
Asynchronous Serial Communications
Programmer’s Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 8
32022-90052
E1098

Printed in: U.S.A. October 1998

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group..

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1991, 1992, 1994, 1996, and 1998 by Hewlett-Packard
Company

Contents
Audience . 17
Related Manuals . 18
Guide to This Manual . 18

1. Introduction
Asynchronous Serial Communications . 22

Devices . 22
Terminals. 23
Serial Printers. 23
Plotters . 23
Modems . 23
System Console . 23
Non-Hewlett-Packard Devices . 24

PAD Device Connections . 24
Telnet . 24
Telnet/iX . 25
DTC Telnet . 25

Datacommunications and Terminal Subsystem (DTS) 26
DTC . 26
Local Area Network . 29

LAN Interface Card (LANIC) . 29
ThinLAN Connection . 29
ThickLAN Connection . 30

OpenView Workstation. 31
ASC Software Overview . 33

Control. 33
Configuration . 33

Configuration with OpenView DTC Manager 34
Nailed and Non-Nailed Connections . 34

Data Communications Concepts Reviewed . 36
Protocols . 36

Hardware Protocols. 36
Flow Control Protocols . 37

Local Device Settings . 38

2. Controlling Asynchronous Devices Programmatically
File System Overview . 42

File Equations. 42
File System Hierarchy . 43

Device Operation Modes . 44
Session-Accepting Devices . 44
Programmatic Devices . 45
System Console . 46
Spooled Devices. 46
Slaved Devices . 47

MPE/iX System Intrinsics . 48
Intrinsics and Asynchronous Serial Communications 48
Summary of Intrinsics . 49
3

Contents
Other Types of Intrinsics . 50
Using Intrinsics in your Program . 50

Condition Codes . 50
Status Parameter . 51
Abort Errors . 51
Optional Capabilities . 52

Obtaining Information Using Intrinsics . 53
Status Information . 53

Functional Returns . 54

3. Common Device Control Functions
Opening Asynchronous Devicefiles . 56

File Open Intrinsics . 57
Reading From Asynchronous Devices. 60

Input Modes . 60
Character Mode. 60
Block Mode . 60
Field Mode . 61

Data Editing Modes . 62
Standard Mode . 63
Transparent Mode. 63
Binary Mode . 63

Triggering Reads . 63
Terminating Reads . 64
End of File Indicators . 65
Using FREAD . 65

Timing a Read . 68
Setting a Read Time Limit . 70

Using READ or READX . 72
Writing to Asynchronous Devices . 73

Using FWRITE . 73
Sending Escape Sequences . 76

Using PRINT. 76
Altering Terminal Deficefiles . 77

Specifying an AEOR Character . 77
Altering Device Control Settings . 80
Setting Transparent Editing Mode . 82
Setting Binary Editing Mode . 85

Closing Files. 88

4. Using FDEVICECONTROL
Syntax Description . 92
Examples . 94

Setting Transparent Editing Mode . 94
Specifying an End-of-Record Character . 98
Controlling Backspace Processing . 100
Controlling Device XON/XOFF Processing 104
Controlling Host and Device XON/XOFF Processing. 106
4

Contents
Setting the Number of Stop Bits . 108
Enabling Escape Sequence Read Termination 109

5. Using Subsystem Break
The Break Keys . 112
Subsystem Break Intrinsics . 113

Subsystem Break Example . 114
Subsystem Break Processing . 117

Native Mode vs. Compatibility Mode . 117
Subsystem Break Summary . 118

6. Typeahead Mode
Working in Typeahead Mode. 120

Enabling Typeahead Mode. 120
How Typeahead Mode Works. 121

Typeahead Mode and Echo. 121
Typeahead Mode and Subsystem Break 122

Additional Typeahead Considerations . 123
Programming for Typeahead Mode. 124

Setting Typeahead Mode . 125
Flushing the Typeahead Buffer . 127
Bypassing the Typeahead Buffer. 129

7. Programming for PAD, DTC Telnet, Telnet/iX Server, and
VT Devices

PAD Access to MPE/iX Systems . 132
PAD Access to MPE/iX Systems . 132

Hardware Requirements . 132
Network Configuration Requirements. 133

PAD Configuration Values . 133
Security . 134

PAD Device Access . 134
Log On Access. 134
Programmatic Access . 135

General PAD Restrictions. 135
PAD Programming Considerations . 135

FCONTROL. 136
FDEVICECONTROL . 136

DTC Telnet Access to MPE/iX Systems . 138
What’s Included . 138

Hardware Requirements . 138
Network configuration Requirements . 138

DTC Telent Configuration Values . 138
General DTC Telnet Restrictions . 139

DTC Telnet Programming Considerations 139
FCONTROL. 139
FDEVICECONTROL . 140

Telnet/iX Server Access on MPE/iX Systems 142
5

Contents
What’s Included . 142
General Telnet/iX Server Restrictions . 142

Telnet/iX Server Programming Considerations 142
FCONTROL. 142
FDEVICECONTROL . 143
FREAD and FWRITE . 144
Recommended Programming Practices . 144

Virtual Terminal Access on MPE/iX Systems 145
What’s Included . 145

General VT Restrictions . 145
VT Programming Considerations . 145

FCONTROL. 145
FDEVICECONTROL . 146
FREAD and FWRITE . 148
Recommended Programming Practices . 148

8. Intrinsics Reference
Intrinsics and Asynchronous Device Control 152
Intrinsic Descriptions . 154

Intrinsic Name . 154
Syntax . 154
Use. 155
Functional Return . 155
Parameters . 155
Notes . 155
Condition Codes . 156
Special Considerations . 156
Additional Discussion. 156

FCHECK . 157
SYNTAX . 157
Use. 157
Parameters . 157
Summary of Error Codes . 158

Condition Codes . 159
Additional Discussion. 159

FCLOSE . 160
Syntax . 160
Use. 160
Parameters . 161

Condition Codes . 161
Additional Discussion. 161

FCONTROL . 162
Syntax . 162
Use. 162
Parameters . 163

FCONTROL(1) . 165
Parameters . 165

Condition Codes . 166
Additional Discussion. 166
6

Contents
FCONTROL(4) . 167
Parameters . 167

Condition Codes . 168
Additional Discussion. 168

FCONTROL(10, 11) . 169
Parameters . 169

Condition Codes . 170
Additional Discussion. 170

FCONTROL(12, 13) . 171
Parameters . 171

Condition Codes . 172
Additional Discussion. 172

FCONTROL(14, 15) . 173
Parameters . 173

Condition Codes . 174
Additional Discussion. 174

FCONTROL(16, 17) . 175
Parameters . 175

Condition Codes . 177
Additional Discussion. 177

FCONTROL(22) . 178
Parameters . 178

Condition Codes . 178
Additional Discussion. 178

FCONTROL(23, 24) . 179
Parameters . 179

Condition Codes . 180
Additional Discussion. 180

FCONTROL(25) . 181
Parameters . 181

Condition Codes . 183
Additional Discussion. 183

FCONTROL(26, 27) . 184
Parameters . 184

Condition Codes . 185
Additional Discussion. 186

FCONTROL(28, 29) . 187
Parameters . 187

Condition Codes . 188
Additional Discussion. 188

FCONTROL(34, 35) . 189
Parameters . 189

Condition Codes . 190
Additional Discussion. 190

FCONTROL(36) . 191
Parameters . 191

Condition Codes . 192
Additional Discussion. 192

FCONTROL(37) . 193
7

Contents
Parameters . 193
Condition Codes . 194

Additional Discussion. 194
FCONTROL(38) . 195

Parameters . 195
Condition Codes . 196

Additional Discussion. 196
FCONTROL(39) . 197

Parameters . 197
Condition Codes . 197

Additional Discussion. 197
FCONTROL(40) . 198

Parameters . 198
Condition Codes . 198

Additional Discussion. 199
FCONTROL(41) . 200

Parameters . 200
Condition Codes . 202

Additional Discussion. 203
FDEVICECONTROL. 204

Syntax . 204
Use. 204
Parameters . 207

Condition Codes . 208
Device Control Directives. 209
Additional Discussion. 225

9. Intrinsics Reference (cont)
FERRMSG . 228

Syntax . 228
Use. 228
Parameters . 228

Condition Codes . 229
Additional Discussion. 229

FFILEINFO . 230
Syntax . 230
Use. 230
Parameters . 230

Condition Codes . 232
Additional Discussion. 232

FGETINFO. 233
Syntax . 233
Use. 233
Parameters . 233

Condition Codes . 239
Additional Discussion. 239

FOPEN . 240
Syntax . 240
Use. 240
8

Contents
Functional Return . 240
Parameters . 240

Condition Codes . 247
Additional Discussion. 248

FREAD . 249
Syntax . 249
Use. 249
Functional Return . 249
Parameters . 249

Condition Codes . 250
Additional Discussion. 250

FSETMODE . 251
Use. 251
Parameters . 251

Condition Codes . 252
Additional Discussion. 252

FWRITE . 253
Syntax . 253
Use. 253
Parameters . 253

Condition Codes . 256
Additional Discussion. 256

HPFOPEN . 257
Syntax . 257
Use. 257
Parameters . 258
Item Number, Item Summary . 259

Condition Codes . 269
Additional Discussion. 269

IODONTWAIT . 270
Syntax . 270
Use. 270
Functional Return . 270
Parameters . 270

Condition Codes . 271
Special Considerations . 271
Additional Discussion. 271

IOWAIT . 272
Syntax . 272
Use. 272
Functional Return . 272
Parameters . 272

Condition Codes . 273
Special Considerations . 273
Additional Discussion. 273

PRINT. 274
Syntax . 274
Use. 274
Parameters . 274
9

Contents
Condition Codes . 274
Additional Discussion. 275

PRINTFILEINFO . 276
Syntax . 276
Use. 276
Parameters . 276

Condition Codes . 276
Additional Information. 276

READ . 277
Syntax . 277
Use. 277
Functional Return . 277
Parameters . 277

Condition Codes . 278
Additional Discussion. 278

READX . 279
Syntax . 279
Use. 279
Functional Return . 279
Parameters . 279

Condition Codes . 280
Additional Discussion. 280

RESETCONTROL . 281
Syntax . 281
Use. 281
Parameters . 281

Condition Codes . 281
Additional Discussion. 281

XCONTRAP . 282
Syntax . 282
Use. 282
Parameters . 283

Condition Codes . 284
Additional Discussion. 284

A. Comparing MPE/iX Systems to MPE V Systems
Physical Appearance . 286
Configuration . 287

General System Configuration. 287
Terminal and Serial Printer Subsystem Configuration 287
Terminal Configuration Settings . 288

PAD Support . 289
PAD Programming Considerations . 289

Terminal Types and Printer Types . 290
Software Characteristics . 293

Changed Functions. 293
Echo Facility . 293
XON/XOFF Protocol . 293
Using Smooth Scroll . 294
10

Contents
Parity Error . 295
Parity Error in EOR . 295
Stripped Characters . 295
System Break and Terminal States . 295
Using [Break] (and Later :RESUME) During a Read. 295
Using [Break] During Writes . 296
The Command Interpreter and [Break]. 296
Preemptive Writes . 296

During Reads . 296
During Writes . 296

Logical Console Functionality . 296
Printer Status Request . 297

Programming Considerations . 297
Changing Parity . 297
Read Timer . 298
Additional End-of-Record Characters . 298
Transparent Mode. 299
Binary Mode and Echo . 299
Using FCONTROL(35) . 299
The FDEVICECONTROL Intrinsic . 300

Functions No Longer Supported . 300
ENQ/ACK Protocol . 300
Transmission Speeds of 110, 150 and 600 300
:EOF: and :EOD: Commands . 300
Carriage Control Delays . 300
Special Response to a Backspace Character 300
Special Response to a Linefeed Character. 301
Special Output for a Formfeed Character 301
Critical Writes. 301

Related Operating System Changes . 301
MPE Commands . 301
File System Intrinsics. 301

A

11

Contents
12

Figures
Figure 1-1 . Asynchronous Serial Transmission .22
Figure 1-2 . HP Distributed Terminal Controllers. .26
Figure 1-3 . ThinLAN Configuration .30
Figure 1-4 . ThickLAN Configuration .31
Figure 1-5 . Network with OpenView Workstation .32
Figure 2-1 . File System Hierarchy. .43
Figure 3-1 . Opening a Read Port and a Write Port .58
Figure 3-2 . Illustration of the FREAD Intrinsic .67
Figure 3-3 . Obtaining the Result of the Read Timer .69
Figure 3-4 . Opening a Read Port and a Write Port .71
Figure 3-5 . Illustration of the FWRITE Intrinsic .75
Figure 3-6 . Obtaining the Result of the Read Timer .79
Figure 3-7 . Opening a Read Port and a Write Port .81
Figure 3-8 . Opening a Read Port and a Write Port .84
Figure 3-9 . Opening a Read Port and a Write Port .87
Figure 3-10 . Opening a Read Port and a Write Port .89
Figure 4-1 . FDEVICECONTROL to Enable Transparent Mode .95
Figure 4-2 . FDEVICECONTROL to Disable Transparent Mode .97
Figure 4-3 . FDEVICECONTROL to Specify EOR Character. .99
Figure 4-4 . Specifying a New Backspace Character .101
Figure 4-5 . Setting Backspace Response .103
Figure 4-6 . Disable Device XON/XOFF Processing. .105
Figure 4-7 . Enable Host XON/XOFF Processing. .107
Figure 4-8 . Set the Number of Stop Bits .108
Figure 4-9 . Escape Sequence Read Termination. .110
Figure 5-1 . Illustrating a Subsystem Break Handler .115
Figure 5-2 . Procedure to Enable Subsystem Break .116
Figure 6-1 . Program Fragment Setting Typeahead Mode .126
Figure 6-2 . Program Fragment to Flush Buffer .128
Figure 6-3 . Program Fragment to Bypass Buffer .130
Figure 7-1 . DTC/X.25 Network Access for PAD .133
13

Figures
14

Tables

Table 2-1. Condition Codes .51
Table 8-1. Intrinsics and Device Control .152
Table 8-2. Error Codes .158
Table 8-3. Device Control Action at FCLOSE. .160
Table 8-4. Characters Not Recognized If Used as AEORs .182
Table 8-5. Parity Settings with FCONTROL(36) .192
Table 8-6. Special Characters for Transparent Editing. .201
Table 8-7. Valid FDEVICECONTROL Controlcode Values .204
Table 8-8. Allowable Access Value for Device Control .205
Table 9-1. Selected Item Values Returned by FFILEINFO .231
Table 9-2. Access Types .237
Table 9-3. Selected Carriage Control Directives .255
Table A-1. MPE/iX Terminal Types Overview .290
Table A-2. MPE/iX Printer Types Overview. .291
Table A-3. Terminal Type Migration for Terminals .291
Table A-4. Terminal Type Migration for Printers .292
Table A-5. Parity Settings with FCONTROL(36). .297
Table A-6. Unrecognized AEOR Characters (MPE/iX) .298
Table A-7. Unrecognized AEOR Characters (MPE V) .299

Preface
This manual documents functionality for the MPE/iX 6.0 release, as
well as later releases, for HP 3000 Series 900 systems.

This manual documents a subset of the system-supplied intrinsics
available through the native mode of operation for MPE/iX on HP 3000
Series 900 computers. The intrinsics described here are those that are
particularly useful for the programmatic control of asynchronous
devices. An asynchronous device is a device which can be configured as
a terminal or serial printer and communicates with the system in an
asynchronous, serial manner, as described in Chapter 1, “Introduction.”

NOTE MPE/iX, Multiprogramming Executive with Integrated POSIX, is the
latest in a series of forward-compatible operating systems for the
HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will
encounter references to MPE XL, the direct predecessor of MPE/iX.
MPE/iX is a superset of MPE XL. All programs written for MPE XL will
run without change under MPE/iX. You can continue to use MPE XL
system documentation, although it may not refer to features added to
the operating system to support POSIX (for example, hierarchical
directories).

Finally, you may encounter references to MPE V, which is the operating
system for HP 3000s, not based on the PA-RISC architecture. MPE V
software can be run on the PA-RISC HP 3000s (Series 900) in what is
known as compatibility mode.

Audience
This manual will be of greatest value to applications programmers who
need to access and manipulate asynchronous devices during execution
of a process. While some general and conceptual information is
provided in the first two chapters of the manual, the intrinsic
descriptions assume that the reader has a good basic understanding of
system intrinsics and their use.
17

Related Manuals
DTC Planning Guide.

HP 2345A DTC Installation and Service Manual

HP 2340A DTC Installation and Service Manual

HP J2070A DTC Installation and Service Manual

Configuring Systems for Terminals, Printers, and Other Serial Devices

Troubleshooting Terminal, Printer, and Serial Device Connections

Configuring and Managing Host-Based X.25 Links

Using the OpenView DTC Manager

DTC Technical Reference Manual

MPE/iX Intrinsics Reference Manual

Accessing Files Programmer’s Guide, Trap Handling Programmer’s
Guide, and Data Types Programmer’s Guide

MPE/iX Commands Reference Manual Kit

Guide to This Manual
This manual is divided into the following chapters and appendices:

• Chapter 1, “Introduction,” introduces Asynchronous Serial
Communications (ASC) and the organization of the hardware and
software used by the Distributed Terminal Subsystem (DTS).
Includes a review of basic data communications concepts relevant to
asynchronous devices connected to HP 3000 Series 900 computer
systems.

• Chapter 2, “Controlling Asynchronous Devices Programmatically,”
summarizes the programmatic control of asynchronous devices.
Provides an overview of the file system and device operation, along
with a general description of using intrinsics in a program.

• Chapter 3, “Common Device Control Functions,” contains additional
information needed to use intrinsics successfully in a user program,
and provides code samples to demonstrate how intrinsics can be
used to perform some basic device control functions.

• Chapter 4, “Using FDEVICECONTROL,” provides information on
how the FDEVICECONTROL intrinsic may be used to perform
terminal control functions. Code fragments demonstrate several of
the functions performed by this intrinsic.

• Chapter 5, “Using Subsystem Break,” explains the use of subsystem
break and summarizes the intrinsics involved. Includes example
code illustrating a subsystem break handler and a procedure to
enable subsystem break.
18

• Chapter 6, “Typeahead Mode,” describes the programmatic controls
involved in the use of typeahead mode. Code fragments illustrate the
use of these controls.

• Chapter 7, “Programming for PAD, DTC Telnet, Telnet/iX Server,
and VT Devices,” describes how PAD and DTC Telnet connections
are implemented through DTCs. For PAD connection, a DTC must
be equipped with a DTC/X.25 Network Access Card, and for DTC
Telnet connections a DTC must be equipped with a Telnet Access
Card. Both pieces of hardware require the appropriate OV DTC
Manager network management software. This chapter explains
differences involved with the programmatic control of these devices.
This chapter also describes how connections are implemented via
the Telnet/iX Server and via Virtual Terminal (VT) services.

• Chapter 8, “Intrinsics Reference,” contains a detailed description of
the MPE/iX Native Mode intrinsics that are most useful for the
programmatic control of asynchronous devices. Describes the syntax,
parameters, and condition codes or status return for each. When
applicable, functional returns, special considerations, and references
to additional sources of information are included.

• Appendix A, “Comparing MPE/iX Systems to MPE V Systems,”
provides a comparison between asynchronous devices connected to
an MPE V system and those connected to an MPE/iX system.
19

20

1 Introduction
The HP 3000 Series 900 computer supports a wide range of useful
peripheral devices. This manual describes how devices which are
connected to a DTC and communicate asynchronously (such as
terminals and serial printers) interact with the MPE/iX operating
system. It also describes how asynchronous devices can be controlled
programmatically through the use of system intrinsics. Only the subset
of intrinsics useful for control of asynchronous devices is described here.
For a complete listing of all the system intrinsics available with MPE/iX
see the MPE/iX Intrinsics Reference Manual.

When you are programmatically controlling devices connected to your
system, it is vital that you have a basic understanding of the way each
specific device interacts with the computer. How this interaction occurs
depends on such diverse factors as baud rate, transmission method and
the purpose for which the device is being used. In order for successful
communications to take place, the computer and the peripheral device
must agree on the method of communication being used and must know
exactly what to expect from each other.

This chapter provides an overview of how communications take place
between an MPE/iX system and the asynchronous serial devices
connected to it. The following topics are discussed:

• The types of devices that communicate in an asynchronous serial
fashion.

• The physical components of the Datacommunications and Terminal
Subsystem.

• The software that governs Asynchronous Serial Communications.

• The basic data communications concepts involved.
21

Introduction
Asynchronous Serial Communications
Asynchronous Serial Communications
Asynchronous Serial Communications (ASC) is the term used to
describe the specific manner in which communications take place
between an MPE/iX computer and its associated terminals and serial
printers.

Asynchronous refers to the scheme used to let the receiving end of a
communication link know when data is being sent and when
transmission of the data has completed. Each character is preceded by
a special bit, called a start bit, which signals its arrival. The character
is then followed by at least one stop bit, a second special bit which
signals that transmission of that character is complete. Because this
scheme allows data to be sent intermittently and does not require
elaborate timing mechanisms, the asynchronous method is particularly
useful for reading characters entered through a keyboard, where the
time interval between the entry of two characters can vary greatly.

Serial transmission refers to the way each character is transferred.
Characters transmitted serially are sent one bit at a time and received
one bit at a time in the order of transmission. This is in contrast to
parallel transmission schemes which transmit more than one bit at a
time.

Figure 1-1 depicts transmission of data characters in an asynchronous
serial mode. The arrow indicates the direction of the transmission.

Figure 1-1 Asynchronous Serial Transmission

Devices
The devices which communicate with MPE/iX asynchronously include a
number of supported terminals and serial printers. Modems may also
be a part of the communications link. The characteristics of each device
are determined by the MPE/iX operating system as well as by the
device itself.

S
T
O
P

P
a
r
i
t
y

S
T
A
R
T

1 0 0 0
S
T
O
P

P
a
r
i
t
y

S
T
A
R
T

1 0 1 0 0 1 0 0 0 1

{ {Character # 2 Character # 1
22 Chapter 1

Introduction
Asynchronous Serial Communications
Terminals
A terminal is a hardware device that enables an end user to
communicate with the computer, and both send data to and receive data
from the system. All terminals supported for use on MPE/iX systems
include typewriter-like keyboards and CRT screens. Some personal
computers capable of running in terminal emulation mode are also
supported for asynchronous connection.

Terminal types are assigned to each terminal port configured for the
system and serve to help define the terminal’s features. For a complete
discussion of terminal types see Configuring Systems for Terminals,
Printers, and Other Serial Devices.

Serial Printers
Like terminals, serial printers can be connected to the system using
asynchronous serial communications. Unlike terminals, serial printers
are used only to receive information and to transfer that information to
paper in a permanent, readable format. Printer types are used to help
define the characteristics of each serial printer port configured for the
system. A complete discussion of printer types can be found in the
Configuring Systems for Terminals, Printers, and Other Serial Devices
manual.

Plotters
Plotters are special graphic devices which allow you to transfer
computer generated drawings to paper by plotting their X and Y
coordinates and moving pens to corresponding locations on the output
surface of the plotter.

Modems
In some cases asynchronous communications may take place over
telecommunication lines. Because the signal used by computers (digital
signal) is different from the signal transmitted over telephone lines
(analog signal), a device called a modem is required on each end of
such a link. The word “modem” comes from “modulator/demodulator”,
which describes the function of the device.

System Console
The system console is a terminal used by the system operator to
execute specific tasks for the purpose of managing sessions, jobs, and
system resources. A system console is connected to each HP 3000 Series
900 computer through a special access port, and system console
functions are controlled through the Console Management software.
Some of the console functionality can be temporarily transferred to
another terminal, or logical console. This can be useful if it is
necessary to receive console messages on another device. Most system
control functions, however, cannot be executed from a logical console.
Chapter 1 23

Introduction
Asynchronous Serial Communications
While the system console is technically an asynchronous serial device,
its functionality, as well as its physical and logical interfaces, are very
different from those discussed in this manual. For more information on
the system console see Managing Peripherals manual.

Non-Hewlett-Packard Devices
Theoretically, any device that conforms to Hewlett-Packard’s
asynchronous protocols and is capable of being physically connected to
the system can be controlled through Asynchronous Serial
Communications. This could include test instruments, data collection
devices, etc. Such devices must be capable of performing XON/XOFF
flow control, and should be configured as terminal type 18 or printer
type 18. Extreme care must be taken when connecting any
non-supported device.

NOTE Non-HP devices are not supported. HP is not responsible for
troubleshooting customer problems that involve the use of
non-supported devices

PAD Device Connections
MPE/iX systems are also capable of supporting asynchronous devices
connected through a private or public PAD. While any device normally
supported as an asynchronous device can be connected in this manner,
there are certain differences in how they are configured, and in how
they react to various programmatic controls. For information on
configuring PAD connections or systems managed by an OpenView
DTC workstation, see Using the OpenView DTC Manager manual. For
information on configuring PAD connections on host-based systems, see
Configuring and Managing Host-Based X.25 Links manual. Refer to
Chapter 7, “Programming for PAD, DTC Telnet, Telnet/iX Server, and
VT Devices,” of this manual for more information on PAD connections
and programmatic control.

Telnet
The Telnet protocol provides a standard virtual terminal connection
between the HP 3000 and other HP and non-HP systems. MPE/iX
Telnet connections can be made using one of two solutions: 1) via a
direct HP 3000 implementation called “Telnet/iX” which enables users
to have direct access to, or from an HP 3000 using the Telnet protocol.
This product provides both inbound and outbound Telnet connections
using only HP 3000 resident code. 2) via a Datacommunications and
Terminal Controller (DTC) with a Telnet Access Card (herein referred
to as “DTC Telnet”) which provides only inbound Telnet access to an
HP 3000 through a DTC.
24 Chapter 1

Introduction
Asynchronous Serial Communications
Telnet/iX
Telnet/iX provides the Telnet service over Transmission Control
Protocol/Internet Protocol (TCP/IP) on MPE/iX. The Telnet/iX Client
enables users on an HP 3000 to have direct access to HP 9000, HP 3000,
and non-HP systems that support Telnet and TCP/IP. The Telnet/iX
Server enables users on a remote system running standard Telnet
services to logon and run most applications on the HP 3000. Many
MPE/iX file system intrinsics are supported over Telnet/iX Server
connections. Please see the chapter “Programming for PAD, DTC
Telnet, Telnet/iX Server and VT Devices” in this manual for more
details.

DTC Telnet
A DTC with a Telnet Access Card (TAC) provides Telnet access to an
MPE/iX system. Only one TAC is needed per network. The terminal
data is transmitted to the Telnet Access Card in the DTC. The DTC
then transmits the data to the MPE/iX system. For the purposes of
asynchronous serial communications, the terminals connected through
DTC Telnet are non-nailed devices with special control restrictions.
Those restrictions are noted in this manual where appropriate.
Otherwise, DTC Telnet is transparent to your program.
Chapter 1 25

Introduction
Datacommunications and Terminal Subsystem (DTS)
Datacommunications and Terminal
Subsystem (DTS)
With the exception of the system console which has its own access port,
all of the asynchronous devices listed here can be connected to HP 3000
Series 900 computers via the Datacommunications and Terminal
Subsystem (DTS). DTS is made up of all of the datacommunications
and terminal controllers connected and configured on the LAN, a LAN
interface card that connects each host system to the LAN, the LAN
cable, and the software that controls all related DTS hardware.
Optionally, there may also be an OpenView workstation on the LAN,
which is a personal computer that functions as a manager for the
network. Each of these components are briefly described.

DTC
The HP Datacommunications and Terminal Controller (DTC)
provides the connection between asynchronous devices and the
HP 3000 Series 900 family of computers. Each DTC is housed in its own
box and connected to the LAN. There are five types of DTCs currently
supported, the DTC 72MX (HP J2070A), the DTC 48 (HP 2345B), the
DTC 16 (HP 2340A), the DTC 16iX (HP J2062A) and the DTC 16MX
(HP J2063A). Figure 1-2 represents the location of the DTCs in relation
to the host systems, the LAN, and the terminals/printers connected to
the network via the DTCs. (Note that the network represented in this
figure includes a single MPE/iX system, two DTC 48s, and does not
include an OpenView workstation.)

Figure 1-2 HP Distributed Terminal Controllers
26 Chapter 1

Introduction
Datacommunications and Terminal Subsystem (DTS)
If used for direct connections and remote modem connections only, each
HP 2345B DTC (DTC 48) can provide connections for up to 48 directly
connected devices, 36 remote devices using modems, or a combination of
both.

For HP 2345B DTCs, up to three of the DTC’s slots can contain a
DTC/X.25 Network Access Card. This card provides access to X.25
networks, and can be used to connect asynchronous devices through
PAD connections. Alternatively, a single Telnet Access Card per DTC
can be used to access MPE/iX systems from ARPA systems.

Each HP 2345B DTC provides six slots, each of which can contain one of
the following connector cards:

• Eight 3-pin RS-232-C local connections.

• Eight 5-pin RS-422 local connections.

• Six 25-pin RS-232-C modem connections.

• DTC/X.25 Network Access card (up to three per DTC, slots 1 through
5 only).

• Telnet Access Card (only 1 per DTC, slots 1 through 5 only).

Each HP J2070A (DTC 72MX) can provide connections for up to 72 local
and modem devices, if used for direct and remote modem connections
only. It provides four slots, with one slot used for the LAN card, and
three slots each of which can contain one of the following cards:

• Asynchronous processor board with three 62-pin connectors, for a
total of 24 RS-232 local or modem connections.

• Asynchronous processor board with three 62-pin connectors, for a
total of 24 RS-423A local connections.

• DTC/X.25 Network Access card (up to three per DTC).

• Telnet Access Card (only 1 per DTC).

The DTC 16 contains three slots. The first two slots and only the first
two slots (card #0 and card #1) can contain direct connect or modem
cards. The third slot (card #2) can contain only a DTC/X.25 Network
Access Card.

Each DTC 16iX and DTC 16MX can provide RS-232 or RS-423 port
connections for up to 16 asynchronous devices. They both have two port
connectors built directly into their backplanes, each of which can be
connected to a distribution panel which allows either all direct
connections or all modem connections. The DTC 16iX does not support
ARPA Telnet or X.25 connections. The DTC 16MX provides AFCP
connections for the HP 3000 environment and Telnet connections for
the ARPA environment; it does not support X.25 connections for wide
area networking. The DTC 16MX managed by an MPE/iX host is
limited to identical functionality as the DTC 16iX.
Chapter 1 27

Introduction
Datacommunications and Terminal Subsystem (DTS)
NOTE Direct and remote connections may be mixed on the same DTC, since its
design is modular.

A Telnet Access Card and an X.25 Network Access Card cannot be on
the same DTC 48. (Note that neither DTC/X.25 Network Access Cards
nor a Telnet Access Card may be mounted in slot 0 for DTC 48s.

On networks that are not managed by the OpenView DTC Manager,
devices connected through the DTC function as if the connection were
made through a single cable between the device and its associated
MPE/iX host system. Such DTCs (and the attached devices) can access
only their host system, and their operations are controlled by software
that is downloaded from the MPE/iX host when the DTC is powered up
or reset. The downloaded information includes configuration files that
define the devices connected to the system, and operating code to
control the functions of the DTC.

If, on the other hand, the OpenView DTC Manager is used for network
management, configuration information and controlling code for the
DTCs on the LAN are managed and downloaded by the OpenView
workstation. Offloading network management functions from the host
systems to the OpenView DTC Manager allows for much greater
flexibility in how connections can be made through a DTC. For example,
it becomes possible for a terminal connected to a single DTC to access
more than one MPE/iX or UNIX system (or both MPE/iX and UNIX
systems) on the LAN, since configuration files need no longer explicitly
define connections to a single host system.

Regardless of which type of network management is used, once the
controlling code and configuration information has been downloaded,
the DTC is ready for operation. Devices physically connected to its ports
and properly configured can then establish communication links with a
host computer.

A DTC Self-Test and an offline Self Diagnostic program are available to
diagnose any problems encountered when a DTC is powered-on or
reset.

When an MPE/iX host manages your DTCs, an online diagnostic
program, TermDSM, is available to help diagnose any problems which
may occur during DTS operation. Use of the online diagnostics as
described in detail in the Troubleshooting Terminal, Printer, and Serial
Device Connections manual.

If an OpenView workstation is part of the network, the diagnostic
functions otherwise performed through TermDSM are provided instead
by the diagnostic facilities that are a part of the OpenView DTC
Manager software. See Using the OpenView DTC Manager manual for
more information on using these facilities.
28 Chapter 1

Introduction
Datacommunications and Terminal Subsystem (DTS)
Local Area Network
HP 2345B Datacommunications and Terminal Controllers are
connected to the system via a Local Area Network (LAN) connection,
over coaxial cable which conforms to the IEEE 802.3 standard.
Hewlett-Packard provides two versions of this cable, ThinLAN and
ThickLAN, each of which provides certain specific advantages to the
user.

Each DTC has a unique LAN address, also referred to as the node
address or the station address, which serves to identify the DTC as a
node on the LAN. You should keep in mind, however, that while DTCs
are treated as nodes for purposes of configuration, they are not true
nodes in the sense that nodes are normally defined. DTCs are dedicated
communication devices; they are not self-contained, general-purpose
computer systems.

LAN Interface Card (LANIC)
Every computer in the HP 3000 Series 900 family of computers includes
a LAN Interface Card (LANIC) as part of its basic hardware. This
card is located in the System Processing Unit (SPU) and enables the
system to communicate with asynchronous devices via the LAN by
providing the basic connection between the computer and the LAN.

ThinLAN Connection
Two versions of LAN cable are available. The first version, ThinLAN
(Type 10BASE2), is available in connection lengths of up to 185 meters
(555 feet), and supports up to 30 nodes. ThinLAN provides an
economical solution where DTCs are located fairly close to their
associated computer systems. ThinLAN cable is very flexible and easy
to install, and can be bent around objects to accommodate its use in
confined areas. The ThinLAN is connected to each computer on the
LAN via a ThinMau (Medium Attachment Unit), with a small BNC
T-connector used to connect each DTC to the LAN. (Note that the
ThinMAU for the DTC itself is built into the DTC box.) You can connect
up to three segments of the ThinLAN cable with two repeaters, thus
extending the length of the LAN to 555 meters. Figure 1-3 depicts a
configuration using ThinLAN.
Chapter 1 29

Introduction
Datacommunications and Terminal Subsystem (DTS)
Figure 1-3 ThinLAN Configuration

ThickLAN Connection
The second version of the LAN cable, ThickLAN (Type 10BASE5),
offers maximum connection lengths of up to 500 meters (1,600 feet.),
and supports up to 100 nodes. Each node on the LAN is connected via a
Medium Attachment Unit (MAU). An Attachment Unit Interface
(AUI) cable runs between each node and its MAU, as well as between
the host computer and its MAU. You can connect up to three segments
of the ThickLAN cable with two repeaters, thus extending the length of
the LAN to 1,500 meters. A ThickLAN configuration is depicted in
Figure 1-4.

More information on cabling and connection options can be found in the
LAN Cable and Accessories Installation Manual.
30 Chapter 1

Introduction
Datacommunications and Terminal Subsystem (DTS)
Figure 1-4 ThickLAN Configuration

OpenView Workstation
As of MPE/iX version A.30.00, an OpenView workstation may also be a
part of the Datacommunications and Terminal Subsystem. The
OpenView workstation is a personal computer which is properly
configured as a part of the LAN, and runs the OpenView DTC Manager
software.

The OpenView DTC Manager is an application based on OpenView
Windows. It provides an easy to use network management facility that
allows you to configure, monitor, and diagnose the network and its
components.

The OpenView DTC Manager assumes many of the network
management functions that would otherwise have to be performed on
an MPE/iX host system, including configuring the devices connected
through the DTCs on the LAN and uploading and downloading the code
that controls DTC operations.

The functionality of the DTC is expanded when network management
is performed by the OpenView DTC Manager. It becomes possible for
the DTC to act as a true data communications server, providing access
to X.25 networks through the DTC/X.25 Network Access. Network
access can include asynchronous connections through a private or
Chapter 1 31

Introduction
Datacommunications and Terminal Subsystem (DTS)
public PAD, as detailed in Chapter 7, “Programming for PAD, DTC
Telnet, Telnet/iX Server, and VT Devices,” of this manual. DTC Telnet
enables Telnet users to access MPE/iX hosts.

Additionally, terminals connected through DTCs on LANs managed by
the OpenView workstation may be configured so that they are capable
of establishing connections with more than a single MPE/iX system on
the LAN. This ability is referred to as DTC switching, and is possible
because the software that manages terminal connections resides on the
OpenView workstation, and not on a specific MPE/iX host system.

When switching is allowed the user at a terminal can select the MPE/iX
system to which they want a connection to be established through a
special DTC User Interfacer. See DTC Planning Guide for more
information on the DTC Services.

Figure 1-5 depicts a LAN managed by an OpenView workstation.

Figure 1-5 Network with OpenView Workstation
32 Chapter 1

Introduction
ASC Software Overview
ASC Software Overview
The Asynchronous Serial Communications software provides the
interface between the IEEE 802.3 LAN and the MPE/iX system.

Control
The software is included with the MPE/iX Fundamental Operating
System (FOS). MPE/iX system software mirrors its related hardware in
the sense that it is structured in modules, with each module handling
the control of a specific type of hardware device. These modules, or
managers, know which devices of their type are configured, or currently
connected through a DTC connection, and handle all functions related
to those devices. They manage terminal and printer I/O and are
responsible for detecting errors that take place during communications
and reporting them to the MPE/iX system. On LANs that do not include
an OpenView Workstation, the ASC managers also manage the
downloading and uploading of information for the DTCs configured on
the system.

The ASC managers define the characteristics of the devices they
control. They determine, among other things, the type of
communications protocol being used. The way in which the ASC
software expects devices to act is defined in part at configuration time,
but can be altered programmatically through use of the system
intrinsics described in this manual.

The ASC managers provide the interface between asynchronous devices
and the File System. The File System is the part of the MPE/iX
operating system that manages information being transferred or stored
with peripheral devices. More information on the File System and how
intrinsics are used to control devices can be found in Chapter 2,
“Controlling Asynchronous Devices Programmatically.”

Configuration
The MPE/iX system keeps track of all devices connected to it by means
of configuration files. The network configuration information
necessary to initialize and control the Datacommunications and
Terminal Subsystem (DTS) resides in the NMCONFIG.PUB.SYS
configuration file. This file is created through use of the Node
Management Configuration Manager (NMMGR) utility.

NMMGR is described in Using the Node Management Services (NMS)
Utilities, while Configuring Systems for Terminals, Printers, and Other
Serial Devices provides a detailed discussion of the configuration
process.
Chapter 1 33

Introduction
ASC Software Overview
Configuration with OpenView DTC Manager
Effective with version A.30.00 of MPE/iX, HP 3000 Series 900 and
HP 9000 Series 800 computers may be part of a network managed by
the OpenView DTC Manager. Devices connected to the DTCs on such a
network are configured through a PC-based network management
workstation which is also attached to the LAN, and the DTC control
software is subsequently downloaded from the PC.

The connection between each host computer and the LAN is configured
using NMMGR, along with profiles of the asynchronous device types
that will be accepted for connection to the host, and the ldev numbers of
devices that require a permanently associated (nailed) connection.
However, many of the other parameters usually associated with a
connection between a host system and each individual asynchronous
device no longer need to be configured through NMMGR.

Nailed and Non-Nailed Connections
Asynchronous devices attached to DTCs managed by an OpenView
workstation can be configured as either nailed or non-nailed devices on
the MPE/iX host systems to which they have access.

A nailed device is one that is permanently associated with an ldev
number through the NMMGR configuration of an MPE/iX system. Any
time a connection exists between a system and one of its nailed devices
the same ldev number will belong to that device. Since only nailed
devices can be accessed programmatically, all printers must be nailed,
as must any devices that will be accessed as programmatic devices at
any time.

A non-nailed device is a device that is able to establish a connection to
an MPE/iX host system but has no permanently assigned ldev number
in the NMMGR configuration file of that system. The user of a terminal
connected as a non-nailed device can establish a session provided a
connection is available and the MPE/iX host configuration specifies a
device profile matching the characteristics of the device requesting the
connection. When the user logs on to the system, an ldev number is
assigned from a pool of available ldev numbers defined through the host
system’s NMMGR configuration.

When the connection is ended (the user logs off) the associated ldev
number is returned to the pool of ldev numbers and becomes available
for use by a different device connection.

The use of non-nailed device connections provides several major
advantages. Non-nailed connections simplify the configuration process
that must be done on each MPE/iX system, since configuration values
do not have to be entered separately. It is possible, if you specify a
sufficient number of non-nailed connections on each host, for you to add
34 Chapter 1

Introduction
ASC Software Overview
asynchronous connection capabilities by using the OpenView DTC
Manager workstation instead of the host. This prevents you from
having to reconfigure your HP 3000 Series 900 computer.

NOTE The concept of nailed and non-nailed devices deals only with the
association of a device to an ldev number on a specific MPE/iX system.
It is independent of the concept of switching, which deals with the
ability of a single device to establish a connection to any of several
MPE/iX systems on the LAN.

A terminal connected through a DTC on a LAN with multiple MPE/iX
or UNIX systems may be configured as a nailed device on more than
one host system. Alternatively, it may be nailed on one host system and
not nailed on another, or it may be configured as a non-nailed device on
all the systems to which it has access.

For more information on configuration of asynchronous devices on
networks managed by an OpenView network management workstation
see the Using the OpenView DTC Manager, as well as Configuring
Systems for Terminals, Printers, and Other Serial Devices.
Chapter 1 35

Introduction
Data Communications Concepts Reviewed
Data Communications Concepts Reviewed
The hardware and software described in this chapter conforms to
specific rules designed to make data communications between devices
possible. To use this manual as a programming guide, you need a good
understanding of these rules and of data communications concepts in
general. If you are unfamiliar with data communications concepts, it
would be helpful for you to take a general course in data
communications before you use this manual extensively. You may also
want to review other Hewlett-Packard documentation, as listed below:

• DTC Installation and Service Manual, the hardware reference for
the DTC.

• The manual for the peripheral device.

• DTC Planning Guide.

The material in the rest of this chapter is designed to serve as a review
of several concepts that are central to successfully connecting terminals
and printers to a HP 3000 Series 900 computer.

Protocols
In order for electronic devices to communicate with each other they
must conform to well defined sets of rules which govern factors ranging
from hardware configurations to the actual process of data transfer.
Such a set of rules is called a protocol. Data communications protocols
are conventions set up to assure the orderly exchange of information
between two or more data processing entities.

Hardware Protocols
The lowest level protocols deal with the hardware connection between
two pieces of data processing equipment. The cables used to connect
asynchronous devices to the Datacommunications and Terminal
Controller conform to protocols defined by the Electronic Industries
Association (EIA). These protocols, RS-232-C and RS-422, were
developed and updated in conjunction with the Bell System and
independent equipment manufacturers.

The RS-232-C standard defines the electrical circuit functions for 25
connector pins. This standard is implemented by Hewlett-Packard in
two versions. The first version makes use of only three of the defined
transmission circuits, Data-In , Data-Out and Signal Ground . This
special implementation provides an inexpensive interface, since the
cable consists of only three wires with the connector on one end
replaced by a three-pin connector. However, it is limited to local (direct)
connections, in distances up to 15 meters (50 feet).
36 Chapter 1

Introduction
Data Communications Concepts Reviewed
The second Hewlett-Packard RS-232-C implementation makes use of
additional electrical circuits defined by the standard. The cable and
connectors more closely resemble conventional RS-232-C 25-wire cable
and connectors. This implementation can be used for direct connections,
subject to the same system limitations as the three-pin version. It must
be used when modems are included (remote connection), because
additional signals are generated by modems, and required for modem
control. See the DTC Installation and Service Manual for a pin-out
diagram of the signals employed by this implementation.

The RS-422 standard is implemented by HP in a five pin version. The
connecting cable is composed of one twisted pair of wires for Data-In ,
one twisted pair of wires for Data-Out , and a single wire for Signal
Ground . Devices can be connected via this interface at distances up to
1,500 meters (4,000 feet).

The coaxial cable used for the Local Area Network complies with the
802.3 standard developed by the Institute of Electrical and
Electronics Engineers (IEEE). This standard describes a
transmission access method called Carrier Sense Multiple Access with
Collision Detect (CSMA/CD).

Flow Control Protocols
Flow Control is the means by which the transfer of data between the
system and an asynchronous device is regulated. It protects both the
system and devices from data overruns. A data overrun occurs when
the sender of data transmits that data faster than the receiver can
accept it. Because the receiver cannot accept all the data being sent to
it, it is said to be overrun with data. Overruns inevitably result in lost
data.

With asynchronous devices on MPE/iX systems, flow control actually
takes place between the device and the DTC. One main method of flow
control is used: XON/XOFF protocol. Its fundamental purpose is to
protect devices from overruns.

XON/XOFF protocol is controlled by the recipient of the data being
transferred. The recipient sends an XOFF character (ASCII DC3) to the
sender of the data if, and only if, it is unable to continue to receive data.
The sender then suspends transmission and waits for the receiver to
send an XON character (ASCII DC1), thereby signaling that it is once
again ready to receive data.

The flow control method being used is sometimes referred to as the
pacing method. For instance, the terminal settings for XON/XOFF
protocol are called transmit pacing (XmitPace) and receive pacing
(RecvPace).
Chapter 1 37

Introduction
Data Communications Concepts Reviewed
The DTC is protected from overruns through an additional flow control
mechanism referred to as the read trigger. The read trigger is also the
ASCII DC1 character, and is generated by the ASC software when the
system is ready to accept data.

There is also a flow control mechanism used between a system and its
DTCs called the Transport Flow Control Protocol. Its fundamental
purpose is to protect DTCs from being overrun by data from the system.
It also handles error checking of the packets passed to and from the
system through the LAN. This flow control mechanism does not directly
affect the way devices act and react.

NOTE The characters XON (ASCII DC1) and XOFF (ASCII DC3) are defined
as special characters and are reserved for the purpose of protocol. These
characters may not be used as data except in binary mode, if binary
mode is supported.

Local Device Settings
Each device has certain specific characteristics which define the way in
which it physically interacts with the system. For HP terminals these
characteristics are generally set by changing configuration parameters
from the keyboard via terminal configuration menus. Terminal settings
include such things as baud rate (transmission speed), parity settings,
and terminal block mode functions. Terminal settings can usually be
altered programmatically, through the use of appropriate escape
sequences, as defined for each type of terminal.

You may hear the term strap setting used synonymously with device
configuration setting. This is left over from a time when changing a
device’s characteristics meant physically opening its cover and moving
a strap from one set of contacts to another. A number of settings are
still referred to by their original alphabetic strap designations. For
example, how you set the D, G and H straps (Line/Page, InhHndShk
and Inh DC2 settings respectively) determines how your terminal will
respond to block mode processing.

Certain printer characteristics are also set locally at the device and
may also be altered by transmission of appropriate escape sequences.
Though printers have no need for all of the control mechanisms that are
related to user input, such as echo, or block mode, they do have their
own special set of control needs to determine how output appears on the
printed page, and to define ways to prevent a loss of data.

An important distinction must be made between the physical setting of
the device (what the device does and expects) and the programmatic
setting of the ASC software (what the system does and expects). The
two settings must agree with each other in order for data transmission
to take place. If you programmatically alter the system setting through
an intrinsic call, you must also make sure the device’s physical setting
38 Chapter 1

Introduction
Data Communications Concepts Reviewed
is changed, either through programmatic transmission of the proper
escape sequences, or by sending a message to the terminal operator as a
reminder to properly set the device.

For more information on the proper settings for terminals and printers,
refer to the reference manuals for each device.
Chapter 1 39

Introduction
Data Communications Concepts Reviewed
40 Chapter 1

2 Controlling Asynchronous Devices
Programmatically
Programmatically Once an asynchronous device is properly connected
and configured on a HP 3000 Series 900 computer, it can be accessed
programmatically through the MPE/iX File System. The File System
interfaces with the ASC software, which communicates with the device
based on its port configuration. Your program has only to treat the
device as a file a devicefile, and the computer will handle the actual
communication with the device, including use of the proper protocol.
This chapter discusses how the File System, system intrinsics, and your
program can work together to control an asynchronous device. The
following topics are discussed:

• An overview of File System functions.

• Device operation modes.

• Use of intrinsics.
41

Controlling Asynchronous Devices Programmatically
File System Overview
File System Overview
File System Overview All input/output operations on MPE/iX systems
are done through the mechanism of files. All files are considered the
same (part of the system file domain), and handled in the same way.
Because of this, the way that input or output data is accessed and
treated is the same no matter what medium it resides on. This feature
is called device independence, and allows for a great deal of
flexibility in handling data.

There are two basic types of files:

• Disk files, which are files residing on disk, immediately accessible
to the system and potentially sharable by several sessions/jobs at the
same time.

• Devicefiles, which are files currently being input to or from any
peripheral device except a disk. A devicefile is accessed exclusively
by the session or job that acquires it and is owned by that session/job
until that session/job releases it or terminates.

File Equations
Because of device independence, files are not restricted to the same type
of device every time a program is run. File equations can be used to
specify the device you want your program to access at run time. File
equations associate the formal file designator of a file to a specific
device, or type of device. The formal file designator is the name by
which your program recognizes the file. It is the file name coded in your
program along with the program’s specifications for the file.

As an example of changing device assignment at run time, consider a
program designed to write information contained in a file with the
formal file designator of outfile to a line printer. You may want to direct
the output to a terminal on a one time only basis. You could do this by
using a file equation to direct the file to the terminal’s ldev. For a
terminal with an ldev of 124 the file equation would be:

:FILE OUTFILE;DEV=124

where FILE is the command, OUTFILE is the formal file designator, and
DEV=124 specifies the device configured as ldev 124.

File equations must be issued before a file is accessed, and they take
effect when the file is accessed. They remain in effect until the job or
session ends unless they are canceled with a :RESET command or
overridden by another command for the same file.

The :FILE command can be used to modify many programmatic or
system default file specifications. There are, of course, certain
restrictions on what can be modified by a file equation. The device must
42 Chapter 2

Controlling Asynchronous Devices Programmatically
File System Overview
be suited to the characteristics being specified. Data directed to
terminals or printers, for example, must be in ASCII format, and have a
blocking factor of 1. These are device-dependent characteristics, and
if you try to specify something different it will be overridden. See the
Accessing Files manual for a summary of device-dependent
characteristics.

File System Hierarchy
There is a basic hierarchy to the way the File System overrides file
specifications. Device dependence is at the top of the hierarchy and will
override any attempts to modify file characteristics in a manner
inappropriate to the device being used. Figure 2-1 shows which
methods of specifying file characteristics take precedence in the File
System hierarchy.

Figure 2-1 File System Hierarchy

The FFILEINFO intrinsic can be used to determine what specifications
are currently in place for a given file. FFILEINFO is described in more
detail in Chapter 8, “Intrinsics Reference,” of this manual.

See the Accessing Files manual for detailed information on the MPE/iX
File System.

DEVICE DEPENDENT CHARACTERISTICS

FILE EQUATION SPECIFICATION

HPFOPEN/FOPEN SPECIFICATION

FILE SYSTEM DEFAULTS

overrides

overrides

overrides
Chapter 2 43

Controlling Asynchronous Devices Programmatically
Device Operation Modes
Device Operation Modes
An asynchronous device may be operated in one of five device
operation modes. Each mode has a specific set of capabilities and is
intended for a specific purpose. The five device operation modes are:

• Session-Accepting Devices.

• Programmatic Devices.

• System Console.

• Spooled Devices.

• Slaved Devices.

A device’s current operation mode has a direct bearing on how a
program may or may not exert control over the device’s characteristics,
as summarized below. For a complete description of the features and
capabilities of each device operation mode, see Configuring Systems for
Terminals, Printers, and Other Serial Devices.

Session-Accepting Devices
Session-accepting devices are opened with the MPE/iX :HELLO
command and a session is initiated. The session remains active until
the user logs off by using the :BYE command or initiates a different
session by using the :HELLO command, or in the case of remote
sessions, modem signals are dropped.Some error conditions will also
cause sessions to end, as will the :ABORTJOB command, if entered by
someone with the proper capabilities. (Note that neither :ABORTJOB
nor :ABORTIO have any effect if issued against a terminal that is
currently accessing the switching user interface.)

Session-accepting devices, also referred to as log-on devices, are
normally terminals or personal computers running in terminal
emulation mode. They can be configured as either nailed or non-nailed
devices. During a session, the terminal is used for interactive
(conversational) communication with the computer.

Session-accepting devices frequently come under the control of a system
or user program, but only when the user who is logged-on to the device
takes some action to allow this, such as issuing a valid MPE/iX :RUN
command.

The device is then under the control of the program, and the program
can read from and write to the device and programmatically control the
interaction between the device and the computer through the use of
intrinsics and the proper escape sequences.
44 Chapter 2

Controlling Asynchronous Devices Programmatically
Device Operation Modes
At the completion of the program, control of the terminal is returned to
the active session. For this reason it is critical that any device
characteristics altered by the program be reset to normal or default
settings before the session regains control. If a program fails to reset
altered characteristics, the session may not be able to communicate
successfully with the MPE/iX system.

NOTE For similar reasons, it is strongly recommended that you disable system
break through use of the FCONTROL system intrinsic in any program
which significantly alters the operating characteristics of a device. If
system break is not disabled and the [BREAK] key is pressed during
execution of such a program (one that uses block mode, for example),
the device may not be able to resume normal operations. Both of these
recommendations are discussed in greater detail in later chapters of
this manual.

Programmatic Devices
Programmatic devices are those which run under the control of a
program running on the computer. The program accesses the device
through the File System by treating the device as a file. The File
System passes the information to the ASC software, which
communicates with the device itself.

A programmatic device is considered to be program captive, because
access to the device is through the program only. For instance, no
MPE/iX commands can be executed from a terminal under the control
of a program unless the controlling program initiates the command.

Programmatic devices can be used for input, output, or both, depending
on the device and how it was opened by the controlling program.

There are many situations in which devices that are operating in one of
the other device operation modes are also operating programmatically.
As explained in the discussion above, session-accepting devices become
programmatic devices when their users execute a :RUN command.

The system console can be a programmatic device in the same way.
Slaved and spooled devices can be considered to be programmatic in the
sense that they must be controlled through an application.
Chapter 2 45

Controlling Asynchronous Devices Programmatically
Device Operation Modes
System Console
The CIO system console is the only terminal (or PC) that is not
connected to the system through a DTC. The system is aware of its
existence from system initialization. It is connected to a special
interface card in the system cabinet known as the access port.

The system console has a unique set of functionality not available to
any other device. It can receive console messages, and execute special
commands through use of console attention characters that are not
recognized by any other device.

A subset of console functionality may temporarily be assigned to
another interactive device through use of the :CONSOLEcommand. This
is called moving the logical console to the device. Any commands
requiring use of the special console attention characters must continue
to be executed from the system console. Note that the logical console
may not be moved to a terminal connected via PAD or to a terminal
with switching enabled.

The system console is also a session-accepting device, and therefore can
be operated as a programmatic device as well. However, because the
console serves a special purpose, some of the features of other
session-accepting devices are not provided:

• The console may not operate at 19200 bps. Supported speeds are
300, 1200, 2400, 4800 and 9600 bps.

• No user block mode applications are supported. Except for NMMGR
which is used to modify configuration files, no VPLUS block mode
applications are supported.

CAUTION The console will continue to display messages it receives even if being
operated in block mode. This may cause data on the block mode screen
to be overwritten or lost.

Spooled Devices
MPE/iX is equipped with a spooling facility to assist the operation of
certain nonsharable devices. When a spooler process controls a
nonsharable device the device gives the appearance of being shared
among several users.

The spooler intercepts data being output by various processes and
temporarily stores it on disk instead of sending it directly to the device.
The disk essentially becomes a staging area, while the spooler manages
the selection of output spool files destined for the spooled device.

Printers are the only type of asynchronous device that can be spooled.
Because it makes no sense for printers to be session-accepting devices
(they can be used for output only), spooled devices are always
programmatic devices.
46 Chapter 2

Controlling Asynchronous Devices Programmatically
Device Operation Modes
Slaved Devices
If two devices share the same port in the DTC (one device is connected
to the port and the other device is connected by an additional cable to
the first device), only one device is recognized by the ASC software. The
device that is recognized is referred to as the master device, while the
other device is called a slave of the master. A wide variety of devices
can be connected as slaves, including terminals, printers, card readers,
flexible-disk drives, cartridge tape units and plotters. Slaved devices
are considered programmatic because the device is controlled through
an application. They never accept sessions and are not spooled.
Chapter 2 47

Controlling Asynchronous Devices Programmatically
MPE/iX System Intrinsics
MPE/iX System Intrinsics
The MPE/iX system provides a set of subroutines, callable by your
program, that help you interface with the file system to accomplish
various tasks. These subroutines are an integral, or intrinsic, part of
the operating system, and are therefore referred to as system intrinsics.
Intrinsics exist which allow you to perform a variety of recurring tasks,
ranging from manipulating individual file attributes to manipulating
processes, if you have the needed capabilities.

Intrinsics are program segments, no different from the code you write
yourself except that they are invisible to you. They are usually coded in
Pascal/iX (system language for HP 3000 Series 900 computers), but are
generally callable from any supported language.

This manual discusses the subset of system intrinsics that are most
useful for dealing with communications between the system and an
asynchronous device. It is intended to provide the reader with a high
level of detail regarding the use of intrinsics for controlling such
devices. A complete description of all the system intrinsics available to
you can be found in the MPE/iX Intrinsics Reference Manual, along
with details regarding their use.

With one exception, the intrinsics described in this manual can be used
in both native mode and compatibility mode programs. The exception is
the HPFOPEN intrinsic, which can be called from native mode
programs only. (There are other MPE/iX intrinsics which can only be
called from native mode programs, but HPFOPEN is the only one
discussed in this manual.)

Intrinsics and Asynchronous Serial
Communications
Certain system intrinsics are particularly useful to you for providing an
interface between the ASC managers that handle serial device
connections and the MPE/iX File System. These are primarily the
intrinsics that provide simple mechanisms for accessing and altering
files, handling I/O operations, and checking file status. The following
list provides a summary of these intrinsics and their functions. For a
more complete description of the syntax and use of these intrinsics see
Chapter 8, “Intrinsics Reference.” Additional information about the
practical use of the intrinsics listed here can be found throughout this
manual.
48 Chapter 2

Controlling Asynchronous Devices Programmatically
MPE/iX System Intrinsics
Summary of Intrinsics

You should note that the functions described here are specific to the
way these intrinsics interact with and provide control for asynchronous
communications ports. Many are useful for additional functions not
described in this manual. See the MPE/iX Intrinsics Reference Manual
for information about additional uses of these intrinsics.

INTRINSICS PURPOSE

FCHECK Requests details about file I/O errors.

FCLOSE Closes a file.

FCONTROL Performs a number of control operations on a file or device.

FDEVICECONTROL Provides control operations to a printer, terminal, or spooled device.

FERRMSG Obtains textual error message corresponding to an FCHECK error
code.

FFILEINFO Provides information about the characteristics of a file.

FGETINFO Provides access and status information about a file.

FOPEN Opens a file, defines its physical characteristics, and provides
access to the file.

FREAD Transfers a record of data from an input device to an array.

FSETMODE Controls the output of linefeed.

FWRITE Transfers a record of data to a file on any device.

HPFOPEN Opens a file, defines its physical characteristics, and sets up access
to the file. Provides access to mapped files.

IODONTWAIT Initiates completion of a no-wait I/O request. Allows program
processing to continue before an I/O operation completes.

IOWAIT Initiates completion of a no-wait I/O request. Delays program
processing until an I/O operation completes.

PRINT Prints a character string on job/session list device.

PRINTFILEINFO Prints a file information display on a job/session list device.

READ Transfers a record of data from the file $STDIN into an array.

READX Transfers a record of data from the file $STDINX into an array.

RESETCONTROL Allows another subsystem break to occur.

XCONTRAP Arms or disarms the user-written [CTRL]Y trap handling procedure.
Chapter 2 49

Controlling Asynchronous Devices Programmatically
MPE/iX System Intrinsics
Other Types of Intrinsics
The discussion in this manual pertains exclusively to system intrinsics.
Certain application programs and system utilities also provide
subroutines that are referred to as intrinsics. For example,
VPLUS/3000 iX provides a set of intrinsics for handling page block
mode programming. For a description of VPLUS/3000 iX intrinsics see
the VPLUS Reference Manual. For descriptions of intrinsics provided
by any other application or utility, see the documentation for that
program.

Using Intrinsics in your Program
You can call any system intrinsic from any supported language, but the
details of the calling procedure vary according to the language being
used. In general, you should follow the steps as summarized:

1. Refer to the intrinsic description in Chapter 8, “Intrinsics
Reference,” to determine the parameter types and their positions in
the parameter list.

2. Declare variables to be passed as parameters, using types
appropriate to the language you are using to write your program.

3. Include the name of the intrinsic in a declaration statement, if
appropriate for your programming language.

4. Issue the intrinsic call at the appropriate place in your program.

Depending on the intrinsic call, error checking is provided either
through condition codes or through a special status parameter. Because
the condition code or status return value can provide you with useful
information about what happened during execution of an intrinsic, you
should routinely check for error conditions at the completion of each
intrinsic call.

Condition Codes
Most of the intrinsics discussed in this manual use condition codes for
error checking. Condition codes are status flags stored in two bits of the
status register. Their values and general meanings are shown in Table
2-1. Because the condition code status flags are affected by almost every
instruction, you should check condition codes immediately after
execution of an intrinsic to make sure that the information being
returned pertains to the intrinsic and not to some subsequent activity.

The method of accessing condition codes is language specific. Pascal/iX,
for example, provides the function ccode , which returns the value 0, 1,
or 2, depending on the current condition code stored in the status
register. See the reference manual for the language you are using to
determine how to access condition code information.
50 Chapter 2

Controlling Asynchronous Devices Programmatically
MPE/iX System Intrinsics
If the condition code indicates that an error condition occurred during
execution of an intrinsic, you may want to obtain more specific
information about what took place. You can do so by calling FCHECK to
obtain details such as the error code associated with the problem that
occurred, and FERRMSG to display the message associated with that
error code. See the discussions of these intrinsics in the Intrinsics
Reference section of this manual.

Table 2-1 Condition Codes

Status Parameter
While many intrinsics return an error parameter, only MPE/iX native
mode intrinsics, such as the HPFOPEN intrinsic described in this
manual, use the status parameter in place of condition codes as their
error checking convention. The status parameter is a 32-bit signed
integer which returns error information in one 16-bit field and
subsystem information in its other 16-bit field.

The information returned by the status parameter is more explicit
than that available through condition codes. The intrinsics that use the
status parameter do not return meaningful condition code values.

The status parameter is optional, but it is strongly advised that you
use this feature whenever it is provided. If an error or warning
condition is encountered during execution of a native mode intrinsic
and you did not specify the status parameter, the intrinsic causes the
calling process to abort.

See the discussion of HPFOPEN in this manual, as well as the MPE/iX
Intrinsics Reference Manual for more information on using the status
parameter.

Abort Errors
The errors that return condition code or status information to your
program are generally recoverable and do not cause your program to
abort. Another type of error occurs if a calling program attempts to pass

Condition Code Value General Meaning

CCE (=) 2 Condition Code Equal. This generally
indicates that the request was granted.

CCG (>) 0 Condition Code Greater Than. A special
condition occurred but may not have affected
the execution of the request. (For example, the
request was executed, but default values were
assumed as intrinsic call parameters.)

CCL (<) 1 Condition Code Less Than. The request
was not granted, but the error condition may
be recoverable.
Chapter 2 51

Controlling Asynchronous Devices Programmatically
MPE/iX System Intrinsics
illegal parameters to an intrinsic or does not have the capabilities
needed to execute an intrinsic. Such an error is called an abort error
and results in termination of the process.

Optional Capabilities
A number of system intrinsics can be used in a program only if you have
optional capabilities assigned to you. Optional capabilities are assigned
when your account is created, but can be altered by the System
Manager or Account Manager through use of appropriate MPE/iX
commands. See the MPE/iX Commands Reference Manual for more
information on how to alter the capabilities assigned to an account,
group or user.

If your program calls intrinsics which require optional capabilities you
must prepare the program with these capabilities specified. Such a
program can be run by users without the specific capabilities as long as
it resides in a group with the proper capabilities assigned.

None of the intrinsics discussed in this manual require optional
capabilities; however, if you intend to use NOWAIT I/O, you must have
specified the NOWAIT option in the FOPEN or HPFOPEN call used to
open the file. Specification of NOWAIT I/O requires that you have
Privileged Mode (PM) capability. Once NOWAIT I/O has been specified
you can control completion operations for I/O requests by calling the
IOWAIT or IODONTWAIT intrinsics, as described in Chapter 8,
“Intrinsics Reference.”
52 Chapter 2

Controlling Asynchronous Devices Programmatically
MPE/iX System Intrinsics
CAUTION The normal checks and limitations that apply to users with standard
(default) capabilities are bypassed in Privileged Mode. It is possible for
a Privileged Mode program to destroy file integrity, including the
MPE/iX operating system software itself. Hewlett-Packard will, upon
request, investigate and attempt to resolve problems resulting from the
use of Privileged Mode code. This service, which is not provided under
the standard Service Contract, is available on a time and materials
billing basis. Hewlett-Packard will not support, correct, or attend to any
modification of the MPE/iX operating system software.

Obtaining Information Using Intrinsics
Some intrinsics return information to the calling process, either as a
value returned in one of the positional parameters, or through the
special device used to designate functional return information.

Status Information
A number of intrinsics include output parameters in their parameter
lists and can therefore be used to determine information about current
device settings or devicefile specifications. The values returned in this
way are a report of current status, rather than a result of intrinsic
activity.

FGETINFO is an example of such an intrinsic. FGETINFO is called
with the file number of the file about which you are requesting
information specified in its first positional parameter. (The file number
is obtained through an FOPEN or HPFOPEN call initiated by the
calling process.) Access and status information about the file is
returned in the other FGETINFO positional parameters. Information
that can be obtained through a call to FGETINFO includes which file
characteristics are in effect, the logical size of records in the file, the
configured device type, and more. See Chapter 8, “Intrinsics Reference,”
for a complete list of the information that can be obtained through a call
to FGETINFO.

Some intrinsics contain a mixture of input and output parameters in
their parameter lists. For example, some intrinsics return a file system
error number in one of the parameters if an error message occurs
during processing.

A special case exists for the FCONTROL intrinsic. FCONTROL
provides a variety of control functions for files or devices, based on the
value of a control code specified by the second parameter in its
parameter list. The value of the second parameter determines the
content of the third parameter, and whether it is used for input, for
output, or both. In some cases the third parameter is used to set a
value, while in other cases it returns a current status. In a few cases
Chapter 2 53

Controlling Asynchronous Devices Programmatically
MPE/iX System Intrinsics
this parameter passes a new value and returns the previous value to
the program in the same call. FCONTROL functions are discussed
throughout this manual.

Functional Returns
Some intrinsics return a value to the calling program through a
functional return. Functional return values result from or are altered
by the intrinsics of which they are a part. In examples and calling
syntax depicted in this manual, they are shown in assignment
statements, with the symbol := used as the operator to designate that
the functional return parameter is assigned the value of the result of
the intrinsic call. The functional return parameter is shown on the left
of the operator, with the call to the intrinsic on the right, as in the
following example:

lgth :=FREAD(filenum,buffer,length);

Keep in mind that while functional returns are always demonstrated in
assignment statements in this manual they need not be used
exclusively in this way. They can also be used in output statements, as
one of the parameters in a parameter list, and in conditional
statements.

Unlike the values returned in positional parameters, which are a report
of current status, functional return values are the result of the activity
of the intrinsic. The FREAD intrinsic reports back the length of the
message read. Likewise, the FOPEN (and HPFOPEN) intrinsic reports
back a file number, which can then be used by other intrinsics called by
the same program.

The intrinsics discussed in this manual which yield functional return
values are FOPEN, FREAD, IOWAIT, IODONTWAIT, READ and
READX. See Chapter 8, “Intrinsics Reference,” for their usage and
syntax descriptions.
54 Chapter 2

3 Common Device Control Functions
This chapter describes some of the more common ways that intrinsics
can be used to control asynchronous devices and includes sample code
segments to demonstrate these uses. The segments are coded in
Pascal/iX, but should be helpful regardless of the language you are
using. While details of declaring and calling intrinsics vary between
languages, the principles of their application do not. For more
information on using intrinsics with FORTRAN 77/iX or COBOL II/iX
you should see the MPE/iX Intrinsics Reference Manual as well as the
reference manual for the individual language.

The following device control functions are described in this chapter:

• Setting up access to a file and defining its characteristics through
FOPEN.

• Reading from an asynchronous device using FREAD.

• Writing to an asynchronous device using FWRITE.

• Manipulating device settings through FCONTROL calls.

• Closing devicefiles using FCLOSE.
55

Common Device Control Functions
Opening Asynchronous Devicefiles
Opening Asynchronous Devicefiles
Devicefiles Before an asynchronous device can be used by your
program, you must obtain access to the device and define the
characteristics you want to be associated with the device for your
application. You do this by using the FOPEN or HPFOPEN intrinsic to
open a file on the device, passing the file specifications required by your
program in the parameters of the call. See Chapter 8, “Intrinsics
Reference,” for a description of the syntax of the FOPEN and
HPFOPEN intrinsics.

When the FOPEN or HPFOPEN call is executed, MPE/iX will open the
file as specified by the parameters of the call, establish communications
between your program and the file, allocate needed resources (including
the device on which the file is to reside), and return a file number to
your program. If the file is not opened successfully, a 0 is returned as
the file number. See Chapter 2, “Controlling Asynchronous Devices
Programmatically,” for more information on condition codes.

The file number assigned by the open call is unique. Because every file
has its own number, even if multiple files are opened on the same
device, it is possible to use the file number to access a specific file in
subsequent intrinsic calls. The file number remains associated with the
file as long as it is opened; that is, until your program either issues an
FCLOSE against that file or terminates.

The parameter values used for the FOPEN or HPFOPEN call
determine what features will be associated with the file. System default
values are assumed for any optional parameters not specifically
designated.

Default values will also be assumed if you attempt to specify a value
that does not make sense for the device on which the file is being
opened. For example, the userlabel parameter of the FOPEN intrinsic
has no meaning for files opened on terminals and, if specified, any value
will be ignored and the default of 0 assumed.

The fact that parameters are ignored if not meaningful for a specific
device provides an extra degree of flexibility when coding a program. If
you foresee an instance when you might want to temporarily redirect a
file normally resident on one type of device to another type of device,
you can code the specifications that will allow you to do so. For example,
you can specify the tape label option (foption bit (6:1) of the FOPEN
intrinsic) for a file your program normally opens on a terminal even
though this option has no meaning for files on asynchronous devices.

If you later run the same program, but issue a :FILE command to
redirect that file to tape, there is no need to specify the tape label
option.
56 Chapter 3

Common Device Control Functions
Opening Asynchronous Devicefiles
File Open Intrinsics
The way in which file characteristics are specified differs depending on
whether you are calling FOPEN or HPFOPEN. The parameters of the
FOPEN intrinsic are positional. The file system expects to see them in a
certain order and will not accept any specifications that fail to conform.
An FOPEN call to open $STDIN for reading might be coded as:

fileid_in:=FOPEN(,octal(‘444’),0,-80);

HPFOPEN provides a superset of the features provided by FOPEN and
uses combinations of itemnum/item pairs to specify file
characteristics. An HPFOPEN call performing the same function as the
FOPEN call above (and returning any error information in a variable
called “status”) might be coded as:

HPFOPEN(fileid_in,status, 53,1,

5,4,

6,2,

7,1,

11,0,

19,-80);

HPFOPEN can be used in native mode only. None of the extended
features provided by this intrinsic apply specifically to asynchronous
devicefiles. For consistency, the examples that follow will show the use
of FOPEN exclusively. Be aware, however, that, in native mode,
HPFOPEN calls can be used instead.

Your program may open multiple files on the same device, each with its
own set of characteristics, logically separate access, and unique file
number. Such files opened on a device are often referred to as ports.

The code fragments shown in Figure 3-1 open a read port and a write
port on a terminal device. The parameters specify 80 byte ASCII
records and carriage control. Condition codes are checked in the
example through the Pascal/iX ccode function, which will return a
value of CCE if no errors occur during the opens, or of CCG or CCL if
errors do occur.
Chapter 3 57

Common Device Control Functions
Opening Asynchronous Devicefiles
Figure 3-1 Opening a Read Port and a Write Port
58 Chapter 3

Common Device Control Functions
Opening Asynchronous Devicefiles
NOTE The ccode function used in the examples is a Pascal/iX intrinsic
function that returns the condition code bits from the status register. If
you are using a language other than Pascal/iX, you should see the
reference manual for that language for information on how to access
the condition code bits.

After the FOPEN calls are successfully executed, the variable
fileid_in will contain the file number of a file that can be read from,
and the variable fileid_out will contain the file number of a file that
can be written to.

It is possible to issue a single FOPEN call that will allow you to read
and write from a single file. However, to do so you must include some
additional parameters in the FOPEN call. You must specify a formal
file designator in the formaldesignator parameter of the FOPEN call
(HPFOPEN item number 2) instead of using one of the system defined
files ($STDIN, $STDINX or $STDLIST). You must also specify the logical
device number of the terminal device in the device parameter
(HPFOPEN item number 20). You can use the WHO intrinsic to
determine the logical device numbers of the devices being used as the
input and output devices for the current job or session.
Chapter 3 59

Common Device Control Functions
Reading From Asynchronous Devices
Reading From Asynchronous Devices
Data is read from a terminal by means of the FREAD, READ or READX
intrinsic. FREAD is the most versatile of the three, but requires the use
of a file number. READ allows reading from $STDIN only; READX
allows reading from $STDINX only. Neither READ nor READX requires
the use of a file number, but their utility is somewhat limited.

The manner in which a read from a terminal device takes place is
determined by the device control settings in effect for that device at the
time the read is issued. You can modify many of these settings by using
specific device control intrinsics prior to issuing a read.

The following paragraphs summarize the settings that are relevant
when reading input from a terminal device and the effect these settings
have on how a read will occur. See Chapter 8, “Intrinsics Reference,” of
this manual for details on using specific device control intrinsics.

Input Modes
When devices are connected asynchronously, data is always sent one
character at a time. The transmission of data may occur in either
character mode or block mode, depending on the physical settings of the
device and the settings of the ASC software controlling the device.

Character Mode
Under default conditions, transmission of data occurs in character
mode, with characters transmitted to the DTC individually as they are
typed in. When the read is terminated, the DTC transmits the
accumulated data to the host. If DTC echo is enabled, characters are
echoed back to the terminal screen as they are received. Under default
conditions, character mode reads are terminated by a carriage return.
Character mode is available with all supported terminal types and is
the mode in which all terminals are opened, whether by a session or a
program.

Block Mode
When a terminal is operating in block mode, characters are held in the
terminal’s internal memory (buffer) as they are typed in. They are not
transmitted to the DTC until after you have taken a specific action
(normally, pressing the [Enter] key).

Data transmission may occur a line at a time (line block mode) or a
page at a time (page block mode) depending on the settings of the
terminal and the type of block mode being used.
60 Chapter 3

Common Device Control Functions
Reading From Asynchronous Devices
Block mode is enabled programmatically by a block mode application
when it is executed at a terminal. The terminal’s configuration settings
need to be changed also, in order for the terminal to function properly
in block mode. This can be done by prompting the user to change the
terminal’s configuration settings or by programmatically sending
escape sequences to the terminal.

Block mode allows a terminal user to see data on the screen as it is
being typed in and to use the terminal’s local editing and cursor control
features to alter the data before it is transmitted to the DTC. It is
available only on terminals that have block mode capabilities; all of the
terminals supported for use on MPE/iX systems are capable of handling
block mode data transmission. When using a PC, however, you should
verify that the terminal emulation program you are using is capable of
handling block mode transmission.

User block mode can be invoked through a call to FCONTROL(29) and
makes it possible for your program to control the way in which a block
mode transaction will take place. See the discussion of
FCONTROL(28,29) in chapter 8 for more information on user block
mode.

NOTE A convenient way to handle block mode processing is provided by the
VPLUS intrinsics.VPLUS intrinsics automatically perform many of the
block mode terminal control operations that you are otherwise
responsible for. It is recommended that you use this method whenever
possible. See the VPLUS Reference Manual for more information on
using the VPLUS intrinsics.

Field Mode
Enhancements have been added to provide the performance of block
mode and the flexibility of character mode, called field mode.

Field mode was created to help application programmers control
certain keys on the keyboard. Some applications require certain keys to
be controlled by the application and not processed locally in the
terminal. Block mode applications do not recognize any of these special
keys except in some cases where they are processed locally by the
terminal. To process the special characters would require reading
characters one at a time. This would result in performance degradation.

Field mode allows the users to collect normal user data input without
having to interrupt the CPU for each character, yet still have many
ways to return control to the application when the user enters
command input. The basic building blocks for field mode are
summarized:

• Inter-byte timer. Provides a mechanism by which the DTC can
terminate a read and forward data to the host. It is useful for
collecting data where there is no guarantee that an end-of-record or
Chapter 3 61

Common Device Control Functions
Reading From Asynchronous Devices
alternative end-of-record character will be received, or that a
specified number of bytes will be received. It is implemented in
FDEVICECONTROL 192, parm1 = 65 .

• Multiple alternative end-of-record (AEOR) characters. Allows an
application or user to specify up to 16 AEOR characters. When the
DTC receives one of these characters, it completes the current
pending read request with the received AEOR character as the last
byte of data. This functionality is implemented in
FDEVICECONTROL 192, parm1 = 66.

It is also implemented in TTUTIL.PUB.SYS , in the Special
Characters Screen. Refer to the Customizing Terminal and Printer
Type Files Using the Workstation Configurator manual for more
information on TTUTIL .

• Delete to backspace mapping. Allows the delete character (the [DEL]
key) to be processed as a backspace character, in order to support
ANSI mode terminals. These terminals send the delete character
when the backspace key is pressed. This is implemented in
FDEVICECONTROL 192, parm1 = 67.

• Escape sequence read termination. Enables an application to have a
read terminated by an ESC sequence and receive the entire ESC
sequence in the data. It is implemented in
FDEVICECONTROL 192, parm1 = 68. An application cannot
enable both the escape sequence read termination and the inter-byte
timer method.

• Suppress echo of read termination character. Allows applications to
determine whether or not to include the read terminators with the
data that is echoed back to the device. It is implemented in
FDEVICECONTROL 192, parm1 = 69.

 Refer to FDEVICECONTROL in Chapter 8, “Intrinsics Reference,” for
more information on these functionalities.

Data Editing Modes
When data is entered from a terminal, a number of control characters,
referred to as special characters, signal the DTC or the ASC software to
perform specific functions. The functions vary from deleting a character
from the input stream to interrupting a program or subsystem. All
special characters are stripped from the data after the system (or the
DTC) responds to them. The specific characters that will be treated as
special characters vary depending on the data editing mode being
employed. Standard editing, transparent editing, and binary editing
modes are available.
62 Chapter 3

Common Device Control Functions
Reading From Asynchronous Devices
Standard Mode
Standard editing mode is enabled by default for asynchronous
terminals. All special characters recognized by MPE/iX are available in
standard editing mode. See Configuring Systems for Terminals, Printers
and Other Serial Devices for a complete description of all the standard
special characters.

Transparent Mode
In transparent editing mode, only a limited number of special
characters retain their meanings and are acted on by the system. Also
referred to as unedited mode, this facility allows many of the characters
that would otherwise be treated as special characters to be passed
through as input, without causing any control action to be performed or
being stripped from the input data stream. Table 8-6 lists the special
characters that retain their meaning in transparent mode.
FCONTROL(41) can be used to enable transparent mode. The
FDEVICECONTROL intrinsic can also be used to enable transparent
editing mode. You will find examples of invoking transparent editing
mode later in this chapter and in Chapter 4, “Using
FDEVICECONTROL.”

Binary Mode
In binary editing mode no special characters are recognized. All
characters are treated as data and passed through without any
terminal control actions being taken. Only character mode processing is
possible in binary mode, since there are no special characters available
to control block mode processing. Any carriage control information
contained in output data transmitted in binary mode will be stripped.
Use FCONTROL(26,27) to enable and disable binary mode transfers.

Triggering Reads
With some exceptions, every time a read is issued on an asynchronous
device a read trigger character is sent to the device, indicating that the
system is ready to receive input. The read trigger is not transmitted
over PAD connections and may not be issued if typeahead mode is
enabled at a terminal and the typeahead feature is being used.

The normal read trigger character is the ASCII DC1 character (the
same as XON). All terminal devices supported for use on HP 3000
Series 900 computers are capable of recognizing and responding to the
DC1 read trigger character.

The read trigger is generated at the beginning of each read and signals
that the system is ready to receive data. If the device is operating in
character mode, the device can begin transmitting without any further
exchange of protocol characters. If, however, the data is to be sent
through block mode, the device must inform the DTC by sending an
ASCII DC2 character in response to the read trigger. The DTC, now
Chapter 3 63

Common Device Control Functions
Reading From Asynchronous Devices
informed that the data will be transmitted as a block, sends another
read trigger when it is ready to accept the block of data. The second
read trigger is referred to as a block mode read trigger and is the same
character as the read trigger.

It is possible to specify an alternate character for use as the read trigger
(and therefore also the block mode read trigger) through the
FDEVICECONTROL intrinsic. You must take great care if you do so,
however, to assure that no data is lost.

Terminating Reads
Reads can be terminated in a number of ways, depending on the
programmatic controls issued by your program prior to posting the
read. Both the input mode (character or block mode) and the data
editing mode (binary, transparent, or standard editing mode) affect the
termination of reads.

Binary mode reads cannot be terminated by the recognition of any
character. Binary mode reads are terminated only by the byte count
being reached or by the expiration of the read limit timer. Only byte
count termination results in a successful binary mode read.

The following summarizes the events that will cause reads other than
binary mode reads to terminate

• An EOR character is sent from the terminal. This includes the block
mode read termination character (usually RS) if you are in block
mode and any EOR character specified in an FCONTROL(41) call or
through FDEVICECONTROL(192) with a controlcode value of 15
or 39. Reads terminated in this way terminate normally.

• An AEOR character defined in a preceding call to FCONTROL(25) is
sent from the terminal. The AEOR character is included in the data
and the byte count and the read terminates with an error condition
(FSERR 31). An AEOR character will be recognized in either
standard or transparent editing mode.

• The input byte count is reached. This count is set by a parameter in
the read intrinsic used for the read (FREAD, READ, or READX).
Reaching the input byte count causes all reads to terminate,
regardless of any other condition.

• The read limit timer set by a preceding call to FCONTROL(4)
expires. Setting this timeout value prevents a device from hanging
because of an incomplete read. The read data is transferred to the
user buffer and the read length is returned. The length is the
number of characters entered at the time of the timeout, and the
read terminates with SOFTWARE TIMEOUT (FSERR 22). Reaching
the timeout limit causes all reads to terminate, regardless of any
other condition. (During block mode reads, the timer halts when the
DC2 character is received.)
64 Chapter 3

Common Device Control Functions
Reading From Asynchronous Devices
• In block mode, the block mode read timer expires. This timer is
active from the time that the second DC1 is sent until the RS
character is received. The timer expires with a VPLUS intrinsic
error if VPLUS block mode is being used. The timer expires with a
file system error (FSERR 27) if any other type of block mode is being
used.

• System break is sent from the terminal (and system break is not
disabled). All read data is lost, but the read is reposted when the
user resumes the application.

• The subsystem break character is sent from the terminal while
subsystem break is enabled. All read data is returned to the sender.
Subsystem break is not recognized in binary mode.

• The DTC encounters a parity error while parity is enabled. Parity is
not recognized in binary mode.

End of File Indicators
If a program is reading from one of the standard input files, certain
conditions will cause an end-of-file to occur and the read will terminate
with a condition code of CCG (>>). On $STDIN an end-of-file occurs if a
colon (:) is encountered in column 1 of the record being read. On
$STDINX the end-of-file occurs only if the first four characters of the
record are :EOF. Once your program encounters an end-of-file condition
on a standard file, any subsequent read requests issued by the program
against the same file will also encounter an end-of-file. For this reason,
your program should check for the end-of-file condition as the first step
in reading input from a device. If one is found, the current file must be
closed, because a read will not succeed.

Using FREAD
Once your program has successfully opened a file on a terminal device,
with read access specified, and a valid file number is obtained as a
result of the file open call, you can use the FREAD intrinsic to read data
from the device. Make sure to issue any calls to affect the way the read
will take place (input mode, data editing mode, etc.) before posting the
read. The syntax of the FREAD call is as follows:

I16 I16V UDS I16V

transfercount :=FREAD(filenum,buffer,length);

FREAD accesses the devicefile through its file number (filenum) and
the data input from the device is transferred to buffer when one of the
read termination conditions occurs.

The byte count is specified in the length parameter of the FREAD call.
The intrinsic allows you to specify length as either a positive value
representing halfwords or a negative value representing bytes.
Chapter 3 65

Common Device Control Functions
Reading From Asynchronous Devices
However, for asynchronous devices, the actual data transfer always
occurs on a byte-by-byte basis. If the number of bytes input reaches the
value specified, the read will terminate on byte count.

For asynchronous terminals, the maximum supported read length is
four kilobytes (4 KB) in standard or transparent editing mode and
128 bytes in binary editing mode.

If transfercount is used, the actual number of bytes transferred as a
result of the read will be returned as its value. If you specified NOWAIT
I/O in the FOPEN or HPFOPEN call, however, this value will be 0 and
the actual byte count will be returned in the IOWAIT or IODONTWAIT
call. See Chapter 8, “Intrinsics Reference,” of this manual for more
information on IOWAIT and IODONTWAIT.

The program fragment shown in Figure 3-2 illustrates the use of the
FREAD intrinsic. NOWAIT I/O is not used in this example. A file is
opened as $STDIN with 80 byte ASCII records specified and the file
number is returned in the fileid_in variable. A read is then posted
against this file using the FREAD intrinsic to read up to 80 bytes and
store the data as the value of read_buffer . Note that read_buffer is
declared as a string large enough to hold up to the maximum amount of
data that could be transferred in a single FREAD call.
66 Chapter 3

Common Device Control Functions
Reading From Asynchronous Devices
Figure 3-2 Illustration of the FREAD Intrinsic
Chapter 3 67

Common Device Control Functions
Reading From Asynchronous Devices
Timing a Read
On MPE/iX systems every read that occurs is timed; there is never a
need to turn a timer on to obtain information about the length of a read.
However, the result of the timer is not actually returned to your
program unless you explicitly issue an FCONTROL call, using 22 as the
value of the controlcode parameter. This FCONTROL call returns the
time used for the immediately preceding read as the value of param.

The time of the read is returned in hundredths of a second, up to a limit
of 655.35 seconds. This limit is imposed by the 16-bit capacity of
param. If the read being timed took longer than 655.35 seconds to
complete, the FCONTROL call returns a CCG condition. A call to
FCHECK would return an FSERR 98, Read Timer Overflow .

The code fragment shown in Figure 3-3 posts a read against
fileid_in and issues a call to FCONTROL(22) immediately after the
read to obtain the results of the read timer. After execution of the
FCONTROL call, read_time will contain the results of the timer and
the program will write this value to the standard output device. The
code sample also checks for a CCE condition, which would indicate that
the FCONTROL had succeeded.
68 Chapter 3

Common Device Control Functions
Reading From Asynchronous Devices
Figure 3-3 Obtaining the Result of the Read Timer
Chapter 3 69

Common Device Control Functions
Reading From Asynchronous Devices
Setting a Read Time Limit
FCONTROL can also be used to set a time limit on a succeeding read,
by specifying 4 as the value of controlcode and specifying a time limit,
in seconds, through param (up to 65535 seconds). If the read
immediately following the call takes more than the time specified, the
read will terminate in error and any data already received will be
flushed. The read limit remains in effect only for the next read. You
must issue a separate FCONTROL(4) call prior to every read on which
you want to impose a time limit.

There are many circumstances in which it is advisable to set a timeout
value. Timeouts should always be used with devices that operate
without a dedicated attendant, to prevent hangs that could occur if the
device were to fail in some way.

Timeouts are effective in all data editing modes. This makes it possible
to terminate even a binary mode read should it exceed the specified
time limit. During block mode reads, however, the timer is halted upon
receipt of the DC2 character and the block mode read timer takes over.

When a read terminates as the result of exceeding the timeout set by
FCONTROL(4), the read fails with a CCL condition and all data is lost.
A call to FCHECK returns an FSERR 22, Software Timeout .

The code segment shown in Figure 3-4 sets a 30-second time limit for
the next read posted against fileid_in . The sample includes an error
checking routine which verifies whether or not the read terminated
normally. If not, the program calls FCHECK. If FCHECK returns an
FSERR 22, the program will inform the user that a read timeout
occurred.
70 Chapter 3

Common Device Control Functions
Reading From Asynchronous Devices
Figure 3-4 Opening a Read Port and a Write Port
Chapter 3 71

Common Device Control Functions
Reading From Asynchronous Devices
Using READ or READX
The READ and READX intrinsics provide a simple method for reading
from the standard input device. You do not need to know the file
number when you use these intrinsics. Except for the intrinsic name,
the syntax is the same for READ and READX. The syntax of the READ
intrinsic is shown below:

I16 CA I16V

transfercount :=READ(message,expectedlength);

The maximum length of the read is passed in expectedlength and the
call returns the actual length of the read in transfercount , if
transfercount is used. The read data is returned in message .

Both READ and READX transfer an ASCII string into a character
array in your program. However, READ transfers data from $STDIN,
while READX transfers data from $STDINX. READ also differs from
READX in the way an end-of-file is interpreted. READ recognizes any
colon (:) found in column 1 as an end-of-file, while READX interprets
only :EOD as an end-of-file.

Because there is no file number associated with READ or READX, it is
not possible to use the FCHECK intrinsic to determine what took place
in the event of an error. Nor can you use the :FILE command to
redirect input, since the input always comes from the standard input
files opened by the session at logon time.

Because of the limitations inherent in the use of READ and READX, it
is recommended that you use these intrinsics only for temporary
programs as a quick way to obtain input from a terminal. A better
programming practice for permanent programs would be to use FOPEN
or HPFOPEN to open $STDIN or $STDINX and then issue FREAD calls
against these files.
72 Chapter 3

Common Device Control Functions
Writing to Asynchronous Devices
Writing to Asynchronous Devices
The most common ways to write information to an asynchronous
devicefile are provided by the FWRITE and PRINT intrinsics. FWRITE
is the most versatile of these and can be used to write information to
any device. PRINT is more limited in its usage, but does not require the
use of a file number.

Using FWRITE
FWRITE transfers a record of data to a file on any device. You must
first open a file on the device with write access specified and obtain a
valid file number. The file number is then used by the FWRITE call to
access the file. The syntax of FWRITE is as follows:

I16V UDS I16V U16V

FWRITE(filenum,buffer,length,controlcode);

The filenum parameter passes the file number of the file to which data
will be written. The record to be written is passed in the buffer
parameter, with the length of the data specified in the length
parameter. A positive or negative value is used to indicate whether
length is halfwords or bytes. You should be aware, however, that for
asynchronous devices, physical data transfer will always occur on a
byte-by-byte basis. Specifying halfwords will result in an even number
of bytes being output.

If length is 0, no data transfer will occur. You might use FWRITE with
length specified as 0 to set line spacing (carriage control) at the device
before any data is output.

Carriage control is passed through the controlcode parameter. The
carriage control specification can be 0, 1, or one of the values designated
as controlcode values for MPE/iX. Table 8-1, “Intrinsics and Device
Control,” on page 152 lists many of the carriage control directive values
most commonly used with asynchronous devices. For a complete list of
carriage control directive codes that can be used with the FWRITE
intrinsic you should see the MPE/iX Intrinsics Reference Manual.

If controlcode is 0, the full record of data will be transferred to the
devicefile, up to a maximum of 132 characters per printed line, and
single spacing will be applied.

If controlcode is 1, the first character of the data will be interpreted
as space control and will be suppressed when the data is printed. Any of
the values supported as carriage control directives can be used as the
first character when this method is used.

The carriage control directive values can also be applied directly
through the controlcode parameter. Simply use one of these values
instead of a 0 or 1.
Chapter 3 73

Common Device Control Functions
Writing to Asynchronous Devices
When writing to a terminal, a controlcode value of %320 is often used.
This value specifies that no carriage control will be sent to the terminal
and the next character printed by the next write will physically follow
the data written by the current write. You might use a controlcode of
%320 when prompting for user input at a terminal. No carriage return
or linefeed will follow the write and the cursor will be positioned next to
the prompt.

Figure 3-5 illustrates the use of the FWRITE intrinsic. This code
fragment opens a terminal file as $STDLIST with write access
specified. The prompt to be written to the terminal is placed into buffer
and the variable cctl is specified as %320. FWRITE is then called using
these values. The result will be that the prompt “Enter Your Name” will
be written to the device and the cursor will be placed next to the
prompt.

Your program should check condition codes after each FWRITE;
however, you should be aware that this intrinsic is completed logically.
This means that once data is passed to an output buffer the write is
considered to have completed successfully. If the output device has
suspended operation, due to flow control or some other reason, the
actual write may not have occurred. There is no programmatic way to
verify the physical output of data to a device.
74 Chapter 3

Common Device Control Functions
Writing to Asynchronous Devices
Figure 3-5 Illustration of the FWRITE Intrinsic
Chapter 3 75

Common Device Control Functions
Writing to Asynchronous Devices
Sending Escape Sequences
You can also use FWRITE to send escape sequences to an asynchronous
device. Escape sequences can be used to alter the physical settings of a
device. For example, on most supported terminals you can use escape
sequences to set terminal straps, control the placement of the cursor on
a terminal screen, and set margins. You should consult the manual for
your device for a summary of useful escape sequences.

In the following example the variable esc_seq contains the string
’ESC&s1D’ . This escape sequence selects page block mode at the
terminal (opens the “D” strap). The escape sequence can be sent to the
device with the following FWRITE call:

FWRITE(file_num, esc_seq, -5, octal(‘320’));

The length parameter is specified as 5 bytes, the length of the escape
sequence (ESC is one byte). Carriage control is set to %320, so that no
carriage return or linefeed are sent. As a result of this call, the terminal
on which the file specified by file_num is opened will be strapped for
page block mode.

Using PRINT
In much the same way that READ and READX provide a quick method
for reading from the standard input device, PRINT provides a quick
method for writing to the standard output device. PRINT sends a string
of ASCII characters to $STDLIST . The syntax of the call is as follows:

CAI 16V I16V

PRINT(message,length,controlcode);

The message parameter is a character array that holds the string to be
written to the device. It must begin on a halfword boundary, as must all
character arrays.

The length parameter specifies the length of the character string. If
the length of the message exceeds the configured record length of the
terminal, successive records will be written.

The controlcode parameter specifies the carriage control to be applied
when the message is output. Either a 0, 1, or one of the valid carriage
control directives should be passed in this parameter. See the
discussion of the FWRITE intrinsic for more information on
controlcode values.

Like READ and READX, PRINT has a number of limitations on the
way it can be used. Because no file number is available, :FILE
commands are not useful, nor is it possible to use the FCHECK
intrinsic to check error conditions. For permanent programs it is
recommended that FWRITE be used instead.
76 Chapter 3

Common Device Control Functions
Altering Terminal Deficefiles
Altering Terminal Deficefiles
Many of the asynchronous device control functions performed most
commonly are accomplished through the use of the FCONTROL
intrinsic. FCONTROL has often been referred to as the workhorse of
the file system intrinsics. The examples that follow illustrate how
FCONTROL can be used to alter the characteristics of data
transmission to and from a terminal, or to alter device control settings.
The syntax of FCONTROL is shown below:

I16V I16V *

FCONTROL(filenum,controlcode,param);

FCONTROL accesses specific devicefiles through their file numbers, as
specified in the filenum parameter. The function performed by a
particular call to FCONTROL is determined by the controlcode
parameter, as is the meaning and use of param. For some controlcode
values param has no meaning; in these cases param must be coded as
a dummy value to satisfy the requirements of the intrinsic.

See Chapter 8, “Intrinsics Reference,” for a list of the controlcode
values most useful for the control of asynchronous devices and for
information on how param is used for each of the controlcode values
described.

Completion status for each FCONTROL call is indicated through
condition codes. See Chapter 2, “Controlling Asynchronous Devices
Programmatically,” for more information on condition codes.

FCONTROL must be called before any data transfer activity in order to
have any effect on how that activity occurs. In many cases you will need
to use a series of FCONTROL calls to set all of the characteristics
desired for a particular transaction. The code fragments that follow
illustrate the use of a number of FCONTROL functions.

NOTE An alternative to the FCONTROL intrinsic is provided by the
FDEVICECONTROL intrinsic, which is described in this manual. The
code segments shown in this chapter, however, demonstrate only the
use of FCONTROL.

Specifying an AEOR Character
Specifying an AEOR Character Figure 3-6 shows how FCONTROL may
be used to alter the way in which a read issued against a terminal can
be terminated. A controlcode value of 25 is used, which designates
that a character, specified through the call, is to be accepted as an
Additional End-of-Record (AEOR) character. In this case, an asterisk is
designated as the AEOR character.
Chapter 3 77

Common Device Control Functions
Altering Terminal Deficefiles
Once an AEOR character is designated, any non-binary mode read
issued for that devicefile can be terminated by entry of the AEOR
character, as well as in the normal ways, until the device is closed, or
until the AEOR character is disabled. You can disable the AEOR
character by calling FCONTROL(25) again, using a 0 as the new value
for AEOR.

A read terminated by means of an AEOR does not end normally. A file
system error is returned, indicating that the AEOR character was used.
The AEOR character is transmitted with the rest of the read data and
is added to the byte count. No carriage return or linefeed is sent to the
terminal. See the discussion of FCONTROL(25) in Chapter 8,
“Intrinsics Reference,” for additional details on this use of the
FCONTROL intrinsic.
78 Chapter 3

Common Device Control Functions
Altering Terminal Deficefiles
Figure 3-6 Obtaining the Result of the Read Timer
Chapter 3 79

Common Device Control Functions
Altering Terminal Deficefiles
Altering Device Control Settings
The code fragment presented in Figure 3-7 shows how a series of
FCONTROL calls may be used to perform various device control
functions. The end result of such a sequence of FCONTROL calls should
be a devicefile whose characteristics are as required for a specific
application.

The first call in the example, to FCONTROL(40), returns device
information to the calling program as the value of the line_speed
variable. This call is used to determine the current line speed of the
device. Examples of when such a call may be used are to verify a
particular setting for an application, or to obtain and store a current
value so that a setting can be altered and later reset to its original
value.

The next call, to FCONTROL(11), changes the line speed of the device
to a new value. The value used in the call must be a supported line
speed, entered as characters per second (240 characters per second is
2400 bps).

The next two FCONTROL calls work together to set a desired parity
and enable parity checking. FCONTROL(36) is used in this case to
define odd parity as the parity to be used if parity is enabled. Note that
setting parity has no effect until parity is enabled.

Parity is enabled through the subsequent call to FCONTROL(24). In
the FCONTROL(24) call, the third parameter has no meaning. A
dummy value must be specified, however, to satisfy the needs of the
FCONTROL intrinsic, as well as the needs of the Pascal compiler.
80 Chapter 3

Common Device Control Functions
Altering Terminal Deficefiles
Figure 3-7 Opening a Read Port and a Write Port
Chapter 3 81

Common Device Control Functions
Altering Terminal Deficefiles
Setting Transparent Editing Mode
The FCONTROL intrinsic is also commonly used to set the data editing
mode at a terminal. As explained earlier in this chapter, the data
editing mode controls which characters are considered to have special
meaning when they are encountered in the data stream.

In standard editing mode, all special characters recognized by MPE/iX
apply and are acted on when sent from a terminal. However, there are a
number of reasons why you might want to suspend the special
processing associated with some of these characters. Your application
may be using one or more of these characters for a different purpose. Or
you may be using an unsupported device which transmits signals that
cause problems in standard editing mode.

One solution is to enable binary editing mode, which performs no
special character processing and allows all characters to pass through
as data. However, the use of binary mode severely limits the
transmission and terminal control options available to you.

Transparent editing mode provides a data editing level between
standard and binary editing modes. Because a limited number of
special characters retain their meaning in transparent mode, there is
much more flexibility in how a data transfer may take place than there
is when binary mode is used. For example, you can perform block mode
reads while in transparent editing mode, because the block mode
control characters (DC1 and DC2) retain their special meanings. (DC2
only has special meaning when received as the first byte of data,
however.) Transparent mode also allows you to use parity checking and
recognizes and responds to the AEOR character, if one has been
designated.

If transparent editing mode is enabled for any file, it is also in effect for
any other files opened on the same device, regardless of whether or not
it was specifically enabled for those files. Also, any FCLOSE issued
against the device will return the device to standard editing mode.

Subsystem break processing is also available in transparent editing
mode. The character that will be recognized as the subsystem break
character is passed in the intrinsic call. Any character not otherwise
recognized as a special character can be used, including the normal
subsystem break character, [CTRL]Y . If a 0 is specified, subsystem break
will be disabled. You should note, however, that simply designating a
subsystem break character does not enable subsystem break
processing.

You must still enable subsystem break response and arm the [CTRL]Y
trap before the subsystem break function can be invoked.

Transparent editing mode will be overridden if you should enable
binary editing mode at the same device. However, when you leave
binary mode, the device will still be operating in transparent mode. You
82 Chapter 3

Common Device Control Functions
Altering Terminal Deficefiles
must explicitly disable transparent editing, either by issuing an
FCLOSE against the device, or by calling the intrinsic used to set
transparent mode again with both the EOR and subsystem break
characters set to null.

The code fragment shown in Figure 3-8 provides an example of enabling
transparent editing mode through FCONTROL(41). This FCONTROL
uses param to set new values for the EOR character (in the low order
byte) and the subsystem break character (in the high order byte). In the
example, the bkeor variable is set to 6433, to specify that an
exclamation point (!) is the new EOR character and [CTRL]Y is the
subsystem break character. Any subsequent read will recognize and
treat these characters accordingly and strip them from the input
stream.

A similar code fragment, setting bkeor to 0, could be used to disable
transparent editing mode.

See Chapter 4, “Using FDEVICECONTROL,” for an example of using
FDEVICECONTROL to enable transparent editing mode.
Chapter 3 83

Common Device Control Functions
Altering Terminal Deficefiles
Figure 3-8 Opening a Read Port and a Write Port
84 Chapter 3

Common Device Control Functions
Altering Terminal Deficefiles
Setting Binary Editing Mode
In some cases you may need to disable all special character processing
and pass everything through as data. Binary editing mode allows you to
transfer information in this manner.

Binary editing mode treats all characters as data and passes all eight
bits of every character through without performing any special
operations. Fairly obviously, this restricts the way in which data
transfers can take place. You cannot use parity checking in binary
mode, since all eight bits of each character are treated as data. Block
mode transfers are also impossible, since no special handshake
characters are recognized.

The only way that a binary read will terminate without returning an
error is by reaching the byte count specified in the FREAD, READ, or
READX call that initiated the read. Read timeouts will terminate a
binary read in error and no data will be transferred. It is a good idea to
specify a read timeout value when posting binary reads to avoid
problems that can occur if the read does not reach the specified byte
count.

Binary mode is enabled by calling FCONTROL with a controlcode
value of 27 and disabled through FCONTROL with a controlcode
value of 26. With either of these FCONTROL calls the third parameter
has no meaning and should be invoked with a dummy value of 0.

Figure 3-9 provides an example of enabling binary editing mode in a
program. You should note several features of this code fragment, as
explained below, to understand how to use binary mode for your own
programming needs.

Note first that a call to FCONTROL(13) precedes any call to enable
binary mode. FCONTROL(13) disables character echo at the terminal.
If character echo is not disabled prior to transferring data in binary
mode, any ASCII DC3 (XOFF) character in the data (CONTROL S
typed at the terminal) would be echoed by the DTC back to the terminal
and it would appear to the terminal that the DTC had been XOFFed.
This would cause the terminal to hang, since the terminal would
suspend transmission to await on XON signal that would never arrive.

An alternative to disabling character echo is to turn XON/XOFF flow
control off at the terminal. This is a dangerous alternative, however,
since disabling flow control may result in write data being lost at the
terminal.

The next feature of this program you should note is that separate calls
to FCONTROL(27) are posted against a read port and a write port on
the device. FCONTROL(27) is one of several terminal controls that
affect the data transfer characteristics of a specific file, rather than of
the device itself. This makes it necessary to explicitly specify binary
mode for both the read port and the write port opened on the device.
Chapter 3 85

Common Device Control Functions
Altering Terminal Deficefiles
Finally, note that in the example an FREAD call specifying a read of 0
bytes is posted against the device immediately following the
FCONTROL calls. Only after the 0 byte read completes successfully
does the program notify the user that the port is in binary mode. It is
actually the read, not the FCONTROL call, that causes the controlling
software to place the device driver in binary mode. (This is only true
when you are setting binary mode. Most FCONTROLs take effect at the
time the FCONTROL call is issued.)

If you are setting binary mode for reads only this is not a consideration,
since the first read posted will cause binary mode to be set. If, however,
you are setting binary mode for both a read port and a write port, you
need to post a read of 0 bytes before assuming that binary mode is set.
86 Chapter 3

Common Device Control Functions
Altering Terminal Deficefiles
Figure 3-9 Opening a Read Port and a Write Port
Chapter 3 87

Common Device Control Functions
Closing Files
Closing Files
The FCLOSE intrinsic is used to terminate access to a file. It applies to
files on all devices and frees any resources that were assigned at the
time the file was opened. If more than one file is opened against a
device, the device itself is not deallocated until an FCLOSE is issued
against every file opened on that device by your program. The syntax of
the FCLOSE call is as follows:

I16V I16V I16V

FCLOSE(filenum,disposition,securitycode);

The filenum parameter contains the file number of the file to be closed.
The disposition and securitycode parameters provide facilities for
determining file disposition and security levels for files on devices other
than terminals and printers. They are not meaningful for asynchronous
devices and should be set to 0.

Some of the device settings that may have been altered by FCONTROL
(or FDEVICECONTROL) calls issued by your program will be reset to
their default settings at FCLOSE. However, this is not true for all
device settings that may have been altered. You are responsible for
making sure that your program does not adversely affect the way the
device will act after your program terminates. It is good programming
practice to reset any device characteristics your program alters and to
issue an FCLOSE for every file your program opens.

Should your program fail to issue an FCLOSE for a file it has opened,
the file system will automatically issue an FCLOSE for that file when
the program terminates. When the last file opened against a device is
closed, all device characteristics are returned to their configured
settings. If there is a session associated with the device, the last file is
not closed until the session is terminated.

In Figure 3-10, two FCLOSE calls are issued to close ports previously
opened for reading and writing to a terminal. Condition codes are
checked after each FCLOSE call through the Pascal ccode function,
which will return a value of CCE if no errors occur during the call, or of
CCL or CCG if errors do occur.
88 Chapter 3

Common Device Control Functions
Closing Files
Figure 3-10 Opening a Read Port and a Write Port
Chapter 3 89

Common Device Control Functions
Closing Files
90 Chapter 3

4 Using FDEVICECONTROL
Many of the asynchronous device control functions that can be
performed through FCONTROL can be performed through
FDEVICECONTROL as well. In addition, FDEVICECONTROL allows
you to perform a number of device control functions that are not
available through use of FCONTROL. Chapter 3, “Common Device
Control Functions,” in this manual provides some practical examples of
how you can use FCONTROL in a program to control asynchronous
devices.

This chapter describes how you might use FDEVICECONTROL to
perform additional device control functions. It includes program
fragments to illustrate the use of the intrinsic. The text which
accompanies the examples will contrast the use of the
FDEVICECONTROL and FCONTROL.

Examples in this chapter illustrate using FDEVICECONTROL to
perform the following functions:

• Enable/disable transparent editing mode

• Specify a new end-of-record character.

• Change the backspace character and backspace response at a
terminal.

• Enable/Disable device XON/XOFF.

• Combine enable/disable escape sequence read termination function
with the enable/disable suppress echo of read termination characters
function.

• Specify the number of stop bits.

Refer to Chapter 8, “Intrinsics Reference,” for a complete summary of
the functions available through FDEVICECONTROL and for full
explanations of its syntax and parameter values.
91

Using FDEVICECONTROL
Syntax Description
Syntax Description
While FDEVICECONTROL performs some of the same device control
functions performed by FCONTROL, the two intrinsics look very
different from each other when you use them in a program.
FCONTROL uses just three parameters, through which you specify a
devicefile, define the control operation to be performed, and, depending
on the control operation, pass or receive specific information that may
be required for that operation.

FDEVICECONTROL requires the use of a greater number of
parameter values. For operations that can be performed by either
FCONTROL or FDEVICECONTROL, it is easier to use FCONTROL.
The following is the syntax for FDEVICECONTROL:

I16V UDS I16V I16V

FDEVICECONTROL(filenum,buffer,length,controlcode,

I16V U16V U16

parm1,parm2,fserrorcode);

FDEVICECONTROL is used for a variety of file control operations,
each of which is appropriate for controlling a specific type of devicefile.

The controlcode parameter determines the control operation that will
be performed. The only control operation which effects asynchronous
devicefiles is controlcode value 192. It sends device control directives
to an asynchronous device.

Refer to Table 8-7 for a list of other valid controlcode values and the
operations they perform. For more information on these operations
refer to the MPE/iX Intrinsics Reference Manuals.

When controlcode is 192, parm1 determines the specific control
directive to be sent to the devicefile. parm1 must contain one of the
control directive values specified in Chapter 4, “Using
FDEVICECONTROL.”

parm2 determines the Read/Write access to be imposed on the
directive. The Read/Write access setting must be valid for the control
directive specified in parm1. Set parm2 to 1 for Read access, 2 for
Write access, or 3 for both Read and Write access.

For example, if you were to call FDEVICECONTROL with
controlcode set to 192 and parm1 set to 57, which is the control
directive used to obtain the subsystem break character, you would need
to set parm2 to 1, since only Read access is allowed for that control
directive.

If, however, parm1 were set to 36, which is the control directive used to
define the backspace character, you could set parm2 to 1, 2, or 3. In this
case, setting parm2 to 1 would return the current backspace character
92 Chapter 4

Using FDEVICECONTROL
Syntax Description
to your program, while setting it to 2 would actually change the
backspace character to whatever new character you pass in the call
(through the buffer parameter). Setting parm2 to 3 would both return
the previous value and change the backspace character to the new
value passed in the call.

Some control directives do not permit all possible values of parm2 to be
used with them. Table 8-8 lists the allowable parm2 access values for
each of the valid control directives that may be specified in parm1.

The filenum parameter specifies the file number, as obtained through a
previous call to FOPEN or HPFOPEN, of the devicefile on which the
control operation is to be performed.

The buffer parameter passes and returns the data associated with the
control directive being performed. For example, if the control directive
specified in parm1 is 3, which sets the line speed for a device, buffer
must contain the new linespeed setting (and will return the previous
speed setting if parm2 is set to Read/Write access).

The length parameter sets the length of buffer. Positive values
indicate the length in half words. Negative values indicate the length in
bytes. Usually length will be set to 1, indicating that buffer is 1 half
word long.

The fserrorcode parameter returns error information to your
program. If no error occurs during execution, fserrorcode contains a 0.
If an error occurs, fserrorcode returns the file system error code
corresponding to that error. You will need to call FCHECK for more
information about the error that occurred.
Chapter 4 93

Using FDEVICECONTROL
Examples
Examples
The examples that follow illustrate using FDEVICECONTROL to
perform a number of control operations on asynchronous devicefiles.
The first example demonstrates how FDEVICECONTROL is used to
set transparent editing mode at a terminal. A similar example, using
FCONTROL for the same purpose, is included in Chapter 3, “Common
Device Control Functions.” These two examples allow you to contrast
the use of the two intrinsics.

The remaining examples, illustrated by the following figures,
demonstrate the use of FDEVICECONTROL to perform functions that
are not available through any other intrinsic.

Setting Transparent Editing Mode
In Figure 4-1 transparent editing mode is enabled at a terminal
through the FDEVICECONTROL intrinsic. Transparent editing mode
is also referred to as unedited mode. The parameters of the call specify
how the control action is to take place.

A file number, obtained through a previous call to FOPEN or
HPFOPEN issued against the device to be controlled, is contained in
the port parameter. (The file open call is not shown in the example.)
The controlcode is set to 192, indicating that this is a device control
operation.

The parm1 value is set to 15, which is the control directive used to set
transparent editing mode. The parm2 value is 2, specifying that only
Write access is needed. This means that a value will be passed in the
buffer parameter, but the previous value will not be returned.

When you use FCONTROL to enable transparent editing, you specify
new subsystem break and EOR characters through one of the
parameters of the call. You must also specify these characters when you
enable transparent mode through FDEVICECONTROL. You pass the
value corresponding to the characters you want to use through the
buffer parameter. Any character not otherwise defined as a special
character in transparent mode can be used.

The example shown here uses the Pascal/iX ord function to set the
subsystem break and EOR characters through a variable called value.
The high order bit of value contains a slash (/), which will be the new
subsystem break character, and the low order bit contains an asterisk
(*), which will be the new end-of-record character. This variable value is
passed through the buffer parameter.
94 Chapter 4

Using FDEVICECONTROL
Examples
One other notable feature of the example is the way errors are handled.
The example uses the fserrorcode parameter to provide information
to the user in the event of an error by writing the file system error
number to the standard output device.

Figure 4-1 FDEVICECONTROL to Enable Transparent Mode
Chapter 4 95

Using FDEVICECONTROL
Examples
You also call FDEVICECONTROL with a control directive of 15 to
disable transparent editing mode. To return to standard editing, call
FDEVICECONTROL with parm1 set to 15, but specify 0 for both the
subsystem break and EOR characters. Figure 4-2 provides an example
of disabling transparent mode. Note that, in this example, parm2
specifies both Read and Write access for the call. The subsystem break
and EOR characters in effect before the call executed can therefore be
identified and reported after the intrinsic completes successfully.
96 Chapter 4

Using FDEVICECONTROL
Examples
Figure 4-2 FDEVICECONTROL to Disable Transparent Mode
Chapter 4 97

Using FDEVICECONTROL
Examples
Specifying an End-of-Record Character
You can change the character that will be recognized as the
end-of-record character for a device by specifying a control directive of
39 and passing the desired character in buffer. This
FDEVICECONTROL is effective in either standard and transparent
editing mode. Note that the call does not alter the editing mode in effect
for the device; it simply changes the character that will signal the end
of a record for that device. This capability is not available through any
FCONTROL function.

You might want to use this capability, for example, to make it possible
for carriage returns to be passed in your data without enabling binary
editing mode and without modifying the processing of any other special
character. Only the end-of-record character is affected by this control
directive.

A notable characteristic of this use of FDEVICECONTROL is that the
value of the new end-of-record character must be passed in the high
order byte of the buffer parameter. The low order byte is not used with
this control directive. (Two other FDEVICECONTROL control
directives, 40 and 41, also require that the value be passed in the high
order byte.)

In Figure 4-3, FDEVICECONTROL is used to change the end-of-record
character to a bracket (]). Again, the value of the character is specified
through the Pascal/iX ord function and is then multiplied by 256 to
place it in the high order byte. Read/Write access is set to Write only for
the call, so the previous EOR character will not be returned to the
program.

To return to normal end-of-record processing, call this
FDEVICECONTROL again, specifying a null value as the EOR
character. The EOR character will be reset to the default character,
which is the carriage return. If you were processing in transparent
mode prior to changing the EOR character, and want to return to using
the EOR character that you specified in the call that established
transparent mode, you need to explicitly reset the EOR to that
character.
98 Chapter 4

Using FDEVICECONTROL
Examples
Figure 4-3 FDEVICECONTROL to Specify EOR Character
Chapter 4 99

Using FDEVICECONTROL
Examples
Controlling Backspace Processing
Among the capabilities provided by FDEVICECONTROL which are not
available through other intrinsics is the ability to manipulate how
backspace processing takes place at a device. You can specify the
character that the DTC will recognize as a backspace when it is sent
from a specific device. You can also, to a limited extent, control the
action that the DTC will take as a result of the backspace character
being entered at a specific device. These controls are independent of
each other, enabling you to change either the backspace character, the
backspace response, or both, depending on the needs of your
application. They are only useful in standard editing mode, since
backspace is not recognized as a special character in either transparent
or binary editing modes.

You use FDEVICECONTROL with a control directive of 36 to change
the character that the DTC will recognize and act on as a backspace
character. In the program fragment shown in Figure 4-4, the backspace
character in effect for the devicefile whose file number is contained in
port is set to a dollar sign ($), using the Pascal/iX ord function to
specify its value. The program then notifies the user that the backspace
character has been changed. Read/Write access is set to 2, which means
that the backspace character previously in effect will not be returned.

If a dollar sign is entered at the device after successful execution of the
program, it will be treated as a backspace, and the DTC will perform
backspace processing. The dollar sign will not be echoed to the
terminal, nor will it be passed in the data stream as a character of data.

In addition, the special processing characteristics normally associated
with the backspace character itself ([CTRL]H) will be disabled, and, if a
backspace is entered from the device, it will be passed in the data
stream.
100 Chapter 4

Using FDEVICECONTROL
Examples
Figure 4-4 Specifying a New Backspace Character
Chapter 4 101

Using FDEVICECONTROL
Examples
The code fragment shown in Figure 4-5 illustrates another aspect of
backspace processing that can be manipulated through the
FDEVICECONTROL intrinsic. In this example, a control directive of 55
is used to select a backspace response action. The backspace response
action is the action that will be taken by the DTC as a result of a
backspace (or the designated backspace character) being entered from a
terminal.

There are two valid backspace response actions for MPE/iX systems.
The default response is for the DTC to discard the character that was to
the left of the terminal’s cursor when the backspace was entered and to
move the cursor back one space. The discarded character remains on
the terminal screen until the user types a new character.

The second valid backspace response action is for the discarded
character to be erased from the screen. To accomplish this, the DTC
backspaces the terminal cursor as usual, but then transmits a space to
erase the character from the screen and a second backspace to place the
cursor at the correct position for the next character to be entered.

Either of these backspace response actions can be set through
FDEVICECONTROL using a control directive of 55. To specify that the
character on the screen should be erased, set the value of buffer to 5.
To return to normal backspace response, set the value of buffer to 1.

The example shown in Figure 4-5 sets the backspace response to erase
by specifying a 5 as the value of buffer.
102 Chapter 4

Using FDEVICECONTROL
Examples
Figure 4-5 Setting Backspace Response
Chapter 4 103

Using FDEVICECONTROL
Examples
Controlling Device XON/XOFF Processing
Another device control feature provided by the FDEVICECONTROL
intrinsic is the ability to disable (and subsequently reenable)
XON/XOFF flow control between a device and the DTC.

XON/XOFF protocol provides the main method of flow control used by
MPE/iX systems. The protocol controls the flow of data transmitted
between the DTC and a device to protect against data overruns.

XON/XOFF flow control allows the device receiving a transmission to
stop the flow of data coming in should the device become temporarily
unable to receive the data. It does this by sending an XOFF character to
the DTC. XOFF is the ASCII DC3 character ([CTRL]S).

When the device is once again able to receive data, it transmits an XON
character to signal that the DTC should resume data transmission.
XON is the ASCII DC1 character ([CTRL]Q).

When XON/XOFF flow control is enabled, the DC1 and DC3 characters
are not transmitted to the host. XON/XOFF flow control is enabled by
default. All devices supported for use on MPE/iX systems are capable of
using XON/XOFF protocol.

The only time XON/XOFF flow control is normally not active is during
binary mode reads. This is because the DC1 and DC3 characters are not
recognized as special characters in binary editing mode. However, no
other special character processing occurs in this mode, either.

By using FDEVICECONTROL with a control directive of 26, it is
possible to disable XON/XOFF flow control without altering any other
aspect of how the device operates. It then becomes possible to transmit
DC1 and DC3 characters to the host without causing the DTC to
suspend transmission. All other special characters will still be
recognized, and the associated special character functions will be
performed. You should only use this capability when it is absolutely
necessary to do so, however, and always with extreme care. When
XON/XOFF flow control is disabled, it is possible for data overruns to
occur and for data to be lost as a result.

The program fragment shown in Figure 4-6 provides an example of
using FDEVICECONTROL to disable device XON/XOFF flow control.
The parm1 value of 26 specifies that the call is to set device
XON/XOFF. The value variable contained in the buffer parameter is
set to 0, which indicates that XON/XOFF is to be disabled by the call.

To re-enable device XON/XOFF you would call FDEVICECONTROL
with a control directive of 26 again, but this time you would set the
value of buffer to 1.
104 Chapter 4

Using FDEVICECONTROL
Examples
Figure 4-6 Disable Device XON/XOFF Processing
Chapter 4 105

Using FDEVICECONTROL
Examples
Controlling Host and Device XON/XOFF
Processing
Another host and device control feature provided by the
FDEVICECONTROL intrinsic is the ability to disable (and
subsequently reenable) XON/XOFF flow control between device and the
DTC. See Figure 4-7 for enabling host XON/XOFF processing.

XON/XOFF protocol provides the main method of flow control used by
MPE/iX systems. The protocol controls the flow of data transmitted
between DTC and the device to protect against data overruns.

Device XON/XOFF flow control allows the device receiving a
transmission to stop the flow of data coming in should the device
become temporarily unable to receive the data. It does this by sending
an XOFF character to the DTC. XOFF is the ASCII DC3 character
([CTRL]S).

Host XON/XOFF flow control allows the DTC receiving a transmission
to stop the flow of data coming in should the DTC become temporarily
unable to receive the data. It does this by sending an XOFF character to
the device. XOFF is the ASCII DC3 character.

When the device is once again able to receive data, it transmits an XON
character to signal that the DTC should resume data transmission.
XON is the ASCII DC1 character ([CTRL]Q)

When the DTC is once again able to receive data, it transmits an XON
character to signal that the device should resume data transmission.
XON is the ASCII DC1 character ([CNTRL]Q).

By using FDEVICECONTROL with a control directive of 76, it is
possible to disable XON/XOFF flow control between device and the
DTC.

The functionality for device flow control (FDEVICECONTROL 192,26)
is maintained for backward compatibility, even though that can be done
through this FDEVICECONTROL.
106 Chapter 4

Using FDEVICECONTROL
Examples
Figure 4-7 Enable Host XON/XOFF Processing
Chapter 4 107

Using FDEVICECONTROL
Examples
Setting the Number of Stop Bits
Among the capabilities provided by FDEVICECONTROL is to specify
or set the number of stop bits used. By using FDEVICECONTROL with
a control directive of 71, it is possible to set the number of stop bits
used. There are two possible buffer values to specify the number of
stop bits used. See Figure 4-8 on how to set the number of stop bits
equal to two.

In asynchronous communication, the stop bit informs the receiving
device where the character ends. Thus it helps the receiving and
sending machines to synchronize the transmission.

Figure 4-8 Set the Number of Stop Bits
108 Chapter 4

Using FDEVICECONTROL
Examples
Enabling Escape Sequence Read Termination
FDEVICECONTROL has the ability to control the interpretation of
escape sequences. Escape sequences are usually generated by function
keys or cursor control keys. The escape sequence read termination
(parm1 = 68) control directive allows your application to react
immediately to a special key when it reads it.

The escape sequence read termination causes a read to terminate when
the escape character is encountered in input data. However, the read
does not terminate immediately.

The DTC starts a timer immediately after it receives the escape
character. The DTC sets the timer to the period of time required to
transmit two characters at the current line speed. Characters that are
automatically transmitted as part of the escape sequence will be
received. When the entire escape sequence is transmitted, the timer
will expire, the read terminates, and your application can respond to
the special meaning of the escape sequence.

NOTE The escape sequence may contain any number of characters, but the
time between the reception of each character in the sequence cannot
exceed the timer.

Enable/Disable escape sequence read termination (parm1 = 68) should
be accompanied with the enable/disable suppress echo of read
termination characters function (parm1 = 69). This prevents the DTC
from echoing the escape sequence characters and guarantees that your
application always has control of the position of the cursor. For
example, you could design a function key to display a help message and
then return to the point on the input line where the function key was
typed. See Figure 4-9 for escape sequence read termination.
Chapter 4 109

Using FDEVICECONTROL
Examples
Figure 4-9 Escape Sequence Read Termination
110 Chapter 4

5 Using Subsystem Break
If your application will be run in session mode, you can include a
subsystem break routine that allows a user running the program
interactively to interrupt a task being performed by the program. To
provide this capability you must include calls to a number of system
intrinsics and supply a special subroutine that will run when
subsystem break is invoked.

This chapter describes the process of implementing a subsystem break
handler in your program. It includes discussions of the following:

• Intrinsics required to enable and perform subsystem break
processing.

• Intrinsics that control how subsystem break processing occurs.

• Sample procedures demonstrating the use of these intrinsics.

• Additional considerations for allowing subsystem break in a
program.
111

Using Subsystem Break
The Break Keys
The Break Keys
Two kinds of breaks can be made available to users running in session
mode. System break, the so called “hard” break, lets the terminal user
suspend the currently running process and access the Command
Interpreter to enter MPE/iX commands. The user can then type
:RESUME to return to the interrupted process or :ABORT to terminate
the suspended process. System break is enabled by default; you must
explicitly disable system break through the FCONTROL (or
FDEVICECONTROL) intrinsic.

The second kind of break that can be made available, subsystem break,
must be explicitly enabled by your program. Subsystem break allows
you to specify the exact way your program will respond to a user who
invokes subsystem break while the program is executing.

Subsystem break is often referred to as [CTRL]Y break, because the
common default for subsystem break is [CTRL]Y , activated by pressing
the [CTRL] key and the Y key simultaneously. This sends an
end-of-medium (EM) signal when entered from any MPE/iX supported
terminal. If subsystem break is enabled for the program running on the
terminal, this signal causes the program to pass control to a break
handler subroutine.

It is a good idea to include subsystem break processing capabilities in
any program that may be used to perform time consuming tasks, such
as listing a large file or searching a database for specific information.
By including a subsystem break routine you make it possible for the
user to change his mind and interrupt a task without aborting the
application.

A subsystem break procedure will usually allow the user to interrupt
the program at any point to return to the main program prompt or
menu. The procedure may also write a line of information to the
terminal to indicate that a subsystem break has occurred. You, as the
programmer, control exactly what will take place when subsystem
break is entered by the way you program the break handler subroutine.

Subsystem break may be invoked in either standard or transparent
editing mode, but the program must be running in a session in order for
it to have any effect. You should not attempt to enable subsystem break
if your program is performing block mode reads. Subsystem break is
automatically disabled at FCLOSE.
112 Chapter 5

Using Subsystem Break
Subsystem Break Intrinsics
Subsystem Break Intrinsics
When you want to make subsystem break processing available in a
program there are several intrinsics that you must call. These
intrinsics enable subsystem break and set up the procedure that will
execute if the subsystem break character is entered while the program
is running.

You use the XCONTRAP intrinsic to specify the address of the break
handler subroutine that will execute when the user presses subsystem
break. This subroutine is called the [CTRL]Y trap procedure, and the
call to XCONTRAP is referred to as “arming the [CTRL]Y trap”. No
subsystem break processing can occur unless this trap is armed by your
program through a call to XCONTRAP. Only one [CTRL]Y trap handler
can be active at any given time for a process.

You use the FCONTROL intrinsic to enable subsystem break
processing. You must issue a call to FCONTROL with a controlcode
value of 17 for the subsystem break signal to be recognized by the
program. This is true even if the [CTRL]Y trap is already armed.

You use the RESETCONTROL intrinsic to reset the trap procedure
after a subsystem break has occurred. Once subsystem break is
invoked, the program will not respond to another subsystem break
signal until RESETCONTROL is called.

There are also several other intrinsics that you can use to control how
subsystem break processing occurs.

When you enable transparent editing mode, either through a call to
FCONTROL with a controlcode value of 41, or FDEVICECONTROL
using a control directive of 15, you are required to enter a value for the
subsystem break character through one of the parameters of the call.
You can specify any character not otherwise recognized as a special
character in transparent mode as the new subsystem break character,
including [CTRL]Y . (If you use a value of 0 for the subsystem break
character, subsystem break processing will be disabled.)

You can also specify a new character to be used as the subsystem break
character in either standard or transparent editing mode by calling
FDEVICECONTROL using a control directive of 41.

Finally, you can call FDEVICECONTROL using a control directive of 57
to determine the current value of the subsystem break character. This
FDEVICECONTROL function provides Read access only.

Refer to Chapter 8, “Intrinsics Reference,” in this manual, for
descriptions of the syntax and parameters of each of these intrinsics, as
well as for additional information regarding their use.
Chapter 5 113

Using Subsystem Break
Subsystem Break Intrinsics
Subsystem Break Example
The code samples shown in the following figures, illustrate how you
might provide subsystem break capabilities in a program. The figures
show two procedures, one to handle the subsystem break itself, and one
to set up and enable subsystem break.

The sample procedure in Figure 5-1 is a break handler routine. This is
the procedure to which XCONTRAP will pass control when the
subsystem break signal is sent from a user’s terminal. Control might be
passed at any point in the execution of the process.

In this example, when the break handler gets control from XCONTRAP,
it writes a message to the user’s terminal to verify that a subsystem
break has occurred. The handler then takes whatever action is coded as
the appropriate subsystem break response for the program. Finally, the
break handler calls RESETCONTROL, and checks for successful
completion before the procedure ends, (using the Pascal/iX ccode
function). If the RESETCONTROL intrinsic does not complete
successfully, the procedure will notify the user that the attempt to
reenable subsystem break failed.

Note that the RESETCONTROL call does not have to be included in the
break handling procedure. You can call RESETCONTROL from any
place in the application (keeping in mind that it must execute before
another subsystem break is to be allowed). However, the break handler
is a convenient place to put the call if you want to make sure of its
timely execution.
114 Chapter 5

Using Subsystem Break
Subsystem Break Intrinsics
Figure 5-1 Illustrating a Subsystem Break Handler

The procedure illustrated by Figure 5-2 shows the other half of what
you must do to provide subsystem break capabilities in a program. This
procedure sets up and enables subsystem break.

The procedure first calls XCONTRAP, which passes the address of the
[CTRL]Y procedure shown in Figure 5-1. This arms the [CTRL]Y trap
(enables the subsystem break handler). The Pascal/iX waddress
function is used to pass the address in this example.

The address of the break handler is passed in the plabel parameter of
the XCONTRAP intrinsic. The oldplabel parameter will return the
address of the old trap handler, if one was previously armed. If there
was no previous address, this parameter will return a 0.
Chapter 5 115

Using Subsystem Break
Subsystem Break Intrinsics
After XCONTRAP executes, the procedure checks to make sure it
completed successfully. Again, the procedure uses the Pascal/iX ccode
function to check for errors. If XCONTRAP did not complete
successfully, the user is informed of the failure, and the procedure ends.

If the call to XCONTRAP is successful, the procedure calls
FCONTROL, using a controlcode value of 17. This call actually
enables subsystem break processing and makes it possible for the
application to respond if [CTRL]Y is entered. Again, the procedure
checks for errors following the call and will inform the user should the
attempt to enable subsystem break fail.

Subsystem break can also be disabled at any time, by calling
FCONTROL again, using 16 as the controlcode value.

Figure 5-2 Procedure to Enable Subsystem Break
116 Chapter 5

Using Subsystem Break
Subsystem Break Processing
Subsystem Break Processing
A final consideration when building subsystem break processing
capabilities into your program has to do with whether your program
will run in Native Mode, Compatibility Mode, or both.

Native Mode vs. Compatibility Mode
So far, the discussion in this chapter has assumed that all processing is
to take place in Native Mode (NM). There are times, however, when you
will want to allow subsystem break processing to take place in
programs that will run in Compatibility Mode (CM), or in both CM and
NM. It is possible to do so by following some common sense rules when
arming the [CTRL]Y trap.

If your program is to run in Native Mode only, you should use a Native
Mode subsystem break procedure as well. XCONTRAP will execute in
Native Mode and pass a 32-bit value as the external address of the
subsystem break handler. This situation presents the most straight
forward case for subsystem break processing. If the subsystem break
character is received during execution of the program, control will
simply be passed from the main application, which is running in Native
Mode, to the break handler, which will also run in Native Mode. If your
program is a Compatibility Mode application, the situation is
considerably different. In this case, since XCONTRAP will execute in
Compatibility Mode, it is only possible to pass a 16-bit external address
in the call. This means that your trap handling routine must be a CM
procedure as well.

If your program executes in both NM and CM the situation becomes
somewhat more complex. HP recommends that you use a Native Mode
trap handler in this case, which would mean that you would have to call
XCONTRAP in Native Mode to pass a 32-bit address for the trap
procedure. It is possible, however, to use a Compatibility Mode trap
handler. (The discussion of the XCONTRAP intrinsic in Chapter 8,
“Intrinsics Reference,” includes instructions for specifying a 16-bit
address in the 32-bit plabel field.)

If you have supplied a Native Mode trap procedure, and the program is
running in CM when a subsystem break signal is received, MPE/iX will
switch to NM to allow the trap procedure to run. The reverse is also
true; that is, a program running in NM with a CM trap handler will
switch to CM if a subsystem break occurs.

For more information on handling [CTRL]Y traps, see the Trap
Handling manual.
Chapter 5 117

Using Subsystem Break
Subsystem Break Summary
Subsystem Break Summary
The following summarizes subsystem break processing and the
intrinsics involved:

1. A user written procedure must be provided to define how the
program should act upon receiving a subsystem break.

2. A call to XCONTRAP must be included in the program, specifying
the external address of the procedure written in Step 1 as the value
of plabel. This arms the [CTRL]Y trap.

3. A call to FCONTROL(17) must be included in the program to enable
the subsystem break function.

4. If the subsystem break character is received during execution of the
program, the procedure specified in the call to XCONTRAP is
executed.

5. A call to RESETCONTROL must be executed when the program is
ready to receive another subsystem break.

6. A new subsystem break character may be defined through
FCONTROL(41), if the terminal is placed in transparent mode, or
through FDEVICECONTROL.

7. You can redefine your trap handling procedure at any point during
execution of the program through another call to XCONTRAP.

8. If desirable at any time, FCONTROL(16) may be called to disable
subsystem break. A call to FCONTROL(17) enables it again.
118 Chapter 5

6 Typeahead Mode
Effective with Release A.20.00, a typeahead capability is supported for
use on MPE/iX systems. Typeahead makes it possible for a user at a
terminal to enter data before the read which will accept that data is
actually posted. This is especially convenient when you need to enter a
series of commands with system processing delays in between.

The typeahead facility is controlled programmatically through the
FDEVICECONTROL intrinsic, using one of three control directives.
This chapter explains each of these typeahead controls, and provides
code samples demonstrating how you can do the following:

• Control whether or not typeahead is enabled at a terminal.

• Bypass the typeahead buffer and take data for the next read directly
from a terminal device.

• Flush all information from the typeahead buffer before starting the
next read.

NOTE DTC Telnet typeahead is operational only when single echo is enabled.
Use FDEVICECONTROL with controlcode value 192 and parm1
value 63, or the TTUTIL program, to enable single echo. PAD
typeahead is operational only when initial echo is disabled. Use
FDEVICECONTROL with controlcode value 192 and parm1 value 4,
FCONTROL(13), or the TTUTIL program to disable initial echo .
119

Typeahead Mode
Working in Typeahead Mode
Working in Typeahead Mode
By using the device controls described in this chapter, you can specify
whether or not typeahead mode is enabled when your program
executes. By allowing typeahead mode you can make it possible for the
user of the application to enter data that the user knows will be
required before the application actually requests the data.

Suppose, for example, that your program issues a series of questions
designed to allow an interactive user with the proper access codes to
gain entry to a database program. Without typeahead mode active, the
program writes each question on the user’s terminal screen and waits
for a reply. Each reply may require some additional processing before
the next question is written to the screen. In some cases, the delay
between questions may be quite noticeable.

If typeahead mode is on, however, a user who is familiar with the series
of questions can type replies to all of the questions at once, without
regard to processing delays. As long as the replies are entered in the
required sequence for the application and are separated from each
other by an end-of-record character (such as carriage return), they will
be accepted as valid replies.

After all of the replies have been entered, the user will still have to wait
for the application to process the replies before being granted access to
the database. But now all of the waiting is at the end of the question
sequence, and the user is free to perform some other task instead of
having to wait for the next question.

Enabling Typeahead Mode
As of version A.30.00 of MPE/iX, a terminal user can enable typeahead
mode at the Command Interpreter level for any supported terminal.
The command :SETVAR HPTYPEAHEAD TRUEenables typeahead, while
the command :SETVAR HPTYPEAHEAD FALSE disables typeahead.
(These commands replace the command file used to set typeahead mode
in earlier MPE/iX versions supporting typeahead.)

In order for typeahead to be used in an application, however, the
application itself must programmatically enable and manage
typeahead through the FDEVICECONTROL functions explained in
this chapter.

WARNING No attempt should be made to use typeahead mode at a terminal that is
running an application which has not been specifically coded for
typeahead processing.
120 Chapter 6

Typeahead Mode
Working in Typeahead Mode
How Typeahead Mode Works
When data is entered from a terminal with typeahead mode active, the
data is staged in a special typeahead buffer before being sent through
to the process requesting the data. Any read posted against a terminal
with typeahead mode active will first access the typeahead buffer,
rather than accepting data directly from the device.

The typeahead buffer is limited to 224 bytes; anything in excess of this
limit will cause an XOFF to be sent. You should be sure that
XON/XOFF transmission pacing is enabled for the terminal if
typeahead mode is used. You should avoid using typeahead mode if you
anticipate that reads will exceed 224 bytes, to avoid overflowing the
typeahead buffer.

If typeahead is on but the terminal user has not typed ahead, the
system will act in essentially the same way that it would if typeahead
were not enabled. A DC1 read trigger will be sent to the terminal any
time the system is ready to receive data, and there is no data in the
typeahead buffer. If, however, the user has typed ahead, and there is
data in the buffer, the system will simply accept the typed ahead data
and will not send a DC1 read trigger to the terminal.

Typeahead Mode and Echo
When typeahead is in use the terminal user will, in most cases, see
input echoed to the terminal twice. The first echo is a “convenience
echo”, which appears when the data is being typed. This echo allows the
user to see the characters that are typed, and to make corrections, if
necessary, before entering the end-of-record character.

The second echo appears at the time the data in the typeahead buffer is
actually accepted by the system. This echo lets the user know that the
read is being processed.

A second type of typeahead mode exists—single echo typeahead mode.
With this mode, the device driver withholds the echoing of typeahead
data until a read is posted for the data.

There are, however, certain cases in which the first echo will not be seen
at the terminal. For example, if the terminal user types ahead while the
system is displaying data, such as the output to a :LISTF command,
the convenience echo will not appear.

Also, a user whose terminal is in typeahead mode but who is not typing
ahead will see the input echoed only once.
Chapter 6 121

Typeahead Mode
Working in Typeahead Mode
Typeahead Mode and Subsystem Break
When typeahead mode is active, the subsystem break character has
additional functionality when typeahead is used, regardless of whether
or not subsystem break is enabled. Receipt of the subsystem break
character causes all data in the typeahead buffer to be discarded. This
provides the user with a final chance to erase a previously typed
command. But this feature should be used with caution; subsystem
break does, after all, have its own function. Users who depend on this
method to flush the typeahead buffer may find themselves processing
undesired subsystem breaks if subsystem break is enabled.
122 Chapter 6

Typeahead Mode
Additional Typeahead Considerations
Additional Typeahead Considerations
There are a number of actions that should be avoided when data is
being typed ahead, such as changing a terminal’s speed or parity
settings.

If you were to enter the speed command using typeahead, then change
the speed at the terminal and attempt to type ahead with the new
speed, the terminal would hang. Similarly, if you were to change the
parity setting before a typed ahead parity command could execute, data
would be lost. Either of these problems can be avoided by simply not
typing ahead when changing these settings. Wait for the commands to
execute before changing the terminal’s settings.

You will also encounter problems if you attempt to use typeahead with
VPLUS or user block mode. If your program allows block mode reads,
you should make sure that typeahead mode is disabled before the
terminal is placed in block mode. Because of the additional terminal
controls and status checks involved in processing a read in block mode,
it is not possible to use block mode and typeahead at the same time.

Finally, no attempt should be made to enable typeahead from a
terminal connected via PAD. Typeahead mode is not supported for this
configuration.
Chapter 6 123

Typeahead Mode
Programming for Typeahead Mode
Programming for Typeahead Mode
To programmatically set and control typeahead mode you use the
FDEVICECONTROL intrinsic, specifying one of three control
directives in the parm1 value.

• A control directive of 51 is used to specify whether or not typeahead
mode is on for the device. Use this call with the buffer parameter
set to 1 to enable typeahead mode, or with the buffer parameter set
to 0 to disable typeahead mode (parm2 set to 2 or 3).

• A control directive of 60 allows you to discard any data in the
typeahead buffer and read directly from the device.

• A control directive of 61 allows you to bypass the typeahead buffer
for the next read while saving the data already in the typeahead
buffer.

• A control directive of 63 is used to enable or disable single echo
typeahead. Use this call with the buffer parameter set to 1 to enable
typeahead mode, or with the buffer parameter set to 0 to disable
single echo typeahead mode (parm2 set to 2 or 3).

The code fragments that follow illustrate how these calls might look in
your program.

NOTE When typeahead is enabled it is enabled for the device and not
specifically for an application. It is a good practice to make sure that
any program that enables typeahead mode also restores the terminal’s
previous typeahead setting before it terminates. To do so, your program
should save the value of the device’s current typeahead setting. This is
obtained either through a separate call to FDEVICECONTROL with a
control directive of 51 and parm2 set to 1 (Read access), or through the
call which changes the setting, with parm2 set to 3 (Read/Write
access). When your program is ready to end execution, it will be able to
return the device to its original typeahead setting through another
FDEVICECONTROL call, using the value of the previous setting
obtained in the first call as the value of buffer.
124 Chapter 6

Typeahead Mode
Programming for Typeahead Mode
Setting Typeahead Mode
The code fragment shown in Figure 6-1 illustrates how you can use the
FDEVICECONTROL intrinsic to allow typeahead processing for your
program. A control directive of 51, set typeahead mode, is passed in
parm1, and parm2 is set to 2 to specify Write access. The buffer
parameter contains a variable called value , set to 1 in this example,
which will cause typeahead mode to be enabled. (A value of 0 would
disable typeahead mode.)

In this example, the Pascal/iX ccode function checks for errors that
might occur during execution of the intrinsic. If an error occurs, the
program reports the file system error number associated with the error.
If no errors occur, the program informs the user that typeahead is now
on.
Chapter 6 125

Typeahead Mode
Programming for Typeahead Mode
Figure 6-1 Program Fragment Setting Typeahead Mode
126 Chapter 6

Typeahead Mode
Programming for Typeahead Mode
Flushing the Typeahead Buffer
Figure 6-2 illustrates how FDEVICECONTROL can be used to flush
the typeahead buffer. For example, the buffer can be flushed if an error
is detected in the data that was typed ahead. This FDEVICECONTROL
is only valid if type ahead is enabled. The default is not to flush the
typeahead buffer.

An FDEVICECONTROL call with a control directive of 60 will cause
the buffer to be flushed at the time of the next read. The read can then
be satisfied by data entered directly from the device. The typeahead
buffer is flushed for a single read only; normal typeahead mode
processing will resume for any following reads.

In the example, the parm1 value is set to 60, flush typeahead buffer,
and the buffer parameter (value) passes a value of 1. This specifies
that all data currently in the typeahead buffer should be discarded, and
the next read should access the device directly. Write access is specified
in parm2, and the program checks for errors using the Pascal/iX ccode
function.
Chapter 6 127

Typeahead Mode
Programming for Typeahead Mode
Figure 6-2 Program Fragment to Flush Buffer
128 Chapter 6

Typeahead Mode
Programming for Typeahead Mode
Bypassing the Typeahead Buffer
Figure 6-3 is an example of using FDEVICECONTROL to bypass the
typeahead buffer. You could use this capability to send a status request
and obtain a reply directly from a terminal without affecting the data
already in the typeahead buffer. This FDEVICECONTROL is only valid
if typeahead is enabled. The default is not to bypass the typeahead
buffer.

This FDEVICECONTROL call will cause the typeahead buffer to be
bypassed for a single read only; normal typeahead mode processing will
resume for any following reads, and data will be taken from the
typeahead buffer if data is present.

When you use this request, you call FDEVICECONTROL with parm1
set to 61, bypass typeahead mode, and pass a value of 1 in the buffer
parameter (value :=1). As in the previous examples, Write access is
specified in parm2, and the Pascal/iX ccode function is used for error
checking.

NOTE In cases where there is no read trigger (read trigger set to null)
bypassing the typeahead buffer may have unexpected results. If, for
example, your program is swapped out between the FWRITE and
FREAD of a terminal status request, the terminal may appear to
become “hung”, since there is no read trigger to synchronize terminal
response with the posting of the read.

To avoid this problem, instead of bypassing the typeahead buffer to
send a status request when no read trigger is present, the following
should be the sequence that occurs:

1. = Disable typeahead mode

2. = Post a 0 byte read

3. = Enable typeahead mode

4. = (Lock keyboard) (FWRITE) Send status request

5. = FREAD of status

6. = FWRITE (unlock keyboard)
Chapter 6 129

Typeahead Mode
Programming for Typeahead Mode
Figure 6-3 Program Fragment to Bypass Buffer
130 Chapter 6

7 Programming for PAD, DTC
Telnet, Telnet/iX Server, and
VT Devices

This chapter describes PAD, DTC Telnet, Telnet/iX Server, and VT
access, available on properly equipped and configured MPE/iX systems.
It has four parts. The first part details the special considerations
involved when programmatically controlling PAD terminals and serial
printers. The second part deals with the considerations involved when
programmatically controlling DTC Telnet devices. The third part deals
with the considerations involved when programmatically controlling
Telnet/iX Server connections. The fourth part covers the considerations
involved when programmatically controlling VT devices.
131

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
PAD Access to MPE/iX Systems
PAD Access to MPE/iX Systems
If you have X.25 cards, the programs you write may be used to control
devices connected through a packet switched network (PSN) to a PAD
device.

A PAD, or Packet Assembler/Disassembler, is a device that converts
asynchronous character streams into packets that can be transmitted
over a packet switching network. PAD packets follow the CCITT X.25
protocol recommendations.

This part includes discussions of the following:

• The physical components of a network with PAD support.

• Limits and restrictions that apply to PAD-connected devices.

• Security for PAD access.

• Considerations when using terminal control intrinsics with PAD
devices.

PAD Access to MPE/iX Systems
The PAD support provided on MPE/iX systems conforms to the 1984
version of CCITT recommendations X.3 and X.29. Packet sizes of 128,
256, and 512 are supported. Access is provided for users of
asynchronous devices connected to both public and private PADs.

A public PAD is a service provided by a Public Data Network (PDN),
such as TELENET or TRANSPAC. Public PADs can be used with either
a dial-up or a leased line.

A private PAD is one that is connected to a PDN as a host node having
its own X.25 network address, but behaves as a PAD when connected to
another node. Private PADs require leased lines to the network.
Hewlett-Packard provides the HP2334A, HP2334A Plus, and HP2335A
cluster controllers for use as private PADs.

Hardware Requirements
PAD access is provided to MPE/iX networks through a DTC/X.25
Network Access card mounted in the DTC. Three types of DTCs support
X.25 connections—the DTC 16, DTC 48, and DTC 72MX. In the DTC 48
and DTC 72MX, each access card takes the place of a terminal connect
card in one of the DTC slots, and each DTC may contain up to three
network access cards. DTC 48s may not have the access card in slot 0.
See the DTC Planning Guide for more information on the DTC
hardware. In the DTC 16, there are three slots. The first two slots can
contain direct connect or modem cards, and the third slot can contain
only a network access card.
132 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
PAD Access to MPE/iX Systems
The DTC is connected to the LAN as usual, with the MPE/iX systems to
which it has access also connected to the LAN.

Figure 7-1 depicts PAD access to HP 3000 Series 900 Systems via a
DTC equipped with the DTC/X.25 Network Access card.

Figure 7-1 DTC/X.25 Network Access for PAD

Network Configuration Requirements
The parameters for asynchronous devices that can use the PAD support
facility provided by the DTC are configured through either the
OpenView DTC Manager or through host-based configuration. PAD
support information for each MPE/iX host system must be supplied via
NMMGR configuration.

PAD Configuration Values. Most of the characteristics that define
how asynchronous devices connected through a packet switched
network will act are determined by the configuration of the PAD itself.
See the documentation for the PAD for more information on how to
define the characteristics of its devices.

PAD support for the network is configured, in part, through the
OpenView DTC Manager or through host-based configuration.
Configuration values are entered to define the types of devices that may
access the network. Levels 1 through 3 of X.25 must also be configured.
Chapter 7 133

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
PAD Access to MPE/iX Systems
PAD support parameters for each MPE/iX host system that will allow
device connections via PAD must be defined in the NMMGR
configuration, along with the device profiles to be associated with PAD
devices. PAD devices requiring non-logon (programmatic) access must
be configured as nailed PAD devices. Devices that require only logon
access can be configured as non-nailed PAD terminals.

Security. Several levels of security are provided to assure that no
unauthorized access can be obtained to the MPE/iX systems on your
network.

See Using the OpenView DTC Manager for more information on
configuring and using security for incoming PAD calls.

For host-based security information, see Configuring and Managing
Host-Based X.25 Links.

PAD Device Access
All devices supported for asynchronous connection to the DTC can be
connected via PAD. The devices must support the PAD and modem port
configuration.

Hewlett-Packard provides a special terminal type file, terminal type 24,
for support of terminals connected via PAD. PAD support is provided for
serial printers with printer types 18 or 26.

Log On Access. If a terminal is properly configured for the PAD it is
connected to, and PAD connections are allowed for the MPE/iX network
you are accessing, you can establish a terminal session on a desired
MPE/iX system.

You must first establish a connection from the PAD to the system you
want to open the session on. You may choose to access a specific MPE/iX
system directly by entering that system’s X.25 address in the
connection request. Alternatively, you may access the DTC Switching
User Interface by entering the X.25 address of the DTC and connect to
the system you want by using the connection request provided by the
DTC Switching User Interface. (Regardless of how you choose to
initiate your connection, you will be able to switch between host
systems on the LAN once you terminate your session.)

NOTE When connected via PAD, you must log-off with the MPE :BYE
command to return to the PAD prompt. It is not possible to escape from
data transfer with a session active.

Your virtual connection is not disconnected until you log out from the
DTC switching user interface or until the inactivity timer configured
via the OpenView DTC Manager expires.

Only character mode and VPLUS block mode applications may be run
from PAD devices; no other types of block mode may be used.
134 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
PAD Access to MPE/iX Systems
Programmatic Access. Terminals and serial printers can be accessed
programmatically if they are connected to a private PAD and configured
as nailed devices on the MPE/iX host on which the application is
running. To open a device programmatically you use the FOPEN or
HPFOPEN intrinsic with the device option specifying the ldev
number or device class that was associated with the remote device
through the NMMGR configuration.

General PAD Restrictions
Some basic limitations apply to the way transmission occurs and to the
operations that are supported over PAD connections:

• It is necessary to press [Return] to forward data from the PAD across
the network to the DTC even if the byte count specified in the read is
reached.

• Some special character sequences, such as subsystem break ([CTRL]Y
by default), must also be forwarded with a [Return] .

• You cannot use a PAD terminal as a console.

• Use of customized terminal and printer types files is not supported
over PAD.

• You cannot use the :STARTSESS command with ldevs that allow
PAD device connections.

• Typeahead mode is not supported over PAD on versions prior to
release 4.5, C.45.00.

• Binary mode transfers are not supported between a PAD terminal
and a MPE/iX or HP-UX host on versions prior to release 4.5,
C.45.00.

• User Block Mode and HP Block Mode applications are not supported
on PAD devices.

• Parity generation and checking is not supported programmatically
over PAD.

• The line deletion response ([CTRL]X echo characters, !!! by default)
cannot be enabled or disabled programmatically over PAD (though
some PADs allow you to define line deletion characters locally).

• PAD printers cannot be shared by more than one host.

PAD Programming Considerations
Most file system intrinsics can be used to control devices connected to
PADs as if the devices were locally connected. Both the FCONTROL
and FDEVICECONTROL intrinsics are supported for PAD device
control. In most cases the device control calls work as normal.
Chapter 7 135

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
PAD Access to MPE/iX Systems
There are, however, a number of differences in the way device control
functions operate over PAD connections. The individual differences in
the operation of each FCONTROL and FDEVICECONTROL call are
documented in the Intrinsics Reference chapter of this manual. The
following summary is provided here for your convenience.

FCONTROL
Some FCONTROLs are ignored by PAD. These are calls that attempt to
control some function that is not supported over PAD, such as changing
terminal speed or setting parity. These calls will return a CCE
condition code, but no device control action will take place. Any values
returned in these calls may not be a true reflection of device control
settings. These FCONTROLs include:

• FCONTROL(10), set line speed.

• FCONTROL(11), set line speed

• FCONTROL(23), disable parity checking.

• FCONTROL(24), enable parity checking.

• FCONTROL(34), allow printing of [CTRL]X echo.

• FCONTROL(35), disable printing of [CTRL]X echo.

• FCONTROL(36), define parity setting.

• FCONTROL(40), determine current speed.

Reads following a call to FCONTROL(27), which enables binary mode,
return a CCL condition code with the file system error FSERR20
(INVALID OPERATION) , until binary mode is disabled
(FCONTROL(26)), if you are using a version prior to release 4.5.

Calls to FCONTROL(37), to set both terminal type and speed, will
change the terminal type setting, but will have no impact on how the
device actually operates. A CCE condition code will be returned. (Note
that this is a difference from how PAD devices behave on MPE V
systems.)

Some caution should be taken when using FCONTROL(4), which sets a
timeout interval for a read. Keep in mind that some delays may be
caused by the network over which the PAD is transmitting. In such
cases you may want to add some time to the timeout value you would
normally specify for the call.

FDEVICECONTROL
The FDEVICECONTROL intrinsic is also supported on MPE/iX
systems with PAD connections. However, there are also several
limitations on the device control operations they perform. The following
136 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
PAD Access to MPE/iX Systems
FDEVICECONTROL parm1 values, with 192 specified as the
controlcode, will return a CCE condition code but have no effect on
the operation of the device or the transmission of data:

parm1 Action

1 Specify terminal type or printer type file

3 Set line speed

9, 11 Enable/disable parity checking

10, 12 Set parity type

14 Set line deletion response

26 Enable/disable XON/XOFF flow control

27 Set XOFF timer value

29 Define block mode alert character

30 Define block mode trigger character

51 Set typeahead mode

55 Select backspace response action

56 Specify data bits per character

60 Flush typeahead buffer

61 Bypass typeahead buffer

62 Set quiesce I/O

63 Set single echo typeahead mode

64 Ignore parity error on input mode

65 Set inter-byte timer

66 Define multiple type 2 EOR characters (AEOR)

67 Delete (DEL) to backspace (BS) mapping

68 Enable/disable escape sequence read termination

69 Enable/disable suppress echo of read termination
characters

73 Set FCLOSE timeout value

FDEVICECONTROL also verifies that a terminal is configured as a
PAD device. A parm1 value of 28 (controlcode 192) returns a value
corresponding to the type of block mode supported by the driver. A
value of 15 is returned by this call when the device is a PAD terminal
supporting (VPLUS) page block mode.
Chapter 7 137

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
DTC Telnet Access to MPE/iX Systems
DTC Telnet Access to MPE/iX Systems
If your network is managed by the OpenView DTC Manager, and at
least one of the DTCs on the LAN are equipped with a Telnet Access
Card, the programs you write may be used to control devices connected
to the DTC via a Telnet connection to an HP 9000 or other ARPA
machine. Collectively, these devices are called DTC Telnet devices. The
Telnet Access Card receives asynchronous character streams over the
LAN from an ARPA machine.

What’s Included
This section includes information on:

• The hardware requirements for DTC Telnet support.

• The network configuration requirements for DTC Telnet support.

• Limits and restrictions that apply to DTC Telnet-connected devices.

Hardware Requirements
DTC Telnet access is provided to MPE/iX networks through a Telnet
Access Card mounted in the DTC or with the Telnet Express Box. An
access card takes the place of a terminal connect card in one of the DTC
slots for DTC 48 and DTC 72MX (the Telnet card cannot be in slot 0 for
DTC 48). The Telnet card cannot coexist with an X.25 Network Access
Card in the DTC 48. See DTC Planning Guide for more information on
the DTC hardware.

Both the DTC and the MPE/iX system accessing it must be connected to
a LAN. There must also be a network management workstation on the
LAN running the OpenView DTC Manager software that controls all
DTC network operations.

Network configuration Requirements
MPE/iX host names and IP addresses that can use the DTC Telnet
support facility is configured through the OpenView DTC Manager.
DTC Telnet support information for each MPE/iX host system must be
supplied via the NMMGR configuration software. Also, you must
configure a sufficient number of non-nailed TIO ports.

DTC Telent Configuration Values. DTC Telnet support for the
network is configured using both the OpenView DTC Manager software
on the network management workstation and the NMMGR
configuration software on the host.

DTC Telnet support parameters for each MPE/iX host system that will
allow device connections via DTC Telnet must be defined in the
NMMGR configuration, along with the device profiles to be associated
138 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
DTC Telnet Access to MPE/iX Systems
with DTC Telnet devices. DTC Telnet devices must be configured as
non-nailed TIO terminals. The terminal type for these terminals must
be set at 10 or 18.

For more information on configuration see both Configuring Systems for
Terminals, Printers, and Other Serial Devices and Using the OpenView
DTC Manager.

General DTC Telnet Restrictions
Some basic limitations apply to the way transmission occurs and to the
operations that are supported over DTC Telnet connections:

• Use of a DTC Telnet terminal as a console is not supported.

• Use of customized terminal type files is not supported over DTC
Telnet.

• Typeahead mode is not supported over DTC Telnet.

• Binary mode transfers are not supported between a DTC Telnet
terminal and an MPE/iX host.

• User Block Mode and HP Block Mode applications are not supported
on DTC Telnet devices. Only VPLUS block mode applications may be
run from DTC Telnet devices; no other types of block mode may be
used.

• Parity generation and checking are not supported programmatically
over DTC Telnet.

DTC Telnet Programming Considerations
Most file system intrinsics can be used to control devices connected to
DTC Telnet as if the devices were locally connected. Both the
FCONTROL and FDEVICECONTROL intrinsics are supported for
DTC Telnet device control. In most cases the device control calls work
as they would with non Telnet connections.

There are, however, a number of differences in the way device control
functions operate over DTC Telnet connections. The individual
differences in the operation of each FCONTROL and
FDEVICECONTROL call are documented in the Intrinsics Reference
chapter of this manual. The following summary is provided here for
your convenience.

FCONTROL
Some FCONTROLs are ignored by DTC Telnet. These are calls that
attempt to control some function that is not supported over DTC Telnet,
such as changing terminal speed or setting parity. These calls will
return a CCE condition code, but no device control action will take
place. Any values returned in these calls may not be a true reflection of
device control settings. These FCONTROLs include:
Chapter 7 139

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
DTC Telnet Access to MPE/iX Systems
• FCONTROL(10), set line speed.

• FCONTROL(11), set line speed

• FCONTROL(23), disable parity checking.

• FCONTROL(24), enable parity checking.

• FCONTROL(28), disable user block mode.

• FCONTROL(29), enable user block mode.

• FCONTROL(36), define parity setting.

• FCONTROL(40), determine current speed.

Reads following a call to FCONTROL(27), which enables binary mode,
return a CCL condition code with the file system error FSERR20
(INVALID OPERATION) . All subsequent reads will return an error,
until binary mode is disabled (FCONTROL(26)).

Calls to FCONTROL(37), to set both terminal type and speed, will
change the terminal type setting, but will have no impact on how the
device actually operates. A CCE condition code will be returned.

Some caution should be taken when using FCONTROL(4), which sets a
timeout interval for a read. Keep in mind that some delays may be
caused by the LAN over which the DTC Telnet is transmitting. In such
cases you may want to add some time to the timeout value you would
normally specify for the call.

FDEVICECONTROL
The FDEVICECONTROL intrinsic is also supported on MPE/iX
systems with DTC Telnet connections. However, there are also several
limitations on the device control operations they perform. The following
FDEVICECONTROL parm1 values, with 192 specified as the
controlcode, will return a CCE condition code but have no effect on
the operation of the device or the transmission of data:

parm1 Action

1 Specify terminal type file

3 Set line speed

9, 11 Parity checking enable/disable

10, 12 Set parity type

14 Set line deletion response

26 XON/XOFF flow control enable/disable

27 Set XOFF timer value

28 Block mode supported

29 Define block mode alert character
140 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
DTC Telnet Access to MPE/iX Systems
30 Define block mode trigger character

32 Define read trigger character

51 Set typeahead mode

55 Select backspace response action

56 Specify data bits per character

60 Flush typeahead buffer

61 Bypass typeahead buffer

62 Set quiesce I/O

63 Set single echo typeahead mode

64 Ignore parity error on input mode

65 Set inter-byte timer

66 Define multiple type 2 EOR characters (AEOR)

67 Delete (DEL) to backspace (BS) mapping

68 Enable/disable escape sequence read termination

69 Enable/disable suppress echo of read termination
characters

73 Set FCLOSE timeout value

74 Suppress the last form feed
Chapter 7 141

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Telnet/iX Server Access on MPE/iX Systems
Telnet/iX Server Access on MPE/iX Systems
For details on using the Telnet/iX Client and Server on MPE/iX
systems, as well as information on the Telnet/iX Client commands, refer
to the HP Telnet/iX User’s Guide. For more information on configuring
Telnet/iX, as well as more general information on Internet Services,
please refer to Configuring and Managing MPE/iX Internet Services.

What’s Included
This section includes information on:

• Limits and restrictions that apply to Telnet/iX Server connected
devices.

• Recommended programming practices for Telnet/iX Server support.

General Telnet/iX Server Restrictions

• Only sessions, not jobs, can be established on the MPE/iX system by
the local Telnet client.

• Although you may use the MPE/iX CONSOLE command to switch
the console device to a previously connected Telnet/iX Server Ldev,
[CTRL]-a and [CTRL]-b functionality are not supported on Telnet/iX
Server Ldevs.

• Use of customized terminal types is not supported.

• Many FCONTROL and FDEVICECONTROL intrinsics, including
all block modes, require the use of a 2392 compatible terminal
emulator on the Telnet client side.

Telnet/iX Server Programming Considerations
The following provides details on the limitations of file system
intrinsics used to control devices connected to an MPE/iX system via
Telnet/iX. For more information about the following intrinsics, refer to
Chapter 8, “Intrinsics Reference,” of this manual.

FCONTROL
Some FCONTROLs are not supported for use with Telnet/iX Server
connections. If a program uses an unsupported FCONTROL for a
Telnet/iX connected device, the Telnet/iX driver will return a CCE
condition code, but no device control action will take place. Any values
returned in these calls may not be a true reflection of device control
settings. These FCONTROLs include:

• FCONTROL(10), set line speed.

• FCONTROL(11), set line speed.
142 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Telnet/iX Server Access on MPE/iX Systems
• FCONTROL(22), return last read time.

• FCONTROL(23), disable parity generation and checking.

• FCONTROL(24), enable parity generation and checking.

• FCONTROL(36), define parity setting.

• FCONTROL(37), set terminal type and speed.

• FCONTROL(38), set terminal type.

• FCONTROL(40), determine current speed.

The following FCONTROLs are not supported when the local device is
an HP-UX client:

• FCONTROL(28), disable user block mode.

• FCONTROL(29), enable user block mode.

Use of FCONTROL(27) (enable binary mode) when the local device is
an HP-UX Telnet client, will require the user to set the HP-UX client
into binary (using the HP-UX Telnet client toggle command) before the
FCONTROL(27) is issued to the Telnet/iX Server. If the HP-UX client is
not set into binary before the FCONTROL(27) is issued, the
FCONTROL will return with CCL. The user must disable binary on the
HP-UX client before binary is disabled on the Telnet/iX Server with
FCONTROL(28).

Some caution should be taken when using FCONTROL(4), which sets a
timeout interval for a read. Keep in mind that some delays may be
caused by the network over which your Telnet connection is operating.
In such cases you may want to add some time to the timeout value you
would normally specify for the call.

FDEVICECONTROL
Some FDEVICECONTROLs are not supported for use with Telnet/iX
Server connections. If a program uses an unsupported
FDEVICECONTROL, the Telnet/iX driver will return a CCE condition
code, but no device control action will take place. Any values returned
in these calls may not be a true reflection of device The following
discussion deals with parm1 values with 192 specified as
controlcode.

Unsupported FDEVICECONTROLs include:

parm1 Action

1 Specify terminal type or printer type file

3 Set line speed

8 Return last input time

9, 11 Set parity generation and checking
Chapter 7 143

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Telnet/iX Server Access on MPE/iX Systems
10, 12 Set parity type

11 Set parity generation and checking

26 Enable/disable XON/XOFF flow control

27 Set XOFF timer value

56 Specify data bits per character

64 Ignore parity error on input mode

72 Return PAD line speed

73 Set FCLOSE timeout value

74 Suppress the last form feed

FREAD and FWRITE
In general, the Telnet/iX Server will support the same size data buffers
for FREAD and FWRITE as the DTC. Currently, Telnet/iX will accept
data buffers up to 4096 bytes long. However, communicating with PC
clients is limited to buffers no larger than 3500 bytes. When
communicating with a PC client, Telnet/iX will not support transfers
larger than 3500 bytes. Data loss may occur if you exceed the 3500 byte
buffer limitation.

Recommended Programming Practices
Application developers are encouraged to use programming practices
that will facilitate successful operation in many different network
configurations.

The following should be considered:

1. Because the PC only supports a 3500 byte data buffer, applications
should only issue FREADs and FWRITEs of less than 3500 bytes
even though the DTC may support larger buffers. If an application
attempts to issue an FWRITE larger than the configuration
supports, the data will not be processed. The remote host will not
detect the buffer size support issue; the application thus receives no
error although the data is not processed.

2. Application programs should check for device availability after IO
requests. If a terminal logical device becomes unavailable, the
application will receive a file system error FSERR24 indicating that
the device is no longer available and that the application should
terminate. This guideline minimizes unnecessary use of CPU
resources.
144 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Virtual Terminal Access on MPE/iX Systems
Virtual Terminal Access on MPE/iX Systems
The Virtual Terminal (VT) service of Network Services (NS) is designed
to allow applications on the MPE/iX remote host to access devices on
local clients as if they were terminals. The VT service on an MPE/iX
host will support connections from MPE/iX, MPE V, PCs, and HP-UX
systems.

For details on the required hardware, software and network
configurations for VT access on MPE/iX systems, as well as more
general information on NS, refer to Getting Started With NS 3000/iX
and NS 3000/iX Operations and Maintenance Reference Manual.

What’s Included
This section includes information on:

• Limits and restrictions that apply to VT connected devices.

• Recommended programming practices for VT support.

General VT Restrictions
Only sessions, not jobs, can be established on the remote host by the
local client; connections to the remote host under job control will be
transparent to the application. This distinction is made for two reasons.
First, some applications handle error recovery differently depending on
whether the application is run from a session or a job. Second, most
FCONTROLs and FDEVICECONTROLs are not supported in the job
environment; they will often be ignored although no error is reported.

VT Programming Considerations
The following file system intrinsics can be used to control devices
connected to an MPE/iX system via VT. For more information about the
following intrinsics, refer to Chapter 8, “Intrinsics Reference,” of this
manual.

FCONTROL
Some FCONTROLs are not supported for use with VT. If a program
uses an unsupported FCONTROL for a VT connected device, the VT
driver will return a CCE condition code, but no device control action
will take place. Any values returned in these calls may not be a true
reflection of device control settings. These FCONTROLs include:

• FCONTROL(10), set line speed.

• FCONTROL(11), set line speed.

• FCONTROL(22), return last read time.
Chapter 7 145

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Virtual Terminal Access on MPE/iX Systems
• FCONTROL(36), define parity setting.

• FCONTROL(37), set terminal type and speed.

• FCONTROL(40), determine current speed.

The following FCONTROLs are not supported when the remote device
is a PC or an HP-UX client. VT will return a CCE condition code even
though no device control will take place:

• FCONTROL(23), disable parity generation and checking.

• FCONTROL(24), enable parity generation and checking.

• FCONTROL(38), set terminal type.

Additionally, for FCONTROL(38), not every terminal type will be
supported for use with VT.

The following FCONTROLs are not supported when the remote device
is an HP-UX client:

• FCONTROL(26), disable binary mode.

• FCONTROL(27), enable binary mode.

• FCONTROL(28), disable user block mode.

• FCONTROL(29), enable user block mode.

• FCONTROL(34), allow printing of !!! when line deletion character
is entered.

• FCONTROL(35), prevent printing of !!! when line deletion
character is entered.

The param of FCONTROL(41) is a 16-bit unsigned integer by
reference. The value passed in bits (0:8) is used as a subsystem break
character and the value passed in bits (8:8) is used as a read
terminator. HP-UX (VT3K) and MPE V VT do not allow the subsystem
break character to be redefined. Altering the read terminator, bits (8:8),
is supported; however, bits (0:8) should be [CTRL]Y to keep existing
subsystem break status unchanged, or set to 0 along with bits (8:8) to
return to edited mode.

FDEVICECONTROL
The FDEVICECONTROL intrinsic is also supported on MPE/iX
systems with VT connections. However, there are also several
limitations on the device control operations they perform. The following
discussion deals with parm1 values with 192 specified as
controlcode.

Results will vary when an application uses an unsupported
FDEVICECONTROL call. If the application host is an MPE/iX system,
the VT driver will discard the FDEVICECONTROL and return a CCE
condition code even though no device control action will take place. In
146 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Virtual Terminal Access on MPE/iX Systems
situations where the application host supports a specific
FDEVICECONTROL but the remote device does not, the VT driver will
usually return an error to the application.

Unsupported FDEVICECONTROLs include:

parm1 Action

1 Specify terminal type or printer type file

2 Set read timeout value

3 Set line speed

4 Set echo

5 Set system break response

6 Set subsystem break response

7 Set timer

8 Return last input time

9 Set parity genration and checking

10 Set parity type

11 Set parity generation and checking

12 Set parity type

14 Set line deletion response

15 Set transparent editing mode

26 Enable/disable XON/XOFF flow control

27 Set XOFF timer value

30 Define read trigger character

32 Define read trigger character

36 Define backspace character

37 Define cancel line character

39 Define type 1 EOR character

40 Define single type 2 EOR character

41 Define subsystem break character

56 Specify data bits per character

64 Ignore parity error on input mode

72 Return PAD line speed

73 Set FCLOSE timeout value

74 Suppress the last form feed
Chapter 7 147

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Virtual Terminal Access on MPE/iX Systems
FDEVICECONTROL(28)(block mode types supported) and
FDEVICECONTROL(62) (set quiesce I/O) are not supported for use
when the remote device is a PC or an HP-UX client.

FDEVICECONTROL(51) (set typeahead mode) is not supported on
MPE V remote devices or PCs without appropriate NS software.
Additionally, HP-UX (VT3K) supports single echo typeahead only.

FDEVICECONTROL(60) (flush typeahead buffer) and
FDEVICECONTROL(61) (bypass typeahead buffer) only support
MPE/iX remote devices or PCs with appropriate NS software.

The following FDEVICECONTROLs are supported with MPE/iX hosts
and PC clients running appropriate software only. These
FDEVICECONTROLs apply to functionality introduced in MPE/iX
release 4.5 and PC code NS 2.1 version B.03.00. The
FDEVICECONTROLs affected include:

• FDEVICECONTROL(63), set single echo typeahead mode.

• FDEVICECONTROL(65), set inter-byte timer.

• FDEVICECONTROL(66), define multiple type 2 EOR characters
(AEOR).

• FDEVICECONTROL(67), define delete (DEL) to backspace (BS)
mapping.

• FDEVICECONTROL(68), enable/disable escape sequence read
termination.

• FDEVICECONTROL(69), enable/disable suppress echo of read
termination characters.

FREAD and FWRITE
In general, VT will support the same size data buffers for FREAD and
FWRITE as the DTC. Currently, VT services will accept data buffers up
to 4096 bytes long. However, communicating with PC clients is limited
to buffers no larger than 3500 bytes. When communicating with a PC
client, VT will not support transfers larger than 3500 bytes. Data loss
may occur if you exceed the 3500 byte buffer limitation.

Recommended Programming Practices
Application developers are encouraged to use programming practices
that will facilitate successful operation in many different network
configurations.

The following should be considered:

1. Because the PC only supports a 3500 byte data buffer, applications
should only issue FREADs and FWRITEs of less than 3500 bytes
even though the DTC and other VT configurations may support
larger buffers. If an application attempts to issue an FWRITE larger
148 Chapter 7

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Virtual Terminal Access on MPE/iX Systems
than the configuration supports, the data will not be processed. If
the remote host detects a buffer size support issue on the local client,
it will return a file system error FSERR32 to the application.
However, in the case of data transfer between remote host and PC
via a third system, the remote host will not detect the buffer size
support issue; the application thus receives no error although the
data is not processed.

2. Application programs should check for device availability after IO
requests. If a terminal logical device becomes unavailable, the
application will receive a file system error FSERR24 indicating that
the device is no longer available and that the application should
terminate. This guideline minimizes unnecessary use of CPU
resources.

3. Use FCONTROL rather than FDEVICECONTROL whenever
possible. Since not all FDEVICECONTROLs are supported on
MPE V systems, an FDEVICECONTROL may not work properly.

4. Use FFILEINFO with itemnum value 60 and FCONTROL(39) if you
need to determine the network configuration. FFILEINFO with
itemnum value 60 will return an item value corresponding to the
terminal type of the device being accessed.

The item values returned from FFILEINFO are of the immediate
device. For example, a network configuration involving a PAD
connection to an HP 3000 and then a remote VT connection to another
HP 3000 will return an item value 5 (NS Virtual Terminal).
FCONTROL(39) will return the terminal type value 24 corresponding
to the PAD device.
Chapter 7 149

Programming for PAD, DTC Telnet, Telnet/iX Server, and VT Devices
Virtual Terminal Access on MPE/iX Systems
150 Chapter 7

8 Intrinsics Reference
This chapter presents reference information pertaining to the intrinsics
discussed in this manual. Each is described using the same format as
that used in the MPE/iX Intrinsics Reference Manual; that is, each
intrinsic description does the following:

• Gives the intrinsic name.

• Describes the syntax of a call to the intrinsic.

• Summarizes the use of the intrinsic.

• Defines intrinsic parameters.

• And, where applicable:

• Explains condition codes

• Gives information on the functional return.

• Discusses any special considerations.

• Points to areas of additional discussion.

NOTE This manual applies explicitly to the use of intrinsics in native mode
programs running on MPE/iX systems. Certain terms are therefore
given specific connotations. The term word is used to designate a 32-bit
discrete object, while halfword designates a 16-bit discrete object, and
byte designates an 8-bit discrete object.
151

Intrinsics Reference
Intrinsics and Asynchronous Device Control
Intrinsics and Asynchronous Device
Control
Table 8-1 summarizes asynchronous device characteristics, settings and
communication modes that may be affected programmatically through
use of the intrinsics described in this chapter. It includes a brief
explanation of how initial settings are determined. Unless stated
otherwise, these settings remain in effect until the device is closed.

Table 8-1 Intrinsics and Device Control

Device
Control/Feature Related Intrinsic(s) Notes

System Break FCONTROL(14, 15)
CAUSEBREAK

Enabled by default for terminal with active
session.

Subsystem Break FCONTROL(16, 17)
XCONTRAP
RESETCONTROL
FCONTROL(41)

Initially disabled;
reset at FCLOSE.

Carriage Control FCONTROL(1)
FWRITE

See Table 9-3, “Selected Carriage Control
Directives,” on page 255 for a list of selected
carriage control directives

EOR Characters FCONTROL(25)
FCONTROL(41)

Standard EOR character for HP terminals is
[Return] for character mode reads.

AEOR Characters FCONTROL(25)
FCONTROL(41)

The default is no AEOR.

Echo FCONTROL(12, 13)
FSETMODE(4)

Initially enabled for terminals at system
start-up.

Line Deletion Echo FCONTROL(34, 35) Initially enabled; reset a FCLOSE

Editing Mode FCONTROL(26, 27)
FCONTROL(41)

Standard editing enabled by default. Reset at
FCLOSE.

Transmission Mode FCONTROL(28, 29) Terminals operate in character mode by
default.

Parity FCONTROL(23, 24)
FCONTROL(36)

Initial parity type determined at port
configuration or sensed at logon. Parity
checking disabled by default.

Terminal Type FCONTROL(37)
FCONTROL(38)
FCONTROL(39)

Default set through port configuration
152 Chapter 8

Intrinsics Reference
Intrinsics and Asynchronous Device Control
Set Read Timeout FCONTROL(4) Reset at FCLOSE

Last Read Time FCONTROL(22) Set to 0 at FCLOSE

Typeahead FDEVICECONTROL
(51, 60, 61, 63)

Default is set by termtype.

Device
Control/Feature Related Intrinsic(s) Notes
Chapter 8 153

Intrinsics Reference
Intrinsic Descriptions
Intrinsic Descriptions
The descriptions that follow are specific to the use of intrinsics for
programmatic control of asynchronous devices. Because of this, the
explanations in this manual may vary from the more general
explanations provided by the MPE/iX Intrinsics Reference Manual. In
all cases, however, the intrinsics are described according to the
conventions that are explained here.

Intrinsic Name
Intrinsic Name A brief summary of the purpose of the intrinsic is listed
next to the intrinsic name at the top of the first page of explanation for
each intrinsic.

Syntax
The syntax statement contains the complete intrinsic call description.
The intrinsic call descriptions are in the format shown below:

16V I16V *

FFILEINFO(filenum [, itemnum,item

[, itemnum,item

[, itemnum,item

[, itemnum,item

[, itemnum,item]]]]]);

Required parameters, such as filenum, are shown in boldface.
Optional parameters, such as itemnum and item , are shown in
italics . The mnemonics that appear over the parameters indicate
their type and whether they are passed by reference (the default) or by
value. The mnemonics applicable to the intrinsics described in this
manual are listed below, along with their meanings:

MNEMONIC MEANING

I16 16-bit signed integer

I32 32-bit signed integer

U16 16-bit signed integer

C character

A array

UDS user-defined structure

@32 32-bit address

* type varies
154 Chapter 8

Intrinsics Reference
Intrinsic Descriptions
NOTE A parameter passed by value is indicated by appending V to the
mnemonic. Pass by reference is considered to be the default and,
consequently, is not marked. All arrays are assumed to be passed by
reference.

In the FFILEINFO intrinsic shown previously, there is one required
parameter (filenum), and a pair of optional parameters that can be
repeated up to five times (itemnum and item). The * over the item
parameter indicates that the type of the parameter will change
according to an associated factor (in this case, the value associated with
itemnum determines what the item parameter will contain and
therefore its type).

Use
This paragraph describes how to use the intrinsic. It provides a more
complete description than the brief summary given under the intrinsic
name.

Functional Return
If applicable to the intrinsic being described, the functional return
value will be explained here. If the intrinsic does not have a functional
return, this paragraph of the intrinsic description is omitted.

Parameters
All parameters are described, including their data type, whether they
are passed by reference or by value, and whether they are required or
optional. Any default values for optional parameters are noted here.
The description also includes whether the parameter is used to pass
information from the program, return information to the program, or
both.

For some parameters certain bit settings have particular meanings;
when significant, these bit settings and their meanings are described.
Bit groups are denoted using the standard notation (starting bit
number:length). Thus bit (15:1) indicates bit 15; bits (0:3) indicates bits
0, 1 and 2.

In some cases bits within a word are described as being reserved for
MPE/iX. You should always set these bits to zero to be sure your
program will remain compatible with future MPE/iX releases.

Notes
A special notes section is included in the explanation of the individual
FCONTROL functions, and provides additional information regarding
their use.
Chapter 8 155

Intrinsics Reference
Intrinsic Descriptions
Condition Codes
Where applicable, condition codes are included in the intrinsic
descriptions.

Special Considerations
The special considerations portion of the description is omitted unless
the intrinsic requires some special circumstances for proper execution,
such as Privileged Mode (PM) capability.

Additional Discussion
This paragraph refers to parts of this or other Hewlett-Packard
manuals where you can find additional information on the use of the
intrinsic.
156 Chapter 8

Intrinsics Reference
FCHECK
FCHECK
Used to request specific details about file input/output errors.

SYNTAX
I16V I16 I16 I32 I16

FCHECK(filenum , fserrorcode,translog,blocknum,numrecs);

Use
You can use the FCHECK intrinsic to obtain specific details about an
error that occurred during execution of a file system intrinsic. If an
intrinsic returns a condition code of CCL or CCG, FCHECK should be
used to determine the error code associated with the problem that
occurred. You can then use FERRMSG to display the message
associated with that error code.

You can determine the error condition of a failed FOPEN call when no
file number was returned by setting the filenum parameter to 0. In
this case only, fserrorcode returns valid information.

Do not use FCHECK to determine error conditions of failed calls to
HPFOPEN. Error conditions associated with failed HPFOPEN calls are
returned in the HPFOPEN status parameter.

Parameters
filenum 16-bit signed integer by value (optional)

The file number of the file for which error information
is to be returned. If you do not specify filenum, or if
you specify 0, FCHECK assumes you want error
information concerning the last failed FOPEN call.

fserrorcode 16-bit signed integer by reference
(optional)

Returns a file system error code indicating the type of
error that occurred. A return value of 0 indicates that
the previous operation was successful or an EOF was
encountered. Default: The error code is not returned.

translog 16-bit signed integer by reference
(optional)

Returns the transmission log value that indicates the
number of halfwords that were actually read or written.

Default: The transmission log value is not returned.
Chapter 8 157

Intrinsics Reference
FCHECK
blocknum 32-bit signed integer by reference
(optional)

For asynchronous devices, this parameter is used to
return the number of records read or written to a device
since the last FOPEN. A logical record count is
returned for spoolfiles; a physical record count is
returned for fixed and undefined record files.

numrecs 16-bit signed integer by reference
(optional)

Returns the number of logical records in the block
(blocking factor). Blocking factor is not meaningful for
asynchronous devices.

Default: The number of logical records is not returned.

Summary of Error Codes
Table 8-2 lists the file system error codes that you are most likely to
encounter during intrinsic calls related to asynchronous devices.

Table 8-2 Error Codes

FS Code
(decimal) Description

0 Successful (no errors) or end-of-file (EOF) reached.

20 Invalid operation requested by program (for example, you tried to set the terminal
type to -24, which is an invalid entry).

21 Parity error occurred during read.

22 Read limit timer set by user expired. (Timer set via FCONTROL(4).)

24 Device not ready (not on line, modem’s Data Set Ready signal not “high”, or line
disconnected).

27 Block mode read timer expired. This timer is set by the system, and is not user
changeable. If no RS character is received before the time expires, the read is
terminated.

28 Timing error—Data arrived at controller faster than it could be serviced (data
overrun).

31 Read ended by an Additional End-of-Record character (defined via
FCONTROL(25)).

32 Software abort of I/O operation occurred (for example, an ABORTIO command was
entered.

33 Data was lost, or no buffer was available.

42 Operation inconsistent with device type (for example, attempted to set an invalid
line speed via FCONTRO(11)).
158 Chapter 8

Intrinsics Reference
FCHECK
Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic

CCL Request denied. The file number passed by filenum is
invalid, or a bounds violation occurred while processing
this request (fserrorcode is 73).

Additional Discussion
Refer to the discussion of getting file information in Accessing Files
Programmer’s Guide.

68 Insufficient system resources.

70 I/O error while printing header/trailer. Also appears if an FOPEN or FCLOSE
failed

95 The read was halted because the terminal user hit [Break] . The file system will
automatically restart the read when the user enters the :RESUME command. Only
the file system see the restart, the application program does not.

98 Read timer overflow. Read exceeded maximum capacity of read timer (655.35
seconds).

FS Code
(decimal) Description
Chapter 8 159

Intrinsics Reference
FCLOSE
FCLOSE
Closes a file.

Syntax
I16V I16V I16V

FCLOSE(filenum, disposition, securitycode);

Use
The FCLOSE intrinsic terminates access to a file. You should make
sure your program issues an FCLOSE for every file it opens. If you have
opened multiple files against the same device, you should issue an
FCLOSE for each opened file before your program ends. If you should
fail to issue an FCLOSE, however, MPE/iX will automatically issue an
FCLOSE for any files left open when your process terminates.

Certain device control actions are taken by the device control software
at every call to FCLOSE, as shown in Table 8-3. This means that if you
have programmatically altered one of these device settings (through the
programmatic control listed in the table), the device will return to the
system default setting at FCLOSE.

You should note that Table 8-3 shows only those control actions taken
by the device control software. Additional changes may result from
actions taken by other software modules. For example, should your
program disable the system break feature, break will be reenabled on
FCLOSE by the Command Interpreter software.

Table 8-3 Device Control Action at FCLOSE

For most other device settings that can be programmatically altered,
you are responsible for making sure that the altered characteristics are
returned to their original settings when your program ends or for
assuring that the altered characteristics define the way you want the
device to act. For example, if you programmatically alter the speed
setting of a device, you should return the terminal to its original setting
when your program terminates unless you want the new speed setting
to be in effect for other files opened against the same device.

FCLOSE Action Related Programmatic Control

Disable Read Timeout Value set by FCONTROL(4)

Disable Subsystem Break Enabled through FCONTROL(17)

Enable Printing !!! on the deletion Printing !!! disabled through FCONTROL(35)

Disable Transparent Editing Enabled through FCONTROL(41)
160 Chapter 8

Intrinsics Reference
FCLOSE
When all files have been closed on a device (referred to as device close),
and the device is no longer under the control of a program or a session,
all device characteristics are returned to those specified by the device’s
configuration.

NOTE If a disconnected status is received from a terminal your application
has programmatically opened, your application should either FCLOSE
the terminal or terminate.

Parameters
filenum 16-bit signed integer by value (required)

The file number of the file to be closed.

disposition 16-bit signed integer by value (required)

This parameter has no meaning for terminals or serial
printers and should be set to 0.

securitycode 16-bit signed integer by value (required)

This parameter has no meaning for terminals or serial
printers and should be set to 0.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied. The file was not closed because an
incorrect filenum was specified. Any outstanding write
I/Os that failed (such as buffered writes that are done
in background) also cause the FCLOSE to fail.

Additional Discussion
See the discussion of closing files in Accessing Files Programmer’s
Guide.
Chapter 8 161

Intrinsics Reference
FCONTROL
FCONTROL
Performs control operations on a file or a device.

Syntax
I16V I16V *

FCONTROL(filenum, controlcode, param);

Use
The FCONTROL intrinsic performs various control operations on a file
or on the device on which the file resides. It applies to files on disk and
tape as well as to files on terminals and printers. The controlcode
parameter determines the action taken by the FCONTROL call.

The following pages describe the use of the FCONTROL intrinsic for
control of asynchronous devices. Chapters 3 and 4 also include
discussions on FCONTROL. For a complete explanation of FCONTROL
functions for disk and tape files, refer to the MPE/iX Intrinsics
Reference Manual.

The characteristics that define the relationship between a specific
asynchronous device and the MPE/iX system are initially set through
system configuration or through the configured terminal or printer type
of the device. When you issue calls to most of the FCONTROL
functions, you are temporarily changing the operating characteristics of
the device on which the file (specified in filenum) resides.

An exception to this applies to calls to FCONTROL using controlcode
25 through 29. These calls affect only the file specified in the filenum
parameter of the call. They do not affect the operating characteristics of
the device itself or any other files that might be opened against the
same device.

You will generally need to issue several calls to FCONTROL, each
specifying an appropriate controlcode, to set up the combination of
device characteristics that your program requires. However, for most
controlcode values, you only need to issue one call for a specific
characteristic to be in effect for all files opened against a device.
Exceptions to this include the following.

Controlcode 4 sets a read timeout value for the next read (timeout
value), and controlcode 22 returns the time taken for the last read to
your program. Each of these timer functions, if desired, must be issued
for every read.
162 Chapter 8

Intrinsics Reference
FCONTROL
A number of FCONTROL functions return information to your
program. Some only return information, while others set a new value
and return the old value. You can then use the value returned as input
to a call which resets the device to its previous setting when your
program ends.

Parameters
filenum 16-bit signed integer by value (required)

Contains the file number of the target devicefile as
returned by FOPEN (or HPFOPEN).

controlcode 16-bit signed integer by value (required)

A code that specifies the control operation to be
performed. The codes used for asynchronous device
control are listed below. With the exception of
controlcode = 1, which sends a carriage control
directive to a device, these controls apply only to
terminals.

1 Sends a carriage control directive to the device.

4 Sets a read timeout value for the next read.

10 Changes the line speed of a device. Both input and
output speed are affected.

11 Changes the line speed of a device. Both input and
output speed are affected.

12 Enables character echoing.

13 Disables character echoing.

14 Disables the system break function.

15 Enables the system break function.

16 Disables the subsystem break function.

17 Enables the subsystem break function.

22 Obtains the time required for the last read to complete.

23 Disables parity checking.

24 Enables parity checking.

25 Defines additional end-of-record (AEOR) character for
terminal input.

26 Disables Binary Mode.

27 Enables Binary Mode.

28 Disables User Block Mode.
Chapter 8 163

Intrinsics Reference
FCONTROL
29 Enables User Block Mode.

34 Allows printing of !!! when the line deletion character
is entered.

35 Prevents printing of !!! when the line deletion
character is entered.

36 Defines parity setting.

37 Sets both terminal type and speed.

38 Sets terminal type.

39 Determines current terminal type.

40 Determines current speed setting.

41 Enables transparent editing.

param type varies passed by reference (required)

The meaning of param depends on the controlcode
being used. However, no matter what the controlcode
is, a value must always be assigned to param.

NOTE For a number of the controlcode functions param has no meaning. In
those cases it must be coded as a dummy parameter, with a value of 0,
because it is a required parameter.

The following pages describe each controlcode value. Each description
includes the use of param, the meaning of condition codes, and any
special considerations or additional discussion.
164 Chapter 8

Intrinsics Reference
FCONTROL(1)
FCONTROL(1)

Parameters
controlcode 1 — Causes a carriage control or mode control directive

to be sent to the device.

param 16-bit unsigned integer by reference
(required)

Passes a value representing a carriage control or mode
control directive to a non spooled device.

Returns a value representing the prior mode control
setting when a mode control directive is specified.

Notes When FCONTROL is issued with a controlcode of 1,
param specifies either a mode control directive or a
carriage control directive to be applied to the file
specified in filenum.

You can use FCONTROL to pass carriage control
directives only if the file being output is not spooled.
For any files that are written to disk or spooled prior to
output, you must use the FWRITE intrinsic to pass
carriage control and mode control directives.

The Carriage Control directives passed through
FCONTROL are the same as those that are passed
through FWRITE. Table 9-3, “Selected Carriage
Control Directives,” on page 255 lists the octal codes
used for this purpose, along with their corresponding
carriage control actions. You will find this table in the
explanation of the FWRITE intrinsic later in this
chapter.

Carriage control can be passed through FCONTROL for
a non-spooled file regardless of whether the file was
opened with CCTLor NOCCTLspecified in the FOPEN or
HPFOPEN call.

Mode control can also be specified through FCONTROL
for non-spooled files. Mode control specifies whether a
carriage control directive takes effect before printing
(prespace movement) or after printing (postspace
movement). Mode control is selected through specific
octal codes from the Carriage Control table. A value of
%100 or %400 sets postspace movement, %101 or %401
sets prespace movement.
Chapter 8 165

Intrinsics Reference
FCONTROL(1)
When FCONTROL is used to specify a mode control
directive, an additional call to FWRITE or FCONTROL
is required if you also want to specify a carriage control
directive.

If param contains one of the mode-control directives, a
value of 0 or 1 is returned to param to indicate the
mode setting of the device prior to the call. A value of 0
indicates postspacing, a value of 1 indicates prespacing.

The default mode and carriage control is postspacing
with automatic page eject. This applies to all
Hewlett-Packard supported subsystems except
FORTRAN77/iX and COBOLII/iX, which have
prespacing with automatic page eject.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied. An error occurred.

Additional Discussion
See the discussion of FWRITE in this manual. See also the MPE/iX
Intrinsics Reference Manual.
166 Chapter 8

Intrinsics Reference
FCONTROL(4)
FCONTROL(4)

Parameters
controlcode 4 — Sets a read timeout value for the next read.

param 16-bit unsigned integer by reference
(required)

Passes a timeout value (in seconds) to the device that
owns the file whose file number is specified in filenum.

Notes A call to FCONTROL with a controlcode value of 4
allows you to set a time limit on the next read from a
terminal. The timeout value is specified in seconds,
with a maximum value of 65535.

Any read that does not complete before the time limit
expires is transferred to the user buffer and the read
length is returned. A condition code of CCL is returned
to the calling program. A call to FCHECK after the
timeout returns Error code 22, Software
Timeout .

If you are setting a timeout value for a read posted
against a device connected through a PAD, DTC Telnet,
or Telnet/iX, you should take care to add enough time to
compensate for any time delays that might be caused
by the network.

A timeout value should be used any time your program
is reading from an unattended device, to prevent
“hangs” that might occur if the device is not ready or a
problem exists with the device or its connection to the
system. You can also use a timeout value to terminate
binary reads. Refer to the discussion of
FCONTROL(26,27) for more information on
terminating reads in binary mode.

The timeout value is in effect only for the next read
from the terminal, and must therefore be reissued for
each read. A timeout value of 0 cancels the timeout.

During block mode reads the timer halts when the DC2
character is received. At this point, the block mode read
timer is activated by the system. The block mode read
timer is set by the system software, and its values are
not user changeable.
Chapter 8 167

Intrinsics Reference
FCONTROL(4)
Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed; timeout value not accepted.

Additional Discussion
See also FCONTROL(26,27) in this manual.
168 Chapter 8

Intrinsics Reference
FCONTROL(10, 11)
FCONTROL(10, 11)

Parameters
controlcode 10 or 11 — Changes the line speed of a device.

param 16-bit unsigned integer by reference
(required)

Passes a value which specifies a new line speed.

Notes A controlcode value of 10 or 11 is used to
programmatically change the line speed associated
with a device. Both input and output speeds are
affected. The value passed in param must be expressed
in characters per second (1 character per second =
10 bits per second). The choices supported by MPE/iX
are 30, 120, 240, 480, 960, and 1920. For direct connect
devices on DTC 72MX, 3840 is also valid. These equate
to the MPE/iX supported speeds of 300, 1200, 2400,
4800, 9600,19200, and 38400 bits per second. Any other
settings will cause the intrinsic to return a condition
code of CCL.

The controlcode values of 10 and 11 function in an
identical manner and can be used interchangeably. The
duplication exists because early versions of the
HP 3000 (Series II/III) supported a terminal controller
(the ATC), which allowed different speeds to be used for
input and output on the same device. For devices
attached to the ATC controller a controlcode of 10
adjusted the input speed while a controlcode of 11
adjusted the output speed. Split speeds for input and
output are not supported on MPE/iX.

You must be sure the speed associated with a device
matches the physical speed setting of the device and of
the modem if a modem is part of the connection. If you
programmatically change the speed of a device, your
program should request that the speed setting be
manually changed at the device as well.

If either of these FCONTROL calls is issued against a
terminal connected via PAD, DTC Telnet, Telnet/iX, or
VT, the call will return a CCE condition code but will
actually have no effect on the speed at which the device
is transmitting. Additionally, the call will return a
meaningless value in param.
Chapter 8 169

Intrinsics Reference
FCONTROL(10, 11)
When a device is initially opened programmatically, the
speed is set to the default speed of the device. If a
device is opened as a log on device (and the device was
configured with speed and parity sensing enabled), the
speed setting is sensed from the speed of the first
carriage return character received. The default speed of
a device is configured through the Node Management
Configuration Manager (NMMGR), or through the
OpenView DTC Manager, for networks managed by an
OpenView workstation. You must reconfigure the
device to permanently effect a change to the configured
speed.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the process does not own the
logical device, the device is not a terminal/printer, or
the speed entered is not supported.

Additional Discussion
See FCONTROL(37) and FCONTROL(40) in this manual.
170 Chapter 8

Intrinsics Reference
FCONTROL(12, 13)
FCONTROL(12, 13)

Parameters
controlcode 12 — Enables character echoing.

13 — Disables character echoing.

param 16-bit unsigned integer by reference
(required)

Returns a value indicating the previous echo status to
the program.

0 = Echo ON

1 = Echo OFF

Notes FCONTROL with a controlcode value of 12 or 13
specifies whether or not input echo is enabled at a
terminal. Use 12 to turn echo on, 13 to turn echo off.
You may also need to use FSETMODE(4), to suppress
linefeed on inputs, to turn echo completely off.

When echo is enabled, all characters transmitted to the
DTC are “echoed” back and appear on the terminal
screen. This is referred to as DTC echo, and is initially
enabled for all terminals when the MPE/iX system is
brought up. All characters are echoed, with the
exception of XON, XOFF, NULL, DEL, and DC2.

During binary reads, however, all characters, including
XON and XOFF, are passed through as data. Since
these characters are not recognized and acted upon as
protocol characters, they will be echoed. An XOFF will
result in the terminal being suspended as if the XOFF
had been sent from the DTC. For this reason, you
should make sure that echo is disabled while in binary
mode. (An alternative is to disable XON/XOFF flow
control at the terminal, but this could result in a loss of
data.)

Echo should also be disabled during block mode
processing, and local echo should be used to cause the
terminal itself to write data to the screen. If you are
using VPLUS for your block mode applications, this is
handled for you automatically. For any other type of
block mode, you need to disable echo before the block
mode read begins.
Chapter 8 171

Intrinsics Reference
FCONTROL(12, 13)
You may also want to disable echo if the terminal user
is asked to enter data that you do not want to appear on
the screen, such as a password or lockword.
Additionally, it may be necessary to disable echo if you
are connecting certain non-supported devices to an
asynchronous port.

Echo is not reset at FCLOSE, so your program should
always restore the original echo setting before it ends.

If either of these FCONTROL calls is issued against a
terminal connected via DTC Telnet, the call will return
a CCE condition code but the echoing of read data will
continue.

Echo may be changed locally without the remote host’s
knowledge in a VT connection. Applications run on the
remote side will then receive inconsistent information
about echo status. Hence, altering the echo state locally
in a VT connection is discouraged.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the file number specified did not
belong to this process or the device is not a terminal.

Additional Discussion
Refer to discussions of FCONTROL(26,27) and FSETMODE in this
manual.
172 Chapter 8

Intrinsics Reference
FCONTROL(14, 15)
FCONTROL(14, 15)

Parameters
controlcode 14 — Disables the system break function.

15 — Enables the system break function.

param 16-bit unsigned integer by reference
(required)

This parameter has no meaning for these controlcode
values. Enter a dummy value of 0 to satisfy the internal
requirements of the intrinsic.

Notes A call to FCONTROL with a controlcode value of 14
or 15 determines whether or not a terminal will react to
a system break request. Use 14 to disable system
break, 15 to enable system break.

System break is enabled by default for any terminal on
which a session is active. Any time a user presses the
[Break] key (or the CAUSEBREAK intrinsic is called),
MPE/iX will attempt to interrupt processing and place
the terminal at the Command Interpreter level
(: prompt). Many MPE/iX commands are breakable, as
are program commands that invoke subsystems or run
user programs.

When system break is enabled and a system break is
received, EOR, read timer, terminal mode and echo
values are saved by the DTS software, so that they can
be restored when normal processing is resumed. If
system break is entered during processing of a
character mode read or write, data is lost. Any read
that is interrupted by a break will be reissued by the
system after a Resume command is typed.

Some application programs change the settings of
terminals and/or the characteristics of their devicefiles.
In such cases it may be undesirable to allow system
break processing to occur. For example, you should
disable system break when using block mode. Doing so
will prevent data loss or corruption that could occur
should the [Break] key be pressed during a block mode
read. It also avoids problems that can occur because
your program is unable to return the device to normal
operating mode if system break is entered.
Chapter 8 173

Intrinsics Reference
FCONTROL(14, 15)
Use FCONTROL(14) to disable the system break
function before your program enters block mode. Call
FCONTROL(15) to reenable system break when block
mode processing is completed.

If the [Break] key is pressed while system break is
disabled no action is taken by any level of software.
System break has no effect on a device with no active
session.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the file number specified did not
belong to this process or the device is not a terminal.

Additional Discussion
See the MPE/iX Commands Reference Manual.
174 Chapter 8

Intrinsics Reference
FCONTROL(16, 17)
FCONTROL(16, 17)

Parameters
controlcode 16 — Disables the subsystem break function.

17 — Enables the subsystem break function.

param 16-bit unsigned integer by reference
(required)

This parameter has no meaning for these controlcode
values. Enter a dummy value of 0 to satisfy the internal
requirements of the intrinsic.

Notes A call to FCONTROL with a controlcode value of 16
or 17 determines whether or not a terminal will react to
a subsystem break request. (The default subsystem
break character is [CTRL]Y .) Use 16 to disable
subsystem break, 17 to enable subsystem break.

Subsystem break is initially disabled on all devices; it
must be specifically enabled before it can be used. It is
available only for devices running sessions, and has no
effect on programmatically controlled devices.
Subsystem break is reset to the disabled state at
FCLOSE.

If enabled, subsystem break allows the terminal user to
stop a program local or subsystem local command. It is
invoked in standard editing mode by the
end-of-medium (EM) character, produced on HP
terminals by typing [CTRL]Y .

Even when subsystem break is enabled for a terminal
connected via PAD, subsystem break must be followed
by a [Return] to signal the PAD that data is ready to be
forwarded.

You can also use FDEVICECONTROL to alter the
subsystem break character in either standard or
transparent mode. See the discussion of the
FDEVICECONTROL intrinsic later in this chapter for
the proper parameter settings to use for this purpose.

In transparent editing mode, you are allowed to define
a different character to be used to invoke subsystem
break by specifying the new character as part of param
in a call to FCONTROL(41).
Chapter 8 175

Intrinsics Reference
FCONTROL(16, 17)
Before subsystem break can be successfully enabled,
your program must call the XCONTRAP intrinsic,
which arms a special trap procedure referred to as the
[CTRL]Y Trap. The external label of a user written
procedure is specified as the value of the plabel
parameter in the call to XCONTRAP.

The procedure specified must define the steps that will
be taken if subsystem break is entered during
execution of your program.

Once the [CTRL]Y Trap has been armed by XCONTRAP,
the terminal user can successfully invoke the
subsystem break function.

Whenever a subsystem break is entered, the [CTRL]Y
Trap is automatically disarmed. Your program must
call the RESETCONTROL intrinsic to re-arm the trap
when it is ready to allow another subsystem break to
occur. If RESETCONTROL is not called after a
subsystem break, it is not possible to enter another
subsystem break.

The following summarizes subsystem break processing
and the intrinsics involved:

1. A user written procedure must be provided to define
how the program should act upon receiving a
subsystem break.

2. A call to XCONTRAP must be included in the
program, specifying the external label of the
procedure written in Step 1 as the value of plabel.
This arms the [CTRL]Y Trap.

3. A call to FCONTROL(17) must be included in the
program to enable the subsystem break function.

4. If the subsystem break character is received during
execution of the program, the procedure specified in
the call to XCONTRAP is executed.

5. A call to RESETCONTROL must be executed when
the program is ready to receive another subsystem
break. (This is usually done in the user written
subsystem break handling procedure.)

6. A new subsystem break character may be defined
through FCONTROL(41), if the terminal is placed in
transparent mode, or through FDEVICECONTROL.

7. If desirable at any time, FCONTROL(16) may be
called to disable subsystem break. A call to
FCONTROL(17) enables it again.
176 Chapter 8

Intrinsics Reference
FCONTROL(16, 17)
Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the file number specified did not
belong to this process or the device is not a terminal.

Additional Discussion
See the discussion of RESETCONTROL, XCONTRAP, FCONTROL(41)
and FDEVICECONTROL in this manual. See Chapter 5, “Using
Subsystem Break,” in this manual for an example illustrating
subsystem break processing. See also Accessing Files Programmer’s
Guide, Trap Handling Programmer’s Guide, and Data Types
Programmer’s Guide.
Chapter 8 177

Intrinsics Reference
FCONTROL(22)
FCONTROL(22)

Parameters
controlcode 22 — Obtains the time used for completion of the last

read.

param 16-bit unsigned integer by reference
(required)

Returns the measured time duration of the last read in
hundredths of a second.

Notes A call to FCONTROL with a controlcode of 22 allows
you to read the result of the read duration timer for the
last read. The value is returned to your program in
hundredths of a second, up to the 16-bit maximum limit
of 655.35 seconds.

Since every read is timed on MPE/iX systems, you
should be sure your call to this intrinsic follows
immediately after the read you want timed with no
subsequent reads in between.

FCONTROL(22) should not be confused with
FCONTROL(4), which is a read timeout.
FCONTROL(22) reports the length of time it took to
satisfy a read request, after the read completes. No
other action is taken as a direct result of this call.

If this FCONTROL call is issued against a terminal
connected via Telnet/iX or VT, the call will return a
CCE condition code but no device control action will
take place. Any value returned in this call may not be a
true reflection of device control settings.

Condition Codes
CCE Request granted.

CCG Request granted, but the result overflowed 16 bits (read
took longer than 655.35 seconds).

CCL Request failed because the file number specified did not
belong to this process or the device is not a terminal.

Additional Discussion
See the discussion on “Timing a Read” in Chapter 3, “Common Device
Control Functions,” of this manual.
178 Chapter 8

Intrinsics Reference
FCONTROL(23, 24)
FCONTROL(23, 24)

Parameters
controlcode 23 — Disables parity generation and checking.

24 — Enables parity generation and checking.

param 16-bit unsigned integer by reference
(required)

This parameter has no meaning for these controlcode
values. Enter a dummy value of 0 to satisfy the internal
requirements of the intrinsic.

Notes A call to FCONTROL with a controlcode value of 23
or 24 determines whether or not parity is generated
and checked for data transmitted between the system
and a terminal. Use 23 to disable parity, 24 to enable
parity. FCONTROL(23) and (24) do not apply to
printers.

Parity can be used for terminals opened
programmatically as well as for those operating in
session mode.The default for both session and
programmatic devices is to not generate or check parity,
but to operate in 8-bit pass-through mode.

When parity is enabled, the Asynchronous Serial
Communications software (ASC) generates parity on
outgoing data and checks for parity errors on incoming
data. After the parity is checked, the parity bit is
always set to zero because the program using the data
has no need for parity information. Parity checking is
handled the same way in block mode as in character
mode.

The type of parity that will be used if parity is enabled
can be modified through a call to FCONTROL(36). If
FCONTROL(23) is used to disable parity after it was
previously enabled, a subsequent call to
FCONTROL(24) will reenable the same type of parity,
unless it was changed through another call to
FCONTROL(36).
Chapter 8 179

Intrinsics Reference
FCONTROL(23, 24)
Because parity requires the eighth bit to be set as a
parity bit, it is not possible to use parity with 8-bit
character sets. If binary mode is enabled, the parity bit
will be passed through as data, and no parity checking
will occur.

If enabling parity, make sure that your program also
requests the terminal operator to change the physical
parity setting of the terminal to the new setting of the
ASC software. Additionally, if a user wants the
terminal to check parity on incoming data, the local
terminal control used to turn parity checking on or off
should be set to ON.

If either of these FCONTROL calls is issued against a
terminal connected via PAD, DTC Telnet, Telnet/iX, or
VT (from a PC or HP-UX local client), the call will
return a CCE condition code but will actually have no
effect on the parity which the device is transmitting.
Additionally, the call will return a meaningless value in
param.

If a parity error is detected by the ASC software, the
current read is completed in error, and no read data is
returned. The ASC software reports the error to the
program reading the data.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the file number specified did not
belong to this process or the device is not a terminal.

Additional Discussion
See also discussion of FCONTROL(36) in this manual.
180 Chapter 8

Intrinsics Reference
FCONTROL(25)
FCONTROL(25)

Parameters
controlcode 25 — Defines Additional End-of-Record (AEOR)

character for terminal input.

param 16-bit unsigned integer by reference
(required).

Passes the value of a character to be used as an
additional line terminator. The octal or decimal code for
the character must be contained in the right byte of the
parameter; the left byte is ignored. If the NULL
character (%0) is specified, normal (default) line
termination conditions are restored.

Notes An FCONTROL call with a controlcode value of 25 is
used to establish an Additional End-of-Record (AEOR)
character, which is then in effect for reads posted
against the device that owns the file whose file number
is specified in filenum. You can only assign one AEOR
character at a time. If you need more than one AEOR,
use FDEVICECONTROL instead.

Normally, character mode reads using standard editing
are terminated by a carriage return ([Return]), the
standard EOR character for HP terminal types. The
system echoes the carriage return and sends a linefeed
to the terminal, so that the cursor is positioned at the
beginning of the next line, ready for the next read. Even
if an AEOR character has been assigned by a call to
FCONTROL(25), the EOR character will still terminate
reads in the usual way.

When a read is terminated by an Additional
End-of-Record character, the AEOR character is
included in both the data and in the byte count. No
carriage return or linefeed is sent to the terminal. The
read terminates with an error condition which
indicates that the Additional End-of-Record character
has been encountered. A call to FCHECK returns an
error code of 31. To recover from this error, your
program can delete the AEOR character from the input
data, subtract one from the byte count of the read, and
send out a carriage return and linefeed to place the
cursor in the proper place for the next read.
Chapter 8 181

Intrinsics Reference
FCONTROL(25)
An AEOR character designated by FCONTROL(25) is
also recognized as a line terminator during reads in
transparent editing mode, along with a user defined
EOR character that replaces [Return] as the normal
EOR character.

See the discussion of FCONTROL(41) later in this
chapter for more information on terminating reads in
transparent mode.

To disable the Additional End-of-Record character, call
FCONTROL(25) again specifying 0 as the value of
param.

There are a number of characters that will not be
recognized if used as AEOR characters, as listed in
Table 8-4. You will receive no error message if you use
one of these characters, but the character will not
terminate a read if entered.

Table 8-4 Characters Not Recognized If Used as AEORs

NOTE You should also avoid using a number of other characters which have
special meaning to MPE/iX, specifically carriage return, linefeed, cancel
([CTRL]X by default), backspace, DC2, and escape. While these
characters will be recognized and processed as AEOR characters, their
use could yield unpredictable and often unsuccessful results. It is
strongly recommended that you avoid using these characters unless the
specific needs of your application make it absolutely necessary to do so.

In addition, [CTRL]A should not be used as an AEOR character at the
console.

ASCII Character Terminal Key Octal
Code

Hex
Code

NUL (Null) [CTRL]@ % 0 $ 0

DC1 (XON) [CTRL]Q % 21 $11

DC3 (XOFF) [CTRL]S % 23 $13

Current Subsystem Break [CTRL]Y (by default)a

a. In transparent mode, you define the subsystem break
character through FCONTROL(41). It may also be defined
using FDEVICECONTROL.

% 31 $19

DEL (Rubout) [DEL] % 177 $7F
182 Chapter 8

Intrinsics Reference
FCONTROL(25)
Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the file number specified did not
belong to this process or the device is not a terminal.

Additional Discussion
See FCONTROL(41) and FDEVICECONTROL in this manual.
Chapter 8 183

Intrinsics Reference
FCONTROL(26, 27)
FCONTROL(26, 27)

Parameters
controlcode 26 — Disables Binary Mode

27 — Enables Binary Mode

param 16-bit unsigned integer by reference
(required)

This parameter has no meaning for these controlcode
values. Enter a dummy value of 0 to satisfy the internal
requirements of the intrinsic.

Notes An FCONTROL call with a controlcode value of 26 or
27 determines whether or not a terminal is operating in
binary editing mode for the file specified in filenum.
Use 26 to disable binary editing, 27 to enable binary
editing.

These calls are not supported for terminals connected
via DTC Telnet or via VT from an HP-UX local client
(VT3K). If FCONTROL(26) is issued to a device
connected by DTC Telnet, it will be ignored. If
FCONTROL(27) is issued to a device connected via
DTC Telnet the next FREAD posted to the device will
return an error condition, until binary mode is disabled
with FCONTROL(26). Binary editing should not be
used on a terminal connected via DTC Telnet or VT
from an HP-UX local client. The call will return a CCE
condition code but all subsequent reads will return an
error until binary editing is disabled. If
FCONTROL(27) is issued to a Telnet/iX device when
the local device is an HP-UX Telnet client, the user
must set the HP-UX client into binary (using the
HP-UX Telnet client toggle command) before the
FCONTROL(27) is issued to the Telnet/iX Server. If the
HP-UX client is not set into binary before the
FCONTROL(27) is issued, the FCONTROL will return
with CCL. The user must disable binary on the HP-UX
client before binary is disabled on the Telnet/iX Server
with FCONTROL(28).

When binary editing is enabled, no special characters
are recognized, and no special character processing is
done. All characters are considered to be data and are
passed through without any terminal control actions
184 Chapter 8

Intrinsics Reference
FCONTROL(26, 27)
being taken. No carriage return or linefeed is sent to
the terminal following a binary read. On writes, all
carriage control directives are ignored. Binary editing
mode is initially disabled by default.

Unlike most FCONTROL calls, binary mode does not
actually take effect until a read is posted to the device
following the FCONTROL call. If you are setting binary
mode for both reads and writes you should post a 0-byte
read immediately after the call to make sure binary
mode is set.

Because no special character processing occurs in
binary mode, any ASCII DC3 (XOFF) character passed
in the data will be echoed to the terminal, and the
terminal will be suspended as if an XOFF were sent
from the DTC. This problem can be avoided by calling
FCONTROL(13) to disable character echoing prior to
entering binary mode. Alternatively, you can turn off
XON/XOFF flow control at the terminal by sending the
appropriate escape sequences. You should be aware,
however, that disabling flow control may result in data
being lost.

Binary editing is useful for transferring 8-bit data to
and from a terminal. Because all 8 bits are considered
to be data, binary editing is not compatible with parity
checking, and parity must be disabled. In addition,
since no special character processing is possible in
binary mode, it cannot be used for block mode transfers.

In session mode, system break restores standard
editing at the terminal. If :RESUMEis entered following
the break binary mode will be restored when the first
read is posted following the :RESUME. FCONTROL(26)
must be called to disable binary editing.

Binary reads are terminated by byte count, read
timeouts, and error conditions. CCE status is returned
for reads terminated on the byte count as specified in
the FREAD, READ, or READX call. CCL status will be
returned on timeouts and errors. Reads terminated on
timeout will return data entered before the timeout
occurred. For reads terminated on error, no data will be
returned.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed due to an error.
Chapter 8 185

Intrinsics Reference
FCONTROL(26, 27)
Additional Discussion
See discussion of FCONTROL(4), FCONTROL(12,13) and
FCONTROL(41) in this manual.
186 Chapter 8

Intrinsics Reference
FCONTROL(28, 29)
FCONTROL(28, 29)

Parameters
controlcode 28 — Disables User Block Mode.

29 — Enables User Block Mode.

param 16-bit unsigned integer by reference
(required)

This parameter has no meaning for these controlcode
values. Enter a dummy value of 0 to satisfy the internal
requirements of the intrinsic.

Notes A call to FCONTROL with a controlcode value of 29
enables user block mode processing, while a call using
controlcode 28 disables user block mode processing.

Under system default conditions block mode processing
occurs through a method called HP block mode. In HP
block mode the system controls the block mode
handshake and the user program need not concern
itself with data transfer protocol. The MPE/iX host
transmits the normal read trigger character, a DC1, to
inform the terminal that the system is ready to receive
data. The terminal responds by sending a DC2
character, which informs the system that the next data
transfer will be a block mode transmission. The
terminal then waits for the host to send back a second
DC1 to trigger the read.

When user block mode is enabled it becomes possible
for your program to intervene in the handshake. A user
block mode transaction begins in the same way an HP
block mode transaction begins, with host transmission
of a DC1. At this point, the user application takes over
control of the handshake and waits for the DC2. Your
program can then perform additional terminal control
functions, such as positioning the terminal cursor,
performing status requests, or allocating additional
space for buffers before continuing with the data
transfer. When your program is ready to receive the
block mode data, it must issue an additional read. This
read will actually result in a DC1 being sent, thereby
completing the handshake.
Chapter 8 187

Intrinsics Reference
FCONTROL(28, 29)
Some additional considerations apply when
transmitting data in block mode. The terminal must be
configured to perform in a manner compatible with the
expectations of the system and the application
requesting the block mode transfers. You should pay
particular attention to how Line/Page(D) ,
InhHndShk(G) and Inh DC2(H) are set when
configuring a terminal for block mode processing.

Block mode processing is not supported with terminal
type 18.

User block mode is not supported on terminals
connected through DTC Telnet, Telnet/iX (from an
HP-UX Telnet client) or VT (from an HP-UX local client
(VT3K)). If posted to a device connected via DTC
Telnet, these calls will return a CCE condition code, but
no device control action will occur.

NOTE Data overruns may occur during block mode transfers. Your program
must check for successful completion of each read operation and retry
as required. Use of timers during block mode reads is strongly
encouraged, since a data overrun occurring when the last character is
read would otherwise cause the port to “hang”. The standard block
mode read timer does not operate when user block mode protocol is
enabled.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed because the file number specified did not belong
to this process or the device is not a terminal.

Additional Discussion
See the reference manuals for the terminals connected to your system.
188 Chapter 8

Intrinsics Reference
FCONTROL(34, 35)
FCONTROL(34, 35)

Parameters
controlcode 34 — Allows printing of !!! when line deletion

character is entered.

35 — Prevents printing of !!! when line deletion
character is entered

param 16-bit unsigned integer by reference
(required)

This parameter has no meaning for these controlcode
values. Enter a dummy value of 0 to satisfy the internal
requirements of the intrinsic.

Notes An FCONTROL call with a controlcode value of 35
suppresses output of the line deletion response (!!! ,
carriage return and linefeed) at the terminal when the
line deletion character (normally [CTRL]X) is entered. A
call using controlcode 34 turns this output back on.

In character mode, with standard editing in operation,
the computer outputs !!! CR/LF whenever the line
deletion (cancel) character is entered. This is referred
to as [CTRL]X echo, since [CTRL]X is the default line
deletion character.

You can cause [CTRL]X echo to be suppressed by calling
FCONTROL(35). MPE/iX will still delete the data in
the input buffer, but no !!! CR/LF will be issued.

[CTRL]X Echo is initially enabled by default and is reset
to the enabled state at FCLOSE.

For devices connected via PAD, the line deletion
response is never printed in response to the line
deletion character. If issued to such a device, these calls
will return a CCE condition code, but no device control
action will occur.

For devices connected via VT from an HP-UX local
client, these controlcode values are not supported.
Chapter 8 189

Intrinsics Reference
FCONTROL(34, 35)
Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed because the file number specified did not belong
to this process or the device is not a terminal.

Additional Discussion
None.
190 Chapter 8

Intrinsics Reference
FCONTROL(36)
FCONTROL(36)

Parameters
controlcode 36 — Defines parity setting.

param 16-bit unsigned integer by reference
(required)

Passes a value (0, 1, 2, 3, or 4) which represents a
specified parity condition.

Returns the value of the previous setting.

Refer to Table 8-5 for a definition of the condition
represented by each value.

Notes An FCONTROL call with a controlcode value of 36 is
used to specify the type of parity generation and
checking that will be done if parity is enabled for a
terminal.

When a terminal is initially opened certain parity
conditions exist, as determined by the terminal type
and port configuration, and whether the port is opened
by an operator logon or by a user program. These parity
conditions can be changed through a call to
FCONTROL(36), specifying a number that corresponds
to the desired parity as the value of param.
Hewlett-Packard provides four parity options, called
odd, even, ones and zeros. Table 8-5 shows the results of
each of these options on input and output data, along
with the param value associated with each option.

When FCONTROL(36) is called, the parity option
specified replaces whatever option was previously
associated with the terminal, and the previous option is
returned to the call as the new value of param. This
makes it possible to determine a terminal’s parity
setting even with parity disabled. You can also use the
returned value to restore parity to its original setting
when your program ends, since MPE/iX does not reset
parity when a file is closed.

Once you have set the parity option, you can call
FCONTROL(24) to enable parity. Your program should
also request the terminal operator to change the
terminal’s parity setting to the new setting of the
software. Additionally, if parity is to be checked on
Chapter 8 191

Intrinsics Reference
FCONTROL(36)
incoming data, the local terminal control that
determines whether or not parity is checked should be
set to check parity.

Parity cannot be used with 8-bit character sets.

This call is ignored for devices connected via PAD, DTC
Telnet, Telnet/iX, or VT. If issued against such a device
it will return a condition code of CCE, but no device
control action will occur.

Table 8-5 Parity Settings with FCONTROL(36)

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed because the file number specified did not belong
to this process, the device is not a terminal, or an
invalid value was used for param.

Additional Discussion
See also discussion of FCONTROL(23,24) in this manual.

Value of param Parity Type Results if Enabled

0 Zeros No parity checked on input
Eighth bit set to 0 on output

1 Ones No parity check on input
Eighth bit set to 1 on output

2 Even Even parity checked on input
Even parity generated on output

3 Odd Odd parity check on input
Odd parity generated on output

4 None No parity checked on input
No parity checked on output
192 Chapter 8

Intrinsics Reference
FCONTROL(37)
FCONTROL(37)

Parameters
controlcode 37 — Sets both terminal type and speed.

param 16-bit unsigned integer by reference
(required)

Passes a value which specifies a new line speed and
terminal type to be associated with an asynchronous
port. Bits (0:11) specify the speed, bits (11:5) specify the
terminal type.

Notes This use of the FCONTROL intrinsic stems from an
early point in the development of Hewlett-Packard
operating systems when it was necessary to allocate a
terminal before it could be opened programmatically.
This is no longer necessary, but the intrinsic is still in
use today and allows you to programmatically set both
terminal type and speed for a terminal through a single
call. Both of these values can be set individually
through other FCONTROL calls.

When you use FCONTROL(37), param passes the
desired speed and terminal type values. The speed is
represented in characters per second and is contained
in bits (0:11). The terminal type is contained in bits
(11:5).

You must be sure the speed associated with a device
matches the physical speed setting of the device and of
the modem, if a modem is part of the device connection.
If you programmatically change the speed of a device
your program should request that the speed setting be
manually changed at the device as well.

You cannot use FCONTROL(37) to set the terminal to
an unsupported speed or terminal type. Attempting to
do so will cause an error condition of CCL. You cannot
use FCONTROL(37) with user-defined terminal types.
You must call FDEVICECONTROL to specify the
terminal type when using a terminal type defined
through the Workstation Configurator.
Chapter 8 193

Intrinsics Reference
FCONTROL(37)
If issued against a terminal connected via PAD, DTC
Telnet, or Telnet/iX, this call will change the terminal
type setting, but will have no impact on how the device
actually operates. A CCE condition code will be
returned.

This call is unsupported for devices connected via VT. If
used, the VT driver will return a CCE condition code,
but no device control action will take place.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the process does not own the
logical device, the device is not a terminal, or the speed
or terminal type entered is not supported.

Additional Discussion
See discussions of FCONTROL(11) and FCONTROL(38) in this
manual.
194 Chapter 8

Intrinsics Reference
FCONTROL(38)
FCONTROL(38)

Parameters
controlcode 38 — Sets terminal type.

param 16-bit unsigned integer by reference
(required)

Passes the value if the system defined terminal type to
be associated with an asynchronous port.

Notes FCONTROL with a controlcode value of 38 allows
you to change the terminal type associated with a port
to another system defined terminal type. The new
terminal type will be in effect for the port until you
change it through another FCONTROL call, or until
the device is closed. When the device is closed, the port
is reset to its configured default.

If you change the terminal type of a terminal running
an interactive session, you should be sure to reset it to
the previously assigned terminal type when your
program ends, unless you want the new terminal type
to be in effect for other files opened on the device. To be
sure you are able to reset to the previous terminal type,
your program should call FCONTROL(39) to determine
the current terminal type before calling
FCONTROL(38) to change to the new setting. (Note
that the current terminal type may be different from
the default (configured) terminal type.)

The terminal type specified by FCONTROL(38) must be
a system defined terminal type currently supported on
MPE/iX systems. If any other value is used, the
intrinsic will return an error condition of CCL.

You cannot use FCONTROL to change to or from a user
defined terminal type. You must use
FDEVICECONTROL to perform this function with
terminal types defined through Workstation
Configurator.

If issued against a terminal connected via PAD, DTC
Telnet, or Telnet/iX, this call will change the terminal
type setting, but will have no impact on how the device
actually operates. A CCE condition code will be
returned.
Chapter 8 195

Intrinsics Reference
FCONTROL(38)
If issued against a terminal connected via VT from an
MPE/iX or MPE V local client, this call will change the
terminal type setting and the characteristics of the
terminal type supported by VT. The controlcode value
is not supported for VT connections from a PC or
HP-UX local client.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request failed because the process does not own the
logical device, the device is not a terminal, or the
terminal type entered is not supported.

Additional Discussion
See also the discussions of FCONTROL(37) and FCONTROL(39) in this
manual. Refer to Chapter 7, “Programming for PAD, DTC Telnet,
Telnet/iX Server, and VT Devices,” for more information on terminal
type specifications for devices connected via PAD or DTC Telnet.
196 Chapter 8

Intrinsics Reference
FCONTROL(39)
FCONTROL(39)

Parameters
controlcode 39 — Determines current terminal type.

param 16-bit unsigned integer by reference
(required)

Returns the terminal type currently associated with an
asynchronous port.

Notes A call to FCONTROL with a controlcode value of 39
allows you to determine the terminal type that is
currently associated with an asynchronous port. You
can then use this information to return the port to its
original setting after you have changed the terminal
type through FCONTROL(37), FCONTROL(38), or
FDEVICECONTROL.

Do not confuse the current terminal type returned by
this intrinsic with the default terminal type specified
during system configuration through NMMGR.
Changing the terminal type during logon or through
the system intrinsics can cause the current terminal
type to be different from the configured setting. To reset
to the configured terminal type, use FCONTROL(37)
specifying 0 as the value of param. (Note that
FCONTROL(37) will restore the default line speed as
well.)

Closing the device also restores its settings to
configured default values.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed because the file number specified did not belong
to this process or the device is not a terminal.

Additional Discussion
See also discussions of FCONTROL(37) and FCONTROL(38) in this
manual.
Chapter 8 197

Intrinsics Reference
FCONTROL(40)
FCONTROL(40)

Parameters
controlcode 40 — Determines current speed setting.

param 16-bit unsigned integer by reference
(required)

Returns the line speed currently associated with an
asynchronous port in characters per second.

Notes A call to FCONTROL with a controlcode value of 40
allows you to determine the line speed at which an
asynchronous port is currently operating. The speed is
specified in characters per second. You can use the
information to return the port to its original speed
setting after you have changed the line speed through
FCONTROL(37) or FCONTROL(11).

Do not confuse the current line speed returned by this
intrinsic with the default line speed specified during
system configuration through NMMGR. Changing the
line speed through the system intrinsics can cause the
current line speed to be different from the configured
line speed. To reset the line speed of the port to the
default value you can use FCONTROL(37) specifying 0
as the value of param. (Note that FCONTROL(37) will
restore the default terminal type as well.)

Closing the device also restores its settings to
configured default values.

If issued against a terminal connected via PAD, DTC
Telnet, Telnet/iX, or VT, this call will return a CCE
condition code. The value returned in param will be
120 (for 1200 baud) but this value has no meaning for
DTC Telnet, or PAD connections. For Telnet/iX or VT
connections, the value returned in param will typically
be 960 (for 9600 baud) but this value has no meaning.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed because the file number specified did not belong
to this process or the device is not a terminal.
198 Chapter 8

Intrinsics Reference
FCONTROL(40)
Additional Discussion
See also discussions of FCONTROL(11) and FCONTROL(37) in this
manual.
Chapter 8 199

Intrinsics Reference
FCONTROL(41)
FCONTROL(41)

Parameters
controlcode 41 — Enables transparent editing.

param 16-bit unsigned integer by reference
(required)

Passes a value to be used as a subsystem break
character in bits (0:8) and a value to be used as a read
terminator in bits (8:8).

Returns the values previously assigned for use as
subsystem break and read terminator characters.

Notes An FCONTROL call with a controlcode value of 41
will place a terminal in transparent editing mode. Also
called unedited mode, this facility allows most special
characters to be read and treated as data. Unlike
binary mode, however, which allows no special
character processing to occur, transparent mode allows
a small subset of special characters to retain their
meaning. These characters are listed in Table 8-6.

In addition to the characters shown in Table 8-6, two
other characters have a special meaning to the system
during transparent mode processing. The characters to
be assigned these meanings are specified in the call
through the value entered in param.

Bits (0:8) of param are used to specify the character
that will replace the subsystem break character. Any
character not otherwise defined as a special character
in transparent mode, including the normal subsystem
break character ([CTRL]Y), can be used. If this value is
set to 0, subsystem break is disabled.

Bits (8:8) specify the character that will replace the line
termination character (EOR) for the transparent mode
read. Any character not otherwise defined as a special
character in transparent mode may be used.

While binary mode reads terminate only on byte count
or a read timeout, transparent mode reads can be
terminated in any of the following ways:
200 Chapter 8

Intrinsics Reference
FCONTROL(41)
• The read encounters the End-of-Record (EOR)
character defined in param. This character
functions like the [Return] character does in normal
reads. The EOR is echoed but is stripped from the
user data. No carriage return or line feed is sent to
the terminal.

• The read encounters an Additional End-of-Record
(AEOR) character defined through a previous call to
FCONTROL(25). The read completes with error
END OF LINE (FSERR 31), and the AEOR
character is passed with the input data and included
in the byte count. No carriage return or linefeed is
sent to the terminal.

• The expected byte count specified in the READ,
READX, or FREAD call is reached. The read is
terminated normally, and no carriage return or
linefeed is sent to the terminal.

• The read limit timer set through a call to
FCONTROL(4) expires. The read terminates with
error SOFTWARE TIMEOUT (FSERR 22), and the
data entered before the read timed out is returned.

Table 8-6 Special Characters for Transparent Editing

Break processing, if not disabled, occurs in transparent mode the same
as in normal editing mode. During the break the terminal will operate
in standard editing mode. The terminal will return to transparent mode
if a :RESUME is entered.

Key Function

AEOR Character The AEOR character defined through a previous call to FCONTROL(25).
The read terminates in error, and a call to FCHECK returns an
fserrorcode of 31. The AEOR character is passed with the data and
included in the byte count.

[Break] Causes a system break (when enabled) and transfers control to MPE/iX. If
:RESUME is entered transparent editing is resumed.

[CTRL]Q
(DC1 or XON)

The “resume output” character of the XON/XOFF handshake. This
character is stripped from the input data when XON/XOFF protocol is
enabled.

DC2 When input as first character, it is stripped out. A DC1 ([CTRL]Q) is then
written to the terminal. When not input as the first character, DC2 is a
data character.

[CTRL]S
(DC3 or XOFF)

The “halt output” character of the XON/XOFF handshake. This character
is stripped from the input data when XON/XOFF protocol is enabled.
Chapter 8 201

Intrinsics Reference
FCONTROL(41)
Subsystem break processing also occurs as in normal editing mode,
except that the subsystem break character is defined through the
FCONTROL(41) call.

Because DC1 and DC2 (if the DC2 is the first byte of data) are
recognized as special characters, transparent editing can be
successfully used during block mode reads.

NOTE When several files are open on a device at the same time (multiple
FOPEN calls were issued), transparent editing will be in effect for all of
the files if it was explicitly enabled for any one of them.

If you enable binary editing, transparent editing is automatically
overridden. When you leave binary mode, however, transparent mode
will still be enabled. Binary mode will only be enabled for the file on
which it is enabled. Other files will continue to operate in the mode,
normal or transparent, that was set before binary was enabled.

Parity processing is the same in transparent mode as in standard mode.

Standard editing is restored by calling FCONTROL(41) with the value
of param set to 0. Any FCLOSE call issued against the terminal will
also restore standard editing.

It is possible to enable transparent editing for devices connected via
PAD. However, since the PAD will still expect to see a [Return] as the
data forwarding character, data will not be forwarded from the terminal
immediately after the characters defined as the subsystem break or
EOR characters are typed. The terminal user will need to press [Return]
to cause data to be transmitted, or wait for the data forwarding timer to
expire if it has been set. The host software will still recognize and act on
the characters defined in param.

If this call is issued against a terminal connected via VT from an
MPE V or HP-UX local client, the subsystem break character may not
be redefined. Bits (0:8) should be the existing subsystem break
character to keep status unchanged or set to 0 to return to edited mode.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Failed because the file number specified did not belong
to this process, the device is not a terminal, or an illegal
value was passed in param.
202 Chapter 8

Intrinsics Reference
FCONTROL(41)
Additional Discussion
See also discussions of FCONTROL(4), FCONTROL(16,17),
FCONTROL(25), FCONTROL(26,27) and FSETMODE in this manual.
See Chapter 7, “Programming for PAD, DTC Telnet, Telnet/iX Server,
and VT Devices,” for more information on controlling PAD and DTC
Telnet devices.
Chapter 8 203

Intrinsics Reference
FDEVICECONTROL
FDEVICECONTROL
Provides control operations to a printer, terminal, or spooled device file.

Syntax
I16V UDS I16V I16V

DEVICECONTROL(filenum, buffer, length, controlcode,

U16V U16V U16

parm1, parm2, fserrorcode),

Use
The FDEVICECONTROL intrinsic allows you to perform a variety of
control functions on devicefiles. The function performed by a specific
FDEVICECONTROL call is determined by the values you set for its
parameters.

This manual describes the functions performed when the controlcode
parameter is set to a value of 192 . This particular controlcode is used
to apply various control directives to a devicefile.

A complete list of FDEVICECONTROL options is in Table 8-7. For
controlcode values other than controlcode 192 , see the MPE/iX
Intrinsics Reference Manual.

Table 8-7 Valid FDEVICECONTROL Controlcode Values

Code Operation Performed

128 Character set selection.

129 Logical page activation/deactivation request.

130 Relative pen displacement.

131 Absolute pen move.

132 Define job characteristics.

133 Define physical page.

134 Download/delete character set.

135 Download/delete form.

136 Download logical page table.

137 Download multicopy from overlay table.

138 Download/delete Vertical Format Control (VFC).

139 Download/delete a picture.
204 Chapter 8

Intrinsics Reference
FDEVICECONTROL
The specific action that will be performed by a call to
FDEVICECONTROL using 192 as a value for controlcode is
determined by the value of the parm1 parameter. The applicable
parm1 values and their meanings are described in the parameter
descriptions that follow.

Note that all but one of the functions performed apply only to
asynchronous terminals; controlcode 192 is not used for control of
DTC serial printers. (The exception occurs when a parm1 value of 1 is
used to specify a printer type file.) The parm2 parameter is used to
indicate the Read/Write access desired for each call. That is, should the
call replace old settings with new values, return information to your
program, or both set new values and return old ones.

The parm2 access values allowed with each parm1 control function
are shown in Table 8-8, along with a brief description of the control
function being performed.

In Table 8-8 an R indicates that only Read access is allowed, while R/W
indicates that Read, Write, or both Read and Write access are allowed.

Table 8-8 Allowable Access Value for Device Control

140 Page control.

141 Clear environment.

142 Reserved for MPE/iX.

143 Load the default environment.

144 Print picture.

145 End of job.

146 Device extended capability mode.

192 Device control operations.

193 Record processing information for NRJE spoolfiles.

Code Operation Performed

parm1
Value

Access
Allowed Device Control Operation

1 R/W Specify terminal type or printer type file.

2 R/W Set read timeout value for the next read.

3 R/W Set the line speed for the device.

4 R/W Set echo on or off at terminal.

5 R/W Set system break response on or off at a terminal.

6 R/W Set subsystem break response on or off at a terminal.
Chapter 8 205

Intrinsics Reference
FDEVICECONTROL
8 R Obtain the time used for completion of the last read.

9 R/W Set parity generation and checking on or off.

10 R/W Set type of parity.

11 R/W Set parity generation and checking on or off.

12 R/W Set type of parity.

14 R/W Set line deletion response.

15 R/W Set transparent editing mode.

26 R/W Device XON/XOFF enable.

27 R/W Set XOFF timer value.

28 R Block mode types supported.

29 R/W Define block mode alert character.

30 R/W Define block mode trigger character.

32 R/W Define read trigger character.

36 R/W Define backspace character.

37 R/W Define cancel in character.

39 R/W Define Type 1 EOR character.

40 R/W Define Type 2 EOR character (AEOR).

41 R/W Define subsystem break character.

51 R/W Set typeahead mode.

52 R/W Form feed allowed in output data.

53 R/W Define form feed replacement character.

55 R/W Select backspace response action.

56 R/W Specify data bits per character.

57 R Obtain subsystem break character.

60 R/W Flush typeahead buffer.

61 R/W Bypass typeahead buffer.

62 R/W Quiesce I/O.

63 R/W Single Echo Typeahead Mode.

64 R/W Ignore Parity Error on Input Mode.

65 R/W Inter-Byte Timer

parm1
Value

Access
Allowed Device Control Operation
206 Chapter 8

Intrinsics Reference
FDEVICECONTROL
See previous chapters for examples of using the FDEVICECONTROL
intrinsic to perform device control operations.

Parameters
filenum 16-bit signed integer by value (required)

Contains the file number of the target devicefile as
returned by FOPEN (or HPFOPEN).

buffer user-defined structure (required)

Specifies and returns the device control value of the
control directive specified in parm1. Examples of
information specified or returned by the buffer
parameter include character sets, forms or other
printer control information, and device control actions
such as line speed and parity settings.

The value of parm2 indicates whether buffer specifies
the Read/Write access, where you can specify a device
control status, receive a device control status, or both.
buffer is usually a 16-bit integer by reference;
however, for some values of parm1, (1 and 66) buffer
is a character array.

length 16-bit signed integer by value (required)

Specifies the length of buffer in halfwords or bytes.
Positive values of length indicates the length in
halfwords (2 bytes), and negative values indicates the
length in bytes. With controlcode 192 , length will
usually be set to 1.

66 R/W Define Multiple Type 2 EOR characters (AEOR).

67 R/W Treat Delete Character (DEL) like Backspace (BS).

68 R/W Escape Sequence Read Termination.

69 R/W Suppress echo of Read Termination Characters.

72 R Return PAD line speed.

73 R/W Set FCLOSE timeout value.

74 R/W Suppress last form feed.

76 R/W Host and Device XON/XOFF enable.

77 R/W Set the number of stop bits.

parm1
Value

Access
Allowed Device Control Operation
Chapter 8 207

Intrinsics Reference
FDEVICECONTROL
The exception to this occurs when parm1 is set to 1 to
specify a new terminal type or printer type file for use.
In this case, the length of the character array
containing the name of the file to be used is specified in
the length parameter.

controlcode 16-bit signed integer by value (required)

Specifies the code number of the operation to be
performed. This section of the manual assumes that
controlcode is 192 (device control directive). No
controlcode values other than 192 can be used for
asynchronous terminals. The permitted values for
controlcode and their associated functions are listed
in Table 8-7.

parm1 16-bit unsigned integer by value (required)

Specifies the control directive for the device file
specified in filenum. The permissible values and their
associated meanings are described later in the “Device
Control Directives” section.

parm2 16-bit unsigned integer by value (required)

When controlcode is 192 , indicates whether the call
will read or write device control value. Use the
following values to indicate the desired access for the
call:

1 = Return current value in buffer
(Read)

2 = Set item to value in buffer
(Write)

3 = Return current value in buffer
(Read/Write) and set item to
value in buffer

Table 8-8 shows the type of access allowed for each
parm1 value.

fserrorcode 16-bit unsigned integer by reference
(required)

Returns a file system error code number if an error
occurs. If no error occurs, fserrorcode is set to zero.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied. An error occurred.
208 Chapter 8

Intrinsics Reference
FDEVICECONTROL
Device Control Directives
The following is a list of all possible values for the parm1 argument,
the control directive associated with that value, and a description of the
operation of that control directive.

Value of parm1
Action

1 Specify terminal type or printer type file.

This directive specifies a new terminal type or printer
type file which describes the device to the device driver.
The terminal type or printer type file must be in the
format used by the TTUTIL utility.

The buffer parameter contains the filename of the
terminal type or printer type file. The length
parameter contains the length of buffer.

If this call is issued against a device connected via PAD,
DTC Telnet, Telnet/iX or VT, a CCE condition code is
returned and the terminal type or printer type file
associated with the device will be changed. However,
the device will continue to operate as if no device
control action took place.

2 Set read timeout value for the next read.

This directive specifies a timeout value to apply to the
next read requested. buffer contains the number of
seconds to wait before terminating the read. The read
data is transferred to the user buffer and the read
length is returned. It is the same as FCONTROL (4). A
value of 0 means do not timeout. This device control
effects only the next read.

If the timer expires before the read completes, the read
returns error status 22 (software timeout). This use of
the FDEVICECONTROL intrinsic is the same as a call
to FCONTROL (4).

For reads posted to devices connected via PAD, DTC
Telnet, or Telnet/iX, be sure to add enough time to
compensate for any delays caused by the network.

This call is not supported on devices connected via VT.

3 Set line speed for the device.

This directive sets the line speed for the device. The
speed is the same for input and output. It is the same
as FCONTROL (10, 11, 40). Valid buffer values are (in
Chapter 8 209

Intrinsics Reference
FDEVICECONTROL
characters per second): 30, 120, 240, 480, 960, and
1920, (and 3840 for DTC 72MX direct connected devices
only).

If this call is issued against a device connected through
a PAD, DTC Telnet, or Telnet/iX connection, the
terminal control will be ignored, and a meaningless
value (120 for 1200 baud) will be returned in the call.
For VT connections, the value returned will typically be
960 (for 9600 baud) but this value has no meaning.

4 Set echo at a terminal.

This directive enables and disables echoing of read data
by the DTC. It is the same as FCONTROL (12, 13). If
buffer equals 0, read echo is set to off. If the buffer
value is 1, read echo is set to on.

This directive is not supported for use with VT.
Changing echo on the local client of a VT connection
may result in the remote host receiving false echo
status; hence, it is not recommended for VT
connections.

5 Set system break response.

This directive enables and disables the response to the
system [Break] key at the terminal. It is the same as
FCONTROL (14, 15). A buffer value of 0 disables
system [Break] . A buffer value of 1 enables system
[Break] response.

6 Set subsystem break response.

This directive enables and disables the response to the
subsystem break character at the terminal. It is the
same as FCONTROL (16, 17). A buffer value of 0
disables subsystem break response. A buffer value of 1
enables subsystem break response.

For terminals connected via PAD, the subsystem break
must be followed by a [Return] to signal the PAD that
data is ready to be forwarded.

8 Obtain time used for completion of last read.

This directive returns the amount of time, in seconds,
required for the last read to complete. Since all reads
are timed on MPE/iX systems there is no need to enable
the timer. However, you should be sure that your call to
this intrinsic is before the next read. Only Read access
is allowed for this request. It is the same as
FCONTROL (22). This directive is not supported for
Telnet/iX or VT connections.
210 Chapter 8

Intrinsics Reference
FDEVICECONTROL
9, 11 Set parity generation and checking.

These directives enable and disable parity generation
and checking between the DTC and the device. The
functions of parm1 values 9 and 11 are identical. It is
the same as FCONTROL (23, 24).

A buffer value of 0 disables parity, and all eight bits of
each character are passed through untouched. A buffer
value of 1 enables parity that is set when parm1 is 10
or 12, or when FCONTROL(36) is used. Both input and
output parity are the same.

If this call is issued against a device connected through
a PAD, DTC Telnet, Telnet/iX or VT connection, a CCE
condition code is returned but there is no impact on the
terminal.

10, 12 Set type of parity.

These directives enable or disable the kind of parity
used when parity checking is enabled. The functions of
parm1 values 10 and 12 are identical. If parity
checking is disabled, the setting of this directive is
ignored. It is the same as FCONTROL (36).

There are five possible settings for buffer:

0 indicates no parity checking (eighth bit
always set to 0)

1 indicates no parity checking (eighth bit
always set to 1)

3 indicates even parity

4 indicates no parity checking

5 indicates even parity with eight bit
data length

6 indicates odd parity with eight bit data
length

If this call is issued against a device connected through
a PAD, DTC Telnet, Telnet/iX or VT connection, a CCE
condition code is returned but there is no impact on the
terminal.

14 Set line deletion response.

This directive enables and disables the response to the
line deletion character when received from the
terminal. The response is !!! . [CTRL]X is the default
line deletion character. A buffer value of 0 disables
transmission of !!! , and a value of 1 enables
Chapter 8 211

Intrinsics Reference
FDEVICECONTROL
transmission. If the line delete response is disabled,
line deletion still takes place, but !!! is not echoed.
This directive is the same as FCONTROL (34, 35).

If this call is issued against a device connected through
a PAD, DTC Telnet or VT connection, a CCE condition
code is returned but there is no impact on the terminal.
Line deletion characters are controlled locally by PAD
devices.

15 Set transparent editing mode.

This directive enables and disables transparent
(unedited) mode, and sets the EOR and the subsystem
break characters. It is the same as FCONTROL (41).

A buffer value of 0 disables transparent (unedited)
mode, and enables normal editing mode, with [CTRL]Y
as the subsystem break character and carriage return
as the EOR character.

If buffer is non-0, the low order byte is treated as the
subsystem break character and the high order byte is
treated as the EOR character:

bits (0:8) = subsystem break character

bits (8:8) = EOR character

The special characters listed below may not be used as
the subsystem break or EOR character. A value of 0 in
the subsystem break field disables the subsystem break
facility. The EOR character must be specified when
setting transparent mode. A value of 0 in the EOR field
and a non-zero value in the subsystem break field will
still enable transparent mode but no EOR will be
recognized. Transparent editing mode treats most
special characters as data, but the following special
characters retain their meaning:

AEOR character Alternate End of Record

[Break] System Break

[CTRL]R HP Block mode alert

[CTRL]Q XON

[CTRL]S XOFF

If the device is connected via PAD, the terminal user
must enter a [Return] to signal to the PAD to transmit
data. The subsystem break and EOR characters defined
in this directive will still be recognized by the host
software. If the device is connected via VT from an
212 Chapter 8

Intrinsics Reference
FDEVICECONTROL
MPE V or HP-UX local client, the subsystem break
character must be set to the existing subsystem break
character when enabling transparent mode.

26 Device XON/XOFF enable.

This directive enables and disables XON/XOFF flow
control between the device and the DTC. A buffer
value of 1 enables device XON/XOFF, and a value of 0
disables XON/XOFF. When device XON/XOFF is
enabled, the DTC stops sending data to the device
when it receives XOFF and resumes when it receives
XON. The DTC does not send XON/XOFF characters to
the host. When device XON/XOFF is disabled, the XON
and XOFF characters are passed to the host as data.
When XON/XOFF flow control is disabled, data
overruns can occur.

If this control is issued to a terminal connected via
PAD, DTC Telnet, Telnet/iX or VT, it will return a CCE
condition code, but no terminal control action will occur.

27 Set XOFF timer value.

This directive enables or disables the XOFF timer<.
The timer is enabled by passing a positive value,
representing a time limit in seconds, in the buffer
parameter. When enabled, the XOFF timer causes a
warning message to be sent to the console if a device is
XOFFed for a time exceeding the set limit. A buffer
value less than or equal to 0 disables the XOFF timer.

If this control is issued to a terminal connected via
PAD, DTC Telnet, Telnet/iX or VT, it will return a CCE
condition code, but no terminal control action will occur.

28 Block mode types supported.

This directive returns a value indicating the type of
block mode supported by the driver. The possible return
values are shown below:

7 = both line and DTC style page block
mode

15 = PAD terminal supporting page block
mode

This directive is not supported for terminals connected
via DTC Telnet or via VT from a PC or HP-UX local
client.
Chapter 8 213

Intrinsics Reference
FDEVICECONTROL
29 Define block mode alert character.

This directive specifies the character that signals HP
block mode transfers. The normal alert character is
DC2. Note that this call only defines the alert
character; it does not enable HP block mode. The low
order byte of buffer contains the new alert character.

If issued against a terminal connected via PAD, DTC
Telnet or VT, this call will return a CCE condition code,
but the device control action will not occur.

30, 32 Define read trigger character.

These directives specify the character the DTC sends to
trigger a read on the device. The normal trigger
character is DC1. The low order byte of buffer contains
the read trigger character. If the low order byte of
buffer contains a NUL character, there is no trigger
character.

If issued against a terminal connected via PAD, DTC
Telnet or VT, this call will return a CCE condition code
but the device control action will not occur.

36 Define backspace character.

This directive specifies the backspace character in
normal editing mode. The low order byte of buffer
contains the new backspace character.

If issued against a terminal connected via VT, this call
will return a CCE condition code but no device control
action will take place.

37 Define cancel line character.

This directive specifies the line deletion character for
normal editing mode. The low order byte of buffer
contains the new line deletion character. [CTRL]X is the
default cancel line character.

If issued against a terminal connected via VT, this call
will return a CCE condition code but no device control
action will take place.

39 Define type 1 EOR character.

This directive specifies the EOR (End-of-Record)
character to be used in normal or transparent editing
mode. The high order byte of buffer (value*256)
contains the new Type 1 EOR character. A NUL
character disables the EOR character. [Return] is the
default EOR character.
214 Chapter 8

Intrinsics Reference
FDEVICECONTROL
The following special characters retain their meaning:

AEOR character Alternate End of Record

[Break] System Break

[CTRL]R Same as XON if it is first character in
the record

[CTRL]Q XON

[CTRL]S XOFF

If a [Return] is issued via PAD, and the EOR is not
[Return] , the EOR will be set and a timer (.5 second) will
be enabled that will timeout and transmit the data if
the user enters the EOR but does not enter a [Return] . If
[Return] is the EOR character, the system will wait for a
[Return] and the timer (.5 second) will not time out.

If issued against a terminal connected via VT, this call
will return a CCE condition code but no device control
action will take place.

40 Define single type 2 EOR character (AEOR).

This directive specifies an AEOR (Additional End of
Record) character and enables its use. It is the same as
FCONTROL (25). The high order byte of buffer
(value*256) contains the new AEOR character. Use a
NUL character to disable the AEOR character. You can
use any character as the AEOR character; however,
avoid the following characters because their use may
yield unpredictable results:

[CTRL]@ NUL (null)

[CTRL]Q XON

[CTRL]S XOFF

[CTRL]Y the Subsystem break by default

[Return] carriage return

[CTRL]J line feed

[CTRL]X cancel line character by default

[CTRL]H backspace by default

[DC2] block mode alert character by default

[ESC] escape

The Define Single Type 2 EOR character (AEOR)
control directive (FCONTROL 25 or
FDEVICECONTROL 40) and Define Multiple Type 2
Chapter 8 215

Intrinsics Reference
FDEVICECONTROL
EOR characters (AEOR) control directive
(FDEVICECONTROL 66) interact closely. A call to set
a single AEOR sets the specified character as the AEOR
character, and all other AEOR characters are cleared. A
call to set multiple AEORs sets all of the characters
specified in the array, and it clears the single AEOR.

This call is not supported for use with VT.

41 Define subsystem break character.

This directive specifies the subsystem break character.
The high order byte of buffer (value*256) contains the
new subsystem break character. The default subsystem
break character is [CTRL]Y .

If this request is issued for a terminal connected via
PAD, the host software recognizes the new subsystem
break character, but the terminal user must type a
[Return] following the subsystem break to signal the
PAD to transmit the data.

If issued against a terminal connected via VT, this call
will return a CCE condition code but no device control
action will take place.

51 Set typeahead mode.

This directive enables and disables typeahead mode. A
buffer value of 0 disables typeahead mode. A buffer
value of 1 enables typeahead mode. Typeahead mode is
disabled by default.

When a terminal is in typeahead mode, up to
224 characters may be entered before a read is posted.
The device driver stores the typeahead data in a
typeahead buffer until it receives a read. The terminal
operator may enter data in advance of the actual
posting of a read. When a terminal is not in typeahead
mode, the terminal operator may enter data only when
a read has been posted to the terminal.

If issued against a terminal connected via PAD or DTC
Telnet, this call will return a CCE condition code, but
the device control action will not occur. This directive is
not supported for VT connections to MPE V remote
devices or PCs without appropriate NS software.
Additionally, HP-UX (VT3K) supports single echo
typeahead only.

Refer to Chapter 6, “Typeahead Mode,” for more
information on using typeahead mode.
216 Chapter 8

Intrinsics Reference
FDEVICECONTROL
52 Form feed allowed in output data.

This directive enables and disables the substitution of
the form feed character in the output stream. If buffer
is 1, the device driver does not substitute the form feed
character when it is encountered in the carriage control
of terminals. If buffer is 0, the device driver
substitutes any form feed characters encountered in the
carriage control of terminals with form feed
replacement character.

53 Define form feed replacement character.

This directive specifies the form feed replacement
character. The low order 8 bits of buffer contains the
new form feed replacement character. Note that form
feed in carriage control information will be replaced;
form feed in data will not. NUL is the default form feed
replacement character.

55 Select backspace response action.

This directive specifies the action the DTC will take
when it receives a backspace character. The valid
values for buffer are shown below:

1 remove character from input and back
cursor up one space

5 remove character from input and erase
character backspace, space, backspace)

If issued against a terminal connected via PAD, DTC
Telnet or VT, this call will return a CCE condition code,
but the device control action will not occur.

56 Specify data bits per character.

This directive specifies whether 7 or 8 bits will be used
for each character. If buffer is 7, then 7 data bit
characters are used, and the current parity setting
(directives 9 and 11 or FCONTROL(36)) controls parity
generation and checking.

If buffer is 8, then 8 bit characters are used, and parity
checking is disabled. The current parity setting is
reenabled if you switch back to 7 data bits.

If issued against a terminal connected via PAD, DTC
Telnet, Telnet/iX or VT, this call will return a CCE
condition code, but the device control action will not
occur.
Chapter 8 217

Intrinsics Reference
FDEVICECONTROL
57 Obtain subsystem break character.

This directive returns the current subsystem break
character. It only returns a value, and may not be used
to change the subsystem break character.

60 Flush typeahead buffer.

This directive flushes the typeahead buffer. If buffer
equals 1, the device driver flushes the typeahead buffer,
and any data in the buffer is lost. This request is valid
for the next read only. A value of 0 has no effect on the
typeahead buffer. This request is only valid if
typeahead is enabled. (See parm1 = 51)

If issued against a terminal connected via PAD or DTC
Telnet, this call will return a CCE condition code, but
the device control action will not occur. If issued against
a terminal connected via VT to an MPE V system, this
call will return an error.

61 Bypass typeahead buffer.

This directive specifies that the next read shall be
taken from the terminal and not the typeahead buffer.
If buffer is 1, the next read will receive data directly
from the device; the read bypasses any data in the
typeahead buffer. The data in the typeahead buffer will
not be flushed, and can be obtained by subsequent
reads. The request is valid for the next read only. A
buffer value of 0 allows the typeahead buffer to
function normally. (See parm1 = 51)

You may use this directive to obtain status information
directly from a device. This request is only valid if
typeahead is enabled.

If issued against a terminal connected via PAD or DTC
Telnet, this call will return a CCE condition code, but
the device control action will not occur. If issued against
a terminal connected via VT to an MPE V or HP-UX
system, this call will return an error.

62 Quiesce I/O.

This directive ensures that all outstanding nowait I/O
operations have completed. If buffer is 1, the call to
FDEVICECONTROL does not complete until all nowait
I/O operations have been fulfilled for the device. A
buffer value of 0 has no effect, and returns
immediately.
218 Chapter 8

Intrinsics Reference
FDEVICECONTROL
If issued against a terminal connected via DTC Telnet
or via VT to an HP-UX or PC local client, this call will
return an error.

63 Single echo typeahead mode.

This directive specifies that the device driver shall
withhold the echoing of typeahead data until a read is
posted for the data. This facility prevents passwords
and other data from being echoed at inappropriate
times. This directive is not valid if typeahead mode is
disabled. A buffer value of 1 enables single echo
typeahead mode. A buffer value of 0 restores normal
typeahead mode.

If issued against a terminal connected via PAD or DTC
Telnet, this call will return a CCE condition code, but
the device control action will not occur. If issued against
a terminal connected via VT to an MPE V local client,
this call will return an error. Also, this directive is
supported for VT connections to an MPE/iX host or PC
running appropriate software only.

64 Ignore parity error on input mode.

This directive causes the device driver to ignore parity
errors on input data. If buffer is 1, the device driver
ignores parity errors on data received from the
terminal. If buffer is 0, the device driver reports all
parity errors; this is the default setting.

If this directive is issued against a terminal connected
via PAD, DTC Telnet, or Telnet/iX, this call will return
a CCE condition code, but the device control action will
not occur. This directive is not supported for use with
VT connections and will return an error if used

65 Inter-byte timer.

This directive sets the inter-byte timer. When a read is
posted with the inter-byte timer enabled, the DTC
waits indefinitely to receive the first character of data.
The inter-byte timer starts when the DTC receives a
character from the terminal. The DTC restarts the
timer each time it receives another character. If the
timer reaches the specified duration before the DTC
receives the next character, the read completes. If
typeahead mode is enabled, the timer does not start
until all data has been read from the typeahead buffer.
The inter-byte timer and the read timer are
independent of one another and either may complete a
given read.
Chapter 8 219

Intrinsics Reference
FDEVICECONTROL
This control directive is incompatible with the Escape
Sequence Read Termination control directive
(parm1 = 68). If both are enabled, the second
FDEVICECONTROL will return an error.

A positive value in buffer indicates the inter-byte
timer value in tenths (.1) of a second. That is, a value of
10 in buffer sets the inter-byte timer to expire in
1 second. If buffer is 0, the inter-byte timer is
deactivated.

If this directive is issued against a terminal connected
via PAD or DTC Telnet, this call will return a CCE
condition code, but the device control action will not
occur. This directive is not supported for VT
connections from an MPE V or HP-UX local client and
will return an error if used. Also, this directive is
supported for VT connections to an MPE/iX host or PC
running appropriate software only.

66 Define multiple type 2 EOR characters (AEOR).

This directive specifies up to 16 Alternate End of
Record characters. The buffer argument is a byte
array containing up to 16 characters. The following
characters may not be used as AEOR characters:

[CTRL]@ NUL

[CTRL]Q XON

[CTRL]S XOFF

[CTRL]Y the Subsystem break by default

The characters shown below should not be used as
AEOR characters because they may yield unpredictable
results:

[Return] carriage return

[CTRL]J line feed

[CTRL]X cancel line character by default

[CTRL]H backspace by default

[DC2] block mode alert character by default

[ESC] escape

The length argument contains the length of the array.
If buffer contains 0s or if length is 0, all AEOR
characters are canceled.
220 Chapter 8

Intrinsics Reference
FDEVICECONTROL
The Define Single Type 2 EOR character (AEOR)
control directive (parm1 = 40) and Define Multiple
Type 2 EOR characters (AEOR) control directive
(parm1 = 66) interact closely. A call to set a single
AEOR sets the specified character as the AEOR
character, and all other AEOR characters are cleared. A
call to set multiple AEORs sets all of the characters
specified in the array, and it clears the single AEOR.

If this directive is issued against a terminal connected
via PAD or DTC Telnet, this call will return a CCE
condition code, but the device control action will not
occur. This directive is not supported for VT
connections from an MPE V or HP-UX local client and
will return an error if used. Also, this directive is
supported for VT connections to an MPE/iX host or PC
running appropriate software only.

67 Delete (DEL) to backspace (BS) Mapping.

This directive causes the DTC to treat the DEL
character (ASCII 127) like a backspace. The DTC treats
both backspace and delete as defined by the Backspace
Response Action control directive (parm1 = 55). If the
backspace would normally be part of the read data, the
DTC replaces the delete with backspace. If buffer is 1,
the DTC treats the delete character like the backspace
(for example, echoes backspace-space-backspace). If
buffer is 0, the DTC processes the delete character
normally in binary and unedited mode; otherwise it
ignores the data. The backspace character is not
affected by this directive.

If this directive is issued against a terminal connected
via PAD or DTC Telnet, this call will return a CCE
condition code, but the device control action will not
occur. Also, this directive is supported for VT
connections to an MPE/iX host or PC running
appropriate software only.

68 Escape sequence read termination.

This directive terminates reads after an escape (ESC)
character is encountered. It is used to capture entire
escape sequences (usually associated with a key) from
the terminal without performing multiple reads. When
you enable this mode, the DTC sets the inter-byte timer
after receiving an escape character and then
terminates the read.
Chapter 8 221

Intrinsics Reference
FDEVICECONTROL
The DTC sets the inter-byte timer to the time it takes
to transmit 2 characters at the current baud rate (see
parm1 = 3). The read returns with all characters
received with less than a 2 character delay between
them. This ensures that the read included all of the
automatically generated escape sequence characters.
Because the DTC uses the inter-byte timer to time the
read termination, this control directive is incompatible
with the Inter-Byte Timer (parm1 = 65). If both are
enabled, the second FDEVICECONTROL will return
an error.

A buffer value of 1 enables escape sequence read
termination. A buffer value of 0 disables escape
sequence read termination.

If this directive is issued against a terminal connected
via PAD or DTC Telnet, this call will return a CCE
condition code, but the device control action will not
occur. This directive is not supported for VT
connections from an MPE V or HP-UX local client and
will return an error if used. Also, this directive is
supported for VT connections to an MPE/iX host or PC
running appropriate software only.

69 Suppress echo of read termination characters.

This directive causes the DTC not to echo read
termination characters to the terminal. This directive
is particularly useful with special AEOR characters
which may make cursor positioning uncertain. (For
example, you might use a “?” character as a help
request.)

If buffer is 1, the DTC does not echo read termination
characters (EOR and all AEOR characters). If buffer is
0, the DTC echos all characters according to the setting
of the Set Echo at Terminal control directive
(parm1 = 4).

If this directive is issued against a terminal connected
via PAD or DTC Telnet, this call will return a CCE
condition code, but the device control action will not
occur. This directive is not supported for VT
connections from an MPE V or HP-UX local client and
will return an error if used. Also, this directive is
supported for VT connections to an MPE/iX host or PC
running appropriate software only.
222 Chapter 8

Intrinsics Reference
FDEVICECONTROL
72 Return PAD line speed.

This directive will return the current line speed of a
terminal connection, including PAD connections. The
line speed in characters per second will be returned in
buffer.

NOTE When the connection is first established, the DTC sends the line speed
to the host. If the user changes the line speed locally (between the PAD
and the terminal), this FDEVICECONTROL will not reflect the change.

73 Set FCLOSE timeout value.

This directive establishes a timeout value for an
FCLOSE request. If the timer expires before the close is
terminated successfully, the connection is aborted.

This call is not supported for use with Telnet/iX or VT.
The Telnet/iX or VT driver will return a condition code
even though no device control action will take place.

WARNING Data loss can occur when the connection is aborted due to the
timer expiration.

This FDEVICECONTROL should be called immediately before
the FCLOSE. Sending any I/O commands to the LDEV after this
FDEVICECONTROL and before the FCLOSE will cause the port
to become inoperative.

buffer value:

1–2147 timer is set to value in seconds; values
less than 1 or greater than 2147 are
invalid

These are the error conditions returned in the
fserrorcode field:

68 internal error—most likely a
parameter error; verify that timer
value is within range 1–2147 seconds

32 software abort—timer expired and
connection aborted, data loss may have
occurred

0 successful—connection closed normally

This call is not supported for use with DTC Telnet,
Telnet/iX or VT. The driver will return a condition code
even though no device control action will take place.

74 Suppress the last form feed.

For printers only.
Chapter 8 223

Intrinsics Reference
FDEVICECONTROL
This directive will suppress the form feed normally sent
by the serial printer driver during close processing.
This FDEVICECONTROL is often used when an
application sends its own form feed at the end of a
document. The combination of the application’s form
feed and the serial printer driver’s form feed produces
an extra blank page at the end of the document. The
use of this FDEVICECONTROL will suppress the
serial printer driver’s form feed. This
FDEVICECONTROL must be called for every
document since it is automatically turned off at the end
of printing.

The buffer parameter is not used in this
FDEVICECONTROL.

This call is not supported for use with DTC Telnet,
Telnet/iX or VT. The driver will return a condition code
even though no device control action will take place.

76 Host and Device XON/XOFF enable.

This directive enables and disables XON/XOFF flow
control between device and the DTC.

Device XON/XOFF:

When device XON/XOFF is enabled, the DTC stops
sending data to the device when it receives XOFF. It
resumes it on receiving an XON. However, when the
XON/XOFF is disabled, the XON and XOFF characters
received by the DTC are simply passed to the host
without any interpretation.

Host XON/XOFF:

When Host XON/XOFF is enabled, the DTC sends an
XOFF character to the device when its receive buffer
becomes full. Then, when the data is transmitted to the
CPU, the DTC sends an XON character to the device
and restarts the input data flow.

There are four possible flow control settings for buffer
values:

0 disable both device and host flow
control

5 enable device flow control

9 enable host flow control

13 enable both device and host flow control
224 Chapter 8

Intrinsics Reference
FDEVICECONTROL
77 Set the number of stop bits.

This directive specifies the number of stop bits used.

There are two possible settings for buffer:

0 indicate the number of stop bits to 1

1 indicate the number of stop bits to 2

Additional Discussion
See the discussions of the various uses of the FCONTROL intrinsic. See
also the MPE/iX Intrinsics Reference Manual, the discussion of
providing control operations to devices in Accessing Files Programmer’s
Guide, and the IFS/3000 Reference Manual. For examples of using
FDEVICECONTROL, see this manual.
Chapter 8 225

Intrinsics Reference
FDEVICECONTROL
226 Chapter 8

9 Intrinsics Reference (cont)
This chapter presents reference information pertaining to the intrinsics
discussed in this manual. Each is described using the same format as
that used in the MPE/iX Intrinsics Reference Manual; that is, each
intrinsic description does the following:

• Gives the intrinsic name.

• Describes the syntax of a call to the intrinsic.

• Summarizes the use of the intrinsic.

• Defines intrinsic parameters.

• And, where applicable:

• Explains condition codes

• Gives information on the functional return.

• Discusses any special considerations.

• Points to areas of additional discussion.

NOTE This manual applies explicitly to the use of intrinsics in native mode
programs running on MPE/iX systems. Certain terms are therefore
given specific connotations. The term word is used to designate a 32-bit
discrete object, while halfword designates a 16-bit discrete object, and
byte designates an 8-bit discrete object.
227

Intrinsics Reference (cont)
FERRMSG
FERRMSG
Returns a message corresponding to an FCHECK error number.

Syntax
I16 CA I16

FERRMSG(fserrorcode, msgbuffer, msglength);

Use
You can use FERRMSG in your program to obtain the error message
associated with a specific error number returned in a call to FCHECK.
The FCHECK error number is used as the value of fserrorcode in the
call to FERRMSG. The textual message associated with the error
number is then returned in msgbuffer, with the length of the message
returned in msglength.

A typical error handling routine might consist of the following steps:

1. Check condition code.

2. If CCL or CCG, call FCHECK to obtain specific details about the
error that occurred, including the error number.

3. Call FERRMSG using the error number obtained in the FCHECK
call as the value of fserrorcode.

You can then print the error message, display it to the terminal screen
or console, or take whatever action is appropriate.

Parameters
fserrorcode 16-bit signed integer by reference

(required)

Passes an error code returned by the FCHECK intrinsic
indicating which message is to be returned in
msgbuffer.

msgbuffer character array (required)

Returns the error message associated with
fserrorcode. To contain the longest possible message,
msgbuffer must be a minimum of 72 bytes long. Note
that all character arrays must start on a halfword
boundary.

msglength 16-bit signed integer by reference
(required)
228 Chapter 9

Intrinsics Reference (cont)
FERRMSG
Returns the length of the error message contained in
msgbuffer. The length is returned as a positive byte
count.

Condition Codes
CCE Request granted.

CCG Request denied. No error message exists for the
fserrorcode.

CCL Request denied. The msgbuffer address was out of
bounds, msgbuffer was not large enough, or
msglength was out of bounds

Additional Discussion
See the discussion of returning error messages to your program in
Accessing Files Programmer’s Guide.
Chapter 9 229

Intrinsics Reference (cont)
FFILEINFO
FFILEINFO
Provides information about the characteristics of a file.

Syntax
I16V I16V *

FFILEINFO(filenum[, itemnum,item

[, itemnum,item

[, itemnum,item

[, itemnum,item

[, itemnum,item]]]]]);

Use
The FFILEINFO intrinsic returns information about a file located on
any device. The file must be opened by the calling process at the time of
the FFILEINFO call. You specify the type of information you want to
access by using an item number that corresponds to that information as
the value of itemnum . The file information requested is then returned
to your program in the item parameter that constitutes the other half
of the itemnum/item pair.

The itemnum and item parameters must always be specified in pairs.
You can retrieve up to 5 types of information in one FFILEINFO call by
specifying 5 itemnum/item pairs.

Table 9-1 shows some of the information options available through a
call to FFILEINFO. Only the subset of options most applicable to files
in asynchronous devices are listed here. For a complete list of available
options, see the MPE/iX Intrinsics Reference Manual.

Parameters
filenumn 16-bit signed integer by value (required)

The file number of the file about which information is
requested.

itemnum 16-bit signed integer by value (optional)

Passes the item number (in any order) of an
information option. You can request up to 5 options in
one call.

item type varies (optional)

Returns information about the file as pertains to the
option specified in the related filenum.
230 Chapter 9

Intrinsics Reference (cont)
FFILEINFO
Table 9-1 Selected Item Values Returned by FFILEINFO

Item
No. Info. Returned In Item Type

1 Actual file designator of the file, in the
format:
filename.groupname.accountname

Character array, at least 28 bytes in length.
Unused bytes are filled with right justified
blanks and a nameless file returns an
empty string. The fully qualified name of
the file referenced by filenum is returned
as the value of this itemnum. Only names
which can be expressed using MPE only
semantics are returned by this itemnum. if
the name of the object referenced by
filenum cannot be expressed using MPE
name semantics a CCL condition code is
returned. Calling FCHECK for filenum
after this error occurs, will result in error.

2 File options (refer to the summary figure
listing foptions bit settings).

16-bit unsigned integer by reference.

3 Access options (refer to the summary
figure listing aoptions bit settings).

16-bit unsigned integer by reference.

5 Device type indicated by: bits (8:8) =
device type.

16-bit signed integer by reference.

6 Local device number of the device where
the file label resides.

16-bit unsigned integer by reference.

12 Number of logical records passed to and
from your program during the current
access.

32-bit signed integer by reference.

13 Number of buffered physical I/O
operations performed since the last
FOPEN/HPFOPEN call (records).

16-bit signed integer by reference.

43 Environment file name. Character array, at least 36 bytes in length.

50 Real device number of the file. 16-bit unsigned integer by reference.

60 Terminal type, defined as follows:
0–File’s associated device is not a
terminal.
1–Configured as standard hardwired
terminal. Could also be TELNET/iX
device.
2–Configured as a modem-connected
terminal. Could also be TELNET/iX
device.
4–DTC PAD Terminal.
5–NS Virtual Terminal.

16-bit signed integer by reference.
Chapter 9 231

Intrinsics Reference (cont)
FFILEINFO
Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Access or calling sequence error.

Additional Discussion
See also Getting System Information and the MPE/iX Intrinsics
Reference Manual. See the discussion of FOPEN in this manual for a
description of aoption and foption values.
232 Chapter 9

Intrinsics Reference (cont)
FGETINFO
FGETINFO
Returns access and status information about a file.

Syntax
I6V CA U16 U16

FGETINFO(filenum, formaldesignator , foptions , aoptions ,

I16 I16 U16 U16

, devtype , ldevnum , hdaddr ,

I16 I32 I32 132 I32

filecode , lrecptr , EOF, filelimit , logcount ,

I32 I16 U16 I16

physcount , blksize , extsize , numextents ,

I16 CA I32

userlabels , creatorid , labaddr);

Use
The FGETINFO intrinsic returns access and status information about
a file located on any device. The file must be opened by the calling
process at the time of the FGETINFO call. When using this intrinsic
you need only specify those parameters that return the information
options you want. The default in all cases is that information that is not
explicitly requested is not returned.

Only those parameters that return information that applies to
asynchronous devices are described below. For an explanation of all the
parameters, you should see the MPE/iX Intrinsics Reference Manual.

Parameters
filenum 16-bit signed integer by value (required)

The file number of the file about which information is
required.

formaldesignator character array (optional)

Returns the actual designator of the file being
referenced in the following format:

filename.groupname.accountname

The formaldesignator array must be at least
28 bytes in length. When the actual designator is
returned, unused bytes in the array are filled with
Chapter 9 233

Intrinsics Reference (cont)
FGETINFO
blanks on the right. A nameless file returns an empty
string. Note that all character arrays must start on a
halfword boundary.

The fully qualified name of the file referenced by
filenum is returned as the value of this parameter.
Only names which can be expressed using MPE only
semantics are returned. If the name of the object
referenced by filenum cannot be expressed using MPE
name semantics, a CCL condition code is returned.
Calling FCHECK after this error will result in an error.

foptions 16-bit unsigned integer by reference
(optional)

Returns information about the foption characteristics
that are set through the FOPEN or HPFOPEN call.
The bit settings that designate each of these
characteristics are listed below. Note that not all of the
foptions are meaningful for files on asynchronous
devices.

Bits (14:2) —Domain foption .

Domain is meaningless for asynchronous devicefiles.
However, if file redirection was anticipated at the time
the file was opened, these bits may have been set.

=00 The file is a new file.

=01 The file is an old permanent file.

=10 The file is an old temporary file.

=11 The file is an old file.

Bit (13:1)—ASCII/binary foption.

Note that all files not on disk are treated as ASCII.

=0 Binary.

=1 ASCII.

Bit (10:3)—Default file designator foption .

=000 The actual and formal file designators
are the same.

=001 The actual file designator is $STDLIST .

=010 The actual file designator is $NEWPASS.

=011 The actual file designator is $OLDPASS.

=100 The actual file designator is $STDIN.

=101 The actual file designator is $STDINX.
234 Chapter 9

Intrinsics Reference (cont)
FGETINFO
=110 The actual file designator is $NULL.

Bits (8:2)—Record format foption .

These bits are not meaningful for asynchronous devices
since all records are of undefined length. However, if
redirection was anticipated, “fixed-length” may have
been specified.

=00 Fixed-length records.

=01 Variable-length records.

=10 Undefined-length records.

=11 Spoolfile.

Bit (7:1)—Carriage control foption .

=0 No carriage control character expected.

=1 Carriage Control character expected.

Bit (6:1)—MPE/iX tape label foption .

Not meaningful for asynchronous devices, but may
have been set if file redirection was anticipated.

=0 Nonlabeled tape.

=1 Labeled tape.

Bits (5:1)—Disallow :FILE equation foption .

If this bit is set to 1, any :FILE equation intended to
override the specifications set through the FOPEN or
HPFOPEN call will be ignored.

=0 Allow :FILE command

=1 Disallow :FILE command.

Bits (2:3)—File type foption .

Will be set to 000 for asynchronous devicefiles.

=000 Standard file (STD).

=001 Keyed Sequential Access Method file
(KSAM).

=010 Relative I/O file (RIO).

=100 Circular file (CIR).

=110 Message file (MSG).

Bits (0:2)—Reserved for MPE/iX. These should be set
to 0.
Chapter 9 235

Intrinsics Reference (cont)
FGETINFO
aoptions 16-bit unsigned integer by reference
(optional)

Returns information about the aoption characteristics
that are set through the FOPEN or HPFOPEN call.
The bit settings that designate each of these
characteristics are listed below. Note that not all of the
aoptions are meaningful for files on asynchronous
devices.

Bits (12:4)—Access type aoption .

The type of access allowed users of the file. Refer to
Table 9-2 for a summary of how these settings apply to
terminals and printers.

=0000 Read access only.

=0001 Write access only.

=0010 Write access only, but previous data in
file not deleted.

=0011 Append access only.

=0100 Input/output access.

=0101 Update access.

=0110 Execute access.

=0111 Execute/read access.

=1000 No access.

Bit (11:1)—Multirecord aoption .

Allows a block of data that exceeds the file’s physical
record size to be transmitted as several records. This
option is available for use with terminals, but not for
printers.

=0 Select non-multirecord mode.

=1 Select multirecord mode.

Bit (10:1)—Dynamic locking aoption

Not meaningful for asynchronous devices.

Bit (8:2)—Exclusive access aoption

Specifies whether you have continuous exclusive access
to this file. This option does not apply to printers.

=00 Default.

=01 Exclusive access.

=10 Semi-exclusive access.
236 Chapter 9

Intrinsics Reference (cont)
FGETINFO
=11 Shared access.

Bit (7:1)—Inhibit buffering aoption

Not meaningful for asynchronous devices.

Bit (5:2)—Multiaccess mode aoption

Not meaningful for asynchronous devices.

Bit (4:1)—NOWAIT I/O aoption

Indicates whether or not NOWAIT I/O has been
specified for the file. NOWAIT I/O allows the accessor to
initiate an I/O request and to have control returned
before the completion of the request.

=0 NOWAIT I/O not in effect.

=1 NOWAIT I/O in effect.

Bits (3:1)—File copy access aoption

Specifies whether or not a file may be treated as a
standard sequential file rather than as a file of its own
type.

=0 File must be accessed as its own type.

=1 File may be accessed as standard
sequential file.

Bits (0:3)—Reserved for MPE/iX.

Table 9-2 Access Types

lrecsize 16-bit signed integer by reference
(optional)

Access Types Value Used with a Terminal Used with a Printer

Read only 0000 OK. Returns File System Error 40:
Operation Inconsistent with
Access type.

Write only
(Write/Delete)

0001 OK. OK.

Write (save) only 0010 OK. Executed as Write only.

Append only 0011 OK. Executed as Write only.

Read/Write 0100 OK. Executed as Write only.

Update 0101 OK. Executed as Write only.

Execute 0110 Returns File System Error 40:
Operation Inconsistent with
Access type.

Returns File System Error 40:
Operation Inconsistent with
Access type.
Chapter 9 237

Intrinsics Reference (cont)
FGETINFO
Returns the logical record size associated with the file.
This parameter is subject to record size limits imposed
by MPE/V based systems, and is maintained only for
backward compatibility.

If the record size of the specified file exceeds MPE/V
limits, a zero is returned.

devtype 16-bit signed integer by reference
(optional)

Returns the type and subtype of the device being used,
where bits (0:8) indicate device subtype, and bits (8:8)
indicate device type. Note that subtypes do not apply
for terminals and printers.

If the file is not spooled the devtype returned is actual.
The same is true if a spool file was opened via the
logical device number. However, if an output file is
spooled and was opened by device class name, devtype
will return information about the first device in the
class, which may not be the device actually being used.

ldevnum 16-bit unsigned integer by reference
(optional)

Returns the logical device number of the port (and
device) associated with the file.

hdaddr 16-bit unsigned integer by reference
(optional)

Returns 2048. This value is meaningless on MPE/iX
based systems; it is maintained only for backward
compatibility.

filecode 16-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.

lrecptr 32-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.

EOF 32-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.

filelimit 32-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.
238 Chapter 9

Intrinsics Reference (cont)
FGETINFO
logcount 32-bit signed integer by reference
(optional)

Returns the total number of logical records passed to
and from the program during the current access of the
file.

physcount 32-bit signed integer by reference
(optional)

Returns the total number of physical input/output
operations performed within this process against the
file since the last FOPEN or HPFOPEN call.

blksize 16-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.

extsize 16-bit unsigned integer by reference
(optional)

Not meaningful for asynchronous devices.

numextent 16-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.

userlabels 16-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.

creatorid character array (optional)

Not meaningful for asynchronous devices.

labaddr 32-bit signed integer by reference
(optional)

Not meaningful for asynchronous devices.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied. An error occurred.

Additional Discussion
See the discussion of requesting file information in Getting System
Information and the MPE/iX Intrinsics Reference Manual. See also
discussions of FFILEINFO and FOPEN in this manual.
Chapter 9 239

Intrinsics Reference (cont)
FOPEN
FOPEN
Opens a file, defines its physical characteristics, and sets up access to
the file.

Syntax
I16 CA U16V U16V

filenum :=FOPEN(formaldesignator , foptions , aoptions ,

I16V CA CA 16V

recsize , device , formmsg , userlabels ,

I16V I16V I32V

blockfactor , numbuffers , filesize ,

I16V I16V I16V

numextents , initialloc , filecode);

Use
The FOPEN intrinsic sets up access to a file and defines its
characteristics and the manner in which it may be accessed. In the
FOPEN intrinsic call, you can specify a formal file designator to be
associated with the file. This allows you to control the file through file
equations when the program is run.

When the FOPEN intrinsic is executed, it returns a file number to the
user’s process as its functional return value. Because this file number is
unique among all other file numbers currently assigned by the system
to this process, it is this file number, rather than the formal file
designator, that is used by subsequent intrinsic calls to reference the
file.

Functional Return
filenum 16-bit signed integer (assigned functional

return)

Returns the file number that will be used to identify the
opened file in subsequent intrinsic calls.

Parameters
formaldesignator character array (optional)

Passes a string to be associated with the file as its
formal file designator. The string can contain
alphanumeric characters, slashes or periods, and
terminates with any nonalphanumeric character except
240 Chapter 9

Intrinsics Reference (cont)
FOPEN
a slash (/), a colon (:), or a period (.). If the string is the
name of a system defined file it will begin with a dollar
sign ($). If the string is the name of a user predefined
file, it can begin with an asterisk (*). You can specify
the remote location of a device as filename:envid .

If you use one of the system defined files, the file can be
used for either input, ($STDIN, $STDINX) or output,
($STDLIST), but not for both.

Though not required, the use of a formal file designator
is recommended in programs written for asynchronous
devices because of the flexibility it provides. If no
formaldesignator is specified, a temporary nameless
file is assigned that you can read from or write to, but
not save. Note that all character arrays must start on a
halfword boundary.

foptions 16-bit unsigned integer by value (optional)

You can specify various file characteristics by setting
corresponding bit groupings in foptions . The
correspondence is from right to left, beginning with
bit 15. These characteristics are as follows, proceeding
from the rightmost bit groups to the leftmost bit groups
in the word. Not all of the characteristics specified in
foptions have meaning for asynchronous devices, as
noted in the descriptions of the individual bit settings.

Specifying foptions as zero is equivalent to not
specifying foptions .

Bits (14:2)—Domain foptions .

Used to specify the file domain. If you anticipate
redirection of the file to some other device, you should
select a domain of 11 (Old Permanent or Temporary).

=00 The file is a NEW file.

=01 The file is a PERMANENT file.

=10 The file is a TEMPORARY file.

=11 The file is an OLD file.

Bit (13:1)—ASCII/binary foptions .

Ignored for asynchronous devices. All files not on disk
are treated as ASCII files. Use FCONTROL(27)to
enable transfer of binary data. Set to 1.

=0 Binary.

=1 ASCII.
Chapter 9 241

Intrinsics Reference (cont)
FOPEN
Bit (10:3)—Default file designator foptions .

You should select $STDIN (100) , $STDINX (101) or
$STDLIST (001) for terminals, $STDLIST (001) for
printers.

=000 The actual and formal file designators
are the same.

=001 The actual file designator is $STDLIST .

=010 The actual file designator is $NEWPASS.

=011 The actual file designator is $OLDPASS.

=100 The actual file designator is $STDIN.

=101 The actual file designator is $STDINX.

=110 The actual file designator is $NULL.

Bits (8:2)—Record format foption .

The format in which the records in the file are recorded.
This field is ignored when a file is opened on a terminal,
since records of files on terminals are always of
undefined length. However, if you anticipate the need to
redirect the file to tape or disk, you may want to set
these bits to 00, which specifies “fixed-length”.

=00 Fixed-length records.

=01 Variable-length records.

=10 Undefined-length records.

=11 Spoolfile.

Bit (7:1)—Carriage control foption .

Specifies whether or not you will supply a carriage
control directive in the calling sequence of each
FWRITE call that writes records to the file.

=0 No carriage control character expected
(NOCCTL).

=1 Carriage control character expected
(CCTL).

A carriage control character passed through the
controlcode parameter of FWRITE is recognized as
such and acted upon only for files that have carriage
control specified in FOPEN.

A carriage control character sent to a file on which the
control cannot be executed directly (for example, line
spacing characters sent to a file spooled to disk), causes
242 Chapter 9

Intrinsics Reference (cont)
FOPEN
the control character to be embedded as the first byte of
the record. Thus, the first byte of each record in such a
spooled file contains control information. Carriage
control characters sent to other types of files are sent to
the driver and acted upon directly.

If CCTL is not specified, only single spacing will be
available to this file.

Bit (6:1)—MPE/iX tape label foption .

Meaningless for asynchronous devices, but may be set if
file redirection is anticipated.

=0 Nonlabeled tape.

=1 Labeled tape.

Bits (5:1)—Disallow :FILE equation foption .

If this bit is set to 1, any :FILE equation intended to
override the specifications set through the FOPEN call
will be ignored. Note that a leading * in a formal file
designator effectively overrides the disallow file
equation foption .

=0 Allow :FILE command.

=1 Disallow :FILE command.

Bits (2:3)—File type foption .

Set to 000 (standard file) for asynchronous devicefiles.

=000 Standard file (STD).

=001 Keyed Sequential Access Method file
(KSAM).

=010 Relative I/O file (RIO).

=100 Circular file (CIR).

=110 Message file (MSG).

Bits (0:2)—Reserved for MPE/iX. These should be set
to 0.

aoptions 16-bit unsigned integer by reference
(optional)

You can specify up to seven different file access options
by setting corresponding bit groupings in aoptions .
The correspondence is from right to left, beginning with
bit 15. These access options are described below,
proceeding from the rightmost bit groups to the
leftmost bit groups in the word.
Chapter 9 243

Intrinsics Reference (cont)
FOPEN
If aoptions are not specified, the value of all bits is
assumed to be 0.

Bits (12:4)—Access type aoptions .

=0000 Read access only.

=0001 Write access only.

=0010 Write access only, but previous data in
file not deleted.

=0011 Append access only.

=0100 Input/output access.

=0101 Update access.

=0110 Execute access.

The type of access allowed users of the file. Table 9-2
summarizes how these settings apply to terminals and
printers.

Bit (11:1)—Multirecord aoption .

Specifies whether or not a block of data (size specified
in the tcount parameter of the read or write request)
that exceeds the file’s physical record size may be
transmitted as several records. This option is only
available for terminals. Data written to printers is not
broken up on record boundaries. Instead it is written as
a single long record.

=0 Select non-multirecord mode
(NOMULTI).

=1 Select multirecord mode (MULTI).

Bit (10:1)—Dynamic locking aoption .

Meaningless for asynchronous devices. If specified for
files not residing on disk, this option will be ignored.

Bit (8:2)—Exclusive access aoption .

Specifies whether you have continuous exclusive access
to this file. This option does not apply to printers.
Exclusive access is available during the first FOPEN
issued against a terminal. If a session is already
running on a terminal, it is not possible to issue
another FOPEN with “exclusive” specified. (See the
MPE/iX Intrinsics Reference Manual for more
information on what each of the bit settings implies.)

=00 Default.

=01 Exclusive access.
244 Chapter 9

Intrinsics Reference (cont)
FOPEN
=10 Semi-exclusive access.

=11 Shared access.

Bit (7:1) —Inhibit buffering aoption .

Not meaningful for asynchronous devices. Buffering is
inhibited by default. (Inhibited buffering means that
your process is assigned no system buffers.) Terminals
always are treated with buffering inhibited.

Bit (5:2)—Multiaccess mode aoption .

Not meaningful for asynchronous devices.

Bit (4:1)—NOWAIT I/O aoption .

Determines whether or not NOWAIT I/O is specified for
the file. NOWAIT I/O allows the accessor to initiate an
I/O request and to have control returned before the
completion of the request. Terminal operation with
NOWAIT I/O has the standard NOWAIT ramifications;
that is, Privileged Mode is required, no buffering is
allowed, and IOWAIT or IODONTWAIT must be called
after each I/O request.

=0 NOWAIT I/O not in effect.

=1 NOWAIT I/O in effect.

Bits (3:1)—File copy access aoption .

Specifies whether or not a file may be treated as a
standard sequential file rather than as a file of its own
type.

=0 File must be accessed as its own type.

=1 File may be accessed as standard
sequential file.

Bits (0:3)—Reserved for MPE/iX. You should set each of
these bits to 0.

recsize 16-bit signed integer by value (optional)

Specifies the size of the logical records in the file. A
positive number is used to represent halfwords, a
negative number to represent bytes. This value
indicates the maximum logical record length allowed if
the records in the file are of variable length.

For terminal and printer files, no rounding up occurs if
you specify a record size consisting of an odd number of
bytes. The record size may be different from that
Chapter 9 245

Intrinsics Reference (cont)
FOPEN
configured for the port. The default value of recsize is
the configured record size (normally 40 halfwords for
terminals, 66 halfwords for printers).

device character array (optional)

A byte array in which you can specify a particular
device class or logical device number. On a terminal,
you must use this parameter if you intend to read and
write through a single file. (That is, if you intend to
FOPEN the device once, with read and write access,
you must use this parameter.) Note that all character
arrays must start on a halfword boundary.

This parameter optionally specifies environment files
for certain Hewlett-Packard laser printers
(;ENV=printenv).

formmsg character array (optional)

Passes a forms message that you can use for such
purposes as telling the System Operator what type of
paper to use in the line printer. This message will be
displayed on the console when the file is ready to print,
and processing will be delayed until the System
Operator verifies that the correct forms are in the
printer and responds accordingly. The message can also
be used for terminal files.

The message itself is a string of ASCII characters
terminated by a period. The maximum number of
characters allowed in the array is 49, including the
terminating period. Arrays with more than 49
characters are truncated. Note that all character arrays
must start on a halfword boundary.

This array also has significance when used for magnetic
tape files. See the MPE/iX Intrinsics Reference Manual
for more information on this usage.

userlabels 16-bit signed integer by value (optional)

Not meaningful for asynchronous devices. Applies to
disk files only.

blockfactor 16-bit signed integer by value (optional)

Not meaningful for asynchronous devices. Blocking
factor is always 1.

numbuffers 16-bit signed integer by value (optional)

The number of buffers, number of copies, and output
priority to be applied to the file, indicated by three bit
groupings.
246 Chapter 9

Intrinsics Reference (cont)
FOPEN
Bits (11:5)—Number of buffers.

Not meaningful for asynchronous devices. Data
transfers to and from terminals and printers are
always unbuffered.

Bits (4:7)—Number of copies.

For spooled output devices only, specifies the number of
copies of the entire file to be produced by the spooling
facility. You can specify number of copies for a file
already opened (for example, $STDLIST), in which case
the highest value supplied before the last FCLOSE
takes effect. The copies do not appear contiguously if
the System Operator intervenes or if a file of higher
output priority becomes READY before the last copy is
complete. These bits are ignored for nonspooled output
devices. The default value is 1.

Bits (0:4)—Output priority.

For spooled output devices only, specifies the output
priority to be attached to the file. This priority is used
to determine the order in which files are output when
several are waiting for the same device. Accepted
values are between 1 (lowest priority) and 13 (highest
priority) inclusive. If this value is less than the current
OUTFENCE set by the System Operator, file output is
deferred until the operator raises the output priority of
the file or lowers the OUTFENCE. You can specify
priority for a file already opened (for example,
$STDLIST), in which case the highest value supplied
before the last FCLOSE takes effect. These bits are
ignored for nonspooled output devices. The default
priority is 8.

filesize 32-bit signed integer by value (optional)

Not meaningful for asynchronous devices.

numextents 16-bit signed integer by value (optional)

Not meaningful for asynchronous devices.

initialloc 16-bit signed integer by value (optional)

Not meaningful for asynchronous devices.

filecode 16-bit signed integer by value (optional)

Not meaningful for asynchronous devices.

Condition Codes
CCE Request granted. The file is open.
Chapter 9 247

Intrinsics Reference (cont)
FOPEN
CCG Not returned by this intrinsic.

CCL Request denied. This can occur because another process
already has EXCLUSIVE or SEMI-EXCLUSIVE access
for this file, the privilege level of this file is not “user”
(3), or an initial allocation of disk space cannot be made
due to lack of disk space. If the file is not opened
successfully, the file number value returned by FOPEN
is 0. Call the FCHECK intrinsic for more details.

Additional Discussion
See the MPE/iX Intrinsics Reference Manual and Accessing Files
Programmer’s Guide.
248 Chapter 9

Intrinsics Reference (cont)
FREAD
FREAD
Transfers a record of data from an input device to the user’s data area.

Syntax
I16 16V UDS I16V

transfercount :=FREAD(filenum, buffer, length);

Use
Use the FREAD intrinsic to read a logical record from a file to the user’s
data area. For asynchronous devices, this implies the transfer of data
(one record at a time) from an input device, usually a terminal, to the
data area. Condition codes are used to indicate completion status and
should be checked after each read, whether you are using NOWAIT I/O
or normal I/O processing. Read timeouts or timers must be set prior to
an FREAD by calls to the appropriate FCONTROL functions.

When the logical end-of-data is encountered during a read, CCG is
returned to your process. The end-of-data is indicated by a hardware
end-of-file; on $STDIN, by any record beginning with a colon (:); or on
$STDINX by :EOD.

Functional Return
transfercount 16-bit signed integer (assigned functional

return)

Assumes a value corresponding to the length of the
information transferred. If the value specified in the
length parameter of the call was a positive number, the
value returned in transfercount is positive, and
represents a halfword count. If the value specified in
the length parameter was negative, the value returned
in transfercount represents a byte count.

FREAD always returns a zero if you specified NOWAIT
I/O in FOPEN or HPFOPEN. In this case, the actual
record length is returned in the length parameter of
the IOWAIT or IODONTWAIT intrinsic.

Parameters
filenum 16-bit signed integer by value (required)

The file number of the file to be read.

buffer user-defined structure (required)
Chapter 9 249

Intrinsics Reference (cont)
FREAD
Returns the record that was read. This structure
should be large enough to hold all of the information to
be transferred.

length 16-bit signed integer by value (required)

The number of halfwords or bytes to be transferred. If
this value is positive, it signifies the length in
halfwords; if negative, in bytes. A zero indicates that no
transfer is to take place.

NOTE Whether you specify the value of length as halfwords or bytes, the
actual physical transfer is done on a byte-by-byte basis for an
asynchronous device. If the number of bytes input exceeds the value
specified, the read will terminate on byte count.

Condition Codes
CCE The information was read.

CCG The logical end-of-data was encountered during
reading.

CCL The information was not read because an error
occurred: a terminal read was terminated by a special
character or timeout interval, as specified in the
FCONTROL intrinsic.

Additional Discussion
See Accessing Files Programmer’s Guide. See also discussion of IOWAIT
and IODONTWAIT in this manual.
250 Chapter 9

Intrinsics Reference (cont)
FSETMODE
FSETMODE
Suppresses the output of linefeed.

I16V U16V

FSETMODE(filenum, modeflags);

Use
For asynchronous devices, the only significant use of the FSETMODE
intrinsic is to determine whether or not a linefeed is sent to the
terminal at the end of each input line. For certain applications, you may
need to suppress the linefeed that is sent automatically during normal
operating conditions. In such cases, a call to FSETMODE with the
modeflags parameter set to 4 should be used. To restore transmission
of linefeed, call FSETMODE with modeflags set to 0. FCLOSE also
resets this option.

Parameters
filenum 16-bit signed integer by value (required)

The file number of the file whose access modes are to be
set.

modeflags 16-bit unsigned integer by value (required)

This parameter uses bit groupings to indicate desired
settings of various options. The only option that applies
to asynchronous devices is specified by the value of bit
(13:1), as follows:

Bit (13:1) —Controls issuing of a linefeed to a terminal
after each terminal read.

=1 Inhibit normal terminal control by
terminal driver. The result is that the
driver does not automatically send out
a linefeed at the end of each terminal
input line. (modeflags = 4).

=0 Restore normal terminal control by
terminal driver. If the terminal
operator ends a line of input by
pressing [Return] , the Echo Facility
echoes the carriage return back to the
terminal and the driver sends out a
linefeed to the terminal. If input
reaches the read byte count limit (as
set in the length parameter of FREAD
or in the expectedlength parameter
Chapter 9 251

Intrinsics Reference (cont)
FSETMODE
of READ or READX), the driver sends
out a carriage return and a linefeed.
(modeflags = 0).

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied. An error occurred.

Additional Discussion
See also discussions of FCONTROL(12,13) and FCONTROL(41) in this
manual.
252 Chapter 9

Intrinsics Reference (cont)
FWRITE
FWRITE
Transfers a record of data to a file on any device.

Syntax
I16V UDS I16V U16V

FWRITE(filenum, buffer, length, controlcode);

Use
The FWRITE intrinsic transfers a logical record of data to a file on any
device. When programming for asynchronous devices this means
writing data to a terminal or printer. Completion status is indicated by
condition codes, which your program should always check.

This intrinsic is completed “logically”; that is, once data is passed to an
output buffer the call is considered to have completed and control is
returned to the calling program. If the operation of the output device
has been suspended through flow control, the actual writing of the data
may not have taken place. There is no programmatic way to determine
that printing has taken place.

Parameters
filenum 16-bit signed integer by value (required)

The file number of the file to be written to.

buffer user-defined structure (required)

Passes the record to be written.

length 16-bit signed integer by value (required)

The number of halfwords or bytes to be written to the
record. If this value is positive, it signifies halfwords; if
negative, bytes. If the number is zero, no data transfer
will occur.

NOTE Whether or not “bytes” is specified, the physical data transfer will be on
a byte-by-byte basis for an asynchronous device. If halfwords are
specified, an “even” number of bytes are output.

controlcode 16-bit unsigned integer by value (required)

This parameter indicates the carriage control action to
be used when the file is transferred to a line printer or
terminal (including a spooled file whose ultimate
destination is a line printer or terminal). This
Chapter 9 253

Intrinsics Reference (cont)
FWRITE
parameter is effective only for files opened with
carriage control (CCTL) specified in the FOPEN or
HPFOPEN call.

The controlcode parameter may contain 0, 1, or one of
the octal codes from Table 9-3. These options are used
to indicate carriage control action as follows:

0 Print the full record transferred, using
single spacing. This results in a
maximum of 132 characters per printed
line.

1 Use the first character of the data
written to satisfy space control and
suppress this character on the printed
output. The results are a maximum of
132 characters of data per printed line.
The values permissible for use as the
first character to specify control are the
same as the octal values described
below, and listed in Table 9-3.

When one of the octal codes listed in Table 9-3 is used
as the value of controlcode the carriage control action
associated with the specific code is applied to the data
being transferred. (You must have specified CCTL
through the FOPEN or HPFOPEN call, or through an
overriding :FILE command.) The full record
transferred is then printed, with a maximum of 132
characters per printed line.

If the file being written is not a spooled file, (that is, it is
not written to disk before being output to the device),
all of the octal codes listed in Table 9-3 can also be
passed through FCONTROL(1).

A carriage control directive passed through
FCONTROL(1) takes effect whether or not CCTL was
specified for the file.

For spooled files, however, carriage control must be set
using FWRITE. Additionally, the prespace/postspace
control normally set through FCONTROL must be set
through FWRITE for spooled files. You can use control
codes %100 through %103 and %400 through %403 for
this purpose.

If the controlcode parameter is not 0 or 1, and length
is 0, only the space control is executed and no data is
transferred.
254 Chapter 9

Intrinsics Reference (cont)
FWRITE
The default carriage control is postspacing with
automatic page eject. This applies to all
Hewlett-Packard supported subsystems, with the
exception of FORTRAN77/iX and COBOLII/iX, which
have prespacing with automatic page eject.

Table 9-3 Selected Carriage Control Directives

Octal Code Carriage

%2–%52 Single space (with or without automatic page eject).

%53 No space, (next printing at column 1).

%54 Single space (with or without automatic page eject).

%60 Double space (with or without automatic page eject).

%61 Conditional page eject (form feed) is performed by the
software. If the printer is not already at the top of the form,
a page eject is performed. Ignored if:

• Postspace mode: The current request has a
transfer count of 0 and the current request was
FOPEN (or HPFOPEN), FCLOSE, or FWRITE
specifying a carriage control directive of %61.

• Prespace mode: The previous request has a
transfer count of 0, and the current request and
previous request are any combination of FOPEN
(or HPFOPEN), FCLOSE, or FWRITE specifying a
carriage control directive of %61.

%62–%77
%104–%177

Single space (with or without automatic page eject).

%2nn Space nn lines (no automatic page eject); nn is any octal
number from 0 through 77.

%300 Skip to top of form (page eject).

%301 Skip to bottom of form.

%302 Single spacing with automatic page eject.

%303 Skip to next odd line with automatic page eject.

%304 Skip to next third line with automatic page eject.

%305 Skip to next 1/2 page.

%306 Skip to next 1/4 page.

%307 Skip to next 1/6 page.

%310 Skip to bottom of form.

%311 Skip to one line before bottom of form.
Chapter 9 255

Intrinsics Reference (cont)
FWRITE
NOTE If you select octal codes %55 and %60 with automatic page eject in
effect (by default or following an octal code of %102 or %402), the
resulting skip across a page boundary is to the top of the page. If
automatic page eject is not in effect, a true double or triple space
results, but the perforation between pages is not automatically skipped.

Condition Codes
CCE Request granted.

CCG Physical EOF. Should not occur for terminals or
printers.

CCL Request denied due to an error condition. Use
FCHECK to obtain details.

Additional Discussion
See the discussion of FCONTROL(1) in this manual. See also the
MPE/iX Intrinsics Reference Manual.

%312 Skip to one line before top of form.

%313 Skip to top of form (same as %300).

%314 Skip to next seventh line with automatic page eject.

%315 Skip to next sixth line with automatic page eject.

%316 Skip to next fifth line with automatic page eject.

%317 Skip to next fourth line with automatic page eject.

%320 No space, no return (next printing physically follows this).

%321–%377 Single space (with or without automatic page eject).

%400 or
%100

Sets postspace movement option; this first print, then
spaces. If previous option was prespace movement, the
driver outputs a one line advance (equivalent to an octal
code of %201 without automatic page eject) to clear the
buffer.

%401 or
%101

Sets prespace movement option; this first spaces, then
prints.

%402 or
%102

Sets single-space option, with automatic page eject
(60 lines per page).

%403 or
%103

Sets single-space option, without automatic page eject
(66 lines per page).

Octal Code Carriage
256 Chapter 9

Intrinsics Reference (cont)
HPFOPEN
HPFOPEN
Opens a file, defines its physical characteristics, and sets up access to
the file.

Syntax
I32 I32 I32V *

HPFOPEN(filenum, status [, itemnum,item

[, itemnum,item

[, itemnum,item

.

.

.

[, itemnum,item]...]]]);

Use
The HPFOPEN intrinsic sets up access to a file and defines its
characteristics and the manner in which it may be accessed. HPFOPEN
provides a superset of the options provided by the FOPEN intrinsic.
That is, all of the file options available through an FOPEN call are
provided, along with some additional options and enhanced features.
When these additions or enhancements apply to asynchronous device
control, they will be noted in the parameter descriptions that follow. For
a complete summary of all the additional options and features provided
by HPFOPEN you should see the MPE/iX Intrinsics Reference Manual.

NOTE Because HPFOPEN is designed to be more flexible and extensible than
the FOPEN intrinsic, HPFOPEN is the recommended intrinsic for file
access.

The HPFOPEN intrinsic uses itemnum/item pairs to specify file
options. The itemnum indicates the option being set, and the item
specifies the desired setting. The itemnum/item optional parameters
must always appear in pairs, except for Item # = 0, which can be used to
end the option list. You can specify up to 41 option pairs in the same
call, following the rules of precedence listed below:

• An itemnum takes precedence over any previously specified
duplicate itemnum . Any duplicated itemnum is flagged as a
warning.

• Some pairs are mutually exclusive. When applicable, these are noted
in the itemnum/item summary that follows.
Chapter 9 257

Intrinsics Reference (cont)
HPFOPEN
• Each optional parameter specified in the file equation string
option (Item# = 52) is treated as if it were the equivalent
itemnum/item pair when determining precedence.

Parameters
filenum 32-bit signed integer by reference

(required)

Returns a file number used to identify the opened file in
subsequent intrinsic calls.

status 32-bit signed integer by reference
(optional)

Returns the status of the HPFOPEN call. If no errors or
warnings are encountered, status returns 32 bits of
zero. If errors or warnings are encountered, status is
interpreted as two 16-bit fields. The status parameter
is used in place of error checking routines that call
FCHECK. Such routines are not useful with
HPFOPEN.

Bits (0:16) comprise status.info . A negative value
indicates an error condition, and a positive value
indicates a warning condition. See the MPE/iX
Intrinsics Reference Manual for a list of possible values.

Bits (16:16) comprise status.subsys . The value
represented by these bits defines the subsystem that
set the status information. The File System
identification number is 143.

CAUTION Since HPFOPEN can return information on the success of its execution
in the status parameter, it is good programming practice to specify this
parameter and check its value after the intrinsic call. If an error or
warning condition is encountered and you did not specify the status
parameter, HPFOPEN causes the calling process to abort.

filenum 32-bit signed integer by value (optional)

The item number of an HPFOPEN option, as defined in
the itemnum/item summary that follows.

item type varies by reference (optional)

Passes and/or returns the HPFOPEN option indicated
by the corresponding itemnum parameter, as described
in the itemnum/item summary that follows.
258 Chapter 9

Intrinsics Reference (cont)
HPFOPEN
NOTE All item parameters of type character array (CA), except for the fill
character option (Item# = 45), must be delimited by a single
character which appears only as the first and last element of the
specified character array. For example:

%filename% (% is the delimiter, filename is the
designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

Item Number, Item Summary
The following discussion lists the optional itemnum/item pairs. A
short descriptive name is provided for each pair, along with a mnemonic
indicating the parameter type of each item . All item parameters are
passed by reference.

Item# = 0 Indicates end of the option list. This is the only
itemnum that does not have a corresponding item . The
absence of an itemnum after the last itemnum/item
pair is equivalent to specifying this option.

Item# = 2 formaldesignator option (CA)

Passes a string to be associated with the file as its
formal file designator. The string can contain
alphanumeric characters, slashes, or periods and
terminates with any nonalphanumeric character except
a slash (/), a colon (:), or a period (.). If the string is the
name of a system defined file, it will begin with a dollar
sign ($). If the string is the name a user predefined file,
it can begin with an asterisk (*). You can specify the
remote location of a device as filename:envid .

If you use one of the system defined files the file can be
used for either input, ($STDIN, STDINX) or output,
($STDLIST), but not for both.

Though not required, the use of a formal file designator
is recommended in programs written for asynchronous
devices because of the flexibility it provides. If no
formaldesignator is specified, a temporary nameless
file is assigned that you can read from or write to, but
not save.

Note that all character arrays must start on a halfword
boundary.

Item# = 3 domain option (I32)
Chapter 9 259

Intrinsics Reference (cont)
HPFOPEN
Passes a value indicating the file domain. HPFOPEN
assumes that all devicefiles are PERMANENT files.
However, to maintain compatibility with MPE V/E,
devicefiles can be opened with the domain option set
to NEW, but a warning message is returned in the
status parameter.

0 The file is a NEW TEMPORARY file.

1 The file is a PERMANENT file.

2 The file is a TEMPORARY file.

3 The file is an OLD PERMANENT or
TEMPORARY file.

4 The file is a NEW PERMANENT file.

Item# = 5 designator option (I32)

Passes a value indicating a special file opening. Note
that special files can also be specified through the
formaldesignator option (Item# = 2). You should
select $STDIN (4) , $STDINX (5) or $STDLIST (1)
for terminals, $STDLIST (1) for printers.

0 Allows all other options to specify the
file.

1 The actual file designator is $STDLIST .

2 The actual file designator is $NEWPASS.

3 The actual file designator is $OLDPASS.

4 The actual file designator is $STDIN.

5 The actual file designator is $STDINX.

6 The actual file designator is $NULL.

Item# = 6 record format option (I32)

Passes a value indicating the format in which the
records in the file are recorded. This field is ignored
when a file is opened on a terminal, since records of
files on terminals are always of undefined length.
However, if you anticipate the need to redirect the file
to tape or disk, you may want to set this value to 0,
which specifies “fixed-length”.

0 Fixed-length records.

1 Variable-length records.

2 Undefined-length records (no implied
record structure).
260 Chapter 9

Intrinsics Reference (cont)
HPFOPEN
Item# = 7 Carriage Control Option (I32)

Passes a value indicating whether or not you will
supply a carriage control directive in the calling
sequence of each FWRITE call that writes records to
the file.

0 No carriage control directive is
expected (NOCCTL).

1 Carriage control directives are
expected (CCTL).

A carriage control character passed through the
controlcode parameter of FWRITE is recognized as
such and acted upon only for files that have carriage
control specified in FOPEN.

A carriage control character sent to a file on which the
control cannot be executed directly (for example, line
spacing characters sent to a file spooled to disk) causes
the control character to be embedded as the first byte of
the record. Thus, the first byte of each record in such a
spooled file contains control information. Carriage
control characters sent to other types of files are sent to
the driver and acted upon directly.

Item# = 8 labeled tape label option (CA)

Not meaningful for asynchronous devices.

Item# = 9 Disallow file equation option (I32)

Passes a value indicating whether or not you wish to
allow MPE/iX file equations. Note that a leading * in a
formal file designator effectively overrides the disallow
option.

0 Allow :FILE equations to override
programmatic or system defined file
specifications.

1 Disallow :FILE equations from
overriding programmatic or system
defined file specifications.

Item# = 10 file type option (I32)

Set to 0 (standard file) for asynchronous devicefiles.

0 Standard file (STD).

1 Keyed Sequential Access Method file
(KSAM).

2 Relative I/O file (RIO).
Chapter 9 261

Intrinsics Reference (cont)
HPFOPEN
4 Circular file (CIR).

6 Message file (MSG).

Item# = 11 access type option (I32)

Passes a value that specifies access restrictions for the
file. See Table 9-2 for a summary of how the access type
settings apply to terminals and printers.

0 Read access only.

1 Write access only.

2 Write access only, but previous data in
file not deleted

3 Append access only.

4 Input/output access.

5 Update access.

6 Execute access.

7 Execute-Read access. (Not included in
Table 9-2. Returns File System Error
40 if applied to an asynchronous
devicefile.)

8 Reserved for MPE/iX. No access; opens
the file without any access checking. A
process must be executing in system
code to use this access type.

Item# = 12 dynamic locking option I32)

Not meaningful for asynchronous devices. If specified it
will be ignored.

Item# = 13 exclusive option (I32)

Passes a value indicating whether you have continuous
exclusive access to this file. This option does not apply
to printers. Exclusive access is available during the
first open issued against a terminal. If a session is
already running on a terminal, it is not possible to issue
another HPFOPEN (or FOPEN) with “exclusive”
specified. (See the MPE/iX Intrinsics Reference Manual
for more information on what each of the settings
implies.)

0 Default.

1 Exclusive access.

2 Semi-exclusive access.
262 Chapter 9

Intrinsics Reference (cont)
HPFOPEN
3 Shared access.

Item# = 14 multiaccess option (I32)

Not meaningful for asynchronous devices.

Item# = 15 multirecord option (I32)

Passes a value indicating whether or not a block of data
that exceeds the file’s physical record size may be
transmitted as several records.

This option is only available for terminals. Data written
to printers is not broken up on record boundaries.
Instead it is written as a single long record.

0 Non-multirecord mode (NOMULTI).

1 Multirecord mode (MULTI).

Item# = 16 nowait i/o option (I32)

Passes a value that determines whether or not
NOWAIT I/O is specified for the file. NOWAIT I/O
allows the accessor to initiate an I/O request and to
have control returned before the completion of the
request. Terminal operation with NOWAIT I/O has the
standard NOWAIT ramifications; that is, Privileged
Mode is required, no buffering is allowed, and IOWAIT
or IODONTWAIT must be called after each I/O request.

0 NOWAIT I/O not in effect.

1 NOWAIT I/O in effect.

Item# = 17 copy mode option (I32)

Passes a value that specifies whether or not a file may
be treated as a standard sequential file rather than as a
file of its own type.

0 File must be accessed as its own type.

1 File may be accessed as standard
sequential file.

Item# = 18 short mapped option (@32)

Not meaningful for asynchronous devices.

Item# = 19 record size option (I32)

Passes the size, in bytes, of the logical records in the
file. This value indicates the maximum logical record
length allowed if the records in the file are of variable
length.
Chapter 9 263

Intrinsics Reference (cont)
HPFOPEN
For terminal and printer files, no rounding up occurs if
you specify a record size consisting of an odd number of
bytes. The record size may be different from that
configured for the port. The default value is the
configured record size (normally 40 words for terminals,
66 words for printers).

Item# = 20 device name option (CA)

Passes the logical device number, in ASCII form, of a
specific device. The device specified should be ready
prior to the HPFOPEN call or an error will result. You
can obtain the logical device number through the
FFILEINFO intrinsic. Note that all character arrays
must start on a halfword boundary.

Only one of the following options can be in effect when
a file is opened: device name option (Item# = 20),
volume class option (Item# = 22), volume name
option (Item# = 23), device class option
(Item# = 42). The last itemnum specified takes
precedence over all previously specified itemnums from
this group. Any duplication is flagged as a warning.

Item# = 21 long mapped option (@64)

Not meaningful for asynchronous devices.

Item# = 22 volume class option (CA)

Not meaningful for asynchronous devices.

Item# = 23 volume name option (CA)

Not meaningful for asynchronous devices.

Item# = 24 density option (I32)

Not meaningful for asynchronous devices.

Item# = 25 printer environment option (CA)

Passes the name of a file that contains a printer
environment. This option is valid only for certain
printer devices. Note that all character arrays must
start on a halfword boundary.

Item# = 26 remote environment option (CA)

Passes the node name of the remote computer where
the file is located. This option is used when you are
referencing a file located on a remote computer. Note
that all character arrays must start on a halfword
boundary.

Item# = 27 output priority option (I32)
264 Chapter 9

Intrinsics Reference (cont)
HPFOPEN
Passes the output priority to be attached to the file for
spooled output. This priority is used to determine the
order in which files are output when several are
waiting for the same device. Accepted values are
between 1 (lowest priority) and 13 (highest priority)
inclusive. If this value is less than the current
OUTFENCE set by the System Operator, file output is
deferred until the operator raises the output priority of
the file or lowers the OUTFENCE. You can specify
priority for a file already opened (for example,
$STDLIST), in which case the highest value supplied
before the last FCLOSE takes effect. This parameter is
ignored for nonspooled devices. The default priority
is 8.

Item# = 28 spooled message option (CA)

Passes a spooler message that is associated with a spool
file. For example, you can pass a message that you can
use for such purposes as telling the System Operator
what type of paper to use in the line printer. This
message must be displayed to the System Operator and
verified before the file can be printed on a line printer.
The maximum number of characters allowed is 48. An
array of more than 48 elements is truncated by
MPE/iX. Note that all character arrays must start on a
halfword boundary.

Item# = 29 privileged access option (I32)

Passes a value that temporarily restricts access to the
file number returned from HPFOPEN to a calling
process whose execution level is equal to or less than
the value specified in this option. This restriction lasts
until you close the file associated with the restricted file
number. You cannot specify a value less than the
execution level of the calling process.

0 Privilege level zero (most privileged
level).

1 Privilege level one.

2 Privilege level two

3 Privilege level three (least privileged
level).

Item# = 30 labeled tape type option (I32)

Not meaningful for asynchronous devices.

Item# = 31 labeled tape expiration option (CA)
Chapter 9 265

Intrinsics Reference (cont)
HPFOPEN
Not meaningful for asynchronous devices.

Item# = 32 labeled tape sequence option (CA)

Not meaningful for asynchronous devices.

Item# = 33 user labels option (I32)

Not meaningful for asynchronous devices.

Item# = 34 spooler copies option (I32)

Passes a non-negative value indicating the number of
copies of the entire file to be produced by the spooling
facility. This option is applicable to spooled devices only.
You can specify this option for a file already opened (for
example, $STDLIST) in which case the highest value
supplied before the last FCLOSE takes effect. The
copies do not appear contiguously if the System
Operator intervenes or if a file of higher output priority
becomes READY before the last copy is complete. This
option is ignored for nonspooled output devices. The
default is to print 1 copy.

Item# = 35 filesize option (I32)

Not meaningful for asynchronous devices.

Item# = 36 initial allocation option (I32)

Not meaningful for asynchronous devices.

Item# = 37 filecode option (I32)

Not meaningful for asynchronous devices.

Item# = 38 file privilege option (I32)

Passes a value that determines a permanent privilege
level to be associated with a newly created file. This
option permanently restricts file access to a process
whose execution level is less than or equal to the
specified value. You cannot specify a value less than the
execution level of the calling process. This option is
applicable only at file creation.

0 Privilege level zero (most privileged
level).

1 Privilege level one.

2 Privilege level two.

3 Privilege level three (least privileged
level).

Item# = 39 will access option (I32)
266 Chapter 9

Intrinsics Reference (cont)
HPFOPEN
Not meaningful for asynchronous devices.

Item# = 40 block factor option (I32)

Not meaningful for asynchronous devices.

Item# = 42 device class option (CA)

Passes a device class name which is used by the file
system to select a nonsharable device from a configured
list of available devices within that device class. The
name can have a length of up to eight alphanumeric
characters, beginning with a letter. If you specify a
device class, the file is allocated to any available device
in that class. Note that all character arrays must start
on a halfword boundary.

Only one of the following options can be in effect when
a file is opened: device name option (Item# = 20),
volume class option (Item# = 22), volume name
option (Item# = 23), device class option
(Item# = 42). The last itemnum specified takes
precedence over all previously specified itemnums from
this group. Any duplication is flagged as a warning.

Item# = 43 UFID option (record)

Not meaningful for asynchronous devices.

Item# = 44 numbuffers option (I32)

Not meaningful for asynchronous devices. Data
transfers to and from terminals and printers are
always unbuffered.

Item# = 45 fill character option (CA)

Passes two ASCII characters that determine what
padding character you wish to use at the end of blocks
or unused pages. You must not use delimiter characters
for this option. The fill character must be a two-byte
array. The first character only is used as the padding
character. The second character is reserved for future
use. This option is applicable only at file creation. The
default is the ASCII null character. Note that all
character arrays must start on a halfword boundary.

Item# = 46 inhibit buffering option (I32)

Not meaningful for asynchronous devices.

Item# = 47 numextents option (I32)

Not meaningful for asynchronous devices.

Item# = 48 reverse VT option (I32)
Chapter 9 267

Intrinsics Reference (cont)
HPFOPEN
Passes a value that indicates whether or not the given
device name is to be allocated on a remote machine. You
must specify the remote environment in the same open
request, using either the formaldesignator option or
the remote environment option . Reverse VT
behaves nearly the same as a terminal opened through
remote file access, except that no session is required on
the remote machine.

0 No reverse VT.

1 Reverse VT.

Item# = 49 Reserved for MPE/iX.

Item# = 50 final disposition option (I32)

Not meaningful for asynchronous devices.

Item# = 51 Pascal/iX string option (Pascal/iX STRING
type)

Passes a formal file designator, following MPE/iX file
naming conventions, but using the Pascal/iX STRING
type format. This option is identical to
formaldesignator option (Item# = 2) except for the
type of the item. No delimiters are needed.

Item# = 52 file equation string option (CA)

Passes a character string that matches the MPE/iX file
equation specification syntax exactly. This enables you
to specify the options available in the :FILE command.
Note that all character arrays must start on a halfword
boundary.

Item# = 53 ASCII/binary option (I32)

Ignored for asynchronous devices. All files not on disk
are treated as ASCII files. Use FCONTROL(27) to
enable the transfer of binary data. Set to 1.

0 Binary file.

1 ASCII file.

Item# = 54 KSAM parm option (REC)

Not meaningful for asynchronous devices.

Item# = 55 Reserved for MPE/iX.

Item# = 56 object class option (I32)

Passes a user object class number, in the range 0..10,
that is associated with the file.

Item# = 57 Reserved for MPE/iX.
268 Chapter 9

Intrinsics Reference (cont)
HPFOPEN
Item# = 58 Reserved for MPE/iX.

Item# = 59 Reserved for MPE/iX.

Item# = 60 Reserved for MPE/iX.

Item# = 61 Reserved for MPE/iX.

Condition Codes
The HPFOPEN intrinsic does not return meaningful condition code
values. Status information is returned in the optional status
parameter described above.

Additional Discussion
See the discussions of creating files and opening files in Accessing Files.
See also the MPE/iX Intrinsics Reference Manual and the MPE/iX
Commands Reference Manual.
Chapter 9 269

Intrinsics Reference (cont)
IODONTWAIT
IODONTWAIT
Initiates completion operations for an I/O request. Allows program
processing to continue before an I/O operation completes.

Syntax
I16 I16V UDS 16 U16

fnum :=IODONTWAIT(filenum, buffer , length , cstation);

Use
The IODONTWAIT intrinsic initiates completion operations for an I/O
request and returns control to the calling process even if no I/O has
completed.

A call to either IODONTWAIT or its companion intrinsic, IOWAIT,
must follow every read or write request posted against a file that was
opened with NOWAIT I/O specified in the FOPEN or HPFOPEN call.
(The process must have been running in privileged mode for NOWAIT
I/O to have been specified.)

When NOWAIT I/O is used, the parameters associated with the
IODONTWAIT or IOWAIT call receive the values that normally would
have been returned in the read or write request being processed. See
the parameter explanations for what these values represent.

If you call IODONTWAIT and no I/O has completed, control is returned
to the calling process, CCE is returned, and the result of IODONTWAIT
is zero.

If you call IOWAIT and no I/O has completed, the calling process is
suspended until some I/O completes.

Functional Return
fnum 16-bit signed integer (assigned functional

return)

The file number for which the completion occurred. If
no completion occurred, zero is returned.

Parameters
filenum 16-bit signed integer by value (required)

The file number for which there is a pending I/O
request. If you specify 0, the IODONTWAIT intrinsic
checks for any I/O completion.

buffer user-defined structure (optional)
270 Chapter 9

Intrinsics Reference (cont)
IODONTWAIT
Passes an input buffer. Since terminals always operate
without system buffering it is not necessary for this
parameter to follow a read.

length 16-bit signed integer by reference
(optional)

Returns the length of the received or transmitted
record. If the original request specified a byte count, the
integer represents bytes. If the original request
specified halfwords, the integer represents halfwords.
This parameter is pertinent only if the original I/O
request was a read request. The FREAD intrinsic
always returns zero as its functional return if you
specify NOWAIT I/O. Instead, the actual record length
is returned in the length parameter of IODONTWAIT.

cstation 16-bit unsigned integer by reference
(optional)

Not meaningful for asynchronous devices.

Condition Codes
CCE Request granted. If the functional return is not zero,

then I/O completion occurred with no errors. If the
functional return is zero, no I/O has completed.

CCG An end-of-file condition was encountered.

CCL Request denied. Normal I/O completion did not occur
because there were no I/O requests pending, a
parameter error occurred, or an abnormal I/O
completion occurred.

Special Considerations
You must be running in privileged mode to specify the NOWAIT I/O
option in the FOPEN/HPFOPEN call.

Additional Discussion
See the discussion of initiating completion operations for I/O requests
in Accessing Files Programmer’s Guide. See also discussions of FOPEN,
HPFOPEN and IOWAIT in this manual.
Chapter 9 271

Intrinsics Reference (cont)
IOWAIT
IOWAIT
Initiates completion operations for an I/O request. Delays program
processing until an I/O operation completes.

Syntax
I16 I16V UDS I16 U16

fnum :=IOWAIT(filenum, buffer , length , cstation);

Use
The IOWAIT intrinsic initiates completion operations for an I/O request
and suspends the calling process until some I/O completes.

A call to either IOWAIT or its companion intrinsic, IODONTWAIT,
must follow every read or write request posted against a file that was
opened with NOWAIT I/O specified in the FOPEN or HPFOPEN call.
(The process must have been running in privileged mode for NOWAIT
I/O to have been specified.)

When NOWAIT I/O is used the parameters associated with the
IODONTWAIT or IOWAIT call receive the values that normally would
have been returned in the read or write request. See the parameter
explanations that follow for what these values represent.

If you call IOWAIT and no I/O has completed, the calling process is
suspended until some I/O completes.

If you call IODONTWAIT and no I/O has completed, control is returned
to the calling process, CCE is returned, and the result of IODONTWAIT
is zero.

Functional Return
fnum 16-bit signed integer (assigned functional

return)

The file number for which the completion occurred. If
no completion occurred, zero is returned.

Parameters
filenum 16-bit signed integer by value (required)

The file number for which there is a pending I/O
request. If you specify 0, the IOWAIT intrinsic checks
for any I/O completion.

buffer user-defined structure (optional)
272 Chapter 9

Intrinsics Reference (cont)
IOWAIT
Passes an input buffer. Since terminals always operate
without system buffering, it is not necessary for this
parameter to follow a read.

length 16-bit signed integer by reference
(optional)

Returns the length of the received or transmitted
record. If the original request specified a byte count, the
integer represents bytes. If the original request
specified halfwords, the integer represents halfwords.
This parameter is pertinent only if the original I/O
request was a read request. The FREAD intrinsic
always returns zero as its functional return if you
specify NOWAIT I/O. Instead, the actual record length
is returned in the length parameter of IOWAIT.

cstation 16-bit unsigned integer by reference
(optional)

Not meaningful for asynchronous devices.

Condition Codes
CCE Request granted. I/O completion occurred with no

errors.

CCG An end-of-file condition was encountered.

CCL Request denied. Normal I/O completion did not occur
because there were no I/O requests pending, a
parameter error occurred, or an abnormal I/O
completion occurred.

Special Considerations
You must be running in privileged mode to specify the NOWAIT I/O
option in the FOPEN/HPFOPEN call.

Additional Discussion
See the discussion of initiating completion operations for I/O requests
in Accessing Files Programmer’s Guide. See also discussions of FOPEN,
HPFOPEN and IODONTWAIT in this manual.
Chapter 9 273

Intrinsics Reference (cont)
PRINT
PRINT
Prints a character string on job/session list device.

Syntax
CA I16V I16V

PRINT(message, length, controlcode);

Use
The PRINT intrinsic enables you to write a string of ASCII characters
from your program to the job/session listing device ($STDLIST). This
provides a quick method of sending output to the terminal. However,
because the PRINT intrinsic does not allow you to take full advantage
of the capabilities of the file system, it is recommended that you use
FWRITE for permanent programs.

Parameters
message character array (required)

Passes the string of ASCII characters to $STDLIST .
Note that all character arrays must start on a halfword
boundary.

length 16-bit signed integer by value (required)

The length of the character string to be passed in
message. If length is positive, the length is in
halfwords. If length is negative, the length is in bytes. If
length exceeds the configured record length of the
device, successive records are written only on
terminals.

controlcode 16-bit signed integer by value (required)

A carriage control directive. See Table 9-3 for a list of
valid codes.

Condition Codes
CCE Request granted.

CCG End-of-data was encountered.

CCL Request denied. An input/output error occurred.
Further error analysis through the FCHECK intrinsic
is not possible.
274 Chapter 9

Intrinsics Reference (cont)
PRINT
Additional Discussion
See the discussion of printing character strings to $STDLIST in
Accessing Files Programmer’s Guide.
Chapter 9 275

Intrinsics Reference (cont)
PRINTFILEINFO
PRINTFILEINFO
Prints a file information display on a job/session list device.

Syntax
I16V

PRINTFILEINFO(filenum);

Use
The PRINTFILEINFO intrinsic causes MPE/iX to print a file
information display on the standard list device. You can use this
intrinsic to display error information after a condition code of CCG or
CCL is returned. The display, sometimes referred to as the tombstone,
appears in one of two formats, depending on whether or not the file
whose number is specified in filenum was opened at the time the error
occurred. See the MPE/iX Intrinsics Reference Manual for examples of
the two formats.

Parameters
filenum 16-bit signed integer by value (required)

The file number of the file about which you are
requesting information.

Condition Codes
The PRINTFILEINFO intrinsic does not alter the condition code.

Additional Information
See the discussion of print formats and writing a file system error check
procedure in Getting System Information. See also the MPE/iX
Intrinsics Reference Manual.
276 Chapter 9

Intrinsics Reference (cont)
READ
READ
Transfers a record of data from the file $STDIN to the data area.

Syntax
I16 CA I16V

transfercount :=READ(message, expectedlength);

Use
The READ intrinsic reads an ASCII string from $STDIN into an array.

This is similar to calling the FREAD intrinsic against the file $STDIN.
READ is intended as a quick method of obtaining input from the
terminal for temporary programming. Read timers or timeouts must be
set prior to calling READ by first calling FCONTROL using the
appropriate controlcode values.

When you use the READ intrinsic, the full capabilities of the file system
are not available to you. For example, since no file number can be
specified in the call it is not possible to use the :FILE command to
redirect input for programs using READ. (The only way that input can
be redirected is to use the $STDIN=filename option of the :RUN
command.) Input always comes from the $STDIN file opened by the
session at logon time.

READ differs from READX in how it interprets an end-of-file. READ
reads a record and, if there is a colon in the first column, end-of-file is
set.

Functional Return
transfercount 16-bit signed integer (assigned functional

return)

The length of the ASCII string that was read. If
expectedlength is positive, the count represents
halfwords. If expectedlength is negative, the count
represents bytes.

Parameters
message character array (required)

Returns the ASCII characters that were read. Note
that all character arrays must start on a halfword
boundary.

expectedlength 16-bit signed integer by value (required)
Chapter 9 277

Intrinsics Reference (cont)
READ
The maximum length of the message array. If
expectedlength is positive, it specifies the length in
halfwords. If expectedlength is negative, it specifies
the length in bytes. When the record is read, the first
expectedlength characters are input. If the number of
bytes input exceeds this value, the read terminates on
byte count.

Condition Codes
CCE Request granted.

CCG A record with a colon in the first column, signaling the
end-of-data or a hardware end-of-file, was encountered.

CCL Request denied. A physical input/output error occurred.
Further analysis through the FCHECK intrinsic is not
possible.

Additional Discussion
See the discussion of reading ASCII strings from $STDIN into an array
in Accessing Files Programmer’s Guide.
278 Chapter 9

Intrinsics Reference (cont)
READX
READX
Transfers a record of data from the file $STDINX to the data area.

Syntax
I16 CA I16V

transfercount :=READX(message, expectedlength);

Use
The READX intrinsic reads an ASCII string from $STDINX into an
array. This is similar to calling the FREAD intrinsic against the file
$STDINX. READX is intended as a quick method of obtaining input
from the terminal for temporary programming. Read timers or timeouts
must be set prior to calling READX by first calling FCONTROL using
the appropriate controlcode values.

When you use the READ intrinsic, the full capabilities of the file system
are not available to you. For example, since no file number can be
specified in the call, it is not possible to use the :FILE command to
redirect input for programs using READX. (The only way that input can
be redirected is to use the $STDINX=filename option of the :RUN
command.) Input always comes from the $STDINX file opened by the
session at logon time.

READX differs from READ in how it interprets an end-of-file. READX
interprets :EOD as an end-of-file indication.

Functional Return
transfercount 16-bit signed integer (assigned functional

return)

The length of the ASCII string that was read. If
expectedlength is positive, the count represents
halfwords. If expectedlength is negative, the count
represents bytes.

Parameters
message character array (required)

Returns the ASCII characters that were read. Note
that all character arrays must start on a halfword
boundary

expectedlength 16-bit signed integer by value (required)
Chapter 9 279

Intrinsics Reference (cont)
READX
The maximum length of the message array. If
expectedlength is positive, it specifies the length in
halfwords. If expectedlength is negative, it specifies
the length in bytes. When the record is read, the first
expectedlength characters are input. If the number of
bytes input exceeds this value, the read terminates on
byte count.

Condition Codes
CCE Request granted.

CCG An :EOD was encountered.

CCL Request denied. A physical input/output error occurred.
Further analysis through the FCHECK intrinsic is not
possible.

Additional Discussion
See the discussion of reading ASCII strings from $STDINX into an array
in Accessing Files Programmer’s Guide.
280 Chapter 9

Intrinsics Reference (cont)
RESETCONTROL
RESETCONTROL
Allows another subsystem break to occur.

Syntax
RESETCONTROL;

Use
The RESETCONTROL intrinsic lets the calling process accept another
subsystem break signal. ([CTRL]Y is the default subsystem break
character.) The process must have previously enabled a [CTRL]Y trap
with the XCONTRAP intrinsic. After your [CTRL]Y trap handler has
been invoked, you should call RESETCONTROL when you are ready to
receive another [CTRL]Y signal. RESETCONTROL can be called from
within the [CTRL]Y trap handler or from any other procedure.

Parameters
None.

Condition Codes
CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because the trap handling procedure
was not invoked or because RESETCONTROL was
already called.

Additional Discussion
See the discussion of resetting the [CTRL]Y trap in Accessing Files, Trap
Handling, and Data Type Conversion Programmer’s Guides. See also
discussions of FCONTROL(16,17) and XCONTRAP in this manual. See
Chapter 5, “Using Subsystem Break,” of this manual for an example
illustrating subsystem break processing.
Chapter 9 281

Intrinsics Reference (cont)
XCONTRAP
XCONTRAP
Arms or disarms the user written subsystem break trap handling
procedure.

Syntax
I32V I32

XCONTRAP(plabel, oldplabel);

Use
The XCONTRAP intrinsic arms or disarms the user-written subsystem
break ([CTRL]Y) trap handling procedure.

When a session is initiated, the user written [CTRL]Y trap handler is
disarmed. If you are running a program in an interactive session, you
can arm a special trap that transfers control in the program to a trap
handling procedure whenever a subsystem break signal is entered from
the session terminal. (This is called the [CTRL]Y trap since [CTRL]Y is
the default subsystem break character.)

The subsystem break signal is normally transmitted by pressing
[CTRL]Y . In transparent editing mode, you are allowed to define a
different character to be used to invoke subsystem break by specifying
the new character as part of param in a call to FCONTROL(41).

You can also use FDEVICECONTROL to alter the subsystem break
character in either standard or transparent mode. See the discussion of
the FDEVICECONTROL intrinsic earlier in this chapter for the proper
parameter settings to use for this purpose.

If enabled, subsystem break allows the terminal user to stop a
“program local” or “subsystem local” command. Before subsystem break
can be enabled, however, you must call XCONTRAP, specifying the
external label of a user written procedure which contains the steps that
will be taken if subsystem break is entered during execution of your
program as the value of plabel.

If it is desirable for your program to do so, subsystem break can be
temporarily disabled through a call to FCONTROL(16). It can then be
reenabled through a call to FCONTROL(17).

Only one process in a session can receive a [CTRL]Y trap at any one
time. The process that called XCONTRAP most recently receives the
next [CTRL]Y trap. Once a process has received a [CTRL]Y trap, it cannot
receive another until it calls the RESETCONTROL intrinsic. Only
processes running in a session (not in a job) can arm [CTRL]Y traps. The
282 Chapter 9

Intrinsics Reference (cont)
XCONTRAP
trap handler can be any procedure in the program or in the libraries to
which the program is bound. The [CTRL]Y trap handler has no
parameters.

The following summarizes subsystem break processing and the
intrinsics involved:

1. A user written procedure must be provided to define how the
program should act upon receiving a subsystem break.

2. A call to XCONTRAP must be included in the program, specifying
the external label of the procedure written in Step 1 as the value of
plabel. This arms the [CTRL]Y Trap.

3. A call to FCONTROL(17) must be included in the program to enable
the subsystem break function.

4. If the subsystem break character is received during execution of the
program, the procedure specified in the call to XCONTRAP is
executed.

5. A call to RESETCONTROL must be executed when the program is
ready to receive another subsystem break.

6. A new subsystem break character may be defined through
FCONTROL(41), if the terminal is placed in transparent mode or
through FDEVICECONTROL

7. If desirable at any time, FCONTROL(16) may be called to disable
subsystem break. A call to FCONTROL(17) enables it again.

Parameters
plabel bit signed integer passed by value

(required)

Passes the plabel of your [CTRL]Y trap handling
procedure. This plabel can be either an NM or a CM
plabel. If this value is 0, XCONTRAP disarms [CTRL]Y
traps for the process.

How you obtain the external plabel of your NM trap
handling procedure depends on your programming
language. In Pascal/iX, for example, you can obtain the
plabel by using the baddress or waddress function.
Supply the name of your [CTRL]Y trap handler as an
argument to baddress or waddress.

If a program executes only in native mode, it should
have a native mode [CTRL]Y trap handler. Programs
executing in compatibility mode must have a
compatibility mode [CTRL]Y trap handler.
Chapter 9 283

Intrinsics Reference (cont)
XCONTRAP
If a program executes in both compatibility mode and
native mode, it is preferable to have an NM trap
handler. However, it is possible to pass a CM plabel for
your CM [CTRL]Y trap handler as follows:

Obtain the 16-bit external CM plabel of your CM
[CTRL]Y trap handler.

Pass this 16-bit plabel in the following 32-bit format:

oldplabel 32-bit signed integer passed by reference
(required)

Returns the plabel of the [CTRL]Y handler previously
used by your process. This plabel can be either a CM or
NM plabel, as described above. If no plabel was
previously configured, oldplabel returns 0.

Condition Codes
CCE Request granted. Trap enabled.

CCG Request granted. Trap disabled.

CCL Request denied because of an illegal plabel, or because
XCONTRAP was called from a job.

Additional Discussion
See the discussion of enabling/disabling the user written [CTRL]Y trap
handler in Trap Handling Programmer’s Guide. See also the discussion
of FCONTROL(16,17), FCONTROL(41), and RESETCONTROL in this
manual. See Chapter 5, “Using Subsystem Break,” of this manual for
an example illustrating subsystem break processing.

Bits Setting

(0:16) 16-bit external CM plabel

(16:13) Reserved. Set to 0.

(29:1) Set to 1.

(30:1) Set to 0.

(31:1) Set to 1.
284 Chapter 9

A Comparing MPE/iX Systems to
MPE V Systems
When upgrading from an HP 3000 computer using the MPE V
operating system to an HP 3000 computer using the MPE/iX operating
system, a variety of migration issues must be addressed. Differences
between early and later versions of MPE/iX must also be considered.

This Appendix discusses migration from the ATP or ADCC subsystem
on an MPE V computer to the Datacommunications and Terminal
Subsystem (DTS) on an MPE/iX computer. The discussion includes
comparisons of the following:

• Physical appearance.

• Configuration.

• PAD support.

• Terminal types and printer types.

• Software characteristics.
285

Comparing MPE/iX Systems to MPE V Systems
Physical Appearance
Physical Appearance
The most apparent change when migrating from MPE V to MPE/iX is
the hardware configuration. The ATP/ADCC interface cards are placed
directly in the SPU of MPE V computers. Therefore, the RS-232/422
cabling for asynchronous devices connects directly into the system
cabinet. In comparison, MPE/iX computers use DTCs
(Datacommunications and Terminal Controllers) connected as nodes on
a LAN. The interface cards to which the cables of devices are connected
reside in the DTC. To communicate with asynchronous devices, the
SPU must hold only the interface card for the LAN.

Although the physical environment of the subsystem on MPE/iX
computers looks very different from that of MPE V computers, the
resultant functions and characteristics of the subsystem software are
very similar. In fact, as long as an asynchronous device is supported on
both systems, very little difference should exist between using the
device on an MPE V computer and using it on an MPE/iX computer.
286 Appendix A

Comparing MPE/iX Systems to MPE V Systems
Configuration
Configuration
Three areas of configuration have changed from MPE V to MPE/iX:

• General system configuration.

• Terminal and serial printer subsystem configuration.

• Terminal configuration settings.

These changes are discussed below.

General System Configuration
With MPE V computers, the INITIAL/SYSDUMP utility is used to
configure the system. MPE/iX computers require you to use a utility
called SYSGEN. SYSDUMP is an interactive program in which you
answer questions to enter configuration information. SYSGEN is a
command based interactive program. In SYSGEN, because you enter
commands instead of answering questions, you have more control over
the process of entering configuration data. SYSGEN also has other
advantages over SYSDUMP.

For more information on SYSGEN, see Introduction to MPE/iX for
MPE V System Administrators. Note that SYSDUMP is used to
configure the terminal and serial printer subsystem but SYSGEN is
not.

Terminal and Serial Printer Subsystem
Configuration
For MPE V computers, you must configure the asynchronous subsystem
by assigning device characteristics one-by-one through the use of
INITIAL/SYSDUMP dialogue questions. For MPE/iX computers, you
must use the< Node Management Configuration Manager (NMMGR) to
configure the Datacommunications and Terminal Subsystem (DTS).

With NMMGR, device profiles are created. A profile allows you to
specify values for a set of characteristics, such as a terminal type and
line speed, and apply those values to as many devices as you wish by
assigning the same device profile. This shortens the time needed to
configure devices into the subsystem.

Alternatively, some MPE/iX networks can include a network
management workstation running the OpenView DTC Manager. When
the OpenView DTC Manager is used, some aspects of serial device
configuration are offloaded from each MPE/iX system. These
characteristics are configured on the OpenView Windows Workstation
Appendix A 287

Comparing MPE/iX Systems to MPE V Systems
Configuration
through the interface provided by the OpenView DTC Manager. For
more information on configuration with the OpenView DTC Manager
see Using the OpenView DTC Manager.

Terminal Configuration Settings
With several exceptions, terminal configuration settings for supported
terminals on MPE/iX systems are the same as the settings that were
used for supported terminals on MPE V systems. The following
configuration values are the only settings that you will need to change
so that the terminal will operate properly when connected to a DTC:

• RecvPace (Receive Pacing) must be set to XON/XOFF.

• XmitPace (Transmit Pacing) must be set to XON/XOFF.

 Note that the EnqAck setting can be left on although the ENQ/ACK
protocol is not used.
288 Appendix A

Comparing MPE/iX Systems to MPE V Systems
PAD Support
PAD Support
On MPE V computers, PAD support is provided over the NS X.25
3000/V Link product, which must be purchased and configured on
systems to which PAD access is required. On MPE/iX systems, PAD
support is provided through the DTC/X.25 Network Access card which
is mounted in the DTC. Access through a private or public PAD is
available through the DTC to any MPE/iX computer on the LAN to
which that DTC is connected (within configured security limitations).

PAD Programming Considerations
Programmatically, PAD support on MPE/iX is nearly identical to PAD
support on MPE V. The only difference is with the FCONTROL37
intrinsic. On MPE V, the FCONTROL intrinsic has no effect. On
MPE/iX, calling the intrinsic will cause the terminal type setting to be
changed, but will have no impact on how the device actually operates.
Appendix A 289

Comparing MPE/iX Systems to MPE V Systems
Terminal Types and Printer Types
Terminal Types and Printer Types
The following terminal types files are supported on the ATP and ADCC
terminal/printer controllers with MPE V T-MIT or later (MPE V version
G.01.00 or later):

• 6, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, TTPCL18, TTPCL19,
TTPCL22, and TTPCL26.

DTS on MPE/iX computers supports three terminal types and four
printer types:

• Terminal type 10.

• Terminal type 18.

• Terminal type 24.

• Printer type 18.

• Printer type 21.

• Printer type 22.

• Printer type 26.

Table A-1 and Table A-2 provide an introduction to the MPE/iX
terminal types and printer types by comparing them to the MPE V
terminal types that are the most similar. See Table A-1 for the terminal
types that apply to terminals, and Table A-2 for the MPE V terminal
types and MPE/iX printer types that apply to printers.

Table A-1 MPE/iX Terminal Types Overview

MPE/iX
Terminal Type

Similar MPE V
Terminal Type Differences

10 10 Enhanced XON/XOFF protocol on MPE/iX. No ENQ/ACK
protocol on MPE/iX.

18 18 Enhanced XON/XOFF protocol on MPE/iX.

24 24 For terminal devices connected via PAD.
290 Appendix A

Comparing MPE/iX Systems to MPE V Systems
Terminal Types and Printer Types
Table A-2 MPE/iX Printer Types Overview

As devices are moved from an MPE V system to an MPE/iX system, see
Table A-3 and Table A-4 to decide which terminal or printer type to use
with each of your asynchronous devices.

Table A-3 Terminal Type Migration for Terminals

MPE/iX
Printer Type

Similar MPE V
Terminal Type Differences

18 18 Enhanced XON/xoff protocol on MPE/iX

21, 22, 26 21, 22, 26 Enhanced XON/XOFF protocol on MPE/iX.
No ENQ/ACK protocol on MPE/iX.
Printer initialization string of MPE V’s TTPCL22 is used.
Printer status checks are done less frequently on MPE/iX;
status requests are not sent after each printed line.

MPE V
Terminal

Type
Description

Use MPE/iX
Terminal

Type
Comments

6, 9 Non-HP hardcopy device
needing delays after
linefeed or formfeed.

None Devices that need delays are not
supported on MPE/iX.

10 General HP CRT terminal
using both ENQ/ACK and
XON/XOFF protocol.

10 Only XON/XOFF protocol is used
on MPE/iX.

12 8-bit character version of
terminal type 10. Used with
languages that need
extended character sets.

10 Bits per character no longer defined
by terminal type.

13 Terminal type 10 with no
echo or ENQ/ACK protocol.
Used for plotters or the
HP 2601 printer.

None Similar terminal type can be
created with TTUTIL.

15, 16 8-bit and 7-bit HP 2635
hardcopy terminal.

None These terminal types specify use of
a backspace response action not
supported on MPE/iX.

18 Terminal type 10 without
ENQ/ACK protocol or a
read trigger. Used with
non-HP devices.

18 Enhanced XON/XOFF protocol is
used on MPE/iX.

24 Terminal type used for PAD
terminals supporting page
block mode.

24 Terminal type used for PAD
terminals supporting page block
mode. (Note that the block mode
support is for VPLUS block mode
only.)
Appendix A 291

Comparing MPE/iX Systems to MPE V Systems
Terminal Types and Printer Types
Table A-4 Terminal Type Migration for Printers

MPE V
Terminal

Type
Description

Use MPE/iX
Printer

Type
Comments

18 Non-HP devices or
application printers

18 MPE V’s terminal type 18 and
MPE/iX’s printer type 18 are
exactly the same except that an
enhanced XON/XOFF protocol is
used on MPE/iX.

TTPCL18 Terminal type 18 with a
printer initialization string
and an XOFF timer. Used
with HP 2687A.

18 The HP 2687 A is not supported on
MPE/iX.

19 Remote serial spooled
printer.

21 Status checking is done less
frequently on MPE/iX. The printer
initialization string is the same as
MPE V’s TTPCL22.

TTPCL19 PCL remote serial spooled
printer.

21 Status checking is done less
frequently on MPE/iX.

20 8-bit serial spooled printer. 22 Status checking is done less
frequently on MPE/iX.
Initialization string is the same as
MPE V’s TTPCL22.

21 Serial spooled printer with
no status checking after
XOFF.

21 Status checking is done less
frequently on MPE/iX.
Initialization string is the same as
MPE V’s TTPCL22.

22 8-bit serial spooled printer
with no status checking
after XOFF.

22 Status checking is done less
frequently on MPE/iX.
Initialization string is the same as
MPE V’s TTPCL22.

TTPCL22 PCL 8-bit serial spooled
printer with no status
checking after XOFF.

22 Status checking is done less
frequently on MPE/iX.

26 For use with remote
spooled printers over a
buffered network.

26 Same as MPE V’s TTPCL26.

TTPCL26 PCL for use with remote
spooled printers over a
buffered network.

26 Same as MPE V’s TTPCL26.
292 Appendix A

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
Software Characteristics
The following are differences between the ASC software and the
software that controls the ATP/ADCC:

• Changed functions. These are functions that have been implemented
differently in the ASC software (and/or the DTC) from the way they
are implemented for ATP/ADCC.

• Programming considerations. These are more functions that have
been implemented differently. However, these functions apply only
to programs written to control asynchronous devices.

• Functions no longer supported. These are functions that are
supported with the ATP/ADCC software which are not supported
with the ASC software.

• Related operating system changes. These are functions that are
supported on MPE V computers but are not supported on MPE/iX
computers.

NOTE The following pages document all known differences between the
functionality of ATP/ADCC software and the functionality of ASC
software. Some of the following differences are very detailed, but are
not likely to impact the migration of most customer sites.

Changed Functions
The following functions have been modified. See also “Programming
Considerations” later is this Appendix for features that have changed.

Echo Facility
Pressing [Esc] is no longer necessary to turn the echo facility on or off.
The MPE/iX :SET command is used now. The syntax used to turn echo
on or off is as follows:

• :SET ECHO = ON

• :SET ECHO = OFF

XON/XOFF Protocol
With MPE V, the XON/XOFF protocol is used, but certain cases exist
when the XON (DC1) and XOFF (DC3) characters are ignored.
Therefore, it is difficult to determine when these characters will be
acted on. With ASC software, these characters are always acted on
when the XON/XOFF protocol is enabled.
Appendix A 293

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
For instance, XOFF ([CTRL]-S on terminals) is ignored in MPE V during
reads or when no I/O is pending on the device. (This means that nothing
is waiting to be printed on the device and no program is waiting for
input from the device.) With MPE/iX, the [CTRL]-S character is not
ignored (except during a binary read).

Therefore, during a read, if [CTRL]-S is pressed, the read appears to be
suspended. Press [CTRL]-Q to echo the characters typed to the screen.
Therefore, [CTRL]-Q must be pressed to continue and complete the read.

The only exception is during binary mode. During a binary read, an
ASCII DC1 or DC3 can be a data character and not an XON or XOFF.
The ASC software does not react to them as if they are protocol
characters, but passes them through as data. Since these protocol
characters are accepted as data, they will be echoed. However, when an
XOFF is echoed, it will suspend the terminal as if an XOFF were sent to
it from the DTC. This means that echo should be disabled while in
binary mode.

Note that the XON/XOFF protocol characters are accepted as data only
when coming from the device. When an ASCII DC1 or DC3 is sent from
the DTC, the terminal will still react to the character as a protocol
character.

Using Smooth Scroll
A terminal uses its buffer to store incoming data and makes use of the
XON/XOFF protocol to keep the DTC from overflowing the terminal
buffer. Some supported devices (namely the HP150 and HP293x
terminals) support smooth scroll. When a device is in smooth scroll
mode, it transfers data to its screen more slowly (to make the output
look “smooth”) and therefore uses its buffer to store more incoming
data. This is especially true at higher speeds such as 9600 and
19,200 bps.

As a terminal user, use the XON/XOFF protocol to monitor what is
written to the screen by pressing [CTRL]-S (XOFF) and [CTRL]-Q (XON).

When both the terminal and its user are sending XONs and XOFFs to
the DTC, the DTC has no way of knowing the source of the protocol
characters. Therefore, it can appear that the [CTRL]-S and [CTRL]-Q
characters are not being recognized.

To avoid this problem, press [Stop] instead of [CTRL]-S and [CTRL]-Q .
When [Stop] is pressed, the terminal’s buffer stops processing data, so
no more will be printed to the terminal screen. When [Stop] is pressed a
second time, the terminal will resume processing data in and out of its
buffer. (Therefore, the [Stop] key functions as a toggle switch.) In this
way, the terminal controls which protocol characters are sent to the
DTC.
294 Appendix A

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
Another way to alleviate the problem is to lower the terminal’s
transmission speed; devices running at 4800 bps or lower will not have
this problem.

Parity Error
With an ATP on MPE V, a read that contains a parity error still
completes normally. Then, all read data is discarded. With a DTC, the
first parity error ends the read immediately and the read data is
discarded.

Parity Error in EOR
With an ATP, a parity error in the EOR character prevents the read
from completing normally. Unless a timer expires or a byte count is
satisfied, the device can hang. This is not a problem with a DTC. The
read completes when the parity error is detected and all data is
discarded.

Stripped Characters
When the terminal controller reads input from a device, certain
characters are searched for in the stream of data. When found, some of
those are stripped from the data. The differences between the MPE V
ATP and the ASC software are as follows:

• [Esc]: This two character sequence is not stripped from the input
data on MPE/iX computers. It is stripped from input data on MPE V
computers.

• [Esc]; This two character sequence is not stripped from input data on
MPE/iX computers. It is stripped from input data on MPE V
computers.

• LF (linefeed). Linefeeds are stripped from input data with MPE V.
With MPE/iX, linefeeds are not stripped.

System Break and Terminal States
When a system break is received, the ATP saves the EOR character, the
read timer value, and the terminal mode. Under the same
circumstances, the DTC saves all of these, plus echo. Therefore, with
ATP, if echo was disabled, it will be disabled in the Command
Interpreter (CI). With the DTC, echo is enabled and disabled when the
user resumes.

Using [Break] (and Later :RESUME) During a Read
When you are entering data or a command in a subsystem and press
[Break] (before pressing [Return]), MPE V keeps the data entered and
completes the read if the :RESUME command is entered. MPE/iX
disregards the read data.
Appendix A 295

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
Using [Break] During Writes
Because of the speed with which MPE/iX systems process writes, more
data can be lost if [Break] is entered while a program is writing to a
terminal than was the case for terminals connected to MPE V systems.

The Command Interpreter and [Break]
During a read in the MPE V CI, [Break] is disabled. It is not disabled in
the MPE/iX CI.

Preemptive Writes
With MPE V, a preemptive write can interrupt a read or another write.
With the ASC software on MPE/iX computers, a preemptive write will
interrupt a read or a write not yet started, not a write that has already
started.

During Reads. Suppose, you are using the CI to type in MPE V
commands on a terminal. You want to use the :SHOWJOBcommand and
begin typing. The system operator sends you a message with the :WARN
command after you have typed only the characters SH. The :WARN
message interrupts your read and is displayed on the screen. The SH
characters you have already entered are discarded, and a new DC1
character is sent to your terminal. You must begin typing the word
SHOWJOB again because the SH was lost when the read was preempted
by the message.

With MPE/iX, a :WARN message will interrupt the read as if it were a
:WARN message on MPE V. However, in the example above, when you
have typed SHof the :SHOWJOBcommand and receive a WARNmessage,
the SHis not lost, and no new DC1 character is issued. You need to type
only OWJOB to execute the command.

During Writes. On MPE/iX, a preemptive write will not interrupt
another write that has already started. Writes that have not yet started
will be delayed until after the preemptive write.

Logical Console Functionality
On all HP 3000 computers, terminals other than the system console can
temporarily obtain partial console functionality with the :CONSOLE
command. This is called moving the logical console to a terminal. MPE
V systems allow the logical console to receive console messages, execute
normal console commands, and execute console commands that require
the console attention character ([CTRL]-A).

The functionality of the logical console on MPE/iX computers is the
same, with one exception: the logical console cannot execute console
commands that require [CTRL]-A . The [CTRL]-A character is not
296 Appendix A

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
recognized as the console attention character on any device other than
the system console. (Do not attempt to move the logical console to a
terminal connected via a PAD or to a terminal with switching enabled.)

Printer Status Request
The printer status request, also known as status checking or the
HP2631B handshake, is how the controller monitors the condition of
serial printers. Under MPE V, printer status checking can be done quite
frequently. Terminal type files 21 and 22 send a status request at
FOPEN, after each record is printed, and at FCLOSE. Terminal type files
19 and 20 send an additional status request every time the printer
sends an XOFF. With MPE/iX printer type files 21 and 22, a status
request is sent only at FOPEN and FCLOSE. (Neither MPE V terminal
type 18 nor MPE/iX printer type 18 uses status checking.) Since status
checking is done less frequently with MPE/iX, serial printers have
better performance. (Printer type file 26 on MPE/iX functions the same
as terminal type 26 file on MPE V.)

Programming Considerations
The following functions have been implemented differently and apply
only to programs written to control asynchronous devices.

Changing Parity
When programmatically changing the parity checking and generation
of a specific connection (through the FCONTROL36 and FCONTROL24
intrinsics), the type of parity is determined by the value of a parameter
of the FCONTROL36 intrinsic. The differences between MPE V’s ATP
and MPE/iX’s DTC are listed in Table A-5.

Table A-5 Parity Settings with FCONTROL(36)

FCONTROL
Control Code Value ATP DTC

0 Even parity checked on input
Eighth bit set to 0 on output

No parity checked on input
Eighth bit set to 0 on output

1 Odd parity checked on input
Eighth bit set to 1on output

No parity checked on input
Eighth bit set to 1on output

2 Even parity checked on input
Even parity generated on output

Even parity checked on input
Even parity generated on output

3 Odd parity checked on input Odd
parity generated on output

Odd parity checked on input
Odd parity generated on output
Appendix A 297

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
NOTE When a device is closed (using the FCLOSE intrinsic) on an MPE V
computer, the initial default parity setting is restored. On MPE/iX
computers, parity is not restored at FCLOSE. This means that to
change parity using the FCONTROL intrinsic, the default parity in the
application must be restored before closing the device.

Read Timer
On MPE V computers, the read timer must be enabled (FCONTROL20)
before every read whose duration you wish to measure. With MPE/iX
computers, the timer is always enabled and measures every read. This
means the following:

• There is no need to use the FCONTROL20 intrinsic. The timer is
automatically enabled.

• The read timer’s value should be obtained before any other reads
occur. Otherwise, the value of the read timer will be for the most
recent read, not the read that originally needed to be timed.

• FCONTROL21 cannot be used to disable the timer. (Calling this
intrinsic has no effect on the timer.)

Additional End-of-Record Characters
With MPE/iX, the characters listed in Table A-6 should not be used as
additional end-of-record characters. An error message will not be
received if one of the characters in the table is entered as an additional
EOR, but the character will not terminate a read when it is entered.
With MPE V, any character can be used as an additional end-of-record
character, except for the list in Table A-7.

Table A-6 Unrecognized AEOR Characters (MPE/iX)

On MPE/iX computers, only one AEOR character can be designated for
a device at any given time with FCONTROL(25), and multiple AEORs
can be designated with FDEVICECONTROL(192,40).

ASCII Character Terminal Keys Octal Code Hex Code

NUL(Null) [CTRL]-@ % 0 $ 0

DC1(XON) [CTRL]-Q % 21 $11

DC3(XOFF) [CTRL]-S % 23 $13

Current Subsystem Break [CTRL]-Y (by default)a

a. In transparent mode, define the subsystem break character through the
FCONTROL41 intrinsic

% 31 $19

DEL(Rubout) [DEL] % 177 $7F
298 Appendix A

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
Table A-7 Unrecognized AEOR Characters (MPE V)

Transparent Mode
On MPE V computers, the ASCII characters DC1 and DC3 are treated
as data in transparent mode. With MPE/iX, DC1 and DC3 are not
treated as data, but as the protocol characters XON and XOFF.

Binary Mode and Echo
When initiating binary mode (through the FCONTROL27 intrinsic) on
an MPE/iX computer, turn echo off on the device (FCONTROL13). This
is necessary because if a DC3 character is in the data, it will be echoed
and will XOFF the device. Refer to “XON/XOFF Protocol” under
“Software Characteristics” earlier in this appendix for more
information.

Using FCONTROL(35)
The FCONTROL35 intrinsic is used to inhibit the printing of !!!
(three exclamation points) when the line deletion character ([CTRL]-X
by default) is entered. When the line deletion response is disabled on
MPE V computers, a carriage return and linefeed are sent when the
line deletion request is received, and all read data is disregarded. The
user can start typing the line from the beginning. On MPE/iX
computers, the line deletion request functions the same except for one
thing: the carriage return and linefeed are not sent.

ASCII Character Terminal Keys Octal Code Hex Code

NUL(Null) [CTRL]-@ % 0 $ 0

BS(Backspace) [CTRL]-H % 10 $ 8

LF(Linefeed) [CTRL]-J % 12 $ A

CR(Carriage Return) [CTRL]-M % 15 $ D

DC1(XON) [CTRL]-Q % 21 $11

DC2 [CTRL]-R % 22 $12

DC3(XOFF) [CTRL]-S % 23 $13

CAN(Cancel) [CTRL]-X % 30 $18

EM(End-of-Medium) [CTRL]-Y % 31 $19

ESC(Escape) [CTRL]-] % 33 $1B

DEL(Rubout) % 177 $7F
Appendix A 299

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
The FDEVICECONTROL Intrinsic
MPE V computers, a limited number of device control functions can be
modified through the FDEVICECONTROL intrinsic. On MPE/iX
computers, FDEVICECONTROL has expanded device control
functionality. Additionally, on MPE/iX computers, the
FDEVICECONTROL intrinsic is supported for devices connected
through a private or public PAD.

Functions No Longer Supported
The following functions supplied by the MPE V ATP/ADCC are not
supported by the MPE/iX ASC software.

ENQ/ACK Protocol
The ENQ/ACK protocol handshake between devices and the HP 3000
MPE V ATP/ADCC is not supplied by the ASC software.

Transmission Speeds of 110, 150 and 600
The speeds 110 bps, 150 bps, and 600 bps are rarely used on the
HP 3000 computer, so the DTC does not support them

:EOF: and :EOD: Commands
The :EOF: and :EOD: commands, which can be used on MPE V
computers, are not supported on MPE/iX computers.

Carriage Control Delays
Some hardcopy devices could not receive data quickly enough,
especially when the carriage of the device had to move back to the
beginning of the next line after each line was printed. MPE V supports
terminal type files that allow extra time for the device to prepare for the
next line of output. It does this by providing extra time for each
carriage return, each linefeed, and the formfeed that the device must
perform. Since these devices are obsolete, Hewlett-Packard does not
provide this feature with new terminal type files and printer type files.

Special Response to a Backspace Character
Some devices require the terminal controller to handle the backspace
character in a specific way. For instance, when backspace is used on a
hardcopy device, a character typed after the backspace will be difficult
to see because it will be typed directly over the previous character.
Some MPE V terminal type files react to a backspace by going to the
next line, so that characters typed after a backspace would appear
under, instead of on top of, previous characters. Since devices that
require this special attention are not supported with the ASC software,
only two responses to the backspace character are supplied. Through
300 Appendix A

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
the FDEVICECONTROL intrinsic, you can choose to either remove the
character from input and back the cursor up one space, or to remove the
character from input and erase it (backspace, space, backspace).

Special Response to a Linefeed Character
The MPE V ATP/ADCC software will react to a linefeed (LF) character
by echoing a carriage return and linefeed, then stripping the linefeed
from input data. The ASC software will not do this and will not strip
linefeeds from input data. This is different during line block mode only.

Special Output for a Formfeed Character
For some devices, the MPE V ATP/ADCC software will substitute the
linefeed (LF) character for the formfeed (FF) character. On MPE/iX
computers, formfeed replacement is supported in carriage return, but
not in user data.

Critical Writes
With MPE V, all writes to asynchronous printers are critical writes.
This means that the file system reports the completion of the write to
the program initiating the write only after the data from the write has
been printed out. In other words, the write is complete only after the
write is successful. With MPE/iX, the completion of every write is
reported by the file system when the DTC sends the data to the printer.
Since this is before the data has actually printed, the completion of a
write does not guarantee that the write was successful.

Since the ASC software does not wait for each line to print before
continuing, data can be sent to printers more quickly.

Related Operating System Changes
The following functionality of the MPE V operating system is not
supported on the MPE/iX operating system, and has some significance
for the asynchronous subsystem.

MPE Commands
The :DATA and :COMMAND commands, sometimes used to log on to
terminals, are not supported on MPE/iX. The :JOB command, while
still useful to stream jobs, cannot be used to log onto a terminal.

File System Intrinsics
The FCARD and PTAPE intrinsics, sometimes used with asynchronous
devices, are not supported on MPE/iX.
Appendix A 301

Comparing MPE/iX Systems to MPE V Systems
Software Characteristics
302 Appendix A

Glossary
A

ASCII A special interface card in
the system cabinet through which
the MPE/iX system console is
connected.

ADCP Avesta Device Control
Protocol. An HP proprietary
protocol which provides device
control features. ADCP is
optimized for communications
between a DTC and MPE/iX
systems.

address A numerical identifier
defined and used by a particular
protocol and associated software
to distinguish one node from
another.

address key See X.25 address
key.

address resolution In NS
networks, the mapping of node
names to IP addresses and the
mapping of IP addresses to
subnet addresses.

address resolution protocol
(ARP) A protocol used to convert
an IP address to a low level
hardware address. ARP can be
used only over a single physical
network and is limited to
networks that support hardware
broadcast.

adjacent A node on a
point-to-point network that is
connected to another node by a
single link with no intervening
nodes.

ADP Active Distribution Panel.
See MDP.

AFCP Avesta Flow Control
Protocol. An HP proprietary
protocol which provides data flow
control features. AFCP is
optimized for communications
between nodes, including DTCs,
in an MPE/iX environment.

ARP See address resolution
protocol.

ARPA Advanced Research
Projects Agency. It is the former
name of the Defense Advanced
Research Project Agency
(DARPA). The Internet suite of
protocols was developed under
ARPA guidance.

ARPA DTC Telnet Access An
HP product which is a card that
can be installed in a DTC 48 and
DTC 72MX. The Telnet Access
Card performs protocol
translation. Calls to the IP
address of an MPE/iX system are
detected by the Telnet Access
Card and are retransmitted on
the LAN using AFCP, allowing
connections from terminals on
ARPA systems to HP 3000s.

ARPA DTC Telnet Express
Box An HP product which is a
standalone hardware platform
dedicated to performing protocol
translation. Calls to the IP
address of an MPE/iX system are
detected by the Telnet Express
Box and are retransmitted on the
Glossary 303

Glossary
LAN using AFCP, allowing
connections from terminals on
ARPA systems to HP 3000s.

ASCII American National
Standard Code for Information
Interchange. A character set
using 7-bit code used for
information interchange among
data processing and data
communications systems. The
American implementation of
International Alphabet No. 5.

asynchronous A device’s mode
of operation in which a sequence
of operations are executed
irrespective of time coincidence
with any event. Devices that are
directly accessible by people (for
example, terminal keyboards)
operate in this manner.

asynchronous processor
board The new 24-port mux
board for the DTC 72MX. Allows
up to 24 direct and modem
connections per board. A DTC
72MX can have up to 3
asynchronous processor boards
(for a total of 72 connections).

Attachment Unit Interface

AUI. The cable that runs between
each node (host, DTC, or other
device) and the Medium
Attachment Unit (MAU) that
connects it to the LAN in a
ThickLAN configuration.

autodial A dial link in which the
remote node’s telephone number
is automatically dialed by a
modem or other device with this
capability.

B

backbone LAN A thick LAN
cable conforming to the IEEE
802.3 Type 10 BASE 5 Standard.

back-to-back configuration A
DTC configuration whereby MPE
users connected to one DTC can
communicate with a non-MPE/iX
system connected to another DTC
via the LAN. See also Local
Switching.

banner A welcome message
displayed on your screen. On the
local OpenView workstation a
banner appears when a remote
connection is established with the
OpenView DTC Manager. A
banner also can appear when you
log on to MPE.

baud The measure of the speed
at which information travels
between devices, most commonly
used in reference to terminal
speed settings. Baud represents
signal events per second. When
one bit represents each signal
change, baud is the same as “bits
per second.”

binary mode A data transfer
scheme in which no special
character processing is
performed. All characters are
considered to be data and are
passed through with no control
actions being taken.

bit Binary digit. A unit of
information that designates one
of two possible states, which are
represented by either 1 or 0.
304 Glossary

Glossary
block mode A terminal
processing mode in which groups,
or “blocks,” of data are
transmitted all at once.

BNC T-Connector A connector
used to connect a computer or a
component such as a DTC to the
LAN in a ThinLAN configuration.

boundary See network
boundary.

bps Bits per second. The number
of bits passing a point per second.

bridge A device that is used to
connect LAN segments.

broadcast Communication
method of sending a message to
all devices on a link
simultaneously.

buffer A logical grouping of a
system’s memory resources used
by NS3000/iX.

byte A sequence of eight
consecutive bits operated on as a
unit.

C

call In X.25, a call is an attempt
to set up communication between
two DTEs using a virtual circuit.
Also known as a virtual call.

call collision A conflict that
occurs at a DTE/DCE interface
when there is a simultaneous
attempt by the DTE and DCE to
set up a call using the same
logical channel identifier.

called address When a node
sends out a call request packet,
the packet contains the address of
the destination node. The address
of the destination node is the
called address.

calling address When a node
receives an incoming call packet,
the packet contains the address of
the sending node. The address of
the sending node is the calling
address.

carrier A continuous wave that
is modulated by an information
bearing signal.

catenet See internetwork.

CCITT Consultative Committee
for International Telephony and
Telegraphy. An international
organization of communication
carriers, especially government
telephone monopolies, responsible
for developing telecommunication
standards by making
recommendations. The emphasis
is on “recommendations”; no
carrier is required to adhere to a
CCITT recommendation,
although most do so in their own
interests.

CIB The channel input/output
bus in the backplane of an
HP 3000.

circuit-switching network A
type of data communications
network wherein a physical and
exclusive link is maintained
between two communicating
devices for the call duration. An
Glossary 305

Glossary
all digital, circuit switching
network is often referred to as an
X.21 network.

closed user group An X.25 user
facility that allows
communication to and from a
pre-specified group of users and
no one else.

compatibility mode A
processing mode on HP 3000
Series 900 computers that allows
applications written for MPE V/E
based systems to be ported and
run without changes or
recompilation.

computer network A group of
computer systems connected in
such a way that they can
exchange information and share
resources.

configuration 1) The way in
which computer equipment is
physically interconnected and set
up to operate as a system. 2) The
layout of the computer system,
including the MPE table, memory,
and buffer sizes, that tells which
peripheral devices are (or can be)
connected to the computer and
how they can be accessed. 3) The
process of defining the
characteristics of a network in
software.

For MPE/iX based computers, the
operating systems are configured
through use of the SYSGEN
utility.

Next, the Distributed Terminal
Subsystem (DTS) link is
configured by using NMMGR
(running on the host) and can, in
addition, be configured using the
OpenView DTC Manager
software (running on the
OpenView Windows Workstation)
depending on the type of network
management you use.

A system that is to run network
services (NS3000/iX) is configured
through use of NMMGR.

Access to X.25 is configured in
two parts. The X.25 MPE/iX
System Access software is
configured on the host through
use of NMMGR. The DTC/X.25
Network Access software residing
on the DTC is configured at the
OpenView Windows Workstation
through use of the OpenView
DTC Manager.

configuration file The
configuration file contains the
information that the network
needs in order to operate. This file
also contains information
necessary for link level and
NetIPC logging. The only file
name that the system recognizes
is NMCONFIG.PUB.SYS.

control-X echo Three
exclamation marks (!!!) output
to the terminal screen when the
cancel character (normally
[CTRL]-X) is entered.

control-Y trap A user written
procedure to which control is
passed when the subsystem break
306 Glossary

Glossary
character (normally [CTRL]-Y) is
entered during execution of a
program with subsystem break
enabled.

cross-validate The process of
assuring that information
contained in two locations is
consistent where it is imperative
that it be consistent. For example,
an automatic cross validation
occurs when you enter SYSGEN
to assure that information
contained in NMCONFIG.PUB.SYS
agrees with system configuration
data.

CSMA/CD Carrier Sense
Multiple Access with Collision
Detect, transmission access
method used by the IEEE 802.3
LAN standard.

CSN See circuit-switching
network.

CTB The cache transfer bus in
the backplane of an HP 3000.

CUG See closed user group.

D

data Basic elements of
information that can be processed
or produced by a computer.

Datacommunications and
Terminal controller See DTC.

datagram A self contained
packet that is independent of
other packets. It does not require
an acknowledgment and it carries
information which is sufficient to

route it from one DTE to another
DTE without relying on earlier
exchange between the DTEs.

data overrun Transmitted data
that is sent faster than the
receiving equipment can receive
it. The resultant overflow data is
lost. See also flow control.

Datapac The national public
PSN of Canada.

Datex-P The national public
PSN of West Germany.

D bit Delivery confirmation bit.
Used in the X.25 protocol, the
setting of the D bit in DATA
packets indicates whether
delivery acknowledgment of the
packet is required from the local
DCE or from the remote DTE. It
therefore allows the choice
between local and end-to-end
acknowledgment.

DCE Data circuit terminating
equipment. The interfacing
equipment required in order to
interface to data terminal
equipment (DTE) and its
transmission circuit. Synonyms:
data communications equipment,
dataset. A modem is an example
of a DCE.

DDX The national public PSN of
Japan.

DDFA DTC Device File Access
Utilities. A set of HP-UX utilities
which is used by systems and
user written applications to
programmatically access devices
attached to DTC ports.
Glossary 307

Glossary
DDP Direct Distribution Panel; a
distribution panel that serves as
the electrical and physical
interface between a DTC 72MX
mux board (asynchronous
processor board) and up to eight
asynchronous devices for direct
connections. See MDP for modem
connections.;

dedicated printer A printer
that can be used only by one host
on the LAN—the one specified in
the Destination Node Name in
that printer’s configuration
screen.

demodulation The process by
which the information bearing
signal is retrieved from a
modulated carrier wave. The
inverse of modulation.

destination node name In DTS
configuration, it is either 1) the
name of a host that a user can be
connected to by default (if
switching is not enabled for that
user, or if automatic modem
connection is enabled), or 2) the
name of the only host that can
access a dedicated printer.

device class A collection of
devices that have some user
defined relation. Device classes
are assigned through use of the
NMMGR configuration program.

device-dependent
characteristic A file
specification for which
modifications are restricted
because of the type of device on
which the file is opened. For

example, data directed to
terminals must have a blocking
factor of one.

device driver A software
module that controls a specific
type of input/output device.

devicefile A file being input to or
output from any peripheral device
except a disk. MPE/iX allows
operations to be performed on the
device itself as if it were a file.

device independence A
characteristic of the operating
system that allows users to
selectively redirect input/output
from a program, session, or job
without regard to the nature of
the device.

device name See PAD name.

Dial ID protocol A proprietary
Hewlett-Packard protocol that
provides security checking and
address exchange for dial links.

dial link A connection made
through public telephone lines.

direct-connect device An
asynchronous device that is
connected directly to a DTC
through an RS-232-C or RS-422
cable, with no intervening
communications equipment. Also
referred to as a “local connection.”

direct connection A leased line,
private line, or other
non-switched link in a network.
308 Glossary

Glossary
direct dial A dial link through
which only one remote node can
be reached.

direct-path branching The
process of directly accessing any
screen in NMMGR by entering a
path name in the Command:
field. The path name must be
preceded by an at sign (@).

download The process of loading
operating code and configuration
files into the DTC’s memory. The
DTC is downloaded by the
MPE/iX host for LANs using
host-based network management,
and by the PC for DTCs managed
by the OpenView DTC Manager.

driver Software that controls
input/output devices including
NS3000/iX links.

DTC Datacommunications and
Terminal Controller. The DTC is
a hardware device, configured as
a node on a LAN, that enables
asynchronous devices to access
HP 3000 Series 900 computers.
Terminals can either be directly
connected to the DTC, or they can
be remotely connected through a
Packet Assembler Disassembler
(PAD). The DTC can be
configured with DTC/X.25
Network Access cards and
DTC/X.25 Network Access
software. A DTC/X.25 iX Network
Link consists of two software
modules: the X.25 iX System
Access software (running on the
host) and the DTC/X.25 Network
Access software (running on the
DTC).

DTC 16 HP 2340A product. A
DTC that provides 2 slots for
asynchronous connections with
each slot allowing up to 8 direct
connections or 6 modem
connections, plus an optional X.25
link supporting up to 32 virtual
circuits at speeds of up to
19.2 Kbps.

DTC 16iX HP J2062A product. A
DTC terminal server for HP 3000
systems. It allows up to
16 asynchronous connections to
HP 3000 systems.

DTC 16MX HP J2063A product.
A DTC terminal server for HP
3000 and DTC Telnet systems. It
allows up to 16 asynchronous
connections for the HP 3000
environment and for computer
systems running ARPA, such as
HP 9000s and third party
systems.

When managed by the HP 3000,
the DTC 16MX is configured and
functions exactly like a DTC 16iX.
The full functionality of the DTC
16MX is only available when it is
managed by the OpenView DTC
Manager.

DTC 16TN HP J2060A product.
A DTC terminal server for Telnet
systems. It allows up to 16
asynchronous connections to
computer systems running ARPA,
such as HP 9000s and third party
systems.

DTC 48 HP 2345B product. A
DTC that provides 6 slots for
asynchronous connections, X.25
Glossary 309

Glossary
links, or DTC Telnet Access. Each
slot allows up to 8 direct
connections or 6 modem
connections. A DTC 48 may have
up to 3 slots used for X.25 links,
each supporting up to 256 virtual
circuits at speeds of up to 64 Kbps
or one Telnet Access Card with 40
Telnet connections to HP 3000
Series 900 connections.

DTC 72MX HP J2070A product.
A DTC that provides 3 slots
allowing up to 72 asynchronous
connections. Each slot
accommodates up to 24 direct or
modem connections. A DTC 72MX
may have up to 3 slots used for
X.25 links, each supporting up to
256 virtual circuits at speeds of
up to 64 Kbps. It may also use one
slot for Telnet Access Card with
40 Telnet connections to HP 3000
Series 900 computers.

DTC identifier An identifier
used only within NMMGR to
define the branch of the
configuration file containing
information about a particular
DTC. The identifier must begin
with a letter and can be up to
eight characters long.

DTC Manager See OpenView
DTC Manager.

DTC node name A unique name
used to identify a DTC on a LAN.
The node name format is
nodename.domain.organization,
with each of the three parts
having up to 16 characters. The
name begins with either a letter
or a digit.

DTC station address (802.3
address) A 12-digit hexadecimal
number used to identify the DTC
as a node belonging to the
network configuration. Also called
the LAN address or node address.

DTC switching A facility
enabling terminal users to select
any host system that they want to
connect to. DTC switching is
available only when the
OpenView DTC Manager is used
for network management.

DTC/X.25 Network Access The
software that resides on the
Datacommunications and
Terminal Controller (DTC). To
configure access to an X.25
network, you must configure two
software components: the X.25 iX
System Access (residing on the
HP 3000 host and configured
through use of NMMGR
software), and DTC/X.25 Network
Access (configured on the
OpenView Windows Workstation
through use of the OpenView
DTC Manager software for
PC-based management, and
through NMMGR for host-based
management).

DTC/X.25 Network Access
card The hardware card and
channel adapter that provides
X.25 Network Access. It resides in
the Datacommunications and
Terminal Controller (DTC).

DTC/X.25 iX Network Link

Software and hardware that
provides MPE/iX access to private
and public X.25 networks. The
310 Glossary

Glossary
X.25 iX System Access software
resides on an HP 3000 host and is
configured through use of
NMMGR. The DTC/X.25 Network
Access software resides on the
Datacommunications and
Terminal Controller and is
configured at the OpenView
Windows Workstation for
PC-based management and
through NMMGR for host-based
management.

DTE Data Terminal Equipment.
Equipment that converts user
information into
data-transmission signals or
reconverts received data signals
into user information. Data
terminal equipment operates in
conjunction with data
circuit-terminating equipment.

DTS Distributed Terminal
Subsystem. This consists of all of
the Datacommunications and
Terminal Controllers (DTCs) on a
LAN, their LANIC cards
(attached to the host), the LAN
cable, and the host and DTC
software that controls all related
DTS hardware.

duplex A transmission method
that allows two way
communication. If both ends of
the transmission link can
transmit simultaneously, it is
called full duplex. If only one end
can transmit at a time, it is half
duplex transmission.

E

entry priority In a
point-to-point network, it is a
ranking that identifies the most
desirable route for data to travel
from a given local node to a
remote node.

environment A session that is
established on a remote node.

escape from data transfer
character A character that
allows a user who is connected to
a host system through the DTC,
to break that connection and
return to the DTC switching user
interface. The default is
[CTRL]-K. This character is used
only on networks managed by the
OpenView Windows Workstation.

escape sequence A sequence of
characters beginning with the
escape character and followed by
one or more other characters,
used to convey control directives
to printers, plotters, or terminals.

Ethernet A Local Area Network
system that uses baseband
transmission at 10 Mbps over
coaxial cable and unshielded
twisted pair. Ethernet is a
trademark of Xerox Corporation.

event log One of three circular
files stored on the OpenView
windows workstation. It contains
lists of events that are reported
by the DTCs for which it is
responsible.
Glossary 311

Glossary
extended packet sequence
numbering One of the optional
Network Subscribed Facilities
that provides packet sequence
numbering using modulo 128. If
not subscribed, modulo 8 is used.

F

facility An optional service
offered by a packet switching
network’s administration and
requested by the user either at
the time of subscription for
network access or at the time a
call is made. Also known as user
facility.

facility set A facility set defines
the various X.25 connection
parameters and X.25 facilities
that can be negotiated for each
virtual circuit on a per-call basis.

first select An optional packet
switching network facility by
which user data can be
transmitted as part of the control
packets that establish and clear a
virtual connection.

FCS Frame Check Sequence. A
sequence of bits generated by
X.25 at Level 2 that forms part of
the frame and guarantees the
integrity of its frame’s contents.
The FCS is also used by the
IEEE802.3 protocol to check the
validity of frames.

file equation An assignment
statement used to associate a file
with a specific device or type of
device during execution of a
program.

file number A unique number
associated with a file when the
file is opened. The file number is
returned in the FOPEN or
HPFOPEN call used to open the
file. It can be used to access that
file until the file is closed.

file specification The name and
location of a file. The full
specification for a file includes the
file name, group, and account.

file system The part of the
operating system that handles
access to input/output devices
(including those connected
through the DTC), data blocking,
buffering, data transfers, and
deblocking.

flow control A means of
regulating the rate at which data
transfer takes place between
devices to protect against data
overruns.

flow control negotiation One
of the network subscribed
facilities selected at subscription
time. This facility allows the Flow
Control parameter to be
negotiated at call set-up time, as
opposed to having a predefined
value.

formal file designator A name
that can be used
programmatically or in a file
equation to refer to a file.

FOS Fundamental Operating
System. The programs, utilities,
and subsystems supplied on the
312 Glossary

Glossary
Master Installation Tape that
form the basic core of the MPE/iX
operating system.

full gateway A full gateway is a
node that belongs to more than
one network and has one IP
address for each network. It uses
store and forward to transfer
packets between each network
that it belongs to.

G

gateway A node that connects
two dissimilar network
architectures. A gateway can be
either a single node (full gateway)
or two gateway halves.

gateway half A node that works
in conjunction with another node
on another network to form an
internetwork. The only protocol
used by gateway halves is the NS
Point-to-Point 3000/iX Link. See
also full gateway.

gateway-half link A link
between the two nodes of a
gateway-half pair. Each of the two
nodes of a gateway-half pair has a
configured link (hardware
interface card) that is used for the
gateway half network interface.
The NS Point-to-Point 3000/iX
Link is the only link that can be
used as a gateway-half link.

gateway-half pair A set of two
nodes that are joined by a
gateway-half link. Each node in
the pair must have a
gateway-half network interface
configured, using the link.

Guided Configuration A
method of configuring a node in
which a subset of the complete
NMMGR interface is presented,
and defaults of configurable
values are used automatically.

H

handshaking A communications
protocol between devices or
between a device and the CPU.
Provides a method of determining
that each end of a
communications link is ready to
transmit or receive data, and that
transmission has occurred
without error.

hardware handshake Uses
modem signals CTS and RTS to
pace the data transfer from the
DTC to the attached device. (For
DTC 72MX only.)

hop count See internet hop
count and intranet hop count

host-based network
management A method of
managing asynchronous
communications for HP 3000
Series 900 computers. All of the
control software is configured on a
single MPE/iX host and is
downloaded to the DTCs that are
managed by that host. With host
based management, a permanent
relationship exists between each
DTC and the host. Terminal users
can access only the single MPE/iX
system that owns the DTC their
terminal is connected to.
Glossary 313

Glossary
host computer The primary or
controlling computer on a
network. The computer on which
the network control software
resides. For HP purposes, it can
also be used to distinguish the
MPE/iX system (host) from the
DTC.

HP block mode A block mode
transmission method employed
by HP computers where the
system controls the block mode
handshake. When HP block mode
is used, the user program need
not concern itself with data
transfer protocol.

HP ARPA DTC Telnet
Express A DTC dedicated to
providing protocol conversion
between Telnet on TCP/IP and
AFCP to allow incoming calls
from the ARPA environment to
HP 3000 systems.

HP PPN Hewlett-Packard
Private Packet Network.
Hewlett-Packard’s own packet
switching X.25 network, which
gives users full control over the
administration and security of
their data communication.

HP TS8 A terminal server that
can support up to eight
asynchronous serial connections.
When used in back-to-back
configuration, users can access
HP 3000 MPE/V systems on it
through a DTC.

I

idle device timeout A timeout
defined by the Configure:CPU
command. When the timer lapses,
a device connected to the DTC
user interface that is still inactive
will be disconnected.

IEEE 802.3 A standard for a
broadcast local area network
published by the Institute for
Electrical and Electronics
Engineers (IEEE). This standard
is used for both the ThinLAN and
ThickLAN implementations of
the LAN.

IEEE 802.3 multicast address

A hexadecimal number that
identifies a set of nodes. This
address is used for multicast
delivery.

IEEE 802.3 nodal address A
unique hexadecimal number that
identifies a node on an IEEE
802.3 LAN.

initialization string A sequence
of control characters used to
initialize a terminal, printer, or
plotter when a connection is
established from a host on the
network.

INP Intelligent Network
Processor. The card residing in
the back of an MPE V-based node
that provides a point-to-point or
X.25 interface.
314 Glossary

Glossary
interactive communications

Processing that allows users to
enter commands and data at the
terminal and receive an
immediate response. Interactive
processing occurs in session mode
on MPE/iX systems.

internet communication

Communication that occurs
between networks.

internet hop count The
number of full gateways plus the
number of gateway-half links that
a packet must pass through in
moving from source node to
destination.

Intranet Protocol A protocol
used to provide routing between
different local networks in an
internetwork, as well as among
nodes in the same local network.
The Internet Protocol corresponds
to Layer 3, the Network Layer, of
the OSI model. See also IP
address.

internet routing Internet
routing involves all the processes
required to route a packet from a
node on one network to a
destination node on another
network.

intrinsic A system routine
accessible by user programs. It
provides an interface to operating
system resources and functions.
Intrinsics perform common tasks
such as file access and device
control.

IP See Internet Protocol

IP address Internet Protocol
address. An address used by the
Internet Protocol to perform
internet routing. A complete IP
address consists of a network
portion and a node portion. The
network portion of the IP address
identifies a network, and the node
portion identifies a node within
the network.

IP router A node in an IP
network that connects two or
more networks and provides
address mapping between them.
The router selects messages from
incoming buffers and places them
into the appropriate outgoing
message queues.

ISO International Organization
of Standards. An international
federation of national standards
organizations involved in
developing international
standards, including
communication standards.

L

LAN Local Area Network. A
collection of data communication
systems sharing a common cable
whereby each system can
communicate directly with
another.

LAN address See DTC station
address.

LANIC See Local Area
Network Interface Controller.
Glossary 315

Glossary
LANIC physical path The
physical location (slot number) of
the LANIC within the SPU.

LANIC Self-Test A ROM-based
program on a LANIC card that
tests and reports the status of the
LANIC hardware.

LAP Link Access Protocol. The
data link protocol specified by
older versions (prior to 1980) of
X.25 at Level 2 but still permitted
and therefore usable. All new
implementations of X.25 must use
LAP-B, and all old
implementations must migrate to
LAP-B at a future date.

LAP-B Link Access
Protocol-Balanced. The data link
protocol specified by the 1980
version of X.25 at Level 2 that
determines the frame exchange
procedures. LAP-B must also be
used over direct-connect NS
Point-to-Point 3000/iX Links.

LCI Logical Channel Identifier.
Local value on a network node
which identifies the channel used
to establish a virtual circuit (SVC
or PVC) through an X.25
network.

ldev See logical device
number.

leased line A data-grade
telephone line leased directly to a
subscriber and allocated
specifically for the subscriber’s
needs.

line speed The speed at which
data is transferred over a specific
physical link (usually measured
in bits or kilobits per second).

link name A name that
represents a hardware interface
card. The link name can contain
as many as eight characters. All
characters except the first can be
alphanumeric; the first character
must be alphabetic.

Local Area Network Interface
Controller (LANIC) A
hardware card that fits into the
backplane of the HP 3000
Series 900 computer and provides
a physical layer interface for
IEEE 802.3 local area networks.

local connection See direct
connection.

local node The computer that
you are configuring or that you
are logged on to.

local switching A feature of the
DTC which permits back-to-back
configuration (for connections to
an HP 3000 MPE/V host), using
two ports of the same DTC.

logging The process of recording
the usage of network resources.
Events can be logged to both the
OpenView workstation and to the
MPE/iX host.

logging class A number defining
the severity of any given event
logged. An operator uses the
logging classes to specify which
316 Glossary

Glossary
events are to be logged. Class 1
(catastrophic event) is always
logged.

logical device number (ldev)

A value by which MPE/iX
recognizes a specific device. All
DTC devices that are configured
as nailed devices through the
NMMGR configuration have ldev
numbers permanently assigned.
The DTC devices can then be
accessed programmatically
through use of their ldev number.
Non-nailed devices have ldev
numbers that are assigned from a
pool of available ldev numbers for
the life of their connection to a
system. Each nailed port
configured in NMMGR must have
a unique ldev number.

log off The termination of a job
or session.

log on The process of initiating a
job or session.

logon device See
session-accepting device.

loopback The routing of
messages from a node back to
itself.

LUG Local User Group. A list
defined for a particular DTC and
card that specifies which remote
nodes this DTC can send data to
and also which remote nodes this
DTC can receive data from. See
also Closed User Group.

M

map, network A drawing that
shows the topology of the
network. For networks managed
by the OpenView DTC Manager a
network map must be created
through use of the OVDraw
capability provided with the
management software. A network
map is also a hardcopy drawing
used when planning a network. It
shows network topology, node and
network names, addresses,
network boundaries (for an
internetwork map), and link
types.

mapping A set of characteristics
that describe a route taken by
messages to reach a destination
node. This set of characteristics is
configured with NMMGR at every
node on a point-to-point network.
One mapping is configured at
each node for every other node on
the network to which messages
will be sent.

MAU Medium Attachment Unit.
A device attached to a ThickLAN
coaxial cable that provides the
physical and electrical connection
from the AUI cable to the coaxial
cable.

M bit More data bit. Setting this
bit in a DATA packet indicates
that at least one more DATA
packet is required to complete a
message of contiguous data.

MDP Modem Distribution Panel;
a distribution panel that serves
as the electrical and physical
Glossary 317

Glossary
interface between a DTC 72MX
mux board (asynchronous
processor board) and up to eight
asynchronous devices for direct or
modem connections. Also called
ADP.

MIT Master Installation Tape. A
magnetic tape containing the
Fundamental Operating System
for an HP 3000 Series 900
computer.

modem modulator/demodulator.
A device that modulates and
demodulates signals. Primarily
used for modulating digital
signals onto carriers for
transmission and for performing
the inverse function at the
receiving end. Modems are
essential for transmitting and
receiving digital signals over
telephone lines.

modulo Value used as the
counting cycle for determining
the send sequence number (N(S))
of frames sent across an X.25
network.

modulation The process in
which certain characteristics of a
carrier signal are altered in
accordance with the changes of an
information-bearing signal.

MPE/iX MultiProgramming
Executive iX The operating
system of the HP 3000 Series 900
computers. The NS3000/iX
network services operate in
conjunction with the MPE/iX
operating system.

multiplexer MUX. A device that
allows multiple communication
links to use a single channel.

N

nailed device A device with a
permanently assigned ldev. The
assignment is established
through the system configuration
of the MPE/iX host system.
Nailed devices can be accessed
programmatically through their
ldev number. Nailed devices can
also be assigned to more than one
host.

native mode The run-time
environment of MPE/iX. In
Native Mode, source code has
been compiled into the native
instruction set of the HP 3000
Series 900 computer.

neighbor gateway A gateway
that is in the same network as a
given node.

NetIPC Network Interprocess
Communication. Software that
enables programs to access
network transport protocols.

network A group of computers
connected so that they can
exchange information and share
resources.

network address This can be
either 1) the network portion of
an IP address as opposed to the
node portion, or 2) when referring
to X.25 networks, it is a node’s
X.25 address.
318 Glossary

Glossary
network boundary The logical
division between networks in an
internetwork.

network directory A file
containing information required
for one node to communicate with
other nodes in 1) an internetwork,
2) an X.25 network, or 3) a
network that contains non-HP
nodes. The active network
directory on a node must be
named NSDIR.NET.SYS .

network interface NI. The
collective software that enables
data communication between a
system and a network. A node
possesses one or more network
interfaces for each of the
networks to which it belongs.
Network interface types are
LAN802.3, router (point-to-point),
X.25, loopback, and gateway half.
The maximum number of
supported NIs is 12, one of which
is reserved for loopback.

network management The
collective tasks required to
design, install, configure,
maintain, and if necessary,
change a network.

network map A drawing that
shows the topology of the
network. For networks managed
by the OpenView DTC Manager, a
network map must be created
using the OVDraw capability
provided with the management
software.

Network Services NS. Software
application products that can be
used to access data, initiate
processes, and exchange
information among nodes in the
network. The HP 3000/iX
Network Services include RPM,
VT, RFA, RDBA, and NFT.

network subscribed facilities

A set of parameters that the user
chooses when he subscribes to the
X.25 network; they include Flow
Control Negotiation, Use of D-bit,
Throughput Class Negotiation
and Extended Packet Sequence
Numbering.

NFT Network File Transfer. The
network service that transfers
disk files between nodes on a
network.

NI See network interface.

NLP Name Lookup Protocol. A
protocol used when setting up
links between DTCs, as happens
when DTCs are used in a
back-to-back configuration.

NMCONFIG.PUB.SYS The file
that contains all of the network
configuration data for the
HP 3000 Series 900 computer on
which it resides. It includes
information about the DTCs that
can access the system as well as
information about any Network
Service (NS) products running on
the system. This is the only file
name allowed at run-time.

NMDUMP A utility used to
format log and trace files.
Glossary 319

Glossary
NMMAINT A utility that lists
the software module version
numbers for all HP AdvanceNet
products, including NS3000/iX. It
detects missing or invalid
software modules.

NMMGR Node Management
Services Configuration Manager.
A software subsystem that
enables you to configure DTC
connectivity and network access
parameters for an HP 3000
Series 900 computer.

NMMGRVER A conversion
program called
NMMGRVER.PUB.SYS. It converts
configuration files created with
NMMGR from an earlier version
to the latest format.

NMSAMP1.PUB.SYS A sample
configuration file supplied with
FOS that can be used as a
template for DTS configuration.

node A computer that is part of a
network. The DTC is also
considered to be a node and has
its own address.

node address The node portion
of an IP address. The IP address
consists of a node portion and a
network portion.

Node Management Services
Configuration Manager See
NMMGR.

node name A character string
that uniquely identifies each
system in a network or
internetwork. Each node name in
a network or internetwork must

be unique; however, a single node
can be identified by more than
one node name.

node names list A list defined
on the OpenView windows
workstation and subsequently
downloaded to all DTCs for which
it is the “owner.” The list specifies
all of the HP 3000 Series 900
hosts on the LAN that are
accessible from the DTCs.

non-adjacent Describes a node
on an NS Point-to-Point 3000/iX
network that is separated from a
given node by intervening or
intermediate node.

non-nailed device A session
accepting device that is not
permanently associated with an
ldev number at configuration
time. When the user at such a
device logs on to an MPE/iX
system, an ldev is assigned from a
pool of ldevs set aside for this
purpose at configuration time.
The association between a
non-nailed device and this
assigned ldev exists only for the
duration of the session. One
advantage of the use of
non-nailed device connections is
that configuration is simplified,
since it is not required that each
non-nailed device be individually
configured.

NS3000/iX A Hewlett-Packard
data communication product that
provides networking capabilities
for MPE/iX based HP 3000
320 Glossary

Glossary
minicomputers. NS3000/iX
consists of a link and network
services.

NS3000/iX Link Software and
hardware that provides the
connection between nodes on a
network. Some of the NS3000/iX
links available are the ThinLAN
3000/iX Link and its ThickLAN
option, the DTC/X.25 iX Network
Link, the NS Point-to-Point
3000/iX Link, and the
StarLAN 10 3000/iX link.

NS3000/iX Network Services

Software applications that can be
used to access data, initiate
processes, and exchange
information among nodes in a
network. The services are RPM,
VT, RFA, RDBA, and NFT.

NSDIR.NET.SYS Name of the
active network directory file. See
also network directory.

O

octet An eight-bit byte operated
upon as an entity.

OpenView HP OpenView
Windows is HP’s network
management environment. It
provides the basic services for
accessing and managing
networks used by the DTC
Manager, and other applications,
such as Switch/PAD Manager,
Hub Manager, etc.

OpenView Admin An
OpenView Windows program that
enables you to configure how your

OpenView Windows applications
will function. For example, it
enables you to set a default map
for the OpenView DTC Manager.

OpenView Draw An OpenView
Windows program that is used to
draw the network map and to
label the components on it.

OpenView DTC Manager An
OpenView Windows application
that enables you to configure,
control, monitor, and troubleshoot
the operation of the Distributed
Terminal Subsystems on the
LAN.

OpenView Run An OpenView
Windows program that covers
most of the control features used
by the DTC Manager, including
monitoring and diagnostic
functions.

OpenView Windows The set of
three programs: OV Admin, OV
Draw and OV Run, running on
the OpenView workstation under
MS Windows, that acts as the
platform for all OpenView
applications, such as DTC
Manager.

OpenView Windows
Workstation The personal
computer that provides software
downloads to enable operation of
the Datacommunications and
Terminal Controller (DTC). The
configuration software that runs
on this workstation is called the
OpenView DTC Manager
software.
Glossary 321

Glossary
OSI model Open Systems
Interconnection model. A model of
network architecture devised by
the International Standards
Organization (ISO). The OSI
model defines seven layers of a
network architecture with each
layer performing specified
functions.

P

packet A block of data whose
maximum length is fixed. The
unit of information exchanged by
X.25 at Level 3. The types of
packets are DATA packets and
various control packets. A packet
type is identified by the encoding
of its header.

Packet Exchange Protocol

PXP. A transport layer protocol
used in NS3000/iX links to
initially establish communication
between nodes when NetIPC
socket registry is used.

packet-switched network
name The name of a data
communication network adhering
to the CCITT X.25
recommendation. This can be a
PDN or a private network such as
the HP PPN.

PAD (packet
assembler/disassembler) A
device that converts
asynchronous character streams
into packets that can be
transmitted over a packet
switching network (PSN).

PAD name A name of up to eight
characters that is associated with
a configured PAD device. The
PAD name is known to both the
DTC (defined by the DTC
Manager) and the MPE/iX
systems (defined by NMMGR)
that the device can access.

PAD profile A terminal or
printer profile that specifies the
configuration characteristics for
PAD-connected devices.

PAD support A software module
which can be downloaded to an
X.25 board in a DTC. The
software is used to manage
connections with remote PAD
devices.

partner gateway half When
gateway halves are used, two
gateway halves are required in
order to provide communication
between two networks. Each is
the partner of the other.

path name When configuring
with NMMGR, you can type a
string in the COMMAND: field on a
screen to branch to another
screen. Each screen has a unique
path name that corresponds to its
location in the hierarchy of
configuration screens presented
by NMMGR.

PDN Public data network. A data
communication network whose
services are available to any user
willing to pay for them. Most
PDNs use packet switching
techniques.
322 Glossary

Glossary
point-to-point A link that
connects either two nodes in a NS
Point-to-Point 3000/iX network or
two gateway halves.

port An outlet through which a
device can be connected to a
computer, consisting of a physical
connection point and controlling
hardware, controlling software,
and configurable port
characteristics. Ports can be
thought of as data paths through
which a device communicates
with the computer.

Precision Architecture The
hardware design structure for the
HP 3000 Series 900 computer
family.

printer name A character string
of up to 16 characters specified in
the DTC Manager configuration
(for networks using OpenView
Network Management) to define
a printer by name. Can be shared
by several printers (port pool).

printer profile A set of
configuration characteristics that
can be associated with one or
more printers through the
NMMGR configuration. Printer
profile specifications include the
printer type, line speed, device
class assignment, and other
values relevant to printers
connected through a DTC.

printer type A collection of
characteristics that cause a
printer connected to an MPE/iX
system to act and react in a
specified manner. You can

configure a printer to use one of
the system-supplied printer
types, or you can create custom
printer types using Workstation
Configurator.

privileged mode A capability
assigned to accounts, groups, or
users allowing unrestricted
memory access, access to
privileged CPU instructions, and
the ability to call privileged
procedures.

probe protocol An HP protocol
used by NS3000/iX IEEE 802.3
networks to obtain information
about other nodes on the network.

probe proxy server A node on
an IEEE 802.3 network that
possesses a network directory. A
probe proxy server can provide a
node with information about
other nodes on the same or other
networks of an internetwork.

profile A method of grouping
device connection specifications
and characteristics so that the set
of characteristics can be easily
associated with groups of like
devices. See also printer profile,
terminal profile.

program captive device See
programmatic device.

Programmable Serial
Interface PSI. A hardware card
that fits into the backplane of the
HP 3000 Series 900 computer. It
provides a physical layer
interface for NS Point-to-Point
3000/iX Links.
Glossary 323

Glossary
programmatic device A device
operating under control of a
program running on a computer.
Programmatic devices can be
used for input, output, or both,
depending on the device and how
it is opened by the controlling
program.

protocol A set of rules that
enables two or more data
processing entities to exchange
information. In networks,
protocols are the rules that
govern each layer of network
architecture. They define which
functions are to be performed and
how messages are to be
exchanged.

PSN Packet-Switching Network.
Any data communication network
in which data is disassembled
into packets at a source interface
and reassembled into a data
stream at a destination interface.
A public PSN offers the service to
any paying customer.

PSS Packet Switching System.
The national public PSN of the
United Kingdom.

PVC Permanent Virtual Circuit.
A permanent logical association
between two physically separate
DTEs that does not require call
set-up or clearing procedures.

PXP See Packet Exchange
Protocol.

Q

Q bit Qualified bit. When set in
DATA packets the Q bit signifies
that the packet’s user data is a
control signal for the remote
device, not a message for its user.

QuickVal A software program
that tests whether Network
Services are operating correctly
between nodes.

R

RDBA Remote Data Base Access.
A network service that allows
users to access data bases on
remote nodes.

reachable network A network
that can be accessed (with
additional internet hops possibly
required) by a particular gateway.

remote connect device An
asynchronous device that is
indirectly connected to a DTC
through a modem and telephone
hook-up or through a PAD.

remote node Any network node
that is physically separate from
the node you are currently using
or referring to.

retransmission count (N2) The
maximum number of times a
frame will be retransmitted
following the expiration of the
Retransmission Timer, T1.

retransmission timer (T1) The
length of time that a transmitter
will wait for an acknowledgment
from a destination address before
324 Glossary

Glossary
attempting to retransmit a frame.
When choosing this value, factors
like the line speed and maximum
frame size should be taken into
account.

RFA Remote File Access. A
network service that allows users
to access file and devices on
remote nodes.

routing The path that packets or
fragments of a message take
through a network to reach a
destination node.

RMP Remote Maintenance
Protocol. HP proprietary protocol
used in DTC management.

RPM Remote Process
Management. A network service
that allows a process to
programmatically initiate and
terminate other processes
throughout a network from any
node on the network.

RS-232-C The Electronic
Industries Association (EIA)
Level 1 protocol specification that
defines electrical circuit functions
for 25 connector pins. HP
provides two implementations of
this standard: a 3-pin version for
direct connections up to a
distance of 15 meters (50 feet),
and a version which makes use of
additional circuits and can be
used for either modem or direct
connections.

RS-422 The Electronic Industries
Association (EIA) Level 1 protocol
specification implemented by HP

in a 5-pin version which can be
used for direct device connection
up to a distance of 1500 meters
(4000 feet).

S

security string An
alphanumeric character string
that functions as a password for
dial links. The security string is
used by the Dial IP protocol.

serial device Any device that is
attached to and communicates
with a computer by means of a
serial transmission interface.
Terminals, printers, and plotters
are among the devices that
communicate serially with
MPE/iX computers.

serial transmission A method
of transferring data in which
characters are transmitted one
bit at a time and received one bit
at a time in the order of
transmission. This transmission
scheme is employed by devices
connected to the MPE/iX systems
via the DTC.

session-accepting device A
terminal or personal computer
running in terminal emulation
mode that is able to establish an
interactive (conversational)
session with an HP 3000
computer. Also referred to as a
logon device.

shared dial A dial link that
provides connection to more than
one remote system, although to
only one at a time.
Glossary 325

Glossary
shared-line access The feature
that allows two or more HP 3000
Series 900 hosts to use the same
DTC/X.25 Network Access card
on a DTC to access an X.25
network.

SIC Serial Interface Card. A card
installed in the front of the DTC
that acts as an interface between
a corresponding Connector Card
(CC) and the DTC’s processor.

slaved device A device that
shares the same DTC port as
another device and is connected,
to the other device, referred to as
its master, by a cable. The actions
of the slaved device are controlled
by the master device.

SNMP Simple Network
Management Protocol. An
industry standard, for managing
networked computers in a
multi-vendor environment.

SNP Synchronous Network
Processor card; an alternative
name for an X.25 board.

spooled device A printer that is
accessed through the MPE/iX
spooling facility. The spooling
facility allows a nonsharable
device to be shared among several
users by temporarily storing
output data on disk and
managing the selection of output
spool files destined for the spooled
device.

start bit A data bit used to signal
the start of a character being
transmitted in an asynchronous
communication mode.

station address A link level
address used by the IEEE 802.3
protocol that is assigned to every
node on an IEEE 802.3 network.

stop bit A data bit used to signal
the end of a character being
transmitted in an asynchronous
communication mode.

store-and-forward A technique
in which messages are passed
from one node to another in a
network to reach their
destination. Point-to-point
networks use the
store-and-forward technique to
transmit messages.

subnet Another name for a
network, especially if the network
is part of an internetwork. The
word subnet is also a synonym for
intranet.

SVC Switched Virtual Circuit.
The path through an X.25
network that is established at call
set-up time.

switching See DTC switching.

Switching User Interface The
user interface available when
DTC switching is enabled that
allows terminal users to choose
the MPE/iX computer with which
they want to establish a
communication link.
326 Glossary

Glossary
synchronous A mode of
operation or transmission in
which a continuous data stream
is generated without intervals
between characters. The data
stream is synchronized by clock
signals at the receiver and
transmitter. As a result, fast
transmission speeds (above
9600 bps) are attainable.

SYSGEN The software program
that allows you to configure the
operating system on HP 3000
Series 900 computers.

system configuration The
method for telling MPE/iX which
peripheral I/O devices are
attached to the DTC and which
parameters are required for
system operation.

T

TCP See Transmission Control
Protocol.

Telenet A proprietary public
data network in the USA.

Telnet Access Card (TAC) A
card that resides in the DTC 48
and provides protocol conversion
between Telnet and AFCP.

Telnet Express Box See HP
ARPA DTC Telnet Express
Box.

Telnet/iX A direct HP 3000
implementation of the Telnet
protocol, which provides both
inbound and outbound Telnet
connections using only HP 3000
resident code.

Telnet/iX Client An executable
program file, telnet.arpa.sys,
which enables HP 3000 users to
have outbound Telnet access to
HP 9000, HP 3000 and non-HP
systems that support Telnet.
Telnet/iX Client is available as of
MPE/iX release 5.0, C.50.00.

Telnet/iX Server HP 3000
resident code that comes bundled
with MPE/iX (as of release 5.5,
C.55.00), which enables users on
a remote system running
standard Telnet service to logon
and run most applications on the
HP 3000.

TermDSM Terminal Online
Diagnostic System Manager. A
utility that provides diagnostic
services for DTC connections by
means of a series of commands
accessible through the SYSDIAG
utility. TermDSM is used only
when DTCs are managed by an
MPE/iX host system.

terminal name A character
string of up to 16 characters
specified in the OpenView DTC
Manager configuration (for
networks using OpenView
Network Management) to define
a terminal by name. It can be
shared by several terminals (pool
port).

terminal profile A set of
configuration characteristics that
can be associated with one or
more terminals through the
NMMGR configuration. Terminal
profile specifications include the
terminal type, line speed, device
Glossary 327

Glossary
class assignment, and other
values relevant to terminals
connected through a DTC.

terminal type A collection of
characteristics that cause a
terminal connected to an MPE/iX
system to act and react in a
specified manner. You can
configure a terminal to use one of
the system-supplied terminal
types, or you can create custom
terminal types using the
Workstation Configurator.

ThinLAN 3000/iX LAN that
conforms to the IEEE 802.3
Type 10 BASE 2 standard LAN.

throughput class A value
assigned to a given virtual circuit
that defines how many network
resources should be assigned to a
given call. It is determined by the
access line speed, packet and
window sizes, and the local
network’s internal mechanisms.

throughput class negotiation

One of the Network Subscribed
Facilities defined at subscription
time. This allows the user to
negotiate the Throughput Class
at call set-up time.

timer (T3) The length of time
that a link can remain in an idle
state. After the expiration of the
timer, the link is considered to be
in a non-active, non-operational
state and is automatically reset.
The value should be chosen
carefully. In particular, it must be
sufficiently greater than the

Retransmission Timer (T1) so
that no doubt exists about the
link’s state.

topology The physical
arrangement of nodes in a
network. Some common
topologies are bus, star, and ring.

Transmission Control
Protocol TCP. A network
protocol that establishes and
maintains connections between
nodes. TCP regulates the flow of
data, breaks messages into
smaller fragments if necessary
(and reassembles the fragments
at the destination), detects errors,
and retransmits messages if
errors have been detected.

Transpac The national public
PSN of France.

transparent mode A data
transfer scheme in which only a
limited number of special
characters retain their meaning
and are acted on by the system.
All other characters are
considered to be data and are
passed through with no control
actions being taken.

transport, network Software
that corresponds to layers 3 and 4
of the OSI network architecture
model. It sends data out over the
communications link, receives
incoming data, and routes
incoming or outgoing data to the
appropriate destination node.

TS8 See HP TS8.
328 Glossary

Glossary
TTUTIL Also known as the
Workstation Configurator. A
program, TTUTIL.PUB.SYS , on
the HP 3000 that is used to create
and modify terminal and printer
type files.

Tymnet A proprietary public
data network in the USA.

typeahead A facility that allows
terminal users to enter data
before a read is actually posted to
the terminal.

U

unacknowledged frame
number (K) The number of
frames that can be transmitted
without receiving an
acknowledgment from the
destination address. When this
number (K) frame is reached, the
same K frames are retransmitted.

unedited mode See
transparent mode.

V

V.24 The CCITT recommendation
that defines the function of the
interchange circuits between a
DTE and a DCE.

validation The process of
ascertaining whether the network
transport configuration file has
been correctly configured. This is
accomplished by using the
NMMGR Validate Configuration
File screen.

VAN Value Added Network. A
data communication network that
uses and pays for facilities
belonging to another carrier. The
value-added package is then sold
to a user.

VC See virtual circuit.

virtual circuit A logical
association between two
physically separate DTEs.

Virtual Terminal A network
service that allows a user to
establish interactive sessions on a
node.

VPLUS Software used to
generate screens such as those
displayed by NMMGR.

V-Series (V.##) CCITT A set of
CCITT recommendations related
to data communication over a
voice-grade telephone network.

VT See Virtual Terminal.

W

WAN Wide Area Network. A data
communications network of
unlimited size, used for
connecting localities, cities, and
countries.

Workstation Configurator A
utility available on MPE/iX
systems, TTUTIL.PUB.SYS , that
allows users to create customized
terminal and printer types by
entering data through a series of
VPLUS screens.
Glossary 329

Glossary
X

X.3 The protocol that defines
which user facilities should be
internationally available from a
packet assembler/disassembler
(PAD) when this is offered by a
public data network.

X.21 The protocol that defines the
physical interface between a DTE
and a DCE of a public data
network where the access to the
network is made over
synchronous digital lines.

X.25 The protocol that defines the
interface between a DTE and a
DCE for packet mode operation
on a Public Data Network (PDN).

X.25 address The X.25 address
provided by the network
administration if you are
connected to a public data
network (PDN).

X.25 address key An X.25
address key is a label that maps a
node’s IP address to its X.25
address and its associated X.25
parameters. You have a combined
maximum of 1024 X.25 address
keys in the SVC and PVC path
tables.

X.25 LUG address X.25 address
of a node belonging to a LUG.

X.25 iX System Access The
software that works in
conjunction with the DTC/X.25
Network Access software to
provide MPE/iX access to X.25.
The software resides on an

HP 3000 host and is configured
through use of NMMGR. To
configure access to an X.25
network, you must configure two
software components: the X.25 iX
System Access and the DTC/X.25
Network Access (residing on the
Datacommunications and
Terminal Controller and
configured at the OpenView
Windows Workstation). Together,
these two components provide a
network connection on HP 3000
systems to private and public
X.25 packet switched networks
(PSNs).

X.29 The protocol that defines the
interface for data exchange
between a packet mode DTE and
a remote Packet
Assembly/Disassembly (PAD)
facility over a packet-switching
network.

XON/XOFF protocol The flow
control used by MPE/iX systems
to protect against data overruns.
XON/XOFF protocol is controlled
by the data recipient who sends
an XOFF character (ASCII DC3)
to the sender if it is unable to
continue to receive data. The
sender suspends transmission
until it receives an XON
character (ASCII DC1).

X.Series (X.##) CCITT
recommendations A set of
recommendations for data
communication networks
governing their services,
facilities, and terminal equipment
operation and interfaces.
330 Glossary

Index
Symbols
(AUI), 30
(DTS), 33
(LANIC), 29
(MAU), 30

A
abort error, 52
access method

transmission, 37
access port, 23, 46
Additional End-of-Record

character, 64, 77, 215
additional end-of-record

character, 181
AEOR

character, 215
AEOR character, 64, 77, 181
alert character

block mode, 214
allocate a terminal, 193
assignment statement, 54
Asynchronous Serial

Communications (ASC), 22
Attachment Unit Interface (AUI),

30

B
backspace character, 100

define, 214
backspace processing, 100
backspace response, 100, 102,

217
binary editing mode, 63, 82, 85,

104, 184
bit group notation, 155
block mode, 60, 64, 171, 173, 188

HP, 187, 214
user, 61, 123, 187
VPLUS, 61, 123, 134, 139

block mode handshake, 187
block mode read timer, 65
block mode read trigger, 64, 214
BNC T-connector, 29
bypass typeahead buffer, 129, 218
byte count, 66

C
cancel character, 214
carriage control, 73, 254
carriage control directives, 165,

254
CCITT X.25 protocol, 132
character

AEOR, 64, 77, 181, 215
backspace, 100, 214

block mode alert, 214
block mode read trigger, 214
end-of-medium, 175
EOR, 64, 98, 200, 214
line deletion, 214
read trigger, 38, 63, 121, 214
subsystem break, 113, 200, 216
XOFF, 37
XON, 37

character echo, 85, 185
character mode, 60, 64
check parity, 179
closing files, 88
cluster controller, 132
compatibility mode, 48, 117
condition codes, 50, 77
configuraiton file, 33
convenience echo, 121
CSMA/CD, 37
current speed setting, 198

D
data editing mode, 62, 82
data overrun, 37, 188
Datacommunications and

Terminal Controller (DTC),
26

Datacommunications and
Terminal Subsystem (DTS),
33

Datacommunications and
Terminal Subystem (DTS), 26

DC1 character, 37
DC3 character, 37
define block mode alert character,

214
define form feed replacement

character, 217
define subsystem break character,

216
delete treated like backspace, 221
determine block mode type

supported, 213
determine speed setting, 198
determine subsystem break

character, 218
determine terminal type, 197
device

log-on, 44
programmatic, 45
session-accepting, 44
slaved, 47

device close, 161
device configuration, 38
device independence, 42
device operation mode, 44
device settings, 38

device speed, 210
device spooled, 46
device XON/XOFF flow control,

106
device-dependent characteristic,

43
devicefile, 41, 42
disable XON/XOFF flow control,

213
disk file, 42
download process, 28
DTC, 26
DTC diagnostics, 28
DTC download, 28
DTC echo, 171
DTC switching, 32
DTC Switching User Interface,

134
DTC User Interface, 32
DTC/X.25 Network Access Card,

27
DTC/X.25 Network Access card,

132
DTS, 26

E
echo, 121, 171, 185, 210

setting, 210
editing mode, 62, 82

binary, 63, 82, 85, 104, 184
standard, 63
transparent, 63, 82, 94, 113,

200, 212
editing mode binary, 85
Electronic Industries Association

(EIA), 36
enable parity, 80
enable/disable escape sequence

read termination, 109
enabling

parity, 211
end-of-file, 65
end-of-medium character, 175
end-of-record character, 98
EOR character, 64, 98, 200, 214
error checking, 50
error information, 157
escape sequence read

termination, 109, 222

F
FCHECK, 51, 68, 93, 157, 228,

274, 278
FCLOSE, 82, 88, 160
FCONTROL, 54, 77, 88, 136,

139, 142, 145, 162
FCONTROL(1), 165, 254
Index 331

Index
FCONTROL(10), 169
FCONTROL(11), 80, 169
FCONTROL(12), 171
FCONTROL(13), 85, 171
FCONTROL(14), 173
FCONTROL(15), 173
FCONTROL(16), 175
FCONTROL(17), 175
FCONTROL(22), 68, 178
FCONTROL(23), 179
FCONTROL(24), 80, 179, 192
FCONTROL(25), 64, 77, 181
FCONTROL(26), 63, 85, 184
FCONTROL(27), 63, 85, 184
FCONTROL(28), 187
FCONTROL(29), 61, 187
FCONTROL(34), 189
FCONTROL(35), 189
FCONTROL(36), 80, 179, 191
FCONTROL(37), 193
FCONTROL(38), 195
FCONTROL(39), 197
FCONTROL(4), 64, 70, 167
FCONTROL(40), 80, 198
FCONTROL(41), 63, 64, 83, 175,

200
FDEVICECONTROL, 64, 77, 91,

136, 139, 143, 146, 204
FERRMSG, 51, 228
FERRMST, 157
FFILEINFO, 43, 149, 230
FGETINFO, 53, 233
file domain, 42
file equation, 42
file information display, 276
file number, 54, 56, 93, 240
file redirection, 56
File System, 33, 41, 45
file system error code, 157
File System hierarchy, 43
flow control, 24, 37, 104

XON/XOFF, 121, 185, 213
flow control protocol, 37
flush typeahead buffer, 127, 218
FOPEN, 52, 54, 56, 57, 66, 240
form feed allowed, 217
form feed replacement character,

217
formal file designator, 42, 59,

240, 241, 259
FREAD, 54, 60, 65, 85, 86, 144,

148, 249, 279
FSETMODE, 251
FSETMODE(4), 171
functional return, 53, 54, 155
Fundamental Operating System

(FOS), 33

FWRITE, 73, 144, 148, 253

G
generate parity, 179

H
hardware protocol, 36
host XON/XOFF flow control, 106
HP block mode, 214
HPFOPEN, 48, 51, 52, 54, 56, 57,

66, 257

I
IEEE, 37
IEEE 802.3 LAN, 37
IEEE 802.3 standard, 29
ignore parity errors, 219
input byte count, 64
input echo, 171
input mode, 60

block, 60
character, 60

Institute of Electrical and
Electronics Engineers, 37

instrinsic
XCONTRAP, 282

inter-byte timer, 220
intrinsic

definition of, 48
FCHECK, 157
FCLOSE, 160
FCONTROL, 162
FDEVICECONTROL, 204
FERRMSG, 228
FFILEINFO, 230
FGETINFO, 233
FOPEN, 240
FREAD, 249
FSETMODE, 251
FWRITE, 253
HPFOPEN, 257
IODONTWAIT, 270
IOWAIT, 272
PRINT, 274
PRINTFILEINFO, 276
READ, 277
READX, 279
RESETCONTROL, 281, 282,

283
IODONTWAIT, 52, 54, 66, 270
IOWAIT, 52, 54, 66, 272

L
LAN, 29, 37
LAN address, 29
LAN Interface Card (LANIC), 29

line block mode, 60
line deletion character, 214
line deletion response, 212
line speed, 80, 169, 198

current, 198
setting, 210

line termination character, 200
line terminator

additional, 181
local area network, 29
local device configuration, 38
local device settings, 38
local echo, 171
logical console, 23, 46
log-on device, 44

M
master device, 47
Medium Attachment Unit (MAU),

29, 30
mode control directives, 165, 254
modem, 23

N
nailed connections, 34, 134
nailed device, 34
native mode, 48, 51, 57, 117
Network Services

NS, 145
NMMGR, 33, 170
node address, 29
Node Management Configuration

Manager, 33, 170
non-HP devices, 24
non-nailed connection, 34
non-nailed device, 34
non-supported devices, 24
NOWAIT I/O, 52, 66, 249, 270,

272
NS, 145

O
opening a file, 56
OpenView DTC Manager, 28, 31,

34, 133, 138, 170
OpenView workstation, 26, 31,

170
optional capability, 52
optional parameters, 154

P
pacing method, 37
Packet Assembler/Disassembler,

132
packet switched network, 132
PAD
332 Index

Index
nailed, 134
private, 132
public, 132

PAD connection, 27
PAD device, 132
page block mode, 60
parallel transmission, 22
parameters

optional, 154
required, 154

parity, 65, 179
enabling, 80
setting, 80

parity checking, 211
parity enabling, 211
parity generation, 211
parity type, 191, 211

set, 211
PDN, 132
port, 57
postspace movement, 165
prespace movement, 165
PRINT, 73, 76, 274
printer type, 23
PRINTFILEINFO, 276
private PAD, 132
privileged mode, 271, 273
program captive, 45
programmatic device, 45
protocol, 36

flow control, 37
hardware, 36
XON/XOFF, 37, 104

PSN, 132
Public Data Network, 132
public PAD, 132

Q
quiesce I/O, 218

R
READ, 54, 60, 72, 85, 277
read limit timer, 64, 68, 70, 210
read termination, 64
read timeout value, 209
read timer, 64, 68, 178, 210
read trigger, 38, 63, 121, 214
Read/Write access, 92
READX, 54, 60, 72, 85, 277, 279
receive pacing, 37
RecvPace, 37
required parameters, 154
RESETCONTROL, 113, 114,

176, 281, 283
RS-232-C connection, 27
RS-232-C modem connection, 27
RS-232-C standard, 36

RS-422 connection, 27
RS-422 standard, 36

S
select backspace response action,

217
selt-test, 28
serial printer, 23
serial transmission, 22
session-accepting device, 44
set line speed, 169
set parity, 80
set parity generation and

checking, 211
set parity type, 211
set read limit timer, 70
set terminal type, 193, 195
set timeout value, 209
set typeahead mode, 216
set XOFF timer, 213
setting binary editing mode, 85
setting echo, 210
setting the number of stop bits,

108
setting transparent editing mode,

82, 94, 200, 212
setting typeahead mode, 125
single echo typeahead mode, 219
slaved device, 47
software configuration, 33
special character, 62
specify data bits per character,

217
specify parity type, 191
spooled device, 46
spooling facility, 46
standard editing mode, 63
start bit, 22
station address, 29
status information, 53
status parameter, 51
stop bit, 22
strap settings, 38, 76
subsystem break, 65, 111, 112,

175, 210, 281, 282
subsystem break character, 200,

216
subsystem break handler, 112
subsystem break response, 210
supported speed, 169, 210
suppress echo read termination

characters, 222
switching, 32
Switching User Interface, 134
switching user interface, 32, 44
system break, 65, 112, 173, 210
system break response, 210

system console, 23, 46
system intrinsics, 48

T
TELENET, 132
Telnet Access Card, 138
TermDSM, 28
terminal, 23
terminal diagnostics, 28
terminal settings, 76
terminal speed, 193
terminal strapping, 38, 76
terminal switching, 32, 44
terminal type, 23, 193, 195, 197
terminating reads, 64
ThickLAN, 29, 30
ThinLAN, 29
ThinLAN configuration, 29
ThinMAU, 29
timeout value, 64, 70, 167, 209
timing a read, 68, 178
transmission access method, 37
transmit pacing, 37
TRANSPAC, 132
transparent editing mode, 63, 82,

94, 113, 175, 200, 212
transport flow control protocol, 38
troubleshooting, 28
typeahead buffer, 121
typeahead mode, 119, 216

U
unedited mode, 63, 94, 200, 212
user block mode, 61, 123, 187

V
Virtual Terminal

VT, 145
VPLUS, 61
VPLUS block mode, 61, 123, 134,

139
VT, 145

W
WHO intrinsic, 59

X
X.25 network address, 132
XCONTRAP, 113, 114, 176, 281,

282
XmitPace, 37
XOFF character, 37
XOFF timer, 213
XON character, 37
Index 333

Index
XON/XOFF flow control, 24, 104,
121, 185, 213

XON/XOFF protocol, 37
334 Index

	Preface
	Audience
	Related Manuals
	Guide to This Manual

	1 Introduction
	Asynchronous Serial Communications
	Datacommunications and Terminal Subsystem (DTS)
	ASC Software Overview
	Data Communications Concepts Reviewed

	2 Controlling Asynchronous Devices Programmatically
	File System Overview
	Device Operation Modes
	MPE/iX System Intrinsics

	3 Common Device Control Functions
	Opening Asynchronous Devicefiles
	Reading From Asynchronous Devices
	Writing to Asynchronous Devices
	Altering Terminal Deficefiles
	Closing Files

	4 Using FDEVICECONTROL
	Syntax Description
	Examples

	5 Using Subsystem Break
	The Break Keys
	Subsystem Break Intrinsics
	Subsystem Break Processing
	Subsystem Break Summary

	6 Typeahead Mode
	Working in Typeahead Mode
	Additional Typeahead Considerations
	Programming for Typeahead Mode

	7 Programming for PAD, DTC Telnet, Telnet/iX Server, and VT�Devices
	PAD Access to MPE/iX Systems
	DTC Telnet Access to MPE/iX Systems
	Telnet/iX Server Access on MPE/iX Systems
	Virtual Terminal Access on MPE/iX Systems

	8 Intrinsics Reference
	Intrinsics and Asynchronous Device Control
	Intrinsic Descriptions
	FCHECK
	FCLOSE
	FCONTROL
	FCONTROL(1)
	FCONTROL(4)
	FCONTROL(10, 11)
	FCONTROL(12, 13)
	FCONTROL(14, 15)
	FCONTROL(16, 17)
	FCONTROL(22)
	FCONTROL(23, 24)
	FCONTROL(25)
	FCONTROL(26, 27)
	FCONTROL(28, 29)
	FCONTROL(34, 35)
	FCONTROL(36)
	FCONTROL(37)
	FCONTROL(38)
	FCONTROL(39)
	FCONTROL(40)
	FCONTROL(41)
	FDEVICECONTROL

	9 Intrinsics Reference (cont)
	FERRMSG
	FFILEINFO
	FGETINFO
	FOPEN
	FREAD
	FSETMODE
	FWRITE
	HPFOPEN
	IODONTWAIT
	IOWAIT
	PRINT
	PRINTFILEINFO
	READ
	READX
	RESETCONTROL
	XCONTRAP

	A Comparing MPE/iX Systems to MPE�V Systems
	Physical Appearance
	Configuration
	PAD Support
	Terminal Types and Printer Types
	Software Characteristics

	A

