
900 Series HP 3000 Computer Systems

DATA TYPES CONVERSION

Programmer's Guide

ABCDE

HP Part No. 32650-90015

Printed in U.S.A. 1989

Second Edition

E1089

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or use of this material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced, or translated
to another language without the prior written consent of
Hewlett-Packard Company.

Copyright c 1989 by Hewlett-Packard Company

Print History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
version indicates the version of the software product at the time
this document was issued. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one
correspondence between product releases and document editions.

Edition Date Software
Version

First Edition November 1987 A.01.00

Update 1 July 1988 A.10.00

Second Edition October 1989 A.30.00

iii

iv

Preface The Data Types Conversion Programmer's Manual is intended for
MPE XL programmers who are experienced in one or more high-level
programming languages. The purpose of the manual is to help the
programmer who needs to receive and pass data across languages or
programming environments.

This guide is part of the Programmer Series. Other manuals in the
series are depicted in the documentation map at the front of the
manual. The manuals for speci�c programming languages may be
useful as well; the most common are listed below:

HP Business BASIC/XL Reference Manual (32715-90001).

HP C Programmer's Guide (92434-90002), HP C Reference
Manual (92434-90001), HP C/XL Reference Manual Supplement
(31506-90001), and HP C/XL Library Reference Manual
Supplement (30026-90001).

HP COBOL II/XL Programmer's Guide (31500-90002) and
COBOL II Reference Manual (31500-90001) and COBOL II/XL
Reference Manual Supplement (31500-90005).

HP FORTRAN 77/XL Reference Manual (31501-90010) and HP
FORTRAN 77/XL Programmer's Guide (31501-90011).

HP Pascal Reference Manual (31502-90001) and HP Pascal
Programmer's Guide (31502-90002).

HP RPG/XL Programmer's Guide (30318-90001) and HP RPG
Reference Manual (30318-90003).

Compiler Library/XL Reference Manual (32650-90029) may also be
useful.

Chapter 1, Introduction, gives an overview of the manual and of
the topic of data types, their format, storage, and conversion. It
explains what primitive data types are recognized by MPE XL and
its subsystems, why data conversion may be necessary, and the
di�erences in data representation between the Native Mode and
Compatability Mode programming environments in MPE XL.

Chapter 2, Formatting Data Types, presents the formats of the
various data types supported on MPE XL and its subsystems.
Bit formats are pictured, �eld boundaries given, and formatting
conventions explained. A table compares the correspondence of
primitive data types across system intrinsics and programming
languages.

Chapter 3, Converting Data Types, takes each of the primitive data
types, one by one, and gives some suggestions for converting to each
of the other data types.

Appendix A, ASCII and EBCDIC Code Values, shows the character
code values with their decimal, octal, and hexadecimal equivalents.

v

It would be most useful to skim the entire manual once, then look up
speci�c topics as needed. The Table of Figures lists the various bit
format maps. Look at the Table of Contents, Table of Tables, and
index for other speci�c topics.

vi

Contents

1. Introduction

How Do the Programmer and the Computer
Communicate Data? 1-1

De�ning Data Types 1-2
Primitive Data Types 1-2
Intrinsic Data Types 1-2
Language Data Types 1-3

Formatting Data Types 1-3
Programming Environment 1-3
Programming Languages 1-4

Converting Data Types 1-5
Using Di�erent Types Together 1-5
Passing Between Programming Environments . . 1-5
Passing Across Programming Languages 1-5

2. Formatting Data Types

Recognizing Primitive Data Types 2-1
Character 2-2
ASCII 2-2
EBCDIC 2-3

Numeric 2-4
Integer 2-4
Unsigned Integer 2-4
Signed Integer 2-5

Real 2-7
IEEE or HP3000 Format 2-8
Single or Double Precision 2-8
Fields of a Real Number 2-8
IEEE Real Number Format 2-9
IEEE Conversion Example 2-10
HP3000 Real Number Format 2-12

Decimals 2-14
Packed Decimal Format 2-15
Unpacked Decimal Format 2-16
Floating-Point Decimal Format 2-16

Formatting Data in Programs 2-19
NM and CM Programming Environments 2-19
Programming Languages 2-20
Language Notes 2-22
Intrinsics 2-22
HP Business BASIC/XL 2-22
HP C/XL 2-22

Contents-1

HP COBOL II/XL 2-23
HP FORTRAN 77/XL 2-24
HP Pascal/XL 2-24

3. Converting Data Types

Passing Data 3-1
Converting from Character: 3-2
To Other Character 3-2
Between ASCII and EBCDIC 3-2
Between Native Languages 3-2
Between Numeric Formats 3-3

To Integer 3-4
To Real 3-4
To Packed Decimal 3-5

Converting from Integer 3-5
To Character 3-5
To Other Integer 3-6
To Real 3-6
To Packed Decimal 3-6

Converting From Real 3-6
To Character 3-6
To Integer 3-6
To Other Real 3-7
Overow and Underow 3-8
Accuracy 3-8
Truncating 3-8

To Packed Decimal 3-8
Converting from Packed Decimal 3-9
To Character 3-9
To Integer 3-9
To Real 3-9
To Other Decimals 3-10

A. ASCII and EBCDIC Code Values

Index

Contents-2

Figures

2-1. Bit Format: ASCII Character 2-3
2-2. Bit Format: EBCDIC Character 2-3
2-3. Bit Format: 32-Bit Integer 2-7
2-4. Bit Format: Single-Precision Real in IEEE

Floating-Point Notation 2-11
2-5. Bit Format: Double-Precision Real in IEEE

Floating-Point Notation 2-12
2-6. Bit Format: Single-Precision Real in HP3000

Floating-point Notation 2-13
2-7. Bit Format: Double-Precision Real in HP3000

Floating-point Notation 2-14
2-8. Bit Format: BCD Nibble 2-15
2-9. Bit Format: Packed Decimal 2-16
2-10. Bit Format: Floating-Point Decimal 2-18
2-11. Bit Format: Short Floating-Point Decimal 2-18

Tables

1-1. Languages Supported on MPE XL 1-4
2-1. MPE XL Integer Types 2-4
2-2. Ranges and Accuracies for Floating-Point Real

Numbers 2-8
2-3. Determining the Base-Ten Equivalent of an IEEE

Real Number 2-11
2-4. Range and Precision for Floating-Point Decimals . 2-17
2-5. Correspondence of Data Types Across Languages:

Intrinsics, BASIC, and C 2-20
2-6. Correspondence of Data Types Across Languages:

COBOL, FORTRAN, and Pascal 2-21
A-1. ASCII/EBCDIC Character Sets A-2

Contents-3

1

Introduction

This chapter gives you background on creating and receiving data in
forms that your program and the operating system understand. It
presents data types de�ned by the designers of 900 Series HP 3000
Computer Systems, and the proper format for those types.

How Do the
Programmer and the
Computer
Communicate Data?

The computer can receive information, manipulate it, and store
it. It can access stored information, read it, and send it out. All
information is represented in the computer by combinations of ones
and zeros, each one called a binary bit.

Text characters and numeric values are passed in and out of the
computer as a sequence of bits in �xed-sized chunks called words.
Hewlett-Packard Precision Architecture (HP-PA) design is based on a
32-bit (4-byte) word.

Registers are designed to hold one 32-bit word of data. Because
they are fast but costly, registers typically hold only the data being
currently processed and the most frequently used simple machine
instructions.

The designers also de�ne what types of data the system will
recognize and how each type is to be formatted. This way, the
system and the programmer can access and pass data in complete
and meaningful blocks. The programmer often uses a high-level
language compiler to translate between the system and user.

Introduction 1-1

Defining Data Types The designers of the computer de�ne certain primitive system data
types in order to receive input, store or manipulate data, and return
information in a predictable way.

How a process will use data input depends on the context. If a
process requires a certain data type, it will attempt to interpret input
as that type. For example, if you pass 32 binary bits to an intrinsic
parameter that requires a �le address, it may attempt to access the
cell at that location in memory. If you pass the same 32 bits to a
parameter that requires a character array, it may print a four-letter
word. If you pass the same 32 bits to a parameter that requires a
64-bit oating-point real value, you may cause an error or program
abort.

Primitive Data Types The HP-PA instruction set is designed to operate on certain
fundamental data types. The following data types are recognized by
MPE XL and its subsystems:

Characters.

The following numeric types:

Integers.
Real numbers (in oating-point notation).
Decimal.

Note Although decimal is not really a system primitive type, it is
included in this manual because it is so widely used on MPE XL.
Floating-point decimals are used by BASIC; packed and unpacked
decimals are used by COBOL and RPG.

Intrinsic Data Types The compilers of high-level languages running on MPE XL have
mechanisms to access the system-de�ned procedures called intrinsics.
MPE XL intrinsic parameters recognize the following data types:

Address (@).
Array (A).
Boolean (B).
Character (C).
Integers: Signed (I) and Unsigned (U).
Real (R).
Record (Rec).

Character, integer, and real numbers are system primitive types.
Address and Boolean types are numbers with special uses. Array and
record are structures that group data.

1-2 Introduction

Language Data Types Some high-level programming languages running on MPE XL de�ne
their own data types based on the primitive types. The language
compiler makes any necessary conversions between the primitive data
types and the language-dependent data types. This conversion is
transparent to the programmer. These types are described in the
appropriate language manuals in the Language Manual Series.

Languages may simply rename the primitive type, like the integer,
a system type common to all languages. Languages may use the
system types as building blocks to create a more complex data
structure. For example, the array is not a primitive type, but is
de�ned by programming languages as a connected group of data, all
of the same type.

Formatting Data
Types

The designers of the computer specify speci�c formats for each data
type so the computer can access or output a sequence of bits in a
predictable way.

The format speci�es alignment and size. The alignment predicts the
(starting) boundary; it tells where a meaningful unit of information
begins. The size tells the length of the unit of information; it predicts
the end.

The proper format for a data type depends on two factors:

Programming environment.

Programming language.

Programming
Environment

MPE XL supports two programming environments: Native Mode
(NM) and Compatibilty Mode (CM). A program can be designed
to run in NM or in CM, or to switch back and forth between
subroutines in each of them.

NM takes full advantage of Hewlett-Packard Precision Architecture
(HP-PA), which is based on a 32-bit word. CM emulates the MPE
V/E operating system, which is based on a 16-bit word.

Note In this manual, assume that data types are MPE XL NM data types,
unless CM is speci�cally mentioned.

Introduction 1-3

Programming
Languages

Each environment supports its own high-level languages and
compilers. Most are shown in Table 1-1.

Table 1-1. Languages Supported on MPE XL

Native Mode Compatibility Mode

HP Business BASIC/XL HP Business BASIC/V

HP C/XL

HP COBOL II/XL COBOL II/V

HP FORTRAN 66/V

HP FORTRAN 77/XL HP FORTRAN 77/V

HP Pascal/XL HP Pascal/V

HP RPG/XL RPG/V

SPL/V

For language-speci�c data types and formatting conventions, consult
the appropriate language manual.

HP Business BASIC/XL Reference Manual (32715-90001)

HP C Reference Manual (92434-90001) and HP C/XL Reference
Manual Supplement (31506-90001)

HP COBOL II/XL Programmer's Guide (31500-90002)

COBOL II Reference Manual (31500-90001) and COBOL II/XL
Reference Manual Supplement (31500-90005)

HP FORTRAN 77/XL Reference Manual (31501-90010)

HP FORTRAN 77/XL Programmer's Guide (31501-90002)

HP Pascal Reference Manual (31502-90001)

HP Pascal Programmer's Guide (31502-90002)

1-4 Introduction

Converting Data
Types

You may want to change the form of information. Data output can
be created by one MPE process that cannot be used in another
without translation or conversion. Plan for conversion if you pass
data to be used in the following situations:

with data of another type

between programming environments

across programming languages

Language commands, system intrinsics, and compiler library routines
help you convert between types and formats.

Using Different Types
Together

You may need to make di�erent types of data together compatible to
use them in a program. For example, to calculate the total cost of a
product, you may need to multiply a price by the number sold. If the
price is stored as ASCII data type and the number sold is stored as
integer, one of them will have to be converted to the same data type
as the other.

Subroutines are already available for many common conversions.
There are also intrinsics at the system level, and commands within
programming languages to convert.

Chapter 2 de�nes the NM primitive types and provides their bit
maps. Chapter 3 gives some conversion methods.

Passing Between
Programming
Environments

MPE V/E and MPE XL in Compatibility Mode (MPE XL CM)
are based on a 16-bit word; MPE XL in Native Mode (MPE XL
NM) is based on a 32-bit word. Some data types are represented
di�erently. For example, a real number in a CM-compiled program
will, by default, be in HP3000 format. The same real value in an
NM-compiled program will, by default, be in IEEE format.

If conversion is necessary, consider re-compiling routines, writing
subroutines to reformat, or using system intrinsics.

Passing Across
Programming
Languages

The high-level languages do not all recognize the same primitive data
types. COBOL uses the decimal data type, which is not recognized
by Pascal; however, the oating-point real number type is mutually
understood by Pascal and MPE XL, but is not recognized by
COBOL.

Languages may de�ne their own complex data types that cannot be
interpreted by other languages. If you pass data between routines
that do not use the same types or formats, you lose integrity and
meaning. The receiving routine may not be able to read the data at
all. It may divide the bits it reads into the wrong size chunks. It may
interpret the arrangement of bits by its own formatting conventions.
The result could be completely di�erent information than you
intended.

Introduction 1-5

You must plan for conversion if a program uses a subroutine written
in a language with incompatible types. Some languages have
commands that translate directly as data is read in and written out.

You may need to write a routine to transform the data indirectly.
Remember that all the data used in any MPE language is a primitive
data type or is based on a primitive type. You could write one
routine to translate data from the �rst language types into primitive
system types, and then another routine to translate those system
types into a form the second language can use.

1-6 Introduction

2

Formatting Data Types

This chapter helps you understand the data types supported on
MPE XL. The �rst part of the chapter de�nes and describes the
primitive data types recognized by MPE XL Native Mode systems
and subsystems, including bit formats and alignments. The second
part describes some formatting considerations in MPE XL supported
programming languages and environments.

Recognizing
Primitive Data Types

Data is an abstraction of information. Data must be structured in a
form that the computer is designed to process; data conversion is the
translation of information to a form acceptable to the computer.

The 900 Series HP 3000 Computer Systems instruction set is
designed to operate on certain fundamental data types. The following
data types are recognized by MPE XL and its subsystems:

Characters.

The following numeric types:

Integers.
Real numbers (in oating point notation).
Decimals: packed, unpacked, and oating-point.

Note Although decimal is not really a system primitive type, it is
included in this manual because it is so widely used on MPE XL.
Floating-point decimals are used by BASIC; packed and unpacked
decimals are used by COBOL and RPG.

Each data type requires a speci�c bit format. In this manual, bit
�elds are described as (bit :length), where bit is the �rst bit in the
�eld and length is the number of consecutive bits in the �eld. For
example, \bits (13:3)" refers to bits 13, 14, and 15. Bit 0 is the most
signi�cant bit.

Formatting Data Types 2-1

Character Character code formats are primitive data types. Characters are the
letters, numbers, and symbols on your keyboard. The computer
relates each alphanumeric character to an 8-bit (one byte) binary
number, according to a correspondence code. Some of the characters
are easily displayable, like +, ?, 8, and z; some are not, like a blank
space or the carriage return.

MPE supports the two common American English character codes:
ASCII (American Standard Code for Information Interchange) and
EBCDIC (Extended Binary Coded Decimal Interchange Code).
Several natural language types are also supported. See Appendix A
for ASCII and EBCDIC codes and equivalents.

Character data types are useful for storing strings of symbols like
names, addresses, or identi�cation numbers, and for reading the
keyboard or writing to the screen. Remember, variables saved as
data type character are recognized by the computer as symbols, not
as numeric values.

ASCII

MPE and its subsystems use ASCII data type to represent character
data. ASCII is the format adopted by ANSI, the American National
Standards Institute. Most MPE interfaces use ASCII to accept or
return character data.

Appendix A shows the ASCII and EBCDIC character code values,
along with their decimal, octal, and hexadecimal equivalents.

ASCII is used in this guide as the name of a data type. ASCII data
type corresponds to the ASCII character code format. The codes for
byte values in the range 0 to 127 conform to the ASCII standard
format. Byte values in the range 128 to 255 are interpreted using
Hewlett-Packard's extended ROMAN8 character set. MPE XL and
its subsystems use values in this range to support extended (8-bit)
character sets.

2-2 Formatting Data Types

Figure 2-1 shows the ASCII data type bit format.

Figure 2-1. Bit Format: ASCII Character

EBCDIC

EBCDIC is another coding format widely used in the computer
industry for character data. Like ASCII, it is based on the byte.

EBCDIC is used in this guide as the name of a data type. EBCDIC
data type corresponds to EBCDIC character code format for byte
values in the range 0 to 255.

Appendix A shows the ASCII and EBCDIC character code values,
along with their decimal, octal, and hexadecimal equivalents.

Figure 2-2 shows the bit format for EBCDIC data type.

Figure 2-2. Bit Format: EBCDIC Character

Formatting Data Types 2-3

Numeric MPE XL subsystems support three primitive data types for numbers:

Integer.

Real.

Decimal.

Integer

An integer is any positive or negative whole number, including zero.
Integers are useful for counting and for incrementing in loops. Signed
integers are a useful form for exchanging numeric data between
languages.

MPE XL integers can be 8, 16, 32, or 64 bits long. They can be
unsigned or signed (+ or �). Signed integers are represented in twos
complement form.

Table 2-1. MPE XL Integer Types

Size Type Range Stored At:

8-bit: unsigned 0 to 255 byte addresses

16-bit: signed �32,768 to 32,767 half-word addresses

unsigned 0 to 65,535 half-word addresses

32-bit: signed �2,147,483,648 to 2,147,483,647 word addresses

unsigned 0 to 4,294,967,295 word addresses

The chart below shows the representation of the whole number
(base-ten) 73 as an unsigned integer, a signed positive number, and a
signed negative number.

Unsigned Signed

Positive Negative

(73) (+73) (�73)

01001001 01001001 10110111

Unsigned Integer. Unsigned integers are stored in the computer in
their base-two form. If you are reading or writing unsigned integers
in a language, the compiler converts for you, according to the
formatting conventions of the individual language.

An unsigned n-bit number can represent any value from 0 to 2n�1.

2-4 Formatting Data Types

Reading an Unsigned Integer: One method of reading an unsigned
integer as a base-ten value is to consider the bits as columns whose
values are powers of two. The rightmost (least signi�cant) bit is the
units column and has a weight of 20, or 1. Going toward the left (the
most signi�cant bit), the columns have progressively greater weight:

20, 21, 22, . . . 2n-1. The decimal-based value of unsigned binary
numbers is computed by multiplying the value in each column by the
weight of the column, and then adding all the results. An unsigned
integer represented with ones in the 20, 23 , and 26 columns and zeros
in all the other columns would be computed as follows:

1*(20) + 1*(23) + 1*(26) = 73.

Writing an Unsigned Integer: One method of manually determining
the unsigned integer representation of a base-ten value is to use
successive subtraction. For example, the largest power of 2 that
is less than or equal to the value of decimal-base 73 is 26, or 64.
Subtracting 64 from 73 leaves a remainder of 9. The largest power of
2 that is less or equal than 9 is 23, or 8. Subtracting 8 from 9 leaves
a remainder of 1. The only power of 2 that is less than or equal to
1 is 20, or 1. This leaves a remainder of 0, so the computation is
�nished. Thus, 73 is represented in binary with a 1 in the 20, the 23,
and the 26 columns and a zero in all the others.

Signed Integer. Signed integers are stored in the computer in twos
complement form. If you are reading or writing signed integers in a
language, the compiler converts for you, according to the formatting
conventions of the individual language.

A signed n-bit integer in twos complement form can represent any

value from �(2n�1) to +2n�1�1.

When the n-bit positive integer i is added to its n-bit integer
negative (complement), �i , and both are in twos complement form,
the result is always an n-bit zero.

Reading a Signed Integer: The computer represents both positive
and negative numbers in twos complement form much the same
way that it would represent an unsigned integer: beginning at
the rightmost (least signi�cant bit) and going toward the left, the

columns have progressively greater weight: 20, 21, 22, . . . 2n�1. The
only di�erence is that the most signi�cant bit of a twos complement

number is negative. That is, it has a weight of �(2n�1).

To manually convert a signed integer in twos complement form to
a base-ten integer, you can use the column method explained in
Unsigned Integers, above. However, you give the leftmost column of

a twos complement number a weight of �(2n�1).

Formatting Data Types 2-5

In the example below, this method is used to interpret the signed
binary integers 01010101 and 10101010, written in twos complement
form, as decimal-based integers:

(01010101)base 2 = the sum of: (10101010)base 2 = the sum of:

(1 x 20) = 1 (0 x 20) = 0

(0 x 21) = 0 (1 x 21) = 2

(1 x 22) = 4 (0 x 22) = 0

(0 x 23) = 0 (1 x 23) = 8

(1 x 24) = 16 (0 x 24) = 0

(0 x 25) = 0 (1 x 25) = 32

(1 x 26) = 64 (0 x 26) = 0

(0 x �(27)) = 0 (1 x �(27)) = �128

(01010101)base 2 = 85base 10 and (10101010)base 2 = �86base 10

Writing a Signed Integer: Converting a signed base-ten number to
twos complement form is not di�cult.

You can represent the positive signed integers just as explained in
Unsigned Integers, above.

You can represent a negative integer quickly and easily using the
following technique, which takes advantage of the properties of binary
numbers: First, ignoring the sign, represent the value as an unsigned
binary integer. Next, reverse all the 0s and 1s. Finally, add 1 to the
result. Thus, the twos complement of 10101010 is (01010101 + 1), or
01010110.

You can check your conversion by adding the positive and negative
numbers (in twos complement form) to see if they total zero. From
the example above, notice that adding the 8-bit integer 10101010
to its twos complement, 01010110, yields a 9-bit result, 100000000.
However, the system de�nes the result type to be 8-bit integer and
recognizes only the 8 zeros, so the result is zero.

2-6 Formatting Data Types

Figure 2-3 shows bit formats for the 32-bit integer type.

Figure 2-3. Bit Format: 32-Bit Integer

Real

A real number is a value in the set of zero and the positive or
negative rational numbers. Signed integers and fractions are
included, although fractions may be approximated. Imaginary
and complex numbers are not included in the set of real numbers,
although high-level languages may have constructs for storing and
working with them.

The real data type is a useful form for representing very large or
small values. Special formats are reserved to represent zero, in�nity,
and NaN (not a number).

Real data type represents real numbers by using a type of
oating-point, or scienti�c, notation. In this notation, you generally
express a very large or very small number as a fraction multiplied
by a power of the number base. For example, the base-ten
number .000025 could be expressed as +.25 * 10 �4 The general
oating-point, or scienti�c notation, form is:

Sf F * (B ** Se E)

where: Sf is the sign (+ or �) of the number.

F is the fraction or mantissa.

* is the symbol for multiplication.

B the base is represented as an integer.

** is the symbol for exponentiation.

Se is the sign (+ or �) of the exponent.

E the exponent or characteristic is
represented as an integer.

Formatting Data Types 2-7

Note In this manual, assume all representations of oating-point real
numbers use an integer base of 10 (decimal-based, or base-ten) unless
otherwise indicated. Internally, the computer uses a base of two (is
binary-based), and the conversion is approximate.

You can represent real numbers four ways. You can choose either
in IEEE or HP3000 format and use either single-precision or
double-precision size.

IEEE or HP3000 Format. MPE XL recognizes two formats for
storing oating-point real numbers: IEEE and HP3000. Programs
compiled in NM use IEEE as the default. Programs compiled in
CM use HP3000, the MPE XL emulation of the MPE V/E system
oating-point format. NM programs accessing HP3000 data must
either specify a special compiler option or convert CM data to NM
before operations.

Single or Double Precision. You can represent single-precision
(32-bit) or double-precision (64-bit) real numbers in both IEEE and
HP3000 notation. Table 2-2 shows a summary of the range and
accuracy of each.

Table 2-2. Ranges and Accuracies for Floating-Point Real Numbers

IEEE HP3000

Single precision:

Accuracy (in decimal digits) 7.2 6.9

Range �3.4E38 to �1.4E�45
0

+1.4E�45 to +3.4E38

�1.27E77 to �8.6E�78
0

+8.6E�78 to +1.2E77

Double precision:

Accuracy (in decimal digits) 15.9 16.5

Range �1.8E308 to �4.9E�324
0

+4.9E�324 to +1.8E308

�1.2E77 to �8.6E�78
0

+8.6E�78 to +1.2E77

Note: Values in this table are rounded.

Fields of a Real Number. In MPE XL format, real numbers have
three �elds:

Sign.
Mantissa.
Exponent.

Di�erent representations of real numbers have the three �elds aligned
on di�erent boundaries. In all formats, the sign �eld is the �rst bit,
the mantissa is in normalized form, and the exponent is biased.

The sign �eld, bit (0:1), is 0 if number is positive, 1 if negative.

2-8 Formatting Data Types

Mantissas are represented in normalized form. That is, the
leading one is stripped and binary point is not explicitly
expressed. Each expressed mantissa, then, has an implied leading
one and binary point. For example, a mantissa represented
by 10101010101010101010101 is interpreted as the value
1.10101010101010101010101.

The exponents of real numbers are biased. This means that both
positive and negative true exponents are represented using only
unsigned binary integers. The bias amount, or excess, is the
di�erence between the true exponent and the represented exponent.
The negative true exponents correspond to the lower range of the
represented exponents. The positive true exponents correspond to
the upper range of the represented exponents. The true exponent
zero corresponds to the midpoint in the range of the represented
exponents. For example, consider an exponent �eld n bits long where
the true exponent is T , the represented exponent is E , and the bias

is b. For any real number x , then, xT = xE�b , and xE = xT+b .

Exponent �elds of all zeros or all ones are reserved. If the exponent
of a oating-point number is all zeros and the mantissa is zero, the
number is regarded as zero. If the exponent of a oating-point
number is all zeros and the mantissa is not all zero, the number is
regarded as denormalized. If the exponent of a oating-point number
is all ones and the mantissa is zero, the number is regarded as a
signed in�nity. If the exponent is all ones and the mantissa is not
zero, the interpretation is NaN (Not-a-Number, unde�ned).

If any process attempts to operate on an in�nity or a NaN, a system
trap may occur and data may be corrupted. Invalid operation is
signaled when the source is a signaling or a quiet NaN. The result is
the destination format's largest �nite number with the sign of the
source.

Any operation that involves a signaling NaN or invalid operation
returns a quiet NaN as the result when no trap occurs and a
oating-point result is to be delivered. If an operation is using one
or two quiet NaNs as input, it signals no exception; however, if a
oating-point result is to be delivered, a quiet NaN is returned that
is the same as one of the input NaNs.

IEEE Real Number Format. IEEE numbers conform to the format
set up by the Institute of Electrical and Electronics Engineers
and the American National Standards Institute (std 754-1985).
Single-precision numbers are one NM word, aligned on 32-bit
boundaries. Double precision numbers are two NM words, aligned on
64-bit boundaries.

Note In this manual, bit �elds are described as (bit :length), where bit is
the �rst bit in the �eld and length is the number of consecutive bits
in the �eld. For example, \bits (11:3)" refers to bits 11, 12, and 13.
Bit 0 is the most signi�cant bit.

Formatting Data Types 2-9

IEEE numbers in MPE oating-point notation contain three �elds:

Sign: The sign �eld is bit (0:1), the �rst bit of the �rst
word. A value of 0 indicates the number is positive,
and a value of 1 indicates the number is negative.
The sign bit is the only di�erence between a real
number value and its negative.

Exponent: The single-precision exponent �eld is bits (1:8)
of the �rst NM word, and is biased by 127. The
double-precision exponent �eld is bits (1:11) of the
�rst NM word, and is biased by 1023.

Mantissa: The single-precision mantissa �eld is bits (9:23). The
double-precision mantissa �eld is bits (12:52). MPE
stores the mantissa as normalized data represented
as a binary number of 23 bits for the single-precision
format, and 52 bits, with an assumed 1. leading the
�eld.

A previous section, \Fields of a Real Number", explains biased
exponent and normalized mantissa.

IEEE Conversion Example. Consider converting an IEEE
single-precision oating-point number into a base-ten number using
this formula:

(-1)sign * 2Exponent�127 * (1.0 + Mantissa + 2�23)

where: Sign Bit (0:1), the sign �eld, is 0 if
number is positive, 1 if negative.

* is the symbol for multiplication.

Exponent Bits (1:8), the exponent �eld, is the
biased representation of the true
exponent.

+ is the symbol for addition.

Mantissa Bits (9:23) is the normalized form of
the mantissa, or fraction.

2�23 is added for rounding.

2-10 Formatting Data Types

The (base-ten) oating-point number 100.00 (hexadecimal $42c80000)
is represented as 0 10000101 10010000000000000000000. Using the
formula, we obtain the correct result as follows:

Table 2-3.

Determining the Base-Ten Equivalent of an IEEE Real

Number

S(ign) E(xponent) M(antissa)

= 0 10000101 10010000000000000000000

(�1)S *2E-127 *(1.0+M+2�23)

= �10 * 2133-127 * 1.0+9/16 +2�23

= 1 * 64 * 1.0 + 0.5625 + .00000011920929

= 64 * 1.56250011020929

= 100

Figure 2-4 shows the bit format for oating-point real numbers in
IEEE single-precision format.

Figure 2-4.

Bit Format: Single-Precision Real in IEEE Floating-Point Notation

Formatting Data Types 2-11

Figure 2-5 shows the IEEE real number double-precision bit format.

Figure 2-5.

Bit Format: Double-Precision Real in IEEE Floating-Point Notation

HP3000 Real Number Format. Single-precision HP3000 real numbers
are 32 bits (2 CM words), and double-precision are 64 bits (4 CM
words). When stored in memory, HP3000 reals are aligned on CM
word boundaries.

Note In this manual, bit �elds are described as (bit :length), where bit is
the �rst bit in the �eld and length is the number of consecutive bits
in the �eld. For example, \bits (11:3)" refers to bits 11, 12, and 13.

Real numbers in HP3000 oating-point notation contain three �elds:

Sign: The sign �eld is bit (0:1) of the �rst word. A value
of 0 indicates the number is positive and a value of
1 indicates the number is negative. The sign is the
only di�erence between a real number value and its
negative.

Exponent: The exponent �eld is bits (1:9) of the �rst CM
word in the single-precision and double-precision
format. The represented exponent range is 0 to 511.
Exponents are biased by +256.

Mantissa: The mantissa �eld is bits (10:6) of the �rst CM
word and bits (0:16) of the other words. MPE
stores the mantissa as normalized data of 22 bits
for the single-precision format, and 54 bits for the
double-precision, with an asssumed 1. leading the
�eld.

A previous section, \Fields of a Real Number", explains biased
exponent and normalized mantissa.

2-12 Formatting Data Types

Note In this manual, bit �elds are described as (bit :length), where bit is
the �rst bit in the �eld and length is the number of consecutive bits
in the �eld. For example, \bits (11:3)" refers to bits 11, 12, and 13.
Bit 0 is the most signi�cant bit.

Figure 2-6 shows the HP3000 real number single-precision bit format.

Figure 2-6.

Bit Format: Single-Precision Real in HP3000 Floating-point Notation

Formatting Data Types 2-13

Figure 2-7 shows the HP3000 real number double-precision bit
format.

Figure 2-7.

Bit Format: Double-Precision Real in HP3000 Floating-point Notation

Decimals

MPE V has system microcode instructions to handle packed
decimals. For compatibility, MPE XL has compiler library
procedures that run in NM and emulate the MPE V instruction set.

In MPE XL, three languages use decimal types. COBOL and RPG
use packed or unpacked decimals. BASIC has its own type, the
oating-point decimal.

In the decimal types, numbers are represented decimal digit by
decimal digit. The individual digits of the decimal number are each
represented in a BCD (Binary Coded Decimal) nibble. Each nibble is
four bits long.

2-14 Formatting Data Types

Figure 2-8 shows the bit format for each BCD nibble portion of a
decimal.

Figure 2-8. Bit Format: BCD Nibble

Packed Decimal Format. Packed decimals represent numbers with
BCD (Binary Coded Decimal) nibbles. In packed decimals, each
decimal digit of the number is individually represented by a 4-bit
BCD.

Decimals are always an even number of nibbles long.

Figure 2-8, above, shows the bit format for each BCD nibble portion
of a decimal.

The rightmost (least signi�cant) nibble is for the sign. There are
three de�ned nibble combinations for the sign nibble. The three
de�ned codes are:

hexadecimal C (1100) for positive
hexadecimal D (1101) for negative
hexadecimal F (1111) for unsigned

Since each of the other nibbles represents the decimal digits 0
through 9, the valid nibble combinations are 0000 through 1001 for
all but the last nibble.

For example, to represent �52,194 as a packed decimal type, you
would use one nibble for each of the �ve digits and (the last) one for
the sign:

0101 0010 0001 1001 0100 1101

5 2 1 9 4 D=negative

In COBOL, the PICTURE (PIC) clause speci�es the position of the
decimal point. For example, the PIC clause 999V99, speci�es three
digits will be followed by an implied decimal point and two more
digits. If you pass the digits 12345 to a variable de�ned with this
PIC clause, its value would be 123.45.

Formatting Data Types 2-15

In COBOL and RPG, using packed decimal will probably make your
program more e�cient than using unpacked. If you do use unpacked
decimal, the compiler usually converts to packed for calculations.

Figure 2-9 shows the bit format for the packed decimal.

Figure 2-9. Bit Format: Packed Decimal

Unpacked Decimal Format. COBOL and RPG represent numbers
with packed and unpacked decimal types. For an unpacked decimal,
each decimal digit is one byte long. Unpacked decimals are ASCII
characters, interpreted by a correspondence code. The bit format is
the ASCII character format in Figure 2-1. For more information, see
the notes on COBOL and RPG, \Formatting Data in Programs",
later in this chapter.

Floating-Point Decimal Format. HP Business BASIC represents
decimal and short decimal types in oating-point decimal notation.
The oating-point decimal form is similar to the E notation used to
represent very small or very large numbers, as when 3.2E�27 is used
to represent the value 3.2 x 10�27. The BASIC number is normalized
(see below).

A decimal in HP Business BASIC/XL is 64 bits long; a short decimal
is 32 bits long. Table 2-4, below, shows a summary of the range and
accuracy of each.

2-16 Formatting Data Types

Table 2-4. Range and Precision for Floating-Point Decimals

BASIC Decimal BASIC Short Decimal

Precision: 12 digits 6 digits

Range: �9.99999999999E511 through �1.00000000000E�511
0

1.00000000000E�511 through 9.99999999999E511

�9.99999E63 through �1.00000�E63
0

1.00000E�63 through 9.9999E63

The representation of the value zero is a special case. To represent
the value zero, set all the bits to zero. Since the number is
normalized, it is assumed that the mantissa never begins with a zero
unless the value of zero is intended.

Fields of BASIC decimals: Floating-point decimals have three �elds:

Exponent.

Mantissa.

Sign.

The exponent �eld contains a signed integer, represented in twos
complement form. The decimal exponent �eld is the �rst 10 bits, bits
(0:10), and ranges from �511 to +511. The short decimal exponent
�eld is the �rst seven bits (bits 0:7) and ranges from �63 to +63.

Note In this manual, bit �elds are described as (bit :length), where bit is
the �rst bit in the �eld and length is the number of consecutive bits
in the �eld. For example, \bits (11:3)" refers to bits 11, 12, and 13.
Bit 0 is the most signi�cant bit.

In the mantissa �eld, each decimal digit of the number is individually
represented by a BCD (Binary Coded Decimal) nibble. Each nibble
is four bits long. (See Figure 2-8.) Since each nibble in this �eld
represents the decimal digits 0 through 9, the valid mantissa nibble
combinations are 0000 through 1001.

The number is normalized. That is,

The decimal point is implied, or assumed to belong, immediately
following the �rst BCD digit of the mantissa �eld.

The �rst BCD of the mantissa is never zero, unless you intend to
represent the number zero.

The mantissa �eld of a 64-bit decimal is bits (12:48). It has the
capacity for 12 digits, each represented in a 4-bit nibble. The
mantissa �eld of a 32-bit decimal is bits (8:24). It has the capacity
for 6 digits, each represented in a 4-bit nibble.

Formatting Data Types 2-17

The sign �eld of a 64-bit decimal is bits (60:4), which are the four
least signi�cant bits, or the least signi�cant BCD nibble. The
hexadecimal value C (1100) in the sign nibble indicates the number is
positive, and D (1101) indicates the number is negative.

The sign �eld of a 32-bit short decimal is the seventh bit, bit (7:1). A
value of 0 in the sign bit indicates the number is positive, and a value
of 1 indicates the number is negative.

Figure 2-10 shows the bit format for the oating-point decimal.

Figure 2-10. Bit Format: Floating-Point Decimal

Figure 2-11 shows the bit format for the short oating-point decimal.

Figure 2-11. Bit Format: Short Floating-Point Decimal

2-18 Formatting Data Types

Formatting Data in
Programs

The correct format for data in a program depends on the
programming environment and the programming language.

NM and CM
Programming
Environments

MPE XL has two programming environments: NM and CM. NM is
based on a 32-bit word. CM emulates MPE V; both are based on a
16-bit word. In NM, data types are aligned on 32-bit boundaries, by
default, to improve performance. Many structures that are aligned on
32-bit boundaries in MPE XL NM are aligned on 16-bit boundaries
in MPE V/E.

You may have to plan for accurate conversion in mixed-mode
applications. Commands and compiler options are provided by
supported languages to control alignment.

For example, in COBOL you can choose compiler options for
32-bit NM standard or 16-bit CM standard boundaries. Choose
CALLALIGNED or CALLALIGNED[16] to specify alignment in calling
programs, and choose LINKALLIGNED and LINKALLIGNED[16] to
specify program default alignment.

In Pascal and FORTRAN, compiler options HP3000 32 and
HP3000 16 specify NM or CM standard alignment and real number
format. For example, choosing HP3000 16 will cause the compiler
to align data in records on 16-bit CM standard boundaries instead
of 32-bit NM standard boundaries, and to format oating point real
numbers in HP3000 standard notation instead of IEEE NM notation
that is standard in NM.

For an application to use both NM and CM aligned data �les, you
could specify the program record de�nitions to force alignment on
a structure-by-structure basis. For example, sync16 or sync32 in
COBOL , or $alignment$ in Pascal does this.

In this manual, assume that data types are MPE XL Native Mode
data types and NM aligned. If CM is meant, CM will be speci�cally
mentioned.

Formatting Data Types 2-19

Programming
Languages

Table 2-5, following, shows corresponding data types in the di�erent
NM languages:

Table 2-5.

Correspondence of Data Types Across Languages:

Intrinsics, BASIC, and C

Data Type Intrinsics HP Business
BASIC/XL

HP C/XL

Character C $
dimension as
1 character

CHAR or
UNSIGNED

CHAR

Integer:
16-bit

unsigned

U16 N/A UNSIGNED
SHORT INT

Integer:
32-bit

unsigned

U32 N/A UNSIGNED INT
or UNSIGNED
LONG INT

Integer:
64-bit

unsigned

U64 N/A N/A

Integer:
16-bit
signed

I16 SHORTINT
or subrange

[�32768..32767]

SHORT INT

Integer:
32-bit
signed

I32 INTEGER INT or ENUM

Integer:
64-bit
signed

I64 N/A N/A

Real
32-bit
(Single-
Precision)

R32 SHORTREAL FLOAT

Real
64-bit

(Double-
Precision)

R64 REAL DOUBLE

Decimal: Packed N/A N/A N/A

Decimal:
Unpacked

N/A N/A N/A

Decimal:
Floating-
Point

N/A Decimal or
Short Decimal

N/A

2-20 Formatting Data Types

Table 2-6.

Correspondence of Data Types Across Languages:

COBOL, FORTRAN, and Pascal

Data Type HP COBOL
II/XL

HP FORTRAN
77/XL

HP Pascal/XL

Character DISPLAY
or group item

CHARACTER CHARACTER

Integer:
16-bit

unsigned

PIC S9 to
PIC S9(4)
COMP

LOGICAL OR
LOGICAL*2

0..65535
or any 16-bit
SUBRANGE

Integer:
32-bit

unsigned

PIC S9(5) to
PIC S9(9)
COMP

LOGICAL OR
LOGICAL*4

Any 32-bit
subrange

Integer:
64-bit

unsigned

PIC S9(10) to
PIC S9(18)
COMP

N/A N/A

Integer:
16-bit
signed

PIC S9 to
PIC S9(4)
COMP

INTEGER or
INTEGER *2

SHORTINT or
any 16-bit
subrange

Integer:
32-bit
signed

PIC S9(5) to
PIC S9(9)
COMP

INTEGER or
INTEGER *4

INTEGER or
any 32-bit
subrange

Integer:
64-bit
signed

PIC S9(10) to
PIC S9(18)
COMP

N/A N/A

Real
32-bit
(Single-
Precision)

N/A REAL or
REAL*4

REAL

Real
64-bit

(Double-
Precision)

N/A DOUBLE
PRECISION
or REAL*8

LONGREAL

Decimal: Packed COMP-3 N/A N/A

Decimal:
Unpacked

DISPLAY N/A N/A

Decimal:
Floating-Point

N/A N/A N/A

Formatting Data Types 2-21

Language Notes

The following notes relate to the language-speci�c information in
the above table. For further information, consult the manual for the
individual languages.

Intrinsics. Intrinsic parameters may require data of type address
(@32 and @64). Address is a 32-bit or 64-bit integer that represents
a location in memory. The system recognizes by the context of the
command that it is to access or operate on the memory cell at that
address.

Note In this manual, bit �elds are described as (bit :length), where bit is
the �rst bit in the �eld and length is the number of consecutive bits
in the �eld. For example, \bits (11:3)" refers to bits 11, 12, and 13.
Bit 0 is the most signi�cant bit.

Booleans (B) are typically one byte long. Only the rightmost bit, bit
(7:1), is interpreted. If this bit is odd (usually 1), the logical value
is true; if it is even (usually 0), the boolean value is false. (See the
notes for Booleans in HP C/XL).

Records (intrinsic type REC) and arrays (A) are sets of related data.
Each piece of the data is in a �eld, and the �elds are connected. The
size and type of the �elds are speci�ed when the array or record is
created.

The �elds in a record can vary in size and can contain various types.
The �elds in an array, called the elements of the array, are all the
same size and all contain the same data types. Arrays are often
de�ned in the supported languages with a notation like [lb:ub] or
(lb..ub), where lb is the lower bound of the array, and ub is the upper
bound.

Arrays and records are complex data types that can themselves be
used to build more complex data types, such as an array of records.

For more information about intrinsic data types, refer to MPE V/E
Intrinsics Reference Manual (32033-90007).

HP Business BASIC/XL. Compiler library routines are designed to
work with the packed decimal, not the BASIC oating-point decimal.
The BASIC decimal bit format is explained in the previous section
on decimals in this chapter.

For more information about HP Business BASIC/XL data types,
refer to HP Business BASIC/XL Reference Manual (32715-90001).

HP C/XL. HP C/XL notates 32-bit addresses with *name and 64-bit
addresses with ^name, where name is the type of the data being
addressed.

In HP C/XL a Boolean is stored as any character type; value of zero
represents false, and any non-zero is interpreted as true.

2-22 Formatting Data Types

The C language has certain data conversion conventions for
parameter passing. It requires that floats be converted to doubles,
that chars be converted to ints, and that arrays of type T be
converted to pointers to type T . Formal parameters are actually
declared as the \converted" type. For example, if you declare a
formal parameter as an array of type T , it is actually declared as a
pointer to type T .

For more information about HP C/XL data types, refer to HP C
Reference Manual (92434-90001) and HP C/XL Reference Manual
Supplement (31506-90001).

HP COBOL II/XL. HP COBOL II/XL integers may not be an exact
match when exchanged with other languages. They match in size and
you can store data across languages, but you may have di�culties in
computational operations. The COBOL unsigned integer is di�erent
from the Pascal integers. COBOL integers may also have a smaller
range. (See the section in the next chapter about converting decimals
to integers.)

In HP COBOL II/XL, you use clauses to specify three things about
data: SIGN, USAGE, and PIC (PICTURE).

The optional SIGN clause indicates whether a number will have an
operational sign in non-standard position in its representation.

You indicate the usage of data in the USAGE clause. Usage
is DISPLAY (ASCII alphanumeric type) by default. Several
COMPUTATIONAL uses can be speci�ed instead.

PIC clauses de�ne type, size and symbols to be inserted into
elementary expressions. The PIC clause speci�es the number of
digits; PIC 9(n) indicates a numeric expression n digits long, and
PIC S9 indicates a signed number one digit long. A letter V in the
PIC clause indicates the position to insert the the decimal point.
(Default is decimal rightmost, or integer.) Other symbols are used for
placing such insertions as comma separators.

For example, to set up a �eld with three digits to the left of the
decimal and two to the right, you would specify PIC 999V99, or PIC
9(3)V9(2).

Unpacked Decimals: Unpacked decimals, display type, use ASCII
alphanumeric representations for numbers. Represent unsigned digits
with the ASCII characters 0 to 9. For signed numbers, use the
following ASCII character representations:

f represents +0

Letters A through I represent digits +1 through +9

g represents �0

Letters J through R represent digits �1 through �9

Formatting Data Types 2-23

The COBOL number line for usage display unpacked signed decimal
digits looks like this, then:

R Q P O N M L K J } { A B C D E F G H I

-+--+--+--+--+--+--+--+--+--|--+--+--+--+--+--+--+--+--+-

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

For further information, refer to HP COBOL II/XL Programmer's
Guide (31500-90002) or COBOL II Reference Manual (31500-90001)
and COBOL II/XL Reference Manual Supplement (31500-90005).

HP FORTRAN 77/XL. In HP FORTRAN 77/XL, LOGICAL and
INTEGER default to 32 bits. Using the $SHORT compiler option will
cause the default to be 16 bits. Using *2 or *4, however, will override
any compiler options.

For further information, refer to HP FORTRAN 77/XL
Programmer's Guide (31501-90002) or HP FORTRAN 77/XL
Reference Manual (31501-90010).

HP Pascal/XL. HP Pascal/XL recognizes 32-bit addresses as
LOCALANYPTR or any normal pointer type, and 64-bit addresses
as GLOBALANYPTR or any pointer type declared with the
$extnaddr$ compiler directive.

For further information, refer to HP Pascal Reference Manual
(31502-90001), and HP Pascal Programmer's Guide (31502-90002).

Language information is in the following manuals:

HP Business BASIC/XL Reference Manual (32715-90001)

HP C Reference Manual (92434-90001) and HP C/XL Reference
Manual Supplement (31506-90001)

HP COBOL II/XL Programmer's Guide (31500-90002)

COBOL II Reference Manual (31500-90001) and COBOL II/XL
Reference Manual Supplement (31500-90005)

HP FORTRAN 77/XL Reference Manual (31501-90010)

HP FORTRAN 77/XL Programmer's Guide (31501-90002)

HP Pascal Reference Manual (31502-90001)

HP Pascal Programmer's Guide (31502-90002)

2-24 Formatting Data Types

3

Converting Data Types

This chapter discusses converting each of the system data types
described in Chapter 2 to each of the others.

Data is information structured in forms that the computer is
designed to process. Data conversion is translating that information
into another acceptable structure without losing meaning.

If you pass data between routines that do not use the same
types or formats, you lose meaning and integrity. The receiving
routine may not be able to read the data at all. It may divide
the bits it reads into the wrong size chunks. It may interpret the
arrangement of bits by its own formatting conventions. The resulting
misinterpretation could convey information you did not intend and
give you unpredictable results in computations.

Passing Data To pass data between routines in di�erent languages, you may need
to convert it to make it readable and to maintain its integrity. Data
created in one routine is formatted according to the language type
conventions of that routine; if the receiving routine divides the input
bit stream in di�erent places, it will not read the same values. If
the receiving and sending routines do not have the same de�nitions
of data types, any data that one routine passes to the other will be
meaningless, and any operation on that data will be unpredictable.

Often the programming language has commands or compiler
directives the convert or coerce data to the required type. You can
sometimes convert input and output data with a command line in a
program. Often an assignment statement, like xtype := yvalue or
xtype=yvalue is su�cient.

Sometimes a more indirect conversion is necessary. Since all data
types in all MPE languages are either primitive data types or are
built from them, you can translate data from one language into a
primitive data type. If necessary, you can then translate the resulting
primitive type into the type you need.

High-level languages can access and use most system intrinsics and
compiler routines.

MPE V had system-level support of applications written in SPL/V
language that perform packed-decimal operations; CM emulates these
operations on MPE XL. In NM, compiler library routines can be used

Converting Data Types 3-1

to manipulate decimals. Because the sizes of the operands are passed
as parameters, these routines are useful in applications where the
�eld sizes are not known at compile-time, such as general-purpose
database applications and report writers.

Packed-decimal procedures must be declared as intrinsics to be called
from within high-level NM languages. If speed is a primary concern,
consider doing packed-decimal operations within HP COBOL II/XL
or HP RPG/XL.

For more information see MPE XL Intrinsics Reference Manual
(32650-90028) and Compiler Library/XL Reference Manual
(32650-90029).

Converting from
Character:

This section o�ers suggestions about converting from one character
set to another, and from ASCII (character) numbers to numeric data
types.

To Other Character Since all characters are 8 bits long and all are byte-aligned, there is
no incompatibility between between languages or environments.

You may want to convert between di�erent character sets. ASCII
and EBCDIC are the supported English character sets; several native
language character sets like the Japenese EBCDIK and JISCII are
also supported.

Between ASCII and EBCDIC

The CTRANSLATE intrinsic accepts a string of characters in either
ASCII or EBCDIC, and returns a string translated into the other.
The translation string is returned the same bu�er unless you specify
another.

ASCII and EBCDIC are described in Chapter 2 of this book, and
their code equivalents are in Appendix A.

Between Native Languages

The Native Language Subsystem (NLS) supports six character sets
containing the following native languages:

USASCII supports NATIVE-3000, an arti�cial language

ROMAN8 supports:

NATIVE-3000
American English
Canadian French
Danish
Dutch
English
Finnish

3-2 Converting Data Types

French
German
Italian
Norwegian
Portuguese
Spanish
Swedish
Icelandic

KANA8 supports:

NATIVE-3000
KATAKANA

ARABIC8 supports:

Arabic
Western Arabic

Greek8 supports Greek

Turkish8 supports Turkish

Use the intrinsic NLINFO or generate a report from the NLUTIL
utility to review information about a character's native language
format. For more information, refer to MPE XL Intrinsics Reference
Manual (32650-90028).

Use the intrinsic CTRANSLATE to translate between EBCDIK and
JIS(KANA8). EBCDIK is a Hewlett-Packard's Japanese version of
EBCDIC. JIS is a Japanese International Standard code (JISCII is a
Japanese version of US ASCII); KANA8 is an 8-bit JIS code.

Use the intrinsic NLREPCHAR to replace nondisplayable characters.
It accepts a character array containing nondisplayable characters
and returns another character array with replacement characters.
(NLINFO can tell you if the character is nondisplayable because it is a
control code or an unde�ned graphic character).

Between Numeric Formats

If you are sending data �les to, or receiving data from, a foreign
country, you may discover that numbers are represented di�erently
in di�erent native languages. The following intrinsics are used for
converting ASCII numbers between native language formats:

NLCONVNUM takes data in a foreign language (one that is supported
in NATIVE-3000) and translates it to the system's native language.
It accepts a foreign language number with decimal and thousands
separators and returns an ASCII number with NATIVE-3000
decimal and thousands separators. As an option, the decimal and
thousands separators can be stripped.

NLFMTNUM takes native language data and translates it to a foreign
language that is supported by NATIVE-3000. It accepts an
ASCII number string, which may include NATIVE-3000 decimal
separator, thousands separator, and currency symbol or name. It

Converting Data Types 3-3

returns a string with the same number, but formatted with the
decimal separator, thousands separator, and currency symbol or
name of the native language you specify.

NLNUMSPEC accepts a string as a logical byte array (minimum
60 bytes) and a language identi�cation number. It returns the
string encoded with information (number speci�cations) about the
characteristics of the language, such as

Direction (left-to-right or right-to-left),
Digit range.
Symbols for digits, currency, mathematical operations, and
thousands and decimal separators.

For further information about the Native Language Subsystem, refer
to Native Language Programmer's Guide (32650-90022).

To Integer Individual languages may have simple assignment commands to
accept characters and interpret the symbol as its value. For example,
STRREAD in Pascal or READ in FORTRAN will read an ASCII number
and format a variable as the value the character string represents.

The intrinsic DBINARY accepts an octal-based, a hexadecimal-based,
or a signed decimal-based number in ASCII characters, and returns a
32-bit binary integer in twos complement (signed) form.

A character string beginning with a percent sign (%) is treated as
octal (base 8) value. A string beginning with a dollar sign ($) is
treated as a hexadecimal (base 16) number. A string begining with a
plus sign (+), a minus sign (�), or a number (1 through 9, no leading
blanks allowed) is treated as a decimal (base 10) number.

The intrinsic BINARY performs a similar operation; it converts a
numeric ASCII string into a 16-bit binary value. A parameter
indicates the number of input bytes.

The compiler utility procedures, EXTIN' (CM) and HPEXTIN (NM)
can also be used to convert from ASCII to integer. Any fractions in
the input number string will be truncated in integer results.

To Real As with converting from character to integer (above), the simplest
way to convert character to real type may be an assignment
statement within the language.

The compiler utility procedures EXTIN' (CM) and HPEXTIN (NM)
accept a byte array (a character string of ASCII digits passed by
reference) and convert it into an internal representation. Leading
blanks in the input string are ignored. A parameter can be set
to treat trailing blanks as zeros. Dollar signs and other currency
symbols and commas for thousands separators are counted in the
input length, but are ignored in the output.

In the datatype parameter, you specify which internal representation
you want: an integer of 16 bits or 32 bits, or a real of 32 bits or 64

3-4 Converting Data Types

bits. The result parameter is a 32-bit pointer to the �rst word of
result storage, according to the type speci�ed. Other parameters let
you specify �eld width, decimal places, exponents, and fractions.

To Packed Decimal In MPE V, system instructions use packed decimals; for
compatibility, MPE XL has compiler library procedures that run
in NM and emulate the MPE V instruction set. In MPE XL, the
packed decimal type is used only in COBOL or RPG, however.
Within COBOL and RPG, use the MOVE command to convert easily
between types by assignment.

The NM compiler procedure HPPACCVAD accepts ASCII digits and
returns the packed decimal digits used by MPE V and in COBOL
and RPG. The rightmost source digit indicates the sign; all other
digits must be unsigned or be leading blanks. Blanks between digits
are illegal. Leading blanks are converted to packed-decimal zeros. An
all-blank �eld converts to an unsigned zero. If the source has more
digits than the target, the result is left-truncated; if the target is the
larger, the result is padded with zeros on the left.

Because this procedure is external and general, it may not be
as e�cient as code optimized by the NM COBOL compiler.
Packed-decimal procedures must be declared as intrinsics to be called
from within high-level NM languages. If speed is a primary concern,
consider doing packed-decimal operations within HP COBOL II/XL
or HP RPG/XL.

Converting from
Integer

This section o�ers suggestions for converting integer data types to
character, other integers, real and decimal data types.

To Character Individual languages may have simple assignment functions to
accept integers and store them as characters, such as the WRITE and
STRWRITE command.

Signed integers in MPE XL NM are in twos complement form. MPE
XL uses a 32-bit standard word in NM, and a 16-bit standard word
in CM, as explained in Chapter 1, Introduction.

The intrinsic DASCII accepts a 32-bit signed integer by value. It
returns the value as an ASCII string to your character array and
gives you the number of characters in the result string. You specify,
in the parameters, whether the returned string is to be an octal
(base-8), a decimal (base-10), or a hexadecimal (base-16) number.
Di�erent bases are returned with di�erent justi�cations and lengths.

The intrinsic ASCII performs a similar operation with a 16-bit
integer.

Converting Data Types 3-5

The compiler utility procedures INEXT' and HPINEXT also accept an
integer and return a character string of ASCII digits.

To Other Integer All languages supported on 900 Series HP 3000 Computer Systems
with the MPE XL operating system have a way, within the language,
to assign value from one integer type to the other integer types.

To Real Most high-level languages have assignments to convert integers to
reals within the language.

The compiler functions DFLOAT and DFLOAT' convert a 32-bit integer
into a 64-bit real number.

To Packed Decimal The compiler procedure HPACCVBD converts a signed binary integer
to a packed decimal. The input number is considered to be in twos
complement form, from 2 to 12 bytes long.

Packed-decimal procedures must be declared as intrinsics to be called
from within high-level NM languages. If speed is a primary concern,
consider doing packed-decimal operations within HP COBOL II/XL
or HP RPG/XL.

Converting From
Real

This section o�ers some suggestions for converting real numbers in
oating-point notation to character, integer, other real, and decimal
data types.

To Character Within languages, there is usually a command or function like WRITE
or STRWRITE that will take a real value and print, display, or store it
as a string of ASCII characters.

The compiler utility procedures INEXT' and HPINEXT convert a real
number to a byte array for an output string of ASCII digits. The
resulting ASCII string can be represented in several formats. You can
choose options for representing the sign character, decimal points,
and the exponent.

To Integer As mentioned in the section above, most languages contain an
internal assignment function to format a real value as an integer.
Rounding and truncation rules di�er.

The compiler functions INT, INT', IFIX, and IFIX' all accept a
32-bit real number and return it, truncated, as an 16-bit integer.

Similarly, DFIX or DFIX' accept a 64-bit real number, truncate it, and
return it the result as a 32-bit integer.

If you round a number equidistant from two adjacent integers, like
1.5 or 2.5, you may �nd that IEEE and HP3000 return di�erent
results. In IEEE, a midpoint number rounds to the integer that has

3-6 Converting Data Types

a least signi�cant bit of zero; in other words, the even integer. For
example, �1.5 rounds to �2, and 2.5 rounds to 2. HP3000 rounds to
the integer of greatest magnitude. For example, �1.5 rounds to �2
and 2.5 rounds to 3. Rounding directives within a language behave
in language-speci�c ways; consult the language manual, or test a
mid-point number if you are doubtful.

To Other Real As discussed in Chapter 2, there are two formats for real
oating-point numbers in MPE XL: IEEE and HP3000. Conversions
between the two can be done by choosing a particular compiler, or
by calling the intrinsic HPFPCONVERT. In addition, there are system
procedures that will truncate a fractional real number.

Real oating point numbers in this manual are assumed to be in
IEEE format, which is the default representation in NM. In CM data
�les or programs, oating point real numbers default to HP3000
format, an MPE XL emulation of the MPE V/E format.

If do not want the default IEEE real number format for a particular
application, you can force the HP3000 format by specifying the
HP3000 16 compiler directive in HP FORTRAN 77/XL and HP
Pascal. HP3000 16 selects MPE V/E alignment and HP3000 real
number format. As mentioned in Chapter 2, this also changes the
alignment.

Although you can use di�erent formats for separate external
procedures, you can only use one real number format within
an executable module. IEEE and HP3000 single-precision and
double-precision real numbers have di�erent accuracies and ranges.
You can convert between binary oating-point formats with the
intrinsic HPFPCONVERT.

You can specify any binary oating-point real number for input
to HPFPCONVERT, and ask for your output in any legal format.
Acceptable legal formats for source and destination are:

HP3000:
32-bit
64-bit

IEEE:
32-bit
64-bit

The conversion is performed by regarding the source number as
in�nitely precise and with unbounded range, and then rounding it to
�t the designated destination format. You have some choice in the
rounding mode.

The method of rounding and the way exceptions are signalled
depends entirely on the destination format, not the source.

Conversion is performed as if all arithmetic traps are disabled. No
trapping to user-supplied or system-supplied arithmetic trap routines
is done.

Converting Data Types 3-7

You may encounter two types of errors:

Underow or Overow
Inexact

Overflow and Underflow

Conversion between formats can present a range problem, when the
target range is smaller. Thus, overow and underow can occur in
performing either of the following conversions:

From a HP3000 single-precision real number to an IEEE
single-precision number.
From an IEEE double-precision real number to an HP3000
double-precision.

You may have to develop new error handling code to prevent this.

Accuracy

The mantissa of an HP3000 double-precision real number provides
enough bits for 16 digits of accuracy. The mantissa of an IEEE
double-precision real number provides for 15.9 digit of accuracy.
Conversion from HP3000 format to IEEE double-precision may cause
the least signi�cant digit of a 16-digit real number to be lost.

The loss of numeric precision is extremely small. However, if the
requirements of an application depend on the ASCII representation
of oating-point results, the e�ect could be important. For example,
if a program assumed 16-digit accuracy and requested 16 digits for
formatting output, with trailing zero suppression, the number 64.4
would appear as 64.4 when the system was running in CM, but
would appear as 64.40000000000001 when the system was running in
NM.

Truncating

The compiler function AINT or AINT' accepts a 32-bit real number
and truncates it to return an integer-like number in 32-bit real
representation.

The compiler function DDINT or DDINT' truncates a 64-bit longreal
number to return an integer-like number in 64-bit longreal
representation.

To Packed Decimal In languages other than COBOL and RPG, follow these steps to
convert from an input real to a packed decimal:

1. Multiply or divide the real number by an appropriate power of 10.

2. Convert the resulting value to an base-ten integer.

3. Convert that integer to a decimal.

(See the previous sections about making these conversions.)

3-8 Converting Data Types

If your conversion is taking place within COBOL or RPG, you
cannot operate on a real number, as required in step 1 above.
Instead, follow these steps:

1. Convert the real number into a character.

2. Convert the resulting character to a decimal.

(See the previous sections about making these conversions.)

Converting from
Packed Decimal

This section o�ers some suggestions converting packed decimal data
types to character, integer, and real data types.

Compiler library routines can be used to manipulate decimals in NM.
Because the sizes of the operands are passed as parameters, these
routines are useful in applications where the �eld sizes are not known
at compile-time, such as general-purpose database applications and
report writers.

The compiler library packed-decimal procedures must be declared as
intrinsics if you use them in high-level NM languages. If speed is a
primary concern, consider doing packed-decimal operations within
HP COBOL II/XL or HP RPG/XL.

If you are working within COBOL or RPG, you would use PIC
clauses and the MOVE command to convert types. The following
suggestions are for situations where you have other languages
involved.

To Character HPPACCVDA accepts a packed-decimal number and returns an ASCII
representation of the number. An unsigned source produces an
unsigned result; if the source a signed decimal, you specify whether
the target will be signed. You specify the number of digits in the
result.

To Integer HPPACCVDB accepts a packed decimal and returns an integer. The
integer is a signed binary number in twos complement form, and its
size depends on the number of digits in the source.

To Real If you are working outside COBOL or RPG, you would convert
indirectly as follows:

1. Convert the decimal value to an integer.

2. Convert the resulting integer to a real number.

3. Multiply or divide by the appropriate power of ten.

(See the previous sections about making these conversions.)

If you are working in COBOL, you can convert the decimal value to
an ASCII integer. Pass this to the routine, and convert it to a real
value there.

Converting Data Types 3-9

To Other Decimals The MOVE command is used to change one decimal to another within
COBOL or RPG.

Outside of COBOL or RPG, use the compiler library functions
HPPACSRD and HPPACSLD to perform right and left shifts on packed
decimals. You specify the amount of o�set (the number of digits to
be shifted).

To convert a packed decimal to a BASIC decimal, you should convert
�rst to a twos complement integer or type ASCII, and then convert
to decimal within BASIC with an assignment. For example, assign
an integer value to a decimal with decval = intval * n0, where n00 is
the appropriate power of 10. To convert between ASCII and decimal,
use the VAL or VAL$ internal functions.

3-10 Converting Data Types

A

ASCII and EBCDIC Code Values

The following table shows ASCII and EBCDIC character code
values along with their decimal, octal, and hexadecimal equivalents.
Control/graphic abbreviations, like NUL and SOH, are spelled out at
the end of the table.

ASCII/EBCDIC Character Sets

ASCII EBCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

NUL NUL 0 000 00

SOH SOH 1 001 01

STX STX 2 002 02

ETX ETX 3 003 03

EOT PF 4 004 04

ENQ HT 5 005 05

ACK LC 6 006 06

BEL DEL 7 007 07

BS 8 010 08

HT 9 011 09

LF SMM 10 012 0A

VT VT 11 013 0B

FF FF 12 014 0C

CR CR 13 015 0D

SO SO 14 016 0E

SI SI 15 017 0F

DLE DLE 16 020 10

DC1 DC1 17 021 11

DC2 DC2 18 022 12

DC3 TM 19 023 13

DC4 RES 20 024 14

NAK NL 21 025 15

SYN BS 22 026 16

ETB IL 23 027 17

ASCII and EBCDIC Code Values A-1

Table A-1. ASCII/EBCDIC Character Sets

ASCII EDCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

CAN CAN 24 030 18

EM EM 25 031 19

SUB CC 26 032 1A

ESC CU1 27 033 1B

FS IFS 28 034 1C

GS IGS 29 035 1D

RS IRS 30 036 1E

US IUS 31 037 1F

SP DS 32 040 20

! SOS 33 041 21

" FS 34 042 22

35 043 23

$ BYP 36 044 24

% LF 37 045 25

& ETB 38 046 26

' ESC 39 047 27

(40 050 28

) 41 051 29

* SM 42 052 2A

+ CU2 43 053 2B

, 44 054 2C

- ENQ 45 055 2D

. ACK 46 056 2E

/ BEL 47 057 2F

0 48 060 30

1 49 061 31

2 SYN 50 062 32

3 51 063 33

4 PN 52 064 34

5 RS 53 065 35

6 UC 54 066 36

7 EOT 55 067 37

A-2 ASCII and EBCDIC Code Values

ASCII/EBCDIC Character Sets

ASCII EDCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

8 56 070 38

9 57 071 39

: 58 072 3A

; CU3 59 073 3B

< DC4 60 074 3C

= NAK 61 075 3D

> 62 076 3E

? SUB 63 077 3F

@ SP 64 100 40

A 65 101 41

B 66 102 42

C 67 103 43

D 68 104 44

E 69 105 45

F 70 106 46

G 71 107 47

H 72 110 48

I 73 111 49

J 74 112 4A

K . 75 113 4B

L < 76 114 4C

M (77 115 4D

N + 78 116 4E

O | 79 117 4F

P & 80 120 50

Q 81 121 51

R 82 122 52

S 83 123 53

T 84 124 54

U 85 125 55

V 86 126 56

W 87 127 57

ASCII and EBCDIC Code Values A-3

ASCII/EBCDIC Character Sets

ASCII EDCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

X 88 130 58

Y 89 131 59

Z ! 90 132 5A

[$ 91 133 5B

\ * 92 134 5C

]) 93 135 5D

^ ; 94 136 5E

_ 95 137 5F

` - 96 140 60

a / 97 141 61

b 98 142 62

c 99 143 63

d 100 144 64

e 101 145 65

f 102 146 66

g 103 147 67

h 104 150 68

i 105 151 69

j 106 152 6A

k , 107 153 6B

l % 108 154 6C

m _ 109 155 6D

n > 110 156 6E

o ? 111 157 6F

p 112 160 70

q 113 161 71

r 114 162 72

s 115 163 73

t 116 164 74

u 117 165 75

v 118 166 76

w 119 167 77

A-4 ASCII and EBCDIC Code Values

ASCII/EBCDIC Character Sets, continued

ASCII EDCDIC Character Code Values

ASCII EBCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

x 120 170 78

y 121 171 79

z : 122 172 7A

{ # 123 173 7B

| @ 124 174 7C

} ' 125 175 7D

~ = 126 176 7E

DEL " 127 177 7F

128 200 80

a 129 201 81

b 130 202 82

c 131 203 83

d 132 204 84

e 133 205 85

f 134 206 86

g 135 207 87

h 136 210 88

i 137 211 89

138 212 8A

139 213 8B

140 214 8C

141 215 8D

142 216 8E

143 217 8F

j 144 220 90

k 145 221 91

l 146 222 92

147 223 93

m 148 224 94

n 149 225 95

o 150 226 96

p 151 227 97

ASCII and EBCDIC Code Values A-5

ASCII/EBCDIC Character Sets

ASCII EDCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

q 152 230 98

r 153 231 99

154 232 9A

155 233 9B

156 234 9C

157 235 9D

158 236 9E

159 237 9F

160 240 A0

~ 161 241 A1

s 162 242 A2

t 163 243 A3

u 164 244 A4

v 165 245 A5

w 166 246 A6

x 167 247 A7

y 168 250 A8

z 169 251 A9

170 252 AA

171 253 AB

172 254 AC

173 255 AD

174 256 AE

175 257 AF

176 260 B0

177 261 B1

178 262 B2

179 263 B3

180 264 B4

181 265 B5

182 266 B6

183 267 B7

A-6 ASCII and EBCDIC Code Values

ASCII/EBCDIC Character Sets

ASCII EBCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

184 270 B8

185 271 B9

186 272 BA

187 273 BB

188 274 BC

189 275 BD

190 276 BE

191 277 BF

192 300 C0

A 193 301 C1

B 194 302 C2

C 195 303 C3

D 196 304 C4

E 197 305 C5

F 198 306 C6

G 199 307 C7

H 200 310 C8

I 201 311 C9

202 312 CA

203 313 CB

204 314 CC

205 315 CD

206 316 CE

207 317 CF

208 320 D0

J 209 321 D1

K 210 322 D2

L 211 323 D3

M 212 324 D4

N 213 325 D5

O 214 326 D6

P 215 327 D7

ASCII and EBCDIC Code Values A-7

ASCII/EBCDIC Character Sets

ASCII EBCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

Q 216 330 D8

R 217 331 D9

218 332 DA

219 333 DB

220 334 DC

221 335 DD

222 336 DE

223 337 DF

\ 224 340 E0

225 341 E1

S 226 342 E2

T 227 343 E3

U 228 344 E4

V 229 345 E5

W 230 346 E6

X 231 347 E7

Y 232 350 E8

Z 233 351 E9

234 352 EA

235 353 EB

236 354 EC

237 355 ED

238 356 EE

239 357 EF

0 240 360 F0

1 241 361 F1

2 242 362 F2

3 243 363 F3

4 244 364 F4

5 245 365 F5

6 246 366 F6

7 247 367 F7

A-8 ASCII and EBCDIC Code Values

ASCII/EBCDIC Character Sets

ASCII EBCDIC Character Code Values

Control/ Control/

Graphic Graphic Decimal Octal Hexadecimal

8 248 370 F8

9 249 371 F9

250 372 FA

251 373 FB

252 374 FC

253 375 FD

254 376 FE

255 377 FF

NUL Null
SOH Start of Heading
STX Start of Text
ETX End of Text
EOT End of Transmission
ENQ Enquiry
ACK acknowledge
BEL Bell
BS Backspace
HT Horizontal Tabulation
LF Line Feed
VT Vertical Tabulation
FF Form Feed
CR Carriage Return
SO Shift Out
SI Shift In
DLE Data Link Escape
DC1 Device Control 1 (X-ON)
DC2 Device Control 2
DC3 Device Control 3 (X-OFF)
DC4 Device Control 4
NAK Negative Acknowledge
SYN Synchronous Idle
ETB End of Transmission Block
CAN Cancel
EM End of Medium
SUB Substitute
ESC Escape
FS File Separator
GS Group Separator
RS Record Separator
US Unit Separator
SP Space (Blank)
DEL Delete

ASCII and EBCDIC Code Values A-9

Index

A accuracy and range for BASIC decimals, 2-16
accuracy and range for real formats, 2-8
accuracy errors converting reals, 3-8
address type in intrinsic parameters, 2-22
AINT and AINT' compiler functions, 3-8
$alignment$ alignment option, 2-19
alignment and size of data speci�ed, 1-3
alignment control with commands and compiler options, 2-19
alphanumeric characters, 2-2
American English native language characters, 3-2
American National Standards Institute format, 2-9
American Standard Code for Information Interchange, 2-2
ARABIC8 native language support, 3-3
Arabic native language characters, 3-3
array and record types in intrinsic parameters, 2-22
ASCII, 2-2
ASCII bit format, 2-2
ASCII intrinsic, 3-5
assignment statement to convert data types, 3-1

B background information, 1-1
BASIC
data types compared to primitive types, 2-20
decimal ranges and accuracies, 2-16
exponent �eld of decimal, 2-17
�elds of oating-point decimal, 2-17
language notes, 2-22
mantissa �eld of decimal, 2-17
normalized mantissa, 2-17
sign �eld of decimal, 2-17

BASIC decimal, 2-22
BASIC (oating-point) decimal, 2-16
BASIC oating-point decimal bit format, 2-18
BASIC language manual, 1-4
BCD nibble, 2-14
BCD nibble bit format, 2-14
biased form for real exponent, 2-9
Binary Coded Decimal nibble, 2-14
BINARY intrinsic, 3-4
bit format
ASCII, 2-2
BASIC decimal, 2-18
Binary Coded Decimal nibble, 2-14
EBCDIC, 2-3
HP3000 real, 2-13

Index-1

IEEE real, 2-11
integer, 2-7
packed decimal, 2-16

bit format notation, 2-1
bit sequences, 1-1
Booleans in C, 2-22
Boolean type in intrinsic parameters, 2-22
boundaries speci�ed in format, 1-3, 2-19

C CALLALIGNED option, 2-19
Canadian French native language characters, 3-2
character, converting from, 3-2
character string, octal, decimal, hexadecimal, 3-4
character type data, 2-2
C language
data types compared to primitive types, 2-20
language notes, 2-22
parameter type requirements, 2-22

C language manual, 1-4
CM and NM environment programming languages, 1-4
COBOL
COMPUTATIONAL usage, 2-23
data types compared to primitive types, 2-21
DISPLAY usage, 2-23
language notes, 2-23
PICTURE (PIC) clause, 2-15, 2-23
SIGN clause, 2-23
unpacked decimals, 2-16, 2-23
USAGE clause, 2-23

COBOL language manual, 1-4
comparing language data types, 2-20
Compatibility Mode programming environment, 1-3, 2-19
compiler directive for real number format, 3-7
compiler options for alignment, 2-19
compiler routines for packed decimals, 3-1
complement of an integer, 2-5
complex data types, 2-22
COMPUTATIONAL usage in COBOL, 2-23
conversion process for real numbers, 3-7
converting a twos complement integer to decimal, 2-5
converting data types, 1-5, 3-1
converting from character
to integer, 3-4
to other character types, 3-2
to other numeric character types, 3-3
to packed decimal, 3-5
to real number, 3-4

converting from character types, 3-2
converting from integer
to character types, 3-5
to other integer types, 3-6
to packed decimal types, 3-6
to real types, 3-6

converting from integer types, 3-5

Index-2

converting from packed decimal
to character, 3-9
to integer, 3-9
to other decimals, 3-10
to real, 3-9

converting from packed decimal types, 3-9
converting from real
to character types, 3-6
to integer types, 3-6
to packed decimal types, 3-8
to real types, 3-7

converting from real types, 3-6
converting to twos complement, 2-6
correspondence between language data types, 2-20
CTRANSLATE intrinsic, 3-2, 3-3

D Danish native language characters, 3-2
DASCII intrinsic, 3-5
data type
real, 2-7

data types
numeric, 2-4

data types conversion suggestions, 3-1
data types de�ned, 1-2
data types format
character, 2-2
decimal, 2-14
integer, 2-4

data types, why convert?, 1-5
DBINARY intrinsic, 3-4
DDINT and DDINT' compiler functions, 3-8
decimal-based value in character string, 3-4
decimal, BASIC oating-point, 2-16
decimal bit format (BASIC oating-point), 2-18
decimal, (COBOL) unpacked, 2-16
decimal data types, 2-14
decimal, �elds of BASIC oating-point, 2-17
decimal operations, emulation of MPE V, 3-1
decimal (packed) bit format, 2-16
decimals other than packed, 2-14
decimals, packed, and compiler routines, 3-1
decimals, unpacked, in COBOL, 2-23
decimal type digit representation, 2-14
DFIX and DFIX' compiler functions, 3-6
DFLOAT and DFLOAT' compiler functions, 3-6
DISPLAY usage in COBOL, 2-23
double-precision or single-precision reals, 2-8
Dutch native language characters, 3-2

Index-3

E EBCDIC, 2-2, 2-3
EBCDIC bit format, 2-3
EBCDIK and JIS(KANA8) translation, 3-3
emulating MPE V decimal operations, 3-1
English native language characters, 3-2
environments a factor in formatting, 1-3, 2-19
errors in converting reals, 3-7
exponent �eld of reals, 2-9
exponent �elds, special, 2-9
exponent represented in biased form, 2-9
Extended Binary Coded Decimal Interchange Code, 2-2, 2-3
EXTIN' compiler utility procedure, 3-4

F �elds
BASIC oating-point decimal, 2-17
HP3000 real numbers, 2-12
IEEE real numbers, 2-10
real numbers, 2-8

�elds of data types, 2-1
Finnish native language characters, 3-2
oating-point decimal (BASIC), 2-16
oating-point notation for reals, 2-7
oating-point reals, converting from, 3-6
oating-point zero, in�nity, NaN, 2-9
formatting data types, 1-3, 2-1
formatting in NM and CM environments, 1-3, 2-19
FORTRAN
data types compared to primitive types, 2-21
language notes, 2-24

FORTRAN language manual, 1-4
French native language characters, 3-2
fundamental MPE XL data types, listed, 1-2

G German native language characters, 3-2
Greek8 language support, 3-3
Greek native lanaguage support, 3-3

H hexadecimal character strings prefaced with $, 3-4
HP3000 16 compiler directive, 3-7
HP3000 alignment options, 2-19
HP3000 and IEEE reals, rounding di�erences, 3-6
HP3000 bit format, 2-13
HP3000 or IEEE format for real numbers, 2-8
HP3000 real number �elds, 2-12
HP3000 real numbers, 2-12
HPEXTIN compiler utility procedure, 3-4
HPFPCONVERT intrinsic, 3-7
HPINEXT compiler utility procedure, 3-5, 3-6
HPPACCVAD compiler procedure, 3-5
HPPACCVDA intrinsic, 3-9
HPPACCVDB intrinsic, 3-9

Index-4

I Icelandic native language characters, 3-2
IEEE and HP3000 reals, rounding di�erences, 3-6
IEEE bit formats, 2-11
IEEE conversion formula, 2-10
IEEE or HP3000 format for real numbers, 2-8
IEEE real number �elds, 2-10
IEEE real numbers, 2-9
IFIX compiler function, 3-6
inexact errors converting reals, 3-8
INEXT' compiler utility procedure, 3-5, 3-6
in�nity and NaN traps, 2-9
in�nity in real data type, 2-9
Institute of Electrical and Electronics Engineers format, 2-9
INT, and INT' compiler functions, 3-6
integer bit format, 2-7
integer data type, 2-4
integer-like number in real representation, 3-8
integers
converting from, 3-5
reading an unsigned, 2-5
reading a signed, 2-5, 2-6
representing signed and unsigned, 2-4
signed, 2-5
size and range, 2-4
unsigned, 2-4
writing an unsigned decimal as binary, 2-5

integer, signed
binary to decimal, 2-5
decimal to binary, 2-6

integer, unsigned
binary to decimal, 2-5
decimal to binary, 2-5

interpreting a binary signed integer, 2-5, 2-6
interpreting an IEEE real, 2-10
interpreting an unsigned integer, 2-5
intrinsic data type notes, 2-22
intrinsic data types compared to primitive types, 2-20
intrinsic MPE XL data types, listed, 1-2
invalid operation, NaN and in�nity, 2-9
Italian native language characters, 3-2

J JISCII, Japanese version of US ASCII, 3-3
JIS (Japanese International Standard code), 3-3

K KANA8 native language support, 3-3
KATAKANA language characters, 3-3

Index-5

L language data types, 1-3
language data types correspondence, 2-20
languages in NM and CM environments, 1-4, 2-19
language-speci�c notes on data correspondences, 2-22
LINKALLIGNED option, 2-19

M mantissa �eld of reals, 2-8
mantissa represented in normalized form, 2-8

N Nan and in�nity traps, 2-9
NaN in real data type, 2-9
NATIVE-3000, 3-2
NATIVE-3000 language characters, 3-3
native language character sets, 3-2
native language numeric character formats, 3-3
Native Mode programming environment, 1-3, 2-19
nibble bit format, 2-14
nibble combinations valid for digits of decimal, 2-15
nibble combinations valid for sign of decimal, 2-15
nibble in decimal type, 2-14
NLCONVNUM intrinsic, 3-3
NLFMTNUM intrinsic, 3-3
NLINFO intrinsic, 3-3
NLNUMSPEC intrinsic, 3-4
NLREPCHAR intrinsic, 3-3
NM and CM environment programming languages, 1-4
normalized BASIC oating-point decimals, 2-17
normalized form for real mantissa, 2-8
Norwegian native language characters, 3-2
Not-a-Number in real data type, 2-9
numeric characters, converting formats, 3-3
numeric data types, listed, 2-4

O octal character strings prefaced with %, 3-4
overow or underow errors converting reals, 3-8

P packed decimal bit format, 2-16
packed decimal compiler routines, 3-1
packed decimal operations emulated in NM, 2-14
packed decimals, converting from, 3-9
Pascal data types compared to primitive types, 2-21
Pascal language manual, 1-4
Pascal/XL
language notes, 2-24

PICTURE (PIC) clause in COBOL, 2-15, 2-23
primitive data types, 2-1
primitive data types compared to COBOL, RPG, FORTRAN, Pascal, 2-21
primitive data types compared to intrinsics, BASIC, C, 2-20
primitive MPE XL data types, listed, 1-2
programming languages data type correspondence, 2-20
programming languages, NM and CM environments, 1-4

Index-6

Q quiet Nan, 2-9

R range and accuracy for BASIC decimals, 2-16
range and accuracy for real formats, 2-8
range and size of integers, 2-4
reading an IEEE real, 2-10
reading an unsigned integer, 2-5
reading a signed integer, 2-5, 2-6
reading a twos complement integer, 2-5
real format
�elds, 2-8
HP3000 or IEEE, 2-8
range and accuracies, 2-8
single-precision or double-precision, 2-8

real number bit formats
HP3000, 2-13
IEEE, 2-11

real number data type, 2-7
real number format
HP3000, 2-12

real number format conversion errors, 3-7
real number formats, list of, 3-7
real number representations, 2-8
real numbers
�elds, 2-8
�elds of HP3000, 2-12
�elds of IEEE, 2-10
format, 2-7
HP3000 format, 2-12
IEEE converted to decimal-base, 2-10
IEEE format, 2-9
reading an IEEE, 2-10
zero, in�nity, NaN, 2-9

real numbers, converting from, 3-6
real numbers in IEEE notation, 2-9
real numbers, rounding IEEE and HP3000, 3-6
real numbers, truncating, 3-8
record and array types in intrinsic parameters, 2-22
registers, 1-1
ROMAN8, 3-2
rounding di�erences in real numbers, 3-6
rounding process for reals, 3-7

S scienti�c notation, 2-7
signaling NaN, 2-9
SIGN clause in COBOL, 2-23
signed and unsigned integers represented, 2-4
signed decimals, 2-15
signed integer, 2-5
sign �eld of reals, 2-8
sign nibble of decimal, 2-15
single-precision or double-precision reals, 2-8
size and alignment of data speci�ed, 1-3
Spanish native language characters, 3-2

Index-7

speci�ed alignment and size in format, 1-3
SPL decimals and compiler routines to emulate, 3-1
Swedish native language characters, 3-2
sync16 or sync32 alignment option, 2-19

T translating real to decimal-base, 2-10
traps in converting reals, 3-7
truncating real numbers, 3-8
Turkish8 language support, 3-3
Turkish8 native language characters, 3-3
twos complement form, 2-5
twos complement integer
converted from decimal, 2-6
converted to decimal, 2-5

U unde�ned numbers in real data type, 2-9
underow or overow errors converting reals, 3-8
unpacked decimal format (COBOL, RPG), 2-16
unpacked decimals in COBOL, 2-23
unsigned and signed integers represented, 2-4
unsigned integers, 2-4
USAGE clause in COBOL, 2-23
USASCII, 3-2

W Western Arabic native language characters, 3-3
word, 1-1
writing IEEE as decimal-based number, 2-10

Z zero
BASIC oating-point decimal type, 2-17

real data type, 2-9

Index-8

	Top of Document
	Preface
	Contents
	Introduction
	How Do the Programmer and the Computer Communicate Data
	Defining Data Types
	Formatting Data Types
	Converting Data Types

	Formatting Data Types
	Recognizing Primitive Data Types
	Formatting Data in Programs

	Converting Data Types
	Passing Data
	Converting from Character:
	Converting from Integer
	Converting From Real
	Converting from Packed Decimal

	ASCII and EBCDIC Code Values
	Index

