
Berkeley Sockets/iX

Reference Manual

ABCDE

Printed in USA 02/94

Edition 3

E0294

Notice Hewlett-Packard makes no warranty of any kind with regard

to this material, including, but not limited to, the implied

warranties of merchantability and �tness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

This document contains proprietary information which is protected
by copyright. All rights are reserved. No part of this document
may be photocopied, reproduced, or translated to another language
without the prior written consent of Hewlett-Packard Company. The
information contained in this document is subject to change without
notice.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DOD U.S. Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Information Networks Division

19420 Homestead Road

Cupertino, CA 95014

c Copyright 1994 Hewlett-Packard Company.

Printing History New editions are complete revisions of the manual. Updates, which
are issued between editions, contain additional and replacement pages
to be merged into the manual. The dates on the title page change
only when a new edition or a new update is published.

Edition 1 . June 1992

Edition 2 . October 1992

Edition 3 . February 1994

iii

Preface MPE/iX, Multiprogramming Executive with Integrated POSIX, is
the latest in a series of forward-compatible operating systems for the
HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will
encounter references to MPE XL, the direct predecessor of MPE/iX.
MPE/iX is a superset of MPE XL. All programs written for MPE
XL will run without change under MPE/iX. You can continue to
use MPE XL system documentation, although it may not refer
to features added to the operating system to support POSIX (for
example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the
operating system for HP 3000s not based on PA-RISC architecture.
MPE V software can be run on the PA-RISC (Series 900) HP 3000s
in what is known as compatibility mode.

The Berkeley Sockets/iX Reference Manual is written for experienced
application programmers:

If you are an MPE/iX-based application programmer, you may
want to develop new applications for the HP 3000 that can be used
on other platforms as well.

If you are a UNIX-based application programmer, you may want
to port existing C-based applications to the HP 3000 hardware
platform.

This manual will assist application programmers in porting
applications from UNIX-based systems to MPE/iX-based systems.

The BSD sockets product was initially released on MPE/iX release
4.0. POSIX functions were added for MPE/iX release 4.5. Additional
socket functionality has been added in release 5.0.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and other countries.

iv

Contents

1. Introduction

References Used 1-1
Include Files Used 1-2
POSIX Function Support 1-3

2. Socket System Calls

SOCKET 2-2
C Interface 2-2
Description 2-2
Return Value 2-3
Errors . 2-3
MPE/iX Speci�c 2-3
Author 2-3

BIND . 2-4
C Interface 2-4
Description 2-4
Examples 2-5
Return Value 2-6
Errors . 2-6
MPE/iX Speci�c 2-7
Author 2-7
See Also 2-7

LISTEN . 2-8
C Interface 2-8
Description 2-8
Return Value 2-8
Errors . 2-8
MPE/iX Speci�c 2-9
Author 2-9
See Also 2-9

ACCEPT 2-10
C Interface 2-10
Description 2-10
Return Value 2-11
Errors . 2-11
MPE/iX Speci�c 2-12
Author 2-12
See Also 2-12

CONNECT 2-13
C Interface 2-13
Description 2-13
Return Value 2-14

Contents-1

Errors . 2-14
MPE/iX Speci�c 2-15
Author 2-15
See Also 2-15

SOCKETPAIR 2-16
C Interface 2-16
Description 2-16
Return Value 2-16
Errors . 2-16
See Also 2-16

SEND . 2-17
C Interface 2-17
Description 2-18
Return Value 2-19
Errors . 2-19
MPE/iX Speci�c 2-20
Author 2-20
See Also 2-20

RECV . 2-21
C Interface 2-21
Description 2-22
Return Value 2-24
Errors . 2-24
MPE/iX Speci�c 2-24
Author 2-24
See Also 2-24

SHUTDOWN 2-25
C Interface 2-25
Description 2-25
Return Value 2-26
Errors . 2-26
Author 2-26
See Also 2-26

GETSOCKOPT, SETSOCKOPT 2-27
C Interface 2-27
Description 2-27
SOL SOCKETS 2-28
IPPROTO IP 2-29
IPPROTO UDP 2-29
IPPROTO TCP 2-29
Return Value 2-29
Errors . 2-29
Author 2-30
See Also 2-30

GETPEERNAME 2-31
C Interface 2-31
Description 2-31
Return Value 2-31
Errors . 2-31
Author 2-31
See Also 2-31

Contents-2

GETSOCKNAME 2-32
C Interface 2-32
Description 2-32
Return Value 2-32
Errors . 2-32
Author 2-32
See Also 2-32

GETHOSTNAME 2-33
C Interface 2-33
Description 2-33
Return Value 2-33
Errors . 2-33
MPE/iX Speci�c 2-33
Author 2-33

Signals and Sockets 2-33
What is a Signal? 2-33
Sockets and Incoming Signals 2-34
Signals Generated By Sockets 2-34
Using Signals With Sockets 2-35
MPE/iX Speci�c 2-35

3. File System Intrinsics

CLOSE, SCLOSE 3-2
C Interface 3-2
Description 3-2
Return Value 3-2
Errors . 3-2
See Also 3-2

DUP . 3-3
C Interface 3-3
Description 3-3
Return Value 3-3
Errors . 3-3
See Also 3-3

FCNTL, SFCNTL 3-4
C Interface 3-4
Description 3-4
Return Value 3-4
Errors . 3-4
MPE/iX Speci�c 3-5
Author 3-5
See Also 3-5

IOCTL . 3-6
C Interface 3-6
Description 3-6
Return Value 3-9
Errors . 3-9
MPE/iX Speci�c 3-9
Author 3-9
See Also 3-9

READ . 3-10

Contents-3

C Interface 3-10
Description 3-10
Return Value 3-10
See Also 3-10

SELECT 3-11
C Interface 3-11
Description 3-11
Examples 3-11
Example 1 3-11
Example 2 3-12

Return Value 3-15
Errors . 3-15
Author 3-15

WRITE . 3-16
C Interface 3-16
Description 3-16
Return Value 3-16
MPE/iX Speci�c 3-16
See Also 3-16

4. Name Service Routines

INET ADDR, INET NETWORK, INET NTOA . 4-2
C Interface 4-2
Description 4-2
Return Value 4-3
Warnings 4-3
Author 4-3
See Also 4-3

GETHOSTENT 4-4
C Interface 4-4
Description 4-4
Return Value 4-6
Restrictions 4-6
MPE/iX Speci�c 4-6
Author 4-6
Files . 4-6
See Also 4-6

GETNETENT 4-7
C Interface 4-7
Description 4-7
Restrictions 4-8
Return Value 4-8
MPE/iX Speci�c 4-8
Author 4-8
Files . 4-8
See Also 4-8

GETPROTOENT 4-9
C Interface 4-9
Description 4-9
Restrictions 4-10
Return Value 4-10

Contents-4

MPE/iX Speci�c 4-10
Author 4-10
Files . 4-10
See Also 4-10

GETSERVENT 4-11
C Interface 4-11
Description 4-11
Restrictions 4-12
Return Value 4-12
MPE/iX Speci�c 4-12
Author 4-12
Files . 4-12
See Also 4-12

5. Programming Example

Source Program 5-1
Compiling 5-2
Linking . 5-3
Output . 5-3

Contents-5

Tables

1-1. Include Files Used for HP-UX and MPE/iX
Applications 1-2

Contents-6

1

Introduction

References Used Several items referenced here are HP-UX man pages, listed in the
format \name(#)", as per the UNIX convention. The number given
indicates the chapter of the HP-UX man pages where that given page
can be found.

af ccitt(7F)

byteorder(3N)

creat(2)

dup(2)

exec(2)

hosts(4)

ifcon�g(1M)

inet(7F)

networks(4)

open(2)

pipe(2)

protocols(4)

resolver(3N)

services(4)

signal(5)

sigvector(2)

tcp(7P)

udp(7P)

Introduction 1-1

Include Files Used The following table shows the include �les used for HP-UX and
MPE/iX applications.

Table 1-1.

Include Files Used for HP-UX and MPE/iX Applications

HP-UX Name MPE/iX Name

<sys/types.h> types.h.sys

<sys/socket.h> socket.h.sys

<sys/un.h> un.h.sys

<sys/�le.h> �le.h.sys

<sys/errno.h> errno.h.sys

<sys/ioctl.h> ioctl.h.sys

<netinet/in.h> in.h.sys

<netinet/tcp.h> tcp.h.sys

<unistd.h> unistd.h.sys

<fcntl.h> fcntl.h.sys

<time.h> time.h.sys

<uio.h> uio.h.sys

<netdb.h> netdb.h.sys

The name service routines and BSD socket routines are stored in a
native mode relocatable library �le name SOCKETRL.NET.SYS. When
linking your programs, you should include this �le in the link list.
For example,

link objfile,progfile;rl=socketrl.net.sys,libc.lib.sys

Ensure that you link with the POSIX library (/lib/libc.a) instead
of libc.lib.sys for POSIX programs. Note that if you are using
the POSIX library you must use �le indirection as shown in the
programming example in Chapter 5.

1-2 Introduction

POSIX Function
Support

The following POSIX functions are supported as of MPE/iX release
4.5:

* close()

* dup()

* exec()

* fork()

* read()

* write()

These functions are located in relocatable libraries available through
the purchase of the MPE/iX Developer's Kit. For more information
about these functions, refer to the MPE/iX Developer's Kit Reference
Manual, Volume 1 .

Introduction 1-3

2

Socket System Calls

This section describes the socket system calls available on MPE/iX.
Di�erences from UNIX 4.3 BSD and limitations are noted.

Socket System Calls 2-1

SOCKET

C Interface #include <sys/types.h>

#include <sys/socket.h>

int socket(af, type, protocol)

int af, type, protocol;

Description The socket call creates an endpoint for communication and returns a
descriptor. The socket descriptor returned is used in all subsequent
socket-related system calls.he af parameter speci�es an address
family to be used to interpret addresses in later operations that
specify the socket. These address families are de�ned in the include
�le <sys/socket.h>. The only currently supported address families
are as follows:

AF_INET (DARPA Internet addresses)

AF_UNIX (directory path names on a local node)

Note If you do not have a supported networking link product installed on
your system and you attempt to use the address family AF_INET,
then the EAFNOSUPPORT error is returned.

The AF_UNIX address family can be used to create socket connections
without requiring a networking link product to be installed.

The type parameter speci�es the communication semantics for the
socket. Currently de�ned types are as follows:

SOCK_STREAM

SOCK_DGRAM

A SOCK_STREAM type provides sequenced, reliable, two-way,
connection-based byte streams. A SOCK_DGRAM socket supports
datagrams, which are connection-less, unreliable messages of a �xed,
typically small, maximum length.

The protocol parameter speci�es a particular protocol to be used
with the socket. The protocol number to use depends on the
communication domain in which communication is to take place.
(Refer to the chapter on name services routines.) Protocol can be
supplied as zero, in which case the system chooses a protocol type to
use, based on the socket type.

Sockets of type SOCK_STREAM are byte streams similar to UNIX pipes,
except that they are full-duplex instead of half-duplex. A stream
socket must be in a connected state before any data can be sent
or received on it. A connection to another socket is created with a
connect or accept call. Once connected, data can be transferred
using send and recv calls or read and write calls. When a session
has been completed, a close can be performed.

2-2 Socket System Calls

The communications protocol (TCP) used to implement SOCK_STREAM
for AF_INET sockets, ensures that data is not lost or duplicated. If a
peer has bu�er space for data and the data cannot be successfully
transmitted within a reasonable length of time, the connection is
considered broken and the next recv call indicates an error with
errno set to ETIMEDOUT. An end-of-�le condition (zero bytes read) is
returned if a process tries to read on a broken stream. To use the
errno global variable, include the �le <sys/errno.h>.

SOCK_DGRAM sockets allow sending of messages to correspondents
named in sendto calls. It is also possible to receive messages at
a SOCK_DGRAM socket with recvfrom. The sockets operation is
controlled by socket level options set by the setsockopt system call.
(Refer to getsockopt or setsockopt.) These options are de�ned in
the �le <sys/socket.h>.

Return Value If the call is successful, a valid �le descriptor referencing the socket is
returned. If it fails, a -1 is returned, and an error code is stored in
errno.

Errors The following errors are returned by socket:

[EHOSTDOWN] The networking subsystem has not
been started.

[EAFNOSUPPORT] The speci�ed address family is not
supported on this version of the
system.

[ESOCKTNOSUPPORT] The speci�ed socket type is not
supported in this address family.

[EPROTONOSUPPORT] The speci�ed protocol is not
supported.

[EMFILE] The per-process descriptor table is
full.

[ENOBUFS] No bu�er space is available. The
socket cannot be created.

[ENFILE] The system's table of open �les is
temporarily full, and no more socket
calls can be accepted.

[EPROTOTYPE] The type of socket and protocol do
not match.

[ETIMEDOUT] The connection timed out.

MPE/iX Specific Break mode is supported on MPE/iX. This is true of all Berkeley
Sockets/iX system calls described in this section.

Author UCB (University of California at Berkeley)

Socket System Calls 2-3

BIND

C Interface AF_UNIX only:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

bind(s, addr, addrlen)

int s;

struct sockaddr_un *addr;

int addrlen;

AF_INET only:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

bind(s, addr, addrlen)

int s;

struct sockaddr_in *addr;

int addrlen;

Description The bind system call assigns an address to an unbound socket.
When a socket is created with socket, it exists in an address space
(address family) but has no address assigned. The bind call causes
the socket whose descriptor is s to become bound to the address
speci�ed in the socket address structure pointed to by addr . The
addrlen parameter must specify the size of the address structure.
Since the size of the socket address structure varies between socket
address families (16 bytes for AF_INET; 110 bytes for AF_UNIX), the
correct socket address structure should be used with each address
family (struct sockaddr_in for AF_INET; struct sockaddr_un for
AF_UNIX).

2-4 Socket System Calls

Here is the socket address structure for AF_INET, extracted from the
IN.H.SYS �le:

struct in_addr {

union {

struct { u_char s_b1,s_b2,s_b3,s_b4; } s_un_b;

struct { u_short s_w1,s_w2; } S_un_w;

u_long S_addr;

} S_un;

#define s_addr S_un.S_addr /* can be used for most tcp & ip code

*/

#define s_host S_un.S_un_b.s_b2 /* host on imp */

#define s_net S_un.S_un_b.s_b1 /* network */

#define s_imp S_un.S_un_w.s_w2 /* imp */

#define s_impno S_un.S_un_b.s_b4 /* imp # */

#define s_lh S_un.S_un_b.s_b3 /* logical host */

};

#define INADDR_ANY (u_long)0x00000000

#define INADDR_THISHOST (u_long)0x00000000

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

Here is the socket address structure for AF_UNIX, extracted from the
UN.H.SYS �le:

struct sockaddr_un {
short sun_family; /* AF_UNIX */

char sun_path[108]; /* path name */

};

Examples Here is an example program to create and bind an AF_UNIX socket:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/errno.h>

#include <sys/un.h>

main ()

{

int s;
int af, type, protocol;

struct sockaddr_un addr;

int addrlen;

s = socket (AF_UNIX, SOCK_STREAM, 0);

Socket System Calls 2-5

addr.sun_family = AF_UNIX;

strcpy (addr.sun_path,"tmp/socket");
addrlen = 110;

bind (s,addr, addrlen);

}

Return Value If the bind is successful, a 0 value is returned. If it fails, -1 is
returned, and an error code is stored in errno.

Errors The following errors are returned by bind:

[EBADF] The argument s is not a valid
descriptor.

[ENOTSOCK] The argument s is not a socket.

[EADDRNOTAVAIL] The speci�ed address is bad or is not
available from the local machine.

[EADDRINUSE] The speci�ed address is already in
use.

[EINVAL] The socket is already bound to an
address, the socket has been shut
down or addrlen is a bad value.

[EAFNOSUPPORT] The requested address does not match
the address family of this socket.

[EACCES] The requested address is protected,
and the current user has inadequate
permission to access it. (This error
can be returned by AF_INET only.)

[EFAULT] The addr parameter is not a valid
pointer.

[EOPNOTSUPP] The socket whose descriptor is s is of
a type that does not support address
binding.

[ENOBUFS] Insu�cient bu�er memory is available.
The bind cannot complete.

[EDESTADDREQ] No addr parameter was speci�ed.

[ENETUNREACH] The network is not reachable from
this host.

2-6 Socket System Calls

MPE/iX Specific On HP-UX, when binding an AF_UNIX socket to a path name (such
as /tmp/mysocket), an open �le having that name is created in the
�le system. When the bound socket is closed, that �le still exists
unless it is removed or unlinked. This does not occur on MPE/iX
(that is, no �le is created).

On HP-UX, you are allowed to specify a speci�c network while
binding. MPE/iX does not. The IP address portion of sockaddr for
AF_INET must be zero.

Author UCB (University of California at Berkeley)

See Also connect, listen, socket, getsockname, Name Service Routines

Socket System Calls 2-7

LISTEN

C Interface listen(s, backlog)

int s, backlog;

Description To accept connections, a socket is �rst created with socket, a
queue for incoming connections is speci�ed with listen, and then
connections are accepted with accept. The listen call applies only
to unconnected sockets of type SOCK_STREAM. Note that you cannot
call listen after accept has been called. If the socket has not been
bound to a local port before the listen is invoked, the system
automatically binds a local port for the socket to listen on.

The listen queue is established for the socket speci�ed by the s
parameter, which is a socket descriptor.

The backlog parameter de�nes the maximum allowable length of the
queue for pending connections. If a connection request arrives when
the queue is full, the client receives an ETIMEDOUT error.

The backlog parameter is limited (silently) to be in the range of 1 to
128. If you specify any other value, the system automatically assigns
the closest value within range.

Return Value If the call is successful, 0 is returned. If the call fails, a -1 is returned,
and an error code is stored in errno.

Errors The following errors are returned by listen:

[EBADF] The argument s is not a valid descriptor.

[EDESTADDRREQ] No bind address was established.

[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the
listen operation.

[ENOBUFS] Series 300 only: No bu�er space is available.
The listen call cannot be started at this
time.

[EINVAL] The socket has been shut down or is already
connected.

2-8 Socket System Calls

MPE/iX Specific The backlog limit on MPE/iX is 128 as opposed to the backlog limit
of 20 on HP-UX. When an HP-UX socket has performed a listen,
the incoming connection requests are completed as they are received
(up to the backlog limit). When using MPE/iX, connections are
completed by the call to accept.

Author UCB (University of California at Berkeley)

See Also accept, connect, socket

Socket System Calls 2-9

ACCEPT

C Interface AF_UNIX only:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

int ns;

ns=accept(s, addr, addrlen)

int s;

struct sockaddr_un *addr;

int *addrlen;

AF_INET only:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

int ns;

ns=accept(s, addr, addrlen)

int s;

struct sockaddr_in *addr;

int *addrlen;

Description This call is used with connection-based socket types, such as
SOCK_STREAM. The argument s is a socket descriptor created with
socket, bound to an address with bind, and listening for connections
after a listen. If pending connections are present on the queue, the
accept call extracts the �rst connection on the queue, creates a new
socket, and allocates a new �le descriptor, ns, for the socket. If no
pending connections are present on the queue and non-blocking mode
has been enabled using the O NONBLOCK or O NDELAY fcntl
ags (refer to fcntl section), accept returns an error as described
in the Errors section below. If no pending connections are present
on the queue and non-blocking mode has not been enabled, accept
blocks the caller until a connection is present. The accepted socket,
ns , cannot be used to accept more connections. The original sockets
remains open. It is possible to determine if a listening socket has
pending connection requests ready for an accept call by using
select for reading.

The argument addr should point to a local socket address structure.
The accept call �lls in this structure with the address of the
connecting entity, as known to the underlying protocol. The format
of the address depends upon the protocol and the address family
of the socket s . The addrlen is a pointer to int; it should initially
contain the size of the structure pointed to by addr . On return it

2-10 Socket System Calls

contains the actual length (in bytes) of the address returned. If the
memory pointed to by addr is not large enough to contain the entire
address, only the �rst addrlen bytes of the address are returned.

AF_UNIX only: The addr parameter to accept() is ignored.

Return Value If the call is successful, a non-negative integer is returned, which is a
descriptor for the accepted socket. If the call fails, a -1 is returned
and an error code is stored in errno.

Errors The following errors are returned by accept:

[EHOSTDOWN] The networking subsystem has not been
started or has been stopped.

[EBADF] The �le descriptor s is invalid.

[ENOTSOCK] The argument s references a �le, not a socket.

[EOPNOTSUPP] The socket referenced by s is not of type
SOCK_STREAM.

[EFAULT] The addr parameter is not a valid pointer.

[EWOULDBLOCK] Non-blocking I/O is enabled using O_NDELAY,
and no connections are present to be
accepted.

[EMFILE] The maximum number of �le descriptors for
this process are already currently open.

[ENFILE] The system's table of open �les is full, and
no more accept calls can be accepted,
temporarily.

[ENOBUFS] No bu�er space is available. The accept
cannot complete. The queued socket connect
request is aborted.

[EINVAL] The socket referenced by s is not currently
a listen socket, or it has been shut down. A
listen must be done before an accept is
allowed. This is also returned if the length is
less than zero.

[EINTR] The call was interrupted by a signal before a
valid connection arrived.

[EAGAIN] Non-blocking I/O is enabled using
O_NONBLOCK, and no connections are present
to be accepted.

Socket System Calls 2-11

MPE/iX Specific Connections are completely established in the accept call. The addr
returned from accept when a connection is made in loopback is the
loopback address (127.0.0.1). On HP-UX, the local host's IP address
would be returned in this case.

Author UCB (University of California at Berkeley)

See Also bind, connect, listen, select, socket

2-12 Socket System Calls

CONNECT

C Interface AF_UNIX sockets only:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

connect(s, addr, addrlen)

int s;

struct sockaddr_un *addr;

int addrlen;

AF_INET sockets only:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

connect(s, addr, addrlen)

int s;

struct sockaddr_in *addr;

int addrlen;

Description The parameter s is a socket descriptor. The addr parameter is a
pointer to a socket address structure. This structure contains the
address of a remote socket to which a connection is established.
The addrlen parameter speci�es the size of this address structure.
Since the size of the socket address structure varies between socket
address families (16 bytes for AF_INET; 110 bytes for AF_UNIX), the
correct socket address structure should be used with each address
family (struct sockaddr_in for AF_INET, struct sockaddr_un for
AF_UNIX).

If the socket is of type SOCK_STREAM, then connect attempts to
contact the remote host in order to make a connection between the
remote socket (peer) and the local socket speci�ed by s . The call
normally blocks until the connection completes. If non-blocking mode
has been enabled using the O_NONBLOCK or O_NDELAY fcntl ags
and the connection cannot be completed immediately, then connect

returns an error as described below. In these cases, the select call
can be used on this socket to determine when the connection has
completed by selecting it for writing.

The O_NONBLOCK and O_NDELAY ags are de�ned in <fcntl.h> and
are explained in the fcntl section. If s is a SOCK_STREAM socket
that is bound to the same local address as another SOCK_STREAM
socket and addr is the same as the peer address of the other socket,
connect returns EADDRINUSE.

Socket System Calls 2-13

If the AF_INET socket does not already have a local address bound to
it (refer to the bind call), the connect call also binds the socket to a
local address chosen by the system.

Stream sockets may successfully connect only once.

Return Value If the call is successful, a 0 is returned. If it fails, a -1 is returned,
and an error code is stored in errno.

Errors The following errors are returned by connect:

[EBADF] The argument s is not a valid �le descriptor.

[ENOTSOCK] The argument s is a �le descriptor for a �le,
not a socket.

[EADDRNOTAVAIL] The speci�ed address is not available on this
machine, or the socket is a tcp or udp socket
and the zero port number is speci�ed.

[EAFNOSUPPORT] Addresses in the speci�ed address family
cannot be used with this socket.

For datagram sockets, the peer address is no
longer maintained by the system.

[EISCONN] The socket is already connected.

[EINVAL] The socket has already been shut down or has
a listen active on it, or addrlen is a bad
value.

[ETIMEDOUT] Connection establishment timed out without
establishing a connection. The backlog
parameter may be full. (Refer to the listen
call.)

[ECONNREFUSED] The attempt to connect was forcefully
rejected.

[ENETUNREACH] The network is not reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] The addr parameter is not a valid pointer.

[EINPROGRESS] Non-blocking I/O is enabled using
O_NONBLOCK or O_NDELAY, and the connection
cannot be completed immediately. This is not
a failure.

[ENOSPC] All available virtual circuits are in use.

[EOPNOTSUPP] A connect attempt was made on a socket
type that does not support this call.

[EINTR] The call was interrupted by a signal before a
valid connection arrived.

2-14 Socket System Calls

MPE/iX Specific The connect call is not supported for SOCK_DGRAM sockets on the
current release.

Author UCB (University of California at Berkeley)

See Also accept, select, socket, getsockname, fcntl

Socket System Calls 2-15

SOCKETPAIR

C Interface #include <sys/types.h>

#include <sys/socket.h>

socketpair(d, type, protocol, sv)

int d, type, protocol;

int sv[2];

Description The socketpair call creates an unnamed pair of connected sockets
in the speci�ed domain d , of the speci�ed type, and using the
optionally speci�ed protocol . The descriptors used in referencing the
new sockets are returned in sv[0] and sv[1] . The two sockets are
indistinguishable.

This intrinsic is implemented for AF_UNIX sockets only.

Return Value If the call is successful, a 0 is returned. If the call fails, a -1 is
returned and an error code is stored in errno.

Errors The following errors are returned by socketpair:

[EMFILE] Too many descriptors are in use by
this process.

[EAFNOSUPPORT] The speci�ed address family is not
supported on this machine.

[EPROTONOSUPPORT] The speci�ed protocol is not
supported on this machine.

[EOPNOSUPPORT] The speci�ed protocol does not
support creation of socket pairs.

[EFAULT] The address sv does not specify a
valid part of the process address
space.

See Also read, write

2-16 Socket System Calls

SEND

C Interface #include <sys/types.h>

#include <sys/socket.h>

send(s, msg, len, flags)

int s;

char *msg;

int len, flags;

sendmsg(s, msg, flags)

int s;

struct msghdr msg[];

int flags;

AF_UNIX only:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

sendto(s, msg, len, flags, to, tolen)

int s;

char *msg;

int len, flags;

struct sockaddr_un *to;

int tolen;

AF_INET only:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

sendto(s, msg, len, flags, to, tolen)

int s;

char *msg;

int len, flags;

struct sockaddr_in *to;

int tolen;

Socket System Calls 2-17

Description The send, sendto, and sendmsg calls are used to transmit a message
to another socket.

The argument s is a socket descriptor that speci�es the socket on
which the message is sent. The msg parameter points to the bu�er
that contains the message.

If the socket uses connection-based communications (for example,
a SOCK_STREAM socket), then these calls can be used only after
the connection has been established. (Refer to connect.) In this
case, any destination speci�ed by the to parameter is ignored. For
connection-less sockets (for example, SOCK_DGRAM), the to parameter
must be used.

The address of the target is contained in a socket address structure
pointed at by to, with the tolen parameter specifying the size of the
structure. If the address speci�ed in the argument is a broadcast
address, the SO_BROADCAST option must be set for broadcasting to
succeed.

If a sendto is attempted on a SOCK_DGRAM socket before any local
address has been bound to it, the system automatically selects a
local address to be used for the message (AF_INET only). In this
case, there is no guarantee that the same local address is used for
successive sendto requests on the same socket.

The length of the message is given by len . The length of data
actually sent is returned. If the message is too long to pass
atomically through the underlying protocol, the message is not
transmitted, -1 is returned, and errno is set to EMSGSIZE. For
SOCK_DGRAM and SOCK_STREAM sockets, this size is �xed by the
implementation. (Refer to \MPE/iX Speci�c" section below.)

No indication of failure to deliver is implicit in a send, sendto, or
sendmsg. Return values of -1 indicate some locally detected errors.

If no bu�er space is available to hold the data to be transmitted,
send blocks unless non-blocking mode is enabled. There are two
ways to enable non-blocking mode: with the O_NONBLOCK fcntl ag
and with the O_NDELAY fcntl ag.

If O_NONBLOCK is set using fcntl (de�ned in <fcntl.h.sys> and
explained in the fcntl section), POSIX-style non-blocking I/O is
enabled. In this case, the send request completes in one of three
ways:

If there is enough space available in the system to bu�er all of the
data, the send completes successfully, having written out all of the
data and returns the number of bytes written.

If there is not enough space in the bu�er to write out the entire
request, the send completes successfully, having written as much
data as possible, and returns the number of bytes that it was able
to write.

2-18 Socket System Calls

If there is no space in the system to bu�er any of the data, the
send completes successfully, having written no data, and returns a
-1 with errno set to EAGAIN.

If O_NDELAY is set using fcntl (de�ned in <fcntl.h.sys> and
explained in the fcntl section), non-blocking I/O is enabled. In
this case, the send request completes in one of three ways:

If there is enough space available in the system to bu�er all of the
data, the send completes successfully, having written out all of the
data, and returns the number of bytes written.

If there is not enough space in the bu�er to write out the entire
request, the send completes successfully, having written as much
data as possible, and returns the number of bytes that it was able
to write.

If there is no space in the system to bu�er any of the data, the
send completes successfully, having written no data, and returns 0.

If the O_NDELAY and O_NONBLOCK ags are cleared using fcntl,
non-blocking I/O is disabled. In this case, the send always executes
completely (blocking as necessary) and returns the number of bytes
written.

If the available bu�er space is not large enough for the entire
message, the EWOULDBLOCK error is returned.

To summarize, both behave the same if there is enough space to
write all of the data or even some of the data. They di�er in the
third case, where there is not enough space to write any of the data.

The select call can be used to determine when it is possible to send
more data.

The supported values for ags are zero. A write() call made to a
socket behaves the same way as send with ags set to zero.

See recv for a description of the msghdr structure for sendmsg.

Return Value If successful, the call returns the number of characters sent. If the
call fails, a -1 is returned, and an error code is stored in errno.

Errors The following errors are returned by send, sendto, or sendmsg:

[EACCES] Process doing a send of a broadcast packet is
not privileged.

[EBADF] An invalid descriptor was speci�ed.

[ENOTSOCK] The argument s is not a socket.

[EFAULT] The msg or to parameter is not a valid
pointer.

Socket System Calls 2-19

[EMSGSIZE] The socket requires that messages be sent
atomically, and the size of the message to be
sent made this impossible.

[EWOULDBLOCK] The socket is in non-blocking mode, and the
requested operation would block.

[ENOBUFS] Insu�cient resources were available in the
system to perform the operation.

[EINVAL] The len or tolen parameter contains a bad
value.

[EDESTADDRREQ] The to parameter needs to specify a
destination address for the message. This is
also given if the speci�ed address contains
unspeci�ed �elds. (Refer to the inet section.)

[ENOTCONN] The send on a socket has not connected, or
a send on a socket did not complete the
connect sequence with its peer or is no longer
connected to its peer.

[EAFNOSUPPORT] Requested address does not match the
address family of this socket.

[EPIPE] An attempt was made to send on a socket
that was connected, but the connection has
been shut down either by the remote peer or
by this side of the connection.

[EOPNOTSUPP] The MSG_OOB ag was speci�ed; it is not
supported for AF_UNIX sockets.

[EINTR] The call was interrupted by a signal before a
valid connection arrived.

MPE/iX Specific The maximum udp message size that can be sent on a SOCK_DGRAM
socket is 30,000 bytes on MPE/iX, as opposed to 9,216 bytes on
HP-UX. For SOCK_STREAM, there is also a maximum message size of
30,000 bytes on MPE/iX. For AF_UNIX, there is a maximum window
size of 30,000 bytes.

The sendto call can be used only with SOCK_DGRAM sockets.

The send call can be used only with SOCK_STREAM sockets.

The flags parameter must be zero.

Author UCB (University of California at Berkeley)

See Also getsockopt, recv, select, socket

2-20 Socket System Calls

RECV

C Interface #include <sys/types.h>

#include <sys/socket.h>

recv(s, buf, len, flags)

int s;

char *buf;

int len, flags;

recvmsg(s, msg, flags)

int s;

struct msghdr msg[];

int flags;

AF_UNIX only:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

recvfrom(s, buf, len, flags, from, fromlen)

int s;

char *buf;

int len, flags;

struct sockaddr_un *from;

int *fromlen;

AF_INET only:

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

recvfrom(s, buf, len, flags, from, fromlen)

int s;

char *buf;

int len, flags;

struct sockaddr_in *from;

int *fromlen;

Socket System Calls 2-21

Description The recv, recvfrom, and recvmsg calls are used to receive messages
from a socket.

The argument s is a socket descriptor from which the message is
received. The buf parameter is a pointer to the bu�er into which the
messages are placed. The len parameter is the maximum number of
bytes that will �t into the bu�er referenced by buf .

If the socket uses connection-based communications (for example,
a SOCK_STREAM socket), then these calls can be used only after
the connection has been established. (Refer to connect.) For
connection-less sockets (for example, a SOCK_DGRAM socket), these
calls can be used whether a connection has been established or not.

The recvfrom call operates the same as the recv call does, except
that it is able to return the address of the socket from which the
message was sent. If from is non-zero, the source address of the
message is placed into the socket address structure pointed to by
from. The fromlen parameter is a value-result parameter, initialized
to the size of the structure associated with from, and modi�ed on
return to indicate the actual size of the address stored there. If the
memory pointed to by from is not large enough to contain the entire
address, only the �rst fromlen bytes of the address are returned.

The length of the message is the functional return.

For message-based sockets like SOCK_DGRAM, the entire message
must be read in one operation. If a message is too long to �t in the
supplied bu�er, the excess bytes are discarded. For stream-based
sockets like SOCK_STREAM, there is no concept of message boundaries.
In this case, data is returned to the user as soon as it becomes
available, and no data is discarded.

If no data is available to be received, recv waits for a message to
arrive unless non-blocking mode is enabled. There are two ways to
enable non-blocking mode: with the O_NONBLOCK fcntl ag, and
with the O_NDELAY fcntl ag.

If O_NONBLOCK is set using sfcntl (de�ned in <fcntl.h.sys> and
explained in the fcntl section), POSIX-style non-blocking I/O is
enabled. In this case, the recv request completes in one of three
ways:

If there is enough data available to satisfy the entire request, recv
completes successfully, having read all of the data, and returns the
number of bytes read.

If there is not enough data available to satisfy the entire request,
recv completes successfully, having read as much data as possible,
and returns the number of bytes that it was able to read.

If there is no data available, recv completes successfully, having
read no data, and returns a -1 with errno set to EAGAIN.

2-22 Socket System Calls

If O_NDELAY is set using sfcntl (de�ned in <fcntl.h.sys> and
explained in the fcntl section), non-blocking I/O is enabled. In this
case, the recv request completes in one of three ways:

If there is enough data available to satisfy the entire request, recv
completes successfully, having read all of the data, and returns the
number of bytes read.

If there is not enough data available to satisfy the entire request,
recv completes successfully, having read as much data as possible,
and returns the number of bytes that it was able to read.

If there is no data available, recv completes successfully, having
read no data, and returns a 0.

If O_NONBLOCK or O_NDELAY is cleared using sfcntl, the
corresponding style of non-blocking I/O, if previously enabled, is
disabled. In this case, recv always executes completely (blocking as
necessary) and returns the number of bytes read.

To summarize, both behave the same if there is enough data available
to satisfy the entire request or even part of the request. They di�er
only in the third case, where there is no data available.

The select call can be used to determine when more data arrives by
selecting the socket for reading.

The ags parameter can be set to MSG_PEEK or zero. If it is set to
MSG_PEEK, any data returned to the user is treated as if it had not
been read. The next recv rereads the same data. The value is as
follows:

#define MSG_PEEK 0x2 /* peek at incoming message */

A read call behaves the same way as a recv call with ags set to
zero.

The recv|msg call uses a msghdr structure to minimize the number
of directly supplied parameters. This structure has the following
form, as de�ned in <sys/socket.h>:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iov *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */

caddr_t msg_accrights; /* access rights sent/received */

int msg_accrightslen;};

Here, msg name and msg namelen specify the destination address
if the socket is unconnected, and msg name can be given as a null
pointer if no names are desired or required. The msg iov and
msg iovlen describe the scatter gather locations, as described in
read. Access rights to be sent with the message are speci�ed in
msg accrights , which has msg accrightslen .

Socket System Calls 2-23

Return Value If the call is successful, it returns the number of bytes received. If the
call fails, a -1 is returned, and an error code is stored in errno. A
zero is returned if the socket is blocking and the transport connection
to the remote node fails.

Errors The following errors are returned by recv, recvfrom, or recvmsg:

[EBADF] The argument s is an invalid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking, and the
receive operation would block.

[EFAULT] The buf , from, or fromlen parameters are not
valid pointers.

[ETIMEDOUT] The connection timed out during connection
establishment, or due to a transmission
timeout on an active connection.

[ENOTCONN] Receive on a SOCK_STREAM socket that is not
yet connected.

[EINVAL] The len parameter is bad or there is no data
available on a receive of out-of-band data.

[EINTR] The call was interrupted by a signal before a
valid connection arrived.

[EOPNOTSUPP] A receive was attempted on a
SOCK DGRAM socket that has not been
bound. A bind should be done before the
receive.

[ENOBUFS] Insu�cient bu�er memory is available.

MPE/iX Specific For AF_UNIX, recvfrom() is supported; however, the from and
fromlen parameters are ignored (that is, it works just like recv()).

The recv call can only be done on SOCK_STREAM sockets.

The recvfrom call can only be done on SOCK_DGRAM sockets.

The MSG_OOB ag, used for processing out-of-band data, is not
supported on MPE/iX.

Author UCB (University of California at Berkeley)

See Also read, select, send, socket

2-24 Socket System Calls

SHUTDOWN

C Interface shutdown(s, how)

int s, how;

Description The shutdown system call is used to shut down a socket. The s
parameter is the socket descriptor of the socket to be shut down. In
the case of a full-duplex connection, shutdown can be used to either
partially or fully shut down the socket, depending on the value of
how .

If how=0 , the socket can still send data, but it cannot receive data.
Remaining data can be sent and new data can be sent; however, all
further recv() calls return an end-of-�le condition.

If how=1, further sends by the user will return an EPIPE error. A
SIGPIPE signal will be sent to the user unless the user has used
ioctl() to ignore the signal. Note that data already queued by a
previous send call will still be sent.

If how=2, a socket cannot send remaining or new data or receive
data. This is the same as doing a shutdown of 0 and a shutdown of 1
simultaneously.

Once the socket has been shut down for receives, all further recv
calls return an end-of-�le condition.

A shutdown on a connection-less socket, such as SOCK_DGRAM, only
marks the socket unable to do further sends or receives, depending on
how . Once this type of socket has been disabled for both sending and
receiving data, it becomes fully shut down.

For SOCK_STREAM sockets, if how is 1 or 2, the connection begins a
graceful disconnect. The disconnection is complete when both sides
of the connection have done a shutdown with how equal to 1 or 2.
Once the connection has been completely terminated, the socket
becomes fully shut down.

Note the di�erence between the close and shutdown calls. Close
makes the socket descriptor invalid while shutdown is used to
partially or fully shutdown the I/O on the socket. The user can call
close after a shutdown to make the socket descriptor unusable. The
SO LINGER option does not have any meaning for the shutdown
call, but does for the close call. (Refer to setsockopt.)

Socket System Calls 2-25

Return Value If the call is successful, a 0 is returned. If it fails, a -1 is returned,
and an error code is stored in errno.

Errors The following errors are returned by shutdown:

[EBADF] The arguments is not a valid descriptor.

[ENOTSOCK] The arguments is a �le, not a socket.

[EINVAL] The speci�ed socket is not connected.

Author UCB (University of California at Berkeley)

See Also close, connect, socket

2-26 Socket System Calls

GETSOCKOPT,
SETSOCKOPT

C Interface #include <sys/socket.h>

int getsockopt(

int s,

int level,

int optname,

void *optval,

int *optlen);

int setsockopt(

int s,

int level,

int optname,

const void *optval,

int optlen);

Description getsockopt and setsockopt manipulate options associated with a
socket. The socket is identi�ed by the socket descriptor s . Options
can exist at multiple protocol levels. Options are described below
under the appropriate option.

When manipulating socket options, the level at which the option
resides (level) and the name of the option (optname) must be
speci�ed. To manipulate options at the \socket" level, level is
speci�ed as SOL_SOCKET.

There are two kinds of options: boolean and non-boolean. Boolean
options are either set or not set and also can use optval and optlen
(see below) to pass information. Non-boolean options always use
optval and optlen to pass information.

To determine whether or not a boolean option is set, the return value
of getsockopt must be examined. If the option is set, getsockopt
returns without error. If the boolean option is not set, getsockopt
returns -1 and errno is set to ENOPROTOOPT.

For setsockopt, the parameters optval and optlen are used to pass
option information from the calling process to the system. optval
is the address of a location in memory that contains the option
information to be passed to the system. optlen is an integer that
speci�es the size in bytes of the option information.

For getsockopt, optval and optlen are used to pass option
information from the system to the calling process. optval is the
address of a location in memory that contains the option information
to be passed to the calling process, or (char *) NULL if the option
information is not of interest and not to be passed to the calling
process. optlen is an address of an integer initially used to specify

Socket System Calls 2-27

the maximum number of bytes of option information to be passed.
If optval is not (char *) NULL, optlen is set on return to the actual
number of bytes of option information passed. If the getsockopt call
fails, no option information is passed.

optname and any speci�ed options are passed uninterpreted to the
appropriate protocol module for interpretation. The include �le
<sys/socket.h> contains de�nitions for \socket" level options.
Options at other protocol levels vary in format and name.

The \socket" level options de�ned in the include �le <sys/socket.h>
are explained below.

SOL SOCKETS When the socket level is SOL_SOCKETS, the following options are
available:

SO DEBUG (Boolean option) No functionality; included
only for compatibility.

SO KEEPALIVE (Boolean option; AF_INET SOCK_STREAM

sockets only) Keeps otherwise idle connected
sockets active by forcing transmissions every
600 seconds for up to four retransmissions
without a response. The length of time and
number of retransmissions are con�gurable in
NMMGR.

Default: O�

SO LINGER (Boolean option; AF_INET SOCK_STREAM

sockets only) Lingers on close if data is
present. For SO_LINGER, optval points to a
struct linger, de�ned in <sys/socket.h>.
The linger structure contains an integer
boolean ag to toggle behavior on/o� and an
integer linger value.

Default: O�

SO BROADCAST (Boolean option; AF_INET SOCK_DGRAM

sockets only) Toggles permission to transmit
broadcast messages.

Default: O�

SO ERROR Returns to the caller the last error stored in
the socket record. This error variable is then
cleared in the socket record.

SO TYPE Returns the socket type. This option is
typically used by a process that inherits a
socket when it is started.

SO_LINGER controls the actions taken when unsent messages are
queued on a SOCK STREAM socket and a close is performed. If
SO_LINGER is toggled on with a non-zero linger interval, the system

2-28 Socket System Calls

blocks the process on the close attempt until it is able to transmit
the data or until it decides it is unable to deliver the information. If
SO_LINGER is toggled on with a linger interval of zero, the connection
is immediately terminated on the close of the socket, and any
unsent data queued on the connection is lost. If SO_LINGER is toggled
o� (default upon socket creation) and a close is issued, the call
returns immediately. The system still gracefully brings down the
connection by transmitting any queued data, if possible. SO_LINGER
can be toggled on/o� at any time during the life of an established
connection. Toggling SO_LINGER does not a�ect the action of
shutdown.

The SO BROADCAST option requests permission to send internet
broadcast datagrams on the socket.

The ip level option de�ned in the include �le <netinet/in.h> is
explained below.

IPPROTO IP When the socket level is IPPROTO_IP, the following option is
available:

IP OPTIONS (AF_INET SOCK_DGRAM) Allows you to set and
retrieve direct IP header information.

IPPROTO UDP No options are de�ned for this level.

The tcp level option de�ned in the include �le <netinet/tcp.h> is
described below.

IPPROTO TCP When the socket level is IPPROTO_TCP, the following option is
available:

TCP MAXSEG (AF_INET SOCK_STREAM) Returns the
maximum segment size in use for the socket.
It defaults the size to 536 until the socket
is connected. The size is negotiated during
connection establishment.

Return Value If the call is successful, 0 is returned. If it fails, -1 is returned and an
error code is stored in errno.

Errors The call to getsockopt or setsockopt fails if:

[EBADF] The argument s is not a valid descriptor.

[EOPNOTSUPP] The option is not supported by the protocol
in use by the socket.

[ENOBUFS] No bu�er space is available.

[ENOTSOCK] The argument s is a �le, not a socket.

[ENOPROTOOPT] In getsockopt, the requested option is
currently not set.

Socket System Calls 2-29

[EINVAL] The option is unknown at the socket level or
the socket has been shut down.

[EFAULT] The optval or, in the case of getsockopt,
optlen parameters are not valid pointers.

[ESOCKTNOSUP-
PORT]

The socket is a NetIPC socket.

Author UCB (University of California at Berkeley)

See Also socket, getprotoent

2-30 Socket System Calls

GETPEERNAME

C Interface #include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

getpeername(s, addr, addrlen)

int s;

struct sockaddr_in *addr;

int *addrlen;

Description S is a socket descriptor. The getpeername system call returns the
address of the peer socket connected to the socket indicated by s .
The addr parameter points to a socket address structure in which
this address is returned. The addrlen parameter points to an object
of the type int , which should be initialized to indicate the size of the
address structure. On return, the addrlen parameter contains the
actual size of the address returned (in bytes). If addr does not point
to enough space to contain the whole address of the peer, only the
�rst addrlen bytes of the address are returned.

This call is supported for AF_INET only.

Return Value If the call is successful, a 0 is returned. If the call fails, a -1 is
returned, and an error code is stored in errno.

Errors The following errors are returned by getpeername:

[EBADF] The argument s is not a valid �le descriptor.

[ENOTSOCK] The argument s is a �le, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insu�cient resources were available in the system to
perform the operation.

[EFAULT] The addr or addrlen parameters are not valid
pointers.

[EINVAL] The socket has been shut down.

[EOPNOT-
SUPP]

The operation is not supported for AF_UNIX sockets.

Author UCB (University of California at Berkeley)

See Also bind, socket, getsockname

Socket System Calls 2-31

GETSOCKNAME

C Interface #include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

getsockname(s, addr, addrlen)

int s;

struct sockaddr_in *addr;

int *addrlen;

Description The argument s is a socket descriptor. The getsockname system
call returns the address of the socket indicated by s . The addr
parameter points to a socket address structure in which this address
is returned. The addrlen parameter points to an int parameter that
should be initialized to indicate the size of the address structure.
On return, the addrlen parameter contains the actual size of the
address returned (in bytes). If addr does not point to enough space
to contain the whole address of the socket, only the �rst addrlen
bytes of the address are returned.

This call is supported for AF_INET only.

Return Value If the call is successful, a 0 is returned. If the call fails, a -1 is
returned, and the error code is stored in errno.

Errors The following errors are returned by getsockname:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a �le, not a socket.

[ENOBUFS] Insu�cient resources were available in the system to
perform the operation.

[EFAULT] The addr or addrlen parameters are not valid
pointers.

[EINVAL] The socket has been shut down.

[EOPNOT-
SUPP]

The operation is not supported for AF_UNIX sockets.

Author UCB (University of California at Berkeley)

See Also bind, socket, getpeername

2-32 Socket System Calls

GETHOSTNAME

C Interface #include <unistd.h>

int gethostname(hostname, size);

char *hostname;

size_t size;

Description The gethostname system call returns the standard host name for
the current processor as set by sethostname. The size parameter
speci�es the length of the hostname array. The hostname is
null-terminated unless insu�cient space is provided.

Return Value If the call is successful, a 0 is returned. If it fails, a -1 is returned,
and an error code is stored in errno.

Errors The following error is returned by gethostname:

[EFAULT] The hostname points to an illegal address. The
reliable detection of this error is implementation
dependent.

MPE/iX Specific This call returns the node name con�gured in the local domain name
�eld in NMMGR.

Author UCB (University of California at Berkeley)

Signals and Sockets

What is a Signal? A signal is the noti�cation to a process of an event. This event can
be either external or internal. A signal can be generated by either
the operating system or a process (even the same process that is
receiving it). Other than which signal is delivered, no information is
delivered with the signal. A process cannot determine what process
generated the signal, how it was generated or which �le descriptor, if
any, for the process the signal is related to. When a signal is sent to
a process and the process is made aware of that signal, it is said that
that signal has been raised.

There are several methods for generating a signal. However, for the
purposes of this discussion, how signals are generated is largely
immaterial. Su�ce it to say that most signals related to sockets are
generated by software conditions.

There are many system calls relating to the handling of signals.
Please refer to the POSIX manuals for a more complete description.

Socket System Calls 2-33

For the purposes of illustration, we will use the signal() system
call, which is the simplest of the system calls dealing with sockets, to
describe signal handling.

There are several default actions possible that may be performed
upon receipt of a signal. Some of them are: ignore the signal,
terminate the process, suspend (stop) the process, and resume
(continue) the process. Of the signals generated by sockets, only the
ignore and terminate defaults are available. Which of these actions is
the default for signal reception depends on the signal.

When signal() is called, there are three methods for handling
the signal. They are SIG DFL, SIG IGN or a user speci�ed signal
handler. SIG DFL sets the signal handler to the default signal
handler. This is useful if the signal handler was changed and the
process should be returned to an initial state. SIG IGN sets the
signal handler to ignore this signal.

The third choice can be the most useful. It is used to set up a user
speci�able function to be the signal handler. Whenever that signal
is raised, the user speci�ed function is invoked. This is generally
referred to as catching a signal. A typical example of this type of
handler (for a signal that is not indicative of an error state) is to
either set or increment a ag indicating that a signal was received.

Sockets and Incoming
Signals

When a signal is sent to a process while performing a sockets
function, several things may occur. This depends on whether the
socket function is de�ned as a slow function. A slow function is a
function that can block inde�nitely. For sockets, these functions are
read, write, recv, send, recvfrom, recvmsg, sendmsg, and accept.
All other sockets functions are fast .

Fast functions are not interrupted by a signal. Instead, the signal is
raised when these socket functions exit.

Slow functions are interrupted by a signal if they are blocked waiting
for IO (if they are processing IO, they are not interrupted). They are
interrupted in the middle of processing by the raising of a signal.
They stop what processing they are doing and return the error
EINTR. They do not complete the IO that was initiated. The user
program must re-initiate any desired IO explicitly.

Signals Generated By
Sockets

There are two signals that can be generated by actions on a socket.
They are SIGPIPE and SIGIO. A SIGPIPE is generated when a send
operation is attempted on a broken socket. One way of breaking a
socket is to do a shutdown(,2) on a socket. The default action is
to terminate the process. The target of the signal is the process
attempting the send.

The other signal is SIGIO. SIGIO is somewhat more complex
than SIGPIPE. First, a call to ioctl() to request the enabling
FIOASYNC is required to enable generation of this signal. Second,
another call to ioctl() is required to request SIOCSPGRP, which

2-34 Socket System Calls

sets the target process group. A target process group is either
a process (speci�ed by a positive process id) or a process group
(speci�ed by a negative process id). A SIGIO signal is generated
whenever new IO can complete on a socket. Examples of when a
SIGIO signal is generated are when new data arrives at the socket,
when data can again be sent on the socket, when the socket is either
partially or completely shutdown or when a listen socket has a
connection request posted on it.

Using Signals With
Sockets

There are several issues to using sockets that can be resolved through
the use of signals. One is the fact that there are no timeouts on
sockets. A similar functionality can be accomplished with the use of
the SIGALRM signal and the alarm() system call. Alarm() sets
up a SIGALRM signal to be received a certain speci�ed number of
seconds in the future. If the socket call is not completed by the time
the alarm goes o�, it is interrupted. The alarm is reset by another
call to alarm() with a time of 0 seconds.

Another issue that may arise if the use of signals to indicate when
IO can complete. Use of the SIGIO signal can be used to indicate
when IO can complete. After enabling the SIGIO signal on all of
the desired descriptors, pause() is called to wait for a signal to
arrive. Then, either using a polling method or select(), it can be
determined which socket has IO ready to complete. This avoids
repeated calls to no-blocking IO when there is no IO present.

MPE/iX Specific Due to POSIX/iX design considerations, the read() and write()

system calls may not be interrupted by a signal while they are
running system code (see the POSIX.1/iX Reference Manual).

Select() does not support signals in this release. Its non-support
takes the following form: when blocked in select(), any signal that
arrives, even those we are set to ignore, interrupts select() and
causes it to return EINTR. Even ordinary signals that default to
ignore, such as SIGCHLD (the signal generated when a child process
terminates), cause select() to be interrupted. Care must be taken
to account for this non-support.

The SIGURG signal is not supported in this release. This is the
signal that is sent when urgent data is received on a socket.

None of the socket functions should be called from within a signal
handler.

Socket System Calls 2-35

3

File System Intrinsics

Unix 4.3 BSD provides an interface to make IPC similar to �le I/O.
You can open, read, write, or close a �le that is type socket.

File System Intrinsics 3-1

CLOSE, SCLOSE

Note This routine is called sclose for non-POSIX users, and is called
close for POSIX users.

C Interface int close (s)

int s;

int sclose (s)
int s;

Description Closes the socket descriptor indicated by s . If this �le descriptor is
the last reference to the socket, then it is deactivated. For example,
on the last close of a socket, associated naming information and
queued data are discarded.

The SO LINGER option of setsockopt can be used to determine
what happens to data queued at the time of the close.

For more information about close or any other POSIX function,
refer to the MPE/iX Developer's Kit Reference Manual, Volume 1 .

Return Value If the call completes successfully, a value of 0 is returned. If the call
is unsuccessful, a value of -1 is returned and errno is set to indicate
the error.

Errors The following error is returned by close:

[EBADF] The argument s is not a valid descriptor.

See Also getsockopt, setsockopt

3-2 File System Intrinsics

DUP

C Interface int dup (s)

int s;

Description This function returns a socket descriptor that refers to the same
socket as speci�ed by s . Both descriptors can be used to reference
the socket. The new socket descriptor is the lowest numbered
available socket descriptor.

For more information about dup or any other POSIX function, refer
to the MPE/iX Developer's Kit Reference Manual, Volume 1 .

Return Value If the call is successful, a valid �le descriptor referencing the socket
is returned. If it fails a -1 is returned, and an error code is stored in
errno.

Errors [ENOTSOCK] The argument s is not a valid socket descriptor.

[ENOMEM] The process has no more descriptors available.

See Also socket

File System Intrinsics 3-3

FCNTL, SFCNTL

Note Only sfcntl is currently available.

C Interface #include <sys/types.h>
#include <unistd.h>

#include <fcntl.h>

int sfcntl (s, cmd, arg)

int s, cmd, arg;

Description The sfcntl routine provides control over open sockets. The s
parameter is an open socket.

The following are possible values of the arg parameter. They are also
referred to as �le status ags.

O NDELAY Non-blocking I/O.

O NONBLOCK POSIX-style non-blocking I/O.

The following are possible values of the cmd argument:

F GETFL Get �le status ags described above.

F SETFL Set O_NDELAY and O_NONBLOCK depending upon the
value of arg . It is not possible to set both O_NDELAY

and O_NONBLOCK. Note: To set a socket to use
blocking I/O (after previously setting it to use
non-blocking I/O), the arg parameter should be 0.

Return Value Upon successful completion, the value returned depends on cmd as
follows:

F GETFL Value of �le status ags and access modes.

F SETFL Value other than -1.

Otherwise, a value of -1 is returned, and errno is set
to indicate the error.

Errors The following errors are returned by sfcntl:

[EBADF] The s parameter is not a valid open �le descriptor.

[EINVAL] The cmd parameter is not a valid command.

[EINVAL] The cmd parameter is F_SETFL, and both
O_NONBLOCK and O_NDELAY are speci�ed.

3-4 File System Intrinsics

MPE/iX Specific The sfcntl call is used instead of fcntl on MPE/iX.

Author The fcntl intrinsic was developed by Hewlett-Packard, AT&T, and
the University of California, Berkeley.

See Also close, read, write

File System Intrinsics 3-5

IOCTL

C Interface #include <sys/ioctl.h>

int ioctl (s, request, arg)

int s;

int request;

void *arg;

Description The ioctl function provides an interface for setting di�erent
characteristics for a socket, and retrieving information on a socket.

The parameter s is a socket descriptor. The request parameter
speci�es which command to perform on the socket. The commands
are de�ned in <sys/ioctl.h>. The di�erent commands that are
available are described below.

Note: Any data structure referenced by arg must not contain any
pointers.

FIONREAD Returns the number of bytes immediately
readable from the socket in the long integer
whose address is arg .

For SOCK STREAM sockets, the number
of bytes currently readable from this socket
is returned in the integer with the address
arg . For SOCK DGRAM sockets, the
number of bytes currently readable, plus the
size of the sockaddr structure (de�ned in
<sys/socket.h>), is returned in the integer
with the address arg .

FIOSNBIO Enables or disables non-blocking I/O for the
socket. If the integer whose address is arg is
non-zero, then non-blocking I/O is enabled;
that is, subsequent reads and writes to the
device �le are handled in a non-blocking
manner (see below). If the integer whose
address is arg is 0, then non-blocking I/O is
disabled.

For reads, non-blocking I/O prevents all
read requests to that socket from blocking,
whether the requests succeed or fail. Such
read requests complete in one of three ways:

If there is enough data available to satisfy
the entire request, the read completes
successfully, having read all of the data,
and returns the number of bytes read;

3-6 File System Intrinsics

If there is not enough data available
to satisfy the entire request, the read
completes successfully, having read as much
data as possible, and returns the number of
bytes it was able to read;

If there is no data available, the read fails
and errno is set to EWOULDBLOCK.

For writes, non-blocking I/O prevents all
write requests to that socket from blocking,
whether the requests succeed or fail. Such a
write request completes in one of three ways:

If there is enough space available in the
system to bu�er all the data, the write
completes successfully having written out
all of the data, and returns the number of
bytes written;

If there is not enough space in the bu�er
to write out the entire request, the write
completes successfully, having written as
much data as possible, and returns the
number of bytes it was able to write;

If there is no space in the bu�er, the write
fails and errno is set to EWOULDBLOCK.

To prohibit non-blocking I/O from interfering
with the O NDELAY ag (see fcntl
section), the functionality of O NDELAY
always supercedes the functionality of
non-blocking I/O. This means that if
O NDELAY is set, the transport performs
read requests in accordance with the
de�nition of O NDELAY. When O NDELAY
is not set, the de�nition of non-blocking I/O
applies.

When a socket is created, non-blocking I/O is
disabled.

Blocking mode is the default. See accept,
connect, recv, and send for an explanation
of how non-blocking mode is used.

FIOGNBIO Gets the status of non-blocking I/O. If
non-blocking I/O is enabled, then the
integer whose address is arg is set to 1. If
non-blocking I/O is disabled, then the integer
whose address is arg is set to 0.

SIOCATMARK For SOCK STREAM TCP sockets, upon
return the integer with the address arg is
non-zero if urgent data has arrived. For

File System Intrinsics 3-7

sockets other than SOCK STREAM TCP
sockets, on return the integer with the
address arg is always zero.

SIOCSPGRP This request sets the process group or process
ID associated with the socket to be the
value of the integer with the address arg . A
process group or process ID associated with
the socket in this manner is signaled when
the state of the socket changes: SIGIO is
delivered if the socket is asynchronous, as
described in FIOASYNC below. If the value
of the integer with the address arg is positive,
the signal is sent to the process whose process
ID matches the value speci�ed. If the value
is negative, the signal is sent to all the
processes that have a process group equal
to the absolute value of the value speci�ed.
If the value is zero, no signal is sent to any
process. It is necessary to issue this request
with a non-zero integer value to enable the
signal delivery mechanism described above;
the default for the process group or process
ID value is zero.

SIOCGPGRP This request returns the process group or
process ID associated with the socket in the
integer with the address arg . If the value of
the integer with the address arg is positive,
then the value returned corresponds to a
process ID. If the value is negative, then the
value corresponds to all processes that have a
process group equal to the absolute value of
that value.

FIOASYNC If the integer whose address is arg is
non-zero, this request sets the state of the
socket as asynchronous. Otherwise, the socket
is put into synchronous mode (the default).
Asynchronous mode enables the delivery of
the SIGIO signal when a) new data arrives,
or b) for connection-oriented protocols,
whenever additional outgoing bu�er space
becomes available, or when the connection is
established or broken. The process group or
process ID associated with the socket must
be non-zero in order for SIGIO signals to be
sent; the signal is delivered according to the
semantics of SIOCGPGRP described above.

Since both the fcntl O NONBLOCK and O NDELAY ags and
ioctl FIOSNBIO requests are supported, some clari�cation on
how these features interact is necessary. If the O NONBLOCK

3-8 File System Intrinsics

or O NDELAY ag has been set, recv and send requests behave
accordingly, regardless of any FIOSNBIO requests. If neither
the O NONBLOCK ag nor the O NDELAY ag has been set,
FIOSNBIO requests control of the behavior of recv and send.

Return Value If the call is successful, a 0 is returned. If an error has occurred, a
value of -1 is returned and errno is set to indicate the error.

Errors ioctl fails if one or more of the following are true: IOC OUT is
ignored if an error occurs.

[EBADF] The argument s is not a valid open �le descriptor.

[EFAULT] The system detected a NULL address while
attempting to use the arg parameter passed by the
caller.

[ENOTTY] The request is not appropriate to the selected device.

[EINVAL] The request parameter of the arg parameter is
invalid, or a socket type that is not supported was
speci�ed.

[EINTR] The ioctl call was interrupted by a signal.

[EPERM] Typically, this error indicates that an ioctl request
was attempted that is forbidden in some way to the
calling process.

MPE/iX Specific Programs using ioctl() must be linked with the POSIX C library.

Author ioctl was developed by AT&T and HP.

See Also fcntl, getsockopt, socket

File System Intrinsics 3-9

READ

C Interface int read (s, buf, len)

int s;

char *buf;

int len;

Description The read function is similar to the recv call except there is no ags
parameter. It behaves the same way as a recv call with ags set to
zero.

For more information about read or any other POSIX function, refer
to the MPE/iX Developer's Kit Reference Manual, Volume 1 .

Return Value If the call is successful, it returns the number of bytes received. If the
call fails, a -1 is returned, and an error code is stored in errno. A
zero is returned if the socket is blocking and the transport connection
to the remote node fails.

See Also recv

3-10 File System Intrinsics

SELECT

C Interface

#include <time.h>

int select(nfds, readfds, writefds, exceptfds,timeout)

int nfds, *readfds, *writefds, *exceptfds;

struc timeval *timeout;

Description The select intrinsic examines the �le descriptors speci�ed by the
bit masks readfds, writefds , and exceptfds . The bits from 0 through
nfds -1 are examined. File descriptor f is represented by the bit 1 <f
in the masks. More formally, a �le descriptor is represented by the
following:

fds[(f / BITS_PER_INT)] & (1 << (f % BITS_PER_INT))

When select completes successfully, it returns the three bit masks
modi�ed as follows: For each �le descriptor less than nfds , the
corresponding bit in each mask is set if the bit was set upon entry
and the �le descriptor is ready for reading or writing, or has an
exceptional condition pending.

If timeout is a non-zero pointer, it speci�es a maximum interval to
wait for the selection to complete. If timeout is a zero pointer, the
select waits until an event causes one of the masks to be returned
with a valid (non-zero) value. To poll, the timeout argument should
be non-zero, pointing to a zero valued timeval structure. Speci�c
implementations may place limitations on the maximum timeout
interval supported.

Any or all of readfds, writefds , and exceptfds may be given as 0 if
no descriptors are of interest. If all of the masks are given as 0 and
timeout is not a zero pointer, select blocks for the time speci�ed, or
until interrupted by a signal. If all of the masks are given as 0 and
timeout is a zero pointer, select blocks until interrupted by a signal.

Ordinary �les always select true whenever selecting on reads, writes,
and/or exceptions.

Examples
Example 1

The following call to select checks if any of four sockets are ready
for reading. The select intrinsic times out after 5 seconds if no
sockets are ready for reading:

Note The code for opening the sockets or reading from the sockets is not
shown in this example and this example must be modi�ed if the
calling process has more than 32 �le descriptors open.

File System Intrinsics 3-11

#define MASK(f) (1 << (f))

#define NSDS 4int sd[NSDS];

int sdmask[NSDS];
int readmask = 0;

int readfds;

int nfound, i;

struct timeval timeout;

/* First open each socket for reading and put the */

/* file descriptors into array sd[NSDS]. The code */

/* for opening the sockets is not shown here. */

for (i=0; i < NSDS; i++) {

sdmask[i] = MASK(sd[i]);

readmask |= sdmask[i];

}

timeout.tv_sec = 5;

timeout.tv_usec = 0;

readfds = readmask;

/* select on NSDS+3 file descriptors if stdin, stdout */

/* and stderr are also open */

if ((nfound = select (NSDS+3, &readfds, 0, 0, &timeout)) == -1)

perror ("select failed");

else

if (nfound == 0)

printf ("select timed out \n");

else

for (i=0; i < NSDS; i++)

if (sdmask[i] & readfds)
/* Read from sd[i]. The code for reading */

/* is not shown here. */

else

printf ("sd[%d] is not ready for reading \n",i);

Example 2

The following programming example shows how select can be used
to wait on multiple sockets.

/* This program is an example of how select can be

used on multiple sockets */

/* on MPE/iX. */

/* Compile with SOCKET_SOURCE and POSIX_SOURCE defined. */

/* Link with socketrl and libcinit. */

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/in.h>

3-12 File System Intrinsics

#include <sys/errno.h>

#include <fcntl.h>

#include <unistd.h>
#include <time.h>

#define TRUE 0

#define FALSE 1

main ()

{

int maxfds;

int sock, sock2, peer1;

int struc_len;

int fret;

int done = FALSE;

char data[256];

char data_to_send = 'D';

char *datptr;

int dlen;

int readfds;

int writefds;

struc timeval timeout;

struc sockaddr_in sockaddr;

sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP;

peer1 = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

sockaddr.sin_family = AF_INET;

sockaddr.sin_addr.s_addr = INADDR_THISHOST;

sockaddr.sin_port = 4444;

struc_len = 8;

if (bind (sock, (struc sockaddr *) &sockaddr,

sizeof sockaddr) << 0) {

printf ("Bind failed\n");};

listen (sock, 10);

sfcntl (peer1, F_SETFL, O_NONBLOCK);

/* connect() returns with EINPROGRESS. */

fret = connect (peer1, (struct sockaddr *) &sockaddr,

struc_len);

sock2 = accept (sock,

(struc sockaddr *) &sockaddr,

&struc_len);

/* Call recv to complete the connection */

recv (peer1, 0, 0, 0);

File System Intrinsics 3-13

/* sock2 and peer1 are now connected */

daptr = data;

done = FALSE;
while (done == FALSE) {

/* This code example shows how to use select() to wait on multiple

*/

/* sockets. Note that first you have to find the maximum descriptor

*/

/* number being used. The appropriate bit(s) must be set for the */

/* select masks and then they must be checked after the call. In */

/* this example, sock2 is waiting to receive data from peer1. */

if (peer1 << sock2) {

maxfds = sock2;

}

else

maxfds = peer1;

/* set a 5 second timer for the call to select(). */

timeout.tv_sec = 5;

timeout.tv_usec = 0;

writefds = (1 << peer1);

readfds = (1 << peer1) + (1 << sock2);

fret = select (maxfds + 1, &readfds, &writefds, 0, &timeout);

if (fret << = 0) {

printf ("error1\n");

done = TRUE;

}
else

{

if ((readfds && (1 << sock2)) ! = 0) {

dlen = 100;

fret = recv (sock2, datptr, dlen, 0);

printf ("received %d bytes.\n", fret);

if (data[0]! = data_to_send) {

printf ("error2\n");

};

done = TRUE;

}

else

{

if ((writefds && (1 << peer1))! = 0) {

dlen = 1;

data[0] = data_to_send;

fret = send (peer1, datptr, dlen, 0);

printf ("sent %d bytes.\n", fret);

}

else

3-14 File System Intrinsics

{

printf ("error3\n");

}
}

};/* end else */

};/* end while */

}

Return Value The select intrinsic returns the number of descriptors contained in
the bit masks. If an error occurs, -1 is returned and an error code is
stored in errno. If the time limit expires, then select returns 0, and
all of the masks are cleared.

Errors The select intrinsic returns the following errors:

[EBADF] One or more of the bit masks speci�ed an invalid
descriptor.

[EFAULT] One or more of the pointers was invalid.

[EINVAL] An invalid timeval was passed for timeout.

[EINVAL] The value of nfds is less than zero.

Note The �le descriptor masks are always modi�ed on return, even if the
call returns as the result of a timeout.

Author The select intrinsic was developed by Hewlett-Packard and the
University of California, Berkeley.

File System Intrinsics 3-15

WRITE

C Interface int write (s, msg, len);

int s;

char *msg;

int len

Description The write function is similar to the send call except there is no ags
parameter. It behaves the same way as a send call with ags set to
zero.

For more information about write or any other POSIX function,
refer to the MPE/iX Developer's Kit Reference Manual, Volume 1 .

Return Value If successful, the call returns the number of characters sent. If the
call fails, a -1 is returned, and an error code is stored in errno.

MPE/iX Specific The write call is supported as of MPE/iX release 4.5.

See Also send

3-16 File System Intrinsics

4

Name Service Routines

This section describes several library routines that can best be
described as name service routines, since they return information
based on names, addresses, and numbers. Each subsection describes
a set of �ve related intrinsics, as indicated below:

GETHOSTENT GETNETENT GETPROTOENT GETSERVENT

------------- ------------ ---------------- -------------

gethostent getnetent getprotoent getservent

sethostent setnetent setprotoent setservent

gethostbyname getnetbyname getprotobyname getservbyname

gethostbyaddr getnetbyaddr getprotobynumber getservbyport

endhostent endnetent endprotoent endservent

These routines are stored in a native mode relocatable library �le
and are used for AF_INET only. The relocatable library �le name is
SOCKETRL.NET.SYS. When linking your programs, you should include
this �le in the link list. For example,

link objfile,progfile;rl=socketrl.net.sys,libc.lib.sys

Ensure that you link with the POSIX library (/lib/libc.a) instead
of libc.lib.sys for POSIX programs. Note that if you are using
the POSIX library you must use �le indirection as shown in the
programming example in Chapter 5.

Name Service Routines 4-1

INET ADDR,
INET NETWORK,
INET NTOA

C Interface #include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet_addr(cp);

const char *cp;

unsigned long inet_network(cp);
const char *cp;

char *inet_ntoa(in);

struc in_addr in;

Description The routines inet_addr and inet_network each interpret character
strings representing numbers expressed in the internet standard \dot"
notation, returning numbers suitable for use as internet addresses
and internet network numbers, respectively. Their return values can
be assigned to a struct in addr (de�ned in /usr/include/netinet/in.h)
as in the following example:

struct in_addr addr;

char *cp;

addr.s_addr = inet_addr(cp);

inet_ntoa takes an interet address and returns an ASCII string
representing the address in \dot" (.) notation.

All internet addresses are returned in network order (bytes ordered
from left to right). All network numbers and local address parts are
returned as machine-format integer values. Bytes in HP-UX systems
are ordered from left to right.

Internet Addresses: Values speci�ed using the dot (.) notation take
one of the following forms:

a.b.c.d

a.b.c

a.b

a

When four parts are speci�ed, each is interpreted as a byte of data
and assigned, from left to right, to the four bytes of an internet
address.

When a three-part address is speci�ed, the last part is interpreted
as a 16-bit quantity and placed in the right-most two bytes
of the network address. This makes the three-part address

4-2 Name Service Routines

format convenient for specifying Class B network addresses as in
128.net.host.

When a two-part address is supplied, the last part is interpreted as
a 24-bit quantity and placed in the right-most three bytes of the
network address. This makes the two-part address format convenient
for specifying Class A network addresses as in net.host.

When only one part is given, the value is stored directly in the
network address without any byte rearrangement.

All numbers supplied as parts in a dot (.) notation can be decimal,
octal, or hexadecimal, as speci�ed in the C language (i.e., a leading
0x or 0X implies hexadecimal; a leading 0 implies octal; otherwise,
the number is interpreted as decimal).

Return Value inet_addr and inet_network return -1 for malformed requests.

Warnings The string returned by inet_ntoa resides in a static memory area.

Author UCB (University of California at Berkeley)

See Also gethostent, getnetent

Name Service Routines 4-3

GETHOSTENT

C Interface #include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

extern int h_errno;

struct hostent *gethostent()

struct hostent *gethostbyname(name)

char *name;

struct hostent *gethostbyaddr(addr, len, type)

char *addr;

int len, type;

sethostent(stayopen)

int stayopen;

endhostent()

Description The gethostent, gethostbyname, and gethostbyaddr subroutines
return a pointer to a structure de�ned as follows in netdb.h:

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses from name server */

};

#define h_addr h_addr_list[0] /* address for backward */

/* compatibility */

The members of this structure are as follows:

h name O�cial name of the host.

h aliases A null-terminated array of alternate names for the
host.

h addrtype The type of address being returned; currently always
AF_INET.

h length The length, in bytes, of the address.

h addr list A null-terminated array of network addresses for the
host.

4-4 Name Service Routines

h addr The �rst address in h addr list; this is for
compatibility with previous HP-UX implementations,
where a struct hostent contains only one network
address per host.

If the local system is con�gured to use the name server, then:

The gethostent subroutine always returns a null pointer.

The sethostent subroutine, if the stayopen ag is non-zero,
requests the use of a connected stream socket for queries to
the name server. The connection is retained after each call to
gethostbyname or gethostbyaddr.

The endhostent subroutine closes the stream socket connection.

The gethostbyname and gethostbyaddr subroutines each retrieve
host information from the name server through the resolver.
Names are matched in a case-insensitive manner; for example,
berkeley.edu, Berkeley.EDU, and BERKELEY.EDU would all match
the entry for berkeley.edu.

The resolver reads the con�guration �le RESLVCNF.NET.SYS to get
the default domain name and the Internet address of the initial hosts
running the name server. If the environment variable LOCALDOMAIN is
set by the user, that name is used as the default domain (overriding
any other default). If the name server Internet addresses are not
listed in the con�guration �le, the resolver aborts and the hosts �le is
tried (see below). If there are errors in the con�guration �le, they are
silently ignored.

If the local system is not using the name server, then:

The gethostent subroutine reads the next line of HOSTS.NET.SYS,
opening the �le if necessary.

The sethostent subroutine opens and rewinds the �le. If the
stayopen ag is non-zero, the host database is not closed after each
call to gethostent (either directly or indirectly through one of the
other gethost calls).

The endhostent subroutine closes the �le.

The gethostbyname subroutine sequentially searches from the
beginning of the �le until a host name (among either the o�cial
names or the aliases) matching its parameter name is found, or
until EOF is encountered. Names are matched in a case-insensitive
manner; for example, berkeley.edu, Berkeley.EDU, and
BERKELEY.EDU would all match the entry for berkeley.edu.

The gethostbyaddr subroutine sequentially searches from the
beginning of the �le until an Internet address matching its
parameter addr is found, or until EOF is encountered.

In calls to gethostbyaddr, the parameter addr must point to an
internet address in network order (refer to the inet section) and the
addr parameter must be 4-byte aligned, or an escape is generated.

Name Service Routines 4-5

The parameter len must be the number of bytes in an Internet
address, that is, sizeof (struct in addr). The parameter type must
be the constant AF_INET.

Return Value If successful, gethostbyname, gethostbyaddr, and gethostent
return a pointer to the requested hostent struct. The gethostbyname
and gethostbyaddr subroutines return NULL if their host or
addr parameters, respectively, cannot be found in the database. If
hosts.net.sys is being used, they also return NULL if they are
unable to open hosts.net.sys. The gethostbyaddr subroutine also
returns NULL if either its addr or len parameter is invalid. The
gethostent subroutine always returns NULL if the name server is
being used.

If the name server is being used and gethostbyname or
gethostbyaddr returns a NULL pointer, the external integer h errno
contains one of the following values:

[HOST NOT FOUND] No such host is known.

[TRY AGAIN] This is usually a temporary error
and means that the local server
did not receive a response from an
authoritative server. A retry at some
time later may succeed.

[NO RECOVERY] This is a non-recoverable error.

[NO ADDRESS] The requested name is valid but has
no IP address; this is not a temporary
error. This means that another type
of request to the name server results
in an answer.

If the name server is not being used, the value of h errno may not be
meaningful.

Restrictions All information is contained in a static area, so it must be copied
if it is to be saved. Only the Internet address format is currently
understood.

MPE/iX Specific The names of the hosts �le and resolver con�guration �le on
MPE/iX are HOSTS.NET.SYS and RESLVCNF.NET.SYS, as opposed to
/etc/hosts and /etc/resolv.conf on HP-UX.

Author UCB (University of California at Berkeley)

Files HOSTS.NET.SYS, RESLVCNF.NET.SYS

See Also resolver, hosts

4-6 Name Service Routines

GETNETENT

C Interface #include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

struct netent *getnetent()

struct netent *getnetbyname(name)

char *name;

struct netent *getnetbyaddr(net, type)

long net;

int type;

setnetent(stayopen)

int stayopen;

endnetent()

Description The getnetent, getnetbyname, and getnetbyaddr subroutines each
return a pointer to an object with the following structure. This
structure contains �elds found in the network protocol database,
/etc/networks.

struct netent {

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net number type */
long n_net; /* net number */

};

The members of this structure are as follows:

n name The o�cial name of the network.

n aliases A null-terminated list of alternate names for the
network.

n addrtype The type of the network number returned, always
AF_INET.

n net The network number. Network numbers are returned
in machine byte order.

The getnetent subroutine reads the next line of the �le, opening the
�le if necessary.

The setnetent subroutine opens and rewinds the �le. If the
stayopen ag is non-zero, the network database is not closed after
each call to getnetent (either directly, or indirectly through one of
the other getnet calls).

Name Service Routines 4-7

The endnetent subroutine closes the �le.

The getnetbyname subroutine sequentially searches from the
beginning of the �le until a network name (among either the o�cial
names or the aliases) matching its parameter name is found, or until
EOF is encountered.

The getnetbyaddr subroutine sequentially searches from the
beginning of the �le until a network number matching its parameter
net is found, or until EOF is encountered. The parameter net must
be in network order. The parameter type must be the constant
AF_INET.

Network numbers are supplied in host order. (Refer to the inet
section.)

Restrictions All information is contained in a static area, so it must be copied
if it is to be saved. Only Internet network numbers are currently
understood.

Return Value The getnetent, getnetbyname, and getnetbyaddr subroutines
return a null pointer (0) on EOF or when they are unable to open
NETWORKS.NET.SYS. The getnetbyaddr subroutine also returns a null
pointer if its parameter type is invalid.

MPE/iX Specific The name of the networks �le on MPE/iX is NETWORKS.NET.SYS, as
opposed to /etc/networks on HP-UX.

Author UCB (University of California at Berkeley)

Files NETWORKS.NET.SYS

See Also networks

4-8 Name Service Routines

GETPROTOENT

C Interface #include <netdb.h>

struct protoent *getprotoent()

struct protoent *getprotobyname(name)

char *name;

struct protoent *getprotobynumber(proto)

int proto;

setprotoent(stayopen)

int stayopen;

endprotoent()

Description The getprotoent, getprotobyname, and getprotobynumber

subroutines each return a pointer to an object with the following
structure. This structure contains �elds found in the network
protocol database, /etc/protocols.

struct protoent {

char *p_name; /* official name of protocol */

char **p_aliases; /* alias list */

long p_proto; /* protocol number */

};

The members of this structure are as follows:

p name The o�cial name of the protocol.

p aliases A null-terminated list of alternate names for the
protocol.

p proto The protocol number.

The getprotoent subroutine reads the next line of the �le, opening
the �le if necessary.

The setprotoent subroutine opens and rewinds the �le. If the
stayopen ag is non-zero, the protocol database is not closed after
each call to getprotoent (either directly or indirectly through one of
the other getproto calls).

The endprotoent subroutine closes the �le.

The getprotobyname and getprotobynumber subroutines
sequentially search from the beginning of the �le until a protocol
name matching the parameter name or a protocol number matching
the parameter proto is found, or until EOF is encountered.

Name Service Routines 4-9

Restrictions All information is contained in a static area, so it must be copied if it
is to be saved. Only the Internet protocols are currently understood.

Return Value The getprotoent, getprotobyname, and getprotobynumber

subroutines return a null pointer (0) on EOF or when they are
unable to open PROTOCOL.NET.SYS.

MPE/iX Specific The name of the protocols �le on MPE/iX is PROTOCOL.NET.SYS, as
opposed to /etc/protocols on HP-UX.

Author UCB (University of California at Berkeley)

Files PROTOCOL.NET.SYS

See Also protocols

4-10 Name Service Routines

GETSERVENT

C Interface #include <netdb.h>

struct servent *getservent()

struct servent *getservbyname(name, proto)

char *name, *proto;

struct servent *getservbyport(port, proto)

int port;

char *proto;

setservent(stayopen)
int stayopen;

endservent()

Description The getservent, getservbyname, and getservbyport subroutines
each return a pointer to an object with the following structure
containing the broken-out �elds of a line in the network services
database, /etc/services.

struct servent {

char *s_name; /* official name of service */

char **s_aliases; /* alias list */

long s_port; /* port service resides at */

char *s_proto; /* protocol to use */

};

The members of this structure are as follows:

s name The o�cial name of the service.

s aliases A null-terminated list of alternate names for the
service.

s port The port number at which the service resides. Port
numbers are returned in network byte order.

s proto The name of the protocol to use when contacting the
service.

The getservent subroutine reads the next line of the �le, opening
the �le if necessary.

The setservent subroutine opens and rewinds the �le. If the
stayopen ag is non-zero, the services database is not closed after
each call to getservent (either directly or indirectly through one of
the other getserv calls).

The endservent subroutine closes the �le.

Name Service Routines 4-11

The getservbyname and getservbyport subroutines sequentially
search from the beginning of the �le until a service name (among
either the o�cial names or the aliases) matching the parameter name
or a port number matching the parameter port is found, or until
EOF is encountered. If a non-NULL protocol name is also supplied
(for example, tcp or udp), searches must also match the protocol.

Restrictions All information is contained in a static area, so it must be copied if it
is to be saved.

Return Value The getservent, getservbyname, and getservbyport subroutines
return a null pointer (0) on EOF or when they are unable to open
SERVICES.NET.SYS.

MPE/iX Specific The name of the services �le on MPE/iX is SERVICES.NET.SYS, as
opposed to /etc/services on HP-UX.

Author UCB (University of California at Berkeley)

Files SERVICES.NET.SYS

See Also services

4-12 Name Service Routines

5

Programming Example

This section contains an example source program, describes how it
was compiled and linked, and lists the output generated from it.

Source Program The following program was broken into steps to show how a
connection is established between two sockets.

1. Establish the connection in loopback, using a single process:

#include </stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/stat.h>

#include <sys/in.h>

#include <sys/errno.h>

#include <fcntl.h>

#include <unistd.h>

main()

{

int sock;

int peer1;

int struc_len;
int fret;

int sock2;

struct sockaddr_in sockaddr;

2. Create the two sockets:

sock=socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (sock == -1)

print ("Error creating socket.\n");

peer1 = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (peer1 == -1)

printf ("Error creating socket.\n");

3. Create the socket structure to bind the socket. The IP address
used is 0 (loopback), and the SAP is set to an arbitrary constant
(4444). This structure is used for both the bind and the connect:

sockaddr.sin_family = AF_INET;

sockaddr.sin_addr.s_addr = INADDR_THISHOST;

Programming Example 5-1

sockaddr.sin_port = 4444;

struc_len = 16;

if (bind (sock, (struct sockaddr *) &sockaddr,

sizeof (sockaddr)) < 0)

printf ("Bind failed\n);

listen (sock,10);

4. Set the socket initiating the connection to be nonblocking. This
allows the connect to return to the user without blocking and
waiting for accept:

Note The sfcntl function should be used until the fcntl is provided by
the operating system.

sfcntl (peer1, F_SETFL, O_NONBLOCK);

fret = connect (peer1, (struct sockaddr *) &sockaddr, struc_len);

if (fret == -1)

printf ("Connect failed with error %d\n",errno);

else

printf ("Connect succeeded\n");

sock2 = accept (sock, (struct sockaddr *) &sockaddr, &struc_len);
if (sock2 == -1)

printf ("Accept failed\n");

else

printf ("Accept succeeded\n");

5. Call recv to complete the connection:

recv (peer1, 0,0,0);

} /* end main */

Compiling Some MPE/iX include �les expect certain variables to be de�ned.
For example, <types.h.sys> expects SOCKET_SOURCE to be de�ned.
De�nes are declared in a C program by using #define; however,
instead of modifying source code, a de�ne can be declared at
runtime.

The following example shows how to compile the program:

:ccxl sourcepg,obj,listing;info="-Aa &

-D_SOCKET_SOURCE -D_POSIX_SOURCE"

5-2 Programming Example

Linking The following example shows how to link the program:

:link from=obj;rl=^rllist;to=prog

The following RLLIST �le was used in linking the above program:

socketrl.net.sys

libcinit.lib.sys

Note: Ensure that you link with the POSIX library (/lib/libc.a)
instead of libcinit.lib.sys for POSIX programs. If you are using
fork(), you need to link with PH capabilities.

Output When the above program was run, it had the following output:

Connect failed with error 245

Accept succeeded

Note that the connect failed with error 245. This corresponds
to EINPROGRESS, indicating that the connect could not complete
immediately because an accept had not yet been issued. If the
connection was not using the nonblocking mode, then the connect
would have blocked.

Programming Example 5-3

	Top of Document
	Preface
	Contents
	1. Introduction
	Include Files Used
	POSIX Function Support

	2. Socket System Calls
	SOCKET
	BIND
	LISTEN
	ACCEPT
	CONNECT
	SOCKETPAIR
	SEND
	RECV
	SHUTDOWN
	GETSOCKOPT, SETSOCKOPT
	GETPEERNAME
	GETSOCKNAME
	GETHOSTNAME
	Signals and Sockets

	3. File System Intrinsics
	CLOSE, SCLOSE
	DUP
	FCNTL, SFCNTL
	IOCTL
	READ
	SELECT
	WRITE

	4. Name Service Routines
	INET ADDR, INET NETWORK, INET NTOA
	GETHOSTENT
	GETNETENT
	GETPROTOENT
	GETSERVENT

	5. Programming Example
	Source Program
	Compiling
	Linking
	Output

