
Resource Management

Programmer's Guide

900 Series HP 3000 Computers

ABCDE

HP Part No. 32650-90024

Printed in U.S.A. 19871101

E1187

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c
 1987 by Hewlett-Packard Company

Refer to manual hardcopy for required copyright. If the following copyright is not applicable
to a manual, please delete. c
 1980, 1984 AT&T Technologies

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition November 1987 A.01.00

List of E�ective Pages The List of E�ective Pages gives the date of the current edition, and
lists the dates of all changed pages. Unchanged pages are listed as \ORIGINAL". Within the
manual, any page changed since the last edition is indicated by printing the date the changes
were made on the bottom of the page. Changes are marked with a vertical bar in the margin.
If an update is incorporated when an edition is reprinted, these bars and dates remain. No
information is incorporated into a reprinting unless it appears as a prior update.

First Edition November 1987

iii

Documentation Map

iv

v

Preface

Resource Management Programmer's Guide (32650-90024) is written for an experienced
programmer who has a working knowledge of MPE/iX and is familiar with:

A text editor

At least one programming language

Compiling, linking, and executing a program on MPE/iX

This manual contains detailed instructions describing how you can use system intrinsics within
your application to accomplish two resource management tasks available through MPE/iX:

Managing Shared Resources with Resource Identi�cation Numbers (RINs)

Dynamically loading procedures located in executable libraries (XLs)

This manual is part of the MPE/iX Programmer's Series. This series consists of the MPE/iX
Intrinsics Reference Manual (32650-90028) and a set of task-oriented programmer's guides.
Refer to the MPE/iX Programmer's Series Documentation Map for a description of how this
manual relates to the rest of the series.

This manual contains the following chapters:

Chapter 1 Introduction provides you with an overview of the
contents of this manual.

Chapter 2 Managing Shared Resources with RINs describes
how you can use Resource Identi�cation Numbers
(RINs) to manage a speci�c resource shared by a
set of jobs or sessions, so that no two jobs or
sessions can use the resource at the same time.

Chapter 3 Dynamic Loading of Library Procedures describes
how you can dynamically bind and load a
procedure located in an executable library (XL).

Appendix A Global RIN Program Example is an HP
Pascal/XL program illustrating how you can use
RIN management intrinsics to guarantee exclusive
access to a selected record in a shared �le.

Appendix B Dynamic Loading Program Example is an HP
Pascal/XL program illustrating how you use the
HPGETPROCPLABEL intrinsic to dynamically load a
procedure located in an executable library.

vi

Conventions

NOTATION DESCRIPTION

UPPERCASE Within syntax statements, characters in uppercase must be
entered in exactly the order shown, though you can enter them in
either uppercase or lowercase. For example:

SHOWJOB

Valid entries: showjob ShowJob SHOWJOB

Invalid entries: shojwob ShoJob SHOW_JOB

italics Within syntax statements, a word in italics represents a formal
parameter or argument that you must replace with an actual
value. In the following example, you must replace �lename with
the name of the �le you want to release:

RELEASE �lename

punctuation Within syntax statements, punctuation characters (other than
brackets, braces, vertical parallel lines, and ellipses) must be
entered exactly as shown.

{ } Within syntax statements, braces enclose required elements.
When several elements within braces are stacked, you must select
one. In the following example, you must select ON or OFF:

SETMSG

�
ON

OFF

�

[] Within syntax statements, brackets enclose optional elements. In
the following example, brackets around ,TEMP indicate that the
parameter and its delimiter are optional:

PURGE {�lename} [,TEMP]

When several elements with brackets are stacked, you can select
any one of the elements or none. In the following example, you
can select devicename or deviceclass or neither:

SHOWDEV

�
devicename

deviceclass

�

vii

NOTATION DESCRIPTION

[. . .] Within syntax statements, a horizontal ellipsis enclosed in
brackets indicates that you can repeatedly select elements that
appear within the immediately preceding pair of brackets or
braces. In the following example, you can select itemname and its
delimiter zero or more times. Each instance of itemname must be
preceded by a comma:

[,itemname][. . .]

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However,
if you select only one element, the delimiter is not required. In
the following example, the comma cannot precede the �rst
instance of itemname:

[itemname][, . . .]

| . . . | Within syntax statements, a horizontal ellipsis enclosed in parallel
vertical lines indicates that you can select more than one element
that appears within the immediately preceding pair of brackets or
braces. However, each element can be selected only one time. In
the following example, you must select ,A or ,B or ,A,B or ,B,A :

�
,A

,B

�
| . . . |

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However,
if you select only one element, the delimiter is not required. In
the following example, you must select A or B or AB or BA. The
�rst element cannot be preceded by a comma:�

A

B

�
|, . . . |

. . . Within examples, horizontal or vertical ellipses indicate where
portions of the example are omitted.

t Within syntax statements, the space symbol t shows a required
blank. In the following example, you must separate modi�er and
variable with a blank:

SET[(modi�er)]t(variable);

shading Within an example of interactive dialog, shaded characters
indicate user input or responses to prompts. In the following
example, OMEGA is the user's response to the NEW NAME prompt:

NEW NAME? OMEGA

viii

NOTATION DESCRIPTION

� � The symbol � � indicates a key on the terminal's keyboard. For
example, �CTRL� indicates the Control key.

�CTRL� char �CTRL� char indicates a control character. For example, �CTRL� Y
means you have to simultaneously press the Control key and the
Y key on the keyboard.

base pre�xes The pre�xes %, #, and $ specify the numerical base of the value
that follows:

%num speci�es an octal number.

#num speci�es a decimal number.

$num speci�es a hexadecimal number.

When no base is speci�ed, decimal is assumed.

Bit (bit:length) When a parameter contains more than one piece of data within its bit �eld,
the di�erent data �elds are described in the format Bit (bit:length), where bit
is the �rst bit in the �eld and length is the number of consecutive bits in the
�eld. For example, Bits (13:3) indicates bits 13, 14, and 15:

most significant least significant

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

| 0| | | | | | | | | | | | |13|14|15|

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

Bit (0:1) Bits(13:3)

ix

Contents

1. Introduction

Managing Shared Resources with RINs 1-1
Dynamic Loading of Library Procedures 1-2

2. Managing Shared Resources with RINs

Multiple RIN (MR) Capability . 2-2
Managing with Global RINs . 2-2
Acquiring Global RINs . 2-3
Locking and Unlocking Global RINs 2-3
Releasing Global RINs . 2-8

Managing with Local RINs . 2-9
Acquiring Local RINs . 2-9
Locking and Unlocking Local RINs 2-9
Releasing Local RINs . 2-12
Identifying a Local RIN Locker . 2-12

Deadlock Considerations . 2-14

3. Dynamic Loading of Library Procedures

Introduction to HPGETPROC-PLABEL 3-1
Determining the Binding Sequence 3-2
Searching an Executable Library Not Speci�ed at Load Time 3-3
Searching Executable Libraries Speci�ed at Load Time 3-3
Using HPFIRSTLIBRARY . 3-4
Using HPMYPROGRAM . 3-5
Using HPMYFILE . 3-5

A. Global RIN Program Example

B. Dynamic Loading Program Example

Index

Contents-1

Figures

2-1. 2-6
2-2. 2-7
2-3. 2-8
2-4. 2-11
2-5. 2-13
2-6. 2-15
3-1. Illustration of a Load Time Binding Sequence. 3-2
3-2. Illustration of Run Time Binding of an XL. 3-3

Contents-2

1

Introduction

Any element of an HP 3000 computer system that your program can access through MPE
XL can be considered a resource. A resource can be an input or output device, a �le, a
subroutine, a library procedure, or a private data area.

A major function of MPE XL is to manage resources in such a way as to make your
programming e�orts easier and more e�cient. MPE XL also provides you with system
intrinsics to accomplish various tasks related to managing the resources your program may
access.

This manual describes two such resource management tasks available to you through the
operating system:

Managing shared resources with Resource Identi�cation Numbers (RINs).

Dynamic loading of executable library procedures.

All intrinsics discussed in this manual is described in greater detail in the MPE XL Intrinsics
Reference Manual (32650-90028). Commands discussed in this manual are described in the
MPE XL Commands Reference Manual (32650-90003).

Managing Shared Resources with RINs

Chapter 2 describes how you can use RINs to manage a speci�c resource shared by a set of
jobs or processes, so that no two jobs or processes can use the resource at the same time. This
chapter discusses the following system commands and intrinsics:

:GETRIN command

:FREERIN command

LOCKGLORIN intrinsic

UNLOCKGLORIN intrinsic

GETLOCRIN intrinsic

LOCKLOCRIN intrinsic

UNLOCKLOCRIN intrinsic

LOCRINOWNER intrinsic

FREELOCRIN intrinsic

Appendix A contains a program illustrating the use of the LOCKGLORIN and UNLOCKGLORIN

intrinsics to guarantee exclusive access to selected records in a data �le.

Introduction 1-1

Dynamic Loading of Library Procedures

Chapter 3 describes how you can dynamically bind and load a procedure located in an
executable library (XL). This chapter discusses the following system intrinsics:

HPGETPROCPLABEL intrinsic

HPFIRSTLIBRARY intrinsic

HPMYFILE intrinsic

HPMYPROGRAM intrinsic

Appendix B contains a program example illustrating the use of the HPGETPROCPLABEL
intrinsic.

1-2 Introduction

2

Managing Shared Resources with RINs

When you are developing an application you may wish to manage a speci�c resource that is
being shared by a set of processes in a way that guarantees that one process at a time has
exclusive access to that resource. MPE XL provides Resource Identi�cation Numbers (RINs)
that enable you to manage shared resources.

You can use RINs described in this chapter to manage anything you may consider a resource
to your program, be it a device, a portion of a �le, or a section of code in your program.
In addition, the operating system provides a resource management scheme similar to RIN
management through the use of the FLOCK and FUNLOCK intrinsics to guarantee your process
exclusive access to a �le being shared by a set of processes located in di�erent jobs/sessions.
Refer to Accessing Files Programmer's Guide (32650-90017) for details on using FLOCK and
FUNLOCK.

A RIN is not assigned by MPE XL to any particular resource. The association of a RIN
and a resource is established by cooperating programmers whose programs are sharing the
resource. The RIN value is known to the operating system, but the resource with which it
is associated is known only to you and other programmers who have agreed to manage the
resource through RIN management.

Within the programs being executed by di�erent processes, you and other programmers
must �rst agree to associate a RIN to a particular resource. When the process executing
your program seeks exclusive access to that resource, the process must successfully lock the
associated RIN prior to accessing the resource. Successfully locking the RIN means that your
process can access the resource exclusively, so long as the RIN remains locked.

If the attempt to lock the RIN is unsuccessful, it means that the RIN is locked and another
process has exclusive access to the associated resource.

Note The successful management of resources using RINs is predicated upon the
assumption that all accessors of a particular resource have agreed to access the
resource through RIN-locking intrinsics. If a process does not use this RIN
management scheme to access the resource, exclusive access to that resource
cannot be guaranteed.

Managing Shared Resources with RINs 2-1

Multiple RIN (MR) Capability

There are two types of RIN available for your use:

Global RIN, used to manage a resource shared by processes located in di�erent
jobs/sessions.

Local RIN, used to manage a resource shared by processes located in the same job/session.

If you have standard user capabilities you can lock more than one local RIN at the same time.
However, you can lock only one global RIN at a time, because of the danger of a system
deadlock resulting from the improper use of global RINs. Refer to the discussion of deadlock
found later in this chapter.

If your program needs to have two or more global RINs locked at the same time, you must
have the Multiple RIN (MR) capability assigned by a System Manager or Account Manager to
the group in which your program �le resides. In addition, you must assign to your program
�le the MR capability-class attribute at link time using the ;CAP= parameter of the :LINK
command.

Because the operating system uses a resource management scheme similar to global RINs in
the FLOCK and FUNLOCK intrinsics, you must count each active FLOCK call in your program as a
locked global RIN.

Managing with Global RINs

A RIN used to manage a resource being shared by unrelated processes is called a global RIN.
You use global RINs when you are using RIN management to prevent simultaneous access to
a resource by two or more processes that may not be located in the same job/session. Each
global RIN is a positive integer that is unique within MPE XL. Global RINs are acquired and
released through system commands, and locked and unlocked through system intrinsics.

If your program has only standard user capabilities, it can lock only one global RIN (used at
the unrelated process level) at a time. With MR capability, your program can lock two or
more global RINs at the same time.

2-2 Managing Shared Resources with RINs

Acquiring Global RINs

You can acquire a global RIN with the :GETRIN command. Following is an example of a
:GETRIN call:

:GETRIN PASSWORD

where PASSWORD is a required password, a character string of up to eight alphanumeric
characters, beginning with an alphabetic character. You use the RIN password to restrict the
locking of global RINs to authorized users.

Before you and other users can engage in global RIN management you must distribute the
global RIN and its password to the other users. The user that acquires the global RIN is
considered the owner of that RIN.

You typically enter the :GETRIN command during a session when you decide to use global
RINs in your program to manage a resource. As a result of the command, MPE XL makes a
global RIN available for use from a pool of free global RINs, and displays the global RIN in
the following manner:

RIN: rinnum

Cooperating processes can use the RIN during the current session or during future
jobs/sessions. A global RIN is available even when the owner is logged o�. The global RIN is
available until the owner of the RIN releases the RIN back to MPE XL with the :FREERIN
command.

The total number of global RINs that MPE XL can assign is speci�ed when the system is
con�gured, but can never exceed 1024. If all currently available global RINs are acquired by
users, the operating system rejects your request and issues the following message:

RIN TABLE FULL

In this case you must wait until a global RIN becomes available, or request that your System
Manager raise the maximum number of global RINs that MPE XL can assign.

For additional information about the :GETRIN command, refer to the MPE XL Commands
Reference Manual (32650-90003).

Locking and Unlocking Global RINs

Your process can lock a global RIN using the LOCKGLORIN intrinsic. Once you have
successfully locked the RIN, no other process can lock the same global RIN until you either
unlock it with the UNLOCKGLORIN intrinsic, or your process terminates.

While you have the global RIN locked, you are guaranteed exclusive access to the resource
associated with the global RIN, so long as other processes �rst attempt to lock the same
global RIN, prior to accessing the resource.

Following is an example of a LOCKGLORIN intrinsic call:

.

.

.

RINNUM := 4;

LOCKCOND := 1;

RINPASSWORD := 'RIN4LOCK ';

Managing Shared Resources with RINs 2-3

LOCKGLORIN (RINNUM,LOCKCOND,RINPASSWORD);

.

.

.

The parameters speci�ed in the example are described below.

RINNUM Passes the global RIN number associated with the
resource you wish exclusive access to. The value 4
is a global RIN number returned by the :GETRIN
command.

LOCKCOND LOCKCOND passes a value indicating the following:
if the global RIN is currently locked by another
process, control does not return from the
LOCKGLORIN call to your program until the global
RIN is again available and successfully locked by
your intrinsic call.

RINPASSWORD RINPASSWORD passes the RIN password assigned to
the global RIN through the :GETRIN command.

You use the UNLOCKGLORIN intrinsic to unlock a global RIN your process has previously locked
with LOCKGLORIN. Once your process unlocks the RIN, it is available to be locked by other
LOCKGLORIN calls.

Following is an example of an UNLOCKGLORIN intrinsic call:

.

.

.

RINNUM := 4;

UNLOCKGLORIN (RINNUM)

.

.

.

2-4 Managing Shared Resources with RINs

The parameter speci�ed in the above example is described below.

RINNUM Passes the global RIN associated with the resource
you no longer wish exclusive access to. To unlock
this global RIN, you must have previously locked
it using LOCKGLORIN. The value 4 is a global RIN
returned by the :GETRIN command.

Appendix A contains a program that uses global RINs to manage access to records in a data
�le being shared among multiple readers/writers. The program can be considered to be part
of a book record maintenance application used in a library. Speci�cally, the program updates
the location �eld of a book record located in the data �le.

Consider, also, that the library has several sites where users can check out books. A librarian
at each site has a terminal logged on to a session running the maintenance application.
Di�erent sessions, then, must be able to share access to the same data �le for the purposes of
updating book records.

Anytime a book is checked in or checked out from any site, the data �le is updated to re
ect
the new location of the book. For example, if a book is checked in, the librarian who receives
the book must update the record associated with the book, changing the location from LOANED

CARD# 451, DUE APRIL 1 to AVAILABLE so that the records re
ect the current location of the
book.

A problem exists maintaining the integrity of the records when two or more librarians access
the same record simultaneously. For example, if two librarians, \A" and \B", access a book
record simultaneously, the following may occur if provisions are not made to guarantee
exclusive access to a record during updates:

1. \A" copies the book record into her stack, showing the book is available.

2. \B" simultaneously copies the same record into his stack, showing the book is
available. This can occur because the data �le is opened with the access type option of
HPFOPEN/FOPEN set to SHARE (any other process, in any other session, can concurrently
access this �le).

3. \A" updates the location �eld of the record showing the book to be checked out, then posts
the record to disc.

4. \B" updates the location �eld of the record showing a 24-hour hold on the book, then posts
the record to disc.

The �nal result of this sequence is \B" overwriting the updated location entered by \A". The
true location of the book has been lost. What should have occurred is that \B" should not
have been able to access the record for the purposes of updating until \A" was �nished with
the update process.

Managing Shared Resources with RINs 2-5

Appendix A shows a program using the LOCKGLORIN and UNLOCKGLORIN intrinsics to ensure
exclusive access to book records during an update. The program allows a user to lock four
records in a �le so that a record can be updated without chance of another user updating it
simultaneously. In the program, the other users are not suspended when attempting to access
records elsewhere in the �le.

The �le BOOKFILE, illustrated in Example 2-1, contains the titles and status of the 20 books in
a library. The program in Appendix A uses this �le as its data �le.

TITLE: THE BORROWERS FACULTY LOAN - DR. JOHNSON

TITLE: ALICE IN WONDERLAND FACULTY LOAN - DR. JOHNSON

TITLE: PETER PAN AVAILABLE

TITLE: JUNGLE BOOK AVAILABLE

TITLE: THE LIFE OF MERENB AVAILABLE

TITLE: INTRO TO TAI CHI CHUAN AVAILABLE

TITLE: TOM SAWYER LOANED CARD# 275, DUE APRIL 16

TITLE: TREASURE ISLAND INTERLIBRARY LOAN - COUNTY LIBRARY

TITLE: A CHRISTMAS CAROL AVAILABLE

TITLE: THE WIZARD OF OZ AVAILABLE

TITLE: THE DARK CRYSTAL AVAILABLE

TITLE: SPEED RACER LOANED CARD# 921, DUE MARCH 25
TITLE: ULTRAMAN GOES TO TOWN AVAILABLE

TITLE: H.M.S. PINAFORE AVAILABLE

TITLE: FEAR OF FLYING FACULTY LOAN - DR. STRANGELOVE

TITLE: SNOW WHITE FACULTY LOAN - DR. CHARMING

TITLE: DR. DOOLITTLE INTERLIBRARY LOAN - ACME UNIV.

TITLE: TALES OF MOTHER GOOSE AVAILABLE

TITLE: AESOP'S FABLES AVAILABLE

TITLE: THE GULAG ARCHIPELAGO LOANED CARD #36, DUE MAY 11

Figure 2-1.

Example 2-1. BOOKFILE Contents.

BOOKFILE contains 20 records, so the program must acquire �ve global RINs. (The program
uses four records per global RIN). This is accomplished by repeatedly issuing the command:

:GETRIN BOOKRIN

BOOKRIN is the rinpassword speci�ed in the program to lock the global RIN. Because MPE XL
does not always assign global RINs in sequence, and because the program requires consecutive
RINs to keep track of them more easily, it may be necessary to enter more :GETRIN commands
before the program is �rst run in order to acquire the �ve consecutive global RINs. Extra
RINs can be released with the :FREERIN command. For the purposes of this example, we
assume that RINs 1 through 5 have been assigned.

2-6 Managing Shared Resources with RINs

The program in Appendix A uses the following procedures to accomplish its task:

Procedure error_ handler is a standard error handling routine that is invoked whenever an
intrinsic call is unsuccessful.

Procedure initialize_variables initializes appropriate global variables prior to use.

Procedure open_files opens the three �les required by the program: $STDIN, $STDLIST,
and BOOKFILE.

Procedure update_book_information is the main procedure called after �les have been
opened. This procedure prints the program header to $STDLIST, then repeatedly prompts
the user for a record to update (procedure select_record), until the user presses �Return�,
instead of a record number, to indicate the end of the program. Each time a record is
selected, the associated RIN is computed, then procedure access_record_exclusively is
called.

Procedure access_record_exclusively (Example 2-2) locks the global RIN associated
with the selected record before calling procedure update_record to update the selected
record. When procedure update_record is �nished, the global RIN is unlocked before the
program prompts the users for the next record number.

Procedure update_record prints the selected record to $STDLIST, prompts the user for a
new location, then reads the input from $STDIN. If the user supplies a new location, the
record is updated, then immediately posted to disc.

procedure access_record_exclusively(rinnum:shortint);

begin

lockglorin(rinnum,lockflag,rinpassword); {Lock global RIN }

if ccode <> CCE then error_handler(-1,103);

freaddir(booklist,bookrecord,-72,accno); {Read selected bookrecord }

if ccode = CCL then error_handler(booklist,104) else

if ccode = CCE then update_record; {Call PROCEDURE update_record }

unlockglorin(rinnum); {Unlock global RIN }

if ccode <> CCE then error_handler(-1, 110);

end;

Figure 2-2.

Example 2-2. Procedure Access Record Exclusively.

Once the user selects a valid book record, and the correct RIN is computed, the program calls
the intrinsic LOCKGLORIN to lock the RIN. If the RIN is already locked (by another process
executing the same code to update a record), the record cannot be accessed until the RIN is
unlocked by the process that �rst locked it.

Managing Shared Resources with RINs 2-7

Example 2-3 is a sample of an interactive session with the record update program located in
Appendix A. Updated entries are accessed a second time to con�rm successful modi�cation.

:RUN BKUPDATE

LIBRARY INFORMATION PROGRAM.

ACCESSION NO: 4

TITLE: THE LIFE OF MERENB INTERLIBRARY LOAN - UNIV. OF OZ

NEW LOCATION AVAILABLE

ACCESSION NO: 4

TITLE: THE LIFE OF MERENB AVAILABLE

NEW LOCATION �Return�
ACCESSION NO: 1

TITLE: ALICE IN WONDERLAND LOANED CARD# 451, DUE APRIL 1

NEW LOCATION FACULTYLOAN-DR.JOHNSON

ACCESSION NO: 1

TITLE: ALICE IN WONDERLAND FACULTY LOAN - DR. JOHNSON

NEW LOCATION �Return�
ACCESSION NO: 18

TITLE: AESOP'S FABLES AVAILABLE

NEW LOCATION �Return�
ACCESSION NO: �Return�

END OF PROGRAM

:

Figure 2-3.

Example 2-3. Execution of Record Update Program.

Releasing Global RINs

If you are the owner of a global RIN, you can use the :FREERIN command to release the global
RIN back to the pool of free global RINs maintained by the operating system.

Following is an example of a :FREERIN call:

:FREERIN 8

where 8 is the global RIN you want released.

Note You should be certain that all other users of a global RIN are �nished using
the RIN before you release it back to MPE XL.

For additional information about the :FREERIN command, refer to the MPE XL Commands
Reference Manual (32650- 90003).

2-8 Managing Shared Resources with RINs

Managing with Local RINs

A RIN used to manage a resource being shared by related processes is called a local RIN. You
use local RINs to prevent simultaneous access to a resource by two or more processes in the
same job/session. Each local RIN is a positive integer that is unique within your job/session.

Local RINs are assigned with the GETLOCRIN intrinsic, managed with the LOCKLOCRIN and
UNLOCKLOCRIN intrinsics, and released with the FREELOCRIN intrinsic.

Acquiring Local RINs

You must acquire local RINs with the GETLOCRIN intrinsic before you can use them within
your job/session. The following intrinsic call,

GETLOCRIN (6);

acquires six local RINs, RIN numbers 1 through 6, that can be used by the calling process as
well as other processes in the same job/session.

All local RINs you are planning to use in your program must be acquired in just one call to
GETLOCRIN. If your program requires additional local RINs after the initial GETLOCRIN call,
you must �rst release all local RINs then acquire the new number of local RINs with another
GETLOCRIN call.

Locking and Unlocking Local RINs

You can lock a local RIN using the LOCKLOCRIN intrinsic. Once your process has successfully
locked the RIN, no other process can lock the same local RIN until your process unlocks it
with the UNLOCKLOCRIN intrinsic.

While you have the local RIN locked, exclusive access is guaranteed only if other processes
�rst attempt to lock the local RIN prior to accessing the resource associated with the locked
RIN.

A local RIN, acquired by your program, can be locked and unlocked by any process in your
program's process structure.

Following is an example of a LOCKLOCRIN intrinsic call from a program that has previously
acquired local RINs 1 through 4:

.

.

.

RINNUM := 4;

LOCK := 1;
LOCKLOCRIN (RINNUM,LOCK);

.

.

.

The parameters specified in the example are described below.

Managing Shared Resources with RINs 2-9

RINNUM Passes the local RIN number associated with the
resource you wish exclusive access to. The value 4
is a local RIN returned by the GETLOCRIN intrinsic.

LOCKCOND LOCKCOND passes a value indicating the following:
if the local RIN is currently locked by another
process, control does not return to your program
from the LOCKLOCRIN call until the local RIN is
again available and successfully locked by your
process.

You use the UNLOCKLOCRIN intrinsic to unlock a local RIN that has been previously locked by
the calling process.

Example 2-4 illustrates how the LOCKLOCRIN and UNLOCKLOCRIN intrinsics can be used by two
processes executing in the same job/session. Assume that both the parent process (PARENT)
and the child process (CHILD) are executing concurrently, line by line.

2-10 Managing Shared Resources with RINs

PARENT PROCESS CHILD PROCESS

{ PARENT BEGINS EXECUTION }

.

.

.

HPFOPEN (LP,STATUS,...);

GETLOCRIN (3);

LPRIN := 1;

FWRITE (LP,...);

CREATE (PROGNAME,,CHILD...);

LOCKLOCRIN (LPRIN,1);

ACTIVATE (CHILD); { CHILD BEGINS EXECUTION }

FWRITE (LP,...); .

. .

. LPRIN := 1;

. HPFOPEN (LP,STATUS,...);

. LOCKLOCRIN (LPRIN,1);

.

. CHILD IS BLOCKED WHEN IT

. ATTEMPTS TO LOCK RIN.

.

. EXECUTION CONTINUES WHEN RIN

. IS UNLOCKED BY PARENT AND

. LOCKED BY CHILD.

UNLOCKLOCRIN (LPRIN);

. .

LOCKLOCRIN (LPRIN,1); .

.

PARENT IS BLOCKED WHEN IT FWRITE (LP,...);

ATTEMPTS TO LOCK RIN. .

.

EXECUTION CONTINUES WHEN RIN .

IS UNLOCKED BY CHILD AND .

LOCKED BY PARENT. .

UNLOCKLOCRIN (LPRIN);

FWRITE (LP,...); .

. .

. .

. .

Figure 2-4.

Example 2-4. Locking and Unlocking Local RINs.

Managing Shared Resources with RINs 2-11

In Example 2-4, both processes have agreed to RIN management, associating RIN 1
(designated in the program as LPRIN) with a line printer (designated as LP). When PARENT

�rst accesses LP, CHILD has not been created, and so RIN management is not yet required.

To guarantee exclusive access to LP �rst, PARENT locks LPRIN before CHILD is activated. When
PARENT �nishes with LP, it unlocks LPRIN, thus making LPRIN available to be locked. In this
case, CHILD has been blocked and is waiting for LPRIN to become available.

When CHILD attempts to lock LPRIN, CHILD passes a value to LOCKLOCRIN indicating that
execution should be blocked until LOCKLOCRIN can successfully return the locked RIN. The
blocking occurs because PARENT currently has LPRIN locked. Execution continues only when
PARENT unlocks LPRIN, thus making RIN 1 available to be locked by CHILD. While CHILD has
LPRIN locked, PARENT is unable to lock LPRIN until it is unlocked by CHILD.

Releasing Local RINs

You can use the FREELOCRIN intrinsic to release all local RINs your program previously
acquired with GETLOCRIN. Following is an example of a call to FREELOCRIN:

FREELOCRIN;

Any process in your program's process structure can release local RINs. If you do not
use FREELOCRIN to release local RINs, they are released to MPE XL when your program
terminates.

Identifying a Local RIN Locker

The LOCRINOWNER intrinsic identi�es the process in your program's process structure that
has a particular local RIN locked. If the RIN is locked by the parent of the calling process,
LOCRINOWNER returns a zero. If the RIN is locked by any other process, LOCRINOWNER returns
the Process Identi�cation Number (PIN) of that process.

Knowing the identity of the locking process is useful when parent and child processes are
synchronizing access to one another through calls to the ACTIVATE and SUSPEND intrinsics.

Example 2-5 is an example of RIN management where a parent process (PARENT) acts as a
monitor for several child processes (one of whom is identi�ed as CHILD1). Assume that both
PARENT and CHILD1 are executing concurrently, line by line.

Note that two agreements have been made by the programmer regarding RIN management
prior to writing the code in Example 2-5.

When a child process wishes to communicate with PARENT it must �rst successfully lock
local RIN 1 (designated in the program as WHICHCHILD). This guarantees that other
child processes cannot interfere in the communication being performed while local RIN 2
(designated as SYNCHRIN) is locked.

A child process must successfully lock local RIN 2 only after it has successfully locked local
RIN 1. PARENT locks RIN 2 to guarantee that the child process that activated PARENT is
suspended while PARENT executes code in the WHILE loop.

2-12 Managing Shared Resources with RINs

PARENT PROCESS CHILD PROCESS

{ PARENT EXECUTING } { CHILD EXECUTING }

. .

GETLOCRIN (2); .

. LOCKLOCRIN (WHICHCHILD,1);

CHILDCOUNT := 0; LOCKLOCRIN (SYNCHRIN,1);

WHILE CHILDCOUNT <= MAXCOUNT DO .

BEGIN .

SUSPEND (CHILDWAIT,SYNCHRIN); .

.

PARENT IS SUSPENDED .

UNTIL ACTIVATED .

BY A CHILD .

PARENT := FATHER;

ACTIVATE (PARENT);

. SUSPEND (PARENTWAIT,SYNCHRIN);

LOCKLOCRIN (SYNCHRIN,1);

OWNER := LOCRINOWNER (WHICHCHILD); CHILD1 IS SUSPENDED

. UNTIL ACTIVATED

. BY PARENT

CHILDCOUNT := CHILDCOUNT + 1;

ACTIVATE (OWNER);

END; {WHILE LOOP} .

. UNLOCKLOCRIN (WHICHCHILD);

. .

. .

Figure 2-5.

Example 2-5. Identifying a Local RIN Locker.

Both processes in Figure 2-5 share the following constants:

Managing Shared Resources with RINs 2-13

WHICHCHILD = 1 All processes in the program example agree that
WHICHCHILD is the local RIN used to determine
the identity of the child process that activated the
parent process PARENT.

SYNCHRIN = 2 All processes in the program example agree that
SYNCHRIN is the local RIN used to ensure that
PARENT can execute required code located in the
WHILE loop before another child process can
activate it.

PARENTWAIT = 1 Used by both SUSPEND and ACTIVATE to indicate
that the suspended process permits only its parent
process to activate it with an ACTIVATE intrinsic
call.

CHILDWAIT = 2 Used by both SUSPEND and ACTIVATE to indicate
that the suspended process permits only a child
process to activate it with an ACTIVATE intrinsic
call.

In Example 2-5, PARENT waits in a suspended state, unable to execute until an activation
signal is received from a child process (in this case, by CHILD1 calling ACTIVATE). Once
activated, PARENT locks SYNCHRIN to synchronize its communication with CHILD1.
LOCRINOWNER determines the identity of the process that activated PARENT (the process that
locked WHICHCHILD). PARENT then performs its required duty within the WHILE loop.

PARENT activates the process that activated PARENT (CHILD1) then suspends itself to again
await activation by a child process. Note that SYNCHRIN is passed as a parameter to SUSPEND.
SUSPEND releases the RIN, making SYNCHRIN available to be locked by other processes.

For details on using SUSPEND and ACTIVATE, refer to the discussion of suspending and
activating processes in Process Management Programmer's Guide (32650-90023).

Deadlock Considerations

If you are locking more than one RIN at a time in your program, there is a chance that you
can cause a deadlock between two or more processes. Deadlock occurs when two or more
processes are mutually blocked, waiting for each other to release a needed resource.

Example 2-6 illustrates how a deadlock can occur between two processes, Process A and
Process B. Assume that both processes in the example are executing concurrently, line by line.

2-14 Managing Shared Resources with RINs

{ PROCESS A EXECUTING } { PROCESS B EXECUTING }

. .

. .

. .

LOCKGLORIN (1); LOCKGLORIN (2);

LOCKGLORIN (2); LOCKGLORIN (1);

PROCESS A REMAINS BLOCKED PROCESS B REMAINS BLOCKED

UNTIL RIN 2 IS UNLOCKED UNTIL RIN 1 IS UNLOCKED

BY PROCESS B. PROCESS A BY PROCESS A. PROCESS B

CANNOT UNLOCK RIN 1 WHILE CANNOT UNLOCK RIN 2 WHILE

BEING BLOCKED BEING BLOCKED

Figure 2-6.

Example 2-6. Deadlock.

Managing Shared Resources with RINs 2-15

In Example 2-6, Process A successfully locks global RIN 1, then attempts to lock global RIN
2 (already locked by Process B). Process A is blocked until it can successfully lock global
RIN 2. While Process A is blocked, it cannot unlock global RIN 1, thus making global RIN 1
unavailable for locking by Process B.

Process B, meanwhile, has locked global RIN 2 and has been blocked attempting to lock
global RIN 1 (locked, or course, by Process A). Global RIN 2 remains unavailable to Process
A.

Both Process A and Process B �nd themselves mutually blocked and in the state of deadlock.
Even if subsequent code in both program �les unlocks one or both global RINs, neither
process can execute that code.

One way to avoid deadlocks is by ranking the RINs used by cooperating processes. In
Example 2-5, cooperating processes agree to �rst attempt to lock RIN 1 before attempting to
lock RIN2. In addition, the processes that have successfully locked both RINs agree to unlock
the two RINs in the reverse order, �rst RIN 2, then RIN 1. Because cooperating processes
must lock RINs in ascending order and unlock them in descending order, deadlock cannot
occur.

If you have only standard user capabilities and deadlock occurs between two or more processes
in your program's process structure, you must abort your program to resolve the deadlock.

If you have Multiple RIN (MR) Capability and deadlock occurs between your program
and processes located in di�erent jobs/sessions, you must immediately contact your System
Manager to resolve the deadlock.

2-16 Managing Shared Resources with RINs

3

Dynamic Loading of Library Procedures

Externally referenced procedures located in executable library �les (XLs) are normally bound
to your program when it is �rst loaded at process creation (load time). MPE XL enables you
to bind and load a speci�ed XL procedure any time during process execution (run time), a
feature referred to as dynamic loading.

You might, for example, decide to do this for a large procedure used optionally and
infrequently by your program, or for a procedure whose name is not known by your program
at load time.

Introduction to HPGETPROC-PLABEL

The HPGETPROCPLABEL intrinsic dynamically loads an XL procedure and returns the
procedure's label (plabel) to your program.

You can use the plabel to make a dynamic call to the procedure if the programming language
contains features for making dynamic procedure calls, for example, the CALL procedure in HP
Pascal/XL. Refer to the HP Pascal Reference Manual (31502-90001) for details on the CALL
procedure.

The syntax of HPGETPROCPLABEL is as follows:

HPGETPROCPLABEL(procname,plabel,status,�rst�le,casesensitive)

HPGETPROCPLABEL searches through a list of XLs (referred to as the binding sequence,
described below) to locate the procedure you specify in the procname parameter. When the
procedure is found, it is dynamically loaded and its plabel is returned to your program in the
plabel parameter.

Appendix B contains a program example illustrating the use of the HPGETPROCPLABEL
intrinsic.

The status parameter returns status information about the intrinsic call, in the following
manner:

Bits (0:16) When the signed integer value represented by
these bits is zero, a normal status is indicated. A
negative value indicates an error condition, and a
positive value indicates a warning condition.

Dynamic Loading of Library Procedures 3-1

Bits (16:16) The signed integer value represented by these bits
de�nes the subsystem that set the status
information in Bits (0:16). The NM loader
identi�cation number is 104. When the value
represented by these bits is zero, a normal status
is indicated.

Determining the Binding Sequence

The binding sequence is a list of XLs the loader searches to satisfy your program's unresolved
external references. The loader creates the binding sequence at load time. The program �le
is placed �rst in the binding sequence. Any additional XLs are placed after the program
�le in the order in which you speci�ed them. The System Libraries (XL.PUB.SYS followed
by NL.PUB.SYS) are always placed last in the binding sequence. The order of the binding
sequence is important, as the loader makes a single pass in one direction through the list.

MPE XL enables you to specify additional XLs you want placed in the binding sequence by
using any of the methods described in groups one through three below.

An XL list speci�ed using methods described in group two always override lists speci�ed using
methods described in group one. Likewise, lists speci�ed using methods described in group
three always override lists speci�ed using methods described in groups one and two.

1. You can specify a list of your own executable libraries in the XL= parameter of the :LINK
command.

2. You can specify a list of MPE XL-de�ned libraries in either the LIB= parameter of the
:RUN command or the
ags parameter LIBSEARCH bits of the CREATE or CREATEPROCESS
intrinsics.

1. You can specify a list of your own executable libraries in the XL= parameter of the :RUN
command, or Item Number 19 of the CREATEPROCESS intrinsic.

For example, if the calling process was created with the following command:

:RUN PROGRAM1; XL=LIBA,LIBB,LIBC,LIBD

The binding sequence illustrated in Figure 3-1 is created (arrows determine the search
direction):

Figure 3-1. Illustration of a Load Time Binding Sequence.

3-2 Dynamic Loading of Library Procedures

(Refer to the HP Link Editor/XL Reference Manual (32650-90030) for more information
about creating and maintaining XLs.)

Searching an Executable Library Not Specified at Load Time

HPGETPROCPLABEL can search for procname in one XL not speci�ed at load time. The XL
must be speci�ed in �rst�le, and any unresolved external references within the XL must
be resolved only in the System Libraries. If �rst�le is not found in the libraries available
to the process, the XL is placed in a binding sequence independent of the original binding
sequence prior to the dynamic loading of procname. The dynamically added library contains
supplemental code that can only be executed via a dynamic procedure call.

Figure 3-2 shows a program loading using two user XLs and the System Library. Also, the
process has dynamically loaded a procedure located in an XL not speci�ed at load time. The
original binding sequence of the process is not altered.

Figure 3-2. Illustration of Run Time Binding of an XL.

Searching Executable Libraries Specified at Load Time

You can use the optional �rst�le parameter to specify which XL in the binding sequence you
want HPGETPROCPLABEL to begin searching for procname. If you do not specify �rst�le, only
the the System Libraries are searched.

During a dynamic load, HPGETPROCPLABEL directs the loader to search through each XL in
the binding sequence, beginning with the XL speci�ed in �rst�le, for the �rst instance of a
procedure with the name procname. Each XL in the binding sequence after �rst�le is searched
in turn if:

The procedure speci�ed in procname is not located in the XL.

The procedure speci�ed in procname contains unresolved external references that need to be
satis�ed in subsequent XLs.

Dynamic Loading of Library Procedures 3-3

Note The same procedure name might be repeated in di�erent XLs. To ensure that
the loader locates the correct procedure, you must be certain that any XLs
searched prior to the XL containing the correct procedure do not contain a
di�erent procedure with the same name.

For example, let us assume that the binding sequence in Figure 3-1 is that of your process
executing PROGRAM1. Let us further assume that there is a procedure named MYPROC located in
the XL named LIBA and a di�erent procedure with the same name (MYPROC) located in the XL
named LIBC.

The following HPGETPROCPLABEL call dynamically loads the MYPROC procedure located in LIBC:

.

.

.

PROCNAME := '%MYPROC%';

FIRSTFILE := '%LIBB%';

HPGETPROCPLABEL (PROCNAME,PLABEL,STATUS,FIRSTFILE);

.

.

.

In the above example, the intrinsic directs the loader to search the portion of the binding
sequence beginning with LIBB for the �rst instance of a procedure named MYPROC. (LIBA is
never searched.) When MYPROC is not found in LIBB, the loader continues the search in LIBC

(the next XL in the binding sequence). Once MYPROC is found in LIBC it is dynamically loaded
and its plabel returned in PLABEL. The same result is accomplished if you specify LIBC in
FIRSTFILE.

The following three intrinsics can return to your program the fully quali�ed �le name of a
particular XL in the binding sequence you want to specify in �rst�le.

Using HPFIRSTLIBRARY

The HPFIRSTLIBRARY intrinsic returns the fully quali�ed �le name of the �rst XL in the
binding sequence (after the program �le) determined at load time. If you did not specify
additional XLs using one of the methods described, in \Determining the Binding Sequence",
then the name of the �rst �le in the System Libraries is returned. You can pass this name to
HPGETPROCPLABEL in the �rst�le parameter.

Using Figure 3-1 as your program's binding sequence, the following intrinsic call:

HPFIRSTLIBRARY (XLNAME);

returns the fully quali�ed �le name of the �rst XL in the binding sequence (after the program
�le), LIBA.GROUP.ACCOUNT.

3-4 Dynamic Loading of Library Procedures

Using HPMYPROGRAM

The HPMYPROGRAM intrinsic returns the fully quali�ed �le name of the program being executed
by the calling process (the �rst �le in the binding sequence). You can pass this name to
HPGETPROCPLABEL in the �rst�le

parameter.

Using Figure 3-1 as the binding sequence for your program, the following call:

HPMYPROGRAM (PROGNAME);

returns the fully quali�ed �le name of your program �le, PROGRAM1.GROUP.ACCOUNT.

Using HPMYFILE

The HPMYFILE intrinsic returns the fully quali�ed �le name of the program or XL that
called the intrinsic. If this intrinsic is called from your program, your program's �le name is
returned. If this intrinsic is called from a procedure located in an XL, the �le name of the XL
is returned. You can pass this name to HPGETPROCPLABEL in the �rst�le parameter.

Dynamic Loading of Library Procedures 3-5

A

Global RIN Program Example

This HP Pascal/XL program illustrates how you can use the two intrinsics, LOCKGLORIN and
UNLOCKGLORIN, to prevent simultaneous access to a selected record in a shared �le while one
user is updating the record. Five global RINs were previously acquired through the :GETRIN
command. Each RIN is associated with a subset of 4 records in a 20 record data �le. This
method of assigning RINs allows other users to concurrently access other subsets of records in
the same �le. RIN-locking occurs in procedure access_record_exclusively. This program
is intended to be used with the �le BOOKFILE (illustrated in Chapter 2).

program global_RIN_example;

{***}

{ DECLARATION PART }

{***}

const

rinbase = 1; {Lowest RIN assigned }
recds_per_rin = 4; {Partition the datafile }

maxrin = 5; {Highest RIN assigned }

CCG = 0; {Condition Code Warning }

CCL = 1; {Condition Code Error }

CCE = 2; {Condition Code successful }

maxbooks =19; {Last record in datafile }

type {holds titles and locations }

record_field = packed array [1..36] of char;

{record structure of datafile }

library_record = packed record

title: record_field; {Holds book title }

location: record_field; {Holds book location }

end;

hp_status = packed record

case integer of

0: (all:integer);

1: (info:shortint; {Error number from subsys }

subsys: shortint); {Subsystem number }

end;

var

stdin,stdlist,booklist: integer; {HPFOPEN file numbers }

ascii,perm,rw,share,cctl:integer; {HPFOPEN item variables }

status: hp_status; {HPFOPEN intrinsic status }

length,accno,rin: shortint; {Vars required by intrinsics }

lockflag: 0..65565; {Required by lock intrinsics }

bookrecord: library_record; {Used in read/write operations}
dummy: boolean; {Required by FCONTROL }

Global RIN Program Example A-1

infile,outfile,datafile, {File names used with HPFOPEN }

{Required by LOCKGLORIN }

rinpassword: packed array [1..12] of char;
{vars required by intrinsics }

buffer,change,head,request: record_field;

procedure hpfopen; intrinsic; {Opens three files }

function fread:shortint; intrinsic; {Reads from $STDIN }

procedure fwrite; intrinsic; {Writes to $STDLIST }

procedure fcontrol; intrinsic; {Post to disc }

procedure freaddir; intrinsic; {Random reads from datafile }

procedure fwritedir; intrinsic; {Random writes to datafile }

procedure lockglorin; intrinsic; {RIN-locking intrinsic }

procedure unlockglorin; intrinsic; {RIN-unlocking intrinsic }

function binary:shortint; intrinsic; {Convert ASCII to binary }

procedure printfileinfo; intrinsic; {Used in Error Handler }

procedure quit; intrinsic; {Used in Error Handler }

procedure error_handler(filenum,quitnum: shortint);

{***}

{ procedure error_handler is invoked whenever a system intrinsic }

{ call is unsuccessful. }

{***}

begin

{If valid file number, then }

{print file info to $STDLIST }

if filenum >=0 then printfileinfo(filenum);

quit(quitnum); {Abort process }

end;

procedure initialize_variables;
{***}

{ procedure initialize_variables initializes all global variables }

{ prior to use. }

{***}

begin

infile:= ' $stdin '; {associated with $STDIN }

outfile:= ' $stdlist '; {associated with $STDLIST }

datafile:= ' bookfile '; {formaldesignator = BOOKFILE }

lockflag:= 1;

rinpassword:= 'bookrin ';

dummy:= true;

status.all:= 0;

ascii := 1; {ascii/binary option ASCII }

perm := 1; {domain option PERMANENT }

rw := 4; {access type option READ/WRITE}

share := 3; {exclusive option SHARE }

cctl := 1; {carriage control option CCTL }

stdin := 0;

stdlist := 0;

booklist := 0;

A-2 Global RIN Program Example

head:= 'LIBRARY INFORMATION PROGRAM '; {Header introduces program }

change:= 'NEW LOCATION '; {User interface }

request:= 'ACCESSION NO: '; {User interface }
end;

procedure open_files;

{***}

{ procedure open_files opens all files used by program. }

{***}

begin

hpfopen(stdin,status,2,infile,3,perm,53,ascii); {Open $STDIN }

if status.all <> 0 then error_handler(-1, status.info);

hpfopen(stdlist,status,2,outfile,3,perm,

7,cctl,53,ascii); {Open $STDLIST }

if status.all <> 0 then error_handler(-1, status.info);

hpfopen(booklist,status,2,datafile,

3,perm,53,ascii,11,rw,13,share); {Open datafile }

if status.all <> 0 then error_handler(-1, status.info);

end;

procedure select_record(var record_length: shortint;

var book_number: record_field);

{***}

{ procedure select_record allows user to select the bookrecord for }

{ viewing and updating. }

{***}

begin

fwrite(stdlist,request,7,208); {Ask user for Book number }

if ccode <> CCE then error_handler(stdlist,101);

record_length:= fread(stdin,buffer ,-10); {Read user input }

if ccode <> CCE then error_handler(stdin,102);

end;

procedure update_record;

{***}

{ procedure update_record prints the selected book record to $STDLIST,}

{ prompts user for new location, then reads the input from $STDIN. If }

{ user supplies a location, record is updated, then posted to disc. }

{***}

begin

fwrite(stdlist,bookrecord,-72,0); {Print selected bookrecord }

if ccode <> CCE then error_handler(stdlist,105);

fwrite(stdlist,change,-14,208); {Prompt user for new location }

if ccode <> CCE then error_handler(stdlist,106);

buffer:= ' '; {Clear variable }

length:= fread(stdin,buffer,-36); {Read user-input new location }

if ccode <> CCE then error_handler(stdin,107);

{If user input characters, }

{update record in datafile }

if length > 0 then

begin

Global RIN Program Example A-3

bookrecord.location:= buffer; {Update location field }

fwritedir(booklist,bookrecord,-72,accno); {Update datafile }

if ccode <> CCE then error_handler(booklist,108);
fcontrol(booklist,2,dummy); {Force posting to disc }

if ccode <> CCE then error_handler (booklist,109);

end;

end;

procedure access_record_exclusively(rinnum:shortint);

{***}

{ procedure access_record_exclusively locks the global rin associated }

{ with the selected bookrecord. While the RIN is locked, others }

{ attempting to lock the same RIN are denied. While RIN is locked, }

{ the user-selected book record is read from the datafile, then }

{ PROCEDURE update_record is invoked to update the location field of }

{ the bookrecord. After successful update, RIN is unlocked. }

{***}

begin

lockglorin(rinnum,lockflag,rinpassword); {Lock global RIN }

if ccode <> CCE then error_handler(-1,103);

freaddir(booklist,bookrecord,-72,accno); {Read selected bookrecord }

if ccode = CCL then error_handler(booklist,104) else

if ccode = CCE then update_record; {Call PROCEDURE update_record }

unlockglorin(rinnum); {Unlock global RIN }

if ccode <> CCE then error_handler(-1, 110);

end;

procedure update_book_information;

{***}

{ procedure update_book_information is the main outer-block procedure.}

{***}

begin
fwrite(stdlist,head,14,0); {Print program intro to $STDLIST }

if ccode <> CCE then error_handler(stdlist,4);

select_record(length,buffer); {Call record selection procedure }

while length <> 0 do

{Continue loop so long as user }

{selects a bookrecord to update. }

begin

accno:= binary(buffer,length); {Converts ascii to shortint }

if ccode <> CCE then error_handler(-1,112) else

begin {If accno is successfully converted,}

{use it to compute RIN. }

rin:= rinbase + (accno div recds_per_rin);

{If computed RIN one of those from }

{:GETRIN, call PROCEDURE to access }

{the selected record exclusively. }

if rin in [rinbase..maxrin]

then access_record_exclusively(rin);

end;

select_record(length,buffer); {Select another record, loop }

A-4 Global RIN Program Example

end; {Loop }

end;

{***}
{ MAIN PROGRAM PART }

{***}

begin

initialize_variables;

open_files;

update_book_information;

end.

Global RIN Program Example A-5

B

Dynamic Loading Program Example

This HP Pascal/XL program example illustrates the use of the HPGETPROCPLABEL intrinsic.

HPGETPROCPLABEL returns the plabel of the COMMAND intrinsic. The program requests the user
to input the name of a CI command. Both the plabel and the CI command are passed to the
HP Pascal/XL CALL procedure which calls COMMAND and directs it to execute the user-speci�ed
CI command.

$standard_level 'FULL_MODCAL'$

$type_coercion 'NONCOMPATIBLE'$

$tables off$

PROGRAM hpgetprocplabel_test(input, output);

TYPE

c80 = packed array [1..80] of char;

mpexl_status = record
case integer of

0 : (all : integer);

1 : (info : shortint;

subsys : shortint);

end;

Proc_Type = procedure(VAR command : c80; VAR error, parm : shortint);

Proc_Name_Type = string�32�;
File_Name_Type = packed array [1..36] of char;

bit32 = minint..maxint;

{ bit32 = 0..4294967295; }

VAR

status : mpexl_status;

Proc_Name : Proc_Name_Type;

plabel : bit32;

Invoke_Proc : Proc_Type;

command_str : string�80�;
command : c80;

str_cr : string� 1 �;
cr : packed array [1..1] of char;

error, parm : shortint;

cicat : shortint;

catname : File_Name_Type;

PROCEDURE hpgetprocplabel; INTRINSIC;

PROCEDURE fclose; INTRINSIC;

FUNCTION fopen : shortint; INTRINSIC;

PROCEDURE genmessage; INTRINSIC;

Dynamic Loading Program Example B-1

PROCEDURE terminate; INTRINSIC;

000 begin

001 Proc_Name := ' COMMAND ';
002 writeln('About to call hpgetprocplabel');

003

004 hpgetprocplabel(Proc_Name, plabel, status);

005

006 if (status.all <> 0) or

007 (ccode <> 2) then

008 begin

009 writeln('status.subsys:', status.subsys);

010 writeln('status.info: ', status.info);

011 end

012 else

013 begin

014 writeln('hpgetprocplabel successfully called');

015 end;

016

017 Invoke_Proc := Proc_Type(plabel); { coerce 32 bit ptr to 64 bit }

018

019 prompt('Enter MPE XL Command:');

020 readln(command_str);

021 cr� 1 � := chr(13);

022 strmove(1, cr, 1, str_cr, 1);

023 strappend(command_str, str_cr);

024 strmove(strlen(command_str), command_str, 1, command, 1);

025

026 CALL(Invoke_Proc, command, error, parm);

027

028 if error <> 0 then

029 begin
030 writeln('Error in command:', command);

031 catname := 'catalog.pub.sys ';

032 cicat := fopen(catname, 5, octal('420'));

033 genmessage(cicat, 2, abs(error));

034 fclose(cicat, 0, 0);

035 end;

036

037 end.

B-2 Dynamic Loading Program Example

Index

A

Acquiring global RINs , 2-3
Acquiring Local RINs , 2-9
Associating RINs with resources , 2-1
Avoiding deadlock
Ranking RINs , 2-16

Avoiding deadlock , 2-14

B

Binding at run time , 3-3
Binding sequence
De�ned , 3-2
Determining , 3-2
Example of , 3-2
Retrieving �rst XL in the sequence , 3-4
Retrieving the program �le name , 3-5
Retrieving the XL �le name , 3-5
Searching through , 3-3

C

CALL procedure , 3-1
Capabilities
MR , 2-2
Required for RIN use , 2-2
Standard user , 2-2

Commands
FREERIN , 2-8
GETRIN , 2-3
LINK , 3-2

CREATE intrinsic , 3-2
CREATEPROCESS intrinsic
Specifying the XL list , 3-2

D

Deadlock considerations
Between di�erent jobs/sessions , 2-16
Example , 2-14
Global RINs , 2-14
How to resolve , 2-16
Local RINs , 2-14
MR capability , 2-16
Ranking RINs , 2-16
Within same job/session , 2-16

Deadlock considerations , 2-14
Determining the binding sequence , 3-2

Dynamically loading an XL , 3-3
Dynamic loading
De�ned , 3-1
Of library procedures , 3-1
Program example , B-1
Using HPGETPROCPLABEL , 3-1

Dynamic loading , 3-3
Dynamic procedure calls , 3-1

E

Executable libraries , 3-1
Externally referenced procedures , 3-1

F

FLOCK Intrinsic , 2-1
Freeing local RINs , 2-12
FREELOCRIN intrinsic , 2-12
FREERIN command , 2-8
FUNLOCK Intrinsic , 2-1

G

GETRIN Command , 2-3
Global RIN management , 2-2
Global RINs
Deadlock considerations , 2-14
Locking , 2-3
Maximum assigned , 2-3
Program example , A-1
Releasing extras , 2-6
Unlocking , 2-3

Global RINs , 2-2, 2-3

H

How to resolve deadlock , 2-16
HPFIRSTLIBRARY intrinsic , 3-4
HPGETPROCPLABEL intrinsic , 3-1
HPMYFILE intrinsic , 3-5
HPMYPROGRAM intrinsic , 3-5

I

Identifying local RIN locker , 2-12
Intrinsics
CREATE , 3-2
CREATEPROCESS , 3-2
FLOCK , 2-1

Index-1

FREELOCRIN , 2-12
FUNLOCK , 2-1
HPFIRSTLIBRARY , 3-4
HPGETPROCPLABEL , 3-1
HPMYFILE , 3-5
HPMYPROGRAM , 3-5
LOCKGLORIN , 2-3
LOCKLOCRIN , 2-9, 2-10
LOCRINOWNER , 2-12
UNLOCKGLORIN , 2-4
UNLOCKLOCRIN , 2-10

L

Libraries, executable (XLs) , 3-1
LINK command
Specifying the XL list , 3-2

LINK command , 3-2
Loading an executable library dynamically , 3-1
Load time , 3-1
Local RINs
Acquiring , 2-9
Deadlock considerations , 2-14
Identifying locker , 2-12
Locking , 2-9
Managing , 2-9
Releasing , 2-12
Unlocking , 2-9

Local RINs , 2-2
Locating the correct XL , 3-3
Locker of local RINs , 2-12
LOCKGLORIN intrinsic , 2-3
Locking global RINs , 2-3
Locking local RINs , 2-9
LOCKLOCRIN intrinsic , 2-9, 2-10
LOCRINOWNER intrinsic , 2-12

M

Managing shared resources with RINs
With global RINs , 2-2
With local RINs , 2-9

Managing shared resources with RINs , 2-1
Maximum number of global RINs allowed , 2-3
MR capability-class attribute , 2-2
Multiple RIN (MR) capability , 2-2

N

NL.PUB.SYS , 3-2

P

Password
RIN , 2-3

plabels , 3-1
Preventing deadlock , 2-16
Process creation , 3-1

Program examples
Dynamic loading , B-1
Global RIN use , A-1

Program �le in binding sequence , 3-2

R

Ranking RINs to avoid deadlock , 2-16
Releasing global RINs , 2-6, 2-8
Releasing local RINs , 2-12
Resolving deadlock , 2-16
Resource
Associating with RINs , 2-1
De�nition of , 2-1

Resource Identi�cation Numbers , 2-1
Resource management using RINs , 2-1
RIN management
Local , 2-9
Locking local RINs , 2-9
Releasing local RINs , 2-12
Unlocking local RINs , 2-9

RIN management , 2-1
RINs
Acquiring global RINs , 2-3
Acquiring local RINs , 2-9
Global , 2-2, 2-3
Local , 2-2
Managing with global RINs , 2-2
Password , 2-3
see also Resource Identi�cation Numbers ,

2-1
RUN command
Specifying the XL list , 3-2

Run time binding , 3-3

S

Searching an XL not speci�ed at load time , 3-3
Searching the XL list , 3-3
Searching XLs speci�ed at load time , 3-3
Sharing resources using RINs , 2-1
Specifying the XL list
CREATEPROCESS intrinsic , 3-2
LINK command , 3-2
RUN command , 3-2

Specifying the XL list , 3-2
Standard user capabilities , 2-2
System libraries , 3-2, 3-3

U

UNLOCKGLORIN intrinsic , 2-4
Unlocking global RINs , 2-3
Unlocking Local RINs , 2-9
UNLOCKLOCRIN intrinsic , 2-10
Unresolved external references , 3-3

Index-2

X

XL libraries , 3-1

XL.PUB.SYS , 3-2
XLs

List of , 3-2

Index-3

	Top of Document
	Preface
	Contents
	Introduction
	Managing Shared Resources with RINs
	Dynamic Loading of Library Procedures

	Managing Shared Resources with RINs
	Multiple RIN (MR) Capability
	Managing with Global RINs
	Managing with Local RINs
	Deadlock Considerations

	Dynamic Loading of Library Procedures
	Introduction to HPGETPROC-PLABEL
	Determining the Binding Sequence
	Searching an Executable Library Not Specified at Load Time
	Searching Executable Libraries Specified at Load Time

	App. A - Global RIN Program Example
	App. B - Dynamic Loading Program Example
	Index

