Compiler Library/XL
Reference Manual

HP 3000 MPE/iX Computer Systems
Edition 2

(D Preateis

Manufacturing Part Number: 32650-90029
E1088

U.S.A. October 1988

Notice

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1988 by Hewlett-Packard Company

Print History

New editions are complete revisions of the manual. Update packages,

which are issued between editions, contain additional and replacement

pages to be merged into the manual by the customer. The dates on the

title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporat-
ed.

Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one to one correspondence between
product updates and manual updates.

First Edition........... November 1987........ 31510A.00.00

Second Edition............ October 1988........ 31510A.00.01
Preface
_Thle Compiler Library/XL Reference Manual is the reference to mathemat-
ica

and utility functions and procedures available on the MPE XL operating
system.

This manual assumes the user has a working knowledge of the language or
languages to be used and of the MPE XL operating system.

This manual contains the following:

Chapter 1 describes the fomat of the function and procedures
descriptions, describes conventions, compares data
types, shows the internal representation of the data
types, and summarizes the functions and procedures in a
series of tables.

Chapter 2 describes the mathematical functions and procedures in
alphabetical order.

Chapter 3 describes the utility procedures in alphabetical order.

Chapter 4 discusses the packed-decimal procedures in alphabetical
order.

Appendix A describes the error routine and lists the library error

messages, possible causes for the errors, and a user
action.

Additional Documentation

More information on the languages and operating system can be found in

the following manuals:

*

HP FORTRAN 77/XL Reference Manual

HP COBOL Il Reference Manual

(31500-90001)

HP COBOL Ill/XL Reference Manual Supplement

HP Pascal Reference Manual

Trap Handling Programmers' Guide

Conventions

(31502-90001)

(31501-90010)

(31500-90005)

(32650-90026)

The following conventions are used in this manual:

-2

A value
A value
A value

A value

X inthe range (
X inthe range [
X inthe range (

X inthe range [

1. All numbers are decimal values unless otherwise noted.

3. In all examples, a blank space is represented by a A.

4. Mathematical notation in the test includes the following
definitions:

a,b) means
a,b] means
a,b] means

a,b) means

2. A dollar sign ($) prefix indicates a hexadecimal numer (Chapter 4
only).

a<x<b
a<=x<=b
a<x<=b

a<b

Chapter 1 Introduction

The Compiler Library/XL functions and procedures perform input/output,
internal data conversion, mathematical functions, error-reporting
functions and packed-decimal operations. This chapter describes the
format of the function and procedure descriptions, compares data types,
shows the internal representation of the data types, and summarizes the
functions and procedures in a series of tables.

Format of the Functions Description

The functions in Chapter 2, "Mathematical Functions and Procedures” and
Chapter 3, "Utility Procedures" are described in a standard format; the
following items are included in the format, when applicable:

Declaration

Contains the parts of the function or procedure declaration that define
the requirements for actual parameters (arguments) included in a function
call, procedure call, or calling sequence.

Accuracy

Describes the function accuracy, using the following notation:

X = true value of the argument(s)

y = computed value of the argument(s)

f = true value of the result

g = computed value of the result

[x-y| = absolute error in the argument(s)

[x-y/x| = relative error in the argument(s)

|f-g| = absolute error in the result(s)

[f-g/f| = relative error in the result(s)

Attributes

Parameters: Describes the type and range of value(s) allowed by
the function.

Result: Describes the type and range of value(s).

HP FORTRAN 77/XL: Where applicable, names the corresponding HP FORTRAN
77/XL intrinsic or external function.

Error: Briefly describes the error conditions.
Comments

When needed, comments are supplied.

-2

Special Values

When needed, special values are supplied.

Compiler Library Data Types

Table 1-1 below shows the corresponding data types between HP Pascal,
HP FORTRAN 77/XL, HP COBOL II/XL and HP C/XL.

NOTE Many of the examples shown in this document are written in Pascal
and are described in terms of Pascal and Pascal data types.

Table 1-1. Corresponding Data Types

I I
| HP FORTRAN 77/XL |

| Not applicable

I

| PIC S9 through

I

| PIC S9999 COMP
I

I
| Not applicable
I

I

| PIC S9(5) through
| PIC S9(9) COMP
I

I
| Not applicable
I

I |(N,N)

I
| Not applicable

HP Pascal
I
I
LONGREAL | DOUBLE PRECISION
| or REAL*8 |
I I
I
SHORTINT | INTEGER*2
|
|
I
REAL | REAL or REAL*4
I
I
INTEGER | INTEGER or
| INTEGER*4
I
I
I
TYPE | COMPLEX or
complex=RECORD | COMPLEX*8
realpart:REAL; |
imagpart:REAL: | |
END; | |
I I
I
complex_matx= | COMPLEX
ARRAY [1..N,1..N] | complex_matx
of complex |

longreal_matx=
ARRAY [1..N,1..N]
of LONGREAL

I
| DOUBLE PRECISION
| longreal_matx

|I (N.N)

|
| Not applicable

real_matx=
ARRAY [1..N,1..N]
of REAL

I
| REAL real_matx
I (NIN)

I
| Not applicable
I

HP COBOL II/XL |

I
| double

I
| typedef struct{
| float realpart;
| float imagpart;
| JCOMPLEX;
|
I

I
| COMPLEX
| complex_matx

I [I\IIIIN];

I
| double
| longreal_matx

II [NJ[NJ;

I
| float real_matx

I [N][ll\l];
I

HP C/XL

Internal Representation of Data

This section shows how different data types are internally represented.
Shortint

Range: [-32768,32767] in two bytes

Representation

c 1+ 2 3 4 5 6 T 8 8 10 11 12 13 14 15

Pt T

Sign Most Significant Bit Least Significant Bit

Integer

Range: [-2147483648,2147483647] in four bytes (concatenated)

Representation

Sign Most Significant Bit
I
| I |
_0123450789101112131415

)
Fm—————— N ———
{
]
!
Least Significant Bit
Real
Range:

[-3.402823 x 1038 , -1.401298 x 10-45] and
0.0 and
1.401298 x 10-45 , 3.402823 x 1038] in four bytes (concatenated)

1-4

Representation

Least Significant Bit
Sign of Fraction Most Significant Bit Most Significant Bit

0 1 2 3 4 5 6 7 8 © 10 11 12 13 14 15

(Exponent) {Fraction)

)

o

|
'
16 3

{Fraction)

1

Least Significant Bit

For real numbers stored in normalized form, the exponent portion has a
range of [1,254] and the fraction portion has a range of [0,223 -1]. The
sign bit indicates the sign of the fraction portion (O indicates a

positive value and 1 indicates a negative value).

Real numbers in normalized form have an implied value of 1.0 to the left
of the fraction's most significant bit. Thus, a normalized decimal value
equals

(-1)Sign * 2Exponent-127 * (1.0+ Fraction *2-23)

and has a range of

(-1)Sign *[1.175494 x 10-38 ,3.402823 x 1038]

However, the IEEE Standard P754 allows decimal numbers whose absolute
values are smaller than 1.175494 x 10-38 . This so-called denormalized
number with Exponent equal to zero has the value

(-1)Sign *2-126 * (0.0 + Fraction *2-23)

and has a range of

(-1)Sign *[1.401298 x 10-45,1.175494 x 10-38)

When the significant bit, the exponent, and the fraction are zero, the
decimal value is equal to 0.0.

NaN (not a number) can be encoded in the real number format as follows:
When all the exponent bits are set to 1 and at least one of the
fraction bits is non-zero, there is a NaN regardless of the sign bit.
For example:

Exponent = 255; fraction <> 0

Infinity can also be encoded in the real number format as follows:

When all exponent bits are set to 1 and all of the fraction bits are
set to 0, there is an Infinity: (-1)Sign Infinity. For example:

Exponent = 255; fraction = 0
Longreal
Range:

[-1.797693134862316 x 10308 ,-4.940656458412465 x 10-324] and

0.0 and
[4.940656458412465 x 10-324 ,1.797693134862316 x 10308] in eight bytes
(concatenated)
Representation
Sign of Fraction Most Significant Bt Lesst Significant B Most Significant Bit
g 1 2 3 4 &5 & 7 & 9 10 11 12 13 14 15
{ Exponant) {Fractien)
3
[= — — o . ——— ———————— |
I
|
18 M
(Fraction)
’
r—-h-——!—li—-—l—h-ﬁl-_ ----------- q—‘——-—q——-—]
{
I
32 47
{Fraction|
’
F———————— . 2
i
]
43 83
{(Fraction)

T

Least Significant Bit

1-6

For longreal numbers stored in normalized form, the exponent portion has
a range of [1,2046] and the fraction portion has a range of [0,252 -1].

The sign bit indicates the sign of the fraction portion (0 indicates a

positive value and 1 indicates a negative value).

Longreal numbers in normalized form have an implied value of 1.0 to the
left of the fraction's most significant bit. Thus, a normalized decimal

value equals the following:

(-1)Sign * 2Exponent-1023 * (1.0+ Fraction *2-52)

and has a range of

(-1)Sign [2.225073858507201 x 10-308 ,1.797693134862316 x 10308]
However, the IEEE Standard P754 allows decimal numbers whose absolute
values are smaller than 2.225073858507201 x 10-308 . Denormalized numbers
with Exponent equal to zero have the value

(-1)Sign *2-1022 *(0.0 + Fraction *2-52)

and has a range of

(-1)Sign *[4.940656458412465 x 10-324 ,2.225073858507201 x 10-308]

When the significant bit, the exponent, and the fraction are zero, the
decimal value is equal to 0.0.

NaN (not a number) can be encoded in the longreal number format, as
follows:

When all the exponent bits are set to 1 and at least one of the
fraction bits is non-zero, there is a NaN regardless of the sign bit.
For example:
Exponent = 2047; fraction <> 0

Infinity can also be encoded in the longreal number format as follows:

When all exponent bits are set to 1 and all of the fraction bits are
set to 0, there is an Infinity: (-1)Sign Infinity.

For example:

Exponent = 2047; fraction = 0

NOTE The procedures described in Chapter 4, "Packed-Decimal Procedures,"
use packed-decimal and external-decimal numbers.

Functions and Procedures

Table 1-2 through Table 1-11 summarize the functions and procedures in
the Compiler Library. Chapter 2 describes mathematical functions.
Chapter 3 describes the utility procedures. Chapter 4 describes the
packed-decimal procedures. Appendix A describes an error message
handling routine and the Compiler Library/XL error messages.

Table 1-2. Absolute Value Functions

Function Description
I I
I I
CABS or CABS' | Calculates the absolute value of a complex number. [
I I
I I
DABS or DABS' | Calculates the absolute value of a longreal number. |
I I
I I
DSIGN or DSIGN' | Calculates the absolute value of one longreal number and |

| gives it the sign of a second longreal number. |

ISIGN or ISIGN' | Calculates the absolute value of a shortint number and |
| gives it the sign of a second shortint number.

I I
JSIGN or JSIGN' | Calculates the absolute value of one integer number and |
| gives it the sign of a second integer number. |

SIGN or SIGN' | Calculates the absolute value of one real number and |
| gives it the sign of a second real number.

1-7

1-8

Table 1-

3. Number Conversion Functions

Function

Description

AINT or AINT'

I
| Truncates a real number to an integer number inreal |

| representation. |

AMOD or AMOD'

| Calculates a real number modulus a second real number.

DDINT or DDINT'

| Truncates a longreal number to an integer number in |

| longreal representation.

DFIX or DFIX'

I
| Truncates a longreal number to an integer number. |

I
DFLOAT or DFLOAT'
I

| Converts an integer number to a longreal number. |

I
DMOD | Calculates a longreal number modulus a second longreal |

| number. |
I I
I .
IFIX or IFIX' | Truncates a real number to a shortint number.
I |
INT or INT' | Truncates a real number to a shortint number.

Table 1-4. Exponent, Root, and Logarithm Functions

Function | Description

I I
ALOG or ALOG' | Calculates the natural logarithm of a positive real number.

I I
ALOG10 | Calculates the base 10 logarithm of a positive real number.

I
CEXP or CEXP' | Calculates ex ,where x is acomplex number.

| I
CLOG or CLOG' | Calculates the natural logarithm of a complex number.

| I
CSQRT or CSQRT' | Calculates the square root of a complex number.
I I

I I
DEXP or DEXP' | Calculates ex ,where x is alongreal number.

| I
DLOG or DLOG' | Calculates the natural logarithm of a positive longreal number. |

I I
DLOG10 | Calculates the base 10 logarithm of a positive longreal number. |

| I
DSQRT or DSQRT' | Calculates the square root of a longreal number.
I I

I I
EXP or EXP' | Calculates ex ,where x is areal number.

| I
SQRT or SQRT' | Calculates the square root of a real number.

1-9

Table 1-5. Trigonometry Functions

I
Function Description
I I
I I
ATAN or ATAN' | Calculates the arctangent of a real number.
I I
I I ,
ATAN2 or ATAN2' | Calculates the arctangent of the quotient of two real |
| numbers. |
I
CCOS or CCOS' | Calculates the cosine of a complex number.
I
I o
CCOSH or CCOSH' | Calculates the hyperbolic cosine of a complex number. |
I
COS or COS' | Calculates the cosine of a real number in radians. |
I
COSH or COSH' | Calculates the hyperbolic cosine of a real number. |
I
CSIN or CSIN' | Calculates the sine of a complex number.
I
|
CSINH or CSINH' | Calculates the hyperbolic sine of a complex number. |
I
CTAN or CTAN' | Calculates the tangent of a complex number.
I
I N
CTANH or CTANH' | Calculates the hyperbolic tangent of a complex number. |
I
I I
DATAN or DATAN' | Calculates the arctangent of a longreal number.
I I _
DATAN2 | Calculates the arctangent of the quotient of two [
| longreal numbers.
I I
. I N
DCOS or DCOS' | Calculates the cosine of a longreal number in radians. |
I I
I o
DCOSH or DCOSH' | Calculates the hyperbolic cosine of a longreal number. |
I I
. I .
DSIN or DSIN' | Calculates the sine of a longreal number in radians. |
I I
I o
DSINH or DSINH' | Calculates the hyperbolic sine of a longreal number. |
I
I .
| DTAN or DTAN' | Calculates the tangent of a longreal number in radians. |

1-10

I I
DTANH or DTANH' | Calculates the hyperbolic tangent of a longreal number. |
I

I I
SIN or SIN' | Calculates the sine of a real number in radians.

I I
SINH or SINH' | Calculates the hyperbolic tangent of a real number. |
| I o
TAN or TAN' | Calculates the tangent of a real number in radians. |
I o
TANH or TANH' | Calculates the hyperbolic tangent of a real number. |
I

Table 1-6. Matrix Functions

Function Description
I
I :
CINVERT | Inverts a square matrix of complex numbers.
I :
DINVERT | Inverts a square matrix of longreal numbers.
I .
INVERT | Inverts a square matrix of real numbers.
Table 1-7. Random Number Functions
. I -
Function Description
I I
I I
RAND or RAND' | Generates the next element of a sequence of |
| pseudo-random numbers. |
RAND1 or RAND1' | Generates a random number foruse asa |

| starting point for RAND.
I I

1-11

1-12

Table 1-8. Integer Arithmetic Functions

I
Function Description
I I
o
DADD | Calculates the sum of two integer numbers.
I I
DCMP | Compares two integer numbers.
I I
. | iy
DDIV or DDIV' | Calculates the quotient of one integer number divided by |
| another integer number. |
I
|
DMPY or DMPY" | Calculates the product of two integer numbers.
I
: I
DNEG | Negates an integer number.
I
DREM or DREM' | Calculates the remainder of one integer number divided |
| by another integer number.
I I
DSUB | Calculates the difference between two integer numbers. |
I I
Table 1-9. Intrinsic Function
| , I o
| Function Description
I I
| - : | .
| XLIBTRAP | Specifies a user-defined function to process library |
| | errors.
| I
Table 1-10. Utility Procedures
I -
Procedure Description
I I
I I _
EXTIN' or HPEXTIN | Converts a byte array of ASCIl numeric data to an [
| internal representation. |
I
INEXT' or HPINEXT | Converts an internal representation of a numbertoa |
| byte array for ASCII numeric data.
I

Table 1-11. Packed-Decimal Procedures

Procedure Description

HPPACADDD

I
| Adds two packed-decimal numbers.

|
| Compares two packed-decimal operands and sets a

HPPACCMPD

| comparison code. |

I

I .
HPPACCVAD | Converts from ASCII to packed-decimal

I

I _ ,
HPPACCVBD | Converts a binary number to packed-decimal.

I

I |
HPPACCVDA | Converts a packed-decimal number to ASCII.

I

I . :
HPPACCVDB | Converts a packed-decimal number to binary.

I
HPPACLONGDIVD or HPPACDIVD

| remainder, of a packed-decimal dividend and a
| packed-decimal divisor. [

HPPACMPYD | Multiplies two packed-decimal numbers
I
I | . ,
HPPACNSLD | Performs a packed-decimal normalizing left shift.
I
I _ .
HPPACSLD | Performs a packed-decimal left shift.
I
I . :
HPPACSRD | Performs a packed-decimal right shift.
I
I
HPPACSUBD

| Subtracts one packed-decimal number from another.

You can use the HP Pascal intrinsic statement to declare the compiler
library procedure or function. For HP Pascal, for example, the external
declaration could be declared:

FUNCTION SIN (VAR x:REAL): REAL;EXTERNAL;

or the external declaration could more easily be declared as:

FUNCTION SIN:REAL;INTRINSIC;

You can use the HP FORTRAN 77 system intrinsic statement to declare the
compiler library procedure or function.

For HP FORTRAN 77/XL, for example, the external declaration could be

| Calculates the quotient, or the quotient and the

1-13

-14

declared by:

$ALIAS EXTIN = 'EXTIN™ (%REF, %REF, %VAL, %VAL, %VAL, %VAL, %REF, %REF)
or the intrinsic statement could be used:

SYSTEM INTRINSIC HPEXTIN

In HP C/XL, the intrinsic pragma is used to declare an intrinsic. For
example, instead of using the following declaration:

extern void HPPACCVDAC();
you could write:
#pragma intrinsic HPPACCVDA
The function names ending with a prime (EXTIN', for example) can be
called by HP Pascal or HP FORTRAN 77/XL programs using the ALIAS command.
See the HP Pascal Reference Manual or the HP FORTRAN 77/XL Reference
Manual for a detailed description of the ALIAS command. For example,
specify the following statement in your HP Pascal program:
PROCEDURE EXTIN $ALIAS 'EXTIN"$;INTRINSIC;
Or specify the following statement in your HP FORTRAN 77/XL program:

$ALIAS EXTIN = 'EXTIN™ (%REF, %REF, %VAL, %VAL, %VAL, %VAL, %REF, %REF)

Chapter 2 Mathematical Functions and Procedures

This chapter describes the mathematical functions and procedures in
alphabetical order.

NOTE The function names ending with a prime (EXTIN', for example) can be
called by HP Pascal programs using the ALIAS command with the
EXTERNAL or INTRINSIC statements. For example, here is a
declaration that uses ALIAS with EXTERNAL:

PROCEDURE EXTIN $ALIAS 'EXTIN™ $(
ANYVAR charstring : bytearray;
VAR stringlen : SHORTINT,;

decplaces : SHORTINT,;
datatype : SHORTINT;
scale : SHORTINT;
delimiters : SHORTINT;
ANYVAR result : INTEGER;
VAR error : SHORTINT

)
EXTERNAL;

The next example illustrates the preferred approach of using ALIAS
with INTRINSIC:

PROCEDURE EXTIN $ALIAS 'EXTIN™; INTRINSIC;

In HP FORTRAN 77/XL, you must declare routine names with a prime,
as follows:

$ALIAS EXTIN = 'EXTIN™(%REF, %REF, %VAL, %VAL, %VAL,
%VAL, %REF, %REF)"
AINT (or AINT")
AINT truncates a real number to an integer number in real representation.
Declaration

FUNCTION AINT(x:REAL):REAL; EXTERNAL;

Attributes

Parameter: A real number.

Result: A real number.

HP FORTRAN 77/XL: Intrinsic function: Y=AINT(X).
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is

enabled, the message "AINT(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

-2

ALOG (or ALOG') or ALOG10

ALOG calculates the natural logarithm of a positive real number; ALOG10
calculates the base 10 logarithm of a positive real number.

Declaration

FUNCTION ALOG(VAR x:REAL):REAL; EXTERNAL;
or

FUNCTION ALOG10(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |x-y

maximum f-g|

—~ €
| £] |n()]
Attributes
Parameter: A positive real number.
Result: A real number (ALOG10 = ALOG*log10 (e)).
HP FORTRAN 77/XL.: Intrinsic function ALOG(X) or ALOG10(X).
Error: If the argument is a NaN or if it is negative,

there are two possible actions. If the INVALID
trap is enabled, the message "ALOG(X): X< 0.0
OR X=NaN" or "ALOG10(X): X< 0.0 OR X=NaN"
occurs. Otherwise, the INVALID flag is set.
In either case, a quiet NaN is returned. See
Appendix A, "Compiler Library Messages" for
more details.
Special Values
alog (+Infinity) = +Infinity
alog (0) = -Infinity
AMOD (or AMOD")
AMOD calculates a first real number modulus a second real number.
Declaration

FUNCTION AMOD(x,y:REAL):REAL; EXTERNAL;

Attributes

Parameters: Both arguments are real numbers.
Result: A real number.

HP FORTRAN 77/XL: Intrinsic function: Z=AMOD(X,Y).
Error: If either of the arguments is a NaN (or the

first argument is infinity, or the second

argument is zero) there are two possible
actions. If the INVALID trap is enabled, the
message "AMOD(X,Y): ANY OF X AND Y=NaN OR
X=INFINITY OR Y=0.0" occurs. Otherwise, the
INVALID flag is set. In either case, a quiet
NaN is returned.

ATAN (or ATAN)

ATAN calculates the arctangent of a real number.

Declaration

FUNCTION ATAN(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |x-y| ~ [, maximum 1i-g |~ [

1+ %

Attributes
Parameter: A real number.
Result: A representable real number in the range

[-pi/2,pi/2]. See Chapter 1 for details on the

internal representation of real numbers.
HP FORTRAN 77/XL: Intrinsic function: Y=ATAN(X).
Error: If the argument is a NaN, there are two cases.

If the INVALID trap is enabled, the message
"ATAN(X): X=NaN" occurs. Otherwise, the
INVALID flag is set. In either case, a quiet
NaN is returned.
Special Values
atan (+Infinity) = pi/2
atan (-Infinity) = -pi/2
ATAN2 (or ATAN2)
ATAN2 calculates the arctangent of the quotient of two real numbers.
Declaration
FUNCTION ATAN2(VAR x,y:REAL):REAL; EXTERNAL,;

Accuracy

When |x-y| ~ [, maximum ﬂ-g |~_ [
1+w

Attributes
Parameters: Real numbers; both must not be zero.
Result: A representable real number in one of the

following ranges:

y=0 y <o
x >0 [0, pi/2] [pi/2, pi]
x <0 [-pi/2, 0) (—pi, —pi/2)

See Chapter 1 for details on the internal
representation of real numbers.

HP FORTRAN 77/XL: Intrinsic function: Z=ATAN2(X,Y)

Error: If either of the arguments is a NaN or if both
arguments are zero (or Infinity), there are two
possible actions. If the INVALID trap is
enabled, the message "ATAN2(X,Y): X=Y=0.0 OR
X=Y=INFINITY OR ANY OF X AND Y=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

See Appendix A for more details.
CABS (or CABS")
CABS calculates the absolute value of a complex number.
Declaration
TYPE complex=RECORD
realpart:REAL;
imagpart:REAL,;
N .

FUNCTION CABS(VAR x:complex):REAL; EXTERNAL;
Accuracy
Depends on the accuracy of SQRT.
Attributes

Parameter: Any complex number representable in two real
numbers: one for a and one for

Result: A non-negative real number.
HP FORTRAN 77/XL: Intrinsic function: Y=CABS(X).

Error: If either part of the argument is a NaN, there
are two possible actions. If the INVALID trap
is enabled, the message "CABS(X): ANY PART OF
X=NaN" occurs. Otherwise, the INVALID flag is
set. In either case, a quiet NaN is returned.

If a andfor b are near the overflow threshold
(a and/or b approximately equals to 1038), the
message "CABS OVERFLOW" occurs. See Appendix A

for more details.

CCOS (or CCOS))
CCOS calculates the cosine of a complex number.
Declaration
Complex numbers in HP FORTRAN 77/XL programs are represented as an
ordered pair (a 2-element array) of real numbers: one for the real part
a and one for the imaginary part b. Thus, complex numbers occupy eight
bytes.
TYPE complex=RECORD
realpart:REAL,;
imagpart:REAL;
END;
FUNCTION CCOS(VAR x:complex):complex; EXTERNAL,;
Accuracy

Depends on the accuracy of SIN, COS, and EXP.

Attributes

Parameter: A complex number.

Result: A complex number.

HP FORTRAN 77/XL: Intrinsic function: Y=CCOS(X).

Error: See the SIN, COS, and EXP error descriptions.

CCOSH (or CCOSH))

CCOSH calculates the hyperbolic cosine of a complex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL;
imagpart:REAL;
END;
FUNCTION CCOSH(VAR x:complex):complex; EXTERNAL;
Accuracy

Depends on the accuracy of SIN, COS, COSH, and SINH.

2-6

Attributes

Parameter: A complex number.

Result: A complex number.

HP FORTRAN 77/XL.: Callable as a system intrinsic: Y=CCOSH(X).
Error: See the SIN, COS, COSH, and SINH error

descriptions.
CEXP (or CEXP")

CEXP calculates ex ,where x isacomplex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL;
imagpart:REAL;
END;
FUNCTION CEXP(VAR x:complex):complex; EXTERNAL;
Accuracy

Depends on the accuracy of SIN, COS, and EXP.

Attributes
Parameter: Any complex number representable in two
representable real numbers: one for the real
part a and one for the imaginary part b; a must
be in the range [-87.3366, 88.7228]. See
Chapter 1 for details on the internal
representation of real numbers.
Result: A complex number.
HP FORTRAN 77/XL: Intrinsic function: Y=CEXP(X).
Error: See the SIN, COS, and EXP error descriptions.
CINVERT
CINVERT inverts a square matrix containing complex elements represented
as an ordered pair of real elements: one for the real part a and one for
the imaginary part b. The resulting inverse is stored over the input
matrix.
Declaration

TYPE complex=RECORD
realpart:REAL;
imagpart:REAL;
END;
complex_matx=ARRAY[1..N, 1..N] OF complex;

PROCEDURE CINVERT (VAR N:SHORTINT; ANYVAR A:complex_matx;
VAR D:SHORTINT); EXTERNAL;

Attributes

Parameters: N is an integer for the order of the matrix; A

is a real identifier of the matrix for D, an
integer identifier.

Result: CINVERT replaces the original matrix, and D
equals 1 if the matrix is non-singular or O if
the matrix is singular and no inverse exists.
HP FORTRAN 77/XL: Callable as a system intrinsic:
CALL CINVERT(N, A, D)
or as a system intrinsic statement.
Error: None.

CLOG (or CLOG")

CLOG calculates the natural logarithm of a complex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL;
imagpart:REAL,;

N .

FUNCTION CLOG(VAR x:complex):complex; EXTERNAL;
Accuracy

Depends on the accuracy of ALOG, SQRT, and ATANZ2.

Attributes

Parameter: Any nonzero complex number representable in two
real numbers; both parts must not be zero.

Result: A complex number.

HP FORTRAN 77/XL: Intrinsic function: Y=CLOG(X).

Error: See the ALOG, SQRT, and ATAN2 error

descriptions.
COS (or COS")
COS calculates the cosine of a real number in radians.
Declaration
FUNCTION COS(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |x-y| ~ [, maximum |f-g | ~ U sinx

2-

2-8

Attributes

Parameter: A real number in radians.

Result: A representable real number in the range [-1.0,
1.0]. See Chapter 1 for details on the
internal representation of real numbers.

HP FORTRAN 77/XL: Intrinsic function: Y=COS(X).

Error: If the argument is a NaN or an Infinity, there
are two cases. If the INVALID trap is enabled,
the message "COS(X): X=NaN OR INFINITY" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

COSH (or COSHY)

COSH calculates the hyperbolic cosine of a real number.

Declaration

FUNCTION COSH(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |f-g| =~ € sinh x

Attributes

Parameter: A real number.

Result: A real number.

HP FORTRAN 77/XL: Intrinsic function: Y=COSH(X).
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is

enabled, the message "COSH(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either

case, a quiet NaN is returned.

If ABS(X) is >= 88.7196, the result cannot be
represented and the message "COSH(X) OVERFLOW"
occurs. See Appendix A for more details.

CSIN (or CSIN")

CSIN calculates the sine of a complex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL;
imagpart:REAL;

N .

FUNCTION CSIN(VAR x:complex):complex; EXTERNAL;

Accuracy

Depends on the accuracy of SIN, COS, and EXP.

Attributes

Parameter: A complex number.

Result: A complex number.

HP FORTRAN 77/XL: Intrinsic function: Y=CSIN(X).

Error: See the SIN, COS, and EXP error descriptions.

CSINH (or CSINH)

CSINH calculates the hyperbolic sine of a complex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL;
imagpart:REAL;
END;
FUNCTION CSINH(VAR x:complex):complex; EXTERNAL;
Accuracy

Depends on the accuracy of SIN, COS, SINH, and COSH.

Attributes

Parameter: A complex number.

Result: A complex number.

HP FORTRAN 77/XL: Callable as a system intrinsic: Y=CSINH(X).
Error: See the SIN, COS, SINH, and COSH error

descriptions.
CSQRT (or CSQRT)

CSQRT calculates the square root of a complex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL,;
imagpart:REAL;
END;
FUNCTION CSQRT(VAR x:complex):complex; EXTERNAL;
Accuracy

Depends on the accuracy of SQRT.

2-10

Attributes

Parameter: Any complex number representable in two real
numbers: one for a and one for b.
Result: A complex number.
HP FORTRAN 77/XL: Intrinsic function: Y=CSQRT(X).
Error: If any part of the argument is a NaN, there are

two cases. If the INVALID trap is enabled, the

message "COMPLEX SQRT: ANY PART OF THE ARGUMENT
= NaN" occurs. Otherwise, the INVALID flag is

set. In either case, a quiet NaN is returned

to both the real and imaginary part.

CTAN (or CTAN')

CTAN calculates the tangent of a complex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL,;
imagpart:REAL;
END;
FUNCTION CTAN(VAR x:complex):complex; EXTERNAL,;
Accuracy

Depends on the accuracy of SIN, COS, SINH, and COSH.

Attributes

Parameter: A complex number.

Result: A complex number.

HP FORTRAN 77/XL: Intrinsic function: Y=CTAN(X).
Error: See SIN, COS, SINH, and COSH error

descriptions.
CTANH (or CTANH")

CTANH calculates the hyperbolic tangent of a complex number.

Declaration

Complex numbers in HP FORTRAN 77/XL programs are represented as an

ordered pair of real numbers: one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy eight bytes.

TYPE complex=RECORD
realpart:REAL,;
imagpart:REAL;
END;
FUNCTION CTANH(VAR x:complex):complex; EXTERNAL;
Accuracy

Depends on the accuracy of SIN, COS, COSH, and SINH.

Attributes

Parameter: A complex number.

Result: A complex number.

HP FORTRAN 77/XL.: Callable as a system intrinsic: Y=CTANH(X).
Error: See SIN, COS, SINH, and COSH error

descriptions.
DABS (or DABS")
DABS calculates the absolute value of a longreal number.
Declaration

FUNCTION DABS(x:LONGREAL):LONGREAL; EXTERNAL;

Attributes

Parameter: A longreal number.

Result: A longreal number.

HP FORTRAN 77/XL: Intrinsic function: Y=DABS(X).

Error: If the argument is a NaN, there are two
possible actions. If the INVALID trap is
enabled, the message "DABS(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

DADD

DADD calculates the sum of two integer numbers.
Declaration

FUNCTION DADD(VAR d1,d2:INTEGER):INTEGER; EXTERNAL;

Attributes

Parameters: Both arguments are integer numbers.

Result: An integer number.

HP FORTRAN 77/XL: Callable as a system intrinsic: 1=DADD(J,K)
Error: If the result cannot be represented by an

integer number, an arithmetic trap INTEGER
OVERFLOW occurs if traps are enabled.

DATAN (or DATAN))
DATAN calculates the arctangent of a longreal number.
Declaration
FUNCTION DATAN(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| == €, maximum |f-g| = €
(1+x2)

-11

-12

Attributes

Parameter: A longreal number.

Result: A representable longreal number in the range

[-pi/2, pi/2]. See Chapter 1 for details on

the internal representation of longreal

numbers.
HP FORTRAN 77/XL.: Intrinsic function: Y=DATAN(X).
Error: If the argument is a NaN, there are two cases.

If the INVALID trap is enabled, the message
"DATAN(X): X=NaN" occurs. Otherwise, the

INVALID flag is set. In either case, a quiet

NaN is returned.
Special Values
datan (+Infinity) = pi/2
datan (-Infinity) = -pi/2
DATAN2

DATAN2 calculates the arctangent of the quotient of two longreal numbers.

Declaration

FUNCTION DATAN2(VAR x,y:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |f-g| = €
(14+w2)
When w=x
y
Attributes
Parameters: Longreal numbers; both must not be zero.
Result: A representable longreal number in one of the
following ranges:
yz20 y<o0
x 20 [0, pi/2] [pi/2, pil
x <0 [_p]/zl 0) (—pis --pl/2)

See Chapter 1 for details on the internal
representation of longreal numbers.

HP FORTRAN 77/XL: Intrinsic function: Z=DATAN2(X,Y)

Error: If either of the arguments is a NaN or if both
arguments are zero or infinity, there are two
possible actions. If the INVALID trap is
enabled, the message "DATAN2(X,Y): X=Y=0.0 OR
X=Y=INFINITY OR ANY OF X AND Y=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

See Appendix A for more details.
DCMP
DCMP compares two integer numbers.
Declaration

FUNCTION DCMP(VAR d1,d2:INTEGER):INTEGER; EXTERNAL;

Attributes
Parameters: Both arguments are integer numbers.
Result:
-1if D1 < D2
0ifD1=D2
1ifD1>D2
HP FORTRAN 77/XL.: Callable as a system intrinsic: | = DCMP(J,K).
For example, the arithmetic IF statement
IF(l) 10,20,30
directs the program as follows:
go to statement 10 if X <Y
go to statement 20 if X =Y
go to statement 30 if X > Y
Error: None.

DCOS (or DCOS")
DCOS calculates the cosine of a longreal number in radians.
Declaration

FUNCTION DCOS(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |f-g| =~ € sin x

Attributes

Parameter: A longreal number in radians.

Result: A representable longreal number in the range
[-1.0, 1.0]. See Chapter 1 for details on the
internal representation of longreal numbers.

HP FORTRAN 77/XL: Intrinsic function: Y=DCOS(X).

Error: If the argument is a NaN or an Infinity, there
are two cases. If the INVALID trap is enabled,
the message "DCOS(X): X=NaN OR INFINITY"
occurs. Otherwise, the INVALID flag is set.

In either case, a quiet NaN is returned.

When DABS (X) >= 2.6378256 x 107 , DCOS (X)
completely loses significance. See Appendix A
for more details.

DCOSH (or DCOSH?)

DCOSH calculates the hyperbolic cosine of a longreal number.

Declaration

FUNCTION DCOSH(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |f-g| = € sinh x

Attributes

Parameter: A longreal number.

Result: A longreal number.

HP FORTRAN 77/XL.: Intrinsic function: Y=DCOSH(X).
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is

enabled, the message "DCOSH(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either

case, a quiet NaN is returned.

If DABS(X) >= 709.7795518826419, the result
cannot be represented and the message "DCOSH(X)
OVERFLOW" occurs. See Appendix A for more
details.

DDINT (or DDINT")

DDINT truncates a longreal number to an integer number in longreal
representation.

Declaration

FUNCTION DDINT(x:LONGREAL):LONGREAL; EXTERNAL;

Attributes

Parameter: A longreal number.

Result: A longreal number.

HP FORTRAN 77/XL: Intrinsic function: Y=DDINT(X).

-14

Error: If the argument is a NaN, there are two
possible actions. If the INVALID trap is
enabled, the message "DINT(X) OR DDINT(X):
X=NaN" occurs. Otherwise, the INVALID flag is
set. In either case, a quiet NaN is returned.

DDIV (or DDIV")

DDIV calculates the quotient of one integer number divided by another
integer number. See the description of the DREM procedure for the
remainder.

Declaration

FUNCTION DDIV(VAR d1,d2:INTEGER):INTEGER; EXTERNAL;

Attributes

Parameters: Both arguments are integer numbers.

Result: An integer number (the quotient only).

HP FORTRAN 77/XL: Callable as a system intrinsic: | = DDIV(J,K)

Error: If the parameter D2 equals zero, the arithmetic
gggblgg.EGER DIVIDE BY ZERO occurs if traps are

DEXP (or DEXP")
DEXP calculates ex ,where x is alongreal number.
Declaration

FUNCTION DEXP(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |xy| =0, maximum |- |~_D

| £
Attributes
Parameter: A representable longreal number in the range
[-708.396418532264, 709.782712893384]. See
Chapter 1 for details on the internal
representation of real numbers.
Result: A representable positive longreal number.
HP FORTRAN 77/XL: Intrinsic function: Y=DEXP(X).
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is

enabled, the message "DEXP(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

If the argument is >= 709.78271289338397 the
message "DEXP(X) OVERFLOW" occurs and the
result is infinity. If the argument is <=
-708.39641853226408 the message "DEXP(X)
UNDERFLOW" occurs and the result is set to
zero.

-15

Special Values
dexp (+Infinity) = +Infinity
dexp (-Infinity) =0
DFIX (or DFIX)
DFIX truncates a longreal number to an integer number.
Declaration

FUNCTION DFIX(x:LONGREAL):INTEGER; EXTERNAL,;

Attributes

Parameter: A longreal number.

Result: An integer number.

HP FORTRAN 77/XL: Callable as a system intrinsic:
| = DFIX(X)

Error: If traps are enabled and if the truncated

longreal number cannot be represented in the
two words of the integer, the arithmetic trap
INTEGER OVERFLOW occurs.

DFLOAT (or DFLOAT")

DFLOAT converts an integer number to a longreal number.

Declaration

FUNCTION DFLOAT(X:INTEGER):LONGREAL; EXTERNAL;

Attributes

Parameter: An integer number.

Result: A longreal number.

HP FORTRAN 77/XL: Intrinsic function:
| = DFLOAT(J)

Error: None.

DINVERT

DINVERT inverts a square matrix containing longreal numbers; the
resulting inverse is stored over the input matrix.

Declaration
TYPE longreal_matx=ARRAY[1..N, 1..N] OF longreal;

PROCEDURE DINVERT(n:SHORTINT; ANYVAR a:LONGREAL_matx;
VAR d:SHORTINT); EXTERNAL;

Attributes

Parameters: n is an integer for the order of the matrix; a
is a longreal identifier of the matrix for d,
an integer identifier.

Result: DINVERT replaces the input matrix. d is equal

2-16

to 1 if the matrix is non-singular or O if the
matrix is singular and no inverse exists.

HP FORTRAN 77/XL.: Callable as a system intrinsic:
CALL DINVERT(n, a, d)

Error: None.

DLOG (or DLOG') or DLOG10

DLOG calculates the natural logarithm of a positive longreal number;
DLOG10 calculates the base 10 logarithm of a positive longreal number.

Declaration
FUNCTION DLOG(VAR x:LONGREAL):LONGREAL; EXTERNAL;
or
FUNCTION DLOG10(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| ~], maximum 1—g |~_ [

| X | | 1n(xj

Attributes
Parameter: A representable positive longreal number. See

Chapter 1 for details on the internal

representation of longreal numbers.
Result: A longreal number (DLOG10 = DLOG * log10 (
HP FORTRAN 77/XL: Intrinsic function: Y=DLOG(X) or Y=DLOG10(X).
Error: If the argument is a NaN or a negative number,

there are two possible actions. If the INVALID
trap is enabled, the message "DLOG(X): X< 0.0
OR X=NaN" or "DLOG10(X): X <0.0 OR X=NaN"
occurs. Otherwise, the INVALID flag is set.
In either case, a quiet NaN is returned.
Special Values
dlog (+Infinity) = +Infinity
dlog (0) = -Infinity
DMOD
DMOD calculates a longreal number modulus a second longreal number.
Declaration

FUNCTION DMOD(VAR x,y:LONGREAL):LONGREAL; EXTERNAL;

Attributes
Parameters: Both arguments are longreal numbers.
Result: A longreal number.

e)).

-17

2-18

HP FORTRAN 77/XL.: Intrinsic function: Z=DMOD(X,Y).

Error: If either of the arguments is a NaN (or the
first argument is infinity or the second
argument is zero), there are two possible
actions. If the INVALID trap is enabled, the
message "DMOD(X,Y): ANY OF X AND Y=NaN OR
X=INFINITY OR Y=0.0" occurs. Otherwise, the
INVALID flag is set. In either case, a quiet
NaN is returned.

DMPY (or DMPY")
DMPY calculates the product of two integer numbers.
Declaration

FUNCTION DMPY (VAR d1,d2:INTEGER):INTEGER; EXTERNAL;

Attributes
Parameters: Both arguments are integer numbers.
Result: An integer number.
HP FORTRAN 77/XL: Callable as a system intrinsic: | = DMPY(J,K)
Error: If traps are enabled and if the result cannot
be represented by an integer number, the
arithmetic trap INTEGER OVERFLOW occurs.
DNEG

DNEG negates an integer number.
Declaration

FUNCTION DNEG(VAR d:INTEGER):INTEGER; EXTERNAL;

Attributes

Parameter: An integer number.

Result: The integer number with the opposite sign.

HP FORTRAN 77/XL.: Callable as a system intrinsic: | = DNEG(J)
Error: None.

DREM (or DREM)

DREM calculates the remainder of one integer number divided by another
integer number. See the DDIV procedure for the quotient.

Declaration

FUNCTION DREM(VAR d1,d2:INTEGER):INTEGER; EXTERNAL;

Attributes

Parameters: Both arguments are integer numbers.

Result: An integer number (the remainder only).

HP FORTRAN 77/XL: Callable as a system intrinsic: I=DREM(J,K)
Error: If traps are enabled and if the parameter d2

equals zero, the arithmetic trap INTEGER DIVIDE

BY ZERO occurs.
DSIGN (or DSIGN")

DSIGN calculates the absolute value of the first longreal number and
gives the number the sign of the second longreal number.

Declaration

FUNCTION DSIGN(x,y:LONGREAL):LONGREAL; EXTERNAL;

Attributes

Parameters: Both arguments are longreal numbers; if the
second number is zero, the sign is assumed to
be positive.

Result: A longreal number.

HP FORTRAN 77/XL: Intrinsic function: Z=DSIGN(X,Y).

Error: If either of the arguments is a NaN, there are

two possible actions. If the INVALID trap is
enabled, the message "SIGN FUNCTION: ANY
ARGUMENT=NaN" occurs. Otherwise, the INVALID
flag is set. In either case, a quiet NaN is
returned.

DSIN (or DSIN')

DSIN calculates the sine of a longreal number in radians.

Declaration

FUNCTION DSIN(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |f-g| =~ € cos x

Attributes

Parameter: A longreal number in radians.

Result: A representable longreal number in the range
[-1.0, 1.0]. See Chapter 1 for details on the
internal representation of longreal numbers.

HP FORTRAN 77/XL: Intrinsic function: Y=DSIN(X).

Error: If the argument is a NaN or an Infinity, there

are two cases. If the INVALID trap is enabled,
the message "DSIN(X): X=NaN OR INFINITY"
occurs. Otherwise, the INVALID flag is set.

In either case, a quiet NaN is returned.

When ABS (X) > 2.6378256 x 107 , DSIN (X)
completely loses significance. See Appendix A
for more details.

DSINH (or DSINH?)

DSINH calculates the hyperbolic sine of a longreal number.

-19

Declaration
FUNCTION DSINH(VAR x:LONGREAL):LONGREAL; EXTERNAL,;

Accuracy

When |x-y| = €, maximum |f~g| = € cosh x

Attributes

Parameter: A longreal number.

Result: A longreal number.

HP FORTRAN 77/XL: Intrinsic function: Y=DSINH(X).
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is

enabled, the message "DSINH(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either

case, a quiet NaN is returned.

If DSINH(X) >= 709.7795518826419, the result
cannot be represented and the message "DSINH(X)
OVERFLOW" occurs. See Appendix A for more
details.

DSQRT (or DSQRT")

DSQRT calculates the square root of a longreal number.

Declaration

FUNCTION DSQRT(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |f-g| = 1 €
| x| £ | 2
Attributes
Parameter: A non-negative longreal number.
Result: A non-negative longreal number.
HP FORTRAN 77/XL: Intrinsic function: Y=DSQRT(X).
Error: If the argument is a NaN or if it is negative,
there are two possible actions. If the INVALID
trap is enabled, the message "DSQRT(X): X<0.0
OR X=NaN" occurs. Otherwise, the INVALID flag
is set. In either case, a quiet NaN is
returned.
DSUB

DSUB calculates the difference between two integer numbers.

2-20

Declaration

FUNCTION DSUB(VAR d1,d2:INTEGER):INTEGER; EXTERNAL;

Attributes

Parameters: An integer number.

Result: An integer number.

HP FORTRAN 77/XL: Callable as a system intrinsic: | = DSUB(J,K)
Error: If traps are enabled and if the result cannot

be represented by an integer, the arithmetic
trap INTEGER OVERFLOW occurs.

DTAN (or DTAN))
DTAN calculates the tangent of a longreal number in radians.
Declaration

FUNCTION DTAN(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |xy| =0, maximum fg |~ sec? x

Attributes

Parameter: A longreal number in radians.
Result: A longreal number.

HP FORTRAN 77/XL: Intrinsic function: Y=DTAN(X).
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is
enabled, the message "DTAN(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.
When DABS(X) > 149078413.0, DTAN(X) completely
loses significance. See Appendix A for more
details.
DTANH (or DTANH')
DTANH calculates the hyperbolic tangent of a longreal number.
Declaration
FUNCTION DTANH(VAR x:LONGREAL):LONGREAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |f-g| =~ € sech? x

-22

Attributes

Parameter: A longreal number.

Result: A representable longreal number in the range
[0.0, 1.0]. See Chapter 1 for details on the
internal representation of longreal numbers.

HP FORTRAN 77/XL: Intrinsic function: Y=DTANH(X).

Error: If the argument is a NaN, there are two
possible actions. If the INVALID trap is
enabled, the message "DTANH(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

EXP (or EXP")

EXP calculates ex ,where x isareal number.

Declaration

FUNCTION EXP(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |x-y| = €, maximum |[f-g| = €

| £]
Attributes
Parameter: A representable real number in the range
[-87.3366, 88.7228]. See Chapter 1 for details
on the internal representation of real numbers.
Result: A representable positive real number.
HP FORTRAN 77/XL: Intrinsic function: Y=EXP(X).
Error: If the argument is a NaN, there are two cases.

If the INVALID trap is enabled, the message
"EXP(X): X=NaN" occurs. Otherwise, the INVALID
flag is set. In either case, a quiet NaN is
returned.
If the argument is >= 88.722839, the message
"EXP(X) OVERFLOW" occurs and the result is
infinity. If the argument is <= -87.336548,
the message "EXP(X) UNDERFLOW" occurs and the
result is set to zero.
Special Values
exp (+Infinity) = +Infinity
exp (-Infinity) =0
IFIX (or IFIX")
IFIX truncates a real number to a shortint number.
Declaration

FUNCTION IFIX(x:REAL):SHORTINT; EXTERNAL;

Attributes

Parameter: A representable real number in the range
[-32768.0, 32767.0]. See Chapter 1 for details
on the internal representation of real numbers.

Result: An integer number.
HP FORTRAN 77/XL: Intrinsic function: [=IFIX(X).
Error: If traps are enabled and if the real number is

outside the range stated, the arithmetic trap
INTEGER OVERFLOW occurs.

INT (or INT")
INT truncates a real number to a shortint number.
Declaration

FUNCTION INT(x:REAL):SHORTINT; EXTERNAL;

Attributes

Parameter: A representable real number in the range
[-32768.0, 32767.0]. See Chapter 1 for details
on the internal representation of real numbers.

Result: An integer number.

HP FORTRAN 77/XL.: Intrinsic function: 1=INT(X).

Error: If traps are enabled and if the real number is
outside the range stated, the arithmetic trap
INTEGER OVERFLOW occurs.

INVERT

INVERT inverts a square matrix containing real numbers; the resulting
inverse is stored over the input matrix.

Declaration
TYPE real_matx=ARRAY][1..N, 1..N] OF real;

PROCEDURE INVERT(n:SHORTINT; ANYVAR a:REAL_matx;
VAR d:SHORTINT); EXTERNAL;

Attributes

Parameters: For n, an integer for the order of the matrix;
for a, a real identifier of the matrix; for d,
an integer identifier.

Result: INVERT replaces the original matrix, and d is
equal to one if the matrix is non-singular or
zero if the matrix is singular and no inverse
exists.

HP FORTRAN 77/XL: Callable as a system intrinsic:

CALL INVERT(n, a, d)

Error: None.

ISIGN (or ISIGN)

ISIGN calculates the absolute value of a shortint number and gives the

number the sign of the second shortint number.
Declaration

FUNCTION ISIGN(j,k:SHORTINT):SHORTINT; EXTERNAL;

Attributes

Parameters: Both arguments are shortint numbers; if the
second number is zero, the sign is assumed to
be positive.

Result: An integer number.

HP FORTRAN 77/XL: Intrinsic function: L=ISIGN(J,K)

Error: None.

JSIGN (or JSIGN')

JSIGN calculates the absolute value of the first integer number and gives
the number the sign of the second integer number.

Declaration

FUNCTION JSIGN(j,k:INTEGER):INTEGER; EXTERNAL;

Attributes

Parameters: Both arguments are integer numbers; if the
second number is zero, the sign is assumed to
be positive.

Result: An integer number.

HP FORTRAN 77/XL: Intrinsic function: L=JSIGN(J,K).

Error: None.

RAND (or RAND")
RAND generates the next element of a sequence of pseudo-random numbers.
Declaration

FUNCTION RAND(VAR x:INTEGER):REAL; EXTERNAL;

Attributes
Parameter: A integer number.
Results: A representable real number uniformly
distributed in the range (0.0, 1.0) returned as
the value of the routine, and a 32-bit quantity
replacing the original value of the parameter.
See Chapter 1 for details on the internal
representation of real numbers.
HP FORTRAN 77/XL: Callable as a system intrinsic: Y = RAND(l)
Comments

The parameter value for the initial call to RAND completely determines a
sequence of pseudo-random numbers. Each time RAND returns a new value to
the calling program, it also sets a new 32-bit value in place of the

parameter. To continue the pseudo-random sequence thus initiated, that

32-bit value must be used as the parameter in the next call to RAND.

-24

RAND1 (or RAND1')

RAND1 generates a random number, that can be used as the starting point
for the RAND procedure.

Declaration

FUNCTION RANDL1: INTEGER; EXTERNAL;

Attributes

Parameter: None.

Result: A 32-bit integer quantity.

HP FORTRAN 77/XL.: Callable as a system intrinsic:I=RAND1()
Error: None.

Comments

This random value is derived from the 31-bit logical quantity changed
every millisecond by the MPE XL system timer.

SIGN (or SIGN)

SIGN calculates the absolute value of the first real number and gives the
number the sign of the second real number.

Declaration

FUNCTION SIGN(x,y:REAL):REAL; EXTERNAL;

Attributes

Parameters: Both arguments are real numbers; if the second
number is zero, the sign is assumed to be
positive.

Result: A real number.

HP FORTRAN 77/XL: Intrinsic function: Z=SIGN(X,Y).

Error: If either of the arguments is a NaN, there are
two possible actions. If the INVALID trap is
enabled, the message "SIGN FUNCTION: ANY
ARGUMENT=NaN" occurs. Otherwise, the INVALID
flag is set. In either case, a quiet NaN is
returned.

SIN (or SIN')

SIN calculates the sine of a real number in radians.
Declaration
FUNCTION SIN(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |[x-y| = [, maximum g | = [cos x

2-25

Attributes

Parameter: A real number in radians.

Result: A representable real number in the range [-1.0,
1.0]. See Chapter 1 for details on the
internal representation of real numbers.

HP FORTRAN 77/XL: Intrinsic function: Y=SIN(X).

Error: If the argument is a NaN or an Infinity, there
are two possible actions. If the INVALID trap
is enabled, the message "SIN(X): X=NaN OR
INFINITY" occurs. Otherwise, the INVALID flag
is set. In either case, a quiet NaN is
returned.

SINH (or SINH")

SINH calculates the hyperbolic sine of a real number.

Declaration

FUNCTION SINH(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |[xy]| = (1, maximum g | = [cosh x

Attributes

Parameter: A real number.

Result: A real number.

HP FORTRAN 77/XL: Intrinsic function: Y=SINH(X).
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is
enabled, the message "SINH(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.
If ABS(X) >= 88.7196, the result cannot be
represented and the message "SINH(X) OVERFLOW"
occurs. See Appendix A for more details.

SQRT (or SQRT)

SQRT calculates the square root of a real number.

Declaration

FUNCTION SQRT(VAR x:REAL):REAL; EXTERNAL,;

Accuracy

2- 26

When |x-y| = €, maximum |f-g| = 1 €

[x| f |
Attributes
Parameter: A non-negative real number.
Result: A non-negative real number.
HP FORTRAN 77/XL: Intrinsic function: Y=SQRT(X).
Error: If the argument is a NaN or if it is negative,

there are two possible actions. If the INVALID
trap is enabled, the message "SQRT(X): X<0.0 OR
X=NaN" occurs. Otherwise, the INVALID flag is
set. In either case, a quiet NaN is returned.

TAN (or TAN")

TAN calculates the tangent of a real number in radians.

Declaration

FUNCTION TAN(VAR x:REAL):REAL; EXTERNAL;

Accuracy

When |[xy| = (], maximum |fg | = [J sec? x

Attributes

Parameter: A real number in radians.

Result: A real number.

HP FORTRAN 77/XL: Intrinsic function: Y=TAN(X)
Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is
enabled, the message "TAN(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

When ABS(X) > 6433.0, TAN(X) completely loses
significance. See Appendix A for more details.

TANH (or TANH")
TANH calculates the hyperbolic tangent of a real number.
Declaration

FUNCTION TANH(VAR x:REAL):REAL; EXTERNAL;

-27

Accuracy

When |xy | =0, maximum |f-g | = sech? x

Attributes

Parameter: A real number.

Result: A representable real number in the range [0.0,
1.0]. See Chapter 1 for details on the
internal representation of real numbers.

HP FORTRAN 77/XL: Intrinsic function: Y=TANH(X).

Error: If the argument is a NaN, there are two

possible actions. If the INVALID trap is

enabled, the message "TANH(X): X=NaN" occurs.
Otherwise, the INVALID flag is set. In either
case, a quiet NaN is returned.

2-28

Chapter 3 Utility Procedures

This chapter describes the utility procedures EXTIN/HPEXTIN and INEXT'/HPINEXT.

EXTIN'/HPEXTIN
This utility procedure is callable by the names EXTIN' and HPEXTIN.

NOTE EXTIN' is provided for compatibility with MPE V. In hew program
development, it is advisable to call HPEXTIN for ease of use. The
declaration is the same for both utility names.

EXTIN'/HPEXTIN converts a byte array containing an input string of ASCII
digits into one of these internal representations:

SHORTINT
REAL
INTEGER
LONGREAL

E I I

See the "Comments" section for more details.
Declaration

TYPE bytearray = PACKED ARRAY [1..N] OF CHAR,;
PROCEDURE HPEXTIN (
ANYVAR charstring : bytearray;
VAR stringlen : SHORTINT;
decplaces : SHORTINT;
datatype : SHORTINT,;
scale : SHORTINT;
delimiters : SHORTINT;
ANYVAR result : INTEGER;
VAR error : SHORTINT

)
OPTION UNCHECKABLE_ANYVAR,;

EXTERNAL;
Attributes
Parameters charstring = The byte array to be converted, passed
(Input): by reference.
stringlen = Upon entry, the field width of the
ASCII input string including all
special characters. (See Comment 1 for
more details.)
decplaces = The number of digits d to be

interpreted as fraction digits

(multiply the integer field by 10-d if

the input string does not include a
decimal point). See Comment 1 for more

details. If a decimal point is

included in the input string, this

-1

datatype =

scale =

delimiters =

parameter has no effect. If decplaces
is less than zero, the procedure
assumes decplaces is zero. If datatype
is 0 or -1, this parameter is ignored.

The internal representation desired:

0 = SHORTINT
1=REAL

-1 =INTEGER
-2 = LONGREAL

The scale factor (see Comment 2 for
more details). This factor is ignored
if datatype=0 (SHORTINT) or datatype=-1
(INTEGER).

Imbedded blanks, dollar signs, and

commas in the input are treated
differently, depending upon whether the
value is even or odd.

Even:

Odd :

Parameters result=

(Output):

error =

$ and/or commas and/or
imbedded blanks are
delimiters.

Imbedded blanks are
treated as zeros; a $
and/or a comma to the
left of every third
digit to the left of
the decimal point are
allowed.

32-bit pointer (address) to the first

word of result storage according to the
type specified.

Error indicator (see Comments 5 and 6
for more details).

2=

3=

No integer or fraction
value was detected
(see Comment 6).

An illegal character
was detected (see
Comment 5).

Valid result; no
error.

The number is larger
than the largest
representable value
and an illegal
character was
detected.

The resulting number
is greater than the
largest representable
value of datatype.

See Chapter 1 for
details on
representable values.

The number is less

than the smallest
representable value
and an illegal
character was
detected.

-4 = The resulting number
is less than the
smallest representable
value of datatype.

See Chapter 1 for
details on
representable values.

W= Upon exit, the number
of string characters
used to compute the
result (see Comment

5).
Results: See "Parameters (Output)" above.
HP FORTRAN 77/XL: Use the $ALIAS directive to call EXTIN' ; use
the system intrinsic statement to call
HPEXTIN.
Errors: See "Parameters (Output)" above.

Comments

1. The external form of the input is a string of ASCII digits that
can include integer, fraction, and exponent subfields:

Integer Fraction Exponent
field field field

I I I

\% \% \
|< >| < >| < >
+n..n . n..n E+ee

AN

Decimal point
The exponent field input can be any of these forms:

+e +ee Ee Eee De Dee
-e -ee E+e E+ee D+e D+ee
+eee -eee E-e E-ee D-e D-ee

where e is an exponent value digit.

2. The scale parameter has no effect if the input string includes an
exponent field. Otherwise, a scale of n sets the result to the
input string value * 10-n . For example,

STRING Array scale RESULT
4398.76 3 4.39876
543.21 -3 543210.

3. The type of the result is independent of the input string format.
For example, the input 4398.76 can be converted to integer form.
The conversion rules are stated in Table 3-1.

Table 3-1. Rules for Data Type Conversion

Data: Type | : Value of d%’:ltatype Result
SHORTINT | | 0 | | Truncates a flractional input. |
REAL | | 1 | | Accepts a fractional input. |
INTEGER | [-1 | Truncates a fractional input. |
LONGREAL : [-2: | Accepts a fr?ctional input. |

4. Leading blanks in the input string are ignored; if the parameter
delimiters is odd, trailing blanks are treated as zeros.

5. If error is set to an odd value, an illegal character was input;
if error is odd and negative, an illegal character and illegal
value was detected. The parameter intlvalue is computed from the
input string characters that preceded the delimiting digit or
illegal character. Parameter stringlen can be used as an index
into charstring to locate that delimiter or illegal character.
The following are examples of illegal character inputs:

+1.345A (Ais illegal)
7543CUP (C, U, and P are illegal)

6. If error is set to 2, no integer or fraction value was detected
and a result cannot be computed. The following are examples of
non-value inputs:

+.E5 (the exponent E5 has no base)
-.A (no base, no exponent)

7. When case is significant, the names for the EXTIN'/HPEXTIN
procedure are in lower case.

NOTE Dollar signs ($) and commas for monetary or numeration form in the
input are ignored, but they must be counted in parameter stringlen,
and must be in the proper places (for example, $ must lead a
number, and commas should appear every third digit).

INEXT'/HPINEXT

INEXT' and HPINEXT are two names for the same utility procedure.
INEXT'/HPINEXT converts a number in storage (in one of four internal
representations) to a byte array for an output string of ASCII digits.
The internal representations are:

SHORTINT
REAL
INTEGER
LONGREAL

E I

See the "Comments" section for more details.

Declaration

TYPE bytearray = PACKED ARRAY [1..N] OF CHAR,;
PROCEDURE HPINEXT (
ANYVAR value :INTEGER;
datatype : SHORTINT,;
fieldwidth : SHORTINT;
decplaces : SHORTINT;
kind : SHORTINT;
scale : SHORTINT,;
ANYVAR charstring : bytearray;
VAR error : SHORTINT

)
OPTION UNCHECKABLE_ANYVAR;
EXTERNAL,

Attributes

Parameters value = 32-bit pointer (address) to the first
(Input): word of the internal representation to
be converted.

datatype = The type of internal representation:

0
1
-1
-2

SHORTINT
REAL
INTEGER
LONGREAL

fieldwidth = Field width w of the ASCII string,
including all special characters. See
the kind parameter description for more
details.

Set fieldwidth to at least decplaces+6

to allow for special characters when

kind equals 3 (G w.d format) or 2 (D
format) or 1 (E w.d format). Ifa
positive scale factor is also used, set

fieldwidth to at least decplaces+7.

decplaces = The number of fractional digits
the ASCII string. If decplaces is
equal to zero, no fractional digits are
included in the output, even though a
decimal point is included. If
fieldwidth <= zero or decplaces < zero,
an error is implied and error is set to

kind = The kind of conversion desired. See
Table 3-2 for a list of possible values
of kind.

w.d

3-5

Table 3-2. Values of kind and Associated Formats

|
Value of kind | Format | Example

| I I
| I I :

3 | G w.d | See "Comments" for more details.
| I I

2 |D w.d | 0.12345D+04 |
| I I

1 |E w.d | 0.12345E+04 |
| I I

0 [w | 1234 |
| I I

-1 | N w.d | 1,234.5 |
| I I

2 M w.d | $1,234.5 |
| I I

-3 | F w.d | 1234.5 |
| I I

scale = The scale factor (see "Comments" for
more details).
Parameters charstring = Pointer to the first byte array for
(Output): the ASCII string output. The result

occupies the first fieldwidth
characters (bytes) in this array.

error = Is -1 if fieldwidth is too small for
the result in the specified kind. If
decplaces < zero, or if fieldwidth <=
zero, the byte array is filled with
asterisks (*). The error parameter is
zero if the result is valid.

Results: See "Parameters (Output)" above for details.
HP FORTRAN 77/XL: Use the $ALIAS directive to call INEXT' ; use
the system intrinsic statement to call
HPINEXT.
Errors: See "Parameters (Output)" above for details.
Comments

1. The result charstring is an array of ASCII digits; charstring can
also include the sign character (-), a decimal point, and an
exponent field for kind = 1 (for the E w.d format) or kind = 2 (for
the D w.d format). Generally, the exponent field includes the
letter E or D followed by a signed two-digit integer. If the
absolute value of the exponent is greater than 99, the exponent
field appears as a signed three-digit integer (without a preceding
E). Alternatively, charstring can include a sign character (-), a

dollar sign for kind = -2 (for the M w.d format) and/or commas for
kind = -2 or -3 (for the M w.d orN w.d formats). (w equals the
parameter fieldwidth and d equals the parameter decplaces.)

2. Tousekind =3 (G w.d format), set decplaces to the number of

significant digits and set fieldwidth to decplaces+6 to allow for

special characters. Then, kind = 3 is used as kind =-3 or 1

(F w.d orE w.d format), according to the absolute value of the
internal representation of value intlvalue, as shown in Table 3-3.

Table 3-3. Gw.d Formatting Rules

Value Format Used
I |
_ I |
intlvalue < 0.1 | E w.d |
|
0.1 <=intlvalue <1 | F(w-4). d plus 4 spaces |
|
1 <intlvalue < 101 | F(w-4).(d-1) plus 4 spaces |
|
101 <=intlvalue <102 | F(w-4).(d-2) plus 4 spaces |
|
102 <=intlvalue <103 | F(w-4).(d-3) plus 4 spaces |
I |
[- I
I |
I' I
10(d-1) <=intlvalue < 10d | F(w-4).0 plus 4 spaces
|
10d <=intlvalue | Ew.d |

In general, if the number of integer digits in intlvalue is
greater than decplaces or equal to zero, kind = 1 is used (the

E w.d format).
Examples
The following examples show how the G w.d format is used.
If you specify the format G12.6 and the value of intlvalue is
1234.5, the equivalent F w.d format is calculated as follows:
because 103 < intlvalue < 104 , the format used is F(w-4).(d- 4
plus four spaces. Therefore, in this example, the equivalent F w.d

format is F8.2 plus four spaces; the value stored is A1234.50AAAA.

If you specify the format G13.7 and the value of intlvalue is

123456.7, the equivalent F w.d format is F(w-4).(d-6). Therefore,
in this example, the format used is F9.1 plus four spaces; the

value stored is A123456.7AAAA.

Finally, if you specify the format G9.2 and the value of intlvalue
is 123.4, the equivalent E w.d formatis E9.2; the value stored is
AA.12E+03.

3. The scale parameter does not affect kind = 0. When kind = 1 or 2,
the result string uses these factors:

* The internal representation value fraction is multiplied by
10s (where s is scale).

* The internal representation value exponent is reduced by
scale.

* When scale is <= zero, the charstring fraction has -scale
leading zeros, followed by decplaces + scale significant
digits.

* When scale is < zero, charstring has scale significant digits
to the left of the decimal point and (decplaces - scale) + 1
significant digits to the right of the decimal point.

* The least significant digit in charstring is rounded.

For example, if intlvalue = 1234.5, kind = 1, fieldwidth = 11, and

decplaces = 3, the following is true:

If scale =0, charstring = AAA.123E+04
If scale = -2, charstring = AAA.001E+06
If scale =2, charstring = AA12.35E+02

When kind = -3, -2, or -1, the result charstring is the internal
representation intlvalue multiplied by 10s (where
result is then converted.

For example, if intlvalue = 1234.5, kind = -3, fieldwidth = 11,
and decplaces = 3, the following is true:

If scale = 0, charstring = AAA1234.500
If scale = -2, charstring = AAAAA12.345
If scale = 2, charstring = A123450.000

When kind = -3, the following is true:

s is scale); the

* If kind = 3 (G w.d) is used as kind = -3(F w.d), scale has no
effect.
* |f kind = 3is used as kind =1 (E w.d),scale affects

charstring as described for kind = 2 or 1.

. When case significant, the names for the INEXT'/HPINEXT are in

lower case.

Chapter 4 Packed-Decimal Procedures

This chapter describes the packed-decimal procedures that perform the
following basic operations:

* Arithmetic operations

* Comparisons

Left and right shifts

Conversions to and from binary
Conversions to and from external decimal

* X ok

These procedures facilitate migration to MPE XL of applications that

perform packed-decimal operations using ASSEMBLE statements in the SPL/V
programming language. Packed-decimal operations on SPL/V are typically
performed by pushing several parameters onto the stack and then

executing, via an ASSEMBLE statement, the appropriate decimal

instruction.

Programs written in SPL/V can be run on 900 Series HP 3000 computer
systems in Compatibility Mode. However, it is often desirable to convert
them to languages for which Native Mode programs can be generated.

The procedures described in this chapter provide packed-decimal
operations for programs executing in Native Mode. There is a procedure
corresponding to each of the 11 packed-decimal instructions in the HP
3000 Series V instruction set. In addition, there is a procedure
corresponding to each of the two packed-decimal division routines
provided in the MPE V/E Compiler Library.

The packed-decimal procedures are also suitable for use in new programs
being developed in Native Mode. Because the sizes of the operands are
passed as parameters, these procedures can be used in applications
where the field sizes are not known at compile-time, for example,
general-purpose database applications and report writers.

NOTE These procedures execute entirely in Native Mode and take advantage
of the architecture of the 900 Series HP 3000 computers as much as
possible. However, because of their generality and the fact that
they are external procedures, they are not as efficient as the code
that can be generated by a compiler.

Therefore, in applications where the speed of packed-decimal
operations is a primary concern, you may wish to consider a
language that directly supports the packed-decimal data type, such
as HP COBOL II/XL.

Packed-decimal procedures can be declared as intrinsics and can be called
from high level languages, such as HP C/XL, HP Pascal/XL and HP FORTRAN
77/XL.

Most of the procedures use the packed-decimal format; two procedures

(HPPACCVAD and HPPACCVDA) use external-decimal number format; and two
procedures (HPPACCVBD and HPPACCVDB) use binary numbers.

[

Packed-Decimal Numbers

The format of a packed-decimal number is shown in Figure 4-1.

Unused

or Low-Order
Digit Digit Digit Digit Digh Dight Digit Sign
A\ N\ 7\ A\ ~ /__/\ N \ 7 N\ ol

/ N\ S N\ 7/ N/ 7/ \ / \
012 3 4586 12 3 45 01 2 4 567 0123 45¢6 7

7 0 6 7
T T T T T OV I I I T T IS I I T T T T I T T T T T T 1]

Y
3

Increasing Addresses in Memory

Figure 4-1. Packed-Decimal Format

The left-most byte in the illustration contains the high-order digit. If
this digit is in bit postions 4 through 7, positions 0 through 3 of the
same byte are ignored. (A digit count specifies the number of digits
to be recognized.) A packed-decimal number has the following
characteristics:

* Each decimal digit is represented in binary coded decimal (BCD) form
by four bits.

* The sign is represented by four bits.

* In storage, the four sign bits may be in the following bit positions
of a 32-bit word: (4-7), (12-15), (20-23), or (28-31). Expressed in
different terms, the sign is always in positions (4-7) of an 8-bit
byte; the byte is byte 0, byte 1, byte 2, or byte 3 of a 32-bit word.

* Bytes to the left of the byte containing the high-order digit are not
part of the number field and may have any contents, even though they
may be part of the same 32-bit word. Likewise, bytes to the right of
the byte containing the sign bits are not part of the field and may
have any contents, even though they may be part of the same 32-bit
word. Bytes that are outside of the field will not be accessed or
modified.

* Succeeding 4-bit groups to the left of the sign (Figure 4-1) can
contain successively higher-order digits.

* There are no unused bits between the sign and the high-order digit.
* The length may be up to 28 digits.

* The storage address is the address of the byte that contains the
high-order digit.

* When a packed-decimal number is source data for a decimal arithmetic
procedure, sign bits 1101 are recognized as minus. All other bit
combinations are recognized as plus, except that HPPACCVDA recognizes
1111 as designating an unsigned number.

* When a packed-decimal number is the result of a decimal arithmetic
procedure, sign bits 1100 indicate plus and 1101 indicate minus.
There are no unsigned result operands except for HPPACCVAD, which
furnishes 1111 to indicate an unsigned number.

* A leading nonsignificant packed-decimal digit is not modified by any
procedure other than HPPACCVAD, which inserts a zero.

External-Decimal Numbers

Figure 4-2 shows the format of external-decimal numbers.

Low-Order
High-Order Digit and
Digit Digit Digtt Sign
"\ AN VAN VAN
/ / N/ AN
0t 2 3 458 7 01234567 01234567 0123 456 7

EEEEEERNEEREEEEEINE

HEEENINENEERER

Increasing Addresses in Memory

Figure 4-2. External-decimal Format
External-decimal numbers have the following characteristics:
* Each digit is expressed by eight bits.

* An indication of the sign of the number is included in the
representation of the low-order digit.

* In storage, the low-order digit may be any byte of a 32-bit word.

* Bytes to the left of the byte containing the high-order digit are not
part of the number field and may have any contents, even though they
may be part of the same 32-bit word. Likewise, bytes to the right of
the byte containing the sign bits are not part of the field and may
have any contents, even though they may be part of the same 32-bit
word. Bytes that are outside of the field will not be accessed or
modified.

* Subsequent bytes to the left of the low-order digit (Figure 4-2)
contain successively higher-order digits.

* There are no unused bytes between the low-order digit and the
high-order digit.

* The length may be up to 28 digits.

* The storage address is the address of the byte that contains the
high-order digit.

Table 4-1 shows the low-order digit for positive, negative, and unsigned
numbers. The dollar sign ($) prefix indicates a hexadecimal number.

Table 4-1. Low-Order Digits of External-Decimal Numbers

Low—Ordelr Digit, | | Low-Order Digit,

Decimal Number | | External-Decimal Number
| Unsigned Positive Negative |

0 I| $30 $7b{ $7|d Yo

1 || $31 $41 A $4ad |

2 I| $32 $42 B $|4b K |

3 I| $33 $43 C $|4c L |

4 || $34 $44 D $|4d M |

5 || $35 $45 E $|4e N |

6 I| $36 $46 F $|4f o |

7 || $37 $47 G $J50 P |

8 I| $38 $48 H $|51 Q |

9 :l $39 $49 | $5:2 R |

In the table, the letters A through R, and the braces, are the ASCII
equivalents of the hexadecimal numbers shown.

Digits other than the low-order digit conform with the "Unsigned" column
of Table 4-1.

Binary Numbers

The binary numbers used as parameters to HPPACCVBD and HPPACCVDB have the

following characteristics.

* The number is stored in twos-complement format.

* The length is a multiple of 16 bits.

* The length may be up to 96 bits.

* In storage, the high-order bit must occupy bit 0 or bit 15 of a
32-bit word. In other words, the number must be aligned on an
even-byte boundary.

* The storage address is the address of the byte that contains the
high-order bit.

NOTE For compatibility with the HP 3000 Series V instruction set, the
length of a binary number is given in terms of 16-bit elements,
sometimes referred to as "words." To avoid confusion with the
32-bit words of the Series 900 computer systems, the term "16-bit
word" is used in this chapter when referring to the 16-bit elements
of a binary number.

Trap Handling

When an error is detected by a packed-decimal procedure, the procedure
stores information about the operation being performed, the parameters,
and the nature of the error, and then causes a trap by executing a
reserved instruction. Depending on the state of the MPE XL trap
subsystem, the trap may be ignored, the process may be aborted, a
user-written trap handler may be invoked, or a Pascal/XL recover block
may be executed.

If a trap handler is invoked and returns control to the packed-decimal
procedure, the packed-decimal procedure will immediately return to its
caller.

Under MPE XL, the ARITRAP intrinsic is used to enable or disable

arithmetic traps collectively. HPENBLTRAP is used to enable or disable
arithmetic traps selectively and XARITRAP is used to arm or disarm a
user-written trap handler. HPENBLTRAP and XARITRAP use a mask to specify
individual trap conditions. Bit (7:1) of the mask designates a "3000

Mode Packed-decimal error."

The system trap handler reacts as shown in the following table:

condition action

Trap disabled | Ignore trap, continue execution of process.

| I
Trap enabled, but no trap | TRY statement active: do an ESCAPE with
handler armed | errnum =7, subsys =200.
| TRY statement not active: display error message and |
| abort process. |
I

I I
Trap enabled and trap | Invoke user-written trap handler.
handler armed

| I

When control is transferred to a user-written trap handler that has been
armed with XARITRAP, the trap handler is passed a pointer to a record
containing useful information. For the format and contents of the
information record, as well as a complete description of trap handling
under MPE XL, refer to the Trap Handling Programmer's Guide.

Parameters

The following section lists and describes the parameters used by the
packed-decimal library procedures.

operand2 Typically, the operand that receives the result of
the operation. The exception is HPPACCMPD, which
does not change either operand.

op2digs The length of operand? in digits.

operandl1 The other operand. As shown in the calling
sequences, operand? is given before operandl , except
in the case of HPPACCMPD.

opldigs The length of operandl in digits.

source The sending field in a conversion to or from

external-decimal or binary.

sourcedigs The length of the source field in digits.

sourcewords The length of the source field in 16-bit "words."

target The receiving field in a conversion.

targetdigs The length of the target field in digits.
comparison_code an integer to which the procedure will always return

avalue of 0, 1, or 2.

NOTE Comparison_code corresponds to the condition code of the status
register on HP 3000 Series V systems.

The value returned is not meaningful when an operand length of zero
is specified, or when an error is detected. If a resultis
truncated because the target digit count is too small,

comparison_code Is set in accordance with the truncated result.

All the procedures except HPPACCMPD set comparison_code as follows:.

comparison_code =0ifresult>0
=1lifresult<O
=2ifresult=0
HPPACCMPD sets comparison_code as follows:
comparison_code =0 if operandl > operand2
=1 if operandl < operand2
= 2 if operandl = operand2

pacstatus An integer to which the procedure will always return an
indication of the success or failure of the operation.
When no error is detected, pacstatus is setto 0. When
an error is detected, pacstatus is setto a code
indicating the type of error that occurred. By default,
detection of an error will result in the process being
aborted with a 3000-mode packed-decimal trap.
Therefore, a program will normally examine this
parameter only in cases where default trap-handling is
not in effect.

The state of pacstatus (zero or nonzero) corresponds to
the overflow bit of the status register on HP 3000
Series V systems.

The following values are possible for this parameter:

No error

Decimal overflow

Invalid ASCII digit

Invalid packed-decimal digit
Invalid source word count
Invalid decimal operand length
Decimal divide-by-zero

OUhWNEFO

carry An integer to which the procedure will always return a
value of 0 or 1. This value corresponds to the carry
bit of the status register on HP 3000 Series/V systems.

sign_control For HPPACCVDA, a parameter that controls the sign of the
result when the source field is signed.

shift_amt For the shift operations, the number of digits to be
shifted left or right. For HPPACNSLD, this parameter is
passed by reference; for the other shift operations, it

is passed by value.

NOTE The packed-decimal procedures do not alter the condition code
associated with the process.

Procedure Declarations

The procedure declarations in this chapter assume the following Pascal
directives and declarations.

$STANDARD_LEVEL 'EXT_MODCAL'S$

$UPPERCASE ON$

$TYPE
ascii_type =S$ALIGNMENT 1$ RECORD END;
binary_type = $ALIGNMENT 2$ RECORD END;
decimal_type = $ALIGNMENT 1$ RECORD END;

In the listings of possible traps, the numbers in parentheses are the

trap subcodes supplied to the user when a trap handler has been armed, as
explained under "Trap Handling" (above). If traps have been disabled,

these are the codes returned to the caller through the pacstatus
parameter.

HPPACADDD

The HPPACADDD procedure adds two operands and stores the result.

Declaration

PROCEDURE HPPACADDD (
ANYVAR operand2 :decimal_type;

op2digs INTEGER,;
ANYVAR operandl :decimal_type;
opldigs INTEGER,;

VAR comparison_code :INTEGER;
VAR pacstatus INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

Comments

Operandl and operand? are added and the sum is stored into the
field. A decimal overflow occurs if all significant digits of the result

do not fit in the operand2 field. This results in a trap, and the
left-truncated result is stored in the operand? field.

Possible Traps
Decimal overflow (1)
Invalid packed-decimal digit (3)
Invalid decimal operand length (5)
HPPACCMPD
HPPACCMPD compares two decimal operands and sets a condition code.
PROCEDURE HPPACCMPD (
ANYVAR operandl :decimal_type;

opldigs INTEGER,;
ANYVAR operand2 :decimal_type;

operand2

op2digs INTEGER,;
VAR comparison_code :INTEGER;
VAR pacstatus INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;
Comments
Operandl1 is compared to operand?2 and comparison_code is set. The

operands remain unchanged at their original addresses.
Possible Traps

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

HPPACCVAD
HPPACCVAD performs an ASCII-to-decimal conversion.

Declaration
PROCEDURE HPPACCVAD (
ANYVAR target : decimal_type;
targetdigs : INTEGER;
ANYVAR source : ascii_type;

sourcedigs : INTEGER;
VAR comparison_code : INTEGER,;
VAR pacstatus : INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code := NIL,

pacstatus = NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

Comments

* Source digits in external-decimal are converted to packed-decimal
digits. Source digits, except for the rightmost in the field, must
be leading blanks or unsigned digits. The rightmost digit indicates
the sign.

* Leading blanks are converted to packed-decimal zeros.
* Blanks between digits are illegal.
* An all-blank field converts to an unsigned zero target field.

* An unsigned external-decimal operand produces an unsigned
packed-decimal result.

* |If the number of target digits is less than the number of source
digits, the source is converted until the target is filled, producing
a left-truncated result. In this case, the remaining source digits
are not examined for validity.

* |f the source digit count is less than the target digit count, left
zero fill is placed in the target field.

* |f either the source or target digit count is zero, no conversion is
performed.

Possible Traps

Invalid ASCII digit (2)
Invalid decimal operand length (5)

HPPACCVBD

HPPACCVBD converts a binary number to packed-decimal.

Declaration
PROCEDURE HPPACCVBD (
ANYVAR target :decimal_type;
targetdigs INTEGER;
ANYVAR source :binary_type;

sourcewords :INTEGER;
VAR comparison_code :INTEGER;
VAR pacstatus INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

Comments

* The source field is converted to packed-decimal and stored in the
target field. The source is considered to be a two s-complement
binary number; its length is specified in sixteen-bit "words."

* |f the "word" count is not in the range 0<=n<=6, a trap occurs.

* |If the target digit count is not in the range 0<=n<=28, a trap
occurs.

* After the binary source is converted, leading zeros are stored until
the target field is filled.

* |If the number of digits generated is greater than the target digit

count, the partial result is stored and a decimal overflow trap
occurs.

* |f either the target digit count or the source word count is zero, no
conversion is performed.

Possible Traps

Decimal overflow (1)

Invalid source word count (4)

Invalid decimal operand length (5)

HPPACCVDA

HPPACCVDA converts a packed-decimal number to ASCII.

Declaration

PROCEDURE HPPACCVDA (

ANYVAR target :ascii_type;
targetdigs (INTEGER,;
ANYVAR source :decimal_type;

sign_control :INTEGER;
VAR comparison_code :INTEGER,;
VAR pacstatus INTEGER)
OPTION
DEFAULT_PARMS (
sign_control :=0,

comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR;
EXTERNAL;

Comments

* The source packed-decimal digits are converted to fill the
target field. An unsigned source operand produces an unsigned
external-decimal result. When the source is signed, the sign of the
result is determined by the two low-order bits of sign_control

described below.

sign_control =0 Target sign is the same as source.

sign_control =1 Targetis negative if source is negative.
Otherwise, it is unsigned.

sign_control =2 Target is unsigned.

sign_control =3 Target is unsigned.

* Comparison_code is setin accordance with the stored result. An
unsigned result is considered nonnegative, so only 0 or 2 can be
returned in comparison_code if sign_control is 2 or 3.

* |If the target count is zero, no conversion is performed.

Possible Traps

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

HPPACCVDB
HPPACCVDB converts a packed-decimal number to binary.

Declaration
PROCEDURE HPPACCVDB (
ANYVAR target :binary_type;
ANYVAR source :decimal_type;

sourcedigs :INTEGER;
VAR comparison_code :INTEGER,;
VAR pacstatus INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

Comments

The number of decimal digits specified in the source digit count are
converted to a twos-complement binary number and stored in the target
field. The length of the target in sixteen-bit "words" is based on the
length of the source, as follows.

as

I I
Source Digit Count |
I
I I
lto 4 | 1 |
I I
I I
5t09 | 2 |
I I
I I
10to 18 | 4 |
I I
I I
19to 28 | 6 |
I I

If the source digit count is zero, no conversion is performed.
Possible Traps

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

HPPACCVDB
HPPACCVDB converts a packed-decimal number to binary.

Declaration
PROCEDURE HPPACCVDB (
ANYVAR target :binary_type;
ANYVAR source :decimal_type;

sourcedigs :(INTEGER;
VAR comparison_code (INTEGER;
VAR pacstatus INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

Comments

The number of decimal digits specified in the source digit count are
converted to a twos-complement binary number and stored in the target
field. The length of the target in sixteen-bit "words" is based on the
length of the source, as follows.

Target "Words"

-11

I I
Source Digit Count | Target "Words"

I I

I I
lto 4 | 1 |

I I

I I
5t09 | 2 |

I I

I I
10to 18 | 4 |

I I

I I
19to 28 | 6 |

I I

If the source digit count is zero, no conversion is performed.
Possible Traps

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

Special Conventions of HPPACLONGDIVD

HPPACLONGDIVD includes the following conventions for compatibility with
the MPE V E procedure, LONGDIVD.

* Operand lengths are not validated. Results are undefined if operand1
is longer than 28 digits, or if operand2 is longer than 36 digits.

* When operand? is longer than 28 digits, only the first 28 digits (and
the sign) are passed by the caller. The remaining digits are assumed
to be zeros, and no space needs to be allocated for them by the
caller. In effect, HPPACLONGDIVD will supply the necessary zeros by
multiplying its local copy of operand2 by the appropriate power of
ten.

* When using HPPACLONGDIVD, the caller is responsible for ensuring that
the quotient does not exceed 28 digits. If it does, results are
undefined.

Possible Traps

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)left arrow For HPPACDIVD only
Decimal divide-by-zero (6)

Special Conventions of HPPACLONGDIVD

HPPACLONGDIVD includes the following conventions for compatibility with
the MPE V E procedure, LONGDIVD.

* Operand lengths are not validated. Results are undefined if operandl
is longer than 28 digits, or if operand2 is longer than 36 digits.

* When operand2 is longer than 28 digits, only the first 28 digits (and
the sign) are passed by the caller. The remaining digits are assumed
to be zeros, and no space needs to be allocated for them by the
caller. In effect, HPPACLONGDIVD will supply the necessary zeros by
multiplying its local copy of operand2 by the appropriate power of
ten.

* When using HPPACLONGDIVD, the caller is responsible for ensuring that
4-:12

the quotient does not exceed 28 digits. If it does, results are

undefined.
Possible Traps
Invalid packed-decimal digit (3)
Invalid decimal operand length (5)left arrow
Decimal divide-by-zero (6)

HPPACMPYD

For HPPACDIVD only

HPPACMPYD performs multiplication of two decimal numbers.

Declaration

PROCEDURE HPPACMPYD (

ANYVAR operand2 :decimal_type;
op2digs INTEGER

ANYVAR operandl :decimal_type
opldigs INTEGER,;
shift_amt IINTEGER;

VAR comparison_code :INTEGER;

VAR pacstatus INTEGER)

OPTION

DEFAULT_PARMS (

comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

Comments

Operandl and operand2 are multiplied and the product is stored into the
operand? field. If all significant digits of the result do not fit into

the operand2 field, a decimal overflow occurs. The result stored in this
case will be left-truncated unless the actual result is greater than 28

digits. If the actual result is over 28 digits, nothing will be stored.

Possible Traps

Decimal overflow (1)

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

HPPACNSLD

HPPACNSLD performs a decimal normalizing left shift.

Declaration

PROCEDURE HPPACNSLD (
ANYVAR operand2 :decimal_type;

op2digs INTEGER,;
ANYVAR operandl :decimal_type;
opldigs INTEGER;

VAR shift_amt INTEGER;
VAR comparison_code :INTEGER,;
VAR pacstatus INTEGER,
VAR carry INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,

pacstatus :=NIL,
carry :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

4-13

Comments

* Operandl is moved to the operand2 field with its digits offset by the
shift amount in the low-order five bits of shift_amt

* Leading or trailing digits in the result field that are not supplied
by the source operand will be zeros.

* |If the shift amount is large enough that significant digits of

operandl would be shifted out of the operand? field, the effective
shift amount is reduced so operandl is left-justified in the
field. In addition, a number equal to the difference between the
specified and actual shifts amounts is left in shift_amt , and
is set to one.
* If the length of the operand? field is such that significant digits

would be lost even with a shift amount of zero, a decimal overflow
trap occurs, and no data movement occurs.

Possible Traps

Decimal overflow (1)

Invalid packed-decimal digit (3)

Invalid decimal operand length (5)
HPPACSLD

HPPACSLD performs a decimal left shift.

Declaration

PROCEDURE HPPACSLD (
ANYVAR operand2 :decimal_type;

op2digs INTEGER;
ANYVAR operandl :decimal_type;
opldigs INTEGER,;

shift_amt INTEGER,;
VAR comparison_code :INTEGER,;
VAR pacstatus IINTEGER;
VAR carry (INTEGER)
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,
pacstatus =NIL,
carry :=NIL)
UNCHECKABLE_ANYVAR,;
EXTERNAL;

Comments
* Operandl is moved to the operand2 field with its digits offset to the
left of its sign by the shift amount in the low-order five bits of
shift_amt

* Leading or trailing digits in the result field that are not supplied
by the source operand will be zeros.

* Digits shifted out of the operand? field are lost, and carry
to one to indicate that significant digits were lost.

Possible Traps

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

HPPACSRD
HPPACSRD performs a decimal right shift.

operand2

carry

is set

Declaration

PROCEDURE HPPACSRD (
ANYVAR operand2 :decimal_type;

op2digs INTEGER,;
ANYVAR operandl :decimal_type;
opldigs INTEGER;

shift_amt INTEGER;
VAR comparison_code :INTEGER,;
VAR pacstatus INTEGER,
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,

pacstatus :=NIL)
UNCHECKABLE_ANYVAR;
EXTERNAL;
Comments
* Operandl is moved to the operand2 field, with its digits offset to
the right relative to its sign, by the shift amount in the low-order
five bits of shift_amt

* Digits shifted into the sign are lost.

* Zeros are shifted in from the left and high order zeros are inserted
to fill the operand2 field, if necessary.

Possible Traps

Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

HPPACSUBD
HPPACSUBD performs decimal subtraction.
Declaration

PROCEDURE HPPACSUBD (
ANYVAR operand2 :decimal_type;

op2digs INTEGER,;
ANYVAR operandl :decimal_type;
opldigs INTEGER,;

VAR comparison_code :INTEGER,;
VAR pacstatus INTEGER,;
OPTION
DEFAULT_PARMS (
comparison_code :=NIL,
pacstatus :=NIL)
UNCHECKABLE_ANYVAR;
EXTERNAL;

Comments

* Operandl is subtracted from operand2 and the difference is stored
into the operand? field.

* A decimal overflow occurs if the result digits do not fit in the
operand2 field. The left-truncated result is stored in operand2 and
a trap occurs.
Possible Traps
Decimal overflow (1)
Invalid packed-decimal digit (3)
Invalid decimal operand length (5)

4-15

Sample Program

This section contains a sample program to demonstrate how to call the
packed-decimal library routines. The program takes three large numbers
(U.S. federal government annual appropriations for the years 1977 through
1979), converts them from ASCII to packed-decimal, adds them, converts
the sum to ASCII, and prints the answer.

There are four versions of the program. The first example is written in

HP C/XL, the second in HP Pascal/XL, the third in HP FORTRAN 77/XL, and
the fourth in SPL/V, using ASSEMBLE statements. The SPL/V example is
included to show how the procedure calls would have been done on an MPE V
based HP 3000. This may be helpful to users converting SPL code to C,
Pascal, or FORTRAN.

Program Output
All four versions of the program produce the following output:

1977 046655980996406
1978 050778229148999
1979 056396083378825
Total 153830293524230

HP C/XL Example

/*
* This program calculates total appropriations by the
* United States federal government for the years 1977-1979
*
/
#pragma intrinsic HPPACADDD
#pragma intrinsic HPPACCVAD
#pragma intrinsic HPPACCVBD
#pragma intrinsic HPPACCVDA

typedef struct {char c [15]} ascii_num_15; /* 15-digit numbers in ASCIl */

typedef struct {char c [8]} packed_num_15; /* 8-character field holds */
/* 15 digits and sign

static ascii_num_15 yearly [3] = /* Annual appropriations, in cents */
{'046655980996406",
"050778229148999",
"056396083378825"};

main ()
shortint zero=0;
int year,
packed_num_15 packed _sum, packed_temp;
ascii_num_15 ascii_sum,;
HPPACCVBD (&packed_sum, 15, &zero, 1); /* Initialize sum */

for (year=1977; year<=1979; year++)

printf ("%d %.15s\n", /* Echo annual data */
year, &yearly [year-1977]);
HPPACCVAD (&packed_temp, 15, /* Convert ASCII to decimal */
&yearly [year-1977], 15);
HPPACADDD (&packed_sum, 15, /* Add to sum */

&packed_temp, 15);

HPPACCVDA (&ascii_sum, 15, [* Convert sum to ASCII, */
&packed_sum, 1); /* suppressing plus sign */
printf ("Total %.15s\n", &ascii_sum);

HP Pascal/XL Example

This program calculates total appropriations by the
United States federal government for the years 1977-1979

$notes off$
$standard_level 'ext_modcal'$
program appropriations (output);

type
ascii_num_15 = { 15-digit numbers in ASCII }
packed array [1..15] of char;
nibble =0..15; { Half a byte, holds a digit or sign }
packed_num_15 = { Holds 15 digits and sign }

crunched record
digits : crunched array [1..15]
of nibble;
sign : nibble;
end;
year_type =1977..1979;
yearly table = array [year_type]
of ascii_num_15;

const
yearly = yearly_table { Annual appropriations, in cents }
[(046655980996406',
'050778229148999',
'0563960833788257;
var
Zero : shortint;
year : year_type;

packed_sum, packed _temp : packed_num_15;
ascii_sum, ascii_temp :ascii_num_15;

procedure HPPACADDD; intrinsic;
procedure HPPACCVAD; intrinsic;
procedure HPPACCVBD; intrinsic;
procedure HPPACCVDA, intrinsic;

begin

zero = 0;

HPPACCVBD (packed_sum, 15, zero, 1); { Initialize sum }

for year := 1977 to 1979 do
begin
writeln (year:1,"' ', yearly [year]); { Echo annual data }
ascii_temp := yearly [year]; { Can't pass const as var }
HPPACCVAD (packed_temp, 15, ascii_temp, 15); { Convert ASCII to decimal}
HPPACADDD (packed_sum, 15, packed_temp, 15); { Add to sum }
end;

HPPACCVDA (ascii_sum, 15, { Convert sum to ASCI, }

packed_sum, 1); { suppressing plus }

writeln (‘Total *, ascii_sum);
end.
HP FORTRAN 77/XL Example

C
C This program calculates total appropriations by the
C United States federal government for the years 1977-1979
C
$STANDARD_LEVEL SYSTEM
4-17

SYSTEM INTRINSIC HPPACADDD, HPPACCVAD, HPPACCVBD, HPPACCVDA

INTEGER*2 ZERO
INTEGER YEAR

CHARACTER*15 YEARLY (1977:1979) ! 15-digit numbers in ASCII
CHARACTER*15 ASCII_SUM

CHARACTER*8 PACKED_SUM ! 8-character field holds
CHARACTER*8 PACKED_TEMP I 15 digits and sign

DATA YEARLY/ ! Annual appropriations, in cents
1 '046655980996406',

2 '050778229148999',

3 '056396083378825'/

DATA ZERO/0/

CALL HPPACCVBD (PACKED_SUM, 15, ! Initialize sum
> ZERO, 1)

DO YEAR = 1977, 1979
PRINT *, YEAR, ' ', YEARLY (YEAR) ! Echo annual data
CALL HPPACCVAD (PACKED_TEMP, 15, I Convert ASCII to decimal

> YEARLY (YEAR), 15)
CALL HPPACADDD (PACKED_SUM, 15, ! Add to sum
> PACKED_TEMP, 15)
END DO
CALL HPPACCVDA (ASCIl_SUM, 15, I Convert sum to ASCII,
> PACKED_SUM, 1) ! suppressing plus sign
PRINT *, 'Total ', ASCII_SUM
STOP
END

SPL/V Example

<<
* This program calculates total appropriations by the
* United States federal government for the years 1977-1979
>>
BEGIN
BYTE ARRAY YEARLY (0:44) := << Annual appropriations, in cents >>
"046655980996406",
"050778229148999",
"056396083378825";

INTEGER ZERO:=0, YEAR,;

BYTE ARRAY PACKED'SUM (0:7); << 8-character field holds >>
BYTE ARRAY PACKED'TEMP (0:7); << 15 digits and sign >>

BYTE ARRAY ASCII'SUM (0:14); << 15-digit number in ASCII >>

ARRAY PRINT'BUFFER'W (0:10);
BYTE ARRAY PRINT'BUFFER'B (*) = PRINT'BUFFER'W;

INTRINSIC ASCII, PRINT;

<< Initialize sum >>

TOS := @PACKED'SUM; TOS :=15;
TOS = @ZERO; TOS =1,
ASSEMBLE (CVBD);

FOR YEAR := 1977 UNTIL 1979 DO
BEGIN

<< Echo annual data >>

ASCII (YEAR, 10, PRINT'BUFFER'B);

MOVE PRINT'BUFFER'B (4) :=" ";

MOVE PRINT'BUFFER'B (7) := YEARLY (15 * (YEAR-1977)), (15);
PRINT (PRINT'BUFFER'W, -22, %40);

<< Convert ASCII to decimal >>

TOS := @PACKED'TEMP; TOS = 15;
TOS := @YEARLY (15 * (YEAR-1977)); TOS :=15;
ASSEMBLE (CVAD);

<< Add to sum >>

TOS := @PACKED'SUM; TOS :=15;
TOS := @PACKED'TEMP; TOS := 15;
ASSEMBLE (ADDD);

END;

<< Convert sum to ASCII, suppressing plus sign >>
TOS := @ASCII'SUM; TOS :=15;

TOS := @PACKED'SUM,;

ASSEMBLE (CVDA ABS);

MOVE PRINT'BUFFER'B := "Total ",

MOVE PRINT'BUFFER'B (7) := ASCII'SUM, (15);
PRINT (PRINT'BUFFER'W, -22, %40);

END.

4-19

4-: 20

Appendix A Compiler Library Error Messages

This appendix describes Compiler Library error handling, the intrinsic
function XLIBTRAP, and lists error messages.

Many of the Compiler Library procedures detect errors in processed data.
When error detection occurs, the procedures call an error routine that
reports the error conditions and aborts your program.

The error message format is as follows:
procedure name: message
For example,
i ALOG(X): X < 0.0 OR X=NaN (MATHERR26)

The same number may correspond to more than one error message. This
appendix uses the letters A, B,or C todifferentiate between these
messages, as shown in the example below:

19 MESSAGE A.DTAN(X): X=NaN OR INFINITY
B. DTAN(X): TOTAL LOSS OF PRECISION

XLIBTRAP

Using the HP FORTRAN 77/XL compiler, you can override the process
described above by using the ON statement. For more details, see the
FORTRAN 77/XL Reference Manual . You can also override the normal error
functions and specify your own error procedure by using the intrinsic

function XLIBTRAP, which has the following format:

PROCEDURE xlibtrap;intrinsic;
or

PROCEDURE xlibtrap (plabel:INTEGER; VAR oldplabel: INTEGER);
EXTERNAL,

where
plabel = external label of the user-written error
procedure to disarm the library trap
mechanisms. If plabel equals zero, control is
not passed to a user error procedure.
oldplabel = original plabel; returned to permit the user to

return to the previous conditions.
Execution proceeds as follows:

1. Alibrary procedure finds an error and calls the library error
handler.

2. The library error handler checks for a user-written error
procedure or checks for an indication to ignore the trap. To
ignore the trap, use the following
HP FORTRAN 77/XL statements:

ON EXTERNAL ERROR IGNORE
ON INTERNAL ERROR IGNORE

HP

(The HP FORTRAN 77/XL ON statement has additional options that
make it easier to use than XLIBTRAP. See the HP FORTRAN 77/XL
Reference Manual for more details.)

3. If a user-written error procedure has not been specified by using
XLIBTRAP or with the HP FORTRAN 77/XL ON statement and the trap is
not to be ignored, the appropriate error report is produced and
the current program is aborted. The library trap mechanism is
disarmed when the user-written procedure is called. If the
compiler finds an indication to ignore the trap, control is
immediately returned to the library procedure.

4. When the user-written error procedure returns control to the
library error handler, the library trap mechanism is rearmed.

5. As defined below, a user-written error procedure can either set a
result or a set a flag. The QUIT parameter in the example below
directs the library error handler to abort the current program or
to return control to the procedure that found the error.

A user-written error procedure (named error in this example) could be
declared as follows:

PROGRAM libtrap_test(output);
A Pascal Example Using XLIBTRAP

The following example shows a user-written HP Pascal error procedure to
be called whenever an error is detected.

{This program tests the ability to invoke library trap handling from Pascal.}
TYPE
word_int = integer;
plabel = word_int;
stack_array = ARRAY [1 .. 4] of word_int;

VAR
Nan_var, {Holds the value -1.}
x,y: REAL; {Used to hold results returned from the library routines.}
oldplabel : plabel,
result : real;
took_trap : Boolean;

{Declare the sqrt library routine.}
FUNCTION sqrt : REAL; INTRINSIC;

{Declare the alog library routine.}
FUNCTION alog : REAL; INTRINSIC;

{Declare XLIBTRAP.}
PROCEDURE xlibtrap; intrinsic;

{Provide the error routine.}

PROCEDURE error (VAR marker: stack_array;
VAR errornum,
VAR quit: word_int);

{Declare constants.}
CONST
sqrt_errornum = 10;
sqrt_default =-999.0;

continue =0;

where

abort =1;

{This procedure returns a result of -999 and continues
the execution of the program if the SQRT routine has
the error. Otherwise, the program aborts.}
BEGIN
IF errornum = sqrt_errornum THEN BEGIN
result := sqrt_default;
took_trap := True;
quit := continue;
END
ELSE quit := abort;
END; {error}

{Start the main body of the program.}
BEGIN

{Set up the -1 value.}
x :=-1.0;

Nan_var := sqrt(x);
took_trap := False;

{Arm the trap mechanism by calling XLIBTRAP.}
xlibtrap(waddress(error), oldplabel);

writeln (‘Calling sqrt with NaN");
{Call sqrt with a negative value.}
X := sqgrt(Nan_var);
if took_trap
then begin
X := result;
took_trap := False;
end;

writeln("X should be -999.0. X =", x);
writeln('This should be the last line before an abort.");

{Call alog with a negative value.}
y := alog(Nan_var);

writeIn("This line should NOT be printed");
END.

result = the result of the calculation that produced the

error. The library procedure determines the

size and type of the value returned to result.

If you know that only a subset of the possible
result types occurs in your program, the

extensive variant RECORD structure shown above
is not needed. You can change the value

returned to result in the library procedure and

have the change reflected in the code if

optimization is not being used.

errornum = the error number. (See the "Error Messages"

quit =

section in this appendix for a list of the
error messages.)

a flag set by the user-written procedure error.
If quit equals zero, the trap returns to your
program without printing an error message. |If
quit does not equal zero, your program is
aborted.

A-4

A FORTRAN Example Using XLIBTRAP

The libtrap_test program in the above example can also be written FORTRAN
77/XL using the ON statement:

PROGRAM libtrap_test
IMPLICIT NONE

REAL x,y,NaN

INTEGER INaN

EQUIVALENCE (NaN, INaN)

DATA INaN / Z'7FFQ' / ! bit pattern for single- precision NaN

ON EXTERNAL ERROR CALL ERROR ! Set up the trap.

PRINT *, 'Calling sqrt with', NaN
x=sqrt (NaN)
PRINT *, 'x should be -999.0. x=",X
PRINT *, 'This should be the last line before an abort.'
y=alog (NaN)
PRINT *, 'This line should NOT be printed.’
END

SUBROUTINE ERROR (errornum, result, operand 1, operand 2)
IMPLICIT NONE

INTEGER*2 errornum
REAL result, sqrt_default, operandl, operand2
INTEGER sqrt_errornum, abort

IDeclare the constants.

PARAMETER (sqrt_default= -999.0)
PARAMETER (sqrt_errornum=10, abort=0)

print *, 'In ERROR, params =', errornum, result, operandl
ITest for SQRT
IF (errornum .eq. sqrt_errornum) THEN

lIf so, set the default of -999.0 and continue
result=sqrt_default
ELSE

I Abort if it is not SQRT.
print *, 'Errornum set to ABORT.'
errornum = abort

ENDIF

END

Error Messages

1

MESSAGE ATAN2(X,Y): X=Y=0.0 OR X=Y=INFINITY OR ANY OF X
AND Y=NaN

CAUSE Both of the arguments are zero or infinity, or any
of the arguments is a NaN.

ACTION Change the arguments so both of them are not zero
or infinity, and neither is a NaN.

PROCEDURE ATAN2 or ATANZ

MESSAGE DATAN2(X,Y): X=Y=0.0 OR X=Y=INFINITY OR ANY OF X
AND Y=NaN

9

CAUSE Both of the arguments are zero or infinity, or any
of the arguments is a NaN.

ACTION Change the arguments so both of them are not zero
or infinity, and neither of the arguments is a NaN.

PROCEDURE DATAN2or DATAN2
MESSAGE A. EXP(X): X=NaN
B. EXP(X) OVERFLOW
C. EXP(X) UNDERFLOW
CAUSE A. The argument is a NaN.
B. The argument is greater than 88.7228.
C. The argument is less than -87.3365.
ACTION A. Change the argument so it is not a NaN.
B. Change the argument so it is less than or equal
to 88.7228.

C. Change the argument so it is greater than or
equal to -87.3365.

PROCEDURE EXP or EXP'

MESSAGE A. DEXP(X) OVERFLOW
B. DEXP(X) UNDERFLOW
C. DEXP(X): X =NaN

CAUSE A. The argument is greater than 709.7827128933838.
B. The argument is less than -708.3964185322639.
C. The argument is a NaN.

ACTION A. Change the argument to less than or equal to

709.7827128933838.

B. Change the argument to greater than or equal to
...-708.3964185322639.

C. Change the argument so it is not a NaN.

PROCEDURE DEXPor DEXP'

MESSAGE ALOG(X): X< 0.0 OR X=NaN
CAUSE The argument is less than zero or is a NaN.

ACTION Change the argument so it is greater than or equal
to zero or is not a NaN.

PROCEDURE ALOGor ALOG'

MESSAGE DLOG(X): X< 0.0 OR X=NaN
CAUSE The argument is less than zero or is a NaN.

ACTION Change the argument so it is greater than or equal
to zero and not a NaN.

PROCEDURE DLOGor DLOG'

MESSAGE CABS(X): ANY PART OF X=NaN

A-6

10

11

14

15

16

CAUSE Either or both parts of the complex argument is a
NaN.

ACTION Change the argument so neither part is a NaN.
PROCEDURE CABSor CABS'

MESSAGE SQRT(X): X< 0.0 OR X=NaN
CAUSE The argument is less than zero or is a NaN.

ACTION Change the argument to be greater than or equal to
zero, or not a NaN.

PROCEDURE SQRTor SQRT

MESSAGE DSQRT(X): X< 0.0 OR X=NaN
CAUSE The argument is less than zero or is a NaN.

ACTION Change the argument so it is greater than or equal
to zero, or not a NaN.

PROCEDURE DSQRTor DSQRT'

MESSAGE SIN(X): X=NaN OR INFINITY
CAUSE The argument is a NaN or infinity.

ACTION Change the argument so it is not a NaN or an

infinity.
PROCEDURE SIN or SIN'
MESSAGE A. DSIN(X): X=NaN OR INFINITY
B. DSIN(X): TOTAL LOSS OF PRECISION
CAUSE A. The argument is a NaN or an infinity.

B. The absolute value of the argument is greater
than or equal to
...2.6378256 x 107 .

ACTION A. Change the argument so it is not a NaN or an
infinity.
B. Change the absolute value of the argument so it
is less than
...2.6378256 x 107 .

PROCEDURE DSIN or DSIN'

MESSAGE COS(X): X=NaN OR INFINITY
CAUSE The argument is a NaN or infinity.

ACTION Change the argument so it is not a NaN or an
infinity.

PROCEDURE COSor COS

17

18

19

20

21

MESSAGE A. DCOS(X): X=NaN OR INFINITY
B. DCOS(X): TOTAL LOSS OF PRECISION
CAUSE A. The argument is a NaN or infinity.
B. The absolute value of the argument is greater

than or equal to
...2.637856 x 107 .

ACTION A. Change the argument so it is not a NaN or an
infinity.
B. Change the absolute value of the argument so it
is less than or
...equal to 2.637856 x 107 .

PROCEDURE DCOSor DCOS'
MESSAGE A. TAN(X): X=NaN OR INFINITY
B. TAN(X): TOTAL LOSS OF PRECISION
CAUSE A. The argument is a NaN or infinity.
B. The absolute value of the argument is greater
than 6433.0
ACTION A. Change the argument so it is not a NaN or an
infinity.

. Change the argument so its absolute value is
less than or equal to

...6433.0.
PROCEDURE TAN or TAN'
MESSAGE A. DTAN(X): X=NaN OR INFINITY
B. DTAN(X): TOTAL LOSS OF PRECISION
CAUSE A. The argument is a NaN or infinity.
B. The absolute value of the argument is greater

than 149078413.0.

ACTION A. Change the argument so it is not a NaN or an
infinity.
Change the absolute value of the argument so it
is less than

...149078413.0.
PROCEDURE DTANor DTAN'

MESSAGE ALOG10(X), X< 0.0 OR X=NaN
CAUSE The argument is less than zero or is a NaN.

ACTION Change the argument so it is greater than or equal
to zero or is not a NaN.

PROCEDURE ALOG10

MESSAGE DLOG10(X), X < 0.0 OR X=NaN
CAUSE The argument is less than zero or is a NaN.

ACTION Change the argument so it is greater than or equal

A-8

22

23

24

25

to zero and not a NaN.

PROCEDURE DLOG10
MESSAGE A. SINH(X): X=NaN
B. SINH(X) OVERFLOW
CAUSE A. The argument is a NaN.
B. The absolute value of the argument is greater

than 88.7196.

ACTION A. Change the argument so it is not a NaN.
B. Change the argument so its absolute value is
less than or equal to

88.7196.
PROCEDURE SINH or SINH'
MESSAGE A. DSINH(X): X=NaN
B. DSINH(X) OVERFLOW
CAUSE A. The argumentis a NaN.
B. The absolute value of the argument is greater
than
709.7795518826419.
ACTION A. Change the argument so it is not a NaN.

B. Change the argument so its absolute value is
less than or equal to
709.7795518826419.

PROCEDURE DSINH or DSINH'
MESSAGE A. COSH(X): X=NaN
B. COSH(X) OVERFLOW
CAUSE A. The argument is a NaN.
B. The absolute value of the argument is greater

than 88.7196.

ACTION A. Change the argument so it is not a NaN.
B. Change the argument so its absolute value is
less than or equal to
88.7196.
PROCEDURE COSHor COSH'
MESSAGE A. DCOSH(X): X=NaN
B. DCOSH(X) OVERFLOW
CAUSE A. The argument is a NaN.
B. The absolute value of the argument is greater
than

709.7795518826419.

ACTION A. Change the argument so it is not a NaN.
B. Change the argument so its absolute value is
less than or equal to
709.7795518826419.

PROCEDURE DCOSHor DCOSH'

26

27

28

29

30

31

34

MESSAGE ASIN(X): |X| > 1.0 OR X=NaN

CAUSE The absolute value of the argument is greater than
1.0 or the argument is a NaN.

ACTION Change the argument so its absolute value is not
greater than zero and the argument is not a NaN.

PROCEDURE ASIN or ASIN'

MESSAGE DASIN(X): |X| > 1.0 OR X=NaN
CAUSE The absolute value of the argument is greater than
1.0 or the argument is a NaN.
ACTION Change the argument so its absolute value is not
greater than zero and the argument is not a NaN.

PROCEDURE DASIN or DASIN'

MESSAGE ACOS(X): [X| > 1.0 OR X=NaN

CAUSE The absolute value of the argument is greater than
1.0 or the argument is a NaN.

ACTION Change the argument so its absolute value is not
greater than zero and the argument is not a NaN.

PROCEDURE ACOSor ACOS'

MESSAGE DACOS(X): [X| > 1.0 or X=NaN

CAUSE The absolute value of the argument is greater than
1.0 or the argument is a NaN.

ACTION Change the argument so its absolute value is not
greater than zero and the argument is not a NaN.

PROCEDURE DACOSor DACOS'

MESSAGE DATAN(X): X=NaN
CAUSE The argument is a NaN.
ACTION Change the argument so it is not a NaN.
PROCEDURE DATANor DATAN'

MESSAGE ATAN(X): X=NaN
CAUSE The argument is a NaN.
ACTION Change the argument so it is not a NaN.
PROCEDURE ATAN or ATAN'
MESSAGE DABS(X) X=NaN

A-10

36

37

38

39

41

42

CAUSE The argument is a NaN.
ACTION Change the argument so it is not a NaN.

PROCEDURE DABSor DABS'

MESSAGE TANH(X): X=NaN
CAUSE The argument is a NaN.
ACTION Change the argument so it is not a NaN.
PROCEDURE TANHor TANH'

MESSAGE DMOD(X,Y): ANY OF X AND Y=NaN OR X=INFINITY OR

Y=0.0

CAUSE Either or both of the arguments are NaN, or

X=infinity, or Y=0.0.

ACTION Change the arguments so neither of them is a NaN, X

is not infinity, and Y is not zero.

PROCEDURE DMOD

MESSAGE AMOD(X,Y): ANY OF X AND Y=NaN OR X=INFINITY OR

Y=0.0

CAUSE Either or both arguments are NaN or X=infinity, or

Y=0.0.

ACTION Change the arguments so neither of them is a NaN, X

is not infinity, and Y is not zero.

PROCEDURE AMODor AMOD'

MESSAGE DTANH(X): X=NaN
CAUSE The argument is a NaN.
ACTION Change the argument so it is not a NaN.
PROCEDURE DTANHor DTANH'

MESSAGE AINT(X): X=NaN

CAUSE The argument is a NaN.
ACTION Change the argument so it is not a NaN.

PROCEDURE AINT or AINT'

MESSAGE DDINT(X) OR DDINT(X): X=NaN
CAUSE The argument is a NaN.

ACTION Change the argument so it is not a NaN.

47

PROCEDURE DDINT or DDINT'

MESSAGE SIGN FUNCTION: ANY ARGUMENT = NaN

CAUSE Either or both of the arguments are NaN.

ACTION Change the arguments so neither of them is a NaN.

PROCEDURE SIGN or SIGN'

A-11

	Top of Document
	Preface
	Chapter 1 Introduction
	Chapter 2 Mathematical Functions and Procedures
	Chapter 3 Utility Procedures
	Chapter 4 Packed-Decimal Procedures
	Appendix A Compiler Library Error Messages

