
Interprocess

Communication:Programmer's Guide

900 Series HP 3000 Computers

ABCDE

HP Part No. 32650-90019

Printed in U.S.A. 19871101

E1187

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1987,1988,1989,1990,1991,1992,1993,1994 by

Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition November 1987 A.01.00

iii

List of E�ective Pages

The List of E�ective Pages gives the date of the current edition, and lists the dates of all
changed pages. Unchanged pages are listed as \ORIGINAL". Within the manual, any page
changed since the last edition is indicated by printing the date the changes were made on the
bottom of the page. Changes are marked with a vertical bar in the margin. If an update is
incorporated when an edition is reprinted, these bars and dates remain. No information is
incorporated into a reprinting unless it appears as a prior update.

First Edition November 1987

Preface

The Interprocess Communication Programmer's Guide (32650-90019) is written for the
experienced MPE/iX programmer. It is a guide to the Interprocess Communication (IPC)
features of the MPE/iX operating system, describing what these features are and illustrating
how to use them to make your programs more powerful.

This manual forms part of the MPE/iX Programmer's Series documentation. This series
consists of the MPE/iX Intrinsics Reference Manual (32650-90028) and a set of task-oriented
user's guides. Before reading the Interprocess Communication Programmer's Guide you should
know the information contained in two of these manuals:

The Process Management Programmer's Guide (32650-90023) explains the concept
of \process" on MPE/iX and describes the process handling commands and intrinsics
available. Read this manual if you are unfamiliar with MPE/iX process handling features.

The Accessing Files Programmer's Guide (32650-90017) discusses the MPE/iX �le system
and the types of �les supported on MPE/iX. Read this manual if you are planning to use
the �le system features to perform IPC.

Organization of This Manual

Interprocess Communication contains the following chapters:

iv

Chapter 1 What Is Interprocess Communication? de�nes Interprocess
Communication (IPC) and describes the advantages of using it.

Chapter 2 IPC Using Job Control Words and Other Variables discusses the use of
prede�ned and user-de�ned variables (including Job Control Words) in
performing IPC.

Chapter 3 IPC Using File System Intrinsics discusses how to perform IPC using
features of the MPE/iX �le system, especially intrinsics.

Chapter 4 Special Cases of IPC explains how to use �le system IPC in certain
complex situations, or when special features are necessary.

Chapter 5 NOWAIT I/O describes the NOWAIT I/O feature of the �le system
and the intrinsics you use to set it up.

Chapter 6 Software Interrupts discusses the use of another �le system feature,
software interrupts, and how to write, initialize, and disarm them.

Chapter 7 IPC Using the MAIL Facility describes the MAIL facility, used in some
systems to perform interprocess communication.

Appendix A Features of Intrinsics for Message Files provides additional information
about certain intrinsics used with message �les in performing IPC.

Appendix B Sample Programs: WAIT I/O illustrates the use of message �les and
WAIT I/O to perform interprocess communication.

Appendix C Sample Programs: NOWAIT I/O provides examples showing the use
of NOWAIT I/O in interprocess communication.

Appendix D Sample Programs: Software Interrupts contains two sets of programs
(one set in SPL and one in Pascal) showing the use of software
interrupts in IPC.

How to Use This Manual

If you are unfamiliar with the concept of IPC, or the types of situations in which using it
can be helpful, read Chapter 1. Chapter 2 will be helpful if you want to perform simple IPC
within a single job or session.

Chapters 3 through 6, and the Appendixes, treat the features of the MPE/iX �le system that
you can use to perform IPC across job or session boundaries.

Refer to Chapter 7 if the MAIL facility is already in use on your system; this feature is not
recommended if you are creating new programs or applications on MPE/iX.

v

Contents

1. What is Interprocess Communication?
Purposes of IPC . 1-1
Ways to Perform IPC . 1-2

2. IPC Using Job Control Words and Other Variables
Types of Variables . 2-1
Relationship of JCWs and Variables 2-1
Variable Intrinsics . 2-2
HPCIPUTVAR . 2-2
HPCIGETVAR . 2-3
HPCIDELETEVAR . 2-3

Variable Commands . 2-3
:SETVAR . 2-3
:SHOWVAR . 2-4
:DELETEVAR . 2-4

Job Control Words . 2-4
Using the Prede�ned JCW for Interprocess Communication 2-4
Using User-De�ned JCWs for Interprocess Communication 2-5

Job Control Word Intrinsics . 2-5
SETJCW . 2-5
PUTJCW . 2-6
FINDJCW . 2-6

Job Control Word Commands . 2-7
:SETJCW . 2-7
:SHOWJCW . 2-7

Special Considerations . 2-8
Displaying JCWs and Variables . 2-8
Warning Messages . 2-8

Additional Discussion . 2-8

3. IPC Using File System Intrinsics
Characteristics . 3-1
Creating a Message File . 3-2
How To Use IPC|A Simple Case . 3-2
Program Structure . 3-2
Message File Names . 3-3
IPC Processing . 3-3
End-of-File (EOF) Conditions . 3-4
Recovery From Abnormal Terminations 3-5
Sample Programs . 3-5

Contents-1

4. Special Cases of IPC
Multiple Concurrent Readers or Writers 4-1
Preventing Deadlocks . 4-1
Writer Identi�cation . 4-2
Extended Wait . 4-2
Timeouts . 4-3
Nondestructive Reads . 4-3
Forcing Records To Disc . 4-4

5. NOWAIT I/O
NOWAIT I/O Intrinsics . 5-1
Aborting NOWAIT I/O . 5-2
Limitations . 5-2
Examples . 5-2

6. Software Interrupts
Example|Use of Software Interrupts 6-1
Software Interrupt Intrinsics . 6-2
Software Interrupt Initialization . 6-2
Interrupt Handler . 6-3
Main Line Code . 6-4
Disarming Software Interrupts . 6-4
Restrictions . 6-5
Sample Program|Use of Software Interrupts 6-5

7. Interprocess Communication Via the MAIL Facility
Restrictions . 7-1
De�nition of Mail . 7-1
Mail Transfer Process . 7-2
Testing Mailbox Status . 7-2
Sending Mail . 7-3
Receiving (Collecting) Mail . 7-4
Avoiding Deadlocks . 7-4

A. Features of Intrinsics for Message Files
Intrinsics Not Allowed for Message Files A-1
Intrinsics Exclusive to IPC . A-1
A Note On Syntax . A-2
HPFOPEN . A-2
FCONTROL . A-4
FCHECK . A-6
FGETINFO . A-6
FFILEINFO . A-7

Contents-2

B. Sample Programs: WAIT I/O

C. Sample Programs: NOWAIT I/O

D. Sample Programs: Software Interrupts
SPL Examples . D-1
Pascal Examples . D-8

Index

Contents-3

Figures

3-1. IPC Processing . 3-4

Contents-4

1

What is Interprocess Communication?

Interprocess Communication (IPC) is a facility of the MPE/iX operating system that permits
multiple processes to pass information among themselves. Large tasks that have been broken
into independent processes can use IPC to synchronize their actions and exchange data. There
are several ways you can implement IPC on MPE/iX.

Purposes of IPC

IPC is a useful tool for improving the performance of your system in a variety of complex
processing situations. For example:

Programs must sometimes handle conicting requirements. For example, a program may
need to perform lengthy calculations while simultaneously monitoring a transaction that
requires frequent service. If this program is broken up into several processes, one process
can be dedicated to monitoring the transaction, ensuring that it gets the constant attention
it requires. Other processes can perform other CPU-intensive functions. These processes
can coordinate their e�orts through the use of the IPC facility.

Some tasks require more processor time than is available on a single machine. These tasks
can be divided into several processes and spread across multiple machines in a network. File
system IPC can be used to pass data to di�erent processes on remote machines. Dividing
processes across machines also takes advantage of the other bene�ts of distributed data
processing.

Reliability is improved because processes must interface through well-de�ned IPC records.
These interfaces are easily understood and veri�ed. Large data structures become resources
that are managed by specialized processes. Other processes request or update the data
with a set of special commands passed through IPC. Unauthorized access or unintentional
corruption can be closely controlled.

When tasks are divided into independent processes using �le system IPC, testing them
becomes easier. Inputs and outputs to the various processes become IPC records and tend
to become well-de�ned commands and responses. The processes can be tested individually.
Editors can be used to build the input records. The output can be easily checked or
redirected to a terminal or printer.

Finally, programs can be implemented more quickly. The overall task can be divided into
small pieces. Each programmer can work on a separate piece and run it as an independent
process. The development of the pieces can occur in parallel. The pieces are modular and
�t together through well-de�ned interfaces using IPC.

What is Interprocess Communication? 1-1

Ways to Perform IPC

A simple method of performing IPC within a single job or session is the use of variables and
Job Control Words (JCWs). This feature is described in Chapter 2.

The �le system intrinsics provide the most powerful method of performing IPC. These
intrinsics can be used to communicate between a process and any other process; the
processes need not be part of the same process tree or running in the same job or session.
Communication takes place through the use of message �les. Chapters 3-6 discuss the �le
system intrinsics used to perform IPC and give examples of how to set up communications
between processes.

Some systems use the MAIL facility to communicate between processes in the same process
tree. Each process in the tree can use this facility to send information to a parent or child
process. The MAIL facility is covered in Chapter 7 of this manual.

1-2 What is Interprocess Communication?

2

IPC Using Job Control Words and Other Variables

Processes belonging to the same job or session can communicate with each other through
session-level variables. Job Control Words (JCWs) are a subset of session variables. All
session variables, including JCWs, reside in the session variable table.

Note Variables are used in the same way in both jobs and sessions. In this chapter,
the term \session variable" is used to refer to both job-level and session-level
variables.

Types of Variables

Session variables on MPE/iX can be either prede�ned or user-de�ned. A user-de�ned
variable is one that you de�ne yourself, and it is valid for the duration of the session in
which you de�ned it. A prede�ned variable is de�ned for you by the system when you start
a session. Some prede�ned variables are READ-only; you cannot change their value. (These
are sometimes referred to as \system-reserved" variables.) Other prede�ned variables are
READ-WRITE, and you can change their value within a session.

Relationship of JCWs and Variables

A session variable can have an integer, Boolean, or character string value. Commands and
intrinsics exist to create, alter, access, and delete these variables.

JCWs are session variables that have been created or last altered by one of the JCW
commands or intrinsics. These commands and intrinsics accept only integer values in the
range of 0 through 65535. The only di�erences between a JCW and a standard integer
variable are the limited value range of JCWs, and an internal \ag," set by the JCW
commands and intrinsics, that identi�es a variable as a JCW. (Also, JCW names cannot
include the underbar character.)

In general, the process of setting up and using any type of variable for IPC is the same.
However, if your program utilizes both JCWs and other types of variables, you need to be
aware that there are separate commands and intrinsics for JCWs that do not treat standard
variables the same way as JCWs. However, the commands and intrinsics for variables treat
variables and JCWs the same way, since JCWs are simply a subset of session-level variables.
See the section \Special Considerations" at the end of this chapter for more discussion of this
subject.

The following list summarizes the commands and intrinsics used to manipulate JCWs and
standard variables. These commands and intrinsics are discussed in this chapter within the

IPC Using Job Control Words and Other Variables 2-1

context of their use in interprocess communication. For a complete discussion of how to set
up, use, change, and delete variables and JCWs, refer to Command Interpreter Access &
Variables Programmer's Guide (32650-90011).

:SETVAR Adds or alters a variable in the variable table. The value can be Boolean,
string, or 32-bit integer.

:SETJCW Adds or alters a JCW in the variable table. The value must be an integer in
the range 0 through 65535.

:SHOWVAR Shows speci�ed variable(s) in the variable table, including JCWs.

:SHOWJCW Shows speci�ed JCW(s) in the variable table.

:DELETEVAR Deletes any user-created variable, including JCWs, from the variable table.

HPCIPUTVAR Adds or alters a variable in the variable table. The value can be Boolean,
string, or 32-bit integer.

PUTJCW Adds or alters a JCW in the variable table. The value must be an integer in
the range 0 through 65535.

HPCIGETVAR Returns the value of the named variable.

FINDJCW Returns the value of the named JCW.

SETJCW Sets the JCW named JCW to the value passed.

GETJCW Returns the current value of the JCW named JCW.

HPCIDELETE-

VAR

Deletes an entry from the variable table.

Variables with integer, string, or Boolean type values can be used for interprocess
communication within a job or session. Information, values, and status information can be
passed between processes by using variables.

Variable Intrinsics

The intrinsics used for manipulating variables are the following:

HPCIPUTVAR

The HPCIPUTVAR intrinsic is used to set a variable. The intrinsic call could be:

HPCIPUTVAR(VARNAME,STATUS,KEYWORD,KEYVALUE);

where VARNAME is a valid MPE/iX variable name. (Variable names can be up to 255
characters. The �rst character of the name must be an alphabetic letter or the underbar
character. Letters, numbers, and underbars are allowed in the name.) The status of the
procedure is indicated in the STATUS parameter.

The KEYWORD parameter indicates the variable type (that is, what is returned in KEYVALUE).
These are:

1 Integer value

2 String value

2-2 IPC Using Job Control Words and Other Variables

3 Boolean variable

HPCIGETVAR

The HPCIGETVAR intrinsic scans the variable table for a given variable and returns its value.
The intrinsic call could be:

HPCIGETVAR(VARNAME,STATUS,KEYWORD,KEYVALUE);

where VARNAME is a valid MPE/iX variable name. The status of the procedure is returned
in STATUS. The KEYWORD parameter has the same meaning as in HPCIPUTVAR; refer to the
description above.

HPCIDELETEVAR

You use HPCIDELETEVAR to remove a variable from the variable table. The intrinsic call could
be:

HPCIDELETEVAR (VARNAME,STATUS);

where VARNAME is a valid MPE/iX variable name. The status of the procedure is returned in
STATUS.

Note that there is no DELETE intrinsic speci�cally for Job Control Words. Since JCWs are a
type of variable, you can use the HPCIDELETEVAR intrinsic to delete a JCW.

For more information and full syntax descriptions for the above intrinsics, consult the
MPE/iX Intrinsics Reference Manual (32650-90028).

Variable Commands

You can also manipulate variables by using various MPE/iX commands. These are the
following:

:SETVAR

This command can be used to set or alter a variable (including JCWs) in the variable table.
The syntax is as follows:

:SETVAR varname, expression

The varname must be a valid MPE/iX variable name, either of an existing variable or of a
new one. A space or comma must precede the expression parameter, if you use it. Expression
can be a string, an integer, a Boolean value, an expression, or the name of another variable.
SETVAR always evaluates expression ; certain operators can be used in this parameter, as well
as numeric values.

IPC Using Job Control Words and Other Variables 2-3

:SHOWVAR

Use this command to display a selected variable or variables from the variable table. This
command displays JCWs as well as standard variables.

Entering :SHOWVAR without parameters shows you a list of all variables and values that you
have set. You can enter a variable name (or more than one, separated by commas) to see the
variable's value.

You can also use \wild card" characters such as ?, #, [m-n], and @. Entered by itself, @
causes :SHOWVAR to display a list of all variables, both user-created and prede�ned. Or you
can use it in a variable name to signify \zero or more alphanumeric characters."

:DELETEVAR

This command enables you to delete any user-created variable from the variable table. Again,
you can delete JCWs as well as standard variables by using this command.

The one required parameter is varname, the name of the variable to be deleted. You may
enter more than one varname at a time, separated by commas. Prede�ned variables cannot be
deleted. The same wild card characters allowed in :SHOWVAR are also valid here.

For more information and syntax descriptions for the above commands, refer to the MPE/iX
Commands Reference Manual (32650-90003).

Job Control Words

Job Control Words (JCWs) are a subset of variables. A JCW is an integer variable in the
range 0 through 65535, and contains an internal \ag" (set by one of the JCW commands or
intrinsics) that makes it recognizable to the system as a JCW. All the variable intrinsics and
commands discussed above can be used to manipulate JCWs; however, the JCW commands
and intrinsics will recognize and a�ect only those variables agged as JCWs.

It is possible to reclassify JCWs as variables, or vice versa, by using the appropriate intrinsics
to change their values. However, not all JCWs and variables can be changed. The JCWs
CIERROR and JCW cannot be reclassi�ed as standard variables, because system processes
depend upon the fact that these variables can always be accessed and altered using JCW
intrinsics. Also, prede�ned standard variables such as HPPATH cannot be reclassi�ed as JCWs.

For a list of prede�ned variables and JCWs, refer to the MPE/iX Commands Reference
Manual , Appendix A.

Using the Predefined JCW for Interprocess Communication

Two processes belonging to the same job or session can communicate with each other through
the prede�ned Job Control Word JCW. This word enables a subsystem process to return
information to the job or session that initiated the process. This communication mechanism is
used by the command executors for :RUN, and by various subsystem commands (for example,
compilers). However, you may �nd this control word helpful in other applications.

2-4 IPC Using Job Control Words and Other Variables

Using User-Defined JCWs for Interprocess Communication

MPE/iX allows you to establish and manipulate user-de�ned Job Control Words. This
capability overcomes one of the disadvantages of using the system-de�ned Job Control Word:
MPE/iX uses JCW for status information, and you cannot be sure that MPE/iX will not
modify it, thus possibly changing the information you want to pass in JCW. (MPE/iX clears
bits (0:2) of JCW, but the remaining bits are user-de�nable.)

A user-de�ned JCW is a 16-bit word that resides in the session variable table managed by
MPE/iX. This table, which also holds the system-de�ned JCWs, is shared by all processes in
a job or session; thus any process of a job can access any JCW in the table.

Job Control Word Intrinsics

The following intrinsics are used to manipulate JCWs. Note that the �rst intrinsic a�ects only
the prede�ned Job Control Word called JCW; the rest can be used with any JCW in the session
variable table.

SETJCW

The SETJCW intrinsic is used to set the bits in the prede�ned Job Control Word JCW. A SETJCW
intrinsic call could be:

SETJCW(WORD);

where WORD is a 16-bit logical value whose bits are set by you. If you set bit (0:1)=1, the
system displays the following message when your program terminates, either normally or due
to an error:

PROGRAM TERMINATED IN AN ERROR STATE (CIERR 976)

Bits (1:15) may be set to any pattern.

Note In batch mode, the job is terminated unless the :CONTINUE command is used.
If you have a JCW of exactly %140000 (bits (0:2) only), the \CIERR 976"
message is replaced by \CIERR 989, PROGRAM ABORTED PER USER REQUEST".
Refer to the MPE/iX Commands Reference Manual (32650-90003) for a
discussion of :CONTINUE.

The prede�ned Job Control Word JCW can be read by a process with the GETJCW intrinsic.
The form of the GETJCW intrinsic call is:

JCW:=GETJCW

The Job Control Word is returned to JCW.

For example, consider a job where two processes in the same process tree pass information to
each other through JCW. In one process, you transmit the contents of the word PROCLNK to
JCW. Process A sets JCW to PROCLNK as follows:

SETJCW(PROCLNK);

When process B is executed, it obtains the value of JCW through the GETJCW intrinsic. In this
case, the contents of JCW are returned to the word STORELNK.

IPC Using Job Control Words and Other Variables 2-5

STORELNK:=GETJCW;

PUTJCW

The PUTJCW intrinsic is used to establish a user-de�ned JCW, or to change the value of an
existing JCW. This intrinsic scans the variable table for the JCW name. The name of a
user-de�ned JCW must be alphanumeric, must start with a letter, and must be between 1 and
255 characters long. If the JCW name is found, the value of JCW is updated to the value
passed by PUTJCW. If not found, the JCW name is added to the table and assigned the value
passed with the name. For example, the intrinsic call:

PUTJCW(JCWNAME,JCWVALUE,STATUS);

searches the variable table for a name that matches the name contained in JCWNAME (a
character array). If the name exists, its value is updated to the value contained in JCWVALUE.
If the name is not found, the name is added to the table and assigned the value contained in
JCWVALUE.

The STATUS parameter of PUTJCW indicates the status of the intrinsic call and returns an
integer value to indicate this status, as follows:

0 Successful execution.

1 Error. JCWNAME is longer than 255 characters.

2 Error. JCWNAME does not start with a letter.

3 Error. The variable table is out of space.

4 Error. Attempted to assign a value to an MPE/iX-de�ned JCW value
mnemonic (OK, WARN, FATAL, or SYSTEM).

5 Error. Cannot assign a value to a system-reserved JCW (for example,
PUTJCW(HPMONTH) is illegal).

6 Warning. A standard variable has been reclassi�ed as a JCW. (This happens
when a variable set with SETVAR has its value altered with PUTJCW or SETJCW.)

7 Error. Cannot reclassify prede�ned standard variables as JCWs (for example,
PUTJCW (HPPROMPT) is illegal).

FINDJCW

The FINDJCW intrinsic is used to scan the variable table for a JCW and return its value. Thus,
the intrinsic call:

FINDJCW(JCWNAME,JCWVALUE,STATUS);

searches the variable table for a JCW of the same name as that contained in JCWNAME. If
found, its current value is returned in JCWVALUE. If not found, an error is returned in STATUS,
and JCWVALUE is returned unchanged.

The STATUS parameter of FINDJCW indicates the status of the intrinsic call and returns an
integer value indicating this status as follows:

0 Successful execution.

1 Error. JCWNAME is longer than 255 characters.

2 Error. JCWNAME does not start with a letter.

2-6 IPC Using Job Control Words and Other Variables

3 Error. The JCW named in JCWNAME does not exist.

For more information and full syntax descriptions for the above intrinsics, refer to the
MPE/iX Intrinsics Reference Manual (32650-90028).

Job Control Word Commands

Several MPE/iX commands are available that allow you to set, alter, or display JCWs. These
are:

:SETJCW

This command adds a JCW to the variable table, or alters the value of an existing variable.
The value must fall within the valid range for a JCW, that is, in the range 0 through 65535.

Command syntax is as follows:

:SETJCW jcwname delimiter [+ or -] value

The jcwname parameter can contain the name of a new or existing user-de�ned or
system-de�ned JCW. You can use @ to specify all currently de�ned JCWs.

The delimiter can be one or more punctuation characters or spaces, except for % or -. The
value parameter must be one of the following:

1. An octal number between 0 and %177777.

2. A decimal number between 0 and 65,535.

3. An MPE/iX-de�ned JCW value mnemonic, or an o�set value of a mnemonic.

4. The name of an existing JCW.

:SHOWJCW

This command displays the speci�ed JCW or JCWs in the variable table.

:SHOWJCW, entered without parameters, displays all user-de�ned and system-de�ned JCWs
currently in e�ect. The optional parameter jcwname must be the name of a valid JCW.

For more information and full syntax descriptions for the above commands, refer to the
MPE/iX Commands Reference Manual (32650-90003).

Note There is no DELETE intrinsic or command that applies speci�cally to
Job Control Words. Since a JCW is a type of variable, you can use the
HPCIDELETEVAR intrinsic or the :DELETEVAR command to delete it.

IPC Using Job Control Words and Other Variables 2-7

Special Considerations

When your program uses both JCW and variable commands and intrinsics, there are some
considerations you should keep in mind. Remember that a Job Control Word is a type of
variable, but not all variables are JCWs. The variable commands and intrinsics operate on all
entries in the variable table; they do not distinguish between JCWs and standard variables.
On the other hand, JCW commands and intrinsics deal only with variable table entries that
are agged as JCWs.

Displaying JCWs and Variables

When you use PUTJCW or :SETJCW to set or alter a variable, that variable is \agged" as a
JCW. If you use the :SHOWJCW command, all JCWs set or last altered with PUTJCW or :SETJCW
are shown.

When you create a new variable with HPCIPUTVAR or :SETVAR, that variable is not agged as
a JCW, even if it is within the valid range for a JCW. So if you use :SHOWJCW, that variable
does not appear. Use the :SHOWVAR command, which displays both JCWs and standard
variables.

It is possible to reset an existing JCW by using HPCIPUTVAR or :SETVAR. If you do so, and
the new value is still within the valid range for a Job Control Word, then the JCW remains a
JCW and you can display it with :SHOWJCW.

Warning Messages

If you use HPCIPUTVAR or :SETVAR to change a JCW to a value that is outside the valid JCW
range, you see the following warning message:

JCW VARIABLE RECLASSIFIED AS A STANDARD VARIABLE.

(CIWARN 8126)

This variable is no longer agged as a JCW, and you must use :SHOWVAR to see it. FINDJCW
will no longer return it; use HPCIGETVAR instead.

Likewise, you can use PUTJCW or :SETJCW to change a variable that was originally set using
HPCIPUTVAR or :SETVAR. If the variable is within the valid range of JCW values, it becomes a
JCW, and you see the following warning message:

STANDARD VARIABLE RECLASSIFIED AS A JCW VARIABLE.
(CIWARN 8127)

You can display this variable using either :SHOWVAR or :SHOWJCW.

Note that the value passed with the variable name is assigned to the variable; the command or
intrinsic did its job. However, the variable is now classi�ed di�erently.

Additional Discussion

The Command Interpreter Access & Variables Programmer's Guide (32650-90011) contains an
extensive discussion of variables and JCWs. Refer to that document for further information.

2-8 IPC Using Job Control Words and Other Variables

3

IPC Using File System Intrinsics

There are several ways processes can communicate under MPE/iX. The most powerful is the
IPC facility provided by the �le system.

Characteristics

This type of IPC has several advantages because it is part of the �le system. Most functions
are performed with standard �le system intrinsics that you are already familiar with. The
cooperating processes �nd each other through an agreed-upon �le name. Thus they don't have
to determine each other's process ID.

The �le system IPC facility uses a FIFO queue structure. Sending processes queue multiple
messages that are stored until a receiver reads them, even across system shutdowns. Receiving
processes are allowed to wait for messages on one or more empty queues. Messages are deleted
from the queue as they are read.

The cooperating processes using IPC do not need to be related; that is, they don't need to be
part of the same process tree. They can even be running on di�erent machines on the same
network.

There are several di�erent ways to perform I/O. The :FILE command can be used to redirect
the I/O to another disc device (local or remote), or to change the way in which the message
�le is accessed. The existing �le system security features can also be used.

The heart of the �le system IPC facility is the \message �le." Message �les reside partly in
memory and partly on disc. MPE/iX uses the memory bu�er part as much as possible, to
achieve the best performance. The disc portion of the message �le is used only as secondary
storage in case the memory bu�er part overows. For many users of IPC, MPE/iX never
accesses the disc portion of the message �le.

IPC Using File System Intrinsics 3-1

Creating a Message File

Message �les can be created in several ways. To create a message �le with the :BUILD
command, use the MSG keyword. For example, to build a message �le named PAULA, enter:

:BUILD PAULA; MSG

When a user process opens a new �le programmatically and indicates that it will be a message
�le, the HPFOPEN intrinsic creates the new message �le. Or HPFOPEN can explicitly reference a
:FILE command. Use the MSG keyword in the :FILE command to create a new message �le:

:FILE LARS, NEW; MSG

When you perform a :LISTF,2 command, message �les are identi�ed by an M in the third
column of the TYP �eld. For example:

FILENAME CODE -----LOGICAL RECORD------ -----SPACE-----

SIZE TYP EOF LIMIT R/B SECTORS #X MX

PAULA 128W VBM 0 1031 1 258 1 8

How To Use IPC|A Simple Case

IPC can be relatively easy to set up. Suppose that a large programming task is to be divided
into two processes. One process will interface with the user. This process is referred to as the
\supervisor" process. It does some processing tasks itself and o�oads others to a \server"
process. This process only handles requests from the supervisor and returns the results. The
following paragraphs describe how to set up the communications between these two processes.

Note In this chapter, the MPE/iX versions of the �le system intrinsics (for example,
HPFOPEN) will be discussed. You may also use the MPE V/E versions of these
intrinsics (for example, FOPEN) to perform IPC; there is no need to rewrite
existing programs, since these intrinsics are compatible with respect to IPC.

Program Structure

Like most other �les, message �les need to be opened explicitly with the HPFOPEN intrinsic.
Two-way communication is needed, so each process opens two message �les: a Command File
for supervisor-to-server commands and a response �le for server-to-supervisor responses.

The supervisor opens the command �le with WRITE-ONLY access, and the response �le with
READ-ONLY access. The server opens the Command File with READ-ONLY access, and the
response �le with WRITE-ONLY access. The HPFOPEN parameters are similar to any other
HPFOPEN these processes would perform on another �le. The processes communicate by using
�le names known to both of them.

3-2 IPC Using File System Intrinsics

Message File Names

To use IPC, processes must reference each other through a known �le name. This means that
the �le must be in a directory that is available to all accessors. In the example in Figure 3-1,
either a :BUILD must be done previously, or one process must �rst HPFOPEN the �le as new
and FCLOSE it as permanent, to put the �le in the permanent �le directory. The �le can be
created as temporary if all accessors are running under the same job or session. If you are
concerned about security, create the �le with a lockword.

IPC Processing

In addition to HPFOPEN, these processes use three other �le system intrinsics to perform IPC:
FREAD, FWRITE, and FCLOSE. These intrinsics are used exactly as they would be for any other
type of �le.

When the server starts executing, it performs an FREAD on the Command File. The Command
File is empty, so the server process blocks in FREAD instead of getting an end-of-�le condition.

As part of the supervisor's processing, it eventually writes to the Command File. Since the �le
is not full, there is nothing to block this FWRITE, so it completes almost immediately. The
supervisor then reads the response �le, which, since it is empty, causes the supervisor process
to block.

MPE/iX notices that data has been written to the Command File, and that the server process
is waiting in FREAD for data from that �le. MPE/iX moves the data to the address that the
server passed in the FREAD intrinsic, deletes the record from the Command Message File, and
restarts that process.

The server exits from the FREAD and processes the command. When it has �nished processing
the command, the server writes its answer to the response �le. At this point the server is
�nished. It can terminate, or it can issue another FREAD on the Command File and start the
sequence over again.

MPE/iX moves the response data to the supervisor's bu�er, deletes it from the �le, and
restarts the supervisor at the FREAD. The supervisor continues processing, possibly repeating
the cycle. Eventually both processes close each of their �les as part of terminating.

These processes are illustrated in the diagram shown in Figure 3-1:

IPC Using File System Intrinsics 3-3

SUPERVISOR SERVER

v v

HPFOPEN "command" file HPFOPEN "command" file

HPFOPEN "response" file HPFOPEN "response" file

. v

. FREAD "command" file

. . (processing) |

. . | (blocked)

. . |

. T v IPC | (fread

. I FWRITE "command" file --------> _ completes)

. M v .

. E FREAD "response" file .

. | . (processing)

. | (blocked) .

v | .

| (fread IPC v
_ completes) <--------- FWRITE "response" file

v v

FCLOSE "command" file FCLOSE "command" file

FCLOSE "response" file FCLOSE "response" file

v v

Figure 3-1. IPC Processing

End-of-File (EOF) Conditions

\EOF conditions" may prevent an I/O from completing (for example, an FREAD from an
empty �le, or an FWRITE to a full �le). The I/O intrinsic may return an end-of-�le indication,
or it may wait until the condition is resolved (a record becomes available for the FREAD, or
space in the �le becomes available for the FWRITE).

The intrinsic waits if an EOF condition is encountered and either:

There is an \opposite accessor" to the �le, or

This is the �rst I/O on this �le since it was opened.

The reasoning is as follows:

An \opposite accessor" is a process that is performing the opposite function on a �le, for
instance, an FWRITE when the process is waiting to perform an FREAD. If there is an opposite
accessor, it is possible that the I/O request will be satis�ed eventually. (If there were no
opposite accessors, the process might wait forever.)

When processes start up, there may be a \race" condition in which it is di�cult to predict
whether one process's I/O request will be made before another process's HPFOPEN. For this
reason, the �rst call to an I/O intrinsic will wait if there is an EOF condition. This gives
the opposite accessor time to open the �le.

Finally, a process may always want to wait rather than receive an EOF. It can do this by
requesting \extended wait." This is discussed in more detail in Chapter 4. If extended wait
is explicitly enabled, the process will always wait on an EOF condition.

3-4 IPC Using File System Intrinsics

In Figure 3-1, the server can open the Command File and issue the FREAD before the
supervisor opens the Command File. The server's FREAD on the Command File waits because
it is the �rst I/O after the open. But suppose that, after the �rst command is processed,
the server issues another FREAD on the Command File, and the supervisor has terminated
unexpectedly. The second FREAD will receive an EOF, signaling that something is wrong. This
FREAD receives an EOF because the FREAD is not the �rst I/O from the server on the Command
File, and there are now no writers accessing the Command File.

An FCLOSE by another process can cause an intrinsic that is waiting on an EOF condition to
stop waiting and receive an EOF. If the process that is waiting is not using extended wait,
and the last process that can resolve the EOF condition does an FCLOSE on the �le, MPE/iX
will wake up the waiting intrinsic and return an EOF condition.

Recovery From Abnormal Terminations

In the event of an abnormal termination of the processes involved in IPC, some unread records
may be left in the message �le. Some applications are concerned only with current data
and do not want to see unprocessed data from a previous run. The simplest solution is to
programmatically :PURGE and :BUILD all message �les as part of the initialization processing.

Another possibility requires that the writer always open the �le �rst. (The writer is the
process sending messages to the message �le.) If the writer's HPFOPEN speci�es an access type
option (item #11) of WRITE access only (item=1), and this is the only process with the �le
open, the records are automatically purged. If the writer's HPFOPEN speci�es an Access Type
Option of APPEND (item=3), then the old records are kept and the new records added to the
end.

Note that if the reader opens the �le �rst, regardless of the writer's access type, the records
are kept. (The reader is the process using FREAD to receive messages from a message �le.) To
recover the data cleanly in an application in which the reader opens the �le �rst, use FLOCK
to prevent the writer from altering the �le. Then use FREAD to read all the records and either
discard or process them.

Sample Programs

For sample programs illustrating the use of message �les and WAIT I/O to perform IPC, refer
to Appendix B.

IPC Using File System Intrinsics 3-5

4

Special Cases of IPC

File system IPC provides several optional sophisticated features that you may �nd useful.
These are described below.

Multiple Concurrent Readers or Writers

An application may need to use multiple concurrent readers or writers. For example, multiple
supervisors may need the services of the same server. The server may not be able to keep up
with the requests, and so multiple copies of it may be needed to handle the incoming requests.

Setting up a message �le to be accessed by multiple concurrent readers or multiple concurrent
writers is not di�cult. However, there are some subtleties you should be aware of:

Since each reader receives its own record when it does an FREAD, and there is no
\broadcast" facility in IPC, there is no way for all readers to receive copies of the same
record.

If either readers or writers are waiting on an EOF condition, they are awakened in the order
in which they called their I/O intrinsics.

Although a common command queue works well for both multiple readers and multiple
writers, it is advisable to have individual response queues. This ensures that a supervisor
receives only the responses to its own commands. In this situation, applications often pass
the name of the response message �le, or the writer's ID, along with the command, so that
the �le can be opened and the response sent to the correct destination. (The writer's ID is
discussed in the \Writer Identi�cation" section in this chapter.)

Preventing Deadlocks

If multiple writers access a message �le that has a small �le limit, this can cause a deadlock
due to the way MPE/iX monitors the writers that open and close the message �le. MPE/iX
does this by adding some extra records that are normally inaccessible. To leave room for these
records, MPE/iX increases the �le limit by 2 when the �le is �rst created. This leaves enough
room for one open and one close record per �le .

As writers open the �le and begin writing, they each use one record for an \open" record
and reserve another for their \close" record. One record is used and the space for another is
reserved per writer .

If the �le has a very small �le limit, or there is a large number of writers, it is possible to
create a state in which all the space in the �le is reserved. Writers are not able to write,

Special Cases of IPC 4-1

because the �le \looks" full (no available space). Readers are not able to read, because the �le
\looks" empty (no real records to be read). A deadlock has occurred.

To prevent such a deadlock, make the �le limit larger than the number of writers; there
should be room for more records than there will be writers. (You can set the limit when the
�le is created with the :BUILD command or the HPFOPEN intrinsic.) Another way to detect a
deadlock (that is, using timeouts) is discussed in a later section of this chapter.

Writer Identification

Sometimes a reader needs to know when a new writer opens the �le, the records written
by this writer, and when the writer closes the �le and hence no longer adds records. This
allows the reader to keep track of who is sending records. It also helps the reader to manage
its resources, perhaps by allocating a data segment when a new writer opens the �le, and
releasing it when the writer closes the �le. IPC provides this feature through the use of
FCONTROL with a controlcode of 46.

Readers who call FCONTROL with a controlcode of 46 receive two additional words at the
beginning of each record returned by FREAD. The �rst word contains the record type (0 =
data, 1 = open, 2 = close). The second word contains a writer's ID. The writer's ID is a
unique identi�er assigned by the MPE/iX �le system to processes that have opened a message
�le with WRITE access, and it is used only to associate the open, close, and data writes
performed by a speci�c writer. If additional information is needed (such as process ID number
or program name), it can be passed by the writer in the �rst record, and saved by the reader
in a table indexed according to the writer's ID.

Note The writer's ID is always written when a writer does an FWRITE. FCONTROL
with a controlcode of 46 only makes it visible to the reader. Writers who call
FCONTROL with a controlcode of 46 will receive an error. See the MPE/iX
Intrinsics Reference Manual (32650-90028) for full syntax details on FCONTROL.

Extended Wait

If a process calls an intrinsic to perform an I/O and it encounters an EOF condition, it
will either return a CCG condition code or wait in the intrinsic until the EOF condition is
resolved. (See \EOF Conditions" in Chapter 3.) In some applications, it is useful that the
process always wait instead of receiving a CCG. It may be known that another process will
eventually open the �le and satisfy the blocked I/O request.

MPE/iX lets the process request this extended wait mode through FCONTROL with a
controlcode of 45. Extended wait always starts out disabled, but both readers and writers can
enable or disable it.

If extended wait is explicitly enabled, the process always waits on an EOF condition. If
extended wait is explicitly disabled, the process will not wait on an EOF condition unless
there is an \opposite accessor" to the �le. In the default condition (extended wait is not
explicitly enabled or disabled), the process will wait if there is an opposite accessor, or if this
is the �rst I/O to the �le.

4-2 Special Cases of IPC

Another feature of extended wait also concerns opposite accessors. If a process is waiting for
action by an opposite accessor, and the last opposite accessor closes the �le, this will cause an
EOF and \wake up" the waiting process.

Refer to the discussion of \EOF Conditions" in Chapter 3 for more information about this
feature. Also, see Example B-2 in Appendix B.

Timeouts

Suppose one process is using extended wait, and, while it is waiting, the only process that
could resolve the condition terminates unexpectedly. The waiting process will never wake up
and must be aborted. A \timeout" allows the waiting process to detect the situation and
terminate gracefully.

MPE/iX allows a process to set a timeout. If, after a speci�ed time, the I/O still has not
completed, the I/O intrinsic returns to the process. If there is a complex set of processes and
message �les, and they get into a state where all the processes are waiting on FREADs and none
of them can do an FWRITE, timeouts can help detect this deadlock. (An example of a complex
set of processes and message �les is a case in which there are processes that read from one
message �le and write to another.)

Timeouts are useful when a process must perform some time-sensitive processing (such as
updating a table every n seconds) and, therefore, cannot wait for long periods of time. Some
tasks are both command and time driven (that is, display status every n seconds or when
asked) and therefore could use timeouts.

Timeouts are set (in seconds) using the FCONTROL intrinsic with a controlcode of 4, and they
are valid for both readers and writers. Note that timeouts come into play only on EOF
conditions. If FREAD or FWRITE times out, a CCL condition code is returned, and FCHECK

returns FSERR 22, Software Time-Out.

Timeouts on terminals are valid only for the next I/O. Timeouts on message �les stay in e�ect
on every I/O until explicitly turned o�. (See Example B-2 in Appendix B.)

Nondestructive Reads

Another potential problem occurs when a server is not able to honor a request in a message
�le record immediately because of a lack of resources. The requests must be handled in order,
and so the server tries to free the resources it requires. Eventually the server comes back and
tries again to process the request.

In this case it is useful to have a \nondestructive" read, that is, to look at the request record
in the message �le without deleting it. A test is made to see if the request can be satis�ed. If
it can, a regular destructive read is done and the request is processed. If the request cannot
be satis�ed, it stays on the top of the queue, where it can be read and tested at a later time.

This feature is provided by FCONTROL with a controlcode of 47. It is valid for readers only, and
it a�ects only the following FREAD. Note that repeated use of nondestructive FREAD always
reads the same record.

Special Cases of IPC 4-3

You can copy the message �le to another �le, if, for example, you want to save it after it has
been read. You can do this by accessing it with the Copy Mode option (HPFOPEN Item #17, or
FOPEN aoption (3:1)). You should note, however, that accessing a �le in Copy Mode means
that it does not have any of the special features of message �les. For a description of the Copy
Mode option, refer to Appendix A of this manual, or the MPE/iX Intrinsics Reference Manual
(32650-90028).

Forcing Records To Disc

Message �les reside primarily in bu�ers, and they can lose data in the event of a system crash.
For applications that must use message �les and must be \crash-proof," MPE/iX provides a
way to force the data to disc.

This is done by using FCONTROL with a controlcode of 6. Either readers or writers can call this
intrinsic. It forces all bu�ers to be written to disc and the disc �le label to be updated. This
causes several disc I/Os and, therefore, takes a relatively long time. It must be done after
each FWRITE to be most e�ective, and even then there is a \window" between the FWRITE and
the FCONTROL during which a crash would cause the record to be lost.

Remember that IPC is designed to be a fast, e�cient means of passing messages between
processes. If the task the application is performing is really event logging, and it must be
highly crash-resistant, you should consider using \circular �les" or other �les with FSETMODE.
(FSETMODE is ignored for message �les.) For more information about FSETMODE, refer to
Accessing Files (32650-90017) and the MPE/iX Intrinsics Reference Manual (32650-90028).

4-4 Special Cases of IPC

5

NOWAIT I/O

Sometimes a programmer wants an application to read or write a record, but does not want
it to wait for I/O to complete. For such an application, waiting is wasting time when it
could be doing other processing. Timeouts do not adequately address this problem. The
programmer wants this application to start an I/O, continue processing immediately, and
check periodically to see if the I/O has �nished.

MPE/iX provides a way to solve this problem with NOWAIT I/O. This feature is requested
by enabling the NOWAIT I/O option (item #16) in HPFOPEN.

When using NOWAIT I/O, the process must make at least two intrinsic calls to perform the
I/O, one to start it and one to �nish it. MPE/iX still handles the �le in the same way. But
instead of waiting for the I/O to complete, MPE/iX returns control to the application so that
the application can do some useful processing.

NOWAIT I/O has been available to users of standard �les for a long time, but to use it on
standard �les requires Privileged Mode. On standard �les the mechanics of NOWAIT I/O
prevent MPE/iX from protecting a process from corrupting its own stack. However, because
Message �les work di�erently, NOWAIT I/O on Message �les does not require Privileged
Mode.

NOWAIT I/O Intrinsics

To perform a NOWAIT I/O, the FREAD or FWRITE intrinsic must be called to initiate the
transfer. These intrinsics return immediately, and no data is transferred yet. The return value
for FREAD is set to zero and is not needed.

To complete the transfer, either IODONTWAIT or IOWAIT must be called. IODONTWAIT tests
whether the I/O has �nished. If it has, the intrinsic returns a condition code of CCE and the
�le number as the return value. If the I/O has not completed, CCE and a zero return value
are passed back. If IOWAIT is called, it waits until the I/O has �nished, like a normal WAIT
I/O FREAD or FWRITE.

Only one NOWAIT I/O can be outstanding against a �le by a particular accessor at a time;
however, an accessor can have NOWAIT I/Os outstanding against several �les at the same
time. These I/Os can be completed by a \generalized" IODONTWAIT or IOWAIT (the �le
number parameter is zero or is omitted). In this case, these intrinsics report on the �rst I/O
to complete, returning the �le number for that �le. If the call to one of these intrinsics is in a
loop, then that one call can be used to complete all the NOWAIT I/Os.

NOWAIT I/O 5-1

Aborting NOWAIT I/O

Occasionally, after a process has started a NOWAIT I/O with FREAD or FWRITE, something
occurs that causes completion of that I/O to be no longer needed. Perhaps the process
is \shutting down" and does not want to wait for the I/O (that is, to issue IOWAIT or
IODONTWAIT).

MPE/iX lets the process abort NOWAIT I/Os that have not yet completed by using
FCONTROL with a controlcode of 43. A condition code of CCE is returned if the I/O was
aborted; in this case, nothing more needs to be done. CCG is returned if the I/O has already
completed; in this case, IODONTWAIT or IOWAIT must be called to clear it. CCL and FSERR 79,
No NOWAIT I/O pending for special file, are returned if there was nothing to abort.

Limitations

Currently, MPE/iX does not support NOWAIT I/O to Message �les across a network. In
most cases this is not an important limitation, because it is rare that both readers and writers
to the same message �le need to use NOWAIT I/O. If the �le is made local to the accessor
that needs NOWAIT I/O, the other accessor can then do WAIT I/O across the network.

Examples

Appendix C contains two sample programs illustrating the use of NOWAIT I/O in IPC. (One
program is in COBOL, and the other is in FORTRAN.)

5-2 NOWAIT I/O

6

Software Interrupts

NOWAIT I/O requires an application to \poll" to see if the requested I/O has completed.
Each time the check is made, there is some overhead, whether the I/O has completed or not.

The application is faced with a di�cult trade-o�. The more often the application polls,
the greater the overhead, and the poorer its overall performance becomes. If it polls less
frequently, this increases the delay between when the I/O can complete and when the
application completes it, thus reducing performance.

One solution to this dilemma is to use software interrupts. When software interrupts are
enabled, MPE/iX signals the application when to complete the I/O. There is no need for
repeated polling; the application completes the I/O only when signaled, so the I/O always
completes on the �rst try.

Software interrupts are a special case of NOWAIT I/O. The di�erence is that MPE/iX
interrupts the process when the I/O can be completed; the process does not need to poll to
determine whether the I/O can be completed.

Most of the discussion about NOWAIT I/O also applies to software interrupts. Like NOWAIT
I/O, a call to IOWAIT or IODONTWAIT is needed to complete an I/O request.

Example|Use of Software Interrupts

Software interrupts are most often used to handle high-priority requests while the process is
doing low-priority time-consuming tasks.

For example, suppose an application is copying a large �le across a network. The copy may
take a long time (up to several hours). During this time, the application wants to see and
respond to high-priority commands written to its command message �le (for example, requests
for the number of records copied so far, or that the copy stop immediately).

To accomplish this, the application posts a \software interrupt" FREAD against its command
message �le. The FREAD just signals to MPE/iX that this application wants to know about
any new commands written to this message �le. No data is transferred at the time the FREAD
is called. Software interrupt FREADs never wait; they return to the application immediately.

The application then starts to perform the copy. Unlike NOWAIT I/O, the application does
not have to poll the command message �le repeatedly to see if data has been written there.
MPE/iX signals the application (with a software interrupt) that data has been written to the
command message �le and that the application should complete the I/O.

In our example, if a high-priority command is written to the message �le, MPE/iX
immediately causes a software interrupt. The part of the application performing the copy is
stopped, and MPE/iX forces the execution of the application's interrupt handling procedure.
There the application completes the read by calling IOWAIT or IODONTWAIT, and processes

Software Interrupts 6-1

the command. When the interrupt handling procedure completes, the part of the application
performing the copy resumes automatically at the statement where it left o�.

Software Interrupt Intrinsics

Three intrinsics are speci�c to software interrupts: FCONTROL with a controlcode of 48,
FINTSTATE, and FINTEXIT.

FCONTROL with a controlcode of 48 arms software interrupts for a particular �le. It is also used
by the application to tell MPE/iX the address of the application's interrupt handler.

Note The param parameter of FCONTROL is used to pass the interrupt handler's
procedure label (plabel). Native Mode plabels are 32 bits long, while
Compatibility Mode plabels are 16 bits. Therefore, the interrupt handler and
the FCONTROL call to it must be compiled in the same mode. Arming software
interrupts in cross-mode programming can be unpredictable, and you should
avoid this whenever possible.

FINTSTATE is used by the application to enable or disable software interrupts for all �les with
interrupts armed by this process. FINTSTATE also returns a code which shows the status of the
interrupts prior to the time it was invoked; it returns a 0 if software interrupts were disabled
and a 1 if software interrupts were enabled.

FINTEXIT is used to return from the interrupt handler and leave software interrupts enabled or
disabled.

The following section explains how to set up and use software interrupts.

Software Interrupt Initialization

As with most other �les, the message �le must be explicitly opened. Software interrupts are
usually used when reading from the �le, but there is nothing to stop a process from using
them when writing. After the call to HPFOPEN the application can perform normal WAIT or
NOWAIT I/O on the �le.

When software interrupt operation begins, the process calls FCONTROL with a controlcode of
48, passing the plabel of its interrupt handler. FCONTROL with a controlcode of 48 returns the
previous value of the plabel. If that value is zero, this means that software interrupts were
not armed. If the program is using software interrupts on multiple �les, FCONTROL with a
controlcode of 48 must be called for each �le. Each �le can have its own interrupt handler,
or more than one �le can share the same interrupt handler. When a message �le has been
opened and FCONTROL has been called for the �le with a controlcode of 48, that message �le is
said to have software interrupts \armed."

At this point, the process can start the I/O (in this example, assume it is FREAD). FCONTROL
with a controlcode of 48 overrides the HPFOPEN NOWAIT I/O option setting. Regardless of
the setting of this bit, an IODONTWAIT or IOWAIT is required to complete any I/O started after
the FCONTROL, controlcode 48, software interrupt. A call to IODONTWAIT or IOWAIT before

6-2 Software Interrupts

the interrupt occurs does not complete the I/O. A CCL is returned, and FCHECK returns the
message, FSERR 79--NO NOWAIT I/O PENDING FOR SPECIFIED FILE.

Note If the FREAD intrinsic was called before FCONTROL with a controlcode of 48
was invoked, it would have been handled as a normal, non-software interrupt
FREAD.

MPE/iX starts out with software interrupts disabled. If the FREAD is satis�ed, the software
interrupt is postponed until interrupts are explicitly enabled. The process uses FINTSTATE
at this point to enable software interrupts for all \armed" �les opened by this process. This
includes all �les currently armed, and any yet to be armed by this process, until FINTSTATE is
called to disable interrupts. The call to FINTSTATE can occur anywhere in this sequence, but
the other intrinsic calls should be made in the order given.

Interrupt Handler

The interrupt handler is a special procedure of the process, devoted to completing the I/O
request after an interrupt occurs. This procedure is never called explicitly. Instead, MPE/iX
invokes the interrupt handler when a software interrupt occurs, possibly from the middle of
a statement. The procedure declaration can be either without parameters, or have a single
INTEGER parameter into which MPE/iX puts the �le number.

The �le number parameter of the software interrupt handler is useful if there are several �les
sharing the same software interrupt handler procedure and some require special handling. For
example, each �le may have a di�erent bu�er address passed to IOWAIT.

MPE/iX automatically disables software interrupts and CONTROL-Y traps when it jumps to
the interrupt handler. A call to IODONTWAIT or IOWAIT is needed to �nish the I/O request.
The I/O request can be completed immediately, so IOWAIT and IODONTWAIT will work the
same way. (IOWAIT always completes immediately.)

Check the condition code (a good idea after any intrinsic call). CCG means the interrupt
occurred because of an End-Of-File condition. If a CCE is returned, the process has a record.
It can be processed here, or a ag can be set to indicate that the record has been received and
should be handled during the normal non-interrupt processing.

Often, at this point, the next software interrupt read is set up by performing another FREAD,
if the process wants to continue to see new records written to this message �le. The FREAD
does not have to be done here and could be performed elsewhere during normal processing.
The process may not want to issue any FREAD at all, if the command just received was to stop
immediately and terminate.

The last statement in the interrupt handler must be a call to FINTEXIT. This allows the
process to pick up where it left o� when the interrupt occurred, enable CONTROL-Y traps,
and optionally leave software interrupts enabled or disabled. If this call is omitted, the
process may never get back to where it was before the interrupt. Exiting with software
interrupts enabled is usual, but the process may leave them disabled if the record needs
special processing and it does not want any additional interrupts until it is completed. At that
time it needs to call FINTSTATE to enable interrupts.

Software Interrupts 6-3

Main Line Code

For the most part, the \main line" code of a process does not need to be concerned with
the I/O to message �les using software interrupts. As long as interrupts are enabled, they
can occur anywhere in user code. If one occurs during an MPE/iX intrinsic, the interrupt is
postponed until you exit the intrinsic and re-enter the process' code.

There are some exceptions. Interrupts can occur during a \generalized" IOWAIT, during an
IOWAIT on another message �le not using software interrupts, or during a PAUSE.

The use of software interrupts introduces the possibility of a problem that applications
normally do not have to think about. Some code is sensitive to interrupts. The problem
usually occurs with data that is altered by both the interrupt handler and the main line code.

For example, suppose the main line code decrements a counter and the interrupt handler
increments the same counter. The main line code loads the old value and subtracts one from
it. Before it is stored back, an interrupt occurs. The interrupt handler loads the old value,
increments it, and stores the new value back. The main line code resumes, storing its new
value on top of the interrupt handler's new value, and the increment is lost.

One solution is to protect sensitive code by using FINTSTATE (FALSE) to disable interrupts
before the operations and FINTSTATE (TRUE) to enable interrupts afterwards.

Disarming Software Interrupts

It is possible to shut down software interrupt operation and resume normal WAIT or
NOWAIT I/O on the message �le. If there was an I/O posted against the �le (that is,
a software interrupt FREAD or FWRITE that has not yet caused a software interrupt and,
therefore, has not been completed by an IOWAIT or IODONTWAIT), you need to use FCONTROL
with a controlcode of 43 to abort it, just as in NOWAIT I/O. If software interrupts were
disabled with FINTSTATE, the I/O completed, and the interrupt postponed, then FCONTROL

with a controlcode of 43 returns a CCG. This means that the I/O is too far along to be
aborted. Interrupts need to be enabled to let the interrupt handler �nish the request. Take
care to ensure that the interrupt handler does not start another I/O, as this can cause a
loop. (See the sample program at the end of this chapter for a suggested way to handle this.)
Using FCONTROL with a controlcode of 48, but passing a zero instead of the plabel , disarms the
interrupt routines for the �le. FCONTROL with a controlcode of 48 will return a CCL if an I/O
is pending.

6-4 Software Interrupts

Restrictions

There are some additional limitations. Currently, software interrupts are not available directly
from COBOL or on remote �les. If the process contains privileged code, the interrupt handler
must be privileged to handle interrupts from it, or else an ABORT 22, Invalid stack marker,

will occur.

If the code you want to interrupt is privileged, then your interrupt handling procedure must
also be executing in Privileged Mode. If the code to be interrupted is non-privileged, then
your interrupt handler can be either privileged or non-privileged.

The following restrictions apply to Compatibility Mode code only. In CM, your interrupt
handler may reside in any system Segment Library. The hierarchy of Segment Libraries is as
follows:

PROG = User program segments
GSL = Group segment libraries
PSL = Public segment libraries
SSL = System segment library

A routine on one level can call routines on that level or below. However, this distinction does
not apply to software interrupts. So your interrupt handler can reside in any library and
interrupt code in any other library.

There is one exception: code in the SSL (System Segment Library) cannot be interrupted.
The reason is that MPE/iX routines cannot be interrupted, and the system cannot distinguish
between the MPE/iX routines and the other routines residing in the SSL.

Sample Program|Use of Software Interrupts

The following sample program illustrates software interrupts and the use of the intrinsics
discussed earlier in this chapter. It contains four sections: an interrupt handler procedure, a
section that arms software interrupts and passes the plabel of this interrupt handler, the main
processing loop, and a section to disarm software interrupts.

You should note several things about this program. First, the \main processing loop" is
just a \placeholder" for purposes of illustration; in a real IPC situation, this section of the
program would perform actual work. Second, note the use of a \ag" in the disarm section
of the program to prevent the interrupt handler from starting another read of the message
�le when interrupts are re-enabled after being postponed. If you don't use a ag of this sort,
your program may go into a continuous loop in this situation. For more examples, refer to
Appendix D.

$uslinit$
$standard_level 'HP_PASCAL'$

{

SOFTWARE INTERRUPT FRAGMENT

Program including a software interrupt handler, software

interrupt set-up, and software interrupt shutdown.

}

Software Interrupts 6-5

program intfrag1(input,output);

type

int = -32768..32767;

rec = packed array [1..80] of char;

var

error,msg_file_num,plabel,dummy : int;

msg_file_name : packed array [1..8] of char;

done,need_another_read : boolean;

msg_rec : rec;

length : real;

function fopen : int; intrinsic;

procedure quit; intrinsic;

procedure fcheck; intrinsic;

procedure fintstate; intrinsic;

procedure fintexit; intrinsic;

procedure iowait; intrinsic;

procedure fread; intrinsic;

procedure fcontrol; intrinsic;

procedure fclose; intrinsic;

procedure pause; intrinsic;

{ INTERRUPT HANDLER ROUTINE }

procedure inthandler(local_msg_file_num : int);

begin

{ Complete the read on the message file }
iowait(local_msg_file_num,msg_rec);

if ccode <> 2 then

begin

fcheck(msg_file_num,error);

quit(error);

end;

{ Perform any processing on the incoming record. }

writeln(msg_rec);

{ Restart the read on the message file if needed. }

if need_another_read then

fread(local_msg_file_num,msg_rec,-80);

{ Re-enable interrupts when handler routine exits.}

{ Same effect as FINTEXIT(-1). }

fintexit;

end;

begin

6-6 Software Interrupts

need_another_read := true;

{ INTERRUPT INITIALIZATION }

{ Open the file with FOPTION = old, ascii, }

{ and AOPTION = read only }

msg_file_name := 'MSGFILE1';

msg_file_num := fopen(msg_file_name,5,0);

if ccode <> 2 then

begin

fcheck(msg_file_num,error);

quit(error);

end;

{ Arm software interrupts and pass interrupt handler}

{ procedure address for THIS file. }

plabel := waddress(inthandler);

fcontrol(msg_file_num,48,plabel);

if ccode <> 2 then

begin

fcheck(msg_file_num,error);

quit(error);

end;

{Enable software interrupts for ALL files with software}

{interrupts armed by this program. (-1 = enable) }

fintstate(-1);

{ Start first read on message file. This read acts }

{ like NOWAIT read (no data returned until IOWAIT called) }
{ because software interrupts are armed on this file. }

fread(msg_file_num,msg_rec,-80);

if ccode <> 2 then

begin

fcheck(msg_file_num,error);

quit(error);

end;

{ MAIN PROCESSING OF PROGRAM }

done := false;

length := 1.0;

repeat

begin

writeln('Another pass through the main processing

loop.');

pause(length);

length := length + 1.0;

if length = 60.0 then done := true;

end

Software Interrupts 6-7

until (done);

{ DISARMING SOFTWARE INTERRUPTS }

done := false;

repeat

begin

{ Request MPE to disarm software interrupts. }

plabel := 0;

fcontrol(msg_file_num,48,plabel);

if ccode = 1 then { CCL }

begin

{ MPE could not disarm software interrupts because an }

{ I/O was started and never completed. Abort the I/O. }

fcontrol(msg_file_num,43,dummy);

if ccode = 0 then { CCG }

{ The I/O has progressed too far to abort. The only }

{ way this can happen is if software interrupts were }

{ disabled and the interrupt postponed. Re-enable }

{ interrupts. The interrupt will occur immediately. }

{ A flag is set to prevent the interrupt handler }

{ from starting yet another read. }

begin

need_another_read := false;

fintstate(-1);

end;

end
else {Software interrupts successfully disarmed.}

done := true;

end

until (done);

{ We will never go through this loop more than twice.}

{ Software interrupts are turned off for this file. We }

{ could do standard FREADs on the file at this point. }

fclose(msg_file_num,0,0);

if ccode <> 2 then

begin

fcheck(msg_file_num,error);

quit(error);

end;

end.

6-8 Software Interrupts

7
Interprocess Communication
Via the MAIL Facility

A number of MPE V/E-based systems use the MAIL facility to direct the communication of
information between processes. This information transfer, however, is restricted to upward or
downward paths through the process tree structure, so that any process can communicate only
with its parent or children. Between any parent/child pair, only one such transfer is allowed
at any particular time. The MAIL facility should not be confused with message �les, which
can be used to transfer information between unrelated processes.

Restrictions

While the MAIL facility is supported on MPE/iX, it is not as e�ective as other types of IPC,
for several reasons:

Communication can take place only between processes in the same process tree.
Communication between processes in di�erent trees is not possible using MAIL.

Each pair of processes requires a separate \mailbox" to transfer messages between them.
This is a less e�cient use of system storage than in other forms of IPC.

Only upward and downward (parent/child) communication is possible. Communication
between sibling processes is not.

For these reasons, it is preferable to use other forms of IPC when generating new applications
on MPE/iX. Use variables for simple IPC within jobs and sessions; use the �le system features
to perform IPC between di�erent jobs and sessions in a network.

Definition of Mail

Information transferred between processes is referred to as \mail." It is sent from one process
to another through an intermediate storage area called a \mailbox." At any given time, a
mailbox can contain only one item of mail (a \message"). For any process, there are two sets
of mailboxes:

The mailbox used for communication between the process and its parent; each process has
one of these.

The set of mailboxes used for communication between the process and its children; each
process has one of these mailboxes for each of its children.

Even though there are two sets of mailboxes, there is only one mailbox between any two
processes.

Interprocess Communication

Via the MAIL Facility

7-1

Mail Transfer Process

The transfer of mail is based upon a transaction between the sending and receiving processes
that involves the following steps:

1. The sending process tests the mailbox to determine its status, that is, whether it is empty,
contains a message, or is being used by the receiving process (optional).

2. The sending process transmits the mail to the mailbox. The message transferred is an
array of halfwords in the sending process stack, de�ned by starting location and word
count. The smallest message allowed is a single word. MPE/iX automatically performs
a bounds check to ensure that the array speci�ed actually falls within the limits of the
process stack.

3. The receiving process may test the mailbox to determine its status (optional).

4. If the mailbox contains a message, the receiving process collects this mail. MPE/iX
performs another bounds check to validate the address given for the stack of the receiving
process. If the mail is not collected before new mail is sent, any additional mail from the
sending process will overwrite it.

Testing Mailbox Status

A process can determine the status of the mailbox used by its parent or child with the MAIL
intrinsic. If the mailbox contains mail that is awaiting collection by this process, the length of
the message (in halfwords) is returned to the calling process. This enables the calling process
to initialize its stack in preparation for receipt of the message.

For example, to test the status of the mailbox associated with one of its child processes, a
process could use the following intrinsic call:

STATCOUNT:=MAIL(CHILDPIN,MCOUNT);

CHILDPIN contains the Process Identi�cation Number (PIN) of the child process. An integer
count signifying the length, in words, of the incoming message will be returned to the word
MCOUNT. The status returned to STATCOUNT will be one of the following values:

Status Meaning

0 The mailbox is empty.

1 The mailbox contains previous outgoing mail from this calling process that
has not yet been collected by the destination process.

2 The mailbox contains incoming mail awaiting collection by this calling
process. The length of the mail is returned in MCOUNT.

3 An error occurred because an invalid PIN was speci�ed or a bounds check
failed.

4 The mailbox is temporarily inaccessible because other intrinsics are using it to
prepare or analyze mail.

7-2 Interprocess Communication

Via the MAIL Facility

Sending Mail

A process sends mail to its parent or child with the SENDMAIL intrinsic. If the mailbox for the
receiving process contains a message sent previously by the calling process but not collected
by the receiving process, the action taken depends on the waitag parameter speci�ed in
SENDMAIL.

For example, to send mail to its parent, the following intrinsic call could be used:

STAT:=SENDMAIL(0,3,LOCAT,WAITSTAT);

The parameters speci�ed are:

pin 0, specifying that the mail is to be sent to the parent process.

count 3, specifying that the length of the message is three halfwords.

location LOCAT, an unsigned integer array with the address of the bu�er in the stack
containing the message to be sent.

waitag WAITSTAT, a 16-bit unsigned integer by value. If bit (15:1)=0, any mail sent
previously will be overwritten. If bit (15:1)=1, the intrinsic will wait until the
receiving process collects the previous mail before sending the current mail.

The status returned to STAT is one of the following values:

Status Meaning

0 The mail was transmitted successfully. The mailbox contained no previous
mail.

1 The mail was transmitted successfully. The mailbox contained previously
sent mail that was overwritten by the new mail, or contained previous
incoming/outgoing mail that was cleared.

2 The mail was not transmitted successfully because the mailbox contained
incoming mail to be collected by the sending process (regardless of the
waitag parameter setting). This means that the mailbox currently contains
mail sent to the would-be sending process, and the sending process must
collect this mail before it can send any itself.

3 An error occurred because an illegal pin was speci�ed or a bounds check
failed.

4 An illegal wait request would have produced a deadlock. This means that
mail has been sent to the would-be sending process, and the sender is waiting
for a reply.

5 The request was rejected because the count speci�ed in the count parameter
exceeded the mailbox size allowed by the system. The maximum size cannot
exceed the maximum DST size for the system.

6 The request was rejected because storage resources for the mail data segment
were not available.

Interprocess Communication

Via the MAIL Facility

7-3

Receiving (Collecting) Mail

A process collects mail transmitted from its parent or a child with the RECEIVEMAIL intrinsic.
If the mailbox for the receiving process is empty, the action taken depends on the waitag
parameter speci�ed in RECEIVEMAIL.

To collect a message from a child process, the following intrinsic call could be used:

STAT:=RECEIVEMAIL(CHILDPIN,MDATA,WAITSTAT);

The parameters speci�ed are:

pin CHILDPIN, which contains the Process Identi�cation Number of the child
process (0 for parent process).

location MDATA, an array in the stack in which the incoming mail will be stored.

waitag WAITSTAT, a 16-bit unsigned integer value. If bit (15:1)=1, the intrinsic will
wait until the incoming mail is ready for collection. If bit (15:1)=0, the
intrinsic will return to the calling process immediately.

One of the following status codes is returned to STAT:

Status Meaning

0 The mailbox was empty (and WAITSTAT bit (15:1)=0).

1 No message was collected because the mailbox contained outgoing mail from
the receiving process.

2 The message was collected successfully.

3 An error occurred because of an illegal pin or a bounds check failed.

4 The request was rejected because waitag speci�ed that the receiving process
should wait for mail if the mailbox is empty, but the other process sharing
the mailbox is already suspended, waiting for mail. If both processes were
blocked, neither could activate the other, and they could be deadlocked.

Avoiding Deadlocks

Simultaneous use of mail-transmission, process-suspension, and RIN-locking intrinsics
throughout a process structure can result in a deadlock if the intrinsic calls are not
synchronized properly. Be aware of the following:

1. In a multi-process job/session, whenever a process is suspended (through the SUSPEND
intrinsic, or blocked, or when locking a RIN or receiving mail), MPE/iX does not determine
whether all other processes in the process tree are suspended or blocked. Avoid this
situation.

2. An attempt by a process to lock a global RIN succeeds only if both of the following
conditions are met:

No other process within the job/session currently has locked this RIN. A global RIN
cannot be used as a local RIN, because deadlock within the same job/session can occur.

7-4 Interprocess Communication

Via the MAIL Facility

The calling process currently has no other global RIN locked for itself. This could
otherwise result in deadlock between two jobs/sessions.

Interprocess Communication

Via the MAIL Facility

7-5

A

Features of Intrinsics for Message Files

Several intrinsics have features that apply speci�cally to message �les. Most of these features
are found in HPFOPEN and FCONTROL, but other intrinsics are used slightly di�erently for
message �les.

Intrinsics Not Allowed for Message Files

Certain intrinsics are not allowed for message �les. These are:

FPOINT

FREADDIR

FREADSEEK

FSPACE

FUPDATE

FWRITEDIR

FDELETE

The FSETMODE intrinsic is permitted, but ignored.

Intrinsics Exclusive to IPC

The following intrinsics are speci�c to IPC and are not used for any other purpose:

FINTSTATE

FINTEXIT

Features of Intrinsics for Message Files A-1

A Note On Syntax

In some of the following intrinsics, a parameter contains more than one piece of information
within a word. When this is the case, data �elds are described in the format (n:m), where n is
the �rst bit of the �eld and m is the number of consecutive bits in the �eld. For example, the
FOPTION �eld for File Type occupies bits (2:3), or bits 2, 3 and 4.

Parameters not discussed in the following descriptions retain their normal value range
and defaults. For more information about these intrinsics, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

HPFOPEN

Note The following discussion also applies to the FOPEN intrinsic, which is the
equivalent within MPE V/E of HPFOPEN. The FOPEN parameter name follows
the HPFOPEN parameter name. For more information on FOPEN, refer to the
MPE/iX Intrinsics Reference Manual (32650-90028).

Item #6,
record format
option;
FOPTION (8:2)

Message �les are always formatted internally as variable-length record �les
(option=1). If �xed-length records are requested (option=0), the �le can
appear �xed when it is opened. There is no di�erence for a writer; for a
reader, the portion of the target area that exceeds the record is �lled with
blanks (for an ASCII �le) or zeros (for a binary �le). Files accessed in copy
mode are always formatted as variable. (See item #17 for more information
on copy mode.)

Item #11,
access type
option;
AOPTION (12:4)

The type of access allowed for this �le is speci�ed by the following values:

0 - READ-only access. A process that has opened a �le with this access type
is a \reader." (FWRITE calls will not be allowed.)

1 - WRITE-only access. If this is the only current open of the �le, any data
written in the �le prior to the current HPFOPEN request is deleted. If this is
not the only current open of the �le, the �le is treated as if Access Type 3
has been speci�ed. A process that has opened a �le with this access type is a
\writer." (FREAD calls will not be allowed.)

2 - WRITE-SAVE access. The �le system sets this to APPEND access for
message �les.

3 - APPEND-only access. The FREAD intrinsic cannot reference this �le. Calls
to FWRITE will add data to the end of the �le. A process that has opened a
�le with this access type is a \writer."

For a �le accessed in copy mode, any access type other than READ-only
access (option = 0) is changed to WRITE-only access (option = 1) by the �le
system.

Item #13,
exclusive
option;
AOPTION (8:2)

The values for this option are the same as for any other �le. However, the
signi�cance of each value is di�erent:

A-2 Features of Intrinsics for Message Files

User Value Meaning

EXCLUSIVE 1 One reader, one writer

SEMI 2 One reader, multiple writers

SHARE 3 Multiple readers and writers

Default 0 Same as 1

In copy mode, the value is always 1.

Item #14,
multiaccess
mode;
AOPTION (5:2)

This feature permits processes located in di�erent jobs or sessions to open the
same �le.

0 - No multiaccess. The �le system changes this value to 2 to allow global
multiaccess.

1 - Only intrajob multiaccess allowed; this is the same as specifying the MULTI
option in a :FILE command.

2 - Interjob multiaccess allowed; this is the same as specifying the GMULTI
option in a :FILE command.

In copy mode, the value is always 0 (no multiaccess).

Item #15,
multirecord
option;
AOPTION (11:1)

For message �les, the �le system sets this bit to 0, except in copy mode. This
option is available only if you also select the inhibit bu�ering option, Item
#46.

Item #17,
copy mode
option;
AOPTION (3:1)

This feature permits a message �le to be treated as a standard sequential �le,
so that it can be copied by logical record or physical block to another �le.

0 - The �le is accessed in its own mode; that is, a message (MSG) �le is treated
as a message �le.

1 - The �le is to be treated as a standard (STD), sequential �le with
variable-length records. For message �les, this allows nondestructive reading
of an old message �le at either the logical record or the physical block level.
Only block level access is permitted if the �le is being written in message-�le
format. This prevents incorrectly formatted data from being written to the
message �le while that �le is unprotected. In order to access a message �le in
copy mode, a process must have EXCLUSIVE access to the �le.

Item #22,
volume class
option, Item
#23, volume
name option;
DEVICE �eld

These �elds are relevant only if this is a new �le. If you specify volume class
�eld, you must specify a disc; speci�cation of any device other than a disc
opens the device, and the �le is no longer a message �le.

Item #35,
�lesize option;
FILESIZE �eld

For message �les, the number of records is rounded up to completely �ll the
last block and to make the last extent the same size as the other extents. Two
additional records are included for the open and close records. Because of
spare tracks or remapped tracks, the logical size is usually smaller than the
physical size.

Features of Intrinsics for Message Files A-3

Item #44,
numbu�ers
option;
NUMBUFFERS

�eld

The number of bu�ers you wish to allocate to the �le. Value must be between
2 and 31; default is 2.

IPC needs at least two bu�ers; if fewer than two are speci�ed, the �eld is
changed to two. Also, IPC never uses more bu�ers than there are blocks
in the �le. If more are speci�ed, the lower number is used (except in copy
mode).

Item #46,
inhibit
bu�ering
option;
AOPTION (7:1)

For message �les, the �le system sets this value to 0.

Readers may open a message �le with NOBUF if they are in copy mode. This
option determines whether the reader will be accessing the �le record by
record or block by block:

0 - read by logical record

1 - read by physical block

Writers must open message �les with NOBUF if they are in copy mode; they
access the �le block by block.

FCONTROL

A few control codes deal speci�cally with message �les. Those not mentioned here are invalid
when message �les are being used.

A-4 Features of Intrinsics for Message Files

Code Param Description

2 Complete all I/O; ignored in the case of message
�les.

4 Integer Set timeout interval. Indicates that a timeout
interval is to be applied to a �le. In the case of
message �les, param speci�es the length of time
(in seconds) that a process waits when reading
from an empty �le or writing to a full one. The
timeout remains enabled until it is explicitly
cancelled. (Refer to Chapter 4.)

6 Write End-Of-File. For message �les, this is used
to verify the state of the �le by writing the �le
label and bu�er area to disc. This ensures that
the message �le can survive system crashes. No
EOF is written. (Refer to Chapter 4.)

43 Abort NOWAIT I/O. For message �les, CCG is
returned when an outstanding I/O operation has
completed. You must issue an IOWAIT call to
�nish the request. (Refer to Chapter 5.)

45 1 or 0 Enable/disable extended wait. For message �les, a
param value of 1 enables extended wait. This
permits a reader to wait on an empty �le that is
not currently opened by any writer, or a writer to
wait on a full �le that has no reader. This
parameter remains in e�ect until you issue an
FCONTROL call with a controlcode of 45 and a
param value of 0.

46 1 or 0 Enable/disable reading the writer's ID. For
message �les, a param value of 1 enables reading
the writer's ID. Each record read has a one-word
header. The �rst 16 bits indicate the type of
record with the following codes:

0 - data record

1 - open record

2 - close record

The second 16 bits contain the writer's ID
number. If the record is a data record, the data
follows the header. Open and close records
contain no more information.

If the param value is 0, reading the writer's ID is
disabled. Only data is read to the reader's target
area. The open and close records are skipped and
deleted by the �le system when they come to the
head of the message queue, and the one-word
header is transparent to the reader. (Refer to
Chapter 4.)

Features of Intrinsics for Message Files A-5

Code Param Description

47 1 or 0 Nondestructive read. If the param value is 1, the
next FREAD by this reader will not delete the
record. Subsequent FREAD calls are una�ected. If
the param value is 0, the next FREAD by this
reader deletes the record. (Refer to Chapter 4.)

48 plabel Arm/disarm software interrupts. The param
parameter must pass the external label (plabel) of
your interrupt procedure. If the value of param is
0, the interrupt mechanism is disabled for this �le.

Also, if AOPTIONS (4:1) was set to 0, option 48
resets it to 1. Be sure to use IOWAIT or
IODONTWAIT if you use controlcode 48. (Refer to
Chapter 6.)

Note Native Mode plabel s are 32 bits long, while Compatibility Mode plabel s are
16 bits. Therefore, the interrupt handler and the FCONTROL call to it must
be compiled in the same mode. Arming software interrupts in cross-mode
programming can be unpredictable, and you should avoid this whenever
possible.

FCHECK

One error message is returned only when using IPC:

151 CURRENT RECORD WAS LAST RECORD WRITTEN BEFORE SYSTEM

CRASHED.

This error is returned when for some reason (usually a system failure, or running out of disc
space), the system was unable to close the �le cleanly. (An FREAD of the record returns a
CCL, and you can then use FCHECK to read the message.)

FGETINFO

The values returned for recsize and EOF di�er if FCONTROL with a controlcode of 46 is in
e�ect. The recsize value indicates the size of your data records, including the 4-byte header.
The number of records returned in EOF includes open and close records as well as the data
records.

Note The recsize is supported to ensure backward compatibility with MPE
V/E-based systems. If a �le's record size exceeds MPE V/E limits, a zero
is returned. Refer to the discussion of FGETINFO in the MPE/iX Intrinsics
Reference Manual (32650-90028).

A-6 Features of Intrinsics for Message Files

FFILEINFO

Three values for itemvalue are speci�cally for use with IPC:

Item # Type Description

34 I16 The current number of writers.

35 I16 The current number of readers.

49 I16 Software interrupt plabel . A value of zero implies
that software interrupts are not being used.

Features of Intrinsics for Message Files A-7

B

Sample Programs: WAIT I/O

This appendix contains a group of sample programs illustrating the use of File System
features to perform Interprocess Communication. Included are two simple COBOL programs
(Examples B-1 and B-2) that show the use of WAIT I/O for interprocess communications. For
sample programs showing more complex forms of IPC, refer to Appendixes C and D.

Example B-1.

001000*

001100* MSGWRTR

001200*

001300* Compiled with COBOLII.

001400*

001500* This program reads records from a terminal and writes

001600* the data to a message file, whose FILE STATUS is displayed.

001700* The message file must be built as follows:
001800*

001900* BUILD MSGFILE1;REC=-80,,F,ASCII;DISC=nnn;MSG

002000*

002100 IDENTIFICATION DIVISION.

002200 PROGRAM-ID. MSGWRTR.

002300*

002400 ENVIRONMENT DIVISION.

002500 INPUT-OUTPUT SECTION.

002600 FILE-CONTROL.

002700 SELECT WRITE-FILE ASSIGN TO "MSGFILE1"

002800 STATUS IS MSG-STAT.

002900*

003000 DATA DIVISION.

003100 FILE SECTION.

003200 FD WRITE-FILE.

003300 01 OUT-REC PIC X(80).

003400 WORKING-STORAGE SECTION.

003500 01 TERM-REC.

003600 02 END-REC PIC X(2).

003700 02 REST-REC PIC X(76).

003800 01 DONE PIC X.

003900 88 FINISHED VALUE IS "T".

004000 01 MSG-STAT PIC X(2).

004100*

004200 PROCEDURE DIVISION.

004300*

004400 100-START-OF-PROGRAM.

004500 OPEN OUTPUT WRITE-FILE.

Sample Programs: WAIT I/O B-1

004600 DISPLAY MSG-STAT.

004700 MOVE "F" TO DONE.

004800 PERFORM 200-GET-LINE UNTIL FINISHED.
004900 CLOSE WRITE-FILE.

005000 DISPLAY MSG-STAT.

005100 STOP RUN.

005200*

005300 200-GET-LINE.

005400 MOVE SPACES TO TERM-REC.

005500 ACCEPT TERM-REC.

005600 IF END-REC = "//" THEN

005700 MOVE "T" TO DONE

005800 ELSE

005900 WRITE OUT-REC FROM TERM-REC

006000 DISPLAY MSG-STAT

006100 IF MSG-STAT NOT = "00" THEN

006200* Error during write or file is full, stop writing.

006300 MOVE "T" TO DONE.

Example B-2.

001000*

001100* MSGREADR

001200*

001300* Compiled with COBOLII.

001400*

001500* This program reads records from the message file and processes them.

001600* It uses standard wait I/O because no other processing

001700* can be done while waiting for the record and wait I/O is simpler to

001800* use than no-wait I/O. Extended wait is used so this program

001900* will not get an (EOF) error if the file is empty and the program

002000* writing to it terminates. A 30-second timeout is used so that this
002100* program will not wait forever if the writer never comes back.

002200*

002300 IDENTIFICATION DIVISION.

002400 PROGRAM-ID. MSGREADR.

002500*

002600 ENVIRONMENT DIVISION.

002700 INPUT-OUTPUT SECTION.

002800 FILE-CONTROL.

002900 SELECT READ-FILE ASSIGN TO "MSGFILE1"

003000 STATUS IS MSG-STAT.

003100*

003200 DATA DIVISION.

003300 FILE SECTION.

003400 FD READ-FILE.

003500 01 IN-REC PIC X(80).

003600 WORKING-STORAGE SECTION.

003700 01 TERM-REC PIC X(78).

003800 01 DONE PIC X.

003900 88 FINISHED VALUE IS "T".

B-2 Sample Programs: WAIT I/O

004000 88 NOTFINISHED VALUE IS "F".

004100 01 MSG-STAT PIC X(2).

004200 01 PARM PIC S9(4) COMP.
004300*

004400 PROCEDURE DIVISION.

004500*

004600 100-START-OF-PROGRAM.

004700 OPEN INPUT READ-FILE.

004800 DISPLAY MSG-STAT.

004900*

005000* Set up extended waits on read-file.

005100*

005200* The read will wait for a record to be written instead of

005300* returning an End-Of-File condition.

005400*

005500*

005600 MOVE 1 TO PARM.

005700 CALL INTRINSIC "FCONTROL" USING READ-FILE 45 PARM.

005800*

005900 MOVE "F" TO DONE.

006000 PERFORM 200-GET-LINE UNTIL FINISHED.

006100 CLOSE READ-FILE.

006200 DISPLAY MSG-STAT.

006300 STOP RUN.

006400*

006500 200-GET-LINE.

006600 MOVE SPACES TO TERM-REC.

006700*

006800* Set up 30-second timeout. We actually need to set the timeout only

006900* once for message files, but we set it here for each read in case

007000* message file timeouts are changed to work like terminal timeouts,
007100* which are valid only for the next I/O.

007200*

007300* Because extended waits were set up, we will wait forever on an

007400* empty message file. However, for esthetic reasons we don't want

007500* to wait forever. Neatness counts, so we set the read to fail

007600* if no data is in the message file after 30 seconds.

007700*

007800 MOVE 30 TO PARM.

007900 CALL INTRINSIC "FCONTROL" USING READ-FILE 4 PARM.

008000*

008100 READ READ-FILE INTO TERM-REC.

008200 IF MSG-STAT = "00" THEN

008300 PERFORM 300-WRITEREC

008400 ELSE

008500* Error or End-Of-File on the message file.

008600 DISPLAY MSG-STAT

008700 MOVE "T" TO DONE.

008800*

008900 300-WRITEREC.

009000*

Sample Programs: WAIT I/O B-3

009100* Process (in this case display) the record received from the

009200* message file.

009300*
009400 DISPLAY TERM-REC.

B-4 Sample Programs: WAIT I/O

C

Sample Programs: NOWAIT I/O

This appendix contains two programs (Example C-1 in COBOL, and Example C-2 in
FORTRAN) which illustrate the use of NOWAIT I/O in Interprocess Communication.
Software interrupts are not used in these examples; see Appendix D for sample programs
illustrating their use.

Example C-1.

001000*

001100* NOWAITRD

001200*

001300* Compiled with COBOLII.

001400*

001500* This program has a background task that it does in a loop. After

001600* each pass through the loop it checks a message file to see if a
001700* special request has been made. The check for the special request

001800* is made only at the completion of a pass through the loop, for two

001900* reasons. First, the time it takes to make a pass through the loop

002000* is not too long for the special request to wait to be read. Second,

002100* the special request may require the use of some of data structures

002200* used by the background task, and those data structures may be in an

002300* inconsistent state part way into a pass through the loop. The

002400* message file is checked for records containing the special requests

002500* using NOWAIT FREADs. Standard (wait) FREADs were not used because

002600* they would have caused this program to wait if the message file did

002700* not contain any records (and there was another program with this

002800* file open for write access), when what we want is to continue doing

002900* the background task in the loop. Software interrupts were not used

003000* because they would try to receive a special request anywhere in the

003100* loop, and would have added complexity to provide features that this

003200* program does not need.

003300*

003400 IDENTIFICATION DIVISION.

003500 PROGRAM-ID. NOWAITRD.

003600*

003700 ENVIRONMENT DIVISION.

003800 CONFIGURATION SECTION.

003900 SOURCE-COMPUTER. HP-SYSTEM.

004000 OBJECT-COMPUTER. HP-SYSTEM.

004100 SPECIAL-NAMES.

004200 CONDITION-CODE IS CC.

004300*
004400 DATA DIVISION.

Sample Programs: NOWAIT I/O C-1

004500 WORKING-STORAGE SECTION.

004600 01 IN-REC PIC X(80).

004700 01 TERM-REC PIC X(80).
004800 01 BACK-GROUND-MSG PIC X(17) VALUE "BACKGROUND WORK ".

004900 01 ERROR-MSG PIC X(17) VALUE "UNEXPECTED ERROR ".

005000 01 IN-FILE-NAME PIC X(9) VALUE "MSGFILE1 ".

005100 01 DONE PIC X.

005200 88 FINISHED VALUE IS "T".

005300 88 NOTFINISHED VALUE IS "F".

005400 01 PARM PIC S9(4) COMP.

005500 01 LNGTH PIC S9(4) COMP.

005600 01 IN-FILE PIC S9(4) COMP.

005700 01 LOOP-COUNTER PIC S9(4) COMP.

005800 01 MSG-FLAG PIC S9(4) COMP.

005900*

006000 PROCEDURE DIVISION.

006100*

006200 100-START-OF-PROGRAM.

006300 MOVE 0 TO LOOP-COUNTER.

006400 CALL INTRINSIC "FOPEN" USING IN-FILE-NAME %5 %4000

006500 GIVING IN-FILE.

006600 IF CC NOT = 0 THEN

006700 PERFORM 900-ERROR-CONDITION.

006800*

006900* Set up extended waits on read-file.

007000*

007100* This will cause IODONTWAIT to indicate that the record is still

007200* unavailable rather than returning an End-Of-File error if the

007300* writer program terminates.

007400*

007500 MOVE 1 TO PARM.
007600 CALL INTRINSIC "FCONTROL" USING IN-FILE 45 PARM.

007700 IF CC NOT = 0 THEN

007800 PERFORM 900-ERROR-CONDITION.

007900*

008000* Start the first read on the message file.

008100*

008200 PERFORM 600-START-NEXT-READ.

008300*

008400 MOVE "F" TO DONE.

008500 PERFORM 200-PROCESSING-LOOP UNTIL FINISHED.

008600*

008700* Abort the outstanding read (PARM is ignored) and close the msg file.

008800*

008900 CALL INTRINSIC "FCONTROL" USING IN-FILE 43 PARM.

009000 IF CC NOT = 0 THEN

009100 PERFORM 900-ERROR-CONDITION.

009200 CALL INTRINSIC "FCLOSE" USING IN-FILE 0 0.

009300 IF CC NOT = 0 THEN

009400 PERFORM 900-ERROR-CONDITION.

009500 STOP RUN.

C-2 Sample Programs: NOWAIT I/O

009600*

009700 200-PROCESSING-LOOP.

009800*
009900* Each pass through this loop we do one iteration of the "background

010000* task" and then we test to see if a message has come in.

010100*

010200 PERFORM 300-BACKGROUND-TASK.

010300 PERFORM 400-CHECK-FOR-MSG.

010400*

010500 300-BACKGROUND-TASK.

010600*

010700* This could be any background processing, but in our case it is

010800* just a display.

010900*

011000 PERFORM 700-CPU-WASTER 10000 TIMES.

011100 ADD 1 TO LOOP-COUNTER.

011200 IF LOOP-COUNTER = 100 THEN

011300 MOVE "T" TO DONE.

011400 DISPLAY BACK-GROUND-MSG.

011500*

011600 400-CHECK-FOR-MSG.

011700*

011800* Call IODONTWAIT to see if a record has been written to the

011900* message file. Whether or not a message is there, IODONTWAIT

012000* will always return immediately.

012100*

012200 CALL INTRINSIC "IODONTWAIT" USING IN-FILE IN-REC LNGTH

012300 GIVING MSG-FLAG.

012400 IF CC NOT = 0 THEN

012500 PERFORM 900-ERROR-CONDITION.
012600*

012700* MSG-FLAG will be non-zero (= file number) if a message was received.

012800* If a message was received, handle it and re-start the next read on

012900* the message file.

013000*

013100 IF MSG-FLAG NOT = 0 THEN

013200 PERFORM 500-HANDLE-MSG

013300 PERFORM 600-START-NEXT-READ.

013400*

013500 500-HANDLE-MSG.

013600*

013700* Do any processing that is required to handle the incoming message.

013800*

013900 MOVE IN-REC TO TERM-REC.

014000 DISPLAY TERM-REC.

014100*

014200 600-START-NEXT-READ.

014300*

014400* Start the NOWAIT FREAD. It will be completed by IODONTWAIT. Note

014500* that NOWAIT FREADs on message files do not require Priv Mode.

Sample Programs: NOWAIT I/O C-3

014600*

014700 MOVE -80 TO LNGTH.

014800 CALL INTRINSIC "FREAD" USING IN-FILE IN-REC LNGTH.
014900 IF CC NOT = 0 THEN

015000 PERFORM 900-ERROR-CONDITION.

015100*

015200 700-CPU-WASTER.

015300*

015400* This is here just to burn up time. Real work should be done here.

015500* DO NOT put a "CPU waster" like this in a real program.

015600*

015700 MOVE SPACES TO TERM-REC.

015800*

015900 900-ERROR-CONDITION.

016000 DISPLAY ERROR-MSG.

016100 CALL INTRINSIC "PRINTFILEINFO" USING IN-FILE.

016200 STOP RUN.

Example C-2.

$CONTROL USLINIT

$STANDARD_LEVEL SYSTEM

C

PROGRAM NOWAITREAD

C

C Compiled with FORTRAN 77.

C

C This program reads messages from both a terminal and a message

C file, and processes them. When not processing a message, the

C program just waits for the next message. This program uses

C NOWAIT I/O because it allows it to start FREADs on both the

C terminal and the message file, and then wait in a single
C "IOWAIT(0,..." statement for whichever FREAD is finished first.

C

INTEGER*2 fnum,fnumterm,fnuminfile,fnumoutfile

INTEGER*2 tcount,length,condcode

LOGICAL buf(40)

LOGICAL eof

SYSTEM INTRINSIC GETPRIVMODE,GETUSERMODE,FOPEN,FREAD,IOWAIT

SYSTEM INTRINSIC FWRITE,FCLOSE,PRINTFILEINFO

C

C

C Priv Mode needed to open the terminal for NOWAIT I/O. Must

C also PREP with PM.

C foption = $STDIN, ascii, old. aoption = no wait I/O, read access.

C

CALL GETPRIVMODE

fnumterm = FOPEN(, 45B, 4000B)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnumterm)

STOP ' Error occured during terminal FOPEN '

END IF

C-4 Sample Programs: NOWAIT I/O

CALL GETUSERMODE

C

C Open the input message file.
C foption = ascii, old. aoption = no wait I/O, read access.

C

fnuminfile = FOPEN("MSGFILE1", 5B, 4000B)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnuminfile)

STOP ' Error occured during input message file FOPEN '

END IF

C

C Open the output message file.

C foption = ascii, old. aoption = write access.

C

fnumoutfile = FOPEN("MSGFILE2", 5B, 1B)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnumoutfile)

STOP ' Error occured during output message file FOPEN '

END IF

C

C Start the read on the terminal. No Wait FREADs always return

C a length of 0. The real data length is returned by IOWAIT.

C

tcount = -80

length = FREAD(fnumterm, ibuf, tcount)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnumterm)

STOP ' Error occured during the terminal FREAD '

END IF

C

C Start the read on the message file. No Wait FREADs always return
C a length of 0. The real data length is returned by IOWAIT.

C

tcount = -80

length = FREAD(fnuminfile, buf, tcount)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnuminfile)

STOP ' Error occured during the message file FREAD '

END IF

C

eof = .FALSE.

DO WHILE (.NOT. eof)

C

C An IOWAIT with file-number = 0 will complete whichever

C FREAD is ready to be finished first.

C

fnum = IOWAIT(0, buf, tcount)

condcode = CCODE()

IF (condcode .EQ. -1) THEN ! Error

CALL PRINTFILEINFO(fnum)

Sample Programs: NOWAIT I/O C-5

STOP ' Error occured during IOWAIT '

END IF

IF (condcode .EQ. 1) THEN ! EOF
eof = .TRUE.

END IF

IF (condcode .EQ. 0) THEN

C

C Process the message that came in; in this case write it to

C "message file 2". FREAD and FWRITE want byte lengths to be

C negative. IOWAIT returns a positive byte length. We have

C to change the sign.

C

tcount = - tcount

CALL FWRITE(fnumoutfile, buf, tcount, 0)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnumoutfile)

STOP ' Error occured during FWRITE '

END IF

C

C Re-start the FREAD that the IOWAIT just completed.

C

tcount = -80

length = FREAD(fnum, buf, tcount)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnum)

STOP ' Error occured during FREAD '

END IF

END IF

ENDDO

C

C Time to shut down.
C Call FCONTROL-43 to abort the no wait read that is pending

C against the terminal and the message file. If CCG is returned,

C then the abort could not complete, and an IOWAIT must be called

C to clear the I/O. CCE means aborted OK. CCG means nothing to

C abort, which is OK here because the read is not restarted if

C there was an error.

C

CALL FCONTROL(fnumterm, 43, 0)

IF (CCODE() .EQ. 1) THEN

fnum = IOWAIT(fnumterm, buf, tcount)

IF (CCODE() .NE. 0) THEN

CALL PRINTFILEINFO(fnumterm)

STOP ' Error occured during terminal FCONTROL/IOWAIT '

END IF

END IF

CALL FCONTROL(fnuminfile, 43, 0)

IF (CCODE() .EQ. 1) THEN

fnum = IOWAIT(fnuminfile, buf, tcount)

IF (CCODE() .NE. 0) THEN

C-6 Sample Programs: NOWAIT I/O

CALL PRINTFILEINFO(fnuminfile)

STOP ' Error occured during message file FCONTROL/IOWAIT '

END IF
END IF

C

CALL FCLOSE(fnumterm, 0, 0)

CALL FCLOSE(fnuminfile, 0, 0)

CALL FCLOSE(fnumoutfile, 0, 0)

C

STOP 'Successful'

END

Sample Programs: NOWAIT I/O C-7

D

Sample Programs: Software Interrupts

This appendix contains a group of sample programs illustrating a fairly complex, but very
typical, use of message �les and soft interrupts. There are two groups of programs, one in SPL
and another in Pascal.

SPL Examples

Examples D-1 through D-3 are a group of SPL programs showing the use of software
interrupts and message �les in Interprocess Communication. A group of sample Pascal
programs follows.

Example D-1.

begin

<<

MON

This program opens message file MONTOLOG and writes a data record

every 2 seconds. The data record is the dateline plus the 2-word

return from the CLOCK intrinsic.

>>

integer i,file'num,error;

double timer;

integer array timer1(*)=timer;

logical array outdata(0:16);

integer sequence;

byte array file'name(0:9):="MONTOLOG ";

byte array msg1(0:9):="Opened OK ";

real pause'val;
intrinsic print,dateline,pause,fopen,fwrite,quit,fcheck,clock;

<<

Open message file.

>>

file'num:=fopen(file'name,5,193);

if <> then

begin

fcheck(file'num,error);

quit(error);

end

else print(msg1,-10,0);

pause'val:=2.0;

for i:=1 until 100 do

Sample Programs: Software Interrupts D-1

begin

sequence:=i;

timer:=clock;
dateline(outdata);

outdata(14):=sequence;

outdata(15):=timer1(0);

outdata(16):=timer1(1);

fwrite(file'num,outdata,-34,0);

if <> then

begin

fcheck(file'num,error);

quit(error);

end;

pause(pause'val);

end;

end.

Example D-2.

$control uslinit

<<

LOG

SPL program to demonstrate soft interrupts in a process

handling environment.

This program opens $STDIN nowait. It opens a message file

(MONTOLOG) and enables soft interrupts. It then opens a log

file (LOGFILE) to write progress messages from the interrupt

handler.

>>

begin

integer i,lth,addr,parm,error,file'num'0:=0;

integer log'file'num,file'num,file'num'1;

integer plabel;

logical array buff(0:39),buff1(0:39);

byte array file'name(0:9):="MONTOLOG ";

byte array file'name'1(0:9):="TERM ";

byte array log'file'name(0:9):="LOGFILE ";

logical array stat1(0:8):="Opened terminal OK";

logical array stat2(0:8):="Opened MSGFILE OK ";

logical array stat3(0:8):="Opened LOGFILE OK ";

intrinsic dateline,pause,fopen,quit,fcheck,getprivmode,

fintexit,fintstate,getusermode,iowait,iodontwait,

fread,fcontrol,clock,ascii,print,fclose,fwrite;

procedure getasc(num,temp);

BYTE ARRAY num;

INTEGER temp;

D-2 Sample Programs: Software Interrupts

begin

integer lth;

lth:=ascii(temp,10,num);

if lth=1 then

begin

num(1):=num(0);

num(0):="0";

end;

end; <<getasc>>

<<

INTERRUPT HANDLER ROUTINE

When an interrupt occurs on the message file (filenum), we

get the time of the interrupt using the CLOCK intrinsic.

The time the record was written into the message file

is written as part of the record in the message file. We

extract that time as well and write both times into our

log file.

>>

procedure inthandler(filenum);

VALUE filenum;

integer filenum;

begin

logical array outdata(0:16);

<<

Since we must extract the bytes for the CLOCK intrinsic,

we must equivalence an integer to the double integer returned

by CLOCK. Could have used a byte array here, just didn't choose

to.
>>

double timestamp;

integer array time1(*)=timestamp;

integer temp;

byte array msg1(0:29),msg2(0:29),num(0:5);

<<

Get time of interrupt.

>>

timestamp:=clock;

<<

Complete I/O from message file.

>>

iodontwait(filenum,outdata);

move msg1:="Time file written= : : : ";

move msg2:="Time interrupted = : : : ";

<<

Sample Programs: Software Interrupts D-3

In this section, we convert the proper clock bits to times

which can be printed as part of the above messages. Long

and involved, but that's a problem with SPL.
>>

<<

First we must extract the timestamp from the message file

record.

>>

<<

Extract hour.

>>

temp:=outdata(15).(0:8);

getasc(num,temp);

move msg1(19):=num,(2);

<<

Extract minute.

>>

temp:=outdata(15).(8:8);

getasc(num,temp);

move msg1(22):=num,(2);

<<

Extract second.

>>

temp:=outdata(16).(0:8);

getasc(num,temp);

move msg1(25):=num,(2);

<<

Extract tenth-of-second.

>>

temp:=outdata(16).(8:8);

getasc(num,temp);
move msg1(28):=num,(2);

<<

END of processing for TIME FILE WRITTEN message.

>>

fwrite(log'file'num,msg1,-30,0);

fwrite(log'file'num,outdata,-28,0);

<<

Begin processing TIME OF INTERRUPT message.

>>

<<

Extract hour.

>>

temp:=time1(0).(0:8);

getasc(num,temp);

move msg2(19):=num,(2);

<<

Extract minute.

>>

temp:=time1(0).(8:8);

D-4 Sample Programs: Software Interrupts

getasc(num,temp);

move msg2(22):=num,(2);

<<
Extract second.

>>

temp:=time1(1).(0:8);

getasc(num,temp);

move msg2(25):=num,(2);

<<

Extract tenth-of-second.

>>

temp:=time1(1).(8:8);

getasc(num,temp);

move msg2(28):=num,(2);

<<

END of processing for TIME OF INTERRUPT message.

>>

fwrite(log'file'num,msg2,-30,0);

<<

Re-post the message file read.

>>

fread(filenum,buff,-34);

<<

Re-enable interrupts when the handler routine exits.

Same effect as FINTEXIT(TRUE).

>>

fintexit;

end;

<<

MAINLINE
>>

fintstate(1);

<<

OPEN $STDIN with NOWAIT I/O.

>>

getprivmode;

file'num'1:=fopen(file'name'1,36,2048);

if <> then

begin

getusermode;

fcheck(file'num'1,error);

quit(error);

end

else print(stat1,-18,0);

getusermode;

<<

OPEN MONTOLOG as a message file.

>>

file'num:=fopen(file'name,5,192);

Sample Programs: Software Interrupts D-5

if<> then

begin

fcheck(file'num,error);
quit(error);

end

else print(stat2,-18,0);

<<

OPEN LOGFILE as an OLD ASCII file.

LOGFILE is VERY IMPORTANT. If the messages in the interrupt

routine are posted to the terminal (via PRINT), then we will

have to wait for the FREAD on the terminal to complete before

the write will complete. The IOWAIT can be interrupted when done

as shown below, but the PRINT cannot be interrupted! This will

keep us from processing further interrupts until the status

messages from the first interrupt have been completed.

By writing to a file, we avoid this problem.

>>

log'file'num:=fopen(log'file'name,5,1);

if <> then

begin

fcheck(log'file'num,error);

quit(error);

end

else print(stat3,-18,0);

<<

Set up FCONTROL to enable SOFT INTERRUPTS.

>>

plabel:=@inthandler;

fcontrol(file'num,48,plabel);
<<

Set up EXTENDED WAIT. If we don't do this, the read of the

message file will interrupt with FSERR 0 when empty.

>>

parm:=1;

fcontrol(file'num,45,parm);

<<

Post read against message file.

>>

fread(file'num,buff,-34);

for i:=1 until 100 do

begin

fread(file'num'1,buff1,-80);

<<

The only way we will interrupt an IOWAIT is if we post a GENERAL

IOWAIT. In other words, we use a 0 for the file number.

In our case here, we don't care to get the return since we know

which file we posted a read on.

D-6 Sample Programs: Software Interrupts

>>

iowait(0,,lth);

print(buff1,-80,0);
end;

fclose(log'file'num,1,0);

end.

Example D-3.

$control uslinit

<<

PARENT

This program is the parent process for MON and LOG.

>>

begin

integer array nums(0:5),items(0:5);

integer pin,pin1,error,error1;

byte array prog'1(0:9):="MON ";

byte array prog'2(0:9):="LOG ";

logical array msg1(0:9):="Process MON created ";

intrinsic print,createprocess,quit,activate;

nums(0):=3;

items(0):=1;

nums(1):=0;

items(1):=0;

createprocess(error,pin,prog'1,nums,items);

if error <>0 then quit(error);

activate(pin);

print(msg1,-20,0);
nums(1):=10;

items(1):=2;

nums(2):=0;

items(2):=0;

createprocess(error1,pin1,prog'2,nums,items);

if error1<>0 then quit(error1);

end.

Sample Programs: Software Interrupts D-7

Pascal Examples

The following group of programs (Examples D-4 through D-6) show the use of message �les
and soft interrupts for Interprocess Communication. For a simpler example, see the sample
Pascal program in Chapter 6.

Example D-4.

$uslinit$

program mon(input,output);

{

MON

This program opens message file MONTOLOG and writes a data record

every 2 seconds. The data record is the dateline plus the 2-word

return from the CLOCK intrinsic.

}

type

int = -32768..32767;

timer = packed record

hour : 0..255;

min : 0..255;

sec : 0..255;

tenth : 0..255;

end;

data_rec = record

dataline : packed array [1..28] of char;

sequence : int;

time : timer;

end;

var

I : int;

outdata : data_rec;
pause_val : real;

file_num : int;

file_name : packed array [1..10] of char;

error : int;

procedure dateline; intrinsic;

procedure pause; intrinsic;

function fopen:int; intrinsic;

procedure fwrite;intrinsic;

procedure quit; intrinsic;

procedure fcheck;intrinsic;

function clock:timer;external;

begin

{

Open message file.

}

file_name:='montolog ';

D-8 Sample Programs: Software Interrupts

file_num := fopen(file_name,5,193);

if ccode <> 2 then

begin
fcheck(file_num,error);

quit(error);

end

else writeln('Opened OK');

pause_val := 2.0;

for i:=1 to 100 do

begin

outdata.sequence := i;

dateline(outdata.dataline);

outdata.time:=clock;

fwrite(file_num,outdata,-34,0);

if ccode<>2 then

begin

fcheck(file_num,error);

quit(error);

end;

pause(pause_val);

end;

end.

Example D-5.

$uslinit$

$standard_level 'HP3000'$

{

LOG

Pascal program to demonstrate soft interrupts in a process

handling environment.

This program opens $STDIN nowait. It opens a message file

(MONTOLOG) and enables soft interrupts. It then opens a log

file (LOGFILE) to write progress messages from the interrupt

handler.

}

program log(input,output);

type

int = -32768..32767;

{

TIMER is a record type which corresponds to the return from

the CLOCK intrinsic.

}

timer = packed record

hour : 0..255;

min : 0..255;

sec : 0..255;

tenth : 0..255;

Sample Programs: Software Interrupts D-9

end;

{
DATA_REC is a record type which corresponds to the record

written by the MON program.

}

data_rec = record

dataline : packed array [1..28] of char;

sequence : int;

time : timer;

end;

var

fle : text;

i,lth,addr,parm : int;

file_num_0,file_num,file_num_1 : int;

logfile,file_name,file_name_1 : packed array [1..10] of char;

buff,buff1 : packed array [1..80] of char;

error : int;

procedure dateline; intrinsic;

function fopen:int; intrinsic;

procedure fwrite;intrinsic;

procedure quit; intrinsic;

procedure fcheck;intrinsic;

procedure getprivmode;intrinsic;

procedure fintexit;intrinsic;

procedure fintstate;intrinsic;

procedure getusermode;intrinsic;

procedure iowait;intrinsic;

procedure iodontwait;intrinsic;

procedure fread;intrinsic;
procedure fcontrol;intrinsic;

function clock : timer; external;

{

INTERRUPT HANDLER ROUTINE

When an interrupt occurs on the message file (filenum), we

get the time of the interrupt using the CLOCK intrinsic.

The time the record was written into the message file

is written as part of the record in the message file. We

extract that time as well and write both times into our

log file.

}

procedure inthandler(filenum:int);

var

timestamp : timer;

buffer : data_rec;

begin

{

Get time of interrupt.

D-10 Sample Programs: Software Interrupts

}

timestamp:=clock;

{
Complete I/O from message file.

}

iodontwait(filenum,buffer);

writeln(fle,buffer.dataline,' ',buffer.sequence);

writeln(fle,'Time file written= ',buffer.time.hour,':',

buffer.time.min,':',buffer.time.sec,':',

buffer.time.tenth);

writeln(fle,'Time interrupted= ',timestamp.hour,':',

timestamp.min,':',timestamp.sec,':',

timestamp.tenth);

{

Restart the message file read.

}

fread(filenum,buff,-34);

{

Re-enable interrupts when the handler routine exits. Same

as FINTEXIT(1). Interesting point--Pascal Boolean values

are different from SPL logical values. Pascal TRUE <> SPL TRUE.

}

fintexit;

end;

begin

{

Open LOGFILE as text file.

LOGFILE is VERY IMPORTANT. Soft interrupts may interrupt a

GENERAL NOWAIT I/O as posted below. However, they may not
interrupt any other I/O in progress. If we WRITELN to the

terminal in the interrupt handler routine, that WRITELN will

have to wait for the read I/O on the terminal to complete. Since

that wait is in the interrupt handler routine, it can't be

further interrupted. The bottom line here is that interrupts

will not be processed except after the terminal I/O completes

and before a new I/O is started.

To avoid this, we write to LOGFILE.

}

logfile:='LOGFILE ';

rewrite(fle,logfile,'NOCCTL');

{

Set up interrupts for this program.

Again, as stated above in the interrupt handler routine, SPL

TRUE (which is how the intrinsic is defined) = %000001. Pascal

TRUE, for a Boolean variable, is %000400. Therefore, we cannot

use a Boolean variable here.

Sample Programs: Software Interrupts D-11

}

fintstate(1);

{
Open the terminal for nowait I/O.

}

file_name_1 := 'TERM ';

getprivmode;

file_num_1 := fopen(file_name_1,36,2048);

if ccode <> 2 then

begin

getusermode;

fcheck(file_num_1,error);

quit(error);

end

else writeln('Opened terminal OK');

getusermode;

{

Open the message file.

}

file_name:='montolog ';

file_num := fopen(file_name,5,192);

if ccode <> 2 then

begin

fcheck(file_num,error);

quit(error);

end

else writeln('Opened MSGFILE OK');

{

Set up soft interrupts.

}

addr := waddress(inthandler);
fcontrol(file_num,48,addr);

{

Set up EXTENDED WAIT. If we don't do this, the read of the

message file will continually interrupt with FSERR 0 when empty.

}

parm := 1;

fcontrol(file_num,45,parm);

{

Post read against message file.

}

fread(file_num,buff,-34);

for i := 1 to 100 do

begin

fread(file_num_1,buff1,-80);

{

The only way we will interrupt an IOWAIT is if we post a

GENERAL IOWAIT (using 0 for the file number).

In this case, we don't care to get the return since we know

D-12 Sample Programs: Software Interrupts

which file had a read posted against it.

}

file_num_0:=0;
iowait(file_num_0,buff1,lth);

end;

close(fle,'SAVE');

end.

Example D-6.

$uslinit$

{

PARENT

This program is the parent process for MON and LOG.

}

program daddy(input,output);

type

int = -32768..32767;

var

prog_1,prog_2 : packed array[1..10] of char;

pin,pin1,error,error1 : int;

nums,items : array[1..5] of int;

procedure createprocess;intrinsic;

procedure quit;intrinsic;

procedure activate;intrinsic;

begin

prog_1 := 'mon ';

prog_2 := 'log ';

nums[1]:=3;
items[1]:=1;

nums[2]:=0;

items[2]:=0;

createprocess(error,pin,prog_1,nums,items);

if error<>0 then quit(error);

activate(pin);

writeln('Process MON created');

nums[2]:=10;

items[2]:=2;

nums[3]:=0;

items[3]:=0;

createprocess(error1,pin1,prog_2,nums,items);

if error<>0 then quit(error);

end.

Sample Programs: Software Interrupts D-13

Index

A

Abnormal termination
recovery from , 3-5

Aborting NOWAIT I/O , 5-2
Adding a JCW to the variable table , 2-7
Altering a JCW's value , 2-7
Altering a session variable or JCW , 2-3
Armed interrupts , 6-2
Avoiding deadlocks
MAIL Facility , 7-4

B

Broadcast facility , 4-1
BUILD command
for recovery , 3-5

BUILD command , 3-2

C

Changing the value of a user-de�ned JCW , 2-6
CIERROR JCW , 2-4
Circular �les , 4-4
COBOL sample programs , B-1, C-1
Collecting mail , 7-4
Command �le , 3-2
Command queue , 4-1
Control-Y
disabled by interrupt handler , 6-3

Copy Mode option , 4-3
Creating message �les , 3-2

D

Deadlock prevention , 4-1
DELETEVAR command
de�ned , 2-4

DELETEVAR command , 2-2
Deleting user-created variables , 2-4
Disarming software interrupts , 6-4
Displaying a JCW , 2-7
Display selected session variables , 2-4

E

End-of-File conditions , 3-4
EOF
extended wait , 3-4, 4-2

EOF conditions , 3-4

Establishing a user-de�ned JCW , 2-6
Extended wait
default condition , 4-2
timeouts , 4-3

Extended wait , 3-4, 4-2

F

FCHECK intrinsic
IPC error message , A-6

FCLOSE intrinsic
to perform IPC , 3-3

FCONTROL intrinsic
option for extended wait , 4-2
options for , A-4
option to access writer's ID , 4-2
plabel , 6-2
software interrupts , 6-2

FDELETE intrinsic , A-1
FFILEINFO intrinsic
itemvalue for IPC , A-7

FGETINFO intrinsic
recsize and EOF, controlcode 46 , A-6
recsize, backward compatibility with MPE

V/E , A-6
FIFO queue structure , 3-1
FILE command , 3-1
File system intrinsics
and program structure , 3-2
to perform IPC , 3-3

File system queue structure , 3-1
Finding the value of a session variable , 2-3
FINDJCW intrinsic
de�ned , 2-6
STATUS parameter of , 2-6

FINDJCW intrinsic , 2-2
FINTEXIT intrinsic
for interrupt handler , 6-3
software interrupts , 6-2

FINTEXIT intrinsic , A-1
FINTSTATE intrinsic
software interrupts , 6-2

FINTSTATE intrinsic , A-1
FLOCK intrinsic
to recover data cleanly , 3-5

FOPEN intrinsic
Copy Mode option , 4-3

Index-1

options for , A-2
Forcing records to disc , 4-4
FORTRAN sample programs , C-1
FPOINT intrinsic , A-1
FREADDIR intrinsic , A-1
FREAD intrinsic
software interrupt , 6-1
to perform IPC , 3-3

FREADSEEK intrinsic , A-1
FSETMODE intrinsic , 4-4
FSPACE intrinsic , A-1
FUPDATE intrinsic , A-1
FWRITEDIR intrinsic , A-1
FWRITE intrinsic
to perform IPC , 3-3

G

GETJCW intrinsic
de�ned , 2-5

GETJCW intrinsic , 2-2
Global RIN , 7-4
Group segment libraries , 6-5
GSL , 6-5

H

HPCIDELETEVAR intrinsic , 2-2, 2-3
HPCIGETVAR intrinsic
de�ned , 2-3

HPCIGETVAR intrinsic , 2-2
HPCIPUTVAR intrinsic
de�ned , 2-2
warning messages , 2-8

HPCIPUTVAR intrinsic , 2-2
HPFOPEN intrinsic
Copy Mode option , 4-3
for creating Message �les , 3-2
NOWAIT I/O option , 5-1
options for , A-2

I

Initializing software interrupts , 6-2
Interrupt handler , 6-3
Intrinsics
exclusive to IPC , A-1
features for Message �les , A-1
for session variables , 2-2

IODONTWAIT intrinsic
software interrupt , 6-2

IODONTWAIT intrinsic , 5-1
IOWAIT intrinsic
software interrupt , 6-2

IOWAIT intrinsic , 5-1
IPC
de�ned , 1-1

extended wait , 4-2
intrinsics exclusive to , A-1
processing , 3-3
purposes of , 1-1
special cases , 4-1
using Job Control Words , 2-1
using session-level variables , 2-1
via the MAIL Facility , 7-1
ways to perform , 1-2
with �le system intrinsics , 3-1
with NOWAIT I/O , 5-1

J

JCW
adding to variable table , 2-7
altering value of , 2-7
commands and intrinsics , 2-2
commands for , 2-7
command to set or alter , 2-3
de�ned , 2-1, 2-4
displaying , 2-7
establishing a user-de�ned , 2-6
intrinsics for , 2-5
JCW, the prede�ned Job Control Word , 2-4
prede�ned , 2-4
reclassifying , 2-4
reclassifying as a standard variable , 2-8
relationship to session variables , 2-1
scanning Variable Table for , 2-6
special considerations , 2-8
user-de�ned , 2-5
user-de�ned, establishing/changing value of ,

2-6
user-de�ned, valid name for , 2-6

job-level variables , 2-1

L

LISTF command
for listing Message �les , 3-2

Listing Message �les , 3-2

M

Mailbox , 7-1
Mailbox status test , 7-2
MAIL Facility
avoiding deadlocks , 7-4
de�nition , 7-1
general discussion , 7-1
mail transfer process , 7-2
overwriting of mail , 7-2
receiving (collecting) mail , 7-4
restrictions , 7-1
sending mail , 7-3
smallest message allowed , 7-2

Index-2

testing mailbox status , 7-2
MAIL intrinsic , 7-2
Mail transfer process , 7-2
Main line code and Message �les , 6-4
Message �les
and program structure , 3-2
command �le , 3-2
crash-proo�ng , 4-4
creating , 3-2
deadlock prevention , 4-2
de�ned , 3-1
�le limit , 4-2
forcing records to disc , 4-4
intrinsics, special features , A-1
intrinsics which are not allowed , A-1
listing , 3-2
multiple readers or writers , 4-1
names , 3-3
non-destructive reads , 4-3
NOWAIT I/O , 5-1
recovering data , 3-5
response �le , 3-2
timeouts , 4-3
writer identi�cation , 4-2
Writer's ID for records , 4-2

MSG keyword , 3-2
Multiple concurrent readers or writers , 4-1
Multiple supervisors , 4-1

N

Non-destructive reads , 4-3
NOWAIT I/O
aborting , 5-2
across a network , 5-2
intrinsics for , 5-1
limitations , 5-2
sample programs , C-1

NOWAIT I/O , 5-1

O

Opposite accessor , 3-4

P

Parent/child pair , 7-1
Pascal sample programs , D-8
PAUSE
interrupts during , 6-4

plabel , 6-2
Prede�ned JCWs
using for IPC , 2-4

prede�ned variable , 2-1
Preventing deadlocks , 4-1
Process tree , 3-1
Process tree structure , 7-1

PROG , 6-5
Program structure
for IPC with �le system intrinsics , 3-2

PSL , 6-5
Public segment libraries , 6-5
PURGE command
for recovery , 3-5

PUTJCW intrinsic
de�ned , 2-6
STATUS parameter of , 2-6

PUTJCW intrinsic , 2-2

R

Race condition , 3-4
Reading JCW with GETJCW , 2-5
RECEIVEMAIL intrinsic , 7-4
Receiving mail , 7-4
Reclassifying JCWs , 2-4
Records
Writer's ID , 4-2

Recovering data , 3-5
Recovery from abnormal termination , 3-5
Redirecting I/O , 3-1
Removing a session variable , 2-3
Response �le , 3-2
Response queue , 4-1
Restrictions on software interrupts , 6-5
Returning value of a session variable , 2-3
RIN-locking , 7-4
RIN-locking intrinsics , 7-4

S

Sample programs
COBOL , B-1, C-1
FORTRAN , C-1
NOWAIT I/O , C-1
Pascal , D-8
software interrupts , D-1
SPL , D-1
WAIT I/O , B-1

Scanning the Variable Table
for a JCW , 2-6

Scanning the Variable Table , 2-3
Segment Libraries
hierarchy , 6-5

Segment Libraries , 6-5
Sending Mail , 7-3
SENDMAIL intrinsic , 7-3
server-to-supervisor commands , 3-2
session-level variables , 2-1
session variable
de�ned , 2-1
relation to JCW , 2-1

session variables
commands and intrinsics , 2-2

Index-3

Session variables
commands for , 2-3
command to display selected , 2-4
command to set or alter , 2-3
deleting , 2-4
intrinsics for , 2-2
intrinsic to remove , 2-3
intrinsic to return value , 2-3
setting , 2-2
special considerations , 2-8

Session variable table , 2-1
SETJCW command
de�ned , 2-7

SETJCW command , 2-2
SETJCW intrinsic
de�ned , 2-5

SETJCW intrinsic , 2-2
Setting a session variable , 2-2
Setting a session variable or JCW , 2-3
Setting bits in JCW with SETJCW , 2-5
Setting timeouts , 4-3
SETVAR command
de�ned , 2-3
warning messages , 2-8

SETVAR command , 2-2
SHOWJCW command
de�ned , 2-7
special considerations , 2-8

SHOWJCW command , 2-2
SHOWVAR command
de�ned , 2-4
special considerations , 2-8

SHOWVAR command , 2-2
Software interrupts
armed , 6-2
COBOL restrictions , 6-5
compatibility mode restrictions , 6-5
disabled by interrupt handler , 6-3
disarming , 6-4
example , 6-1
ag to prevent loops , 6-5
general discussion , 6-1
in cross-mode programming , 6-2
initialization , 6-2
interrupt handler , 6-3
intrinsics for , 6-2
privileged code , 6-5
remote �le restrictions , 6-5
restrictions , 6-5

sample program , 6-5, D-1
Special cases of IPC , 4-1
Special considerations for JCW/variables , 2-8
SPL sample programs , D-1
SSL , 6-5
Supervisors
multiple , 4-1

supervisor-to-server commands , 3-2
system-reserved variables , 2-1
System segment library , 6-5

T

Testing mailbox status , 7-2
Timeouts
on Message �les , 4-3
on terminals , 4-3
setting , 4-3

Timeouts , 4-3

U

User-de�ned JCW
changing value of , 2-6
valid name for , 2-6

User-de�ned JCWs , 2-5
user-de�ned variable , 2-1
User program segments , 6-5
Using prede�ned JCWs , 2-4

V

Valid MPE/iX variable name , 2-2
variable
prede�ned , 2-1
session , 2-1
system-reserved , 2-1
user-de�ned , 2-1

Variables
intrinsics for , 2-2
using for IPC , 2-2
valid names for , 2-2

Variable table , 2-1

W

WAIT I/O
sample programs , B-1

wild card characters , 2-4
Writer identi�cation , 4-2
Writer's ID

de�ned , 4-2

Index-4

	Top of Document
	Contents
	What is Interprocess Communication?
	Purposes of IPC
	Ways to Perform IPC

	IPC Using Job Control Words and Other Variables
	Types of Variables
	Relationship of JCWs and Variables
	Variable Intrinsics
	Variable Commands
	Job Control Words
	Job Control Word Intrinsics
	Job Control Word Commands
	Special Considerations
	Additional Discussion

	IPC Using File System Intrinsics
	Characteristics
	Creating a Message File
	How To Use IPC|A Simple Case

	Special Cases of IPC
	Multiple Concurrent Readers or Writers
	Preventing Deadlocks
	Writer Identification
	Extended Wait
	Timeouts
	Nondestructive Reads
	Forcing Records To Disc

	NOWAIT I/O
	NOWAIT I/O Intrinsics
	Aborting NOWAIT I/O
	Limitations
	Examples

	Software Interrupts
	Example|Use of Software Interrupts
	Software Interrupt Intrinsics
	Software Interrupt Initialization
	Interrupt Handler
	Main Line Code
	Disarming Software Interrupts
	Restrictions
	Sample Program|Use of Software Interrupts

	Interprocess Communication Via the MAIL Facility
	Restrictions
	Definition of Mail
	Mail Transfer Process
	Testing Mailbox Status
	Sending Mail
	Receiving (Collecting) Mail
	Avoiding Deadlocks

	App. A - Features of Intrinsics for Message Files
	Intrinsics Not Allowed for Message Files
	Intrinsics Exclusive to IPC
	A Note On Syntax

	App. B - Sample Programs: WAIT I/O
	App. C - Sample Programs: NOWAIT I/O
	App. D - Sample Programs: Software Interrupts
	Pascal Examples

	Index

