
Dictionary/3000

HP 3000 MPE/iX Computer Systems

Edition 4
Manufacturing Part Number: 32244-90001

E1287

U.S.A. December 1987

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing
or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1981, 1982, 1984 and 1987 by Hewlett-Packard Company.
2

Contents
1. Introducing Dictionary/3000
Overview . 13

What is a Data Dictionary? . 13
How to Use Dictionary/3000. 13

How to Use this Manual . 16

2. How to Run Dictionary/3000
Overview . 17

Running the DICTDBM Program . 17
Command Syntax . 19

Options Used with Commands. 19
When to Use the Options . 19

Special Character Options . 21
Commands and Subcommands . 22
Command Usage Chart . 23

3. Using the DICTDBM Commands
Overview . 27
Using Commands to Define a Database . 28

Creating Elements and Files for a Database. 29
Relating Data Sets to a BASE File. 29
Adding Data Elements to Data Sets . 30
Securing a Database . 30
Creating a Database . 31

Using Commands to Define Other File Structures . 32
Creating MPE, MPER, KSAM, and VPLUS Elements and Files. 33
Adding Data Elements to Files . 33
Relating Forms to a VPLUS Forms File . 33
Security for MPE, KSAM, and VPLUS Files. 34

Using Command to Define Procedures . 35
Creating Data Elements and Procedures . 36
Relating Procedures to Procedures . 36
Adding Data Elements to Procedures . 37

Using Commands to Define Locations . 38
Creating Locations . 38
Adding Files and Procedures to Locations. 38

Using Commands to Define Categories. 39
Creating Elements and Categories . 40
Relating Categories to Categories . 40
Adding Elements to Categories . 40

Using Commands to Define HP Inform/3000 Groups . 41
HP Inform/3000 Groups . 41
Creating Elements and Groups . 42
Relating Groups to a Group . 43
Adding Elements to Groups . 44

Using Commands to Define HP Inform/3000 Security. 48
Creating Inform Classes . 50
Relating IMAGE Classes to Inform Classes . 50
3

Contents
Adding Entities to an IMAGE Class .50
Adding Inform Groups to Inform Classes .51

Using Selection Criteria .56
Using Edit Description Commands .58
Using Edit Masks .59

4. DICTDBM Commands
Overview .61
ADD .63

Subcommands. .63
Subcommand Prompts .64
Prompts. .66

Change .71
Subcommands. .71
Subcommand Prompts .72
Prompts. .73

Create .75
Subcommands. .75
Subcommand Prompts .76
Prompts. .78

Delete .84
Subcommands. .84
Subcommand Prompts .85
Prompts. .85

Display .87
Subcommands. .87
Subcommand Prompts .89
Prompts. .89

Help .90
List .92

Subcommand Prompts .93
Prompts. .95

Modify. .97
Subcommands. .97
Subcommand Prompts .98
Prompts. .100

Purge .107
Subcommands. .107
Subcommand Prompts .109
Prompts. .110

Relate .111
Subcommands. .111
Subcommand Prompts .113
Prompts. .114

Remove .116
Subcommands. .116
Subcommand Prompts .117
Prompts. .117

Rename. .119
4

Contents
Subcommands . 119
Subcommand Prompts . 120
Prompts . 120

Reorder . 121
Subcommands . 121
Subcommand Prompts . 122

Prompts . 122
Report . 124

Subcommands . 124
Subcommand Prompts . 126
Prompts< . 126

Resequence . 127
Subcommands . 127
Subcommand Prompts . 128
Prompts . 128

Secure . 130
Subcommand . 130
Subcommand Prompts . 131
Prompts . 131

Show . 133
Subcommands . 133
Subcommand Prompts . 135
Prompts . 135

Update. 136
Subcommands . 136
Subcommand Prompts . 137
Prompts . 140

5. Dictionary/3000 Utilities
Overview . 145

Initiating the Utilities. 146
Changing Output Files . 146
Using the Utilities to Restructure a Database . 146

DICTDBA . 147
Database Audit Utility . 147

DICTDBC . 153
Database Creation Utility . 153

DICTDBD . 158
Database Definition Utility . 158

DICTDBU . 163
Database Unload Utility. 163

DICTDBL . 167
Database Load Utility. 167

DICTDBM,UTIL . 172
Dictionary Clean Utility . 172

DICTVPD . 173
VPLUS Forms File Definition Utility . 173
5

Contents
6. The Dictionary DICTPDE Utility
Overview .183
Initiating DICTPDE .184
Changing Input, List and Output Files .186
ALTER .188

Subcommands. .188
>ALTER ALL .189

Prompts .189
Discussion .189

>ALTER DICT .192
Prompts .192
Discussion .193

>ALTER KIND. .194
Prompts .194
Discussion .194

>ALTER NAME .195
Prompts .195
Discussion .195

>ALTER OUTPUT. .196
Prompts .196
Discussion .196

>ALTER SHIFT .197
Prompts. .197
Discussion .197

>ALTER TEXT. .198
Prompts .198
Discussion .198

>ALTER VPLUS .200
Prompts. .200
Discussion .200

EXIT .202
Discussion .202

GENERATE .203
Subcommands. .203

>GENERATE COMAREA .204
Prompts .204
Discussion .204

>GENERATE ELEMENTS .208
Prompts .208
Discussion .208

>GENERATE FILE .212
Prompts .212
Discussion .212

>GENERATE IMAGEPARMS .215
Prompts. .215
Discussion .215

HELP .217
Subcommands. .217

LIST .218
6

Contents
Subcommands . 218
>LIST ALL . 219

Prompts . 219
Discussion . 219

>LIST ELEMENT . 220
Discussion . 220

>LIST FILE . 221
Prompts . 221
Discussion . 221

DICTPDE Naming Considerations . 222
PASCAL Data Type Mappings . 223

7. The Dictionary DICTCDE Utility
Overview . 229
Special Character Responses. 230
Initiating DICTCDE. 231
The DICTCDE Main Prompt . 233

Generating Code for Files . 233
Generating Code for Elements . 241
Generating Code for Standard Parameters . 242
Changing the DICTCDE Options . 243

Changing Input, List and Output Files . 248
Examples of Generated Code. 249

IMAGE Database Definitions. 249
IMAGE Data Set Definitions . 251
VPLUS Forms File Definitions. 253
VPLUS Form Definitions . 254
MPE File Definitions . 256
KSAM File Definitions . 260
Element Definitions . 264
Compound Element Definitions . 265
Back-Referenced Elements . 265
Element to Element Relationships . 267
Forced REDEFINES . 269
Explicit REDEFINES . 270
Edit Masks. 271
Code Generated for Standard Parameters . 272

DICTCDE Naming Considerations . 275
COBOL Data Type Mappings . 276

Any ASCII Character . 276
Uppercase Alphanumeric String . 276
Numeric ASCII String . 276
Zoned Decimal . 277
Boolean . 277
String . 277
Real Number . 278
Integer Number and Logical Value . 278
Packed Decimal . 279
VPLUS Data Items . 280
7

Contents
A. DICTDBM Error Messages
USER Messages. .282
PROG Messages. .283
SYSTEM Master .284
TRAP Messages .285
DICT Messages .286

B. UTILITY Error Messages
DICTCDE Messages .294

Warnings .297
Info .298

DICTDBA Messages .299
Errors .299
Warnings .299

DICTDBC Messages .300
Errors .300

DICTDBD Messages .302
Errors .302
Warnings .302
Condition Prompts .303

DICTDBL Messages .304
Errors .304
Warnings .305
Condition Prompts .305

DICTDBU Messages .306
Errors .306
Warnings .307
Condition Prompts .308

DICTPDE Messages .309
Errors .309
Warnings .310

DICTVPD Messages .311
Errors .311
Warnings .312

C. DICTIONARY/3000 Initialization Procedure
Overview .313
DICTINIT Error Messages .324

D. How HP INFORM Links Files to Generate Reports
Direct Links .330
Indirect Links .331

The Driving File .332
Linking Files .334
Default File Access .335

E. DICTDBM Quick Reference
Command/Subcommand Guide. .342
8

Contents
Glossary
9

Contents
10

Preface
This manual describes the Dictionary/3000 software system that operates on HP 3000
computers. It is the reference document for all persons involved in creating and
maintaining a dictionary database and an IMAGE/3000 data base. It assumes a working
knowledge of the HP 3000 computer system, including the IMAGE/3000 subsystem.

This edition of the manual has been expanded to include the new Dictionary extract
utilities for COBOL II/3000 and PASCAL/3000 data declarations, and for the new VPLUS
forms file definition utility. In order to use these utilities, the manual assumes a working
knowledge of COBOL II/3000, PASCAL/3000, and VPLUS/3000. Also included in this
manual is information for the Inform Security feature.

In addition, use of the Dictionary audit, load, and unload utilities can improve
IMAGE/3000 response and allows faster application run time and increased throughput.
Each utility provides benefits which are not included in IMAGE. For example, the primary
benefit of the load and unload utilities, DICTDBL and DICTDBU, is that they allow
selective loading and unloading of the data sets within a database. These can be used as
tool to maintain the primary path sequence of the data in detail data sets. (DICTDBU and
DICTDBL do not, however, provide a dynamic restructuring capability.) For full database
loads and unloads, the DBLOAD and DBUNLOAD facilities provided with IMAGE are
more efficient.

DICTDBA, the audit utility, gives you a quick way to find out the synonym chain count and
average chain length. By maintaining chain counts as low as possible, database
performance is improved.

In addition to this manual, you may need to consult the following manuals and self-paced
courses:
11

Manual and Manual Part Number
MPE Command Reference Manual 30000-90009

MPE Error Messages and Recovery Manual 30000-90102

Using Files 30000-90015

IMAGE/3000 Reference Manual 32215-90003

VPLUS/3000 Reference Manual 32209-90001

KSAM/3000 Reference Manual 30000=90079

30000-90079 Transact/3000 Reference Manual 32247-90001

HP Inform/3000 User's Guide 32246-90001

PASCAL/3000 Reference Manual 32106-90001

COBOL II/3000 Reference Manual 32233-90001

Self-Paced Course and Course Product Number
Programming in Transact/3000 22842A

Using Dictionary/3000 22843B

WARNING The Data Dictionary integrity can be destroyed by using a utility
that is not listed below. Therefore, only the following utilities will be
supported by Hewlett-Packard when used against the Data
Dictionary:

DICTINIT
DICTDBM
DICTDBM,UTIL
DICTDBD
DICTDBA
DICTDBC
DICTVPD
DICTCDE
DICTPDE
DBSTORE/DBRESTOR
*STORE/RESTORE
*SYSDUMP

Hewlett-Packard will investigate and attempt to resolve problems resulting from
the use of utilities that do not appear on the above list. This service is not
provided under HP's standard support agreements, but is available on a time
and material basis.

HEWLETT-PACKARD IS NOT RESPONSIBLE FOR ANY LOSS OR
DAMAGE RESULTING FROM CUSTOMER'S USE OF THE DATA
DICTIONARY WITH UTILITIES NOT LISTED ABOVE.

*Please note that STORE/RESTORE and SYSDUMP will be supported only when used on
the Data Dictionary in its entirety (e.g., the root file and all the data sets).
12

1 Introducing Dictionary/3000

Overview
Dictionary/3000 is a comprehensive set of programs that you can use to:

• Create any number of data dictionaries

• Create and maintain entries in the dictionary

• Create and maintain an IMAGE/3000 database

• Create HP Inform/3000 groups

• Generate COBOL and PASCAL data definitions

What is a Data Dictionary?

A data dictionary is a directory of information about the definition, structure, and usage of
data. It does not contain the data itself. The data dictionary contains the name of each
data item (element), its definition (size and type), where and how it is used, and its
relationship to other data.

The entries in Dictionary/3000's data dictionary define and describe an organization's
structure, identify the data used by an organization, specify where the data is stored,
identify what programs generate the data, and define and describe HP Inform/3000 groups
to report the data. These entries can also be used to generate data definitions for COBOL
and PASCAL programs.

Thus, Dictionary/3000's data dictionary is a central repository for information about an
organization and its data processing environment.

How to Use Dictionary/3000

Dictionary/3000 includes an easy-to-use interactive program called DICTDBM for the
creation and maintenance of entries in the Dictionary. The DICTDBM program provides a
set of commands that allow you to create and maintain entries, and to establish and define
the relationships between entries in the Dictionary. Through a combination of commands,
you control the information in your Dictionary for the following:

• Data

• IMAGE databases

• MPE, MPER and KSAM files

• HP Inform/3000 groups
13

Introducing Dictionary/3000
Overview
• Physical locations

• Organizational structures

• Application programs

• Security for databases, files, and for HP Inform/3000

• Relationships between the entries

• Formats used for COBOL programs

DICTDBM is discussed in detail in Sections II and III of this manual. The DICTDBM
commands and subcommands are discussed in Section IV.

Dictionary/3000 also includes a comprehensive set of utilities. These utilities allow you to
perform various functions for the Dictionary, an IMAGE database, a VPLUS forms file, and
for PASCAL and COBOL programs. The Dictionary/3000 utilities can be used as follows:

• Create and initialize the Dictionary itself

• Create an IMAGE database from the entries in the Dictionary

• Transfer the definition of an existing IMAGE database into the Dictionary

• Audit a database for synonym, chain, and linkage usages

• Unload an IMAGE database to tape or disk

• Load data from tape or disc into IMAGE database files

• Perform maintenance on the Dictionary

• Generate PASCAL declarations from the definitions in the Dictionary

• Generate COBOL source code from the definitions in the Dictionary

Table 1-1 shows all the Dictionary/3000 utilities, their function, and where you can find the
information about the utility in this manual.

Table 1-1. Dictionary/3000 Utilities

Utility Function Manual
Reference

Dictionary Initialization
(DICTINIT)

Creates and initializes the Dictionary. Appendix C

Database Creation
(DICTDBC)

Creates an IMAGE database from the entries in the
Dictionary.

Chapter 5

Database Definition
(DICTDBD)

Transfers the definition of an existing IMAGE
database into the Dictionary.

Chapter 5

Database Audit
(DICTDBA)

Audits an IMAGE database for synonym, chain and
linkage usages.

Chapter 5

Database Unload
(DICTDBU)

Unloads the data files of an IMAGE database.
DICTDBU allows selective unloading of the data files.

Chapter 5
14 Chapter 1

Introducing Dictionary/3000
Overview
Database Load
(DICTDBL)

Loads data from tape or disk into IMAGE database
files. DICTDBL allows selective loading of data set
files.

Chapter 5

Data Dictionary Cleanup
(DICTDBM, UTIL)

Performs periodic maintenance on the Dictionary.
DICTDBM, UTIL removes superfluous information
that may exist as a result of extensive DICTDBM use.

Chapter 5

VPLUS Forms File
Definition (DICTVPD)

Transfers the definition of an existing VPLUS forms
file into the Dictionary.

Chapter 5

COBOL Definition
Extract (DICTCDE)

Extracts data definitions from the Dictionary and
generates corresponding COBOL source code for the
definitions.

Chapter 7

PASCAL Definition
Extract (DICTPDE)

Extracts data definitions from the Dictionary and
generates corresponding PASCAL declarations for the
definitions.

Chapter 6

Table 1-1. Dictionary/3000 Utilities

Utility Function Manual
Reference
Chapter 1 15

Introducing Dictionary/3000
How to Use this Manual
How to Use this Manual
This manual is divided into the following sections:

Chapter 1 Introduces Dictionary/3000.

Chapter 2 Describes the concepts behind and the use of DICTDBM — a program
designed to create and maintain entries in the Dictionary.

Chapter 3 Provides an explanation of the commands used to create and maintain
entries for various structures.

Chapter 4 Describes the DICTDBM commands used to create and maintain entries
in the Dictionary.

Chapter 5 Gives an overview of each utility, and describes how each is used.

Chapter 6 Describes the PASCAL Definition Extract Utility (DICTPDE).

Chapter 7 Describes the COBOL Definition Extract Utility (DICTCDE).

Appendix A DICTDBM Error Messages.

Appendix B Dictionary/3000 Utility Error Messages.

Appendix C Initialization Procedures and Errors.

Appendix D Describes how HP Inform/3000 links files to generate reports.

Appendix E Glossary of Terms.

Appendix F DICTDBM Quick Reference.
16 Chapter 1

2 How to Run Dictionary/3000

Overview
Dictionary/3000 provides a Database Maintenance program (DICTDBM) to create and
maintain entries in the Dictionary. This section describes how to run the program and use
its HELP facility, describes the syntax for the commands in the program, defines the
options that can be used with the commands, and lists all the commands and
subcommands available in the DICTDBM program.

Running the DICTDBM Program

To use the Dictionary, you must first have it loaded and initialized onto your system by
your system manager (see Appendix C).

After logging on, you are ready to run the Dictionary program. DICTDBM assumes the
Dictionary exists in the PUB group of your log-on account. If the Dictionary you wish to
use exists in a different MPE group and/or account, you must first identify these by issuing
a file equation before running DICTDBM. The file equation should be as follows:

FILE DICT.PUB=DICT.group.account

Next, run the Dictionary program:

RUN DICTDBM.PUB.SYS

Then press the RETURN key.

The Dictionary prompts you to enter a password as follows:

PASSWORD FOR DICT.PUB>

The password will not be displayed as you enter it. You must enter the password exactly as
it appears in the system - that is, all caps, all lower case, initial cap, or some combination
of the three. The individual responsible for the data dictionary can give you the password
information.

The Dictionary (DICTDBM) supports two types of field entry. One, form entry, has entry
fields in enhanced video. The other, normal terminal display, uses a less-than sign (<) to
delimit entry fields. Both types of field entry indicate the maximum number of characters
you can enter. In this manual, all examples are shown in normal terminal display.

After the correct password is entered, the Dictionary lets you choose the type of field entry
you wish to use with the following prompt:

FORMS ENTRY(Y/N)?>

A response of “Y” indicates that you want to use the enhanced video type of field entry.
17

How to Run Dictionary/3000
Overview
Whenever a choice between two options is given within parentheses, the first choice listed
is the DEFAULT choice, unless otherwise specified; thus, just pressing RETURN is the
same as entering that choice.

After responding to the FORMS ENTRY prompt, DICTDBM issues a command prompt (>).
You are now ready to use DICTDBM commands to create, manipulate, or maintain entries
in the Dictionary. To terminate execution of DICTDBM, enter the EXIT command in
response to a command prompt.

Entries are created in the Dictionary through a series of command strings in response to a
command prompt (>). The action of the command string can be modified or enhanced by
including one or more of the available command options.
18 Chapter 2

How to Run Dictionary/3000
Command Syntax
Command Syntax
A DICTDBM command string has the following syntax:

Syntax

[option] COMMAND subcommand

option A list of one or more command options which enhance or modify the action
of the command. For example, REPEAT, SORT, etc. (See Options Used
With Commands, described next, for an explanation of each option.)

COMMAND Specifies the command action. For example, ADD, RELATE, etc.

subcommand Specifies the target of the command's action. For example, ELEMENT,
GROUP, etc.

For each command except the EXIT and HELP commands, you must enter both the
command and the subcommand. Optionally, each command string can be preceded by one
or more options. Only one command string is allowed for each command prompt.

The appropriate abbreviations may be used for the commands and subcommands.

Options Used with Commands

The following is a list of options which enhance or modify the action of the command.
When used, they must appear first in the command syntax and can not be abbreviated.

PRINT Directs the display to the line printer rather than to the user terminal.

TPRINT Formats the terminal display in line printer format.

SORT Sorts the display listing alphabetically before output.

REPEAT Repeats a command until the termination character (]) or the RETURN
key is entered in response to a prompt.

A single command string can have multiple options that are separated by commas.

When to Use the Options

The PRINT option is useful when you are displaying information. For example, use PRINT
with the LIST, DISPLAY, or SHOW command.

The TPRINT option is useful before directing output to the line printer. The listing will be
displayed on your terminal in line printer format. Line printer format includes a banner
line which shows the date and time of the report and where page breaks occur including
page numbering.

The SORT option is useful when you want an alphabetical listing from the LIST and
DISPLAY commands. The REPORT command automatically displays the list in
alphabetical order.

When used, the REPEAT option causes the prompts for the command and/or subcommand
to be repeated until terminated by the RETURN key or the termination character (]). One
Chapter 2 19

How to Run Dictionary/3000
Command Syntax
use for the REPEAT option is with the CREATE command when more than one data
element is to be created. For instance, if you enter REPEAT CREATE ELEMENT, the
prompt for ELEMENT is repeated, allowing you to create many data elements without
re-entering the command. The ELEMENT prompt is repeated until you enter the
terminating character.
20 Chapter 2

How to Run Dictionary/3000
Special Character Options
Special Character Options
The following characters have special meaning when used in response to a DICTDBM
prompt:

! In response to a prompt, terminates the prompting cycle within the
command. It is equivalent to pressing RETURN to all subsequent
prompts.

] In response to a prompt, if the REPEAT option is used with the command,
prompts for one level are terminated and reissued for the next level up; if
the REPEAT option is not used terminates the command.

]] In response to a prompt, terminates the command.
Chapter 2 21

How to Run Dictionary/3000
Commands and Subcommands
Commands and Subcommands
The following is a list of the DICTDBM commands and subcommands, and their
abbreviations, that can be used with the Dictionary. In Section IV, which describes the
commands, each description includes a list of the subcommands that can be used with that
command (see Section IV).

* The subcommands for the HELP command are the command names.

Note that each abbreviation is either a single or a three letter character string.

Command Abbreviation Subcommand Abbreviation

ADD A CATAGORY C

CHANGE CHG CLASS CLS

CREATE C CLASS-FILE CLF

DELETE DEL CLASS-GROUP CLG

DISPLAY D ELEMENT E

EXIT E FILE F

HELP H FILE-LOC FLC

LIST L GROUP G

MODIFY M LOCATION L

PURGE P PROCEDURE P

RELATE REL PROCEDURE-LOC PLC

REMOVE REM *

RENAME REN

REORDER REO

REPORT R

RESEQUENCE RES

SECURE SEC

SHOW S

UPDATE U
22 Chapter 2

How to Run Dictionary/3000
Command Usage Chart
Command Usage Chart
The following chart indicates the order in which the Dictionary commands can be used.
The HELP command can be issued any time during a command sequence as long as the
command prompt (>) appears.

The chart shows that entities must first be created in the dictionary through the CREATE
command. Next, entities can be added to other entities through the ADD command,
related to other entities through the RELATE command, or displayed or modified through
the commands listed in the center box (REPORT, DISPLAY, LIST, RENAME, MODIFY, or
PURGE). Following the ADD command, the REPORT, SHOW, RESEQUENCE, UPDATE,
DELETE, or SECURE commands can be used. Following the RELATE command, the
SHOW, REORDER, CHANGE, or REMOVE commands can be used. The EXIT command,
not shown in the above chart, can be used at any time to exit the data dictionary program
(DICTDBM). Looking at the three large boxes shown in the chart, note that each
horizontal row of commands are similar. For example, UPDATE, MODIFY, and CHANGE
are similar. The difference between such commands is the command it follows: ADD,
CREATE, or RELATE.

CREATE

RELATEADD

REPORT
SHOW

REPORT
DISPLAY
LIST

SHOW

RESEQUENCE RENAME REORDER

UPDATE

DELETE

SECURE

MODIFY

PURGE

CHANGE

REMOVE
Chapter 2 23

How to Run Dictionary/3000
Command Usage Chart
The commands which follow the ADD command (REPORT, SHOW, RESEQUENCE,
UPDATE, DELETE, and SECURE) can be used to display or modify entities which have
been ADDed to other entities. For example, these commands can be used to display or
modify an element which has been added to a file. Entities are always added to unlike
entities - that is, an element is added to a file, but an element can not be added to another
element. Hence, REPORT and SHOW can be used to display the association between
unlike entities. Similarly, RESEQUENCE, UPDATE, DELETE, and SECURE are used to
modify the association between unlike entities.

Similarly, the commands which follow the RELATE command (SHOW, REORDER,
CHANGE, and REMOVE) can be used to display or modify entities which have been
RELATEd to other entities. Entities are always related to like entities - for example, a file
can be related to another file, but an element can not be related to a file. Hence, SHOW can
be used to display the relationship between like entities; REORDER, CHANGE, and
REMOVE are used to modify the relationship between like entities.

The commands which follow the CREATE command (REPORT, DISPLAY, LIST,
RENAME, MODIFY, and PURGE) affect the entities themselves. They can be used to
display or modify any entities which have been created, whether they have been added or
related to other entities or not.
24 Chapter 2

How to Run Dictionary/3000
Command Usage Chart
Chapter 2 25

How to Run Dictionary/3000
Command Usage Chart
26 Chapter 2

3 Using the DICTDBM Commands

Overview
The DICTDBM commands are used to create and maintain entries in the Dictionary.
These entries define and describe data elements and structures. Each entry in the
Dictionary is unique.

The following structures can be defined in the Dictionary:

• IMAGE databases and security

• Other file structures (MPE, MPER, KSAM, and VPLUS)

• Application programs

• Physical locations

• Organizational structures

• HP Inform/3000 groups

This section gives an overview of how to use the commands to create and maintain each
structure.
27

Using the DICTDBM Commands
Using Commands to Define a Database
Using Commands to Define a Database
An IMAGE database can be defined in the Dictionary in two ways. For an existing IMAGE
database, use the Database Definition utility program (DICTDBD) to transfer the
database definitions from the database root file to the Dictionary. Refer to Section V of this
manual for information on this utility.

The second way is to use the commands provided by the DICTDBM program. The database
and the data sets are created in the Dictionary as files. The database is a BASE file; the
manual master sets are MAST files; the automatic master sets are AUTO files; and the
detail sets are DETL files. The data items in the database are created as elements in the
Dictionary.

The definition for a database is completed by establishing the relationship between the
BASE file and the data sets. This relationship is a hierarchical relationship and is defined
using the RELATE command. The elements are then added to the appropriate data sets
with the ADD command. (Refer to Section IV of this manual for a description of these
commands.) The hierarchical structure for a database is shown in Figure 3-1

Figure 3-1. Summary of Hierarchical Structure for a Database

The BASE file is the top of the structure and is the PARENT file. The data sets are related
to the BASE file and are CHILD files. In this structure, the PARENT file cannot have data
elements directly associated with it. The following description outlines the steps involved
when you use the DICTDBM commands to define a database. A complete description,
including examples for all the commands is given in Section IV of this manual.

BASE
FILE

MAST
FILE ...

AUTO
FILE ...

DETL
FILE ...

PARENT file

CHILD files

data
elements...

data
element ...

data
elements ...
28 Chapter 3

Using the DICTDBM Commands
Using Commands to Define a Database
Creating Elements and Files for a Database

An element or a file must be defined in the Dictionary before it can be associated or related
to another entry. The CREATE command is used to define an entry for a data element or a
file.

Either the command string CREATE ELEMENT or CREATE FILE is used to create the
entry in the Dictionary. The name for the element or the file must be unique. Use the
REPEAT option before the command string to create definitions for more than one element
or file without having to repeat the command. An entry for the BASE file must be created
later to establish the hierarchical relationship between the data sets and the database.

If you are defining an IMAGE database, the IMAGE/3000 rules for defining a master data
set and a detail data set apply. For example, if the data set is a detail set, you must
indicate which data elements are the search items, the name of the master set each search
item is related to, the data set's capacity and so forth.

After the entries are created, they may be displayed by the LIST or DISPLAY commands.
If you want to delete the entry, use the PURGE command. If you want to change the entry,
use the MODIFY command or the RENAME command.

The RELATE ELEMENT command string can be used to define CHILD elements (fields)
within a PARENT data element. This allows access to parts of a larger data element. For
example, in the case of an IMAGE database which contains a compound data item, CHILD
elements can be used to provide access to the sub-items of the compound item. To do so,
respond to the BYTE POSITION prompt by specifying the starting location of the sub-item
within the compound item.

Relating Data Sets to a BASE File

The hierarchical relationship between the data sets and the BASE file is established with
the RELATE command. The command string RELATE FILE is used to define this
relationship. This command allows for more than one data set to be related to a BASE file
during the command cycle. If relationships for more than one database are to be
established, use the REPEAT option with the command string.

Relationship entries can be displayed by using the SHOW command. All the data sets and,
optionally, all the data elements associated with the set, are displayed for a BASE file. For
a data set, the elements directly associated with it are displayed. The elements are
displayed in the physical order of their association with the file. The SHOW command
indicates key elements with an asterisk, identifies the chain paths, and much more. The
REPORT command displays an alphabetical list of the elements associated with a data
set, or an alphabetized schema-type listing of elements for a database file.

You can delete the relationship entry with the REMOVE command and change the entry
with the CHANGE command. The REORDER command is used to change the physical
order in which the files are related to the BASE file.
Chapter 3 29

Using the DICTDBM Commands
Using Commands to Define a Database
Adding Data Elements to Data Sets

The ADD command is used to associate the data elements with the data sets. Use the
command string ADD FILE to define this association. An entry is defined that associates
an element with a data set. Elements may not be associated with a BASE file directly.
DICTDBM will not accept such an entry and will issue an error message.

To display the association entries, use either the REPORT or SHOW commands. The
SHOW command uses an asterisk to indicate which element is the key element in the file
and to display the elements in the order in which they are associated with the file.

To delete an association entry, use the DELETE command. To change an association entry,
use the UPDATE command. To change the physical order in which the elements are
associated to the data set, use the RESEQUENCE command.

Securing a Database

The security that may be defined is the same security defined for an IMAGE database.
IMAGE allows the database designer to control access to specific data sets and data items
by defining up to 63 user classes. The classes are associated with data sets and data items
in read or write class lists. This association determines which user classes may access
which data elements and the type of access that is granted. For a complete description of
how to protect an IMAGE database, see the IMAGE/3000 Reference Manual.

In the Dictionary, user security classes are identified by an integer from 0 through 9999
and are associated with a password defined by the database designer. Each security class
number is unique and can be created only once.

When the Dictionary/3000 Database Creation utility program (DICTDBC) is used to create
the database, the security class numbers are reassigned by the utility to conform to the
numbering scheme used in IMAGE. The CREATE command must be used to define a user
security class entry. You use the command string CREATE CLASS for this entry. During
the command cycle, the prompt RESTRICT CLASS TO A FILE (N/Y) is issued which
allows you to restrict the use of the class to a particular database. You may choose to
respond Y to this prompt if the sets and elements you will add to this class belong to more
than one database but you want DICTDBC to include this class in the schema of only one
database. When DICTDBC retrieves the security classes associated with the sets and
elements of a database for which it is to generate a schema, it will skip those classes
restricted to another database.

After creating user security classes, either the LIST or DISPLAY command can be used to
display the entry. If you want to delete an entry from the Dictionary, use the PURGE
command. To change the entry, use either the MODIFY command or the RENAME
command.

The association between the security classes and the data sets or the elements is
established using either the SECURE or ADD command. The SECURE FILE and ADD
CLASS command strings allow you to specify protection at the element level, while ADD
CLASS-FILE specifies protection at the file level.

SECURE FILE is used to specify protection that applies to all the data elements in the file.
In this way, it is similar to using repeated ADD CLASS command strings. SECURE FILE
can also be used to specify protection for the file itself.
30 Chapter 3

Using the DICTDBM Commands
Using Commands to Define a Database
Creating a Database

The Database Creation utility program (DICTDBC) can be used to create a schema file and
a root file from the definition in the Dictionary. Note that the definition, associations, and
relationships must already be defined in the Dictionary to use this utility. See Section V of
this manual for a detailed description of this utility.
Chapter 3 31

Using the DICTDBM Commands
Using Commands to Define Other File Structures
Using Commands to Define Other File Structures
MPE files, MPER files, KSAM files and VPLUS forms files can also be defined in the
Dictionary. The DICTDBM commands are used to create and define these files in the
Dictionary.

For MPE, MPER, and KSAM files, you define the record layout for the file. In the
Dictionary, each field in the record is created as a data element with characteristics such
as type, size, and so forth. For the VPLUS forms file, each form is created as a file, and the
fields within each form are created as data elements. The definitions for a VPLUS forms
file is completed by establishing the relationship between the VPLUS forms file and each
form in the forms file. This relationship is also a hierarchical relationship and is
established using the RELATE command. (Refer to Section IV of this manual for a
description of this command.) This hierarchical relationship is summarized in Figure 3-2.

Figure 3-2. Summary of Hierarchical Structure for a VPLUS Forms File

The VPLUS forms file is the top of the structure and is the PARENT file. Each FORM file
is related to the VPLUS file and is considered a CHILD file. In this structure, the PARENT
file cannot have data elements directly associated with it.

The following description outlines the steps involved when the DICTDBM commands are
used to define other file structures. A complete description including examples for all the
commands is given in Section IV of this manual.

VPLUS
FORMS
FILE

FORM
FILES ...

FORM
FILES ...

PARENT file

CHILD files

data
elements...

data
elements ...
32 Chapter 3

Using the DICTDBM Commands
Using Commands to Define Other File Structures
Creating MPE, MPER, KSAM, and VPLUS Elements and Files

Creating files and data elements for these structures is similar to creating them for a
database. An element or a file must be defined in your Dictionary before you can associate
or relate it to another entry. To define the entries, use the command string CREATE
ELEMENT or CREATE FILE. The name used for the element or the file must be unique.
Use the REPEAT option before the command string to create entries for many elements or
files without having to reenter the command. A definition for the VPLUS forms file must
be created before the hierarchical relationship between the forms file and the forms can be
created.

After the entries are created, use the LIST or DISPLAY commands to display the entry.
Entries can be deleted by using the PURGE command, and can be changed by using the
MODIFY or RENAME command. To define the CHILD elements (fields) within a PARENT
data element, use the RELATE ELEMENT command string.

Adding Data Elements to Files

The ADD command is used to associate data elements to files. Use the command string
ADD FILE to define this association.

Elements may not be directly associated to the VPLUS forms file. DICTDBM will not
accept this and will issue an error message. The elements must be associated with the file
according to the record layout or form design. When elements are associated with a KSAM
file, you must identify which element or elements are the keys for the file.

To display an alphabetized listing of association entries, use the REPORT command. For a
form, the list shows the elements associated with the form; for a VPLUS forms file, the list
shows all the elements associated with the CHILD files. The SHOW command is used to
display each file and the elements associated with it. It also gives a complete listing of the
forms in a VPLUS file and optionally, the elements within each form. The forms are
displayed in the physical order of their relationship to the VPLUS forms file, and the
elements are in the physical order of their association with the form. For KSAM files, the
SHOW command indicates key elements with an asterisk, “*” .

An association entry can be deleted with the DELETE command or changed with the
UPDATE command. If you want to change the physical order in which the association
entries were made, use the RESEQUENCE command.

Relating Forms to a VPLUS Forms File

The hierarchical relationship between the forms and a VPLUS forms file is established
using the RELATE command. The command string RELATE FILE is used to define this
relationship. This command allows more than one form to be related to the VPLUS file
during the command cycle. Use the SHOW command or the REPORT command to display
the relationship entries.

The relationship entry is deleted by using the REMOVE command and is changed by using
the CHANGE command. Use the REORDER command to change the physical order in
which the CHILD files are related to the PARENT file.
Chapter 3 33

Using the DICTDBM Commands
Using Commands to Define Other File Structures
Security for MPE, KSAM, and VPLUS Files

Security as defined and used for IMAGE databases is not applicable to MPE files, KSAM
files, and VPLUS forms files. For these files "lockwords" are used for protection. The
CREATE command is used to define a security class for the lockword. In the Dictionary,
the lockword for the file is called the PASSWORD. After a class is created for the lockword,
the ADD CLASS-FILE command string is used to associate the security class with the file.

To display the security class entries, use either the LIST or DISPLAY command. If you
want to delete an entry from the Dictionary, use the PURGE command. To change the
entry, the MODIFY command or the RENAME command is used.
34 Chapter 3

Using the DICTDBM Commands
Using Command to Define Procedures
Using Command to Define Procedures
The Dictionary can be used to capture the data processing environment for your company
by defining all the application programs, the routines, the subroutines, and the variables
used in the Dictionary. The Dictionary uses PROCEDURES to document this information.
Each program, routine, or subroutine is a procedure in the Dictionary. The variables used
by each are data elements with characteristics such as type, size, and so forth.

A program and its routines or subroutines can be described in the Dictionary by defining a
hierarchical relationship between them. The RELATE command is used to establish this
hierarchical relationship. (Refer to Section IV of this manual description of this command.)
The hierarchical relationship for procedures is summarized in Figure 3-3.

Figure 3-3. Summary of Hierarchical Structure for a Procedure

The procedure that uses or calls other procedures is at the top of the structure and is a
PARENT procedure. The routines and/or subroutines used or called by the PARENT
procedure are CHILD procedures. A CHILD procedure can in turn be a PARENT because
it may use or call other routines or subroutines. This hierarchical structure allows data
elements to be associated with a procedure regardless of their level in the structure.

PROCEDURE PARENT procedure

PROCEDURE ... PROCEDURE

PROCEDUREPROCEDURE

PROCEDURE

data
elements

data
elements

data
elements

data
elements

data
elements

CHILD
procedure

PARENT/CHILD procedures

CHILD procedure

data
elements
Chapter 3 35

Using the DICTDBM Commands
Using Command to Define Procedures
Note that Dictionary/3000 will not allow you to document recursive procedures. That is, if
a procedure has been documented as a CHILD of another procedure, Dictionary/3000 will
not allow you to specify that other procedure as a CHILD of the first one.

The following description outlines the steps involved when you use the DICTDBM
commands to define procedures. A complete description including examples for all the
commands is given in Section IV of this manual.

Creating Data Elements and Procedures

The method for creating procedures and data elements is similar to creating files and data
elements for a database. To define them, use the command string CREATE PROCEDURE
or CREATE ELEMENT. An element or a procedure must be defined in your Dictionary
before you can associate it with or relate it to another entry. The name used for the
procedure or the element must be unique. Use the REPEAT option before the command
string to create definitions for more than one procedure or element without having to
reenter the command.

After the entries have been created, you can use the LIST or DISPLAY commands to
display those entries. If you want to delete an entry, use the PURGE command. To change
an entry, use either the MODIFY command or the RENAME command.

Relating Procedures to Procedures

Procedures may be related to other procedures by establishing a hierarchical relationship
between the procedures with the RELATE command. Use the command string RELATE
PROCEDURE to define this relationship. This command allows more than one CHILD
procedure to be related to a PARENT procedure during the command cycle. If
relationships are to be established for more than one PARENT procedure, use the
REPEAT option with the command string.

Relationship entries can be displayed by using the SHOW command. For a PARENT
procedure, the SHOW command displays the data elements associated with it, the CHILD
procedures related to it, and optionally, the data elements associated with each CHILD.
For a CHILD procedure, only the data elements associated with it are displayed. The
elements are displayed in the physical order of their association with the procedure, and
the CHILD procedures are displayed in the physical order they were related to the
PARENT procedure.

The REPORT command can be used to display an alphabetized list of the elements used by
a procedure. It can also be used to show the CHILD procedures used by the PARENT
procedure.

To delete the relationship between entries use the REMOVE command. To change the
relationship, use the CHANGE command. To change the physical order in which the
CHILD procedures are related to the PARENT procedure, use the REORDER command.
36 Chapter 3

Using the DICTDBM Commands
Using Command to Define Procedures
Adding Data Elements to Procedures

The ADD command is used to associate data elements with a procedure. Use the
command string ADD PROCEDURE to define the association. An entry is defined that
associates the element with the procedure. To display the entries, use either the REPORT
command or the SHOW command.

An association entry can be deleted by using the DELETE command or it can be changed
by using the UPDATE command. If you want to change the physical order in which the
associated entries were made, use the RESEQUENCE command.
Chapter 3 37

Using the DICTDBM Commands
Using Commands to Define Locations
Using Commands to Define Locations
The Dictionary can also be used to document the physical locations where procedures and
files are used. DICTDBM uses LOCATIONS to capture this information. The specific
MPE group and account, and the machine on which the procedure or data file is used, can
be identified. This information is helpful when a change to a procedure or file occurs
because it tells you where the procedure or data file resides. This information can also be
used to generate file equations for the referenced files by HP INFORM/3000.

Hierarchical structures for locations cannot be defined in your Dictionary.

The following description outlines the steps involved when the DICTDBM commands are
used to define locations. A complete description including examples for all the commands
is given in Chapter 4 of this manual.

Creating Locations

Use the CREATE LOCATION command string to define an entry for a location. The name
used for the location must be unique. Use the REPEAT option before the command string
to create definitions for more than one location without having to reenter the command.

Information identifying the MPE group, account, and machine is not required for the
entry. However, when changes are made to the files and procedures, you can save time and
effort by knowing where the updates need to occur.

After the entries are created, use the LIST or DISPLAY commands to display the entry. If
you want to delete an entry, use the PURGE command. To make changes to the entry, use
either the MODIFY command or the RENAME command.

Adding Files and Procedures to Locations

Before a file or procedure can be associated with a location, it must be defined in the
Dictionary. The method for associating files and procedures with a location differs slightly
from previous methods. You use the ADD command to define the association, but the
command string is ADD FILE-LOC or ADD PROCEDURE-LOC. An entry is defined that
associates the file or procedure with the location. To display the association entries, the
command strings DISPLAY LOCATION or SHOW LOCATION are used. An association
entry is deleted by using the command strings DELETE FILE-LOC or DELETE
PROCEDURE-LOC.
38 Chapter 3

Using the DICTDBM Commands
Using Commands to Define Categories
Using Commands to Define Categories
The Dictionary provides a way for you to identify functional areas in your business and to
show how information flows from area to area. The Dictionary uses CATEGORY to define
this information.

Each functional area is a category in the Dictionary. The information may consist of
departments, people, functions, documents, and so forth. The organizational flow chart for
the functional area can be documented by defining a hierarchical relationship between
them. This relationship is established by using the RELATE command. (Refer to Chapter
4 of this manual for a description of this command.) This hierarchical relationship is
summarized in Figure 3-4.

Figure 3-4. Summary of Hierarchical Structure for a Category

The category at the top of the structure is a PARENT category. Other categories are
related to the top category and are CHILD categories. A CHILD category can in turn be a
PARENT category to other CHILD categories. In this hierarchical structure, a PARENT
category cannot have data elements associated with it.

The following description outlines the steps involved when the DICTDBM commands are
used to define categories. A complete description including examples for all the commands
is given in Section IV of this manual.

CATAGORY PARENT catagory

CATAGORY ... CATAGORY

CATAGORY ...CATAGORY

CATAGORYdata
elements

data
elements

CHILD catagory

PARENT/CHILD
catagory

CHILD
catagory
Chapter 3 39

Using the DICTDBM Commands
Using Commands to Define Categories
Creating Elements and Categories

To create data element and category entries, use the CREATE command. You use the
command string CREATE ELEMENT or CREATE CATEGORY to define the entry. An
element or a category must be defined in the Dictionary before it can be associated or
related to other entries. The name you use for the category or the element must be unique.

The created entries can be displayed using the LIST or DISPLAY commands. Changes can
be made to the entry by using the MODIFY command. The entry can be renamed by using
the RENAME command. To delete the entry, use the PURGE command.

Relating Categories to Categories

The hierarchical relationship between categories is established with the RELATE
command. Use the command string RELATE CATEGORY to define this relationship. This
command allows more than one category to be related to the PARENT category during the
command cycle.

To display the relationships, use the SHOW command. For a PARENT category, this
command displays each CHILD category. It also displays the data elements associated
with the CHILD category. The elements are displayed in the physical order in which they
were associated with the category, and the CHILD categories are displayed in the physical
order in which they were related to the PARENT category.

The REPORT command can be used to display an alphabetical listing of the elements
associated with a category. For a PARENT category, REPORT displays all the elements
associated with the CHILD categories.

The relationship entry can be deleted with the REMOVE command, and it can be changed
with the CHANGE command. Use the REORDER command to change the physical order
in which the CHILD categories are related to the PARENT category.

Adding Elements to Categories

The ADD command is used to associate data elements to categories. Use the command
string ADD CATEGORY to define this association. An entry is defined that associates an
element with a category. Elements cannot be associated to a PARENT category. DICTDBM
will not accept this and will issue an error message if it is tried.

To display association entries, use either the REPORT command or the SHOW command.
If you want to delete the association entry, use the DELETE command. To change the
entry, use the UPDATE command. To change the physical order of the association, use the
RESEQUENCE command.
40 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Groups
Using Commands to Define HP Inform/3000 Groups
The Dictionary must be properly set up in order to produce the desired reports using HP
Inform/3000. Usually this is the responsibility of the Database Administrator (DBA). HP
Inform/3000 enables the user to define and create reports from data contained in IMAGE
databases, MPE files, and KSAM files. (For specific information on how to run HP
Inform/3000 and produce reports, see the HP Inform/3000 User's Guide.)

HP Inform/3000 makes the distinction between two methods of organizing data:
databases and HP Inform/3000 groups. In order for a user to define a report, HP
Inform/3000 presents a Data Organization Menu from which one of these two methods
must be selected. Which method is appropriate depends on whether the data elements can
all be found in one data set, or whether they have been organized into groups.

HP Inform/3000 Groups

HP Inform/3000 groups are logical groupings of data elements which have been defined in
the Dictionary. Before defining HP Inform/3000 groups, the DBA needs to gather and
organize all the information required by all the HP Inform/3000 users. For example, some
users will want to produce marketing reports, some manufacturing reports, others
personnel reports, etc. The groups can be defined according to these identified categories
of information which have logically connected data elements - "data names" as they are
called in HP Inform/3000.

By organizing data elements into groups, the DBA is taking advantage of HP
Inform/3000's ability to access elements from multiple and different types of data files.
Elements can be accessed from more than one data set. KSAM and MPE files can also be
accessed. In addition, an element can be assigned an alias name which is especially
meaningful to the HP Inform/3000 user. This name will then appear on HP Inform/3000's
Data Names Menu.

A hierarchical relationship between groups is established by using the RELATE command
(refer to Section IV of this manual for a description of this command). This relationship is
summarized in Figure 3-5. It is reflected in the hierarchy of HP Inform/3000 Group Menus
and Subgroup Menus as seen by the HP Inform/3000 user.
Chapter 3 41

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Groups
Figure 3-5. Summary of Hierarchical Structure for Groups

$MENU is the top of the structure and is the PARENT group. Other groups are related to
$MENU and are CHILD groups. A CHILD group can in turn be a PARENT group of other
CHILD groups (which are called "subgroups" in HP Inform/3000 and appear on HP
Inform/3000's Subgroup Menu). This hierarchical relationship can exist up to 10 levels
deep, starting with $MENU. A PARENT group cannot have data elements associated with
it. Note that $MENU is created automatically when the Dictionary is initialized and
cannot be altered or purged.

Each group in this hierarchy must be defined in the Dictionary. The data elements you
wish to associate with a group and the files those data elements are associated with must
first be defined in the Dictionary. Preceding topics in this section provide the details for
defining databases and other file structures. The following description outlines the steps
involved when you use the DICTDBM commands to define groups. A complete description
for all the commands is given in Section IV of this manual.

Creating Elements and Groups

To create data elements and group entries, use the CREATE command. The CREATE
ELEMENT or CREATE GROUP command string is used to define the entry. An element
or group must be defined in your Dictionary before you can associate or relate it to other
entries. The name entered for the element or group must be unique among elements and
groups, respectively. The remaining prompts allow the user to provide useful information,
but are not required. You can create many elements or groups in a command cycle by
using the REPEAT option.

$MENU PARENT group

GROUP

GROUP ...

GROUP ...data
elements

data
elements

CHILD group

PARENT/CHILD
group

CHILD
group

data
elements

CHILD groupGROUP ...

PARENT/CHILD groupGROUP
42 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Groups
After creating entries in the Dictionary, you can use the LIST or DISPLAY commands. If
you want to delete an entry, use the PURGE command. To change an entry, use either the
MODIFY or RENAME commands.

The RELATE ELEMENT command string can be used to define CHILD elements (fields)
within a PARENT data element. Note, however, that to report on a CHILD data element
from HP Inform/3000, that data element must have been added to the group (the PARENT
element may or may not be in the group).

Relating Groups to a Group

The hierarchical relationship between groups is established with the RELATE command.
Use the command string RELATE GROUP to define this relationship. When relating
groups to the top of the hierarchical structure, enter $MENU in response to the prompt for
PARENT GROUP; in response to CHILD GROUP, enter the name of the group to be
related to $MENU. The groups related to $MENU will all appear on HP Inform/3000's
Group Menu.

A relationship for other levels is defined in a similar manner - by entering the name of the
higher level group for PARENT GROUP, and the lower level group for CHILD GROUP. If
the PARENT group is not $MENU, the CHILD groups related to that PARENT group will
appear on an HP Inform/3000 Subgroup Menu.

The DESCRIPTION prompt allows you to supply useful information but is not required to
define the relationship.

The relationship between groups can be displayed by using the SHOW command. For a
PARENT group, this command displays each CHILD group, if any, and the data elements
associated with each CHILD. For a CHILD group, the data elements associated with it are
displayed. The elements are displayed in the actual order they were associated with the
group.

The REPORT command can be used to display an alphabetical listing of the elements
associated with a group or with related CHILD groups.

You can delete the relationship entry by using the REMOVE command and can change the
entry by using the CHANGE command. The REORDER command is used to change the
actual order in which the CHILD groups are related to the PARENT groups.

Example

>RELATE GROUP

PARENT GROUP> $menu <

CHILD GROUP> marketing <

 DESCRIPTION>

 CHILD GROUP> shipping <

 DESCRIPTION>

 CHILD GROUP> personnel <

 DESCRIPTION>

 CHILD GROUP> <
Chapter 3 43

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Groups
Adding Elements to Groups

The ADD GROUP command string associates data elements with previously created
groups. The data element must already exist in the data Dictionary. The Dictionary will
prevent you from associating elements with a PARENT group by issuing an error message
and reissuing the prompt for GROUP. (Note that an element need not be associated with a
file at the time the ADD GROUP command string is executed; however, the element must
have been added to a file before HP Inform/3000 is executed.)

In response to the prompt for ELEMENT, enter the name of the data element. Responding
to the ELEMENT ALIAS prompt is optional. HP Inform/3000 uses the element alias name
in its Data Names Menu; if no element alias is given, the data element name (primary
name) is used. Note that this element alias name should be meaningful to the HP
Inform/3000 user since it will appear on HP Inform/3000's Data Names Menu. It may or
may not be the same as the element alias name specified when the element is added to a
file.

NOTE The element alias name is only used by HP Inform/3000 on its Data Names
Menu. The data element name (primary name) will be used as the report
heading for that element unless a heading has been specified in response to
the HEADING TEXT prompt of the CREATE ELEMENT command string.
In addition, the data element name (primary name) will be used in HP
Inform/3000's "SELECTION CRITERIA FOR data name(s) " prompt unless
you have responded to the ENTRY TEXT prompt of the CREATE ELEMENT
command string. If you wish this to match the element alias name, you must
specify the element alias name as the HEADING TEXT and the ENTRY
TEXT on the CREATE ELEMENT command string.

The prompt for FILE allows you to designate the name of the specific file which should be
used to retrieve the values of an element when a report is being created from this group.
For example, the data element "date" may be the date a product was purchased in one file,
and the date the product was shipped in another file. Thus it is important to specify from
which file you want the values for "date" to be taken. This would apply even if the data
element "date" had been given different alias names when it was added to the different
files. (This particular situation could be avoided if two separate data elements, such as
"pur-date" and "ship-date" , are created in the Dictionary and added to the appropriate
file.) Note that when a file name is specified in response to the FILE prompt, the element
must already be associated with that file.

If, on the other hand, it is not important which file is used (for example, suppose the data
element "soc-sec-no" existed in more than one file), it is better not to respond to the FILE
prompt. This allows HP Inform/3000 to retrieve the values in a more efficient manner.

If a file specified in response to FILE is an IMAGE data set with more than one PARENT
file (BASE), the prompt PARENT FILE is issued next and must be answered.

The next prompt, VALUE AS A LINK, can be used to specify which elements should be
selected to link the desired elements into a logical record for reporting:

• If each of the elements being associated with a group can link all the files, do not
respond to the VALUE AS A LINK prompt for any of them.
44 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Groups
• If only one of the elements can link all the files, then give it a high priority link value (1)
and let the link values of the others default (0). * If more than one element is needed to
link the files, give a link value of 1 to the one that should be tried first, 2 to the one that
should be tried next, and so on. Use -1 if you never want the element to be used as a
link and 0 (the default) if the element could be used if needed.

NOTE An element can link two files only if it exists in both files and if certain
additional requirements, depending on the file being linked to, are met. See
Appendix D, How HP Inform/3000 Links Files to Generate Reports, for more
information on linking.

Elements assigned a positive link value form a prioritized list to be used when it is
necessary to link files. The lower the positive integer assigned to an element, the higher
the likelihood that it will be used as a link. In general, you should assign a link value of 1
to the element that will link the most files containing elements for the group, 2 to the
element that will link the next most, and so on. This will ensure that the reports an HP
Inform/3000 user requests from a particular group will be generated efficiently.

Table 3-1 summarizes the priorities of the possible link values:

Note that if an element has different meanings in different files (for example, the data
element "date" may have different meanings in different files), you will not want it to be
used as a link even if it links all the files containing elements for the group. Give such a
data element ("date") a link value of -1. (Note that in this case, simply answering the
FILE prompt, without specifying a link value of -1, will cause the correct values for "date"
to be printed in the report but will not help to link the files correctly.)

By both responding to the FILE prompt for an element and assigning a positive link value
to the element, you are designating a potential "driving file" . The driving file is the file
that is accessed first. Since at least one line of the report will be generated for each record
retrieved from the driving file, the contents of a report could be quite different if the
driving file is different. By designating a potential driving file, you are specifying that file
should be accessed first whenever:

• any element from the group which exists in that file is requested for the report, and

Table 3-1. Link Value Priorities

Link Value Priority

1 Highest priority

2 Next highest priority after link value of 1

3 Next highest priority after link values 1 and 2.

. .

. .

n Next highest priority after link values 1, 2, ...n-1

-1 Never used as a link
Chapter 3 45

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Groups
• no other potential driving file has been designated which has a higher priority link
value specified and contains an element requested for the report.

Hence, if you respond to the FILE prompt and designate a link value of 1 for a particular
element, the specified file will be accessed first whenever any element which exists in that
file is requested in a report. If you respond to the FILE prompt and designate a link value
of 2 for another element, the file specified in response to this FILE prompt will be accessed
first whenever any element which exists in that file is requested in a report and no element
which exists in the first file is requested.

NOTE The linking process determines whether it is possible to generate the
requested report and, if so, what specific data will be printed in the report.
For more information about linking, link values, and driving files, see
Appendix D of this manual, How HP Inform/3000 Links Files to Generate
Reports.

The DISPLAY ELEMENT ON MENU prompt allows the user to determine whether an
element is to be displayed on HP Inform/3000's Data Names Menu and used when
generating reports. By not displaying an element on the menu, you can include an
element in the group for linking and not allow it to be used for reporting.

Note that a CHILD data element can not be used in linking files. CHILD elements can,
however, be requested in an HP Inform/3000 report as long as they have been added to the
group; the PARENT element alone in the group is not sufficient. If a data element which is
a CHILD is needed for a report, HP Inform/3000 will try to find the PARENT element.
Since a CHILD element could have more than one PARENT, it will first use a PARENT
that has been added to the group. If no PARENT of the CHILD element exists in the
group, HP Inform/3000 tries to find any PARENT of the CHILD element it can find. In
order to ensure that the correct CHILD element is retrieved, you should add the PARENT
element to the group (in addition to the CHILD element); if you do not wish users to report
on the PARENT element, add it to the group and respond "NO" to the DISPLAY
ELEMENT ON MENU prompt. (You may also wish to specify a link value of -1, if you do
not want the PARENT element to be used to link files.) HP Inform/3000 retrieves the
value of the entire PARENT element, but only displays the value of the appropriate
CHILD element in the report.

You can display association entries by using the REPORT or SHOW commands. To delete
the association, use the DELETE command; to change it use the UPDATE command. The
order in which the elements are associated with the group are the order they will appear
on HP Inform/3000's Data Names Menu; this can be changed by using the RESEQUENCE
command.
46 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Groups
Example

>ADD GROUP

 GROUP> marketing <

ELEMENT> name <

ELEMENT ALIAS> employee name <

 FILE> ! <

 ELEMENT> date <

ELEMENT ALIAS> date of hire <

 FILE> empfile <

VALUE AS A LINK> <

 DISPLAY ELEMENT ON MENU (Y/N)?n

 DESCRIPTION>

 ELEMENT> <
Chapter 3 47

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
Using Commands to Define HP Inform/3000 Security
HP Inform/3000 security prevents unauthorized persons from gaining read access to the
Dictionary by limiting the names of the database files and Inform groups displayed on the
Inform menus. When Inform security is set up in the Dictionary, Inform menus will
display only the information granted a user via an Inform password.

To establish Inform Security, the database administrator must first determine who should
have access to what data. By using the DICTDBM commands, Inform classes are created
and passwords are assigned to each Inform class. Database files and elements are
associated to IMAGE classes which are in turn related to the Inform classes. Inform
groups are directly associated to the Inform classes. When Inform executes, it looks for
any Inform class relationships defined in the Dictionary and prompts you for an Inform
password if any such relationships are found. If no Inform class relationships are found,
you are not prompted for an Inform password and all the database files and Inform groups
defined in the Dictionary will be displayed on the Inform menus. You will have to enter the
necessary passwords/lockwords when you produce the report. The Inform password
determines what Inform class you belong to. Only the database file names and Inform
group names belonging to that Inform class will be displayed on the Inform menu.

If you use either the Dictionary manager or programmer level password as the Inform
password, then you are granted access to all Inform groups and database files defined in
the Dictionary. (See Appendix C of the manual for more information on the access levels to
the Dictionary.)

Database and the Inform Class Relationships - Figure 3-6 shows the relationships
between a database and an Inform class. Each line represents a relationship.

Figure 3-6. Relationships Between the Database and the Inform Class

DATABASE

DATA SET

element

element

element

DATA SET

element

element

element

.

.

.

IMAGE CLASS INFORM CLASS
48 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
Note that the database file must be directly associated with the IMAGE class or Inform
will not give you access to any of the database sets or elements. Each data set and element
in the database must also be directly associated with the same IMAGE class as the
database file or Inform will not give you access to that data. NOTE: Inform Security
requires element (item) level access to be defined in the dictionary before the element
(item) can be displayed on the Inform Menu. Inform opens a database in open mode 5
which requires security to be defined at the data item level. (See the IMAGE/3000
Reference Manual for more information.)

Depending on how security is to be implemented, a database, data set, or element can
belong to more than one IMAGE class. An IMAGE class can belong to more than one
Inform class.

Inform Groups and Inform Class Relationships - Figure 3-7 shows the relationships
between an Inform group and an Inform class.

Figure 3-7. Relationships between an Inform group and Inform Class

*Relating an MPE or KSAM file to an IMAGE class is only necessary if the file has a
lockword.

Inform groups and subgroups are directly associated to the Inform class. However, in order
to access any elements in the Inform groups, the elements must be associated to an
IMAGE class and the IMAGE class must be related to the same Inform class as the Inform
group. Otherwise, Inform will not allow access to these elements. The database files in
which these elements are contained must also be associated to an IMAGE class. It is
necessary to associate an MPE or KSAM file to an IMAGE class if the file has a lockword.
When Inform opens an MPE or KSAM file and that file has been added to an IMAGE class
which has a password, Inform uses that password as a lockword when opening the file.
That means that if you want Inform to open an MPE or KSAM file that has a lockword and
you don't want to be prompted for the password, you must add the file to an IMAGE class
whose password matches the file's lockword. In doing this, it is recommended that a
different class be assigned to each file or database, and that CLASS-TYPE (MPEF, MPER,
KSAM, or BASE) be used to distinguish them for documentation purposes.

SUB-GROUP

DATABASE

element

element

element

element

INFORM GROUP

*MPE or KSAM FILE

IMAGE CLASS

INFORM CLASS
Chapter 3 49

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
Depending on how Inform security is to be implemented, an Inform group or sub-group can
belong to more than one Inform class. An element can also belong to more than one
IMAGE class.

Creating Inform Classes

In the Dictionary, Inform classes are created as INFO type classes and are identified by an
integer from 0 through 9999. Use the CREATE CLASS string to create an Inform class.
Enter the identifying class number and INFO as the class type. Enter the password to be
assigned to the Inform class. If the password in the dictionary is entered in upper case
then Inform also expects the password to be entered in upper case. If the case does not
match Inform will issue an invalid password error message. Note that the Dictionary will
not prevent you from creating duplicate passwords for Inform classes. If duplicate
passwords are created, Inform will use the class belonging to the first matching password
that it finds in the Dictionary.

The remaining prompts for this command string allow you to provide useful information,
but are not required.

After an Inform class is created, you can use either the LIST or DISPLAY command to
display the entry. If you want to delete the entry from the Dictionary, use the PURGE
command. To change the entry, use either the MODIFY or the RENAME command.

Relating IMAGE Classes to Inform Classes

The hierarchical relationship between the Inform class and the IMAGE class is
established with the RELATE command. Use the RELATE CLASS string to define this
relationship. Enter the identifying number of the Inform class in response to the prompt
for PARENT CLASS. Enter the identifying number of the IMAGE class in response to the
prompt for the CHILD CLASS. The description prompt allows you to supply useful
information but is not required to define this relationship.

The relationship between the classes can be displayed by using the SHOW command. For
the Inform class, this command displays each CHILD class. For the CHILD class, this
command displays the files and elements associated with the CHILD class in the order in
which they were associated with the CHILD class. To display an alphabetized listing of
the elements associated with a CHILD class, you can use the REPORT command.
Reporting an INFO class will display "No elements found" because elements are not and
cannot be directly related to an INFO class. To display the attribute information and
related PARENT classes for a CHILD class, you can use the DISPLAY command.

The relationship between an Inform class and an IMAGE class can be deleted by using the
REMOVE CLASS command string. The description of the relationship can be changed by
using the CHANGE CLASS command string.

Adding Entities to an IMAGE Class

The association between the IMAGE classes and the different entities (databases, data
sets, elements and files) is established using either the ADD command or the SECURE
command. Remember that before Inform can access these entities, they must belong to an
IMAGE class and that IMAGE class must be related to the Inform class.
50 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
To associate an element with an IMAGE class, use the ADD CLASS command string. To
associate a file to an IMAGE class, use the ADD CLASS-FILE command string.

You can also use the SECURE command to assign all the elements associated with a file to
an IMAGE class. By using the SECURE FILE command string, you can avoid adding each
individual element, one at a time, to an IMAGE class. The SECURE FILE string can also
be used to secure a database, data set, or a file and any child files it may have, to that same
IMAGE class.

The association between an element or file and the IMAGE class can be deleted by using
the DELETE command. You can display the association entries by using the REPORT or
SHOW commands.

Adding Inform Groups to Inform Classes

For Inform security by groups to be implemented, an Inform group is directly associated to
an Inform class. However, any elements belonging to the Inform group are not added to
that Inform class. They are associated to an IMAGE class. That IMAGE class is then
related to the same Inform class as the Inform group which the element belongs to. (See
Figure 3-7 for a diagram of this relationship.)

The association between the Inform group and the Inform class is established using either
the ADD command or the SECURE command. To associate an individual Inform group to
an Inform class, use the ADD CLASS-GROUP command string. Enter the identifying
number of an existing Inform class in response to the prompt for CLASS. Enter the name
of an existing Inform group in response to the prompt for GROUP. To add an Inform group
plus all of its child groups (if any) to an Inform class, use the SECURE GROUP command
string. Enter the name of the Inform group in response to the prompt for GROUP. Enter
the identifying number of an existing Inform class in response to the prompt for CLASS.
Note that no elements belonging to the Inform group or to its child groups will be added to
the Inform class. Again, these elements must first be associated to an IMAGE class. That
IMAGE class must then be related to the same Inform class as the Inform group which the
element belongs to or Inform will not allow access to those elements. To add a file to a
class use the ADD CLASS-FILE command string.

You can display the attribute information and any associated Inform classes for an Inform
group by using the DISPLAY GROUP command string. You can change the description of
an Inform group to Inform class association by using the UPDATE CLASS-GROUP
command string. The association itself can be deleted by using the DELETE
CLASS-GROUP command string.
Chapter 3 51

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
Example

Defining Inform Security for a database

>REPEAT CREATE CLASS

CLASS> 101 To CREATE the INFO class

NAME>

TYPE> INFO

PASSWORD> BOSS

RESPONSIBILITY>

DESCRIPTION>

CLASS> 10 To CREATE the IMAGE class

NAME>

TYPE>

PASSWORD> VP

RESPONSIBILITY>

DESCRIPTION>

CLASS>

>RELATE CLASS To RELATE the INFO class to

the IMAGE class

PARENT CLASS> 101

CHILD CLASS> 10

DESCRIPTION>

CHILD CLASS>

>SECURE FILE To SECURE the database, data

sets, and elements to the IMAGE

class

FILE> BASE

CLASS> 10

ACCESS CAPABILITY> R

 ELEMENTS WILL BE SECURED TO CLASS.

 SECURE FILE(S) TO CLASS (N/Y)?> Y

 FILE ACCESS CAPABILITY> R

 OR

>ADD CLASS-FILE To ADD specific data sets to the

IMAGE class

CLASS> 10

FILE> BASE

DESCRIPTION>
52 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
FILE> DATASET1

ACCESS CAPABILITY> R

DESCRIPTION>

FILE> DATASET2

ACCESS CAPABILITY> R

DESCRIPTION>

>ADD CLASS To ADD elements to the IMAGE

class

CLASS> 10

ELEMENT> E1

ACCESS CAPABILITY> R

DESCRIPTION>

ELEMENT> E2

ACCESS CAPABILITY> R

DESCRIPTION>

ELEMENT> E3

ACCESS CAPABILITY> R

DESCRIPTION>

Defining Inform Security for Groups: Sales Group and Account Orders

The elements for the Sales Group are Account, Sales Rep, and Address and are contained
in the Salestat (KSAM) file which has a lockword of KEEP. The elements for the Account
Orders group are Prod-No and Owner and are contained in the Warranty (MPE) file which
has a lockword of SAFE.

 >REPEAT CREATE CLASS

CLASS> 100 To CREATE the INFO class

NAME> <cr>

TYPE> info

PASSWORD> MICHAEL

RESPONSIBILITY> <cr>

DESCRIPTION> <cr>

CLASS> 301 To CREATE the IMAGE classes

NAME> <cr>

TYPE> <cr>

PASSWORD> KEEP

RESPONSIBILITY> <cr>

DESCRIPTION> <cr>

CLASS> 302

NAME> <cr>
Chapter 3 53

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
TYPE> <cr>

PASSWORD> SAFE

RESPONSIBILITY> <cr>

DESCRIPTION> <cr>

>RELATE CLASS To RELATE the IMAGE class to the

INFO class

PARENT CLASS> 100

CHILD CLASS> 301

DESCRIPTION> <cr>

CHILD CLASS> 302

DESCRIPTION> <cr>

CHILD CLASS> <cr>

>ADD CLASS To ADD elements to the Image

class

CLASS> 301

ELEMENT> ACCOUNT

ACCESS CAPABILITY> R

DESCRIPTION> <cr>

ELEMENT> SALES REP

ACCESS CAPABILITY> R

DESCRIPTION> <cr>

ELEMENT> ADDRESS

ACCESS CAPABILITY> R

DESCRIPTION> <cr>

ELEMENT> <cr>

CLASS> 302

ELEMENT> PROD-NO

ACCESS CAPABILITY> R

DESCRIPTION> <cr>

ELEMENT> OWNER

ACCESS CAPABILITY> R

DESCRIPTION> <cr>

ELEMENT> <cr>

CLASS> <cr>

>REPEAT ADD CLASS-FILE To ADD a file to the IMAGE class

(Needed only if the file has a

lockword)

CLASS> 301
54 Chapter 3

Using the DICTDBM Commands
Using Commands to Define HP Inform/3000 Security
FILE> SALESTAT

DESCRIPTION> <cr>

FILE> <cr>

CLASS> 302

FILE> WARRANTY

DESCRIPTION> <cr>

FILE> <cr>

CLASS> <cr>

>ADD CLASS-GROUP To ADD groups to the INFO class

CLASS> 100

GROUP> SALES GROUP

DESCRIPTION> <cr>

GROUP> ACCOUNT ORDERS

DESCRIPTION> <cr>

• If you define a password for Inform Security in upper or lower case characters, Inform
expects it to be entered in the exact same way. For example, if you defined BOSS in all
upper case characters and then ran Inform and entered the password in lower case,
Inform would not accept the password as a valid password.

• Dictionary does not check for duplicate passwords, so avoid assigning two different
Inform classes the same password. Inform will use the first class it finds and from there
use all the classes related to the Inform class to determine access. The end result is the
user will not necessarily have access to the data they want.

• Inform Security requires element (item) level access to be defined in the dictionary and
database before that item will be displayed on the Inform menu or accessed at report
generation time.

• Avoid relating more than one IMAGE class associated with a particular database to the
same Inform class. In the figure below, ORDERS is related to three IMAGE classes.
You should choose one of those IMAGE classes to relate to one Inform class to establish
access to ORDERS. If two IMAGE classes (1 and 2 in this example) are related to 101,
Inform may find IMAGE class 1's password first or IMAGE class 2's password to use to
open the database, the results are unpredictable. In this example it would be better to
relate IMAGE class 1 to Inform class 101, 2 to 102, and 3 to 103. You may want to have
different Inform classes for the database to allow access at multiple levels.

INFORM CLASS 101 102 103

IMAGE CLASS 1 2 3

DATABASE ORDERS
Chapter 3 55

Using the DICTDBM Commands
Using Selection Criteria
Using Selection Criteria
When using the DISPLAY or the LIST command string, you can dictate the listing you
want to see by entering one of the Selection Criteria values in response to a prompt. A
listing can be chosen based on character values, numeric values, or an expression of these
values. In all cases, the type of listing is based on the subcommand used.

You can enter a string of characters with a caret character (^) at the end, beginning, or in
the middle of the string. Depending on where used, the caret has the following meaning:

• If used at the beginning of a string, it means that all values ending with the string are
to be listed.

• If used at the end of a string, it means that all values beginning with the string are to
be listed.

• If two carets are used at the end of a string, it means that all values containing the
string are to be listed.

• If embedded between characters in a string, it means that values that match wherever
characters appear in the string are to be listed.

•

You can also enter an expression of these values using the following format:

 [relationship] value connector [relationship] value ...

where:

relationship is an optional field that can contain one of the following two letter codes:

NE not equal to

LT less than

LE less than or equal to

GT greater than

GE greater than or equal to

If a relationship is omitted, the default "equal to" is used.

value connector is the Boolean connection between the values. The following terms
can be used:

TO the selected field must contain one of a range of values
where the low end of the range precedes this connector
and the high end of the range follows this connector.

AND the selected field must contain both the value preceding
and the value following this connector.

OR the selected field must contain one or both of the values.

The order of precedence is TO, then AND, then OR.

If the value to be selected contains one or more blanks, then the value
56 Chapter 3

Using the DICTDBM Commands
Using Selection Criteria
must be enclosed in quotation marks as follows.

If you need more than one line for a selection expression, end the first line
with a connector, and another selection line prompt is issued.

Examples

The following are examples of using carets and connectors:

PROD^ and ^NO Values that begin with PROD and end with NO are
selected.

ACCT^ or PROD^ and ^NO Values that begin with ACCT or values that begin with
PROD and end with NO are selected.

^FDCUST^ and ^NAME or
ACCT^ and ^NO Values that begin with CUST and end with NAME, or

values that begin with ACCT and end with NO are
selected.

PROD^ or ACCT^ or CUST^ Values that begin with PROD or ACCT or CUST are
selected.

"PROD NO" Values that equal PROD NO are selected.

The following are examples of using relationship operators:

LT B Values which are less than values beginning with B are
selected.

GE R and LT V Values which are greater than or equal to values
beginning with R, and values which are less than values
beginning with V are selected.

GE M or I^ or LT C Values which are greater than or equal to values
beginning with M, or values which are equal to values
beginning with I, or values which are less than values
beginning with C are selected.
Chapter 3 57

Using the DICTDBM Commands
Using Edit Description Commands
Using Edit Description Commands
Three commands allow text editing of a description: MODIFY, CHANGE, and UPDATE.
The MODIFY command allows you to alter a description of an entity you entered with the
CREATE command; the CHANGE command allows you to alter a description you entered
with the RELATE command; the UPDATE command allows you to alter a description you
entered with the ADD command.

You indicate that you want to edit a description by responding with a "Y" or RETURN to
the EDIT DESCRIPTION prompt. The description is edited by entering one of the
following EDIT commands:

LIST or L list one or more description lines

ADD or A add description line or lines

DELETE or D delete description line or lines

REPLACE or R replace a description line

RENUMBER or REN renumber description lines

HELP or H displays available EDIT commands

EXIT or E exit EDIT command

Example

 >MODIFY CATEGORY

 CATEGORY> FINANCE <

 EDIT DESCRIPTION(Y/N)?>

EDIT COMMAND>> ADD EDIT command ADD used.

 LINE NUMBER> 2 < line number to be added.

 2.000 > This category identifies the finance <

 3.000 > department for the Supplies Division. <

 4.000 > <

RETURN ends the a

of lines.

 EDIT COMMAND>> EXIT EXIT to terminate EDIT.

 EDIT ATTRIBUTES(Y/N)? N

 > RETURN to command prompt.
58 Chapter 3

Using the DICTDBM Commands
Using Edit Masks
Using Edit Masks
You can define the output format for data elements in reports generated by HP
Inform/3000, Report/3000, and Transact/3000. You do this by defining an edit mask for a
data element to be formatted in a report.

An edit mask is a string of characters describing how the data element should look when it
appears in a report. Characters such as dollar signs and decimal points can be inserted,
and leading zeros suppressed before the data element is displayed in reports. You can
define edit masks with either the CREATE or MODIFY commands.

Edit masks can be defined with up to 30 characters. All characters except the following,
are treated as insert characters:

^ means that the next character in the source field is to be inserted into the
display field.

Z means that leading zeros are to be suppressed.

$ means that leading zeros are to be suppressed and that the left-most zero
is to be replaced with a dollar sign.

* means that asterisks are to replace leading zeros.

. means that the implied decimal point defined for the element is to be
aligned in the position where this one appears.

! means that a decimal point for a data element is to appear in the position
specified by “!” ; use of the "!" character overrides an implied decimal point
for the data element.

If the last character of the edit string is a negative sign, a negative data element is
displayed with a trailing minus sign (-). If the last characters of the edit string are CR (for
CREDIT) or DR (for DEBIT), the data element is displayed with a trailing CR or DR,
respectively. Table 3-2 shows how edit masks affect the displayed value for different data
elements.

Table 3-2. Using Edit Masks with Elements

Data Element Value EDIT MASK Displayed Value

1234 $$,$$$.^^ $12.34

123456 $$,$$$.^^ $1,234.56

123456 ***,**$.^^ *$1,234.56

000009 ZZZZ.^^ .09

-123456 $$,$$$.^^CR $1,234.56CR

810807 ^^/^^/^^ 81/08/07

-123 $$,$$$.^^- $1.23=

1234 ZZZZ! 1234.
Chapter 3 59

Using the DICTDBM Commands
Using Edit Masks
-012345 none -012345

Table 3-2. Using Edit Masks with Elements

Data Element Value EDIT MASK Displayed Value
60 Chapter 3

4 DICTDBM Commands

Overview
A set of commands is provided by the Dictionary's DICTDBM program, which are used to
create and maintain entries in a data Dictionary. These commands are used with a
subcommand to identify the entity that receives the action of the command. Each
command-subcommand used, generates a series of interactive prompts which allows you to
enter the necessary data for each entry. This section contains the reference specifications
for each command, along with the subcommands and prompts used with the command.

Table 4-1 gives a summary of the DICTDBM commands with a brief description of their
function.

Table 4-1. Summary of DICTDBM Commands

COMMAND FUNCTION

ADD Adds an association entry.

CHANGE Changes attributes of entity within a relationship.

CREATE Creates an entry for a new entity.

DELETE Deletes an association entry.

DISPLAY Displays entry information.

EXIT Terminates the DICTDBM program.

HELP Briefly describes the functions of DICTDBM commands and subcommands.

LIST Lists entries.

MODIFY Modifies an entry.

PURGE Purges an entry.

RELATE Establishes a hierarchical relationship entry.

REMOVE Removes a hierarchical relationship entry.

RENAME Renames an existing entity.

REORDER Reorders entities within a relationship entry.

REPORT Generates a sorted listing of data element entries.

RESEQUENCE Resequences entities within an association entry
61

DICTDBM Commands
Overview
SECURE Assigns security for a file's data elements, for the file, or for a group.

SHOW Shows hierarchical relationship and association entries.

UPDATE Updates an association entry.

Table 4-1. Summary of DICTDBM Commands

COMMAND FUNCTION
62 Chapter 4

DICTDBM Commands
ADD
ADD
Adds an association between unlike entities.

Syntax

 [option] ADD subcommand

Use the ADD command to associate an element, a file, or a procedure with an unlike entity.
The association is one of ownership. The subcommand identifies the type of entity for
which an association is made. For example, ADD CATEGORY associates a data element
with a category. In other words, the data element now “belongs” to that category. Similarly,
ADD FILE-LOC associates a file with a physical location. The file now “belongs” to that
location.

Like entities (such as file to file) can not be associated through the ADD command. (See the
RELATE command to relate like entities.)

Data elements can be added to a file's primary format or as secondary format. The primary
list of elements associated with a file defines the primary format for that file. This is the
default format and is used by the Dictionary utilities and HP Inform. Any number of
elements can be associated with the primary format of a file.

A secondary format is an alternate format for a file's storage area (which contains the
elements associated with the file). It is used by the DICTCDE utility to generate the
REDEFINE clause in a COBOL II data division. (For more information on the DICTCDE
utility, see Section 5 of this manual.) A file may have multiple secondary formats, each one
represented by a single data element. Each element associated with a secondary format
should reflect the alternate format for the file. (For instance, that element could be a
parent element with several child elements related to it.)

Elements cannot be associated with a parent entity (an entity that has subordinate
entities related to it) unless the parent entity is a procedure. Elements may be associated
with parent procedures which have child procedures related to them.

When data elements are associated with an entity, they are added to that entity's list of
associations in the order in which they were associated. (See the RESEQUENCE
command to change this order.)

Subcommands

Any of the following subcommands can be used with the ADD command:

CATEGORY adds a data element to a category

CLASS adds a data element to a user security class

CLASS-FILE adds a file to a user security class

CLASS-GROUP adds a group to a user security class

FILE adds a data element to a file

FILE-LOC adds a file to a physical location
Chapter 4 63

DICTDBM Commands
ADD
GROUP adds a data element to an HP Inform group

PROCEDURE adds a data element to a procedure

PROCEDURE-LOC adds a procedure to a physical location

Example

>ADD FILE

 FILE> Orders Existing file.

PRIMARY/SECONDARY(P/S)?> P Indicates element is to be in

primary format.

 ELEMENT> Customer1 Adds an element to a file.

ELEMENT ALIAS>

DESCRIPTION> Customer-account information used by Finance.

>

ELEMENT>

> New command prompt.

Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

COMMAND SUB-COMMAND PROMPT

ADD CATAGORY * CATAGORY

** ELEMENT

ELEMENT ALIAS

DESCRIPTION

ADD CLASS * CLASS

** ELEMENT The following prompts are issued only if
CLASS is not an INFO type; otherwise
CLASS is reissued.* ACCESS CAPABILITY

DESCRIPTION

ADD CLASS-FILE * CLASS The following prompts are issued only if
CLASS is not an INFO type.

** FILE

* ACCESS CAPABILITY Issued only if file type is MAST, DETL, or
AUTO.

DESCRIPTION

ADD FILE * FILE

1. If FILE is MAST file
64 Chapter 4

DICTDBM Commands
ADD
** ELEMENT Prompt is KEY ELEMENT if first
element added to MAST.

ELEMENT ALIAS

DESCRIPTION

2. If FILE is MPEF or MPER file

PRIMARY/SECONDARY (P/S)

** ELEMENT

ELEMENT ALIAS

DESCRIPTION

3. If FILE is AUTO file

* KEY ELEMENT

ELEMENT ALIAS

DESCRIPTION

4. If FILE is DETL file

** KEY ELEMENT

ELEMENT ALIAS

PATH MASTER FILE * If element is search item.

PATH SORT ELEMENT Issued if PATH MASTER FILE
responded to.

* If element’s chain is to be sorted.

PRIMARY PATH (N/Y) Issued if PATH MASTER FILE
responded to.

* If element defines the primary path

DESCRIPTION

5. If FILE is KSAM file

PRIMARY/SECONDARY (P/S)

** ELEMENT

ELEMENT ALIAS

KEY ELEMENT (N/Y) Issued if element is being added to the
Primary format and element TYPE is not
B, S or *.

* If element is KEY element.

PRIMARY KEY (N/Y) Issued if Y entered for KEY ELEMENT
and no primary key exists.

DUPLICATES (N/Y) Issued if Y entered for KEY ELEMENT
or for PIMARY KEY.

DESCRIPTION

6. If FILE is FORM file

COMMAND SUB-COMMAND PROMPT
Chapter 4 65

DICTDBM Commands
ADD
Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

ACCESS
CAPABILITY Enter the type of capability to be assigned to the user security class for

the file or element as follows:

If the subcommand is:

CLASS-FILE - enter one of the following:

ELEMENT

ELEMENT ALIAS

FIELD NUMBER

DESCRIPTION

ADD FILE-LOC * LOCATION

** FILE

FILE ALIAS

FILE SIZE Issued only if file type is MPEF, MPER or
KSAM.

DESCRIPTION

ADD GROUP * GROUP

** ELEMENT

ELEMENT ALIAS

FILE

PARENT FILE Issued only if file belongs to more than
one database.

VALUE AS A LINK

DISPLAY ELEMENT ON MENU (Y/N)

DESCRIPTION

ADD PROCEDURE * PROCEDURE

** ELEMENT

ELEMENT ALIAS

DESCRIPTION

ADD PROCEDURE-LOC * LOCATION

** PROCEDURE

PROCEDURE ALIAS

DESCRIPTION

COMMAND SUB-COMMAND PROMPT
66 Chapter 4

DICTDBM Commands
ADD
R = read only

W = read, write, modify

X = null read/write list “(/)”

CLASS - enter one of the following:

R = read only

U = read and update only

M = read, write and modify

X = null read/write list “(/)”

Refer to the IMAGE Reference Manual for a detailed explanation of the
user class access capabilities.

CATEGORY Enter the name of an existing category (20 characters maximum).

CLASS Enter a numeric value which is the identifying number of an existing user
security class (0 to 9999).

To establish INFORM security, enter a numeric value which is the
identifying number of an existing INFO type security class.

DESCRIPTION Enter the textual description which describes the association between the
entities (50 characters per line maximum, unlimited number of lines).

DISPLAYELEMENT ON MENU
(Y/N Enter a response to specify whether you want the element to be displayed

for reporting on HP Inform's Data Names Menu.

DUPLICATES
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter a Y or YES if this key may have duplicate key values for this KSAM
file. Enter a N or NO if a duplicate key value is not allowed.

ELEMENT Enter the name of an existing data element which is the primary element
(20 characters maximum).

ELEMENT ALIAS Enter the name by which the data element is known within the file.
The maximum characters allowed are:

15 for FORM

16 for MAST, AUTO or DETL

20 for MPEF, MPER or KSAM

60 for CATEGORY

20 for an HP Inform GROUP

16 for PROCEDURE

DEFAULT: If [[RETURN]] is pressed in response to this prompt for an
element, the alias becomes the primary element name.

Note that HP Inform and HP Report will be unable to retrieve the values
of an element from an IMAGE data set if the alias name entered in
Chapter 4 67

DICTDBM Commands
ADD
response to the ELEMENT ALIAS prompt of the ADD FILE command
string is not the same as the actual name of the data element in the data
set.

FILE Enter the name of an existing file (20 characters maximum). Enter the
following file names for the appropriate subcommand:

If the subcommand is:

FILE - the file type must be one of the following:

MAST IMAGE manual master data set

AUTO IMAGE automatic master data set

DETL IMAGE detail data set

KSAM KSAM file

MPEF MPE sequential file

MPER MPE relative file

FORM VPLUS form

CLASS-FILE - the file type must be one of the following:

BASE IMAGE database

MAST IMAGE manual master data set

AUTO IMAGE automatic master data set

DETL IMAGE detail data set

KSAM KSAM file

MPEF MPE sequential file

MPER MPE relative file

VPLS VPLUS forms file

FILE-LOC - the file type must be one of the following:

BASE IMAGE database

KSAM KSAM file

MPEF MPE sequential file

MPER MPE relative file

VPLS VPLUS forms file

GROUP- the file must have at least one parent (BASE) if it is type MAST,
AUTO, or DETL and the element must have previously been associated
with the file.

FIELD NUMBER Enter the field number of this element on the VPLUS form.

FILE ALIAS Enter the name by which the file is known within the location (8
characters maximum). DEFAULT: If [[RETURN]] is pressed in response to
this prompt, the alias name becomes the first 8 characters of the file name.
68 Chapter 4

DICTDBM Commands
ADD
FILE SIZE Enter an integer value for the number of records in the file in that location
(0 to 999999999). DEFAULT is 0.

GROUP Enter the name of an existing HP Inform group (20 characters maximum).

KEY ELEMENT Enter the name of an existing data element (20 characters maximum)
that is as appropriate:

For an AUTO file, the search item and only item for an IMAGE automatic
master set.

For a MAST file, the first element added to an IMAGE manual master set.

For a KSAM file, an element to be used as a key for a KSAM file.

KEY ELEMENT
(N/Y)? Enter Y or Yes if this element is to be a key element for the KSAM file.

DEFAULT is No.

LOCATION Enter the name of an existing location (20 characters maximum).

PARENT FILE Enter the name of the existing parent file (20 character maximum) of the
database set specified by the preceding FILE prompt. The file type must be
type BASE (IMAGE database).

PATH MASTER
FILE Enter the name of an existing file (20 characters maximum) of type MAST

or AUTO which is the chain header for a detail set path. DEFAULT:
Pressing [[RETURN]] in response to this prompt indicates that the
element is not to be a search item.

PATH SORT
ELEMENT Enter the name of an existing data element (20 characters maximum) that

is the sort item for a sorted chain. This prompt is issued if a master data
set's name was given in response to the prompt for PATH MASTER FILE.
DEFAULT: Pressing [[RETURN]] in response to this prompt indicates that
this is not a sorted chain path.

PRIMARY KEY
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y or YES if this element is to be a primary key for the KSAM file.
This prompt will appear for each element associated with the KSAM file
until a primary key is designated. Once an element is entered as a primary
key, the prompt will not appear again for that file. DEFAULT is No. Note
that if you respond to this prompt with NO (or you press
[[RETURN]] as the default) then this element is assumed to be an
alternate key for the KSAM file.

PRIMARY PATH
(N/Y)? If the element is a search item, a Y indicates that it is the primary path for

the detail data set.

Note that if a primary path has already been specified during the current
prompting cycle of the ADD FILE command string, this prompt is not
issued. Next time the ADD FILE command string is issued and the file is
an IMAGE detail data set, this prompt is issued again; however,
Chapter 4 69

DICTDBM Commands
ADD
responding Y to this prompt now results in the prompt PRIMARY
ALREADY EXISTS, CONTINUE(Y/N)?. The default response of Y makes
this the primary path and cancels the primary path previously identified;
respondingNorNodoesnotmakethistheprimarypathandtheprimary
path previously identified remains active.

PRIMARY/SECONDARY
(P/S)? Enter P if this element is to be added to the Primary format for this file.

Enter S if this element is to be added as a Secondary format for this file.
DEFAULT is P (Primary format).

(See the discussion of the ADD command for more information on Primary
andSecondaryformats.)NotethatSecondaryformatsareusedforCOBOL
II programs only.

PROCEDURE Enter the name of an existing procedure (20 characters maximum).

PROCEDURE
ALIAS Enter the name by which the procedure is known within the location (8

characters maximum). If [[RETURN]] is pressed in response to this
prompt, the alias becomes the first 8 characters of the procedure name.

VALUE AS A
LINK Enter -1, 0, or a positive integer to specify the preferred elements to be

used in linking files. The numbers indicate the following:

-1 The element can not be used for linking.

0 The element may or may not be used for linking
(DEFAULT).

1 or more The element should be used as a link when possible;
elements assigned a positive value form a prioritized list
to be used when it is necessary to link files (the lower the
positive integer, the higher the priority).
70 Chapter 4

DICTDBM Commands
Change
Change
Changes the description of a relationship established with the RELATE command.

Syntax

< [option] CHANGE subcommand CHG

Use the CHANGE command to change the description of a relationship or to change the
attributes of a child entity in the relationship established with the RELATE command. A
complete list of attributes which can be changed is given below under Subcommands.

The subcommands are used to identify the type of parent entity that defines the
relationship. For example, CHANGE ELEMENT can change the starting position of a
child element within the parent element and/or edit the textual description of the
relationship.

Subcommands

Any of the following subcommands can be used with the CHANGE command:

CATAGORY changes a category to category description

CLASS changes a class to class description

ELEMENT changes an element to element entry and/or description

FILE changes a file to file entry and/or description

GROUP changes an HP Inform group to group description

PROCEDURE changes a procedure to procedure description

Example

 >CHANGE ELEMENT

PARENT ELEMENT> Name < Enter the parent's name.

CHILD ELEMENT> First-name < The child to be changed.

EDIT DESCRIPTION(Y/N)? N N to go directly to

attributes.

CHILD ALIAS: POSITION: Existing attribute information.

 STOCK1 1

 CHILD ALIAS> Stock2 < Identifies new element alias.

 START POSITION> 4 < Identifies new position of

child within parent's list.

CHILD ELEMENT> < [[RETURN]] to terminate command.

 > New command prompt.
Chapter 4 71

DICTDBM Commands
Change
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

COMMAND SUB-COMMAND PROMPT

CHANGE CATAGORY * PARENT CATAGORY

** CHILD CATAGORY

* EDIT COMMAND>>

CHANGE CLASS * PARENT CLASS

** CHILD CLASS

* EDIT COMMAND>>

CHANGE ELEMENT * PARENT ELEMENT

** CHILD ELEMENT

EDIT DESCRIPTION (Y/N)

* EDIT COMMAND Issued only if Ye to EDIT DESCRIPTION.

EDIT ATTRIBUTES
(Y/N)

Issued only if Yes to EDIT DESCRIPTION.

CHILD ALIAS

START POSITION

CHANGE FILE * PARENT FILE

** CHILD FILE

EDIT DESCRIPTION (Y/N)?

* EDIT COMMAND>> Issued only if Yes to EDIT DESCRIPTION.

EDIT ATTRIBUTES
(Y/N)?

Issued only if Yes to EDIT DESCRIPTION.

CHILD ALIAS

CAPACITY Issued if PARENT file type is BASE.

BLOCKMAX Issued if PARENT file type is BASE.

CHANGE GROUP * PARENT GROUP

** CHILD GROUP

* EDIT COMMAND>>

CHANGE PROCEDURE * PARENT PROCEDURE

** CHILD PROCEDURE

* EDIT COMMAND>>
72 Chapter 4

DICTDBM Commands
Change
Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

BLOCKMAX Enter a new maximum physical block length value (in
words) for the child file within the parent file (128 to
2048). DEFAULT: Pressing [[RETURN]] in response to
this prompt indicates no change.

CAPACITY Enter a new value for the maximum number of entries for
the child file (1 to 999999999). DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no
change.

CHILD ALIAS When the subcommand ELEMENT is used, enter a new
element alias (16 characters maximum). This is the name
by which this element is known within the child-to-parent
element relationship. The child alias will be used by the
DICTCDE and DICTPDE utilities. This prompt allows
data items within records to have the same name but
different types or definitions.

When the subcommand FILE is used, enter a new file alias
(16 characters maximum) for the child file. DEFAULT:
Pressing [[RETURN]] in response to this prompt indicates
no change.

CHILD CATEGORY Enter the name of an existing category (20 characters
maximum) that is the child category in the entry.

CHILD CLASS Enter a numeric value which is the identifying number (0
to 9999) of an existing security class, which is not an INFO
CLASS.

CHILD ELEMENT Enter the name of an existing data element (20 characters
maximum) that is the child in the entry.

CHILD FILE Enter the name of an existing file (20 characters
maximum) that is the child in the entry.

CHILD GROUP Enter the name of an existing HP Inform group that is the
child in the entry (20 characters maximum).

CHILD PROCEDURE Enter the name of an existing procedure that is the child
in the entry (20 characters maximum).

EDIT ATTRIBUTES (Y/N) Enter an N if no prompts for attributes are to be
generated. (see Subcommand Prompts for which
attributes can be changed).

EDIT COMMAND>> Enter one of the EDIT COMMANDS described in
Section III.

EDIT DESCRIPTION (Y/N) Enter an N if editing is not to be done for the textual
description of the relationship.

PARENT CATEGORY Enter the name of an existing parent category (20
Chapter 4 73

DICTDBM Commands
Change
characters maximum).

PARENT CLASS Enter a numeric value which is the identifying number of
an existing INFO type security class (0 to 9999).

PARENT ELEMENT Enter the name of an existing element that is the parent
in the entry (20 characters maximum).

PARENT FILE Enter the name of an existing file that is the parent in the
entry (20 characters maximum).

PARENT GROUP Enter the name of an existing HP Inform group that is the
parent in the entry (20 characters maximum). Note that
the HP Inform group $MENU can not be changed.

PARENT PROCEDURE Enter the name of an existing procedure that is the parent
in the entry (20 characters maximum).

START POSITION Enter a positive integer which is the new byte position of
the start of the child element's data field within the parent
element (1 to 9999). DEFAULT: Pressing [[RETURN]] in
response to this prompt indicates no change.
74 Chapter 4

DICTDBM Commands
Create
Create
Creates a new entity.

Syntax

[option] CREATE subcommand C

Use the CREATE command to define a new entity in the Dictionary. A complete list of
entities that can be created in the Dictionary is given below under Subcommands. The
subcommand identifies the type of entity to be defined. For example, CREATE GROUP
creates a new HP Inform group and CREATE ELEMENT creates a new element entry in
the Dictionary.

An entity must be CREATED before it can be used with any other command.

Subcommands

Any of the following subcommands can be used with the CREATE command:

CATEGORY creates a new category entry

CLASS creates a new user security class entry

ELEMENT creates a new data element entry

FILE creates a new file entry

GROUP creates a new HP Inform group entry

LOCATION creates a new physical location entry

PROCEDURE creates a new procedure entry

Example

 >CREATE GROUP

GROUP> Customer Information< HP Inform group.

LONG NAME> Customer Information-Marketing <

TYPE> MRKT User defined type.

RESPONSIBILITY> Order Processing <

DESCRIPTION> This group will contain detail <

> information about Marketing's customers. <

> <

[[RETURN]] to end

command.

New command prompt.

>

Chapter 4 75

DICTDBM Commands
Create
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string.

You enter: You are prompted for:

COMMAND SUB-
COMMAND

PROMPT

CREATE CATAGORY * CATAGORY

LONG NAME

TYPE

RESPONSIBILITY

DESCRIPTION

CREATE CLASS * CLASS

NAME

TYPE

PASSWORD

RESPONSIBILITY

RESTRICT CLASS TO A FILE
(N/Y)

Issued only f CLASS type is not INFO.

FILE * If Yes to RESTRICT CLASS; file type
must be BASE.

DESCRIPTION

CREATE ELEMENT * ELEMENT

LONG NAME

TYPE

SIGN POSITION Issued only if TYPE Z.

* ELEMENT REFERENCE Issued only if TYPE “*”

* SIZE Issued only if TYPE specified and TYPE
in not B or “*”.

DECIMAL Issued only if TYPE specified and TYPE
is numeric.

STORAGE LENGTH(n) Issued only if TYPE specified and TLYPE
in not “*”, B or S.

COUNT(1) Issued only if TYPE specified.

HEADING TEXT

ENTRY TEXT

EDIT MASK

MEASUREMENT UNITS

BLANK WHEN ZERO (N/Y)? Issued only if TYPE Z or 9.
76 Chapter 4

DICTDBM Commands
Create
RIGHT USTIFY (N/Y)? Issued only if TYPEX or U.

SYNCHRONIZED (N/Y)? Issued only if TYPE I, J, or K.

RESPONSIBIILTY

DESCRIPTION

CREATE FILE * FILE

LONG NAME

* TYPE

RESPONSIBILITY

DESCRIPTION

ADDITIONAL FILE
ATTRIBUTES (N/Y)?

Issued only if file type is KSAM, MPEF or
MPER.

RECORD FORMAT (F/V/U/S)? Issued only if file type is KSAM, MPEF or
MPER.

MINIMUM RECORD SIZE Issued only if file type is KSAM, MPEF or
MPER.

BLOCKING (N/Y)? Issued only if file type is KSAM, MPEF or
MPER.

UNIT (R/C)? Issued if YES to BLOCKING.

MINIMUM BLOCKNG Issued if YES to BLOCKING.

MAXIMUM BLOCKING Issued if YES to BLOCKING.

RECORDING MODE (A/B) Issued only if file type is MPEF or MPER.

DATA STORAGE TYPE (A/E)? Issued only if file type is MPEF.

CCTL (N/Y)? Issued only if file type is MPEF.

DEVICE CLASS (DA/UR/UT)? Issued only if file type is MPEF.

CREATE GROUP * GROUP

LONG NAME

TYPE

RESPONSIBILITY

DESCRIPTION

CREATE LOCATION * LOCATION

LONG NAME

GROUP

ACCOUNT

CPU

DESCRIPTION

COMMAND SUB-
COMMAND

PROMPT
Chapter 4 77

DICTDBM Commands
Create
Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

ACCOUNT Enter the name for the MPE account associated with the location (8
characters maximum).

ADDITIONAL FILE
ATTRIBUTES (N/Y)? Enter Y or Yes to generate additional prompts ex which allow you to

specify additional attributes for this file. These prompts generate data that
will be used by the DICTCDE utility. DEFAULT is No.

BLANK WHEN
ZERO (N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y if the element is to be displayed as a blank when its value is equal
to 0. DEFAULT is No.

BLOCKING (N/Y)? This prompt generates data that can be used by the DICTCDE utility.
Enter Y to specify the blocking factor of the file. DEFAULT is No.

CATEGORY Enter the name for a new category (20 characters maximum).

CCTL(N/Y)? This prompt generates data that will be used by the DICTCDE utility.
Enter Y if the carriage control option for an output file is to be specified.
DEFAULT is No.

CLASS Enter a numeric value for the identity of a new security class (0 to 9999).

COUNT(1) Enter the sub-element count if the data element is a compound element (1
to 9999). DEFAULT is 1.

CPU Enter the identity of the machine associated with the location (8
characters maximum).

DATA STORAGE
TYPE (A/E)? This prompt generates data that will be used by the DICTCDE utility.

Enter the following to specify the character code that represents how data
is stored in the file:

A ASCII character codes

E EBCDIC character codes

DEFAULT is A.

CREATE PROCEDURE * PROCEDURE

LONG NAME

TYPE

LANGUAGE

RESPONSIBILITY

DESCRIPTION

COMMAND SUB-
COMMAND

PROMPT
78 Chapter 4

DICTDBM Commands
Create
DECIMAL Enter the integer value for the number of digits to the right of the decimal
point (0 to 9999). Do not include a position for the decimal point itself. The
largest value for each element type is as follows:

For types Z, P, and 9, the largest value is 27 digits.

For types I, J, and K, the largest value is 28 decimal digits.

For types E and R, the largest value is 27 digits without a decimal and 28
digits with a decimal.

This prompt is only issued for numeric type data elements. Note if the
maximum value for SIZE is entered, a decimal value is required.
DEFAULT is 0.

DESCRIPTION Enter a textual description which describes the entity (50 characters per
description line allowed, unlimited lines).

DEVICE This prompt generates data that will be used by the DICTCDE utility.
Enter the type of user-specified device in which the file resides (8
characters maximum). If [[RETURN]] is pressed in response to this
prompt, then the MPE default device will be assumed.

DEVICE CLASS
(DA/UR/UT)? This prompt generates data that will be used for the DICTCDE utility.

Enter the class of device on which the file resides as follows:

DA mass storage device

UT utility device (such as a tape drive)

UR unit record device (such as a card reader)

DEFAULT is DA.

EDIT MASK Enter a textual edit mask to be used by HP Inform, Report, and Transact
to edit values when displayed for the data element (30 characters
maximum). (Refer to Using Edit Masks in Section III.)

ELEMENT Enter the name for a new data element (20 characters maximum).

ELEMENT
REFERENCE This prompt generates data that will be used by the DICTCDE and

DICTPDE utilities. Enter the name of an existing element which is to be
used as a back-reference. The new element to be created will have the
same type, size, storage length, and sub-element count (if it is a compound
element) as this element. If this element is a numeric type, the new
element will also have the same number of digits to the right of the
decimal.

ENTRY TEXT Enter textual information to be used by HP Inform, Report, and Transact
as a prompt for input. Otherwise, the primary name is used in the prompt
(30 characters maximum).

Note that the primary name will be used in HP Inform's and Report's
SELECTION CRITERIA prompt unless an ENTRY TEXT has been
specified.
Chapter 4 79

DICTDBM Commands
Create
FILE If the subcommand is:

FILE enter the name for a new file (20 characters maximum).
CAUTION: A base name can be up to 20 characters in the
Dictionary. Dictionary accepts the full name such as
BASE.GROUP.ACCOUNT as a valid name. DICTDBC,
however, always uses the first 6 characters of the name as
the base name. When DICTDBC encounters a base name
in the Dictionary such as BASE.GROUP.ACCOUNT, your
base name is created as “BASE.G” which is an invalid base
name. To specify the physical location of the file, use the
CREATE LOCATION and the ADD FILE-LOCATION
commands.

CLASS enter the name of an existing file of type BASE (20
characters maximum).

GROUP If the subcommand is:

GROUP enterthenameforanewHPInformgroup(20characters
maximum).

LOCATION enter the name of the MPE group associated with the
location (8 characters maximum).

HEADING TEXT Enter a textual heading to be used by HP Inform, Report, and Transact
for reports. Otherwise the primary name is used in the heading (30
characters maximum).

Note that the primary name will be used in the report heading by HP
Inform and Report unless a HEADING TEXT has been specified.

LANGUAGE Enter the name of the implementation language for the procedure (10
characters maximum).

LOCATION Enter the name of a physical location that identifies the MPE file group
and account, and the machine where files and procedures reside (20
characters maximum).

LONG NAME Enter a full textual description for the entity (50 characters maximum).

MAXIMUM
BLOCKING This prompt generates data that will be used by the DICTCDE utility.

Enter the maximum blocking factor for the file. DEFAULT: is 0.

MAXIMUM
RECORD SIZE This prompt generates data that will be used by the DICTCDE utility.

Enter the maximum number of characters in the record. DEFAULT is 0.

MEASUREMENT
UNITS Enter the type of measurement units (such as feet, dollars) used for the

data element's value (10 characters maximum).

MINIMUM
BLOCKING This prompt generates data that will be used by the DICTCDE utility.

Enter the minimum blocking factor for the file. DEFAULT is 0.
80 Chapter 4

DICTDBM Commands
Create
MINIMUM
RECORD SIZE This prompt generates data that will be used by the DICTCDE utility.

Enter the minimum number of characters in the record. DEFAULT is 0.

NAME Enter a textual name for the new security class (50 characters maximum).

PASSWORD Enter a password for the new security class (8 characters maximum).

PROCEDURE Enter the name for a new procedure (20 characters maximum).

RECORD FORMAT
(F/V/U/S) This prompt generates data that will be used by the DICTCDE utility.

RECORD FORMAT specifies how the logical records are contained in the
file. Enter:

F for fixed length logical records

V for variable length logical records

U for undefined length logical records

S for the multirecord or “multiblock” option

RECORDING
MODE(A/B)? This prompt generates data that will be used by the DICTCDE utility.

Enter A if the recording mode of the file is ASCII. Enter B if the recording
mode of the file is BINARY. DEFAULT is A.

RESPONSIBILITY Enter the name of the person, department, or area responsible for the
integrity of the new entity (20 characters maximum).

RESTRICT CLASS TO
A FILE (Y/N)? Enter a Y if the scope of the class is to be restricted to one file. A security

class can be restricted to files of type BASE.

RIGHT JUSTIFY
(N/Y)? This prompt generates data that can be used by the DICTCDE utility.

Enter Y or Yes to right justify alphabetic or alphanumeric data elements.
DEFAULT is No.

SIGN POSITION This prompt generates data that will be used by the DICTCDE utility.
Enter the position of the sign for a signed numeric data element as
follows:

LO leading overpunched

LS leading separate

TO trailing overpunched

TS trailing separate

DEFAULT: Pressing [[RETURN]] in response to this prompt indicates that
there is no sign.

SIZE Enter an integer value required to display an element (1 to 9999). Include
a position for a decimal point if there is one, but do not include one for a
sign. The largest value for each element type is as follows:

For type Z, P, and 9, the largest value is 28 digits.
Chapter 4 81

DICTDBM Commands
Create
For type I, J, and k, the largest value is 29 digits.

For type E and R, the largest value is 27 digits without a decimal and 28
digits with a decimal.

For type X and U, the largest value is 9999 digits.

STORAGE
LENGTH (n) The system calculates the storage length in bytes and displays it as “n”. An

over-ride value may be entered (1 to 9999), otherwise “n” is used.

SYNCHRONIZED
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y or Yes to align data elements in order to facilitate arithmetic
operations. DEFAULT is No.

TYPE If the subcommand is:

ELEMENT - enter one of the following values:

U upper case ASCII

X upper or lower case ASCII

9 numeric ASCII

Z zoned decimal

P packed decimal

I integer binary

J integer binary (COBOL)

K logical

R floating point (commercial)

E floating point (E format)

B boolean (PASCAL)

S string (PASCAL)

* back reference to an existing
element (PASCAL)

If the type is numeric, a plus character (+) may immediately follow it to
indicate that the data element can have only positive values. If a plus
character is entered with a type other than numeric, it is ignored. Pressing
[[RETURN]] in response to this prompt indicates that the data element
does not have a type assigned.

FILE - enter one of the following values:

BASE IMAGE database

MAST IMAGE manual master data set

AUTO IMAGE automatic master data set

DETL IMAGE detail data set
82 Chapter 4

DICTDBM Commands
Create
KSAM KSAM file

MPEF MPE sequential file

MPER MPE relative file

VPLS VPLUS forms file

FORM VPLUS form

CATEGORY, CLASS, GROUP, or PROCEDURE - enter up to four
characters meaningful to you. Or, if this is a CLASS to be used for
INFORM security, enter INFO as the class type.

UNIT(R/C)? This prompt generates data that will be used by the DICTCDE utility.
Specify the unit used to determine the blocking factor with: R for
RECORDS or C for CHARACTERS. DEFAULT is R.
Chapter 4 83

DICTDBM Commands
Delete
Delete
Deletes an association which was established with the ADD command.

Syntax

[option] DELETE subcommand DEL

Use the DELETE command to delete an association between unlike entities established
with the ADD command. Only the association is deleted, not the entities. A complete list of
associations that can be deleted is given below under Subcommands.

The subcommands are used to identify the entity from which an association is to be
deleted. For example, DELETE CLASS deletes an association of an element to a security
class.

Subcommands

Any of the following subcommands can be used with the DELETE command:

CATEGORY deletes an element to category association

CLASS deletes an element to class association

CLASS-FILE deletes a file to class association

CLASS-GROUP deletes a group to class association

FILE deletes an element to file association

FILE-LOC deletes a file to location association

GROUP deletes an element to HP Inform group association

PROCEDURE deletes an element to procedure association

PROCEDURE-LOC deletes a procedure to location association

Example

>DELETE FILE

FILE> Empnum File used in the

association.

 PRIMARY/SECONDARY(P/S)?>P Indicates element is in

 the Primary format.

ELEMENT> Name < Element to be deleted

 from the association.

ENTRY DELETED

ELEMENT> [[RETURN]] to terminate the

command.

> New command prompt.
84 Chapter 4

DICTDBM Commands
Delete
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

Prompts

 Depending on the subcommand used, one or more of the following prompts is issued:

CATEGORY Enter the name of an existing category used in the association (20
characters maximum).

CLASS Enter the identifying number of an existing security class used in the
association (1 to 9999).

If the subcommand is CLASS-GROUP, enter the identifying number of an
existing INFO type security class used in the association (1 to 9999).

ELEMENT Enter the name of an existing data element which is to be deleted from the

COMMAND SUB-COMMAND PROMPT

DELETE CATAGORY * CATAGORY

** ELEMENT

DELETE CLASS * CLASS

** ELEMENT

DELETE CLASS-FILE * CLASS

** FILE

DELETE FILE * FILE

** PRIMARY/SECONDARY (P/S)? Issued if file type is MPEF, MPER,
or KSAM.

** ELEMENT

DELETE C;ASS-GROUP * CLASS

** GROUP

DELETE FILE-LOC * LOCATION

** FILE

DELETE GROUP * GROUP

** ELEMENT

DELETE PROCEDURE * PROCEDURE

** ELEMENT

DELETE PROCEDURE-LOC * LOCATION

** PROCEDURE
Chapter 4 85

DICTDBM Commands
Delete
association (20 characters maximum).

FILE If the subcommand is:

FILE enter the name of an existing file used in the association
(20 characters maximum).

FILE-LOC or
CLASS-FILE enter the name of an existing file which is to be deleted

from the association (20 characters
maximum).

GROUP Enter the name of an existing HP Inform group used in the association (20
characters maximum).

LOCATION Enter the name of an existing physical location used in the association (20
characters maximum).

PRIMARY/SECONDARY
(P/S)? Enter P if the element is associated to the Primary format for this file.

Enter S if the element is associated to the Secondary format for the file.
DEFAULT is P. (See the discussion of the ADD command for more
information on Primary and Secondary formats.)

PROCEDURE If the subcommand is:

PROCEDURE enter the name of an existing procedure used in the
association (20 characters maximum).

PROCEDURE
-LOC enter the name of an existing procedure which is to be

deleted from the association (20
characters maximum).
86 Chapter 4

DICTDBM Commands
Display
Display
Displays information about an entity established with the CREATE, ADD, and/or
RELATE commands.

Syntax

 [option] DISPLAY subcommand D

Use the DISPLAY command to display the attributes of an entity and, if applicable, the
direct relationships and the direct associations of that entity.

A direct relationship is the relationship between the displayed entity and its parent entity.
A direct association is the association between the displayed entity and the entity that
owns it (the entity with which the displayed entity is associated).

The subcommand identifies the entity to be displayed. If ELEMENT, FILE, or
PROCEDURE is used as the subcommand, then the attribute, relationship, and
association information for that entity is displayed. If CATEGORY, CLASS, or GROUP is
used as the subcommand, the attribute and relationship information for that entity is
displayed. If LOCATION is used as the subcommand, only the attribute information for
that entity is displayed. A complete list of entities that can be displayed is given below
under Subcommands. Selection Criteria can also be used to select the entity or entities to
be displayed. Refer to Using Selection Criteria in Section III for more information.

To display the attribute information and, if applicable, the direct relationships and direct
associations for all the entities for a subcommand, enter an exclamation mark (!) or press
[[RETURN]] in response to the prompt. (Only 1 prompt is issued for each subcommand
used.) Note that the exclamation mark and [[RETURN]] are used differently for the
DISPLAY command than for most commands. The PRINT option can be used with the
command string to print more descriptive information on the line printer in addition to the
information normally displayed on the terminal. This information includes the
information that was entered when the relationship or association was made.

Subcommands

Any of the following subcommands can be used with the DISPLAY command:

CATEGORY displays attribute information for a category plus all the
directly related categories

CLASS displays attribute information for a user security class
plus the directly related classes

ELEMENT displays attribute information for an element plus the
directly associated and/or related entities

FILE displays attribute information for a file plus the directly
associated and/or directly related entities

GROUP displays attribute information for an HP Inform group
plus the directly related entities and any associated
classes
Chapter 4 87

DICTDBM Commands
Display
LOCATION displays attribute information for a physical location

PROCEDURE displays attribute information for a procedure plus the
directly associated and/or directly related entities

Example

 > DISPLAY ELEMENT

 ELEMENT>; ACCOUNT >

 ELEMENT: TYPE: SIZE: DEC: LENGTH: COUNT: RESPONSIBILITY:

 ACCOUNT X 10 0 10 1

 LONG NAME: MARKETING CUSTOMER ACCOUNT NUMBERS

 HEADING TEXT: CUSTOMER ACCOUNT NUMBERS

 ENTRY TEXT: CUSTOMER ACCOUNT NUMBER

 EDIT MASK:

 MEASUREMENT UNITS:

 RIGHT JUSTIFY:

 DATE CREATED: 83/06/01 BY MGR

DATE CHANGED: 83/06/06 BY MGR

 DESCRIPTION:

 THIS ACCOUNT NUMBER IDENTIFIES THE CUSTOMERS

 WHO BUY THE LARGE INTEGRATED SYSTEMS.

 ELEMENTS THAT BACK REFERENCE ACCOUNT:

 REPORT1

 ACCTSTAT

 PRIMARY FORMAT ASSOCIATIONS:

 FILE: TYPE: ELEMENT(ALIAS): FIELD NUMBER:

SALES MAST ACCOUNT

 *KEY ELEMENT

 1 RECORD FOUND

>

88 Chapter 4

DICTDBM Commands
Display
Subcommand Prompts

Enter the name for a specific entity or use SELECTION CRITERIA in response to a
prompt. (Refer to Using Selection Criteria in Section III for more information.) Responding
with an exclamation mark (!) or with [[RETURN]] will display information about all
entities for the specified subcommand.

You enter: You are prompted for:

Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

CATEGORY Enter the name of an existing category or Selection
Criteria for which information is to be displayed.

CLASS Enter the identifying number of an existing security class
or Selection Criteria for which information is to be
displayed.

ELEMENT Enter the name of an existing element or Selection
Criteria for which information is to be displayed.

FILE Enter the name of an existing file or Selection Criteria for
which information is to be displayed.

GROUP Enter the name of an existing HP Inform group or
Selection Criteria for which information is to be displayed.

LOCATION Enter the name of an existing physical location or
Selection Criteria for which information is to be displayed.

PROCEDURE Enter the name of an existing procedure or Selection
Criteria for which information is to be displayed.

COMMAND SUB-COMMAND PROMPT

DELETE CATAGORY * CATAGORY

DISPLAY CATAGORY CATAGORY

DISPLAY CLASS CLASS

DISPLAY ELEMENT ELEMENT

DISPLAY FILE FILE

DISPLAY GROUP GROUP

DISPLAY LOCATION LOCATION
Chapter 4 89

DICTDBM Commands
Help
Help
Provides a brief description of each DICTDBM command and subcommand.

Syntax

[option] HELP [subcommand] H

Use the HELP command to obtain information on:

• all DICTDBM commands

• any DICTDBM command and its subcommands.

To review descriptions of all DICTDBM commands, use the HELP command without a
subcommand.

To obtain a description of a specific DICTDBM command and its subcommands, use the
HELP command with one of the following subcommands listed below.

All options except REPEAT can be used with this command.

Subcommands

Any of the following subcommands can be used with the HELP command:

Example

> HELP

ADD Add an association between unlike entities

CHANGE Change entry/description of relationship established with
RELATE

CREATE Create a new entity

DELETE Delete association which was established with the ADD
command

DISPLAY Display info about entity established with CREATE, ADD,
RELATE

EXIT Terminate DICTDBM

HELP Display information about the commands. Enter HELP
command-name

ADD LIST REORDER

CHANGE MODIFY REPORT

CREATE PURGE RESEQUENCE

DELETE RELATE SECURE

DISPLAY REMOVE SHOW

EXIT RENAME UPDATE
90 Chapter 4

DICTDBM Commands
Help
LIST List information for entity/entities with subset of
attributes

MODIFY Modify attributes and/or description of an entity

PURGE Purge entity and all references to it

RELATE Establish hierarchical relationship between like entities

REMOVE Remove relationships between entities established with
RELATE

RENAME Rename an existing entity

REORDER Reposition entity within relationship established with
RELATE

REPORT Report a sorted listing of elements

RESEQUENCE Reposition element within association established with
ADD

SECURE Assign all elements of an IMAGE type file to a security
class

SHOW Show entity's association and relationships with child
entities

UPDATE Update association between entities established with ADD

> HELP ADD

ADD Add an association between unlike entities

CATEGORY Add an element to a category

CLASS Add an element to a user security class

CLASS-FILE Add a file to a user security class

CLASS-GROUP Add a group to a user security class

FILE Add an element to a file

FILE-LOC Add a file to a physical location

GROUP Add an element to an INFORM group

PROCEDURE Add an element to a procedure

PROCEDURE-LOC Add a procedure to a physical location
Chapter 4 91

DICTDBM Commands
List
List
Lists information for an entity or entities with a subset of the attributes.

Syntax

[option] LIST subcommand L

Use the LIST command to see the attributes of:

• a particular entity

• all entities of a particular type

• entities selected by using Selection Criteria (see Section III)

A complete list of entities for which a listing can be generated is given under
Subcommands. The subcommand identifies the type of entity for which a listing is
generated. The listing is displayed in the order in which the entities were entered. After
the listing, the number of records displayed is given.

To list one entity, specify the entity's name in response to the first prompt. To list all of the
entities for a specific subcommand, press the [[RETURN]] key for all the prompts or enter
an exclamation character (!) in response to the first prompt. (Note that this is a different
use of the [[RETURN]] key and of the exclamation mark character than for most
commands.) The Selection Criteria can also be used to generate a listing. (See Section III
for more detailed information.)

The PRINT option can be used with the command string to print the listing and additional
information on the line printer. Along with the information normally displayed, the listing
will include the description entered when the entity was created.

Subcommands

Any of the following subcommands can be used with the LIST command:

CATEGORY lists the categories

CLASS lists the security classes

ELEMENT lists the data elements

FILE lists the files

GROUP lists the HP Inform groups

LOCATION lists the physical locations PROCEDURE lists the
procedures
92 Chapter 4

DICTDBM Commands
List
Example

 > REPEAT LIST ELEMENT

ELEMENT> PU^ <

 TYPE> ! <

 ELEMENT: TYPE: SIZE: DEC: LENGTH: COUNT: RESPONSIBILITY:

 PUB-DATE X 6 0 6 1 M. Sides

 PURCH-DATE X 6 0 6 1 M. Abear

 PURCH-NO U 6 0 6 1 R. Park

 PUBLISHER X 40 0 40 1 M. Sides

 4 RECORDS FOUND

 ELEMENT> ^T <

 TYPE> ! <

 ELEMENT: TYPE: SIZE: DEC: LENGTH: COUNT: RESPONSIBILITY:

 CREDIT U 2 0 2 1 J. Smith

 SUBJECT X 40 0 40 1 M. Sides

SQUARE-FEET X 8 0 8 1 R. Park

 ACCOUNT X 10 0 10 1 M. Abear

UNIT-COST P 11 0 6 1 M. Abear

EXISTING-STRUCT U 2 0 2 1 J. Smith

LOAN-AMT P 11 2 6 1 M. Abear

 7 RECORDS FOUND

 ELEMENT>] <

>

Subcommand Prompts

You can enter specific information for any of the prompts or use SELECTION CRITERIA
in response to a prompt. (Refer to Using Selection Criteria in Section III.) Responding with
[[RETURN]] to all the prompts or with an exclamation mark (!) to the first prompt lists
information about all entities for the specified subcommand.
Chapter 4 93

DICTDBM Commands
List
You enter: You are prompted for:

COMMAND SUB-COMMAND PROMPT

LIST CATEGORY CATEGORY

TYPE

RESPONSIBILITY

LIST CLASS CLASS

TYPE

RESPONSIBILITY

LIST ELEMENT ELEMENT

TYPE

ELEMENT REFERENCE Issued only if TYPE is “*”.

SIZE Issued if TYPE is not “*”.

DECIMAL Issued only if TYPE is numeric
and TYPE is not “*”.

STORAGE LENGTH Issued if TYPE is not “*”.

COUNT Issued if TYPE is not “*”.

RESPONSIBILITY Issued if TYPE is not “*”.

LIST FILE FILE

TYPE

RESPONSIBILITY

LIST GROUP GROUP

TYPE

RESPONSIBILITY

LIST LOCATION LOCATION

GROUP

ACCOUNT

C[I

LIST PROCEDURE PROCEDURE

TYPE

LANGUAGE

RESPONSIBILITY
94 Chapter 4

DICTDBM Commands
List
Prompts

Depending on the subcommand used, one or more of the following prompts is issued.

ACCOUNT Enter the name of the existing MPE account or Selection Criteria for
which information is to be listed.

CATEGORY Enter the name of the existing category or Selection Criteria for which
information is to be listed.

CLASS Enter the number of the existing security class or Selection Criteria for
which information is to be listed.

COUNT Enter the sub-element count if the data element is a compound element or
Selection Criteria for which information is to be listed.

CPU Enter the name of the machine or Selection Criteria for which information
is to be listed.

DECIMAL Enter the integer value for the number of digits to the right of the decimal
point (0 to 9999) or Selection Criteria for which information is to be
displayed. Do not include a position for the decimal point itself. The largest
value for each element type is as follows:

For types Z, P, and 9, the largest value is 27 digits.

For types I, J, and K, the largest value is 28 digits.

For types E and R, the largest value is 9999 decimal digits.

This prompt is only issued for numeric type data elements. Note that if the
maximum value for SIZE is entered, a decimal value is required.

ELEMENT Enter the name of the existing data element or Selection Criteria for
which information is to be listed.

ELEMENT
REFERENCE Enter the name of an existing element (20 characters maximum) which is

to be used as the back-referenced element. The element to be listed has the
same type, size, storage length, and sub-element count, and the same
decimal placement (if applicable) as the back-referenced element.

FILE Enter the name of the existing file or Selection Criteria for which
information is to be listed.

GROUP If the subcommand is:

GROUP enter the name of an existing HP Inform group or
Selection Criteria for which information is to be listed.

LOCATION enter the name of an existing MPE group or Selection
Criteria for which information is to be listed.

LANGUAGE Enter the name of the implementation language or Selection Criteria for
which information is to be listed.

LOCATION Enter the name of the physical location or Selection Criteria for which
information is to be listed.
Chapter 4 95

DICTDBM Commands
List
PROCEDURE Enter the name of the existing procedure or Selection Criteria for which
information is to be listed.

RESPONSIBIILTY Enter the name of the person, department, or area, or Selection
Criteria for which information is to be listed.

SIZE Enter an integer value required to display an element (1 to 9999) or
Selection Criteria for which information is to be listed. Include a position
for a decimal point if there is one, but do not include one for a sign. The
largest value for each element type is as follows:

For types Z, P, and 9, the largest value is 28 digits.

For types I, J, and K, the largest value is 29 digits.

For types E, R, X, and U, the largest value is 9999 digits.

STORAGE LENGTH Enter the storage length in bytes or Selection Criteria for which
information is to be displayed.

TYPE If the subcommand is:

ELEMENT enter the attribute type or Selection Criteria for which
information is to be listed.

FILE enter the file type or Selection Criteria for which
information is to be listed.

CATEGORY, CLASS, GROUP, PROCEDURE - enter the character value
or Selection Criteria for which information is to be listed.
96 Chapter 4

DICTDBM Commands
Modify
Modify
Modifies the information for an entity which was created with the CREATE command.

Syntax

[option] MODIFY subcommand M

Use the MODIFY command to change the attributes and/or the description of an entity
created with the CREATE command. The edit description can also be modified with the
prompt EDIT COMMAND. Refer to Using Edit Description Commands in Section III for a
complete list of EDIT COMMANDs.

The subcommand identifies the type of entity to be modified. For example, MODIFY
CATEGORY, allows you to enter a new type designator, change the name of the person
responsible, or enter a new textual name for the category. It also allows you to edit the
textual description for the category. A complete list of entities that can be modified is given
below under Subcommands.

Subcommands

Any of the following subcommands can be used with the MODIFY command:

CATEGORY modifies a category

CLASS modifies a security class

ELEMENT modifies a data element

FILE modifies a file

GROUP modifies an HP Inform group

LOCATION modifies a physical location

PROCEDURE modifies a procedure

Example

 >MODIFY CATEGORY

CATEGORY> Marketing < Category to be modified.

 EDIT DESCRIPTION(Y/N)? n No, to edit description.

CATEGORY: TYPE: RESPONSIBILITY:

Marketing SPLS John Williams

 LONG NAME:

TYPE> Attribute prompt.

RESPONSIBILITY> James Max Changed name.

LONG NAME> Marketing Supplies Sales Added information.

 > New command prompt.
Chapter 4 97

DICTDBM Commands
Modify
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string.

You enter: You are prompted for:

COMMAND SUB-COMMAND PROMPT

MODIFY CATEGORY * CATEGORY

EDIT DESCRIPTION (Y/N)?

EDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

TYPE

RESPONSIBILITY

LONG NAME

MODIFY CLASS * CLASS

EDIT DESCRIPTION (Y/N)?

* EDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES (Y/N)? Issued only if Yes to EDIT
DESCRIPTION.

TYPE Issued only if CLASS type is not
INFO or if CLASS type is INFO
but the file is not associated or
related to any other entity.

PASSWORD

RESPONSIBILITY

LONG NAME

RESTRICTED FILE Issued only if CLASS type is not
INFO.

MODIFY ELEMENT * ELEMENT

EDIT DESCRIPTION (Y/N)?

* EDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES (Y/N)? Issued only if Yes to EDIT
DESCRIPTION.

TYPE

SIGN POSITION Issued only if TYPE Z.

ELEMENT REERENCE Issued only if TYPE is “*”.

SIZE Issued if TYPE is not “*”, B or S.

COUNT

RESPONSIBILITY
98 Chapter 4

DICTDBM Commands
Modify
LONG NAME

HEADING TEXT

ENTRY TEXT

EDIT MASK

MEASUREMENT UNITS

BLANK WHEN ZERO (N/Y Issued if TYPE is Z or 9.

RIGHT JUSTIFY (N/Y)? Issued if TYPE is Z or U.

SYNCHRONIZED (N/Y)? Issued if TYPE is I, J, or E.

MODIFY FILE * FILE

EDIT DESCRIPTION (Y/N)?

* EDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES (N/Y)? Issued only if Yes to EDIT
DESCRIPTION.

TYPE Issued only if the file has not be
associated or related to any other
entity.

RESPONSIBILITY

LONG NAME

RECORD FORMAT (F/V/U/S)? Issued only if file type is KSAM,
MPEF, or MPER.

MINIMUM RECORD SIZE Issued only if TYPE is KSAM,
MPEF or MPER and RECORD
FORMAT is V or U.

MAXIMUM RECORD SIZE Issued only if file type is KSAM,
MPEF, or MPER.

MODIFY BLOCK (N/Y)? Issued only if file type is KSAM,
MPEF, or MPER.

UNIT (R/C)? Issued if YES to BLOCKING.

BLOCK MINIMUM Issued if YES to BLOCKING.

BLOCK MAXIMUM Issued if YES to BLOCKING.

RECORDING MODE (A/B)? Issued only if file type is MPEF or
MPER.

DATA STORAGE TYPE (A/E)? Issued only if file type is MPEF.

CCTL (N/Y)? Issued only if file type is MPEF.

DEVICE Issued only if file type is MPEF.

DEVICE CLASS (DA/UB/UT)? Issued only if file type is MPEF.

MODIFY GROUP * GROUP

COMMAND SUB-COMMAND PROMPT
Chapter 4 99

DICTDBM Commands
Modify
Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

ACCOUNT Enter a new name for the MPE account that is associated with the location
(8 characters maximum).

DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.

BLANK WHEN
ZERO(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y if the element is to be displayed as a blank when its value is equal

EDIT DESCRIPTION (Y/N)?

* EDIT COMMAND>> Issued only if file type is EDIT
DESCRIPTION.

EDIT ATTRIBUTES (Y/N)? Issued only if file type is
DESCRIPTION.

TYPE

RESPONSIBILITY

LONG NAME

MODIFY LOCATION * LOCATION

EDIT DESCRIPTION (Y/N)?

EDIT COMMAND>> Issued only if file type is EDIT
DESCRIPTION.

EDIT ATTRIBUTES (N/Y)? Issued only if file type is EDIT
DESCRIPTION.

GROUP

ACCOUNT

CPU

LONG NAME

MODIFY PROCEDURE * PROCEDURE

EDIT DESCRIPTION (Y/N)?

EDIT COMMAND Issued only if file type is EDIT
DESCRIPTION.

EDIT ATTRIBUTES (Y/N)? Issued only if file type is EDIT
DESCRIPTION.

TYPE

LANGUAGE

RESPONSIBILITY

LONG NAME

COMMAND SUB-COMMAND PROMPT
100 Chapter 4

DICTDBM Commands
Modify
to 0. DEFAULT: Pressing [[RETURN]] in response to this prompt indicates
no change.

CATEGORY Enter the name of an existing category (20 characters maximum).

CCTL(N/Y) This prompt generates data that will be used by the DICTCDE utility.
Enter Y if the carriage control option for an output file is to be specified.
DEFAULT: Pressing [[RETURN]] in response to this prompt indicates that
no change is to be made.

CLASS Enter the identifying number of an existing security class (0 to 9999).

COUNT Enter a positive integer value for a new sub-element count if the data
element is a compound type (1 to 9999). DEFAULT: Pressing [[RETURN]]
in response to this prompt indicates no change.

CPU Enter the new name of the machine that is associated with the location (8
characters maximum). DEFAULT: Pressing [[RETURN]] in response to
this prompt indicates no change.

DATA STORAGE
TYPE (A/E)? This prompt generates data that will be used by the DICTCDE utility.

Enter one of the following to change the character code that represents
how data is stored in the file:

A ASCII character codes

E EBCDIC character codes

DEFAULT: pressing [[RETURN]] indicates no change.

DECIMAL Enter a new integer value for the number of digits to the right of the
decimal point (0 to 9999). Do not include a position for the decimal point
itself. The largest value for each element type is as follows:

For types Z, P, and 9, the largest value is 27 decimal digits.

For types I, J, and K, the largest value is 28 decimal digits.

For types E and R, the largest value is 9999 decimal digits.

Note that if the maximum value for SIZE is entered, a decimal value is
required. DEFAULT: Pressing [[RETURN]] in response to this prompt
indicates no change.

DEVICE This prompt generates data that will be used by the DICTCDE utility.
Enter the type of user specified device on which the file resides (8
characters maximum). DEFAULT: Pressing [[RETURN]] in response to
this prompt indicates that no change is to be made.

DEVICE CLASS (DA/UR/UT)? This prompt generates data that will be
used by the DICTCDE utility. Enter the class of device on which the file
resides as follows:

DA mass storage device

UT UT utility device (such as a tape drive)

UR unit record device (such as a card reader)
Chapter 4 101

DICTDBM Commands
Modify
DEFAULT: Pressing [[RETURN]] indicates no change is to be made.

EDIT ATTRIBUTES
(Y/N)? Enter an N if attribute prompts are not to be issued.

EDIT
COMMAND>> Enter one of the EDIT COMMANDS described under Using Edit

Description Commands in Section III.

EDIT DESCRIPTION
(Y/N)? Enter an N if description text editing is not required.

EDIT MASK Enter a new textual edit mask to be used to edit values when displayed for
the data element (30 characters). This is used by HP Inform, Report, and
Transact. (Refer to Using Edit Masks in Section III.) DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no change.

ELEMENT Enter the name of an existing data element (20 characters maximum).

ELEMENT
REFERENCE This prompt generates data that will be used by the DICTPDE utility.

Enter the name of an existing element that is being back-referenced. The
element being modified will have the same type, size, storage length,
sub-element count and decimal position of the ELEMENT REFERENCE.
DEFAULT: Pressing [[RETURN]] in response to this prompts indicates the
ELEMENT REFERENCE does not change.

ENTRY TEXT Enter new textual information to be used by HP Inform, Report, and
Transact as a prompt for input. This text replaces the primary name in the
prompt (30 characters maximum). DEFAULT: Pressing [[RETURN]] in
response to this prompt indicates no change.

FILE Enter the name of an existing file (20 characters maximum).

GROUP If the subcommand is:

GROUP enter the name of an existing HP Inform group (20
characters maximum). NOTE: $MENU can not be
modified.

LOCATION enter the name of a new MPE group to be associated with
the location (8 characters maximum). DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no
change.

HEADING
TEXT Enter a new textual heading to be used by HP Inform, Report, and

Transact for the heading in reports. This heading replaces the data
element's primary name in reports (30 characters maximum). DEFAULT:
Pressing [[RETURN]] in response to this prompt indicates no change.

LANGUAGE Enter the name of a new implementation language for the procedure (10
characters maximum). DEFAULT: Pressing [[RETURN]] in response to
this prompt indicates no change.

LOCATION Enter the name of an existing physical location (20 characters maximum).
102 Chapter 4

DICTDBM Commands
Modify
LONG NAME Enter a new, full textual name for the entity (50 characters maximum).
DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.

MAXIMUM
BLOCKING This prompt generates data that will be used by the DICTCDE utility.

Enter the maximum blocking factor for the file. DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no change.

MAXIMUM RECORD
SIZE This prompt generates data that will be used by the DICTCDE utility.

Enter the maximum number of characters in the record. DEFAULT:
Pressing [[RETURN]] in response to this prompt indicates no change.

MEASUREMENT
UNITS Enter a new type of measurement units (such as feet, dollars) for the data

element's value (10 characters maximum). DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no change.

MINIMUM
BLOCKING This prompt generates data that will be used by the DICTCDE utility.

Enter the minimum blocking factor for the file. DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no change.

MINIMUMRECORD
SIZE This prompt generates data that will be used by the DICTCDE utility.

Enter the minimum number of characters in the record. DEFAULT:
Pressing [[RETURN]] indicates no change.

MODIFY BLOCKING
(N/Y)? This prompt generates additional prompts to modify the blocking factor of

the file. Those prompts generate data that can be used by the DICTCDE
utility. DEFAULT is No.

PASSWORD Enter a new password for the user security class (8 characters maximum).
A blank value (pressing the space bar followed by [[RETURN]]) removes
the password. DEFAULT: Pressing [[RETURN]] in response to this prompt
indicates no change.

PROCEDURE Enter the name of an existing procedure (20 characters maximum).

RECORD FORMAT
(F/V/U/S) This prompt generates data that will be used by the DICTCDE utility for

COBOL II programs. Enter one of the following to specify how the logical
records are contained in the file:

F for fixed length logical records

V for variable length logical records

U for undefined length logical records

S for the multirecord or “multiblock” option

DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.
Chapter 4 103

DICTDBM Commands
Modify
RECORDING
MODE(A/B)? This prompt generates data that will be used by the DICTCDE utility.

Enter A to change the recording mode of the file to ASCII. Enter B to
change the recording mode of the file to BINARY. DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no change.

RESPONSIBILITY Enter a new name for the person, department, or area responsible for
the integrity of the entity (20 characters maximum). DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no change.

RESTRICTED
FILE If the scope of the security class is to be limited to a file, enter the name of

the file (20 characters maximum). The file type must be BASE. DEFAULT:
Pressing [[RETURN]] in response to this prompt indicates no change.

RIGHT JUSTIFY
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y or Yes to right justify alphabetic or alphanumeric data elements.
DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.

SIGN
POSITION This prompt generates data that will be used by the DICTCDE utility.

Enter the position of the sign for a signed numeric data element as follows:

LO leading overpunched

LS leading separate

TO trailing overpunched

TS trailing separate

DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.

SIZE Enter a new integer value required to display an element (1 to 9999).
Include a position for a decimal point if there is one, but do not include one
for a sign. The largest value for each type is as follows:

For types Z, P, and 9, the largest value is 28 digits.

For types I, J, and K, the largest value is 29 digits.

For types E, R, X, and U, the largest value is 9999 digits.

DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.

STORAGE
LENGTH(n) The calculated storage length in bytes is displayed as “n”. An over-ride

value may be entered (1 to 9999). DEFAULT: Pressing [[RETURN]] in
response to this prompt indicates no change.

SYNCHRONIZED
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y or Yes to align the data elements in order to facilitate arithmetic
operations. DEFAULT: Pressing [[RETURN]] in response to this prompt
104 Chapter 4

DICTDBM Commands
Modify
indicates no change.

TYPE If the subcommand is:

CATEGORY, CLASS, GROUP, or PROCEDURE enter a new user defined
type (4 characters maximum). DEFAULT: Pressing [[RETURN]] in
response to this prompt indicates no change.

ELEMENT enter a new type for the data element as follows:

U upper case ASCII

X upper or lower case ASCII

9 numeric ASCII

Z zoned decimal

P packed decimal

I integer binary

J integer binary (COBOL)

K logical

R floating point (commercial)

E floating point (E format)

S string (PASCAL)

B boolean (PASCAL)

* back reference to an existing element (PASCAL)

If the type used is numeric, a plus character (+) following it indicates that
the data element may have only positive values. If a plus character is used
with any other type, it is ignored. DEFAULT: Pressing [[RETURN]] in
response to this prompt indicates no change.

FILE - enter a new file type based on one of the following types:

BASE IMAGE database name

MAST IMAGE manual master data set

AUTO IMAGE automatic master data set

DETL IMAGE detail data set

FORM VPLUS form

VLPS VPLUS forms file name

MPEF MPE sequential file

MPER MPE relative file

KSAM KSAM file

DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.
Chapter 4 105

DICTDBM Commands
Modify
UNIT(R/C)? This prompt generates data that will be used by the DICTCDE utility.
Specify the unit used to determine the blocking factor with R for
RECORDS or C for CHARACTERS. DEFAULT: Pressing [[RETURN]] in
response to this prompt indicates no change.
106 Chapter 4

DICTDBM Commands
Purge
Purge
Purges an entity which was created with the CREATE command from the Dictionary.

Syntax

[option] PURGE subcommand P

Use the PURGE command to purge an entity and all references to that entity from the
Dictionary. A subcommand is used to identify the kind of entity to be purged. For example,
PURGE FILE purges the specified file and all references to the file from the Dictionary.
That is, if a master file and an associated primary path element are purged, the associated
sort element, primary path, and path file information are purged as well. A complete list of
entities that can be purged is given below under Subcommands.

Before the PURGE command is implemented, the Dictionary allows you to cancel the
command with the following prompt:

 DELETE ALL ENTRIES(N/Y)?

A response to this prompt other than Y cancels the PURGE command.

Subcommands

Any of the following subcommands can be used with the PURGE command:

CATEGORY purges the category and all references to it

CLASS purges the security class and all references to it

ELEMENT purges the data element and all references to it

FILE purges the file and all references to it; optionally purges
related files and associated elements

GROUP purges an HP Inform group and all references to it

LOCATION purges the location and all references to it

PROCEDURE purges the procedure and all references to it
Chapter 4 107

DICTDBM Commands
Purge
Example

 >PURGE ELEMENT

 ELEMENT> Element 1 < Identifies element

 DELETE ALL ENTRIES(N/Y)?> Y to be purged.

 ALL ENTRIES DELETED Confirms request to

purge element.

> New command prompt.

> PURGE FILE

 FILE> Base1 < Identifies BASE file

to be purged.

 DELETE ALL ENTRIES(N/Y)?> Y Confirms request to purge Base1.

 PURGE RELATED CHILD FILES(Y/N)?> Y Requests that all related

child files be purged.

 PURGE ASSOCIATED ELEMENTS(Y/N)?> Y Requests that child file

 elements not associated

with another file be purged.

 LIST ALL PURGED ENTITIES(Y/N)?> Y Requests that purged

entities be displayed.

 FILE PURGED: BASE1

 CHILD FILES: FILES PURGED:

 ELEMENTS: ELEMENTS PURGED:

 HP-DIV-MSTR HP-DIV-MSTR

 HP-DIV-NO

 HP-DIV-NAME

 HP-GROUP

 COMMODITY-MSTR COMMODITY-MSTR

 COMMODITY-TYPE

 COMMODITY-NAME

 VENDOR-DETAIL VENDOR-DETAIL

 COMMODITY-TYPE

 C-VEND-NUM C-VEND-NUM

 VEND-NAME

 Q1-RATING Q1-RATING

 Q2-RATING Q2-RATING

Q3-RATING Q3-RATING

 > New command prompt.
108 Chapter 4

DICTDBM Commands
Purge
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string.

You enter: You are prompted for:

COMMAND SUB-COMMAND PROMPT

PURGE CATEGORY * CATEGORY

DELETE ALL ENTRIES (N/Y)?

PURGE CLASS * CLASS

DELETE ALL ENTRIES (N/Y)?

PURGE ELEMENT * ELEMENT

DELETE ALL ENTRIES (N/Y)?

PURGE FILE * FILE

1. if FILE is BASE or VPLS file

DELETE ALL ENTRIES (N/Y)?

PURGE RELATED CHILD
FILES(Y/N)?

You must respond YES, Y, NO, or N;
no default response occurs.

ANSWER YES OR NO. Issued if response to above was not
YES or NO.

PURGE ASSOCIATED
ELEMENTS(Y/N)?

Issued if response to PURGE
RELATED CHILD FILES was YES.
You must respond YES, Y, NO, or N;
no default response occurs.

ANSWER YES OR NO. Issued if response to above was not
YES or NO.

LIST ALL PURGED
ENTITIES(Y/N)?

Issued if response to PURGE
RELATED CHILD FILES or PURGE
ASSOCIATED ELEMENTS was YES.

2. if FILE is MAST, DETL, AUTO, MPEF, KSAM, or FORM file

DELETE ALL ENTRIES(N/Y)?

PURGE ASSOCIATED
ELEMENTS(Y/N)?

You must respond YES, Y, NO, or N.
No default response occurs. ANSWER
YES OR NO. Issued if response for
above was not YES or NO.

LIST ALL PURGED
ENTITIES(Y/N)?

Issued if response to PURGE
ASSOCIATED ELEMENTS was YES.

PURGE GROUP * GROUP

* DELETE ALL ENTRIES(N/Y)?

PURGE LOCATION * LOCATION

DELETE ALL ENTRIES(N/Y)?

PURGE PROCEDURE * PROCEDURE

DELETE ALL ENTRIES(N/Y)?
Chapter 4 109

DICTDBM Commands
Purge
Prompts

Depending on the subcommand used, one of the following prompts is issued:

ANSWER
YES OR NO You must respond to this prompt with Y, Yes, N or No.

CATEGORY Enter the name of an existing category which is to be purged from the
Dictionary (20 characters maximum).

CLASS Enter the identifying number of an existing security class which is to be
purged from the Dictionary (0 to 9999).

DELETE ALL ENTRIES
(N/Y)? Enter Y to purge the entity and all references to it from the Dictionary.

Note that entering N or pressing [[RETURN]] in response to this prompt
means that no action is taken.

ELEMENT Enter the name of an existing data element which is to be purged from the
Dictionary (20 characters maximum).

FILE Enter the name of an existing file which is to be purged from the
Dictionary (20 characters maximum).

GROUP Enter the name of an existing HP Inform group which is to be purged from
the Dictionary (20 characters maximum). NOTE: $MENU cannot be
purged.

LIST ALL PURGED ENTITIES
(Y/N)? Enter Y or press [[RETURN]] to display all related files and elements as

well as files and elements that were purged. Enter N if you do not want
this listing.

LOCATION Enter the name of an existing physical location which is to be purged from
the Dictionary (20 characters maximum).

PROCEDURE Enter the name of an existing procedure which is to be purged from the
Dictionary (20 characters maximum).

PURGE RELATED
CHILD Enter Y to purge all related child files and FILES(Y/N)? all references to

these files. Note that a child file is not purged if it is related to another
parent file. Enter N to purge only the specified file and all references to
that file. You must enter YES, Y, NO, or N; there is no default response.

PURGE ASSOCIATED ELEMENTS
(Y/N)? Enter Y to purge all associated (i.e., member) elements and all references

to these elements. Note that an element is not purged if it is associated
with other files or with other elements. Enter N if you do not want
associated elements purged. You must enter YES, Y, NO, or N; there is no
default response.
110 Chapter 4

DICTDBM Commands
Relate
Relate
Establishes a hierarchical relationship between like entities.

Syntax

[option] RELATE subcommand REL

Use the RELATE command to establish a hierarchical relationship between entities. The
relationship must be between entities of the same type. That is, only categories can be
related to categories, files to files, and so forth. A complete list of entities that can be
related is given below under Subcommands.

The subcommand identifies the type of entity for which a relationship is established. For
example, RELATE FILE establishes a relationship between a file of type BASE and a file
of type MAST, DETL, or AUTO.

Child entities are ordered within the parent's entry list in the order in which they were
related to the parent. This order can be changed through the REORDER command.

Subcommands

Any of the following subcommands can be used with the RELATE command:

CATEGORY relates a category to a category

CLASS relates a class to a class

ELEMENT elates a data element to a data element

FILE relates a file to a file

GROUP relates an HP Inform group to a group

PROCEDURE relates a procedure to a procedure
Chapter 4 111

DICTDBM Commands
Relate
Example

 > RELATE ELEMENT

PARENT ELEMENT> Emp-num < Name of parent element.

CHILD ELEMENT> Emp-div < Name of child element.

CHILD ALIAS> Emp-num-id < Name by which the child

element is known in the

relationship.

GENERATE BYTE POSITION(N/Y)?> y < Calculates byte offset

so that element will

follow the last element

related to parent element

DESCRIPTION > The parent element describes the employee number <

> and the child element describes the employee <

> division number. <

> <

[[RETURN]] ends prompting

for description; another

ends command string.

> New command prompt.
112 Chapter 4

DICTDBM Commands
Relate
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

COMMAND SUB-COMMAND PROMPT

RELATE CATEGORY * PARENT CATEGORY

** CHILD CATEGORY

DESCRIPTION

RELATE CLASS * PARENT CLASS

** CHILD CLASS

DESCRIPTION

RELATE ELEMENT * PARENT ELEMENT

** CHILD ELEMENT

CHILD ALIZS

GENERATE BYTE
POSITION (N/Y)?

BYTE POSITION Issued if No or [[RETURN]] to
GENERATE BYTE POSITION.

 DESCRIPTION

RELATE FILE * PARENT FILE

** CHILD FILE

CHILD ALIAS

CAPACITY Issued only if parent file is type BASE.

BLOCKMAX Issued only if parent file is type BASE.

DESCRIPTION

RELATE GROUP * PARENT GROUP

** CHILD GROUP

DESCRIPTION

RELATE PROCEDURE * PARENT PROCEDURE

** CHILD PROCEDURE

DESCRIPTION
Chapter 4 113

DICTDBM Commands
Relate
Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

BLOCKMAX Enter the maximum physical block length (in words) for the file within the
database file (128 to 2048). DEFAULT is 512.

BYTE
POSITION Enter a positive integer value for the starting position of the child data

element field within the parent data element field. First byte position is 1.
DEFAULT is 1.

CAPACITY Enter an integer value for the maximum number of entries for the file
within the database file (0 to 999999999). DEFAULT is 0.

CHILD ALIAS When the subcommand ELEMENT is used, enter the name by which the
child element is known within the child to parent element relationship (20
characters maximum). The child alias will be used by the DICTCDE and
DICTPDE utilities.

When the subcommand FILE is used, enter the name by which the child
file is known within the parent file (16 characters maximum). DEFAULT:
If [[RETURN]] is pressed in response to this prompt, the alias becomes the
child's file name, up to the first 16 characters.

CHILD
CATEGORY Enter the name of an existing category that is the child in the relationship

(20 characters maximum).

CHILD CLASS Enter a numeric value which is the identifying number of an existing
security class not of type INFO (0 to 9999).

CHILD
ELEMENT Enter the name of an existing data element that is the child in the

relationship (20 characters maximum).

CHILD FILE Enter the name of an existing file that is the child in the relationship
according to the following restrictions:

If the parent file is type:

BASE - the child file must be one of the following types:

MAST (IMAGE manual master data set)

AUTO (IMAGE automatic master data set)

DETL (IMAGE detail data set)

 VPLS - the child file must be the following type:

 FORM (VPLUS form)

CHILD GROUP Enter the name of an existing HP Inform group that is the child in the
relationship (20 characters maximum).

CHILD
PROCEDURE Enter the name of an existing procedure that is the child in the

relationship (20 characters maximum).
114 Chapter 4

DICTDBM Commands
Relate
DESCRIPTION Enter a textual description of the relationship (50 characters per
description line allowed, unlimited lines).

GENERATE
BYTE This prompt generates data that will be used by the POSITION (N/Y)?

DICTPDE and DICTCDE utilities. Enter Y or Yes to generate the byte
offset for this child element so that it will immediately follow the last child
element related to the parent element. If this element is the first child
element to be related to the parent element, the byte position generated
will be 1. DEFAULT is No.

PARENT
CATEGORY Enter the name of an existing category that is the parent in the

relationship (20 characters maximum).

PARENT CLASS Enter a numeric value which is the identifying number of an existing
INFO type security class (0 to 9999).

PARENT
ELEMENT Enter the name of the existing data element that is the parent in the

relationship.

PARENT FILE Enter the name of an existing file that is the parent in the relationship.
The file type must be one of the following:

BASE (IMAGE database)

VPLS (VPLUS forms file)

PARENT
GROUP Enter the name of an existing HP Inform group that is the parent in the

relationship (20 characters maximum). Note that if the child group is to be
related to the highest group in the group tree structure, enter “$MENU” as
the parent group's name.

PARENT Enter the name of an existing procedure that is the PROCEDURE
parent in the relationship.
Chapter 4 115

DICTDBM Commands
Remove
Remove
Removes a relationship between entities which was established with the RELATE
command.

Syntax

[option] REMOVE subcommand REM

Use the REMOVE command to remove the relationship between entities which was
established with the RELATE command. This command does not purge the entities
themselves but the relationship between the entities. A complete list of the relationships
that can be removed is given below under Subcommands. The subcommand identifies the
type of relationship that is removed. For example, REMOVE FILE, removes the
relationship between a parent file and a child file.

Subcommands

Any of the following subcommands can be used with the REMOVE command:

CATEGORY removes the relationship between a child and a parent
category

CLASS removes the relationship between a child and a parent
class

ELEMENT removes the relationship between a child and a parent
element

FILE removes the relationship between a child and a parent file

GROUP removes the relationship between a child and a parent HP
Inform group

PROCEDURE removes the relationship between a child and a parent
procedure

Example

 >REMOVE FILE

PARENT FILE> Ordmgt < Name of a database.

CHILD FILE> Customer < Name of a MAST data set

related to the database.

ENTRY DELETED DICTDBM's response.

CHILD FILE> < [[RETURN]] to terminate the

command.

> New command prompt.
116 Chapter 4

DICTDBM Commands
Remove
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

CHILD CATEGORY Enter the name of a child category from which the
relationship is to be removed (20 characters maximum).

CHILD CLASS Enter a numeric value which is the identifying number of
the child security class from which the relationship is to be
removed.

CHILD ELEMENT Enter the name of a child element from which the
relationship is to be removed (20 characters maximum).

CHILD FILE Enter the name of a child file from which the relationship
is to be removed (20 characters maximum).

CHILD GROUP Enter the name of a child HP Inform group from which the
relationship is to be removed (20 characters maximum).

CHILD PROCEDURE Enter the name of a child procedure from which the
relationship is to be removed (20 characters maximum).

PARENT CATEGORY Enter the name of a parent category from which a
relationship is to be removed (20 characters maximum).

COMMAND SUB-COMMAND PROMPT

REMOVE CATEGORY * PARENT CATEGORY

** CHILD CATEGORY

REMOVE CLASS * PARENT CLASS

** CHILD CLASS

REMOVE ELEMENT * PARENT ELEMENT

** CHILD ELEMENT

REMOVE FILE * PARENT FILE

** CHILD FILE

REMOVE GROUP * PARENT GROUP

** CHILD GROUP

REMOVE PROCEDURE * PARENT PROCEDURE

** CHILD PROCEDURE
Chapter 4 117

DICTDBM Commands
Remove
PARENT CLASS Enter a numeric value which is the identifying number of
the parent security class from which a relationship is to be
removed.

PARENT ELEMENT Enter the name of a parent element from which a
relationship is to be removed (20 characters maximum).

PARENT FILE Enter the name of a parent file from which a relationship
is to be removed (20 characters maximum).

PARENT GROUP Enter the name of a parent HP Inform group from which a
relationship is to be removed (20 characters maximum).
Enter “$MENU” if the child group is related to the highest
group in the group tree structure.

PARENT PROCEDURE Enter the name of a parent procedure from which a
relationship is to be removed (20 characters maximum).
118 Chapter 4

DICTDBM Commands
Rename
Rename
Renames an existing entity which was created with the CREATE command.

Syntax

[option] RENAME subcommand REN

Use the RENAME command to change the name of an entity. When an entity is renamed,
every reference to the entity in the Dictionary is also changed. A complete list of the
entities that can be renamed is given under Subcommands.

The subcommand is used to identify the type of entity for which a change is to occur. For
example, RENAME CLASS changes the identifying number for the specified class.

Subcommands

Any of the following subcommands can be used with the RENAME command:

CATEGORY renames an existing category

CLASS renames an existing identifying number of a security class

ELEMENT renames an existing data element

FILE renames an existing file

GROUP renames an existing HP Inform group

LOCATION renames an existing physical location

PROCEDURE renames an existing procedure

Example

 >RENAME CLASS

 CLASS> 11 < Changes the identifying number

 NEW NUMBER> 111 < from 11 to 111.

 > New command prompt.
Chapter 4 119

DICTDBM Commands
Rename
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

Prompts

depending on the subcommand used, one or more of the following prompts is issued:

CATEGORY Enter the name of an existing category (20 characters maximum).

CLASS Enter the numeric value which is the identifying number of an existing
user security class (0 to 9999).

ELEMENT Enter the name of an existing data element (20 characters maximum).

FILE Enter the name of an existing file (20 characters maximum).

GROUP Enter the name of an existing HP Inform group (20 characters maximum).
NOTE: $MENU can not be renamed.

LOCATION Enter the name of an existing location (20 characters maximum).

NEW NAME Enter a new unique name for the entity (20 characters maximum).

NEW NUMBER Enter a new unique numeric value for the user security class (0 to 9999).

COMMAND SUB-COMMAND PROMPT

RENAME CATEGORY * CATEGORY

* NEW NAME

RENAME CLASS * CLASS

* NEW NUMBER

RENAME ELEMENT * ELEMENT

* NEW NAME

RENAME FILE * FILE

* NEW NAME

RENAME GROUP * GROUP

* NEW NAME

RENAME LOCATION * LOCATION

NEW NAME

RENAME PROCEDURE * PROCEDURE

* NEW NAME
120 Chapter 4

DICTDBM Commands
Reorder
Reorder
Reorders an entity's position in the parent's list of relationships which was established
with the RELATE command.

Syntax

[option] REORDER subcommand REO

Use the REORDER command to change the position of a child within the parent's entry
list of relationships. A complete list of entities that can be reordered is given below under
Subcommands. The subcommand identifies the type of relationship for which an entity's
position is to be reordered. For example, REORDER CATEGORY, changes the position of a
child category within a parent category's list of relationships. To determine the current
position of the child entity in the parent's entry list and the name of the child entity before
which it is to be placed, use the SHOW command. (Refer to the SHOW COMMAND, in this
section for more information.) If [[RETURN]] is pressed in response to the NEW
POSITION prompt for this command, the child entity will be placed at the end of the
parent's entry list of relationships.

Subcommands

Any of the following subcommands can be used with the REORDER command:

CATEGORY reorders a child category within a parent category's entry list

ELEMENT reorders a child data element within a parent data element's entry list

FILE reorders a child file within a parent file's entry list

GROUP reorders a child HP Inform group within a parent group's entry list

PROCEDURE reorders a child procedure within a parent procedure's entry list

Example

 >REORDER CATEGORY

PARENT CATEGORY> Director <

CHILD CATEGORY> Marketing < Category to be reordered.

NEW POSITION> Manufacturing < New position is before

this category.

CHILD CATEGORY> < Terminate the command.

> New command prompt.
Chapter 4 121

DICTDBM Commands
Reorder
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string.

You enter: You are prompted for:

Prompts

Depending on which subcommand you use, one or more of the following prompts is issued:

CHILD CATEGORY Enter the name of a child category that is to be reordered
(20 characters maximum).

CHILD ELEMENT Enter the name of a child data element that is to be
reordered (20 characters maximum).

CHILD FILE Enter the name of a child file that is to be reordered (20
characters maximum).

CHILD GROUP Enter the name of a child HP Inform group that is to be
reordered (20 characters maximum).

CHILD PROCEDURE Enter the name of a child procedure that is to be reordered
(20 characters maximum).

NEW POSITION Enter the name of an existing child entity before which the
reordered child is to be placed. DEFAULT: Pressing
[[RETURN]] in response to this prompt places the
reordered child at the end of the parent's list.

PARENT CATEGORY Enter the name of an existing category that is the parent
in the relationship (20 characters maximum).

COMMAND SUB-COMMAND PROMPT

REORDER CATEGORY * PARENT CATEGORY

** CHILD CATEGORTY

NEW POSITION

REORDER ELEMENT * PARENT ELEMENT

** CHILD ELEMENT

NEW POSITION

REORDER FILE * PARENT FILE

** CHILD FILE

REORDER GROUP * PARENT GROUP

** CHILD GROUP

NEW POSITION

REORDER PROCEDURE * PARENT PROCEDURE

** CHILD PROCEDURE

NEW POSITION
122 Chapter 4

DICTDBM Commands
Reorder
PARENT ELEMENT Enter the name of an existing data element that is the
parent in the relationship (20 characters maximum).

PARENT FILE Enter the name of an existing file that is the parent in the
relationship (20 characters maximum).

PARENT GROUP Enter the name of an existing HP Inform group that is the
parent in the relationship (20 characters maximum).

PARENT PROCEDURE Enter the name of an existing procedure that is the parent
in the relationship (20 characters maximum).
Chapter 4 123

DICTDBM Commands
Report
Report
Reports a sorted listing of data elements.

Syntax

 [option] REPORT subcommand R

Use the REPORT command to display an alphabetized list of data elements owned by an
entity or by that entity's children. Note that any element that is owned by more than one
entity is listed only once by the REPORT command.

The subcommand identifies the entity to be listed. For example, REPORT CLASS lists the
elements owned by the named user security class. REPORT ELEMENT lists all the
elements defined in the Dictionary. Also, if the subcommand used is CATEGORY, FILE,
GROUPS, or PROCEDURE and the entity name entered is for a child entity, the elements
owned by that entity are reported. If the name entered in response to one of these
subcommands is for a parent entity, all the elements for the related child entities are
reported. If the name entered in response to the PROCEDURE subcommand prompt is for
a parent procedure any elements associated with that procedure or any of its related child
procedures will also be reported.

The PRINT option can be used with the command string to direct the report to the line
printer. The report would then include descriptive information in addition to the
information normally displayed on the terminal. The description information is the
description that was entered when the entity was created or when an association was
made.

Subcommands

Any of the following subcommands can be used with the REPORT command:

CATEGORY reports all the data elements associated with a category or
with related child categories

CLASS reports all the data elements associated with a security
class

ELEMENT reports all the data elements defined in the Dictionary

FILE reports all the data elements associated with a file or with
related child files

GROUP reports all the data elements associated with an HP
Inform group or with related child groups

PROCEDURE reports all the data elements associated with a procedure
or with related child procedures, including any owned by
the named procedure
124 Chapter 4

DICTDBM Commands
Report
Example

 > REPEAT REPORT FILE

 FILE> product <

PRIMARY/SECONDARY(P/S)? <

LIST OF PRIMARY FORMAT DATA ELEMENTS UNDER FILE: PRODUCT

 ELEMENT(PRIMARY): TYPE: SIZE: DEC: LENGTH: COUNT:

DESCRIPTION X 30 0 30 1

PROD-NO U 8 0 8 1

 FILE> sales <

LIST OF PRIMARY FORMAT DATA ELEMENTS UNDER FILE: SALES

 ELEMENT(PRIMARY): TYPE: SIZE: DEC: LENGTH: COUNT:

ACCOUNT X 10 0 10 1

 DELIV-DATE X 6 0 6 1

 DESCRIPTION X 30 0 30 1

 PRICE P 11 0 6 1

 PROD-NO U 8 0 8 1

 PURCH-DATE X 6 0 6 1

 PURCH-NO U 6 0 6 1

 QUANTITY P 7 0 4 1

 TOTAL P 11 0 6 1

 FILE> customer <

PRIMARY/SECONDARY(P/S)? <

LIST OF PRIMARY FORMAT DATA ELEMENTS UNDER FILE: CUSTOMER

 ELEMENT(PRIMARY): TYPE: SIZE: DEC: LENGTH: COUNT:

ACCOUNT X 10 0 10 1

 CITY-NAME X 14 0 14 1

 CREDIT U 2 0 2 1

 DELIV-DATE X 6 0 6 1

 DESCRIPTION X 30 0 30 1

FIRST-NAME U 18 0 18 1

 LAST-NAME X 20 0 20 1

PRICE P 11 0 6 1

 PROD-NO U 8 0 8 1

 PURCH-DATE X 6 0 6 1

 PURCH-NO U 6 0 6 1

 STATE X 2 0 2 1

STR-ADDRESS X 22 0 22 1
Chapter 4 125

DICTDBM Commands
Report
 TOTAL P 11 0 6 1

 ZIP X 10 0 10 1

 FILE> < [[RETURN]] key pressed.

 >

Subcommand Prompts

For the prompts shown with an asterisk, you must enter a response other than
[[RETURN]] in order to implement the command string.

You enter: You are prompted for:

Prompts<

Depending on the subcommand used, one of the following prompts is issued:

CATEGORY Enter the name of an existing category (20 characters
maximum).

CLASS Enter the numeric value which is the identifying number
of an existing security class (0 to 9999).

FILE Enter the name of an existing file (20 characters
maximum).

GROUP Enter the name of an existing HP Inform group (20
characters maximum).

PRIMARY/SECONDARY
(P/S)? Enter P (or press [[RETURN]]) if the elements to be

reported are in the primary format for that file. Enter S if
the elements are in the secondary format. (See the
discussion of the ADD command for more information on
primary and secondary formats for a file.) DEFAULT is P.

PROCEDURE Enter the name of an existing procedure (20 characters
maximum).

COMMAND SUB-COMMAND PROMPT

REPORT CATEGORY * CATEGORY

REPORT CLASS * CLASS

RE[PORT ELEMENT (No prompts)

REPORT FILE * FILE

* PRIMARY/SECONDARY(P/S)? Issued only if file type is KSAM,
MPEF or MPER.

REPORT GROUP * GROUP

REPORT PROCEDURE * PROCEDURE
126 Chapter 4

DICTDBM Commands
Resequence
Resequence
Resequences a data element within an association established with the ADD command.

Syntax

[option] RESEQUENCE subcommand RES

Use the RESEQUENCE command to change a data element's position within an entity's
list of associations which was established by the ADD command. A complete list of entities
for which data elements can be resequenced is given below under Subcommands.

The subcommand identifies the type of entity for which a resequencing is to occur. For
example, RESEQUENCE FILE changes the position of a data element in the list of
elements associated with that file.

The name of the element before which the resequenced element is to be placed is entered
in response to the NEW POSITION prompt. Pressing [[RETURN]] in response to this
prompt places the resequenced element at the end of the association list for the entity. To
see the current list of associations and current positions, use the SHOW command.

Subcommands

Any of the following subcommands can be used with the RESEQUENCE command:

CATEGORY resequences a data element within a category

CLASS resequences a data element within a security class

FILE resequences a data element within a file

GROUP resequences a data element within an HP Inform group

PROCEDURE resequences a data element within a procedure

Example

 >RESEQUENCE FILE

FILE> Customer < The file's name.

PRIMARY/SECONDARY(P/S)? < Indicates element is in the

Primary format.

ELEMENT> Last-name < Element to be resequenced.

NEW POSITION> Street-addr < New position is before

this element.

ELEMENT> [[RETURN]] to terminate

command.

> New command prompt.
Chapter 4 127

DICTDBM Commands
Resequence
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

CATEGORY Enter the name of an existing category in which a data element is to be
resequenced (20 characters maximum).

CLASS Enter the numeric value which identifies an existing security class in
which a data element is to be resequenced (0 to 9999).

ELEMENT Enter the name of the existing data element which is to be repositioned
within the association list (20 characters maximum).

FILE Enter the name of an existing file in which a data element is to be
resequenced (20 characters maximum).

GROUP Enter the name of an existing HP Inform group in which a data element is
to be resequenced (20 characters maximum).

NEW
POSITION Enter the name of the data element before which the resequenced data

element is to be placed. DEFAULT: Pressing [[RETURN]] in response to

COMMAND SUB-COMMAND PROMPT

RESEQUENCE CATEGORY * CATEGORY

** ELEMENT

NEW POSITION

RESEQUENCE CLASS * CLASS

** ELEMENT

NEW POSITION

RESEQUENCE FILE * FILE

* PRIMARY/SECONDARY(P/S)? Issued only if file type is KSAM,
MPEF or MPER.

RESEQUENCE GROUP * GROUP

** ELEMENT

NEW POSITION

RESEQUENCE PROCEDURE * PROCEDURE

** ELEMENT

NEW POSITION
128 Chapter 4

DICTDBM Commands
Resequence
this prompt places the resequenced data element at the end of the
association list.

PRIMARY/SECONDARY
(P/S)? Enter P (or press [[RETURN]]) if the element to be resequenced is in the

primary format for the file. Enter S if the element is in the secondary
format. (See the discussion of the ADD command for more information on
primary and secondary formats.) DEFAULT is P.

PROCEDURE Enter the name of an existing procedure in which a data element is to be
resequenced (20 characters maximum).
Chapter 4 129

DICTDBM Commands
Secure
Secure
Secures data elements, files and groups to a security class.

Syntax

[option] SECURE subcommand SEC

Use the SECURE command to either assign all of the data elements associated with a file
to one security class or to assign a group and all its child groups to one security class.
When using the SECURE command to assign elements to a security class, you may also
assign the file and all its child files, if any, to that security class. Therefore, you can avoid
adding each individual data element, one at a time, to a security class with the ADD
CLASS command string. However, when using the SECURE command to assign a group to
a security class, no elements belonging to the group or its child groups will be added to the
security class.

After all data elements, files, or groups are secured to a designated class, the security class
and capability association can be selectively changed for an element with the UPDATE
command. Unwanted associations can be selectively deleted with the DELETE command.
If a data element was already secured to a security class (with a previous SECURE
command) another SECURE command can be used to change the access capability
previously defined. The new SECURE command deletes the association made earlier and
creates a new association which may specify a different type of access capability.

Subcommand

FILE secures all data elements in a file to a security class and secures the file
and its child files to the security class

GROUP secures a group and its child groups to a security class

Example

 > SECURE FILE

FILE> Customer < File to be secured.

CLASS> 1 < Security class identifier.

ACCESS CAPABILITY> M < Type of access.

ELEMENTS WILL BE SECURED TO CLASS.

SECURE FILE(S) TO CLASS(N/Y)? N

 > New command prompt.
130 Chapter 4

DICTDBM Commands
Secure
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string.

You enter: You are prompted for:

Prompts

 The following prompts are issued for the SECURE command:

ACCESS CAPABILITY Enter the type of access capability given to the user security class
for all the data elements in the specified file. Choose from one of the
following:

R read only

U read and update only

M read write and modify

X null read/write list “(/)”

Refer to the IMAGE Reference Manual for a detailed explanation of the
meanings of user class access capabilities.

CLASS Enter the numeric integer (0 to 9999) for an existing user security class
(not of type INFO) when securing data elements or a file to a class.

FILE Enter the name of an existing file (20 characters maximum). The type of
file must be one of the following:

BASE IMAGE database

MAST IMAGE manual master data set

AUTO IMAGE automatic master data set

DETL IMAGE detail data set

MPEF MPE Sequential File

COMMAND SUB-COMMAND PROMPT

SECURE FILE * FILE

* CLASS

* ACCESS CAPABILITY

ELEMENTS WILL BE
SECURED TO CLASS.

SECURE FILE(S) TO
CLASS(N/Y)?

FILE ACCESS CAPABILITY Issued only if Yes to SECURE
FILE(S) TO CLASS and file type is
BASE, MAST, DETL, or AUTO

SECURE GROUP * GROUP

* CLASS
Chapter 4 131

DICTDBM Commands
Secure
MPER MPE Relative File

KSAM KSAM file

FILE ACCESS
CAPABILITY Enter the type of capability to be given to the user security class for the

IMAGE file as follows:

R = read only

W = read, write, modify

X = null read/write list “(/)”

Refer to the IMAGE Reference Manual for a detailed explanation of the
user class access capabilities.

GROUP Enter the name of the INFORM group to be secured (20 characters
maximum).

SECURE FILE(S) TO CLASS
(N/Y)? Enter Y or Yes to secure the file(s) to the user security class. If the FILE

type is BASE, then that BASE file, all its data sets, and all associated
elements will be added to the CLASS.
132 Chapter 4

DICTDBM Commands
Show
Show
Shows all the relationships for an entity and the associations for child entities.

Syntax

[option] SHOW subcommand S

Use the SHOW command to display the hierarchical relationship for an entity and the
association information for child entities. Relationships are established using the RELATE
command and associations are established using the ADD command.

The subcommand identifies the entity to be displayed. For example, the subcommands
LOCATION and CLASS show the association information for a location and class. The
subcommands CATEGORY, PROCEDURE, FILE, and GROUP show the relationship and
the association information for their respective entities. The subcommand ELEMENT
shows only the relationship information for the element.

The relationship information is displayed as a tree structure from the point of entry down.
After the parent entity name is displayed, each child is displayed in the order in which the
child was related to the parent. Data elements associated with each child can also be
displayed depending on your response to the prompt to do so. If you choose to display the
data elements, an asterisk (*) will appear next to an element to indicate that it is a key or
search element within that file. The PRINT option can be used with the command string to
redirect what is shown by this command to the line printer. Description information will be
printed in addition to the information normally displayed on the terminal. The description
information is the information that was entered when the relationship or association was
made.

Subcommands

Any of the following subcommands can be used with the SHOW command:

CATEGORY shows all the relationships for a category plus associated
data elements where applicable

CLASS shows all the associations for a user security class and all
the related child classes plus all associated groups.

ELEMENT shows all the relationships for a data element

FILE shows all the relationships and links for a file plus
associated data elements where applicable

GROUP shows all the relationships for an HP Inform group plus
associated data elements where applicable and access
information for the group

LOCATION shows all the associations for a location

PROCEDURE shows all the relationships for a procedure plus associated
data elements where applicable
Chapter 4 133

DICTDBM Commands
Show
Example

 >SHOW FILE

 FILE> HOUSES <

 SHOW ALL FILE ELEMENTS(Y/N)?> y

 FILE: TYPE: RESPONSIBILITY:

HOUSES BASE

 FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

CITY-MASTER MAST CITY-MASTER 101

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CITY-ABBR * U (4,0,4) CITY-ABBR

CITYNAME U (20,0,20) CITYNAME

FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

BATH-MASTER AUTO BATH-MASTER 31

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

NUMBER-BATHS * X (4,0,4) NUMBER-BATHS

FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

BEDS-MASTER AUTO BEDS-MASTER 11

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

NUMBER-BEDS * X (2,0,2) NUMBER-BEDS

FILE(ALIAS): TYPE: FILE(PRIMARY): CAPACITY:

RESIDENTIAL DETL RESIDENTIAL 200

ELEMENT(ALIAS): PROPERTIES: ELEMENT(PRIMARY):

CITY-ABBR * U (4,0,4) CITY-ABBR

 CHAIN MASTER SET: CITY-MASTER

 NUMBER-BEDS * X (2,0,2) NUMBER-BEDS

CHAIN MASTER SET: BEDS-MASTER

NUMBER-BATHS * X (4,0,4) NUMBER-BATHS

CHAIN MASTER SET: BATH-MASTER

CURRENT-OWNER U (20,0,20) CURRENT-OWNER

OWNERS-PHONENR X (10,0,10) OWNERS-PHONENR

.

.

.

>

134 Chapter 4

DICTDBM Commands
Show
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string.

You enter: You are prompted for:

Prompts

Depending on which subcommand you use, one of the following prompts is issued:

CATEGORY Enter the name of an existing category for which relationships are to be
shown (20 characters maximum).

CLASS Enter the name of an existing user security class for which a list of
associations is to be given (4 characters maximum).

ELEMENT Enter the name of an existing data element for which relationships are to
be shown (20 characters maximum).

FILE Enter the name of an existing file for which relationships are to be shown
(20 characters maximum).

GROUP Enter the name of an existing HP Inform group for which relationships
and access information are to be shown (20 characters maximum). Note
that a pound sign () indicates the element will not be displayed on HP
Inform's Data Names Menu.

LOCATION Enter the name of an existing location for which a list of associations is to
be given (20 characters maximum).

PRIMARY/SECONDARY (P/S)? Enter P (or press [[RETURN]]) if the primary format for
that file is to shown. Enter S if the secondary format for that file is to be
shown. (See the discussion of the ADD command for more information on
primary and secondary formats for a file.) DEFAULT is P.

PROCEDURE Enter the name of an existing procedure for which relationships are to be
shown (20 characters maximum).

COMMAND SUB-COMMAND PROMPT

SHOW CATEGORY * CATEGORY

SHOW CLASS * CLASS

SHOW ELEMENT * ELEMENT

SHIOW FILE FILE

PRIMARY/SECONDARY(P/S)? Issued if file type is KSAM, MPEF or
MPER.

SHOW GROUP * GROUP

SHOW LOCATION * LOCATION

SHOW PROCEDURE * PROCEDURE
Chapter 4 135

DICTDBM Commands
Update
Update
Updates an association between entities which was established with the ADD command.

Syntax

[option] UPDATE subcommand U

Use the UPDATE command to change the association for an element, a file, or a procedure
established with the ADD command. A complete list of entities for which an association
can be changed is given below under Subcommands.

The subcommand identifies the type of entity association that is changed. For example,
UPDATE CATEGORY, changes the description of the association or the element alias
name.

Subcommands

Any of the following subcommands can be used with the UPDATE command:

CATEGORY updates a data element to a category association

CLASS updates a data element to a user security class association

CLASS-FILE updates a file to a user security class association

CLASS-GROUP updates a group to a security class association

FILE updates a data element to a file association

FILE-LOC updates a file to a location association

GROUP updates a data element to an HP Inform group association

PROCEDURE updates a data element to a procedure association

PROCEDURE-LOC updates a procedure to a location association

Example

 > UPDATE CATEGORY

CATEGORY> Marketing < Category's name.!!

ELEMENT> Account < Element to be updated.

EDIT DESCRIPTION(Y/N)? N No, to edit description

of the relationship.

ELEMENT ALIAS:

ACCOUNT Current alias.

ELEMENT ALIAS> Account-Marketing < New element alias.

ELEMENT> [[RETURN]] to end the

command.

> New command prompt.
136 Chapter 4

DICTDBM Commands
Update
Subcommand Prompts

For the prompts shown with an asterisk (*), you must enter a response other than
[[RETURN]] in order to implement the command string. Two asterisks (**) next to a
prompt indicate that this prompt and those which follow are repeated until [[RETURN]] is
pressed in response to this prompt.

You enter: You are prompted for:

COMMAND SUB-COMMAND PROMPT

UPDATE CATEGORY * CATEGORY

** ELEMENT

ELEMENT DESCRIPTION
(Y/N)?

* EDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES(Y/N)? Issued only if Yes to EDIT
DESCRIPTION.

ELEMENT ALIAS

UPDATE CLASS * CLASS

** ELEMENT

EDIT DESCRIPTION(Y/N)?

* EDDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES(Y/N)? Issued only if Yes to EDIT
DESCRIPTION.

ACCESS CAPABILITY

UPDATE CLASS-FILE * CLASS

** GROUP

* EDIT COMMAND>>

UPDATE FILE * FILE

PRIMARY/SECONDARY(P/S)? Issued if file type is KSAM, MPEF
or MPER.

** ELEMENT

EDIT DESCRIPTION(Y/N)?

EDIT COMMANDS>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES(Y/N) Issued only if Yes to EDIT
DESCRIPTION.

1. if file type is MAST:

ELEMENT ALIAS

NEW KEY ELEMENT(N/Y)? Issued if element is not the key.
Chapter 4 137

DICTDBM Commands
Update
2. if file type is AUTO, MPEF, MPER or FORM:

ELEMENT ALIAS

FIELD NUMBER Issued if file type is FORM.

3. if file type is DETL:

ELEMENT ALIAS

PATH FILE

SORT ELEMENT Issued if element is a search item.

CANCEL PRIMARY
PATH(N/Y)?

Issued if element is a search item
and the primary path.;

PRIMARY PATH(N/Y)? Issued if element is a search item
but is not the primary path.

4. if file type is KSAM:

ELEMENT ALIAS

CANCEL KEY(N/Y)? Issued if element is in the Primary
format and is currently a KSAM
key.

KEY ELEMENT(N/Y)? Issued if element is in the Primary
format, is not currently a KSAM
key and element is not TYPE B, S
or *.

NEW PRIMARY KEY(N/Y)? Issued if element is in the Primary
format, is a key element but not
the primary key.

CANCEL PRIMARY KEY(N/Y)? Issued if element is in the Primary
format and is currently a primary
key.

DUPLICATE KEYS(N/Y)? Issued if element is in the Primary
format, is a key element and
duplicate keys are currently not
allowed.

CANCEL DUPLICATE
KEYS(N/Y)?

Issued if element is in the Primary
format, is a key element and
duplicate keys are currently
allowed.

UPDATE FILE-LOC * LOCATION

** FILE

EDIT DESCRIPTION(Y/N)?

* EDIT COMMANDS>> Issued if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES(Y/N)? Issued if Yes to EDIT
DESCRIPTION.

FILE SIZE Issued if file type is MPEF or
KSAM.

COMMAND SUB-COMMAND PROMPT
138 Chapter 4

DICTDBM Commands
Update
FILE ALIAS

UPDAT GROUP * GROUP

** ELEMENT

EDIT DESCRIPTION(Y/N)?

* ELEMENT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES(Y/N)? Issued only if Yes to EDIT
DESCRIPTION.

ELEMENT ALIAS

PARENT FILE Issued if file belongs to more than
one database.

VALUE AS A LINK

CHANGE ELEMENT TO
DISPLAY(N/Y)?

Issued if element is currently
nondisplay.

CHANGE ELEMENT TO
NONDISPLAY(N/Y)?

Issued if element is currently
display.

UPDATE PROCEDURE * PROCEDURE

** ELEMENT

EDIT DESCRIPTION(Y/N)?

* EDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES(Y/N)? Issued only if Yes to EDIT
DESCRIPTION.

ELEMENT ALIAS

UPDATE PROCEDURE-LOC * LOCATION

** PROCEDURE

EDIT DESCRIPTION(Y/N)?

* EDIT COMMAND>> Issued only if Yes to EDIT
DESCRIPTION.

EDIT ATTRIBUTES(Y/N)? Issued only if Yes to EDIT
DESCRIPTION.

PROCEDURE ALIAS

COMMAND SUB-COMMAND PROMPT
Chapter 4 139

DICTDBM Commands
Update
Prompts

Depending on the subcommand used, one or more of the following prompts is issued:

ACCESS
CAPABILITY Enter a new type of capability to be given to the user security class for the

file or element using one of the following:

If the subcommand is:

CLASS-FILE - enter one of the following:

R = read only

W = read, write, modify

X = null read/write list “(/)”

CLASS - enter one of the following:

R = read only

U = read and update only

M = read, write and modify

X = null read/write list “(/)”

Refer to the IMAGE Reference Manual for a detailed explanation of the
meanings of user class access capabilities. DEFAULT: Pressing
[[RETURN]] in response to this prompt indicates no change.

CANCEL DUPLICATES
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y or Yes if duplicate key values are no longer allowed for this KSAM
file. DEFAULT is N.

CANCEL KEY
(N/Y) Enter a Y if the data element is no longer to be a key in the KSAM file.

CANCEL PRIMARY
KEYS(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y or Yes if this element is no longer a primary key. DEFAULT is N.

CANCEL PRIMARY
PATH(N/Y)? Enter Y or Yes if the data element is no longer to be the primary path.

CATEGORY Enter the name of an existing category used in the association (20
characters maximum).

CHANGE ELEMENT TO DISPLAY
(N/Y)? Enter Y to change the element to a display element. This means it will be

displayed for reporting on HP Inform's Data Names Menu.

CHANGE ELEMENT TO NONDISPLAY
(N/Y) Enter Y to change the element to a nondisplay element. This means it will

not be displayed for reporting on HP Inform's Data Names Menu.

CLASS Enter a positive numeric value which is the identifying number (0 to 9999)
of the existing user security class used in the association.
140 Chapter 4

DICTDBM Commands
Update
If the subcommand used is CLASS-GROUP, enter a numeric value (0 to
9999) which is the identifying number of the INFO type user security
class.

DUPLICATES
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter Y or Yes to allow this key to have duplicate key values for this
KSAM file. DEFAULT is N.

EDIT ATTRIBUTES
(Y/N)? Enter an N and the prompts to edit the attributes will not be generated

(see Subcommand Prompts for which attributes can be changed).

EDIT COMMAND>> Enter one of the EDIT COMMANDS described in
Using Edit Description Commands in Section III.

EDIT DESCRIPTION
(Y/N)? Enter an N if editing is not to be done for the textual description of the

association.

ELEMENT Enter the name of an existing data element used in the association (20
characters maximum).

ELEMENT
ALIAS Enter the name by which the data element is known within the file. The

maximum characters allowed are:

15 for FORM

16 for MAST, AUTO or DETL

20 for MPEF, MPER or KSAM

60 for CATEGORY

20 for an HP Inform GROUP

16 for PROCEDURE

DEFAULT: Pressing [[RETURN]] in response to this prompt indicates no
change.

Note that HP Inform and Report will not be able to retrieve the values of
an element from an IMAGE data set if the response to the ELEMENT
ALIAS prompt of the ADD FILE command string is not the actual name of
the data element in the data set.

FIELD NUMBER Enter the field number of this element on the VPLUS form. DEFAULT
is 0.

FILE If the subcommand is:

CLASS-FILE or GROUP - enter the name of a file (20 characters
maximum). The file type must be one of the following:

MAST IMAGE manual master data set

AUTO IMAGE automatic master data set

DETL IMAGE detail data set
Chapter 4 141

DICTDBM Commands
Update
KSAM KSAM file

MPEF MPE sequential file

MPER MPE relative file

VPLS VPLUS forms file

FILE - enter the name of a file (20 characters maximum). The file type
must be one of the following:

MAST IMAGE manual master data set

AUTO IMAGE automatic master data set

DETL IMAGE detail data set

KSAM KSAM file

MPEF MPE sequential file

MPER MPE relative file

VPLS VPLUS form

FILE ALIAS Enter a new name by which the file is to be known within the location (8
characters maximum). DEFAULT: Pressing [[RETURN]] in response to
this prompt indicates no change.

FILE SIZE Enter a new value for the number of records of the file in the location (0 to
999999999). DEFAULT: Pressing [[RETURN]] in response to this prompt
indicates no change.

GROUP Enter the name of an existing HP Inform group used in the association (20
characters maximum).

KEY ELEMENT
(N/Y)? Enter a Y if the data element is to become the key element in the KSAM

file.

LOCATION Enter the name of an existing location used in the association (20
characters maximum).

NEW KEY ELEMENT
(N/Y)? Enter a Y if the data element is to become the new key item for the MAST

file.

NEW PRIMARY KEY
(N/Y)? This prompt generates data that will be used by the DICTCDE utility.

Enter a Y or Yes if this element is to be the new primary key for this file.
Any previous primary key will be canceled when Y or Yes is entered as a
response to this prompt. Enter N or No is this element is not to be the
primary key. DEFAULT is N.

PARENT FILE Enter the name of an existing file (20 characters maximum) that is the
parent of the database set specified in response to the FILE prompt. The
file type must be type BASE (IMAGE database).

PATH FILE Enter the name of an existing file of type MAST or AUTO that is the new
chain header for a detail set path (20 characters maximum). A blank value
142 Chapter 4

DICTDBM Commands
Update
indicates that the data element is no longer to be a search item in the
DETL file. DEFAULT: Pressing [[RETURN]] in response to this prompt
indicates no change.

PRIMARY PATH
(N/Y)? Enter a Y if the data element is to become the primary path. If another

data element already exists as the primary path, a Y response
automatically cancels it.

PRIMARY/SECONDARY
(P/S)? Enter P (or press [[RETURN]]) if the element to be updated is in the

primary format for the file. Enter S if the element is in the secondary
format for the file. (See the discussion of the ADD command for more
information on primary and secondary formats.) DEFAULT is P.

PROCEDURE Enter the name of an existing procedure used in the association (20
characters maximum).

PROCEDURE
ALIAS Enter a new name by which the procedure is to be known within the

location (8 characters maximum). DEFAULT: Pressing [[RETURN]] in
response to this prompt indicates no change.

SORT
ELEMENT Enter the name of an existing data element that is the new sort item for a

sorted chain (20 characters maximum). This prompt is only issued if a
path file exists. A blank value (pressing the space bar followed by
[[RETURN]]) indicates that the chain is no longer sorted.

DEFAULT: Pressing [[RETURN]] following this prompt indicates no
change

VALUE AS
A LINK Enter -1, 0, or a positive integer to specify which elements should

preferably be used in linking files. The numbers indicate the following:

-1 The element can not be used for linking.

0 The element may or may not be used for linking
(DEFAULT).

1 or greater The element should be used as a link when possible;
elements assigned a positive link value form a prioritized
list to be used when it is necessary to link files (the lower
the positive integer, the higher the priority).
Chapter 4 143

DICTDBM Commands
Update
144 Chapter 4

5 Dictionary/3000 Utilities

Overview
Dictionary/3000 provides a set of interactive utilities that allow a Dictionary or database
administrator to easily create and maintain entries in the Dictionary. The Dictionary
utilities can be used to create, maintain or load IMAGE database entries and to create
VPLUS forms file entries in the Dictionary. The utilities can also be used to clean the
Dictionary of superfluous information that may accumulate after continued DICTDBM
use.

Table 5-1 gives a summary of the utilities with a brief description of their function.

Dictionary/3000 also provides an initialization utility and two extract utilities. The
initialization utility, DICTINIT, is used to create and initialize the Dictionary. (For more
information on DICTINIT, see Appendix C.) The extract utilities, DICTPDE and
DICTCDE, can be used to generate PASCAL and COBOL definitions from the entities
defined in the Dictionary. (For more information on DICTPDE, see Chapter 6. For more
information on DICTCDE, see Chapter 7.)

Table 5-1. The Dictionary Utilities

Utility Function

DICTDBA
(Database Audit)

reports on the usage statistics and checks the internal linkages of
an IMAGE database.

DICTDBC
(Database Creation)

uses the information in the Dictionary to create a schema and root
file for an IMAGE database.

DICTDBD
(Database Definition)

loads the existing definition of an IMAGE database into the
Dictionary using the root file.

DICTDBU
(Database Unload)

copies the data entries of an IMAGE database to disc or tape.

DICTDBL(Database Load) loads data entries from tape or disc into the IMAGE database files.

DICTDBM, UTIL
(Data Dictionary Cleanup)

cleans up data Dictionary after several months of DICTDBM use.

DICTVPD (VPLUS Forms
File Definition)

loads the existing definition of a VPLUS forms file into the
Dictionary.
145

Dictionary/3000 Utilities
Overview
Initiating the Utilities

After logging on, any of the Dictionary utilities can be run. The utilities in this chapter
assume that the Dictionary exists in the PUB group of your log-on account. If the
Dictionary you wish to use exists in a different MPE group and/or account, you must first
identify it by issuing a file equation before running the utility. The file equation should be
as follows:

 FILE DICT.PUB=DICT.group.account

To initiate any of the utilities issue an MPE RUN command, as follows:

 RUN utility.PUB.SYS

Changing Output Files

DICTDBM uses the formal file designator TRANOUT to direct output to your terminal and
TRANLIST to direct output to the line printer. The other utilities use DICTOUT to direct
output to your terminal and DICTLIST to direct output to the line printer. To redirect
these output files, use MPE file equations to redefine the file designators prior to running
the utility.

Using the Utilities to Restructure a Database

It is possible to make changes to the design of an existing IMAGE database by using the
Dictionary utilities. The following steps should be performed when restructuring a
database:

1. As a safety precaution, use the utility program, DBSTORE.PUB. SYS to store the old
database, before performing any of the following steps.

2. Run the Database Unload utility (DICTDBU) program, copying the existing contents of
a database to a disc file or a tape file.

3. Run the Database Maintenance program (DICTDBM) program and make the desired
changes to the database by using the appropriate commands. For example, items may
need to be moved from one data set to another or added to the middle of a data set, or
data types or database/data set names may need to be changed, now is the time to make
these changes.

4. Run the HP DBUTIL utility program, purging the old database. (See the IMAGE/3000
Reference Manual for details on DBUTIL.)

5. Run the Database Creation utility (DICTDBC) program, creating a new schema file and
a new root file for the redesigned database.

6. Run the HP DBUTIL utility program, creating and initializing the new database. (See
the IMAGE/3000 Reference Manual for details on DBUTIL.)

7. Run the Database Load utility (DICTDBL) program, loading the new database with the
contents of the old database. The Database Load utility program compares the old
schema file with the new schema file and, if necessary, transforms the data field formats
of the old database to agree with the formats of the new database.
146 Chapter 5

Dictionary/3000 Utilities
DICTDBA
DICTDBA

Database Audit Utility

The Database Audit utility (DICTDBA) reports on the usage statistics and checks the
linkages for an IMAGE database. The report can include information on synonyms and
chains for master sets and chain statistics for detail sets. DICTDBA also checks for broken
chains.

This utility provides two reports, one at the terminal and one is also printed on the line
printer. The terminal report is a summary report, while the line printer report includes
more detailed information.

With this utility, a database can be audited for synonym information, for chain information
by search items, or for specific information on chain lengths.

The following description explains how to execute the DICTDBA utility program and gives
an explanation of each prompt.

To execute DICTDBA enter the following MPE command:

 RUN DICTDBA.PUB.SYS

After an acknowledgment message, a prompt is issued to determine the type of audit
report to be generated as follows:

 RUN MODE(SYNONYMS/CHAINS/LINKS)>

Only one of the following report types can be run each time DICTDBA is executed. The
following is a description of each report:

SYNONYMS the report displayed at the terminal shows the master set's name, the type
of master, the number of entries in the master, the capacity of the master,
and the usage percentage of the master. The line printer report
additionally includes the number of entries with synonyms, and the
shortest and longest synonym chain lengths.

CHAINS the terminal report includes the same information as the SYNONYM
report, plus information on each detail set. The line printer report includes
statistics by search item on the number of chains, the shortest and longest
chain length, and the average chain length. If a broken chain is detected, a
warning is given.

LINKS the terminal report includes the same information as the SYNONYM
report, the CHAINS report, plus more specific information for broken
chains. The line printer report additionally includes information on the
forward and backward read counts for the search item. In this mode the
chain entries are physically read to check the integrity of the chains.
Therefore, this report takes appreciably longer to run in this mode.

Enter the type of report chosen. You may enter either the full name of the report as shown
above or the first letter of the report name. If [[RETURN]] is pressed in response to this
prompt, DICTDBA will terminate.
Chapter 5 147

Dictionary/3000 Utilities
DICTDBA
The following prompts are then issued to identify the database to be audited:

 BASE>

 BASE PASSWORD>

 MODE>

Enter the name of the database in response to the BASE prompt, and enter a password
that grants read access to the entire database in response to the PASSWORD prompt. If an
incorrect password is entered, the prompt is reissued. Pressing [[RETURN]] in response to
the prompt for BASE terminates the utility.

Enter the access mode to be used to open and read the database in response to the MODE
prompt. If [[RETURN]] is pressed in response to this prompt, the database will be accessed
in the default mode, which is 5. (See the IMAGE Reference Manual for details on “Access
Modes”.) Note that when DICTDBA is run, the database will be locked on the data set
level, unless the database is opened in modes 3, 7, 8.

DICTDBA will then begin to execute the report.

The following examples show how to execute DICTDBA and briefly explain the responses
given to the prompts.

Example

The following is an example of a SYNONYM report:

:RUN DICTDBA.PUB.SYS Executes the audit utility.

<The Dictionary/3000 DB Auditor program banner appears here.>

RUN MODE(SYNONYMS/CHAINS/LINKS)> S Select S for SYNONYM run mode.

BASE> SHPMGT Name of database to be audited.

BASE PASSWORD> Password is not displayed; MANAGER

was used.

MODE> [[RETURN]] entered; opens database

 in default access mode 5.

The Terminal SYNONYMS report is generated as follows:

PRODUCT-MASTER M: 22/101 [21%] Set name; set type; current number

 of entries/set capacity; capacity

usage percentage.

 PO-MASTER A: 0/311 [0%]

 ITEM-MASTER M: 44/311 [14%]

 END OF PROGRAM

The Line printer SYNONYMS report is generated as follows:

 RUN MODE: SYNONYMS Identifies run mode selected.

 BASE: SHPMGT.PUB.HOWE Identifies the selected base.

 PRODUCT-MASTER M: 22/101 [21%] Same information as terminal

 report.
148 Chapter 5

Dictionary/3000 Utilities
DICTDBA
 NUMBER OF ENTRIES WITH SYNONYMS: 0 [0%]

 PO-MASTER A: 0/311 [0%]

 SET IS EMPTY

 ITEM-MASTER M: 44/311 [14%]

NUMBER OF ENTRIES WITH SYNONYMS: 1 [2%] Detail information on

SHORTEST SYNONYM CHAIN LENGTH: 1 synonym and chain;

LONGEST SYNONYM CHAIN LENGTH: 1 synonym % = (synonym count

100)/entry count, in this

case (1x100)/44 = 2%.

 END OF AUDIT RUN

The following is an example of a CHAINS report.

 :RUN DICTDBA.PUB.SYS How to execute the utility.

 <The Dictionary/3000 DB Auditor program banner appears here.>

 RUN MODE(SYNONYMS/CHAINS/LINKS)> C Select C for CHAINS run mode.

 BASE> SHPMGT Name of base to be audited.

 BASE PASSWORD> Password is not displayed;

 MANAGER was used.

 MODE> [[RETURN]] entered; opens

database

 in default access mode 5.

The Terminal CHAINS report is generated as follows:

PRODUCT-MASTER M: 22/101 [21%] Set name; set type; current number

 of entries/set capacity; capacity

usage percentage.

 PO-MASTER A: 0/311 [0%]

 ITEM-MASTER M: 44/311 [14%]

 EXPLODE D: 397/1023 [38%] DETAIL data set information

 included for CHAINS run mode.

 ITEM-DETAIL D: 0/507 [0%]

 COSTING D: 0/1008 [0%]

 END OF PROGRAM

The Line printer CHAINS report is generated as follows:

 RUN MODE: CHAINS Identifies run mode selected.

 BASE: SHPMGT.PUB.HOWE Identifies the selected base.

 PRODUCT-MASTER M: 22/101 [21%] Same information as terminal

 report.

 NUMBER OF ENTRIES WITH SYNONYMS: 0 [0%]
Chapter 5 149

Dictionary/3000 Utilities
DICTDBA
 PO-MASTER A: 0/311 [0%]

 SET IS EMPTY

 ITEM-MASTER M: 44/311 [14%]

NUMBER OF ENTRIES WITH SYNONYMS: 1 [2%] Synonym chain information

SHORTEST SYNONYM CHAIN LENGTH: 1 for master set.

ONGEST SYNONYM CHAIN LENGTH: 1

 EXPLODE D: 397/1023 [38%]

 SEARCH ITEM: PRODUCT-NO Information at the search item

 level for detail data set.

 NUMBER OF CHAINS: 22 Chain information begins.

 SHORTEST CHAIN LENGTH: 18

 LONGEST CHAIN LENGTH: 19

 AVERAGE CHAIN LENGTH: 18

 SEARCH ITEM: ITEM-NO

 NUMBER OF CHAINS: 44

 SHORTEST CHAIN LENGTH: 2

 LONGEST CHAIN LENGTH: 24

 AVERAGE CHAIN LENGTH: 9

 ITEM-DETAIL D: 0/507 [0%]

 SET IS EMPTY

 COSTING D: 0/1008 [0%]

 SET IS EMPTY

 END OF AUDIT RUN

The following is an example of a LINKS report.

:RUN DICTDBA.PUB.SYS How to execute the audit utility.

<The Dictionary/3000 DB Auditor program banner appears here.>

RUN MODE(SYNONYMS/CHAINS/LINKS)> L Select mode L for LINKS.

BASE> SHPMGT Name of base to be audited.

BASE PASSWORD> Password is not displayed;

MANAGER was used.

MODE> [[RETURN]] entered; opens database

in default access mode 5.

The Terminal LINKS report is generated as follows:

PRODUCT-MASTER M: 22/101 [21%] Set name; set type; current number

of entries/set capacity; capacity

usage percentage.

 PO-MASTER A: 0/311 [0%]
150 Chapter 5

Dictionary/3000 Utilities
DICTDBA
 ITEM-MASTER M: 44/311 [14%]

 EXPLODE D: 397/1023 [38%]

 ITEM-DETAIL D: 0/507 [0%]

 COSTING D: 0/1008 [0%]

 END OF PROGRAM

The Line printer LINKS report is generated as follows:

 RUN MODE: LINKS Identifies run mode selected.

 BASE: SHPMGT.PUB.HOWE Name of base to be audited.

 PRODUCT-MASTER M: 22/101 (21%) Same information as terminal

 report.

 NUMBER OF ENTRIES WITH SYNONYMS: 0 (0%)

 FORWARD SERIAL READ COUNT: 22

 REVERSE SERIAL READ COUNT: 22

 PO-MASTER A: 0/311 (0%)

 SET IS EMPTY

 ITEM-MASTER M: 44/311 (14%)

 NUMBER OF ENTRIES WITH SYNONYMS: 1 (2%) Synonym information for

 SHORTEST SYNONYM CHAIN LENGTH: 1 the master set.

 LONGEST SYNONYM CHAIN LENGTH: 1

 FORWARD SERIAL READ COUNT: 44

 REVERSE SERIAL READ COUNT: 44

 EXPLODE D: 397/1023 (38%)

 FORWARD SERIAL READ COUNT: 397

 REVERSE SERIAL READ COUNT: 397

SEARCH ITEM: PRODUCT-NO Detail information by search item.

 NUMBER OF CHAINS: 22

 SHORTEST CHAIN LENGTH: 18

 LONGEST CHAIN LENGTH: 19

 AVERAGE CHAIN LENGTH: 18

 FORWARD CHAIN READ COUNT: 397

 REVERSE CHAIN READ COUNT: 397

 SEARCH ITEM: ITEM-NO Second search item in the set.

 NUMBER OF CHAINS: 44

 SHORTEST CHAIN LENGTH: 2

 LONGEST CHAIN LENGTH: 24

 AVERAGE CHAIN LENGTH: 9

 FORWARD CHAIN READ COUNT: 397
Chapter 5 151

Dictionary/3000 Utilities
DICTDBA
 REVERSE CHAIN READ COUNT: 397

 ITEM-DETAIL D: 0/507 (0%)

 SET IS EMPTY

 COSTING D: 0/1008 (0%)

 SET IS EMPTY

 END OF AUDIT RUN
152 Chapter 5

Dictionary/3000 Utilities
DICTDBC
DICTDBC

Database Creation Utility

The Database Creation utility (DICTDBC) creates a schema and a root file for an IMAGE
database. Once the schema and root file are created, the database files can be created by
using the IMAGE/3000 utility DBUTIL. Refer to the IMAGE/3000 Reference Manual for
detailed information on how to use DBUTIL.

DICTDBC prompts for information that identifies which database definition in the data
Dictionary is to be used. It also prompts for information that is used by the schema
processor when generating a schema and a root file. The IMAGE/3000 utility DBSCHEMA
is automatically executed by DICTDBC. (For details on DBSCHEMA, see the IMAGE/3000
Reference Manual.)

DICTDBC will terminate when DBSCHEMA terminates. Once the schema and root file
are created, the DBUTIL utility can be run to create the database files. (DICTDBC does
not execute DBUTIL.) If errors prevent a root file from being created, the corrections must
be made in the Dictionary before you can re-execute DICTDBC. The following description
tells how to execute DICTDBC and gives an explanation of each prompt.

To execute DICTDBC enter the following MPE command:

 RUN DICTDBC.PUB.SYS

After DICTDBC issues an acknowledgment message, you are prompted to enter a
password as follows:

 DICTIONARY PASSWORD>

The password entered must grant at least PROGRAMMER level access to the Dictionary.
(See Appendix C for an explanation of the levels of access.) If [[RETURN]] is pressed in
response to this prompt, DICTDBC will terminate.

Note that the password is not displayed on the terminal as it is entered. However, if the
password is not entered correctly, an error message is displayed and the prompt reissued.

After the password is accepted, DICTDBC issues the following prompt:

 BASE>

Enter the name of the database for which a schema and root file are to be created. A
definition for this database must already exist in the Dictionary. If it does not, an error
message is displayed and the prompt is reissued. If [[RETURN]] is pressed in response to
this prompt DICTDBC will terminate.

Next, DICTDBC prompts for information to be used by the schema processor. The first
prompt allows you to specify the options to be used when the schema is processed:

 CONTROL LINE>

Any of the following options may be entered in response to the above prompt. These
options are the same ones as described for the $CONTROL COMMAND in the
IMAGE/3000 Reference Manual, except for BLOCKMAX. Note that the BLOCKMAX
option is defined differently here. One or more of these options may be entered, separated
Chapter 5 153

Dictionary/3000 Utilities
DICTDBC
by commas.

LIST causes each source record of the schema to be printed on
the listfile.

NOLIST specifies that only source records with errors be printed on
the listfile.

ERRORS=nnn sets the maximum number of errors to nnn. nnn may have
a value between 0 and 999, inclusive. If more than three
errors are detected, the Schema Processor terminates. The
default value is 100.

LINES=nnnnn sets the number of lines per page on the listfile nnnnn.
nnnnn may have a value between 4 and 32767, inclusive.
The default is 60 if listfile is a line printer and 32767 if it
is not.

ROOT causes the Schema Processor to create a root file if no
errors are detected in the schema.

NOROOT prevents the Schema Processor from creating a root file.

BLOCKMAX=nnnn sets the maximum physical block length (in words) for a
data set. If you do not include this parameter, the value
declared in the data Dictionary is used. If you entered
[[RETURN]] to the prompt for BLOCKMAX in the
Dictionary, the default value of 512 is used. Refer to the
RELATE FILE command string in Section IV for an
explanation of BLOCKMAX.

TABLE causes the Schema Processor to write a table of summary
information about the data sets to the listfile device if no
errors are detected.

NOTABLE suppresses the TABLE option.

The defaults for the control line options are: LIST, ROOT, and TABLE.

DICTDBC continues prompting for schema processor information as follows:

 SCHEMA FILE>

Enter the name of the schema file. It can be a temporary or a permanent file. To create a
process temporary file, press [[RETURN]] in response to this prompt. If the schema file is
to be a permanent file, enter the name of the file as your response. If it is a new file,
DICTDBC will create the file. If the file already exists, DICTDBC will issue a warning
before over-writing the file.

DBSCHEMA then generates an output listing of the schema and root file. The response
made to the next prompt determines where this listing is sent:

 LIST FILE>

Enter one of the following options in response to this prompt:

LP sends the listing to the line printer.

NULL suppresses the listing.
154 Chapter 5

Dictionary/3000 Utilities
DICTDBC
filename sends the listing to the existing or to a new disc file. Before over-writing an
existing file, you are prompted to approve purging the existing file's
contents.

*filename sends the listing to the file identified in the back referenced file equation.

Pressing [[RETURN]] in response to this prompt sends the listing to the terminal. If
security was only defined for the data items and now the security should only apply to the
data set, enter YES to the following prompt:

 APPLY SECURITY JUST TO SET LEVEL(N/Y)?>

If NO is entered or [[RETURN]] is pressed in response to this prompt, the security
specified for the data items is written into the schema file. If YES is entered in response to
this prompt, DICTDBC will write the set level security into the schema file. The set level
security is derived from the class or classes assigned to the set in the data Dictionary or, if
none are specified, it is extrapolated from data item security specifications.

DICTDBC then executes the schema processor. Regardless of whether a schema and a root
file are created, DICTDBC terminates after the schema processor has executed. If errors
prevent a root file from being created, the errors must be corrected before DICTDBC can
be re-executed.

The following example shows how to execute DICTDBC and briefly explains the responses
to the prompts.

Example

 :RUN DICTDBC.PUB.SYS Executes DICTDBC.

 <The Dictionary/3000 DB Creator program banner appears here.>

DICTIONARY PASSWORD> Data Dictionary's password.

BASE> SHPMGT Name of base to be created.

CONTROL LINE> [[RETURN]] pressed; default used.

SCHEMA FILE> [[RETURN]] pressed; session temporary

file created.

LIST FILE> [[RETURN]] pressed; listing sent to

terminal.

APPLY SECURITY JUST TO SET LEVEL(N/Y)?> [[RETURN]] pressed; use item level

security.

SCHEMA GENERATION DICTDBC executes for you.

DBSCHEMA generates the following listing at your terminal:

 DBSCHEMA PROCESSOR

 PAGE 1 <The IMAGE/3000 DBSCHEMA program banner appears here.>

 BEGIN DATABASE SHPMGT;

 PASSWORDS:

 1 SALESPER;

 2 RECEIVING;
Chapter 5 155

Dictionary/3000 Utilities
DICTDBC
 3 BUYER;

 4 MANAGER;

 ITEMS:

 BUYER-NO, X2 (3/4);

 DESCRIPTION, X30 ;

 ITEM-NO, X8 ;

 LIST-PRICE, P12 ;

 PO-NUMBER, U4 ;

 PRODUCT-NO, U8 ;

 PURCHASE-COST, P8 ;

 PURCHASE-DATE, X6 ;

 PURCHASE-QTY, P8 ;

 QTY-ALLOCATED, P8 ;

 QTY-ON-HAND, P8 ;

 QTY-ON-ORDER, P8 (/2);

 QTY-REC, P8 ;

 REORDER-PT, P8 ;

 UNIT-COST, P12 (/3,4);

 VENDOR-NO, X8 (/3,4);

 SETS:

 NAME: PRODUCT-MASTER, MANUAL (1,2/3,4);

 ENTRY: PRODUCT-NO (1),

 DESCRIPTION,

 QTY-ON-HAND,

 QTY-ALLOCATED,

 UNIT-COST,

 LIST-PRICE;

 CAPACITY: 101;

 NAME: PO-MASTER, MANUAL ;

 ENTRY: PO-NUMBER (1);

 CAPACITY: 311;

 NAME: ITEM-MASTER, MANUAL (1,2/3,4);

 ENTRY: ITEM-NO (3),

 DESCRIPTION,

 QTY-ON-HAND,

 QTY-ON-ORDER,

 QTY-ALLOCATED,

 PURCHASE-COST,
156 Chapter 5

Dictionary/3000 Utilities
DICTDBC
 REORDER-PT;

 CAPACITY: 311;

 NAME: ITEM-DETAIL, DETAIL (/3,4);

 ENTRY: ITEM-NO (!ITEM-MASTER),

 VENDOR-NO,

 BUYER-NO;

 CAPACITY: 507;

 NAME: EXPLODE, DETAIL (1,2,3/4);

 ENTRY: ITEM-NO (ITEM-MASTER),

 PRODUCT-NO (!PRODUCT-MASTER);

 CAPACITY: 1023;

 NAME: COSTING, DETAIL (/2,3,4);

 ENTRY: ITEM-NO (ITEM-MASTER (PURCHASE-DATE)),

 PURCHASE-DATE,

 PURCHASE-QTY,

 PO-NUMBER (!PO-MASTER),

 QTY-REC;

 CAPACITY: 1032;

 END.

 DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC

 NAME CNT CT LGTH REC FAC LGTH SPACE

 PRODUCT-MASTER M 6 1 29 39 101 13 508 36

 PO-MASTER M 1 1 2 12 311 42 507 36

 ITEM-MASTER M 7 3 29 49 311 10 491 132

 ITEM-DETAIL D 3 1 9 13 507 39 510 56

 EXPLODE D 2 2 8 16 1023 31 498 136

 COSTING D 5 2 13 21 1032 24 506 176

 TOTAL DISC SECTORS INCLUDING ROOT: 583

 NUMBER OF ERROR MESSAGES: 0

 ITEM NAME COUNT: 16 DATA SET COUNT: 6

 ROOT LENGTH: 630 BUFFER LENGTH: 510 TRAILER LENGTH: 256

 ROOT FILE SHPMGT CREATED. Schema and root file created.

 END OF PROGRAM
Chapter 5 157

Dictionary/3000 Utilities
DICTDBD
DICTDBD

Database Definition Utility

The Database Definition utility (DICTDBD) enters the definition for an existing IMAGE
database into the Dictionary. DICTDBD creates the entries for the database, the data sets,
and the data items by using the root file. The database is entered in the Dictionary as a
BASE type file. The automatic, master and detail data sets are entered as AUTO, MAST,
and DETL type files respectively. The data items are entered as elements. DICTDBD also
establishes the associations of the data items to the data sets and the relationships of the
data sets to the database.

However, the existing security defined for the database is not transferred to the Dictionary
by DICTDBD. To create or redefine security for the database, use the Dictionary Database
Maintenance program (DICTDBM). See Section III of this manual on how to define
security for a database.

Before the definition of the database is entered into the Dictionary, DICTDBD checks the
existing entries to ensure that the database does not already exist in the Dictionary. If the
database name is the same as the name for an existing entry, a message is issued. You are
given the option to change the name of the database or to terminate DICTDBD. DICTDBD
also checks the existing entries to avoid entering duplicate or redundant entries for data
sets and data items. If any of the names used for the data sets or data items is the same as
the name for an existing entry, a message is issued. For duplicate data sets and data items,
you are given the option to either enter a new name for that entity or to use the existing
entity in the Dictionary.

Whenever a name is changed for an entity being loaded into the Dictionary, the new name
entered becomes the “primary” name for that entity. The original name then becomes the
“alias” name for that entity in the Dictionary. Because HP Inform will reference these
entities by their aliases, the original names used by VPLUS do not have to be changed to
be consistent with the Dictionary. However, since DICTDBM uses the primary names for
all entities, it is important to remember what the new primary names are for the entities
whose names were changed. The following description explains how to execute DICTDBD
and gives an explanation of each prompt. To execute DICTDBD enter the following MPE
command:

 RUN DICTDBD.PUB.SYS

After an acknowledgment message, DICTDBD prompts for a password to open and read
the Dictionary. The prompt is:

 DICTIONARY PASSWORD>

The password that you enter must grant at least PROGRAMMER level access to the
Dictionary. (See Appendix C for an explanation of the levels of access.) If you press
[[RETURN]] in response to this prompt, the utility terminates. The password that you
enter is not displayed on your terminal, but if it is not entered correctly, an error message
is displayed and the prompt reissued.
158 Chapter 5

Dictionary/3000 Utilities
DICTDBD
After accepting the password you entered, the utility prompts you to enter specific
database identification information as follows:

 BASE>

 BASE PASSWORD>

 MODE>

You respond to the prompt for BASE by entering the name of the database to be defined in
the Dictionary for you. The BASE PASSWORD prompt should grant read access to the
utility for the named database.

The MODE prompt indicates the access mode to be used by the utility to open and read the
database. The database can be opened in any mode. If [[RETURN]] is entered as the
response, the base is opened in the default mode which is 5. (Refer to the IMAGE/3000
Reference Manual for details on “Access Modes”.)

The process of transferring the definition of the database begins after you respond to the
prompt for MODE. A message “LOADING DATA DICTIONARY” is displayed. The utility
begins by checking whether the entire definition of the database will fit in the Dictionary.
If it will not, the following prompt is issued:

 ENTIRE DEFINITION OF DATABASE WILL NOT FIT IN DICTIONARY.

 PROCEED (N/Y)?

A response of “N” or [[RETURN]] terminates the utility. Responding “Y” allows the utility
to continue; however, the utility will issue an error message and terminate when any one
of the data sets is full. Note that if the entire definition of the database will not fit in your
Dictionary, you can run DICTINIT to re-initialize Dictionary with larger capacities
specified (see Appendix C).

Next, the utility checks the schema of the named database with the entries in the
Dictionary. If there are no entries identical to those in your database, the transfer is
completed and the DICTDBD utility program is terminated. You can immediately execute
the DICTDBM program and see the transferred database definition.

If an entry already exists for the database name, the following message and prompt are
issued:

 *ERROR: BASE ALREADY DEFINED IN DATA DICTIONARY

 DO YOU WANT TO LOAD UNDER A DIFFERENT NAME(Y/N)?>

A response of an “N” terminates the execution of the program. If a “Y” or [[RETURN]] is
entered, the following prompt to rename your database is issued:

 NEW BASE NAME>

The name you enter must be unique - that is, it must not already exist in the Dictionary. If
it does, an error message is displayed and the prompt reissued. The utility program
terminates if [[RETURN]] is entered as your response to this prompt.

Next the ITEMS as listed in the schema are checked. If there are no existing Dictionary
entries, the loading process continues. If an entry already exists and is compatible with the
item in the database, the following message and prompt are displayed:

 COMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT element

 USE EXISTING DEFINITION(N/Y)?>
Chapter 5 159

Dictionary/3000 Utilities
DICTDBD
If you enter a “Y”, the loading process continues. If you enter an “N” or [[RETURN]], you
are prompted to rename the element as follows:

 NEW PRIMARY ELEMENT NAME>

A unique name for the element must be entered. The name for the item in your database
becomes the alias name for the item in the Dictionary. If you enter [[RETURN]], the
program does not load the element into the Dictionary and issues the following warning:

 *WARNING: ELEMENT HAS NOT BEEN LOADED INTO DICTIONARY

Then the loading process continues. Each time an existing compatible entry is
encountered, the above sequence occurs. If an incompatible item is encountered, the
following sequence occurs:

 INCOMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT element

 NEW PRIMARY ELEMENT NAME>

You must enter a unique element name in response to the prompt. If you enter
[[RETURN]], the program does not load the element into the Dictionary and issues a
warning message.

After checking the data items, the utility compares the data set definitions with existing
Dictionary entries. The definition of a data set includes the data items within the set. If
there are no other identical entries, the transfer is completed and the program terminates.

If an identical entry for the data set exists, the following message and prompt are issued:

 DEFINITION ALREADY IN DICTIONARY FOR SET set

 USE EXISTING DEFINITION(N/Y)?>

If you respond with an “N”, you are prompted to rename the set as follows:

 NEW PRIMARY FILE NAME>

A new, unique name, must be entered. By entering “Y” or [[RETURN]], the data set is not
loaded and a warning message as follows is issued:

 *WARNING: DATA SET HAS NOT BEEN LOADED INTO DICTIONARY

Each time the program encounters an existing identical definition, the above process is
repeated. If an existing definition is incompatible, the following message and prompt are
issued:

 DEFINITION ALREADY IN DICTIONARY FOR SET set

 NEW PRIMARY FILE NAME>

A unique name must be entered for the data set. If [[RETURN]] is used, a warning is
issued.

The above process continues until the entire schema has been compared with existing
Dictionary entries. When the comparison is complete, the transfer, where indicated by
your responses to the prompts, is completed. The DICTDBM program could be executed to
view the transferred definition.

The following examples show how to execute the Database Definition utility with a brief
explanation of the prompts and responses.
160 Chapter 5

Dictionary/3000 Utilities
DICTDBD
In the first example, the database is unique, and no renaming is required. The second
example shows a database that is not totally unique and the prompts issued by the utility
to resolve the definition transfer.

Example

The following example shows the use of DICTDBD, using a unique database name:

 :RUN DICTDBD.PUB.SYS How to execute this utility.

 <The Dictionary/3000 DB Info Loader program banner appears here.>

 DICTIONARY PASSWORD> Password that grants modify

access used.

 BASE> SHPMGT Name of existing IMAGE database.

 BASE PASSWORD> MANAGER is password used.

 MODE> [[RETURN]] pressed; default used.

 LOADING DATA DICTIONARY Utility loading definition of

base into data Dictionary.

 END OF PROGRAM

The following example shows how DICTDBD is used to rename the database name:

 :RUN DICTDBD.PUB.SYS How to execute this utility.

 <The Dictionary/3000 DB Info Loader program banner appears here.>

 DICTIONARY PASSWORD> Password that grants modify access.

 BASE> SHPMGT Base to be defined in Dictionary.

 BASE PASSWORD> MANAGER was used.

 MODE> [[RETURN]] pressed; default used.

 LOADING DATA DICTIONARY

 *ERROR: BASE ALREADY DEFINED IN DATA DICTIONARY

 DO YOU WANT TO LOAD UNDER A DIFFERENT NAME(Y/N)?>Y

 NEW BASE NAME> MYSHPM Will be name of base in Dictionary.

 COMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT DESCRIPTION

DO YOU WANT ELEMENT TO HAVE A DIFFERENT NAME(N/Y)?> [[RETURN]] pressed.

 COMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT ITEM-NO

 DO YOU WANT ELEMENT TO HAVE A DIFFERENT NAME(N/Y)?> Y

 NEW PRIMARY ELEMENT NAME> MY-ITEM-NO

 COMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT QTY-REC

 DO YOU WANT ELEMENT TO HAVE A DIFFERENT NAME(N/Y)?> Y

 NEW PRIMARY ELEMENT NAME> [[RETURN]] pressed.

 *WARNING: DATA ELEMENT QTY-REC HAS NOT BEEN LOADED INTO DICTIONARY

 INCOMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT PO-NUMBER

 NEW PRIMARY ELEMENT NAME> [[RETURN]] pressed.
Chapter 5 161

Dictionary/3000 Utilities
DICTDBD
 *WARNING: DATA ELEMENT PO-NUMBER HAS NOT BEEN LOADED INTO DICTIONARY

 DEFINITION ALREADY IN DICTIONARY FOR SET PRODUCT-MASTER

 USE EXISTING DEFINITION(N/Y)?> Y "Y" to use existing definition.

 DEFINITION ALREADY IN DICTIONARY FOR SET ITEM-MASTER

 USE EXISTING DEFINITION(N/Y)?> [[RETURN]] pressed; existing
definition not used.

 NEW PRIMARY FILE NAME> PARTS-MASTER

 DEFINITION ALREADY IN DICTIONARY FOR SET EXPLODE

 USE EXISTING DEFINITION(N/Y)?> N

 NEW PRIMARY FILE NAME> [[RETURN]] pressed.

 *WARNING: DATA SET EXPLODE HAS NOT BEEN LOADED INTO DICTIONARY

 INCOMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR SET COSTING

 NEW PRIMARY FILE NAME> MY-COSTING

 END OF PROGRAM
162 Chapter 5

Dictionary/3000 Utilities
DICTDBU
DICTDBU

Database Unload Utility

The Database Unload utility (DICTDBU) unloads the contents of an existing IMAGE
database. The database can be unloaded and stored either to a disc file or to a tape file.
Additionally, the database can be edited during the unload process. Editing the unload
process allows you to selectively unload, that is, choose whether or not to unload a
particular data set. When the unloading process is complete, an audit report is produced.

The following description tells how to execute the DICTDBU utility program and gives an
explanation of each prompt.

To execute this utility enter the following MPE command:

 RUN DICTDBU.PUB.SYS

After an acknowledgment message, the unload utility issues the following prompt to
establish a file for the storage of the database content:

 STORE FILE>

If the database is to be stored on disc, enter a file name in response to the prompt. The
utility builds the file for you if it is a new file. For an existing file, the utility issues a
warning message and waits for you to indicate that it can be overwritten before it
continues.

If the database is to be stored on tape, enter [[RETURN]] in response to the STORE FILE
prompt. The utility issues the following message:

 TAPE FILE REQUESTED(Y/N)?>

If you enter a “Y” or [[RETURN]], a request to mount a tape is issued on the system
console; otherwise, the prompt for STORE FILE is reissued. If necessary, the utility can
handle multiple tape reel stores.

When the utility completes the unloading process, it generates an audit report about the
unloading process. You specify where the report is to be sent by responding to the following
prompt:

 LIST FILE>

Enter one of the following options in response to this prompt:

LP sends the report to the line printer. If there is no device LP configured on
your system, use a file equation to redirect DICTLIST to another device.

NULL suppresses the audit listing.

filename sends the report to the existing or to a new disc file. Before over-writing an
existing file, you are prompted to approve purging the existing file's
contents.

*filename sends the report to the file identified in the back-referenced file equation.
Pressing [[RETURN]] in response to this prompt sends the report to your
terminal.
Chapter 5 163

Dictionary/3000 Utilities
DICTDBU
After accepting your response to the prompt for LIST FILE, the utility requests the name
of the database to be unloaded with the following prompt:

 BASE>

Enter the name of the base in response to this prompt. If [[RETURN]] is entered, an error
message is displayed and the program is terminated.

Next, you are prompted to enter a password as follows:

 BASE PASSWORD>

In response to this prompt, enter a password that grants read access to the named
database. The password is not displayed as you enter it. If the password entered is
incorrect or does not grant read access to the database, a database operation error occurs
during the unload process. The utility issues an error message which tells you why the
database error occurred and then terminates.

To complete the information required to unload the database, the following prompt is
issued:

 MODE>

Your response to the MODE prompt indicates the access mode to be used to open the
database. Any valid access mode is acceptable as a response to this prompt. If [[RETURN]]
is entered, the program uses the default mode, which is 3. (Refer to the IMAGE/3000
Reference Manual for details on “Access Modes”.)

If the database named in response to the BASE prompt cannot be found, the following
message is issued after the prompt for access mode:

 *ERROR: NO SUCH DATABASE

Prompts are then repeated starting with the BASE prompt.

Next, prompts pertaining to the unloading process method are issued. The first prompt is
as follows:

 UNLOAD AUTOMATIC MASTER SETS(N/Y)?>

If automatic master sets are to be converted into manual master sets, you should respond
with a “Y”; otherwise, it is unnecessary to unload automatic master sets.

The next prompt identifies how the detail sets are to be unloaded. The prompt is as follows:

 UNLOAD DETAIL SETS BY CHAIN(Y/N)?>

Although it takes longer to unload detail data sets with a chained read, improvements in
access time of chained reads can be seen after the database is reloaded. Enter “N” as your
response if you do not want to unload the sets with a chained read.

The following prompt allows you to choose which data sets are or are not to be unloaded:

 UNLOAD EDIT(N/Y)?>

You must enter a “Y” to selectively unload the data sets. If you choose to selectively unload
the data sets, you are prompted as follows:

 set name set type: UNLOAD(Y/N/C/X)?>
164 Chapter 5

Dictionary/3000 Utilities
DICTDBU
You can choose only one of the unload types. A description of each is as follows:

Y which is short for YES, specifies that the data set is to be unloaded. (This
is the default.)

N which is short for NO, specifies that this data set is not to be unloaded.

C which is short for CONTINUE, specifies that this data set and all
remaining data sets are to be unloaded.

X which is short for EXIT, specifies that this and all remaining data sets are
not to be unloaded and the program terminates.

Note that entering a “C” ends the process of unloading data sets with “editing”, but it does
not terminate the program. To terminate the program, an “X” must be entered. If
[[RETURN]] is pressed in response to this prompt, the data set is unloaded.

If you chose to unload with a chained read and also chose to unload with editing, you will
be prompted during the editing process to enter the search item's name for the detail set as
follows:

 SEARCH ITEM FOR CHAINED UNLOAD>

You can enter the name or allow the program to use the default, which is the primary path
for the detail data set.

As each data set is unloaded, the program identifies the data set and the number of entries
unloaded on your terminal screen. When the entire unload process is completed, the
message “UNLOAD COMPLETED” is displayed, and the utility program terminates. An
audit report is generated and sent to the file you indicated with your response to the LIST
FILE prompt.

The following examples show how to execute the Database Unload utility program with an
explanation of the responses given to the prompts.

Example

 :RUN DICTDBU.PUB.SYS How to execute this utility.

<The Dictionary/3000 DB Unloader program banner appears here.>

STORE FILE> TEMPSTOR Name of a disc file.

LIST FILE> [[RETURN]] sends listing to terminal.

BASE> HOUSES Name of base to be unloaded.

BASE PASSWORD> Password used: MANAGER.

MODE> [[RETURN]] pressed; default used.

UNLOAD AUTOMATIC MASTER SETS(N/Y)?> [[RETURN]] pressed.

UNLOAD DETAIL SETS BY CHAIN(Y/N)?> [[RETURN]] pressed.

UNLOAD EDIT(N/Y)?> Y Unload with editing.

ZONING-MASTER M: UNLOAD(Y/N/C/X)?> Y Yes, unload this set.

CITY-MASTER M: UNLOAD(Y/N/C/X)?> Y

COMMERCIAL D: UNLOAD(Y/N/C/X)?> C Unload all remaining sets

without EDIT prompts.
Chapter 5 165

Dictionary/3000 Utilities
DICTDBU
SEARCH ITEM FOR CHAINED UNLOAD> ZONING-CODE Identifies the search item

ZONING-MASTER M:6/31 of the detail data set.

6 ENTRIES UNLOADED IN <1 CPU-SEC Identifies what is unloaded.

 CITY-MASTER M:20/101

 20 ENTRIES UNLOADED IN <1 CPU-SEC

 LIST-PRICE-MSTR A:42/307

 AUTO NOT UNLOADED

 BATH-MASTER A:2/31

 AUTO NOT UNLOADED

 BEDS-MASTER A:4/11

 AUTO NOT UNLOADED

 COMMERCIAL D:10/209

 10 ENTRIES UNLOADED IN <1 CPU-SEC

 RESIDENTIAL D:40/200

 40 ENTRIES UNLOADED IN <1 CPU-SEC

 UNLOAD COMPLETED

 END OF PROGRAM
166 Chapter 5

Dictionary/3000 Utilities
DICTDBL
DICTDBL

Database Load Utility

The Database Load utility (DICTDBL) reloads the contents of an IMAGE database. A
comparison between the old and the new schemes is made before the loading process
begins. If changes have been made, you are prompted to enter the changed information.
Additionally, you can selectively reload the database, that is, you are given a choice to load
or not to load a particular data set.

When the utility program completes the loading process, you are provided an audit report
containing information about the database load. The following description tells how to
execute the DICTDBL utility program and gives an explanation of each prompt.

To execute this utility enter the following MPE command:

 RUN DICTDBL.PUB.SYS

After an acknowledgment message, the utility program issues the following prompt:

 STORE FILE>

If the store file is a disc file, enter the file's name as your response to the prompt. An error
message is issued if the named file cannot be found and the prompt is reissued. If the store
file is a tape file, press [[RETURN]] as your response to this prompt. Before generating a
tape request at the system console, the utility prompts you as follows:

 TAPE FILE REQUESTED(Y/N)?>

If you enter a “Y” or [[RETURN]], a request to mount a tape is issued on the system
console; otherwise, the prompt for STORE FILE is reissued. When the utility completes
the loading process, it generates an audit report of the loading process. You can specify
where the report is to be sent with the following prompt:

 LIST FILE>

Enter one of the following options in response to the above prompt:

LP sends the audit listing to the line printer. If there is no device LP
configured on your system, use a file equation to redirect DICTLIST to
another device.

NULL suppresses the audit listing.

filename sends the audit listing to the existing or to a new disc file. Before
over-writing an existing file, you are prompted to approve purging the
existing file's contents.

*filename sends the listing to the file identified in the back referenced equation.

Pressing [[RETURN]] in response to this prompt sends the audit listing to your terminal.

After accepting your response to the prompt for LIST FILE, the utility displays the stored
database's name, then prompts you to select a RUN MODE for the loading process. The
RUN MODE is the operating mode to be used to load the database. The prompt is as
follows:
Chapter 5 167

Dictionary/3000 Utilities
DICTDBL
 RUN MODE(LOAD/EDIT/SHOW/EXIT)>

In response to the prompt, you can choose one of four options, which have the following
meaning:

LOAD indicates the named database is to be loaded.

EDIT indicates the named database is to be loaded and editing prompts issued
for each data set.

SHOW indicates the named database is not to be loaded, but the schema and set
entry counts are to be displayed.

EXIT indicates the utility is to be terminated.

Pressing [[RETURN]] in response to this prompt indicates that the default for RUN
MODE is used, which is LOAD. In an operating mode of LOAD, you are prompted for
information only when schema changes are encountered. In the EDIT mode, you can select
an operating mode for the data sets. An operating mode for a data set is similar to the
operating mode for a database. Next, the utility prompts you to enter the new name for the
data base with the following prompt:

 NEW BASE NAME>

If the name of the stored database has not changed, including qualifier information such as
MPE group and account, press [[RETURN]] as your response; otherwise, enter the new
name for the database.

If the named database cannot be found, the following prompt is issued:

 BASE NOT FOUND>

This prompt indicates that the identified database, either from the stored file or entered in
response to NEW BASE NAME, cannot be found. You should re-enter the base name in
response to this prompt. If the prompt is reissued, terminate the program by entering
[[RETURN]] and make sure the database is where you think it is. When the named
database is found, you are prompted for additional database information as follows:

 BASE PASSWORD>

 MODE>

The password you enter in response to the password prompt should be one that allows
modify access to the database. This password is not displayed as you enter it. If the
password grants only partial access to the database, the utility will load only those parts of
the database to which it has access; no warning is given. If the password is entered
incorrectly or does not grant modify access, a database operation error occurs during the
loading process. The utility issues the following questions if a database operation error
occurs:

 DISPLAY INPUT RECORD(Y/N)?>

 CONTINUE SET LOAD(Y/N)?>

 CONTINUE LOAD PROCESS(Y/N)?>

You can write the contents of the record to the indicated LIST FILE by entering a “Y” or
[[RETURN]].
168 Chapter 5

Dictionary/3000 Utilities
DICTDBL
If you choose to continue the set load, the data entry in error is not loaded. If you choose
not to continue, the utility allows you to continue loading the remaining sets in the
database with the last prompt. Your response to MODE indicates the access mode to be
used to open the database. Valid responses include 1, 2, 3, 4, and [[RETURN]]. Pressing
[[RETURN]] indicates acceptance of the default mode, which is 3. (See the IMAGE/3000
Reference Manual for “Access Modes”.)

With the next prompt, you are given the choice to load in a fast I/O mode or not. The
prompt is:

 FAST I/O(Y/N)?>

FAST I/O means that the database buffers are not written at each modification.

The program begins to load the database after the FAST I/O prompt. If you chose LOAD as
the operating mode for the database, you are prompted only when a difference between the
old and new schema is encountered. If you chose EDIT as the operating mode, the
following prompt is issued before the program loads each data set:

 SET MODE(LOAD/EDIT/SKIP/CONT/EXIT)>

You can choose only one of the modes. A description for each is as follows:

LOAD indicates that if a difference between the old and new schema occurs, issue
prompts for the changed information.

EDIT allows you to change the name of the data set and/or data elements during
the loading operation.

SKIP allows you to indicate that a data set is not to be loaded.

CONT cancels the EDIT operation mode for the database, in which case the
default of LOAD is used.

EXIT indicates the utility program is to be terminated. Pressing [[RETURN]] in
response to this prompt indicates the default of LOAD is used.

When the message LOAD COMPLETED is displayed, the program execution is terminated
and the audit report is sent to the file indicated with the LIST FILE prompt.

The following examples show how to execute the Database Load utility program with an
explanation of the responses given to the prompts. The examples show choosing a database
operating mode of LOAD and of EDIT. The example using an operating mode of EDIT also
shows choosing a data set operating mode of EDIT and of LOAD. The last example shows
the audit report generated by the utility program for the database load.

Example

The following is an example of LOAD Run Mode:

 :RUN DICTDBL.PUB.SYS How to execute this utility.

 <The Dictionary/3000 DB Loader program banner appears here.>

 STORE FILE> TEMP Name of file containing the

 contents of the stored base.

LIST FILE> [[RETURN]] sends report to terminal.

 BASE: SHPMGT.PUB.HOWE Utility identifies base to load.
Chapter 5 169

Dictionary/3000 Utilities
DICTDBL
 RUN MODE(LOAD/EDIT/SHOW/EXIT)> LOAD LOAD selected.

 NEW BASE NAME> SHPMGT.DEMO Changing the MPE group for base.

 BASE PASSWORD> MANAGER was the password used.

 MODE> 1 Opened for shared modify access.

PRODUCT-MASTER M 22/101 First data set to be loaded.

PRODUCT-NO : ITEM NOT FOUND, NEW ITEM NAME> PROD-NO LOAD issues

 22 ENTRIES LOADED IN <1 CPU-SEC prompt when old

and new schemes

differ.

ITEM-MASTER M 44/311

 44 ENTRIES LOADED IN 1 CPU-SEC

 EXPLODE D 397/1054

 PRODUCT-NO : ITEM NOT FOUND, NEW ITEM NAME> PROD-NO

 397 ENTRIES LOADED IN 20 CPU-SECS

 LOAD COMPLETED

 END OF PROGRAM

The following is an example of EDIT Run Mode:

 :RUN DICTDBL.PUB.SYS How to execute this utility.

 <The Dictionary/3000 DB Loader program banner appears here.>

 STORE FILE> TEMP Name of store file.

LIST FILE> [[RETURN]] sends report to terminal.

BASE: SHPMGT.PUB.HOWE Program identifies base to load.

 RUN MODE(LOAD/EDIT/SHOW/EXIT)> EDIT Editing prompts at set level

 requested.

NEW BASE NAME> SHPMGT.DEMO Loading to a different MPE group.

 BASE PASSWORD> MANAGER is password used.

MODE> 1 Opened for shared modify access.

PRODUCT-MASTER M 22/101 First data set to be loaded.

SET MODE(LOAD/EDIT/SKIP/CONT/EXIT)> EDIT Set level editing capability.

 PRODUCT-MASTER : NEW SET NAME> If the data set and/or items

 PRODUCT-NO : NEW ITEM NAME> PROD-NO have new names, enter new

 DESCRIPTION : NEW ITEM NAME> name after prompt as for

 QTY-ON-HAND : NEW ITEM NAME> PROD-NO.

 QTY-ALLOCATED : NEW ITEM NAME>

 UNIT-COST : NEW ITEM NAME>

 LIST-PRICE : NEW ITEM NAME>

 22 ENTRIES LOADED IN <1 CPU-SEC
170 Chapter 5

Dictionary/3000 Utilities
DICTDBL
 ITEM-MASTER M 44/311 Next data set to be loaded.

 SET MODE(LOAD/EDIT/SKIP/CONT/EXIT)> LOAD No editing prompts generated

 44 ENTRIES LOADED IN 1 CPU-SEC by choosing LOAD.

 EXPLODE D 397/1023 Next data set to be loaded.

 SET MODE(LOAD/EDIT/SKIP/CONT/EXIT)> LOAD

PRODUCT-NO : ITEM NOT FOUND, NEW ITEM NAME> PROD-NO LOAD causes

 397 ENTRIES LOADED IN 20 CPU-SECS prompts when

old and new

LOAD COMPLETED schemes differ.

 END OF PROGRAM

The following is an example of Audit Listing:

 <The Dictionary/3000 DB Loader program banner appears here.>

 DATABASE LOAD FROM STORE FILE TEMP.PUB.MARTIN

 BASE: SHPMGT.PUB.HOWE

 LOADED TO: SHPMGT.DEMO.MARTIN

 PRODUCT-MASTER M 22/101

 ITEM PRODUCT-NO LOADED TO PROD-NO

 22 ENTRIES LOADED IN <1 CPU-SEC

 ITEM-MASTER M 44/311

 44 ENTRIES LOADED IN 1 CPU-SEC

 EXPLODE D 397/1023

 ITEM PRODUCT-NO LOADED TO PROD-NO

 397 ENTRIES LOADED IN 19 CPU-SECS

 LOAD COMPLETED
Chapter 5 171

Dictionary/3000 Utilities
DICTDBM,UTIL
DICTDBM,UTIL

Dictionary Clean Utility

As a result of continued DICTDBM use, a data Dictionary slowly accumulates superfluous
information. This information can be periodically purged by using the Dictionary Clean
Utility (DICTDBM,UTIL).

This utility, which can only be executed by the Dictionary creator, should be run when:

• DICTDBM has been used heavily for about 6 months, or

• the following message appears after signing onto DICTDBM:

*INFO: DICTIONARY INTERNAL CLEANUP NEEDED (DICT 75)

To preserve the integrity of your Dictionary, ensure that this utility is only used on the
entire data Dictionary which includes the root file and all data sets.

Before executing this utility, back up the data Dictionary. Also ensure that the temporary
file used by DICTDBM,UTIL (DICTTEMP) is large enough to accommodate your data. By
default, DICTTEMP holds 10,000 records (divided into 30 extents). These records originate
from three data sets: DESCRIPTION-TEXT, FILE-PATH, and FILE-SORT. Run DICTDBA
to determine the total number of records in these data sets. If the total is >10,000, use the
FILE command to allocate adequate space as shown below:

 :FILE DICTTEMP; DISC = your value.

Execute DICTDBM,UTIL by entering the following MPE command:

 :RUN DICTDBM.PUB.SYS,UTIL

The utility issues the following message and prompt:

 DICTIONARY SHOULD BE STORED OFF BEFORE RUNNING THIS UTILITY.

 CONTINUE (Y/N)?>

Enter Y (to initiate cleanup) or N (to terminate utility execution). When the utility has
finished processing, the message END OF PROGRAM is displayed and the program
terminates.

Example

 :RUN DICTDBM.PUB.SYS, UTIL How to execute this utility.

 <The Dictionary/3000 Clean program banner appears here.>

 DICTIONARY SHOULD BE STORED OFF BEFORE RUNNING THIS UTILITY.

 CONTINUE (Y/N)?> Y Must respond "Y" or "N";

 : no default response occurs.

 END OF PROGRAM
172 Chapter 5

Dictionary/3000 Utilities
DICTVPD
DICTVPD

VPLUS Forms File Definition Utility

The VPLUS Forms File Definition utility (DICTVPD) enters the definition for an existing
VPLUS forms file into the Dictionary. This utility creates the entries for the forms file, the
forms in the forms file, and the data fields for the forms in the Dictionary. The forms file is
entered in the Dictionary as a VPLS type file. The forms are entered as FORM type files
and the data fields are entered as data elements in the Dictionary.

DICTVPD also establishes the associations of the data fields with the forms and the
relationships between the forms and the forms file. However, form family relationships are
not established in the Dictionary by DICTVPD. In the Dictionary, the parent forms and the
child forms in a form family will only be related to the forms file.

Before the definition of a forms file is loaded in the Dictionary, DICTVPD checks the
existing entries to avoid entering duplicate or redundant entries. If the name used for a
forms file, form or data field being loaded is the same as the name of an existing entry, a
warning message is issued. For a duplicate forms file name or a duplicate data field name,
you are given the option to either enter a new name or to use the existing entity in the
Dictionary. For a duplicate form name, you are given the option to either skip that form
(that form would not be loaded, but subsequent forms would be loaded), purge the existing
form (the form name and all associations with the form would be purged but the elements
associated with the file would not be purged), or enter a new name for the form to be
loaded.

Whenever a name is changed for an entity being loaded into the Dictionary, the new name
entered becomes the “primary” name for that entity. The original name then becomes the
“alias” name for that entity in the Dictionary. Because HP Inform will reference these
entities by their aliases, the original names used by VPLUS do not have to be changed to
be consistent with the Dictionary. However, since DICTDBM uses the primary names for
all entities, it is important to remember what the new primary names are for the entities
whose names were changed.

The following description explains how to execute DICTVPD and gives an explanation of
each prompt.

This utility assumes that the Dictionary to be used by DICTVPD is in DICT.PUB in the
Logan account. If the forms file is to be loaded in a Dictionary which is not in that group
and account, use an MPE file equation to redefine the Dictionary's location before running
this utility.

To execute DICTVPD, enter the following MPE command:

 RUN DICTVPD.PUB.SYS

After an acknowledgment message, DICTVPD prompts for the Dictionary password to
open and read the Dictionary as follows:

 DICTIONARY PASSWORD>

Enter the Dictionary password and press [[RETURN]]. The password must grant at least
PROGRAMMER level access to the Dictionary. (See Appendix C for an explanation of the
Chapter 5 173

Dictionary/3000 Utilities
DICTVPD
levels of access.) This password will not be displayed on the terminal as it is entered.
However, it must be entered correctly or an error will result and the prompt will be
reissued. If [[RETURN]] is pressed as the only response to this prompt DICTVPD will
terminate. After the password is accepted DICTVPD then prompts for the name of the
forms file to be loaded into the Dictionary.

 FORMS FILE NAME>

Enter the forms file name (20 characters maximum).

DICTVPD now checks the Dictionary for any existing entries which may have the same
name as the name entered. If an entry already exists with this name, the following
warning and prompt are issued:

 *WARNING: FORMS FILE ALREADY NAMED IN DATA DICTIONARY

 DO YOU WANT TO LOAD UNDER A DIFFERENT NAME(Y/N)>

If N is entered in response to this prompt, DICTVPD will load the forms file into existing
file defined in the Dictionary. If Y (the default) is entered in response to this prompt, a new
prompt is issued to rename the forms file to be loaded into the Dictionary.

 NEW FORMSFILE NAME>

Enter the new forms file name. This name must be unique to the Dictionary; otherwise, the
above warning and prompt will be reissued. This name becomes the primary name for this
forms file in the Dictionary.

Once the forms file name is accepted, the following prompt is issued:

 SELECT DATA CONVERSION(Default/Char)>

The response to this prompt determines how the data types defined for the data fields are
converted to Dictionary compatible data types. For instance, if Char (or C) is entered as the
response to this prompt, then any data types defined in the forms file will be converted to
Dictionary type X when loaded into the Dictionary. The size and storage length will be the
same as the field length. If Default (or D) is entered as the response to this prompt, then
the data types defined in the forms file will be converted and entered into the Dictionary as
shown on the next page
174 Chapter 5

Dictionary/3000 Utilities
DICTVPD
L = VPLUS Field Length

 * when computing these numbers always round down

The following examples use the chart above to determine how data types, size, decimal and
storage lengths are converted into the dictionary if the elements have NOT been
previously defined and you have selected DEFAULT conversion.

Example

VPLUS DICTIONARY

 Type Field Length Type(Size,Decimal,Storage Length)

 CHAR 10 X(10,0,10)

Dictionary converts the CHAR to type X and takes the VPLUS field length as its size and
storage length. Decimal is 0.

 NUM 10 R(9,0,8)

Dictionary converts type to R. Size is 9 because the VPLUS field length is 10, and 10 - 1 is
9. Decimal is 0. Storage length is 8.

 NUM 1 R(1,0,4)

VPLUS DICTIONARY/3000

TYPE FIELD LENGTH TYPE SIZE DECIMAL STORAGE
LENGTH

CHAR L X L O L

NUM L (if L is 1) R 1 0 4

L (if L is 2, 3, 4, 5 or 6) R L-1 0 8

L (if L is 7 or greater) R L-1 0 8

NUMn L (if L is 1) I 1 n 2

L (if L is 2, 3, 4, or 5) I L-1 n 2

L (if L is 6, 7, 8, 9 or 10) I L-1 n 4

L (if L is 11 or greater) P L-1 n * (L + 1)/2

DIG L (if L is 1, 2, 3, or 4) I+ L 0 2

L (if L is 5, 6, 7, 8 or 9) I+ L 0 4

L (if L is 10 or greater) P+ L 0 * (L +2)/2

IMPn L (if L is 1 I 1 n 2

L (if L is 2, 3, 4, or 5) I L-1 n 2

L (if L is 6, 7, 8, 9 or 10) I L-1 n 2

L (if L is 11 or greater) P L-1 n * (L + 1)/2
Chapter 5 175

Dictionary/3000 Utilities
DICTVPD
Dictionary converts type to R. Size is 1. Decimal is 0. Storage length is 4.

 NUM5 10 I(9,5,4)

 (n=5)

Dictionary converts type to I. Size is 9 because the VPLUS field length is 10, and 10 - 1 is
9. Decimal is equal to n which is 5. Storage length is 4.

 NUM5 20 P(19,5,10)

 (n=5)

Dictionary converts type to P. Size is 19 because the VPLUS field length is 20, and 20 - 1 is
19. Decimal is equal to n which is 5. Storage length is 10 because (20 +1)/2 = 10 (rounded
down).

 DIG 10 P+(10,0,6)

Dictionary converts type to P+. Size is equal to the VPLUS field length which is 10.
Decimal is 0. Storage length is 6 because (10 + 2)/2 = 6.

 IMP5 10 I(9,5,4)

 (n=5)

Dictionary converts type to I. Size is 9 because the VPLUS field length is 10, and 10 - 1 is
9. Decimal is equal to n which is 5. Storage length is 4.

 IMP5 20 P(19,5,10)

 (n=5)

Dictionary converts type to P. Size is 19 because the VPLUS field length is 20, and 20 - 1 is
19. Decimal is equal to n which is 5. Storage length is 10 because (20 + 1)/2 = 10 (rounded
down).

If the data fields (elements) have not been previously defined in the Dictionary, enter N.
This indicates that new element entries are to be created when the elements are loaded
into the Dictionary.

 DATA ELEMENTS ALREADY DEFINED(Y/N)>

If the data fields for the forms file have already been defined as elements in the Dictionary,
enter Y in response to the prompt. This indicates that DICTVPD will use the existing
element entries to define the data fields as long as the existing element data is compatible
with the data for the data fields to be loaded. If DICTVPD finds that the two element
definitions are not compatible, an error will be displayed as the utility tries to load the
data field.

DICTVPD determines that an existing dictionary element and a VPLUS field are
compatible if the display size of the dictionary element is 1 less than (for the signed
numeric data types 9, Z, I, P, R, K, J, and E) or equal to (for the remaining data types such
as 9+, Z+, I+, etc.) the VPLUS field length. The reason that the dictionary display size for
signed numeric data types must be 1 less than the VPLUS field length is that the display
size stored in the dictionary does not include a character position for the sign while the
VPLUS field length does. If DICTVPD determines that the dictionary element and the
VPLUS field are incompatible, the user receives an error message and is prompted for a
new primary element name.
176 Chapter 5

Dictionary/3000 Utilities
DICTVPD
After DICTVPD loads the forms file in the Dictionary, a reference list is generated which
shows the loaded forms file, forms, and data fields. Also included in the reference list are
the data names, aliases, data dispositions and data types as they were loaded in the
Dictionary. This list can be a useful tool to ensure that the loaded forms and data are the
correct ones and to provide future reference documentation. (See the example following the
discussion of DICTVPD for a sample reference list.)

The next prompt allows you to direct the reference list to the terminal, the line printer, on
a specified disc file, or to suppress the listing entirely.

 LIST FILE>

Enter one of the following options in response to the LIST FILE prompt:

LP sends the reference list to the line printer. If there is no device LP
configured on your system, use a file equation to redirect DICTLIST to
another device.

NULL suppresses the list.

filename sends the list to a disc file. If the specified file already exists, an error
message will be issued and you will be asked if the contents of the file
should be purged. If not, you will be prompted for a new list file.

*filename sends the listing to the file identified in the back-referenced file equation.

[[RETURN]] displays the list on $STDLIST after the forms file has been loaded.

DICTVPD then issues the prompt:

 CHANGE UNDERSCORE TO HYPHEN(Y/N)>

Although the Dictionary and VPLUS recognize an underscore character (“_”) as a valid
character, IMAGE does not. (However, IMAGE does recognize a hyphen (“-”)). Therefore, in
order to ensure compatibility between IMAGE and the forms file, you may choose to allow
DICTVPD to change any occurrence of an underscore character in the forms file to a
hyphen.

Enter N to keep the underscore character as itself when the forms file is loaded.

After you respond to the above prompt, DICTVPD loads the forms file in the Dictionary
and displays the following message:

 LOADING DATA DICTIONARY

The utility then begins the loading process for the forms and data fields. Since DICTVPD
allows you to selectively load forms into the Dictionary, you can specify which forms are to
be loaded for this forms file with the following prompt:

 FORM NAME TO BE LOADED(or "@"/"?")>

Enter the name of an individual form belonging to the forms file. If you are not sure of the
names of the forms in the forms file, enter “?”. DICTVPD will display the list of forms that
may be loaded. DICTVPD will then reprompt you to enter the form name. If an individual
form name is entered in response to this prompt, DICTVPD will continue to prompt for
form names until no other form names are entered and [[RETURN]] is pressed.

Enter “@” to load all forms in the forms file. Note that if this forms file is a new entry in the
Dictionary, the VPLUS reserved form $REFRESH will also be loaded in the Dictionary for
Chapter 5 177

Dictionary/3000 Utilities
DICTVPD
this forms file. This form will not have any data fields associated to it. Also, $REFRESH
will not appear on the reference list for the forms file but will appear when the Dictionary
is accessed by the program DICTDBM.

As each form is loaded in the Dictionary, the following message will appear:

 LOADING FORM: formname

If DICTVPD finds an existing entry in the Dictionary with the same name as the form to
be loaded, the following warning and prompt are issued:

 *WARNING: DICTIONARY ALREADY CONTAINED FORM: formname

 SKIP, PURGE OR ENTER NEW FORM(S/P/N)>

If S is entered in response to this prompt, DICTVPD will ignore the current form and
proceed to load the next form in the forms file. If P is entered, DICTVPD will purge the
existing form in the Dictionary along with all the associations it may have. Note that the
elements themselves are not purged, only the associations to the form are purged. Once
the existing form has been purged, DICTVPD will load the form which belongs to the
forms file in the Dictionary. If N is entered in response to this prompt, a new prompt is
issued to rename the form to be loaded as follows:

 NEW FORM NAME>

Enter a new name for the form. This name must be unique to the Dictionary or DICTVPD
will reissue the warning and prompts above. The original name used for the form in the
forms file becomes the alias name in the Dictionary. The new name entered becomes the
primary name in the Dictionary.

As each form is loaded in the Dictionary, DICTVPD checks that there are no data field
name conflicts between the existing elements defined in the Dictionary and the data fields
currently being loaded. For instance, if Y was entered in response to the DATA
ELEMENTS ALREADY DEFINED prompt and DICTVPD can not find the existing entry
for a data field being loaded, the following message will be issued:

 ELEMENT NOT DEFINED, NEW ELEMENT LOADED: element

This indicates that DICTVPD has loaded the specified data field from the forms file in the
Dictionary as a new element entry.

If N was entered in response to the DATA ELEMENTS ALREADY DEFINED prompt,
DICTVPD will still check for existing data elements in the Dictionary with the same name
and compatible definition. If DICTVPD finds a duplicate entry in the Dictionary and the
data type and data size are compatible with the data field to be loaded, DICTVPD will
issue the following message and prompt:

 COMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT element

 DO YOU WANT ELEMENT TO HAVE A DIFFERENT NAME(N/Y)>

Enter N to use the existing entry in the Dictionary for this element. Enter Y to rename the
element being loaded. A new prompt will then be issued:

 NEW PRIMARY ELEMENT NAME>
178 Chapter 5

Dictionary/3000 Utilities
DICTVPD
Enter the new primary name for the data field being loaded in the Dictionary. Once again,
the original name becomes the alias for the element. If [[RETURN]] is pressed in response
to this prompt, the data field is not loaded in the Dictionary and the following warning is
issued:

 *WARNING: ELEMENT HAS NOT BEEN LOADED INTO DICTIONARY

If N was entered in response to the DATA ELEMENTS ALREADY DEFINED prompt and
DICTVPD finds an existing element in the Dictionary with the same name but an
incompatible definition, the following message and prompt are issued:

 INCOMPATIBLE DEFINITION ALREADY IN DICTIONARY FOR ELEMENT: element

 NEW PRIMARY ELEMENT NAME>

Enter the new primary element name for the element being loaded.

Note that a new element name must be entered and the existing element can not be used
for this data field because the data type and data size for the existing element are not
compatible with the data field's definition. If [[RETURN]] is pressed in response to this
prompt the data field will not be loaded and a warning will be issued (as shown above).

After all forms and respective data fields have been loaded into the Dictionary, DICTVPD
will generate the listing of the loaded forms file, the forms and the data fields. (See the
LIST FILE prompt for information on this listing. See the example that follows for a
sample reference list.)

After the listing is produced, DICTVPD terminates.

Example

The following is an example of DICTVPD:

 RUN DICTVPD.PUB.SYS How to execute this utility.

 <The Dictionary/3000 VPLUS Loader program banner appears here.>

 DICTIONARY PASSWORD> ; Password for modify access used.

 FORMS FILE NAME> Formf1

 SELECT DATA CONVERSION (Default/Char)> D

 DATA ELEMENTS ALREADY DEFINED (Y/N)> N

LIST FILE> LP The report is sent to the Line Printer.

 CHANGE UNDERSCORE TO HYPHEN (Y/N)> Y

 LOADING DATA DICTIONARY

FORM NAME TO BE LOADED (or "@"/"?")> @ All forms in the forms file to be

loaded.

 LOADING FORM: FORMA

 LOADING FORM: FORMB

 Name Alias NEW/OLD Type

 FORMF1 NEW VPLS

 FORMA NEW FORM
Chapter 5 179

Dictionary/3000 Utilities
DICTVPD
 F5 NEW X (5, 0, 5)

 F10 NEW X (10, 0,10)

 F20 NEW X (20, 0,10)

 F2 NEW X (2, 0, 2)

 UNDER_SCORE_TO NEW X (14, 0,14)

 FORMB NEW FORM

 CHAR NEW X (5, 0, 5)

 NUMN NEW I (4, 3, 2)

 NUM NEW R (4, 0, 4)

 DIG NEW I+(5, 0, 4)

 IMPN NEW I (4, 2, 2)

 IMP NEW I (4, 0, 2)

 MDY NEW X (5, 0, 5)

 DMY NEW X (5, 0, 5)

 YMD
180 Chapter 5

Dictionary/3000 Utilities
DICTVPD
Chapter 5 181

Dictionary/3000 Utilities
DICTVPD
182 Chapter 5

6 The Dictionary DICTPDE Utility

Overview
DICTPDE, the PASCAL Definition Extract Utility, is an interactive, command-driven
utility provided by the Dictionary. This utility extracts data and file definitions from the
dictionary and generates the corresponding PASCAL declarations for the data definitions.
The generated declarations are echoed to the terminal and written to an output file which
can be used for PASCAL programs.

When a parent entity is extracted from the Dictionary, DICTPDE generates a PASCAL
record with the related child entities as the “fields” within the record. The primary name of
the parent entity is used as the record name. The aliases of the child entities are used as
the field names. (The aliases are used because they define how the child entities are known
by the parent entity.) Note that DICTPDE will not generate a data declaration for a file
which does not have any child files or any elements associated with it.

When a data declaration is generated for an entity, DICTPDE checks that the entity name,
byte position and byte offsets as defined in the Dictionary (for that entity) are compatible
with PASCAL. If the byte position and byte offsets for the entity are not PASCAL
compatible, an error message is issued and DICTPDE converts the byte position and byte
offsets to compatible PASCAL code. (Refer to PASCAL Data Type Mappings later in this
section, for more detailed information.) If the entity name defined in the Dictionary is an
illegal PASCAL name (for instance, the name contains a hyphen) or the entity name is a
PASCAL reserved word, an error message is issued and DICTPDE will convert the names
to legal PASCAL names. (Refer to DICTPDE Naming Considerations, later in this section
for more detailed information.)
183

The Dictionary DICTPDE Utility
Initiating DICTPDE
Initiating DICTPDE
DICTPDE can be initiated from within a session or from within a job stream. When
initiated from within a session, DICTPDE can be executed to accept commands from a
command file or DICTPDE can be run interactively (commands are entered at the
terminal). When initiated from within a job stream, DICTPDE can be executed to accept
commands from a command file or from the job stream itself.

The following describes how to execute DICTPDE interactively (from within a session). For
information on how to execute DICPTDE to accept commands from a command file (either
in a session or a job stream) see Changing Input, List and Output Files later in this
section.

DICTPDE assumes that the Dictionary resides in DICT.PUB of the logon account. To
redefine the Dictionary, you can use an MPE file equation or the ALTER DICT
command-subcommand. (ALTER DICT is discussed in detail later in this section.)

To execute DICTPDE, enter the following MPE command:

 RUN DICTPDE.PUB.SYS

After the DICTPDE banner is displayed, the following prompt is issued:

 DICTIONARY PASSWORD>

Enter the password for the Dictionary. If the Dictionary password was entered incorrectly
or was an invalid password for that Dictionary, DICTPDE will issue the following error
message:

 *DICT ERROR: INVALID PASSWORD. CAN NOT OPEN DICTIONARY!

The DICTIONARY PASSWORD prompt will then be reissued.

If DICTPDE can not open the Dictionary, the following error message will be issued:

 *DICT ERROR: CAN NOT OPEN DICTIONARY!

Check to see that the Dictionary is in the correct group and account. If a file equation was
used to redirect the Dictionary, check that the Dictionary name was entered correctly.
DICTPDE will then issue a prompt that identifies the current Dictionary and asks for a
new Dictionary to be entered. Once the specified Dictionary and password have been
accepted, DICTPDE will issued an “>” which indicates that the utility is in command
mode. If you are not able to open a Dictionary to be used for code generation, you must
enter a colon (:) or hit CONTROL Y to terminate DICTPDE. Otherwise, DICTPDE will
continue to prompt for a Dictionary name and password until a specified Dictionary can be
opened.

Once DICTPDE is in command mode, you may enter any of the DICTPDE commands.
184 Chapter 6

The Dictionary DICTPDE Utility
Initiating DICTPDE
Table 6-1 lists the DICTPDE commands and gives a brief description of their function.

Table 6-2 shows the DICTPDE Commands and their respective subcommands.

Table 6-1. The DICTPDE commands

COMMAND FUNCTION

ALTER Changes an option for generating declarations.

EXIT Terminates the DICTPDE utility.

GENERATE Generates PASCAL declarations for element and file definitions in the
Dictionary, and for the VPLUS COMAREA and IMAGE parameters.

HELP Provides a description of the DICTPDE commands.

LIST Displays the entities extracted from the Dictionary.

ALTER EXIT GENERATE HELP LIST

| | | | |

| | | | |

All (None) Comarea ALTER All

Dict Element EXIT Element

Kind File GENERATE File

Name Imageparms HELP

Output LIST

Shift

Test

Vplus
Chapter 6 185

The Dictionary DICTPDE Utility
Changing Input, List and Output Files
Changing Input, List and Output Files
DICTPDE uses the formal file designators DICTIN as the input file for DICTPDE
commands, DICTLOG as the list file for the commands entered interactively, and
DICTOUT as the output file for the generated source code.

When DICTPDE is run interactively, DICTIN is the terminal (DICTPDE commands are
accepted as they are entered at the terminal). DICTPDE can also be executed to accept
commands from a command file (in either a session or a job stream) by redirecting DICTIN
to a command file. To redirect DICTIN to command file, use the following MPE file
equation:

 FILE DICTIN = command file name

The next time DICTPDE is run (in either a session or job stream), the input commands
will be read from this file. Remember, before you can initiate DICTPDE to accept
commands from a command file, you must first create the command file using the EDITOR
and enter the DICTPDE commands into the file.

DICTPDE can also be executed to accept commands from a command file that contains the
DICTPDE commands previously entered at the terminal. To do so, redirect the list file
DICTLOG to a disc file, and then run DICTPDE interactively. If the file specified by
DICTLOG does not already exist, DICTPDE will build the file for you. All the commands
entered interactively for that session will be saved in this disc file in the order you entered
them. Before DICTPDE is run again, redirect DICTIN to the disc file used for DICTLOG
and reset DICTLOG. The next time DICTPDE is run interactively, the commands will be
read from the disc file as they were entered in the previous session. This process is shown
below:

1. FILE DICTLOG = command file Commands are written to this file.

2. RESET DICTIN Do this if DICTIN was directed to a file.

3. RUN DICTPDE.PUB.SYS Run DICTPDE and enter the commands.

4. Exit DICTPDE Exit this session.

5. FILE DICTIN = command file DICTIN will take commands from this file.

6. RESET DICTLOG DICTLOG must be reset.

7. RUN DICTPDE.PUB.SYS Commands are now taken from the command file.

The data declarations generated by DICTPDE are echoed to $STDLIST (which is the
terminal when DICTPDE is run interactively) and written to an output file. DICTPDE
uses the output file DICTOUT (a fixed ASCII file with 80 bytes) unless a different output
file is specified. To specify a different output file, you can either use an MPE file equation
to redirect DICTOUT or you can use the ALTER OUTPUT command-subcommand.
(ALTER OUTPUT is discussed in detail later in this section.) The specified file can be a
new file or an existing file. If the file is new, DICTPDE will build that file as a fixed ASCII
file with 80 bytes. If the file already exists, DICTPDE will append the generated code to
the existing contents of that file.
186 Chapter 6

The Dictionary DICTPDE Utility
Changing Input, List and Output Files
The following is an example of how to run DICTPDE within a job stream. Note that in this
example, DICTPDE will accept commands from the command file COMMANDS and write
the generated declarations to the output file OUTPUT.

 !JOB CODEGEN, LYNN.ACCTS

 !FILE DICTIN = COMMANDS

 !FILE DICTOUT = OUTPUT

 !RUN DICTPDE.PUB.SYS

 MGR

 !EOJ

Note that the Dictionary password must be supplied in the job stream immediately after
the MPE RUN command for DICTPDE. In the above case, the password used is MGR.
Also, remember to create the command file COMMANDS with the EDITOR before
streaming this job. (Don't forget to include an EXIT command at the end of the command
file to terminate DICTPDE.)
Chapter 6 187

The Dictionary DICTPDE Utility
ALTER
ALTER
Changes an option used when generating data declarations from the Dictionary.

Syntax

ALTER subcommand A

Use the ALTER command to change the default options for generating data declarations
for the entities extracted from the Dictionary. The subcommand identifies the option to be
changed. Each ALTER command-subcommand generates a prompt that allows you to
specify how an option is to be changed, except for the ALTER ALL command-subcommand.
ALTER ALL generates all the prompts which are issued for the other subcommands.

A complete list of subcommands is given below.

Subcommands

The following subcommands can be used with the ALTER command:

ALL changes all the options for code generation.

A

DICT changes the dictionary to be used for code generation.

D

KIND changes the kind of declaration statement generated (TYPE or VAR).

K

NAME changes the generated code to include string constants for the

N extracted entities.

OUTPUT changes the output file.

O

SHIFT changes the type case of the generated code in the output file.

S

TEXT changes the generated code to include comments.

T

VPLUS changes the generated declarations for a VPLUS form to include

V PASCAL arrays for data fields in that form.

The following gives a discussion of each of the subcommands used with the ALTER
command and the prompts that they generate.
188 Chapter 6

The Dictionary DICTPDE Utility
>ALTER ALL
>ALTER ALL
Changes all the options used for generating PASCAL data declarations for the entities
extracted from the Dictionary.

Prompts

The following prompts are issued when the command-subcommand ALTER ALL is
entered:

DICTIONARY NAME (current dictionary)>

DICTIONARY PASSWORD>

SOURCE OUTPUT FILE (<current file)>

EXTRACT AS TYPE OR VAR (T/V)>

GENERATE COMMENTS (N/Y)>

GENERATE NAMES AS STRING CONSTANTS (N/Y)>|

GENERATE TABLES FOR VPLUS EXTRACTS (N/Y)>

LOWER OR UPPER CASE (L/U)>

When ALTER ALL is used, the above prompts are issued one at a time. (After a response is
made to one prompt, the next prompt is issued.) Note that the ALTER ALL
command-subcommand generates all the prompts issued for the other ALTER
subcommands. The following explains each of the above prompts in detail:

Discussion

DICTIONARY NAME (current
dictionary)> Enter the Dictionary name, group and account to be opened and used for

further code generation. DICTPDE displays the current Dictionary being
used in (current dictionary). Data and file definitions are extracted from
the new Dictionary specified until a new ALTER DICT
command-subcommand is used.

Pressing [[RETURN]] in response to this prompt indicates that the
Dictionary as displayed in (current dictionary) does not change. (The
password prompt will not be issued.)

If an invalid Dictionary is entered in response to this prompt, DICTPDE
will issue an error message and reprompt for the Dictionary name.
DICTPDE will continue to prompt for the Dictionary name until a valid
Dictionary name is entered or DICTPDE is terminated.

DICTIONARY
PASSWORD> Enter the Dictionary password for the new Dictionary to be used. The

password entered must grant at least REPORT level access to that
Dictionary. If the new Dictionary specified is the same as the previous
Dictionary, the password prompt will not be issued.
Chapter 6 189

The Dictionary DICTPDE Utility
>ALTER ALL
If an invalid password is entered in response to this prompt, DICTPDE
will issue an error message and reprompt for the Dictionary password.
DICTPDE will continue to prompt for the Dictionary password until a
valid password is entered or DICTPDE is terminated.

When a new Dictionary name and valid password are entered, DICTPDE
closes the previous Dictionary used and opens the new Dictionary to be
used.

SOURCE OUTPUT FILE (current
output file)> Enter the name of the file to redirect output to. This output includes the

data declarations generated by DICTPDE and, if specified, the string
constants generated for the entity names. DICTPDE displays the current
output file as (current output file). (current output file) will be DICTOUT
unless otherwise specified by an earlier ALTER OUTPUT
command-subcommand or an MPE file equation was used to redirect
DICTOUT.

Output may be directed to a new or existing disc file (ASCII, fixed file of 80
bytes) or to the terminal. If the specified file is a new file, DICTPDE will
build the file for you. If the specified file already exists, DICTPDE will
issue a warning message and append the generated source code to the
existing contents of the specified file. To direct this output to the terminal
instead of to a disc file, enter $STDLIST in response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that the output
file does not change. This means that if no previous output file had been
specified by an ALTER OUTPUT command, then the output file would still
be DICTOUT. If a file had been specified by a previous ALTER OUTPUT
command, that file would remain the output file.

EXTRACT AS TYPE OR
VAR (T/V)> Enter T (or press [[RETURN]]) if the extracted data definitions are to be

generated as TYPE data declarations. Enter V if the data definitions
extracted are to be generated as VAR data declarations. Note that
DICTPDE assumes that the definitions are to be generated as TYPE
declarations unless V is entered in response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that the data
definitions are to be generated as TYPE data declarations.

GENERATE COMMENTS
(N/Y)> Enter Y to generate comment lines which describe the entities extracted

from the Dictionary. These comment lines are written to the output file
along with the data declarations and, if specified, the string constants
generated for the file names. DICTPDE assumes that comment lines are
not generated unless Y is entered in response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that no
comment lines are generated for the extracted entities from the Dictionary.
190 Chapter 6

The Dictionary DICTPDE Utility
>ALTER ALL
GENERATE NAMES AS STRING CONSTANTS
(N/Y)> Enter Y if PASCAL string constants are to be generated for the specified

file names extracted from the Dictionary. DICTPDE assumes that string
constants are not to be generated for the file names unless Y is entered in
response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that string
constants are not to be generated.

GENERATE TABLES FOR VPLUS EXTRACTS
(N/Y)> Enter Y to generate PASCAL arrays for the fields in a VPLUS form in

addition to the data declarations generated for the form. DICTPDE
assumes that no arrays are generated unless Y is entered in response to
this prompt.

Pressing [[RETURN]] in response to this prompt indicates that no
additional arrays are generated for a VPLUS form.

LOWER OR UPPER CASE
(L/U)> Enter U if the generated code is to be written in UPPER CASE characters

to the output file. Enter L if the generated code is to be written in LOWER
CASE characters. DICTPDE assumes the generated code will be written in
LOWER CASE characters to the output file unless U is entered in
response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that the
generated code will be written in LOWER CASE characters to the output
file.
Chapter 6 191

The Dictionary DICTPDE Utility
>ALTER DICT
>ALTER DICT
Changes the Dictionary that contains the data definitions to be extracted for code
generation.

Prompts

The following prompts are issued when the command-subcommand ALTER DICT is
entered:

DICTIONARY NAME (current dictionary)>

DICTIONARY PASSWORD>

DICTIONARY NAME (current
dictionary)> Enter the new Dictionary name, group and account to be opened and used

for further code generation. DICTPDE displays the current Dictionary
being used in (current dictionary). Data and file definitions are extracted
from the new Dictionary specified until a new ALTER DICT
command-subcommand is used.

Pressing [[RETURN]] in response to this prompt indicates that the
Dictionary as displayed in (current dictionary) does not change. (The
password prompt will not be issued.)

If an invalid Dictionary is entered in response to this prompt, DICTPDE
will issue an error message and reprompt for the Dictionary name.
DICTPDE will continue to prompt for the Dictionary name until a valid
Dictionary name is entered or DICTPDE is terminated.

DICTIONARY
PASSWORD> Enter the Dictionary password for the new Dictionary to be used. The

password entered must grant at least REPORT level access to that
Dictionary.

If the new Dictionary specified is the same as the previous Dictionary, the
password prompt will not be issued.

If an invalid password is entered in response to this prompt, DICTPDE
will issue an error message and reprompt for the Dictionary password.
DICTPDE will continue to prompt for the Dictionary password until a
valid password is entered or DICTPDE is terminated.

When a new Dictionary name and valid password are entered, DICTPDE
closes the previous Dictionary used and opens the new Dictionary to be
used.
192 Chapter 6

The Dictionary DICTPDE Utility
>ALTER DICT
Discussion

ALTER DICT allows you to use a Dictionary other than the Dictionary in DICT.PUB of
your logon account without using an MPE file equation to redefine the Dictionary.
Therefore, file and element definitions can be extracted from different Dictionaries without
terminating DICTPDE.

Example

>alter dict

DICTIONARY NAME (DICT.PUB)> Enter the new Dictionary.

dict.pub.howe

DICTIONARY PASSWORD> mgr Enter the password for the

 specified Dictionary.
Chapter 6 193

The Dictionary DICTPDE Utility
>ALTER KIND
>ALTER KIND
Changes the kind of data declaration generated (either as VAR or TYPE) for the entities
extracted from the Dictionary.

Prompts

The following prompt is issued when the command-subcommand ALTER KIND is entered:

 EXTRACT AS TYPE OR VAR (T/V)>

EXTRACT AS TYPE OR VAR
(T/V)> Enter T (or press [[RETURN]]) if the extracted data definitions are to be

generated as TYPE data declarations. Enter V if the data definitions
extracted are to be generated as VAR data declarations. Note that
DICTPDE assumes that the definitions are to be generated as TYPE
declarations unless V is entered in response to this prompt.

When generating VAR declarations for an element that back-references
another element in the Dictionary, the element used as the back-reference
will be generated as a TYPE declaration.

Pressing [[RETURN]] in response to this prompt indicates that the data
definitions are to be generated as TYPE data declarations.

Discussion

ALTER KIND allows you to specify whether the data definitions will be generated as
TYPE or VAR declarations. ALTER KIND also allows you to alternately generate
declarations as TYPE or VAR. Note that a data definition may NOT be generated as both
TYPE and VAR declarations in the same output file. However, you may choose to generate
a data definition as a VAR declaration for one output file, and to generate the same data
definition as a TYPE declaration for a different output file. (To change the output file, see
the ALTER OUTPUT command-subcommand in this section.)

Example

>alter kind

EXTRACT AS TYPE OR VAR (T/V)> v The code generated after this

 command will be generated as VAR

 declarations.
194 Chapter 6

The Dictionary DICTPDE Utility
>ALTER NAME
>ALTER NAME
Changes the generated source code to include PASCAL string constants for the file names
extracted from the Dictionary.

Prompts

The following prompt is issued when the command-subcommand ALTER NAME is
entered:

 GENERATE NAMES AS STRING CONSTANTS (N/Y)>

GENERATE NAMES AS STRING CONSTANTS
(N/Y)> Enter Y if PASCAL string constants are to be generated for the specified

file names extracted from the Dictionary. DICTPDE assumes that string
constants are not to be generated for the file names unless Y is entered in
response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that string
constants are not to be generated.

Discussion

ALTER NAME allows you to generate string constants for the specified file names
extracted from the Dictionary. The string constants are generated for the specified file
name only. If the specified file is a parent file, string constants are generated for the parent
file name only. String constants are not generated for the child files which are related to
the specified parent file.

Example

 >alter name

GENERATE NAMES AS STRING CONSTANTS String constants will be

(N/Y)> y

 generated for the subsequent

 files generated.
Chapter 6 195

The Dictionary DICTPDE Utility
>ALTER OUTPUT
>ALTER OUTPUT
Changes the output file that the PASCAL data declarations will be written to.

Prompts

The following prompt is issued when the command-subcommand ALTER OUTPUT is
entered:

 SOURCE OUTPUT FILE (current output file)>

SOURCE OUTPUT FILE (current
output file)> Enter the name of the file to redirect output to. This output includes the

data declarations generated by DICTPDE and, if specified, the string
constants generated for the entity names. DICTPDE displays the current
output file as (current output file). (current output file) will be DICTOUT
unless specified otherwise by an earlier ALTER OUTPUT command-
subcommand or an MPE file equation used to redirect DICTOUT.

Output may be directed to a new or existing disc file (ASCII, fixed file of 80
bytes) or to the terminal. If the specified file is a new file, DICTPDE will
build the file for you. If the specified file already exists, DICTPDE will
issue a warning message and append the generated source code to the
existing contents of the specified file. To direct this output to the terminal,
enter $STDLIST in response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that the output
file does not change. This means that if no previous output file had been
specified by an ALTER OUTPUT command, then the output file would still
be DICTOUT. If a file had been specified by a previous ALTER OUTPUT
command, that file would remain the output file.

Discussion

ALTER OUTPUT allows you to change the output file to a specified disc file or to the
terminal without using an MPE file equation to redirect DICTOUT. (The file equation is
used before running DICTPDE.) DICTPDE also allows you to alternate the output files
while running DICTPDE. For instance, VAR declarations could be generated and written
to one output file and TYPE declarations could be generated and written to a different file.
Then all VAR declarations would be kept in one file and all TYPE declarations would be
kept in a different file. (See the ALTER KIND command-subcommand for alternating the
kinds of declarations generated.)

Example

 >alter output

 SOURCE OUTPUT FILE (DICTOUT)> pasout.pub.howe

The output file is changed fromDICTOUT toPASOUT.PUB.HOWE. Any subsequent code
generated will be written toPASOUT.PUB.HOWE until a newALTER OUTPUT
command-subcommand is used.
196 Chapter 6

The Dictionary DICTPDE Utility
>ALTER SHIFT
>ALTER SHIFT
Changes the type case of the code generated by DICTPDE.

Prompts

The following prompt is issued when the command-subcommand ALTER SHIFT is
entered:

 LOWER OR UPPER CASE (L/U)>

LOWER OR UPPER CASE
(L/U)> Enter U if the generated code is to be written in UPPER CASE characters

to the output file. Enter L if the generated code is to be written in LOWER
CASE characters. DICTPDE assumes the generated code will be written in
LOWER CASE characters to the output file unless U is entered in
response to this prompt.

Pressing [[RETURN]] in response to this prompt indicates that the
generated code will be written in LOWER CASE characters to the output
file.

Discussion

ALTER SHIFT allows you to choose your personal preference for the type case used for the
code generated by DICTPDE. You can also use the ALTER SHIFT command-subcommand
to maintain type case consistency between the output files used for code generation and
the PASCAL programs that these files may be used for.

Example

>alter shift

LOWER OR UPPER CASE (L/U)> u Any subsequent code generated

 will be written in UPPER CASE

 characters to the output file.
Chapter 6 197

The Dictionary DICTPDE Utility
>ALTER TEXT
>ALTER TEXT
Changes the generated code to include comments lines about the extracted entities.

Prompts

The following prompt is issued when the command-subcommand ALTER TEXT is entered:

 GENERATE COMMENTS (N/Y)>

GENERATE COMMENTS
(N/Y)> Enter Y to generate comment lines which describe the entities extracted

from the Dictionary. These comment lines are written to the output file
along with the data declarations and, if specified, the string constants
generated for the file names. DICTPDE assumes that comment lines are
not generated unless Y is entered in response to this prompt.

 Pressing [[RETURN]] in response to this prompt indicates that no
comment lines are generated for the extracted entities from the Dictionary.

Discussion

ALTER TEXT allows you to generate additional code for the entities extracted from the
Dictionary in the form of comment lines. These comment lines include the following
information about the extracted entity:

entity name of the entity extracted from the Dictionary.

entity-name the entity long-name (as it was entered in DICTDBM).

entity-resp the name of the person, department, or area responsible
for the integrity of the entity.

date-change the date of the latest change made to the entity in the
Dictionary.

date-create the date the entity was created in the Dictionary.

identity-change the identity of the person, department, or area that made
the last change to the entity in the Dictionary.

identity-create the identity of the person, department or area that created
the entity in the Dictionary.
198 Chapter 6

The Dictionary DICTPDE Utility
>ALTER TEXT
Example

>alter text

 GENERATE COMMENTS (N/Y)> y

 >generate file

 FILE(S)> account

 var

 account_rec =

 record

 firstname : longreal;

 lastname : packed array[1..20] of char;

 address :

 record

 case integer of

 0 :

 (

 buffer : packed array[1..20] of char

);

 1 :

 (

 streetname : packed array[1..10] of ' '..'Z'

);

 2 :

 (

 city : packed array[1..10] of char

);

 end;

 phone : packed array[1..20] of char

 end;

 {file : account }

 {file_name : customer accounts }

 {file_resp : manager }

 {date_change : 83/08/04 }

 {date_create : 82/09/02 }

 {identity_change : b. lewis }

 {identity_create : manager }
Chapter 6 199

The Dictionary DICTPDE Utility
>ALTER VPLUS
>ALTER VPLUS
Changes the generated code to include PASCAL arrays for the fields in a VPLUS form.

Prompts

The following prompt is issued when the command-subcommand ALTER VPLUS is
entered:

 GENERATE TABLES FOR VPLUS EXTRACTS (N/Y)>

GENERATE TABLES FOR
VPLUS EXTRACTS
(N/Y)> Enter Y to generate PASCAL arrays for the fields in a VPLUS form in

addition to the data declarations generated for the form. DICTPDE
assumes that no arrays are generated unless Y is entered in response to
this prompt. Enter N if no arrays are to be generated for the fields in a
VPLUS form. Pressing [[RETURN]] in response to this prompt indicates
that no arrays are generated.

Discussion

ALTER VPLUS allows you to generate additional code for the data fields in a VPLUS form.
The additional code includes PASCAL arrays for the fields in the form and a buffer for the
FORM declaration.

The arrays generated for the data fields are as follows:

off the byte offsets for each field in the form.

len the byte lengths of each of the fields in the form.

num the numbers of the fields within the FORM
200 Chapter 6

The Dictionary DICTPDE Utility
>ALTER VPLUS
Example

 >alter vplus

 GENERATE TABLES FOR VPLUS EXTRACTS (N/Y)> y

 >generate file

 FILE(S)> forma Specifies a VPLUS form.

 type

 forma =

 record

 case integer of

 0 :

 (

 f5 : packed array[1..6] of char;

 f10 : packed array[1..10] of char;

 f20 : packed array[1..20] of char;

 f2 : packed array[1..2] of char;

 under_score_to : packed array[1..14] of char;

);

 1 :

 (

 forma_buf : packed array[1..53] of char

);

 end;

 forma_array = array[1..5] of integer;

 const

 forma_off = forma_array[1, 7, 17, 37, 39];

 forma_len = forma_array[6, 10, 20, 2, 14];

 forma_num = forma_array[1,2,3,4,5];
Chapter 6 201

The Dictionary DICTPDE Utility
EXIT
EXIT
Terminates DICTPDE.

Syntax

EXIT

E

Note that no subcommands are used with the EXIT command.

Discussion

EXIT allows you to terminate DICTPDE.
202 Chapter 6

The Dictionary DICTPDE Utility
GENERATE
GENERATE
Generates PASCAL data declarations for the entities defined in the Dictionary.

Syntax

 GENERATE subcommand G

Use the GENERATE command to extract data definitions from the Dictionary and to
generate the corresponding PASCAL data declarations. This command is also used to
generate the data structures for the VPLUS defined COMAREA and the data structures
for the IMAGE parameters. (See the GENERATE COMAREA and the GENERATE
IMAGEPARMS command-subcommands discussed later in this section.)

The subcommand identifies the entity to be extracted from the Dictionary. Each
GENERATE command-subcommand issues a prompt which allows you to specify the
entity name, except for GENERATE COMAREA. GENERATE COMAREA does not issue
any prompts. A complete list of subcommands is given below.

The data declarations and COMAREA generated by the GENERATE command are echoed
to the terminal and written to an output file (DICTOUT by default). The data declarations
for a specified entity and the COMAREA data structure can be generated only once to an
output file.

Subcommands

The following subcommands can be used with the GENERATE command:

COMAREA generates the data structures for the VPLUS COMAREA.

C

ELEMENT extracts element definitions from the dictionary and generates the

E corresponding data declarations.

FILE extracts file definitions from the dictionary and generates the

F corresponding data declarations.

IMAGEPARMS generates the data structures for the IMAGE parameters.

I

The following gives a discussion of each of the subcommands used with the GENERATE
command and the prompts that they generate.
Chapter 6 203

The Dictionary DICTPDE Utility
>GENERATE COMAREA
>GENERATE COMAREA
Generates the PASCAL data structures for the VPLUS COMAREA.

Prompts

GENERATE COMAREA does not issue any additional prompts. DICTPDE will begin
generating the VPLUS COMAREA as soon as the GENERATE COMAREA
command-subcommand is entered.

Discussion

GENERATE COMAREA allows you to generate the TYPE, CONST and VAR declarations
for the VPLUS COMAREA. (The COMAREA is the data area which must be allocated in a
program to be able to call VPLUS procedures.) GENERATE COMAREA generates the
basic structure of the COMAREA. This command-subcommand does not extract any data
definitions from the Dictionary to generate this COMAREA data structure. The generated
data structures are the same as the data structures shown in the PASCAL/3000 Reference
Manual. (See the PASCAL/3000 Reference Manual for more information on PASCAL and
the VPLUS COMAREA.)
204 Chapter 6

The Dictionary DICTPDE Utility
>GENERATE COMAREA
Example

 >generate comarea

 type

 word = -32768..32767;

 vplus_comarea =

 record

 cstatus : word;

 language : word;

 comarealen : word;

 usrbuflen : word;

 cmode : word;

 lastkey : word;

 numerrs : word;

 windowenh : word;

 multiusage : word;

 labeloptions : word;

 cfname : packed array[1..16] of char;

 nfname : packed array[1..16] of char;

 repeatapp : word;

 freezapp : word;

 cfnumlines : word;

 dbuflen : word;

 skip2 : word;

 lookahead : word;

 deleteflag : word;

 showcontrol : word;

 skip4 : word;

 printfilnum : word;

 filerrnum : word;

 errfilenum : word;

 formstrsize : word;

 skip6 : word;

 skip7 : word;

 skip8 : word;

 numrecs : integer;

 recnum : integer;

 skip9 : packed array[1..4] of char;
Chapter 6 205

The Dictionary DICTPDE Utility
>GENERATE COMAREA
 term_filen : word;

 skip10 : packed array[1..10] of char;

 retries : word;

 term_options : word;

 environ : word;

 usertime : word;

 identifier : word;

 labelinfo : word;

 end;

 const

 com_area_init =

 vplus_comarea

 [

 cstatus : 0,

 language : 5,

 comarealen : 60,

 usrbuflen : 0,

 cmode : 0,

 lastkey : 0,

 numerrs : 0,

 windowenh : 0,

 multiusage : 0,

 labeloptions : 0,

 cfname : ' ',

 nfname : ' ',

 repeatapp : 0,

 freezapp : 0,

 cfnumlines : 0,

 dbuflen : 0,

 skip2 : 0,

 lookahead : 0,

 deleteflag : 0,

 showcontrol : 0,

 skip4 : 0,

 printfilnum : 0,

 filerrnum : 0,

 errfilenum : 0,

 formstrsize : 0,
206 Chapter 6

The Dictionary DICTPDE Utility
>GENERATE COMAREA
 skip6 : 0,

 skip7 : 0,

 skip8 : 0,

 numrecs : 0,

 recnum : 0,

 skip9 : #0#0#0#0,

 term_filen : 0,

 skip10 : #0#0#0#0#0#0#0#0#0#0,

 retries : 0,

 term_options : 0,

 environ : 0,

 usertime : 0,

 identifier : 0,

 labelinfo : 0,

];

 var

 com_area : vplus_comarea;

 termfilename : packed array[1 .. 6] of char;

 message_buff : packed array[1 .. 72] of char;

 message_buff_len : word;

 msglen : word;

 buflen : word;

 fieldnum : word;
Chapter 6 207

The Dictionary DICTPDE Utility
>GENERATE ELEMENTS
>GENERATE ELEMENTS
Generates PASCAL data declarations for element definitions in the Dictionary.

Prompts

The following prompt is issued when the command-subcommand GENERATE ELEMENT
is entered:

ELEMENT(S)>

ELEMENT(S)> Enter the name(s) of the elements to be extracted from the Dictionary
and for which the data declaration(s) will be generated. More than one
element name can be entered in one command line as long as each element
is separated by a comma (,) or a space. Also, the element names can not
exceed the first 72 characters of the command line. DICTPDE will
continue to prompt for element names until [[RETURN]] is pressed in
response to this prompt.

If a parent element is entered in response to this prompt, DICTPDE will
generate data declarations for the parent element as well as for the related
child elements. The parent element will be generated as a record. The
primary name of the parent element will be the record name. The child
elements will be generated as fields within the record. The aliases of the
child elements will be the field names (unless a child element does not
have an alias; then its primary name will be the field name).

A data declaration can be generated for a specified element only once to an
output file. However, many data declarations can be generated for a
specified element if each declaration generated for that element is written
to a different output file.

Pressing [[RETURN]] in response to this prompt indicates that no more
element names are to be entered. DICTPDE will then stop prompting for
element(s) and begin the code generation process. The generated code is
echoed to the terminal as it is written to the output file.

Discussion

GENERATE ELEMENT allows you to identify the element(s) to be used for code
generation.

Example

The following examples show how the GENERATE ELEMENT command-subcommand is
used and the code that it generates.

The first example shows the data declaration generated for a simple element. The element
“account” does not have any child elements related to it.

The element “account” is defined in the Dictionary as follows:
208 Chapter 6

The Dictionary DICTPDE Utility
>GENERATE ELEMENTS
 ELEMENT = account

 ELEMENT-TYPE = I

 ELEMENT-LENGTH = 4

The code is generated as follows:

> generate element Or G E could have been entered.

ELEMENT NAME(S)> account

 The generated code is echoed to

TYPE the terminal.

ACCOUNT = INTEGER;

The next example shows the code generated for elements that have ELEMENT-COUNTS
in the Dictionary that are greater than 1. The two elements have no child entities related
to them. The elements are defined in the Dictionary as follows:

 ELEMENT = PART1 PART2

 ELEMENT-TYPE = I P

 ELEMENT-LENGTH = 2 10

 ELEMENT-COUNT = 10 4

The code is generated as follows:

 > generate element

 ELEMENT NAME(S)> part1 part2

 TYPE

 PART1 = ARRAY[1..10] OF -32768..32767;

 PART2 = ARRAY[1..4] OF ARRAY[1..10] OF 0..255;

Note that ELEMENT-COUNT is used to determine the index of the array.
ELEMENT-TYPE and ELEMENT-LENGTH are used in determining the base type of the
array.

The third example shows the code generated for an element whose type is defined as an
asterisk “*” in the Dictionary. (This element back-references another element.) The
element is defined in the Dictionary as follows:

 ELEMENT = CUSTNUM

 ELEMENT-TYPE = *

 ELEMENT-REFERENCE = CUSTNAME

CUSTNAME is defined in the Dictionary as:

 ELEMENT = CUSTNAME

 ELEMENT-TYPE = X

 ELEMENT-LENGTH = 14

The TYPE declaration for the element CUSTNUM is generated as follows:

 >generate element

 ELEMENT(S)> custnum
Chapter 6 209

The Dictionary DICTPDE Utility
>GENERATE ELEMENTS
 TYPE

 CUSTNAME = PACKED ARRAY[1..14] OF CHAR;

 CUSTNUM : CUSTNAME;

The VAR declaration for the element CUSTNUM is generated as follows:

 TYPE

 CUSTNAME = PACKED ARRAY[1..14] OF CHAR;

 VAR

 CUSTNUM = CUSTNAME

Note that the code for the ELEMENT-REFERENCE is generated first as a TYPE
declaration.

The next example shows the code generated for a parent element. (This element has child
elements related to it.) In this example, the element SALES has the elements PRODUCT,
PRICE and PACKAGE related to it. These elements are defined in the Dictionary as:

 PARENT-ELEMENT = SALES

 ELEMENT-TYPE = X

 ELEMENT-LENGTH = 50

 CHILD-ELEMENTS = PRODUCT PRICE PACKAGE

 ELEMENT-TYPE = X X X

 ELEMENT-LENGTH = 12 28 10

The code for the parent element SALES is generated as follows:

 >generate element

 ELEMENT(S)> sales

 TYPE

 SALES =

 RECORD

 PRODUCT : PACKED ARRAY[1..12] OF CHAR;

 PRICE : PACKED ARRAY[1..28] OF CHAR;

 PACKAGE : PACKED ARRAY[1..10] OF CHAR

 END;

Note that in this case the sum of the storage lengths for the child elements equals the
storage length for the parent element as defined in the Dictionary.

In the next example, code is again generated for a parent element. However, in this
example, the sum of the storage lengths for the child elements does not equal the storage
length for the parent element.

 PARENT-ELEMENT = ADDRESS

 ELEMENT-TYPE = X

 ELEMENT-LENGTH = 48

 CHILD-ELEMENTS = STREET NUMB
210 Chapter 6

The Dictionary DICTPDE Utility
>GENERATE ELEMENTS
 ELEMENT-TYPE = X I

 ELEMENT-LENGTH = 12 4

The code for the parent element ADDRESS is generated as follows:

 >generate element

 ELEMENT(S)> address

 TYPE

 ADDRESS =

 RECORD

 CASE INTEGER OF

 0 :

 (

 BUFFER : PACKED ARRAY[1..48] OF CHAR;

);

 1 :

 (

 DUMMY0 : PACKED ARRAY[1..3] OF CHAR;

 STREET : PACKED ARRAY[1..12] OF CHAR;

 DUMMY1 : PACKED ARRAY[1..15] OF CHAR;

 NUMB : INTEGER

);

 END;

When the sum of the storage lengths for the child elements does not equal the storage
length for the parent element, DICTPDE will generate “BUFFER” or “DUMMY” fields in
order to insure the correct storage length for the parent element. The BUFFER and
DUMMY fields begin at the correct byte offsets within the parent element.
Chapter 6 211

The Dictionary DICTPDE Utility
>GENERATE FILE
>GENERATE FILE
Generates the PASCAL declarations for the file definitions in the Dictionary.

Prompts

The following prompt is issued when the command-subcommand GENERATE FILE is
entered:

FILE(S)>

FILE(S)> Enter the name(s) of the files to be extracted from the Dictionary and from
which data declarations will be generated. More than one file can be
entered in a command line as long as each file name is separated by a
comma (,) or a space. Also, the file names can not exceed the first 72
characters in the command line. DICTPDE will continue to prompt for file
names until [[RETURN]] is entered in response to this prompt.

If a parent file is entered in response to this prompt, DICTPDE will
generate data declarations for the parent file as well as for the related
child files and associated elements. The parent file will be generated as a
record. The primary name of the parent file will be the record name. The
child elements will be generated as fields within the record. The aliases of
the child files will be the field names (unless a child file does not have an
alias, then the first 8 characters of the primary name will be used as the
alias). Note that any element associated to the secondary format for a file
will not be extracted by DICTPDE.

A data declaration can be generated for a specified file only once to an
output file. However, many data declarations can be generated for a
specified file if each declaration generated for that file is written to a
different output file.

Pressing [[RETURN]] in response to this prompt indicates that no more
file names are to be entered. DICTPDE will then stop prompting for file(s)
names and begin the code generation process. The generated code will be
echoed to the terminal as it is written to the output file.

Discussion

GENERATE FILE allows you to identify the files to be used for code generation.

Example

The following examples show how the GENERATE FILE command-subcommand is used
and the code that it generates.

The first example shows the data declaration generated for a simple file; that is, a file
without any child files. The file type for a simple file must be defined in the Dictionary as:
FORM, AUTO, DETL, MAST, KSAM, MPEF or MPER.
212 Chapter 6

The Dictionary DICTPDE Utility
>GENERATE FILE
The file CUSTFORM is defined in the Dictionary as follows:

 FILE : CUSTFORM

 FILE-TYPE : FORM

 FILE-ALIAS : CUSTALIAS

CUSTFORM has the following elements associated with it:

 ELEMENT : ACCOUNT LAST-NAME FIRST-NAME CREDIT

 ELEMENT-ALIAS : ACCOUNTALIAS

 ELEMENT-TYPE : I X X R

 ELEMENT-LENGTH : 4 16 10 4

The code is generated as follows:

 >generate file

 FILES(S)> custform

 TYPE

 CUSTFORM =

 RECORD

 ACCOUNTALIAS : INTEGER;

 LAST_NAME : PACKED ARRAY[1..16] OF CHAR;

 FIRST_NAME : PACKED ARRAY[1..10] OF CHAR;

 CREDIT : REAL

 END;

Note that the alias name for the element ACCOUNT was used when the code was
generated. This is the name by which this element is known by the file CUSTFORM. Also
note that the hyphens in the element names have been replaced by underscores when the
code was generated. (See Naming Considerations later in this section for more information
on converting hyphens to underscores.)

The next example shows the code generated for a parent file (this file must be defined in
the Dictionary as type BASE or VPLUS). The file STOREFF is defined in the Dictionary as
follows:

 FILE : STOREFF

 FILE-TYPE : VPLS

The following files are related to STOREFF:

 FILE : CUSTFORM DATEFORM INVENTFORM

 FILE-TYPE : FORM FORM FORM

 FILE-ALIAS : CUSTALIAS

The file CUSTFORM has the following elements associated with it:

 FILE : CUSTFORM

 ELEMENT : ACCOUNT LAST-NAME FIRST-NAME CREDIT

 ELEMENT-ALIAS : ACCOUNTALIAS
Chapter 6 213

The Dictionary DICTPDE Utility
>GENERATE FILE
 ELEMENT-TYPE : I X X R

 ELEMENT-LENGTH : 4 16 10 4

The file DATEFORM has the following elements associated with it:

 FILE : DATEFORM

 ELEMENT : DATE

 ELEMENT-ALIAS :

 ELEMENT-TYPE : X

 ELEMENT-LENGTH : 6

The file INVENTFORM has the following elements associated with it:

 FILE : INVENTFORM

 ELEMENT : STOCKNUM SUPPLIER BINNUM UNIT-COST

 ELEMENT-ALIAS : BINNUMALIAS

 ELEMENT-TYPE : X X R R

 ELEMENT-LENGTH : 8 16 4 4

The code is generated for STOREFF as follows:

 >generate file

 FILE(S)> storeff

 TYPE

 CUSTALIAS =

 RECORD

 ACCOUNTALIAS : INTEGER

 LAST_NAME : PACKED ARRAY[1..16] OF CHAR;

 FIRST_NAME : PACKED ARRAY[1..10] OF CHAR;

 CREDIT : REAL

 END;

 DATEFORM =

 RECORD

 DATE : PACKED ARRAY[1..6] OF CHAR;

 END;

 INVENTFORM =

 RECORD

 STOCKNUM : PACKED ARRAY[1..8] OF CHAR;

 SUPPLIER : PACKED ARRAY[1..16] OF CHAR;

 BINNUMALIAS : REAL;

 UNIT_COST : REAL

 END;
214 Chapter 6

The Dictionary DICTPDE Utility
>GENERATE IMAGEPARMS
>GENERATE IMAGEPARMS
Generates the PASCAL data structures for the IMAGE standard parameters.

Prompts

GENERATE IMAGEPARMS does not issue any additional prompts. DICTPDE will begin
generating the IMAGE parameters as soon as the GENERATE IMAGEPARMS
command-subcommand is entered. These parameters include the DB-STATUS array
declaration, the eight MODE declarations, and the utility LIST declarations.

Discussion

GENERATE IMAGEPARMS allows you to generate the TYPE, CONST and VAR
declarations for the IMAGE standard parameters. This command-subcommand does not
extract any data definitions from the Dictionary to generate these parameters.
Chapter 6 215

The Dictionary DICTPDE Utility
>GENERATE IMAGEPARMS
Example

 >generate imageparms

 type

 status_type =

 record

 c_word : -32768..32767;

 stat2 : -32768..32767;

 stat3_4 : integer;

 stat5_6 : integer;

 stat7_8 : integer;

 stat9_10 : integer;

 end;

 var

 status : status_type;

 password : packed array [1..8] of char;

 dummy_list : packed array [1..2] of char; (*init '; '*)

 all_items : packed array [1..2] of char; (*init '@;'*)

 previous_list : packed array [1..2] of char; (*init '*;'*)

 mode1 : -32768..32767; (*init 1*)

 mode2 : -32768..32767; (*init 2*)

 mode3 : -32768..32767; (*init 3*)

 mode4 : -32768..32767; (*init 4*)

 mode5 : -32768..32767; (*init 5*)

 mode6 : -32768..32767; (*init 6*)

 mode7 : -32768..32767; (*init 7*)

 mode8 : -32768..32767; (*init 8*)
216 Chapter 6

The Dictionary DICTPDE Utility
HELP
HELP
Displays a description of the DICTPDE commands and subcommands.

Syntax

HELP subcommand

H

?

Use the HELP command to display information about each of the DICTPDE commands
and their respective subcommands. Note that you can also enter “?” to invoke this
command. The HELP command uses all the DICTPDE commands as its subcommands.
The DICTPDE command (used as a subcommand) identifies the command for which a
description will be displayed, as shown below:

Subcommands

The following subcommands can be used with the HELP command:

ALTER defines the ALTER command and its subcommands.

A

EXIT defines the EXIT command and alternate ways to terminate DICTPDE.

E

GENERATE defines the GENERATE command and its subcommand

G

HELP defines each of the DICTPDE commands.

H

LIST defines the LIST command and its subcommands.

L

Note that the HELP command can not be used when DICTPDE is run from a job stream.
Chapter 6 217

The Dictionary DICTPDE Utility
LIST
LIST
Lists the entities that have been extracted by DICTPDE from the Dictionary.

Syntax

LIST subcommand

L

Use the LIST command to display the entities that have been extracted from the
Dictionary. These are the entities for which data declarations have been generated. The
LIST command also shows the types of the entities extracted (whether file or element), the
kind of code generated for each entity (whether VAR or TYPE), and the output file the
generated code was written to. The subcommand identifies the entity type (file or element)
to be listed. All the entities of that type are listed.

A complete list of subcommands is given below.

Subcommands

The following subcommands can be used with the LIST command:

ALL lists all the files and elements extracted from the Dictionary.

A

ELEMENT lists the elements extracted from the Dictionary.

E

FILE lists the files extracted from the Dictionary.

F

A discussion of each of the subcommands used with the LIST command and the prompts
that they generate follows.
218 Chapter 6

The Dictionary DICTPDE Utility
>LIST ALL
>LIST ALL
Displays all the entities extracted from the Dictionary.

Prompts

LIST ALL does not generate any additional prompts. This command-subcommand
displays the element and file names as they were extracted from the Dictionary. (The
entities identified as files are listed first. The entities identified as elements are listed after
the files.) LIST ALL also helps you to keep track of the entities that have been extracted
from the Dictionary and to determine what output files contain the data declarations for
what entities.

Discussion

LIST ALL allows you to list all the elements and files extracted from the Dictionary. LIST
ALL also displays information about the extracted entities.

Example

 >list all

 entity-name entity kind output-file

 product file type dictout.pub.howe

 sales file type dictout.pub.howe

 price file var accts.pub.howe

 street element var accts.pub.howe

 city element var accts.pub.howe

 state element type dictout.pub.howe

 zip element type dictout.pub.howe
Chapter 6 219

The Dictionary DICTPDE Utility
>LIST ELEMENT
>LIST ELEMENT
Displays the elements extracted from the Dictionary.

Prompts

 LIST ELEMENT does not generate any additional prompts. This command-subcommand
displays the element names as they were extracted from the Dictionary. LIST ELEMENT
also shows the kind of data declaration generated for each of the extracted elements and
the output file each element declaration was written to.

Discussion

LIST ELEMENT allows you to list all the elements extracted from the Dictionary in the
order in which they were extracted. LIST ELEMENT also helps you to keep track of the
elements that were extracted and to determine what output files contain the data
declarations for what elements.

Example

 >list element

entity-name entity kind output-file

street element var accts.pub.howe

city element var accts.pub.howe

state element type dictout.pub.howe

zip element type dictout.pub.howe
220 Chapter 6

The Dictionary DICTPDE Utility
>LIST FILE
>LIST FILE
Displays the files extracted from the Dictionary.

Prompts

LIST FILE does not generate any additional prompts. This command-subcommand
displays the file names as they were extracted from the Dictionary. LIST FILE also shows
the kind of data declaration generated for each of the extracted files and the output file
that each declaration was written to.

Discussion

LIST FILE allows you to list all the files extracted from the Dictionary in the order in
which they were extracted. LIST FILE also helps you to keep track of the files that have
been extracted and to determine what output files contain the data declarations for what
file declarations.

Example

 >list file

 entity-name entity kind output-file

 product file var accts.pub.howe

 sales file var accts.pub.howe

 price file type dictout.pub.howe

 credit file type dictout.pub.howe
Chapter 6 221

The Dictionary DICTPDE Utility
DICTPDE Naming Considerations
DICTPDE Naming Considerations
When an entity is extracted from the Dictionary, DICTPDE checks that the entity name is
compatible with PASCAL. If the entity name defined in the Dictionary is an illegal
PASCAL name (for example, the name contains a hyphen) or the entity name is a PASCAL
reserved word, an error message will be issued and DICTPDE will convert the names to
legal PASCAL names. Note that the names generated by DICTPDE will not be reflected in
the Dictionary.

The following describes how DICTPDE converts entity names that are not compatible with
PASCAL.

If the entity name as defined in the Dictionary begins with a character other than an
alphabetic character, DICTPDE converts the first letter of the name to a d (for “dummy”)
as shown below: If the entity name in the Dictionary is:

 #stock

The following PASCAL name will be generated:

 dstock

If an entity name as defined in the Dictionary consists of any characters other than
alphabetic or numeric characters, or underscores (__), that character will be converted to
an underscore. (Any hyphens or minus signs are converted to underscores.) If the entity
name in the Dictionary is:

 cust-stock#

The following PASCAL name will be generated:

 cust_stock_

If the entity name extracted from the Dictionary is a PASCAL reserved word, DICTPDE
will append “__reswd” to the end of the entity name. For example, if the entity name in the
Dictionary is:

 array

The following PASCAL name will be generated:

 array_reswd
222 Chapter 6

The Dictionary DICTPDE Utility
PASCAL Data Type Mappings
PASCAL Data Type Mappings
To be compatible with PASCAL, the data types for the extracted entities as defined in the
Dictionary must be mapped to PASCAL data types. The following shows how the
Dictionary data types are mapped to compatible PASCAL data types. Note that the
PASCAL type occupies the same storage length as the data types defined in the Dictionary.
(The storage length is computed from the ELEMENT-LENGTH and ELEMENT-COUNT
entries for an entity in the Dictionary.)

Any ASCII character:

If the entity is defined in the Dictionary as:

 ELEMENT-TYPE = X

 ELEMENT-LENGTH = N

The corresponding PASCAL data type will be generated:

 CHAR (if N=1) or

 PACKED ARRAY[1..N] OF CHAR (if N > 1)

For example, if an entity is defined in the Dictionary as:

 ELEMENT = ACCOUNT_NAME

 ELEMENT-TYPE = X

 ELEMENT-LENGTH = 20

The PASCAL code will be generated as:

 ACCOUNT_NAME = PACKED ARRAY[1..20] OF CHAR

Uppercase alphanumeric string:

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = U

ELEMENT-LENGTH = N

The corresponding PASCAL data type will be generated:

 ' '..'Z' (if N = 1) or

 PACKED ARRAY[1..N] OF ' '..'Z' (if N > 1)

Note that the PASCAL subrange ' '..'Z' restricts characters from being lowercase.

Numeric ASCII string:

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = 9 or 9+

ELEMENT-LENGTH = N

The corresponding PASCAL data type will be generated:

 '0'..'9' (if N = 1) or
Chapter 6 223

The Dictionary DICTPDE Utility
PASCAL Data Type Mappings
 PACKED ARRAY[1..N] OF '0'..'9' (if N > 1)

However, you must check that the minus sign doesn't appear in the data.

Zoned decimal:

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = Z

ELEMENT-LENGTH = N

The corresponding PASCAL data type will be generated:

 '+'..'}' (if N = 1) or

 PACKED ARRAY[1..N] OF '0'..'}' (if N > 1)

The above mapping indicates that the zoned decimal consists of (N - 1) digits with a
trailing overpunch.

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = Z+

ELEMENT-LENGTH = N

The corresponding PASCAL data type will be generated:

 '+'..'{' (if N = 1) or

 PACKED ARRAY[1..N] OF '0'..'{' (if N > 1)

Logical value (absolute binary):

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = K (or K+)

ELEMENT-LENGTH = 2

The corresponding PASCAL data type will be generated:

 SET of 0..15

For any other ELEMENT-LENGTHs, an “Undefined PASCAL type” will be generated.

Packed decimal:

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = P (or P+)

ELEMENT-LENGTH = N

The corresponding PASCAL data type will be generated:

 #0..#255 (if N = 1) or

 PACKED ARRAY[1..N] OF #0..#255 (if N > 1)

Boolean:

If the entity is defined in the Dictionary as

 ELEMENT-TYPE = B
224 Chapter 6

The Dictionary DICTPDE Utility
PASCAL Data Type Mappings
The corresponding PASCAL data type will be generated:

 BOOLEAN

Note that ELEMENT-LENGTH is not needed in this case.

String:

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = S

ELEMENT-LENGTH = N

The corresponding PASCAL data type will be generated:

 STRING[N]

Note that the storage length is not the ELEMENT-LENGTH for string data types.

Integer number:

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = I (or J)

ELEMENT-LENGTH = 2

The corresponding PASCAL data type will be generated:

 -32768..32767

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = I (or J)

ELEMENT-LENGTH = 4

The corresponding PASCAL data type will be generated:

 INTEGER

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = I+ (or J+)

ELEMENT-LENGTH = 2

The corresponding PASCAL data type will be generated:

 0..32767

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = I+ (or J+)

ELEMENT-LENGTH = 4

The corresponding PASCAL data type will be generated:

 0..MAXINT

Real number:

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = E (or R)
Chapter 6 225

The Dictionary DICTPDE Utility
PASCAL Data Type Mappings
ELEMENT-LENGTH = 4

The corresponding PASCAL data type will be generated:

 REAL

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = E (or R)

ELEMENT-LENGTH = 8

The corresponding PASCAL data type will be generated:

LONGREAL

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = E+ (or R+)

ELEMENT-LENGTH = 4

The corresponding PASCAL data type will be generated:

REAL

If the entity is defined in the Dictionary as:

ELEMENT-TYPE = E+ (or R+)

ELEMENT-LENGTH = 8

The corresponding PASCAL data type will be generated:

LONGREAL

For all other cases:

For an element that back-references another element data type, PASCAL will map the
data type of the back referenced element to a compatible PASCAL data type.

If the element-length or the byte position is not valid for a REAL, LOGICAL, or INTEGER
data type, DICTPDE will generate the following:

 PACKED ARRAY[1..ELEMENT_LENGTH] OF CHAR

A warning is also issued indicating that even though the element length or byte position is
not valid for that data type, a data declaration was generated for that entity. Please note
that these entities should not be accessed for use in PASCAL programs unless the correct
PASCAL can be made for the data type. (In order to do so, the invalid element length or
byte position should be corrected in the Dictionary.)
226 Chapter 6

The Dictionary DICTPDE Utility
PASCAL Data Type Mappings
Chapter 6 227

The Dictionary DICTPDE Utility
PASCAL Data Type Mappings
228 Chapter 6

7 The Dictionary DICTCDE Utility

Overview
DICTCDE, the COBOL Definition Extract Utility, is an interactive, prompt-driven utility
provided by Dictionary/3000. This utility extracts data and file definitions from the
Dictionary and generates the corresponding COBOL source code for the data definitions.
When a parent entity is extracted from the Dictionary, DICTCDE also generates the code
for any related child entities. The entities extracted from the Dictionary can be generated
by their primary names or by their aliases. (Refer to Changing the DICTCDE Options
discussed later in this section for more information on using the entities' aliases.) As the
source code is generated, it is echoed to the terminal and written to the COBOL copylib
that you specify.

When source code is generated for an entity, DICTCDE checks that the entity name and
data type as defined in the Dictionary for that entity are compatible with COBOL. If the
data type for the entity is not COBOL compatible, DICTCDE will issue a warning message
and convert the data type to compatible COBOL code. (See COBOL Data Type Mappings
later in this section for more detailed information.) If the entity name as defined in the
Dictionary is an illegal COBOL name (for instance, if the name begins with a hyphen) or
the entity name is a COBOL reserved word, DICTCDE will issue a warning message and
convert the name to a legal COBOL name. (See DICTCDE Naming Considerations later in
this section for more detailed information.)

DICTCDE also provides an interactive help facility which gives a brief description of the
DICTCDE prompts and a set of options which allows you to change the defaults used by
DICTCDE.

This section describes how to run DICTCDE and use its help facility, defines the options
that can be changed, and gives examples of the source code generated by DICTCDE.
229

The Dictionary DICTCDE Utility
Special Character Responses
Special Character Responses
The following characters have special meaning when used in response to a DICTCDE
prompt:

] the previous prompt issued is redisplayed. It does not
affect any source code that has already been generated.

]] the main prompt is reissued. This prompt allows you to
generate code, change the program options, or exit
DICTCDE. (This prompt is discussed later in this section.)

! DICTCDE responds as if you had pressed [[RETURN]] in
response to all prompts that follow for that prompting
cycle. A prompting cycle is complete when the main
prompt is reissued.

[[CONTROL]] Y the main prompt is reissued (as with]]).

? the Help facility is invoked for a description of a prompt.

:mpecommand the MPE command is executed without leaving DICTCDE.
230 Chapter 7

The Dictionary DICTCDE Utility
Initiating DICTCDE
Initiating DICTCDE
DICTCDE can be initiated from within a session or from within a job stream. The
following describes how to execute DICTCDE interactively (from within a session). For
information on how to execute DICTCDE from within a job stream, see Changing Input,
List and Output Files discussed later in this section.

DICTCDE assumes that the Dictionary resides in DICT.PUB of the logon account. To
redefine the Dictionary, you can use an MPE file equation or you can use the option
provided by DICTCDE to change the Dictionary. (The Dictionary option is discussed in
detail later in this section.)

To execute DICTCDE, enter the following MPE command:

 RUN DICTCDE.PUB.SYS

After the DICTCDE banner is displayed, the following message and prompt are issued:

 Type ? at any prompt for help

 Dictionary password>

The above message indicates that the Help facility can be invoked by entering a question
mark (?) in response to any prompt. The Help facility gives a brief description of the
prompt in question.

Enter the password for the Dictionary. If the Dictionary password is entered incorrectly or
is an invalid password for the Dictionary, DICTCDE will issue the following error message:

 Password is invalid

DICTCDE will then continue to prompt for the Dictionary password until a valid password
is entered. If [[RETURN]] is pressed in response to this prompt, DICTCDE will terminate.

If DICTCDE cannot open the Dictionary, the following error message are issued:

 ERROR: Cannot open dictionary dictionary name

Check to see that the Dictionary is in the correct group and account. If a file equation was
used to redirect the Dictionary, check that the Dictionary name was entered correctly.
DICTCDE will then ask for a new Dictionary to be entered and will also prompt for the
password for that Dictionary.

Once the specified Dictionary and password have been accepted by DICTCDE, the
following prompt is issued:

 Copylib file name>

Enter the COBOL copylib file name to which you are directing the generated source code.
The copylib file name may be up to 35 characters maximum and may be fully qualified and
have a lockword. The name must be a valid MPE file name. If the specified copylib file
already exists, DICTCDE will open that copylib file and append any source code generated
to the contents of that file. If the specified file name exists, but it is not in KSAM copylib
format, DICTCDE will issue an error message and then reprompt for the copylib file name.
If the specified file name does not exist, DICTCDE will issue the following prompt:

 File filename does not exist, create it (N/Y)>
Chapter 7 231

The Dictionary DICTCDE Utility
Initiating DICTCDE
Enter Y to create the specified copylib file. If N,],]], [[RETURN]], or [[CONTROL]] Y is
entered in response to this prompt, DICTCDE will again prompt for the Copylib file name.

Since a COBOL copylib is in KSAM file format, a key file must be associated with the
KSAM copylib file. Before DICTCDE creates a new KSAM copylib file, you are prompted
for the key file name for the new copylib as follows:

 Key file name>

Enter the copylib key file name (8 characters maximum) for the new copylib file. This file
will be created in the group and account you logged on with. Since this file can not be
qualified, you should log on to the group and account you would like this file to be created
in.

 If],]], [[RETURN]] or [[CONTROL]] Y is entered in response to this prompt, DICTCDE
will reprompt for the copylib file name.

If [[RETURN]] is pressed in response to the Copylib file name prompt, DICTCDE will
terminate.
232 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
The DICTCDE Main Prompt
When the copylib file is either accepted or created by DICTCDE, the main prompt used for
generating source code and for changing the DICTCDE options is issued:

 File, Element, Parameters, Options, or Exit (F/E/P/O/EX)>

The responses allowed for this prompt indicate the following:

F begins the prompting cycle for generating source code for IMAGE, VPLUS,
KSAM, MPEF and MPER file definitions.

E begins the prompting cycle for generating source code for element
definitions.

P begins the prompting cycle for generating source code for IMAGE, VPLUS,
and KSAM standard parameters. (These parameters are discussed later in
this section.)

O begins the prompting cycle for changing the options provided by
DICTCDE. (These options are discussed in detail later in this section.)

EX exits DICTCDE.

Each of the above responses (except the EX response) generates additional prompts. The
additional prompts are shown as each response is discussed in more detail.

Note that if],]], [[CONTROL]] Y, or [[RETURN]] is entered in response to the main
prompt, DICTCDE will reissue the prompt.

Generating Code for Files

To generate source code for file definitions, enter F in response to the main prompt.

DICTCDE will then prompt for the file name as follows:

 File name>

Enter the name of the file to be extracted from the Dictionary. Only one file may be
extracted at a time. (You may not enter multiple file names in response to this prompt.)
Note that if the file to be extracted is an IMAGE data set or a VPLUS form, you may
qualify the data set or form by its parent file. To do so, enter the name of the database or
forms file in parenthesis next to the file name as shown below:

 File name> filename (parent filename)

When a file is identified by its parent file, then DICTCDE will generate the code for the file
using the file's alias (if any) within the parent file if the alias option is enabled. (The alias
option is discussed in more detail later in this section.)

DICTCDE then displays the file type of the specified file and continues to prompt for
information. The prompts that are issued by DICTCDE depend on the type of the file
specified.
Chapter 7 233

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
IMAGE Database Files. If the specified file is an IMAGE database, DICTCDE will issue
the following message and prompts:

 File filename is an IMAGE database

 Define all data sets in one module (N/Y)>

Enter Y if the generated source code for all the data sets is to be written to one copylib
module. This module will also contain the source code for the IMAGE special parameters.
These are the IMAGE special name-constant parameters that identify the database and
password for use by the IMAGE intrinsics. To generate the IMAGE standard parameters,
see the discussion for the P (Parameters) response to the main prompt. (The IMAGE
standard parameters include the DB-STATUS array definition, the eight MODES as
constants, and the various LIST parameters.)

When all data sets are to be defined in one module, DICTCDE will prompt for the copylib
module for the database definition:

 Copylib module for database name >

Enter the name of the copylib module (8 characters maximum). DICTCDE then begins the
generation process. The generated source code is echoed to the terminal as it is written to
the copylib module. If [[RETURN]] is pressed in response to this prompt, DICTCDE will
reissue the main prompt and no source code would be generated for the database.

If the source code generated for the data sets is to be written to different copylib modules,
enter N or press [[RETURN]] in response to Define all data sets in one module (N/Y)>.
DICTCDE will then prompt for the copylib module for each of the data sets in turn and for
the IMAGE special parameters as shown:

 Copylib module for database name special parameters>

Enter the copylib module to which you will direct the source code for the IMAGE special
parameters. If [[RETURN]] is pressed in response to this prompt, the code for the IMAGE
special parameters will not be generated and DICTCDE will issue the next prompt.

 Copylib module for data set name >

Enter the copylib module for the data set specified by DICTCDE in data set name. If
[[RETURN]] is pressed in response to this prompt, the source code for this data set will not
be generated and DICTCDE will prompt for the copylib module for the next data set that
belongs to the specified database. Once [[RETURN]] has been pressed in response to a
prompt for a data set, that data set is skipped (code can not be generated for that data set).
If] is entered in response to this prompt, DICTCDE will again prompt for a file name.

After a copylib module has been defined for a data set, DICTCDE issues the following
prompt:

 Prefix for data items in data set name >

This prompt allows you to enter a prefix which is used in the COBOL identifier for each
data item in the specified data set. The prefix you choose can be 8 characters maximum
and must begin with a letter to be a valid COBOL identifier. If you would like a hyphen
between the prefix and the data item name, be sure to include it as part of the prefix. (See
Examples of Generated Code later in this section for an example of data items generated
with prefixes.) When a prefix is assigned to a data item name, those data items can be
referred to uniquely in a COBOL program without using the COBOL OF clause.
234 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
If [[RETURN]] is pressed in response to this prompt, the source code for that data set is
generated without a prefix assigned to the data items. The code is echoed to the terminal
as it is written to the copylib module. After the code for this data set is generated,
DICTCDE will continue to prompt for copylib modules and prefixes for the remaining data
sets in the database.

After prompting for each data set in the specified database, DICTCDE will return to the
main prompt.

IMAGE Data Set Files. If the specified file is an IMAGE data set, DICTCDE will issue
the following message and prompts:

 File filename is an IMAGE MASTER data set.

(DICTCDE also tells you what type of data set the file is.)

 Copylib module for data set name >

Enter the name of the copylib module (8 characters maximum). If [[RETURN]] is pressed
in response to this prompt, DICTCDE will return to the main prompt and no code will be
generated.

Once the copylib module for the specified data set has been entered, DICTCDE will prompt
for the following:

 Prefix for data items in data set name >

Enter the prefix to be used in the COBOL identifier for the data items in the data set. The
prefix you choose can be up to 8 characters and must begin with a letter to be a valid
COBOL identifier. If you would like a hyphen between the prefix and the data item name,
be sure to include the hyphen as part of the prefix. (See Examples of Generated Code later
in this section for an example of data items generated with prefixes.) When a prefix is
assigned to a data item, that data item can be referred to uniquely in a COBOL program
without qualification.

If [[RETURN]] is pressed in response to this prompt, the source code for the data set is
generated without a prefix assigned to the data items. The code is echoed to the terminal
as it is written to the copylib module.

After the source code has been generated for the data set, DICTCDE will return to the
main prompt.

VPLUS Forms Files. If the specified file is a VPLUS forms file, DICTCDE will issue the
following message and prompts:

 File filename is a VPLUS forms file.

 Define all forms in one module (N/Y)>

Enter Y if the generated source code for all the forms in the forms file is to be written to
one copylib module. This module will also contain the source code for the forms file name.
DICTCDE will then prompt for the copylib module for the source code for the entire forms
file as follows:

 Copylib module for forms file name >

Enter the name of the copylib module. DICTCDE will then issue the next prompt:

 Define field number tables (N/Y)>
Chapter 7 235

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
Enter Y to generate a field number table for each form in the forms file. The field number
tables are useful in calls to some of the VPLUS intrinsics, such as VSETERROR. The
tables provide the field numbers for each field in the form. Each field in the form is
represented by a data item in the table. The data items are COMP variables initialized to
the field number. (See the Examples of Generated Code later in this section for examples of
the field number tables.) Enter N or press [[RETURN]] in response to this prompt if you do
not want field number tables generated for the forms.

The data items defined as numeric VPLUS fields in the Dictionary only appear as ASCII
fields in the VPLUS buffer. Because of this, DICTCDE asks whether these fields are to be
defined as PIC 9 or PIC X when the code is generated:

 Define numeric fields as PIC 9 or PIC X (9/X)>

Enter X to define every numeric field in the forms file as ASCII alphanumeric (PICTURE
CLAUSE PIC X). Enter 9 or press [[RETURN]] to define every numeric field as ASCII
numeric only (PICTURE CLAUSE PIC 9). If field edits have been defined for the numeric
fields in the forms file, it may be more appropriate to define the numeric fields as PIC 9.
However, if you choose to define the numeric fields as PIC 9, the forms must only allow
numeric data to be entered in those fields.

DICTCDE will then begin the generation process. The generated code is echoed to the
terminal as it is written to the copylib module.

If the source code generated for the forms is to be written to different copylib modules,
enter N or press [[RETURN]] in response to Define all forms in one module (N/Y)>.
DICTCDE will then issue the following prompts:

 Copylib module for forms file name constant>

Enter the copylib module to which you are directing the source code for the forms file
name. DICTCDE will echo the code generated for the forms file name to the terminal as it
is written to the copylib module. If [[RETURN]] is pressed in response to this prompt, this
code will not be generated and the next prompts will be issued.

The next two prompts apply to all the forms in the forms file to be generated. These are the
same prompts issued when the entire forms file is to be defined in one copylib module.

 Define field number tables (N/Y)>

Enter Y to generate field number tables for each form to be generated. Enter N or press
[[RETURN]] if you do not want to generate field number tables.

 Define numeric fields as PIC 9 or PIC X (9/X)>

Enter X to define every numeric field in every form generated as PIC X. Enter 9 or press
[[RETURN]] to define every field as PIC 9. (Remember, if 9 is entered in response to this
prompt, the forms must only allow numeric data to be entered in those fields.) DICTCDE
then begins prompting for copylib modules for each of the forms in the forms file.

 Copylib module for formname >

Enter the copylib module for the form specified by DICTCDE in formname. If [[RETURN]]
is pressed in response to this prompt, the source code for this form will not be generated.
(The field number tables will not be generated for that form either.) Once [[RETURN]] has
been pressed in response to the copylib module for a form, that form is skipped (code can
not be generated for that form) and DICTCDE will then prompt for the copylib module for
236 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
the next form in the forms file.

After the copylib module has been defined for a form, DICTCDE issues the following
prompt:

 Prefix for data items in formname >

Enter a prefix to be used in the COBOL identifier for the data item in the form. The prefix
you choose can be up to 8 characters long and must begin with a letter to be a valid
COBOL identifier. If you would like a hyphen between the prefix and the data item name,
be sure to include the hyphen as part of the prefix you enter. (See Examples of Generated
Code later in this section for an example of data items generated with prefixes.) When a
prefix is assigned to a data item, that data item can be referred to uniquely in a COBOL
program without using the COBOL OF clause.

If [[RETURN]] is pressed in response to this prompt, the source code for the data set is
generated without a prefix assigned to the data items. The code is echoed to the terminal
as it is written to the copylib module. DICTCDE then prompts for the copylib module for
the next form in the forms file.

After the source code has been generated for the forms file, DICTCDE will return to the
main prompt.

VPLUS Forms. If the specified file is a VPLUS form, DICTCDE will issue the following
message and prompts:

 File formname is a VPLUS form.

Note that the next prompts are also issued when the file is a forms file.

 Define field number tables (N/Y)>

Enter Y to generate field number tables for the specified form. Enter N or press
[[RETURN]] if you do not want field number tables generated.

 Define numeric fields as PIC 9 or PIC X (9/X)>

Enter X to define every numeric field in the specified form as PIC X. Enter 9 or press
[[RETURN]] to define every numeric field as PIC 9. (Remember, if 9 is entered in response
to this prompt, the form must only allow numeric data to be entered in those fields.)

DICTCDE next prompts for the copylib module.

 Copylib module for formname >

Enter the copylib module for the specified form. If [[RETURN]] is pressed in response to
this prompt, the source code for this form will not be generated and DICTCDE will
reprompt for a file name. (The field number tables will not be generated for the form
either.)

After the copylib module has been defined for a form, DICTCDE issues the following
prompt:

 Prefix for data items in formname >

Enter a prefix to be used in the COBOL identifier for the data items in the form. The prefix
you choose can be up to 8 characters long and must begin with a letter to be a valid
COBOL identifier. If you would like a hyphen between the prefix and the data item name,
be sure to include the hyphen as part of the prefix you enter. (See Examples of Generated
Code later in this section for an example of data items generated with prefixes.) When a
Chapter 7 237

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
prefix is assigned to a data item, that data item can be referred to uniquely in a COBOL
program without using the COBOL OF clause.

If [[RETURN]] is pressed in response to this prompt, the source code for the form is
generated without a prefix assigned to the data items. The code is echoed to the terminal
as it is written to the copylib module.

After the source code has been generated for the form, DICTCDE will return to the main
prompt.

MPEF and MPER Files. If the specified file is defined in the Dictionary as MPEF,
DICTCDE will issue the following message:

 File filename is an MPE file.

If the specified file is defined in the Dictionary as MPER, DICTCDE will issue the
following message:

 File filename is an MPE relative file.

The next prompts issued by DICTCDE allow you to choose what COBOL program sections
are to be defined for the file. DICTCDE allows you to generate source code for the
ENVIRONMENT DIVISION and the DATA DIVISION of a COBOL program.

 Copylib module for SELECT statement>

Enter the copylib module for the code generated for the SELECT statement. The SELECT
statement identifies the file to be used in a program and is part of the ENVIRONMENT
DIVISION of a COBOL program. When a copylib module is entered in response to this
prompt, DICTCDE will then prompt for the copylib module for the next program section. If
[[RETURN]] is pressed in response to this prompt, no SELECT statement will be
generated, and DICTCDE will continue to prompt for the copylib module for the next
program section.

 Copylib module for FILE SECTION entry>

Enter the copylib module for the code generated for the FILE SECTION entry. The FILE
SECTION defines the file to be used in the program and is part of the DATA DIVISION of
the program. The record layout for the file (the source code for the data items in the file) is
defined in this section. However, you may choose to generate the record layout for the file
in WORKING-STORAGE, instead of in the FILE SECTION. If a copylib module is entered
for the FILE SECTION, but you choose to generate the record layout for the file in
WORKING-STORAGE, the FD statement would contain a single, 01-level definition. This
definition is generated to serve as a buffer for READs and WRITEs to the file. If a copylib
module is not entered for the FILE SECTION, the record definition for the file may still be
generated in WORKING-STORAGE.

If [[RETURN]] is pressed in response to this prompt, no FILE SECTION entry will be
generated and DICTCDE will continue to prompt for the copylib module for the next
program section. When a copylib module is entered for the FILE SECTION, DICTCDE
prompts for the following:

 Define filename in FILE SECTION as an FD or SD file (F/S)>

Enter F to define filename as a data file. Enter S to define filename as a sort file. If
[[RETURN]] is pressed in response to this prompt, filename will be defined as a data file.

Note that the FILE SECTION for an MPER file can only be generated as an FD file.
238 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
(Therefore, this prompt is not issued for MPER files.)

DICTCDE then issues the next prompt:

 Copylib module for WORKING-STORAGE record>

Enter the copylib module for the WORKING-STORAGE record. The WORKING
STORAGE record will contain the record layout for the file. If a copylib module was
entered in response to the prompt for the FILE SECTION entry, and [[RETURN]] is
pressed in response to this prompt, the record layout of the file will be defined in the FILE
SECTION. If no copylib module was entered in response to the prompt for the FILE
SECTION entry, and [[RETURN]] is also pressed in response to this prompt, no record
layout for the file will be generated.

If the copylib modules have been defined for either the FILE SECTION or for
WORKING-STORAGE, DICTCDE prompts for the following:

 Prefix for data items in filename >

Enter the prefix to be used in the COBOL identifier for each data item in the file. The
prefix can be 8 characters maximum and must begin with a letter to be a valid COBOL
identifier. This prefix can be used to uniquely identify the data items to the file. (See
Examples of Generated Code which is discussed later in this section for an example of data
items generated with prefixes.)

If [[RETURN]] is pressed in response to this prompt, the source code for the file is
generated without a prefix assigned to the data items. The code is echoed to the terminal
as it is written to the copylib module. DICTCDE then returns to the main prompt.

KSAM Files. If the specified file is a KSAM file, DICTCDE will issue the following
message and prompts:

 File filename is a KSAM file.

DICTCDE allows you to use KSAM files in two ways. First, you may use the KSAM
support provided by COBOL II. To do so, you would generate the SELECT statement and
FILE SECTION, but you would not generate the record layout in WORKING STORAGE.
Second, you may use the intrinsics supplied by KSAM for use by COBOL. To do this, you
would generate the record layout in WORKING STORAGE to serve as a data buffer
parameter to the KSAM intrinsics, but you would not generate the SELECT statement or
the FILE SECTION entry.

The next prompts issued by DICTCDE allow you to choose what COBOL program sections
are to be defined for the file. DICTCDE allows you to generate source code for the
ENVIRONMENT DIVISION and the DATA DIVISION of a COBOL program as it did for
an MPE file.

Copylib module for SELECT statement>

Enter the copylib module for the code generated for the SELECT statement. The SELECT
statement identifies the file to be used in a COBOL program and is part of the
ENVIRONMENT DIVISION for the program. When a copylib module is entered in
response to this prompt, DICTCDE will then prompt for the copylib module for the next
program section. If [[RETURN]] is pressed in response to this prompt, no SELECT
statement will be generated and DICTCDE will continue to the next prompt.

 Copylib module for FILE SECTION entry>
Chapter 7 239

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
Enter the copylib module for the code generated for the FILE SECTION entry. The FILE
SECTION defines the file to be used in the program and is part of the DATA DIVISION for
a program. The record layout for the file (the source code for the data items in the file) is
also defined in this section. However, you may choose to generate the record layout for the
file in WORKING-STORAGE, instead of in the FILE SECTION. If a copylib module is
entered for the FILE SECTION, but you choose to generate the record layout for the file in
WORKING-STORAGE, the FD statement would be generated as a single, 01-level
definition. This definition is generated to serve as a buffer for READs and WRITEs to the
file. If a copylib module is not entered for the FILE SECTION, the record definition for the
file may still be generated in WORKING-STORAGE.

If [[RETURN]] is pressed in response to this prompt, no FILE SECTION entry will be
generated and DICTCDE will continue to prompt for the copylib module for the next
program section.

Copylib module for WORKING-STORAGE record>

Enter the copylib module for the WORKING-STORAGE record. The
WORKING-STORAGE record will contain the record layout for the file. If a copylib module
was entered in response to the prompt for the FILE SECTION entry and [[RETURN]] is
pressed in response to this prompt, the record layout of the file will be defined in the FILE
SECTION. If no copylib module was entered in response to the prompt for the FILE
SECTION entry, and [[RETURN]] is pressed in response to this prompt, no record layout
for the file will be generated.

When a copylib module is defined for the WORKING-STORAGE record for a KSAM file,
the following prompt is also issued by DICTCDE:

 Include KSAM FILETABLE parameter (N/Y)>

Enter Y to generate the KSAM FILETABLE parameter for this file. The KSAM
FILETABLE parameter is useful if you use the intrinsics provided by KSAM for COBOL,
rather than the KSAM support provided by COBOL II.

When the copylib modules have been defined for either the FILE SECTION or for
WORKING-STORAGE, DICTCDE prompts for the following:

 Prefix for data items in filename >

Enter the prefix to be used in the COBOL identifier for each data item in the file. The
prefix can be 8 characters maximum and must begin with a letter to be a valid COBOL
identifier. This prefix can be used to uniquely identify the data items to the file. (See
Examples of Generated Code later in this section for an example of data items generated
with prefixes.)

If [[RETURN]] is pressed in response to this prompt, the source code for the KSAM file is
generated without a prefix assigned to the data items in the file. The code is echoed to the
terminal as it is written to the copylib module.

After the source code has been generated for the KSAM file, DICTCDE will return to the
main prompt.
240 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
Generating Code for Elements

To generate source code for element definitions, enter E in response to the main prompt.

DICTCDE will then prompt for the element name:

 Element name>

Enter the name of the element to be extracted from the Dictionary. Only one element may
be extracted at a time. (You may not enter more than 1 element name in response to this
prompt.) DICTCDE then prompts for the copylib module for the source code for the
specified element:

 Copylib module for element name >

Enter the name of the copylib module for this element. If [[RETURN]] is pressed in
response to this prompt, no code will be generated for this element and DICTCDE will
return to the main prompt.

After the copylib module has been defined for the element, DICTCDE will prompt for the
following:

 Prefix for data items in element name >

Enter the prefix to be used as the COBOL identifier for any child elements this element
may have. The prefix can be up to 8 characters long and must begin with a letter to be a
valid COBOL identifier. When a prefix is assigned to a child element, that element can be
uniquely identified with its parent element. For example, for the parent element
RECORD1, the following code is generated if the prefix REC1- is entered in response to
this prompt:

 000100

 000200 01 RECORD1.

 000300 05 REC1-FIELD1 PIC X(2).

 000400 05 REC1-FIELD2 PIC X(8).

 000500 05 REC1-FIELD3 PIC X(6).

If the specified element does not have any related child elements, the prefix will be
ignored. If [[RETURN]] is pressed in response to this prompt, the code is generated
without any prefixes assigned to the child elements (if there are any). The code is echoed to
the terminal as it is written in the WORKING-STORAGE record.
Chapter 7 241

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
Generating Code for Standard Parameters

DICTCDE allows you to generate source code for the IMAGE, VPLUS, and KSAM
standard parameters. To generate this source code, enter P in response to the main
prompt. The code for the standard parameters is generated in WORKING-STORAGE.

DICTCDE will issue the following prompt:

 Copylib module for IMAGE standard parameters>

Enter the copylib module for the code generated for the IMAGE standard parameters. The
IMAGE standard parameters include the DB-STATUS array declaration, the eight MODE
declarations, and the utility LIST declarations. The code for the IMAGE standard
parameters is echoed to the terminal as it is written to the copylib module. (See Examples
of Generated Code later in this section for an example of the code generated for the
IMAGE standard parameters.) If [[RETURN]] is pressed in response to this prompt, the
IMAGE standard parameters will not be generated.

DICTCDE next prompts for the copylib module for the VPLUS parameters:

 Copylib module for VPLUS standard parameters>

Enter the copylib module for the code generated for the VPLUS standard parameters. The
VPLUS standard parameters include the VPLUS COMAREA definition and a character
string which identifies the terminal. (The terminal identification string is passed to the
VPLUS intrinsic VOPENTERM.) The code for the VPLUS standard parameters is echoed
to the terminal as it is written to the copylib module. (See Examples of Generated Code
later in this section for an example of the code generated for the VPLUS standard
parameters.) If [[RETURN]] is pressed in response to this prompt, the VPLUS standard
parameters will not be generated.

DICTCDE will next prompt for the KSAM standard parameters:

 Copylib module for KSAM standard parameters>

Enter the copylib module for the code generated for the KSAM standard parameters. The
KSAM standard parameters are useful if you use the intrinsics provided by KSAM for
COBOL, rather than the COBOL II KSAM support. These parameters include a general
KSAM FILETABLE parameter and a STAT parameter. The general FILETABLE
parameter does not reference any file name and can be used for any file with the
appropriate initialization. The STAT parameter contains STATUS-KEY-1 and
STATUS-KEY-2 for use with the KSAM COBOL intrinsics. The code for the KSAM
standard parameters is echoed to the terminal as it is written to the copylib module. (See
Examples of Generated Code later in this section for an example of the code generated for
the KSAM standard parameters.) If [[RETURN]] is pressed in response to this prompt, the
KSAM standard parameters will not be generated.

After the code has been generated for the standard parameters, DICTCDE returns to the
main prompt.
242 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
Changing the DICTCDE Options

DICTCDE provides a set of options which allows you to change the Dictionary used, the
copylib used, and the DICTCDE defaults; and it allows you to run the COBOL copylib
editor, COBEDIT.

To change any of the options offered by DICTCDE, enter an O in response to the main
prompt. DICTCDE will then issue a series of prompts which allow you to change any of the
options. Each of the prompts displays the value currently being used by DICTCDE in
either of two ways. For some of the prompts, the current value is shown within parenthesis
as a single value. For example, the current value for the following prompt is DICT.PUB:

 Dictionary name (DICT.PUB)>

For prompts which ask a choice to be made, the current value is also within parenthesis. It
is the value to the left of the slash. In this example, the current value is Y (Yes):

 List definitions on the terminal (Y/N)>

When O is entered in response to the main prompt, DICTCDE issues the following
message:

 Press RETURN to retain current value and move to the next option.

The following is a list of all the prompts which are used to change the values for the
options and a brief explanation of each of them. (A more detailed explanation for each of
these prompts follows the list.)

Dictionary name (current
Dictionary)> allows you to change the Dictionary from which you

extract definitions.

Copylib file name (current
copylib)> allows you to change the copylib for the generated code.

Run COBEDIT (N/Y)> allows you to run the copylib editor, COBEDIT, from
within DICTCDE.

List definitions on the
terminal (Y/N)> allows you to suppress the generated code from being

displayed on the terminal.

Comment the definitions
(N/Y)> allows you to generate comment lines for the extracted

entities.

Use Primary name or Alias
COBOL identifier (P/A)> allows you to use the aliases for the extracted entities.

Qualify data sets and forms with
their parent files (N/Y)> allows you to use the name of the database or forms file as

the prefix for the data set or form.

Use edit mask for PICTURE
clause (Y/N)> allows you to create display fields from items in the

Dictionary that have edit masks.
Chapter 7 243

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
Prompt for record data item
prefixes (Y/N)> allows you to suppress the prompts for prefixes for data

items.

Prompt for all sections of MPE/KSAM
definitions (Y/N)> allows you to suppress the prompts for the

ENVIRONMENT DIVISION and FILE SECTION.

Prompt for VPLUS field types and
number tables (Y/N)> allows you to suppress the prompts for selecting the

VPLUS field types and the VPLUS field number tables.

DICTCDE will then issue the first option:

 Dictionary name (current dictionary)>

Enter the Dictionary name, group and account to be opened and used for further code
generation. DICTCDE displays the current Dictionary being used in (current dictionary).
Data and file definitions are extracted from the new Dictionary specified until this option
is changed again. When a new Dictionary name is specified, DICTCDE will also issue the
following prompt:

 Dictionary password>

Enter the Dictionary password for the new Dictionary to be used. If the new Dictionary
specified is the same as the previous Dictionary, the password prompt will not be issued. If
[[RETURN]] is pressed in response to this option, the Dictionary used will not change and
DICTCDE will continue to the next option as follows:

 Copylib file name (current copylib)>

Enter the copylib file name (35 characters maximum) to be opened and used for further
code generation. DICTCDE displays the current copylib file being used in current copylib.
If the new copylib file already exists, DICTCDE will open that copylib file and append any
further source code generated to the contents of that file. If the specified copylib file name
exists, but it is not in KSAM copylib format, DICTCDE will issue an error message and
reprompt for the copylib file name. If the specified file name does not exist, DICTCDE will
issue the following prompt:

 File filename does not exist, create it (N/Y)>

If N is entered in response to this prompt, DICTCDE will reprompt for the copylib file
name. If Y is entered in response to this prompt, DICTCDE will prompt for the key file
name for the new KSAM copylib to be created:

 Key file name>

Enter the key file name for the new copylib file (8 characters maximum). If [[RETURN]] is
pressed in response to this prompt, DICTCDE will reprompt for the copylib file name.

Once a new copylib is accepted, or if [[RETURN]] is pressed in response to the copylib file
option prompt, DICTCDE would continue to the next option as follows:

 Run COBEDIT (N/Y)>

Enter Y to run the copylib editor COBEDIT from within DICTCDE. DICTCDE will then
close the current copylib file being used and invoke COBEDIT for you. (For information on
running COBEDIT, see the COBOL II Reference Manual.) When you exit COBEDIT,
244 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
DICTCDE will reopen the copylib file and continue prompting for the next option.

If N is entered or [[RETURN]] is pressed in response to the COBEDIT option prompt,
DICTCDE will also prompt for the next option as follows:

 List definitions on the terminal (Y/N)>

Enter N to suppress the generated code from being displayed at the terminal (or printed in
the job listing if DICTCDE is run from within a job stream). Enter Y to echo the source
code as it is generated to the terminal (or printed in the job listing). If [[RETURN]] is
pressed in response to this option prompt, DICTCDE will continue to the next option.

 Comment the definitions (N/Y)>

Enter Y to generate comment lines which describe the entities extracted from the
Dictionary. These comment lines are written to WORKING-STORAGE, at the end of any
other code generated for an entity. These comment lines include the following information
about the extracted entity:

entity the name of the entity extracted from the Dictionary.

entity -name the entity long-name (as it was specified in DICTDBM).

entity -resp the name of the person, department, or area responsible
for the integrity of the entity.

date-change the date of the latest change made to the entity in the
Dictionary.

date-create the date the entity was created in the Dictionary.

identity-change the identity of the person, department, or area who made
the last change to the entity in the Dictionary.

identity-create the identity of the person, department, or area who
created the entity in the Dictionary.

For example, the following code is generated as comments for the MPE file ACCOUNT:

000100

 000200* file : ACCOUNT

 000300* file-name : CUSTOMER ACCOUNTS

 000400* file-resp : MANAGER

 000500* date-change : 83/11/01

 000600* date-create : 83/11/15

 000700* identity-change : MGR

 000800* identity-create : MGR

Enter N in response to this prompt to suppress the comment lines from being generated
and to continue to the next prompt. If [[RETURN]] is pressed in response to this prompt,
DICTCDE will also continue to the next option:

 Use Primary name or Alias for COBOL identifier (P/A)>

Enter P to extract the Dictionary primary name to be used as the COBOL identifier for an
entity when code is generated. Enter A to extract the Dictionary alias (whenever an alias
is defined in the Dictionary) to be used as the COBOL identifier for an entity when code is
Chapter 7 245

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
generated. Using aliases as COBOL identifiers identifies the child entities by the names
that are known by the parent entities. Regardless of whether the primary names or aliases
are used as the COBOL identifiers, the constants used for passing data set and search item
names to IMAGE will be generated using the aliases (if the aliases have been defined in
the Dictionary).

If [[RETURN]] is pressed in response to this prompt, DICTCDE will continue to the next
option:

 Qualify data sets and forms with their parent files (N/Y)>

Enter Y to use the parent file as a prefix in the COBOL identifier generated for the data
sets or forms. When generating code for a database or forms file, DICTCDE allows you to
qualify the related IMAGE data sets or VPLUS forms by the name of the parent file.
DICTCDE will use the parent file name as a prefix in the COBOL identifier generated for
the related data sets or forms. This will help you to differentiate between data sets and
forms with common names. DICTCDE will also qualify single data sets or forms by their
parent file name, if the parent file was specified, when the data set or form was extracted
from the Dictionary. (The parent file was entered in parenthesis next to the file name in
response to the File name prompt.)

Note that if the prefixes, file name and suffixes in the COBOL identifier total more than 30
characters, DICTCDE will truncate the COBOL identifier to the allowable 30 characters.
DICTCDE will truncate the suffix first, then the prefix, so that the identifier does not
exceed 30 characters.

Enter N if you do not wish to add the parent file name as a prefix in the COBOL identifiers
generated for data sets and VPLUS forms. If [[RETURN]] is pressed in response to this
prompt, DICTCDE will continue to the next option:

 Use edit mask for PICTURE clause (Y/N)>

Enter Y to generate display fields for the elements defined with edit masks in the
Dictionary. DICTCDE will convert the edit mask in the Dictionary to a COBOL PICTURE
clause. When code is generated for elements with edit masks, the storage length is
computed from the size of the edit mask, not from the storage length information in the
Dictionary. However, the storage length is changed when the code is generated. For
entities which contain child elements with edit masks, the record layout for the parent
entity is also changed. Therefore, the byte offsets for the elements with edit masks must be
defined in the Dictionary according to the edit mask size, not by the data storage
requirements, if you wish to use this option. (For more information on the code generated
for edit masks, see Edit Masks discussed under Examples of Generated Code later in this
section.)

Enter N to ignore any edit masks defined for the elements. The PICTURE clause for an
element will then be generated from the data type and storage length defined in the
Dictionary.

If [[RETURN]] is pressed in response to this prompt, DICTCDE will continue to the next
option:

 Prompt for record data item prefixes (Y/N)>

Enter N to suppress the prompts asking for prefixes for the record data items. Enter Y to
have the prompts issued for data item prefixes wherever DICTCDE normally issues them.
246 Chapter 7

The Dictionary DICTCDE Utility
The DICTCDE Main Prompt
If [[RETURN]] is pressed in response to this prompt, DICTCDE will continue to the next
option:

 Prompt for all sections of MPE/KSAM definitions (Y/N)>

Enter N to suppress the prompts for the copylib modules for the SELECT statement and
the FILE SECTION entry for an MPEF, MPER, or KSAM file. (Only the copylib for the
WORKING-STORAGE record will be prompted for.) Enter Y to prompt for the copylib
modules for the SELECT statement, FILE SECTION entry, and WORKING-STORAGE
record for an MPEF, MPER, or KSAM file as DICTCDE normally issues them.

If [[RETURN]] is pressed in response to this prompt, DICTCDE will continue to the last
option as follows:

 Prompt for VPLUS field types and number tables (Y/N)>

Enter N to suppress the prompts for the VPLUS field types (PIC 9 or PIC X) and for the
VPLUS field number tables for the forms files and forms extracted from the Dictionary. If
these prompts are not issued, all the forms extracted from the Dictionary will be generated
without field number tables, and the numeric fields in the forms will be generated as PIC 9
numeric fields.

When a response is made, or [[RETURN]] is pressed in response to this prompt, DICTCDE
will reissue the main prompt.
Chapter 7 247

The Dictionary DICTCDE Utility
Changing Input, List and Output Files
Changing Input, List and Output Files
DICTCDE uses the formal file designators DICTIN for the input file, DICTOUT for the
output file and DICTLOG for the response log file. The responses made to DICTCDE
interactively are logged to the editor file DICTLOG. This file is session-temporary. An MPE
SAVE command must be used to save this file as a permanent file (see example below). All
responses are logged except for those made to COBEDIT or any MPE commands used
while running DICTCDE.

DICTCDE can be run interactively or from within a job stream. DICTCDE can also be
executed to accept previously entered responses from the terminal as follows:

1. RUN DICTCDE.PUB.SYS Responses are made at the terminal and written to
DICTLOG.

2. SAVE DICTLOG Saves DICTLOG as a permanent file.

3. RENAME DICTLOG,
LOGFILE Renames DICTLOG to the file LOGFILE.

4. FILE DICTIN=LOGFILE The input will be the responses previously entered.

5. RUN DICTCDE.PUB.SYS DICTCDE now accepts the responses in LOGFILE.

6. RESET DICTIN

Please note that when DICTLOG is used as the input file, DICTCDE expects that all the
same prompts will be issued as when DICTCDE was previously run. For example, if you
enter a new copylib name to be used the first time DICTCDE is run, you must purge the
copylib name before re-running DICTCDE using DICTLOG as the list file. (If the copylib is
not purged, the sequence of responses in DICTLOG will not follow the order of the prompts
that will be issued by DICTCDE.) If the specified copylib already existed the first time
DICTCDE was run, it must also exist when DICTCDE is run again using DICTLOG as the
list file.

All terminal output, including the echoed source code, is written to DICTOUT (which is the
terminal when DICTCDE is run interactively). The terminal output can be written to a
disc file by redirecting DICTOUT to a disc file as shown below:

 :FILE DICTOUT; SAVE

The terminal output will be echoed to the terminal and written to the disc file. Note that
the MPE SAVE option must be part of the file equation or the file will not be saved as a
permanent file. This file must not already exist (it will be created for you). If this file
already exists, DICTCDE will open $STDLIST instead and issue a warning message.
248 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
Examples of Generated Code
The following provides a description and example of the COBOL source code generated for
the entities extracted from the Dictionary.

IMAGE Database Definitions

DICTCDE allows you to generate the definition for an entire database or for selected data
sets. The code generated for the database includes the database name, the record layouts
for all its related data sets, and the constants containing the names of the search items.
The data set records generated include the data set name and the associated data items.
The data set name is generated as an 01-level identifier and the data items are generated
as 05-level identifiers. Any child elements which are related to those data items are
generated as 10-level identifiers, 15-level identifiers, and so forth.

The IMAGE special parameters can also be generated for an IMAGE database. These are
the IMAGE special name-constant parameters that identify the database, password, and
search items which are used by the IMAGE intrinsics. The code generated for the IMAGE
special parameters is shown below:

Base parameter:

 000300 01 DB-SHPMGT PIC X(9) VALUE " SHPMGT"

Password parameter:

 000400 01 SHPMGT-PWD PIC X(10) VALUE " ".

The IMAGE standard parameters can also be generated for the database. (See the
discussion of Parameters under Examples of Generated Code for more information.) Note
that all definitions for an IMAGE database are generated in WORKING-STORAGE in the
DATA DIVISION for a COBOL program.

Example

The following is an example of the code generated for an IMAGE Database:

 000100

 000200 01 CUST-M-DATA.

 000300 05 DELETE-WORD PIC X(2).

 000400 05 CUST-NUM PIC S9(8).

 000500 05 CUST-NAME PIC X(30).

 000600 05 CUST-STREET PIC X(30).

 000700 05 CUST-CITY PIC X(20).

 000800 05 CUST-STATE PIC X(2).

 000900 05 CUST-ZIP PIC S9(10).

 001000 05 CUST-PHONE PIC X(12).

 001100 05 CUST-CREDIT-LIM PIC S9(8).

 001200 05 CUST-BALANCE PIC S9(10).
Chapter 7 249

The Dictionary DICTCDE Utility
Examples of Generated Code
 001300

 001400 01 DS-CUST-M PIC X(7) VALUE "CUST-M ".

 001500

 001600 01 DATE-A-DATA.

 001700 05 X-DATE PIC X(8).

 001800

 001900 01 DS-DATE-A PIC X(7) VALUE "DATE-A ".

 002000

 002100 01 INVOICE-M-DATA.

 002200 05 DELETE-WORD PIC X(2).

 002300 05 INVOICE-NUM PIC S9(8).

 002400

 002500 01 DS-INVOICE-M PIC X(10) VALUE "INVOICE-M ".

 002600

 002700 01 ITEM-M-DATA

 002800 05 DELETE-WORD PIC X(2).

 002900 05 ITEM-NUM PIC S9(6).

 003000 05 ITEM-DESC PIC X(30).

 003100 05 ITEM-UNIT-PRICE PIC S9(8).

 003200 05 ITEM-QOH PIC S9(6).

 003300 05 ITEM-ROP PIC S9(6).

 003400

 003500 01 DS-ITEM-M PIC X(7) VALUE "ITEM-M ".

 003600

 003700 01 INVOICE-D-DATA.

 003800 05 DELETE-WORD PIC X(2).

 003900 05 INVOICE-NUM PIC S9(8).

 004000 05 CUST-NUM PIC S9(8).

 004100 05 INVOICE-TOTAL PIC S9(10).

 004200 05 INVOICE-DATE PIC X(8).

 004300

 004400 01 DS-INVOICE-D PIC X(10) VALUE "INVOICE-D ".

 004500

 004600 01 LINE-ITEMS-D-DATA.

 004700 05 DELETE-WORD PIC X(2).

 004800 05 INVOICE-NUM PIC S9(8).

 004900 05 ITEM-NUM PIC S9(6).

 005000 05 ITEM-QTY PIC S9(6).
250 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
 005100 05 ITEM-SELL-PRICE PIC S9(8).

 005200

 005300 01 DS-LINE-ITEMS-D PIC X(13) VALUE "LINE-ITEMS-D ".

 005400

 005500

 005600 01 DB-ORDERS PIC X(9) VALUE " ORDERS ".

 005700 01 ORDERS-PWD PIC X(10) VALUE "; ".

 005800

 005900 01 DI-CUST-NUM PIC X(9) VALUE "CUST-NUM ".

 006000 01 DI-X-DATE PIC X(5) VALUE "DATE ".

 006100 01 DI-INVOICE-NUM PIC X(12) VALUE "INVOICE-NUM ".

 006200 01 DI-ITEM-NUM PIC X(9) VALUE "ITEM-NUM ".

 006300 01 DI-INVOICE-DATE PIC X(13) VALUE "INVOICE-DATE ".

IMAGE Data Set Definitions

The code generated for an IMAGE data set includes the record layout of the data set, a
name which can be passed as the dset parameter to IMAGE, and the names for the search
items which can be passed as the item parameter to DBFIND. If the alias option is enabled
when the code is generated, then any element that has an alias within the data set will be
generated with its alias. Regardless of whether the alias option is enabled or not, the
respective VALUE clauses for the data set and search items will use the aliases if they
exist for those entities.
Chapter 7 251

The Dictionary DICTCDE Utility
Examples of Generated Code
Example

The following is an example of the code generated for a data set without prefixes assigned:

 000100

 000200 01 CUST-M-DATA.

 000300 05 DELETE-WORD PIC X(2).

 000400 05 CUST-NUM PIC S9(8).

 000500 05 CUST-NAME PIC X(30).

 000600 05 CUST-STREET PIC X(30).

 000700 05 CUST-CITY PIC X(20).

 000800 05 CUST-STATE PIC X(2).

 000900 05 CUST-ZIP PIC S9(10).

 001000 05 CUST-PHONE PIC X(12).

 001100 05 CUST-CREDIT-LIM PIC S9(8).

 001200 05 CUST-BALANCE PIC S9(10).

 001300

 001400 01 DS-CUST-M PIC X(7) VALUE "CUST-M ".

 001500 01 DI-CUST-NUM PIC X(9) VALUE "CUST-NUM ".

The following is an example of the code generated for a data set with the prefix “cm-”
assigned:

 000100

 000200 01 CUST-M-DATA

 000300 05 CM-DELETE-WORD PIC X(2).

 000400 05 CM-CUST-NUM PIC S9(8).

 000500 05 CM-CUST-NAME PIC X(30).

 000600 05 CM-CUST-STREET PIC X(30).

 000700 05 CM-CUST-CITY PIC X(20).

 000800 05 CM-CUST-STATE PIC X(2).

 000900 05 CM-CUST-ZIP PIC S9(10).

 001000 05 CM-CUST-PHONE PIC X(12).

 001100 05 CM-CUST-CREDIT-LIM PIC S9(8).

 001200 05 CM-CUST-BALANCE PIC S9(10).

 001300

 001400 01 DS-CUST-M PIC X(7) VALUE "CUST-M ".

 001500 01 DI-CM-CUST-NUM PIC X(9) VALUE "CUST-NUM ".
252 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
VPLUS Forms File Definitions

DICTCDE allows you to generate the definition for an entire forms file or for selected
forms. The code generated for the forms file includes the forms file name and the record
layouts for all the related forms. The form records generated include the form name and
their associated elements. The form name is generated as an 01-level identifier, and the
fields are generated as 05-level identifiers. DICTCDE can also generate field number
tables for each form in the forms file. (See the discussion of VPLUS Forms Definition for an
example of the field number tables generated for a VPLUS form.)

The VPLUS standard parameters can also be generated for a forms file. (See the
discussion of Parameters under Examples of Generated Code for more information.)

Example

The following is an example of the code generated for a VPLUS forms file:

 000100

 000200 01 ADDCUST-DATA.

 000300 05 ACCOUNT PIC X(10).

 000400 05 L-NAME PIC X(20).

 000500 05 F-NAME PIC X(18).

 000600 05 INITIAL PIC X(1).

 000700 05 STREET-ADDR PIC X(22).

 000800 05 CITY PIC X(14).

 000900 05 STATE PIC X(2).

 001000 05 ZIP-CODE PIC X(5).

 001100 05 CREDIT PIC X(2).

 001200 01 ADDCUST-FIELDS.

 001300 05 ACCOUNT-FIELDNO PIC S9(4) COMP VALUE 17.

 001400 05 L-NAME-FIELDNO PIC S9(4) COMP VALUE 18.

 001500 05 F-NAME-FIELDNO PIC S9(4) COMP VALUE 19.

 001600 05 INITIAL-FIELDNO PIC S9(4) COMP VALUE 20.

 001700 05 STREET-ADDR-FIELDNO PIC S9(4) COMP VALUE 21.

 001800 05 CITY-FIELDNO PIC S9(4) COMP VALUE 22.

 001900 05 STATE-FIELDNO PIC S9(4) COMP VALUE 5.

 002000 05 ZIP-CODE-FIELDNO PIC S9(4) COMP VALUE 23.

 002100 05 CREDIT-FIELDNO PIC S9(4) COMP VALUE 24.

 002200

 002300 01 ADDPROD-DATA.

 002400 05 PROD-NO PIC X(8).

 002500 05 DESCRIPTION PIC X(30).

 002600 01 ADDPROD-FIELDS
Chapter 7 253

The Dictionary DICTCDE Utility
Examples of Generated Code
 002700 05 PROD-NO-FIELDNO PIC S9(4) COMP VALUE 10.

 002800 05 DESCRIPTION-FIELDNO PIC S9(4) COMP VALUE 11.

 002900

 003000 01 ADDSALE-DATA.

 003100 05 ACCOUNT PIC X(10).

 003200 05 PROD-NO PIC X(8).

 003300 05 QUANTITY PIC 9(8).

 003400 05 PRICE PIC X(12).

 003500 05 TOTAL PIC X(12).

 003600 05 PURCH-DATE PIC X(6).

 003700 05 DELIV-DATE PIC X(6).

 003800 05 PURCH-NO PIC X(6).

 003900 01 ADDSALE-FIELDS

 004000 05 ACCOUNT-FIELDNO PIC S9(4) COMP VALUE 11.

 004100 05 PROD-NO-FIELDNO PIC S9(4) COMP VALUE 12.

 004200 05 QUANTITY-FIELDNO PIC S9(4) COMP VALUE 13.

 004300 05 PRICE-FIELDNO PIC S9(4) COMP VALUE 14.

 004400 05 TOTAL-FIELDNO PIC S9(4) COMP VALUE 15.

 004500 05 PURCH-DATE-FIELDNO PIC S9(4) COMP VALUE 16.

 004600 05 DELIV-DATE-FIELDNO PIC S9(4) COMP VALUE 17.

 004700 05 PURCH-NO-FIELDNO PIC S9(4) COMP VALUE 18.

 004800

 004900 01 CHGCUST-DATA.

 005000 05 ACCOUNT PIC X(10).

 005100 05 L-NAME PIC X(20).

 005200 05 F-NAME PIC X(18).

 005300 05 INITIAL PIC X(1).

 005400 05 STREET-ADDR PIC X(22).

 005500

 005600

 005700 01 ORDERSFF-CONST PIC X(9) VALUE "ORDERSFF ".

VPLUS Form Definitions

The code generated for a VPLUS form includes the record layout of the form and the field
number table for the fields in the form. These tables provide the field number for each field
in a form. (The field number is useful in some VPLUS intrinsics such as VSETERROR.)
Each field in the form is represented by a data item in the table. The data items are COMP
variables initialized to the field number value defined in the Dictionary. The following is an
example of the field tables generated for a VPLUS form:
254 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
 001100 01 DELSALE-FIELDS

 001200 05 ACCOUNT-FIELDNO PIC S9(4) COMP VALUE 11.

 001300 05 PROD-NO-FIELDNO PIC S9(4) COMP VALUE 12.

 001400 05 QUANTITY-FIELDNO PIC S9(4) COMP VALUE 13.

 001500 05 PRICE-FIELDNO PIC S9(4) COMP VALUE 14.

 001600 05 TOTAL-FIELDNO PIC S9(4) COMP VALUE 15.

 001700 05 PURCH-DATE-FIELDNO PIC S9(4) COMP VALUE 16.

 001800 05 DELIV-DATE-FIELDNO PIC S9(4) COMP VALUE 17.

 001900 05 PURCH-NO-FIELDNO PIC S9(4) COMP VALUE 18.

 002000

If the alias option is enabled when the code is generated for a form, then any element that
has an alias within that form will be generated with its alias as the COBOL identifier for
that element.

Example

The following is an example of the code generated for a form:

 000100

 000200 01 DELSALE-DATA.

 000300 05 ACCOUNT PIC X(10).

 000400 05 PROD-NO PIC X(8).

 000500 05 QUANTITY PIC 9(8).

 000600 05 PRICE PIC X(12).

 000700 05 TOTAL PIC X(12).

 000800 05 PURCH-DATE PIC X(6).

 000900 05 DELIV-DATE PIC X(6).

 001000 05 PURCH-NO PIC X(6).

 001100 01 DELSALE-FIELDS

 001200 05 ACCOUNT-FIELDNO PIC S9(4) COMP VALUE 11.

 001300 05 PROD-NO-FIELDNO PIC S9(4) COMP VALUE 12.

 001400 05 QUANTITY-FIELDNO PIC S9(4) COMP VALUE 13.

 001500 05 PRICE-FIELDNO PIC S9(4) COMP VALUE 14.

 001600 05 TOTAL-FIELDNO PIC S9(4) COMP VALUE 15.

 001700 05 PURCH-DATE-FIELDNO PIC S9(4) COMP VALUE 16.

 001800 05 DELIV-DATE-FIELDNO PIC S9(4) COMP VALUE 17.

 001900 05 PURCH-NO-FIELDNO PIC S9(4) COMP VALUE 18.

 002000
Chapter 7 255

The Dictionary DICTCDE Utility
Examples of Generated Code
MPE File Definitions

DICTCDE allows you to generate source code for the ENVIRONMENT DIVISION and
DATA DIVISION for an MPE file. For the ENVIRONMENT DIVISION portion, DICTCDE
generates the SELECT statement for an MPE file as follows:

 000100

 000200 SELECT CUSTMPE

 000300 ASSIGN "file-info "

 000400 ORGANIZATION IS SEQUENTIAL.

DICTCDE generates the SELECT statement for an MPER (MPE Relative) file as follows:

 000100

 000200 SELECT CUSTMPER

 000300 ASSIGN "file-info "

 000400 ORGANIZATION IS RELATIVE

The file-info string contains the filename, CLASS, RECORDING MODE, DEVICE, CCTL,
and the FILE SIZE fields as they are defined in the Dictionary. Note that all these fields,
except for DEVICE, are generated only if they are defined in the Dictionary for that file. If
CCTL was defined but DEVICE was not, then the DEVICE field would be generated as LP.
Otherwise, DICTCDE will generate DEVICE as it was defined in the Dictionary. If a file is
related to a LOCATION in the Dictionary, then the alias (if it is defined), and the group
and account defined by the LOCATION will be used for the file name field.

For the DATA DIVISION portion, DICTCDE generates an entry for the FILE SECTION
and the WORKING-STORAGE record. The FILE SECTION for an MPE sequential file can
be generated as an FD file or as an SD file. The FILE SECTION for an MPER file can only
be generated as an FD file.

The FILE SECTION is generated as follows:

 000100

 000200 FD CUSTMPE

 000300 BLOCK CONTAINS block-size RECORDS

 000400 RECORD CONTAINS recsize CHARACTERS

 000500 CODE-SET IS alphabet-name

 000600 RECORDING MODE IS recording-mode.
256 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
The above parameters are generated from the following entries defined in the Dictionary
for an MPE file:

block-size BLOCKING(N/Y)?

UNIT(R/C)?

MINIMUM

MAXIMUM

recsize MINIMUM RECORD SIZE

MAXIMUM RECORD SIZE

alphabet-name DATA STORAGE TYPE(A/E)?

recording-mode RECORD FORMAT(F/V/U/S)?

Since the recsize parameter is generated from the RECSIZE entry in the Dictionary, not
from a total of the storage sizes of the elements in the file, care should be taken when
defining the file's record size in the Dictionary. Otherwise, the record size defined for the
file may conflict with the record layout of the file. (Refer to Section 4, The DICTDBM
Commands, for more information on the above DICTDBM prompts.)

If any of the entries were not defined in the Dictionary for the above parameters, the
corresponding clause for those parameters will not be generated.

The record layout of the file can be generated in the FD statement or in
WORKING-STORAGE. The record layout identifies the data items associated with the file.
Each data item in the file is generated as an 05-level identifier. The child elements of those
data items are generated as 10-level identifiers, 15-level identifiers and so forth. If the
alias option is enabled when the code is generated, then any data item that has an alias
within the file will be generated with its alias as the COBOL identifier.

When the record layout of the file is generated in the FILE SECTION, it will immediately
follow the FD Statement as shown below:

 000100

 000200 FD CUSTMPE

 000300 RECORD CONTAINS 1023 CHARACTERS

 000400 RECORDING MODE IS S.

 000500

 000600 01 CUSTMPE-DATA.

 000700 05 CUST-NUM PIC S9(8).

 000800 05 CUST-CREDIT-LIM PIC S9(8).

 000900 05 CUST-BALANCE PIC S9(10).

 001000 05 INVOICE-NUM PIC S9(8).

 001100 05 INVOICE-TOTAL PIC S9(10).

 001200 05 INVOICE-DATE PIC X(8).

 001300 05 FILLER PIC X(971).
Chapter 7 257

The Dictionary DICTCDE Utility
Examples of Generated Code
When the record layout is generated in WORKING-STORAGE and no FD Statement is
generated, the code will be generated as shown below:

 000100

 000200 01 CUSTMPE-DATA.

 000300 05 CUST-NUM PIC S9(8).

 000400 05 CUST-CREDIT-LIM PIC S9(8).

 000500 05 CUST-BALANCE PIC S9(10).

 000600 05 INVOICE-NUM PIC S9(8).

 000700 05 INVOICE-TOTAL PIC S9(10).

 000800 05 INVOICE-DATE PIC X(8).

 000900 05 FILLER PIC X(971).

When the record layout is generated in WORKING-STORAGE and the FD Statement is
also generated, the 01-level definition will appear in the FD Statement to serve as a buffer
for READs and WRITEs to the file. The generated code is shown below:

 000100

 000200 FD CUSTMPE

 000300 RECORD CONTAINS 1023 CHARACTERS

 000400 RECORDING MODE IS S.

 000500 01 CUSTMPE-REC PIC X(1023).

 000100

 000200 01 CUSTMPE-DATA.

 000300 05 CUST-NUM PIC S9(8).

 000400 05 CUST-CREDIT-LIM PIC S9(8).

 000500 05 CUST-BALANCE PIC S9(10).

 000600 05 INVOICE-NUM PIC S9(8).

 000700 05 INVOICE-TOTAL PIC S9(10).

 000800 05 INVOICE-DATE PIC X(8).

 000900 05 FILLER PIC X(971).

Note that the size generated for CUSTMPE-REC is derived from the Dictionary definition
for the record size of the file. However, if the record size of the file was not defined in the
Dictionary, DICTCDE will compute its size from the record layout size. For a file with
multiple record formats, only the size of the primary record format will be used in
computing the file's record size. Files with multiple record layouts can also be generated by
DICTCDE. If the record layout is to be generated in the FD statement and the file has
more than one record layout, DICTCDE will use an implicit REDEFINES to define the
multiple record layouts. (In other words, DICTCDE lays out the multiple record layouts,
one after the other, which implicitly shows their relationship.) Each record layout will
follow the other in the FD Statement as follows:

 000100

 000200 FD CUSTMPE
258 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
 000300 01 CUSTMPE-DATA.

 000400 05 RECORD-LAYOUT-1 PIC X(80).

 000500 01 CUSTMPE-DATA2.

 000600 05 RECORD-LAYOUT-2-1 PIC X(40).

 000700 05 RECORD-LAYOUT-2-2 PIC X(40).

If the record layout is to be generated in WORKING-STORAGE and the file has more than
one record format, DICTCDE will use an explicit REDEFINES to define the multiple
record layouts. (In other words, DICTCDE will use the REDEFINES clause to show the
relationship between the different record layouts.) The generated code for the FD
Statement and for WORKING-STORAGE is shown below:

 000100

 000200 FD CUSTMPE

 000300 01 CUSTMPE-REC PIC X(80).

 000100

 000200 01 CUSTMPE-DATA.

 000300 05 RECORD-LAYOUT-1 PIC X(80).

 000400 01 CUSTMPE-DATA2 REDEFINES CUSTMPE-DATA.

 000500 05 RECORD-LAYOUT-2-1 PIC X(40).

 000600 05 RECORD-LAYOUT-2-2 PIC X(40).

Example

The following is an example of the code generated for an MPE file. (Note that the SELECT
STATEMENT and FD statement have both been generated. The record layout has been
generated in WORKING-STORAGE.)

 000100

 000200 SELECT CUSTMPE

 000300 ASSIGN "CUSTMPE,,,DISC"

 000400 ORGANIZATION IS SEQUENTIAL.

 000500

 000600 FD CUSTMPE

 000700 RECORD CONTAINS 1023 CHARACTERS

 000800 RECORDING MODE IS S.

 000900 01 CUSTMPE-REC PIC X(1023)

 001000

 001100 01 CUSTMPE-DATA.

 001200 05 CUST-NUM PIC S9(8).

 001300 05 CUST-CREDIT-LIM PIC S9(8).

 001400 05 CUST-BALANCE PIC S9(10).

 001500 05 INVOICE-NUM PIC S9(8).
Chapter 7 259

The Dictionary DICTCDE Utility
Examples of Generated Code
 001600 05 INVOICE-TOTAL PIC S9(10).

 001700 05 INVOICE-DATE PIC X(8).

 001800 05 FILLER PIC X(971).

KSAM File Definitions

DICTCDE allows you to generate source code for the ENVIRONMENT DIVISION and
DATA DIVISION for a KSAM file.

For the ENVIRONMENT DIVISION portion, DICTCDE generates the SELECT statement
for a KSAM file as follows:

 000100

 000200 SELECT KORDER

 000300 ASSIGN "file-info "

 000400 ORGANIZATION IS INDEXED

 000500 RECORD KEY IS CUST-NUM

 000600 ALTERNATE RECORD KEY INVOICE-NUM

 000700 ALTERNATE RECORD KEY INVOICE-DATE WITH DUPLICATES.

The file-info string contains the filename and the FILE SIZE fields as they are defined in
the Dictionary. Note that these fields are generated only if they are defined in the
Dictionary for that file. If a file is related to a LOCATION in the Dictionary, then the alias
(if any), group, and account defined by the LOCATION will be used for the file name field.
DICTCDE also generates the key clauses according to the definitions of the items in the
KSAM file. For the DATA DIVISION portion, DICTCDE generates an entry for the FILE
SECTION and the WORKING-STORAGE record.

The FILE SECTION is generated as follows:

 000100

 000200 FD KORDER

 000300 BLOCK CONTAINS block-size RECORDS

 000400 RECORD CONTAINS recsize CHARACTERS

 000500 RECORDING MODE IS recording-mode.

The above parameters are generated from the following entries defined in the Dictionary
for a KSAM file:

block-size BLOCKING (N/Y)?

UNIT (R/C)?

MINIMUM

MAXIMUM

recsize MAXIMUM RECORD SIZE

recording-mode RECORD FORMAT (F/V/U/S)?
260 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
Since the recsize parameter is generated from the entries in the Dictionary, not from a
total of the storage sizes of the elements in the file, care should be taken when defining the
file's record size in the Dictionary. Otherwise, the record size defined for the file may
conflict with the record layout of the file. (Refer to Chapter 4, DICTDBM Commands, for
more information on the above DICTDBM prompts.)

If any of the entries were not defined in the Dictionary for the above parameters, the
corresponding clause for those parameters would not be generated.

The record layout of the file can be generated in the FD statement or in
WORKING-STORAGE. The record layout identifies the data items associated with the file.
Each data item in the file is generated as an 05-level identifier. The child elements of those
data items are generated as 10-level identifiers, 15-level identifiers and so forth. If the
alias option is enabled when the code is generated, then any data item that has an alias
within the file will be generated with its alias as the COBOL identifier.

When the record layout of the file is generated in the FILE SECTION, it will immediately
follow the FD Statement as shown below:

 000100

 000200 FD KORDER

 000300 RECORDING MODE IS F.

 000400

 000500 01 KORDER-DATA.

 000600 05 CUST-NUM PIC S9(8).

 000700 05 CUST-CREDIT-LIM PIC S9(8).

 000800 05 CUST-BALANCE PIC S9(10).

 000900 05 INVOICE-NUM PIC S9(8).

 001000 05 INVOICE-TOTAL PIC S9(10).

 001100 05 INVOICE-DATE PIC X(8).

When the record layout is generated in WORKING-STORAGE, and no copylib module has
been specified for the FD Statement, the code will be generated as shown below:

 000100

 000200 01 KORDER-DATA.

 000300 05 CUST-NUM PIC S9(8).

 000400 05 CUST-CREDIT-LIM PIC S9(8).

 000500 05 CUST-BALANCE PIC S9(10).

 000600 05 INVOICE-NUM PIC S9(8).

 000700 05 INVOICE-TOTAL PIC S9(10).

 000800 05 INVOICE-DATE PIC X(8).
Chapter 7 261

The Dictionary DICTCDE Utility
Examples of Generated Code
When the record layout is generated in WORKING-STORAGE, and the FD Statement is
also generated, the 01-level definition will appear in the FD Statement to serve as a buffer
for READs and WRITEs to the file. The generated code is shown below:

 000100

 000200 FD KORDER

 000300 RECORDING MODE IS F.

 000400 01 KORDER-REC PIC X(52).

 000500

 000600 01 KORDER-DATA.

 000700 05 CUST-NUM PIC S9(8).

 000800 05 CUST-CREDIT-LIM PIC S9(8).

 000900 05 CUST-BALANCE PIC S9(10).

 001000 05 INVOICE-NUM PIC S9(8).

 001100 05 INVOICE-TOTAL PIC S9(10).

 001200 05 INVOICE-DATE PIC X(8).

This will only be of use when the file is being accessed by the KSAM COBOL intrinsics. If
the file is defined in the SELECT Statement as ORGANIZATION INDEXED, and the keys
have been defined, then COBOL requires that the record layout be generated in the FILE
SECTION.

Note that the size generated for KORDER-REC is derived from the Dictionary definition
for the record size of the file. However, if the record size of the file was not defined in the
Dictionary, DICTCDE will compute its size from the record layout size. For a file with
multiple record formats, only the size of the primary record format will be used in
computing the file's record size.

KSAM files with multiple record layouts can also be generated by DICTCDE. If the record
layout is to be generated in the FD statement, and the file has more than one record
layout, DICTCDE will use an implicit REDEFINES to define the multiple record layouts.
Each record layout will follow the other in the FD Statement as follows:

 000100

 000200 FD KORDER

 000300 01 KORDER-DATA.

 000400 05 RECORD-LAYOUT-1 PIC X(80).

 000500 01 KORDER-DATA2.

 000600 05 RECORD-LAYOUT-2-1 PIC X(40).

 000700 05 RECORD-LAYOUT-2-2 PIC X(40).

Note that KORDER-DATA2 is defined in the Dictionary as a parent element with 2 child
elements.

If the record layout is to be generated in WORKING-STORAGE and the file has more than
one record format, DICTCDE will use an explicit REDEFINES to define the multiple
record layouts. The generated code for the FD Statement and for WORKING-STORAGE is
262 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
shown below.

 000100

 000200 01 KORDER-DATA.

 000300 05 RECORD-LAYOUT-1 PIC X(80).

 000400 01 KORDER-DATA2 REDEFINES KORDER-DATA.

 000500 05 RECORD-LAYOUT-2-1 PIC X(40).

 000600 05 RECORD-LAYOUT-2-2 PIC X(40).

You can also generate the KSAM FILETABLE parameter along with the
WORKING-STORAGE record layout for the KSAM file. The FILETABLE parameter is the
special parameter required by KSAM to be passed to each KSAM COBOL intrinsic. The
following is an example of the FILETABLE parameter generated for the file KORDER:

 000100

 000200 01 KORDER-FILETAB.

 000300 05 FILENUMBER PIC S9(4) COMP VALUE 0.

 000400 05 FILENAME PIC X(8) VALUE "KORDER".

 000500 05 I-O-TYPE PIC S9(4) COMP VALUE 0.

 000600 05 A-MODE PIC S9(4) COMP VALUE 0.

 000700 05 PREV-OP PIC S9(4) COMP VALUE 0.

DICTCDE will also generate the KSAM standard parameters. The KSAM standard
parameters include a general FILETABLE parameter that does not reference a file name
and a STAT parameter that contains STATUS-KEY1 and STATUS-KEY2 for use with the
KSAM COBOL intrinsics. The standard FILETABLE can be used for any KSAM file as
long as it is initialized correctly. The following is an example of the KSAM standard
parameters:

 000100

 000200 01 FILETABLE.

 000300 05 FILENUMBER PIC S9(4) COMP VALUE 0.

 000400 05 FILENAME PIC X(8) VALUE SPACES.

 000500 05 I-O-TYPE PIC S9(4) COMP VALUE 0.

 000600 05 A-MODE PIC S9(4) COMP VALUE 0.

 000700 05 PREV-OP PIC S9(4) COMP VALUE 0.

 000800 01 STAT.

 000900 05 STATUS-KEY-1 PIC X.

 001000 05 STATUS-KEY-2 PIC X.
Chapter 7 263

The Dictionary DICTCDE Utility
Examples of Generated Code
Example

The following is an example of the code generated for a KSAM file. (Note that the SELECT
statement and FD statement have both been generated.)

 000100

 000200 SELECT KORDER

 000300 ASSIGN "KORDER"

 000400 ORGANIZATION IS INDEXED

 000500 RECORD KEY IS CUST-NUM

 000600 ALTERNATE RECORD KEY INVOICE-NUM

 000700 ALTERNATE RECORD KEY INVOICE-DATE WITH DUPLICATES.

 000800

 000900 FD KORDER

 001000 RECORDING MODE IS F.

 001100 01 KORDER-DATA.

 001200 05 CUST-NUM PIC S9(8).

 001300 05 CUST-CREDIT-LIM PIC S9(8).

 001400 05 CUST-BALANCE PIC S9(10).

 001500 05 INVOICE-NUM PIC S9(8).

 001600 05 INVOICE-TOTAL PIC S9(10).

 001700 05 INVOICE-DATE PIC X(8).

Element Definitions

DICTCDE allows you to generate source code for any data element defined in the
Dictionary. The code is generated in WORKING-STORAGE. Each element is generated as
an 01-level data definition. Any child elements related to the element are generated as an
05-level identifier, 10-level identifier and so forth. If the alias option is enabled when the
code is generated, then any child element will be generated with its alias as its COBOL
identifier.

Example

The following is an example of the code generated for an element with no child elements:

 000200 01 CUST-NUM PIC S9(8).

The next example shows the code generated for an element that has child elements:

 000100

 000200 01 RECORD1.

 000300 05 FIELD1 PIC X(2).

 000400 05 FIELD2 PIC X(8).

 000500 05 FIELD3 PIC X(6).
264 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
Compound Element Definitions

DICTCDE generates an array declaration for an element if its sub-element count is
defined in the Dictionary as greater than one. Since arrays cannot appear at the 01-level in
COBOL, DICTCDE will generate an array as an 05-level identifier, with a FILLER as an
01-level identifier.

For example, if an element is defined in the Dictionary as:

 ELEMENT = PRICE

 ELEMENT-TYPE = I

 ELEMENT-SIZE = 2

 ELEMENT-LENGTH = 2

 ELEMENT-COUNT = 10

the following code will be generated:

 000100

 000200 01 FILLER.

 000300 05 PRICE PIC S9(2) COMP OCCURS 10.

If the element is defined in the Dictionary as:

 ELEMENT = ACCOUNT

 ELEMENT-TYPE = P

 ELEMENT-SIZE = 10

 ELEMENT-DECIMAL = 1

 ELEMENT-LENGTH = 6

 ELEMENT-COUNT = 4

the following code will be generated:

 000100

 000200 01 FILLER.

 000300 05 ACCOUNT PIC S9(8)V9(1) COMP-3 OCCURS 4.

Back-Referenced Elements

DICTCDE generates a COBOL table for an element if its element type is defined in the
Dictionary as “*”. (This element back references another element.) The element reference
becomes the name of the sublevel of the table. For example, if the entity is defined in the
Dictionary as:

 ELEMENT = ACCOUNT

 ELEMENT-TYPE = *

 ELEMENT-REFERENCE = ACCOUNT-MASTER

 ELEMENT-COUNT = 10

and the back-referenced element ACCOUNT-MASTER is defined in the Dictionary as:

 ELEMENT = ACCOUNT-MASTER
Chapter 7 265

The Dictionary DICTCDE Utility
Examples of Generated Code
 ELEMENT-TYPE = X

 ELEMENT-SIZE = 14

 ELEMENT-LENGTH = 14

 ELEMENT-COUNT = 1

the following code is generated:

 000100

 000200 01 FILLER.

 000300 05 ACCOUNT OCCURS 10.

 000400 10 ACCOUNT-MASTER PIC X(14).

If both the element and the element reference have COUNTS greater than one, a
multi-dimensional table is generated. For example, an element is defined in the Dictionary
as:

 ELEMENT = ACCOUNT

 ELEMENT-TYPE = *

 ELEMENT-REFERENCE = ACCOUNT-MASTER

 ELEMENT-COUNT = 10

The back-referenced element ACCOUNT-MASTER is defined in the Dictionary as:

 ELEMENT = ACCOUNT-MASTER

 ELEMENT-TYPE = X

 ELEMENT-SIZE = 14

 ELEMENT-LENGTH = 14

 ELEMENT-COUNT = 3

The code for ACCOUNT would be generated as follows:

 000100

 000200 01 FILLER.

 000300 05 ACCOUNT OCCURS 10.

 000400 10 ACCOUNT-MASTER PIC X(14) OCCURS 3.

The next example shows how DICTCDE generates code for an element that
back-references an element that has child elements related to it. If an element is defined in
the Dictionary as:

 ELEMENT = ACCOUNT

 ELEMENT-TYPE = *

 ELEMENT-REFERENCE = ACCOUNT-MASTER

 ELEMENT-COUNT = 10

and the back-referenced element ACCOUNT-MASTER has the elements NAME,
ADDRESS and COST related to it, then these elements are defined in the Dictionary as:

 PARENT-ELEMENT = ACCOUNT-MASTER

 ELEMENT-TYPE = X
266 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
 ELEMENT-SIZE = 36

 ELEMENT-LENGTH = 36

 ELEMENT-COUNT = 1

 CHILD-ELEMENTS = NAME ADDRESS COST

 ELEMENT-TYPE = X X X

 ELEMENT-SIZE = 9 2 5

 ELEMENT-LENGTH = 9 2 5

 ELEMENT-COUNT = 1 1 5

 ELEMENT-BYTE POSITION = 1 10 12

The code for the element ACCOUNT is generated as follows:

 000100

 000200 01 FILLER.

 000300 05 ACCOUNT OCCURS 10.

 000400 10 ACCOUNT-MASTER.

 000500 15 NAME PIC X(9).

 000600 15 ADDRESS PIC X(2).

 000700 15 COST PIC X(5) OCCURS 5.

In the above case, ACCOUNT-MASTER is generated only to include NAME, ADDRESS,
and COST as elements of table ACCOUNT.

Element to Element Relationships

DICTCDE handles element-to-element relationships (child elements to parent elements)
differently depending on how the storage lengths and byte positions are defined in the
Dictionary for the child elements. In the first example, the storage length of the parent
element (as defined in the Dictionary) is equal to the sum of the storage lengths for the
child elements. The byte positions for the child elements have been defined in the
Dictionary to allow the child elements to consecutively follow each other within the parent
element. For this example, the element SALES has the elements PRODUCT, PRICE and
AMOUNT as child elements. The element SALES is defined in the Dictionary as:

 PARENT-ELEMENT = SALES

 ELEMENT-TYPE = X

 ELEMENT-SIZE = 50

 ELEMENT-LENGTH = 50

The child elements are defined in the Dictionary as:

 CHILD-ELEMENTS = PRODUCT PRICE AMOUNT

 ELEMENT-TYPE = X X X

 ELEMENT-SIZE = 12 28 10

 ELEMENT-LENGTH = 12 28 10

 ELEMENT-BYTE POSITION = 1 13 41
Chapter 7 267

The Dictionary DICTCDE Utility
Examples of Generated Code
The code for element SALES is generated as follows:

 000100

 000200 01 SALES.

 000300 05 PRODUCT PIC X(12).

 000400 05 PRICE PIC X(28).

 000500 05 AMOUNT PIC X(10).

Note that the COBOL record would be represented in storage as a memory array of a
length of 50 bytes, with PRODUCT being from byte 1 to 12, PRICE from byte 13 to 40 and
AMOUNT from byte 41 to 50.

In the next example of element-to-element relationships, the storage length for the parent
element is defined in the Dictionary. The child elements are defined at specified offsets
defined in the Dictionary, within the parent element's storage. If there is a gap between the
memory areas of two consecutive child elements, DICTCDE generates FILLER items in
order to place the child elements at the proper offset within the parent element and to
assign the correct size to the parent element. Therefore, when the parent element is
accessed, the correct amount of memory will be available for it. Also, when the child
element is accessed, it will be at the correct offset within the parent. For example, the
element ADDRESS has the elements STREET and YEARS related to it. The element
ADDRESS is defined in the Dictionary as:

 PARENT-ELEMENT = ADDRESS

 ELEMENT-TYPE = X

 ELEMENT-SIZE = 48

 ELEMENT-LENGTH = 48

The child elements are defined in the Dictionary as:

 CHILD-ELEMENTS = STREET YEARS

 ELEMENT-TYPE = X I

 ELEMENT-SIZE = 12 5

 ELEMENT-LENGTH = 12 4

 ELEMENT-BYTE POSITION = 4 30

Note that ADDRESS requires a storage length of 48 bytes. Therefore, when DICTCDE
generates the code for ADDRESS, a FILLER is used at the end to fill up the 48 bytes.

 000100

 000200 01 ADDRESS.

 000300 05 FILLER PIC X(3).

 000400 05 STREET PIC X(12).

 000500 05 FILLER PIC X(14).

 000600 05 YEARS PIC S9(5) COMP.

 000700 05 FILLER PIC X(15).
268 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
Forced REDEFINES

When the storage lengths and byte offsets for two child elements overlap each other within
the parent element, the two child elements cannot be placed adjacently within the parent
element record. DICTCDE generates these elements as a forced REDEFINES to insure
they overlap exactly as defined in the Dictionary. For example, the element NAME has the
child elements F-NAME and M-NAME. The parent element NAME is defined in the
Dictionary as:

 ELEMENT = NAME

 ELEMENT-TYPE = X

 ELEMENT-SIZE = 44

 ELEMENT-LENGTH = 44

The child elements are defined in the Dictionary as:

 CHILD-ELEMENTS = F-NAME M-NAME

 ELEMENT-TYPE = X X

 ELEMENT-SIZE = 28 12

 ELEMENT-LENGTH = 28 12

 ELEMENT-BYTE POSITION = 1 12

The code for the element NAME would be generated as follows:

 000100

 000200 01 NAME.

 000300 05 F-NAME PIC X(28).

 000400 05 FILLER PIC X(16).

 000500 01 FILLER REDEFINES NAME.

 000600 05 FILLER PIC X(11).

 000700 05 M-NAME PIC X(12).

 000800 05 FILLER PIC X(21).
Chapter 7 269

The Dictionary DICTCDE Utility
Examples of Generated Code

8

Explicit REDEFINES

Overlapping child elements can also be generated by DICTCDE as explicit REDEFINES
as long as the record layout for the parent element was defined in the Dictionary using the
dummy element $REDEFINES. All child elements added to the parent element's list of
relationships before $REDEFINES make up the first record layout. When $REDEFINES
is related to the parent element, it implies that those child elements added to the parent's
list of relationships after the $REDEFINES dummy, constitute an alternate record layout.

Note that when $REDEFINES is related to the parent element in DICTDBM, an alias
must be defined for $REDEFINES so that DICTCDE can use the alias as the COBOL
identifier for $REDEFINES. $REDEFINES can be related to the file only once. DICTCDE
keeps track of the storage space of the first record layout and correctly lays out the
subsequent elements after the $REDEFINES into alternate records, thus each alternate
record format does not exceed the storage space of the first record. For example, the
element ELEM10 has the child elements ELEM2, ELEM3, ELEM7, $REDEFINES and
ELEM8 (in that order). The parent element ELEM10 is defined in the Dictionary as:

 ELEMENT = ELEM10

 ELEMENT-TYPE = X

 ELEMENT-SIZE = 28

 ELEMENT-LENGTH = 28

Suppose the child elements are defined in the Dictionary as:

CHILD-ELEMENTS = ELEM2 ELEM3 ELEM7 $REDEFINES ELEM

 ELEMENT-TYPE = X I X X

 ELEMENT-SIZE = 12 5 28 10

 ELEMENT-LENGTH = 12 4 28 10

 ELEMENT-BYTE POSITION = 1 13 1 1

 ELEMENT-ALIAS = REDEFINE-REC

Note that if any of the above elements were not related to the parent element in the correct
order, you could change the order with the REORDER command provided by DICTDBM.

The code for the element ELEM10 would be generated as follows:

 000100

 000200 01 ELEM10.

 000300 05 ELEM2 PIC X(12).

 000400 05 ELEM3 PIC S9(5) COMP.

 000500 05 FILLER PIC X(12).

 000600 01 FILLER REDEFINES ELEM10.

 000700 05 ELEM7 PIC X(28).

 000800 01 REDEFINE-REC REDEFINES ELEM10.

 000900 05 ELEM8 PIC X(10).

 001000 05 FILLER PIC X(18).
270 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
Edit Masks

Display fields can be generated for elements defined with edit masks in the Dictionary. If
the edit mask is enabled (see the Options response to the main prompt), DICTCDE will
generate a PICTURE clause for the edit mask. Table 7-1 shows how the edit masks are
generated as COBOL PICTURE characters.

When code is generated for elements with edit masks, the display size for the elements is
generated according to the display size defined in the Dictionary. However, the storage
length is changed when code is generated for edit masks. For entities which contain child
elements with edit masks, the record layout for the parent entity is also changed.
Therefore, the byte offsets for the elements with edit masks must be defined in the
Dictionary according to the edit mask size, not by the data storage requirements. (This
may require changes to the existing definitions in the Dictionary.)

When defining a parent element or file with edit masks in the Dictionary, you should
manually define the byte offsets for that entity in the Dictionary according to the COBOL
storage lengths for their edit masks. Otherwise, the child elements will probably overlap
each other. To compute the required storage length, add one byte for each COBOL
PICTURE clause character. The storage length of the parent element should also be
defined as the total storage lengths of the child elements with their edit masks, to ensure
that the child elements all fit within the record layout.

Table 7-1. Edit Mask to COBOL PICTURE Clause Characters

Dictionary Edit Mask COBOL PICTURE
Clause Characters

Comments

^ X or 9 X if data type is X or U, otherwise 9

, / $ * Z , / $ * Z These are valid COBOL characters

. Note that only one period may appear

(blank) B

CR CR

DR DR COBOL only recognizes DB.

! ERROR COBOL does not have an equivalent

Any other ERROR No other characters are allowed
Chapter 7 271

The Dictionary DICTCDE Utility
Examples of Generated Code
In the next table, the parent element PART-MASTER has the child elements PART1,
PART2, PART3, PART4, PART5, and PART6 related to it. Table 7-2 shows the edit masks
and the correct byte offsets as defined in the Dictionary for the child elements and the
COBOL PICTURE clause generated for those elements.

Code Generated for Standard Parameters

DICTCDE also generates source code for the IMAGE, VPLUS and KSAM standard
parameters. (To generate these standard parameters, see the Parameter response to the
main prompt issued by DICTCDE.)

The IMAGE standard parameters include the DB STATUS array declaration, the eight
MODE declarations, and the utility LIST declarations. The IMAGE parameters are
generated in the WORKING-STORAGE record as follows:

 000100

 000200 01 STATUS.

 000300 05 C-WORD PIC S9(4) COMP.

 000400 05 STAT2 PIC S9(4) COMP.

 000500 05 STAT3-4 PIC S9(9) COMP.

 000600 05 STAT5-6 PIC S9(9) COMP.

 000700 05 STAT7-8 PIC S9(9) COMP.

 000800 05 STAT9-10 PIC S9(9) COMP.

 000900 01 DUMMY-LIST PIC X(2) VALUE "; ".

 001000 01 ALL-ITEMS PIC X(2) VALUE "@;".

 001100 01 PREVIOUS-LIST PIC X(2) VALUE "*;".

 001200 01 MODE1 PIC 9999 COMP VALUE 1.

 001300 01 MODE2 PIC 9999 COMP VALUE 2.

 001400 01 MODE3 PIC 9999 COMP VALUE 3.

 001500 01 MODE4 PIC 9999 COMP VALUE 4.

 001600 01 MODE5 PIC 9999 COMP VALUE 5.

Table 7-2. Generating COBOL PICTURE Clauses

ELEMENT EDIT MASK BYTE/
POSITION

COBOL PICTURE Clause

Part1 ^^^^^^/^^^^^^/^^ 1 05 PART1 PIC XXXXXX/XXXXXX/XX.

Part2 ^^^ ^^^ ^^^^ 17 05 PART2 PIC XXXBXXXBXXXX.

Part3 $$$,$$$,$$$.^^ 29 05 PART3 PIC $$$,$$$,$$$.99.

Part4 ZZZ,ZZZ.^^ 43 05 PART4 PIC ZZZ,ZZZ.99.

Part5 ^^,^^^.^^CR 53 05 PART5 PIC 99,999.99CR.

Part6 ^^,^^^.^^DR 64 05 PART6 PIC 99,999.99DB
272 Chapter 7

The Dictionary DICTCDE Utility
Examples of Generated Code
 001700 01 MODE6 PIC 9999 COMP VALUE 6.

 001800 01 MODE7 PIC 9999 COMP VALUE 7.

 001900 01 MODE8 PIC 9999 COMP VALUE 8.

The VPLUS standard parameters include the VPLUS COMAREA definition and a
character string which identifies the terminal. (The terminal ID is used for passing to
VOPENTERM.) The VPLUS parameters are generated to the WORKING-STORAGE
record as follows:

 001800

 001900 01 COMAREA.

 002000 05 COM-STATUS PIC S9(4) COMP VALUE 0.

 002100 05 COM-LANGUAGE PIC S9(4) COMP VALUE 0.

 002200 05 COM-COMAREALEN PIC S9(4) COMP VALUE 60.

 002300 05 FILLER PIC S9(4) COMP VALUE 0.

 002400 05 COM-MODE PIC S9(4) COMP VALUE 0.

 002500 05 COM-LASTKEY PIC S9(4) COMP VALUE 0.

 002600 05 COM-NUMERRS PIC S9(4) COMP VALUE 0.

 002700 05 FILLER PIC S9(4) COMP VALUE 0.

 002800 05 FILLER PIC S9(4) COMP VALUE 0.

 002900 05 FILLER PIC S9(4) COMP VALUE 0.

 003000 05 COM-CFNAME PIC X(15) VALUE SPACES.

 003100 05 FILLER PIC X(1) VALUE SPACES.

 003200 05 COM-NFNAME PIC X(15) VALUE SPACES.

 003300 05 FILLER PIC X(1) VALUE SPACES.

 003400 05 COM-REPEATOPT PIC S9(4) COMP VALUE 0.

 003500 05 COM-NFOPT PIC S9(4) COMP VALUE 0.

 003600 05 FILLER PIC S9(4) COMP VALUE 0.

 003700 05 COM-DBUFLEN PIC S9(4) COMP VALUE 0.

 003800 05 FILLER PIC S9(4) COMP VALUE 0.

 003900 05 FILLER PIC S9(4) COMP VALUE 0.

 004000 05 COM-DELETEFLAG PIC S9(4) COMP VALUE 0.

 004100 05 COM-SHOWCONTROL PIC S9(4) COMP VALUE 0.

 004200 05 FILLER PIC S9(4) COMP VALUE 0.

 004300 05 FILLER PIC S9(4) COMP VALUE 0.

 004400 05 FILLER PIC S9(4) COMP VALUE 0.

 004500 05 FILLER PIC S9(4) COMP VALUE 0.

 004600 05 FILLER PIC S9(4) COMP VALUE 0.

 004700 05 FILLER PIC S9(4) COMP VALUE 0.

 004800 05 FILLER PIC S9(4) COMP VALUE 0.
Chapter 7 273

The Dictionary DICTCDE Utility
Examples of Generated Code
 004900 05 FILLER PIC S9(4) COMP VALUE 0.

 005000 05 COM-NUMRECS PIC S9(9) COMP VALUE 0.

 005100 05 COM-RECNUM PIC S9(9) COMP VALUE 0.

 005200 05 FILLER PIC S9(4) COMP VALUE 0

 005300 05 FILLER PIC S9(4) COMP VALUE 0.

 005400 05 COM-TERMFILENUM PIC S9(4) COMP VALUE 0.

 005500 05 FILLER PIC S9(4) COMP VALUE 0.

 005600 05 FILLER PIC S9(4) COMP VALUE 0.

 005700 05 FILLER PIC S9(4) COMP VALUE 0.

 005800 05 FILLER PIC S9(4) COMP VALUE 0.

 005900 05 FILLER PIC S9(4) COMP VALUE 0.

 006000 05 FILLER PIC S9(4) COMP VALUE 0.

 006100 05 COM-TERMOPTIONS PIC S9(4) COMP VALUE 0

 006200 05 FILLER PIC S9(4) COMP VALUE 0.

 006300 05 FILLER PIC S9(4) COMP VALUE 0.

 006400 05 FILLER PIC S9(4) COMP VALUE 0.

 006500 05 FILLER PIC S9(4) COMP VALUE 0.

 006600 01 TERMFILENAME PIC X(6) VALUE "TERM ".

 006700 01 MESSAGE-BUF PIC X(72) VALUE SPACES.

 006800 01 MESSAGE-BUF-LEN PIC S9(4) COMP VALUE 72.

 006900 01 MSGLEN PIC S9(4) COMP VALUE 0.

 007000 01 FIELDNUM PIC S9(4) COMP VALUE 0.

 007100 01 BUFLEN PIC S9(4) COMP VALUE 0.

The KSAM standard parameters include a general KSAM FILETABLE which does not
reference any particular file and the STAT parameters. The general KSAM FILETABLE
can be used for any file as long as it is initialized correctly. The STAT parameters contain
STATUS-KEY1 and STATUS-KEY2 which can be used by the KSAM COBOL intrinsics.
The KSAM parameters are generated to WORKING-STORAGE as follows:

 007300 01 FILETABLE.

 007400 05 FILENUMBER PIC S9(4) COMP VALUE 0.

 007500 05 FILENAME PIC X(8) VALUE SPACES.

 007600 05 I-O-TYPE PIC S9(4) COMP VALUE 0.

 007700 05 A-MODE PIC S9(4) COMP VALUE 0.

 007800 05 PREV-OP PIC S9(4) COMP VALUE 0.

 007900 01 STAT.

 008000 05 STATUS-KEY-1 PIC X.

 008100 05 STATUS-KEY-2 PIC X.
274 Chapter 7

The Dictionary DICTCDE Utility
DICTCDE Naming Considerations
DICTCDE Naming Considerations
When an entity is extracted from the Dictionary, DICTCDE checks that the entity name is
compatible with COBOL. If the entity name defined in the Dictionary is an illegal COBOL
name or the entity name is a COBOL reserved word, an error message will be issued, and
DICTCDE will convert the names to legal COBOL names. Note that the names generated
by DICTCDE will not be reflected in the Dictionary.

The following describes how DICTCDE converts entity names that are not compatible with
COBOL.

If the entity name, as defined in the Dictionary, begins with a hyphen, DICTCDE will add
an X- to the beginning of the entity name.

Suppose the entity name in the Dictionary is:

-STOCK

the following COBOL name will be generated:

X--STOCK

If the entity name, as defined in the Dictionary, ends with a hyphen, DICTCDE will add an
-X to the end of the entity name. Suppose the entity name in the Dictionary is:
CUSTSTOCK- the following COBOL name will be generated:

CUSTSTOCK--X

If the entity name extracted from the Dictionary is a COBOL reserved word, DICTCDE
will add an X- to the beginning of the word. Also, DICTCDE prints a comment next to the
generated entity to inform you that this entity name is a COBOL reserved word. For
example, if the entity is defined in the Dictionary as FILE, the following code will be
generated:

X-FILE

Also, if the entity name contains any invalid COBOL characters, those characters will be
replaced with a hyphen.
Chapter 7 275

The Dictionary DICTCDE Utility
COBOL Data Type Mappings
COBOL Data Type Mappings
To be compatible with COBOL, the data types defined in the Dictionary must be mapped to
COBOL data types. The following shows how the Dictionary data types are mapped to
compatible COBOL data types. Note that the COBOL data types occupy the same storage
length as the data types defined in the Dictionary. However, some Dictionary definitions
allow numbers larger than what COBOL will allow (for example, the integer data type).
Also, for some data types, the Dictionary allows 28 and 29 numeric digit elements, whereas
COBOL only allows numeric elements to have a maximum of 18 digits. Elements defined
in the Dictionary that are larger than the maximum digits allowed by COBOL will be
flagged as an error and converted to data type X when generated by DICTCDE.

Any ASCII Character

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = X

 ELEMENT-SIZE = 20

 ELEMENT-LENGTH = 20

the corresponding COBOL clause will be generated:

 PIC X(20)

Uppercase Alphanumeric String

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = U

 ELEMENT-SIZE = 20

 ELEMENT-LENGTH = 20

the corresponding COBOL clause will be generated:

 PIC X(20)

Numeric ASCII String

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = 9 or 9+

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 2

 ELEMENT-LENGTH = 7

the corresponding COBOL clause will be generated:

 PIC 9(5)V9(2)
276 Chapter 7

The Dictionary DICTCDE Utility
COBOL Data Type Mappings
Zoned Decimal

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = Z+

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 2

 ELEMENT-LENGTH = 7

the corresponding COBOL clause will be generated:

 PIC 9(5)V9(2)

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = Z

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 2

 ELEMENT-LENGTH = 7

the corresponding COBOL clause will be generated:

 PIC S9(5)V9(2)

If the above entity is defined in the Dictionary as SIGN TRAILING SEPARATE,
DICTCDE will generate the corresponding COBOL clause:

 PIC S9(4)V9(2) SIGN TRAILING SEPARATE

Note that 1 less byte is generated because of the sign.

Boolean

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = B

 ELEMENT-SIZE = 1

 ELEMENT-LENGTH = 1

the corresponding COBOL clause will be generated:

 PIC X(1)

Since this is an undefined COBOL type, DICTCDE will flag this element definition with a
warning message.

String

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = S

 ELEMENT-SIZE = 5

 ELEMENT-LENGTH = 8

the corresponding COBOL clause will be generated:

 PIC X(8)
Chapter 7 277

The Dictionary DICTCDE Utility
COBOL Data Type Mappings
Since this is an undefined COBOL type, DICTCDE will flag this element definition with a
warning message.

Real Number

Suppose the entity is defined in the Dictionary as:

 ELEMENT-TYPE = E (or R)

 ELEMENT-SIZE = 7

 ELEMENT-DECIMAL = 2

 ELEMENT-LENGTH = 4

the corresponding COBOL clause will be generated:

 PIC X(4)

Since this is an undefined COBOL type, DICTCDE will flag this element definition with a
warning message.

Integer Number and Logical Value

The data types, defined in the Dictionary as I, J, or K are mapped to COBOL
COMPUTATIONAL data types. These data types are defined to take up the required
amount of storage (either 2, 4 or 8 bytes). If the number of digits specified in the Dictionary
for an entity are sufficient to fill the storage length (as defined in the Dictionary) then
DICTCDE will use the number of digits as specified in the Dictionary. However, if the
number of digits are insufficient, COBOL will use the minimum number of digits to fill the
required storage length. Also, if the number of digits is too large for the specified storage
size, DICTCDE will use the maximum number of digits that storage size allows.

For example, the following entities in the Dictionary are generated as follows:

 ELEMENT-TYPE = I

 ELEMENT-SIZE = 4

 ELEMENT-DECIMAL = 0 { PIC S9(4) COMP.

 ELEMENT-LENGTH = 2

 ELEMENT-TYPE = I

 ELEMENT-SIZE = 5

 ELEMENT-DECIMAL = 2 { PIC S9(2)V9(2) COMP.

 ELEMENT-LENGTH = 2

The decimal point for the above entity requires a digit place.

 ELEMENT-TYPE = I

 ELEMENT-SIZE = 4

 ELEMENT-DECIMAL = 0 { PIC S9(5) COMP.

 ELEMENT-LENGTH = 4

(Five digits used to force a 2-word integer.)

 ELEMENT-TYPE = I
278 Chapter 7

The Dictionary DICTCDE Utility
COBOL Data Type Mappings
 ELEMENT-SIZE = 5

 ELEMENT-DECIMAL = 0 { PIC S9(10) COMP.

 ELEMENT-LENGTH = 8

(Ten digits used to force a 4-word integer.)

Packed Decimal

The data types defined in the Dictionary as P, are mapped to COBOL
COMPUTATIONAL-3 data types. However, this data type is defined in COBOL to occupy
the same storage length as specified in the Dictionary, regardless of digit length. If the
digit length specified in the Dictionary is sufficient to fill the storage length specified in the
Dictionary, then DICTCDE will use that digit length. If the number of digits is insufficient
to fill the specified storage length, then DICTCDE will use the minimum number of digits
to fill the storage length for the entity. If the number of digits is too large, DICTCDE will
use the maximum number of digits allowed for the storage length.

For example, the following entities in the Dictionary are generated as follows:

 ELEMENT-TYPE = P

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 0 { PIC S9(8) COMP-3.

 ELEMENT-LENGTH = 5

 ELEMENT-TYPE = P

 ELEMENT-SIZE = 9

 ELEMENT-DECIMAL = 0 { PIC S9(9) COMP-3.

 ELEMENT-LENGTH = 5

 ELEMENT-TYPE = P

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 0 { PIC S9(10) COMP-3.

 ELEMENT-LENGTH = 6

(Ten digits are used to force a 6 byte storage length.)

 ELEMENT-TYPE = P

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 2 { PIC S9(5)V9(2) COMP-3.

 ELEMENT-LENGTH = 4

The decimal point for the above entity requires a digit place.
Chapter 7 279

The Dictionary DICTCDE Utility
COBOL Data Type Mappings
VPLUS Data Items

VPLUS forms only contain ASCII characters as storage format. Therefore, regardless of
the data types defined in the Dictionary, all VPLUS fields are DISPLAY fields. You may
choose to convert all VPLUS fields to PIC X (regardless of the data type defined in the
Dictionary). You may also choose to define numeric fields as PIC 9. But you must ensure
that non-numeric data (except for a sign) will not appear in those fields. The sign for
signed numeric elements must appear in the first character position unless the element
was defined in the Dictionary as having a TRAILING-SEPARATE sign. The trailing
separate sign must appear in the last character position.

The following shows the COBOL clauses generated for some VPLUS fields.

 ELEMENT-TYPE = X

 ELEMENT-SIZE = 8 { PIC X(8).

 ELEMENT-LENGTH = 9

Note that the VPLUS field is generated by SIZE not by LENGTH. Also, the next examples
assume that the PIC 9 numeric option was enabled.

 ELEMENT-TYPE = I+

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 0 { PIC 9(8).

 ELEMENT-LENGTH = 4

 ELEMENT-TYPE = I

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 0 { PIC S9(8) SIGN LEADING SEPARATE.

 ELEMENT-LENGTH = 4

Note that the sign field generated the SIGN LEADING SEPARATE clause.

 ELEMENT-TYPE = I

 ELEMENT-SIZE = 8

 ELEMENT-DECIMAL = 2 { PIC S9(5)V9(2) SIGN LEADING SEPARATE.

 ELEMENT-LENGTH = 4
280 Chapter 7

A DICTDBM Error Messages

DICTDBM generates two types of messages on the user terminal - Error Messages and
Information Messages. Information Messages are conditions that DICTDBM informs the
user about, but are not errors. Both kinds of messages are found in this appendix or in the
appropriate reference manual for the indicated subsystem.

Error Messages have the following format:

 *ERROR: error-message (error-type error-number)

Information Messages have the following format:

 *INFO: error-message (error-type error-number)

Error-type is one the following:

USER The error is caused by a user of DICTDBM and may usually be corrected
by entering a different response.

PROG The error is due to an error in DICTDBM'S environment and may usually
be corrected by the Systems Engineer.

SYSTEM The error is due to constraints of the system DICTDBM is running on and
may be corrected by the operator.

TRAP The error is due to an internal error in DICTDBM and its occurrence
should be called to the attention of the Systems Engineer.

DICT The error is caused by the user and may usually be corrected by entering a
different response. These are errors that help maintain the integrity of the
dictionary.

IMAGE The error is an IMAGE database error and is not documented in this
appendix. Consult the IMAGE/3000 Reference Manual.

MPEF The error is an MPE file system error and is not documented in this
appendix. Consult the MPE 3000 System Error Messages and Recovery
Reference Manual.

Error-number is the number listed in this manual for types USER, PROG, SYSTEM,
TRAP or DICT. It is also the number of the error meaningful to either the IMAGE
database system or the MPE file system.
281

DICTDBM Error Messages
USER Messages
USER Messages

Error No. MESSAGE EXPLANATION AND/OR ACTION

USER 1 ENTRY NOT NUMERIC Data item type is integer, floating point, or numeric
ASCII and a non-numeric character has been
detected in the data entry field.

USER 2 INPUT FIELD LONGER
THAN n

Length of data entry exceeds the size (“n”) defined for
the associated data item.

USER 3 ORIGINAL RECORD HAS
BEEN RESTORED

An error has occurred on updating an entry in a data
set and the original entry has been restored.

USER 4 NUMERIC INTEGER
PART LONGER THAN n

Integer part of a decimal number exceeds the length
(“n”) defined for the associated data item.

USER 5 NUMERIC DECIMAL
PART LONGER THAN n

Decimal part of a decimal number exceeds the length
(“n”) defined for the associated data item.

USER 6 MISSING COMMAND A command option was entered without a command.

USER 7 INVALID
COMMAND/OPTION:
command/option

The command or command option entered is not
valid.

USER 8 INVALID/MISSING
SUB-COMMAND:
sub-command

The sub-command entered is not valid for the
command specified.

USER 18 ENTRY CANNOT BE
NEGATIVE

The item has been declared to always be positive.

USER 19 CONNECTOR MUST BE
ONE OF 'AND', 'OR' OR
'TO'

Connector must be 'and, 'or' or 'to'.

USER 20 OPERATOR MUST BE
ONE OF 'EQ', 'NE', 'LE',
'GE', 'LT' OR 'GT'

Operator must be one of 'eq', 'ne', 'le', 'ge', 'lt' or 'gt'.

USER 21 UNDELIMITED TEXT
STRING

A string value must terminate with a quote.
282 Appendix A

DICTDBM Error Messages
PROG Messages
PROG Messages

Error No. MESSAGE EXPLANATION AND/OR ACTION

USER 17 EXCEEDED MAXIMUM
TREE DEPTH

Recursive code has gone through too many performs
to trace tree structure. Reduce the depth of the
parent/child tree.

USER 41 INCOMPATIBLE CODE
FILE

The IPDIC.PUB code file is not compatible with the
version of DICTDBM currently executing.

USER 42 INSUFFICIENT STACK
FOR WORK SPACE
RELOAD

DICTDBM needs more data stack for a work | space
reorganization. Run DICTDBM with a MAXDATA
greater than 25,000.

USER 43 INSUFFICIENT STACK
FOR SYSTEM LOAD

The data stack required for the program is greater
than the maximum specified for DICTDBM. Increase
the stack size by specifying a MAXDATA on the run
command that is greater than the default of 25,000.
Appendix A 283

DICTDBM Error Messages
SYSTEM Master
SYSTEM Master

Error No. MESSAGE EXPLANATION AND/OR ACTION

SYSTEM 1 SORT INITIALIZATION Error in call to System SORT Utility. The probable
cause is insufficient disc space for SORT scratch file.

SYSTEM 2 SORT FILE WRITE Error on releasing record to the System SORT
Utility. If cause is not apparent to the resident
System Programmer, contact the Systems Engineer.

SYSTEM 3 SORT OUTPUT Error on requesting record from System SORT
Utility. If cause is not apparent to the resident
System Programmer, contact the Systems Engineer.

SYSTEM 4 SORT END Error in System SORT Utility during exit
procedures. If cause is not apparent to the resident
System Programmer, contact the Systems Engineer.

SYSTEM 5 CANNOT OPEN PRINT
FILE

DICTDBM is unable to open the print file.

SYSTEM 7 CODE FILE READ DICTDBM detected a read error while reading the
code file.

SYSTEM 8 DISC SPACE NOT
AVAILABLE FOR SORT
FILE

Could not create scratch space for SORT operation.

SYSTEM 9 PRINT FILE ACCESS The print device is unavailable. Check file equate or
call the system operator.
284 Appendix A

DICTDBM Error Messages
TRAP Messages
TRAP Messages

Error No. MESSAGE EXPLANATION AND/OR ACTION

TRAP 3 WORKSPACE EMPTY Internal DICTDBM work space is empty. Please
notify Systems Engineer.

TRAP 5 EMPTY CODE FILE DICTDBM detected an empty code file.

TRAP 6 UNEXPECTED EOF IN
CODE FILE

DICTDBM encountered an unexpected end-of-file
while reading the code file. Please notify the Systems
Engineer.

TRAP 7 ARITHMETIC
CONVERSION FOR
TABLE LITERAL

A program constant cannot be converted to the
binary equivalent as the current statement requires.

TRAP 8 BROKEN WORK SPACE
CHAIN

DICTDBM has detected a break in a work space link
list. Please report the error condition to the Systems
Engineer.

TRAP 9 ARITHMETIC TRAP DICTDBM has detected an arithmetic trap condition
in its internal processing. Please report the error
condition and the internal address (given as
%9.%99999) to the Systems Engineer.

TRAP 10 OUT OF RANGE PCODE
ADDRESS

DICTDBM has detected a PCODE address out of the
loaded range of transaction codes. Please report the
error condition and the PCODE address (given as
%999.%99999) to the Systems Engineer.

TRAP 11 DISPLAY FORMAT
LEVEL OVERFLOW

DICTDBM has detected an overflow in managing
format levels. Please report the error condition to the
Systems Engineer.

TRAP 12 DISPLAY FORMAT
LEVEL UNDERFLOW

DICTDBM has detected an underflow in managing
format levels. Please report the error condition to the
Systems Engineer.
Appendix A 285

DICTDBM Error Messages
DICT Messages
DICT Messages

Error No. MESSAGE EXPLANATION AND/OR ACTION

DICT 1 CONFLICTING LINE
NUMBER SEQUENCE

Error messages of type DICT are usually due to
an incorrect response to a prompt. After the
message is issued, the prompt is reissued,
allowing the user to respond to the prompt
differently.

DICT 2 INVALID EDIT COMMAND,
TRY 'HELP'

DICT 3 NO DESCRIPTION LINES
EXIST

DICT 4 DUPLICATE ENTRY

DICT 5 AUTO SET ALREADY HAS A
KEY ELEMENT

DICT 6 FILE TYPE MUST BE 'MAST'
OR 'AUTO'

DICT 7 SORT ELEMENT TYPE
MUST BE 'X', 'U' OR 'K'

DICT 8 CANNOT ADD AN
ELEMENT TO A FILE OF
TYPE type

DICT 9 CANNOT ADD ELEMENTS
TO A PARENT

DICT 10 CANNOT ADD TO '$MENU'

DICT 11 CAPABILITY MUST BE 'R',
'U', 'M', OR 'X'

DICT 12 CANNOT ADD SECURITY
TO FILE TYPE type

DICT 13 CAPABILITY MUST BE 'R',
'W' OR 'X'

DICT 14 CANNOT USE FILE TYPE
type

DICT 15 STORAGE LENGTH
CANNOT BE ZERO

DICT 16 TYPE MUST BE ONE OF: 'X',
'U', '9', 'Z', 'P', 'I', 'J', 'K', 'R', OR
'E'
286 Appendix A

DICTDBM Error Messages
DICT Messages
DICT 17 SIZE CANNOT BE ZERO Error messages of type DICT are usually due to
an incorrect response to a prompt. After the
message is issued, the prompt is reissued,
allowing the user to respond to the prompt
differently.

DICT 18 DECIMAL LENGTH MUST
BE LESS THAN SIZE

DICT 19 SIZE TOO LARGE FOR
ELEMENT TYPE

DICT 20 CAN ONLY RESTRICT TO A
TYPE 'BASE' FILE

DICT 21 CANNOT PURGE '$MENU'

DICT 22 CHILD LARGER THAN
PARENT

DICT 23 CHILD FIELD NOT FULLY
WITHIN PARENT

DICT 24 RELATIONSHIP NOT
GENERATED - LOOP
FOUND IN STRUCTURE

DICT 25 CHILD FILE MUST BE TYPE
'MAST', 'AUTO' OR 'DETL'

DICT 26 CHILD FILE MUST BE TYPE
'FORM'

DICT 27 PARENT FILE MUST BE
TYPE 'BASE' OR 'VPLS'

DICT 28 BLOCKMAX MUST BE
BETWEEN 128 AND 2048

DICT 29 CANNOT BE A PARENT IF
OWN ELEMENTS

DICT 30 CANNOT RELATE '$MENU'
AS A CHILD

DICT 31 CANNOT SECURE A FILE
OF TYPE type

DICT 32 CHILD ELEMENT NOT
FOUND

DICT 33 CHILD FILE NOT FOUND

DICT 34 CHILD PROCEDURE NOT
FOUND

Error No. MESSAGE EXPLANATION AND/OR ACTION
Appendix A 287

DICTDBM Error Messages
DICT Messages
DICT 35 CHILD CATEGORY NOT
FOUND

Error messages of type DICT are usually due to
an incorrect response to a prompt. After the
message is issued, the prompt is reissued,
allowing the user to respond to the prompt
differently.

DICT 36 CHILD GROUP NOT FOUND

DICT 37 TYPE MUST BE ONE F
'BASE', 'MAST', 'AUTO',
'DETL', KSAM', 'MPEF',
'VPLS', OR 'FORM'

DICT 38 CANNOT MODIFY '$MENU'

DICT 39 CATEGORY NOT A PARENT

DICT 40 ELEMENT NOT A PARENT

DICT 41 FILE NOT A PARENT

DICT 42 GROUP NOT A PARENT

DICT 43 PROCEDURE NOT A
PARENT

DICT 44 CATEGORY CONTAINS NO
ELEMENTS

DICT 45 CLASS CONTAINS NO
ELEMENTS

DICT 46 FILE CONTAINS NO
ELEMENTS

DICT 47 GROUP CONTAINS NO
ELEMENTS

DICT 48 PROCEDURE CONTAINS
NO ELEMENTS

DICT 49 ELEMENT NOT IN FILE

DICT 50 ELEMENT NOT IN FILE

DICT 51 ELEMENT NOT IN
PROCEDURE

DICT 52 ELEMENT NOT IN
CATEGORY

DICT 53 ELEMENT NOT IN GROUP

DICT 54 ELEMENT NOT IN CLASS

DICT 55 FILE NOT IN CLASS

Error No. MESSAGE EXPLANATION AND/OR ACTION
288 Appendix A

DICTDBM Error Messages
DICT Messages
DICT 56 FILE NOT IN LOCATION Error messages of type DICT are usually due to
an incorrect response to a prompt. After the
message is issued, the prompt is reissued,
allowing the user to respond to the prompt
differently.

DICT 57 PROCEDURE NOT IN
LOCATION

DICT 58 LINE NUMBER DOES NOT
EXIST

DICT 59 CANNOT RENAME '$MENU'

DICT 60 NO PARENT FILE EXISTS
FOR file

DICT 61 RESPONSE REQUIRED TO
PROMPT

DICT 62 FILE IS NOT A PARENT OF
file

DICT 63 STORAGE LENGTH MUST
BE EVEN FOR IMAGE

DICT 64 INSUFFICIENT
CAPABILITY

DICT 65 MUST BE ONE OF 'Y', 'YES',
'N', 'NO', OR <CR>

DICT 66 SEARCH ITEM CANNOT BE
ITS OWN SORT ITEM

DICT 67 LENGTH MUST BE ONE OF
2, 4, 8, OR 12

DICT 68 LENGTH MUST BE LESS
THAN 15

DICT 69 LENGTH MUST BE LESS
THAN 28

DICT 70 LENGTH MUST BE ONE OF
4 OR 8

DICT 71 NEW LENGTH TOO SMALL
FOR CHILD: element

DICT 72 NEW LENGTH TOO LARGE
FOR PARENT: element

DICT 73 LINK VALUE MUST BE
GREATER THAN -2

Error No. MESSAGE EXPLANATION AND/OR ACTION
Appendix A 289

DICTDBM Error Messages
DICT Messages
DICT 74 REPEAT OPTION INVALID
WITH THIS COMMAND
STRING

DICT 75 DICTIONARY INTERNAL
CLEANUP NEEDED

Creator of data Dictionary should run
DICTDBM.PUB.SYS,UTIL.

DICT 76 INVALID RESPONSE

DICT 77 RESPONSE MUST BE ONE
OF ' ', 'LO', 'LS', 'TO', 'TS'

DICT 78 CANNOT RELATE TO
PARENT ELEMENT OF
TYPE type

DICT 79 LINE NUMBER MUST BE
GREATER THAN ZERO

DICT 80 MAXIMUM RECORD SIZE
CANNOT BE LESS THAN
MINIMUM RECORD SIZE

DICT 81 MAXIMUM BLOCKING
CANNOT BE LESS THAN
MINIMUM BLOCKING

DICT 82 CANNOT USE ELEMENT
'$REDEFINES' AS AN
ELEMENT REFERENCE

DICT 83 CANNOT ADD ELEMENT OF
TYPE type TO AN IMAGE
FILE

DICT 84 ELEMENT IS ASSOCIATED
TO AN IMAGE FILE,
CANNOT MODIFY TYPE TO
type

DICT 85 THIS ELEMENT HAS
CHILDREN, CANNOT
CHANGE TYPE TO type

DICT 86 CANNOT USE ELEMENT
'$REDEFINES' AS A SORT
ELEMENT

DICT 87 SPECIFIED CHILD
ELEMENT IS CURRENTLY A
BACK REFERENCE
ELEMENT

An element that is coherently a back reference
element cannot be used as a child element.

Error No. MESSAGE EXPLANATION AND/OR ACTION
290 Appendix A

DICTDBM Error Messages
DICT Messages
DICT 88 THIS ELEMENT IS
CURRENTLY A CHILD
ELEMENT

Error messages of type DICT are usually due to
an incorrect response to a prompt. After the
message is issued, the prompt is reissued,
allowing the user to respond to the prompt
differently.

DICT 89 LOOP FOUND - ELEMENT
BACK REFERENCES
ITSELF

DICT 90 ELEMENT IS ASSOCIATED
TO A GROUP, CANNOT
MODIFY TYPE TO type

DICT 91 CANNOT ADD ELEMENT
'$REDEFINES' TO A FILE

DICT 92 CANNOT ADD ELEMENT
'$REDEFINES' TO A GROUP

DICT 93 CANNOT ADD ELEMENT OF
TYPE type TO A GROUP

DICT 94 PARENT ELEMENT IS THE
SAME AS THIS CHILD
ELEMENT'S BACK
REFERENCE

DICT 95 CANNOT ADD ELEMENT
'$REDEFINES' TO A CLASS

DICT 96 CANNOT ADD ELEMENT
'$REDEFINES' TO A
PROCEDURE

DICT 97 CANNOT ADD ELEMENT
'$REDEFINES' TO A
CATEGORY

DICT 98 PARENT ELEMENT
CANNOT BE '$REDEFINES'

DICT 99 CANNOT EXCEED 10
LEVELS OF BACK
REFERENCING

DICT 100 THE NEW LENGTH OF
REFERENCING ELEMENT
element IS TOO LARGE FOR
PARENT parent element

DICT 101 CHILD '$REDEFINES' MUST
HAVE AN ALIAS

Error No. MESSAGE EXPLANATION AND/OR ACTION
Appendix A 291

DICTDBM Error Messages
DICT Messages
DICT 102 ELEMENT IS A KSAM FILE
KEY, CANNOT MODIFY
TYPE TO type

DICT 103 CLASS IS ASSOCIATED TO
AN ELEMENT, CANNOT
MODIFY TYPE TO 'INFO'

DICT 104 CLASS IS ASSOCIATED TO
A FILE, | CANNOT MODIFY
TYPE TO 'INFO'

DICT 105 CLASS MUST BE TYPE
'INFO'

DICT 106 CHILD CLASS NOT FOUND

DICT 107 PARENT CLASS MUST BE
TYPE 'INFO'

DICT 108 CHILD CLASS CANNOT BE
TYPE ‘INFO'

DICT 109 CLASS NOT A PARENT

DICT 110 GROUP NOT IN CLASS

DICT 111 CANNOT ADD AN
ELEMENT TO A CLASS OF
TYPE 'INFO'

DICT 112 CANNOT ADD A FILE TO A
CLASS OF TYPE 'INFO'

DICT 113 CANNOT SECURE A FILE
TO A CLASS OF TYPE 'INFO'

DICT 114 CLASS IS A CHILD CLASS,
CANNOT MODIFY TYPE TO
'INFO'

Error No. MESSAGE EXPLANATION AND/OR ACTION
292 Appendix A

B UTILITY Error Messages

Error messages are issued for all the Dictionary/3000 utilities. The utilities generate
several types of messages on the terminal. Each type of message is found in this appendix
or in the appropriate reference manual for the indicated subsystem. The types of messages
are:

1. Errors

*ERROR: error-message

Errors are conditions that arise out of a user response or some operation during the
utility process. A correct response or remedy for the error condition is required.

2. IMAGE errors

*IMAGE ERROR: error-message

IMAGE errors occur when a call to the IMAGE data base management system cannot
be performed. The error message returned by IMAGE is displayed. Refer to the
IMAGE/3000 Reference Manual for more information.

3. File errors

*FILE ERROR: error-message

File errors occur when a call to the MPE file system cannot be performed. The error
message returned by the file system is displayed. Refer to the MPE 3000 Error
Messages and Recovery Reference Manual for more information.

4. Warnings

*WARNING: message

Warning messages are conditions that the utility program informs the user about. They
are not fatal to the utility process.

5. Condition prompts

condition message>

Condition prompts inform the user of a certain situation that requires a decision by the
user. The usual response is “Y” for yes or “N” for no.

Note that DICTDBM and DICTINIT issue different messages than listed above. The
DICTDBM messages are listed and explained in Appendix A. The DICTINIT messages
are listed and explained at the end of Appendix C.
293

UTILITY Error Messages
DICTCDE Messages
DICTCDE Messages

Error No. MESSAGE EXPLANATION AND/OR ACTION

DICTCDE 1 *ERROR: PASSWORD IS
INVALID

The password entered does not give access to the
Dictionary.

DICTCDE 2 *ERROR: FILE! IS NOT IN
COPYLIB FORMAT

The specified file is not in KSAM file format.

DICTCDE 3 *ERROR: RESPONSE
MUST BE ! CHARACTERS
OR LESS

DICTCDE *ERROR: RESPONSE
MUST BE F, E, P, O, OR EX
(? FOR HELP)

The user must input one of the responses given
in the prompt.

DICTCDE 5 *ERROR: RESPONSE
MUST BE Y OR N (? FOR
HELP)

The user must input one of the responses given
in the prompt.

DICTCDE 6 *ERROR: RESPONSE
MUST BE 9 OR X (? FOR
HELP)

The user must input one of the responses given
in the prompt.

DICTCDE 7 *ERROR: RESPONSE
MUST BE A OR P (? FOR
HELP)

The user must input one of the responses given
in the prompt.

DICTCDE 8 *ERROR: RESPONSE
MUST BE F OR S (? FOR
HELP)

The user must input one of the responses given
in the prompt.

DICTCDE 9 *ERROR: ELEMENT ! IS
NOT IN THE DICTIONARY

The element is not defined in the Dictionary.

DICTCDE 10 *ERROR: FILE ! IS NOT IN
THE DICTIONARY

The file entity is not defined in the Dictionary.

DICTCDE 11 *ERROR: FILE ! HAS
UNKNOWN TYPE !,
CANNOT DEFINE IT

The file entity type must be one of MPEF,
MPER, KSAM, BASE, MAST, DETL, FORM,
VPLUS.

DICTCDE 14 *ERROR: FILE NAME IS
MISSING OR BLANK

This error message occurs when the user
specifies a file name as 'child(parent)', and the
child name is blank, i.e., '(parent)'.

DICTCDE 33 *ERROR: COMMAND NOT
PROGRAMMATICALLY
EXECUTABLE

The MPE command cannot be executed.

DICTCDE 34 *ERROR: UNKNOWN
COMMAND NAME (CIERR
!)

The MPE command cannot be recognized.
294 Appendix B

UTILITY Error Messages
DICTCDE Messages
DICTCDE 35 *ERROR: MPE ERROR IN
COMMAND (CIERR !)

MPE could not execute the command.

DICTCDE 36 *ERROR: MPE CREATE
PROCESS ERROR !
INVOKING COBEDIT

DICTCDE is unable to run COBEDIT. Check the
user/group/account for PH capability, and check
to see that the program file COBEDIT.PUB.SYS
exists.

DICTCDE 37 *ERROR: END OF FILE
FOUND READING FROM
DICTIN

The command file DICTIN terminated while
DICTCDE was expecting more responses to
further prompts.

DICTCDE 38 *ERROR: MPE FILE
SYSTEM ERROR ON
TERMINAL

An MPE file system error on the terminal has
occurred. Check the MPE file system error
message for further details.

DICTCDE 39 *ERROR: MPE FILE
SYSTEM ERROR ON !

An MPE file system error has occurred. Check
the MPE file system error message for further
details.

DICTCDE 40 *ERROR: RECORD
ALREADY EXISTS IN
COPYLIB WITH
MODULE-SEQUENCE !&

This is reported only when DICTCDE has an
internal error. DICTCDE, in sequencing the
source in the module has found a duplicate
sequence number already existing in the
module.

DICTCDE 41 *ERROR: COPYLIB FILE !
IS FULL

The copylib module is full. Use COBEDIT to
expand the copylib file.

DICTCDE 42 *ERROR: COPYLIB
MODULE ! HAS NO MORE
SEQUENCE NUMBERS

The copylib module has no more sequence
numbers. Use COBEDIT to renumber the
module.

DICTCDE 43 *ERROR: MPE FILE
SYSTEM ERROR ON
COPYLIB FILE !

An error has occurred in accessing the copylib
file.

DICTCDE 44 *ERROR: ERROR WITH
BATCH MODE OR
EQUATED INPUT CAUSES
TERMINATION &

When DICTCDE is run in batch, or with the
commands driven off an disc file, i.e., DICTIN is
equated, any error in the responses to prompts
will cause DICTCDE to terminate.

DICTCDE 48 *ERROR: ! CAN ONLY BE
DEFINED IN THE DATA
DIVISION

This message is only returned when
Toolset/3000 interface is used, and the user
wants to generate a file of type FORM, MAST,
DETL, AUTO.

DICTCDE 49 *ERROR: UNKNOWN
COMMAND IN HP
TOOLSET INTERFACE

Toolset/3000 has passed a command which
cannot be recognized by DICTCDE.

DICTCDE 50 *ERROR: INFO
PARAMETER IS INVALID

The info parameter passed through the RUN
DICTCDE command is invalid.

Error No. MESSAGE EXPLANATION AND/OR ACTION
Appendix B 295

UTILITY Error Messages
DICTCDE Messages
DICTCDE 51 *ERROR: CANNOT OPEN
MESSAGE FILES FOR HP
TOOLSET

DICTCDE and Toolset/3000 communicate to
each other through message files. These
message files could not be opened.

DICTCDE 52 *ERROR: INTERNAL
ERROR IN HP TOOLSET
INTERFACE

DICTCDE could not read the message files used
to pass information to and from Toolset/3000.

DICTCDE 53 *ERROR: INTERNAL
ERROR -

An error internal to DICTCDE has occurred.

DICTCDE 54 *ERROR: INTERNAL
ERROR - DISCOVERED
INVALID OPTION

An error internal to DICTCDE has occurred.

DICTCDE 55 *ERROR: INTERNAL
ERROR - DISCOVERED
INVALID FILE TYPE

An error internal to DICTCDE has occurred.

DICTCDE 56 *ERROR: INTERNAL
ERROR - MODULE NAME
IS NULL

An error internal to DICTCDE has occurred.

DICTCDE 57 *ERROR: INTERNAL
ERROR - IN REDEFINES
PROCESSING

An error internal to DICTCDE has occurred.

DICTCDE 58 *ERROR: INTERNAL
ERROR !, PLEASE REPORT

An error internal to DICTCDE has occurred.

DICTCDE 59 *ERROR: CANNOT OPEN
DICTIONARY !

The Dictionary DICT.PUB does not exist or is
equated to a Dictionary which does not exist.

DICTCDE 60 *ERROR: CANNOT READ A
CHILD FILE FOR !

DICTCDE has an internal error which prevents
it from reading the attributes for the child file.

DICTCDE 61 *ERROR: CANNOT FIND
PARENT ENTITY !

DICTCDE has an internal error which prevents
it from reading the attributes for the parent
entity.

DICTCDE 62 *ERROR: CANNOT READ
PARENT/CHILD
RELATIONSHIP FOR !

DICTCDE has an internal error which prevents
it from reading the attributes for the
parent/child relationship.

DICTCDE 63 *ERROR: CANNOT CLOSE
DICTIONARY !

DICTCDE has encountered an internal error
which prevented it from properly closing the
Dictionary.

DICTCDE 64 *ERROR: DICTIONARY
ERROR

DICTCDE has an internal error.

Error No. MESSAGE EXPLANATION AND/OR ACTION
296 Appendix B

UTILITY Error Messages
DICTCDE Messages
Warnings

MESSAGE EXPLANATION AND/OR ACTION

*WARNING: FILE ! DOES NOT HAVE
PARENT !

The user has specified a file name in the format
'child(parent)', and the child does not have the
'parent' specified.

*WARNING: ! CANNOT HAVE A PARENT;
IGNORING PARENT

The user has specified a file name in the format
'child(parent)' and the file cannot have a parent,
i.e., file types BASE, VPLUS, MPEF, MPER or
KSAM.

*WARNING: PARENT FILE IS EMPTY;
ASSUMING NO PARENT

The user specified a file name in the format
'child(parent)', and has left the parent name
blank, i.e., 'child()'.

*WARNING: FILE ! DOES NOT HAVE A
PRIMARY KEY

The file the user has specified is of type KSAM
and does not have an element associated with it
as its primary key.

*WARNING: DATA BASE HAS MORE
THAN ! UNIQUE SEARCH ITEMS; &
REMAINDER IGNORED

This warning message appears when an
internal table of data base search items
overflows.

*WARNING: RECORD LENGTH UPDATED
TO FILE RECORD SIZE

When a file has multiple file formats defined,
this warning message is issued if they are not of
all the same size.

*WARNING: ! IS AN INVALID COBOL
IDENTIFIER

The entity name has characters which are not
legal in a COBOL name, or has a leading
character which is not valid for a COBOL name.

*WARNING: ! IS A COBOL RESERVED
WORD

The entity name is a reserved COBOL name.
DICTCDE will adjust the name to a
non-reserved word.

*WARNING: ! HAS BEEN LIMITED TO 30
CHARACTERS

The prefix with the entity name is longer than
30 characters. COBOL identifiers are limited to
30 characters. DICTCDE will adjust the name to
30 characters.

*WARNING: BACK REFERENCE NAME !
IS AN INVALID COBOL IDENTIFIER &

The entity name back referenced has characters
which are not legal in a COBOL name.

*WARNING: CHILD NAME ! IS AN
INVALID COBOL IDENTIFIER

The entity name has characters which are not
legal in a COBOL name.

*WARNING: ! HAS AN UNDEFINED
COBOL TYPE !

The type does not map to any COBOL data type.
DICTCDE will map the type into a PIC X type
with equivalent storage size.

*WARNING: ELEMENT ! HAS ZERO
LENGTH

If an element is of size one, and has an explicit
decimal point designated, then there is no room
for the digit.
Appendix B 297

UTILITY Error Messages
DICTCDE Messages
Info

*WARNING: ELEMENT ! HAS NO SPACE
FOR A SEPARATE SIGN

If an elements size is completely taken up by the
digits, then this warning message is issued to
warn the user that there is no room for the
separate sign.

*WARNING: ELEMENT ! HAS MORE
THAN 18 DIGITS

An element of type P can have a maximum size
of 18.

*WARNING: ELEMENT ! HAS AN INVALID
COMP STORAGE SIZE

An element of type I can have a maximum size
of 8 bytes.

*WARNING: ELEMENT ! HAS AN INVALID
COBOL EDIT MASK '!'

A character appears in the edit mask of an
element which cannot be translated into a valid
character which can appear in a COBOL picture
clause.

*WARNING: LEVEL NUMBER FOR !
EXCEEDS 49

COBOL allows a maximum level number of 49.
Every nested relationship increments the
nesting level by 5. This error message indicates
that the nesting of element to element
relationships is too deep.

*WARNING: CONFIGURATION MESSAGE
! PREFIX > 8 CHARACTERS

*WARNING: CONFIGURATION MESSAGE
! SUFFIX > 8 CHARACTERS

*WARNING: CONFIGURATION MESSAGE
1 OPTION ! INVALID

MESSAGE EXPLANATION AND/OR ACTION

*INFO: FILE ! DOES NOT HAVE ANY
DATA SETS

The data base file entity does not have any data
set file entities related to it. Only the data base
special parameters will be generated.

*INFO: FILE ! DOES NOT HAVE ANY
FORMS

The VPLUS file entity does not have any form
file entities related to it. Only the VPLUS forms
file special parameters will be generated.

MESSAGE EXPLANATION AND/OR ACTION
298 Appendix B

UTILITY Error Messages
DICTDBA Messages

4

e

DICTDBA Messages

Errors

Warnings

MESSAGE EXPLANATION AND/OR ACTION

*ERROR: BASE NAME TOO LONG Data base name, including qualifiers, is greater than 2
characters.

*ERROR: DATA BASE OPERATION: A data base error occurred when reading information.
An IMAGE “DBEXPLAIN message block” is issued to
explain the error condition.

*ERROR: INVALID MODE Response to MODE prompt is a number other than 1
through 8.

*ERROR: INVALID RUN MODE An incorrect response to RUN MODE prompt entered.

*ERROR: LIST FILE OPERATION An error occurred during writing the list file
(DICTLIST).

*ERROR: PASSWORD LONGER THAN 8
CHARACTERS

Response to BASE PASSWORD prompt is greater than
8 characters.

*ERROR: LIST FILE OPEN Device LP is not available. Use a file equation to
redirect DICTLIST.

MESSAGE EXPLANATION AND/OR ACTION

*WARNING: BROKEN CHAIN(S): A broken chain has been encountered in a detail set. Th
data base should be unloaded serially with DICTDBU
and then reloaded with DICTDBL to recover the data
base.

*WARNING: CONTROL(Y) NOT ENABLED Attempt to enable Control Y failed.

*WARNING: HIGH MASTER SET OCCUPANCY The occupancy of a master set is higher than 80%.
Consider increasing the data set capacity to reduce the
occurrence of synonym chains (unless the capacity is
only one entry).

*WARNING: SERIAL COUNT ERROR Physical serial read count of a master set does
not equal the IMAGE table count. The data base
should be unloaded serially with DICTDBU and
then reloaded with DICTDBL to recover the
data base.
Appendix B 299

UTILITY Error Messages
DICTDBC Messages
DICTDBC Messages

Errors

MESSAGE EXPLANATION AND/OR ACTION

*ERROR: BAD PASSWORD The Dictionary data base cannot be opened
because the password entered is incorrect.

*ERROR: CANNOT OPEN DATA BASE
DICT.PUB IMAGE error message

The Dictionary data base cannot be opened. The
error message returned by IMAGE is shown.

*ERROR: DBSCHEMA PROCESSOR
CANNOT BE ACTIVATED

Utility has been unable to activate the
DBSCHEMA program. Contact your system
manager.

*ERROR: DBSCHEMA PROCESSOR
CANNOT BE INVOKED

Utility has been unable to invoke the
DBSCHEMA program in the PUB group of the
SYS account. Contact your system manager.

*ERROR: DICTIONARY ACCESS,
PROBABLY AN INCOMPATIBLE
DICTIONARY DATA BASE

The Dictionary schema is incompatible with
current release of the utility.

*ERROR: DICTIONARY DATA BASE
OPERATION

A data base error occurred. An IMAGE
“DBEXPLAIN message block” is issued to
explain the error condition.

*ERROR: EXCEEDED 255 TIMES IN BASE Utility has found more than 255 data items for
the base in the Dictionary which exceeds the
limit for an IMAGE data base. The schema is
generated without the excess data items.

*ERROR: EXCEEDED 63 CLASSES IN
BASE

Utility has found more than 63 security classes
for the base in the Dictionary which exceeds the
limit for an IMAGE data base. The schema is
generated without the excess security classes.

*ERROR: EXCEEDED 99 SETS IN BASE Utility has found more than 99 data sets for the
base in the Dictionary which exceeds the limit
for an IMAGE data base. The schema is
generated without the excess data sets.

*ERROR: FILE NAME TOO LONG Response to SCHEMA FILE or LIST FILE is
greater than 26 characters.

*ERROR: INVALID LIST FILE Response to the LIST FILE prompt is not a valid
file name.

*ERROR: INVALID STORAGE LENGTH
FOR ITEM:

Utility has detected a Dictionary item
item-name whose storage length is invalid for
the given type. Correct the storage length in the
Dictionary using the DICTDBM utility.
300 Appendix B

UTILITY Error Messages
DICTDBC Messages
*ERROR: LINE LONGER THAN 70
CHARACTERS

The response to CONTROL LINE is longer than
70 characters.

*ERROR: PASSWORD DOES NOT ALLOW
A ACCESS TO ‘CLASS-PASSWORD'

Password does not grant sufficient capability to
create a data base.

*ERROR: PASSWORD LONGER THAN 8
CHARACTERS

Response to DICTIONARY PASSWORD prompt
is greater than 8 characters.

*ERROR: PROCESS TERMINATED ON
FATAL ERROR CONDITION

A fatal error occurred during the utility process
and the program has been terminated.

*ERROR: SCHEMA FILE WRITE Error detected in writing schema file. A “file
error tombstone” is issued to explain the error
condition.

*ERROR: STORAGE LENGTH TOO SMALL
FOR ITEM: item-name

Utility has detected a Dictionary item whose
storage length definition is too small to contain
values. Correct the item type, size, or storage
length in the Dictionary using the DICTDBM
utility.

*ERROR: TEMPORARY FILE ACCESS Error occurred using the temporary file in
preparing the schema file. A “file error
tombstone” is issued to explain the error
condition.

*ERROR: TEMPORARY FILE OPEN A temporary file used in preparing the schema
file cannot be opened. A “file error tombstone” is
issued to explain the error condition

*ERROR: LIST FILE OPEN Device LP is not available. Use a file equation to
redirect DICTLIST.

MESSAGE EXPLANATION AND/OR ACTION

*WARNING: BASE NAME TRUNCATED TO
6 CHARACTERS

The name of a base can be up to 20 characters in
the Dictionary, but only the first 6 are used for
generating the physical data base file name.

*WARNING: CONTROL(Y) NOT ENABLED Attempt to enable Control Y failed.

MESSGE EXPLANATION AND/OR ACTION

[TEMPORARY] FILE ALREADY EXISTS,
PURGE OLD (N/Y)?>

The file name entered in response to the
SCHEMA FILE prompt already exists as a
temporary or a permanent file. Respond “Y” to
purge the existing file and keep the new file.

MESSAGE EXPLANATION AND/OR ACTION
Appendix B 301

UTILITY Error Messages
DICTDBD Messages
DICTDBD Messages

Errors

Warnings

MESSAGE EXPLANATION AND/OR ACTION

*ERROR: BASE ALREADY DEFINED IN
DATA DICTIONARY

The data base name is already in the Dictionary.
The user is prompted as to whether the data
base should be given a different name when
loaded into the Dictionary.

*ERROR: BASE NAME TOO LONG Data base name, including qualifiers, exceeds 24
characters.

*ERROR: DATA BASE OPERATION A data base error occurred when reading
information. An IMAGE “DBEXPLAIN message
block” is issued to explain the error condition.

*ERROR: DATA DICTIONARY OPERATION A data Dictionary error occurred. An IMAGE |
“DBEXPLAIN message block” is issued to
explain the error condition.

*ERROR: INVALID MODE Response to MODE prompt is a number other
than 1 through 8.

*ERROR: ITEM SEARCH IN DBINFO LIST A system error occurred in processing
“DBINFO” information from the data base. If
the cause is not apparent, contact your system
manager.

*ERROR: PASSWORD LONGER THAN 8
CHARACTERS

Response to DICTIONARY PASSWORD or
BASE PASSWORD prompt is greater than 8
characters.

*ERROR: INSUFFICIENT ACCESS
CAPABILITY TO *ERROR: INSUFFICIENT
ACCESS CAPABILITY TO DATA BASE

Reenter response to BASE.

MESSAGE EXPLANATION AND/OR ACTION

*WARNING: CONTROL(Y) NOT ENABLED “Arming” Control Y failed.

*WARNING: DATA SET HAS NOT BEEN
LOADED INTO DICTIONARY

Response to the NEW PRIMARY FILE NAME
prompt is RETURN, or response to USE
EXISTING DEFINITION (N/Y)? prompt is “N”
or RETURN.

*WARNING: ELEMENT HAS NOT BEEN
LOADED INTO DICTIONARY

Response to the NEW PRIMARY ELEMENT
NAME prompt is RETURN.
302 Appendix B

UTILITY Error Messages
DICTDBD Messages
Condition Prompts

MESSAGE EXPLANATION AND/OR ACTION

ENTIRE DEFINITION OF DATA BASE
WILL NOT FIT IN DICTIONARY,
PROCEED (N/Y)?

Definition of data base will not fit in dictionary.
Respond “N” to terminate utility; respond “Y” to
continue until one of the data sets is full, then
terminate.
Appendix B 303

UTILITY Error Messages
DICTDBL Messages
DICTDBL Messages

Errors

MESSAGE EXPLANATION AND/OR ACTION

*ERROR: BAD DATA BASE NAME:
base-name

The utility has encountered an invalid base
name format in the store file. Probably the store
file has bad data in it.

*ERROR: BASE LONGER THAN 6
CHARACTERS

 Base name exceeds 6 characters.

*ERROR: BASE NAME TOO LONG Data base name, including qualifiers, exceeds 24
characters.

*ERROR: DATA BASE OPERATION A data base error occurred during the load. A
“DBEXPLAIN message block” is issued to
explain the error condition.

*ERROR: DEFERRED MODE REJECTED,
CODE=n

The request for fast I/O has been rejected with
an error code of “n”. Refer to the DBCONTROL
intrinsic in the IMAGE Reference Manual for an
explanation.

*ERROR: FILE EQUATION NOT
ALLOWED

A back-referenced file name (*filename) entered
as a response to the STORE FILE prompt is not
allowed.

*ERROR: FILE NAME TOO LONG Response to the LIST FILE prompt is greater
than 26 characters.

*ERROR: INCOMPATIBLE STORE FILE The store file is incompatible with the current
release of the utility.

*ERROR: INCORRECT STORE TAPE
MOUNTED

The tape mounted is not the correct store tape.
Mount the correct tape.

*ERROR: INCORRECT TAPE NUMBER: n The given tape number “n” is out of sequence.
Mount the correct tape.

*ERROR: INVALID MODE Response to MODE prompt is a number other
than 1 through 8.

*ERROR: INVALID RUN MODE Response to the RUN MODE prompt is invalid.
Enter one of the modes indicated in the prompt.

*ERROR: ITEM CONVERSION A conversion error occurred on an item with
properties that have changed in the new data
base schema. The item data field is set to a null
value of all binary zeros.
304 Appendix B

UTILITY Error Messages
DICTDBL Messages
Warnings

Condition Prompts

*ERROR: ITEM NAME TOO LONG Data item name entered in response to the
NEW ITEM NAME prompt is longer than 16
characters.

*ERROR: PASSWORD LONGER THAN 8
CHARACTERS

Response to the BASE PASSWORD prompt is
greater than 8 characters.

*ERROR: PRINT FILE CANNOT BE
OPENED

The print file for the listing cannot be opened.
Enter a correct file name to the LIST FILE
prompt.

*ERROR: SET NAME TOO LONG Data set name entered in response to the NEW
SET NAME prompt is longer than 16
characters.

*ERROR: STORE FILE OPEN The store file cannot be opened. A “file error
tombstone” is issued to explain the error
condition.

MESSAGE EXPLANATION AND/OR ACTION

*WARNING: CONTROL(Y) NOT ENABLED “Arming” Control Y failed.

MESSAGE EXPLANATION AND/OR ACTION

CONTINUE SET LOAD(Y/N)?> After an error or a Control Y interrupt, this
prompt allows the user to continue the
operation or to terminate the utility program.

CONTROL(Y) BREAK, CONTINUE(Y/N)?> User has entered Control Y during a data set
load. A response of “N” will terminate the utility
program.

DISPLAY INPUT RECORD(Y/N)?> After an IMAGE error in trying to store a new
record in the data base, this prompt allows the
user to dump the record to the list file in ASCII
and octal format.

LIST FILE ALREADY EXISTS, PURGE
OLD(N/Y)?>

The list file is being written to disc and a file of
the same name already exists. Respond “Y” to
purge the existing file and keep the new file.

TAPE FILE REQUESTED(Y/N) This prompt is issued if RETURN is entered in
response to the STORE FILE prompt. If an “N”
response is given, the utility program
terminates.

MESSAGE EXPLANATION AND/OR ACTION
Appendix B 305

UTILITY Error Messages
DICTDBU Messages
DICTDBU Messages

Errors

MESSAGE EXPLANATION AND/OR ACTION

*ERROR: BASE LONGER THAN 6
CHARACTERS

Base name exceeds 6 characters.

*ERROR: DATA BASE OPERATION A data base error occurred. A “DBEXPLAIN
message block” is issued to explain the error
condition.

*ERROR: DBINFO OPERATION The utility encountered an error when using a
“DBINFO” call to IMAGE. A “DBEXPLAIN
message block” is issued to explain the error
condition.

*ERROR: DBINFO - SERIAL UNLOAD
INVOKED

The utility encountered an error in the DBINFO
information from IMAGE for the data base
structure. A “DBEXPLAIN message block” is
issued to explain the error condition. The utility
has rejected the request for the chained unload
of the current data set and is performing a serial
unload.

*ERROR: FILE EQUATION NOT
ALLOWED

A back-referenced file name (*filename) entered
as a response to the STORE FILE prompt is not
allowed.

*ERROR: FILE NAME TOO LONG Response to the LIST FILE prompt is greater
than 26 characters.

*ERROR: INCORRECT SYNTAX IN USE OF
PERIOD(S)

An incorrect qualified name entered in response
to the BASE prompt.

*ERROR: INVALID MODE Response to MODE prompt is a number other
than 1 through 8.

*ERROR: ITEM NOT FOUND Named item is not found in the definition of the
set when EDIT MODE used.

*ERROR: LIST FILE The utility encountered an error when accessing
the list file. A “file error tombstone” is issued to
explain the error condition.

*ERROR: PASSWORD LONGER THAN 8
CHARACTERS

Response to BASE PASSWORD prompt is
greater than 8 characters.

*ERROR: PRINT FILE CANNOT BE
OPENED

The print file for the listing cannot be opened.
Enter a correct file name to the LIST FILE
prompt.
306 Appendix B

UTILITY Error Messages
DICTDBU Messages
Warnings

*ERROR: SEARCH ITEM NOT FOUND Named item is not a search item within the
detail set when EDIT MODE used.

*ERROR: STORE FILE CANNOT BE
CLOSED

The utility was unable to close the store file in
either the permanent or temporary file domain.
Contact your system manager.

*ERROR: STORE FILE EXISTS AND
CANNOT BE ACCESSED

Accessing the named store file is a security
violation.

*ERROR: STORE FILE OPEN The store file cannot be opened. A “file error
tombstone” is issued to explain the error
condition.

*ERROR: STORE FILE WRITE The utility encountered an error when writing
the store file. A “file error tombstone” is issued
to explain the error condition.

MESSAGE EXPLANATION AND/OR ACTION

*WARNING: CONTROL(Y) NOT ENABLED “Arming” Control Y failed.

*WARNING: INSUFFICIENT GROUP DISC
SPACE — STORE FILE IS SESSION
TEMPORARY

The utility was unable to close the store file in
the permanent file domain because of
insufficient disc space allocation in the file
group. The store file is session temporary and
will be lost when the user logs off. If you would
like to keep the store file as a permanent file,
you should contact your system manager for a
higher disc space allocation. Save the temporary
file to the permanent domain by using the MPE
SAVE command.

MESSAGE EXPLANATION AND/OR ACTION
Appendix B 307

UTILITY Error Messages
DICTDBU Messages
Condition Prompts

MESSAGE EXPLANATION AND/OR ACTION

CONTINUE SET UNLOAD(Y/N)?> After an error or a Control Y interrupt, this
prompt allows the user to continue the
operation or to terminate the utility program.

CONTROL(Y) BREAK, CONTINUE(Y/N)?> User has entered Control Y during a data set
unload. A response of “N” will terminate the
utility program.

LIST FILE ALREADY EXISTS, PURGE
OLD(N/Y)?>

The list file is being written to disc and a file of
the same name already exists. Respond “Y” to
purge the existing file and keep the new file.

STORE FILE ALREADY EXISTS, PURGE
OLD(N/Y)>

The store file is being written to disc and a file of
the same name already exists. Respond “Y” to
purge the existing file and keep the new file.

TAPE FILE REQUESTED (Y/N) This prompt is issued if RETURN is entered in
response to the STORE FILE prompt. If an “N”
response is given, the utility program
terminates.
308 Appendix B

UTILITY Error Messages
DICTPDE Messages
DICTPDE Messages

Errors

MESSAGE EXPLANATION AND/OR ACTION

*DICT ERROR: CANNOT CLOSE
DICTIONARY!

The Dictionary entered was not entered
correctly or does not exist. Reenter with the
correct Dictionary.

*DICT ERROR: INVALID PASSWORD.
CANNOT OPEN DICTIONARY!

The Dictionary cannot be opened because the
password entered is incorrect. Reenter with the
correct password.

*ERROR: COMMAND AND
SUBCOMMAND ONLY

Something other than the command and
subcommand was entered as a response.

*ERROR: ILLEGAL COMMAND. PLEASE
REENTER

Command entered was not a legal command.
Reenter with GENERATE, ALTER, EXIT,
HELP or LIST.

 *ERROR: ILLEGAL
COMMAND/SUBCOMMAND

*ERROR: ILLEGAL EXTRACT (TYPE OR
VAR)

Toolset/3000 has requested DICTPDE to extract
entities as neither TYPE or VAR. Entities can
only be extracted as TYPE or VAR.

*ERROR: ILLEGAL INFO STRING
LENGTH

*ERROR: ILLEGAL SUBCOMMAND.
PLEASE REENTER

The subcommand entered is not a legal
subcommand for that command.

*ERROR: INFO STRING MUST BE FROM
HP TOOLSET

*ERROR: INPUT TOO LONG Too many characters were entered on one
response line.

*ERROR: INVALID RESPONSE. PLEASE
REENTER

The response entered does not match one of the
responses given in the prompt.

*ERROR: NON-EXISTENT ELEMENT! The element specified is not defined in the
Dictionary.

*ERROR: NON-EXISTENT FILE! The file specified is not defined in the Dictionary.

*ERROR: NON-EXISTENT FILE TYPE!

*LANGUAGE ERROR: PREVIOUSLY
EXTRACTED! AS A TYPE

The entity specified has already been extracted
as a TYPE declaration.

*LANGUAGE ERROR: PREVIOUSLY
EXTRACTED! AS A VAR

The entity specified has already been extracted
as a VAR declaration.
Appendix B 309

UTILITY Error Messages
DICTPDE Messages
Warnings

*LANGUAGE ERROR: PREVIOUSLY
GENERATED COMAREA

The VPLUS COMAREA was already generated
in the output file.

*LANGUAGE ERROR: PREVIOUSLY
GENERATED IMAGE PARAMETERS

The IMAGE parameters were already generated
in the output file.

*LANGUAGE ERROR: ! IS ILLEGAL
PASCAL NAME

The entity name consists of characters which
are not legal PASCAL identifiers. DICTPDE will
convert the name to a legal PASCAL name.

*LANGUAGE ERROR: ! IS PASCAL
RESERVED WORD

The entity name is a PASCAL reserved word.
DICTPDE will convert the name to a legal
TYPE or VAR identifier.

*MPE ERROR: CANNOT FREE EXTRA
DATA SEGMENT

*MPE ERROR: CANNOT GET EXTRA
DATA SEGMENT

*MPE ERROR: ERROR IN WRITING TO
EXTRA DATA SEGMENT

*MPE ERROR: ERROR ON READING
FROM EXTRA DATA SEGMENT

MESSAGE EXPLANATION AND/OR ACTION

*PASCAL FILE ERROR: PASCERR!

*PASGEN: ERROR DETECTED DURING
EXECUTION

*FILE WARNING: OUTPUT FILE
ALREADY EXISTS. WILL APPEND

All declarations generated will be appended to
the specified output file.

*FILE WARNING: TOO MANY OUTPUT
FILES

*WARNING: NO ELEMENTS OR FILES
ARE RELATED TO THIS ENTITY.

MESSAGE EXPLANATION AND/OR ACTION
310 Appendix B

UTILITY Error Messages
DICTVPD Messages
DICTVPD Messages

Errors

MESSAGE EXPLANATION AND/OR ACTION

FAILURE TO OPEN DICT.PUB The Dictionary DICT.PUB does not exist, or has
been directed to a Dictionary which does not
exist.

FAILURE TO OPEN FORMS FILE The forms file could not be opened. The forms
file does not exist, or is opened for exclusive
access by some other program.

INCOMPATIBLE DICTIONARY/3000
VERSION

This version of the Dictionary does not match
the version the utility expects. The Dictionary
should be re-initialized using the DICTINIT
utility and the re-initialize option.

INVALID FORM NAME The form name entered is not in the forms file or
is not in the correct syntax for a form name.

INVALID RESPONSE The user input does not match one of the
possible responses given in the prompt. Reenter
response.

UNEXPECTED ERROR DICTVPD has encountered an error internal to
the utility.

*ERROR WHILE ACCESSING FILE: # DICTVPD encountered an MPE file system
error while reading the file.

*ERROR: ELEMENT NOT DEFINED This error message will only be displayed if
DICTVPD encounters an internal error. While
relating the elements to the forms file,
DICTVPD could not find this element in the
Dictionary.

*ERROR: INTERNAL TABLE OVERFLOW
(TOO MANY FORMS)

The internal table of DICTVPD have
overflowed. There are too many forms defined in
the form file to be loaded in one execution of
DICTVPD.

*ERROR: LIST FILE ALREADY EXISTS. The list file specified already exists.

*ERROR: NAME CANNOT BE QUALIFIED The name entered should not be qualified with
the group or account.
Appendix B 311

UTILITY Error Messages
DICTVPD Messages
Warnings

MESSAGE EXPLANATION AND/OR ACTION

*WARNING: DICTIONARY ALREADY
CONTAINS FORM: #

The form to be loaded already exists in the
Dictionary

*WARNING: ELEMENT HAS NOT BEEN
LOADED INTO DICTIONARY

DICTVPD skipped the specified element

*WARNING: FORMS FILE ALREADY
NAMED IN DATA DICTIONARY

Forms file to be loaded already exists in the
Dictionary.
312 Appendix B

C DICTIONARY/3000 Initialization
Procedure

Overview
Once Dictionary/3000 software has been installed on your system, you must execute the
program DICTINIT to create and initialize a data dictionary. This program allows you to
customize the dictionary for your application and to define the security for the dictionary.
It also allows you to re-initialize an existing dictionary when you want to change the
passwords for access or to change the capacities of the data sets in the dictionary.

The dictionary is created in the MPE group and account from which the DICTINIT
program is run. The dictionary maintenance program (DICTDBM) and the dictionary
utility programs all assume the dictionary exists in the PUB group of the log-on account. If
you create a dictionary in a different group and/or account, you will first have to identify
these before running DICTDBM or the utilities. You do this by issuing a file equation as
follows:

 FILE DICT.PUB=DICT. group.account

When running DICTINIT, you can define five levels of access to the dictionary. You do this
by assigning a password to each level. The access levels are hierarchical — that is, each
level is given the capability for its level and all levels below. The topmost level of
MANAGER has complete and total access to the dictionary. The mid-level of INFORM has
access for INFORM as well as for DOCUMENTATION and REPORT, and so forth.

Entries that pertain to security, such as security class numbers and passwords, can only be
created and modified by someone using the password assigned to MANAGER. A
description of each possible level and the access capability given to each follows:

LEVEL ACCESS CAPABILITY WHO SHOULD USE

MANAGER Total access. The person responsible for the data
dictionary.

PROGRAMMER Can modify entries except
security entries; can read
security entries.

Anyone who needs to create and
maintain files and elements in the
dictionary for application
development.

INFORM Can modify HP Inform/3000
group entries and all entries
below; cannot read/modify
security entries.

Anyone responsible for the
maintenance of the HP Inform/3000
program.
313

DICTIONARY/3000 Initialization Procedure
Overview
Once passwords for the various levels are assigned, there is no way for you to see them
within Dictionary/3000. If you are the database creator, you can run DBUTIL and see the
passwords. (Refer to the IMAGE/3000 Reference Manual for a description of the DBUTIL
utility.) If not, you can run the DICTINIT program again and use the
RE-INITIALIZATION option to assign new passwords. If you do not specify a password for
a particular level, that security level is deleted - there is no access at that level. The
MANAGER level cannot be deleted; you must specify a password for the MANAGER level.

There are two phases to the DICTINIT program. During the first phase (initialization),
information provided by the Dictionary/3000 software is used to create a temporary
dictionary which is automatically purged at the end of phase two. To create this temporary
dictionary, a special stream job is automatically invoked by DICTINIT. If you use
passwords at either the user, account, or group level when you log on, the stream job
prompts you to enter them before it begins. You should monitor the status of the stream job
to be sure no errors are encountered. If the job was able to complete, a message informing
you to run DICTINIT.PUB.SYS,UPDATE for phase two is displayed. If the job aborts, the
line printer listing will tell you why. After correcting the problem, you can begin again.

Phase two (customization) allows you to customize your dictionary or use the defaults, and
to assign passwords for the levels of access. At the end of phase two another stream job is
invoked. This job builds your permanent data dictionary. If the job in phase two completes
successfully, you are informed that DICTINIT IS COMPLETE. If you do not receive this
message, but the job has finished, check the line printer listing for the errors. After
correcting them, rerun DICTINIT.PUB.SYS,UPDATE.

You can terminate DICTINIT by entering a CNTL-Y at any time. If you enter a CNTL-Y
while running phase two, any changes that have been verified are accepted and become the
defaults when phase two is run again. A complete list of all error messages, including what
to do to recover, is given following the examples.

Example

To initialize a new data dictionary using the default capacities provided by HP, simply
follow the process below - substituting your responses for the ones shown where
appropriate. The first step is to log on to the group and account in which you want the
dictionary to appear. Then follow the following example:

:RUN DICTINIT.PUB.SYS How to start initialization process.

<The Dictionary/3000 initialization program banner appears here.>

Initialization/Re-initialization (I/R) >i Select “I” to build a new dictionary.

DOCUMENTATION Can modify documentation
entries and all entries below;
cannot read/modify security
entries.

Anyone responsible for maintaining
documentation entries in the
dictionary (PROCEDURES,
LOCATIONS, or CATEGORIES).

REPORT Can modify NO entries; can read
all entries except security
entries.

Anyone who needs to write can read
all entries except reports about the
contents of the dictionary.

LEVEL ACCESS CAPABILITY WHO SHOULD USE
314 Appendix C

DICTIONARY/3000 Initialization Procedure
Overview
USER PASSWORD > If logon passwords were used, enter them in response to
these prompts.

ACCOUNT PASSWORD
>LOCKIT They are used by the batch job that installs a temporary

dictionary.

GROUP PASSWORD >
#J33 Number of the STREAMed job which performs step one

(initialization).

END OF PROGRAM : End of step one.

FROM/<your account>/PLEASE RUN DICTINIT.PUB.SYS,UPDATE

This message informs you that the job is complete, and
you are to perform step two (customization).

:RUN DICTINIT.PUB.SYS,UPDATE Performing step two.

<The Dictionary/3000 initialization program banner goes here.>

Initialization/Re-initialization (I/R) >i Again - new dictionary.

Dictionary capacities: Default or Provided (D/P) >d Use the default capacities.

Listing of the capacities for your examination.

DATA-ELEMENT will have capacity 1001

DATA-FILE will have capacity 503

DATA-PROCEDURE will have capacity 203

DATA-CATEGORY will have capacity 203

DATA-GROUP will have capacity 503

DATA-CLASS will have capacity 203

DATA-LOCATION will have capacity 203

LINK-FILE will have capacity 401

LINK-ELEMENT will have capacity 401

LINK-DESCRIPTION will have capacity 2003

DATA-REPORTLOC will have capacity 503

ELEMENT-REFTYPE will have capacity 500

ELEMENT-ELEMENT will have capacity 500

FILE-FILE will have capacity 250

PROCEDURE-PROCED will have capacity 100

CATEGORY-CATEGOR will have capacity 100

GROUP-GROUP will have capacity 250

FILE-ELEMENT will have capacity 2000

FILE-EL-SECOND will have capacity 100
Appendix C 315

DICTIONARY/3000 Initialization Procedure
Overview
FILE-PATH will have capacity 400

FILE-SORT will have capacity 400

PROCEDURE-ELEMENT will have capacity 500

CATEGORY-ELEMENT will have capacity 500

Press RETURN to continue > Press RETURN to see the rest of the display; it fills more
than one screen in this case.

GROUP-ELEMENT will have capacity 1000

CLASS-CLASS will have capacity 500

CLASS-ELEMENT will have capacity 3000

CLASS-FILE will have capacity 500

CLASS-GROUP will have capacity 500

FILE-LOCATION will have capacity 500

PROCEDURE-LOCATI will have capacity 200

DESCRIPTION-TEXT will have capacity 5000

REPORT-LIST will have capacity 500

Are the capacities correct?
(Y/N) >Y This prompt gives you a chance to answer “N” and change

them; here we say yes.

Password for MANAGER access
>DICTMGR These prompts allow you to specify the security levels and

their passwords; you can respond with a password or
simply press RETURN for no access at that level.

Password for PROGRAMMER access >DICPRG

Password for INFORM access >DICINF

Password for DOCUMENTATION access >

Password for REPORT access >DICRPT

Program lists the passwords assigned.

Password for MANAGER access will be DICTMGR

Password for PROGRAMMER access will be DICPRG

Password for INFORM access will be DICINF

There will be no DOCUMENTATION
access allowed RETURN was pressed, nullifying that level.

Password for REPORT access will be DICRPT

Are the passwords correct?
(Y/N) >y You can change the passwords by responding “N”.

USER PASSWORD > Again — any log-on passwords are needed to start the
316 Appendix C

DICTIONARY/3000 Initialization Procedure
Overview
final initialization job which actually creates the new
dictionary.

ACCOUNT PASSWORD >LOCKIT

GROUP PASSWORD >
#J34 Number of the final job.

END OF PROGRAM End of customization step. The program is complete; your
dictionary is initialized.

FROM/<your account>/DICTINIT IS COMPLETE

This example demonstrates how to enter your own capacities and change them after they
are displayed. As before, log on to the group and account in which you want the dictionary
before starting.

:RUN DICTINIT.PUB.SYS How to execute the program.

<The Dictionary/3000 initialization program banner appears here>

Initialization/Re-initialization
(I/R) >i Select “I” to build a new dictionary.

USER PASSWORD >

ACCOUNT PASSWORD
>LOCKIT If a user, account, or group password is required, enter it

in response to these prompts.

GROUP PASSWORD >
#J35

END OF PROGRAM
:

FROM/<your account>/PLEASE RUN
DICTINIT.PUB.SYS,UPDATE Informs you to run step two.

:RUN DICTINIT.PUB.SYS,UPDATE

<The Dictionary/3000 initialization program banner appears here.>

Initialization/Re-initialization
(I/R) >i Select “I” to build a new dictionary.

Dictionary capacities:
Default or Provided (D/P) >p Select “P” to enter new capacities; old ones are displayed.

DATA-ELEMENT
New capacity for

has capacity 1001
DATA-ELEMENT > 1002

DATA-FILE
New capacity for

has capacity 503
DATA-FILE > 504

DATA-PROCEDURE
New capacity for

has capacity 203
DATA-PROCEDURE > 204

DATA-CATEGORY
New capacity for

has capacity 203
DATA-CATEGORY > 204
Appendix C 317

DICTIONARY/3000 Initialization Procedure
Overview
DATA-GROUP
New capacity for

has capacity 503 DATA-GROUP >
504

DATA-CLASS
New capacity for

has capacity 203 DATA-CLASS >
204

DATA-LOCATION
New capacity for

has capacity 203
DATA-LOCATION >

Pressing RETURN keeps
the old capacity.

LINK-FILE
New capacity for

has capacity 401
LINK-FILE > 402

LINK-ELEMENT
New capacity for

has capacity 401 LINK-ELEMENT
> 402

LINK-DESCRIPTION
New capacity for

has capacity 2003
LINK-DESCRIPTION > 2004

DATA-REPORTLOC
New capacity for

has capacity 503
DATA-REPORTLOC > 504

ELEMENT-REFTYPE
New capacity for

has capacity 500
ELEMENT-REFTYPE > 501

ELEMENT-ELEMENT
New capacity for

 has capacity 500
ELEMENT-ELEMENT > 501

FILE-FILE
New capacity for

has capacity 250
FILE-FILE > 251

PROCEDURE-PROCED
New capacity for

has capacity 100
PROCEDURE-PROCED > 101

CATEGORY-CATEGOR
New capacity for

has capacity 100
CATEGORY-CATEGOR > 101

GROUP-GROUP
New capacity for

has capacity 250 GROUP-GROUP
> 251

FILE-ELEMENT
New capacity for

has capacity 2000
FILE-ELEMENT >

FILE-EL-SECOND
New capacity for

has capacity 100
FILE-EL-SECOND > 101

FILE-PATH
New capacity for

has capacity 400
FILE-PATH > 401

FILE-SORT
New capacity for

has capacity 400
FILE-SORT > 401

PROCEDURE-ELEMEN
New capacity for

has capacity 500
PROCEDURE-ELEMEN > 501

CATEGORY-ELEMENT
New capacity for

has capacity 500
CATEGORY-ELEMENT > 501

GROUP-ELEMENT
New capacity for

has capacity 1000
GROUP-ELEMENT > 1001
318 Appendix C

DICTIONARY/3000 Initialization Procedure
Overview
CLASS-CLASS
New capacity for

has capacity 500
CLASS-CLASS > 501

CLASS-ELEMENT
New capacity for

has capacity 3000
CLASS-ELEMENT > 3001

CLASS-FILE
New capacity for

has capacity 500
CLASS-FILE > 501

CLASS-GROUP
New capacity for

has capacity 500
CLASS-GROUP > 501

FILE-LOCATION
New capacity for

has capacity 500
FILE-LOCATION > 501

PROCEDURE-LOCATI
New capacity for

has capacity 200
PROCEDURE-LOCATI > 201

DESCRIPTION-TEXT
New capacity for

has capacity 5000
DESCRIPTION-TEXT > 5001

REPORT-LIST
New capacity for

has capacity 500
REPORT-LIST > 501

DATA-ELEMENT will have capacity 1002 Listing of capacities.

DATA-FILE will have capacity 504

DATA-PROCEDURE will have capacity 204

DATA-CATEGORY will have capacity 204

DATA-GROUP will have capacity 504

DATA-CLASS will have capacity 204

DATA-LOCATION will have capacity 203

LINK-FILE will have capacity 402

LINK-ELEMENT will have capacity 402

LINK-DESCRIPTION will have capacity 2004

DATA-REPORTLOC will have capacity 504

ELEMENT-REFTYPE will have capacity 501

ELEMENT-ELEMENT will have capacity 501

FILE-FILE will have capacity 251

PROCEDURE-PROCED will have capacity 101

CATEGORY-CATEGOR will have capacity 101

GROUP-GROUP will have capacity 251

FILE-ELEMENT will have capacity 2000

FILE-EL-SECOND will have capacity 101
Appendix C 319

DICTIONARY/3000 Initialization Procedure
Overview
Are the capacities correct?
(Y/N) >n Enter “N” to change values.

Data-set name (DONE/ALL/name)
>report-list Change capacity of data set REPORT-LIST.

REPORT-LIST has capacity 501

New capacity for REPORT-LIST > 200

Data-set name (DONE/ALL/name) >description-text

DESCRIPTION-TEXT has capacity 5001

New capacity for DESCRIPTION-TEXT > 5000

Data-set name (DONE/ALL/name) >done Enter DONE to stop changing capacities.

DATA-ELEMENT will have capacity 1002 Listing of capacities.

 .

 .

 .

Press RETURN to continue >

 .

 .

 .

FILE-PATH will have capacity 401

FILE-SORT will have capacity 401

Press RETURN to continue >

PROCEDURE-ELEMEN will have capacity 501

CATEGORY-ELEMENT will have capacity 501

GROUP-ELEMENT will have capacity 1001

CLASS-CLASS will have capacity 501

CLASS-ELEMENT will have capacity 3001

CLASS-FILE will have capacity 501

CLASS-GROUP will have capacity 501

FILE-LOCATION will have capacity 501

PROCEDURE-LOCATI will have capacity 201

DESCRIPTION-TEXT will have capacity 5001

REPORT-LIST will have capacity 501
320 Appendix C

DICTIONARY/3000 Initialization Procedure
Overview
DESCRIPTION-TEXT will have capacity 5000

REPORT-LIST will have capacity 200

Are the capacities correct? (Y/N) >y

Password for MANAGER access >DICTMGR

Password for PROGRAMMER
access > Entering RETURN indicates that there will be no access

to the dictionary at these levels.

Password for INFORM access >

Password for DOCUMENTATION access >

Password for REPORT access >

Password for MANAGER access will be DICTMGR Listing of passwords

There will be no PROGRAMMER access allowed assigned.

There will be no INFORM access allowed

There will be no DOCUMENTATION access allowed

There will be no REPORT access allowed

Are the passwords correct? (Y/N) >y

 USER PASSWORD >

 ACCOUNT PASSWORD >LOCKIT

 GROUP PASSWORD >

 #J36

 END OF PROGRAM

 :

FROM/<your account>/DICTINIT IS COMPLETE Program is complete; your
dictionary is initialization.

This example shows a dictionary re-initialization. That is, there is already a
data-dictionary in your group, and you want to resize it and/or change the passwords to
access it.

:RUN DICTINIT.PUB.SYS How to execute the program.

<The Dictionary/3000 initialization program banner appears here>

Initialization/Re-initialization (I/R) Select “R” to re-initialize an existing dictionary.

>r

USER PASSWORD > If logon passwords were used,
enter them in response to these prompts.

ACCOUNT PASSWORD >

GROUP PASSWORD >

Dictionary store file on Tape or Disk(T/D) >d
Appendix C 321

DICTIONARY/3000 Initialization Procedure
Overview
The present contents of the dictionary will be stored by DICTINIT, to be
recovered into the new dictionary when it is created. This store file may be
quite large, and you may not have the disk space to hold it. In this case,
you may store it to tape. Otherwise, request DICTINIT to use a disk file, as
in this example.

 #J46

END OF PROGRAM

:

FROM/<your account>/PLEASE RUN DICTINIT.PUB.SYS,UPDATE End of step one.

:RUN DICTINIT.PUB.SYS,UPDATE Execute step two.

<The Dictionary/3000 initialization program banner appears here>

Initialization/Re-initialization (I/R) >r Select R to re-initialize.

Dictionary capacities: Default or Provided (D/P) >d Use defaults.

DATA-ELEMENT will have capacity 1001 Listing of capacities.

 .

 .

 .

CATEGORY-ELEMENT will have capacity 500

Press RETURN to continue >

GROUP-ELEMENT will have capacity 1000

 .

 .

 .

REPORT-LIST will have capacity 500

Are the capacities correct? (Y/N) >y

Password for MANAGER access >DICTMGR Enter passwords for the various
 security levels.

Password for PROGRAMMER access >
Password for INFORM access >DICINF

Password for DOCUMENTATION access >
Password for REPORT access >DICRPT

Password for MANAGER access will be DICTMGR Listing of passwords.
There will be no PROGRAMMER access allowed
Password for INFORM access will be DICINF
There will be no DOCUMENTATION access allowed
Password for REPORT access will be DICRPT

Are the passwords correct? (Y/N) >y
322 Appendix C

DICTIONARY/3000 Initialization Procedure
Overview
USER PASSWORD > If log-on passwords were used, enter them in response to
these prompts.

ACCOUNT PASSWORD >

GROUP PASSWORD >

Dictionary store file on Tape or Disk(T/D) Indicates a disk file; must
>d be answered as in step one.

#J50

END OF PROGRAM

:

FROM/<your account>/DICTINIT IS COMPLETE The program is complete; your
dictionary is now re-initialized.
Appendix C 323

DICTIONARY/3000 Initialization Procedure
DICTINIT Error Messages
DICTINIT Error Messages
The DICTINIT error messages are divided into three groups. The first group corresponds
to step 1 (initialization). The second group corresponds to step 2 (customization). The third
group corresponds to the final initialization job stream at the end of step 2, which builds
your permanent Dictionary.

Group 1 — Initialization Startup Errors

The error messages you might receive during the initialization startup phase (while
running DICTINIT.PUB.SYS) are as follows:

MESSAGE EXPLANATION AND/OR ACTION

YOU DO NOT HAVE BATCH ACCESS
CAPABILITY

In order to run the job streams that initialize
the Dictionary, the user, group, and account
must all have BA capability. Consult your
system or account manager.

PLEASE PURGE file AND RERUN
DICTINIT

file is one of the files MDIC, DICT, MDSCH.
These files are used in the initialization process,
and so cannot appear in your log-on group. You
should either rename them or purge them.

DICTIONARY DATA-BASE DICT MUST
EXIST TO RE-INITIALIZE

When re-initializing, the database file named
DICT must exist in your logon group and
account. Check to make sure you are in the
correct group and account, then retry.

ERROR OCCURRED WRITING STREAM
FILE

This message is preceded by an MPE file system
error message. Refer to the MPE 3000 Error
Messages and Recovery Reference Manual. The
error prevented opening, writing, or closing the
stream file which will perform the batch
processing. Consult your system manager.

JOB COULD NOT START - INVALID
PASSWORD

One of the passwords required for logon
(account, user, or group) was either missing or
incorrect. Check your passwords and respond
again to the password prompts. Note that
leading blanks are not allowed.

COMMAND ERROR = nnnn ERROR
OCCURRED STREAMING JOB

nnnn is the number of a CIERR or CIWARN
message. Consult the MPE 3000 Error Messages
and Recovery Reference Manual for the full text.
The error occurred while executing a STREAM
command to start the phase 1 job which creates
the temporary Dictionary. Consult your system
manager.
324 Appendix C

DICTIONARY/3000 Initialization Procedure
DICTINIT Error Messages
Group 2 — Customization Errors

The error messages you might receive during the customization phase (while running
DICTINIT.PUB.SYS,UPDATE) are as follows:

FROM /your account file /file system
error message
FROM /your account / ERROR OCCURRED
OPENING FILE MDSCH
FROM /your account / ERROR OCCURRED
WRITING FILE MDSCH
FROM /your account / ERROR OCCURRED
CLOSING FILE MDSCH

You will receive the first line, which is an MPE
file system error message detailing the error,
and one of the next three lines, which will tell
you what DICTINIT was trying to do at that
time. MDSCH is a schema file describing the
temporary Dictionary. Consult the MPE 3000
Error Messages and Recovery Manual to resolve
the MPE error, then rerun DICTINIT. These
messages comes from the job that was invoked
for you.

MESSAGE EXPLANATION AND/OR ACTION

YOU DO NOT HAVE BATCH ACCESS
CAPABILITY

In order to run the job streams that initialize
the Dictionary, your group must have BA
capability. Consult your system or account
manager.

*DB ERROR: IMAGE database error message This error occurs while manipulating the
temporary Dictionary. Consult your system
manager if you receive one of these messages.
The database error message corresponds to an
IMAGE error message from the DBERROR
facility. Consult the IMAGE/3000 Reference
Manual.

ERROR OCCURRED OPENING MDIC This is preceded by a *DB ERROR: message.
This error may occur if phase two is run before
the stream job from phase one completes. Wait
to receive the message to run the UPDATE
portion of DICTINIT.

ERROR IN INITIALIZING CAPACITIES
FROM MDIC

This is preceded by a *DB ERROR: message.
This occurs while reading default capacities in
MDIC.

ERROR IN UPDATING CAPACITIES TO
MDIC

This is preceded by a *DB ERROR: message.
The error occurs after you respond that the
capacities are correct, and the information is
being transferred.

ERROR OCCURRED CLOSING MDIC Consult your system manager.

MESSAGE EXPLANATION AND/OR ACTION
Appendix C 325

DICTIONARY/3000 Initialization Procedure
DICTINIT Error Messages
CAPACITY MUST BE A NUMBER
CAPACITY MUST BE LESS THAN
2,147,483,647 RESPONSE MUST BE 10
CHARACTERS OR LESS CAPACITY MAY
NOT BE ZERO

All these messages come from invalid responses
to the NEW CAPACITY prompt. (Note that the
capacity should probably be MUCH less than
2,147,483,647.)

THE DATA SET NAME DOES NOT EXIST This comes from an invalid (or misspelled) data
set name in response to the DATA-SET NAME
(DONE/ALL/name) prompt.

YOU MUST ENTER A PASSWORD FOR
MANAGER ACCESS

All the other security levels may be deleted by
pressing RETURN in response to the
PASSWORD prompt EXCEPT manager, which
must have a password.

PASSWORD MUST BE 8 CHARACTERS OR
LESS PASSWORD MAY NOT CONTAIN A
SEMICOLON (;)

These messages are the result of invalid
responses to a PASSWORD prompt. Reenter the
PASSWORD.

UNEXPECTED ERROR: MANAGER
PASSWORD IS NULL, PLEASE REENTER
THE PASSWORDS

Reenter all the passwords.

ERROR OCCURRED UPDATING MDIC
WITH NEW SECURITY

This is preceded by a *DB ERROR: message.
Please consult your system manager before
proceeding.

DISK STORE FILE MDSCH NOT FOUND You responded D for the re-initialization prompt
for tape or disk. In that case, the file MDSCH
must be present, and must contain the contents
of the old data-Dictionary. Either respond T, if
on tape, or locate MDSCH.

JOB COULD NOT START - INVALID
PASSWORD

One of the passwords required for logon (user,
account, or group) was missing or incorrect.
Check your passwords and respond again to the
password prompts. Note that leading blanks are
not allowed.

FILE ERROR: MPE file system error message
ERROR OCCURRED WRITING STREAM
FILE

This message is preceded by an MPE file system
error message. See the MPE 3000 Error
Messages and Recovery Reference Manual. The
error prevented opening, writing, or closing the
stream file which will perform the batch
processing. Consult your system manager.

COMMAND ERROR = nnnn ERROR
OCCURRED STREAMING JOB

nnnn is the number of a CIERR or CIWARN
message. Consult the MPE 3000 Error Messages
and Recovery Reference Manual for the full text.
The error occurred while executing the
STREAM command to start the phase 1 job,
which creates the temporary Dictionary. Consult
your system manager.

MESSAGE EXPLANATION AND/OR ACTION
326 Appendix C

DICTIONARY/3000 Initialization Procedure
DICTINIT Error Messages
Group 3 — Final Initialization Errors

The error messages you might receive during the final initialization job at the end of
phase 2 are as follows:

MESSAGE EXPLANATION AND/OR ACTION

FROM/your account / #DB ERROR: IMAGE
database error message
FROM/your account / ERROR OCCURRED
OPENING MDIC
FROM/your account / ERROR OCCURRED
READING CLASS nn
FROM/your account / ERROR OCCURRED
REINITIALIZING CLASS nn
FROM/your account / ERROR OCCURRED
CLOSING MDIC

You will receive the first line, followed by one of
the next four lines. nn is the number of a
security class entry in MDIC. Please consult
your system manager before proceeding. These
messages come from the job that was invoked
for you.

FROM/your account / *DB ERROR:
IMAGE database error message
FROM/your account / ERROR OCCURRED
OPENING DICT
FROM/your account / ERROR OCCURRED
INITIALIZING DIC-CONTROL
FROM/your account / ERROR OCCURRED

The first message will appear, followed by one of
the next six (nn is the number of a security
class). Please consult your system manager
before proceeding. These messages come from
the job that was invoked for you.

INITIALIZING DATA-GROUP
FROM/your account / ERROR OCCURRED
DELETING A CLASS
FROM/your account / ERROR OCCURRED
INITIALIZING CLASS nn
FROM/your account / ERROR OCCURRED
CLOSING DICT
Appendix C 327

DICTIONARY/3000 Initialization Procedure
DICTINIT Error Messages
328 Appendix C

D How HP INFORM Links Files to
Generate Reports

When generating reports using HP Inform/3000, the user selects the desired elements
from HP Inform/3000's Data Names Menu. If the user has chosen to report from elements
organized into an HP Inform/3000 group, these elements may exist in various files - MPE
files, KSAM files, or IMAGE data sets. HP Inform/3000 needs to be able to link these files
so that the desired lines of the report can be generated.

It is important for the database administrator to understand how HP Inform/3000 links
the various files. The linking process determines whether it is possible to generate the
requested report and, if so, what specific data will be printed in the report.

Common elements (elements that exist in more than one file) are used to build links
between the files which contain elements needed for the report. An element that is used in
this way is called a “link element”.

Before reading this appendix, you should read Using Commands to Define HP Inform/3000
Groups in Section III.

NOTE An element which has been defined as a CHILD element through the
RELATE ELEMENT command string can not be used as a link.
329

How HP INFORM Links Files to Generate Reports
Direct Links
Direct Links
A link between two files, each of which contains the values of one or more elements needed
for a report, is called a “direct link”.

When two files are linked, the value of the link element is retrieved from the first file and
is used to determine the correct record to retrieve from the second file. If the link is from
an IMAGE master set, IMAGE detail set, KSAM file, or MPE file to an MPE file, the link
element must simply exist in both files; if the file you are linking to, however, is an IMAGE
master, IMAGE detail, or KSAM file, there are additional requirements on the link
element. These are:

1. If the file you are linking to is a KSAM file, the link element must be a common element
(must exist in both files) and must be a key item in the KSAM file. Note that when the
link is from a KSAM file to another KSAM file, the link element need only be a key item
in the second file accessed.

2. If the file you are linking to is an IMAGE detail set, the link element must be a common
element and must be a search item in the detail set. These are the only requirements
even when the link is from one database to another. Note that when the link is from a
detail set to another detail set, the link element need only be a search item in the
second file accessed.

3. If the file you are linking to is an IMAGE master set, the link element must be a
common element and must be a search item in the master set. These are the only
requirements even when the link is from one database to another. Note that when the
link is from a master set to another master set, the link element need only be a search
item in the second file accessed. (There are two additional ways that a data set can be
linked to a master set as long as the link is within one database; these are explained
below under Indirect Links.)

The following table summarizes the above requirements for direct links according to what
type of file is being linked to. Note that the file you are linking from can be any type - MPE,
KSAM, IMAGE detail, or IMAGE master.

FILE BEING LINKED TO REQUIREMENT ON LINK ELEMENT

MPE Common element.

KSAM Common element which is a key item in the KSAM file
being linked to.

DETAIL Common element which is a search item in the DETAIL
data set being linked to.

MASTER Common element which is a search item in the MASTER
data set being linked to.

EXAMPLE 1 at the end of this appendix demonstrates direct links from an MPE file to a
KSAM file and from an MPE file to an IMAGE detail set.
330 Appendix D

How HP INFORM Links Files to Generate Reports
Indirect Links
Indirect Links
If two files containing elements needed for a report are linked through other files which
contain no elements needed for the report, the link is called an “indirect link”. There are
only two indirect links which HP Inform/3000 allows and both apply only to data sets
within the same database. These links are the following:

1. If a master set needs to be linked to another master, a link can be made by going
through a detail which has a search item in common with each of the masters. For
example, assume the following is a partial representation of a data base:

 Suppose the report requests the data element “zoning-des” from the master set
ZONING-MASTER and the data element “city-name” from the master set
CITY-MASTER. An indirect link can be made by going through the detail set
COMMERCIAL. The master set ZONING-MASTER has the search item “zoning-code”
which forms an IMAGE path to the detail set COMMERCIAL, and the master set
CITY-MASTER has the search item “city-abbr” which also forms an IMAGE path to
COMMERCIAL.

2. If a detail set needs to be linked to a master set, a link can be made by going through a
second detail which has a search item in common with the first detail (forming IMAGE
paths to a common master) and a second search item forming an IMAGE path to the
desired master. For example, assume the following is a partial representation of a
database:

*zoning-code
zoning-des

.

.

.

*city-abbr
city-name

.

.

.

*zoning-code
*city-abbr

.

.

.

ZONING-MASTER CITY-MASTER

COMMERCIAL

*search items
Appendix D 331

How HP INFORM Links Files to Generate Reports
Indirect Links
Suppose the report requests the data element “occupied” from the detail set
COMMERCIAL and the data element “city-name” from the master set CITY-MASTER.
An indirect link can be formed by going through the detail set RESIDENTIAL. The
detail set COMMERCIAL and the detail set RESIDENTIAL both have the search item
“list-price” (which forms IMAGE paths to the common master set LIST-PRICE-MSTR);
the detail set RESIDENTIAL has a second search item “city-abbr” which forms an
IMAGE path to the master set CITY-MASTER.

As stated earlier, these are the only two indirect links which HP Inform/3000 allows and
both apply only to data sets within one database.

The Driving File

The driving file is the file that is accessed first. Since at least one line of the report will be
generated for each record retrieved from the driving file, the contents of a report could be
quite different if the driving file is different. Files which meet the following criteria are
considered:

1. the file must contain an element having a positive link value (greater than zero) which
may or may not be included in the report, and

2. the file must contain an element to be included in the report.

One, none, or more than one file might meet the above criteria:

• If only one file meets these two criteria, then it will be chosen as the driving file.

*search items

*list-price
.
.
.
.

LIST-PRICE-MSTR

*list-price
occupied

COMMERCIAL

*city-abbr
*list-price

RESIDENTIAL

*city-abbr
city-name

.

.

.

CITY-MASTER&sigspace;
332 Appendix D

How HP INFORM Links Files to Generate Reports
Indirect Links
• If no files meet these two criteria, then files which contain an element to be included
in the report are considered in the following order:

MPE files

 KSAM files

 IMAGE detail data sets

 IMAGE master data sets

If more than one file exists in the highest possible category, the file with the most elements
to be included in the report is chosen as the driving file. If there are two such files or more,
one of them is arbitrarily chosen.

• If more than one file meets these two criteria, the file which has the highest priority
link value specified (lowest positive integer) is chosen as the driving file. If more than
one of these files has the highest priority link value, then the driving file is chosen from
among them as in the above second case.

NOTE The driving file will always be read serially. It is desirable to use an MPE file
as the driving file whenever there is one which contains an element to be
included in the report; this is because HP Inform/3000 must perform a serial
read every time it accesses an MPE file to retrieve a value for a line of the
report. If the MPE file is the driving file, this serial read is done only once; if
it is not, then a serial read is done for each value of the element used to link
to the MPE file. This is not true for KSAM files or IMAGE data sets.

Hence, to ensure that a particular file is the driving file whenever an element which exists
in that file is requested for a report, add an element from that file to the group, specify the
name of that file in response to the FILE prompt, and specify a positive link value in
response to the VALUE AS A LINK prompt. The element used should be one which allows
HP Inform/3000 to link directly with other files to obtain as many elements from the group
as possible. The file you choose to specify in this manner should:

1. be an MPE file (see the NOTE earlier) if the group contains elements which only exist
in that file or if the MPE file is needed by HP Inform/3000 to link directly to other files;

2. contain the appropriate subset of data desired for reports which will be generated from
that group.

If more than one file satisfies (1) or (2), specify a link value of 1 for the file that contains the
greatest number of elements from the group, 2 for the file that contains the next greatest
number of elements from the group, and so on. Note that the more specific or limited a
group is (that is, the less varied the kinds of reports that will be generated from it are), the
more likely it is that a file which meets (2), above, can be specified.

EXAMPLE 1 at the end of this appendix demonstrates choosing a file which meets (1),
above. EXAMPLE 2 demonstrates choosing a file which meets (2), above.
Appendix D 333

How HP INFORM Links Files to Generate Reports
Linking Files
Linking Files
All elements in a group that have been assigned a positive link value form a prioritized list
for use by HP Inform/3000's access algorithm when linking files. Elements which have
been added to a group which will not be displayed on HP Inform/3000's Data Names Menu
are included in this list if they have been assigned a positive link value. The following
steps outline how HP Inform/3000 links files. If, at any particular step, all files containing
elements needed for the report are linked, the steps which follow that one do not occur.

1. HP Inform/3000 first tries to use the element in the group with the highest priority link
value (lowest positive integer) to directly link the driving file with any other files
containing elements needed for the report.

2. HP Inform/3000 next tries to use the element in the group with the second highest
priority link value to directly link those files linked in step (1) - that is, the driving file
and any files which were successfully linked to it - with any other files containing
elements needed for the report.

3. Next, the element in the group with the next highest priority link value is used to try to
directly link those files linked in steps (1) and (2) with any other files containing
elements needed for the report; and so on, until the prioritized list of elements with a
positive link value is exhausted.

4. HP Inform/3000 next tries to use elements in the group with a link value of zero (the
default) to directly link those files linked in steps (1), (2), and (3) with any other files
containing elements needed for the report. The elements with a link value of zero are
tried in an arbitrary order.

5. If all the files have still not been linked successfully, HP Inform/3000 tries to use
elements which are not in the group to directly link any of the files linked in steps (1),
(2), (3), and (4) with any of the remaining files. As always, a direct link is successful if
the element exists in both files and if any additional requirements on the file being
linked to are met (see “Direct Links” earlier in this appendix).

6. If still no link can be made and if the files HP Inform/3000 is attempting to link are
IMAGE data sets, HP Inform/3000 will try the two allowable indirect links. If this fails
to link all the needed files, the report can not be generated and the HP Inform/3000
user will receive an error message.
334 Appendix D

How HP INFORM Links Files to Generate Reports
Default File Access
Default File Access
HP Inform/3000 provides defaults designed to maximize performance of the file accesses
necessary during report production. One such default, which was explained in the
discussion on the driving file, is that an MPE file will be used as the driving file whenever
possible. In addition, if file names (in response to the FILE prompt) and link values that
override the defaults have not been specified, HP Inform/3000 will try to follow these
guidelines:

• Involve as few files as possible in the access.

• Access a KSAM file in preference to a database (since there is less overhead involved).

• Open as few databases as possible.

• Use master data sets whenever possible (since they will need to be accessed only once
per key value, while detail data sets and KSAM files may require several accesses per
key value).

Note that by specifying a file name in response to the FILE prompt, HP Inform/3000's
access algorithm may not work efficiently and possibly not at all. It is best to not specify a
file name in response to the FILE prompt unless necessary to ensure that the correct
values of an element are retrieved. If a file name is specified when it is not necessary to do
so, it is possible that more files will be accessed than HP Inform/3000 would otherwise
access. In the worst case, it may result in HP Inform/3000 being unable to create a link -
when there is no link element to the designated file.

HP Inform/3000 uses link elements to accomplish the above goals; the link elements are
used in the order which produces maximum performance. The use of link values assigned
to elements allows you to override this - to control which elements are tried to link files
and in what order. However, the ability of HP Inform/3000 to maximize performance may
be hampered by the improper use of link values.
Appendix D 335

How HP INFORM Links Files to Generate Reports
Default File Access
Example

Assume the following files:

Suppose we wish to create a group called ACCOUNT ORDERS. The purpose of the
ACCOUNT ORDERS group is to generate reports about the orders of each account. The
group consists of the data elements:

account
address
owner
prod-no
unit-cost

By accessing the files SALESTAT and INVENTORY, we could obtain all the elements in
the group; however, it is not possible to link these two files since there is no element which
exists in both of them. The MPE file, however, also contains elements from the group and,
in particular, contains the element “account” which exists in the KSAM file and which is a
key item in the KSAM file; hence a direct link can be made from WARRANTY to
SALESTAT. In addition, the MPE file contains two elements (“prod-no” and “ship-date”)
which also exist in the IMAGE detail set and which are search items in the IMAGE detail;
hence a direct link can be made from WARRANTY to INVENTORY.

Since the MPE file allows us to directly link to the two other files and since it is preferable
to access an MPE file first, we want to make the MPE file the driving file. To accomplish
this, we need to specify the file name WARRANTY in response to the FILE prompt and a
link value of 1 in response to the VALUE AS A LINK prompt when adding an element
from the file WARRANTY to the group. We would like to pick an element which will allow

SALESTAT

(ESAM file)

WARRANTY

(MPE file)
INVENTORY

(IMAGE detail)

*prod-no
*ship-date
backorderflg
unit cost

account

owner

prod-no

descrip

total

ship-date

wrnty-mp

del-flag

account
(KEY)

address

ytd-sales

sales-rep

owner
336 Appendix D

How HP INFORM Links Files to Generate Reports
Default File Access
HP Inform/3000 to link WARRANTY directly with other files to retrieve as many elements
from the group as possible.

The elements “account”, “prod-no”, and “ship-date” are our three possibilities. Since
“ship-date” is not in the group, we will use “account” or “prod-no”. The data element
“account” links WARRANTY and SALESTAT, where “address” can be retrieved; the data
element “prod-no” links WARRANTY and INVENTORY, where “unit-cost” can be
retrieved. (Note that the values for “account”, “owner”, and “prod-no” will all be retrieved
from the MPE file since it is accessed first.) Since both data elements allow us to link to
one other file where one required element can be retrieved, it does not matter which one
we use.

After linking WARRANTY with SALESTAT through the element “account”, HP
Inform/3000 will try to use the element in the group with the next highest priority link
value to directly link WARRANTY or SALESTAT with INVENTORY - assuming “prod-no”
or “unit-cost” was requested for the report. To make this most efficient, we can give
“prod-no” a link value of 2.

Thus, we could add elements to the ACCOUNT ORDERS group as follows:

 >ADD GROUP

 GROUP> account orders <

 ELEMENT> unit-cost <

 ELEMENT ALIAS> cost of unit <

 FILE>! <

 ELEMENT> address <

 ELEMENT ALIAS> ! <

 ELEMENT> owner <

 ELEMENT ALIAS> ! <

 ELEMENT> account <

 ELEMENT ALIAS> <

 FILE> warranty <

 VALUE AS A LINK> 1 <

 DISPLAY ELEMENT ON MENU (Y/N)?>!

 ELEMENT> prod-no <

 ELEMENT ALIAS> product number <

 FILE> <

 VALUE AS A LINK> 2 <

 DISPLAY ELEMENT ON MENU (Y/N)?>!

 ELEMENT> <
Appendix D 337

How HP INFORM Links Files to Generate Reports
Default File Access
Assume the following database:

Suppose we wish to create a group called BOOKS OUT. The purpose of the BOOKS OUT
group is to generate reports about books that are checked out of the library. The group
consists of the data elements:

title
author
call-no
borrower
phone

Since the purpose of the BOOKS OUT group is to report on books that are checked out, it
makes sense to access the detail set CATALOG as the first file; since CATALOG has only
one entry for every book checked out, there will be at least one line of the report for each
book that is checked out of the library. That is, CATALOG contains the appropriate subset
of data which is desired for reports which will be generated from the BOOKS OUT group.
BOOK, TITLE, and CALL-NO, on the other hand, have one entry for each book in the
library; if one of these files is the first file accessed, there will be at least one line of the
report for every book in the library. Accessing BORROWER or AUTHOR as the first file
would also not be satisfactory, since BORROWER has one entry for each person registered
to check out books from the library and AUTHOR has one entry for each author.
(SUBJECT and LOCATION are not considered since they do not contain any elements
from the group.)

To make CATALOG the driving file, we need to specify the file name CATALOG in
response to the FILE prompt and a link value of 1 in response to the VALUE AS A LINK

*title
*author
*subject
*call-no

pub-date
publisher

*call-no
*borrower

bor-date
*branch

CALL-NO

*call-no

SUBJECT

*subject

AUTHOR

*author

TITLE

*title

LOCATION

*branch
city

BORROWER

*borrower
phone

CATALOG BOOK

*search item
338 Appendix D

How HP INFORM Links Files to Generate Reports
Default File Access
prompt when adding an element from the file CATALOG to the group. We would like to
pick an element which will allow HP Inform/3000 to link CATALOG directly with other
files to retrieve as many elements from the group as possible. The elements “call-no” and
“borrower” are our two possibilities since they are search items. The data element “call-no”
links CATALOG and BOOK, where “title” and “author” can be retrieved; the data element
“borrower” links CATALOG and BORROWER, where only “phone” can be retrieved.
Hence, we pick the element “call-no”.

After linking CATALOG and BOOK through the element “call-no”, HP Inform/3000 will
try to use the element in the group with the next highest priority link value to directly link
CATALOG or BOOK with BORROWER - assuming “phone” was requested for the report.
To make this most efficient, we can give “borrower” a link value of 2. Thus, we could add
elements to the BOOKS OUT group as follows:

 >ADD GROUP

 GROUP> books out <

 ELEMENT> title <

 ELEMENT ALIAS> ! <

 ELEMENT> author <

 ELEMENT ALIAS> ! <

 ELEMENT> phone <

 ELEMENT ALIAS> phone number <

 FILE> ! <

 ELEMENT> call-no <

 ELEMENT ALIAS> call number <

 FILE> catalog <

 VALUE AS A LINK> 1 <

 DISPLAY ELEMENT ON MENU (Y/N)?>!

 ELEMENT> borrower <

 ELEMENT ALIAS> <

 FILE> <

 VALUE AS A LINK> 2 <

 DISPLAY ELEMENT ON MENU (Y/N)?>!

 ELEMENT> <
Appendix D 339

How HP INFORM Links Files to Generate Reports
Default File Access
340 Appendix D

E DICTDBM Quick Reference

The following chart indicates the order in which the data dictionary commands can be
used.

CREATE

ADD

REPORT SHOW

RESEQUENCE

UPDATE

DELETE

SECURE

REPORT
DISPLAY LIST

RENAME

MODIFY

PURGE

SHOW

REORDER

CHANGE

REMOVE

RELATE
341

DICTDBM Quick Reference
Command/Subcommand Guide
Command/Subcommand Guide
This is a quick reference guide for each command which shows what subcommands can be
used and what the command/subcommand does.

ADD

CATEGORY adds a data element to a category

CLASS adds a data element to a user security class

CLASS-FILE adds a file to a user security class

CLASS-GROUP adds a group to a user security class

FILE adds a data element to a file

FILE-LOC adds a file to a physical location

GROUP adds a data element to an HP Inform/3000 group

PROCEDURE adds a data element to a procedure

PROCEDURE-LOC adds a procedure to a physical location

CHANGE

CATEGORY changes a category to category description

CLASS changes a class to class description

ELEMENT changes an element to element entry and/or description

FILE changes a file to file entry and/or description

GROUP changes an HP Inform/3000 group to group description

PROCEDURE changes a procedure to procedure description

CREATE

CATEGORY creates a new category

CLASS creates a new user security class

ELEMENT creates a new data element

FILE creates a new file

GROUP creates a new HP Inform/3000 group

LOCATION creates a new physical location

PROCEDURE creates a new procedure
342 Appendix E

DICTDBM Quick Reference
Command/Subcommand Guide
DELETE

CATEGORY deletes an element to category association

CLASS deletes an element to class association

CLASS-FILE deletes a file to class association

CLASS-GROUP deletes a group to class association

FILE deletes an element to file association

FILE-LOC deletes a file to location association

GROUP deletes an element to HP Inform/3000 group association

PROCEDURE deletes an element to procedure association

PROCEDURE-LOC deletes a procedure to location association

DISPLAY

CATEGORY displays attribute information for a category plus all the
directly related categories

CLASS displays attribute information for a user security class

ELEMENT displays attribute information for an element plus the
directly associated and/or directly related entities

FILE displays attribute information for a file plus the directly
associated and/or directly related entities

GROUP displays attribute information for an HP Inform/3000
group plus the directly related entities

LOCATION displays attribute information for a physical location

PROCEDURE displays attribute information for a procedure plus the
directly associated and/or directly related entities

HELP

Provides brief description of any command and its sub-categories. HELP sub-categories
are DICTDBM command names.

LIST

CATEGORY lists the categories

CLASS lists the security classes

ELEMENT lists the data elements

FILE lists the files

GROUP lists the HP Inform/3000 groups

LOCATION lists the physical locations

PROCEDURE lists the procedures
Appendix E 343

DICTDBM Quick Reference
Command/Subcommand Guide
MODIFY

CATEGORY modifies a category

CLASS modifies a security class

ELEMENT modifies a data element

FILE modifies a file

GROUP modifies an HP Inform/3000 group

LOCATION modifies a physical location

PROCEDURE modifies a procedure

PURGE

CATEGORY purges the category and all references to it

CLASS purges the security class and all references to it

ELEMENT purges the data element and all references to it

FILE purges the file and all references to it, with the option to
purge related files and associated elements.

GROUP purges the HP Inform/3000 group and all references to it

LOCATION purges the location and all references to it

PROCEDURE purges the procedure and all references to it

RELATE

CATEGORY relates a category to a category

CLASS relates a class to a class

ELEMENT relates a data element to a data element

FILE relates a file to a file

GROUP relates an HP Inform/3000 group to a group

PROCEDURE relates a procedure to a procedure

REMOVE

CATEGORY removes the relationship between a child and a parent
category

CLASS removes the relationship between a child and a parent
class

ELEMENT removes the relationship between a child and a parent
element

FILE removes the relationship between a child and a parent file

GROUP removes the relationship between a child and a parent HP
Inform/3000 group
344 Appendix E

DICTDBM Quick Reference
Command/Subcommand Guide
PROCEDURE removes the relationship between a child and a parent
procedure

RENAME

CATEGORY renames an existing category

CLASS changes the existing identifying number of a security class

ELEMENT renames an existing data element

FILE renames an existing file

GROUP renames an existing HP Inform/3000 group

LOCATION renames an existing physical location

PROCEDURE renames an existing procedure

REORDER

CATEGORY reorders a child category within a parent category's entry
list

ELEMENT reorders a child data element within a parent data
element's entry list

FILE reorders a child file within a parent file's entry list

GROUP reorders a child HP Inform/3000 group within a parent
group's entry list

PROCEDURE reorders a child procedure within a parent procedure's
entry list

REPORT

CATEGORY reports all the data elements associated with a category or
with related child categories

CLASS reports all the data elements associated with a security
class

ELEMENT reports all the data elements defined in the dictionary

FILE reports all the data elements associated with a file or with
related child files

GROUP reports all the data elements associated with an HP
Inform/3000 group or with related child groups

PROCEDURE reports all the data elements associated with a procedure
or with related child procedures, including any owned by
the named procedure
Appendix E 345

DICTDBM Quick Reference
Command/Subcommand Guide
RESEQUENCE

CATEGORY resequences a data element within a category

CLASS resequences a data element within a security class

FILE resequences a data element within a file

GROUP resequences a data element within an HP Inform/3000
group

PROCEDURE resequences a data element within a procedure

SECURE

FILE secures all data elements in a file and the file itself to a
user security class

GROUP secures a group to a user security class

SHOW

CATEGORY shows all the relationships for a category plus associated
data elements where applicable

CLASS shows all the associations for a user security class

ELEMENT shows all the relationships for a data element

FILE shows all the relationships and links for a file plus
associated data elements where applicable

GROUP shows all the relationships for an HP Inform/3000 group
plus associated data elements where applicable and access
information for the group

LOCATION shows all the associations for a location

PROCEDURE shows all the relationships for a procedure plus associated
data elements where applicable

UPDATE

CATEGORY updates a data element to a category association

CLASS updates a data element to a user security class association

CLASS-FILE updates a file to a user security class association

CLASS-GROUP updates a group to a user security class association

FILE updates a data element to a file association&"

FILE-LOC updates a file to a location association

GROUP updates a data element to an HP Inform/3000 group
association

PROCEDURE updates a data element to a procedure association

PROCEDURE-LOC updates a procedure to a location association
346 Appendix E

Glossary
A

access capability The type of
access to be given to a user
security class for a file or element,
as follows:
R — allows the user identified by
the security class to locate and
read a file or an element;
U — allows the user identified by
the security class to read and
update values in a file or an
element, except search or sort
elements;
M — allows the user identified by
the security class to read, update,
add to, and delete from a file or an
element;
X — allows only the creator to
access the data set or data
element;

account The name of an MPE
account. (See the MPE
Commands Reference manual)

alias An optional name you
assign to an already defined
entity for local use in programs,
groups, and files.

association Ties together
unlike entities such as an
element and a file.

AUTO An IMAGE automatic
master data set which contains
only one data item - the search
item - and is related to one or
more IMAGE detail data sets.

B

BASE detail data sets.

blocking factor The number of
records per block; a block is the
smallest unit of data transferred
by the file system

byte position The starting
position for a data element within
a parent data element.

C

category The name used to
identify the natural relationships
within an organization or a
business.

child An entity which is
subordinately related to another
entity of the same type, such as:

CHILD CATEGORY a category
that is subordinately related to
another category;

CHILD ELEMENT a data
element that is subordinately
related to another data element;

CHILD FILE a file that is
subordinately related to another
file;

CHILD GROUP a group that is
subordinately related to another
group;

class A numeric value which can
be assigned to data elements for
the purpose of defining who may
or may not access the file.

class-file A data dictionary
entity to which data files can be
assigned in order to define who
may or may not have access to
those files.
347

count The numeric value used to
identify the number of
sub-elements in a compound
element.

D

decimal The number of decimal
digits to allow for a numeric type
data element.

DETL An IMAGE detail data set.

direct link A link between two
files, where each file contains the
values of one or more elements
needed by HP Inform/3000 for a
report.

driving file The file that HP
Inform/3000 accesses first when
linking files in order to generate a
report; one line of the report is
generated for each record
retrieved from the driving file.

E

edit mask Text used to edit the
value of data elements before
displaying them.

element The smallest accessible
unit of data in a database or file;
the same as an 'item' in
IMAGE/3000.

entry text The textual
information used by HP
Inform/3000, Report/3000, and
Transact/3000 when prompting
for input; if no entry text has been
specified, the primary name is
used in the prompt.

F

file A collection of logically
related data elements; may be an
IMAGE database or set, or a
KSAM, MPE, or VPLUS file.

file-loc A data dictionary entity
used to document the physical
location of a file.

file size The maximum number
of records a file is allows to
contain.

form The name used to identify a
form for a VPLUS forms file.

G

GROUP A collection of data
elements in the data dictionary,
established for the users of HP
Inform/3000.

H

heading text The textual
heading used by HP Inform/3000,
Report/3000, and

Transact/3000 for labeling data
elements in reports; if no heading
text has been specified, the
primary name is used

I

indirect link A link between two
files, each containing elements
needed by HP
348

Inform/3000 for a report, which is
formed by linking through one or
more other files which do not
contain elements needed for the
report.

K

key element Used to identify a
data element which is the key in a
KSAM file

KSAM Refers to a KSAM file.
(See the KSAM/3000 Reference
Manual.)

L

language The name of the
implementation language used to
write a program, procedure, or
subroutine.

level The identifying number
used to identify the position of an
entity

within the hierarchical structure
established with the RELATE
command; 1 is the top of the
structure.

link value A -1, 0, or positive
integer assigned to a data
element which is used to specify
which elements should preferably
be selected by HP Inform/3000 to
link the desired elements into a
logical record for reporting.

location A data dictionary entity
which is used to document the
physical location of data.

lockword Used to provide access
to an MPE or KSAM file. (See the
MPE Commands Reference
Manual.)

long name A fuller textual name
used to identify an entity.

M

MAST An IMAGE manual
master data set.

measurement units Identifies
the unit of measure of a data
element, such as days, lbs., etc.

MPEF An MPE file.

P

parent The name of an entity in
a hierarchical structure which
owns child entities.

password Used to provide access
to a file through a security
system; also, dictionary password
- allows a certain level access to a
data dictionary.

primary The name given an
entity when it is first created in
the data dictionary; as opposed to
an alias.

procedure The name used to
identify a system, program, or
routine which is recorded in the
data dictionary.

procedure-loc A data
dictionary entity which is used to
document the physical location of
a procedure.
349

R

relationship Ties together like
entities such as a child file and a
parent file.

responsibility The name of the
person, area, or department that
is responsible for the integrity of
an entity.

RETURN A carriage return/line
feed.

S

search element Used to identify
an element which is a search item
in an IMAGE master or detail
data set

T

type The attribute for a data
element (X, I, etc.), file type for a
file (VPLS, MAST, KSAM, etc.), or
a user-definable 4-character
definition for other entities.

V

VPLS Refers to a VPLUS forms
file.
350

	1� Introducing Dictionary/3000
	Overview
	What is a Data Dictionary?
	How to Use Dictionary/3000

	How to Use this Manual

	2� How to Run Dictionary/3000
	Overview
	Running the DICTDBM Program

	Command Syntax
	Options Used with Commands
	When to Use the Options

	Special Character Options
	Commands and Subcommands
	Command Usage Chart

	3� Using the DICTDBM Commands
	Overview
	Using Commands to Define a Database
	Creating Elements and Files for a Database
	Relating Data Sets to a BASE File
	Adding Data Elements to Data Sets
	Securing a Database
	Creating a Database

	Using Commands to Define Other File Structures
	Creating MPE, MPER, KSAM, and VPLUS Elements and Files
	Adding Data Elements to Files
	Relating Forms to a VPLUS Forms File
	Security for MPE, KSAM, and VPLUS Files

	Using Command to Define Procedures
	Creating Data Elements and Procedures
	Relating Procedures to Procedures
	Adding Data Elements to Procedures

	Using Commands to Define Locations
	Creating Locations
	Adding Files and Procedures to Locations

	Using Commands to Define Categories
	Creating Elements and Categories
	Relating Categories to Categories
	Adding Elements to Categories

	Using Commands to Define HP Inform/3000 Groups
	HP Inform/3000 Groups
	Creating Elements and Groups
	Relating Groups to a Group
	Adding Elements to Groups

	Using Commands to Define HP Inform/3000 Security
	Creating Inform Classes
	Relating IMAGE Classes to Inform Classes
	Adding Entities to an IMAGE Class
	Adding Inform Groups to Inform Classes

	Using Selection Criteria
	Using Edit Description Commands
	Using Edit Masks

	4� DICTDBM Commands
	Overview
	ADD
	Subcommands
	Subcommand Prompts
	Prompts

	Change
	Subcommands
	Subcommand Prompts
	Prompts

	Create
	Subcommands
	Subcommand Prompts
	Prompts

	Delete
	Subcommands
	Subcommand Prompts
	Prompts

	Display
	Subcommands
	Subcommand Prompts
	Prompts

	Help
	List
	Subcommand Prompts
	Prompts

	Modify
	Subcommands
	Subcommand Prompts
	Prompts

	Purge
	Subcommands
	Subcommand Prompts
	Prompts

	Relate
	Subcommands
	Subcommand Prompts
	Prompts

	Remove
	Subcommands
	Subcommand Prompts
	Prompts

	Rename
	Subcommands
	Subcommand Prompts
	Prompts

	Reorder
	Subcommands
	Subcommand Prompts
	Prompts

	Report
	Subcommands
	Subcommand Prompts
	Prompts<

	Resequence
	Subcommands
	Subcommand Prompts
	Prompts

	Secure
	Subcommand
	Subcommand Prompts
	Prompts

	Show
	Subcommands
	Subcommand Prompts
	Prompts

	Update
	Subcommands
	Subcommand Prompts
	Prompts

	5� Dictionary/3000 Utilities
	Overview
	Initiating the Utilities
	Changing Output Files
	Using the Utilities to Restructure a Database

	DICTDBA
	Database Audit Utility

	DICTDBC
	Database Creation Utility

	DICTDBD
	Database Definition Utility

	DICTDBU
	Database Unload Utility

	DICTDBL
	Database Load Utility

	DICTDBM,UTIL
	Dictionary Clean Utility

	DICTVPD
	VPLUS Forms File Definition Utility

	6� The Dictionary DICTPDE Utility
	Overview
	Initiating DICTPDE
	Changing Input, List and Output Files
	ALTER
	Subcommands

	>ALTER ALL
	Prompts
	Discussion

	>ALTER DICT
	Prompts
	Discussion

	>ALTER KIND
	Prompts
	Discussion

	>ALTER NAME
	Prompts
	Discussion

	>ALTER OUTPUT
	Prompts
	Discussion

	>ALTER SHIFT
	Prompts
	Discussion

	>ALTER TEXT
	Prompts
	Discussion

	>ALTER VPLUS
	Prompts
	Discussion

	EXIT
	Discussion

	GENERATE
	Subcommands

	>GENERATE COMAREA
	Prompts
	Discussion

	>GENERATE ELEMENTS
	Prompts
	Discussion

	>GENERATE FILE
	Prompts
	Discussion

	>GENERATE IMAGEPARMS
	Prompts
	Discussion

	HELP
	Subcommands

	LIST
	Subcommands

	>LIST ALL
	Prompts
	Discussion

	>LIST ELEMENT
	Discussion

	>LIST FILE
	Prompts
	Discussion

	DICTPDE Naming Considerations
	PASCAL Data Type Mappings

	7� The Dictionary DICTCDE Utility
	Overview
	Special Character Responses
	Initiating DICTCDE
	The DICTCDE Main Prompt
	Generating Code for Files
	Generating Code for Elements
	Generating Code for Standard Parameters
	Changing the DICTCDE Options

	Changing Input, List and Output Files
	Examples of Generated Code
	IMAGE Database Definitions
	IMAGE Data Set Definitions
	VPLUS Forms File Definitions
	VPLUS Form Definitions
	MPE File Definitions
	KSAM File Definitions
	Element Definitions
	Compound Element Definitions
	Back-Referenced Elements
	Element to Element Relationships
	Forced REDEFINES
	Explicit REDEFINES
	Edit Masks
	Code Generated for Standard Parameters

	DICTCDE Naming Considerations
	COBOL Data Type Mappings
	Any ASCII Character
	Uppercase Alphanumeric String
	Numeric ASCII String
	Zoned Decimal
	Boolean
	String
	Real Number
	Integer Number and Logical Value
	Packed Decimal
	VPLUS Data Items

	A� DICTDBM Error Messages
	USER Messages
	PROG Messages
	SYSTEM Master
	TRAP Messages
	DICT Messages

	B� UTILITY Error Messages
	DICTCDE Messages
	Warnings
	Info

	DICTDBA Messages
	Errors
	Warnings

	DICTDBC Messages
	Errors

	DICTDBD Messages
	Errors
	Warnings
	Condition Prompts

	DICTDBL Messages
	Errors
	Warnings
	Condition Prompts

	DICTDBU Messages
	Errors
	Warnings
	Condition Prompts

	DICTPDE Messages
	Errors
	Warnings

	DICTVPD Messages
	Errors
	Warnings

	C� DICTIONARY/3000 Initialization Procedure
	Overview
	DICTINIT Error Messages

	D� How HP INFORM Links Files to Generate Reports
	Direct Links
	Indirect Links
	The Driving File

	Linking Files
	Default File Access

	E� DICTDBM Quick Reference
	Command/Subcommand Guide

