
User Logging Programmer's Guide

900 Series HP 3000 Computer Systems

ABCDE

HP Part No. 32650-90027

Printed in U.S.A. 19871101

U0788

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c
 1987,1988 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition November 1987 A.01.00

Update #1 July 1988 A.10.00

iii

Documentation Map

iv

Preface

The User Logging Programmer's Guide describes the MPE/iX User Logging Facility. It
explains the di�erences between user logging in MPE/iX and MPE VE Operating Systems.
Serial Logging, disc logging, and application design are discussed.

The manuals listed below have been referenced in this manual and provide additional
information:

MPE/iX Commands Reference Manual (32650-90003)

MPE/iX Intrinsics Reference Manual (32650-90028)

MPE VE System Operations and Resource Management Reference Manual (32033-90005)

This manual contains the following information:

Chapter 1 Introduction introduces the subject matter contained in this manual, the
types of applications you would want to use User Logging for, and the
di�erences between MPE V/E and MPE/iX.

Chapter 2 User Logging Intrinsics introduces the programmatic use of its special
intrinsics.

Chapter 3 User Logging Commands introduces the commands that may be used at a
system level to perform User Logging functions.

Chapter 4 The User Logging Process explains the media to be used, how to create
necessary �les, and how to control the logging process.

Chapter 5 User Logging in an Application explains, in detail, the use of the User
Logging intrinsics.

Chapter 6 Recovery explains the recovery process and how to use the di�erent logging
records.

Appendix A Suggested User Logging Procedure gives a basic outline of what information
is required to implement a User Logging procedure.

Appendix B Record Formats explains the contents of the logging records.

Appendix C User Logging Error Codes lists all error codes returned by User Logging
intrinsics.

v

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following
example, you must replace �lename with the name of the �le:

COMMAND(filename)

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

vi

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

In a syntax statement, the space symbol shows a required blank. In
the following example, parameter and parameter must be separated
with a blank:

(parameter)(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

vii

Contents

1. Introduction
User Logging Applications . 1-1

2. User Logging Intrinsics

3. User Logging Commands

4. The User Logging Process
Which Media to Use . 4-1
Creating the LOGID . 4-1
Identifying LOGIDs on the System 4-2
Changing Attributes Associated with LOGIDs 4-2

Building a DISC Log�le . 4-2
Controlling the Logging Process . 4-3
Logging to DISC . 4-3
Logging to TAPE . 4-3
Linking Log�les . 4-3
After a System Backup . 4-4
Obtaining Status of Open User Logging Files 4-4

5. User Logging in an Application
Using the OPENLOG Intrinsic . 5-1
Using the WRITELOG Intrinsic . 5-2
Using the BEGINLOG and ENDLOG Intrinsics 5-2
Using the CLOSELOG Intrinsic . 5-3
Using the MODE Parameter . 5-3
Using the FLUSHLOG Intrinsic . 5-3
Using the LOGINFO and LOGSTATUS Intrinsics 5-3

6. Recovery
Recovery After System Failure . 6-1
CONTINUATION Records . 6-2
CHANGELOG Records . 6-2

When Recovery is Complete . 6-2
Power Failure . 6-3

A. Suggested User Logging Procedure

B. Record Formats

C. User Logging Error Codes

Index

Contents-1

Tables

B-1. Code De�nition . B-3
B-2. Data Fields of Log Records . B-4
C-1. User Logging Error Codes . C-1

Contents-2

1

Introduction

The MPE/iX User Logging facility provides a method for recording events (for example,
to record additions and modi�cations to user databases and �les). MPE/iX commands and
intrinsics are used to setup log�les and record to them. Power failure recovery, bu�ering, and
log�le over
ow handling can be done for the user automatically. Multiple user processes may
share the same log�le and share the system process that manages it. This allows the User
Logging overhead to be shared between multiple user processes.

User Logging can be used to keep a record of changes made to data for historical purposes or
to aid in the recovery process of lost data due to application and system failures.

User Logging Applications

An application, which uses multiple �les, may require multiple actions in order to record
information for a single event. For example, an order entry system, where an order is placed
for an item must be re
ected in �les containing the following types of data:

Shipping data

The inventory

The cost of goods sold

The accounts receivable

If this data is in separate �les, each �le must be updated with a separate call to FWRITE.
If the shipping data was updated, but a program abort or system failure occurred before
the accounts receivable was updated, then the order might be shipped but never billed.
Depending upon the point at which the failure occurred, other �les may have inconsistencies
in their data such as:

The item may be shipped, but still be included in inventory.

The inventory may be reduced, but cost of goods sold was not increased.

The collection of all actions (such as, calls to FWRITE) which must be complete, in order for all
data involved to be consistent, will be referred to as a single transaction. A transaction is
complete only after all of these actions are completed.

This type of application may utilize User Logging to record information about each action
which makes up the transaction. The log record could contain information about the
transaction and the user could then write a recovery program to reapply to the backup copies
of the data structures, the changes for those transactions which completed. This recovery
program would not reapply changes which were part of transactions, that did not fully
complete. This ensures the preservation of data integrity through a program abort or system
failure.

Introduction 1-1

2

User Logging Intrinsics

User Logging is performed programmatically by using the intrinsics listed below. The user
that starts an application which calls the User Logging intrinsics, must have User Logging
(LG) or System Supervisor (OP) capabilities. Refer to the Intrinsics Reference Manual
(32650-90028) for the syntax of the following intrinsics:

Note There are no major di�erences between Native Mode and Compatibility Mode
for User Logging.

BEGINLOG BEGINLOG writes a special record to the user log�le to mark the beginning
of a logical transaction:

The logging memory bu�er is
ushed to ensure that the record gets to
the log�le.

The data parameter can be used to write data to the log�le in the
BEGINLOG record.

The mode parameter is used to specify WAIT or NOWAIT I/O for the
intrinsic.

CLOSELOG CLOSELOG removes the link to the logging facility:

A record is written to the log�le to record the close for the user.

The mode parameter is used to specify WAIT or NOWAIT I/O for the
intrinsic.

ENDLOG ENDLOG writes a special record to the user log�le to mark the end of a
logical transaction:

The logging memory bu�er is
ushed to ensure that the record gets to
the log�le.

The data parameter can be used to write data to the log�le in the
ENDLOG record.

The mode parameter is used to specify WAIT or NOWAIT I/O for the
intrinsic.

FLUSHLOG FLUSHLOG
ushes the records in the User Logging memory bu�er to the
log�le. This ensures that those records will be recoverable in the event of
a system failure.

User Logging Intrinsics 2-1

LOGINFO LOGINFO provides information about an open log�le and the previous
log�le (if one exists) in the log�le set, or it may be used to obtain
information about the whole log�le set (for example, the total number of
records written).

LOGSTATUS LOGSTATUS provides information about a current, open log�le (for
example, to determine the amount of space available in a DISC log�le).

OPENLOG OPENLOG links the calling application to a User Logging process:

The logging identi�er speci�ed in the logid parameter, must be a valid
logging identi�er for an active logging process.

An index is returned which is used in subsequent intrinsic calls to
reference the OPENLOG link to the User Logging process.

A record is written to the log�le to identify the user opening the log�le.

The mode parameter is used to specify WAIT or NOWAIT I/O for the
intrinsic.

WRITELOG WRITELOG writes a record, of the user's data, to a log�le.

The mode parameter is used to specify WAIT, NOWAIT I/O, or
WRITE-and-FLUSH for the intrinsic.

2-2 User Logging Intrinsics

3

User Logging Commands

User Logging can be performed at the system level by using the commands listed below.
Refer to the MPE/iX Commands Reference Manual (32650-90003) for the syntax and a more
detailed description of the following commands:

:ALTLOG :ALTLOG alters the attributes of an existing User Logging identi�er.

:CHANGELOG :CHANGELOG changes the log�le without stopping or interrupting the
logging process. By specifying a device, the user can switch the logging
process from logging to a log�le on one device to a log�le on another
device.

:GETLOG :GETLOG establishes a logging identi�er and its attributes on the system.
The user must supply the name of the log�le and the device class where
the log�le resides.

:LISTLOG :LISTLOG lists currently active logging identi�ers on the system, the
log�le name and creator, and whether :CHANGELOG is allowed and/or AUTO
enabled.

:LOG :LOG starts, restarts, or stops a User Logging process.

:RELLOG :RELLOG removes a logging identi�er from the system.

:SHOWLOGSTATUS :SHOWLOGSTATUS provides status information for currently open log�les
and the amount of space available on a DISC log�le.

Note The :ALTLOG, :GETLOG, CHANGELOG, and :RELLOG commands require the user
to have User Logging (LG) or System Operator (OP) capability.

The :LOG command requires the user to have System Operator (OP)
capability.

The :LISTLOG command requires the user to have User Logging (LG)
capability.

User Logging Commands 3-1

4

The User Logging Process

There are two levels of User Logging; the user's level and the system level. At the user's level
there are application and recovery programs that access the log�le. At the system level, there
must be a User Logging process running.

The User Logging system process allows up to 256 users to access a single log�le at the same
time (con�gurable at system startup); it handles bu�ering and power failure recovery, and
provides data about the status of the log�le. Before you can write to a log�le, a User Logging
process must be running for that log�le. As a system process, the user logging process does
not belong to a particular user. Any problems encountered by the User Logging process will
be reported to the System Console.

Note Since problems are reported to the System Console and the process must be
restarted each time the system is started, responsibility for keeping the process
running is usually given to the System Operator.

Which Media to Use

When deciding which media (DISC or TAPE) to use, consider the availability of disc space
versus the availability of a tape drive on the system. Speed is not an issue when logging to
TAPE, User Logging has an internal bu�er (4K words) which brings the logging speed up to
that of logging to DISC.

Creating the LOGID

The User Logging system process is identi�able to the system by a logid. A maximum of 64
logging processes may be de�ned on the system at one time (con�gurable at system startup).
The logid is an 8-character identi�er created with the :GETLOG command. To create a new
logid , the log�le name to be used by the process and the media (DISC or TAPE) it is to reside
on, must be speci�ed. Other variables that may be speci�ed include: the group and account of
a DISC log�le, a password, and what to do when the log�le is full.

The User Logging Process 4-1

Identifying LOGIDs on the System

To �nd the logids currently known to the system and the attributes of each, use the :LISTLOG
command:

:LISTLOG

LOGID CREATOR CHANGE AUTO CURRENT LOG FILE

BON MARK.MPEM YES NO BON003.DOVI.MPEM

KATHY KATHY.MPEM YES YES KAT001.SNIDER.MPEM

TEST1 KATHY.MPEM NO NO LOGF.TEST.MPEM

A password will be displayed to the logid 's creator only if the creator has speci�ed the ;PASS
option:

:LISTLOG logid;PASS

LOGID CREATOR CHANGE AUTO CURRENT LOG FILE

TEST1/SECRET KATHY.MPEM NO NO LOGF.TEST.MPEM

Changing Attributes Associated with LOGIDs

All attributes associated with the logid can be changed by the creator of the logid using the
:ALTLOG command when the logging process is not running. An application accessing the
logging process supplies the logid and password; this allows the other attributes to change
without changing an application. A logid can be removed from the system by the creator only,
using the :RELLOG command.

If a password is speci�ed with :ALTLOG or :GETLOG it will be required each time the User
Logging process is accessed. For example, when using the OPENLOG intrinsic. Any user with
LG or OP capability which supplies the logid and password will be allowed access to the
logging process.

Building a DISC Logfile

If the log�le to be used will reside on disc, use the :BUILD command to create the log�le
and specify ;CODE=LOG. Ensure the �le is large enough to contain one day's data. All other
defaults in the :BUILD command may be used for �le attributes. Refer to the :BUILD
command in the MPE/iX Commands Reference Manual (32650-90003).

4-2 The User Logging Process

Controlling the Logging Process

When logid has been created and the log�le built, the Operator will control the logging
process using the :LOG command. The :LOG command allows the operator to start a logging
process to a new log�le, stop a logging process (for example, to change attributes using
:ALTLOG, or to shut the system down), or restart a logging process to a log�le which has
already been accessed. Problems which may occur when using the :LOG command include:

The user of the :LOG command does not have OP capabilities or the operator has not done
an :ALLOW of the :LOG command for the user.

START was speci�ed instead of RESTART for a �le which already has records in it.

STOP was requested while user processes are accessing the log�le.

Logging to DISC

When logging to DISC, for User Logging to continue when a full log�le is encountered, the
:CHANGELOG command may be used. The :CHANGELOG command will open a new User Logging
�le with the same attributes as the previous �le. To use the :CHANGELOG command, the User
Logging �lename speci�ed in the :GETLOG command must end with the three digits \001".
Each time a new log�le is constructed, by the CHANGELOG command, the value represented by
the last three digits is incremented by 1 (for example, �lename001|-> �lename002). If the
log�le name speci�ed with the :GETLOG command does not end with the three digits \001", a
warning will be given (to the user issuing the command) that the :CHANGELOG command will
not be allowed for this �le.

If the ;AUTO option is speci�ed with the :GETLOG or :ALTLOG command for a disc �le, where
:CHANGELOG is allowed, the User Logging process will automatically perform a :CHANGELOG

whenever the disc �le becomes full. If the ;AUTO option is not speci�ed, when the disc log�le
becomes full the User Logging process will close the log�le and terminate, preventing any
applications which are linked to it from writing any additional log records.

Logging to TAPE

When logging to tape, if an end-of-tape is encountered, the Operator will be requested to
mount the next tape in the volume set and the logging will continue. The user may issue
a :CHANGELOG command for logging to be switched to a new log�le (DISC or TAPE) before
end-of-tape is reached.

Note The ;AUTO option is ignored if the log�le media is TAPE.

Linking Logfiles

When a :CHANGELOG command is issued, information about the new log�le and is written to
the old log�le, and information about the old log�le is written as the �rst record in the new
log�le. This allows the recovery programs to �nd the next log�le in the set.

The User Logging Process 4-3

Note Using :CHANGELOG is recommended over stopping the process, switching
log�les (by renaming �les or using :ALTLOG to point to a new log�le), and
starting the process. Using :CHANGELOG is easier and it creates these links for
use in recovery.

It is not required that all log�les in a set be on the same media. The �rst �le could be on
disc, the second on tape, the third on disc, etc. This can be controlled with the ;DEV= option
of the :CHANGELOG command.

After a System Backup

Usually, when it is time to backup a database, the operator will stop the logging processes; the
database and all associated log�les will be stored o�, and the old log�le(s) will be purged from
disc and rebuilt. If :CHANGELOG was allowed, it is important to use the :ALTLOG command
to reset the last three digits of the log�le name back to \001". Failure to do this will cause
problems when recovering data.

Obtaining Status of Open User Logging Files

To display the status information of currently open User Logging �les, use the
:SHOWLOGSTATUS command:

:SHOWLOGSTATUS KATHY

LOGID CHANGE AUTO USERS STATE CUR REC MAX REC % USED

KATHY YES YES 1 INACTIVE 65 1023 6 %

Note INACTIVE is displayed when a process is waiting for information from the user
processes.

If there are processes with the log�le open, and a :LOG command with the STOP option is
issued, the operator will receive a warning at the System Console, and the logging process will
continue.

4-4 The User Logging Process

5

User Logging in an Application

When the logging process is running, an application can begin writing log records, to the
log�le, through the use of intrinsics.

Using the OPENLOG Intrinsic

The OPENLOG intrinsic provides access to the User Logging facility. When an application calls
OPENLOG for a currently running logging process, the logging process builds the data structures
which are necessary to allow the application to record data in the log�le, and a record is
written to the log�le identifying the application. If the logid is not valid or the speci�ed User
Logging process is not running, an error will be returned.

The identi�cation information in the OPENLOG record can be used, by the recovery program,
to identify the records in the log�le, which belong to the process it is trying to recover. In
order for the identi�cation information to be useful for recovery, the application must retain
some information of its own, particularly if the log�le will be accessed by more than one user
process.

It is recommended that the application have a separate �le to record such information
as: user, group, and account which is accessing the log�le (this can be obtained with the
WHO intrinsic); the pin# of the process accessing the log�le (this can be obtained with the
GETPROCID intrinsic); the fully quali�ed �le name of the current log�le and the ASCII code of
the logid (these can be obtained with the LOGINFO intrinsic); the date and time that the log�le
was opened by the application (call the CALENDAR and CLOCK intrinsics immediately following
a successful call to OPENLOG). How this information will be used will be explained in Chapter
6, \Recovery".

User Logging in an Application 5-1

Using the WRITELOG Intrinsic

After the log�le is opened, the data can be written to the log�le with the WRITELOG intrinsic.
Data will be passed in the WRITELOG intrinsic call and User Logging will add 9 words of
information to the beginning of each record. The 9 words of information describe which
process recorded the data, when it was recorded, which User Logging intrinsic was used to
record it, and a checksum for validity checking. The data supplied by the user should include
information about the action being recorded, such as:

What was the purpose of the transaction

What operation was done

Which �le was modi�ed

Which record in the �le was modi�ed

What did the data in the record look like after the action

Enough information must be included to allow the user to recreate the action from the log
record if recovery is necessary.

Using the BEGINLOG and ENDLOG Intrinsics

To take full advantage of the data protection of User Logging, a logical transaction should be
de�ned for the application. All actions that must be performed together for data to be in a
consistent state should be included. In case the transaction is interrupted, the beginning and
end of each transaction should be marked allowing fully and partially completed transactions
to be identi�ed.

The BEGINLOG intrinsic writes a special record to the log�le, marking the beginning of a
logical transaction. When BEGINLOG is used, the User Logging memory bu�er is
ushed to
ensure the record gets to the log�le. A BEGINLOG record with no data can be written to mark
the beginning of a transaction, or data may be included (refer to the WRITELOG intrinsic).
Including data allows the user to include information about the entire logical transaction, or
to mark the beginning of the logical transaction and write the �rst log record with a single
intrinsic call.

Note The WRITELOG intrinsic may be used to write logging records for each action
within the transaction.

ENDLOG contains the same information as BEGINLOG except it marks the end of a transaction.
ENDLOG may be called with or without data, and it
ushes the User Logging memory bu�er to
ensure the record gets to the log�le.

BEGINLOG and ENDLOG pairs may be nested within other pairs and may be called any number
of times. User Logging does not keep track of matching BEGINLOGs and ENDLOGs; it is the
user's responsibility to ensure they are properly matched. If they are not matched, they will
not be useful in recovery.

5-2 User Logging in an Application

Using the CLOSELOG Intrinsic

When the application has completed accessing the log�le, the CLOSELOG intrinsic is called.
The CLOSELOG intrinsic will post a record to indicate all transactions for the process have been
completed.

OPENLOG and CLOSELOG may be called multiple times by the same user.

Using the MODE Parameter

Each User Logging intrinsic includes a mode parameter used to indicate whether the I/O is
to be performed with WAIT or NOWAIT. If NOWAIT is speci�ed and the User Logging process
is busy with a long operation (for example, allocation of disc space or writing a block to
tape, etc.) and cannot accept data, an error will be returned and the operation should be
attempted again.

If WAIT is speci�ed and the User Logging process is busy, the intrinsic will return to its caller
only after the User Logging process becomes available and the I/O completes.

WRITELOG allows a third value for the mode parameter, WRITE-and-FLUSH, which causes the
User Logging bu�er to be
ushed at the �rst opportunity.

Using the FLUSHLOG Intrinsic

To
ush the bu�er without writing information, use the FLUSHLOG intrinsic. Flushing the
bu�er adds additional overhead to the process, but ensures that the write to disc is complete
before control is returned to the next executable instruction. This may be desirable for critical
data or nonreproducible data.

Using the LOGINFO and LOGSTATUS Intrinsics

The LOGINFO and LOGSTATUS intrinsics may be used programmatically to obtain information
about an open User Logging �le. The information obtained is similar to that available
through the SHOWLOGSTATUS command. These intrinsics are primarily used to obtain
information about how full the log�le is, especially if AUTO is not in e�ect for the log�le.

User Logging in an Application 5-3

6

Recovery

Each application which accesses User Logging should have a recovery program written by the
user. The recovery program should read the formatted data in the log�le and apply it to a
backup copy of the data structures belonging to the application. The recovery program can
then be run in case of a system failure or program abort to recover the transactions that had
fully completed before the problem occurred.

Recovery After System Failure

After a system failure, the operator should perform a system startup with system
RECOVERY. If successful, User Logging has its own Warmstart recovery process which opens
each log�le that was active at the time of the failure. It will write a crash record to the end of
the data in the log�le, move the end-of-�le pointer to the end of the last good block, and close
the log�le. This will place the �le in a \good" state so it can be used by the recovery program
or by User Logging when the logging process is restarted. If system RECOVERY is not done,
the log�le can still be read because, when User Logging opened the log�le for the process,
it moved the end-of-�le pointer to the �le limit. All the records in the �le can be read, even
though those at the end of the �le are not valid data.

To handle this case, the program should check the CKSUM word of each record. The CKSUM
is calculated by XORing all of the 16-bit words in the record using a base of -1. When the
recovery program encounters a record whose CKSUM is not valid, it will assume that it has
come to the end of valid data in the �le.

The log�le being read should be accessed through the MPE �le system with FOPEN, FREAD,
etc. There are no User Logging intrinsics which allow users to read log�les.

If more than one process accessed the log�le, each record must be checked and a
determination made to see if the record belongs to the process being recovered. To do this,
check the �le belonging to the process that contains the user, group, and account accessing the
log�le, the pin# of the process, the fully quali�ed �le name of the log�le, the logid , and the
date and time the log�le was opened by the application.

Open the log�le, search the log�le for the logid , user, group, and account which match in the
OPENLOG record (refer to Appendix B, \Record Formats"). Verify the match by using the
pin#, and the date and time of the open. When the correct OPENLOG record has been found,
obtain the log#. All records with that log# belong to the process.

Recovery 6-1

Backup copies of the application data structures will be needed for the recovery process.
The recovery program should look for BEGINLOG and ENDLOG records. When an ENDLOG

record is found, the transaction has been completed, and all actions represented by the
WRITELOG records within that transaction should be applied to the backup data structures. If
a BEGINLOG is found without a matching ENDLOG, the transaction was not complete, its actions
should not be reapplied.

CONTINUATION Records

Each BEGINLOG, WRITELOG, and ENDLOG record contains up to 119 words of user data. If more
than 119 words were passed to the intrinsic, one or more CONTINUATION records will contain
the remainder of the data. The LEN �eld will re
ect the total number of words that were
passed. For example, if a length of 140 words was passed to the WRITELOG intrinsic, the LEN
�eld of the WRITELOG record will contain 140 words. There will be 119 words in the user data
area of the WRITELOG record and 21 words in the CONTINUATION record. The LEN �eld of
the CONTINUATION record will also re
ect the total number of words (140). A positive LEN
indicates 16-bit words, a negative LEN indicates 8-bit bytes.

CHANGELOG Records

If the recovery program encounters a CHANGELOG record with a code of 12, the record will
contain the name and type of the next log�le in the set; continue recovery with the next
log�le. The �rst record of the new log�le should be a CHANGELOG record with a code of 11. It
will contain the name and type of the previous log�le, and may be used as a check when the
new log�le is opened.

When Recovery is Complete

When the recovery program has completed, there are two options:

The database and log�les can be backed up, the log�le rebuilt, the name of the log�le
changed to end with 001 (if CHANGELOG is allowed), and a :LOG command with the :START
option issued (:LOG logid ,START) to start a new set of log�les.

If system recovery was done to the log�le, the :LOG logid , RESTART command may be issued
to restart the User Logging process. This will continue logging to the same log�le(s).

The second option will not work if system startup with RECOVERY was not performed; if so,
use the �rst option. The application may be restarted after the point of the last complete
transaction.

6-2 Recovery

Power Failure

User logging automatically recovers from power failures occurring on the I/O device where the
log�le resides. If User Logging detects that a power failure has occurred, it will automatically
read the log�le until the last good record is read. It will then rewrite the data, from its bu�er,
starting at that block.

The Operator may be prompted to reset the tape drive and place it back online. If the
power failure occurs at the beginning of the current tape, the Operator will be requested to
mount the previous tape and then remount the current tape. The system console will display
messages that the User Logging Power Failure Recovery has completed.

Recovery 6-3

A

Suggested User Logging Procedure

The suggested User Logging procedure includes the following:

1. Use the :GETLOG command to create a logid for the application. If data security is
required, use the ;PASS option of the :GETLOG command. Specify the con�gured device
class name (DISC or TAPE). If the logid speci�ed in the :GETLOG command is associated
with a disc �le, build the �le with the ;CODE=LOG option of the :BUILD command and
enough disc space to contain one day's output.

2. Design the application and data structures.

3. Determine what information will be required for recovery of the application's data
structures.

4. Write the application and include a separate �le which contains the identi�cation
information, and include the appropriate calls to User Logging intrinsics to record the data
necessary for recovery.

5. Design and write the recovery program. The recovery program must recognize the User
Logging �le record formats and the application's data structures.

6. Have the logging process for your logid started (refer to the :LOG command in the MPE/iX
Commands Reference Manual (32650-90003)).

7. Store a copy of the application's data structure to a backup medium in case recovery
procedures are required.

8. Run the application.

9. If it is necessary to recover the data structures, :RESTORE the backup copies and run the
recovery program. This recovers any changes that were made to the data structures since
backup was done.

Suggested User Logging Procedure A-1

B

Record Formats

Record formats are required for direct access to the logging �les by the user. The following
logging record formats indicate where information resides during the logging process.

Logging Record Format:
record size = 128 words
user area = 119 words

0 2 3 4 6 7 11 12 24 25 127

--

| | | | | | | | | | |

| rec# | cksum | code | time | date | logid | log# | creator | pcb | |

|------|-------|------|------|------|-------|------|---------|-----|-------|

Log Record at OPENLOG

0 2 3 4 6 7 8 9 127

--

| | | | | | | | |

| rec# | cksum | code | time | date | log# | len | user area |

|------|-------|------|------|------|------|-----|-------------------------|

Log Record at WRITELOG

0 2 3 4 6 7 11 12 24 25 127

--

| | | | | | | | | | |

| rec# | cksum | code | time | date | logid |log# | creator | pcb | |

|------|-------|------|------|------|-------|-----|---------|-----|--------|

Log Record at CLOSELOG

0 2 3 4 6 7 127

--

| | | | | | |

| rec# | cksum | code | time | date | |

|------|-------|------|------|------|--------------------------------------|

Crash Mark

Record Formats B-1

0 2 3 4 6 7 11 127

--

| | | | | | | |

| rec# | cksum | code | time | date | logid | |

|------|-------|------|------|------|-------|------------------------------|

Header Record (Start/Restart)

0 2 3 4 6 7 11 127

--

| | | | | | | |

| rec# | cksum | code | time | date | logid | |

|------|-------|------|------|------|-------|------------------------------|

Trailer Record (Stop)

0 2 3 4 6 7 127

--

| | | | | | |

| rec# | cksum | code | time | date | |

|------|-------|------|------|------|--------------------------------------|

Null Record

0 2 3 4 6 7 8 9 127

--

| | | | | | | | |

| rec# | cksum | code | time | date | log# | len | user area |

|------|-------|------|------|------|------|-----|-------------------------|

Begin Transaction Marker

0 2 3 4 6 7 8 9 127

--

| | | | | | | | |

| rec# | cksum | code | time | date | log# | len | user area |

|------|-------|------|------|------|------|-----|-------------------------|

End Transaction Marker

B-2 Record Formats

0 2 3 4 6 7 11 12 14

| | | | | | | seq | | |

| rec# | cksum | code | time | date | logid | num | c-time | c-date |

|------|-------|------|------|------|-------|-----|--------|--------|

15 33 34 52 53 71 72 127

--

| | | | | | | |

| f-file-name | f-type | p-file-name | p-type | c-file-name | c-type | |

|-------------|--------|-------------|--------|-------------|--------|-----|

Log Record at CHANGELOG

Table B-1 lists the code de�nitions of record formats, and Table B-2 lists the data �elds of log
records. (Notes for each follow the tables.)

Table B-1. Code Definition

Code= # De�nition

(8:8) 1 Open log record

2 User/subsystem record

3 Close log record

4 Header record

5 Trailer record

6 Restart record

7 Continuation of user subsystem record

9 Crash marker

10 End transaction record

11 Begin transaction record

12 Change log record (resides in new �le; points to old �le)

13 Change log record (resides in old �le; points to new �le)

32 Null record

(0:8) Subsystem code (can be speci�ed with Privmode only)

Code De�nition Notes:

The code in the second byte of Word 3 of each logging record identi�es the type of record. For
example, a \1" in the second half of the third word indicates an OPENLOG record.

Privileged users can de�ne a subsystem code in the �rst half of the logging record code word
bits (0:8). This code is passed in the index parameter of the OPENLOG intrinsic.

The null record is used as a �ller.

If Code = 12, then p-�le-name = previous �le in the set and p-�le-name = previous �le type
in the set.

If Code = 13, then p-�le-name = next �le in the set and p-�le-name = next �le type in the
set.

Record Formats B-3

Table B-2. Data Fields of Log Records

Field Description

REC# Double Integer

CKSUM Integer

CODE Integer

TIME Double Integer (from CLOCK intrinsic)

DATE Integer (from CALENDAR intrinsic)

LOGID ASCII

LOG# Integer

LEN Integer

USERAREA ASCII

CREATOR ASCII (Name of user which opened the �le)

PCB Integer

SEQ NUM Integer

C-DATE Double Integer

C-TIME Double

F-FILE-NAME ASCII

P-FILE-NAME ASCII

C-FILE-NAME ASCII

F-TYPE Integer

P-TYPE Integer

C-TYPE Integer

Data Fields of Log Records Notes:

The checksum (CKSUM) algorithm uses the Exclusive-Or (XOR) function against a base of
negative one.

The length �eld (LEN) contains the length passed to WRITELOG, BEGINLOG, or ENDLOG. If a
CONTINUATION record is part of the transaction, that record will also contain the data length.
For example, if a length of 140 (words) is passed to the intrinsic, the LEN �eld will contain
140. Since the user area will only accommodate 119 words the remaining 21 words will be
stored in the CONTINUATION record. The LEN �eld of the CONTINUATION record will indicate
the total number of words in the transaction (140 in this example). A positive number
indicates 16-bit words; a negative number refers to 8-bit bytes.

B-4 Record Formats

C

User Logging Error Codes

Table C-1 lists the User Logging error codes and their meanings. These error codes are
returned in the logstatus parameter of each of the User Logging intrinsics.

Table C-1. User Logging Error Codes

Code Meaning Corrective Action

0 No error for this intrinsic call. None.

1 User requested NOWAIT mode and the
logging process is busy.

Retry the intrinsic call.

2 Parameter out of bounds in logging
intrinsic. For example, the address of data,
for WRITELOG, and the length given will go
beyond the top of the stack.

Check all parameters to be sure they are
correct and addressed properly.

3 A request to open or write to a logging
process that is not running.

Use the :SHOWLOGSTATUS command to
determine which User Logging processes are
running. To start or restart a User Logging
process, the system supervisor can use the
:LOG command.

4 Incorrect index parameter passed to a User
Logging intrinsic.

The index parameter must be a number that
was returned by a successful call to the
OPENLOG intrinsic. Do not change it. It will not
be valid after a call to CLOSELOG with that
index parameter.

5 Incorrect mode parameter passed to a user
logging intrinsic.

For the WRITELOG intrinsic, valid mode
parameters are 0, 1, and 2. For all other
intrinsics, valid mode parameters are 0 and 1
only.

6 A request to open the log�le was denied
and the User Logging process was
suspended (the User Logging process is
stopping or attempting recovery from an
exception condition, for example, a power
failure).

The :SHOWLOGSTATUS command or the
LOGINFO intrinsic will give the current state of
the User Logging process. If the process is
stopped, it must be restarted by the system
supervisor before the user can open the �le.

7 Illegal capability. The user must have LG
or OP capabilities to use the User Logging
intrinsics.

See your account or system manager to obtain
the proper capabilities.

User Logging Error Codes C-1

Table C-1. User Logging Error Codes (Cont.)

Code Meaning Corrective Action

8 Incorrect password was passed to a User
Logging intrinsic.

The creator of the logid can obtain the
password by using the ;PASS option of the
:LISTLOG command.

9 An error occurred while writing to the log
�le. The File System error message will be
printed on $STDLIST.

Obtain the File System error from the
$STDLIST and take the appropriate action.

12 The system is out of disc space, the
logging process cannot proceed.

Take the usual action for obtaining disc space,
then restart the logging process.

13 OPENLOG failed. The maximum number of
users that can access a User Logging
process at one time has been reached. This
number is con�gurable at system startup
only.

Temporary solution: Wait for a user, who is
accessing the log�le, to �nish.

Long term solution: At the next system
startup, have the number of users that can
access a User Logging process increased.

14 Invalid access to a log �le (security
violation). The user, group, or account
calling the intrinsic does not match the
user, group, or account for the log index
passed.

Each user wanting to access a User Logging
process, and its associated log�le, must have
obtained access to it through a call to OPENLOG.

15 End-of-�le on log�le (the log�le is full and
AUTO was not on to automatically switch to
a new log�le).

:RENAME the log�le and :BUILD a new one with
the old name, type :LOG logid ,START to restart
the logging process.

or

:BUILD a new log�le with a new name, use the
:ALTLOG command to point the logid to the
new log�le, and use :LOG logid , START to
restart the logging process.

16 The logid does not exist. To see the logids that exist, use the :LISTLOG
command. To add a logid , use the :GETLOG
command.

17 Parameter (either itemnum or itemval)
missing for the LOGINFO intrinsic.

Check the LOGINFO parameters, the itemnum
and itemval must occur in pairs.

18 Invalid item number passed to the LOGINFO
itemnum parameter.

Refer to the MPE/iX Intrinsics Reference
Manual (32650-90028) for a complete list of
valid item numbers that can be returned to the
itemnum parameter of the LOGINFO intrinsic.

C-2 User Logging Error Codes

Index

A

Accessing complete, log�le, 5-3
Active identi�ers, list
LISTLOG, 3-1

Alter attribute of UL identi�er
ALTLOG, 3-1, 4-2, 4-3

ALTLOG
Alter attribute of UL identi�er, 4-2, 4-3

ALTLOG Alter attribute of UL identi�er, 3-1
ALTLOG Command, 3-1
Application
Multiple �le, 1-1
Program, 4-1

Application, design, A-1
Application, link
OPENLOG, 2-2, 5-1

Application, using intrinsics, 5-1
Application, writing log records, 5-1
ASCII code, logid, 5-1
Attribute, alter logging identi�er
ALTLOG, 4-2

Attributes, �le
BUILD, 4-2

Auto enable, list
LISTLOG, 3-1

B

Backup the system, 4-4
BEGINLOG
Intrinsic, 2-1, 5-2
Mark beginning, 5-2
Nested pairs, 5-2
Record, 6-1
Write �rst logical transaction, 5-2
Write special record, 5-2

Begin transaction marker
Record, B-2

Bu�er,
ush the, 5-3
Bu�er, internal, 4-1
BUILD
Command, 4-2
Create log�le, 4-2
File attributes, 4-2

C

CALENDAR
Intrinsic, 5-1

Calling application, link
OPENLOG, 2-2, 5-1

Capabilities
Command, 3-1
Intrinsics, 2-1

CHANGELOG
Change the log�le, 4-3
Record, 6-2, B-3
Switch logging process, 4-3

CHANGELOG Change the log�le, 3-1
CHANGELOG Command, 3-1
CHANGELOG Switch logging process, 3-1
Change the log�le
CHANGELOG, 3-1, 4-3

CLOCK
Intrinsic, 5-1

CLOSELOG
Intrinsic, 2-1, 5-3
Pairing with OPENLOG, 5-3
Record, B-1
Remove link, 5-3

Code de�nition
Record, B-3

Command
ALTLOG, 3-1
BUILD, 4-2
Capabilities, 3-1
CHANGELOG, 3-1
GETLOG, 3-1
LISTLOG, 3-1
LOG, 3-1, 4-4
RELLOG, 3-1
SHOWLOGSTATUS, 3-1, 5-3

Con�guration
System Startup, 4-1

CONTINUATION
Record, 6-2

Control, logging process
LOG, 4-3

Crash mark
Record, B-1

Create log�le
BUILD, 4-2

Index-1

Create logid, 4-1
Current log�le information
LOGSTATUS, 2-2, 5-3

D

De�nition, code
Record, B-3

DISC, 4-1, 4-2, 4-3
Logging to, 4-3

Disc �le speci�cation, 4-3
Display space available
SHOWLOGSTATUS, 4-4

Display status information
SHOWLOGSTATUS, 4-4

E

ENDLOG
Intrinsic, 2-1, 5-2
Mark end, 5-2
Nested pairs, 5-2
Record, 6-1
Write special record, 5-2

End transaction marker
Record, B-2

Error code
Meanings, C-1

Error codes
Intrinsic, C-1

F

Failure, power, 6-3
Field, LEN, 6-2
Fields, data
Records, B-3

FLUSHLOG
Intrinsic, 2-1, 5-3

Flush records
FLUSHLOG, 2-1, 5-3

Flush the bu�er
FLUSHLOG, 5-3

Full log�le, 4-3
FWRITE, 1-1

G

GETLOG
Logging identi�er, attribute, 3-1, 4-2
Logging identi�er, establish, 4-1, 4-3

GETLOG Command, 3-1
GETLOG Logging identi�er, establish, 3-1
GETPROCID
Intrinsic, 5-1

I

Identi�cation information
OPENLOG, 5-1

Inactive, 4-4
Internal bu�er, 4-1
Intrinsic
Application, 5-1
BEGINLOG, 2-1, 5-2
CALENDAR, 5-1
CLOCK, 5-1
CLOSELOG, 2-1, 5-3
ENDLOG, 2-1, 5-2
Error codes, C-1
FLUSHLOG, 5-3
FUSHLOG, 2-1
GETPROCID, 5-1
LOGINFO, 2-1, 2-2, 5-3
LOGSTATUS, 2-1, 2-2, 5-3
OPENLOG, 2-1, 2-2, 5-1
User Logging, 2-1
WHO, 5-1
WRITELOG, 2-1, 2-2, 5-2, 5-3

L

LEN �eld, 6-2
Link calling application
OPENLOG, 2-2, 5-1

LISTLOG
Active identi�ers, list, 3-1
Auto enable, list, 3-1
Name and creator, list, 3-1

LISTLOG Command, 3-1
LOG
Logging process control, 4-3
Restart UL process, 3-1, 4-3
Start UL process, 3-1, 4-3
Stop UL process, 3-1, 4-3

LOG Command, 3-1
Log�le
Linking, 4-3
Recording to, 1-1

Log�le, full, 4-3
Log�le name, 4-3, 4-4
Log�le, next, 4-3
Log�le, old, 4-4
Log�le, previous, 4-3
Log�le, purge, 4-4
Log�le, read after power failure, 6-3
Log�le, read formatted data
Recovery, 6-1

Log�le set, information, 4-3
Log�le set information
LOGINFO, 2-2, 5-3

Log�le, terminate, 4-3

Index-2

Logging identi�er, attribute
GETLOG, 3-1, 4-2

Logging identi�er, establish
GETLOG, 3-1, 4-1, 4-3

Logging identi�er, remove
RELLOG, 3-1

Logging process
Logid, 4-1

Logging record format, B-1
Logging speed, 4-1
Logid
identify, 4-2
Logging process, 4-1

Logid, ASCII code, 5-1
Logid, create, 4-1
LOGINFO
Intrinsic, 2-1, 2-2, 5-3
Log�le set information, 2-2, 5-3
Open log�le information, 2-2, 5-3
Previous log�le information, 2-2, 5-3

LOGSTATUS
Current, open log�le information, 2-2, 5-3
Intrinsic, 2-1, 2-2, 5-3

M

main Log�le
setup, 1-1

Mark beginning
BEGINLOG, 2-1, 5-2

Mark end
ENDLOG, 2-1, 5-2

MODE
Parameter, 5-3
Parameter values, 5-3
WRITELOG, 5-3

Multiple �le
Application, 1-1

N

Name and creator, list
LISTLOG, 3-1

Naming a log�le, 4-3, 4-4
NOWAIT, 5-3
Null
Record, B-2

O

OPENLOG
Identi�cation information, 5-1
Intrinsic, 2-1, 2-2, 5-1
Link calling application, 2-2, 5-1
Pairing with CLOSELOG, 5-3
Record, 6-1, B-1
Using the intrinsic, 5-1

Open log�le information
LOGINFO, 2-2, 5-3
LOGSTATUS, 2-2, 5-3

Options, after recovery, 6-2

P

Pairs
BEGINLOG and ENDLOG, nested, 5-2
OPENLOG and CLOSELOG, 5-3

Parameter
MODE, 5-3

Power failure, 6-3
Recovery, 1-1

Previous log�le information
LOGINFO, 2-2, 5-3

Procedure, User Logging, A-1
Program
Application, 4-1
Recovery, 4-1, 6-1

Program abort
Recovery, 6-1

R

Record
BEGINLOG, 6-1
Begin transaction marker, B-2
CHANGELOG, 6-2, B-3
CLOSELOG, B-1
Code de�nition, B-3
CONTINUATION, 6-2
Crash mark, B-1
De�nition, code, B-3
ENDLOG, 6-1
End transaction marker, B-2
Header (start :restart), B-2
Null, B-2
OPENLOG, 6-1, B-1
To log�le, 1-1
Trailer, B-2
WRITELOG, 6-1, B-1

Record/Data �elds/Data �elds
Records, B-3

Record size, B-1
Record, user area, B-1
Recovery
Log�le set information, 4-3
Options after completeion, 6-2
Power failure, 1-1
Program, 4-1, 6-1
Program abort, 6-1
System failure, 6-1
Warmstart process, 6-1
When complete, 6-2

Recovery, power failure, 6-3
Recovery program

Index-3

Read formatted data, 6-1
RECOVERY program, 6-2
Recreate action from log record, 5-2
RELLOG
Remove logging identi�er, 3-1

RELLOG Command, 3-1
Remove link
CLOSELOG, 2-1, 5-3

Remove logging identi�er
RELLOG, 3-1

Restart/start, header
Record, B-2

Restart UL process
LOG, 3-1, 4-3

S

Setup
log�le, 1-1

SHOWLOGSTATUS
Command, 5-3
Display space available, 3-1, 4-4
Display status information, 3-1, 4-4

SHOWLOGSTATUS Command, 3-1
Single transaction, 1-1
Space available, display
SHOWLOGSTATUS, 3-1, 4-4

Start/restart, header
record, B-2

Start UL process
LOG, 3-1, 4-3

Status information, display
SHOWLOGSTATUS, 3-1, 4-4

STOP option, 4-4
Stop UL process
LOG, 3-1, 4-3

Switch logging process
CHANGELOG, 3-1, 4-3

System backup, 4-4
System failure
Recovery, 6-1

System level, User logging, 4-1
System process, 4-1
System startup, 4-1
Con�guration, 4-1

T

TAPE, 4-1, 4-3
Logging to, 4-3

Terminate log�le, 4-3
The User Logging Process, 4-1

Trailer
Record, B-2

Transaction
Not complete, 1-1
Single, 1-1

Transaction complete
CLOSELOG, 5-3

Transaction marker, begin
Record, B-2

Transaction marker, end
Record, B-2

U

User level, User Logging, 4-1
Using MODE parameter, 5-3
Using the intrinsic
OPENLOG, 5-1
WRITELOG, 5-2

V

Validity checking
WRITELOG, 5-2

W

WAIT, 5-3
Warmstart recovery process, 6-1
WHO
Intrinsic, 5-1

WRITE-and-FLUSH, 5-3
Write �rst logical transaction
BEGINLOG, 5-2

WRITELOG
Intrinsic, 2-1, 2-2, 5-2, 5-3
MODE parameter, 5-3
Record, 6-1, B-1
Using the intrinsic, 5-2
Validity Checking, 5-2
Write record to log�le, 2-2, 5-2
Write user's data, 2-2, 5-2

Write record to log�le
WRITELOG, 2-2, 5-2

Write special record
BEGINLOG, 2-1, 5-2
ENDLOG, 2-1, 5-2

Write user's data
WRITELOG, 2-2, 5-2

X

X

x, B-3

Index-4

	Top of Document
	Preface
	Contents
	Introduction
	User Logging Applications

	User Logging Intrinsics
	User Logging Commands
	The User Logging Process
	Controlling the Logging Process

	User Logging in an Application
	Using the OPENLOG Intrinsic
	Using the WRITELOG Intrinsic
	Using the BEGINLOG and ENDLOG Intrinsics
	Using the CLOSELOG Intrinsic
	Using the MODE Parameter
	Using the FLUSHLOG Intrinsic
	Using the LOGINFO and LOGSTATUS Intrinsics

	Recovery
	Recovery After System Failure
	When Recovery is Complete
	Power Failure

	App. A - Suggested User Logging Procedure
	App. B - Record Formats
	App. C - User Logging Error Codes
	Index

