
900 Series HP 3000 Computer Systems

MPE XL Native Language

Programmer's Guide

ABCDE

HP Part No. 32650-90022

Printed in U.S.A. 1990

Second Edition

E0490

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or use of this material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced, or translated
to another language without the prior written consent of
Hewlett-Packard Company.

Copyright c 1990 by Hewlett-Packard Company

Printing History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
version indicates the version of the software product at the time
this document was issued. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one
correspondence between product releases and document editions.

Edition Date Software

Version

First Edition November 1987 A.01.00

Update 1 July 1988 A.10.00

Second Edition April 1990 A.40.00

3

4

Preface The Native Language Programmer's Guide is written for experienced
programmers. It provides the HP 3000 programmer with the features
necessary to produce localized application programs for end users
without reprogramming for each country or language.

The following information is contained in this manual:

Chapter 1 Introduction introduces the subject matter of this
manual.

Chapter 2 Supported Native Languages describes the character
sets supported and the language-dependent
characteristics of each.

Chapter 3 Native Language Support in MPE XL describes
the utility programs, system intrinsics, and the
Application Message Facility components of NLS.

Chapter 4 NLS in the Subsystems describes the NLS features
within subsystems which provide the tools necessary
for the design of local language applications.

Chapter 5 Accessing NLS Features describes how to
access features through application programs or
interactively by the user of a subsystem program.

Chapter 6 Implicit Language Choices in Subsystems describes
how to designate a default language other than
Native-3000 for the subsystems.

Chapter 7 Application Programs Accessing NLS describes
the possible application models available for single
language applications, multilingual applications, and
subsystem utility programs.

Appendix A Character Sets identi�es the characters sets
supported by NLS.

Appendix B Collating Sequences explains and identi�es the
collating sequence used by NLS.

Appendix C EBCDIC Mapping identi�es the mapping provided
by NLS from supported character sets to various
national versions of EBCDIC code.

Appendix D Converting 7-Bit to 8-Bit Data identi�es the
peripherals that must be converted and the
conversion utilities available to convert from 7-bit to
8-bit operation.

Appendix E Application Guidelines identi�es the supported
programming languages and speci�c guidelines for
each.

Appendix F Example Programs includes examples of
programming languages with calls to NLS-related
features.

5

6

Conventions UPPERCASE In a syntax statement, commands and
keywords are shown in uppercase characters.
The characters must be entered in the
order shown; however, you can enter the
characters in either uppercase or lowercase.
For example,

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word
in italics represents a parameter or argument
that you must replace with the actual value.
In the following example, you must replace
�lename with the name of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics
represents a parameter that you must replace
with the actual value. In the following
example, you must replace �lename with the
name of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters
(other than brackets, braces, vertical bars,
and ellipses) must be entered exactly as
shown. In the following example, the
parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive
dialog, user input and user responses to
prompts are indicated by underlining. In the
following example, yes is the user's response
to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required
elements. When several elements are stacked
within braces, you must select one. In the
following example, you must select either ON
or OFF:

7

COMMAND

�
ON

OFF

�

8

Conventions
(continued)

[] In a syntax statement, brackets enclose
optional elements. In the following example,
OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within
brackets, you can select one or none of the
elements. In the following example, you can
select OPTION or parameter or neither. The
elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

[. . .] In a syntax statement, horizontal ellipses
enclosed in brackets indicate that you can
repeatedly select the element(s) that appear
within the immediately preceding pair of
brackets or braces. In the example below,
you can select parameter zero or more times.
Each instance of parameter must be preceded
by a comma:

[,parameter][...]

In the example below, you only use the
comma as a delimiter if parameter is
repeated; no comma is used before the �rst
occurrence of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses
enclosed in vertical bars indicate that you
can select more than one element within the
immediately preceding pair of brackets or
braces. However, each particular element
can only be selected once. In the following
example, you must select A, AB, BA, or B.
The elements cannot be repeated.

�
A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses
indicate where portions of an example have
been omitted.

� In a syntax statement, the space symbol �
shows a required blank. In the following
example, parameter and parameter must be
separated with a blank:

9

(parameter)�(parameter)

� � The symbol � � indicates a key on the
keyboard. For example, �RETURN� represents
the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character.
For example, �CTRL�Y means that you press
the control key and the Y key simultaneously.

10

Conventions
(continued)

base pre�xes The pre�xes %, #, and $ specify the
numerical base of the value that follows:

%num speci�es an octal number.
#num speci�es a decimal number.
$num speci�es a hexadecimal number.

If no base is speci�ed, decimal is assumed.

bits (bit :length) When a parameter contains more than one
piece of data within its bit �eld, the di�erent
data �elds are described in the format bits
(bit :length), where bit is the �rst bit in the
�eld and length is the number of consecutive
bits in the �eld. For example, bits (13:3)
indicates bits 13, 14, and 15:

most significant least significant

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

| 0| | | | | | | | | | | | |13|14|15|

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

bits (0:1) bits (13:3)

11

Contents

1. Introduction

Why NLS? 1
Scope of Native Language Support 2

2. Supported Native Languages

8-Bit Character Sets 2
Language- Dependent Characteristics 3

3. NLS Components

NLS System Utilities 1
Con�guring Native Languages 1
NLS Intrinsics 2
Peripheral Support 4
Conversion Utilities 4
Application Message Facility 5

4. NLS in the Subsystems

5. Accessing NLS Features

Intrinsics 1
Native Language Attribute 1
Commands 2

6. Implicit Language Choice in Subsystems

NLUSERLANG and NLDATALANG JCWs 1
NLGETLANG Intrinsic 2
User-De�ned Commands (UDCs) 2

7. Application Programs Accessing NLS

File Naming Conventions 1
General Application Program 2
Application Program Without NLS 3
Single Language Application 4
Multilingual Applications 5
Subsystem Utility Program 7

1

A. Character Sets

B. Collating Sequences

Language- Dependent Variations 10
Spanish 10
Danish/Norwegian 11
Swedish 11
Finnish 12

C. EBCDIC Mapping

Background Data 1
ROMAN8 to EBCDIC Mapping 2

D. Converting 7-Bit to 8-Bit Data

National Substitution Sets 2
Conversion Utilities 3
Conversion Algorithm 4
Conversion Procedure 6
N7MF8CNV Utility 9
I7DB8CNV Utility 11
V7FF8CNV Utility 14
V7FF8CNV and Alternate Character Sets 15
Group 1 - HP 2392A, 2625A, 2627A, 2628A, 2700,

and 150 15
Group 2 - HP 2622A, 2623A, 2626A, and 2382A . 15

V7FF8CNV Operation 16

E. Application Guidelines

All Programming Languages 1
COBOL II/XL (HP 32233A) 3
FORTRAN (HP 32102B) 3
SPL (HP 32100A) 4
RPG (HP 32104A) 4
BASIC (HP 32101B) 4
Pascal (HP 32106A) 4

F. Example Programs

Sort from a COBOLII Program 2
Sort from a Pascal Program 4
Sort from a FORTRAN Program 7
Format Date and Time from a FORTRAN Program 8
Format Date and Time from an SPL Program . . . 12
Scan and Move Character Strings from a COBOLII

Program 17
Scan and Move Character Strings from an SPL

Program 25
Translate and Relpace Characters from a COBOLII

Program 33
Compare Character Strings from a COBOLII Program 37
Compare Character Strings from an SPL Program . 42

2

Obtain Language Information from a COBOLII
Program 47

Index

3

Figures

3-1. GENCAT Utility Program 5
7-1. General Application Program Format 2
7-2. Application Program Without NLS 3
7-3. Single Language Application 4
7-4. Multilingual Application 6
7-5. Subsystem Utility Program 7
A-1. USASCII Character Set 3
A-2. ROMAN8 Character Set 4
A-3. KANA8 Character Set 5
A-4. ARABIC8 Character Set 6
A-5. GREEK8 Character Set 7
A-6. TURKISH8 Character Set 8
A-7. PRC15 Character Set 9
A-8. ROC15 Character Set 10
A-9. JAPAN15 Character Set 11
A-10. KOREA15 Character Set 12
D-1. N7MF8CNV Dialog 7
D-2. I7DB8CNV Dialog 13

Tables

3-1. NLS Intrinsic Categories 2
A-1. Languages Supported by NLS 1
B-1. Collating Sequence Priority 2
B-2. Collating Sequence 3
B-3. Spanish Language-Dependent Variations 10
B-4. Danish/Norwegian Language-Dependent Variations 11
B-5. Swedish Language-Dependent Variations 11
B-6. Finnish Language-Dependent Variations 12
C-1. ROMAN8 to EBCDIC Mapping 2
D-1. Conversion Utilities 3
D-2. Character Conversion Decimal Values 4
D-3. Special Character Conversion 5

4

1

Introduction

The Hewlett-Packard Native Language Support (NLS) is a feature of
the MPE XL system and its associated subsystems. It enables the
applications designer/programmer to write applications in the end
user's local language.

Why NLS? A well-written application program manipulates data and presents
it appropriately for its use. Programs written with the intention of
providing a friendly user interface often make assumptions about the
local customs and language of the end user. Program interface and
processing requirements vary from country to country, or possibly
within a country. Most existing software does not take this into
account and is appropriate for use only in the country or locality in
which it is written.

The solution to this problem is to design application programs
that can be easily localized. Localization is the adaptation of a
software application or system for use in di�erent countries or local
environments. The end user's native language, customs, and/or data
processing requirements may di�er from those in the environment
of the software developer. End users bene�t from application
programs which interact with them in their native language and
conform to their local customs. Native language refers to the user's
�rst language (learned as a child), such as Finnish, Portuguese,
or Japanese. Local customs refer to conventions such as local
date, time, and currency formats. Traditionally, localization has
been achieved by modifying a program for each speci�c country.
Applications designed with localization in mind provide a better
solution. Localization can then be accomplished with (ideally) no
modi�cation of code at all.

An applications designer must write the application program with
built-in provisions for localization. Functions that depend on local
language or custom cannot be hard-coded. For example, all messages
and prompts must be stored in an external �le or catalog. Character
comparisons and upshifting must be accomplished by external
system-level routines or instructions. The external �les and catalogs
can be translated, and the program localized without rewriting or
recompiling the application program.

Introduction 1

NLS provides the tools for an applications designer/programmer to
produce localized applications. These tools may include architecture
support, peripheral support, and software facilities within the
operating systems and subsystems. NLS addresses the internal
functions of a program (for example, sorting) and its user interface
(for example, messages and formats).

Scope of Native
Language Support

NLS consists of features within MPE XL and in the FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, VPLUS, and COBOL
II/XL subsystems. These facilities allow application programs to be
designed and written with a local language user interface for the end
user and locally correct internal processing.

The MPE XL interface, subsystems, programmer productivity tools,
and compilers have not been localized. The applications designer
must still interact with MPE XL and its subsystems using American
English. For example, it is possible to write a complete local
language application program using COBOL II/XL and VPLUS, but
the COBOL II/XL compiler and the VPLUS FORMSPEC program
retain their English-like characteristics.

Not all functions that vary from one language or country to another
are provided by NLS. For example, tax calculation rules are usually
country- or local-speci�c, and rules for word hyphenation are
dependent upon individual languages. Functions such as these are
considered application-speci�c and are beyond the scope of NLS.

2 Introduction

2

Supported Native Languages

Native Language Support (NLS) is based on languages and character
sets that are prede�ned and built into the operating system. These
are referred to as supported languages. Hewlett-Packard has assigned
a unique language name and language ID number to each language
supported in NLS. In some cases, Hewlett-Packard has more than
one supported language corresponding to a single natural language
(for example, NLS supports French and Canadian-French, because
upshifting is handled di�erently). When language-dependent
characteristics di�er within the same natural language, NLS can
create separate native languages to represent these di�erences.

Each of the supported languages may also be considered a language
family that is applicable in several countries. German may be used in
Germany, Austria, Switzerland, and any other place it is requested.

The NATIVE-3000 language (an arti�cial language) represents
the way the computer dealt with language before the introduction
of NLS. For example, the collating sequence for NATIVE-3000 is
the same as the order of characters in the USASCII code. The
NATIVE-3000 date format is returned by the existing MPE XL
intrinsic FMTDATE. Anytime NATIVE-3000 is used in a native
language function, the result is identical to the function performed
prior to the introduction of NLS. NLS intrinsic calls using a language
parameter of 0 always work correctly, even if native languages have
not been con�gured on the system.

Supported Native Languages 1

8-Bit Character Sets Within NLS, each supported language is associated with an 8-bit
character set. (One character set may support many languages.)
Before the introduction of NLS, the only widely supported character
set was USASCII, a 128-character set designed to support American
English text. USASCII uses only seven bits of an 8-bit byte to
encode a character, the eighth or high-order bit is always zero.

It is possible to build supersets of USASCII permitting encoding
and manipulation of characters required by languages other than
American English, by using the eighth bit. These supersets are
referred to as 8-bit or extended character sets. New characters are
added with code values in the range 161-254.

Note All character sets are supersets of USASCII, and are occasionally
referred to as ASCII character sets.

Another method of providing foreign characters not supported by
NLS involves 12 existing characters in USASCII with substitution
characters. The 7-bit substitution set eliminates some characters in
favor of others needed by a particular local language. A di�erent
substitution set is necessary for each language. The NLS 8-bit
character sets support all USASCII characters (except for n in
KANA8) in addition to the characters needed to support several
Western European-based languages, Middle Eastern countries, and
KATAKANA.

Note Because 8-bit character sets are used in NLS, all bits of every byte
have signi�cance. Application software must take care to preserve
the eighth bit (high-order), not allowing it to be modi�ed or reused
for any special purpose. No di�erentiation should be made between
characters that have the eighth bit turned o� or on, as all are
characters of equal status in the extended character set.

2 Supported Native Languages

Language-
Dependent
Characteristics

For each native language supported by NLS, a number of
characteristics are known:

Lexical conventions vary from country to country. The collating
sequence is a�ected by the local alphabet and usage of each
language. Upshifting tables maintained by NLS for each supported
language contain the result of upshifting any character in the
corresponding character set.

Currency symbols (in their relationship to numbers), date, time,
and number formats are country and local custom dependent.

Data processing tables for ASCII-to-EBCDIC and EBCDIC-to-
ASCII conversion are a�ected by language as the EBCDIC codes
are di�erent from country to country.

Within NLS, all these characteristics are considered to be language
dependent. All information used by or available from NLS is based
on the application's choice of language(s). For example, NLS
maintains an English collating sequence and an English time-of-day
format. In this context, English refers speci�cally to the format used
in England rather than to the English language. American refers to
the language, formats, and tables used in the United States.

The exact information on any particular installed language is
available programmatically through the NLINFO intrinsic (refer to the
MPE XL Intrinsics Reference Manual (32650-90028)) or in a report
from the NLUTIL program (refer to the MPE XL System Utilities
Reference Manual (32650-90081)).

Supported Native Languages 3

3

NLS Components

The components of NLS consist of utility programs (LANGINST and
NLUTIL), system intrinsics, and an application message facility.

NLS System Utilities System managers use LANGINST to select and con�gure native
languages to be supported on their system(s). NLUTIL is used to
obtain the details of languages installed on a system. For a full
description of the LANGINST and NLUTIL utilities, refer to the
MPE XL System Utilities Reference Manual (32650-90081).

Configuring Native
Languages

Before native languages can be used on a system (except
NATIVE-3000), they must be con�gured by the system manager
using the LANGINST utility program. (Refer to the MPE XL
System Utilities Reference Manual (32650-90081) for the LANGINST
dialog.) The system manager can select which supported language(s)
to con�gure and modify formats associated with them (for example,
this feature is useful to a system manager in Austria who wants to
install German with a di�erent currency symbol than the default for
this language). After a language has been installed, language-speci�c
information available in NLS may be used by any application
program requesting it.

Note All language con�guration changes are e�ective only after a system
startup; at that time, the languages are installed.

NLS Components 1

NLS Intrinsics Application programs and Hewlett-Packard subsystems call NLS to
obtain language-dependent information for any language installed
on a system. The following table lists the NLS intrinsics and their
functions:

Table 3-1. NLS Intrinsic Categories

Function Intrinsic Description

Information
Retrieving

ALMANAC Returns numeric data information.

NLGETLANG Returns the current language.

NLINFO Returns language-dependent information.

Character
Handling

NLCOLLATE Compares two character strings.

NLFINDSTR Searches for a string.

NLJUDGE Determines whether a character is a
one-byte or two-byte Asian character.

NLKEYCOMPARE Compares strings of di�erent length.

NLREPCHAR Replaces nondisplayable characters.

NLSCANMOVE Moves and scans character strings.

NLSTRANSLATE Translates strings to/from EBCDIC.

NLSUBSTR Returns a string.

NLSWITCHBUF Converts a string of characters from
phonetic order to screen order and vice
versa.

Number
Formatting

NLCONVNUM Converts numbers from native to internal
form.

NLFMTNUM Formats an internal number in native form.

NLNUMSPEC Returns information needed for formatting
and converting numbers.

2 NLS Components

Table 3-1. NLS Intrinsic Categories (continued)

Function Intrinsic Description

Application
Message
Catalog

CATCLOSE Closes a message catalog.

CATOPEN Opens a message catalog.

CATREAD Reads information from a message catalog.

NLAPPEND Concatenates a �le name and a language
number.

Refer to the MPE XL Intrinsics Reference Manual (32650-90028) for
a complete description of each intrinsic.

NLS provides support features for language data and local custom
formats in FCOPY, IMAGE, KSAM, QUERY, SORT-MERGE, and
VPLUS. The emphasis of NLS in the subsystems is on providing
the end user, rather than the application designer, with local
language data and formats. User interface (prompts, commands, and
messages) of the subsystem utility programs are not localized (for
example, FORMSPEC and DBUTIL).

Note None of these changes are automatic. All existing applications and
jobs work the same way they did prior to the NLS installation unless
they are modi�ed to request NLS functions.

NLS Components 3

Peripheral Support Most Hewlett-Packard peripherals are designed for 8-bit operation.
Most peripherals that have been con�gured for 7-bit operation can
be recon�gured for 8-bit operation. (Refer to the System Startup,
Con�guration, and Shutdown Reference Manual (32650-90042) for
procedures.) Limitations and notes are listed for each peripheral. All
NLS features are available to users with 7-bit USASCII terminals
and printers, provided that the data used contains only USASCII
characters. For example, a user in the United States can use
American (the Hewlett-Packard name for American English) for
sorting, date formatting, and message handling. This is possible
because USASCII is a subset of ROMAN8.

NLS has no direct control over the peripherals con�gured on a
system. It is the user's responsibility to con�gure peripherals that
support the character set(s) necessary for the desired languages.

Peripherals con�gured for any of the 7-bit substitution sets are not
supported by NLS.

Conversion Utilities Data encoded according to any 7-bit substitution set is not supported
by NLS. Users with data encoded in one or more of the European
7-bit substitution sets supported on the older Hewlett-Packard
terminals and printers can convert this data. A set of utilities is
available to convert 7-bit data to 8-bit (ROMAN8) data in KSAM
�les, IMAGE databases, VPLUS forms �les, and MPE XL �les.
Refer to appendix D for instructions.

4 NLS Components

Application
Message Facility

A localizable program contains no text (prompts, commands,
messages) stored in the code itself. This allows the text to be
translated without modifying or recompiling the program source
code.

The Application Message Facility is an NLS tool that provides a
programmer with the exibility needed to create application catalogs
for localized applications. Text such as prompts, commands, and
messages intended for the user's interaction with an application can
be stored in separate ASCII editor �les. This allows the programmer
to maintain �les and localize applications without changing the
program code.

The NLS Application Message Facility contains the GENCAT utility
program and the CATOPEN, CATREAD, and CATCLOSE intrinsics as
shown in Figure 3-1. The GENCAT utility creates and maintains
message catalogs that meet the NLS requirements for e�cient storage
and retrieval of messages. For more information, refer to Message
Catalogs Programmer's Guide (32650-90021).

Figure 3-1. GENCAT Utility Program

NLS Components 5

The GENCAT program is used to convert an ASCII source �le
containing messages into a binary application catalog that can be
accessed by the intrinsics. Application programs use the message
catalog intrinsics to retrieve messages from it. An application
message catalog consists of a �le containing character strings
(messages), each uniquely identi�able by a set number and a message
number within a set. Key features of the Application Message
Facility include:

Each message in a catalog can allow up to �ve parameters which
may be speci�ed by position or number.

An editor is used to create an MPE XL ASCII �le (source catalog).
The GENCAT program is used to read the source catalog and
create a formatted catalog. The formatted catalog has an internal
directory for e�cient access and is compacted (for example, it
deletes trailing blanks) to optimize storage space.

GENCAT has a facility to merge two message source �les, a master
�le and a maintenance �le. The maintenance �le contains changes
to be made in the master �le. Updates of a localized version of an
application may be made by translating the maintenance �le, then
merging it with the localized source �le.

Multiple localized versions of an application can be supported with
translations of the original source catalog. If a naming convention
is established, the application program can determine which
localized catalog to open at run time (using the CATOPEN intrinsic).
A suggested naming convention is discussed in chapter 7.

6 NLS Components

4

NLS in the Subsystems

NLS provides MPE XL intrinsic features in COBOL II/XL, FCOPY,
IMAGE, KSAM, QUERY, SORT-MERGE, and VPLUS. NLS
features in these subsystems provide the tools to design local
language applications. The subsystems themselves are not localized.
The application end user, not the programmer or subsystem user,
sees the localized interface.

MPE XL Native Language Support intrinsics provide the means to
implement NLS features of the subsystems. This means that native
language de�nition is consistent within all the subsystems. Collating
sequence is a good example of consistency within MPE XL and in
the subsystems. The collating sequence de�ned for a speci�c native
language can be used in MPE XL by calling the NLCOLLATE and
NLKEYCOMPARE intrinsics. The same collating sequence is used by
SORT-MERGE in ordering records, by KSAM in ordering keys, and
by IMAGE in ordering sorted chains when these subsystems are
dealing with sorted character strings that are associated with the
same native language.

The MPE XL operating system and its subsystems function
independently of native language features con�gured on the system.
NLS features are optional and must be requested. This means that
existing application software and stream �les operate as they did
before the introduction of NLS.

NLS in the Subsystems 1

5

Accessing NLS Features

On HP 3000 systems using MPE XL and subsystems with NLS
features, all NLS features are optional. These features must be
requested by the applications programmer through intrinsic calls or
interactively by the user of a subsystem program through a LANGUAGE

command or keyword.

Intrinsics One option for obtaining NLS features from an application program
is through calls to speci�c NLS intrinsics, primarily in MPE XL. To
receive a local language date format, an application should call the
NLFMTDATE intrinsic instead of the FMTDATE intrinsic.

Additional NLS features can be obtained by specifying values for
extended or new parameters in existing intrinsics. For example,
SORTINIT in SORT-MERGE has been extended to allow the
speci�cation of a character key and a native language ID number
(langnum) that determines the collating sequence to be used.

Note These additional parameters must be used in an application to sort
according to native language values.

Native Language
Attribute

Some subsystem structures, including IMAGE databases, KSAM
�les, and VPLUS forms �les may be assigned a language attribute
by their creators. The language attribute ensures that certain
functions perform according to localized speci�cations at run time.
For example, VPLUS performs its upshift function according to the
language of the forms �le.

Accessing NLS Features 1

Commands Commands or keywords that make NLS features available on request
have been added to certain subsystems. (For example, entering
LANGUAGE=FRENCH within QUERY causes sorted character data of
IMAGE types X and U to be sorted, in its output reports, according
to the French collating sequence. If the language command is not
entered, QUERY performs as it did before the introduction of NLS.)
If these commands are not used, the default language(s) used by
subsystem utility programs can be inuenced by the values of the two
NLS job control words, NLUSERLANG and NLDATALANG.

Some general suggestions for designing applications incorporating
NLS features and speci�c strategies for using major programming
languages are included in appendix E.

For information on how and when the individual subsystems are
inuenced, refer to the appropriate manual:

FCOPY Reference Manual (32212-90003)
TurboIMAGE/XL Reference Manual (30391-90001)
KSAM/3000 Reference Manual (30000-90079)
QUERY/V Reference Manual (30000-90042)
SORT-MERGE/XL Programmer's Guide (32650-90080)
Data Entry and Forms Management System VPLUS/3000
(32209-90001)

2 Accessing NLS Features

6

Implicit Language Choice in Subsystems

Two NLS job control words (JCWs), NLUSERLANG and
NLDATALANG, permit the subsystem user to designate a default
language other than NATIVE-3000 for the subsystems. Each of the
�ve subsystem programs (SORT, MERGE, FCOPY, QUERY, and
ENTRY) looks at one of these JCWs, and its value is used as a
default language by the program. The default can be superseded by
a speci�c command.

NLUSERLANG and
NLDATALANG JCWs

NLUSERLANG and NLDATALANG are independent JCWs and are
treated independently by NLS. In many cases, they specify the same
language. Distinct values can be speci�ed (for example, the HP Word
product, which has the concepts of a user and a document language).

NLUSERLANG designates the user interface and report output
language for programs. If the subsystems are localized, this is the
language of choice for prompts and messages. If user input data is
modi�ed (for example, upshifted by QUERY or VPLUS), this JCW
determines which language's attributes are used. NLUSERLANG
designates the default language for all language-dependent
operations in QUERY and ENTRY.

NLDATALANG designates the internal data manipulation
language. This is distinct from NLUSERLANG because
multiple subsystem users with di�erent interface languages may
share common internal data (for example, sorted according
to one language). The data manipulation language is used in
the SORT, MERGE, and FCOPY programs to control their
language-dependent functions, such as collating, upshifting, and
conversions to and from EBCDIC. Note that if the user interface
of one of these programs is localized, it uses NLUSERLANG as its
default for messages, prompts, and so on.

Implicit Language Choice in Subsystems 1

NLGETLANG
Intrinsic

NLUSERLANG and NLDATALANG values are retrieved by the
subsystems through calls to the NLGETLANG intrinsic. Application
programs can also use this intrinsic. NLGETLANG retrieves the value of
the language attribute requested and veri�es its installation. If the
value is that of an uncon�gured or unde�ned language, NLGETLANG
returns a language ID number of 0 (NATIVE-3000) and an error.
To use either JCW, set the integer value corresponding to the
language ID number desired, using the SETJCW command. The MPE
XL Commands Reference Manual (32650-90003) lists the SETJCW
command syntax.

User-Defined
Commands (UDCs)

ENTRY, FCOPY, QUERY, SORT, and MERGE are often run
from within user-de�ned commands (UDCs). NLUSERLANG
and NLDATALANG give the application designer the option of
establishing a native language within a UDC.

2 Implicit Language Choice in Subsystems

7

Application Programs Accessing NLS

The focus of HP 3000 NLS is the application program. Most NLS
tools are accessed programmatically from applications according
to the requirements of the designer or programmer. Several
common application models are possible as illustrated in Figure 7-1
through Figure 7-5. NLS capabilities can be used in single language
applications, multilingual applications, in subsystem utility programs,
or not at all.

File Naming
Conventions

An application that is localized into several languages has separate
message catalogs, VPLUS forms �les, and other language-dependent
data �les for each of these languages. Establish a naming convention
for these �les that follows the language numbering used by NLS.
To do this, use a �le name that is up to �ve identifying characters
followed by a three-digit language number, corresponding to the
language of the �le contents. (For example, the original, unlocalized
data might be stored in a �le whose name is FILE000; the FILE008
would contain the same data modi�ed for German; and FILE012
would contain SPANISH data.) It is the responsibility of the
application program to determine, at run time, which �le to open.
Once the language number is determined, the NLAPPEND intrinsic may
be used to form the �le name if this convention is followed.

Application Programs Accessing NLS 1

General Application
Program

The functions language can inuence an application in terms of
data manipulation (internals) and user interaction (externals), as
illustrated in Figure 7-1. The core application program is anked by
functions that can di�er according to language and local customs
(local date, time, and currency formats).

Figure 7-1. General Application Program Format

2 Application Programs Accessing NLS

Application Program
Without NLS

Figure 7-2 shows an application program that does not make use
of NLS capabilities. This NATIVE-3000 application makes use
of conventional programming techniques and standard MPE and
subsystem features to achieve the key language-dependent functions.
It cannot be localized without reprogramming and is una�ected by
the introduction of NLS.

Figure 7-2. Application Program Without NLS

Application Programs Accessing NLS 3

Single Language
Application

French is used as the single language application example in
Figure 7-3. The applications designer has determined that only
French is required, and has hard-coded its language ID number
(langnum) 7 into the program. The langnum is used as a parameter
in calling various native language-dependent intrinsics. In addition,
the designer has created IMAGE databases, KSAM �les, and VPLUS
forms �les with the French language attribute, and has expressed all
prompts and messages in French. This use of NLS is for programs
used in one country, location, or language only.

Figure 7-3. Single Language Application

4 Application Programs Accessing NLS

Multilingual
Applications

The program in Figure 7-4 shows a localizable or multilingual
application. This application can be used in several countries or in
multiple languages by di�erent users on the same system. The key
attribute of this program is that it selects its language(s) at run time.

When installing an application on a system, the manager of the
application may establish con�guration �le(s) for that application.
These �les store information about various end-users or transactions
and their native language requirements. At run time, the application
program can determine which language(s) to use.

The program may call the NLGETLANG intrinsic to obtain the system
default language (which can be set by the system manager when
native languages are con�gured), or it may prompt the end user to
enter a language name or ID number (langnum).

The application may call NLGETLANG to obtain the user interface
language and/or the data manipulation language. The job control
words NLUSERLANG and NLDATALANG must be in place
before invoking this type of application. This method could be too
restrictive if many end users or transactions requiring di�erent
languages are handled from one job or session.

Once the languages have been determined, the program opens the
appropriate VPLUS forms �les, message catalogs, and/or command
�les, based on the user interface language choice. It also opens any
needed IMAGE databases, KSAM �les, or general data �les; these
may or may not depend upon language choice. The appropriate
language ID numbers are used in calling the various native language
intrinsics. Di�erent end users may concurrently run the same
program with di�erent languages. The application can be designed to
use more than one language within a single execution. For example,
one language may be used for data manipulation and a di�erent one
for user interactions.

Application Programs Accessing NLS 5

Figure 7-4. Multilingual Application

6 Application Programs Accessing NLS

Subsystem Utility
Program

Figure 7-5 shows a special category of multilingual application, the
Hewlett-Packard subsystem utility program. Many of these programs
are not typically used by end users, but are used to manipulate
end-user data in conjunction with application programs. They
determine which language to use at run time through a user-entered
keyword or command, or defaults.

The user interface in these programs has not been made localizable
since many of these programs are not end-user tools.

Figure 7-5. Subsystem Utility Program

For every character set, a character attribute table is de�ned. This
table of 256 entries holds an attribute (type) for every character.

Application Programs Accessing NLS 7

A

Character Sets

NLS supports ten character sets containing the following native
languages:

Table A-1. Languages Supported by NLS

Language

Set

Number

Name Language

ID

Number

Language

0 USASCII 00 NATIVE-3000

1 ROMAN8 00 NATIVE-3000

01 AMERICAN, ENGLISH

02 CANADIAN-FRENCH

03 DANISH

04 DUTCH

05 ENGLISH

06 FINNISH

07 FRENCH

08 GERMAN

09 ITALIAN

10 NORWEGIAN

11 PORTUGUESE

12 SPANISH

13 SWEDISH

14 ICELANDIC

2 KANA8 00 NATIVE-3000

41 KATAKANA

3 ARABIC8 51 ARABIC

52 WESTERN ARABIC

4 GREEK8 61 GREEK

6 TURKISH8 81 TURKISH

51 PRC15 201 SIMPLIFIED CHINESE
(CHINESE-S)

56 ROC15 211 TRADITIONAL CHINESE
(CHINESE-T)

61 JAPAN15 221 JAPANESE

66 KOREA15 231 KOREAN

The following items are de�ned for every supported language:

The upshift and downshift table.

Character Sets 1

The collating sequence table.

The ASCII-to-EBCDIC and EBCDIC-to-ASCII translate tables.

The long date format (the DATELINE format).

The short date format (the custom date format).

The time format.

The currency symbol (one character).

The currency descriptor (up to four characters).

The position and spacing of the currency sign.

The decimal and thousands separators for numbers.

The equivalents of YES and NO (both up to six characters).

The full weekday names (up to twelve characters).

The abbreviated weekday names (up to three characters).

The full month names (up to twelve characters).

The abbreviated month names (up to four characters).

The National Date table (where applicable).

The character sets supported by NLS are included on the following
pages:

2 Character Sets

Figure A-1. USASCII Character Set

Character Sets 3

Figure A-2. ROMAN8 Character Set

4 Character Sets

Figure A-3. KANA8 Character Set

Character Sets 5

Figure A-4. ARABIC8 Character Set

6 Character Sets

Figure A-5. GREEK8 Character Set

Character Sets 7

Figure A-6. TURKISH8 Character Set

8 Character Sets

Figure A-7. PRC15 Character Set

Character Sets 9

Figure A-8. ROC15 Character Set

10 Character Sets

Figure A-9. JAPAN15 Character Set

Character Sets 11

Figure A-10. KOREA15 Character Set

12 Character Sets

B

Collating Sequences

Collating is de�ned as arranging character strings into order (usually
alphabetic). To do this, a mechanism must be available that, given
two character strings, decides which one comes �rst. In Native
Language Support (NLS) this mechanism is the NLCOLLATE intrinsic.

Note This appendix deals with collating or lexical ordering and does
not include matching. For matching purposes, there is generally a
di�erence between A and a.

Look at the full ROMAN8 character set and consider that all
these characters can appear in every European language. Even if
a character does not exist in a language, it can still show up in
names and/or addresses. It is quite useful to address a letter to
Spain correctly, even if it originates in Germany. Therefore, the full
ROMAN8 character set is considered to be used in all languages,
and a collating sequence has been de�ned for all characters in the
ROMAN8 character set for the languages it supports. Table B-1
lists the collating sequence for American-English, Canadian-French,
Danish, Dutch, English, Finnish, French, German, Italian,
Norwegian, Portuguese, Spanish, and Swedish.

All characters in an alpha or numeric group collate the same. These
characters usually di�er only in uppercase versus lowercase priority,
or accent priority. (Refer to Table B-2 for collating sequences.) In
sorting, they are initially considered the same. If characters in the
two strings do not determine which string comes �rst, then the
priorities of characters are used to determine the order. Refer to
Table B-1 for examples of collating sequence priority.

Collating Sequences 1

Table B-1. Collating Sequence Priority

Example

Sorted

Strings

Priority Explanation

aEb, aEc The third character in each string is di�erent. The \b"
precedes the \c".

a�eb,aEb The characters in the two strings are identical, so accent
priority determines the order. The \�e" precedes the \E".

abc, Abd The last characters in the strings are di�erent. The \c"
precedes the \d".

aBc, abc The characters in the two strings are the same, so the
uppercase priority determines the order. The \B" precedes
the \b".

Table B-2 displays the collating sequence in three ways:

The graphic representation of the character.

The decimal equivalent of the character's binary value.

A description of the character.

2 Collating Sequences

Table B-2. Collating Sequence

Character Decimal

Equivalent

Description

32 Space

160 Do not use

0 48 Zero

1 49 One

2 50 Two

3 51 Three

4 52 Four

5 53 Five

6 54 Six

7 55 Seven

8 56 Eight

9 57 Nine

A 65 Uppercase A

a 97 Lowercase a

�A 224 Uppercase A acute

�a 196 Lowercase a acute

Collating Sequences 3

Table B-2. Collating Sequence (continued)

Character Decimal

Equivalent

Description

�A 161 Uppercase A grave

�a 200 Lowercase a grave

Â 162 Uppercase A circumex

â 192 Lowercase a circumex

�A 216 Uppercase A umlaut/diaeresis

�a 204 Lowercase a umlaut/diaeresis

�A 208 Uppercase A degree

�a 212 Lowercase a degree

~A 225 Uppercase A tilde

~a 226 Lowercase a tilde

B 66 Uppercase B

b 98 Lowercase b

C 67 Uppercase C

c 99 Lowercase c

�C 180 Uppercase C cedilla

�c 181 Lowercase c cedilla

D 68 Uppercase D

d 100 Lowercase d

D- 227 Uppercase D stroke

d- 228 Lowercase d stroke

E 69 Uppercase E

e 101 Lowercase e

�E 220 Uppercase E acute

�e 197 Lowercase e acute

�E 163 Uppercase E grave

�e 201 Lowercase e grave

Ê 164 Uppercase E circumex

ê 193 Lowercase e circumex

�E 165 Uppercase E umlaut/diaeresis

�e 205 Lowercase e umlaut/diaeresis

4 Collating Sequences

Table B-2. Collating Sequence (continued)

Character Decimal

Equivalent

Description

F 70 Uppercase F

f 102 Lowercase f

G 71 Uppercase G

g 103 Lowercase g

H 72 Uppercase H

h 104 Lowercase h

I 73 Uppercase I

i 105 Lowercase i

�I 229 Uppercase I acute

�� 213 Lowercase i acute

�I 230 Uppercase I grave

�� 217 Lowercase i grave

Î 166 Uppercase I circumex

�̂ 209 Lowercase i circumex

�I 167 Uppercase I umlaut/diaeresis

�� 221 Lowercase i umlaut/diaeresis

J 74 Uppercase J

j 106 Lowercase j

K 75 Uppercase K

k 107 Lowercase k

L 76 Uppercase L

l 108 Lowercase l

M 77 Uppercase M

m 109 Lowercase m

N 78 Uppercase N

n 109 Lowercase n

~N 182 Uppercase N tilde

~n 183 Lowercase n tilde

O 79 Uppercase O

o 110 Lowercase o

Collating Sequences 5

Table B-2. Collating Sequence (continued)

Character Decimal

Equivalent

Description

�O 231 Uppercase O acute

�o 198 Lowercase o acute

�O 232 Uppercase O grave

�o 202 Lowercase o grave

Ô 223 Uppercase O circumex

ô 194 Lowercase o circumex

�O 218 Uppercase O umlaut/diaeresis

�o 206 Lowercase o umlaut/diaeresis

~O 233 Uppercase O tilde

~o 234 Lowercase o tilde

� 210 Uppercase O crossbar

� 214 Lowercase o crossbar

P 80 Uppercase P

p 112 Lowercase p

Q 81 Uppercase Q

q 113 Lowercase q

R 82 Uppercase R

r 114 Lowercase r

S 83 Uppercase S

s 115 Lowercase s

�S 235 Uppercase S caron

�s 236 Lowercase s caron

T 84 Uppercase T

t 116 Lowercase t

U 85 Uppercase U

u 117 Lowercase u

�U 237 Uppercase U acute

�u 199 Lowercase u acute

�U 173 Uppercase U grave

�u 203 Lowercase u grave

6 Collating Sequences

Table B-2. Collating Sequence (continued)

Character Decimal

Equivalent

Description

Û 174 Uppercase U circumex

û 195 Lowercase u circumex

�U 219 Uppercase U umlaut/diaeresis

�u 207 Lowercase u umlaut/diaeresis

V 86 Uppercase V

v 118 Lowercase v

W 87 Uppercase W

w 119 Lowercase w

X 88 Uppercase X

x 120 Lowercase x

Y 89 Uppercase Y

y 121 Lowercase y

�Y 238 Uppercase Y umlaut/diaeresis

�y 239 Lowercase y umlaut/diaeresis

Z 90 Uppercase Z

z 122 Lowercase z

Io 240 Uppercase thorn

lo 241 Lowercase thorn

177-178 Currently unde�ned

242-245 Currently unde�ned

(40 Left parenthesis

) 41 Right parenthesis

[91 Left bracket

] 93 Right bracket

f 123 Left brace

g 125 Right brace

� 251 Left guillemets

� 253 Right guillemets

< 60 Less than sign

> 62 Greater than sign

= 61 Equal sign

Collating Sequences 7

Table B-2. Collating Sequence (continued)

Character Decimal

Equivalent

Description

+ 43 Plus

- 45 Minus

� 254 Plus/Minus

1

4
247 One quarter

1

2
248 One half

� 179 Degree (ring)

% 37 Percent sign

* 42 Asterisk

. 46 Period (point)

, 44 Comma

; 59 Semicolon

: 58 Colon

> 185 Inverse question mark

? 63 Question mark

< 184 Inverse exclamation point

! 33 Exclamation point

/ 47 Slant

n 92 Reverse slant

j 124 Vertical bar

@ 64 Commercial at

& 38 Ampersand

35 Number sign (hash)

x 189 Section

$ 36 U. S. dollar sign

/c 191 U.S. cent sign

$ 187 British pound sign

$ 175 Italian lira sign

Y= 188 Japanese yen sign

f 190 Dutch guilder sign

186 General currency sign

8 Collating Sequences

Table B-2. Collating Sequence (continued)

Character Decimal

Equivalent

Description

" 34 Double quote

` 96 Opening single quote

' 39 Closing single quote

^ 96 Caret

~ 126 Tilde

� 168 Acute grave

� 169 Accent grave

^ 170 Accent circumex

� 171 Umlaut/Diaeresis

~ 172 Tilde accent

95 Underscore

| 246 Long dash

| 176 Overline

a 249 Feminine ordinal sign

o 250 Masculine ordinal sign

252 Solid

0-31 Control codes

127 DEL

128-159 Unde�ned control codes

255 Do not use

Note The � (uppercase AE ligature) and � (lowercase ae ligature) are
expanded for collating purposes to AE or ae and collates as:

ad AE Ae aE ae AF

The � (sharp s) is expanded for collating purposes to ss and collates
according to the German standard as:

sr ss st

Table B-3 through Table B-6 show the language-dependent variations
to the collating sequence.

Collating Sequences 9

Language-
Dependent
Variations

Following are the language-dependent variations to the collating
sequences for Spanish, Danish/Norwegian, Swedish, and Finnish.

Spanish The CH is considered a separate character, which collates between C
and D:

C@ CH Ch cH ch D Where @ equals anything; therefore, CH comes
after C followed by anything and before D.

The LL is considered a separate character, which collates between L
and M:

l@ LL Ll lL ll M Where @ equals anything; therefore, LL comes
after L followed by anything and before M.

N and ~N are not considered the same when collating; they follow one
another in the collating sequence:

Table B-3. Spanish Language-Dependent Variations

Character Decimal

Equivalent

Description

N 78 Uppercase N

n 110 Lowercase n

~N 182 Uppercase N tilde

~n 183 Lowercase n tilde

10 Collating Sequences

Danish/Norwegian The �, �, and �A collate at the end of the alphabet:

Table B-4.

Danish/Norwegian Language-Dependent Variations

Character Decimal

Equivalent

Description

Z 90 Uppercase Z

z 122 Lowercase z

� 211 Uppercase AE ligature

� 215 Lowercase ae ligature

� 210 Uppercase O crossbar

� 214 Lowercase o crossbar

�A 208 Uppercase A degree

�a 212 Lowercase a degree

Io 240 Uppercase thorn

lo 241 Lowercase thorn

Swedish The �A, �A, and �O collate at the end of the alphabet:

Table B-5. Swedish Language-Dependent Variations

Character Decimal

Equivalent

Description

Z 90 Uppercase Z

z 122 Lowercase z

�A 208 Uppercase A degree

�a 212 Lowercase a degree

�A 216 Uppercase A umlaut/diaeresis

�a 204 Lowercase a umlaut/diaeresis

�O 218 Uppercase O umlaut/diaeresis

�o 206 Lowercase o umlaut/diaeresis

Io 240 Uppercase thorn

lo 241 Lowercase thorn

Collating Sequences 11

Finnish The �A, �A, and �O collate at the end of the alphabet. � is considered
the same as �O and V, W, Y, and �U are considered the same:

Table B-6. Finnish Language-Dependent Variations

Character Decimal

Equivalent

Description

U 85 Uppercase U

u 117 Lowercase u

�U 237 Uppercase U acute

�u 199 Lowercase u acute

�U 173 Uppercase U grave

�u 203 Lowercase u grave

Û 174 Uppercase U circumex

û 195 Lowercase u circumex

V 86 Uppercase V

v 118 Lowercase v

W 87 Uppercase W

w 119 Lowercase w

X 88 Uppercase X

x 120 Lowercase x

Y 89 Uppercase Y

y 121 Lowercase y

�Y 238 Uppercase Y umlaut/diaeresis

�y 239 Lowercase y umlaut/diaeresis

�U 219 Uppercase U umlaut/diaeresis

�u 207 Lowercase u umlaut/diaeresis

Z 90 Uppercase Z

z 122 Lowercase z

�A 208 Uppercase A degree

�a 212 Lowercase a degree

�A 216 Uppercase A umlaut/diaeresis

�a 204 Lowercase a umlaut/diaeresis

12 Collating Sequences

Table B-6.

Finnish Language-Dependent Variations (continued)

Character Decimal

Equivalent

Description

�O 218 Uppercase O umlaut/diaeresis

�o 206 Lowercase o umlaut/diaeresis

� 210 Uppercase O crossbar

� 214 Lowercase o crossbar

Io 240 Uppercase thorn

lo 241 Lowercase thorn

Collating Sequences 13

C

EBCDIC Mapping

NLS provides mappings, through NLTRANSLATE and NLINFO, from HP
3000-supported character sets (ROMAN8, KANA8) to the various
national versions of the EBCDIC code. This applies to all native
languages supported on the HP 3000 and is done di�erently for each
language.

Background Data EBCDIC is an 8-bit code that originally used only 128 of the 256
possible code values. These 128 characters have almost the same
graphic representations as the traditional 7-bit, 128-character,
USASCII code. Three characters are di�erent. USASCII has the left
and right square brackets ([and]) and the caret (^), while EBCDIC
includes the American cent (/c), the logical OR (|), and the logical
NOT (:).

The EBCDIC code was modi�ed to accommodate the extra
characters required by European languages. For example, when the
German EBCDIC was de�ned some less important characters were
traded for German national characters, and the vertical bar (|)
became lower case n. Similar things happened to create EBCDIC
codes for Norwegian/Danish, Swedish/Finnish, Spanish, Belgian,
Italian, Portuguese, French, and English in the UK.

The 128 unused positions in the various national language EBCDIC
codes were later used to accommodate all national characters which
appeared in any of the EBCDIC codes. Each resulting country
extended code page became a superset of each existing national
EBCDIC. In the German table, the empty space was used to
accommodate characters from other languages, but the traditional
German characters (L, N, O, and �) retained their original position
in the German national EBCDIC. There are many country extended
code pages now, all showing exactly the same characters, but showing
them in di�erent locations for example, the character that has
decimal code 161 (octal 241, hexadecimal A1). In original EBCDIC,
it is the ~ (tilde); in German, the sharp �; in French, the � (diaeresis
accent); in Swedish/Finnish and Norwegian/Danish, the lower case �u;
in Italian, the lower case ��; and in Portuguese, the lower case �c.

This situation makes it necessary to map the Hewlett-Packard
ROMAN8 character set to the many di�erent EBCDIC country
extended code pages.

EBCDIC Mapping 1

ROMAN8 to EBCDIC
Mapping

In mapping from ROMAN8 to EBCDIC, characters look the same,
or as close as possible, before and after conversion. The majority
of the symbols appearing in ROMAN8 also exist in the EBCDIC
country extended code pages. In ROMAN8, there are nine characters
that have no similar EBCDIC character and six unde�ned characters.
Since there are no unde�ned characters in the EBCDIC country
extended code pages, 15 characters in EBCDIC have no look-alikes
in ROMAN8. For these characters a one-to-one mapping has been
de�ned as shown in Table C-1.

Table C-1. ROMAN8 to EBCDIC Mapping

Decimal Octal Hex ROMAN8 EBCDIC

169 251 A9 ` Grave accent j Logical OR

170 252 AA ^ Circumex accent : Logical NOT

172 254 AC ~ Tilde accent 2 Superscript 2

175 257 AF $ Italian lira sign 3 Superscript 3

177 261 B1 Unde�ned � MU character

178 262 B2 Unde�ned = Double underline

235 353 EB �S Uppercase S caron �Y Uppercase Y acute

236 354 EC �s Lowercase s caron �y Lowercase y acute

238 356 EE �Y Uppercase Y umlaut � Lowercase i without dot

242 362 F2 Unde�ned [Cedilla

243 363 F3 Unde�ned { Paragraph sign

244 364 F4 Unde�ned R Registered sign

245 365 F5 Unde�ned 3

4
Three quarters

246 366 F6 | Long dash SHY Syllable hyphen

252 374 FC Solid � Middle dot

The mapping to and from EBCDIC for the KANA8 character set is
de�ned by Japanese Industrial Standards (JIS) and IBM.

In all languages, the character mappings de�ned and implemented
are any character mapped from any Hewlett-Packard 8-bit character
set to EBCDIC and then back again, or vice versa, will result in the
original character value. A complete listing of the Hewlett-Packard
8-bit character set to EBCDIC mappings, and vice versa, can be
obtained by running the NLUTIL utility. (Refer to the MPE XL
System Utilities Reference Manual (32650-90081).)

2 EBCDIC Mapping

The mappings can be made available to a program by using NLINFO

item=13 or 14. The mappings are used by the NLTRANSLATE intrinsic,
which performs the Hewlett-Packard 8-bit to EBCDIC translation
or the reverse. The CTRANSLATE intrinsic maps USASCII or JISCII
to EBCDIC (and vice versa). For the languages NATIVE-3000 and
KATAKANA, there is no di�erence between the mappings produced
by NLTRANSLATE and CTRANSLATE.

EBCDIC Mapping 3

D

Converting 7-Bit to 8-Bit Data

Many Hewlett-Packard peripherals can be con�gured for 7-bit
operation with one of the European language national substitution
character sets. These peripherals must be converted to 8-bit
operation to access Native Language Support (NLS) capability. NLS
requires the use of 8-bit character sets that include USASCII and
native language characters.

NLS for western European languages is based on the ROMAN8
character set in which the additional characters required are assigned
to unique values between 128 and 255. Eight bits are required to
hold the value of a ROMAN8 character. All the special European
characters are accessible in ROMAN8 without losing any of the
USASCII characters.

The 7-bit national substitution sets do not o�er a full complement of
characters. New characters replace existing ones. For example, in
FRANCAIS, the graphic symbol # is not available. In Spanish and
French, even the substitutions made are not su�cient to obtain all
the necessary new characters. The use of mute characters is required.
Mute characters provide a single graphic on the terminal screen or
paper for two bytes of storage and two keystrokes. For example, an e
in Spanish or French would be produced with an accent mark plus
an e, whereas ROMAN8 contains the e as a single character. In any
one language, the graphic symbols for other European countries are
not available at all. For example, a French user does not have access
to the necessary characters to properly address a letter to someone
in Germany. The ROMAN8 8-bit character set eliminates these
problems.

Converting 7-Bit to 8-Bit Data 1

National
Substitution Sets

Many Hewlett-Packard peripherals support the 7-bit national
substitution sets for the following languages. They are listed here as
they appear on the terminal con�guration menus of the terminals
that support them:

DANSK/NORSK

DEUTSCH

ESPANOL

ESPANOL M

FRANCAIS

FRANCAIS M

ITALIANO (On a few devices only.)

SVENSK/SUOMI

UK

These are 7-bit national substitution character sets or languages
in which one or more of 12 USASCII graphic symbols are replaced
by other graphic symbols required for the national language being
used. The same 7-bit internal code is displayed as a di�erent symbol
than that assigned to it by USASCII. For example, in USASCII the
decimal value 35 is assigned to the graphic symbol \#"; but in the
FRANCAIS national substitution set, the same decimal value 35 is
assigned to the graphic symbol \;".

Users who have been using HP 262X terminals in 7-bit operation
for many years may have a substantial investment in data that is
encoded in one of these 7-bit national substitution character sets.
Hewlett-Packard makes several conversion utilities to convert this
data to ROMAN8.

2 Converting 7-Bit to 8-Bit Data

Conversion Utilities Because NLS involves using full 8-bit character sets for all data,
customers wanting to use the facility need to con�gure their
peripherals for 8-bit operation. (This is not possible for the HP 264X
terminals.)

Several utilities are available to convert existing data that has been
input with an HP 262X terminal con�gured for 7-bit operation. Refer
to Table D-1 for a listing of these utilities. These utilities need to be
run once for each �le needing conversion, and peripherals need to be
recon�gured for 8-bit operation.

Table D-1. Conversion Utilities

File Type Conversion Utility

EDITOR �les N7MF8CNV (text option)

Other MPE �les (all text) N7MF8CNV (text option)

MPE �les where text data is
organized in �elds and needs to start
in �xed columns

N7MF8CNV (text option; data
option if language is FRANCAIS M
or ESPANOL M)

MPE �les which include some
non-text data (for example, integer
or real)

N7MF8CNV (data option)

IMAGE databases I7DB8CNV

VPLUS forms �les V7FF8CNV

HP WORD �les HP WORD internal �les are based
on a subset of ROMAN8; no
conversion required

TDP �les Run N7MF8CNV, then change back
the command backslashes that were
converted in the chosen language
(the command backslash is required
for imbedded TDP commands)

Converting 7-Bit to 8-Bit Data 3

Conversion
Algorithm

The conversion utilities convert records or �elds from �les that are
assumed to have been created at an HP 262X terminal con�gured
for 7-bit operation and for a language other than USASCII. The
conversion from the HP 262X implementation of a European 7-bit
substitution character set to the 8-bit ROMAN8 character set.
This involves converting the values of certain characters stored in
the �le. Before conversion, the �le should look correct on an HP
262X terminal con�gured for 7-bit operation with the appropriate
substitution set. After conversion the �le will look correct on any
terminal con�gured for 8-bit operation.

Records and/or �elds from �les of all types are converted using the
same algorithm. The conversion a�ects only the 12 characters shown
in Table D-2 (all other characters remain unchanged). There are two
rows of information opposite each national substitution set listed in
Table D-2:

The upper row indicates the graphic assigned in 7-bit operation.

The lower row indicates the decimal value assigned the graphic in
ROMAN8 after using the conversion algorithm.

Table D-2. Character Conversion Decimal Values

National

Substitution Set

Character and

Conversion Decimal Value

USASCII #
35

'
39

@
64

[
91

n
92

]
93

^
94

`
96

f
123

j
124

g
125

~
126

SVE/SUOMI #
35

'
39

�E
220

�A
216

�O
218

�A
208

�U
219

�e
197

�a
204

�o
206

�a
212

�u
207

DANSK/NORSK #
35

'
39

@
64

�
211

�
210

�A
208

^
94

`
96

�
215

�
214

�a
212

~
126

FRANCAIS $

187
'
39

�a
200

�

179
�c
181

x
189

^
170

`
96

�e
197

�u
203

�e
201

..

171

FRANCAIS M $

187
'
39

�a
200

�

179
�c
181

x
189

^
170

`
96

�e
197

�u
203

�e
201

..

171

DEUTSCH $

187
'
39

x
189

�A
216

�O
218

�U
219

^
94

`
96

�a
204

�o
206

�u
207

�
222

UK $

187
'
39

@
64

[
91

n
92

]
93

^
94

`
96

f
123

j
124

g
125

~
126

ESPANOL #
35

'
39

@
64

<
184

~N
182

>
185

�

179
`
96

f
123

~n
183

g
125

~
126

ESPANOL M #
35

'
39

@
64

<
184

~N
182

>
185

�

179
`
96

f
123

~n
183

g
125

~
126

ITALIANO $

187
'
39

@
64

�

179
�c
181

�e
197

^
94

�u
203

�a
200

�o
202

�e
201

��
217

4 Converting 7-Bit to 8-Bit Data

Table D-3 shows the special character conversion for speci�ed
FRANCAIS M and ESPANOL M characters. If these characters
are followed immediately by certain characters, the two-character
combination is converted to a single ROMAN8 character, and the
�eld or record being converted is padded at the end with a blank.

Table D-3. Special Character Conversion

Language Character Conversion

Francais M ^ (94) followed by a, e, i, o, or u is converted to
@ (192), ê (193), �̂ (209), ô (194), or û (195).

+ (126) followed by a, e, i, o, or u is converted to
L (204), �e (205), �� (221), �o (206), or �u (207).

+ (126) followed by A, O, or U is converted to

X (216), �O (218), or �U (219).

Espanol M ((39) followed by a, e, i, o, or u is converted to
D (196), �e (197), �� (213), �o (198), or �u (199).

Note If these characters are followed by any other character, they are
converted to their ROMAN8 equivalent as shown in Table D-2.

Converting 7-Bit to 8-Bit Data 5

Conversion
Procedure

To convert 7-bit substitution data to 8-bit ROMAN8 data, perform
the following steps:

1. Determine which �les need to be converted. A �le must be
converted if the data was input from an HP 262X terminal
con�gured for 7-bit operation or for a national substitution set
other than USASCII.

2. Determine the national substitution set (language on the terminal
con�guration menu) from which the conversion should be done
for each �le. This is the language the HP 262X terminal was
con�gured for at the time the �le data was input.

3. Refer to Table D-1 to determine which utility should be used to
convert each �le.

4. Back up all �les to be converted (store to tape or SYSGEN).

5. Run each utility, supplying it with the language and �le names as
determined above. Instructions for running each utility are found
at the end of this appendix.

6. Con�gure all terminals and printers for 8-bit operation. (At
least one terminal must already be con�gured for 8-bit operation
when the V7FF8CNV utility is run.) Refer to System Startup,
Con�guration, and Shutdown Reference Manual (32650-90042) for
peripheral con�guration.

Figure D-1 is a sample dialog from a session executing N7MF8CNV
for both text and data �les.

6 Converting 7-Bit to 8-Bit Data

:RUN N7MF8CNV.PUB.SYS

HP European 7-Bit character sets are:

1. SVENSK/SUOMI

2. DANSK/NORSK

3. FRANCAIS M

4. FRANCAIS

5. DEUTSCH

6. UK

7. ESPANOL M

8. ESPANOL

9. ITALIANO

From which character set should conversion be done: 5

File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).

3. Test Conversion.

Type of file to be converted: 1

Name of text file to be converted: ABC

112 records converted in ABC

Name of text file to be converted: �Return�
File types which can be converted are:

1. MPE text files (each record converted as one field).

2. MPE data files (define fields; only defined fields are converted).

3. Test Conversion.

Type of file to be converted: 2

Name of data file to be converted: XYZ

Figure D-1. N7MF8CNV Dialog

Converting 7-Bit to 8-Bit Data 7

Please supply one at a time the field to be converted first:

Start, Length: 1,12

Start, Length: 15,30

Start, Length: 61, 6

Start, Length: �Return�

Data file XYZ: fields to be converted are:

1, 12

15, 30

61, 6

Correct? �Return�
287 records converted in XYZ

Name of data file to be converted: �Return�
File types which can be converted are:

1. MPE text files (each record converted as one field).

2. MPE data files (define fields; only defined fields are converted).

3. Test Conversion.

Type of file to be converted: �Return�
HP European 7-Bit character sets are:

1. SVENSK/SUOMI

2. DANSK/NORSK

3. FRANCAIS M

4. FRANCAIS

5. DEUTSCH

6. UK

7. ESPANOL M

8. ESPANOL

9. ITALIANO

From which character set should conversion be done: �Return�

END OF PROGRAM

:

Figure D-1. N7MF8CNV Dialog (continued)

8 Converting 7-Bit to 8-Bit Data

N7MF8CNV Utility N7MF8CNV converts data in EDIT/XL and other MPE text
and data �les from a Hewlett-Packard 7-bit national substitution
character set to ROMAN8. The user is prompted for language and
�le type (text or data). For a data �le, the user is prompted on each
�le for the starting position and length of each �eld (portion of a
record) to be converted. For a text �le, each record is converted as
one �eld.

The user is prompted for the name of each �le to be converted. Files
are read one record at a time; each record is converted (or certain
�elds of it are converted for data �les), and the result is written to a
new temporary �le. When all records have been read, converted, and
written to the new �le, the old (unconverted) copy is deleted, and the
new one saved in its place. An exception to this is KSAM �les, which
are converted in place, rather than written to a new temporary �le.
A count of the number of records read and converted is displayed on
$STDLIST.

This utility does not convert �les containing bytes with the eighth bit
set. This situation probably indicates a misunderstanding or error.
The likely causes are:

File is not a text or data �le.

File is a data �le where the �elds have been inaccurately located.

File was created on a terminal con�gured for 8-bit operation.

File has already been converted.

The maximum record length supported is 8192 bytes. The maximum
number of �elds supported in the records of a data �le is 256.

If the �le being converted contains user labels, these are copied to the
new �le without conversion. If a fatal error is encountered during the
conversion (for example, 8-bit data or �le system error found), the
conversion stops, the old copy of the �le is saved, and the new copy is
purged. The data is unchanged. An exception to this is KSAM �les.
Since these are converted in place, some records may already have
been modi�ed. KSAM �les (including key �le) should be restored
from the backup tape to ensure a consistent copy.

A �CTRL�Y entered during conversion displays the number of records
successfully converted, and conversion continues. On variable length
data �les, if a �eld or portion of a �eld is beyond the length of
the record just read, a warning is displayed and that �eld is not
converted on that record. Other �elds on the same record are
converted, and processing continues with subsequent records. After
each �le has been converted, the user is prompted for another �le
name.

Converting 7-Bit to 8-Bit Data 9

In addition to the text and data options, there is a test conversion
option that shows how the conversion algorithm operates. The
test conversion option must be run from a terminal con�gured for
7-bit operation with the chosen national substitution set. The user
is instructed to enter a string, and the result of the conversion is
displayed. The user does not have to switch back and forth between
7-bit and 8-bit operation to see the result. Each character converted
is displayed as a decimal value in parentheses rather than graphically.
Other characters are displayed unchanged.

At any point in the program, a �Return� exits the current program
level. A �Return� in response to a request for the starting position and
length of a �eld in a data �le indicates that the de�nition of �elds is
complete, and the program proceeds with the conversion of the data
�le. A �Return� entered in response to a request for a text �le name
indicates that the conversion of text �les is complete; the program
goes back to the question \Type of file to be converted?".

10 Converting 7-Bit to 8-Bit Data

I7DB8CNV Utility I7DB8CNV converts the character data in an IMAGE database from
any Hewlett-Packard 7-bit national substitution set to ROMAN8.
The program is a special version of the DBLOAD.PUB.SYS program,
and the conversion is done as part of a database load. The procedure
for running I7DB8CNV is:

1. Enter:

RUN DBUNLOAD.PUB.SYS

This unloads the database to tape.

2. Enter:

RUN DBUTIL.PUB.SYS,ERASE

This erases the database data.

3. Enter:

RUN I7DB8CNV

This converts the data and reloads it into the database.

I7DB8CNV requests the following:

1. The 7-bit national substitution set where the conversion is to be
made.

2. The database name.

3. The utility prompts the user: Convert all data fields of type

X or U?. A YES or �Return� response converts all data �elds of type
U or X. A NO response prompts the user in each data set for each
�eld of type U or X.

The single �eld in an automatic data set is not proposed for
conversion. Whether or not its values are converted depends on the
response to the item(s) it is linked to for detail data set(s). At the
end of each data set, the user is asked to con�rm that the correct
�elds to be converted from that data set have been selected.
Again, a �Return� is a YES answer; an N allows the user to change the
data �elds in the data set to be converted.

I7DB8CNV then loads the database from tape. As each record
is read, those �elds that were selected have their data converted
according to the algorithm for the 7-bit national substitution set
selected at the beginning of the program.

Converting 7-Bit to 8-Bit Data 11

I7DB8CNV does not allow 8-bit data (bytes with the high-order bit
set) in the data �elds it is trying to convert. The utility does not
abort, but the �eld in question is not converted, and a warning is
issued:

8-bit data encountered in item [itemname in DS data set]

If the program should abort for any reason during the conversion, the
user must log on again to clear the temporary �les used during the
conversion process before running the program again.

Figure D-2 shows the dialog from a sample run of the I7DB8CNV
program.

12 Converting 7-Bit to 8-Bit Data

RUN I7DB8CNV.PUB.SYS

HP European 7-bit character sets are:

1. SVENSK/SUOMI

2. DANSK/NORSK

3. FRANCAIS

4. FRANCAIS M

5. DEUTSCH

6. UK

7. ESPANOL

8. ESPANOL M

9. ITALIANO

From which character set should conversion be done: 2

WHICH DATA BASE: QWERTZ

Convert all fields of type U,X in all data sets (Y/N)? N

Data Set SET1 fields to be converted:

ITEM1 (Y/N)? �Return�
ITEM2 (Y/N)? �Return�
ITEM3 (Y/N)? N

ITEM4 (Y/N)? �Return�
Is Data Set SET1 correctly defined (Y/N)? �Return�

Data Set SET2 - Automatic Master

Data Set SET3 fields to be converted:

ITEM1 (Y/N)? �Return�
ITEM5 (Y/N)? N

ITEM6 (Y/N)? N

Is Data Set SET3 correctly defined (Y/N)? �Return�

DATA SET 1: 19 ENTRIES

DATA SET 2: 0 ENTRIES

DATA SET 3: 25 ENTRIES

END OF VOLUME 1, 0 READ ERRORS RECOVERED

DATA BASE LOADED

END OF PROGRAM

:

Figure D-2. I7DB8CNV Dialog

Converting 7-Bit to 8-Bit Data 13

V7FF8CNV Utility V7FF8CNV converts text and literals in VPLUS/XL forms �les,
from a Hewlett-Packard 7-bit national substitution character set, to
ROMAN8. V7FF8CNV is a special version of FORMSPEC.PUB.SYS
and is run the same way. Before running this utility back up the
forms �le (store to tape or SYSGEN), perform the following steps:

1. Con�gure your terminal for 8-bit operation. Refer to System
Startup, Con�guration, and Shutdown Reference Manual
(32650-90042) for information on peripheral con�guration.

2. Run V7FF8CNV.PUB.SYS, stepping through each form, �eld
de�nition, save �eld, and function key label. As each screen is
presented on the terminal, 7-bit substitution characters have
already been converted to their ROMAN8 equivalent.

3. If the data is correct, press �Enter� and proceed to the next screen.
If not, correct the data, then press �Enter� to continue.

4. After all screens are converted, recompile the forms �le as usual.

Conversion applies to substitution characters found in all source
record VPLUS/XL forms �les with the following exception:
substitution characters for "[" and "]" are not converted in screen
source records since these indicate start and stop of data �elds. The
following would be converted:

Text in screens.

Function key labels.

Initial values in save �eld de�nitions.

Initial values in �eld de�nitions.

Literals in processing speci�cations.

14 Converting 7-Bit to 8-Bit Data

V7FF8CNV and
Alternate Character
Sets

Hewlett-Packard block mode terminals, which have the capability of
handling all or part of ROMAN8, can be divided into two groups.
The group di�erentiation is based on how they handle alternate
character sets when con�gured for 8-bit operation.

Group 1 - HP 2392A,
2625A, 2627A, 2628A,

2700, and 150

Use shift-out and shift-in characters to switch back and forth between
an 8-bit base character set and an 8-bit alternate character set. This
is standard for new Hewlett-Packard terminals and printers.

Group 2 - HP 2622A,
2623A, 2626A, and

2382A

(Do not use an HP 2624A or HP 2624B, as they are unable to handle
8-bit characters properly.) Group 2 terminals use the eighth bit to
switch back and forth between a 7-bit base character set and a 7-bit
alternate character set. It is not possible to get true 8-bit operation
(ROMAN8) and use an alternate character set (for example, Line
Draw) at the same time because the base character set is not really
8-bit, but 7-bit with the additional characters de�ned in the alternate
character set. Using both 8-bit ROMAN8 characters and Line Draw
in the same �le is not recommended since the user must continually
rede�ne the alternate character set, switching back and forth between
Roman Extension and the line drawing character set. Shift-out
and shift-in are ignored by the terminal and return to the alternate
character set when the high-order bit is on.

Files using alternate character sets on one group of terminals do not
display correctly on the terminals of the other group, even when
terminals from both groups are con�gured for 8-bit operation.

The use of characters from an alternate set a�ects the conversion
procedure. If the forms �le does contain characters from an alternate
character set, choose one of the following alternatives:

Eliminate the use of alternate character sets (either with
FORMSPEC or while running V7FF8CNV).

De�ne alternate character sets to appear correctly on Group 1
terminals. This happens automatically when V7FF8CNV is run
from a Group 1 terminal. Characters from these alternate sets
appear as USASCII characters on a Group 2 terminal.

Converting 7-Bit to 8-Bit Data 15

V7FF8CNV
Operation

V7FF8CNV must be run on a terminal supported by VPLUS/XL,
which supports display of all characters, enhancements, and alternate
character sets used in the forms. If alternate character sets are used,
the HP 2392, 2625, 2627, 2628, 2700, or 150 are recommended.

The V7FF8CNV procedure is:

1. Con�gure your terminal type properly for 8-bit operation by using
the settings recommended in System Startup, Con�guration, and
Shutdown Reference Manual (32650-90042).

2. Run V7FF8CNV.PUB.SYS. Respond to prompts for the terminal
group and the national substitution set.

3. Press �Next� to begin going through the forms �le.

4. Press �Enter� after each screen until the end of the forms �le is
reached. Two exceptions are:

a. Enter Y in Function key labels on each FORM MENU and
the GLOBALS MENU to see and convert function key labels.

b. On the �eld de�nition screen, if the processing speci�cations
have converted data that you want to save, press the FIELD
TOGGLE key then �Enter� to save that conversion.

Note If you try to redisplay a screen that has already been converted and
this conversion has been saved by pressing �Enter�, a message Form
contains 8 bit data is displayed. Do not press �Enter� again, but
continue on through the forms �le.

5. Compile your forms �le as usual.

These conversion utilities are designed to be used once only to
update existing data to 8-bit compatibility.

16 Converting 7-Bit to 8-Bit Data

E

Application Guidelines

Currently, six conventional programming languages (SPL,
FORTRAN, COBOL II/XL, Pascal, RPG, and BASIC) are
supported. General and speci�c guidelines for each supported
programming language are included in this appendix to aid the
programmer in language selection for writing a local language or
localizable application.

All Programming
Languages

General guidelines for all languages supported include the following:

Create and use message catalogs. Do not hard-code any text
messages, including prompts. For example, never require a
hard-coded Y or N in response to a question. The equivalents of YES
and NO for every language supported by NLS are available through
a call to NLINFO item=8.

Use the NLS date and time formatting intrinsics. Do not use
the MPE XL intrinsics DATELINE, FMTCLOCK, FMTDATE, and
FMTCALENDAR. They all result in American-style output.

Check a character's attribute, available through NLINFO item 12, to
determine printability. Alternatively, use the NLREPCHAR intrinsic
to check whether the character gets replaced or not. Do not use
range checking on the binary value of a character to decide whether
it is printable or not.

Use the NLCOLLATE intrinsic to compare character strings. Do not
compare character strings (IF abc > pqr . . . , where abc and pqr
are both character strings). Since these comparisons are based
on binary values of characters as they appear in the USASCII
sequence, they usually produce incorrect results. Obviously, this is
not applicable in case an exact match is tested (IF abc = pqr . . .).

Use NLSCANMOVE for upshifting and downshifting. Do not upshift
or downshift based on the character's binary value. For a-z in
USASCII, upshifting can be done by subtracting 32 from the
binary value. This does not work for all characters in all character
sets.

To determine whether a character is uppercase or lowercase, use
the character attributes table available through NLINFO item=12.
Do not use a character's binary value in range checks to decide
whether it is an uppercase or lowercase alphabetic character.

Application Guidelines 1

Most Hewlett-Packard and user-written software assumes that
numeric characters (0 through 9) are represented by code values 48
through 57 (decimal). In general, this is valid because standard
Hewlett-Packard 8-bit character sets are supersets of USASCII.
However, some character sets may have di�erent or additional
characters that should be treated as numeric. Therefore, if at all
possible, avoid doing range checks on code values to recognize or
process numeric characters. For recognition of numeric characters,
interrogate the character attributes table, available through a call
to NLINFO item=12.

Use the NLTRANSLATE intrinsic, not CTRANSLATE, to translate to or
from EBCDIC.

Do your own formatting using the decimal separator, the thousands
separator, and the currency symbol available through NLINFO

item=9 and 10. Use the standard statements to output into a
character string type variable. Replace the decimal and thousands
separators by those required in the language being used. Do
not use standard output statements (PRINT, WRITE) for real
numbers, since this formats them according to the de�nition of the
programming language. This usually results in American formats
with a period used as the decimal separator.

Input data into a character string, and preprocess the string to
replace any decimal or thousands separators used in the American
formats. Then supply the string to the standard READ statement.
Standard input statements for real numbers (READ, ACCEPT)
should not be used, as they accept the period as the decimal
separator. Many non-American users input something else (for
example, a comma).

Always store standard formats for date and time (like those
returned by FMTCALENDAR and FMTCLOCK) if dates or times have to
be stored in �les or databases. Never store a date or a time in a
local format. Intrinsics are available to convert from the standard
format to a local format, but the reverse is not always possible.

Use VPLUS/XL local edits. VPLUS/XL edit processing
speci�cations and terminal edit processing statements are separate
and are not checked for compatibility. There is no check speci�ed
as a terminal local edit consistent with the language-dependent
symbol for the decimal point (DEC TYPE EUR, DEC TYPE US) in the
con�guration phase.

2 Application Guidelines

COBOL II/XL (HP
32233A)

Speci�c guidelines for COBOL II/XL, include the following:

Use the character attributes table of the character set being used
to determine whether a character is alphabetic or numeric. This
table is available through a call to NLINFO itemnum=12. Do not
use the COBOL II/XL ALPHABETIC and NUMERIC class tests
to determine this (for example, IF data-item IS ALPHABETIC).

Do not use input-output translation by COBOL II/XL from an
EBCDIC character set by means of the ALPHABET-NAME and
CODE SET clause. Use the NLTRANSLATE intrinsic.

Use the NLS date and time formatting intrinsics for display
purposes. Do not use TIME-OF-DAY and CURRENT-DATE. These
items are formatted in the conventional American way and are
unsuitable for use in many countries.

Use the COLLATING SEQUENCE IS language-name or the COLLATING
SEQUENCE IS language-ID phrase in the enhanced SORT and
MERGE statements to specify the language name or number
whose collating sequence is to be used. Do not use the COLLATING
SEQUENCE IS alphabet-name phrase for sorting and/or merging in
COBOL II/XL.

In condition-name data descriptions (88-level items), avoid
the THRU option in the VALUE clause (for example, 88
SELECTED-ITEMS VALUE "A" THRU "F").

FORTRAN (HP
32102B)

Speci�c guidelines for FORTRAN include the following:

Format speci�ers N and M output in an American numerical format
(with commas between thousands and a decimal point) or an
American monetary format (like N, with a $ added). Additional
post-processing is required.

Outputting logicals results in a T (for true) or an F (for false).
Similarly, T and F are expected for logical input. A non-English
speaking user may want to use another character.

The intrinsic functions RNUM, DNUM, and STR all assume an
American format in the input and produce an American-formatted
output.

The EXTIN' and INEXT' entry points of the compiler library assume
American formats. Do not use them.

Application Guidelines 3

SPL (HP 32100A) Speci�c guidelines for SPL include the following:

To determine whether or not the byte is alphabetic, numeric, or
special, consult the character attribute table of the character set
used. This table is available through NLINFO item 12. Do not use
the "IF xyz = (or <>) ALPHA (or NUMERIC or SPECIAL)"
construct to determine this.

Do not use the MOVE . . . WHILE construct or the MVBW
machine instruction. It stops moving bytes based on the USASCII
binary value of bytes, then determines if the byte is alphabetic or
numeric. Use the NLSCANMOVE intrinsic.

RPG (HP 32104A) The features of NLS are accessed primarily through intrinsic
calls. Using MPE and subsystem intrinsics from RPG requires
expertise. For this reason, the use of RPG as a vehicle to write
localizable applications or to access native language structures is
not recommended. Some RPG functions, such as date and numeric
formatting, provide some control for national custom di�erences, but
the choices are very limited and can only be made by recompiling.

BASIC (HP 32101B) The features of NLS are accessed primarily through intrinsic calls.
Since most intrinsics are not callable from BASIC, the use of BASIC
as a language to write localizable programs is not supported.

Pascal (HP 32106A) A type of CHAR indicates an 8-bit entry, and allows processing of
8-bit characters without problems.

4 Application Guidelines

F

Example Programs

The example programs in this appendix demonstrate calls to
NLS-related intrinsics from several programming languages. They are
not intended to be used as application programs.

Example Programs 1

Sort from a COBOLII
Program

This program shows how to sort an input �le (formal designator
INPTFILE) to an output �le (formal designator OUTPFILE) using a
COBOLII SORT verb.

Lines 3.5 and 4.1 show how to specify the language to determine the
collating sequence.

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 * --

1.4 ENVIRONMENT DIVISION.

1.5 INPUT-OUTPUT SECTION.

1.6 FILE-CONTROL.

1.7 SELECT INPTFILE ASSIGN TO "INPTFILE".

1.8 SELECT OUTPFILE ASSIGN TO "OUTPFILE".

1.9 SELECT SORTFILE ASSIGN TO "SORTFILE".

2 * --

2.1 DATA DIVISION.

2.2 FILE SECTION.

2.3 SD SORTFILE.
2.4 01 SORTFILE-RECORD.

2.5 05 SORTFILE-KEY PIC X(4).

2.6 05 FILLER PIC X(68).

2.7

2.8 FD INPTFILE.

2.9 01 INPTFILE-RECORD PIC X(72).

3

3.1 FD OUTPFILE.

3.2 01 OUTPFILE-RECORD PIC X(72).

3.3

3.4 WORKING-STORAGE SECTION.

3.5 01 LANGUAGE PIC S9(4) COMP VALUE 12.

3.6 * --

3.7 PROCEDURE DIVISION.

3.8 MAIN SECTION.

3.9 SORT SORTFILE

4 ASCENDING SORTFILE-KEY

4.1 SEQUENCE IS LANGUAGE

4.2 USING INPTFILE

4.3 GIVING OUTPFILE.

4.4 STOP RUN.

2 Example Programs

In the example execution, the input and output �les are associated
with the terminal ($STDIN and $STDLIST):

:FILE INPTFILE=$STDIN
:FILE OUTPFILE=$STDLIST

:RUN PROGRAM;MAXDATA=12000

character

credt

DEBIT

:EOD

credit

character

DEBIT

END OF PROGRAM

:

Example Programs 3

Sort from a Pascal
Program

This program shows how to sort an input �le (formal designator
INPF) to an output �le (formal designator OUTF) using the SORTINIT
intrinsic call.

1 $USLINIT$

2 $STANDARD_LEVEL 'HP3000'$

3

4 PROGRAM example (inpf,outf);

5

6 TYPE

7 smallint = -32768 .. 32767;

8

9 sort_rec = RECORD

10 position: smallint;

11 length: smallint;

12 seq_type: smallint;

13 END;

14

15 char_seq = RECORD

16 array_code:smallint;

17 language: smallint;
18 END;

19

20 file_arr = RECORD

21 num_file: smallint;

22 num_zero: smallint;

23 END;

24

25 file_rec = PACKED ARRAY [1..72] of CHAR;

26

27 file_num = FILE of file_rec;

28

29 VAR

30 numkeys: smallint;

31 reclen: smallint;

32 keys: sort_rec;

33 cseq: char_seq;

34 inp: file_arr;

35 out: file_arr;

36 inpf: file_num;

37 outf: file_num;

38

39 PROCEDURE sortinit; INTRINSIC;

40 PROCEDURE sortend; INTRINSIC;

41

42 PROCEDURE main;

43 BEGIN

44 numkeys := 1;

45 reclen :=72;
46

4 Example Programs

47 WITH keys DO

48 BEGIN

49 position := 1;
50 length := 4;

51 seq_type := 9;

52 END;

53

54 WITH cseq DO

55 BEGIN

56 array_code:=1;

57 language:= 12;

58 END;

59

60 WITH inp DO

61 BEGIN

62 RESET (inpf);

63 num_file := FNUM (inpf);

64 num_zero := 0;

65 END;

66

67 WITH out DO

68 BEGIN

69 REWRITE (outf);

70 num_file := FNUM (outf);

71 num_zero := 0;

72 END;

73

74 sortinit (inp,out,,reclen,,numkeys,keys,,,,,,,,cseq);

75 sortend;

76

77 END;
78

79 BEGIN

80 main;

81 END.

Example Programs 5

In the example execution, the input and output �les are associated
with the terminal ($STDIN and $STDLIST):

:FILE INPF=$STDIN
:FILE OUTF=$STDLIST

:RUN PROGRAM;MAXDATA=12000

character

credit

DEBIT

:EOD

credit

character

DEBIT

END OF PROGRAM

:

6 Example Programs

Sort from a
FORTRAN Program

This program shows how to sort an input �le (formal designator
FTN21) to an output �le (formal designator FTN22) using the
SORTINIT intrinsic call.

1 $CONTROL USLINIT,FILE=21-22

2 PROGRAM EXMP

3 INTEGER FNUM

4 INTEGER N(4)

5 INTEGER KEYS (3)

6 INTEGER CSEQ (2)

7 SYSTEM INTRINSIC SORTINIT, SORTEND

8 C

9 C KEY (3) = 9 character type key

10 C CSEQ(2) = 12 Spanish collating sequence

11 C

12 KEYS (1) = 1

13 KEYS (2) = 4

14 KEYS (3) = 9

15 CSEQ (1) = 1

16 CSEQ (2) = 12
17 C

18 C Sort file FTN21 into FTN22

19 C

20 N (1) = FNUM (21)

21 N (3) = FNUM (22)

22 N (2) = 0

23 N (4) = 0

24 CALL SORTINIT (N(1),N(3),,,,1,KEYS,,,,,,,,CSEQ)

25 CALL SORTEND

26 STOP

27 END

In the example execution, the input and output �les are associated
with the terminal ($STDIN and $STDLIST):

:FILE FTN21=$STDIN

:FILE FTN22=$STDLIST

:RUN PROGRAM;MAXDATA=12000

character

credit

DEBIT

:EOD

credit

character

DEBIT

END OF PROGRAM
:

Example Programs 7

Format Date and
Time from a
FORTRAN Program

The user is asked to enter a language. All date and time formatting
and conversion is done by using the language entered by the user.
The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and
CLOCK.

1 $CONTROL USLINIT

2 PROGRAM EXAMPLE

3 LOGICAL LANGUAGE(8)

4 CHARACTER *16 BLANGUAGE

5 C

6 LOGICAL LERROR(2)

7 INTEGER IERROR(2)

8 C

9 CHARACTER *13 BCUSTOMDATE

10 CHARACTER *28 BDATE

11 CHARACTER *18 BCALENDAR

12 CHARACTER *8 BCLOCK

13 C

14 LOGICAL LWEEKDAYS(42)
15 CHARACTER *12 BWEEKDAYS(7)

16 C

17 LOGICAL LMONTHS(72)

18 CHARACTER *12 BMONTHS(12)

19 C

20 EQUIVALENCE (LANGUAGE, BLANGUAGE)

21 EQUIVALENCE (LWEEKDAYS,BWEEKDAYS)

22 EQUIVALENCE (LMONTHS, BMONTHS)

23 EQUIVALENCE (LERROR, IERROR)

24 LOGICAL DATE

25 INTEGER *4 TIME

26 INTEGER LANGNUM, LGTH, WEEKDAY, MONTH

27 SYSTEM INTRINSIC CLOCK, CALENDAR, ALMANAC, NLINFO,

28 # NLFMTCLOCK, QUIT, NLCONVCLOCK, NLFMTDATE,

29 # NLFMTCALENDAR, NLFMTCUSTDATE, NLCONVCUSTDATE

30 C

31 1001 FORMAT (1X,A12)

32 1002 FORMAT (1X,A13)

33 1003 FORMAT (1X,A18)

34 1004 FORMAT (1X,A8)

35 1005 FORMAT (1X,A28)

36 2001 FORMAT (A16)

37 2002 FORMAT (A1)

38 C

39 1 WRITE (6,*)

8 Example Programs

40 #"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

41 READ (5, 2001) BLANGUAGE

42 C
43 C NLINFO item 22 returns the corresponding

44 C lang number in integer format for this language.

45 C

46 CALL NLINFO (22, LANGUAGE, LANGNUM, LERROR)

47 IF (IERROR(1) .EQ. 0) GO TO 400

48 C

49 C

50 100 IF (IERROR(1) .NE. 1) GO TO 200

51 C

52 WRITE (6, *) "NLS IS NOT INSTALLED"

53 CALL QUIT (1001)

54 C

55 200 IF (IERROR(1) .NE. 2) GO TO 300

56 C

57 WRITE (6, *) "THIS LANGUAGE IS NOT CONFIGURED"

58 CALL QUIT (1002)

59 C

60 300 CALL QUIT (1000 + IERROR(1))

61 C

62 C This obtains the machine internal clock and calendar

63 C formats, which are provided by the HP 3000 intrinsics.

64 C

65 400 TIME = CLOCK

66 DATE = CALENDAR

67 C

68 C Call ALMANAC and convert the machine internal

69 C date format into numeric values, which will be used

70 C as indices into the name tables.
71 C

72 CALL ALMANAC(DATE, LERROR, , MONTH, ,WEEKDAY)

73 IF (IERROR(1) .NE. 0) CALL QUIT (2000 + IERROR(1))

74 C

75 C Call the tables for month and weekday names and

76 C display todays day name and the current month's name.

77 C

78 CALL NLINFO(5, LMONTHS, LANGNUM, LERROR)

79 IF (IERROR(1) .NE. 0) CALL QUIT (3000 + IERROR(1))

80 C

81 WRITE (6, 1001) BMONTHS (MONTH)

82 C

83 CALL NLINFO(7, LWEEKDAYS, LANGNUM, LERROR)

84 IF (IERROR(1) .NE. 0) CALL QUIT (4000 + IERROR(1))

Example Programs 9

85 C

86 WRITE (6, 1001) BWEEKDAYS (WEEKDAY)

87 C
88 C Format the machine internal date format

89 C into the custom date format (short version).

90 C The result will be displayed.

91 C

92 CALL NLFMTCUSTDATE (DATE, BCUSTOMDATE, LANGNUM, LERROR)

93 IF (IERROR(1) .NE. 0) CALL QUIT (5000 + IERROR(1))

94 C

95 WRITE (6,*) "CUSTOM DATE:"

96 WRITE (6,1002) BCUSTOMDATE

97 C

98 C Use the output of NLFMTCUSTDATE as input for

99 C NLCONVCUSTDATE and convert back to the internal format.

100 C

101 DATE = NLCONVCUSTDATE(BCUSTOMDATE, 13, LANGNUM, LERROR)

102 IF (IERROR(1) .NE. 0) CALL QUIT (6000 + IERROR(1))

103 C

104 C Format the machine internal date format into the

105 C date format (long format) according to the language.

106 C The result will be displayed.

107 C

108 CALL NLFMTCALENDAR(DATE, BCALENDAR, LANGNUM, LERROR)

109 IF (IERROR(1) .NE. 0) CALL QUIT (7000 + IERROR(1))

110 C

111 WRITE (6,*) "DATE FORMAT:"

112 WRITE (6,1003) BCALENDAR

113 C

114 C Format the machine internal time format into the

115 C language-dependent clock format.
116 C The result will be displayed.

117 C

118 CALL NLFMTCLOCK(TIME, BCLOCK, LANGNUM, LERROR)

119 IF (IERROR(1) .NE. 0) CALL QUIT (8000 + IERROR(1))

120 C

121 WRITE (6,*) "TIME FORMAT:"

122 WRITE (6,1004) BCLOCK

123 C

124 C Use the output of NLFMTCLOCK as input for

125 C NLCONVCLOCK and convert back to the internal format.

126 C

127 TIME = NLCONVCLOCK(BCLOCK, 8, LANGNUM, LERROR)

128 IF (IERROR(1) .NE. 0) CALL QUIT (9000 + IERROR(1))

129 C

130 C Format the machine internal time and date format

131 C into the language dependent format.

132 C The result will be displayed.

133 C

134 CALL NLFMTDATE(DATE, TIME, BDATE, LANGNUM, LERROR)

135 IF (IERROR(1) .NE. 0) CALL QUIT (10000 + IERROR(1))

10 Example Programs

136 C

137 WRITE (6,*) "DATE AND TIME FORMAT:"

138 WRITE (6, 1005) BDATE
139 C

140 C

141 STOP

142 END

Executing the program gives the following result:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

NATIVE-3000

JANUARY

TUESDAY

CUSTOM DATE:

01/31/84

DATE FORMAT:

TUE, JAN 31, 1984

TIME FORMAT:

5:15 PM

DATE AND TIME FORMAT:

TUE, JAN 31, 1984, 5:15 PM

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

8

January
Dienstag

CUSTOM DATE:

31.01.84

DATE FORMAT:

Di., 31. Jan. 1984

TIME FORMAT:

17:15

DATE AND TIME FORMAT:

Di., 31. Jan. 1984, 17:15

END OF PROGRAM

:

Example Programs 11

Format Date and
Time from an SPL
Program

The user is asked to enter a language. All date and time formatting
and conversion is done by using the language entered by the user.
The time and date used in the examples is the current system time
obtained by calling the HP 3000 system intrinsics CALENDAR and
CLOCK.

1 $CONTROL USLINIT

2 BEGIN

3 LOGICAL ARRAY

4 L'ERROR (0:1),

5 L'LANGUAGE (0:7),

6 L'PRINT (0:39),

7 L'CUSTOM'DATE (0:6),

8 L'DATE (0:13),

9 L'CALENDAR (0:8),

10 L'MONTHS (0:71),

11 L'WEEKDAYS (0:41),

12 L'CLOCK (0:3);

13

14 BYTE ARRAY

15 B'PRINT(*) = L'PRINT,
16 B'CUSTOM'DATE(*) = L'CUSTOM'DATE,

17 B'CALENDAR(*) = L'CALENDAR,

18 B'DATE(*) = L'DATE,

19 B'MONTHS(*) = L'MONTHS,

20 B'WEEKDAYS(*) = L'WEEKDAYS,

21 B'CLOCK(*) = L'CLOCK;

22

23 BYTE POINTER

24 BP'PRINT;

25

26 DOUBLE

27 TIME;

28

29 LOGICAL

30 DATE,

31 HOUR'MINUTE = TIME,

32 SECONDS = TIME + 1;

33

34 INTEGER

35 YEAR,

36 MONTH,

37 DAY,

38 WEEKDAY,

39 LGTH,

40 LANGNUM;

41

12 Example Programs

42 DEFINE

43 WEEKDAY'NAME = B'WEEKDAYS((WEEKDAY - 1) * 12)#,

44
45 MONTH'NAME = B'MONTHS((MONTH - 1) * 12)#,

46

47 ERR'CHECK = IF L'ERROR(0) <> 0 THEN

48 QUIT #,

49

50 CCNE = IF <> THEN

51 QUIT #,

52

53 DISPLAY = MOVE B'PRINT := #,

54

55 ON'STDLIST = ,2;

56 @BP'PRINT := TOS;

57 LGTH := LOGICAL(@BP'PRINT) -

58 LOGICAL(@B'PRINT);

59 PRINT(L'PRINT, -LGTH, 0) #;

60

61 INTRINSIC

62 READ,

63 QUIT,

64 PRINT,

65 CLOCK,

66 CALENDAR,

67 ALMANAC,

68 NLINFO,

69 NLFMTCLOCK,

70 NLCONVCLOCK,

71 NLFMTDATE,

72 NLFMTCALENDAR,
73 NLFMTCUSTDATE,

74 NLCONVCUSTDATE;

75

76

77 << Start of main code.

78 The user is asked to enter a language name or number.>>

79

80 DISPLAY

81 "ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

82 ON'STDLIST;

83

84 READ(L'LANGUAGE,-16);

85

86 << NLINFO item 22 returns the corresponding

87 lang number in integer format for this language. >>

88

Example Programs 13

89 NLINFO(22,L'LANGUAGE,LANGNUM,L'ERROR);

90 IF L'ERROR(0) <> 0 THEN

91 BEGIN
92 IF L'ERROR(0) = 1 THEN

93 BEGIN

94 DISPLAY

95 "NL/3000 IS NOT INSTALLED"

96 ON'STDLIST;

97 QUIT(1001);

98 END

99 ELSE

100 IF L'ERROR(0) = 2 THEN

101 BEGIN

102 DISPLAY

103 "THIS LANGUAGE IS NOT CONFIGURED"

104 ON'STDLIST;

105 QUIT(1002);

106 END

107 ELSE

108 QUIT (1000 + L'ERROR(0));

109 END;

110

111 << This obtains the machine internal clock and

112 calendar formats which is maintained by MPE.>>

113

114 TIME := CLOCK;

115

116 DATE := CALENDAR;

117

118 << Call ALMANAC and convert the machine internal date

119 format into numeric values, which will be used as indices
120 into the name tables.>>

121

122 ALMANAC(DATE, L'ERROR, , MONTH, , WEEKDAY);

123 ERR'CHECK (2000 + L'ERROR(0));

124

125 << Call the tables for month and weekday names and

126 display todays day name and the current month's name.>>

127

128 NLINFO(5, L'MONTHS, LANGNUM, L'ERROR);

129 ERR'CHECK (3000 + L'ERROR(0));

130

131 DISPLAY MONTH'NAME,(12) ON'STDLIST;

132

133 NLINFO(7, L'WEEKDAYS, LANGNUM, L'ERROR);

134 ERR'CHECK (4000 + L'ERROR(0));

135

136 DISPLAY WEEKDAY'NAME,(12) ON'STDLIST;

137

14 Example Programs

138 << Format the machine internal date format

139 into the custom date format (short version).

140 The result will be displayed.>>
141

142 NLFMTCUSTDATE(DATE,L'CUSTOM'DATE,LANGNUM,L'ERROR);

143 ERR'CHECK (5000 + L'ERROR(0));

144

145 DISPLAY "CUSTOM DATE:" ON'STDLIST;

146 DISPLAY B'CUSTOM'DATE,(13) ON'STDLIST;

147

148 << Use the output of NLFMTCUSTDATE as input for

149 NLCONVCUSTDATE and convert back to the internal format.>>

150

151 DATE := NLCONVCUSTDATE(B'CUSTOM'DATE,13,LANGNUM,L'ERROR);

152 ERR'CHECK (6000 + L'ERROR(0));

153

154 << Format the machine internal date format into the

155 date format (long format) according to the language.

156 The result will be displayed.>>

157

158 NLFMTCALENDAR(DATE,L'CALENDAR,LANGNUM,L'ERROR);

159 ERR'CHECK (7000 + L'ERROR(0));

160

161 DISPLAY "DATE FORMAT:" ON'STDLIST;

162 DISPLAY B'CALENDAR,(18) ON'STDLIST;

163

164 << Format the machine internal clock format

165 into the language-dependent clock format.

166 The result will be displayed.>>

167

168 NLFMTCLOCK(TIME,L'CLOCK,LANGNUM,L'ERROR);
169 ERR'CHECK (8000 + L'ERROR(0));

170

171 DISPLAY "TIME FORMAT:" ON'STDLIST;

172 DISPLAY B'CLOCK,(8) ON'STDLIST;

173

174 << Use the output of NLFMTCLOCK as input for

175 NLCONVCLOCK and convert back to the internal format.>>

176

177 TIME := NLCONVCLOCK(B'CLOCK,8,LANGNUM,L'ERROR);

178 ERR'CHECK (9000 + L'ERROR(0));

179

180 << Format the machine internal time and date

181 format into the language-dependent format.

182 The result will be displayed.>>

183

Example Programs 15

184 NLFMTDATE(DATE,TIME,L'DATE,LANGNUM,L'ERROR);

185 ERR'CHECK (10000 + L'ERROR(0));

186
187 DISPLAY "DATE AND TIME FORMAT:" ON'STDLIST;

188 DISPLAY B'DATE,(28) ON'STDLIST;

189

190 END.

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

GERMAN

January

Dienstag

CUSTOM DATE:

31.01.84

DATE FORMAT:

Di., 31. Jan. 1984

TIME FORMAT:

17:12

DATE AND TIME FORMAT:

Di., 31. Jan. 1984, 17:12

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

0

JANUARY

TUESDAY
CUSTOM DATE:

01/31/84

DATE FORMAT:

TUE, JAN 31, 1984

TIME FORMAT:

5:13 PM

DATE AND TIME FORMAT:

TUE, JAN 31, 1984, 5:13 PM

END OF PROGRAM

:

16 Example Programs

Scan and Move
Character Strings
from a COBOLII
Program

In this program, there are six di�erent calls to NLSCANMOVE. In
every call, all parameters are passed to NLSCANMOVE. Since the
upshift/downshift table and the character attributes table are
optional parameters, they may be omitted. For performance reasons
(if NLSCANMOVE is called frequently), they should be passed to the
intrinsic after being read in by the appropriate calls to NLINFO.

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION.

1.5 DATA DIVISION.

1.6 WORKING-STORAGE SECTION.

1.7 77 QUITPARM PIC S9(4) COMP VALUE 0.

1.8 77 LANGNUM PIC S9(4) COMP VALUE 0.

1.9 77 FLAGS PIC S9(4) COMP VALUE 0.

2 77 LEN PIC S9(4) COMP VALUE 70.

2.1 77 NUMCHAR PIC S9(4) COMP VALUE 0.

2.2
2.3 01 TABLES.

2.4 05 CHARSET-table PIC X(256) VALUE SPACES.

2.5 05 UPSHIFT-table PIC X(256) VALUE SPACES.

2.6 05 DOWNSHIFT-table PIC X(256) VALUE SPACES.

2.7

2.8 01 STRINGS.

2.9 05 INSTRING.

3 10 INSTR1 PIC X(40) VALUE SPACES.

3.1 10 INSTR2 PIC X(30) VALUE SPACES.

3.2 05 OUTSTRING PIC X(70) VALUE SPACES.

3.3 05 LANGUAGE PIC X(16) VALUE SPACES.

3.4

3.5 01 ERRORS.

3.6 05 ERR1 PIC S9(4) COMP.

3.7 88 NO-NLS VALUE 1.

3.8 88 NOT-CONFIG VALUE 2.

3.9 05 ERR2 PIC S9(4) COMP VALUE 0.

4

4.1 PROCEDURE DIVISION.

4.2 START-PGM.

4.3 * Initializing the arrays.

4.4

4.5 MOVE "abCDfg6ijkaSXbVcGjGf1f$E!SPO6dLe\1a23%&7"

4.6 TO INSTR1.

4.7 MOVE "a 123&i12fSXgVhklKLabCDASPO6i"

4.8 TO INSTR2.

4.9

Example Programs 17

5 * The user is asked to enter a language name or

5.1

5.2 DISPLAY
5.3 "ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):".

5.4 ACCEPT LANGUAGE.

5.5

5.6 CONVERT-NAME-NUM.

5.7 * NLINFO item 22 returns the corresponding

5.8 * lang number in integer format for this language.

5.9

6 CALL INTRINSIC "NLINFO" USING 22,

6.1 LANGUAGE,

6.2 LANGNUM,

6.3 ERRORS.

6.4 IF ERR1 NOT EQUAL 0

6.5 IF NO-NLS

6.6 DISPLAY "NL/3000 IS NOT INSTALLED"

6.7 CALL INTRINSIC "QUIT" USING 1001

6.8 ELSE

6.9 IF NOT-CONFIG

7 DISPLAY "THIS LANGUAGE IS NOT CONFIGURED"

7.1 CALL INTRINSIC "QUIT" USING 1002

7.2 ELSE

7.3 COMPUTE QUITPARM = 1000 + ERR1

7.4 CALL INTRINSIC "QUIT" USING QUITPARM.

7.5

7.6 GET-TABLES.

7.7 * Obtain the character attributes table

7.8 * using NLINFO item 12.

7.9

8 CALL INTRINSIC "NLINFO" USING 12,
8.1 CHARSET-table,

8.2 LANGNUM,

8.3 ERRORS.

8.4 IF ERR1 NOT EQUAL 0

8.5 COMPUTE QUITPARM = 2000 + ERR1

8.6 CALL INTRINSIC "QUIT" USING QUITPARM.

8.7

8.8 * Obtain the upshift table using NLINFO item 15.

8.9

9 CALL INTRINSIC "NLINFO" USING 15,

9.1 UPSHIFT-table,

9.2 LANGNUM,

9.3 ERRORS.

9.4 IF ERR1 NOT EQUAL 0

9.5 COMPUTE QUITPARM = 3000 + ERR1

9.6 CALL INTRINSIC "QUIT" USING QUITPARM.

9.7

18 Example Programs

9.8 * Obtain the downshift table using NLINFO item 16.

9.9

10 CALL INTRINSIC "NLINFO" USING 16
10.1 DOWNSHIFT-table,

10.2 LANGNUM,

10.3 ERRORS.

10.4 IF ERR1 NOT EQUAL 0

10.5 COMPUTE QUITPARM = 4000 + ERR1

10.6 CALL INTRINSIC "QUIT" USING QUITPARM.

10.7

10.8 DISPLAY "THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"

10.9 DISPLAY INSTRING.

11

11.1 EXAMPLE-1-1.

11.2 * The string passed in the array instring should be moved

11.3 * and upshifted simultaneously to the array outstring.

11.4 * Set the until flag (bit 11 = 1) and the

11.5 * upshift flag (bit 10 = 1). All other flags remain 0.

11.6 *

11.7 * 0 1 2 3 4 5 6 7 8 9

11.8 * 0 0 0 0 0 0 0 0 0 0

11.9 *

12 * Note: The 'until flag' is set. Therefore, the operation continues

12.1 * until one of the ending criteria will be true.

12.2 * If no ending condition is set, the operation

12.3 * continues for the number of characters contained in

12.4 * length.

12.5 MOVE 48 TO FLAGS.

12.6

12.7 CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

12.8 OUTSTRING,
12.9 FLAGS,

13 LEN,

13.1 LANGNUM,

13.2 ERRORS,

13.3 CHARSET-table,

13.4 UPSHIFT-table

13.5 GIVING NUMCHAR.

13.6 IF ERR1 NOT EQUAL 0

13.7 COMPUTE QUITPARM = 5000 + ERR1

13.8 CALL INTRINSIC "QUIT" USING QUITPARM.

13.9

14 DISPLAY "UPSHIFTED: (EXAMPLE 1-1)".

14.1 DISPLAY OUTSTRING.

14.2

Example Programs 19

14.3 EXAMPLE-1-2.

14.4 *

14.5 * The string passed in the array instring should be moved
14.6 * and upshifted to the array outstring (same as EXAMPLE 1-1).

14.7 * Set the while flag (bit 11 = 0) and the

14.8 * (bit 10 = 1). In addition all ending conditions will be

14.9 * set (bits 12 - 15 all 1).

15 *

15.1 * 0 1 2 3 4 5 6 7 8 9

15.2 * 0 0 0 0 0 0 0 0 0 0

15.3 *

15.4 * Note: The 'while flag' is set. Therefore, the operation

15.5 * continues while one of the end criteria is true.

15.6 * Since all criteria are set, one of them will be

15.7 * always true, and the operation continues for the

15.8 * number of characters contained in length.

15.9

16 MOVE SPACES TO OUTSTRING.

16.1 MOVE 0 TO FLAGS.

16.2 MOVE 47 TO FLAGS.

16.3

16.4 CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

16.5 OUTSTRING,

16.6 FLAGS,

16.7 LEN,

16.8 LANGNUM,

16.9 ERRORS,

17 CHARSET-table,

17.1 UPSHIFT-table

17.2 GIVING NUMCHAR.

17.3
17.4 IF ERR1 NOT EQUAL 0

17.5 CALL INTRINSIC "QUIT" USING 6.

17.6

17.7 DISPLAY "UPSHIFTED: (EXAMPLE 1-2)".

17.8 DISPLAY OUTSTRING.

17.9

18 EXAMPLE-2-1.

18.1 * The string passed in the array instring should be

18.2 * scanned for the first occurrence of a special character.

18.3 * All characters before the first special character are

18.4 * moved to outstring.

18.5 * Set the until flag (bit 11 = 1) and the

18.6 * character flag (bit 12 = 1). All other flags remain

18.7 *

18.8 * 0 1 2 3 4 5 6 7 8 9

18.9 * 0 0 0 0 0 0 0 0 0 0

19 *

20 Example Programs

19.1 * Note: The 'until flag' is set and the ending condition

19.2 * set to 'special character'. Therefore, the operation

19.3 * continues until the first special character is found
19.4 * or until the number of characters contained in

19.5 * length is processed.

19.6

19.7 MOVE SPACES TO OUTSTRING.

19.8

19.9 MOVE 24 TO FLAGS.

20

20.1 CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

20.2 OUTSTRING,

20.3 FLAGS,

20.4 LEN,

20.5 LANGNUM,

20.6 ERRORS,

20.7 CHARSET-table,

20.8 UPSHIFT-table

20.9 GIVING NUMCHAR.

21 IF ERR1 NOT EQUAL 0

21.1 COMPUTE QUITPARM = 7000 + ERR1

21.2 CALL INTRINSIC "QUIT" USING QUITPARM.

21.3

21.4 DISPLAY "SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)".

21.5 DISPLAY OUTSTRING.

21.6

21.7 EXAMPLE-2-2.

21.8 * The string passed in the array instring should

21.9 * be scanned for the first occurrence of a special

22 * character. All characters before the first special

22.1 * character are moved to outstring (same as EXAMPLE 2-1).
22.2 * Set the while flag (bit 11 = 0) and all

22.3 * flags except for special characters (bits 13 - 15 =

22.4 *

22.5 * 0 1 2 3 4 5 6 7 8 9

22.6 * 0 0 0 0 0 0 0 0 0 0

22.7 *

22.8 * Note: The 'while flag' is set and all ending criteria

22.9 * except for special characters are set. Therefore, the

23 * operation continues while an uppercase, a lowercase, or

23.1 * a numeric character is found. When a special

23.2 * character is found, or the number of characters

23.3 * contained in length is processed, the operation will

23.4 * terminate.

23.5

23.6 MOVE SPACES TO OUTSTRING.

23.7

23.8 MOVE 7 TO FLAGS.

23.9

Example Programs 21

24 CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

24.1 OUTSTRING,

24.2 FLAGS,
24.3 LEN,

24.4 LANGNUM,

24.5 ERRORS,

24.6 CHARSET-table,

24.7 UPSHIFT-table

24.8 GIVING NUMCHAR.

24.9

25 IF ERR1 NOT EQUAL 0

25.1 COMPUTE QUITPARM = 8000 + ERR1

25.2 CALL INTRINSIC "QUIT" USING QUITPARM.

25.3

25.4 DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)".

25.5 DISPLAY OUTSTRING.

25.6

25.7 EXAMPLE-3-1.

25.8 * The string passed in the array instring should be

25.9 * scanned for the first occurrence of a special or numeric

26 * character. All characters before one of these characters

26.1 * are moved to outstring and downshifted simultaneously.

26.2 * Set the until flag (bit 11 = 1) and the ending condition

26.3 * flags for special and numeric characters (bits 12-13 = 1).

26.4 * To perform downshifting set bit 9 to 1.

26.5 *

26.6 * 0 1 2 3 4 5 6 7 8 9

26.7 * 0 0 0 0 0 0 0 0 0 1

26.8 *

26.9 * Note: The 'until flag' is set and the ending condition

27 * set to 'special character' and to 'numeric character'.
27.1 * Therefore, the operation continues until the first

27.2 * special or numeric character is found, or

27.3 * until the number of characters contained in length

27.4 * is processed.

27.5 *

27.6

27.7 MOVE SPACES TO OUTSTRING.

27.8

27.9 MOVE 92 TO FLAGS.

28

28.1 CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

28.2 OUTSTRING,

28.3 FLAGS,

28.4 LEN,

28.5 LANGNUM,

28.6 ERRORS,

28.7 CHARSET-table,

28.8 DOWNSHIFT-table

28.9 GIVING NUMCHAR.

29

22 Example Programs

29.1 IF ERR1 NOT EQUAL TO 0

29.2 COMPUTE QUITPARM = 9000 + ERR1

29.3 CALL INTRINSIC "QUIT" USING QUITPARM.
29.4

29.5 DISPLAY

29.6 "SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)".

29.7 DISPLAY OUTSTRING.

29.8

29.9 EXAMPLE-3-2.

30 * The string passed in the array instring should be

30.1 * scanned for the first occurrence of a special or numeric

30.2 * character. All characters before one of these characters

30.3 * are moved to outstring and downshifted simultaneously

30.4 * (same as EXAMPLE-3-2).

30.5 * Set the while flag (bit 11 = 0) and the

30.6 * flags for upper and lower case characters (bits 14-15 =

30.7 * To perform downshifting set bit 9 to 1.

30.8 *

30.9 * 0 1 2 3 4 5 6 7 8 9

31 * 0 0 0 0 0 0 0 0 0 1

31.1 *

31.2 * Note: The 'while flag' is set and the ending criteria

31.3 * uppercase and lowercase characters are set.

31.4 * Therefore, the operation continues while an uppercase or

31.5 * a lowercase character is found. When a special

31.6 * or a numeric character is found, or the number of

31.7 * characters contained in length is processed, the

31.8 * operation will terminate.

31.9

32 MOVE SPACES TO OUTSTRING.

32.1
32.2 MOVE 67 TO FLAGS.

32.3

32.4 CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

32.5 OUTSTRING,

32.6 FLAGS,

32.7 LEN,

32.8 LANGNUM,

32.9 ERRORS,

33 CHARSET-table,

33.1 DOWNSHIFT-table

33.2 GIVING NUMCHAR.

33.3

33.4 IF ERR1 NOT EQUAL 0

33.5 COMPUTE QUITPARM = 10000 + ERR1,

33.6 CALL INTRINSIC "QUIT" USING QUITPARM.

33.7

Example Programs 23

33.8 DISPLAY

33.9 "SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)".

34 DISPLAY OUTSTRING.
34.1

34.2 STOP RUN.

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

GERMAN

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDfg6ijkaSXbVcGjGf1f$E!SPO6dLe\1a23%&7a 123&i12fSXgVhklKLabCDASPO6i

UPSHIFTED: (EXAMPLE 1-1)

ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23%&7A 123&I12FSXGRHKLKLABCDASP[6I

UPSHIFTED: (EXAMPLE 1-2)

ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23%&7A 123&I12FSXGRHKLKLABCDASP[6I

SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfg6ijkaSXbVcGjGf1f

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfg6ijkaSXbVcGjGf1f

SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abcdfg

END OF PROGRAM

24 Example Programs

Scan and Move
Character Strings
from an SPL
Program

In this program, there are six di�erent calls to NLSCANMOVE.
In every call, parameters are passed to NLSCANMOVE. Since the
upshift/downshift table and the character attributes table are
optional parameters, they may be omitted. For performance reasons
(if NLSCANMOVE is called frequently), they should be passed to the
intrinsic after being read in by the appropriate calls to NLINFO.

1 $CONTROL USLINIT

2 BEGIN

3 LOGICAL ARRAY

4 L'UPSHIFT (0:127),

5 L'DOWNSHIFT (0:127),

6 L'CHARSET (0:127),

7 L'ERROR (0:1),

8 L'INSTRING (0:34),

9 L'OUTSTRING (0:34),

10 L'PRINT (0:34),

11 L'LANGUAGE (0:7);

12

13 BYTE ARRAY

14 B'INSTRING(*) = L'INSTRING,
15 B'OUTSTRING(*) = L'OUTSTRING,

16 B'PRINT(*) = L'PRINT;

17

18 BYTE POINTER

19 BP'PRINT;

20

21 INTEGER

22 LANGNUM,

23 NUM'CHAR,

24 LGTH,

25 LENGTH;

26

27 LOGICAL

28 FLAGS;

29

30 DEFINE

31 LOWER'CASE = FLAGS.(15:1)#,

32 UPPER'CASE = FLAGS.(14:1)#,

33 NUMERIC'CHAR = FLAGS.(13:1)#,

34 SPECIAL'CHAR = FLAGS.(12:1)#,

35

36 WHILE'UNTIL = FLAGS.(11:1)#,

37

38 UPSHIFT'FLAG = FLAGS.(10:1)#,

39 DOWNSHIFT'FLAG = FLAGS.(9:1)#,

40

Example Programs 25

41 ERROR'CHECK = IF L'ERROR(0) <> 0 THEN

42 QUIT #,

43
44 CCNE = IF <> THEN

45 QUIT #,

46

47 DISPLAY = MOVE B'PRINT := #,

48

49 ON'STDLIST = ,2;

50 @BP'PRINT := TOS;

51 LGTH := LOGICAL(@BP'PRINT) -

52 LOGICAL(@B'PRINT);

53 PRINT(L'PRINT, -LGTH, 0) #;

54

55

56 INTRINSIC

57 READ,

58 QUIT,

59 PRINT,

60 NLINFO,

61 NLSCANMOVE;

62

63

64 << Start of main code.

65 Initializing the arrays.>>

66

67 MOVE B'INSTRING

68 := "abCDfg6ijkaSXbVcGjGf1f$E!SPO6dLe\1a23%&7",2;

69 MOVE * := "a 123&i12fSXgVhklKLabCDASPO6i";

70

71 MOVE L'OUTSTRING := " ";
72 MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

73

74 MOVE L'LANGUAGE := " ";

75 MOVE L'LANGUAGE(1) := L'LANGUAGE,(7);

76

77 << The user is asked to enter a language name or

78

79 DISPLAY

80 "ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

81 ON'STDLIST;

82

83 READ(L'LANGUAGE,-16);

84

85 << NLINFO item 22 returns the corresponding language

86 number in integer format for this language.>>

87

88 NLINFO(22,L'LANGUAGE,LANGNUM,L'ERROR);

89 IF L'ERROR(0) <> 0 THEN

26 Example Programs

90 BEGIN

91 IF L'ERROR(0) = 1 THEN

92 BEGIN
93 DISPLAY

94 "NL/3000 IS NOT INSTALLED"

95 ON'STDLIST;

96 QUIT (1001);

97 END

98 ELSE

99 IF L'ERROR(0) = 2 THEN

100 BEGIN

101 DISPLAY

102 "THIS LANGUAGE IS NOT CONFIGURED"

103 ON'STDLIST;

104 QUIT (1002);

105 END

106 ELSE

107 QUIT (1000 + L'ERROR(0));

108 END;

109

110

111 << Obtain the character attributes table using

112 NLINFO item 12.>>

113

114 NLINFO(12,L'CHARSET,LANGNUM,L'ERROR);

115 ERROR'CHECK (2000 + L'ERROR(0));

116

117 << Obtain the upshift table using NLINFO item 15.>>

118

119 NLINFO(15,L'UPSHIFT,LANGNUM,L'ERROR);

120 ERROR'CHECK (3000 + L'ERROR(0));
121

122 << Obtain the downshift table using NLINFO item 16.>>

123

124 NLINFO(16,L'DOWNSHIFT,LANGNUM,L'ERROR);

125 ERROR'CHECK (4000 + L'ERROR(0));

126

127 << Print the character string used in all examples (instring).>>

128

129 DISPLAY

130 "THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"

131 ON'STDLIST;

132 DISPLAY B'INSTRING,(70) ON'STDLIST;

133

Example Programs 27

134 EXAMPLE'1'1:

135 << The string passed in the array instring is moved and

136 UPSHIFTED to the array outstring.
137 Note: The 'until flag' is set. Therefore, the operation

138 continues until one of the ending criteria is true.

139 If no ending condition was set the

140 operation continues for the number of characters

141 contained in length.>>

142

143 LENGTH := 70;

144

145 FLAGS := 0;

146

147 WHILE'UNTIL := 1;

148 UPSHIFT'FLAG := 1;

149

150 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

151 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

152 ERROR'CHECK (5000 + L'ERROR(0));

153

154 DISPLAY "UPSHIFTED: (EXAMPLE 1-1)" ON'STDLIST;

155 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

156

157 EXAMPLE'1'2:

158 << Note: The 'while flag' is set. Therefore, the operation will

159 continue while one of the end criteria is true. Since

160 all conditions are set, one of them will be always

161 true and the operation continues for the number of

162 characters contained in length. This example performs

163 the same operation as EXAMPLE 1-1.>>

164
165 MOVE L'OUTSTRING := " ";

166 MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

167

168 FLAGS := 0;

169

170 LOWER'CASE := 1;

171 UPPER'CASE := 1;

172 SPECIAL'CHAR := 1;

173 NUMERIC'CHAR := 1;

174

175 WHILE'UNTIL := 0;

176 UPSHIFT'FLAG := 1;

177

178 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

179 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

180 ERROR'CHECK (6000 + L'ERROR(0));

181

182 DISPLAY "UPSHIFTED: (EXAMPLE 1-2)" ON'STDLIST;

183 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

184

28 Example Programs

185 EXAMPLE'2'1:

186 << The string contained in instring should be scanned for the

187 first occurrence of a special character. All characters
188 before the first special are moved to outstring.

189 Note: The 'until flag' is set and the ending condition is

190 set to 'special character'. Therefore, the operation

191 continues until the first special character is found or

192 until the number of characters contained in length

193 is processed.>>

194

195

196 MOVE L'OUTSTRING := " ";

197 MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

198

199 FLAGS := 0;

200

201 SPECIAL'CHAR := 1;

202

203 WHILE'UNTIL := 1;

204 UPSHIFT'FLAG := 0;

205

206 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

207 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

208 ERROR'CHECK (7000 + L'ERROR (0));

209

210 DISPLAY "SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)"

211 ON'STDLIST;

212 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

213

214 EXAMPLE'2'2:

215 << Note: The 'while flag' is set and all ending criteria
216 except for special characters are set. Therefore, the

217 operation continues while an uppercase, a lowercase, or

218 a numeric character is found. When a special

219 character is found or the number of characters

220 contained in length is processed, the operation will

221 terminate.

222 This is the same operation as in EXAMPLE 2-1.>>

223

224 MOVE L'OUTSTRING := " ";

225 MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

226

227 FLAGS := 0;

228

Example Programs 29

229 LOWER'CASE := 1;

230 UPPER'CASE := 1;

231 SPECIAL'CHAR := 0;
232 NUMERIC'CHAR := 1;

233

234 WHILE'UNTIL := 0;

235 UPSHIFT'FLAG := 0;

236

237 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

238 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

239 ERROR'CHECK (8000 + L'ERROR(0));

240

241 DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)"

242 ON'STDLIST;

243 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

244

245 EXAMPLE'3'1:

246 << The data contained in instring should be scanned for the

247 first occurrence of a numeric or a special character.

248 All characters preceding the first special or numeric character

249 are moved to outstring.

250 Note: The 'until flag' is set and the ending conditions are

251 set to 'special character' and to 'numeric character'.

252 Therefore, the operation runs until the first

253 special or numeric character is found, or

254 until the number of characters contained in length

255 is processed.>>

256

257

258 MOVE L'OUTSTRING := " ";

259 MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);
260

261 FLAGS := 0;

262

263 SPECIAL'CHAR := 1;

264 NUMERIC'CHAR := 1;

265

266 WHILE'UNTIL := 1;

267 DOWNSHIFT'FLAG := 1;

268

269 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

270 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);

271 ERROR'CHECK (9000 + L'ERROR(0));

272

273 DISPLAY

274 "SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)"

275 ON'STDLIST;

276 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

277

30 Example Programs

278 EXAMPLE'3'2:

279 << Note: The 'while flag' is set and the ending criteria for

280 uppercase and lowercase characters are set.
281 Therefore, the operation continues while an uppercase or

282 a lowercase character is found. When a special

283 or numeric character is found or the number of

284 characters contained in length is processed, the

285 operation will terminate.

286 This is the same operation as in EXAMPLE 3-1.>>

287

288 MOVE L'OUTSTRING := " ";

289 MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);

290

291 FLAGS := 0;

292

293 LOWER'CASE := 1;

294 UPPER'CASE := 1;

295

296 WHILE'UNTIL := 0;

297 DOWNSHIFT'FLAG := 1;

298

299 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

300 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);

301 ERROR'CHECK (1000 + L'ERROR(0));

302

303 DISPLAY

304 "SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)"

305 ON'STDLIST;

306 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

307

308 END.

Example Programs 31

Executing the program results in the following:

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

GERMAN

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDfg6ijkaSXbVcGjGf1f$E!SPO6dLe\1a23%&7a 123&i12fSXgVhklKLabCDASPO6i

UPSHIFTED: (EXAMPLE 1-1)

ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23%&7A 123&I12FSXGRHKLKLABCDASP[6I

UPSHIFTED: (EXAMPLE 1-2)

ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23%&7A 123&I12FSXGRHKLKLABCDASP[6I

SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfg6ijkaSXbVcGjGf1f

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfg6ijkaSXbVcGjGf1f

SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abcdfg

END OF PROGRAM

:RUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

NATIVE-3000

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDfg6ijkaSXbVcGjGf1f$E!SPO6dLe\1a23%&7a 123&i12fSXgVhklKLabCDASPO6i

UPSHIFTED: (EXAMPLE 1-1)

ABCDFG6IJKASXBVCGJGF1F$E!SPO6DLE\1A23%&7A 123&I12FSXGVHKLKLABCDASPO6I
UPSHIFTED: (EXAMPLE 1-2)

ABCDFG6IJKASXBVCGJGF1F$E!SPO6DLE\1A23%&7A 123&I12FSXGVHKLKLABCDASPO6I

SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfg6ijka

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfg6ijka

SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abcdfg

END OF PROGRAM

:

32 Example Programs

Translate and
Relpace Characters
from a COBOLII
Program

The string used in the example is 256 bytes in length and contains
all possible byte values from 0 to 255. This string is converted
from USASCII to EBCDIC. Then the converted string is taken
and translated back to USASCII. This is done according to the
ASCII-to-EBCDIC and EBCDIC-to-ASCII translation tables
corresponding to the entered language.

Afterwards this twice-translated string is displayed. All characters
that are nonprintable (control and unde�ned characters) in the
character set supporting the given language are replaced by a period
before the string is displayed by calling NLREPCHAR intrinsic.

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION.

1.5 DATA DIVISION.

1.6 WORKING-STORAGE SECTION.

1.7 77 QUITNUM PIC S9(4) COMP VALUE 0.

1.8 77 LANGNUM PIC S9(4) COMP VALUE 0.
1.9 77 IND PIC S9(4) COMP VALUE 0.

2

2.1 01 TABLES.

2.2 05 USASCII-EBC-table PIC X(256) VALUE SPACES.

2.3 05 EBC-USASCII-table PIC X(256) VALUE SPACES.

2.4 05 CHARSET-table PIC X(256) VALUE SPACES.

2.5

2.6 01 BUFFER-FIELDS.

2.7 05 INT-FIELD PIC S9(4) COMP VALUE -1.

2.8 05 BYTE-FIELD REDEFINES INT-FIELD.

2.9 10 FILLER PIC X.

3 10 CHAR PIC X.

3.1

3.2 01 STRINGS.

3.3 05 LANGUAGE PIC X(16) VALUE SPACES.

3.4 05 IN-STRING.

3.5 10 IN-BYTE PIC X OCCURS 256.

3.6 05 OUT-STRING.

3.7 10 OUT-STR1 PIC X(80).

3.8 10 OUT-STR2 PIC X(80).

3.9 10 OUT-STR3 PIC X(80).

4 10 OUT-STR4 PIC X(16).

4.1

4.2 01 REPLACE-WORD PIC S9(4) COMP VALUE 0.

4.3 01 REPLACE-BYTES REDEFINES REPLACE-WORD.

4.4 05 REPLACEMENT-CHAR PIC X.

4.5 05 FILLER PIC X.

4.6

Example Programs 33

4.7 01 ERRORS.

4.8 05 ERR1 PIC S9(4) COMP.

4.9 05 ERR2 PIC S9(4) COMP.
5 PROCEDURE DIVISION.

5.1 START-PGM.

5.2 * Initialize the instring array with all possible

5.3 * byte values starting from binary zero until 255.

5.4 MOVE -1 TO INT-FIELD.

5.5 PERFORM FILL-INSTRING VARYING IND FROM 1 BY 1

5.6 UNTIL IND > 256.

5.7 GO TO GET-LANGUAGE.

5.8

5.9 FILL-INSTRING.

6 ADD 1 TO INT-FIELD.

6.1 MOVE CHAR TO IN-BYTE(IND).

6.2

6.3 GET-LANGUAGE.

6.4 *The language is hard-coded, set to 8 (GERMAN).

6.5

6.6 MOVE 8 TO LANGNUM.

6.7

6.8 GET-THE-TABLES.

6.9 * Call the USASCII-EBCDIC and EBCDIC-USASCII

7 * conversion tables and the character attribute table

7.1 * by using the appropriate NLINFO items.

7.2 * Note: NLTRANSLATE and NLREPCHAR may be called without

7.3 * passing the tables (last parameter). For performance

7.4 * reasons the tables should be passed, if these

7.5 * intrinsics are called very often.

7.6

7.7 CALL INTRINSIC "NLINFO" USING 13,
7.8 USASCII-EBC-table,

7.9 LANGNUM,

8 ERRORS.

8.1 IF ERR1 NOT EQUAL 0

8.2 COMPUTE QUITNUM = 1000 + ERR1,

8.3 CALL INTRINSIC "QUIT" USING QUITNUM.

8.4

8.5 CALL INTRINSIC NLINFO ITEM 14,

8.6 EBC-USASCII-table,

8.7 LANGNUM,

8.8 ERRORS.

8.9 IF ERR1 NOT EQUAL 0

9 COMPUTE QUITNUM = 2000 + ERR1,

9.1 CALL INTRINSIC "QUIT" USING QUITNUM.

9.2 CALL INTRINSIC "NLINFO" USING 12,

9.3 CHARSET-table,

9.4 LANGNUM,

9.5 ERRORS.

34 Example Programs

9.6 IF ERR1 NOT EQUAL 0

9.7 COMPUTE QUITNUM = 3000 + ERR1,

9.8 CALL INTRINSIC "QUIT" USING QUITNUM.
9.9

10 CONVERT-ASC-EBC.

10.1 * Convert IN-STRING from USASCII into EBCDIC by

10.2 * using NLTRANSLATE code 2. The converted string will

10.3 * be in OUT-STRING.

10.4

10.5 CALL INTRINSIC "NLTRANSLATE" USING 2,

10.6 IN-STRING,

10.7 OUT-STRING,

10.8 256,

10.9 LANGNUM,

11 ERRORS,

11.1 USASCII-EBC-table.

11.2 IF ERR1 NOT EQUAL 0

11.3 COMPUTE QUITNUM = 4000 + ERR1,

11.4 CALL INTRINSIC "QUIT" USING QUITNUM.

11.5

11.6 CONVERT-EBC-ASC.

11.7 * Convert OUT-STRING back from EBCDIC to USASCII by

11.8 * using NLTRANSLATE code 1. The retranslated string will

11.9 * be in IN-STRING again.

12

12.1 CALL INTRINSIC "NLTRANSLATE" USING 1,

12.2 OUT-STRING,

12.3 IN-STRING,

12.4 256,

12.5 LANGNUM,

12.6 ERRORS,
12.7 EBC-USASCII-table.

12.8 IF ERR1 NOT EQUAL 0

12.9 COMPUTE QUITNUM = 5000 + ERR1,

13 CALL INTRINSIC "QUIT" USING QUITNUM.

13.1

13.2 REPLACE-NON-PRINTABLES.

13.3 * Replace all non-printable characters

13.4 * in IN-STRING and display the string.

13.5

13.6 MOVE "." TO REPLACEMENT-CHAR.

13.7 CALL INTRINSIC "NLREPCHAR" USING IN-STRING,

13.8 IN-STRING,

13.9 256,

14 REPLACE-WORD,

14.1 LANGNUM,

14.2 ERRORS.

14.3 IF ERR1 NOT EQUAL 0

14.4 COMPUTE QUITNUM = 6000 + ERR1,

14.5 CALL INTRINSIC "QUIT" USING QUITNUM.

14.6

Example Programs 35

14.7 DISPLAY "IN-STRING:"

14.8 DISPLAY IN-STRING.

14.9 STOP RUN.

36 Example Programs

Compare Character
Strings from a
COBOLII Program

The example shows a new KSAM/3000 �le built programmatically
with a language attribute. This means that the keys are sorted
according to the collating sequence of this language. After building
the �le, the program writes 15 hard-coded data records into it.

Perform a generic FFINDBYKEY with a partial key of length1
containing \E". This positions the KSAM/3000 �le pointer to the
�rst record whose key starts with \E".

After locating this record, read all subsequent records in the �le
sequentially and call NLKEYCOMPARE to check whether the key found is
what was requested. If the result returned by NLKEYCOMPARE is 3, the
program is done. There are no more records whose key starts with
any kind of \E".

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION.

1.5 CONFIGURATION SECTION.
1.6 SOURCE-COMPUTER. HP3000.

1.7 OBJECT-COMPUTER. HP3000.

1.8 SPECIAL-NAMES.

1.9 CONDITION-CODE IS CC.

2 DATA DIVISION.

2.1 WORKING-STORAGE SECTION.

2.2 77 QUITNUM PIC S9(4) COMP VALUE 0.

2.3 77 LANGNUM PIC S9(4) COMP VALUE 0.

2.4 77 LEGTH PIC S9(4) COMP VALUE 0.

2.5 77 FNUM PIC S9(4) COMP VALUE 0.

2.6 77 RESULT PIC S9(4) COMP VALUE 0.

2.7 77 FOPTIONS PIC S9(4) COMP.

2.8 77 AOPTIONS PIC S9(4) COMP.

2.9 77 IND PIC S9(4) COMP.

3

3.1 01 TABLES.

3.2 05 COLL-table PIC X(800).

3.3 05 KSAM-PARAM.

3.4 10 KEY-FILE PIC X(8) VALUE SPACES.

3.5 10 KEY-FILE-SIZ PIC S9(8) COMP.

3.6 10 FILLER PIC X(8) VALUE SPACES.

3.7 10 LANGUAGE-NUM PIC S9(4) COMP.

3.8 10 FILLER PIC X(8) VALUE SPACES.

3.9 10 FLAGWORD PIC S9(4) COMP.

4 10 NUM-OF-KEYS PIC S9(4) COMP.

4.1 10 KEY-DESCR PIC S9(4) COMP.

4.2 10 KEY-LOCATION PIC S9(4) COMP.

4.3 10 DUPL-BLOCK PIC S9(4) COMP.
4.4 10 FILLER PIC X(20).

Example Programs 37

4.5

4.6 01 STRINGS.

4.7 05 GEN-KEY PIC X(4).
4.8 05 FILENAME PIC X(8) VALUE SPACES.

4.9

5 01 ERRORS.

5.1 05 ERR1 PIC S9(4) COMP.

5.2 05 ERR2 PIC S9(4) COMP VALUE 0.

5.3

5.4 01 DATA-RECS.

5.5 05 DATA-REC1 PIC X(50).

5.6 05 DATA-REC2 PIC X(50).

5.7 05 DATA-REC3 PIC X(50).

5.8

5.9 01 DATA-RECS-R REDEFINES DATA-RECS.

6 05 DATA-RECORD OCCURS 15.

6.1 10 FILLER PIC X(10).

6.2

6.3 01 KSAM-RECORD.

6.4 05 FILLER PIC X(3).

6.5 05 RECORD-KEY PIC X(4).

6.6 05 FILLER PIC X(3).

6.7

6.8 PROCEDURE DIVISION.

6.9 INIT-KSAM-RECORDS.

7 * Initialize the Data Record with the data which should be

7.1 * written to the KSAM file.

7.2

7.3 MOVE "014ABBeZZZ011EZqrzyx001ABCDXXX007EdCDxyx012IzzAzzz"

7.4 TO DATA-REC1.

7.5
7.6 MOVE "003EaBCXXX008\\aaYZZ015iABDYZY005eLDFyxy002BBCdxxx"

7.7 TO DATA-REC2.

7.8

7.9 MOVE "004eABCYYY006EabcYYY009AAAAyzz010eaxfxyz013FGHIzqs"

8 TO DATA-REC3.

8.1

8.2 * Hard-code the language used in the example program

8.3 * to 0 (NATIVE - 3000).

8.4

8.5 MOVE 0 TO LANGNUM.

8.6

8.7 * Build a new KSAM file with the data file name

8.8 * KD000. The key file has the name KK000.

8.9

9 * Set the values for KSAM parameter array.

9.1

9.2 MOVE "KD000 " TO FILENAME.

9.3 MOVE "KK000 " TO KEY-FILE.

9.4

38 Example Programs

9.5 MOVE 1 TO NUM-OF-KEYS.

9.6 MOVE LANGNUM TO LANGUAGE-NUM.

9.7 MOVE %20 TO FLAGWORD.
9.8 MOVE 0 TO KEY-FILE-SIZ.

9.9 MOVE %10004 TO KEY-DESCR.

10 MOVE 4 TO KEY-LOCATION.

10.1 MOVE %100024 TO DUPL-BLOCK.

10.2 MOVE %4000 TO FOPTIONS.

10.3 MOVE 5 TO AOPTIONS.

10.4

10.5 CALL INTRINSIC "FOPEN" USING FILENAME,

10.6 FOPTIONS,

10.7 AOPTIONS,

10.8 -10,

10.9 \\,

11 KSAM-PARAM

11.1 GIVING FNUM.

11.2 IF CC NOT EQUAL 0

11.3 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,

11.4 CALL INTRINSIC "QUIT" USING 1000.

11.5

11.6 * Fill the hard-coded data into the KSAM file.

11.7

11.8 PERFORM FILL-IN-DATA VARYING IND FROM 1 BY 1

11.9 UNTIL IND > 15.

12 GO TO FIND-DATA.

12.1

12.2 FILL-IN-DATA.

12.3 CALL INTRINSIC "FWRITE" USING FNUM,

12.4 DATA-RECORD(IND),

12.5 -10,
12.6 0.

12.7 IF CC NOT EQUAL 0

12.8 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,

12.9 CALL INTRINSIC "QUIT" USING 2000.

13

13.1 FIND-DATA.

13.2 * Perform a generic FFINDBYKEY with a

13.3 * partial key of length 1 and value "E". The relational

13.4 * operator will be 2 (greater or equal).

13.5 * This FFINDBYKEY will position the KSAM pointer at the

13.6 * first key starting with any kind of "E".

13.7

13.8 MOVE "E" TO GEN-KEY.

13.9

14 CALL INTRINSIC "FFINDBYKEY" USING FNUM,

14.1 GEN-KEY,

14.2 0,

14.3 1,

14.4 2.

Example Programs 39

14.5 IF CC NOT EQUAL 0

14.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,

14.7 CALL INTRINSIC "QUIT" USING 3000.
14.8

14.9 * Read the subsequent entries and check whether an

15 * exact match occurred by using NLKEYCOMPARE.

15.1 * When NLKEYCOMPARE returns 3 as a result, there are no

15.2 * more keys starting with any kind of "E".

15.3 * If an exact match was found the record is printed.

15.4

15.5 DISPLAY

15.6 "THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:"

15.7 MOVE 0 TO RESULT.

15.8 PERFORM READ-DATA UNTIL RESULT EQUAL 3.

15.9 GO TO TERMINATE-PGM.

16

16.1 READ-DATA.

16.2 CALL INTRINSIC "FREAD" USING FNUM,

16.3 KSAM-RECORD,

16.4 -10.

16.5 IF CC NOT EQUAL 0

16.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,

16.7 CALL INTRINSIC "QUIT" USING 4000.

16.8

16.9 CALL INTRINSIC "NLKEYCOMPARE" USING GEN-KEY,

17 1,

17.1 RECORD-KEY,

17.2 4,

17.3 RESULT,

17.4 LANGNUM,

17.5 ERRORS,
17.6 COLL-table.

17.7 IF ERR1 NOT EQUAL 0

17.8 COMPUTE QUITNUM = 5000 + ERR1,

17.9 CALL INTRINSIC "QUIT" USING QUITNUM.

18 IF RESULT = 0

18.1 DISPLAY KSAM-RECORD.

18.2

18.3 TERMINATE-PGM.

18.4 * Close the KSAM file and purge it.

18.5

18.6 CALL INTRINSIC "FCLOSE" USING FNUM,

18.7 4,

18.8 0.

18.9

19 STOP RUN.

40 Example Programs

Executing the program results in the following:

:RUN PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:

011EZqrzyx

003EaBCXXX

007EdCDxyx

END OF PROGRAM

:

Example Programs 41

Compare Character
Strings from an SPL
Program

The example shows a new KSAM/3000 �le built programmatically.
This new KSAM/3000 �le is built with a language attribute. This
means the keys are sorted according to the collating sequence of this
language. After building the �le, it is �lled with 15 hard-coded data
records.

Perform a generic FFINDBYKEY with a partial key of length1
containing \E". This should position the KSAM/3000 �le pointer to
the very �rst record whose key starts with any kind of \E".

After locating this record, read all subsequent records in the �le
sequentially and call NLKEYCOMPARE to check whether the key found
is what was requested. If the result returned by NLKEYCOMPARE is 3,
there are no more records starting with any kind of \E".

1 $CONTROL USLINIT

2 BEGIN

3 LOGICAL ARRAY

4 L'ERROR (0:1),

5 L'KSAM'PARAM (0:79),

6 L'PRINT (0:39),

7 L'RECORD (0:4),
8 COLL'TABLE (0:399);

9

10 BYTE ARRAY

11 FILENAME (0:7),

12 GEN'KEY (0:4),

13 KEY (0:4),

14 B'KSAM'PARAM(*) = L'KSAM'PARAM,

15 B'PRINT(*) = L'PRINT,

16 B'RECORD(*) = L'RECORD;

17

18 DOUBLE ARRAY

19 D'KSAM'PARAM(*) = L'KSAM'PARAM;

20

21 BYTE POINTER

22 BP'PRINT;

23

24 INTEGER

25 I,

26 LGTH,

27 FNUM,

28 RESULT,

29 LANGNUM;

30

31 LOGICAL

32 FOPTIONS,

33 AOPTIONS;

34

42 Example Programs

35 LOGICAL ARRAY

36 L'DATA(0:74) :=

37
38 << |key | >>

39 "014hBBeZZZ",

40 "011EZqrzyx",

41 "001ABCDXXX", << This is the data, to>>

42 "007EdCDxyx", << be written to the >>

43 "012IzzAzzz", << KSAM file. >>

44 "015iABDYZY", << The key starts in >>

45 "005eLDFyxy", << column 4 and is 4 >>

46 "002BBCdxxx", << characters long. >>

47 "003EaBCXXX",

48 "008\\aaYZZ",

49 "004eABCYYY",

50 "006EabcYYY",

51 "009Ayzz",

52 "010eaxfxyz",

53 "013FGHIzqs";

54

55 << The following DEFINE statement defines the layout of

56 the KSAM parameter array; necessary to build a KSAM

57 file programmatically.>>

58

59 DEFINE

60 KEY'FILE = L'KSAM'PARAM#,

61 KEY'FILE'SIZ = D'KSAM'PARAM(2)#,

62 KEY'DEV = L'KSAM'PARAM(6)#,

63 LANGUAGE = L'KSAM'PARAM(10)#,

64 FLAGWORD = L'KSAM'PARAM(15)#,

65 NUM'OF'KEYS = L'KSAM'PARAM(16)#,
66 KEY'TYPE = L'KSAM'PARAM(17).(0:4)#,

67 KEY'LENGTH = L'KSAM'PARAM(17).(4:12)#,

68 KEY'LOCATION = L'KSAM'PARAM(18)#,

69 DUP'FLAG = L'KSAM'PARAM(19).(0:1)#,

70 KEY'BLOCK = L'KSAM'PARAM(19).(1:15)#,

71 RANDOM'FLAG = L'KSAM'PARAM(20).(8:1)#;

72

73 DEFINE

74

75 RECORD = L'DATA (I * 5)#,

76

77 ERROR'CHECK = IF L'ERROR(0) <> 0 THEN

78 QUIT #,

79

80 CCNE = IF <> THEN

81 QUIT #,

82

83 DISPLAY = MOVE B'PRINT := #,

84

Example Programs 43

85 ON'STDLIST = ,2;

86 @BP'PRINT := TOS;

87 LGTH := LOGICAL(@BP'PRINT) -
88 LOGICAL(@B'PRINT);

89 PRINT(L'PRINT, -LGTH, 0) #;

90

91 INTRINSIC

92 FOPEN,

93 FREAD,

94 FWRITE,

95 FCLOSE,

96 FFINDBYKEY,

97 FGETKEYINFO,

98 PRINTFILEINFO,

99 NLINFO,

100 NLKEYCOMPARE,

101 FCLOSE,

102 PRINT,

103 QUIT,

104 READ;

105

106 << Initializing the arrays.>>

107

108 MOVE L'KSAM'PARAM := " ";

109 MOVE L'KSAM'PARAM(1) := L'KSAM'PARAM(0),(79);

110

111 MOVE GEN'KEY := " ";

112

113 MOVE KEY := " ";

114

115 << Hard-code the language used to 8 (GERMAN).>>
116

117 LANGNUM := 8;

118

119 << Call in the collating sequence table.

120 This is done by calling NLINFO ITEM 11.>>

121

122 NLINFO (11, COLL'TABLE, LANGNUM, L'ERROR);

123 IF L'ERROR(0) THEN

124 QUIT(1000 + L'ERROR(0));

125

126 << Build a new KSAM file with the data file name

127 KD008. The key file has the name KK008.>>

128

129 << Set the values for KSAM parameter array.>>

130

131 MOVE FILENAME := "KD008 "; << KSAM data file>>

132 MOVE KEY'FILE := "KK008 "; << KSAM key file>>

133

44 Example Programs

134 NUM'OF'KEYS := 1; << Num of keys = 0 >>

135 LANGUAGE := LANGNUM; << Set the language >>

136 FLAGWORD.(11:1) := 1; << Indicates that >>
137 << language is set >>

138 KEY'FILE'SIZ := 200D; << Max. 200 entries >>

139 KEY'TYPE := 1; << Byte key >>

140 KEY'LENGTH := 4; << 4 byte length >>

141 KEY'LOCATION := 4; << Key start at col.4>>

142 DUP'FLAG := 1; << Allow dupl. keys >>

143 KEY'BLOCK := 10; << Keys per block 10 >>

144

145 FOPTIONS := %4000; << KSAM file >>

146 AOPTIONS := %5; << Update >>

147

148 FNUM := FOPEN(FILENAME,FOPTIONS,AOPTIONS,-10,,

149 B'KSAM'PARAM);

150 IF <> THEN

151 BEGIN

152 PRINTFILEINFO(FNUM);

153 QUIT(2000);

154 END;

155

156 << Copy the hard-coded data into the KSAM file.>>

157 I := -1;

158 WHILE (I := I + 1) < 15 DO

159 BEGIN

160 FWRITE(FNUM, RECORD, -10, %0);

161 IF <> THEN

162 BEGIN

163 PRINTFILEINFO(FNUM);

164 QUIT(3000);
165 END;

166 END;

167

168 << Perform a generic FFINDBYKEY with a partial >>

169 << key of length 1 and value "E". The realtional >>

170 << operator will be 2 (greater or equal). >>

171 << FFINDBYKEY will position the KSAM pointer at the >>

172 << first record starting with any kind of "E". >>

173

174 MOVE GEN'KEY := "E";

175

176 FFINDBYKEY(FNUM, GEN'KEY, 0, 1, 2);

177 IF <> THEN

178 BEGIN

179 PRINTFILEINFO(FNUM);

180 QUIT(4000);

181 END;

182

Example Programs 45

183 << Read the subsequent entries and check by >>

184 << using NLKEYCOMPARE whether an exact match was found.>>

185 << When NLKEYCOMPARE returns a 3 as a result, the >>
186 << program is beyond the range of valid keys. >>

187 << If an exact match was found, the record is printed. >>

188

189 RESULT := 0;

190 DISPLAY

191 "THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:"

192 ON'STDLIST;

193 WHILE RESULT <> 3 DO

194 BEGIN

195 FREAD(FNUM,L'RECORD,-10);

196 IF <> THEN

197 BEGIN

198 PRINTFILEINFO(FNUM);

199 QUIT(5000);

200 END;

201

202 MOVE KEY := B'RECORD(3),(4);

203 NLKEYCOMPARE(GEN'KEY, 1, KEY, 4, RESULT, LANGNUM,

204 L'ERROR, COLL'TABLE);

205 ERROR'CHECK(9000 + L'ERROR(0));

206 IF RESULT = 0 THEN << exact hit >>

207 BEGIN

208 DISPLAY B'RECORD,(10) ON'STDLIST;

209 END;

210 END;

211

212 << Close the KSAM file and purge it. >>

213
214 FCLOSE(FNUM, 4, 0);

215

216 END.

Executing the program results in the following:

:RUN PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:

003EaBCXXX

007EdCDxyx

011EZqrzyx

END OF PROGRAM

:

46 Example Programs

Obtain Language
Information from a
COBOLII Program

This program prints the user interface, data manipulation, system
default, KSAM/3000 key sequence, VPLUS/3000 forms �le, and
IMAGE/3000 database language numbers.

1 $CONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 * ---

1.4 ENVIRONMENT DIVISION.

1.5 CONFIGURATION SECTION.

1.6 SOURCE-COMPUTER. HP3000.

1.7 OBJECT-COMPUTER. HP3000.

1.8 SPECIAL-NAMES.

1.9 CONDITION-CODE IS CCODE.

2 * ---

2.1 DATA DIVISION.

2.2 WORKING-STORAGE SECTION.

2.3

2.4 01 LANGUAGE PIC S9(4) COMP.

2.5
2.6 01 NLERROR.

2.7 05 NLERR OCCURS 2 PIC S9(4) COMP.

2.8

2.9 01 FILENUM PIC S9(4) COMP.

3

3.1 01 KSAMAREA.

3.2 05 KSAMPARAM.

3.3 10 FILLER PIC X(20).

3.4 10 KLANG PIC S9(4) COMP.

3.5 10 FILLER PIC X(8).

3.6 10 FLAGS PIC S9(4) COMP VALUE 0.

3.7 10 FILLER PIC X(148).

3.8 05 KSAMCONTROL PIC X(256).

3.9

4 01 COMAREA.

4.1 05 COM-STAT PIC S9(4) COMP VALUE 0.

4.2 05 COM-LANG PIC S9(4) COMP VALUE 0.

4.3 05 COM-LENG PIC S9(4) COMP VALUE 60.

4.4 05 COM-FILL PIC X(114) VALUE LOW-VALUE.

4.5

4.6 01 RESULT.

4.7 05 OPER PIC X(10).

4.8 05 LANG PIC ZZZ9.

4.9 05 FILLER PIC X(6) VALUE " Error".

5 05 NERR PIC ZZZ9.

5.1

5.2 01 DBNAME.

5.3 05 FILLER PIC X(2) VALUE " ".
5.4 05 FILENAME PIC X(36).

Example Programs 47

5.5

5.6 01 PASSWORD PIC X(8).

5.7
5.8 01 DBMODE PIC S9(4) COMP VALUE 5.

5.9

6 01 STAT.

6.1 05 DBSTAT PIC S9(4) COMP VALUE 0.

6.2 05 FILLER PIC X(18).

6.3

6.4 01 DUMMY PIC S9(4) COMP.

6.5 * ---

6.6 PROCEDURE DIVISION.

6.7

6.8 MAIN.

6.9 PERFORM USER-LANG.

7 PERFORM DATA-LANG.

7.1 PERFORM SYST-LANG.

7.2 PERFORM KSAM-LANG.

7.3 PERFORM FORM-LANG.

7.4 PERFORM BASE-LANG.

7.5 STOP RUN.

7.6 * ...

7.7 USER-LANG.

7.8 CALL INTRINSIC "NLGETLANG" USING 1 NLERROR

7.9 GIVING LANGUAGE.

8 MOVE "USER lang:" TO OPER.

8.1 MOVE LANGUAGE TO LANG.

8.2 MOVE NLERR (1) TO NERR.

8.3 DISPLAY RESULT.

8.4 * ...

8.5 DATA-LANG.
8.6 CALL INTRINSIC "NLGETLANG" USING 2 NLERROR

8.7 GIVING LANGUAGE.

8.8 MOVE "DATA lang:" TO OPER.

8.9 MOVE LANGUAGE TO LANG.

9 MOVE NLERR (1) TO NERR.

9.1 DISPLAY RESULT.

9.2 * ...

9.3 SYST-LANG.

9.4 CALL INTRINSIC "NLGETLANG" USING 3 NLERROR

9.5 GIVING LANGUAGE.

9.6 MOVE "SYST lang:" TO OPER.

9.7 MOVE LANGUAGE TO LANG.

9.8 MOVE NLERR (1) TO NERR.

9.9 DISPLAY RESULT.

10 * ...

10.1 KSAM-LANG.

10.2 DISPLAY "Enter KSAM file name:".

10.3 ACCEPT FILENAME FREE.

10.4 IF FILENAME NOT = SPACES PERFORM KSAM-OPEN.

48 Example Programs

10.5

10.6 KSAM-OPEN.

10.7 CALL INTRINSIC "FOPEN" USING FILENAME 1
10.8 GIVING FILENUM.

10.9 IF CCODE = 0

11 THEN PERFORM KSAM-INFO

11.1 ELSE DISPLAY "Error in KSAM file OPEN".

11.2

11.3 KSAM-INFO.

11.4 CALL INTRINSIC "FGETKEYINFO" USING FILENUM

11.5 KSAMPARAM KSAMCONTROL.

11.6 CALL INTRINSIC "FCLOSE" USING FILENUM 0 0.

11.7 IF FLAGS < 0 THEN ADD 32768 TO FLAGS.

11.8 IF FLAGS - (FLAGS / 32) * 32 > 15

11.9 THEN MOVE KLANG TO LANGUAGE

12 ELSE MOVE ZERO TO LANGUAGE.

12.1 MOVE SPACES TO RESULT.

12.2 MOVE "KSAM lang:" TO OPER.

12.3 MOVE LANGUAGE TO LANG.

12.4 DISPLAY RESULT.

12.5 * ...

12.6 FORM-LANG.

12.7 DISPLAY "Enter FORM file name:".

12.8 ACCEPT FILENAME FREE.

12.9 IF FILENAME NOT = SPACES PERFORM FORM-OPEN.

13

13.1 FORM-OPEN.

13.2 CALL "VOPENFORMF" USING COMAREA FILENAME.

13.3 IF COM-STAT = 0

13.4 THEN PERFORM FORM-INFO

13.5 ELSE DISPLAY "FORMS file OPEN failed:" COM-STAT.
13.6

13.7 FORM-INFO.

13.8 CALL "VGETLANG" USING COMAREA LANGUAGE.

13.9 CALL "VCLOSEFORMF" USING COMAREA.

14 MOVE "FORM lang:" TO OPER.

14.1 MOVE LANGUAGE TO LANG.

14.2 DISPLAY RESULT.

14.3 * ...

14.4 BASE-LANG.

14.5 DISPLAY "Enter DATA BASE name:".

14.6 ACCEPT FILENAME FREE.

14.7 IF FILENAME NOT = SPACES PERFORM BASE-OPEN.

14.8

Example Programs 49

14.9 BASE-OPEN.

15 DISPLAY "Enter PASSWORD:".

15.1 ACCEPT PASSWORD FREE.
15.2 CALL "DBOPEN" USING DBNAME PASSWORD DBMODE STAT.

15.3 IF DBSTAT = 0

15.4 THEN PERFORM BASE-INFO

15.5 ELSE DISPLAY "Error in Data Base Open:" DBSTAT.

15.6

15.7 BASE-INFO.

15.8 MOVE 901 TO DBMODE.

15.9 CALL "DBINFO" USING DBNAME DUMMY DBMODE STAT LANGUAGE.

16 MOVE 1 TO DBMODE.

16.1 CALL "DBCLOSE" USING DBNAME DUMMY DBMODE STAT.

16.2 MOVE "BASE lang:" TO OPER.

16.3 MOVE LANGUAGE TO LANG.

16.4 DISPLAY RESULT.

Executing the program results in the following:

:RUN PROGRAM;MAXDATA=12000

USER lang: 0 Error 2

DATA lang: 3 Error 0

SYST lang: 0 Error 0

Enter KSAM file name:

GERMANK

KSAM lang: 8

Enter FORM file name:

FRENCHFF

FORM lang: 7

Enter DATA BASE name:

SPBASE.TEST
Enter PASSWORD:

MANAGER

BASE lang: 12

END OF PROGRAM

:

50 Example Programs

Index

7 7-Bit conversion, 3-4
7-Bit operation
Peripherals, 3-4

7-Bit Substitution sets, D-2
7-Bit to 8-Bit conversion, D-1, D-4
Procedure, D-6

8 8-Bit character sets, 2-2
8-Bit operation
Peripherals, 3-4

A Accessing programs, 7-1
Algorithm
Conversion, D-4

ALMANAC
Intrinsic, 3-2

Application catalogs
Localized, 3-5

Application message catalog
CATCLOSE, 3-3
CATOPEN, 3-3
CATREAD, 3-3
NLAPPEND, 3-3

Application program
Multilingual, 7-5, 7-7
Single language, 7-4

Application program guidelines, E-1
Application programs
General, 7-2

Application program translation, 3-5
ARABIC8
Character set, A-1, A-6

Arti�cial language, 2-1
ASCII character sets, 2-2
ASCII editor �les, 3-5
ASCII to EBCDIC conversion, 2-3
Assign attribute, 5-1
Attribute
Native Language, 5-1

Index-1

C Character handling
NLCOLLATE, 3-2
NLFINDSTR, 3-2
NLJUDGE, 3-2
NLKEYCOMPARE, 3-2
NLREPCHAR, 3-2
NLSCANMOVE, 3-2
NLSTRANSLATE, 3-2
NLSUBSTR, 3-2
NLSWITCHBUF, 3-2

Characteristics
Language-Dependent, 2-3

Character order
Collating sequence, B-1

Character set
ARABIC8, A-1, A-6
GREEK8, A-1, A-7
JAPAN15, A-1, A-11
KANA8, A-1, A-5
KOREA15, A-1, A-12
PRC15, A-1, A-9
ROC15, A-1, A-10
ROMAN8, A-1, A-4
TURKISH8, A-1, A-8
USASCII, A-1, A-3

Character sets supported, A-1
Character strings
Order, B-1

Close message catalog
CATCLOSE, 3-3

COBOLII
NLKEYCOMPARE, F-37
NLREPCHAR, F-33
NLSCANMOVE, F-17
NLTRANSLATE, F-33

COBOL II/XL, 1-2
Intrinsic features, 4-1
Obtaining Language Information, F-47
SORT, F-2

Collating sequence, 2-1, B-1
Priority, B-2

Commands
NLS speci�c, 5-2
User-de�ned (UDCs), 6-2

Compare strings
NLKEYCOMPARE, 3-2

Compare two character strings
NLCOLLATE, 3-2

Compilers, 1-2
Concatenate �le name
NLAPPEND, 3-3

Concatenate language number
NLAPPEND, 3-3

Con�guration
Native Language, 3-1

Index-2

Conventional programming, 7-3
Conventions
File naming, 7-1

Conversion
7-Bit to 8-Bit, 3-4, D-1, D-4
7-Bit to 8-Bit procedure, D-6
Editor �le, D-3
HPWORD �le, D-3
IMAGE database, D-3
Non-Text, D-3
Procedure, D-6
Special character, D-5
TDP �le, D-3
Text �le, D-3
VPLUS forms �le, D-3

Conversion algorithm, D-4
Conversion utilities, 3-4, D-3
Convert ASCII source �le
GENCAT, 3-5, 3-6

Convert custom date format
NLCONVCUSTDATE, 3-2

Convert from native to internal
NLCONVNUM, 3-3

Convert phonetic to screen order
NLSWITCHBUF, 3-2

Convert screen to phonetic order
NLSWITCHBUF, 3-2

Convert time format
NLCONVCLOCK, 3-2

Currency symbols, 2-3
Current language returned
NLGETLANG, 3-2

D Data conversion
7-Bit to 8-Bit, D-1

Data �les
Naming conventions, 7-1

Data manipulation, 7-2
Date formatting
NLCONVCLOCK, 3-2
NLCONVCUSTDATE, 3-2
NLFMTCALENDAR, 3-2
NLFMTCLOCK, 3-2
NLFMTCUSTDATE, 3-2
NLFMTDATE, 3-2
NLFMTLONGCAL, 3-2

Date/Time Formatting
FORTRAN, F-8

DATE/TIME Formatting
SPL, F-12

Determine one-byte or two-byte Asian character
NLJUDGE, 3-2

Index-3

E EBCDIC
Mapping, C-1
Mapping ROMAN8, C-2

EBCDIC to ASCII conversion, 2-3
Editor �le conversion, D-3

F FCOPY
Intrinsic features, 4-1
NLS features, 1-2

File naming conventions, 7-1
Foreign characters, 2-2
Format date
NLFMTCALENDAR, 3-2

Format date and time
NLFMTDATE, 3-2

Format in custom date format
NLFMTCUSTDATE, 3-2

Format in native form
NLFMTNUM, 3-3

Format long version date
NLFMTLONGCAL, 3-2

Format time
NLFMTCLOCK, 3-2

FORTRAN
Date/Time Formatting, F-8
SORT, F-7

Functions language, 7-2

G GENCAT utility, 3-5, 3-6
GREEK8
Character set, A-1, A-7

Guidelines
Application program, E-1

H HPWORD �le conversion, D-3

I I7DB8CNV utility, D-11
IMAGE
Intrinsic features, 4-1
NLS features, 1-2

IMAGE database conversion, D-3
Information retrieving
ALMANAC, 3-2
NLGETLANG, 3-2
NLINFO, 3-2

Interfacing, 1-2
Intrinsic
NLGETLANG, 6-2
NLINFO, C-1
NLKEYCOMPARE, F-37, F-42
NLREPCHAR, F-33
NLSCANMOVE, F-17, F-25
NLS features, 5-1

Index-4

NLTRANSLATE, C-1, F-33
Intrinsic features
COBOL II/XL, 4-1
FCOPY, 4-1
IMAGE, 4-1
NLS, 4-1
QUERY, 4-1
SORT-MERGE, 4-1
VPLUS, 4-1

J JAPAN15
Character set, A-1, A-11

JCW
NLDATALANG, 5-2, 6-1, 6-2
NLUSERLANG, 5-2, 6-1, 6-2

K KANA8
Character set, A-1, A-5

Keywords
NLS speci�c, 5-2

KOREA15
Character set, A-1, A-12

KSAM
NLS features, 1-2

L LANGINST
Utility, 3-1

Language
Multilingual, 7-5, 7-7
Single application, 7-4

Language choice in subsystems, 6-1
Language data
Support features, 3-3

Language-Dependent characteristics, 2-3
Language-Dependent information returned
NLINFO, 3-2

Language family, 2-1
Language information
installed, 2-3

Languages supported, 2-1
Lexical conventions, 2-3
Lexical ordering, B-1
Local custom formats, 3-3
Local customs, 1-1, 7-2
Localized applications, 1-1
Local language formats, 3-3

Index-5

M Mapping
EBCDIC, C-1
ROMAN8 to EBCDIC, C-2

Message catalogs
Naming conventions, 7-1

Move and scan character strings
NLSCANMOVE, 3-2

Multilingual language application, 7-5

N N7MF8CNV utility, D-9
Naming conventions
Files, 7-1

Native Language con�guration, 3-1
Native language values, 5-1
NLCOLLATE
Intrinsic, 3-2

NLCONVCLOCK
Intrinsic, 3-2

NLCONVCUSTDATE
Intrinsic, 3-2

NLDATALANG
JCW, 5-2, 6-1, 6-2

NLFINDSTR
Intrinsic, 3-2

NLFMTCALENDAR
Intrinsic, 3-2

NLFMTCLOCK
Intrinsic, 3-2

NLFMTCUSTDATE
Intrinsic, 3-2

NLFMTDATE
Intrinsic, 3-2

NLFMTLONGCAL
Intrinsic, 3-2

NLGETLANG
Intrinsic, 3-2

NLGETLANG intrinsic, 6-2
NLINFO
Intrinsic, 3-2, C-1

NLJUDGE
Intrinsic, 3-2

NLKEYCOMPARE
COBOLII, F-37
Intrinsic, 3-2
SPL, F-42

NLREPCHAR
COBOLII, F-33
Intrinsic, 3-2

NLS
Application program without, 7-3

NLSCANMOVE
COBOLII, F-17
Intrinsic, 3-2
SPL, F-25

Index-6

NLS commands, 5-2
NLS features
COBOL II/XL, 1-2
FCOPY, 1-2
IMAGE, 1-2
KSAM, 1-2
QUERY, 1-2
SORT-MERGE, 1-2
VPLUS, 1-2

NLS Features
Accessing, 5-1

NLS intrinsic features, 4-1
NLS keywords, 5-2
NLSUBSTR
Intrinsic, 3-2

NLSWITCHBUF
Intrinsic, 3-2

NLTRANSLATE
COBOLII, F-33
Intrinsic, 3-2, C-1

NLUSERLANG
JCW, 5-2, 6-1, 6-2

NLUTIL
Utility, 3-1

Non-Text conversion, D-3
Number formatting
NLCONVNUM, 3-3
NLFMTNUM, 3-3
NLNUMSPEC, 3-3

Numeric data returned
ALMANAC, 3-2

O Obtaining Language Information
COBOL II/XL, F-47

Open message catalog
CATOPEN, 3-3

Order
character, B-1

P Pascal
SORT, F-4

Peripheral support
7-Bit operation, 3-4
8-Bit operation, 3-4

PRC15
Character set, A-1, A-9

Priority
Collating sequence, B-2

Processing requirements, 1-1
Productivity tools, 1-2
Programmatic access, 7-1
Programmatic language information, 2-3
Programs accessing NLS, 7-1

Index-7

Q QUERY
Intrinsic features, 4-1
NLS features, 1-2

R Read message catalog
CATREAD, 3-3

Replace nondisplayable characters
NLREPCHAR, 3-2

Return a string
NLSUBSTR, 3-2

Return conversion information
NLNUMSPEC, 3-3

Return format information
NLNUMSPEC, 3-3

ROC15
Character set, A-1, A-10

ROMAN8
Character set, A-1, A-4

S Search for a string
NLFINDSTR, 3-2

Sequence
Collating priority, B-2

Sets
7-Bit substitution, D-2

Single language application, 7-4
SORT
COBOL II/XL, F-2
FORTRAN, F-7
Pascal, F-4

SORT-MERGE
Intrinsic features, 4-1
NLS features, 1-2

Special character conversion, D-5
SPL
DATE/TIME Formatting, F-12
NLKEYCOMPARE, F-42
NLSCANMOVE, F-25

Substitution sets
National, D-2

Subsystem language choice, 6-1
Subsystems, 1-2
Subsystem utility program, 7-7
Super sets, 2-2
Supported languages, 2-1, 2-2
Items de�ned, A-1

Index-8

T TDP �le conversion, D-3
Text �le conversion, D-3
Time formatting
NLCONVCLOCK, 3-2
NLCONVCUSTDATE, 3-2
NLFMTCALENDAR, 3-2
NLFMTCLOCK, 3-2
NLFMTCUSTDATE, 3-2
NLFMTDATE, 3-2
NLFMTLONGCAL, 3-2

Translate string from EBCDIC
NLTRANSLATE, 3-2

Translate string to EBCDIC
NLTRANSLATE, 3-2

Translation
Applications, 3-5

TURKISH8
Character set, A-1, A-8

U UDCs
Establish native language, 6-2

USASCII
Character replacement, D-2
Character set, A-1, A-3

User-De�ned commands (UDCs)
Establish native language, 6-2

User interaction, 7-2
User interface, 1-1
Utilities
Conversion, 3-4, D-3
GENCAT, 3-5, 3-6
I7DB8CNV, D-11
LANGINST, 3-1
N7MF8CNV, D-9
NLUTIL, 3-1
Subsystem program, 7-7
V7FF8CNV, D-14, D-15

V V7FF8CNV utility, D-14, D-15
VPLUS
Intrinsic features, 4-1
NLS features, 1-2

VPLUS forms �le conversion, D-3
VPLUS forms �les

Naming conventions, 7-1

Index-9

	Top of Document
	Preface
	Contents
	Introduction
	Why NLS?
	Scope of Native Language Support

	Supported Native Languages
	8-Bit Character Sets
	Language-Dependent Characteristics

	NLS Components
	NLS System Utilities
	Configuring Native Languages
	NLS Intrinsics
	Peripheral Support
	Conversion Utilities
	Application Message Facility

	NLS in the Subsystems
	Accessing NLS Features
	Intrinsics
	Native Language Attribute
	Commands

	Implicit Language Choice in Subsystems
	NLUSERLANG and NLDATALANG JCWs
	NLGETLANG Intrinsic
	User-Defined Commands (UDCs)

	Application Programs Accessing NLS
	File Naming Conventions
	General Application Program
	Application Program Without NLS
	Single Language Application
	Multilingual Applications
	Subsystem Utility Program

	App. A - Character Sets
	App. B - Collating Sequences
	Language-Dependent Variations

	App. C - EBCDIC Mapping
	Background Data
	ROMAN8 to EBCDIC Mapping

	App. D - Converting 7-Bit to 8-Bit Data
	National Substitution Sets
	Conversion Utilities
	Conversion Algorithm
	Conversion Procedure
	N7MF8CNV Utility
	I7DB8CNV Utility
	V7FF8CNV Utility
	V7FF8CNV and Alternate Character Sets
	V7FF8CNV Operation

	Application Guidelines
	All Programming Languages
	COBOL II/XL (HP 32233A)
	FORTRAN (HP 32102B)
	SPL (HP 32100A)
	RPG (HP 32104A)
	BASIC (HP 32101B)
	Pascal (HP 32106A)

	App. F - Example Programs
	Sort from a COBOLII Program
	Sort from a Pascal Program
	Sort from a FORTRAN Program
	Format Date amd Time from a FORTRAN Program
	Format Date and Time from an SPL Program
	Scan and Move Character Strings from a COBOLII Program
	Scan and Move Character Strings from an SPL Program
	Translate and Replace Characters from a COBOLII Program
	Compare Character Strings from a COBOLII Program
	Compare Character Strings from an SPL Program
	Obtain Language Information from a COBOLII Program

	Index

