSAM/3000 FILE WAS BUILT WITH:

100 REM REC=-80,16,F,ASCII

110 PEM KEY=B,2,2,DUP

120 REM SO,RECORD LENGTH IS 2 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK.

130 THE KEY IS 2 CHARACTERS LONG,STARTING IN CHARACTER 2 OF RECORD

135 REM...
430 REM **
440 REM * WRITE TO A KSAM FILE *

450 REM **

460 REM

470 PEM ASSIGN VALUES TO OUTPUT VARIABLES

480 REM

490 FOR I=1 TO 5

500 A[I]=I

510 NEXT I

520 RS="123"

530 REM

540 REM F IS THE FILE NUMBER OF A KSAM FILE

550 REM OPENED BY A CALL TO BKOPEN

560 REM

570 REM NOTE THAT ONLY THREE BYTES "123" ARE WRITTEN FROM B$

580 REM WHEREAS TEN WORDS ARE WRITTEN FROM NUMERIC ARRAY A.

620 REM

630 REM THREE IDENTICAL RECORDS ARE BEING OUTPUT SO THAT

640 REM SUBSEQUENT EXAMPLES OF THIS PROGRAM WILL EXECUTE

650 REM .

660 FOR I=1 TO 3

670 CALL BKWRITE(F,S$,BS,A[*])

680 REM

690 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED

Figure 6-11. Writing to a KSAM File with BKWRITE

USING KSAM FILES IN

BASIC PROGRAMS

6-39

700 REM

710 IF S$[1;1]<>"0" THEN DO

720 REM N$ CONTAINS THE NAME OF THE KSAM FILE

730 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CODE

740 PRINT "UNABLE TO WRITE TO ";N$;"ERROR "[S$]; DETAIL ";S$[2]

750 CALL BKERROR(S&,Ms)

760 PRINT M$

770 GOTO 3620

780 DOEND

790 NEXT I

800 REM

810 REM THE PROGRAM CONTINUES

Figure 6-11. Writing to a KSAM File with BKWRITE (continued)

6-40 USING KSAM FILES IN

BASIC PROGRAMS

A

ERROR MESSAGES AND RECOVERY PROCEDURES

This appendix lists the error messages that may be issued as a result of errors encountered
while accessing KSAM �les. The messages are not limited to KSAM errors since other �le
system errors or language errors can occur while accessing a KSAM �le.

Whenever possible, the reason the message was issued is listed under \Meaning" and any
action that can be taken to correct the error is listed under \Action."

The messages are contained in the following tables:

Table A-1 File System Error Codes
Table A-2 COBOL Status Returns
Table A-3 BASIC Status Returns
Table A-4 KSAMUTIL Error Codes and Messages
Table A-5 FCOPY Warning and Error Messages

ERROR MESSAGES AND RECOVERY PROCEDURES A-1

Table A-1. File System Error Codes

CODE MEANING ACTION

0 END OF FILE

1 ILLEGAL DB REGISTER

2 ILLEGAL CAPABILITY

3 OMITTED PARAMETER

4 INCORRECT S REGISTER

5 PARAMETER ADDRESS VIOLATION

6 PARAMETER END ADDRESS VIOLATION

7 ILLEGAL PARAMETER

8 PARAMETER VALUE INVALID

9 INCORRECT Q REGISTER

20 INVALID OPERATION

2l DATA PARITY ERROR

22 SOFTWARE TIME-OUT

23 END OF TAPE

24 UNIT NOT READY

25 NO WRITE-RING ON TAPE

26 TRANSMISSION ERROR

27 I/O TIME-OUT

28 TIMING ERROR OR DATA OVERRUN

29 SIO FAILURE

30 UNIT FAILURE

31 END OF LINE

32 SOFTWARE ABORT

33 DATA LOST

34 UNIT NOT ON-LINE

35 DATA-SET NOT READY

36 INVALID DISC ADDRESS

37 INVALID MEMORY ADDRESS

38 TAPE PARITY ERROR

39 RECOVERED TAPE ERROR

40 OPERATION INCONSISTENT WITH ACCESS TYPE

41 OPERATION INCONSISTENT WITH RECORD TYPE

42 OPERATION INCONSISTENT WITH DEVICE TYPE

43 WRITE EXCEEDS RECORD SIZE

44 UPDATE AT RECORD ZERO

45 PRIVILEGED FILE VIOLATION

46 OUT OF DISC SPACE

47 I/O ERROR ON FILE LABEL

48 INVALID OPERATION DUE TO MULTIPLE FILE
ACCESS

49 UNIMPLEMENTED FUNCTION

50 NONEXISTENT ACCOUNT

A-2 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-1. File System Error Codes (continued)

CODE MEANING ACTION

51 NONEXISTENT GROUP

52 NONEXISTENT PERMANENT FILE

53 NONEXISTENT TEMPORARY FILE

54 INVALID FILE REFERENCE

55 DEVICE UNAVAILABLE

56 INVALID DEVICE SPECIFICATION

57 OUT OF VIRTUAL MEMORY

58 NO PASSED FILE

59 STANDARD LABEL VIOLATION

60 GLOBAL RIN UNAVAILABLE

61 OUT OF GROUP DISC SPACE

62 OUT OF ACCOUNT DISC SPACE

63 USER LACKS NON-SHARABLE DEVICE CAPABILITY

64 USER LACKS MULTI-RIN CAPABILITY

71 TOO MANY FILES OPEN

72 INVALID FILE NUMBER

73 BOUNDS VIOLATION

80 SPOOFLE SIZE EXCEEDS CONFIGURATION

81 NO \SPOOL" CLASS IN SYSTEM

82 INSUFFICIENT SPACE FOR SPOOFLE

83 I/O ERROR ON SPOOFLE

84 DEVICE UNAVAILABLE FOR SPOOFLE

85 OPERATION INCONSISTENT WITH SPOOLING

86 NONEXISTENT SPOOFLE

87 BAD SPOOFLE BLOCK

89 POWER FAILURE

90 EXCLUSIVE VIOLATION: FILE BEING ACCESSED

91 EXCLUSIVE VIOLATION: FILE ACCESSED
EXCLUSIVELY

92 LOCKWORD VIOLATION

93 SECURITY VIOLATION

94 USER IS NOT CREATOR

100 DUPLICATE PERMANENT FILE NAME

101 DUPLICATE TEMPORARY FILE NAME

102 I/O ERROR ON DIRECTORY

103 PERMANENT FILE DIRECTORY OVERFLOW

104 TEMPORARY FILE DIRECTORY OVERFLOW

106 EXTENT SIZE EXCEEDS MAXIMUM

107 INSUFFICIENT SPACE FOR USER LABELS

108 DEFECTIVE FILE LABEL ON DISC

110 ATTEMPT TO SAVE PERMANENT FILE AS
TEMPORARY

ERROR MESSAGES AND RECOVERY PROCEDURES A-3

Table A-1. File System Error Codes (continued)

CODE MEANING ACTION

111 USER LACKS SAVE FILE CAPABILITY

112
... RESERVED FOR FUTURE USE

169

170 THE RECORD IS MARKED DELETED. FPOINT
POSITIONED POINTER TO A RECORD THAT WAS
MARKED FOR DELETION.

171 DUPLICATE KEY VALUE WHEN DUPLICATES NOT
ALLOWED.

172 KEY NOT FOUND; NO SUCH KEY VALUE.

173 tcount PARAMETER LARGER THAN RECORD SIZE.

174 CANNOT GET EXTRA DATA SEGMENT FOR THIS
FILE.

175 KSAM INTERNAL ERROR. A KEY VALUE (NOT
SEARCH KEY) FOR A RECORD TO BE DELETED IS
NOT IN KEY FILE; RECORD CANNOT BE DELETED.

176 ILLEGAL EXTRA DATA SEGMENT LENGTH.

177 TOO MANY EXTRA DATA SEGMENTS FOR THIS
PROCESS

178 NOT ENOUGH VIRTUAL MEMORY FOR EXTRA DATA
SEGMENT

INCREASE THE SIZE
OF VIRTUAL MEMORY

179 THE FILE MUST BE LOCKED BEFORE THIS
INTRINSIC ISSUED

USE FLOCK TO LOCK
FILE OR OPEN FILE FOR
EXCLUSIVE ACCESS.

180 THE KSAM FILE MUST BE REBUILT BECAUSE THIS
VERSION OF KSAM DOES NOT HANDLE THE FILE
BUILT BY PREVIOUS VERSION.

USE FCOPY TO
REBUILD FILE:
>FROM=oldksam�le
;TO=(d�le,k�le)

181 INVALID KEY STARTING POSITION.

182 FILE IS EMPTY.

183 RECORD DOES NOT CONTAIN ALL THE KEYS.

184 INVALID RECORD NUMBER. RECORD NUMBER IS
NEGATIVE, OUT OF RANGE, OR DELETED.

RECORD NUMBER MUST
BE POSITIVE INTEGER.

185 SEQUENCE ERROR IN PRIMARY KEY; ATTEMPT TO
WRITE RECORD WITH PRIMARY KEY LESS THAN
PREVIOUS KEY WHEN ASCENDING SEQUENCE
EXPECTED.

186 INVALID KEY LENGTH.

187 INVALID KEY SPECIFICATION; KEYS ILLEGAL.

188 INVALID DEVICE SPECIFICATION.

189 INVALID RECORD FORMAT.

A-4 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-1. File System Error Codes (continued)

CODE MEANING ACTION

190 INVALID KEY BLOCKING FACTOR VALUE.

191 RECORD DOES NOT CONTAIN SEARCH KEY FOR
DELETION. SPECIFIED KEY VALUE POINTS TO
RECORD WHICH DOES NOT CONTAIN THAT VALUE.

192 SYSTEM FAILURE OCCURRED WHILE KSAM FILE
WAS OPENED

RUN KEY INFO OF
KSAMUTIL TO
RESET FLAG.

193 $STDIN/$STDINX CANNOT BE REDIRECTED TO
KSAM FILES.

194 KSAM FILES NOT ALLOWED FOR GLOBAL AFT'S.

195 GLOBAL FILES CANNOT BE REMOTE FILES.

196 LANGUAGE NOT SUPPORTED.

197 NATIVE LANGUAGE INTERNAL ERROR.

198 INVALID VERSION NUMBER IN KSAM FILE.

193
... RESERVED FOR KSAM

200

201
... RESERVED FOR FUTURE USE

255

ERROR MESSAGES AND RECOVERY PROCEDURES A-5

Table A-2. COBOL Status Parameter Return Values

STATUS
VALUE

MEANING ACTION

\00" SUCCESSFUL COMPLETION|I/O operation
was completed successfully.

None.

\02" SUCCESSFUL COMPLETION, DUPLICATE
KEY|Read or Readbykey read a record whose
key value was the same as the equivalent key in
the next sequential record; this is not an error
since duplicate alternate keys are allowed. Write
or rewrite operation was successful; a duplicate
key was written for a key that is allowed
duplicates.

None required, returned for
information only.

\10" AT END|End-of-�le or beginning-of-�le reached
during sequential or random read. There is no
next logical record in ascending key order.

Usually none. This result is a signal to
close the �le or perform another
end-of-�le action.

\21" INVALID KEY, SEQUENCE ERROR|Attempt
was made to write a record with a primary key
that is out of sequence when the �le was opened
for sequential access.

Check the primary key value in the
record being written. If you don't
want sequence checking, re-open the
�le for random or dynamic access.

\22" INVALID KEY, DUPLICATE KEY|Attempt
was made to write or rewrite a record with a key
value that duplicates a key value in an existing
record, and duplicates are not allowed.

Check the key values. If possible
change them to avoid the duplication.
If duplicate keys must be written,
create the �le again allowing duplicates
for the key and then copy the old �le
to the new �le with FCOPY.

\23" INVALID KEY, NO RECORD FOUND|
Attempt to access record identi�ed by a key with
CKSTART or CKR EADBY KEY, but no record
is found with the speci�ed key value at the
speci�ed key location.

Check the keyvalue, keylength, an
keylocation parameters in the call,
Correct if necessary. If record that
cannot be found should be in the �le,
you may want to list the data �le with
FCOPY.

\24" INVALID KEY, BOUNDARY VIOLATION|
An attempt was made to write beyond the
externally de�ned end of �le.

\30" LOCK DENIED|File was locked by another
process.

Wait until process locking �le unlocks
it|try again or lock �le with lockcond
= 1.

A-6 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-2. COBOL Status Parameter Return Values (continued)

STATUS
VALUE

MEANING ACTION

\31" UNLOCK DENIED|File was not locked by
calling process.

Before calling CKUN LOCK to unlock
a shared �le it must have been locked
by a call to CK LOCK.

\9n" FILE SYSTEM ERROR|Where n is a binary
number between 0 and 255 corresponding to a
File System Error code (Refer to Table A-1).

Within your program you can call
CKERROR to convert the number to
a displayable value and then display it.
Look up the value in Table A-1 and
perform any suggested action.

Note that COBOL error messages 752 and 753 are issued for errors processing KSAM �les.
(Refer to Table C-2 in the COBOL manual.)

ERROR MESSAGES AND RECOVERY PROCEDURES A-7

Table A-3. BASIC Status Parameter Return Values

STATUS MEANING ACTION

\00" SUCCESSFUL COMPLETION|The current
I/O operation was completed successfully.

None.

\02" SUCCESSFUL COMPLETION, DUPLICATE
KEY|In a call to BKREAD or
BKREADBYKEY, the current key has the same
value as the equivalent key in the next sequential
record; duplicate keys are allowed. Or in a call to
BKWRITE or BKREWRITE, the record just
written created a duplicate key value for at least
one key for which duplicates are allowed.

None required. Returned for
information only.

\10" AT END|A sequential read was attempted with
BKREAD, but there was no next logical record
in ascending sequence by key value, or random
read attempted to position to record with key
value less than lowest value or greater than
greatest value.

Usually none. This result is a signal to
close the �le or perform some other
end-of-�le function.

\21" INVALID KEY, SEOUENCE ERROR|
BKWRITE attempted; record being written has
primary key that is not in sequential order but
�le was opened for sequence checking. BK
REWRITE attempted, but the primary key
value was changed since the record being
rewritten was read.

Check the primary key value in the
record; if you don't want sequence
checking, reopen the �le with sequence
= 0. Check the primary key value.
Either change it back to the original
value or read the record again before
calling BKREWRITE.

\22" INVALID KEY, DUPLICATE KEY ERROR|
BKWRITE or BKREWRITE attempted to write
record that contains a duplicate value for a key
that is not allowed duplicate values.

Check the key value. If possible
change it to a unique value. If
duplicate keys must be written, create
the �le again allowing duplicate values
for the key and then copy the old �le
to the new �le.

\23" INVALID KEY, NO RECORD FOUND|
BKSTART or BKR EADBYKEY attempted to
locate a record by a key value that could not be
found.

Check the key value, and key location
parameters. Correct if necessary. If
record that cannot be found should be
in �le, you may want to list data �le
with FCOPY.

\24" INVALID KEY, BOUNDARY VIOLATION|
BKWRITE attempted to write beyond the
externally de�ned boundaries of the �le.

Re-enter command.

A-8 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-3. BASIC Status Parameter Return Values (continued)

STATUS MEANING ACTION

\71" REQUEST DENIED, FILE ALREADY
LOCKED|BK LOCK was called with
conditional locking and the �le was already
locked by another user.

Perform some action that does not
require exclusive access and then try
BK LOCK again. As soon as the other
user unlocks the �le BKLOCK will
work.

\81" INVALID CALL, WRONG NUMBER OF
PARAMETERS|A procedure call had too
many or too few parameters.

Check the call syntax and correct; if
not sure of error, consult manual.

\82" INVALID CALL, INVALID PARAMETER|
Speci�ed parameter is not the correct type. For
example, a string variable was speci�ed where
only numeric variables or constants are allowed.

Check the parameter and compare it
to the rules speci�ed in this manual for
the parameter format.

\83" INVALID CALL, INSUFFICIENT INTERNAL
BUFFER SPACE|The data to be written to
the �le is too long for the con�gured internal
bu�er space.

You can ask the system manager to
recon�gure the system, or you may be
able to reduce the amount of data
being written from parameterlist

\9xxx" FILE SYSTEM ERROR|An MPE �le system
error occurred for which the value xxx speci�es a
3-digit code between \0" and \255".

Within your program you can call
BKER ROR to display a message with
the meaning of the code; you can
consult Table A-1 for the code
meaning.

ERROR MESSAGES AND RECOVERY PROCEDURES A-9

Table A-4. KSAMUTIL Error Codes and Messages

CODE MESSAGE MEANING ACTION

1000 COMMAND FILE READ
ERROR.

1001 COMMAND FILE END OF
FILE.

1002 UNKNOWN COMMAND.
TYPE HELP.

Command name not
recognized.

Type the correct name if
you know it; else type
HELP.

1003 TOO MANY PARAMETERS
FOR THIS COMMAND.

More parameters speci�ed
than are allowed.

Check the command
syntax and reenter
correctly.

1004 COMMAND FILE DATA
TRANSMISSION ERROR.

1005 COMMAND TOO LONG.

1006 FILE NAME TOO LONG OR
ABSENT.

File name in BUILD
command incorrect.

Enter �le name of 8 or
fewer alphanumeric
characters starting with
a letter.

1007 'REC' PARAMETER LIST
EXHAUSTED.

Too many parameters
speci�ed after REC= in
BUILD command.

Check syntax and reenter
with correct number of
parameters.

1008 'REC' RECORD SIZE
VALUE INVALID.

Record size in BUILD
command is not valid.

Check syntax and reenter
with correct value for
record size.

1009 'REC' BLOCKING FACTOR
VALUE INVALID.

Block factor in BUILD
command is not valid.

Check syntax and reenter
with correct value for
blocking factor.

1010 'REC' RECORD FORMAT
VALUE INVALID.

Record format in BUILD
command is not F or V.

Enter V for variable
length records, F for
�xed length, or omit for
�xed length.

1011 'REC' RECORD TYPE
VALUE INVALID.

Record code in BUILD
command is not ASCII or
BINARY.

Enter ASCII for
ASCIIcode records;
BINARY or omit for
binary-coded records.

1012 'DEV' DEVICE VALUE
ABSENT.

No device speci�cation after
DEV= in BUILD command.

Enter legal device name
or omit if device class is
DISC.

A-10 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE MESSAGE MEANING ACTION

1013 'DEV' DEVICE VALUE
INVALID.

Device speci�cation in BUILD
command is not valid.

Enter legal device class
name or legal logical
device number. Refer to
System Manager/System
Supervisor Manual.

1014 'DEV' DEVICE VALUE TOO
LONG OR ABSENT.

DEV= missing device
speci�cation or one that is too
long.

Enter device name that
is 1 to 8 alphanumeric
characters, begins with a
letter, terminates with
nonalphanumeric
character; or omit DEV=
for DISC; or enter logical
device number.

1015 'KEY' SPECIFICATIONS
EXCEED LIMIT.

Too many KEY=
speci�cations in BUILD.

Reduce number of keys
to a total of 16.

1016 'KEY' CONTAINS TOO
MANY PARAMETERS.

More than 5 parameters follow
KEY= in BUILD.

Parameters are: keytype,
keylocation, keysize, and
optionally, keyblocking ,
and DUP or
DUPLICATE.

1017 'KEY' TYPE VALUE
INVALID.

Invalid key type speci�ed after
KEY= in BUILD.

Key types may be: B, I,
D R, L, N, P,*. Enter
one of correct types.

1018 'KEY' POSITION VALUE
ABSENT.

The key location is missing
from KEY= in BUILD
command.

Enter required
keylocation parameter
following keytype type in
KEY= speci�cation.

1019 'KEY' POSITION VALUE
INVALID.

Invalid keylocation parameter
speci�ed after KEY= in
BUILD.

Key location is speci�ed
as integer between 1 and
number of bytes in
record.

1020 'KEY' SIZE VALUE
REQUIRED AND ABSENT.

The key size is missing from
KEY= in BUILD command.

Enter required keysize
parameter after
keylocation in KEY=
speci�cation.

1021 'KEY' SIZE VALUE
INVALID.

Invalid keysize parameter
speci�ed after KEY= in
BUILD.

Key size is speci�ed as
the number of bytes in
the key; refer to table
02-02 for legal sizes for
each key type.

ERROR MESSAGES AND RECOVERY PROCEDURES A-11

Table A-4. KSAMUTIL Error Codes and Messages (continued)

CODE MESSAGE MEANING ACTION

1022 'KEY' BLOCKING FACTOR
VALUE INVALID.

Invalid key blocking
parameter speci�ed after
KEY= in BUILD.

Specify keyblocking as an
even number equal to or
greater than 4; or omit
for key blocks with four
keys per block.

1023 CONFLICTING OPTIONS Check command syntax

1024 MISSING CLOSING QUOTE Check command syntax

1025 'KEY' 'DUPLICATE'
EXPECTED.

Key word DUP or
DUPLICATE expected in
KEY= speci�cation.

Enter DUP or
DUPLICATE or remove
terminating commas.

1026 'DISC' MUST BE
FOLLOWED BY '='.

Key word DISC in BUILD
command was speci�ed
without =.

Reenter DISC= followed
by up to 3 parameters
describing disc �le, or
omit for defaults.

1027 'DISC' NUMBER OF
RECORDS VALUE
INVALID.

Value of numrecs parameter to
DISC= not a positive integer.

Enter maximum number
of records as �le size, or
omit for default value of
1023 records.

1028 'DISC' NUMBER OF
EXTENTS VALUE INVALID.

Value of numextents not in
range 1-32.

Enter integer between 1
and 32, or omit for
default value of 8 extents.

1029 'DISC' INITIAL
ALLOCATION VALUE
INVALID.

Value of initalloc not in range
1-32.

Enter integer between 1
and 32, or omit for
default value of 1 extent
allocated when �le is
opened.

1030 'LABELS' NOT FOLLOWED
BY '=' OR BY TOO MANY
PARAMETERS.

Key word LABELS in BUILD
command was speci�ed
without = or had more than 1
parameter.

Reenter LABELS=
followed by one
parameter to specify
number of user labels, or
omit for default of 0.

1031 'LABELS' NUMBER OF
LABELS VALUE INVALID.

A-12 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-4. KSAMUTIL Error Codes and Messages (Continued)

CODE MESSAGE MEANING ACTION

1032 'FIRSTREC' NOT
FOLLOWED BY '=' OR BY
TOO MANY PARAMETERS.

Key word FIRSTREC in
BUILD command was
speci�ed without = or had
more than 1 parameter.

Reenter
FIRSTREC=followed by
starting record number,
or omit to start
numbering records with
zero.

1033 'FIRSTREC'STARTING
RECORD NUMBER MUST
BE 0 OR 1.

Value other than 0 or 1
entered for �rst record
number.

Enter correct value or
omit for default of 0.

1034 'CODE' NOT FOLLOWED
BY '=' OR BY TOO MANY
PARAMETERS.

Key word CODE in BUILD
command was speci�ed
without = or had more than
one parameter.

Reenter CODE =
followed by �lecode, or
omit for �le code of zero.

1035 'CODE' FILE NUMBER
VALUE INVALID.

Value not in range 0 through
1023 entered for �le code.

Enter positive integer
between 0 and 1023, or
omit for default of 0.

1036 'KEYDEV' FOLLOWED BY
TOO MANY PARAMETERS.

Key word KEYDEV= in
BUILD command was
speci�ed with more than 1
parameter.

Reenter with one
parameter to specify
device class or logical
device number of key �le,
or omit for DISC.

1037 'KEYDEV' MUST BE
FOLLOWED BY'='.

Key word KEYDEV= not
followed by =.

Reenter KEYDEV=, or
omit for default device
class DISC.

1038 'KEYDEV' DEVICE
PARAMETER VALUE TOO
LONG OR ABSENT.

Key word KEYDEV= must
be followed by valid device
parameter.

Reenter with device class
speci�ed as 1 to 8
alphanumeric characters
beginning with letter,
terminated by
non-alphanumeric
character, or reenter with
logical device number, or
omit for default DISC.

1039 'KEYFILE' NOT
FOLLOWED BY '=' OR BY
TOO MANY PARAMETERS.

Key word KEYFILE in
BUILD command was
speci�ed without = or had
more than 1 parameter.

Reenter KEYENTITY =
followed by actual �le
designator of key �le.

1040 KEY FILE NAME TOO
LONG OR ABSENT.

File name speci�ed as
KEYENTITY = parameter is
more than 8 characters or was
omitted.

Reenter KEYENTITY =
with correct �le name
format. (Refer to BUILD
description in manual.)

ERROR MESSAGES AND RECOVERY PROCEDURES A-13

Table A-4. KSAMUTIL Error Codes and Messages (Continued)

CODE MESSAGE MEANING ACTION

1041 'KEYENTRIES' NOT
FOLLOWED BY '=' OR BY
TOO MANY PARAMETERS.

Keyword KEYENTR IES in
BUILD command was
speci�ed without =, or had
more than 1 parameter.

Reenter KEYENTRIES=
followed by the
maximum number of
primary key entries
expected in the key �le,
or omit for default of
numrecs value from
REC=parameter.

1042 'KEYENTRIES' NUMBER
OF

ENTRIES VALUE
INVALID.

1043 KEYWORD
SPECIFICATION IN THIS
COMMAND IS INVALID.

A key word speci�ed as a
KSAMUTIL command
parameter is misspelled or not
in syntax.

Check command syntax
for correct key word
and/or spelling; reenter
correctly.

1044 DELIMITER AT THE END
OF A SPECIFICATION IS
INVALID.

A delimiter follows command
speci�cation in KSAMUTIL
command.

Remove delimiter or
follow with rest of
command.

1045 THE NUMBER OF
PARAMETERS IN THIS
COMMAND IS INVALID.

Too many or too few
parameters speci�ed in a
KSAMUTIL command.

Check command syntax
and reenter with the
correct number of
parameters.

A-14 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-4. KSAMUTIL Error Codes and Messages (Continued)

CODE MESSAGE MEANING ACTION

1046 A PARAMETER VALUE IS
INVALID. 'TEMP'WAS
EXPECTED.

The key word TEMP was
expected as a parameter in
PURGE or RENAME
commands.

Check command syntax,
reenter with correct
parameter value.

1047 LOCKWORD NOT
ALLOWED IN KEY FILE

Check command syntax;
remove lockword from
key �le speci�cation.

1048 GROUP AND/OR
ACCOUNT NOT ALLOWED
FOR KEYENTITY =

Check command syntax
of BUILD command.

1049 BACK REFERENCE NOT
ALLOWED ON formal-
designator

1050 SEQ=SEQUENCE NUMBER
IS INVALID

Non-numeric sequence number
speci�ed for SEQ= parameter.

Check command syntax
of KEYSEQ or
KEYDUMP commands.

1051 SUBSET= VALUE INVALID Either the starting position or
the number of key values to be
dumped is invalid.

Check command syntax
of KEYDUMP command

1052 SEQ= SYNTAX ERROR Check command syntax
of KEYSEQ or
KEYINFO

1053 SEQ= PARAMETER LIST
EXHAUSTED

Not enough information in
parameter list; key number
missing.

Enter parameter value
for SEQ= in KEYSEQ or
KEYDUMP commands.

1054 ENTITY = PARAMETER
LIST EXHAUSTED

Not enough information in
parameter list; �le name
missing.

Enter �le name after
ENTITY = in
KEYDUMP command.

1055 ENTITY = SYNTAX
ERROR

Check command syntax
of KEYDUMP
command.

1056 SUBSET= PARAMETER
LIST EXHAUSTED

Not enough information in
parameter list.

Check command syntax
of KEYDUMP; enter
correct number of
parameters.

ERROR MESSAGES AND RECOVERY PROCEDURES A-15

Table A-4. KSAMUTIL Error Codes and Messages (Continued)

CODE MESSAGE MEANING ACTION

1057 SUBSET= SYNTAX ERROR Check command syntax
of KEYDUMP
command.

1058 INVALID KEY SEQUENCE
SPECIFICATION

Key number speci�ed in
SEQ= parameter is greater
than the number of keys in
�le.

Key number is 1 for
primary key, 2 for �rst
alternate key, etc. Use
VERIFY command to
check number of keys in
�le.

1059 FILE SPECIFIED IN FILE-
ALREADY EXISTS

File name speci�ed in
ENTITY = parameter is an
existing permanent �le;
KEYDUMP always creates a
new �le.

Enter name of
non-existent �le, or
rename permanent �le.

1060 B-TREE HAS MORE THAN
20 LEVELS

KEYDUMP cannot dump
more than 20 levels of the key
�le structure.

1061 INVALID DECIMAL DIGIT
OR DIGIT COUNT >28

Packed decimal digit is not
0-9, or there are more than 28
digits. Cannot convert to
ASCII for KEYDUMP.

1062 THE REFERENCED FILE IS
NOT A KSAM FILE

File reference in the command
is not a KSAM �le.

Check �le name and
correct it.

1063 RECORD SIZE OF THE
SPECIFIED FILE HAS
BEEN CHANGED

Record size of the �le speci�ed
in ENTITY = parameter of
KEYDUMP has been changed
by a : FILE command.

Check KEYDUMP
syntax; change : FILE
command so that record
size is not speci�ed.

1064 GENERIC OR
APPROXIMATE SEARCH
NOT ALLOWED FOR KEY
TYPE

Generic or approximate keys
can be speci�ed in SUBSET=
parameter of KEYDUMP only
if key type is BYTE,
INTEGER, or DOUBLE.

Use full key value in
SUBSET= or do not use
SUBSET= parameter.

A-16 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-4. KSAMUTIL Error Codes and Messages (Continued)

CODE MESSAGE MEANING ACTION

1065 ILLEGAL OR TOO MANY
CHARACTERS

Position value of
SUBSETparameter in
KEYDUMP contains
non-numeric characters, or is
>9 digits.

Change position value, or
use quoted string for
SUBSET= parameter.

1066 REMOTE FILE ACCESS
NOT SUPPORTED

A :FILE command speci�ed a
remote �le, but this command
does not support remote
access.

Change : FILE command
to specify local �le.

1067 SORT ON RECORD
POINTERS FAILS

Sort of keydump by record
pointers (SORT option of
KEYDUMP) failed during
sort by SORT/3000 program.

Check the reasons for
failure in SORT error
message.

1068 SYSTEM FAILURE
OCCURRED WHILE THE
KSAM FILE WAS OPEN

KSAM �le was open when a
system failure occurred, and
�le may be damaged.

Run KEYINFO
command to recover �le
and reset
ag so �le can
be opened, or run
VERIFY with
NOCHECK to examine
�le.

1069 UNEXPECTED
CHARACTER IN FILE
NAME; EXPECTED . or /

The only nonmeric characters
allowed in a �le name are \."
or \/".

Check the �le name and
correct it.

ERROR MESSAGES AND RECOVERY PROCEDURES A-17

Table A-5. FCOPY Warning and Error Messages

CODE MESSAGE MEANING ACTION

None <CONTROL Y> Acknowledges receipt of
a CONTROL-Y entered
during a session.

None.

None READ ERROR FROM
COMMAND
INPUTFILE

An error occurred while
reading an FCOPY
command from
$STDIN.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

None WRITE ERROR TO
COMMAND LISTFILE

An error occurred while
writing an FCOPY
message to $STDLIST.

More than likely nothing
serious has occurred and
all FCOPY operations have
been performed
successfully. If you want to be
sure, however, do the
following:
In a job:
Re-submit the job.
In a session:
Re-enter the most recent
FCOPY command.

3 SYNTAX ERROR: IN
SUBSET OPTION

The subset function was
not speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

4 SYNTAX ERROR: IN
TITLE OPTION

The title option of the
display function was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

5 SYNTAX ERROR: IN
IGNERR OPTION

The ignore errors
function was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

A-18 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

6 SYNTAX ERROR: IN
VERIFY OPTION

The verify function was
not speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

7 SYNTAX ERROR: IN
SKIPEOF OPTION

The skip end-of-�le
function was not
speci�ed properly

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format

8 SYNTAX ERROR: IN
COMPARE OPTION

The compare function
was not speci�ed
properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

9 SYNTAX ERROR: IN
NEW OPTION

The new �le function
was not speci�ed
properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

10 SYNTAX ERROR: IN
HEX OPTION

The display
hexadecimal function
was not speci�ed
properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

11 SYNTAX ERROR: IN
EBCDICOUT OPTION

The EBCDICOUT
character translate
function was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

12 SYNTAX ERROR: IN
CHAR OPTION

The display character
function was not
speci�ed properly

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

ERROR MESSAGES AND RECOVERY PROCEDURES A-19

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

13 SYNTAX ERROR: IN
OCTAL OPTION

The display octal
function was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

14 SYNTAX ERROR: IN
UPSHIFT OPTION

The upshift function
was not speci�ed
properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

15 SYNTAX ERROR: IN
BCDICIN OPTION

The BCDICIN
character translate was
not speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

16 SYNTAX ERROR: IN
NORECNUM OPTION

The NORECNUM
option of the display
function was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

17 SYNTAX ERROR: IN
EBCDICIN OPTION

The EBCDICIN
character translate
function was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

18 SYNTAX ERROR: IN
BCDICOUT OPTION

The BCDICOUT
character translate
function was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

19 SYNTAX ERROR:
INVALID FORM OF
EXIT COMMAND

The EXIT command
was not speci�ed
properly.

None. FCOPY terminates

A-20 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

51 SYNTAX ERROR: IN
QUOTED STRING

The characterstring
speci�ed for the subset
function is not valid.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

52 SYNTAX ERROR: IN
BIT PATTERN

The patternlist speci�ed
for the subset function
is not valid.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

53 SYNTAX ERROR:
INVALID INTEGER

An integer speci�ed is
outside the range
allowed for the
particular FCOPY
function.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

54 SYNTAX ERROR:
UNKNOWN OPTION
NAME

One of the speci�ed
functions was
unrecognizable.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

55 SYNTAX ERROR: IN
FROMFILE
SPECIFIER

The \from" �le was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

56 SYNTAX ERROR: IN
TOFILE SPECIFIER

The \to" �le was not
speci�ed properly.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

57 SYNTAX ERROR:
ILLEGAL
COMBINATION OF
OPTIONS

Two or more
functionlist entries
con
ict with one
another.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

ERROR MESSAGES AND RECOVERY PROCEDURES A-21

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

58 SYNTAX ERROR:
FROMFILE AND
TOFILE NOT BOTH
SPECIFIED

FROM= and TO= were
not both speci�ed in the
FCOPY command.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

59 SYNTAX ERROR:
ILLEGAL USE OF
NEW

The context used to
specify a new \to" �le is
not valid.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

60 SYNTAX ERROR:
ILLEGAL USE OF *

The context used to
specify* as a \from" �le
or \to" �le is not valid.

In a job:
Correct the command and
resubmit the job,
In a session:
Re-enter the command
using the correct format.

62 SYNTAX ERROR:
FILE NAME TOO
LONG

The \from" or \to" �le
name speci�ed is longer
than the 35 characters
allowed in a
fullyquali�ed �le name
with lockword.

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

102 CAN'T CLOSE
FROMFILE

MPE can't close the
\from" �le. This
message is followed by
an MPE �le information
display containing
(among other things) an
error number.

Look up the error number
in Table A-1 and act
accordingly.

103 CAN'T CLOSE
TOFILE

MPE can't close the
\to" �le. This message
is followed by an MPE
�le information display
containing (among other
things) an error number.

Look up the error number
in Table A-1 and act
accordingly.

A-22 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

104 CAN'T SAVE NEW
TOFILE

MPE can't close the
\to" �le as a permanent
�le. Either you do not
have SF capability or
there is not enough
group account, or
system �le space.

If you don't have SF
capability, you can't
perform the operation.
If there is not enough �le
space, purge some
unneeded �les to free some
�le space.

105 CAN'T OPEN
FROMFILE

MPE can't open the
\from" �le. This
message is followed by
an MPE �le information
display containing
(among other things) an
error number.

Look up the error number
in Table A-1 and act
accordingly.

106 CAN'T OPEN TOFILE MPE can't open the
\to" �le. This message
is followed by an MPE
�le information display
containing (among other
things) an error number.

Look up the error number
in Table A-1 and act
accordingly.

107 VERIFY OR
COMPARE OPTION:
CAN'T GET READ
ACCESS TO TO FILE

MPE can't get read
access to the \to" �le
for a verify or compare
operation. The read
access speci�ed in the
�le label has been
overridden by an MPE
:FILE command
containing
ACC=APPEND,
ACC=OUT, or
ACC=OUTKEEP.

Reset the particular : FILE
command (using the MPE
: RESET command) and
retry the operation.

108 ERROR IN CALLING
FGETINFO FOR
FROMFILE

An error prevented
MPE from obtaining
information from the
\from" �le's label. This
message is followed by
an MPE �le information
display containing
(among other things) an
error number.

Look up the error number
in Table A-1 and act
accordingly.

ERROR MESSAGES AND RECOVERY PROCEDURES A-23

Table A-5. FCOPY Warning and Error Messages (continued)

CODE MESSAGE MEANING ACTION

109 ERROR IN CALLING
FGETINFOR FOR
TOFILE

An error prevented
MPE from obtaining
information from the
\to" �le's label. This
message is followed by
an MPE �le information
display containing
(among other things) an
error number.

Look up the error number
in Table A-1 and act
accordingly.

110 IGNERR OPTION:
FROM FILE NOT
TAPE

The \from" �le's device
is not a magnetic tape
unit.

The ignore errors function
cannot be used in this case.

111 CAN'T GET READ
ACCESS TO
FROMFILE

MPE can't get read
access to the \from"
�le. The read access
speci�ed in the �le label
has been overridden by
an MPE :FILE
command containing
ACC=APPEND,
ACC=OUT, or
ACC=OUTKEEP.

Reset the particular : FILE
command (using the MPE
: RESET command) and
retry the operation.

112 CAN'T GET WRITE
ACCESS TO TO FILE

MPE can't get write
access to the \to" �le.
The write access
speci�ed in the �le label
has been overridden by
an MPE :FILE
command containing
ACC=IN.

Reset the particular : FILE
command (using the MPE
: RESET command) and
retry the operation.

113 SKIPEOF OPTION:
FROM FILE NOT
TAPE

The skip end-of-�le
function was speci�ed
for the \from" �le and
the \from" �le device is
not a magnetic tape
unit.

If the intended \from" or
\to" �le is on magnetic
tape, check the associated
MPE :FILE command and
the back reference to it.

114 SKIPEOF OPTION:
TOFILE NOT TAPE

The skip end-of-�le
function was speci�ed
for the \to" �le and the
\to" �le device is not a
magnetic tape unit.

If the intended \from" or
\to" �le is on magnetic
tape, check the associated
MPE :FILE command and
the back reference to it.

A-24 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-5. FCOPY Warning and Error Messages (Continued)

CODE MESSAGE MEANING ACTION

115 SUBSET OPTION:
STRING FALLS
OUTSIDE OF
FROMFILE RECSIZE

The characterstring or
patternlist speci�ed is
greater than the record
size of the \from" �le.
No such subset can exist
in the speci�ed \from"
�le.

Change the speci�ed subset
de�nition to a valid one
and try the operation again.

116 CAN'T GET LARGE
ENOUGH BUFFER

There is not enough
data space for the
bu�ers needed by the
requested operation.
FCOPY uses the
DL-DB area for variable
sized bu�ers.

Ask the system manager
what size data area was
speci�ed when FCOPY
was prepared and rerun
FCOPY specifying a larger
MAXDATA= parameter.
Also make sure that the
system con�guration will
accommodate your record
size in the maximum
allowed data segment size.

117 SKIPEOF OPTION:
ERROR WHILE
SKIPPING IN
FROMFILE

An error occurred while
skipping end-of-�le
marks in the \from" �le.

Retry the operation.

118 SKIPEOF OPTION:
ERROR WHILE
SKIPPING IN TOFILE

An error occurred while
skipping end-of-�le
marks in the \to" �le.

Retry the operation.

119 SUBSET OPTION:
ERROR WHILE
SPACING IN
FROMFILE

An error occurred while
spacing through the
\from" �le.

Retry the operation.

120 SUBSET OPTION:
SUBSET STARTS
OVER EOF
BOUNDARY

The subset speci�ed
extends over an
end-of-�le mark or a
tape mark boundary.

Change the speci�ed subset
de�nition to a valid one
and try the operation again.

123 SUBSET OPTION:
THIS INPUT DEVICE
DOES NOT
BACKSPACE

The speci�ed subset
requires backspacing in
the \from" �le but the
device for that �le is not
a disc or magnetic tape.

Check the MPE :FILE
command associated with the
\from" �le and the back
reference to it.

ERROR MESSAGES AND RECOVERY PROCEDURES A-25

Table A-5. FCOPY Warning and Error Messages (Continued)

CODE MESSAGE MEANING ACTION

124 READ ERROR IN
FROMFILE AT
RECORD recnum

An error occurred while
spacing through the
\from" �le in search of
the start of a subset.

Retry the operation.

125 SUBSET OPTION:
NUMERIC SUBSET IS
EMPTY

A subset speci�ed by
starting - record-number ,
number-of - records,
and/or last-record-
number does not exist
or contains no data.

Change the speci�ed subset
de�nition to a valid one
and try the operation again.

126 VERIFY OPTION:
ERROR WHILE
REWINDING
FROMFILE

An error occurred while
spacing backward to the
beginning of the \from"
�le at the start of a
verify operation.

Retry the operation.

127 VERIFY OPTION:
ERROR WHILE
REWINDING TOFILE

An error occurred while
spacing backward to the
beginning of the \to"
�le at the start of a
verify operation.

Retry the operation.

128 EOF FOUND WHILE
SPACING IN
FROMFILE

An end-of-�le mark was
encountered while
spacing through the
\from" �le in search of
the start of a subset.
This most often occurs
when the \from" �le is a
blocked magnetic tape.
For a blocked magnetic
tape, the record
numbers supplied in the
SUBSET= parameter
are used as block
numbers.

Retry the operation
specifying block numbers instead
of record numbers.
OR
Reblock the tape so each
block contains one record
and then retry the
operation.

129 EOF FOUND WHILE
SPACING IN TOFILE

An end-of-�le mark was
encountered while
spacing through the
\to" �le in search of the
start of a subset during
a compare or verify
operation

Compare operation:
The \from" and \to" �les
are not identical. Display
the \to" �le to determine
what it actually contains.
Verify operation:
The copy operation was
not performed correctly.
Retry the operation.

A-26 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-5. FCOPY Warning and Error Messages (Continued)

CODE MESSAGE MEANING ACTION

131 ERROR WHILE
WRITING EOF TO
TOFILE

An error occurred while
writing an end-of-�le
mark in the \to" �le.

Retry the operation

l32 VERIFY OPTION:
ERROR WHILE
SPACING IN THE
FROMFILE

An error occurred while
spacing through the
\from" �le during a
verify operation.

Retry the operation

133 VERIFY OPTION:
ERROR WHILE
SPACING IN THE
TOFILE

An error occurred while
spacing through the
\to" �le during a verify
operation.

Retry the operation

134 WARNING: FOUND
EOF IN TOFILE

FCOPY has performed
the speci�ed operation
but has �lled the \to"
�le before completing
the operation.

The \to" �le was not
large enough. Use the
MPE :LISTF �lename,2
command to determine
the \to" �le's size and
then increase its size (using
the MPE :PURGE and
:BUILD commands) and
retry the operation.

135 WRITE ERROR TO
TOFILE

An error occurred while
writing to the \to" �le.

Retry the operation.

136 READ ERROR FROM
TOFILE

An error occurred while
reading from the \to"
�le during a compare or
verify operation.

Compare operation:
Retry the operation. If
the error persists, you
must try to recreate the
\to" �le.
Verify operation:
Retry the operation.

ERROR MESSAGES AND RECOVERY PROCEDURES A-27

Table A-5. FCOPY Warning and Error Messages (Continued)

CODE MESSAGE MEANING ACTION

137 WARNING: AN
UNLABELLED TAPE
OPERATION ENDS
ON AN ERROR

An operation involving
a magnetic tape \from"
�le was terminated by
reading beyond the end
of valid data rather
than by sensing an
end-of-�le mark.

This is not an error. You
can avoid this message by
reading the \from" tape
one �le at a time and using
the keyword SUBSET.

138 TITLE OPTION:
TITLE TOO LONG

The title speci�ed for
the list function is
longer than the 70
characters allowed or it
extended over more
than one line (record).

In a job:
Correct the command and
resubmit the job.
In a session:
Re-enter the command
using the correct format.

139 DUMP OPTION:
TOFILE RECSIZE
NOT WITHIN LEGAL
LIMIT

A �le display was
directed to an
intermediate storage
device with an incorrect
record size. That record
size must be �60 bytes
(30 words).

Change the record size of
the intermediate storage
�le (using the MPE
:PURGE and :BUILD
commands) so that it is
within the allowed range
and then retry the
operation.

140 COMPARE OR
VERIFY OPTION:
OPERATION FAILS;
DIFFERENT FIXED
RECSIZES

The compare or verify
operation was not
attempted because the
record sizes of the \to"
and \from" �les are not
identical.

Compare operation:
None. The compare
operation revealed that the
�xed record sizes of the
two �les are not identical.
Verify operation:
Change the record size of
the \to" �le (using the
MPE :PURGE and :BUILD
commands) so that it is
the same as that of the
\from" �le and then retry
the operation.

141 COMPARE BEGINS The comparison phase
of a verify operation has
begun.

None.

A-28 ERROR MESSAGES AND RECOVERY PROCEDURES

Table A-5. FCOPY Warning and Error Messages (Continued)

CODE MESSAGE MEANING ACTION

143 WARNING:
FROMFILE IS EMPTY

The \from" �le
contained no data.
Nothing was copied or
compared.

None. You may have
accidentally speci�ed the
wrong �le as the \from"
�le.

144 NEW OPTION: FILE
ALREADY EXISTS

The \to" �le named for
the new �le function
already exists in the
speci�ed (or implied)
group and account.

Change the name of the
\to" �le and try the
operation again.

145 BACKSPACE ERROR
IN FROMFILE

An error occurred while
spacing backward to the
beginning of the \from"
�le or a subset within it.

Retry the operation.

200 WARNING:
FROMFILE RECSIZE
IS number type,
TOFILE RECSIZE IS
number type

The record sizes of the
\from" and \to" �les
are not identical.

In a job:
FCOPY performs the
speci�ed operation despite
the con
ict.
In a session:
You are given the choice
whether or not to continue
the operation.
Note that if the \from"
record size is larger than
the \to" record size, the
\from" records would be
truncated. If the \to"
record size is larger than
the \from" record size, the
content of the excess byte
positions in the \to"
records is unpredictable.

201 WARNING:
FROMFILE IS ASCII,
TOFILE IS BINARY or
WARNING:
FROMFILE IS
BINARY, TOFILE IS
ASCII

The data formats of the
\from" and \to" �les
are not identical.

In a job:
FCOPY performs the
operation despite the con
ict.
In a session:
You are given the choice
whether or not to continue
the operation.

ERROR MESSAGES AND RECOVERY PROCEDURES A-29

Table A-5. FCOPY Warning and Error Messages (Continued)

CODE MESSAGE MEANING ACTION

301 READ ERROR IN
FROMFILE AT
RECORD recnum

An error occurred while
reading from the \from"
�le at the record
number displayed
(recnum).

Retry the operation. If
the error persists, use the
subset function to copy
all of the �le except the
erroneous record.

302 VERIFY OPTION:
RAN OUTOF VERIFY
ERRORS AT
FROMFILE RECORD
recnum

The verify function was
terminated because the
speci�ed maximum
number of errors has
been exceeded at the
record number displayed
(recnum).

Retry the operation
specifying a larger number-of -
errors parameter.

304 COMPARE OPTION:
RAN OUT OF
COMPARE ERRORS
AT FROMFILE
RECORD recnum

The compare function
was terminated because
the speci�ed maximum
number of errors has
been exceeded at the
record number displayed
(recnum).

Retry the operation
specifying a larger number-of -
errors parameter

901 KSAM FROMFILE
BOUNDARY (EOF OR
BOF)

The beginning or end of
the from �le was
reached during the copy
operation.

902 KSAM FROMFILE
POSITIONING
ERROR

Could not position to
desired place.

Try again.

903 ERROR; WRONG
CONDITIONS FOR
OPENING NEW
KSAM FILE

From �le is not a
KSAM �le, or NO
KSAM was speci�ed.

Create a KSAM �le before
running FCOPY and copy
to that �le.

A-30 ERROR MESSAGES AND RECOVERY PROCEDURES

B
KSAM/3000 INTERNAL
STRUCTURE AND TECHNIQUES

OVERVIEW

KSAM �les can be used e�ciently without any knowledge of how the �les are structured
or how �le blocking and size is determined. The default values provided for �le capacity,
key blocking, number of key entries, and so forth are e�ective in many applications. This
appendix provides the sophisticated programming sta� with information on how KSAM
�les are structured, how disc space is allocated to a KSAM �le, and how memory space is
allocated for the Extra Data Segments used when a KSAM �le is modi�ed or accessed. Such
information may be useful for improving performance based on the particular application.

KSAM FILE STRUCTURE

A KSAM/3000 �le is two physical �les: a data �le and a key �le. The data �le portion of a
KSAM �le contains all the data in the �le and contains nothing but the data. Data records
are written to the data �le in the order in which they are received from a program. (The
last record added is always written to the end of the �le.) This chronological order is not
necessarily in sequence by key value. At the time the �le is opened, you can specify that
records must be written in primary key sequence, but the default mode is to write records in
any order.

The key �le portion of a KSAM �le contains the key entries that maintain the sequence of
the data records. As a data record is written to the data �le, a key entry is added for each
key de�ned for the �le, and the sequential connections between key entries maintained. This
means that if there is a primary key and two alternate keys, three key entries are added with
each new data record, and three sets of pointers are updated to re
ect the new key sequence
of each key.

The structure of the data �le is like that of any MPE �le. Data records may be �xed or
variable in length. If �xed, each record is the size speci�ed when the �le is created (default
size is equivalent to one 128-word disc sector). If variable, the actual size of each record is
included in the record itself, and the maximum size of any record is used to determine the
blocking. By default, data records are blocked one record per block.

The structure of the key �le is more complex. The key �le is organized so that locating
a particular key requires the least number of accesses. For this purpose, the key �les are
organized in a particular structure known as a \B-Tree".1

Described in \Organization and Maintenance of Large Ordered Indexes" Bayer and McCreight,
Acta Informatica, Springer Verlag,1972, pp 173-189.

B-tree structure has two main advantages:

The number of �le accesses is limited to the number of levels in the tree. If there are two
levels, no more than two reads of the key �le are needed to locate a particular key.

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-1

The key �le is balanced. This means that each level pointer associated with a particular key
value points to approximately as many higher key values as lower key values at the next
level of the tree.

B-tree structure in general is discussed below, followed by a discussion of how KSAM key �les
use this structure.

B-TREE STRUCTURE

In a B-tree, there is always one root level block that points to blocks at a lower level. At the
lowest level, the blocks are called leaves and they do not reference another level. In a two-level
structure (see Figure B-1), the blocks at the second level all \leaves". If the tree has more
than two levels, intermediate blocks (nodes or branches) are referenced by a higher level and
themselves reference a lower level. Unless this lower level is a leaf, it also references a lower
level. This continues until the lowest (leaf) level is reached.

The notion of higher and lower level does not refer to the key values, The root block key
values are always central and point to blocks with lower values and blocks with higher values.
Thus if there are two entries at the root or a branch level, there will be three pointers to the
next level: one for key values less than the �rst key value, one for key values less than the
second key value but greater than the �rst, and one for key values greater than the second.

Within each block, values are stored in ascending order. Although not all blocks are �lled
with values, each block in a tree is the same size. Figure B-1 illustrates a simple 2-level tree
with one root block and three leaf blocks. The root is a single block and each leaf is a block of
the same size. (This example uses the KSAM minimum key block size consisting of four key
entries per block.)

Figure B-1. Two-Level B-Tree Structure

B-2 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

ADDING OR DELETING KEYS.

When a key block is full and new keys are added, the root level block may need to be split,
causing a new root block to be introduced and adding a new level to the tree. This process is
illustrated in Figure B-2 where the addition of one new key to a partially �lled block does not
a�ect the tree structure, but the addition of a second key to the full block causes the block to
split.

Again, this example assumes the minimum key block size for the sake of simplicity. Note
that all key �le maintenance is performed in the KSAM extra data segment where space is
allocated for one more key than the key block size. This allows the addition of a key to a
\full" block. Before the block is read back into the key �le, it is split so that the key block
size is maintained.

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-3

Figure B-2. Split Causes New Level in Tree

When the root block and all the leaves are full, another split becomes necessary. Figure B-3
illustrates a split caused when a new key is added to a full two-level tree structure, forcing it
to a three-level structure.

B-4 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

Figure B-3. Tree Growth from Two to Three Levels

Note that key blocks must always be de�ned with an even number of keys. As a result, when
a key is added to a full block, there will be a middle value to form a block at a new level.
This maintains the balance essential to B-tree structure.

As records are deleted from the data �le, two blocks at the same level (brothers) may be
merged into one block. If su�cient records are deleted, the root block may be merged into a
higher level, thereby contracting the number of levels in the key structure.

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-5

KSAM KEY FILE STRUCTURE

A KSAM key �le consists of three types of information:

Control|contains general control information such as the KSAM �lename, and the number
of keys de�ned for the �le,

Key descriptor|contains general key information for each key such as the starting location
in the data record of the key �eld, and the location in the key �le of the root key entry.

Key entries|Each key entry contains information about a key associated with a data
record. This information consists of:

the key value

a pointer into a data record in the data �le with the same key value.

pointers into other records within the key �le.

The control and key descriptor information is contained in two blocks (physical records) at the
beginning of each �le. Regardless of the number of keys in the �le, each block is 128 words
(l sector) long. Thus, every key �le is preceded by two sectors of control and key descriptor
information.

The key entries are also organized into blocks of a �xed size. However, the exact number of
blocks and the size of each block is based on a variety of factors, such as the key size, the
number of keys in the �le, the number of key values for each key, the key blocking factor,
and so forth. (Calculation of key block size is discussed later in this section.) These key
entry blocks are organized into the Btree structure discussed above. A separate key structure
is maintained for each key de�ned for the �le, Thus there may be up to 16 separate tree
structures in a single KSAM �le.

Refer to Figure B-4 for a simplilied diagram of a KSAM key �le with two keys each organized
into a two level tree structure. For a detailed description of the three types of block, refer to
Figure B-5 and Figure B-6.

CONTROL BLOCK.

This 128-word block contains information on the data �le associated with the key �le, and
keeps track of the number and type of access to the key �le. It also speci�es the number of
keys (primary and alternate) de�ned for the KSAM �le. The name of the data �le and the
number of keys are essential for associating the key �le with the data �le. The number of keys
determines how many entries are in the Key Descriptor Block. (Refer to Figure B-5.)

KEY DESCRIPTOR BLOCK.

This 128-word block contains one 8-word entry for each key de�ned for the KSAM �le. The
�rst entry describes the primary key, the next entry describes the �rst alternate key (if there
is one), and each subsequent entry describes any additional alternate keys. The �rst word of
each entry points to the root block for that key; another important item is the location of the
key in the data �le record. (Refer to Figure B-5.)

B-6 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

Figure B-4. KSAM Key File Structure With Two Keys

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-7

Figure B-5. Control Block and Key Descriptor Block

KEY ENTRY BLOCKS.

Each block in the key �le contains, in addition to the key values, pointers that link the key
blocks to each other and pointers that link each key value to an associated data record.
Preceding these entries, the �rst item in every key block is the address of the block on disc;
the next item is the number of keys in the key block.

All key block access for search and modi�cation is performed in the KSAM extra data
segment. The disc address in each key block insures that the block is returned to its correct
location on disc from the extra data segment.

B-8 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

Figure B-6 illustrates the general layout of all key entry blocks. Each key value is followed
by a pointer to a data record and a pointer to the block at the next level with higher key
values. The �rst, pointer in each block points to a block at the next level with lower key
values. These pointers are set to zero for key blocks that have no next level (the leaves on a
tree structure).

Figure B-6. Key Entry Block Structure

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-9

RELATION OF KEY TO DATA FILE

The purpose of the KSAM key �le is to maintain the order of data records in the data �le.
In order to maintain sequential order for each key, the keys blocks are connected through
pointers. In addition to these pointers, each key entry must also contain a pointer linking the
key value to the data record containing the corresponding key value.

When the KSAM �le is created, each key is de�ned by its starting location in the data record,
its length, and its type. The location is speci�ed as the character position where the key value
starts; the length is the maximum number of characters used by the key value; its type is the
type of the value such as, an integer, a character string, or a double-word integer.

Thus, if the primary key is de�ned as a character string that starts in character position 3 and
is 20 characters long, then KSAM expects that each data record will contain such a value in
that location. Whatever is placed in the de�ned location is treated as the primary key and
determines the order in which data records are sequenced.

The order in which records are physically written to the date �le is called chronological
sequence. This sequence may or may not also be a key sequence. If the records were written
to the �le in primary key sequence, then this sequence and the chronological sequence are the
same. If there is an alternate key for the �le, however, it is very unlikely that alternate key
sequence is the same as the chronological sequence.

Note Key sequence in KSAM �les is always in ascending order by key value.

Refer to Figure B-7 for a simpli�ed diagram of the relation between the primary keys in the
key �le and the associated data records in the data �le. (A similar diagram could be set up
for the alternate key.) The diagram shows the pointer in each key entry pointing directly to a
record in the data �le.

When a data record is to be located by key value, the root block for the appropriate key is
searched �rst, using a binary search method. If the key is in the root block, the search is over.
If it is not, the key value is between two root block values or it is less than the lowest value or
greater than the highest. Using the pointer in the appropriate location, a block at the next
level is located. This block is then searched for the selected key. Again, if the key is found,
the search is over. If the key is not found at this level, the appropriate pointer to the next
level is used and the search continues.

When the selected key value is found, the pointer to the data �le associated with that key
value is used to locate the record in the data �le.

B-10 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

Figure B-7. Data File/Key File Relation

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-11

KSAM FILE SIZE

The size of the data �le is calculated from the maximum number of data records times the
size of each record (for �xed length records). For variable length records, it is calculated from
the maximum number of data blocks times the size of each block. By default, a KSAM data
�le contains 1024 records (or blocks) in which each record (or block) is 1024 words long. This
default size �ts each block into eight disc sectors (each sector is 128 words long), and results
in a data �le of 8192 sectors.

Calculation of key �le size is more complex. It is based on the total number of keys in the �le
(primary and alternate), the size of each key entry (including overhead), the expected number
of data records speci�ed when the �le is built, plus space to allow for block splitting when the
number of key entries increases.

The number of key entries per key is usually exactly the same as the number of data records
expected. By default, KSAM uses the maximum number of data records speci�ed, or the
default value of 1024 records. This number is multiplied by each key in addition to the
primary key to arrive at the total number of key entries in the �le.

The size of each key entry and the number of key entries per block (the blocking factor) is
used to determine key block size. Since all blocks in the key �le must be the same size, KSAM
adjusts the blocking factor so that all keys, regardless of entry size, use the same block size.
Also, this blocking factor may be adjusted so that disc sector space is not wasted. (A block
always starts on a sector boundary.) By default, the blocking factor is adjusted so that a
block size of 1024 words is used for all key blocks for all keys in the �le.

Because of the nature of the B-tree structure, enough room must be left in the key �le so that
the �le can be increased in a balanced manner. When block splitting occurs as a result of
adding new key values, up to half of each key block may have empty slots. To allow for such
expansion, the key �le size is calculated, and then doubled.

The following discussion describes exactly how KSAM calculates the key block size, and then
the total key �le size. These calculations are useful primarily if you do not use default values
for the key blocking factor and for the number of key entries. In such a case, they may help
you determine the most e�ective block size and �le size for your application.

KEY BLOCK SIZE

Key block size can a�ect the complexity of the tree structure and this complexity can a�ect
access time. In order to understand the relation between block size and access time, consider
the following general rules:

The larger the block, the less often it has to split and the fewer the splits, the fewer levels to
the tree.

The more levels to the tree, the more mass storage retrieval time is needed to locate a
particular y value.

From this it would follow that in order to reduce access time, you should de�ne large blocks.
This is true only up to a point. Depending on the total number of key values expected in
the �le, a large block size may result in a great deal of unused space in each block. Also,
the blocking factor may result in unused disc space since all blocks must start on sector
boundaries.

B-12 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

KSAM provides a default blocking factor that produces a block with 1024(1K) words. This
size has proved to be e�cient for many �les. You may, however, override this default blocking
by specifying a value in the keyblocking parameter of the ;KEY= option in the BUILD
command, or in word 19 of the FOPEN ksamparam parameter. Note that any blocking factor
you specify is a minimum value since KSAM may increase the blocking factor so that the least
amount of disc space is wasted.

After creating a KSAM �le, you can use the VERIFY command of KSAMUTIL to determine
the number of levels needed by the KSAM �le. The VERIFY listing will also tell you the
actual blocking factor used in creating the �le so you can �nd out whether your speci�ed
blocking factor has been increased.

CALCULATING KEY BLOCK SIZE.

Key block size is based on a number of factors:

The key size is bytes (KS)

The key entry size in words (ES).

The number of key entries per block, the blocking factor (BF).

Once the block size is determined, the number of sectors needed to hold one block is
calculated. If this value (NB) wastes sector space, KSAM adjusts the blocking factor to
produce a block size that uses the least number of sectors by �lling each sector as completely
as possible. Note that when KSAM uses the default block size of 1024, it calculates a blocking
factor by the same method.

The following steps show how KSAM determines block size based on a speci�ed minimum
blocking factor.

Note The notation j j means round down the result of the enclosed algorithm to
the next whole number; j j means round it up.

1. Calculate the entry size (ES) in words from the key size (KS) in bytes, and then add
two words for each pointer in the key entry (see Figure B-6). KSAM uses the following
algorithm to perform this calculation:

ES = |_(KS+I)/2_| + 4

2. If the blocking factor (BF) was speci�ed as an odd number, KSAM issues an error message.
Otherwise, it uses the speci�ed blocking factor to continue the calculation of block size.

3. Determine blocksize (BS) by multiplying the key entry size by the blocking factor and
adding 5 words. (The �ve words are for the three words of control information at the
beginning of each block, plus two words for the �nal pointer in the block. See Figure B-6).
KSAM uses the algorithm:

BS = (ES x BF) + 5

Since blocks always start on sector boundaries, this calculated block size may leave a lot of
unused sector space. The following steps show how KSAM determines the most e�cient
block size and, if this size di�ers from the size calculated from the speci�ed blocking factor,
how KSAM adjusts this blocking factor upwards to produce the optimum block size.

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-13

4. Determine the number of sectors required to hold the block at its calculated size. If the
result is not a whole number, round it up to the nearest whole sector. KSAM determines
the number of sectors per block (NB) as follows:

NB = | BS/128 |

5. Multiply the number of sectors per block by 128 to determine the optimum block size:

BS = NB x 128

6. If the optimum block size calculated in step 5 di�ers from the block size calculated in
step 3, or if the default block size 1024 is used, KSAM adjusts the blocking factor to one
that produces the optimum block size. It uses the following algorithm to determine the
number of key entries that �t in the block and, if this is an odd number, reduces it by one.
(Blocking factor must be an even number.)

BF = F | (|_(BS-5)/ES _| �1)/2 |x 2

KEY FILE SIZE

KSAM uses the blocking factor and the number of sectors per block to detenrmine the
maximum �le size in sectors to allocate to the key �le. In addition, KSAM needs to know the
maximum number of key entries to expect, and the number of keys (primary and alternate)
de�ned for the key �le at creation.

The maximum number of key entries for each key may be speci�ed in the numentries
parameter of the KEYENTRIES= option of the BUILD command, or in the ksamparam
parameter of FOPEN. However, this �le limit is usually based on the maximum number of
data records. This value is specited in the numrec parameter of the DISC= option of the
BUlLD command, or in the �lesize parameter of FOPEN. If not speci�ed in either of these
places, KSAM assumes a default �le limit of 1024 key entries.

Since the number of records in the data �le can be used to calculate the maximum number
of keys for only one key, each additional key de�ned for the �le causes the �le sizes to be
summed.

When key �le size has been calculated, KSAM uses this value to allocate that number of
sectors on disc to the key �le whenever the �le is opened.

Key �le size is based on the following factors:

The number of key entries per block, or the blocking factor (BF).

The number of blocks per sector (NB).

The maximum number of key entries for one key (FL).

The number of keys de�ned for the key �le.

KSAM uses the following formula to determine key �le size in sectors for a �le with one key:

FBS = (| FL/BF |x 2) x NB

This formula is derived through the following steps:

1. The maximum number of key entries (FL) is divided by the number of key entries per
block (BF) to �nd the number of blocks in the �le. If not a whole number, it is rounded up
to include all blocks.

B-14 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

2. The resulting number of blocks is multiplied by 2. This doubling of the number of key
blocks is done to allow room for expansion when the number of levels in a key �le expands
due to block splitting.

3. Finally, the number of blocks is multiplied by the number of blocks per sector (NB) to �nd
the total number of sectors needed to contain all key entries.

Note The �le size (FS) calculated by the above algorithm does not include the two
sectors required for control information.

If the �le has only one key, add 2 to the �le size (FS+2) to get the total �le size. The value
2 represents the two sectors at the beginning of each key �le containing control and key
descriptor information.

If the key �le has multiple keys, then the optimum block size of each key must be determined.
The largest block size is then selected as the standard block size for all keys in the �le (KSAM
does not allow variable-length key blocks). Since the block size of some keys has changed, the
blocking factor (BF) must be recalculated for these keys using the algorithm:

BF = | (|_(BS-5)/ES_|�1)/2 |x 2

A separate �le size for each key is then calculated based on their various blocking factors. The
total key �le size is equal to the sum of all these �le size (FS) values plus 2 for the two control
sectors.

Figure B-8 summarizes the steps KSAM uses to calculate �le size for one key. Figure B-9
shows how KSAM calculates key �le size for a �le with two keys. Each key �le size (FS) is
calculated separately, and then the blocking factor and �le size of the key with the smaller
block size is recalculated.

For a �le with one key, KSAM simply adds 2 sectors to the �le size (FS) calculated for the
single key.

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-15

Figure B-8. Formula to Determine File Space per Key

B-16 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

Figure B-9. Calculation of Total Key File Size with Two Keys

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-17

KSAM EXTRA DATA SEGMENTS

Another factor that may a�ect performance when KSAM �les are used, is the number and size
of KSAM extra data segments. An extra data segment (XDS) is an area in memory used as a
bu�er during KSAM �le access. Each extra data segment contains:

Statistical information on �le use (listed by VERIFY command);

Control Block and Key Descriptor Block data from the �rst two sectors of each KSAM key
�le;

A Working Storage area large enough to hold a data record and two key entries;

A data block bu�er large enough to hold a block from the data �le;

At least one, and up to 20, key block bu�ers each large enough to hold one key block.

When the key �le is searched for a particular data record, the root block and lower level
blocks, as needed, are moved to key block bu�ers in the extra data segment. Key entries are
compared in the working storage area. When the data block is located, it is moved to the data
block bu�er of the extra data segment, and when the particular data record is located, it is
moved to the working storage area.

Since each open KSAM �le is allocated an extra data segment and each extra data segment
can be up to 32K words long (32,767 words), KSAM �les can use a lot of memory. When
there is not enough room in memory for all the extra data segments, they must be swapped
between memory and disc as needed. This swapping can slow access to KSAM �les.

In order to minimize swapping, you can reduce the number of KSAM �les by combining
several �les into one �le. This automatically reduces the number of extra data segments, and
it can be a very e�ective way to improve performance, particularly when �les are shared by a
number of users. (Refer to Number of Extra Data Segments, below.)

Decreasing the overall size of the extra data segment may reduce swapping of extra data
segments. However, reducing the number of key block bu�ers in the extra data segment
may increase swapping of key blocks between the key �le and the extra segment during a
�le search. By default, KSAM allocates key block bu�ers according to a formula that takes
into account the type of access for which the �le is opened, the number of levels in the key
�le structure, and the number of alternate keys in the �le. Since this formula (see Table B-1)
keeps the extra data segment size as small as is compatible with e�ciency, the default number
of key block bu�ers should be used except in special cases. (For details, refer to Extra Data
Segment Size later in this section.)

NUMBER OF EXTRA DATA SEGMENTS

KSAM assigns an extra data segment to each KSAM �le opened by an active process. Since
more than one process can use the same �le during shared access, one �le may require a
number of extra data segments. Thus, the number of extra data segments depends both
on the number of KSAM �les and the number of users concurrently using the �le. (Refer to
Figure B-10.)

B-18 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

Figure B-10. Extra Data Segments for Shared Access

EXTRA DATA SEGMENT SIZE

The size of each extra data segment associated with an open KSAM �le is determined by the
number of key block bu�ers it contains, the size of each key block bu�er, the size of the data
block bu�er, and to a lesser extent, the key entry size and the data record size. (Refer to
Figure B-11.)

Initially (when a �le is opened), 12K words are allocated to the extra data segment. If less
actual space is needed, the extra space is not used, but remains in virtual memory. If more is
needed, the original extra data segment is released and a new extra data segment is allocated
with the actual size needed.

The maximum size of any extra data segment is 32K words. The actual size is calculated
from:

The total size of the overhead statistics and working storage area;

The size of the data block bu�er;

The size of each key block bu�er and the number of bu�ers allocated.

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-19

The overhead statistics and working storage area is approximately 1-1/2K bytes long
depending on variables such as the key entry size and the data entry size. The data block
bu�er size is based on the size of each data block in the data �le. Each key block bu�er must
be large enough to contain all the key entries in a key block plus one key entry used when new
keys are added to a full block (as described earlier, see Figure B-2).

The default key block size is 2K bytes (1024 words) and the maximum size of the key block
bu�er is 4K bytes (2048 words). If a key block is larger than 4K bytes, KSAM reduces the
block size so that no block is larger than will �t in an extra data segment key bu�er. Thus,
the main variable in extra data segment size is the number of key block bu�ers.

Figure B-11. KSAM Extra Data Segment

B-20 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

NUMBER OF KEY BLOCK BUFFERS.

The number of key block bu�ers depends on the type of access for which the �le is opened,
the number of keys in the �le, and the number of levels in the tree structure for each key.
(Refer to Table B-1 for details.) The least number of bu�ers is allocated for read only access,
unless the primary key has many levels in its structure. More bu�ers are usually required for
write only, read/write, or update access. The number of bu�ers for read only access increases
with the number of levels used by the key, but is never less than one. The number of bu�ers
for write only access increases with the number of alternate keys in the �le, but is never less
than six. The number of bu�ers for all other types of access increases with the number of
alternate keys and with the number of levels for each key, but is never less than four.

Unless you specify a particular number of key block bu�ers, KSAM allocates bu�ers in the
extra data segment according to the �le characteristics as shown in Table B-1.

Table B-1. Number of Key Block Buffers Assigned by Default

Access Type Bu�ers Assigned

Read Only Access 1 bu�er per level in key with most levels

(minimum of 1 bu�er up to 20 bu�ers)

Write Only Access 3 bu�ers per primary key + 3 bu�ers per alternate key + 3 bu�ers

(minimum of 3 bu�ers up to 20 bu�ers)

Other Access
(Read/Write or Update)

1 bu�er per level in primary key structure + 1 bu�er per level in alternate
key structure + 3 bu�ers

(minimum of 3 bu�ers up to a maximum of 20 bu�ers)

Note that you can determine the number of levels per key with the KSAMUTIL command,
VERIFY.

For example, if the �le is opened for read only, and the only key needs two levels, two key
block bu�ers are allocated. If the �le is opened for write only, and there is one alternate
key in the �le, nine key block bu�ers are allocated. If this same �le is opened for update
access, the primary key uses two levels, and the alternate uses three, a total of eight bu�ers is
allocated.

If you want to override the number of key block bu�ers assigned by default, you can use the
MPE :FILE command before opening the �le, or set the numbu�ers parameter of FOPEN
when you open the �le programmatically.

The �le equation is speci�ed as follows:

:FILE �lename; DEV=,,#bu�ers

The KSAM extra data segment will be allocated space for as many key block bu�ers as you
specify, up to a maximum of 20. (Note that the third DEV= parameter is interpreted as the
number of key block bu�ers only when the �le name is a KSAM �le; for standard MPE �les,
this parameter indicates the number of list copies of the �le.)

Another way to reduce the number of key block bu�ers is to use fewer alternate keys, or to
adjust the blocking factor so that the key �le structure uses fewer levels. Either of these
methods is e�ective when the �le is written to or updated more than it is simply read.

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-21

Note that when you are loading a KSAM �le with large amounts of data, you should increase
the number of key bu�ers. The more key bu�ers in the extra data segment, the more likely it
is that, as new data is added, locations for the new key values will be found in memory. This
cuts down on disc access and can signi�cantly reduce the time it takes to load the �le.

For example, if you are reloading a KSAM �le after a system failure, you should use the :FILE
command to increase the number of bu�ers to maximum of 20 bu�ers. Then, after the �le is
loaded, you can allow it to revert to the default number of bu�ers established by KSAM for
the particular �le.

EXTRA DATA SEGMENTS WITH SHARED ACCESS

The extra data segment allocated to each open �le acts as a control block for that �le. The
extra data segment contains not only the current data block and the current key block bu�ers,
but also the latest control information for the �le. This information includes the logical and
chronological record pointers that indicate the current record being accessed. Because the
current pointer position is not in a \common block", when several programs open the same
�le, each can alter the key �le structure by adding or deleting records so that the pointers set
by other programs may point to the wrong record without those other programs being aware
of it.

To make sure that the latest pointer position is stored with the �le rather than in the separate
extra data segments, programs that share the same KSAM �le must use a locking scheme.
Whenever a program locks a KSAM �le, the control information is transferred from the
�le to the extra data segment; and when a program unlocks the �le, the contents of the
extra data segment is written back to the �le. Thus, each program should lock a KSAM
�le before executing any procedure that positions a record pointer (pointer-independent
procedures), and not unlock the �le until all procedures that depend on this pointer position
(pointer-dependent procedures) have completed execution. This is true regardless of whether
the pointer is chronological (points to a record in the data �le) or is logical (points to a key in
the key �le). Both types of pointer are maintained in the extra data segment for the open �le.

Table B-2 lists all the procedures that a�ect or are a�ected by the record pointers.

B-22 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

Table B-2. Pointer Dependence

Pointer-
Independent
Procedures

Pointer
Type

Pointer-Dependent
Procedures

Pointer
Type

FFINDBYKEY
CKSTART
BKSTART

Logical FREAD
CKREAD
BKREAD

Logical

FFINDN Logical FSPACE Logical

FREADBYKEY
CKREADBYKEY
BKREADBYKEY

Logical FREMOVE
CKDELETE
BKDELETE

Logical

FWRITE
CKWRITE
BKWRITE

Logical FUPDATE
CKREWRITE
BKREWRITE

Logical

FPOINT Chronological FREADC Chronological

FREADDIR Chronological* FREADC Chronological

*Each procedure that sets the logical pointer also sets the chronological pointer; but only
FPOINT sets the logical pointer as well as the chronological pointer.

The pointer-independent calls position the pointer regardless of its current position.
Pointerpendent calls, on the other hand, must know to which record the pointer is currently
positioned in order to operate correctly.

All the procedures listed in Table B-2 a�ect the pointer in some way. In order to use these
procedures correctly, it is important to understand how each moves the pointer, whether it
positions the pointer directly or advances it from its current position.

In general, when access to the �le is random, the pointer is positioned directly. For example,
a call to FFINDBYKEY (or CKSTART or BKSTART) positions the logical pointer to a
particular key in the key �le based on a key value speci�ed in the call; and a call to FPOINT
positions the chronological pointer to a particular record determined by its chronological
record number.

When access to a �le is sequential or the �le is being modi�ed, pointer positioning is
not direct but is relative to its previous position. Depending on the sequence in which
procedures are executed, the pointer may or may not be advanced to the next record in key
or chronological sequence. Internally, a
ag is used to indicate whether or not to advance
the pointer. This
ag, the \Do Not Advance"
ag, is set to FALSE if the pointer is to be
advanced sequentially, to TRUE if it is not to be advanced. Some procedures never test the

ag; these are, in general, the pointer-independent procedures that set the pointer directly.
Other procedures test the
ag and advance the pointer if the
ag is FALSE; generally, these
are procedures that read the �le or position the pointer sequentially. Table B-3 summarizes
when the pointer is set or advanced. (Note that only SPL procedures are listed; check
Table B-2 for the equivalent BASIC or COBOL procedures.)

KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

B-23

Table B-3. Record Pointer Summary

For example, if you call FREADBYKEY, it positions the pointer to a speci�ed key value.
After the call, the logical pointer remains positioned to this key and the Do Not Advance

ag is set to FALSE. If the next call is to FREAD, FSPACE, or FREADC, then the pointer
is advanced to the next key in key sequence before these procedures perform their other
functions. Thus, after FREADBYKEY, a call toFREAD will read the next record, not reread
the same record, and a call to FSPACE will move the pointer relative to the record following
the record just read.

B-24 KSAM/3000 INTERNAL

STRUCTURE AND TECHNIQUES

C
ASCII CHARACTER SET IN
COLLATING SEQUENCE

In the collating sequence for ASCII characters, unlike EBCDIC, numbers precede letters.

ASCII CHARACTER SET IN

COLLATING SEQUENCE

C-1

Table C-1. ASCII Characters in Sequence

DECIMAL
VALUE

CONTROL GRAPHIC COMMENTS

0 NUL @c Null

1 SOH Ac Start of heading

2 STX Bc Start of text

3 ETX Cc End of text

4 EOT Dc End of transmission

5 ENQ Ec Enquiry

6 ACK Fc Acknowledge

7 BEL Gc Bell

8 BS Hc Backspace

9 HT Ic Horizontal tabualation

10 LF Jc Line feed

11 VT Kc Vertical tabulation

12 FF Lc Form feed

13 CR Mc Carriage return

14 SO Nc Shift out

15 SI Oc Shift in

16 DLE Pc Data link escape

17 DC1 Qc Device control 1 (X-ON)

18 DC2 Rc Device control 2

19 DC3 Sc Device control 3 (X-OFF)

20 DC4 Tc Device control 4

21 NAK Uc Negative acknowledge

22 SYN Vc Synchronous idle

23 ETB Wc End of transmission block

24 CAN Xc Cancel

25 EM Yc End of medium

26 SUB Zc Substitute

27 ESCj[c Escape

28 FS nc File Separator

29 GS]c Group Separator

30 RS ^c Record separator

C-2 ASCII CHARACTER SET IN

COLLATING SEQUENCE

Table C-1. ASCII Characters in Sequence (cont.)

DECIMAL
VALUE

CONTROL GRAPHIC COMMENTS

31 US c Unit separator

32 SP `c Space (blank)

33 ! ac Exclamation point

34 " bc Quotation mark

35 # cc Number sign

36 $ dc Dollar sign

37 % ec Percent sign

38 & fc Ampersand

39 ' gc Apostrophe

40 (hc Left parenthesis

41) ic Right parenthesis

42 * jc Asterisk

43 + kc Plus sign

44 , lc Comma

45 - mc Minus sign (hyphen)

46 . nc Decimal point (period)

47 / oc Slash

48 0 pc Zero

49 1 qc One

50 2 rc Two

51 3 sc Three

52 4 tc Four

53 5 uc Five

54 6 vc Six

55 7 wc Seven

56 8 xc Eight

57 9 yc Nine

58 : zc Colon

59 ; fc Semicolon

60 < jc Less than

ASCII CHARACTER SET IN

COLLATING SEQUENCE

C-3

Table C-1. ASCII Characters in Sequence (cont.)

DECIMAL
VALUE

CONTROL GRAPHIC COMMENTS

61 = gc Equals sign

62 > ~c Greater than

63 ? DELc Question mark

64 @ Commercial at

65 A Uppercase A

66 B Uppercase B

67 C Uppercase C

68 D Uppercase D

69 E Uppercase E

70 F Uppercase F

71 G Uppercase G

72 H Uppercase H

73 I Uppercase I

74 J Uppercase J

75 K Uppercase K

76 L Uppercase L

77 M Uppercase M

78 N Uppercase N

79 O Uppercase O

80 P Uppercase P

81 Q Uppercase Q

82 R Uppercase R

83 S Uppercase S

84 T Uppercase T

85 U Uppercase U

86 V Uppercase V

87 W Uppercase W

88 X Uppercase X

89 Y Uppercase Y

90 Z Uppercase Z

C-4 ASCII CHARACTER SET IN

COLLATING SEQUENCE

Table C-1. ASCII Characters in Sequence (cont.)

DECIMAL
VALUE

CONTROL GRAPHIC COMMENTS

91 [Opening bracket

92 n Reverse slant

93] Closing bracket

94 ^ Circum
ex

95 Underscore

96 ` Grave accent

97 a Lowercase a

98 b Lowercase b

99 c Lowercase c

100 d Lowercase d

101 e Lowercase e

102 f Lowercase f

103 g Lowercase g

104 h Lowercase h

105 i Lowercase i

106 j Lowercase j

107 k Lowercase k

108 l Lowercase l

109 m Lowercase m

110 n Lowercase n

111 o Lowercase o

112 p Lowercase p

113 q Lowercase q

114 r Lowercase r

115 s Lowercase s

116 t Lowercase t

117 u Lowercase u

118 v Lowercase v

119 w Lowercase w

120 x Lowercase x

121 y Lowercase y

122 z Lowercase z

123 f Left brace

124 j Vertical line

125 g Right brace

126 ~ Tilde

127 DEL Delete
ASCII CHARACTER SET IN

COLLATING SEQUENCE

C-5

D

CONVERSION TO KSAM FILES

In order to convert from your existing �les to KSAM �les, you may want to take advantage of
utility programs provided with KSAM/ 3000. If your �les are serially accessible, you can use
the KSAMUTIL command BUILD to create a KSAM �le and then copy your �les to the new
�le with FCOPY. Another method only converts HP INDEX �les. INDEX is the new name
for RSAM (or R'ISAM) �les. This method uses the program RTOKSAM. Finally, if neither of
these methods is useful, you can write your own special purpose conversion program.

USING KSAMUTIL AND FCOPY

This conversion method can be used for any �le that is serially accessible. First you create a
KSAM/3000 �le using the BUILD command of KSAMUTIL. At this time you can de�ne your
�le with any legitimate speci�cation of the BUILD command. Once the �le is built (created),
you can run FCOPY to copy your existing �le to the newly created �le. No special FCOPY
commands are needed. You simply specify your existing �le as the FROM= �le and the
newly created KSAM �le as the TO= �le. All connections between the data �le and the key
�le are made automatically. (Refer to section II of this manual for a discussion of both the
KSAMUTIL BUILD command and FCOPY as applied to KSAM/3000 �les.)

USING RTOKSAM

The RTOKSAM program will create a KSAM/3000 �le from an existing INDEX �le. The
KSAM �le will have the same key structure as the INDEX �le. Any number of INDEX �les
can be converted to KSAM/3000 �les in one RTOKSAM run provided that you have su�cient
disc space within your group and account for all the �les.

Program RTOKSAM is run as follows:

:RUN RTOKSAM.PUB.SYS.

HP32208.A.0.00 INDEX TO KSAM CONVERTER

ENTER INDEX KEY, KSAM DATA, AND KSAM KEY FILE NAMES

>indexkey,ksamdata,ksamkey

The names of the INDEX key �le, the KSAM data �le, and the KSAM key �le must be
entered in that order. Only the INDEX key �le already exists; a new KSAM/3000 �le wll be
created with the speci�ed names.

After converting the INDEX �le to the KSAM �le, the program continues to prompt you
for additional �le names for conversion. When you wish to stop processing, simply press the
carriage return key in response to the greater than (>) prompt. Or, if you are in a job, enter
an :EOD record.

CONVERSION TO KSAM FILES D-1

Record numbering in INDEX �les always starts with record number 1. The KSAM �le created
by the RTOKSAM conversion program will also have record number starting with 1. Note
that this is not the standard KSAM �le default. Key blocking, on the other hand, does follow
the KSAM �le defaWt. That is, the number of keys per block is determined by KSAM so that
each key block has 1024 (1K) words.

If errors occur during execution of RTOKSAM, the following error messages may be displayed:

INPUT/OUTPUT ERROR ON $STDIN/$STDLIST

COMMAND TOO LONG

DUPLICATED FILE NAME

INSUFFICIENT PARAMETERS

INDEX OPEN ERROR (detail line follows message)

INDEX FREADLABEL ERROR (detail line follows message)

UNABLE TO BUILD KSAM FILE (detail line follows message)

KSAM FILE WRITE ERROR (detail line follows message)

INDEX FILE READ ERROR (detail line follows message)

The detail line that follows certain of the RTOKSAM messages explains in more detail the
input/output error that occurred.

The normal MPE security provisions for �les apply when the INDEX �le is speci�ed in this
program. The KSAM �le that is created must be within the same log on group.

Note It is good practice to make a back-up copy of the INDEX �le on o�-line
storage such as magnetic tape before running RTOKSAM to copy the �le to a
KSAM �le. This allows you to purge the INDEX �le once it is copied.

D-2 CONVERSION TO KSAM FILES

E

RECOVERY FROM SYSTEM FAILURE

OVERVIEW

If the system fails when a KSAM �le is open for any type of access except read-only, the
�le cannot be reopened until it has been recovered. In such a circumstance, any attempt to
reopen the �le causes the following message to be issued:

#192 -- SYSTEM FAILURE OCCURRED WHILE THE KSAM FILE WAS OPENED

The �le is easily recovered in most cases by running KSAMUTIL.PUB.SYS and then
requesting KEYINFO. This command resets any incorrect end-of-�le marks and deletes any
key values that point to non-existent data records. If key values are missing or are out of
sequence, the keys cannot be recovered by KEYINFO and, in this case, the �le must be
reloaded. (You can refer to section II for a discussion of KEYINFO; also an example of
�le recovery and reloading is provided later in this appendix,) If you want to examine the
�le statistics, you can run the VERIFY command of KSAMUTIL using the NOCHECK
option. (If KEYINFO does not complete execution successfully, then the KSAM �le must be
reloaded.)

For most purposes, this is all you need to know in order to recover a �le when a system failure
prevents you from opening it. This appendix provides internal details that explain why
recovery is necessary and what KEYINFO does in order to recover. It is intended primarily
for the sophisticated programming sta�.

RECOVERY FROM SYSTEM FAILURE E-1

END-OF-FILE ON KSAM FILES

The �rst step in understanding what KEYINFO does and why it is needed, is to understand
how KSAM end-of-�les are set and maintained. Each of the two �les that comprise a KSAM
�le (the data Ele and the key �le) has two end-of-�le marks: an MPE end-of-�le and a KSAM
internal end-of-�le. Thus, there are four end-of-�les to consider. The main characteristics of
each of these end-of-�les are shown below:

DATA FILE

MPE End-Of-File:

Number of records in �xed-length record �le (or number of blocks in variable-length record
�le).

Stored in system �le label of data �le.

Recorded on disc when �le is closed (or when an SPL procedure calls FCONTROL with
control code 6) or when a new extent is allocated.

Used by FCOPY with NOKSAM option (KSAM �le is treated as an MPE �le).

Displayed by LISTF,2:

LISTF DATAFIL,2

ACCOUNT= MORRIS GROUP= JOAN

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX

DATAFIL KSAM 38B FA 20 20 1 23 8 8

^

|---- MPE end-of-�le for data �le

KSAM End-of-File:

Address of next available logical record in the data �le.

Stored in control block of key �le.

Recorded on disc when �le is unlocked or closed (or when an SPL procedure calls
FCONTROL with control code 2 or 6).

Used by FCOPY when �le is opened as a KSAM �le (KEY-option)

Displayed by VERIFY command (option 1) of KSAMUTIL:

:RUN KSAMUTIL.PUB.SYS

HP32208A.2.3 MON, APR 23, 1979, 1:11 PM KSAMUTIL VERSION:A.2.0

VERIFY DATAFIL

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL,)?1

DATAFIL.JOAN.MOPRIS CREATOR=JOAN

FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM

AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN

RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-38: 3: 0: 3: 5: 0: 0: 0: 20: 20

|

E-2 RECOVERY FROM SYSTEM FAILURE

KSAM end-of-�le for data �le--------------------

LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN : DISCARD:

1: 1: -38: 3: 8: 1: 3:00000010135:

Since this is a �le that closed successfully, the two end-of-�les coincide.

RECOVERY FROM SYSTEM FAILURE E-3

KEY FILE

MPE End-of-File:

File limit - Number of records (sectors) allocated to �le at time of creation

Stored in system �le label.

Displayed by LISTF,2:

:LISTF KEYFIL,2

ACCOUNT= MORRIS GROUP= JOAN

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX

KEYFIL KSAMK 128W FB 50 50 1 30 5 8

|

|

MPE end-of-�le on key �le

(set to �le limit)

KSAM End-of-File

Address of 1st record in next available key block.

Stored in Control Block of key �le.

Recorded on disc when �le is unlocked or closed (or when SPL procedure calls FCONTROL
with control codes 2 or 6).

Used by FCOPY and KSAM procedures.

Displayed by VERIFY command, option 3, of KSAMUTIL:

E-4 RECOVERY FROM SYSTEM FAILURE

WHICH (1=FILE INTO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?3

DATA FILE = DATAFIL VERSION= A.2.1

KEY CREATED=292/'78 10:19: 7.4 KEY ACCESS= 113/'79 13:11:45.8

KEY CHANGED= 93/'79 14:18: 7.6 COUNT START=292/'78 10:19:53.6

DATA RECS = 20 DATA BLOCKS= 19 END BLK WDS= 19

DATA BLK SZ= 19 DATA REC SZ= 38 AZCESSORS= 0

FOPEN 2 FREAD 0 FCLOSE 2

FREADDIR 0 FREADC 0 FREADBYKEY 0

FREMOVE 0 FSPACE 57 FFINDBYKEY 0

FGETINFO 3 FGETKEYINFO 1 FREADLABEL 0

FWRITELABEL 0 FCHECK 0 FFINDN 3

FWRITE 20 FUPDATE 0 FPOINT 0

FLOCK 0 FUNLOCK 0 FCONTRDL 0

FSETMODE 0

KEYBLK READ 7 KEYBLK WROTE 0 KEYBLK SPLIT 0

KEY FILE EOF 26 FREE KEY HD 0 SYSTEM FAILURE 0

|

KSAM internal end-of-�le on key �le

MIN PRIME 11 MAX PRIME 5 RESET DATE 3/'79

DATA FIXED TRUE DATA B/F 1 TOTAL KEYS 3

FIRST RECNUM 0 MIN RECSIZE 38

Since the MPE end-of-�le is set to the �le limit and the KSAM internal end-of-�le to the next
available key block, these values never coincide until the key �le is full.

RECOVERY FROM SYSTEM FAILURE E-5

END-OF-FILE AND THE EXTRA DATA SEGMENT

As described in appendix B, each open KSAM �le uses an extra data segment (XDS) to hold
the control information for that particular open �le. The extra data segment also contains a
data block bu�er into which records are read from the �le and from which records are written.
Finally, the extra data segment keeps key block bu�ers to hold key entries a�ected by the data
records being accessed. The control block in each extra data segment also maintains the most
up-to-date KSAM end-of-�le markers for each open �le.

Whenever a KSAM �le is opened, the KSAM end-of-�les for the data and key �les are moved
(with all other information from the key �le control block) to the control block of the extra
data segment for that �le. When the �le is closed or unlocked, the control block is written
back to disc. (Refer to Figure E-1for a diagram illustrating the end-of-�le markers and their
relation to an extra data segment.)

Figure E-1. KSAM File and an Extra Data Segment

E-6 RECOVERY FROM SYSTEM FAILURE

NORMAL OPERATION - FILE IS CLOSED

During normal operation, if a new record is written to the �le by any user, the record is
written in the data block bu�er of the extra data segment and the key entry for the record is
inserted into the key block bu�er where it belongs. (Refer to appendix B for a discussion of
how new key entries are added.) The appropriate key block bu�er is brought into the extra
data segment automatically. Then, whenever the data block or key block bu�ers are full or
new blocks must be read into the extra data segment, the key and data blocks are written
back to disc. But the control block from the extra data segment is not written to disc until
the �le is closed (or is unlocked, or FCONTROL with code 2 or 6 is called).

Before considering what happens in case of a system failure, let's look at the normal steps
taken when the �le is closed:

1. Key block bu�ers are written to the key �le

2. Data block bu�er is written to the data �le (and, if a new extent is allocated, the MPE
end-of-�le is written to the data �le system label).

3. Control block with the KSAM end-of-�le marks is written to the key �le.

4. MPE end-of-�le mark is written to the data �le system label.

When a �le is unlocked, the �rst three steps shown above are taken (except the MPE end of
�le is not written). FCONTROL with control code 6 performs all four steps, and control code
2 performs the �rst three steps.

SYSTEM FAILURE - FILE IS OPEN

If the system fails when a KSAM �le is open, the extent of the damage to the �le depends on
when the failure occurred and whether the �le was being modi�ed. If all users opened the �le
for readonly, then the �le is undamaged and can be reopened. If a user had just unlocked the
�le and no other user has modi�ed it, the MPE end-of-�le may need to be reset but otherwise,
the �le is undamaged. But if the �le was being modi�ed, then the extent of the damage
depends on whether any of the steps listed above had been completed and, if so, which ones.

In the simplest case, all the steps except step 4 have been performed. This means that the
KSAM end-of-�le is up-to-date, but the MPE end-of-�le is still at its previous position, In the
most complex case, caused by records being deleted, data records remain in the data �le for
which there are no corresponding key entries, (error number 175).

RECOVERY FROM SYSTEM FAILURE E-7

SITUATIONS IN WHICH RECOVERY IS REQUIRED

Whenever the �le cannot be reopened (error #192 is issued), you must run KEYINFO to
recover the �le. The following four cases are typical of the reasons for �le damage. In each
case, the suggested action is discussed.

1. Records were being added to the data �le when the system failed. The KSAM end-of-�le
for the data and key �les are current, but the MPE end-of-�le precedes the KSAM
end-of-�le (steps 1-3 completed).

Solution: Run KEYINFO to reset the MPE end-of-�le. You can then run the KSAMUTIL
command, VERIFY, to determine where the current KSAM end-of-�le for the data �le is
positioned, and then run the MPE command :LISTF 2 to compare the MPE end-of-�le. If
you run VERIFY before running KEYINFO, use the NOCHECK option so the �le can be
opened.

2. Records being added to the KSAM �le when the system failed were not written to the data
�le, but some key entries for the new records had been written to the key �le (key blocks
written to key �le because bu�er space in XDS was needed). This means that the key �le
contains key values pointing to records not in the data �le.

Solution: Run KEYINFO to delete the key values that point to records that were not
written to the data �le.

3. Records being added to the KSAM �le when the system failed caused a key block split. As
a result, the key blocks are written, but the new internal KSAM end-of-�le for the key �le
has not been transferred to disc. This places certain key values past the old KSAM key �le
end-of-�le.

Solution: Run KEYINFO to reset the key �le end-of-�le to the correct location following
the existing key values. It still may have to delete any key values pointing to records past
the data �le end-of-�le.

4. Records were being deleted when the system failed. Some key block bu�ers have been
written to disc, but the data block bu�er has not. Since some key entries were deleted from
the �le on disc, but the deleted records remain, key values appear to be missing.

Solution: You must run KEYINFO to reset the crash
ag so the �le can be reopened.
When key values are missing, KEYINFO cannot fully recover from the �le damage and
issues the following message:

Warning THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING THE KSAM FILE

HAS TO BE RELOADED

To reload the KSAM �le, use FCOPY to copy the �le to a new KSAM �le. As it copies the
data records, it writes new key entries for each data record. Only in this way can missing
key values be recovered. (Refer to the discussion of Reloading a KSAM File later in this
section.)

If you want to determine how many key values are missing and the �le has more than one key,
you can compare the number of values in each B-Tree as listed by KEYINFO. These values
should be identical. When there is only one key in the �le, you can use FCOPY to determine
the number of non-deleted records in the batch �le. The number of key values for any key in

E-8 RECOVERY FROM SYSTEM FAILURE

the �le should exactly match the number of valid data records. The FCOPY command to
determine this value is:

>FROM=filename;TO=$NULL;KEY=0

If your �le is very large, using this FCOPY command can be time consuming and you may
prefer to reload the �le without checking the number of missing keys.

EXAMPLE OF FILE RECOVERY

Suppose you try to open �le TEST and receive error message #192:

SYSTEM FAILURE OCCURRED WHILE KSAM FILE WAS OPENED

In order to have the most information about the �le, �rst run KSAMUTIL and request
VERIFY to list all the �le information.

HP32208Y.2.4. THU, MAR 8, 1979, 12:53 PM KSAMUTIL VERSION:A.3.0

>V TEST

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?4

SYSTEM FAILURE OCCURRED WHILE THE KSAM FILE WAS OPENED (1068)

|

KSAMUTIL error message--------------------------

Just like any other program, the VERIFY command cannot open the damaged �le. So try
again using the NOCHECK option that allows such a �le to be opened for read-only:

RECOVERY FROM SYSTEM FAILURE E-9

The next step is to run LISTF,2 to see where the MPE end-of-�le is positioned. Note that you
can request the MPE command without exiting from KSAMUTIL.

E-10 RECOVERY FROM SYSTEM FAILURE

>:LISTF TEST,2

ACCOUNT= UTILITY GROUP= KSAM

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZ TYP EOF LIMIT R/B SECTORS #X MX

TEST KSAM 80B FA 900 1023 10 416 8 8

|

MPE end-of-�le on data �le

LISTF shows the MPE end-of-�le after the �rst 900 records, whereas option 1 of VERIFY
showed the KSAM end-of-�le after 990 data records. This is a discrepancy of 90 records.
These records actually exist. You only have to run KEYINFO to reset the MPE end-of-�le.
When you run KEYINFO, however, you may �nd that there are other problems.

>KI TEST

RECOVERY BEGINS

DATA FILE EOF DAMAGED

DATA FILE MPE EOF HAS BEEN RESET TO KSAM EOF <----- MPE end-of-�le recovered

After resetting the MPE end-of-�le for the data �le, KEYINFO continues. It next displays
information on the two keys in the �le TESTK.

--------- INFO FOR KEY 1 ---------

OF LEVELS OF B-TREE 2

OF KEY BLOCKS 16

OF SECTORS PER KEY BLOCK 8 <-------KSAM end-of-�le should

OF KEYS IN ROOT KEY BLOCK 14 be at least 218

OF KEYS IN B-TREE 1000 <----| |

% OF KEY BLOCK UTILIZATION 52.1 | |

THE LARGEST KEY BLOCK ADDRESS 210 <----------|

|

--------- INFO FOR KEY 2 --------- |

OF LEVELS OF B-TREE 2 # of key entries in two

OF KEY BLOCKS 11 | keys do not match

OF SECTORS PER KEY BLOCK 8 | each other; do not match

OF KEYS IN ROOT KEY BLOCK 9 | # of data records

OF KEYS IN B-TREE 997 <----|

% OF KEY BLOCK UTILIZATION 68.6

THE LARGEST KEY BLOCK ADDRESS 202

WARNING: THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING

OR KEY VALUE(S) POINTING TO DATA RECORD BEYOND EOF

KEY FILE EOF(INTERNAL) DAMAGED

KEY FILE (INTERlNAL)EOF Has BFEN RESET <---- End-of-�le moved forward

so all key blocks are included

Looking at the key information displayed for the two keys, the �rst thing to check is where the
actual end of �le should be. The largest key block address for key 1 is 210 and each block
requires 8 records, therefore the key �le end-of-�le should be at least 218. If you look back
to option 3 of the VERIFY display, it is listed as 210. Since this is not the real end-of-�le,
KEYINFO resets the KSAM internal end-of-�le to the actual end of �le (see VERIFY display,
below).

Next, check the total number of key values for each key. The �rst thing to notice is that they
do not match each other. The number of key values for each key should always be the same,
and each should equal the number of records in the data �le. But, if you look at option 1 of
the VERIFY display, the number of records in the data �le is 990, less than the number of key

RECOVERY FROM SYSTEM FAILURE E-11

values for either key. (Note that if the �le contains records marked for deletion, you can run
FCOPY to determine the number of active records).

In response to this discrepancy, KEYINFO deletes 10 key values from each key. The values
deleted are those that have no matching data record. This completes the KEYINFO
functions. Now that it has deleted 10 key values from the key entries for key 2, only 987 are
left (997 minus 10). This is three fewer than the number of key values in key 1 (990 = 1000
�10). For this reason, KEYINFO must issue the warning that the �le needs to be reloaded:

--------- KEY SEQUENCE 1 ---------

OF INVALID KEY VALUES DELETED 10<-----10 values deleted that

have no matching data record.

--------- KEY SEQUENCE 2 --------- |

OF INVALID KEY VALUES DELETED 10<-------|

RECOVERY ENDS

WARNING: THERE ARE SOME RECORD(S) WITH KEY VALUE(S) MISSING

THE KSAM FILE HAS T0 BF RELOADED

Before reloading the �le, as described below, use LISTF,2 to check the current MPE end-of-�le
(after recovery); run VERIFY to check the current KSAM end-of-�le positions; and run
KEYINFO again to see the number of key values left in each key following the previous
KEYINFO recovery.

E-12 RECOVERY FROM SYSTEM FAILURE

The name of the user who runs KEYINFO to recover the �le for the RESET DATE shown by
VERIFY is stored in the key �le control block, along with his account, group, and home group
(refer to Figure B-5).

RECOVERY FROM SYSTEM FAILURE E-13

RELOADING A KSAM FILE

You use FCOPY to reload a KSAM �le when KEYINFO cannot recover the �le. You must
�rst use the KSAMUTIL BUILD command to build the new �le, and then use FCOPY to
copy the �le. In general, you should use the KEY=0 option of FCOPY (see section II for
a complete description of the FCOPY options for KSAM �les). KEY=0 copies the �le in
chronological sequence so that the new �le will be an exact copy of the original �le, except
that records marked for deletion are physically deleted from the �le.

For example, to reload the �le TEST to a new KSAM �le, NEWTEST:

:RUN FCOPY.PUB.SYS

>FROM=TEST;TO=(NEWTEST,NEWKEY) ;KEY=0;NEW

After the �le is successfully reloaded, you should purge the old �le TEST and rename the �le
NEWTEST. To do this, run KSAMUTIL and use the PURGE and RENAME commands as
follows;

RUN KSAMUTIL.PUB.SYS

HP32208V2.4 THU, MAR 8,1979,1:05 PM KSAMUTIL VERSION:A.3.0

>PURGE TEST

TEST,TESTKEY PURGED

>RENAME NEWTEST,TEST

>RENAME NEWKEY,TESTKEY

Now you can run any existing programs that referenced the old �le TEST.

The only time you might not want to use the KEY= option to reload a damaged �le is if the
key �le has been accidentally purged. In this case, and if the �le has �xed-lengt,h records, you
can use the NOKSAM option. This option needs only the original data �le. As it copies the
data �le in chronological order to a new KSAM �le, it creates a key �le with key entries for
the data records. The NOKSAM option does not, however, allow you to copy a data �le with
variable-length records. Refer to the instructions for copying variable-length KSAM �les in
Section II.

For example, to reload a KSAM data �le for which you have only a data �le with �xed-length
records, �rst build the new data �le, NEWFIL, then use the following FCOPY command:

>FROM=DATAFIL;TO=NEWFIL;NOKSAM;NOUSERLABELS;

SUBSET=#%377,%377,,EXCLUDE |

__________________________/ |

| |

| |

| |

to exclude records marked you must not copy

for deletion by �1 in user labels to a

�rst two characters KSAM �le

This command copies only the non-deleted records; it creates a new KSAM �le with only valid
records and a key �le that has key entries for each data record.

After a system crash in which the key �le is lost, it is possible that the MPE end-of-�le follows
the KSAM end-of-�le because it was written to disc just before the crash. If this is the case
and you use the NOKSAM option you should also use a SUBSET option to copy only the
records up to the KSAM end-of-�le, not the unde�ned area between the KSAM and MPE
end-of-�les.

E-14 RECOVERY FROM SYSTEM FAILURE

EXPAND KEY BLOCK BUFFER AREA

Depending on the length of the existing �le, the reloading procedure can take a long time.
One way to shorten this time is to increase the number of key block bu�ers in the extra data
segment for the �le. Since reloading is a write-only operation, the more bu�ers that can be
allocated to key blocks, the less swapping is needed between the extra data segment and disc
as new key entries are added.

In order to increase the number of key block bu�ers, enter the following commands:

:RUN FCOPY.PUB.SYS

>FROM=TEST;TO=(NEW,NEWK);SUBSET=1,0 <------------ create new �le with 0 records

>:FILE F=NEW;DEV=,,20 <------------ increase number of key block bu�ers

>FROM=TEST;TO=*F;KEY=0 <------------ copy data in chronological order

|

|------ remember to back reference �le

RECOVERY FROM SYSTEM FAILURE E-15

F

NATIVE LANGUAGE SUPPORT AND KSAM

OVERVIEW

The Keyed Sequential Access Method (KSAM) organizes records in a �le according to the
content of key �elds within each record.

Native Language Support (NLS) in KSAM provides the resources to create �les whose keys of
type BYTE are sorted according to a native language collating sequence. All BYTE keys in
the �le will be sorted using the collating sequence table of the speci�ed language. Keys, as
well as data in the record, may contain 8-bit character data.

A �le language attribute may be supplied when a KSAM �le is created to provide a key �le
organized according to the collating sequence of a native language. The language attribute
is provided when the �le is created. All KSAM �les created before NLS was introduced are
considered to have NATIVE-3000 as a language attribute.

A KSAM �le can bebuiltwith KSAMUTIL, or programmatically using FOPEN.

CREATING KSAM FILES WITH KSAMUTIL

When using KSAMUTIL, the parameter LANG=langname or LANG= langnum may be supplied
on the BUILD command, as shown in Figure F-1. NATIVE-3000 is used as the default
language attribute if no language is speci�ed.

The language speci�ed in the LANG= parameter must be installed on the system at the time
the command is issued for KSAMUTIL to build the �le. If the language is not installed, an
error message is returned and the �le is not built.

Danish is speci�ed as the language in the example. The language attribute of the KSAM �le
can be checked by the VERIFY command (mode 3).

NATIVE LANGUAGE SUPPORT AND KSAM F-1

RUN KSAMUTIL.PUB.SYS

HP32208A.03. 13 THU, FEB 16, 1984, 8:54 AM KSAMUTIL VERSION:A.03.13

>BUILD TEST;REC=-;80,3,F,ASCII;KEY=B,1,4;KEYFILE =TESTK;LANG=DANISH

>VERIFY

WHICH (1=FILE INFO, 2-KSAM PARAMETERS, 3-KSAM CONTROL, 4=ALL)?4

TEST.LORO.NLS CREATOR-SLORO

FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM

AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN

RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-80: 9: 0: 3: 89: 2: 0: 0: 0: 1023

LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:

0: 0: -240: 43: 8: 0: 3:00000234251:

KEY FILE=TESTK KEY FILE DEVICE=4 SIZE= 114 KEYS= 1

FLAGWORD(000020)=RANDOM PRIMARY, FIRST RECORD=0, PERMANENT

KEY TY LENGTH LOC. D KEY BF LEVEL

1 B 4 1 N 168 1

DATA FILE = TEST VERSION= A.3.13

KEY CREATED= 47/'84 9: 0: 7.6 KEY ACCESS= 47/'84 9: 0:19.2

KEY CHANGED= 47/'84 9: 0: 8.5 COUNT START= 47/'84 9: 0: 8.6

DATA RECS = 0 DATA BLOCKS= 0 END BLK WD= 0

DATA BLK SZ= 120 DATA REC SZ= 80 ACCESSORS= 0

FOPEN 1 FREAD 0 FCLOSE 1

FREADDIR 0 FREADC 0 FREADBYKEY 0

FREMOVE 0 FSPACE 0 FFINDBYKEY 0

FGETINFO 1 FGETKEYINFO 0 FREADLABEL 0

FWRITELABEL 0 FCHECK 0 FFINDN 0

FWRITE 0 FUPDATE 0 FPOINT 0

FLOCK 0 FUNLOCK 0 FCONTROL 0

FSETMODE 0 FREE KEYBLK 0 FREE RECS 0

KEYBLK READ 2 KEYBLK WRITTEN 0 KEYBLK SPLIT 0

KEY FILE EOF 10 FREE KEY HD 0 SYSTEM FAILURE 0

MIN PRIME 0 MAX PRIME 0 RESET DATE

DATA FIXED TRUE DATA B/F 3 TOTAL KEYS 1

FIRST RECNUM 0 MIN RECSIZE 4 LANG DANISH

WHICH (1-FILE INFO, 2-KSAM PARAMETERS, 3-KSAM CONTROL, 4-ALL)?

>E

END OF PROGRAM

:

Figure F-1. KSAM File Test Program

F-2 NATIVE LANGUAGE SUPPORT AND KSAM

ERROR MESSAGES

KSAMUTIL error messages are listed in Table F-1.

Table F-1. KSAMUTIL Error Messages

ERROR# MESSAGE CAUSE ACTION

1070 `LANG' NOT FOLLOWED BY

`=' OR HAS TOO MANY

PARAMETERS.

Improper syntax was
used in specifying the
language name.

Enter language name using
correct syntax.

1071 `LANG' LANGUAGE VALUE TOO

LONG OR ABSENT.
Language name too
long, or missing as a
parameter.

Enter correct language name.

1072 `LANG' LANGUAGE NUMBER

VALUE INVALID.
The language number
contains invalid
characters.

Enter correct language
number.

1073 `LANG' LANGUAGE NOT

SUPPORTED.
Language speci�ed is
not con�gured on
your system, or not a
valid language name
or number.

Ask the System Manager to
con�gure the langauage on
your system.

1074 NATIVE LANGUAGE SUPPORT

IS NOT INSTALLED.
NLS is not installed
on your system.

Ask the System Manager to
con�gure the language on your
system.

1075 NATIVE LANGUAGE SUPPORT

LANGUAGE NOT SUPPORTED.
An NLS MPE error
occurred. No
language table exists
for language speci�ed.

Ask the System Manager to
con�gure the language on your
system.

1076 NATIVE LANGUAGE SUPPORT

RELATED ERROR.
An NLS MPE error
occurred.

Ask the System Manager to
con�gure the language on your
system; if it is already
con�gured, contact your
Hewlett-Packard support
representative.

NATIVE LANGUAGE SUPPORT AND KSAM F-3

CREATING KSAM FILES PROGRAMMATICALLY

The user must provide a language ident i�cation number when calling FOPEN to build a KSAM
�le. The language identi�cation number is stored in word 10 of the KSAMPARAM array. The
FOPEN intrinsic checks each time a KSAM �le is opened to determine whether the language
used is con�gured on the system. For backward compatibility reasons bit 11 in the
agword
(word 15) must be set to 1 if a language other than 0 (NATIVE-3000) is used, to denote that
word 10 contains valid information.

If bit 11 of
agword is 0, the default language, NATIVE-3000, is used and the data in word 10
is ignored. If the language is not con�gured, condition code CCL is returned by FOPEN .

The �le system error messages listed in Table F-2 have been included with NLS:

Table F-2. KSAM File System Error Messages

ERROR# MESSAGE CAUSE ACTION

196 LANGUAGE NOT SUPPORTED The language name or
number speci�ed for
FOPEN is not
con�gured on your
system, or is not a
valid language name
or number.

Ask the System Manager to
con�gure the language on your
system.

197 NATIVE LANGUAGE SUPPORT

RELATED ERROR.
An NLS MPE error
occurred on a FOPEN
call.

Contact your Hewlett-Packard
support representative.

MODIFYING KSAM FILES

Every record added or updated in a KSAM �le has its new keys of type BYTE inserted
in the key �le according to the collating sequence of the language de�ned for that KSAM
�le. That function is handled internally by a system version of the NLCOLLATE intrinsic
when the language attribute ofthe �le is di�erent from NATIVE-3000. A new key in a �le
with a NATIVE-3000 language attribute will be ordered according to the result of a BYTE
COMPARE between the key of the new record and the keys of the records already in the key
�le.

F-4 NATIVE LANGUAGE SUPPORT AND KSAM

GENERIC KEYS

NLS collating sequences di�er from the USASCII collating, and the di�erences must be
considered when performing generic key searches. Refer to the Native Language Support
Reference Manual (32414-90001) for more information.

The description of a generic key search in a KSAM �le with a native language attribute is
presented from an application point of view

Keys matching a certain generic key may not be in consecutive order in the key �le because
the keys are sorted according to a native language collating sequence. The key sequence in
Figure F-3 illustrates this with a French KSAM �le; keylength is 4, the generic key length is 2.
The partial key \aa" appears in nonconsecutive keys (with a result of 0 in the last column of
the �gure). Records containing partial keys (such as \AA" or \Aa"0 are intermixed according
to the French collating sequence. These keys have a result of 1 listed.

If a generic key search is performed in a KSAM �le with a language attribute other than
NATIVE-3000, the application program must determine whether the retrieved record matches
the generic key and, even if it does not, whether subsequence records might still match it.

The codes returned by NLKEYCOMPARE are shown in Figure F-2.

Refer to the Native Language Support Reference Manual (32414-90001) for a complete
discussion of the NLKEYCOMPARE intrinsic.

Figure F-2. Results Returned By The NLKEYCOMPARE Intrinsic

RESULT MEANING

0 The retrieved key matches the generic key exactly.

1 The retrieved key does not match the generic key. Uppercase/lowercase priority
or accent priority is di�erent.

2 The retrieved key value is less than the generic key. It precedes the designated
key in the collating sequence.

3 The retrieved key is greater than the generic key.

NATIVE LANGUAGE SUPPORT AND KSAM F-5

The generic key search sequence is:

1. After FFINDBYKEY has been called with >= as relational operator(relop), the logical record
pointer points to the data records indicated by the arrow labeled \Case 2".

2. The subsequent FREAD call will retrieve the data record. When the partial key \AA" is
compared to the generic key \aa" they are found to be di�erent.

This comparison is done by calling the intrinsic NLKEYCOMPARE using the generic key and
the key found in the record. The result returned by NLKEYCOMPARE tells the application
whether the FREAD delivered a record:

a. Before the desired range (result 2).

b. In the desired range with an uppercase/lowercase or accent priority di�erence (result 1).

c. With an exact match (result 0).

d. After the desired range (result 3).

3. To get all records whose key match the generic key exactly, the FREAD calls and subsequent
NLKEYCOMPARE call should continue until a result of 3 is returned.

When performing a generic key search in a KSAM �le with a native language attribute other
than NATIVE-3000 use the NLKEYCOMPARE intrinsic to compare partial keys and generic keys.

Refer to the Native Language Support Reference Manual (32414-90001) for examples of generic
key searches in KSAM �les with native language attributes.

F-6 NATIVE LANGUAGE SUPPORT AND KSAM

Key length: 4

Language: FRENCH (only USASCII characters are used in the example).

Desired records are all records whose record key starts with \aa" (generic key = \aa",
length = 2) .

Pointer
Position

Key
Value

NLKEYCOMPARE Result
(\aa" Compared to Key)

Case 1|-> A 2

a 2

Case 2|-> AA 1

Aa 1

aA 1

aa 0

AAA 1

aaa 0

AAAA 1

AAAa 1

AAaa 1

AaAa 1

AaaA 1

Aaaa 1

aAAA 1

aAAa 1

aAaA 1

aaAA 0

aaaA 0

aaaa 0

Case 3|-> Baaa 3

baaa 3

Figure F-3. Generic Key Searches

NATIVE LANGUAGE SUPPORT AND KSAM F-7

Case:

1. FREAD starting at the beginning of the �le.

2. FFINDBYKEY with relational operator = or >= and subsequent FREAD calls.

3. FFINDBYKEY with relational operator > and subsequent FREAD calls.

Key Value: Key values in ascending sequence.

Figure F-4. Generic Key Searches

F-8 NATIVE LANGUAGE SUPPORT AND KSAM

USING FCOPY WITH NLS KSAM FILES

COPYING FROM A KSAM FILE TO ANOTHER KSAM FILE

If the KSAM �le already exists (built via KSAMUTIL or programmatically) the keys of type
BYTE are put into the new �le according to the collating sequence belonging to the language
of the \TO" �le. If the �le does not exist, a new �le is built with the same language attribute
as the \FROM" �le.

CHANGING THE LANGUAGE ATTRIBUTE OF A KSAM FILE

FCOPY cannot be used to change the language attribute of an existing �le. KSAMUTIL
must be used to build a new KSAM �le with the new language attribute. Then the data can
be copied to this �le using FCOPY. Keys of type BYTE in the destination key �le will be
ordered according to the collating sequence of the new language.

MOVING NLS KSAM FILES TO PRE-NLS MPE

Restoring a KSAM �le with a native language attribute other than NATIVE-3000 to a
system without NLS installed can result in an incorrect key sequence in the key �le for tvpe
BYTE keys. Systems without NLS installed do not recognize any collating sequence except
NATIVE-3000.

If a �le with a native language attribute otherthan NATIVE-3000 is restored, the �rst FOPEN
on the �le will return the same error condition code as if a system failure occurred while the
�le was opened. KSAMUTIL should be used to build a new KSAM �le, The �le with the
native language attribute is recovered, and FCOPY is used to copy the recovered �le into the
new KSAM �le. See Figure F-5 for an example of this recovery procedure.

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10

>BUILD NEWDATA;REC=-80,3,F,ASCII;KEY=B,1,4,:KEYFILE =NEWKEY

>KEYINFO OLDDATA;RECOVER

>EXIT

:FCOPY FROM-OLDDATA;TO-NEWDATA;KEY=0

:RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT,MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10

>PURGE OLDDATA

>RENAME NEWDATA,OLDDATA

>RENAME NEWKEY,DLDKEY

>EXIT

Figure F-5. KSAM Recovery Procedure

NATIVE LANGUAGE SUPPORT AND KSAM F-9

	Top of Document
	PREFACE
	Contents
	INTRODUCING KSAM/3000
	OVERVIEW
	HOW TO USE THIS MANUAL

	USING KSAM UTILITIES
	USING KSAM UTILITIES
	KSAMUTIL UTILITY
	HELP
	BUILD
	ERASE
	PURGE
	RENAME
	SAVE
	VERIFY
	KEYSEQ
	KEYDUMP
	KEYINFO
	USING KSAMUTIL IN BATCH MODE
	FCOPY UTILITY
	FCOPY FROM COMMAND
	:STORE AND :RESTORE COMMANDS
	RESTORE

	USING KSAM FILES IN COBOL PROGRAMS
	CALLING A KSAM PROCEDURE
	FILETABLE PARAMETER
	FILETABLE
	STATUS PARAMETER
	STATUS
	CKCLOSE
	CKDELETE
	CKLOCK
	CKOPENSHR
	CKREAD
	CKUNLOCK
	CKWRITE
	EXAMPLES OF KSAM FILE ACCESS FROM COBOL PROGRAM

	USING KSAM FILES IN SPL PROGRAMS
	KSAM FILE SYSTEM INTRINSICS
	KSAM RECORD POINTERS
	FCHECK
	FCLOSE
	FCONTROL
	FERRMSG
	FFINDBYKEY
	FFINDN
	FGETINFO
	FGETKEYINFO
	FLOCK
	FOPEN
	FPOINT
	FREAD
	FREADBYKEY
	FREADC
	FREADDIR
	FREADLABEL
	FREADSEEK
	FRELATE
	FREMOVE
	FRENAME
	FSETMODE
	FSPACE
	FUNLOCK
	FUPDATE
	FWRITE
	FWRITEDIR
	FWRITELABEL
	HP32208

	USING KSAM FILES IN FORTRAN PROGRAMS
	CALLING FILE SYSTEM INTRINSICS
	CALLING COBOL PROCEDURES
	CREATING A KSAM FILE WITH A CALL TO FOPEN
	CREATING A KSAM FILE WITH KSAMUTIL
	OPENING A KSAM FILE WITH A COBOL PROCEDURE
	WRITING TO A KSAM FILE
	READING A KSAM FILE IN KEY ORDER
	READING A KSAM FILE IN CHRONOLOGICAL ORDER

	USING KSAM FILES IN BASIC PROGRAMS
	CALLING A KSAM PROCEDURE
	STATUS PARAMETER
	BKERROR
	BKLOCK
	BKOPEN
	BKREAD
	BKREADBYKEY
	BKREWRITE
	BKVERSION
	BKWRITE

	App. A - ERROR MESSAGES AND RECOVERY PROCEDURES
	Table A-1. File System Error Codes
	Table A-2. COBOL Status Parameter Return Values
	Table A-3. BASIC Status Parameter Return Values
	Table A-4. KSAMUTIL Error Codes and Messages
	Table A-5. FCOPY Warning and Error Messages

	App.B - KSAM/3000 INTERNAL STRUCTURE AND TECHNIQUES
	KSAM FILE STRUCTURE
	KSAM FILE SIZE
	KSAM EXTRA DATA SEGMENTS

	App. C - ASCII CHARACTER SET IN COLLATING SEQUENCE
	App. D - CONVERSION TO KSAM FILES
	USING KSAMUTIL AND FCOPY
	USING RTOKSAM

	App. E - RECOVERY FROM SYSTEM FAILURE
	END-OF-FILE ON KSAM FILES
	END-OF-FILE AND THE EXTRA DATA SEGMENT
	SITUATIONS IN WHICH RECOVERY IS REQUIRED
	RELOADING A KSAM FILE

	App. F - NATIVE LANGUAGE SUPPORT AND KSAM
	CREATING KSAM FILES WITH KSAMUTIL
	ERROR MESSAGES
	CREATING KSAM FILES PROGRAMMATICALLY
	MODIFYING KSAM FILES
	GENERIC KEYS
	USING FCOPY WITH NLS KSAM FILES

