
Introduction to MPE/XL for MPE V
Programmers

Series 900 HP 3000 Computer Systems
Manufacturing Part Number: 30367-90005
E1089

U.S.A. October 1989

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1989 by Hewlett-Packard Company
2

1

Introduction

The chapters of this manual present the di�erences between the operating
systems organized by common tasks. The purpose of the manual is to help
you predict where changes are likely, and how to best adjust your MPE V/E
programming techniques to adapt to the MPE XL environments.

This chapter presents the di�erences between the MPE V/E and the MPE XL
operating systems as general concepts.

The following chapters are organized on a task-by-task basis. Each chapter
discusses one task. In the beginning, a list is presented of the features,
intrinsics, and commands that are new, changed, unsupported, and unchanged
in MPE XL from MPE V/E. The new, changed and unsupported items are
then discussed individually.

For help in locating a speci�c task, intrinsic, command, or topic, see the
Preface, the Table of Contents, and the Index in this book.

Overview of
Differences:
MPE V/E
and MPE XL

All HP 3000 models run under the Multiprogramming Executive (MPE)
operating system, which manages all system resources and coordinates the
execution of all programs running on the system. The MPE V/E operating
system is designed to run on all HP 3000s except the 900 series. The MPE XL
operating system is designed to run on the 900 series.

DRAFT

2/14/100 07:56

Introduction 1-1

The architecture of the 900 series is based on RISC (Reduced Instruction Set
Computer) concepts. Research shows that conventional microcode machines
spend about 80% of the time executing about 20% of the instructions. It makes
sense, then, to design the computer to directly and quickly implement the
most common instructions directly in hardware, instead of supporting bulky
microcode.

MPE XL is a register-based machine. CPU (central processing unit) registers
hold the most frequently used data and instructions. This method requires less
chip space and system overhead than microcode.

HP-PA accesses �les with demand-paged virtual memory. This eliminates
the need for code and data segmentation. Disk �les are mapped into virtual
address space, and �le system bu�ering is no longer needed.

MPE XL has two modes: Compatibility Mode (CM) and Native Mode (NM).
CM provides backward compatibility with MPE V/E in CM. NM takes full
advantage of the 900 Series Hewlett-Packard Precision Architecture (HP-PA).
Both are transparent to the user.

HP-PA instructions are pipelined. The overlapping execution of multiple
instructions for e�ciency is made possible by uniform instructions and
cycle-time regularity. Optimizing compilers generate e�cient object code,
allocate registers, and schedule instruction sequences to maintain e�cient
pipeline operation.

New

MPE XL features that are not available on MPE V/E include:

Demand-paged virtual memory

Dual programming modes

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

Word size

Priv Mode

Segmenter

1-2 Introduction DRAFT

2/14/100 07:56

Demand-Paged Virtual Memory
(new)

MPE XL employs the mapped �le technique for performing �le access. It
is an improved version of the disk-caching capability of MPE V/E. File
access e�ciency is improved when portions of code and data �les required
for processing reside in memory. Accessing memory is faster than performing
physical disk I/O operations. The mapped �le technique can eliminate �le
system bu�ering and optimize global system memory management.

File Mapping

File mapping uses MPE XL demand-paged virtual memory to make a large
amount of virtual memory directly available to you. When a �le is opened, it
is logically mapped into virtual memory. Each byte of each opened �le has
a unique virtual address. The system actually stores �les page by page at
physical addresses.

The operating system keeps a map, a table of correspondences between virtual
addresses and physical addresses, and translates between them as needed.
System hardware resolves addresses through the Translation Lookaside Bu�er
(TLB). This translation process is transparent to the user. You reference an
open �le and its contents by virtual address.

The MPE XL memory manager fetches several adjacent pages directly from
disk as required. It places them in the user's area in memory.

If you program in a language with pointers, you can access mapped �les
directly. You can write programs that address �les through virtual memory,
instead of calling �le system intrinsics for disk reading and writing. Using a
pointer data type, you can open and close user-mapped �les with with faster
LOAD and STORE on �le references. You can get the advantage of �le system
naming and data protection for accessing array-type structures and developing
specialized access methods.

File mapping improves I/O performance without imposing additional CPU
overhead or sacri�cing data integrity and protection. HP-PA uses the
Translation Lookaside Bu�er to resolve addresses in the hardware. Traditional
disk caching schemes for increasing I/O performance impose a CPU overhead

DRAFT

2/14/100 07:56

Introduction 1-3

penalty. The 900 Series hardware and system architecture allow MPE XL to
perform �le mapping without this penalty.

Dual Programming Modes
(new)

For the programmer, the MPE XL seems to have two di�erent operating
systems: Compatibility Mode (CM) and Native Mode (NM). CM is designed
to look familiar to MPE V/E programmers. NM is designed to take full
advantage of the HP-PA architecture. The two can communicate.

You can develop new programs on CM or on NM. If you are familiar with
programming in MPE V/E, you may �nd it easier, especially at �rst, to
program in CM. Programmers who try NM, however, �nd that, in many cases,
it takes less programming e�ort to accomplish the same task.

In CM, the program development cycle appears to be like that of MPE V/E.
The process is di�erent in MPE XL NM. The largest impact is virtual memory,
which eliminates the need for segmentation. The following table shows a
comparison.

1-4 Introduction DRAFT

2/14/100 07:56

Table 1-1. MPE XL and MPE V/E Program Development

Development
Step

MPE V/E
Tool

MPE XL CM
Tool

MPE XL
Tool

Edit Source Code Edit/3000,
TDP/3000, Toolset

Editor, TDP Editor, TDP,
Toolset/XL

Compile MPE V/E Compiler
Commands

MPE V/E Compiler
Commands (plus
Object Code
Translator)

MPE XL NM
Compiler
Commands
(includes
Optimizer)

Linking Segmenter Segmenter HP Link Editor/XL

Link Edit a
Program

PREP PREP LINK

Create a
Relocatable Library

SEGMENTER SEGMENTER LINKEDIT

Create a Segmented
Library or
Executable Library

SEGMENTER (SL) SEGMENTER (SL) LINKEDIT (XL)

CM and NM Compilers

Separate high-level language compilers are provided for CM and NM. You can
usually change between modes simply by recompiling. You may experience
some di�culty between modes with data alignment, especially oating-point
numbers. Also, some intrinsics are di�erent.

The following table shows which language compilers are available.

DRAFT

2/14/100 07:56

Introduction 1-5

Table 1-2. MPE Programming Languages

MPE V/E MPE XL CM MPE XL NM

N/A N/A HP C/XL

COBOL II/V COBOL II/V COBOL II/XL

HP FORTRAN 77/V HP FORTRAN 77/V HP FORTRAN 77/XL

FORTRAN 66/V FORTRAN 66/V N/A

Pascal/V Pascal/V HP Pascal/XL

RPG/V RPG/V RPG/XL

HP Business
BASIC/V

HP Business
BASIC/V

HP Business
BASIC/XL

SPL/V SPL/V N/A

Note Although a limited number of compilers are available in
Compatibility Mode (CM), MPE XL provides run-time
support, via CM libraries, for all HP-supported MPE
V/E-based languages. Thus, any program that was compiled on
an MPE V/E-based system using an HP supported compiler,
can be executed in CM on an MPE XL-based system.

Switching between CM and NM

The Switch subsystem helps you create a program that alternates operation
between CM and NM. You can make calls from one mode to a routine in the
other mode. This way, your NM program can call a CM procedure, or vice
versa.

A switch stub is a routine that acts as an intermediate step between a calling
procedure in one operating mode and a called procedure in another. A call to
a switch stub looks exactly like a call to the actual procedure. Thus, making
cross-mode procedure calls is transparent to the calling application and its
users.

1-6 Introduction DRAFT

2/14/100 07:56

The Switch Assist Tool (SWAT) helps you create switch stubs from NM to
CM. For more information on creating switch stubs and SWAT, refer to Switch
Programming Guide (32650-90014).

Emulating or Translating Migrated MPE V Code

Programs originally written on an MPE V/E system can be migrated to MPE
XL CM. You decide whether to emulate or translate MPE V/E compiled
source code in order to use it on MPE XL.

Emulating is done by the emulator. It uses a branch table to execute HP-PA
instructions that are equivalent to the MPE V/E code. MPE V/E �les
migrated to MPE XL will be emulated each time they are run, unless you
translate them.

Translating is done by the Object Code Translator (OCT). It translates the
code and appends the translation onto a copy of the original �le. Translated
code usually runs faster than emulated code. Because both the MPE V/E
version and the MPE XL version is included, it is exible. However, the
appended �le is larger, and usually requires more than twice as much storage
space as the original.

Word Size
(changed)

MPE V/E and MPE XL have di�erent native word sizes. An MPE V/E
standard word is 16 bits long, and an MPE XL standard word is 32 bits long.

Applications may have di�erences in data alignment. Data compatibility is
especially troublesome with oating-point representation of real numbers
because CM and NM use di�erent formats.

DRAFT

2/14/100 07:56

Introduction 1-7

Priv Mode
(changed)

MPE V/E �le security recognized two modes: user and priv (privileged). MPE
XL recognizes user mode (level 3) and three levels of privileged mode (levels 2,
1, and 0). Only one of these, level 2, is available to programmers. Levels 0 and
1 are reserved for the operating system, and are not accessible.

Segmenter
(changed)

MPE XL retains the MPE V/E segmenter program in CM for backward
compatibility. The commands and intrinsics will be familiar to the MPE V/E
programmer.

Because of virtual memory, segmenting is no longer necessary. MPE XL
emulates segmentation in CM. MPE XL does not support segmentation at all
in NM.

Additional Information

For further information about the MPE XL system, refer to Getting Started as
an MPE XL Programmer (32650-90008), and MPE XL Intrinsics Reference
Manual (32650-90028).

1-8 Introduction DRAFT

2/14/100 07:56

2

Preparing a Program for Execution

This chapter discusses program development in NM (Native Mode) including
writing, compiling, linking, running, and handling errors. Developing programs
across modes is discussed, including emulating or translating MPE V/E code,
and switching between CM (Compatibility Mode) and NM (Native Mode)
code.

Overview of
Differences:
MPE V/E
and MPE XL

There are major di�erences in developing programs in MPE V/E and in MPE
XL. These di�erences may not be apparent at �rst glance; the model is the
same, but components are di�erent.

One di�erence is that you have two programming modes, NM and CM.
During operation, a program can switch between the modes. MPE XL CM
emulates MPE V/E for backward compatibility. It maintains the appearance
of segmenting, but the virtual memory of MPE XL has made segmenting
unnecessary.

New

MPE XL features that are not available on MPE V/E include:

Dual programming modes

Native Mode program development

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-1

Mixed mode programs

2-2 Preparing a Program for Execution DRAFT

2/14/100 07:56

Dual Programming Modes
(new)

One major change from MPE V/E is that there are two programming
evironments in MPE XL: CM (Compatibility Mode) and NM (Native Mode).
CM is provided for backward compatibility with MPE V/E and cross-mode
development. That is, a program developed in MPE V/E can be run on MPE
XL, and a program can be developed in MPE XL CM to run on MPE V/E.

CM provides an environment familiar to the MPE V/E programmer.

NM is designed to take full advantage of HP-PA, the architecture of the 900
Series HP 3000.

The two programming environments can communicate and cooperate with each
other. Their operations are transparent to the programmer and to the end
user. You have several options in developing programs:

You can develop and compile programs in MPE V/E and then migrate them
to run on MPE XL CM.

You can develop and run programs entirely in MPE XL CM. CM will
probably be more familiar to you than NM.

You can develop and run programs completely in MPE XL NM. NM will
probably be more e�cient than CM.

Your programs can switch between CM and NM. For example, an NM
program could call a CM procedure.

Because of the extended large address space available in MPE XL, paging is
more e�cient than segmentation. Therefore, segmentation is no longer needed.

Since the operating system pipelines instructions, MPE XL NM compilers
can re-order commands to optimize e�ciency. The programmer can choose
optimization levels.

MPE V/E and MPE XL CM use the same processes for program development.
MPE XL NM uses di�erent, but analogous, processes. Table 2-1, following,
shows the correspondences.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-3

Table 2-1. MPE Program Development

MPE CM and MPE V/E MPE XL NM

Compiler invocation commands Compiler invocation commands

PREP command LINK command

Segmenter Linkeditor

Relocatable library (RL) NM relocatable library (RL)

Segmented library (SL) Executable library (XL)

Relocatable binary module (RBM) Relocatable object module

User-de�ned segmented library �le (USL) Object �le (OBJ)

RUN command RUN command

Some new commands for compiling, linking, and running speci�c languages
have been added; they are listed in Chapter 5, Using the Command Interpreter.

For further information about program development on MPE V/E and MPE
XL CM, refer to MPE Segmenter (30000-90011). For information about
program development on MPE XL, refer to HP Link Editor/XL Reference
Manual (32650-90030).

Native Mode Program Development (new)

In Native Mode, you typically follow these steps in developing a program:

You enter source code statements in a text �le, using an editor.

You invoke one of the MPE XL NM optimizing compilers to translate the �le
into machine-readable object code.

The link editor joins this �le with necessary library �les, and produces an
executable program �le. (MPE V/E and MPE CM are somewhat di�erent
from MPE XL NM in the way they handle libraries.)

You load and run the executable program �le.

2-4 Preparing a Program for Execution DRAFT

2/14/100 07:56

If your program is interrupted, you can use the debugging facilities to
determine what went wrong, and whether to continue.

You can compile, link, and execute with one command in most languages.
There are also commands to do each of the steps separately.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-5

Writing Source Code

Writing source code has not changed a great deal from MPE V/E. Before
planning program modularity, read the section on HP Link Editor/XL, to
understand how modules are linked.

Read the section on Mixed Mode Programs in this chapter if you are planning
to develop a program that will switch between NM and CM. On MPE V/E and
in CM the standard word is 16-bits long; in NM the standard word is 32-bits.
You must be aware of di�erences in data alignment and oating-point real
number formats.

Remember that MPE V/E supports Privilege Mode, but MPE XL NM does
not.

Coding for Performance and Optimization

MPE XL NM has optimizing compilers that can reschedule machine
instructions to use the system's resources more e�ciently. It can not, however,
alter the algorithm you use in the source code. Designing and coding your
program carefully can enhance or reduce the performance of your program.

Programming Languages

New. The following programming language is available in NM only:
HP C/XL (NM)

Changed. Programmers in the following languages will �nd compilers in both
CM and NM versions:
HP Business BASIC/V (CM) and HP Business BASIC/XL (NM)
COBOL II/V (CM) and COBOL II/XL (NM)
HP FORTRAN77/V (CM) and HP FORTRAN77/XL (NM)
Pascal/V (CM) and Pascal/XL (NM)
RPG/V (CM) and RPG/XL (NM)

Not Used. The following MPE V/E languages are available in CM, but not
in NM:
FORTRAN 66/V (CM)
SPL/V (CM)

2-6 Preparing a Program for Execution DRAFT

2/14/100 07:56

Table 2-2 summarizes the program development tools available in MPE V/E
and their availability in MPE XL.

Table 2-2. HP Products for Programmers on MPE XL

MPE V/E MPE XL CM MPE XL NM

HP C/XL

COBOL II/V COBOL II/V COBOL II/XL

HP FORTRAN 77/V HP FORTRAN 77/V HP FORTRAN 77/XL

FORTRAN 66/V FORTRAN 66/V

Pascal/V Pascal/V HP Pascal/XL

RPG/V RPG/V RPG/XL

HP Business BASIC/V HP Business BASIC/V HP Business BASIC/XL

SPL/V SPL/V

NS3000/V NS3000/XL

TurboIMAGE/V TurboIMAGE/V TurboIMAGE/XL

IMAGE/V

HP SQL/V HP SQL/XL

ALLBASE/XL

KSAM/V KSAM/V KSAM/XL

Toolset/V Toolset/XL

Transact/V Transact/V

Report/V Report/V

VPLUS/V VPLUS/V

System Dictionary/V System Dictionary/V System Dictionary/XL

Inform/V Inform/V

HP Access Central HP Access Central

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-7

MPE XL provides run-time library support for user callable library procedures.
This support includes all MPE V/E and MPE XL libraries. Also, any
programs compiled on MPE V/E can be executed in MPE XL CM.

Please note that in NM Toolset/XL will debug COBOL II/XL, HP Pascal/XL
or HP FORTRAN 77/XL programs only. It cannot be used with HP C/XL
programs.

Toolset XL cannot be used to debug CM programs. Therefore, COBOL or
Pascal programs that are migrated from MPE V systems can be edited with
Toolset/XL, but when they are compiled within Toolset/XL, they will be
compiled with the NM version of the compiler, and only the NM version of the
programs can be debugged in Toolset/XL.

If you want to develop applications on MPE XL for both MPE V and MPE
XL systems, you can develop, compile, and debug your programs in NM
with Toolset/XL and then recompile the source code in CM and test. Any
debugging of the CM code can be done with the (non-symbolic) system
debugger DEBUG.

Compiling

All HP-supported MPE V/E-based languages have run-time support, via CM
libraries, on MPE XL. Some NM languages have slightly di�erent versions
than their MPE V/E counterpart compilers; all NM languages have optimizing
compilers.

MPE XL Compilers

Using an MPE V/E compiler on MPE XL produces CM object code. The
output of an MPE V/E compiler is a user segmented library �le (USL) of
relocatable binary modules (RBMs). Each RBM contains one procedure, either
the main program or one of its subroutines. The compiler puts each procedure
from the source into a separate RBM.

Using an MPE XL compiler produces NM object code. An MPE XL compiler
produces object �les composed of relocatable object modules containing
common code and data for all procedures in the source �le. An object module
is the smallest unit that a compiler can produce and that HP Link Editor/XL
can manipulate.

2-8 Preparing a Program for Execution DRAFT

2/14/100 07:56

The object module corresponds to an RBM on MPE V/E, with the following
distinctions:

An RBM contains one, and only one, procedure. An object module can
contain one or more procedures.

An RBM can exist only as part of a USL or part of an RL. An object module
is complete in itself and can stand alone as an independent �le.

An object �le contains one relocatable object module. Each compilation
produces a single relocatable object module. A relocatable library, on the other
hand, can contain multiple relocatable object modules.

Since each invocation of an NM compiler produces one object module, in order
to separate object modules for two procedures into di�erent object �les, you
must put the procedures in separate source �les and compile them individually.
You can gather them together at link time.

Compiler Libraries

On MPE V/E, the compiler run-time libraries needed by every program are
stored in the system segmented library (SL). A programmer is never required
to explicitly specify this library.

On MPE XL, compiler libraries are stored in a separate library, XL.PUB.SYS,
the system executable library. You can specify other library �les when linking
the program. When you do an implicit link by using one of the following types
of commands, XL.PUB.SYS is automatically included in your program's library
search path:

A command that compiles and links, such as COB85XLK.
A command that compiles, links, and runs, such as COB85XLG.

If the compiler libraries are the only run-time libraries you need, you do not
need to use the XL parameter at link or run time. If you do specify libraries,
you do not have to mention XL.PUB.SYS; it will be searched, by default, after
the names in your list. But, if you do speci�cally mention XL.PUB.SYS in
your list, it must be the last library in your search string.

MPE XL Optimizer

There is no counterpart on an MPE V/E system to the MPE XL Optimizer,
which is an integrated part of all MPE XL NM compilers.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-9

The optimizer makes the scheduling of machine-level instructions and
allocation of registers e�cient. To increase e�ciency, machine-level instructions
may be re-ordered in your program to achieve optimal use of resources.

The three levels of code optimization are:

Level 0 (default level) provides only very simple optimizations. Use
Level 0 when debugging a program that will not be used many
times.

Level 1 performs local optimizations. Use Level 1 to achieve some
optimization without spending too much time compiling.

Level 2 performs global optimization. It provides the greatest saving of
space and time achievable with the optimizer of all the levels.
The programs it produces are the most compact and run the
quickest. Use Level 2 for �nal compilations of programs that
will be run often.

In MPE XL Native Mode, HP Business BASIC /XL, HP C/XL, HP COBOL
II/XL, HP FORTRAN 77/XL, and HP Pascal/XL provide optimizer options.
Currently, COBOL and BASIC provide levels 0 and 1, and the others provide
all three levels. Compilers set their own defaults for optimization levels.

Optimizer Assumptions

During compilation, the compiler gathers information about the use of
variables and passes it to the optimizer. The optimizer uses the information to
ensure that each code transformation it performs maintains the correctness of
the program, at least to the extent that the original unoptimized program is
correct.

The compiler assumes that inside a subroutine or function, only the following
variables can be accessed:

Common variables declared in this routine.

Local variables (static and nonstatic).

Parameters for this routine.

If you have code that violates these assumptions, the optimizer may change the
behavior of the program in an undesirable way. The compiler assumes that the

2-10 Preparing a Program for Execution DRAFT

2/14/100 07:56

program is the only process accessing its data. (HP FORTRAN 77/XL does
have some exceptions.)

For detailed information on using NM optimizing compilers, refer to HP
Business BASIC/XL Reference Manual (32715-90001), HP C Reference Manual
(92434-90001) and HP C/XL Reference Manual Supplement (31506-90001),
COBOL II Reference Manual (31500-90001) and COBOL II/XL Reference
Manual Supplement (31500-90005), HP FORTRAN 77/XL Reference Manual
(31501-90010), and HP Pascal Reference Manual (31502-90001).

Linking

In MPE XL CM, you use the MPE V Segmenter to link program modules. In
NM, you link a program with the link editor. The link editor's input is an
object module or a collection of object modules created by the NM compilers.
The link editor's output is one of the following �les:

Executable library.

Executable program �le.

Relocatable library.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-11

HP Link Editor/XL

Many HP Link Editor/XL commands have counterparts in the MPE V/E
Segmenter commands. However, there are some di�erences in the way the link
editor behaves. For example, it is case sensitive and it does not implement
version numbers. The counterpart of the MPE V/E PREP command is the
MPE XL LINK command. LINK takes one or more object modules produced
by Native Mode compilers and creates a program �le. It invokes the HP
Link Editor/XL and passes it the parameters you specify. The following are
commands for the link editor, but not the segmenter:

COPYRL, which copies an existing relocatable library.

EXTRACTRL, which extracts a relocatable object module or a group of object
modules from a relocatable library.

SHOWRL and SHOWXL, which display the name of the library in use.

LINK, a command within the HP Link Editor/XL subsystem, which works
like the MPE XL system command LINK described below.

LISTPROG, which prints the MAP of a program �le to the display (by default)
or to wherever the LINKLIST �le has been directed.

The LINK and PREP commands have the same basic function. However, LINK
has di�erent options. LINK parameters can specify indirect �les, which are
themselves lists of other �les. An indirect �le must be an unnumbered �le. In
the LINK command, an indirect �le can be a list of one of the following:

Files to link.

Relocatable libraries (RLs) to merge.

Executable libraries (XLs) to put in a program header.

Relocatable Libraries

MPE V/E and MPE XL both use relocatable libraries (RLs). With PREP on an
MPE V/E system, you can use only one relocatable library (RL). With LINK

on MPE XL NM, however, you can use one or more relocatable libraries (RLs)
to do the following:

Resolve references at link time.

Link RLs.

2-12 Preparing a Program for Execution DRAFT

2/14/100 07:56

Extract object modules from RLs.

The link editor can build new RLs several ways. It can use independent
relocatable object modules. It can copy relocatable object modules from one
RL to another. It can also extract copies of relocatable object modules from an
RL and place them in a relocatable object �le.

On 900 Series systems, an RL automatically expands until it reaches the
maximum number of object modules it can contain. You can improve its
structure and increase its size, if necessary. The link editor command CLEANRL

can be used for garbage collection.

Unlike the MPE V/E Segmenter, when HP Link Editor/XL resolves an
external reference, it merges the entire object module in the program �le, even
though only one procedure in that module may be required. To avoid including
unreferenced procedures in an executable program �le, you can compile each
procedure from a separate source �le to create separate object modules.

Executable Libraries

The counterpart to MPE V/E segmented libraries (SLs) are MPE XL
executable libraries (XLs). SLs have the following characteristics:

They must be in �les named SL.group.acct , where group is the name of the
group and acct is the name of the account in which the SL resides.

The ;LIB= parameter of the MPE V RUN command tells the order to search
the SLs. Default is LIB=S to search system SL. Specifying LIB=P will
search public, then system. Specifying LIB=G will search group, then public,
then system.

XLs have the following characteristics:

They can have any valid MPE XL �lename.

You can access many XLs when you run your program.

Program Auxiliary Header

The MPE XL program auxiliary header resides in the program �les. It is
generated by the link editor, and used by the loader. It speci�es the following
information:

Primary entry point name

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-13

UNSAT procedure name

XL LIST (the list of XLs speci�ed at link time)

Program capabilities

Maximum stack and heap sizes

If the program auxiliary header does not contain any of the above information,
the loader uses the default values for the RUN command. For example, the
program capabilities default to IA (interactive) and BA (batch) and cannot be
overridden at run time.

Unlike MPE V/E, MPE XL allows you to change any of the speci�cations
listed above at load time, except the primary entry point name. Libraries
speci�ed at run time override those speci�ed at link time.

2-14 Preparing a Program for Execution DRAFT

2/14/100 07:56

For detailed information, refer to MPE Segmenter (30000-90011) or HP Link
Editor/XL Reference Manual (32650-90030).

Running a Program

Running a program includes creating a load module, loading the program, and
executing it.

Creating a Load Module

The term \load module" refers to either an executable program �le or an
executable library module. It is the basic unit of code sharing.

Load modules are created by the link editor with the LINK command. Typical
load modules are a program �le, or a �le containing one or more library
routines.

Loading a Program

The MPE XL Loader performs the �nal step in preparing a program �le
for execution in either CM and NM. The loader accepts a program �le and
(optionally) a set of executable libraries as input. For CM programs, the loader
accepts segmented libraries (SLs); for NM programs, it accepts executable
libraries (XLs).

The loader initializes code and data and creates table entries needed to execute
or access the code and data. It also creates linkages to connect program calls
to procedures in the executable libraries.

The loader performs the following tasks:

Converts code to an executable format. The load changes the access rights of
pages that contain code. Code is executed without copying it; it is mapped
to virtual memory. Write access to program code is not necessary on MPE
XL; only read and execute access is granted to code pages. (On MPE V/E,
read, write, and execute access is required because the Segment Transfer
Table is written to the program �le).

Creates global data area.

Copies global data initialization information into process private data space
and sets appropriate register to point to it.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-15

Generates external reference list and attempts to locate all entries in the list.

The CM Loader simulates the MPE V/E loader. The following CM loader
commands may be issued:

ALLOCATE Issued from a session or program, loads a CM program or
procedure into main memory.

DEALLOCATE Deallocates a program or procedure previously loaded with the
ALLOCATE command. A limited number of procedures can be
allocated.

These commands function in the same way on MPE V/E and MPE XL CM.
Some command syntax and parameter options are slightly changed. For more
information, refer to Chapter 5, Using the Command Interpreter.

Using Executable Libraries

On MPE V/E you must specify libraries by choosing one of three search
types: Group (G), Account (P), or System (S). The search order is:
SL.Group.Account, SL.Pub.Account, SL.Pub.Sys. Specifying G, P, or S
speci�es where to begin the search. The default is S (System).

On MPE XL, there are two parameters to specify libraries in the RUN
command: LIB= accepts the CM library search path (G, P, or S), and XL=
accepts the NM library search path. When running CM programs, the XL=
parameter is ignored. When running NM programs, an entry in the XL=
parameter overrides any entry in the LIB= parameter.

You can specify any number of executable libraries in NM. All commands are
restricted to a maximum of 280 characters, which means you may need to use
an indirect �le. To do this, make a list of all the library �le names and save it
as a text �le (unnumbered). You can use this �le of �lenames (preceded by ^, a
caret) as your parameter entry.

MPE V/E restricts �le names. MPE XL allows you to use any valid �le name
you choose for an executable library.

In MPE XL, you do not have to list the system library; it is added to the end
of the list by default. However, if it is speci�ed, it must be the last library
listed. XLs that you specify at run time override those speci�ed at link time.

The following guidelines apply to searching executable libraries:

2-16 Preparing a Program for Execution DRAFT

2/14/100 07:56

The library list can be speci�ed at link time, but is not actually used until
run time.

A run-time library name can appear only once in the RUN command.

Libraries should be listed in order of increasing privilege level.

If the system libraries are not speci�ed, the system automatically adds
XL.PUB.SYS and NL.PUB.SYS as the last libraries to search. XL.PUB.SYS,
the system executable library, contains routines pertaining to purchased
products, including compiler routines. NL.PUB.SYS, the native library,
contains operating system routines.

UNSAT Procedure

If a program references external procedures that cannot be located, it can still
be run without problems if you specify an UNSAT procedure. To do this,
include the name of a dummy procedure in the UNSAT parameter of the LINK
command. This procedure will be substituted for the missing library routine
when the routine is called.

Set up the procedure with statements that facilitate program execution in the
absence of the real routine. For example, the UNSAT procedure execution
could print a statement informing you that it was called.

When the loader encounters the UNSAT procedure, it uses it to resolve all
remaining unresolved references. A recommended programming practice is
to compile the UNSAT procedure, place it in a separate library, and specify
the library at the end of the XL parameter list. (Your UNSAT dummy must
be before the compiler and system libraries. However, these libraries are not
typically speci�ed; they are added to the end of your list by default.)

Figure 2-1 shows an example of using an UNSAT procedure in a program.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-17

Figure 2-1. UNSAT Procedure

System Libraries

System libraries are loaded in system space. The CM system library is named
SL.PUB.SYS. The NM system library is named NL.PUB.SYS. System library
object modules can reference only themselves or other system library object
modules. They cannot use UNSAT procedures.

Mixing Execution Modes

While the operating system is executing a process, it may switch between
modes. It can alternate repeatedly between NM and CM.

MPE XL provides switch stubs to allow NM programs to access CM intrinsics.
The operating system intrinsic call determines when to use the CM Segmented
Library (SL) or the NM executable libraries (NL and XL). The CM intrinsic
�le is SPLINTR.PUB.SYS. The NM intrinsic �le is SYSINTR.PUB.SYS.

You can set up an NM program to call procedures that are in a CM segmented
library by using the switch intrinsics. This requires that the program specify
the switch stub. The switch intrinsic uses the LOADPROC procedure to �nd
the procedure. For detailed information on the Switch subsystem and

2-18 Preparing a Program for Execution DRAFT

2/14/100 07:56

programmatic access through switch stubs, refer to Switch Programming Guide
(32650-90014).

Errors, Aborts, and Debugging

The MPE XL System Debugger is very di�erent from the MPE V/E debugger.
It has powerful features and commands that are not available with the MPE
V/E debugger.

The MPE XL debugger can be used interactively. It can be invoked with
commands or intrinsics.

Your compiler lets you choose options for trap, error, and abort control.
It is best to compile a program without optimization until it is debugged.
Optimization can change the order of instructions, making the o�sets
misleading.

Common Errors

The following lists some common programming errors and o�ers some
suggestions for correcting them.

Bad syntax during compilation: Check manual.

Linking problems: Check parameters.

Missing externals at run time: Check XL list.

Run time errors: Look for program logic error, bad data.

Not all errors produce aborts, but all reported errors should be checked.

Aborts

The decision to abort can be made by a user program, a library routine, an
MPE intrinsic, or the hardware. Use the QUIT intrinsic to kill the current
process, and take you back to the process that called it. Use QUITPROG to kill
all the way back to the level of the command interpreter (CI).

The following lists some common abort situations and o�ers some suggestions
for overcoming them.

Integer overow: Arithmetic operation needs larger target variable. May
appear as value not within subrange.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-19

Bounds violation: Bad stack/code address. Look for bad parameters.

Library �le problems: Check FILE parameter to see if it was overlooked or
entered incorrectly, review options/access.

When a process aborts, the MPE routines print a message or messages. Any
time there is an abnormal termination, the CI prints the �nal line, resetting
the cierror number. To �nd out more, see HPCIERRMSG in Accessing Files
Programmer's Guide (32650-90017).

Run time aborts also produce a process abort trace to $STDLST. The trace
starts with the procedure that terminated the program, and tracks callers back
to the main program.

O�sets are given from the beginning of the procedure. Remember, the
optimizer may have reordered some instructions. If you suspect this is
producing confusing o�set numbers, try recompiling with the optimizer o� (or
set to minimum). Run the program and check the o�sets again.

Mixed Mode Programs (new)

Programs can be developed and compiled in MPE V/E, and migrated to
run on MPE XL CM. Unless you specify otherwise, the instructions will be
translated to HP-PA commands by the emulator. If you use the program very
often, however, you will probably want the Object Code Translator (OCT) to
make and permanently append translated code to your original program �le.

The Switch subsystem allows calls to procedures or routines that operate in
the alternate mode (that is, an NM program can call a CM procedure, or vice
versa). A switch stub is a routine that acts as an intermediate step betweeen
a calling procedure in one operating mode and a called procedure in another.
The Switch Assist Tool (SWAT) can help you create switch stubs from NM to
CM.

A call to a switch stub looks exactly like a call to the actual procedure in
the mode of the calling procedure. Thus, cross-mode procedure calls are
transparent to the calling application and its users.

2-20 Preparing a Program for Execution DRAFT

2/14/100 07:56

For more information about creating switch stubs and SWAT, refer to Switch
Programming Guide (32650-90014).

Running MPE V/E Programs on an MPE XL System

The MPE XL system determines whether or not to run a program in NM when
the RUN command activates the MPE XL Loader. The loader checks the �le
code of the program �le. If it is an NM program �le or a CM program �le, the
loader loads the program.

If it is a CM program �le, the loader provides information to the system
indicating whether or not the �le contains translated code. (Translated code
is code that has been produced by the Object Code Translator (OCT).) The
Emulator and OCT are described below. Table 2-3 describes the �le codes, �le
names, and descriptions of MPE XL executable �les.

Table 2-3. MPE XL Executable Files

FILE CODE FILENAME FILE CONTENT

1028 RL Compatibility Mode Relocatable Library

1029 PROG Compatibility Mode program �le

1030 NMPRG Native Mode program �le

1031 SL Compatibility Mode segmented library

1032 NMPRG Native Mode executable library

1033 NMRL Native Mode relocatable library

1034 PROG MPE V/E translated program �le

1461 NMOBJ Native Mode Object File

1462 PASLB HP-Pascal/XL Source Library

The system begins execution of a program �le that is in NM after it is loaded.
If the loaded program �le is in CM, the system calls the Emulator to execute
the CM code.

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-21

Emulating or Translating

If the code is not translated, then the emulator dynamically translates the
MPE V/E code into equivalent HP-PA instructions.

OCT is used to translate an MPE V/E program �le and produce two output
�les; a translated CM program �le and a list �le containing error messages.
The translated program �le is appended to a copy of the original program �le,
thus creating a larger �le. The list �le defaults to $STDLIST.

The primary advantage of running translated code instead of emulated code is
faster performance. However, the �le size is larger than that of the original
untranslated �le.

The MPE XL command to run OCT is OCTCOMP. For detailed information on
translated code, refer to Migration Process Guide (30367-90007).

Errors, Aborts, and Debugging

Much error management and abort control depends on the language you use.
Consult the manual for your programming language for techniques, statements,
and translations for error messages. MPE XL subsystems produce their own
error messages.

Condition code numbers for error checking are still used for some intrinsics, as
in MPE V/E, but many MPE XL intrinsics use a status parameter instead.
The status parameter returns a 32-bit value, interpreted as two 16-bit �elds
analogous to the condition code and the PRINTFILEINFO intrinsic. The �rst
16-bit �eld tells you if an error or warning occurred, using a code for the
type of error. The second 16-bit �eld tells you the subsystem where the error
occurred.

The status parameter is optional, but recommended. If you do not use the
status parameter, and an error occurs, the program may cause an abort.

It is good programming practice to check for errors after each intrinsic
call. However, you must be sure to check the right information. The status
parameter does not e�ect the Condition Code setting. If you use an intrinsic
that has a status parameter and then check the Condition Code, you will get
information, but not about your intrinsic.

2-22 Preparing a Program for Execution DRAFT

2/14/100 07:56

You can still use o�sets to trace errors in programs. However, an optimizing
compiler may reorder the sequence of instructions. For example, an invariant
expression may have been moved outside a loop. If you get confusing results
and suspect this is the case, try recompiling with the optimization level set to
the minimum. This way, the sequence of instructions in your coding will be a
better match to the sequence of instructions actually being executed.

The MPE XL System Debugger is entirely di�erent from the MPE V/E
Debugger. If you are debugging a CM program, do not follow in instructions
in the MPE V/E Debug documentation. You should become familiar with HP
Symbolic Debugger User's Guide (92435-90001) and System Debug Reference
Manual (32650-90013).

Additional Information

For more information about intrinsics, refer to MPE XL Intrinsics Reference
Manual (32650-90028). For more information about commands, refer to
Command Interpreter Access and Variables Programmer's Guide (32650-90011)
and MPE XL Commands Reference Manual (32650-90003).

For further information about program development on the MPE V/E and
MPE XL CM, refer to MPE Segmenter (30000-90011) . For information about
program development on the MPE XL NM, refer to HP Link Editor/XL
Reference Manual (32650-90030) . For information about switching between
the two, Switch Programming Guide (32650-90014) will be useful.

For detailed information on using NM optimizing compilers, refer to

HP Business BASIC/XL Reference Manual (32715-90001)

HP C Reference Manual (92434-90001) and HP C/XL Reference Manual
Supplement (31506-90001)

COBOL II Reference Manual (31500-90001) and COBOL II/XL Reference
Manual Supplement (31500-90005)

HP COBOL II/XL Programmer's Guide (31500-90002)

HP FORTRAN 77/XL Reference Manual (31501-90010)

HP FORTRAN 77/XL Programmer's Guide (31501-90002)

DRAFT

2/14/100 07:56

Preparing a Program for Execution 2-23

HP Pascal Reference Manual (31502-90001)

HP Pascal Programmer's Guide (31502-90002)

RPG;

For further information about debugging, refer to HP Symbolic Debugger User's
Guide (92435-90001) and System Debug Reference Manual (32650-90013).

2-24 Preparing a Program for Execution DRAFT

2/14/100 07:56

3

Using Intrinsics

This chapter discusses changes in using intrinsics, such as the new access
mechanism, the status parameter used for error checking, and data types.
Because the word \intrinsic" has a generic meaning, as well as the speci�c one
used in this chapter, a list of de�nitive criteria is also included.

You will �nd three lists at the end the chapter: those intrinsics that are new,
changed, and not supported in MPE XL.

Overview of
Differences:
MPE V/E
and MPE XL

A few intrinsics are supported on MPE V/E but not on MPE XL. There
are also MPE XL intrinsics that are not supported on MPE V/E. For some
intrinsics, there are distinct CM (Compatibility Mode) and NM (Native Mode)
versions. Unless otherwise indicated, intrinsics function the same in both
modes.

Most MPE V/E intrinsics are supported on MPE XL. The exceptions are
FCARD (which supports card readers) and PTAPE (which supports paper tape).
These have obsolete functions and are not callable in MPE XL from CM or
NM. In addition, SWITCHDB cannot be called from NM.

On MPE V/E, you can access an intrinsic via an explicit external procedure
declaration. On MPE XL, you access all system intrinsics via the intrinsic
mechanism.

DRAFT

2/14/100 07:56

Using Intrinsics 3-1

New

MPE XL features that are not available on MPE V/E include:

Status Parameter (NM)

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

Intrinsic mechanism

Generic data type mnemonics

Intrinsics available

What is an Intrinsic?

The term intrinsic is often used in reference to any system or external
subsystem. However, this term has a speci�c meaning and should be used
with some care. If you are using intrinsics in an application that is intended to
migrate between MPE V/E and MPE XL, you need to know which intrinsics
are common to both.

To qualify as a true intrinsic (a Hewlett-Packard documented, user-callable
intrinsic), an entry point must meet the following criteria:

An intrinsic is a supported external interface to the operating system or
subsystem services.

An intrinsic interface performs type and bounds checks on parameter values
before it uses them, thus protecting the operating system from the user and
vice versa.

An intrinsic interface is documented in a Hewlett-Packard manual.

If an intrinsic is enhanced, its interface, capabilities and feature set remain
backward compatible.

An intrinsic should be callable from any Hewlett-Packard supported
language. (Some data types are not available in some languages, however.)

3-2 Using Intrinsics DRAFT

2/14/100 07:56

The callable interface of an intrinsic is di�erent than that of other system
library procedures. MPE V/E uses a SPLINTR �le, and MPE/XL intrinsic
mechanism uses the SYSINTR �le.

Note Hewlett-Packard subsystems and applications may also provide
intrinsics that meet the de�nition of an intrinsic. They may
be documented in a separate manual and are not discussed
in this manual. Refer to the MPE XL Documentation Guide
(32650-90144).

Status Parameter (NM)
(new)

It is good programming practice to check for status immediately after using
each intrinsic. Be sure you check the appropriate place, or you may receive
misleading information.

MPE V/E intrinsics typically used the condition code for error checking and
the PRINTFILEINFO intrinsic for error information. The CM versions of these
intrinsics use the same method. Some new intrinsics use the status parameter
for error management instead.

Take advantage of the status parameter, when you use the new NM intrinsics
beginning with \HP". Using the status parameter is analogous to using both
condition codes and PRINTFILEINFO.

DRAFT

2/14/100 07:56

Using Intrinsics 3-3

The status parameter will return a 32-bit number that you read in two parts.
The �rst 16-bit �eld indicates the presence of a warning or error with a code
number associated with an error message. If the �rst 16 bits are not zero, the
second 16-bit �eld indicates the subsystem where the error occurred.

Generic Data Type Mnemonics
(changed)

Data types used for intrinsics are represented by generic mnemonics,
emphasizing that intrinsics can be called from all the programming languages.
For example, if an intrinsic is listed as requiring an I32V parameter, you must
pass, by value, a signed 32-bit integer.

The data types and their mnemonics are di�erent in MPE V/E and MPE XL.
The list of mnemonics and their meanings are listed in Table 3-1 and Table 3-2,
following.

3-4 Using Intrinsics DRAFT

2/14/100 07:56

Table 3-1. Generic Data Type Mnemonics

MPE V/E
SPL

MPE XL
Mnemonic

Meaning

Integer I16 16-bit signed integer.

I32 32-bit signed integer.

I64 64-bit signed integer.

Logical U16 16-bit unsigned integer.

U32 32-bit unsigned integer.

U64 64-bit unsigned integer.

Real R32 32-bit real.

Long R64 64-bit real.

R128 128-bit real.

B Boolean.

Byte C character.

@32 32-bit address.

@64 64-bit address.

DRAFT

2/14/100 07:56

Using Intrinsics 3-5

The following mnemonics are de�ned to indicate parameter structures and
usages:

Table 3-2. Generic Structure and Usage Mnemonics

MPE
XL

Mnemonic

Meaning

A array.

REC record.

UDS user-de�ned structure.

R passed by reference.

V passed by value.

For more information, see Chapter 10, Converting Data Types in this manual.

Intrinsic Mechanism
(changed)

The MPE XL intrinsic mechanism facilitates the declaration of system
intrinsics. It is the way you gain exible and convenient access to intrinsic
routines from high-level programming languages.

An intrinsic's callable interface di�ers from that of other system library
procedures. MPE V/E makes an intrinsic's procedure declaration available to
other programming languages via its intrinsic �le SPLINTR. MPE XL calls its
�le SYSINTR.

If you execute in Native Mode (NM), you are strongly encouraged to use the
MPE XL Intrinsic Mechanism when calling system intrinsics. On MPE V/E
you can also access an intrinsic via an explicit external procedure declaration,
but the MPE XL intrinsic mechanism is designed to handle all access to
intrinsics.

3-6 Using Intrinsics DRAFT

2/14/100 07:56

All MPE XL intrinsics are treated as external procedures by user programs. In
some programming languages, you need not (or cannot) give descriptions for
procedures that are external to your program. When you designate that an
external routine is an intrinsic, the compiler can use the intrinsic mechanism
to determine how to correctly invoke the routine. For example, the compiler
receives information about the number of parameters, the type of each
parameter, and the functional return type (if applicable).

DRAFT

2/14/100 07:56

Using Intrinsics 3-7

Some advantages of using the intrinsic mechanism follow:

Provides a consistent intrinsic interface.

Reduces the burden and error potential of coding multiple external procedure
declarations with all the parameters and type declarations required in some
languages.

Ensures proper data type conversion.

Veri�es proper data alignment.

Provides proper indirect address references to data.

Generates proper reference parameter addresses.

Assigns values to default parameters and correctly resolves optional
parameters omitted at the end of an intrinsic call.

Allows parameter checking for languages that have no mechanism for detailed
external declarations.

Permits inter-language calls that might otherwise not be possible because
compilers can generate the code needed to load parameters that could not
otherwise be described in the language. (For example, some languages do not
have call-by-value or certain data types.)

Provides name translation for noncase-sensitive languages.

Allows future extensibility without requiring source code changes.

Intrinsics Available
(changed)

The following lists show changes to intrinsics on MPE XL.

3-8 Using Intrinsics DRAFT

2/14/100 07:56

Intrinsic Summary

The following lists show:

new MPE XL intrinsics, not available on MPE V/E.

intrinsics that have changed from their MPE V/E versions.

intrinsics whose implementions are unchanged, but whose functionality may
have changed due to peripheral dependencies.

intrinsics that are not supported on MPE XL NM.

DRAFT

2/14/100 07:56

Using Intrinsics 3-9

New. The following are new intrinsics on MPE XL. Unless otherwise indicated,
they are available in NM only. A user with standard capabilities can call all
the intrinsics in this table.

3-10 Using Intrinsics DRAFT

2/14/100 07:56

Table 3-3. New Intrinsics and Their Use

Intrinsic Name Use/Purpose

HPCICOMMAND Executes an MPE XL command programmatically; refer to
Chapter 5, Using the Command Interpreter.

HPCIDELETEVAR Removes an entry from the session-local variable table; refer
to Chapter 5, Using the Command Interpreter.

HPCIGETVAR Retrieves a speci�ed, session-local variable value; refer to
Chapter 5, Using the Command Interpreter.

HPCIPUTVAR Sets the value of a session-local variable; refer to Chapter 5,
Using the Command Interpreter.

HPDEBUG Enters the system debugger and optionally executes a de�ned
set of system debug commands; refer to Chapter 13,
Debugging Applications.

HPENBLTRAP Selectively enables or disables arithmetic traps; refer to
Chapter 12, Handling Traps.

HPFIRSTLIBRARY Returns the full name of the �rst library �le in the binding
sequence; refer to Chapter 8, Managing Resources.

HPFOPEN Opens a �le; refer to Chapter 4, Accessing Files.

HPFPCONVERT Converts data between binary oating-point formats; refer to
Chapter 10, Converting Data Types.

HPGETPROCPLABEL Locates a procedure and returns its procedure label; refer to
Chapter 8, Managing Resources.

HPLOADCMPROCEDURE Loads the target procedure of an NM|> CM switch and
returns the procedure's plabel; refer to Switch Programming
Guide (32650-90014).

HPLOADNMPROC Returns the procedure label of a Native Mode procedure; refer
to Switch Programming Guide (32650-90014)

HPMERGEEND Releases the HPMERGE program work area; refer to Chapter
11, Sorting and Merging Data.

HPMERGEERRORMESS Retrieves and prints message if a fatal error occurs during the
HPMERGE program; refer to Chapter 11, Sorting and
Merging Data.

HPMERGEINIT Initiates the HPMERGE program; refer to Chapter 11,
Sorting and Merging Data.

HPMERGEOUTPUT Retrieves records, one at a time, from the HPMERGE
program; refer to Chapter 11, Sorting and Merging Data.

DRAFT

2/14/100 07:56

Using Intrinsics 3-11

Table 3-3. New Intrinsics and Their Use (continued)

Intrinsic Name Use/Purpose

HPMERGESTAT Prints the HPMERGE program statistics on $STDLIST; refer
to Chapter 11, Sorting and Merging Data.

HPMERGETITLE Prints the version number and title of the HPMERGE
subsystem on $STDLIST; refer to Chapter 11, Sorting and
Merging Data.

HPMYFILE Returns the full name of the program or library �le that called
it; refer to Chapter 8, Managing Resources.

HPMYPROGRAM Returns the full name of the program being executed by this
process; refer to Chapter 8, Managing Resources.

HPRESETDUMP Disarms the system debugger call in a process abort; only the
current process is a�ected; refer to Chapter 13, Debugging
Applications.

HPSETCCODE Sets the condition code for the calling process; refer to Switch
Programming Guide (32650-90014).

HPSETDUMP Arms the system debugger call for a process abort; the process
can be the current process or any of its children created after
calling HPSETDUMP; refer to Chapter 13, Debugging
Applications.

HPSORTEND Closes the scratch �le and releases the HPSORT work area;
refer to Chapter 11, Sorting and Merging Data.

HPSORTERRORMESS Retrieves and prints message if a fatal error occurs during the
HPSORT program; refer to Chapter 11, Sorting and Merging
Data.

HPSORTINIT Initiates the HPSORT program; refer to Chapter 11, Sorting
and Merging Data.

HPSORTINPUT Passes records, one at a time, to the HPSORT program; refer
to Chapter 11, Sorting and Merging Data.

HPSORTOUTPUT Retrieves records, one at a time, from the HPSORT program;
refer to Chapter 11, Sorting and Merging Data.

HPSORTSTAT Prints the HPSORT program statistics on $STDLIST; refer to
Chapter 11, Sorting and Merging Data.

HPSORTTITLE Prints the version number and title of the HPSORTLIB
segment on $STDLIST; refer to Chapter 11, Sorting and
Merging Data.

HPSWITCHTOCM Makes possible NM|>CM mixed-mode procedure calls; refer
to Switch Programming Guide (32650-90014).

HPSWTONMNAME Makes possible CM|> NM mixed-mode procedure calls by
name; refer to Switch Programming Guide (32650-90014).

HPSWTONMPLABEL Makes possible CM|> NM mixed-mode procedure calls by

3-12 Using Intrinsics DRAFT

2/14/100 07:56

Changed. The following intrinsics have changed from their MPE V/E versions.

DRAFT

2/14/100 07:56

Using Intrinsics 3-13

Table 3-4. Intrinsics with Implementation Differences

Intrinsic Implementation Di�erence

ARITRAP (NM) Parameter di�erences; refer to Chapter 12, Handling
Traps.

ARITRAP (CM) Operational di�erences; refer to Chapter 12, Handling
Traps.

CATREAD Parameter di�erences; refer to Chapter 9, Managing
Message Catalogs.

COMMAND Parameter di�erences; refer to Chapter 5, Using the
Command Interpreter.

CREATE Parameter and operational di�erences; refer to Chapter
7, Managing Processes.

CREATEPROCESS Parameter and operational di�erences; refer to Chapter
7, Managing Processes.

DLSIZE (NM) Operational di�erences; refer to Chapter 15, Changing
Stack Sizes.

FCLOSE Parameter di�erences; refer to Chapter 4, Accessing Files.

FCONTROL Parameter di�erences; refer to Chapter 4, Accessing Files.

FFILEINFO Parameter di�erences; refer to Chapter 6, Getting
System Information.

FGETINFO Parameter di�erences; refer to Chapter 6, Getting
System Information.

FLABELINFO Parameter di�erences; refer to Chapter 6, Getting
System Information.

FOPEN Parameter di�erences; refer to Chapter 4, Accessing Files.

FSETMODE Operational di�erences; refer to Chapter 4, Accessing
Files.

GENMESSAGE Parameter di�erences; refer to Chapter 9, Managing
Message Catalogs.

LOADPROC (NM) Operational di�erences; refer to Chapter 8, Managing
Resources.

MYCOMMAND (NM) Byte pointer di�erences; refer to Chapter 5, Using the
Command Interpreter.

SEARCH (NM) Byte pointer di�erences; refer to Chapter 5, Using the
Command Interpreter.

SETDUMP (NM) Parameter di�erences; refer to Chapter 13, Debugging
Applications.

STACKDUMP (NM and CM) Parameter and operational di�erences; refer to Chapter
13, Debugging Applications.

3-14 Using Intrinsics DRAFT

2/14/100 07:56

Table 3-4. Intrinsics with Implementation Differences (continued)

Intrinsic Implementation Di�erence

XARITRAP (CM) Operational di�erences; refer to Chapter 12, Handling
Traps.

XCONTRAP (NM) Plabel di�erences; refer to Chapter 12, Handling Traps.

XLIBTRAP (NM) Plabel di�erences; refer to Chapter 12, Handling Traps.

XLIBTRAP (CM) Operational di�erences; refer to Chapter 12, Handling
Traps.

XSYSTRAP (NM) Plabel di�erences; refer to Chapter 12, Handling Traps.

XSYSTRAP (CM) Operational di�erences; refer to Chapter 12, Handling
Traps.

ZSIZE (NM) Operational di�erences; refer to Chapter 15, Changing
Stack Sizes.

Changed functionality. The following are intrinsics whose implementations
are unchanged, but whose functionality may have changed due to peripheral
dependencies:

Table 3-5. Intrinsics with Peripheral Dependencies

Intrinsic Peripheral Dependency

FREADBACKWARD Refer to Chapter 4, Accessing Files.

FWRITE Refer to Chapter 4, Accessing Files.

Not Supported. FCARD, PTAPE, and SWITCHDB intrinsics are not supported on
MPE XL NM.

DRAFT

2/14/100 07:56

Using Intrinsics 3-15

Additional Information

For information on the intrinsics that are unmodi�ed from their MPE V/E
counterparts, refer to the MPE V/E Intrinsics Reference (32033-90007).
For MPE XL intrinsics, refer to MPE XL Intrinsics Reference Manual
(32650-90028).

3-16 Using Intrinsics DRAFT

2/14/100 07:56

4

Accessing Files

This chapter describes the di�erences between MPE XL and MPE V/E in the
implementation of basic �le operations. The advantages and disadvantages
of mapped access are briey discussed. A program example of access with
mapped option is presented.

Overview of
Differences:
MPE V/E
and MPE XL

Demand-paged virtual memory and a greater addressing range have caused
modi�cation to some intrinsics, but most MPE V/E �le system intrinsics
function the same in MPE XL. New services include access to mapped �les
through the Native Mode HPFOPEN intrinsic. Several MPE V/E �le system
features are not available on MPE XL based systems.

New

MPE XL features that are not available on MPE V/E include:

Mapped access to �les (NM)
HPFOPEN intrinsic (NM)

DRAFT

2/14/100 07:56

Accessing Files 4-1

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

Bu�ers and disk �les
Disk �le placement
Extents
File Codes
The following intrinsics:

FCARD (CM) FCLOSE

FCONTROL FFILEINFO

FGETINFO FLABELINFO

FOPEN FREADBACKWARD y

FSETMODE FWRITE y

PTAPE (CM)

y MPE V/E intrinsics whose implementations are unchanged, but whose
functionality may have changed due to peripheral dependencies.

The following commands:

LISTF

LISTFTEMP

Not Used

Existing MPE V/E features that are not supported on MPE XL include:

Foreign disk facility
Serial disk facility
The following intrinsics:

FCARD (NM)
PTAPE (NM)

4-2 Accessing Files DRAFT

2/14/100 07:56

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

FCHECK FDELETE

FDEVICECONTROL FERRMSG

FLOCK FPOINT

FREAD FREADDIR

FREADLABEL FREADSEEK

FRELATE FRENAME

FSPACE FUNLOCK

FUPDATE FWRITEDIR

FWRITELABEL IODONTWAIT

IOWAIT PRINT

PRINTFILEINFO PRINTOP

READ READX

LISTEQ command

Mapped Access to Files (NM)
(new)

A major enhancement to the MPE XL �le system is mapped access to �les, an
option that allows you to access a disk �le directly through memory load and
store instructions. You choose the mapped access option in NM (Native Mode
programming environment) through two HPFOPEN intrinsic parameters:

The short mapped option returns a 32-bit value of type address.

The long mapped option returns a 64-bit value of type address.

Using the mapped option to access �les requires the use of pointers, a datatype
available in Pascal or C.

DRAFT

2/14/100 07:56

Accessing Files 4-3

Accessing With Mapped Option

To use the mapped option to access �les, declare a short (32-bit) or long
(64-bit) pointer variable within a program, and pass that variable to the
appropriate HPFOPEN parameter. When HPFOPEN returns the variable, it is
pointing to the beginning of the data area of the opened �le. After HPFOPEN
returns the address of the �le, you can simply reference the pointer as an array.

Some �les restrict the type of access, like READ or READ/WRITE, that will
be allowed with the mapped access option. Some can not be opened at all.

The following �le types are allowed any type of access when they are opened
using a mapped access option:

standard �les with �xed-length record formats.
standard �les with unde�ned-length record formats.

The following �le types are restricted to READ-ONLY access when they are
opened using a mapped access option:

standard �les with variable-length record formats.
KSAM �les opened with copy mode option enabled.
standard �les with variable-length record formats.

The following �le types are not allowed to be opened at all with a mapped
access option:

circular (CIR) �les.
device �les.
message (MSG) �les.
relative input/output (RIO) �les.
any �les with a negative �le code, such as privileged �les like Turboimage
databases.

You can use all applicable �le system intrinsics with a �le that has been
opened with the mapped access option, including all data transfer intrinsics.
However, when mixing �le system data transfer intrinsic calls (such as FREAD
and FWRITE) with a mapped access option, you must consider the data type,
the record format, and the record size of the �le. Otherwise, the data you write
to the �le using the option may not make sense when it is read by FREAD.

When you open a �le using a mapped access option and write data to that
�le, you must use the FPOINT and FCONTROL intrinsics to reset the EOF before

4-4 Accessing Files DRAFT

2/14/100 07:56

you close the �le. Otherwise, all data you write to the �le after the EOF will
be lost when you close the �le. In the case of a newly created �le, the EOF
initially points to record zero.

Note When you access a �le via mapped access option you are
bypassing certain �le system services that set various �le
system pointers automatically, including the EOF and the
logical record pointer. You are responsible for resetting the
EOF prior to closing a �le you have accessed with map option.

You are also bypassing �le system posting, so if data recovery
is needed you should use FCONTROL controlcodes to post
data and update the EOF periodically. Heavy use of the
FCONTROL intrinsic to post data and set the EOF will degrade
performance due to the overhead of the extra posting.

Advantages of
Mapped Access
Option

There are two perspectives you can take on mapped access to �les:

A �le is accessible as virtual memory. The advantages from this perspective
are high performance and fast response time from the �le system.

Virtual memory is accessed through the �le system. Three advantages from
this perspective are that virtual memory can be easily and permanently
saved, it can be \checkpointed", and it can be easily shared through a
common naming convention.

Accessing a �le with a mapped option can be faster than accessing it through
normal �le system intrinsics. This is especially true when you are accessing a
smaller �le randomly rather than sequentially. With a mapped access option,
there is no �le system overhead associated with a speci�c reference to the �le.

The only di�erences between using the mapped access option and using normal
memory are the locality of the access and the protection strategy.

DRAFT

2/14/100 07:56

Accessing Files 4-5

Disadvantages of
Mapped Access
Option

It is possible to show a degradation of performance if an application which
accesses �les sequentially is modi�ed to access �les via mapped option. Normal
�le system reads are bu�ered to pre-fetch multiple records per read. The
mapped access option does minimal pre-fetching of data, and consequently
some performance penalty is paid by additional overhead on page faults.

You cannot access a loaded program �le or a loaded library �le using mapped
access option. In addition, you cannot load or execute a program �le that is
currently being accessed with the mapped options.

Short or Long
Mapped Access?

The short mapped option is available in the HPFOPEN intrinsic to provide you
with shared virtual memory. A short pointer is returned in the optional item
parameter. You can use the pointer as a large array of any type to e�ciently
access the �le.

The long mapped option is available in the HPFOPEN intrinsic to provide you
with access to shared virtual memory. You can use the pointer as a large array
of any type to e�ciently access the �le.

A �le opened using the short mapped option can be up to four megabytes in
size. A process can have up to six megabytes of �les open at the same time
that were created using the short mapped option. If you need more, use the
long mapped option. A �le opened using the long mapped option can be up to
two gigabytes in size.

Using the long mapped access option has two advantages over the short mapped
option. You can access much larger �les. You can open �les that were opened
previously with any options (as long as the exclusive status of the �le is not
violated).

The disadvantage of using the long mapped access option is that it may be
slower than using the short mapped option because of the need to load a space
register to access the long pointer space. Long mapped access can be as much
as four times slower than short mapped access, although the long mapped

4-6 Accessing Files DRAFT

2/14/100 07:56

option can still operate faster than accessing a �le through the intrinsics for �le
system data transfer. The performance degradation can be minimized if you
make the references to the long pointer space in a localized part of your code.

You cannot use either mapped access option to access a loaded program �le or
a loaded library �le. In addition, you cannot load or execute a program �le
that is currently being accessed with either mapped access option.

If you attempt to use the short mapped option to open a �le that has been
previously opened normally or with the long mapped option, you will receive an
error.

Mapped Access Example

The following example illustrates how a �le is created and opened with the
short mapped access option. The Pascal XL procedure opens the �le, then
writes data to the �le via assignments to the array structure. The procedure
then sets the EOF and closes the �le. The �le is then reopened with short
mapped option and data is retrieved before the �le is closed and purged.

DRAFT

2/14/100 07:56

Accessing Files 4-7

procedure Mapped_File_Example; {for use within a program}

type

{** defines an 80 byte record **}

record_t = record

a_record : packed array [1..80] of char;

end;

{** define a 4,000,000 byte array **}
file_t = array [1..50000] of record_t;

var

access : integer;

domain : integer;

dummy : shortint;

file_name : packed array [1..20] of char;

file_number : integer;

file_ptr : ^file_t; {** pointer to the file **}

filesize : integer;

index : integer;

rec : integer;

create_domain_perm: integer;

domain_OLD : integer;

read_write_access: integer;

status : record

case integer of

0: (all: integer);

1: (info: shortint;

subsys: shortint);

end;

const

itemnum_2 = 2; {** file name option **}

itemnum_3 = 3; {** domain option **}

itemnum_35 = 35; {** filesize option **}

itemnum_18 = 18; {** short mapped option**}
itemnum_11 = 11 {** access type option **}4-8 Accessing Files DRAFT

2/14/100 07:56

begin {** initialize item values for HPFOPEN **}

file_name := '%EXAMPLE%';

create_domain_PERM := 4;

domain_OLD := 3;

filesize := 15265;

read_write_access := 4;

HPFOPEN ({** create a short mapped file **}

file_number, status,
itemnum_2, file_name,

itemnum_3, create_domain_PERM,

itemnum_35, filesize,

itemnum_18, file_ptr,

itemnum_11, read_write_access,

);

for rec := 1 to 100 do {** put some data into the file **}

for index := 1 to 80 do

file_ptr^[rec].a_record[index] := Chr (((rec - 1) Mod 26) + 65);

FPOINT (file_number, 33); {** set the logical record pointer **}

FCONTROL (file_number, 6, dummy); {** set the EOF **}

FCLOSE (file_number, 0, 0); {** close the file **}

HPFOPEN ({** re-open the same short mapped file **}

file_number, status,

itemnum_2, file_name,

itemnum_3, domain_OLD,

itemnum_18, file_ptr,

);

for rec := 1 to 100 do {** retrieve some data you put in file **}

begin
write ('Record#', rec:4, ' ');

for index := 1 to 20 do

write (file_ptr^[rec].a_record[index]);

writeln;

end;

FCLOSE (file_number, 4, 0); {** close and purge the file **}

end;

DRAFT

2/14/100 07:56

Accessing Files 4-9

HPFOPEN (NM)
(new)

The HPFOPEN intrinsic is an enhanced version of the FOPEN intrinsic. It is
available in NM only. It establishes access to a �le on any device and creates a
�le on any shareable device.

You can use the HPFOPEN intrinsic to access either a disk �le or a device �le. It
enables you to create a new �le on a shareable device and de�ne the physical
characteristics of that �le prior to access. HPFOPEN returns to the calling
process a �le number that uniquely identi�es the �le. You can use the �le
number to reference the �le in calls to other intrinsics.

HPFOPEN's optional parameters are a superset of options provided in the FOPEN
intrinsic. For example, the mapped access option is available through HPFOPEN

but not through FOPEN. In addition, some options available through FOPEN are
enhanced in the equivalent HPFOPEN options:

The blockfactor parameter allows you a maximum blocking factor of 32,767
(FOPEN allows you 255).

The domain option allows you to create a �le that is immediately placed in
the PERMANENT �le directory.

The access type option allows you EXECUTE-READ access.

Note The FOPEN intrinsic is still available in MPE XL, but HPFOPEN
is the recommended intrinsic for �le access because it is more
exible and extensible than FOPEN. HPFOPEN is available in NM
only.

HPFOPEN has an optional status parameter, a 32-bit signed integer passed by
reference. Using the status parameter replaces using condition codes. The
parameter has two �elds. One reports the presence of errors and warnings, and
the other indicates their source.

The status parameter is optional, but recommended. If an error or warning
condition is encountered, and you did not specify the status parameter, your
process will abort.

4-10 Accessing Files DRAFT

2/14/100 07:56

Buffers and
Disk Files
(changed)

In MPE XL, �le system bu�ering is not performed for standard (�le type option
= STD) disk �les in BUF mode. Instead, records are transferred directly
between your local data area and the virtual space associated with your �le.
This means that, unlike MPE/V, using the blocking factor to alter the bu�er
size will not have an impact upon the performance of MPE XL applications.

Under MPE XL, data is transferred between the system and the data area
de�ned in your program in the same way it was transferred under MPE/V.
That is, for the standard disk �les opened with the inhibit bu�ering options
of HPFOPEN/FOPEN set to BUF (bu�ered mode), each read or write operation
transfers one logical record. For standard disk �les opened with NOBUF
(unbu�ered mode), each read or write operation transfers one physical record
(block).

Because MPE XL does not implement system bu�ers for standard disk �les,
the numbu�ers option of HPFOPEN/FOPEN is meaningless for standard disk �les.

Disk File Placement (changed)

When you are using the FOPEN intrinsic and you specify the deviceclass option
for disk devices in the device parameter, you are referring to a volume set
member(s). That is, you are specifying a member, or members, of a set of disk
packs, rather than a set of speci�c disk drives.

A �le is bound to a disk pack and not to a disk device. In the HPFOPEN
intrinsic, only volume (disk pack) or volume class may be speci�ed for a �le
residing on disk.

Note When you specify ldev at �le creation, ldev will be permanently
associated with a speci�c volume that was mounted on the
device speci�ed by ldev at the time of �le creation, and not

DRAFT

2/14/100 07:56

Accessing Files 4-11

permanently associated with the physical device, as is the case
in MPE V/E based systems.

Extents (changed)

MPE V/E and MPE XL allocate extents di�erently, as summarized below:

In MPE V/E: In MPE XL:

When you build a �le, at least one extent
is allocated at build time.

Building a �le does not necessarily
allocate any disk space. Initial extents are
only allocated if they are speci�ed at
creation time.

Every �le takes up some disk space, even
if it is empty.

Empty �les take up no disk space, unless
initial extents are speci�ed when the �le is
created.

Files can be broken up into as many as 32
extents. The number and size of the
extents is speci�ed at the time the �le is
created.

Files can be broken into as many extents
as are needed. The number and size of
the extents need not be speci�ed at the
time the �ile is created. MPE XL will add
extents to a �le as required. Files can be
built in one extent, or in a variable
number of extents. Specifying a �xed
number of extents (other than one) results
in the allocation of a variable number of
extents.

Every �le is described by a �le label,
which is stored by the operating system
along with the �rst extent.

Every �le is described by a �le label,
which is part of a table called the File
Label Table (FLT). There is one FLT for
each disk volume. The �le label is not
part of any extent of the �le.

4-12 Accessing Files DRAFT

2/14/100 07:56

File Codes (changed)

Following is a list of current MPE XL �le codes with meanings that are
prede�ned by Hewlett-Packard.

Table 4-2. Current MPE XL File Codes

Integer Mnemonic Meaning

1028 RL Compatibility Mode Relocatable Library

1029 PROG Compatibility Mode Program File

1030 NMPRG Native Mode Program File

1032 NMXL Native Mode Executable Library

1033 NMRL Native Mode Relocatable Library

1461 NMOBJ Native Mode Object File

1462 PASLB Pascal XL Source Library

FCARD

The FCARD intrinsic is available to a program executing in CM, but the calling
process is aborted when it attempts to execute the intrinsic code.

The FCARD intrinsic is not available to a program executing in NM.

DRAFT

2/14/100 07:56

Accessing Files 4-13

FCLOSE
(changed)

The FCLOSE intrinsic has been modi�ed to incorporate enhancements to the
disposition parameter described below.

With the Domain Disposition item, you can make the speci�ed permanent
standard disk �le temporary (valid only for standard disk �les with either
�xed-length, variable-length, or unde�ned-length record formats). The �le is
moved from a permanent �le directory to a temporary �le directory. (You must
be privileged to use this option.)

With the Disk Space Disposition item, you can specify that the disk space
beyond the EOF marker be released to the system. The �le limit remains in
its current position. (Valid only for standard disk �les with either �xed-length,
variable-length, or unde�ned-length record formats.)

FCONTROL
(changed)

Because of architectural di�erences between MPE XL and MPE V/E based
machines, MPE V/E system hardware status information has no meaning in
MPE XL. If you specify FCONTROL controlcode to be \read hardware status
word," you will get a meaningless value returned to param.

You can pass a carriage control code to a line printer or terminal through
the bu�er parameter of the FWRITE intrinsic or the param parameter of the
FCONTROL intrinsic. Some may be applicable only to peripheral devices that are
not currently supported on the 900 Series HP 3000. Please be certain that the
control code you pass is still applicable to the device supported on your 900
Series HP 3000.

For more information, see MPE V/E Intrinsics Reference Manual
(32033-90007).

4-14 Accessing Files DRAFT

2/14/100 07:56

FFILEINFO, FGETINFO, FLABELINFO
(changed)

Changes to the FFILEINFO, FGETINFO, and the FLABELINFO intrinsics are
described in Chapter 6, Getting System Information.

FOPEN
(changed)

The following FOPEN parameters have been modi�ed for use on MPE XL based
systems. For other FOPEN parameters, refer to . MPE V/E Intrinsics Reference
Manual (32033-90007) or MPE XL Intrinsics Reference Manual (32650-90028).

formaldesignator The formal �le designator may contain command
interpreter variables and expressions that are evaluated
by FOPEN before the formal �le designator is parsed
and validated. For more information about command
interpreter variables and expressions refer to the Command
Interpreter Access and Variables Programmer's Guide
(32650-90011).

foptions Specifying an foptions value of zero behaves as if you did
not specify foptions ; the parameter is defaulted.

aoptions Specifying an aoptions value of zero behaves as if you did
not specify aoptions ; the parameter is defaulted.

device The FOPEN intrinsic does not access the special disk device
classes of serial disk (SDISC) and foreign disk (FOREIGN),
as neither are supported on MPE XL based systems.

When you specify the deviceclass option for disk devices
you are referring to a member(s) of a volume set (set of
disk packs) rather than a set of speci�c disk drives.

Also, a �le is bound to a disk pack and not to a disk
device. When you specify ldev at �le creation, ldev will be
permanently associated with a speci�c volume that was
mounted on the device speci�ed by ldev at the time of �le

DRAFT

2/14/100 07:56

Accessing Files 4-15

creation, and not permanently associated with the physical
device, as is the case in MPE V/E based systems.

�lesize MPE XL NM maximum �le size for Standard �les is two
gigabytes.

numextents,
initialloc

When you specify a value of one in both numextents and in
initialloc, the �le will be created as one contiguous extent
of disk space. Otherwise, a variable number of extents
(with varying extent sizes) will be allocated on a need
basis.

When you specify a value of one in both initialloc and
in numextents , the �le will be created as one contiguous
extent of disk space. Otherwise, a variable number of
extents (with varying extent sizes) will be allocated on a
need basis.

MPE XL NM default for initialloc is zero extents (the
default in MPE V/E is one extent). No extents are
allocated to the �le until the �le is accessed and one or
more extents are required.

MPE XL Intrinsics Reference Manual (32650-90028) lists equivalences between
FOPEN parameters and HPFOPEN parameters.

FSETMODE
(changed)

Two mode options, available through the modeags parameter of the FSETMODE
intrinsic, have been modi�ed for use in MPE XL.

You can choose to control whether or not program writes to a �le are
guaranteed to be completed in chronological order. In MPE XL, write
requests to the �le from all writers on the system can be placed on the MPE
XL Serial Write Queue and guaranteed to be completed in chronological
order. In MPE V/E, this would control only your program's writes to the
�le.

4-16 Accessing Files DRAFT

2/14/100 07:56

On MPE V/E, a disk �le can be removed from the Serial Write Cue using
FSETMODE. On MPE XL, a disk �le that is placed on the Serial Write Queue
remains on that queue until the �le is purged from the system.

In MPE XL, you can choose to block program execution on each write
request until the physical write operation is completed. In MPE V/E, in
BUF mode, program execution will be blocked only when your write requests
have �lled a system bu�er. Posting will by physical record (block), not per
logical record.

You can choose to have a carriage return and line feed not be issued to a
terminal at the completion of each terminal read. In MPE V/E, only the
issuance of the line feed will suppressed; only the carriage return is issued to
the terminal after each terminal read (unless the read is in unedited mode).

FWRITE
(changed)

You can pass a carriage control code to a line printer or terminal through the
bu�er parameter of the of the FWRITE intrinsic or the param parameter of the
FCONTROL intrinsic. Some control codes may be applicable only to peripheral
devices that are not currently supported on the 900 Series HP 3000. Please be
certain that the control code you pass is still applicable to the device supported
on your 900 Series HP 3000.

LISTF, LISTFTEMP
(changed)

Changes to these commands are described in Chapter 6, Getting System
Information.

DRAFT

2/14/100 07:56

Accessing Files 4-17

FCARD, PTAPE (NM)
(not used)

The FCARD and PTAPE intrinsics are not supported on MPE XL, which has no
provisions for reading paper tape or cards. The intrinsics are not available in
Native Mode. Although the intrinsics exist in compatibility mode, the calling
process is aborted when it attempts to execute the intrinsic code.

Foreign Disc Facility
(not used)

The foreign disc facility is not supported on MPE XL based systems.

FREADBACKWARD
(not used)

You can use the FREADBACKWARD intrinsic only with magnetic tape drives
that have \Read Reverse" capability. Because MPE XL does not currently
support magnetic tape devices that have the \Read Reverse" capability, calls to
FREADBACKWARD will result in an error (condition code set to CCL).

Serial Disc Facility
(not used)

The serial disc facility is not supported on MPE XL-based systems.

4-18 Accessing Files DRAFT

2/14/100 07:56

Additional Information

For more information on programmatic control of terminal characteristics on
MPE XL-based systems, refer to Appendix B of the MPE XL Asynchronous
Serial Communications System Administrator's Reference Manual
(32022-90001). An appendix discusses migration from the ATP or ADCC
subsystem on an MPE V/E-based system to the Distributed Terminal
Subsystem (DTS) on an MPE XL-based system.

DRAFT

2/14/100 07:56

Accessing Files 4-19

5

Using the Command Interpreter

This chapter outlines di�erences between MPE V/E and MPE XL in accessing
and using the programmatic interface Command Interpreter. Changes to the
Command Interpreter and related intrinsics and commands are also discussed.

Three lists end the chapter: commands that are new, changed, and not
supported in MPE XL.

Overview of
Differences:
MPE V/E
and MPE XL

The Command Interpreter (CI) has undergone major changes. Enhancements
to the CI make it more powerful, more exible, and easier to use in MPE
XL. Many tasks that require programs on MPE V/E can be done simply
through the CI on MPE XL. You can create user command �les to be accessed
programmatically in MPE XL. Four new intrinsics have been added on MPE
XL NM and several others are changed slightly.

New

MPE XL features that are not available on MPE V/E include:

The following intrinsics:

HPCICOMMAND (NM) HPCIGETVAR (NM)
HPCIPUTVAR (NM) HPCIDELETEVAR (NM)

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-1

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

CI structure and implementation

The following intrinsics:

COMMAND (CM)
MYCOMMAND (CM)
SEARCH (CM)

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

GETPRIVMODE

GETUSERMODE

HPCICOMMAND (NM)
(new)

You use the HPCICOMMAND intrinsic to execute an MPE XL command
programmatically. Two parameters are required: a character string for the
command name, and an integer for the error number. You should use the
optional error parameter, as no condition codes are returned. The command in
the parameter is executed as if it were directly entered in the CI.

The COMMAND intrinsic on MPE V/E and MPE XL (CM) is analgous to the
HPCICOMMAND on MPE XL (NM), but HPCICOMMAND is more exible and
powerful. For example, you can not execute a UDC via COMMAND but you can
with HPCICOMMAND.

HPCICOMMAND searches UDCs, command �les, program �les and uses the new
implied RUN command. Users with PH capability can create and handle
processes.

5-2 Using the Command Interpreter DRAFT

2/14/100 07:56

HPCIGETVAR (NM)
(new)

You use the HPCIGETVAR intrinsic to retrieve a speci�ed session-level variable
value and/or attributes. There are two required parameters: the variable
name in a character string, and an integer for error information. Optional
keyword/keyvalue pairs are used to request and return information about the
variable, such as its value, length or type.

HPCIPUTVAR (NM)
(new)

You use the HPCIPUTVAR intrinsic to set the value of a session-level variable.
The variable can be integer, character, or Boolean. One parameter is required:
a character string containing the name of the variable you want to set. The
optional keyword/keyvalue pairs specify the the value to be set and its format
and type. You should use the optional error parameter, status , as no condition
codes are returned.

HPCIDELETEVAR (NM)
(new)

You use the HPCIDELETEVAR intrinsic to remove an entry from the session-level
variable table. One parameter is required: a character string with the name of
the variable you want deleted. You should use the optional error parameter, as
no condition codes are returned.

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-3

CI Structure and Implementation
(changed)

The MPE XL CI was designed to look the same as the MPE V/E CI, but there
are some internal changes and some enhancements.

MPE V/E implemented the CI as a system process. In MPE XL, the CI is an
executable program �le instead, residing in PUB.SYS. This allows you to run
CI.PUB.SYS as a program. Repeating the RUN CI.PUB.SYS command creates
nested levels of CI.

Also, CI.PUB.SYS uses the info= and parm= parameters of the RUN command.
The info= string may contain a command, and parm= a value that can control
initiation and/or termination done by the CI.

Unlike MPE V/E, MPE XL handles scanning and parsing as a separate
preliminary process. This way, errors can be detected before the CI attempts
execution. String substitution is performed on each command line before the
command is processed. This allows all variables, including UDC parameters, to
be substituted before the command name is extracted.

Changes to the following CI features are discussed in this section:

new command �les and UDCs.

new CI variables and JCWs.

expression evaluator.

command language.

REDO facility and REDO command.

Command Files and User Defined Commands
(changed)

There are two types of user commands that you can use to customize your
environment or create personal command �les. The UDCs (User De�ned
Commands) that exist on MPE V/E are enhanced on MPE XL. MPE XL also
allows a type of user �les called command �les.

5-4 Using the Command Interpreter DRAFT

2/14/100 07:56

UDCs

UDCs are personalized �les you build with sets of CI commands. UDCs are
executed �rst, and can override or supersede MPE commands. You can build
a set of �les that invoke automatically at logon time to customize the user's
environment.

UDC �les are activated with the SETCATALOG command. On MPE V/E, you
had to unset and then reset the catalog to change it. The new append and
delete parameters on MPE XL allow you to directly add a new UDC �le to a
catalog or directly remove an existing UDC �le from a catalog.

In MPE XL, you have two new options for UDCs:
PROGRAM/NOPROGRAM and RECURSION/NORECURSION.

The PROGRAM/NOPROGRAM option allows you to choose whether your
UDC is to be executable from an application.

The RECURSION/NORECURSION option determines where the CI will begin
searching for a UDC. You must choose the RECURSION option for a UDC if
you want it to call itself or to call any UDC that precedes it in its catalog.

The CI searches the catalog sequentially. When one UDC invokes another UDC
in the session catalog without recursion, the CI begins searching at the end of
the current UDC and continues toward the end of the �le. This means it will
never encounter the current UDC or any that precede it in the session catalog.
When one UDC invokes another UDC in the session catalog with recursion, the
CI begins searching at the beginning of the session catalog.

Command Files

In MPE XL, command �les provide an additional method to create customized
user command �les.

Command �les are similar to UDCs. They may accept parameters by de�ning
them in the header line and they may use most options.

UDCs are di�erent from command �les.

UDCs are searched before MPE commands; command �les are searched after.
UDCs have to be cataloged; command �les do not.

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-5

UDCs can be set to invoke automatically at logon; command �les can
not. You can cause this e�ect, however by having your logon UDC call a
command �le.

UDCs are entered in a catalog which, by default, is sequentially searched.
The recursion option is required if any UDC is to call itself or any other
UDC preceding in its catalog. Command �le references are resolved by the
�le system. Each invocation of each �le is treated as a separate entity, and
recursion and search order is not an issue.

CI Variables
(changed)

The only variables the MPE V/E CI uses are the JCWs (Job Control Words),
the prede�ned integer variables which provide information about the status of
program execution or system information.

On MPE XL, variables can be prede�ned or user-de�ned. They can be one of
several types: Boolean, string, or integer.

MPE XL prede�ned variables provide more program execution information
than on MPE V/E, including logon ID, capability lists, $STDIN and
$STDLIST ldev, and CPU time used. Other prede�ned variables provide
system information, such as time, date, job count and job fence.

Some prede�ned variables are used to control the user environment. Prede�ned
variables are already de�ned by the system, but many can be set or changed
by the user. When you set HPAUTOCONT to true, it is as if each command had
a CONTINUE statement. You can set the default CI prompt with the HPPROMPT
variable. You can time terminal reads by setting the HPTIMEOUT variable.

Three new commands help you manage the variables:

SETVAR assigns values to variables.

SHOWVAR displays variables and JCW information.

DELETEVAR removes variables.

The SETJCW and SHOWJCW commands are the same in MPE V/E and MPE XL.

5-6 Using the Command Interpreter DRAFT

2/14/100 07:56

Expression Evaluator

The MPE XL CI has an expression evaluator, a special facility not available on
MPE V/E. It evaluates arithmetic, Boolean, and string operations, variable
functions, bit operations, data conversion, and some special �le functions.

Dereferencing

When you pass a variable to a command, the variable may be evaluated, or
dereferenced, by the expression evaluator. Every variable has both reference (a
name), and a value that is assigned to it. When a variable is dereferenced, its
value is substituted for its name.

Dereferencing can be implicit (done automatically) or explicit (done by
request). The CALC, IF, SETVAR and WHILE commands implicitly dereference all
variables you pass them. If you want to pass the value of a variable to another
command, you can explicitly cause the variable to be evaluated by preceding
the variable name with an exclamation point (!).

You inhibit the evaluation of character strings by enclosing them in quotation
marks.

You can dereference variables recursively. You create layers of evaluation by
nesting exclamation marks and quotation marks and by marking evaluation
blocks with brackets. The variables will then be evaluated in sequence, left to
right, in much the same way complex mathematical expressions are evaluated.
Explicit dereferencing takes precedence in the sequence over implicit.

For more details on variables and a complete explanation of dereferencing,
refer to Command Interpreter Access and Variables Programmer's Guide
(32650-90011).

Calculating

Arithmetic operations include:

addition, subtraction, multiplication, and division
absolute value
modulo
exponentiation

String operations include:

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-7

concatenation
length
string extractions
case shifting

Bitwise operations include:

and
or
not
exclusive or
right or left shift

Numeric functions include converting numbers between decimal, octal and
hexadecimal bases.

File information is provided via the FINFO intrinsic. Use it for checking
existence, creation data, modi�cation date, code number or foptions of a �le.

Variables are evaluated by the expression evaluator, either explicitly or
implicitly. The only commands that implicitly dereference expressions are
CALC, IF, SETVAR and WHILE. Other expressions must explicitly request
dereferencing.

Command Language

The MPE XL CI recognizes an implied RUN command. The command language
has added some new structures, such as the while loop, recursion and a
command to return program control to the calling environment. Commands
have been added, and some have been changed from MPE V/E to MPE XL.

Implied Run

You can use implied RUN commands in MPE XL. When you enter a program
�le name, it acts as a command and creates the process. For example, simply
entering \prog�le" has the same e�ect as entering \RUN prog�le".

You can control the implied RUN program �le search and the Command �le
search paths used by the CI by setting the HPPATH variable. (This is not
valid for data �les.)

5-8 Using the Command Interpreter DRAFT

2/14/100 07:56

New Programming Structures

(new)

MPE V/E has one conditional branch structure: the IF..THEN..ELSE..ENDIF
set of commands. In MPE XL, the ELSEIF command is available as well. MPE
XL enhancements also include a new WHILE..DO..ENDWHILE command set for
loops.

In addition, UDCs in MPE XL have a recursion option. You can cause
recursion in a command �le by simply including a �le name within the �le
itself so that the �le calls itself. This is powerful, so code carefully to prevent
\endless" loops.

You can use the new command RETURN in a UDC or command �le to return
control to the calling environment. Files with a RETURN command that are
called from an application will complete and then return to the application; if
the �le was called from the CI, it will return to the CI.

When commands are entered, a history is kept on a stack. New commands
allow you to manage the stack. LISTREDO displays the command-line history
with each line numbered. The DO command accepts one of these numbers to
repeat the corresponding command. For further information about DO and
REDO consult General User's Reference Manual (32650-90002)

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-9

Command Summary

The tables below present the status of MPE XL commands as compared
to MPE V/E commands for the HP 3000. The \MPE XL Status" column
indicates the status of each command, and functions or features added to these
commands in MPE XL.

Commands identi�ed as \V/E" in the Mode column were functional for MPE
V/E; most have been migrated to the MPE XL operating system. All can be
used in the Compatibility Mode environment. If their function in Native Mode
is assumed by a new command, the replacement is noted. Commands identi�ed
as \XL" are unique to MPE XL and function in the Native Mode environment.

5-10 Using the Command Interpreter DRAFT

2/14/100 07:56

Table 5-1. Command Summary

Command Mode MPE XL Status

()COMMAND LOGON V/E Replaced with INFO= parameter of HELLO
command.

ABORT V/E Unchanged

ABORTIO

(=ABORTIO)

V/E Unchanged

ABORTJOB

(=ABORTJOB)

V/E Unchanged

ACCEPT V/E Unchanged

ALLOCATE V/E Unchanged

ALLOW V/E Unchanged

ALTACCT V/E The volset parameter replaced with the
volumesetname parameter.

ALTGROUP V/E New HOMEVS parameter. The volset parameter
replaced with volumesetname parameter.

ALTJOB V/E Unchanged

ALTLOG V/E Does not support SDISC or CTAPE.

ALTSEC V/E Unchanged

ALTSPOOLFILE V/E Unchanged

ALTUSER V/E New acctname parameter.

ALTVSET V/E Function moved to VOLUTIL.

ASSOCIATE V/E Unchanged

AUTOALLOCATE V/E Not supported

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-11

Command Mode MPE XL Status

BASIC V/E Unchanged

BASICGO V/E Unchanged

BASICOMP V/E Unchanged

BASICPREP V/E Unchanged

BBASIC V/E Unchanged. XL equivalent is BBXL.

BBASICGO V/E Unchanged. XL equivalent is BBXLGO.

BBASICOMP V/E Unchanged. XL equivalent is BBXLCOMP.

BBASICPREP V/E Unchanged. XL equivalent is BBXLLK.

BBXL XL Initiates execution of HP Business BASIC/XL
interpreter.

BBXLCOMP XL Compiles an HP Business BASIC/XL program.

BBXLGO XL Compiles, links, and executes an HP Business
BASIC/XL program.

BBXLLK XL Compiles and links an HP Business BASIC/XL
program.

BREAKJOB V/E Unchanged

BUILD V/E Unchanged

BYE V/E Unchanged

CACHECONTROL V/E Not supported

CALC XL Evaluates an expression.

CCXL XL Compiles an HP C/XL program.

CCXLGO XL Compiles, links, and executes an HP C/XL
program.

CCXLLK XL Compiles and links an HP C/XL program.

CHANGELOG V/E Does not support SDISC or CTAPE.

CHGROUP XL Changes the user's current group.

5-12 Using the Command Interpreter DRAFT

2/14/100 07:56

Command Mode MPE XL Status

COB74XL XL Compiles a COBOL II/XL program (1974 ANSI).

New xdb�lename parameter.

COB74XLG XL Compiles, links, and executes a COBOL II/XL
program (1974 ANSI).

New xdb�lename parameter.

COB74XLK XL Compiles and links a COBOL II/XL program
(1974 ANSI).

New xdb�lename parameter.

COB85XL XL Compiles a COBOL II/XL program (1985 ANSI).

New xdb�lename parameter.

COB85XLG XL Compiles, links, and executes a COBOL II/XL
programs (1985 ANSI).

New xdb�lename parameter.

COB85XLK XL Compiles and links a COBOL II/XL program
(1985 ANSI).

New xdb�lename parameter.

COBOL V/E Replaced by COBOLII.

COBOLGO V/E Replaced by COBOLIIGO.

COBOLPREP V/E Replaced by COBOLIIPREP.

COBOLII V/E Replaces COBOL. XL equivalent is COB74XL.

COBOLIIGO V/E Replaces COBOLGO. XL equivalent is COB74XLG.

COBOLIIPREP V/E Replaces COBOLPREP. XL equivalent is COB74XLK.

COMMENT V/E Unchanged

CONSOLE V/E Unchanged

CONTINUE V/E Unchanged

COPY XL Copies one disk �le to another.
DRAFT

2/14/100 07:56

Using the Command Interpreter 5-13

Command Mode MPE XL Status

DATA V/E Restricted to use in jobs only.

DEALLOCATE V/E Unchanged

DEBUG V/E New commands parameter.

DELETESPOOLFILE V/E Unchanged

DELETEVAR XL Deletes a speci�c MPE XL variable.

DISALLOW V/E Unchanged

DISASSOCIATE V/E Unchanged

DISCRPS V/E Unchanged

New value parameter.

DISMOUNT V/E Unchanged. XL equivalent is VSRELEASE.

DO XL Reexecutes any command in the command line
history stack.

DOWN V/E Unchanged

DOWNLOAD V/E Unchanged

DSTAT V/E Unchanged

ECHO XL Echoes a message to the standard list device.

EDITOR V/E Unchanged

ELSE V/E Unchanged

ELSEIF XL Provides an alternate sequence for an IF
statement.

ENDIF V/E Unchanged

ENDWHILE XL Ends a WHILE statement.

:EOD V/E Use restricted to jobs only.

EOF V/E Not supported

EOJ V/E Unchanged

ERRDUMP XL Dumps process or system error stack to speci�ed
depth.

EXIT XL Terminates the command interpreter.

FCOPY V/E Unchanged

FILE V/E Unchanged

FOREIGN V/E Not supported

5-14 Using the Command Interpreter DRAFT

2/14/100 07:56

Command Mode MPE XL Status

FORTGO V/E Unchanged

FORTPREP V/E Unchanged

FORTRAN V/E Unchanged

FREERIN V/E Unchanged

FTN V/E Unchanged. XL equivalent is FTNXL.

FTNGO V/E Unchanged. XL equivalent is FTNXLGO.

FTNPREP V/E Unchanged. XL equivalent is FTNXLLK.

FTNXL XL Compiles a FORTRAN 77/XL program.

FTNXLGO XL Compiles, links, and executes a FORTRAN 77/XL
program.

FTNXLLK XL Compiles and links a FORTRAN 77/XL program.

FULLBACKUP V/E Function now in the STORE command.

GETLOG V/E Does not support SDISC or CTAPE.

GETRIN V/E Unchanged

GIVE V/E Not supported

HEADOFF V/E Unchanged

HEADON V/E Unchanged

HELLO V/E New CIPARM and CIINFO parameters.

New termname parameter.

HELP V/E Provides help in user commands and program �les.

IF V/E Enhanced evaluation of expressions controls
job/�le execution with a conditional structure.

INPUT XL Permits interactive assignment to variables.

JOB V/E Unchanged

JOBFENCE V/E Unchanged

JOBPRI V/E Unchanged

JOBSECURITY V/E Unchanged

LDISMOUNT V/E Unchanged. XL equivalent is VSRELEASESYS.

LIMIT V/E Unchanged

LINK XL Merges relocatable object �les to create an
executable program �le.

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-15

Command Mode MPE XL Status

LISTACCT V/E New PASS parameter and new display format.

LISTEQ V/E Unchanged

LISTF V/E New display options 3, 4, and -3. Display for
option -1 modi�ed.

New display option 6.

LISTFTEMP V/E New display options 3 and -3. Display for option
-1 modi�ed.

LISTGROUP V/E New PASS parameter and new display format.

LISTLOG V/E Unchanged

LISTREDO XL Displays the contents of the command line history
stack.

LISTUSER V/E New PASS parameter and new display format.

LISTVS V/E Function now in VOLUTIL.

LMOUNT V/E Unchanged. XL equivalent is VSRESERVESYS.

LOG V/E Does not support SDISC or CTAPE.

=LOGOFF V/E New #Snnn/#Jnnn parameters to keep one
job/session logged on.

=LOGON V/E Unchanged

MOUNT V/E Unchanged. XL equivalent is VSRESERVE.

NEWACCT V/E New ONVS parameter. Modi�ed volumesetname

parameter.

NEWGROUP V/E New HOMEVS parameter. Modi�ed
volumesetname parameter.

NEWUSER V/E New acctname parameter.

NEWVSET V/E Function now in VOLUTIL.

5-16 Using the Command Interpreter DRAFT

2/14/100 07:56

Command Mode MPE XL Status

OCTCOMP XL Translates MPE V-compatible code to MPE XL
instructions.

OPENQ V/E Unchanged

OPTION XL Modi�es environment of user-de�ned commands
and command �les.

OUTFENCE V/E Unchanged

PARTBACKUP V/E Function now in the STORE command.

PASCAL V/E Unchanged. XL equivalent is PASXL.

PASCALGO V/E Unchanged. XL equivalent is PASXLGO.

PASCALPREP V/E Unchanged. XL equivalent is PASXLLK.

PASXL XL Compiles a Pascal/XL program.

PASXLGO XL Compiles, links, and executes a Pascal/XL
program.

PASXLLK XL Compiles and links a Pascal/XL program.

PAUSE XL Suspends current activity for speci�ed number of
seconds.

PREP V/E Unchanged

PREPRUN V/E Unchanged

PRINT XL Prints the contents of a �le to the standard list
device or to a speci�ed �le.

PTAPE V/E Not supported

PURGE V/E Unchanged

PURGEACCT V/E Modi�ed volumesetname parameter.

PURGEGROUP V/E New acctname parameter. Modi�ed
volumesetname parameter.

PURGEUSER V/E New acctname parameter.

PURGEVSET V/E Function now in VOLUTIL.

RECALL (=RECALL) V/E Unchanged

REDO V/E New cmdid and editstring parameters.

REFUSE V/E Unchanged

RELEASE V/E Unchanged

RELLOG V/E Unchanged

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-17

Command Mode MPE XL Status

RENAME V/E Unchanged

REPLY (=REPLY) V/E Unchanged

REPORT V/E Modi�ed volumesetname parameter.

RESET V/E Unchanged

RESETACCT V/E Unchanged

RESETDUMP V/E Function modi�ed to disarm system debugger.

RESTORE V/E New VOLSET , FCRANGE , LISTDIR, VOL,
VOLCLASS , and DIRECTORY parameters.
Modi�ed max�les and �lesetlist parameters.

RESUME V/E Unchanged

RESUMEJOB V/E Unchanged

RESUMELOG V/E Unchanged

RESUMESPOOL V/E Unchanged

RETURN XL Returns execution from the current UDC or
command �le to the calling environment.

RPG V/E Unchanged. XL equivalent is RPGXL.

RPGGO V/E Unchanged. XL equivalent is RPGXLGO.

RPGPREP V/E Unchanged. XL equivalent is RPGXLLK.

RPGXL XL Compiles an RPG/XL program.

RPGXLGO XL Compiles, links, and executes an RPG/XL
program.

RPGXLLK XL Compiles and links an RPG/XL program.

RUN V/E New nmstacksize, nmheapsize, library , unsatproc,
and PRI parameters. Modi�ed NOPRIV , LMAP ,
stacksize, maxstack , and dlsize parameters.

SAVE V/E Unchanged

SECURE V/E Unchanged

SEGMENTER V/E Unchanged

SET V/E New ECHO , MSG, and SPEED parameters.

SETCATALOG V/E New RESET , APPEND , and DELETE
parameters.

SETDUMP V/E New commands parameter.

5-18 Using the Command Interpreter DRAFT

2/14/100 07:56

Command Mode MPE XL Status

SETJCW V/E Unchanged

SETMSG V/E Unchanged

SETVAR XL Assigns a value to an MPE XL variable.

SHOWALLOCATE V/E Not supported

SHOWALLOW V/E Unchanged

SHOWCACHE Not supported

SHOWCATALOG V/E Modi�ed list�le parameter.

SHOWCOM V/E Not supported

SHOWDEV V/E Unchanged

SHOWIN V/E Unchanged

SHOWJCW V/E Unchanged

SHOWJOB V/E Unchanged

SHOWLOG V/E Unchanged

SHOWLOGSTATUS V/E Unchanged

SHOWME V/E Unchanged.

New banner display and USER VERSION item.

SHOWOUT V/E Unchanged

SHOWQ V/E Unchanged.

New ACTIVE and STATUS parameters.

SHOWTIME V/E Unchanged

SHOWVAR XL Displays speci�ed variable names and their values.

=SHUTDOWN V/E Unchanged

SHUTQ V/E Unchanged

SPEED V/E New newspeed parameter. Modi�ed newinspeed

and newoutspeed parameters.

SPL V/E Unchanged

SPLGO V/E Unchanged

SPLPREP V/E Unchanged

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-19

Command Mode MPE XL Status

STARTCACHE V/E Not supported

STARTSESS V/E New ciinfo and ciparm parameters.

STARTSPOOL V/E Unchanged

STOPCACHE V/E Not supported

STOPSPOOL V/E Unchanged

STORE V/E New ONVS , STORESET , DIRECTORY ,
INTER, TRANSPORT , and FCRANGE
parameters. Modi�ed HOW , �lesetlist , and
store�le parameters.

New MAXTAPEBUF parameter.

STREAM V/E Unchanged

STREAMS V/E Unchanged

SUSPENDSPOOL V/E Unchanged

SWITCHLOG V/E Unchanged

SYSDUMP V/E Replaced with SYSGEN.

SYSGEN XL Starts con�guration dialog and/or installation
tape creation. This replaces SYSDUMP.

TAKE V/E Not supported

TELL V/E Unchanged

TELLOP V/E Unchanged

TUNE V/E Modi�ed to ignore minclockcycle, which is now a
default value.

UP V/E Unchanged

VINIT V/E Function moved to VOLUTIL.

VMOUNT V/E Unchanged

VSCLOSE XL Instructs the system to close a volume set.

VSOPEN XL Reopens a volume set close with VSCLOSE.
5-20 Using the Command Interpreter DRAFT

2/14/100 07:56

VSRELEASE XL Releases a volume set that was reserved with
VSRESERVE.

VSRELEASESYS XL Releases a volume set system-wide.

VSRESERVE XL Requests operator to put volume set online and
reserves the volume set for the user.

VSRESERVESYS XL Reserves a volume set system-wide.

VSTORE XL Veri�es if data on backup tape is valid and reports
errors incurred by STORE when writing the tape.

VSUSER V/E Unchanged

WARN V/E Unchanged

WELCOME V/E Unchanged

WHILE XL Controls job, UDC, or command �le execution
sequence.

XEQ XL Executes a program or command �le and prevents
MPE XL from executing a built-in command or
UDC �le with the same name.

REDO
(changed)

MPE V/E allows you to call back your last command with the REDO command
and re-execute or edit it. MPE XL has expanded the function of this command
and created the REDO facility.

REDO now keeps a history of commands in a stack. You set the size of
the stack with the hpredosize variable; default size is 20, maximum size is
1,000. Use the LISTREDO command to send the commands from the stack to
the standard list device. You choose how or whether you want the displayed
commands to be numbered.

Use the DO and REDO commands to re-execute a previous command on the
stack. Using REDO allows you to interactively edit the command whose number
you specify. The basic editing directives are the same in MPE V/E and MPE

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-21

XL, although MPE XL has some new ones, like the ability to append to the
end of the line or to change one string for another.

COMMAND intrinsic (CM)
(changed)

You use the COMMAND intrinsic in CM to execute a command from an
application. If an MPE V/E command is passed that MPE XL does not
support, MPE XL returns an error message (CIERROR 9013) stating that the
command is not supported. COMMAND allows process creation commands, such
as RUN or FCOPY, if the caller has PH capability, or if the program being run
was prepared or linked with PH capability.

The parmnum parameter has the following signi�cance:

If it returns a positive value, that number is the �le system error number
which prevented the command from executing.

If it returns a negative value, that number (as a positive value) is the column
number where the error occurred.

MYCOMMAND (CM) and SEARCH (CM)
(changed)

Because of the architectural di�erence between MPE V/E (16-bit) and MPE
XL (32-bit) systems, the NM version of the MYCOMMAND intrinsic and the
SEARCH intrinsic are incompatible with the CM versions. The defn parameter
in both intrinsics is impacted by pointer di�erences between the two versions of
MPE.

5-22 Using the Command Interpreter DRAFT

2/14/100 07:56

Additional Information

For further information, refer to the Getting Started as an MPE XL
Programmer (32650-90008) and Command Interpreter Access and Variables
Programmer's Guide (32650-90011).

DRAFT

2/14/100 07:56

Using the Command Interpreter 5-23

6

Getting System Information

This section discusses modi�cations to some of the commands, intrinsics, and
other tools you can use on MPE XL to retrieve system information.

Overview of
Differences:
MPE V/E
and MPE XL

You can use commands and intrinsics to get system information. You can
�nd out about system con�guration, �le structure, and whether a process is
executing properly.

The MPE V/E programmer will not �nd major changes in information retrieval
processes in MPE XL.

The FREE5 utility has been replaced by the DISCFREE utility.

MPE V/E is based on a 16-bit word; MPE XL is based on a 32-bit word.
Dumps and other readouts that were octal in MPE V/E are likely to be
hexadecimal in MPE XL. Data requirements for command and intrinsic
parameters may have change because MPE XL uses a 32-bit virtual addresses
for �les.

Some NM intrinsics have a status parameter, a 32-bit signed integer passed
by reference, which replaces condition codes for error checking For more
information about the status parameter, see Chapter 2, Preparing a Program
for Execution.

DRAFT

2/14/100 07:56

Getting System Information 6-1

New

MPE XL features that are not available on MPE V/E include:

DISCFREE Utility

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

System Logging Facility

The following intrinsics:

FFILEINFO

FGETINFO

FLABELINFO

The following commands:

LISTACCT LISTF

LISTFTEMP LISTGROUP

LISTUSER REPORT

SHOWCATALOG

Not Used

Existing MPE V/E features that are not supported on MPE XL include:

FREE5 Utility

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

6-2 Getting System Information DRAFT

2/14/100 07:56

CALENDAR CLOCK

DATELINE FCHECK

FERRMSG FINDJCW

FMTCALENDAR FMTCLOCK

FMTDATE FRELATE

GETJCW JOBINFO

PRINTFILEINFO PROCINFO

PROCTIME PUTJCW

SETJCW TIMER

WHO

The following commands:

LISTEQ RESUMELOG

SETJCW SHOWALLOW

SHOWDEV SHOWIN

SHOWJCW SHOWJOB

SHOWLOG SHOWME

SHOWOUT SHOWTIME

SWITCHLOG

DISCFREE Utility (NM)
(new)

The MPE V/E program FREE5 displays information about a system's disc
free space in a histogram format . This has been replaced on MPE XL by the
utility DISCFREE, which expands upon the functions of FREE5. Information
is now shown either as a histogram or in a new format. The new condensed
format displays the amount of free space, transient and permanent space, and
the volume's total space capacity.

For more information about DISCFREE, refer to the description in System
Utilities Reference Manual (32650-90081).

DRAFT

2/14/100 07:56

Getting System Information 6-3

FFILEINFO
(changed)

You can retrieve items of information by specifying up to �ve itemnum/item
pairs in the parameter of FFILEINFO. A number of the item values are
changed in MPE XL:

No. Item Value

6 For standard disc �les, this returns the logical device number where the
device's label resides. This may not be the same logical device that
contains the �le's data.

13 Indicates bu�ered physical count of data blocks transferred. If �le was
opened using other than bu�ered access (nobuf), this �gure will not be
meaningful.

44 The number returned here indicates the number of disc extents currently
allocated to the �le. Extent allocation is in the order in which they are
accessed, not in physical order, as in MPE V/E.

50 Returns the logical device number (ldev) of the device associated with the
�le.

Note In the preceding discussion, the term standard disc �le refers
to a �le that is not a KSAM, RIO, circular, or message
�le. For further discussion of �le types, see Accessing Files
Programmer's Guide (32650-90017).

New Item Values

Because of the change to 32-bit addressing, it is now possible to get values for
record size (Item 4), block size (Item 14), and extent size (Item 15, described
below) that are greater than those allowed in MPE V/E. If the MPE V/E
limit is exceeded for any of those three values, a zero (0) is returned in the
appropriate item. Three new items have been added that will return the larger
values available for standard disc �les: Items 67, 68, and 69. (Note that Item
69 exists for compatibility reasons only. See the description of Items 15 and 16
below.)

6-4 Getting System Information DRAFT

2/14/100 07:56

The following new values are returned only for standard disc �les:

Item 62 File lockword

Item 63 Unique File Identity (UFID) (NM only)

Item 64 File virtual address

Item 66 Global Unique File Descriptor (GUFD) pointer (NM only)

Item 67 MPE XL record size (32-bit unsigned integer)

Item 68 MPE XL block size (32-bit unsigned integer)

Item 69 MPE XL extent size (32-bit unsigned integer)

Item 74 File label virtual address (64-bit address) (NM only)

Item 75 Hardware path (32-byte character array) (NM only)

Item 76 Volume Restriction (34-byte character array) (NM only)

Item Values No Longer Valid

Because of the changed system architecture in MPE XL, some values returned
by FFILEINFO are no longer meaningful for standard disc �les. The items have
been retained for compatibility reasons, and always return a zero:

Item 19 File label disc sector address

Item 40 Disc device status

In the MPE XL �le system, disc �le extents may be �xed or variable in length
with no practical limit on their numbers. Extent values are determined by
run-time access heuristics and available space. If a user speci�es extent size =
0, or maximum number of extents = 0 at �le creation, then size and number of
extents are determined by the system. In that case the following item values
are calculated using MPE defaults, and do not reect actual values:

Item 15 Extent size

Item 16 Maximum # of extents

DRAFT

2/14/100 07:56

Getting System Information 6-5

Hardcoded Item Values

Certain item values have been hardcoded because MPE XL does not
distinguish between the devices currently supported. These items and their
values are:

For standard disc �les only:

Item 5 Device type/subtype (returns type=3, subtype=8)

Item 41 Device type (returns type=3)

Item 42 Device subtype (returns subtype=8)

For all disc �les:

Item 7 Hardware device address (returns drt=8, unit=0)

Item 47 DRT number (returns drt=8)

Item 48 Device unit number (returns unit=0)

FGETINFO
(changed)

The FGETINFO intrinsic now calls the FFILEINFO intrinsic to retrieve item
values. FGETINFO has been retained in MPE XL for compatibility reasons only.
For improved system performance, it is recommended that programmers use
direct calls to FFILEINFO instead of using FGETINFO.

A number of the parameter values returned by FGETINFO are di�erent for MPE
XL:

lrecsize Same as FFILEINFO, Item 4

devtype Same as FFILEINFO, Item 5

hdaddr Same as FFILEINFO, Item 7

physcount Same as FFILEINFO, Item 13

blksize Same as FFILEINFO, Item 14

extsize Same as FFILEINFO, Item 15

6-6 Getting System Information DRAFT

2/14/100 07:56

numextents Same as FFILEINFO, Item 16

FLABELINFO
(changed)

In MPE V/E, the FFLABELINFO intrinsic returns �le label information about
permanent �les only. On MPE XL (CM and NM), the FFLABELINFO intrinsic
returns �le label information about both permanent and temmporary �les.

Because of the change to 32-bit addressing, it is now possible to get values for
record size (Item 14), block size (Item 15), and extent size (Item 18) that are
greater than allowed in MPE V/E. If the MPE V/E limit is exceeded for any of
those values, a zero (0) is returned in the appropriate item. Three new items
have been added to allow for the larger values possible in MPE XL: Items 30,
31, and 32. Item 32 exists for compatibility reasons only; see the description of
FFILEINFO Items 15 and 16.

The following new values are returned only for disc �les that were created in a
Native Mode environment:

Item 27 Unique File Identity (UFID) (NM only)

Item 28 File limit in bytes

Item 29 Start of �le o�set

Item 30 MPE XL record size (32-bit unsigned integer)

Item 31 MPE XL block size (32-bit unsigned integer)

Item 32 MPE XL extent size (32-bit unsigned integer)

Item 33 Lockword (8-byte) (only if creator, AM, or SM)

Item 34 Volume restriction (34-byte character array)

DRAFT

2/14/100 07:56

Getting System Information 6-7

LISTACCT, LISTGROUP, and LISTUSER commands
(changed)

These three commands have been modi�ed slightly. These modi�cations are:

A new parameter, pass , has been added. This parameter permits a user with
the appropriate capability to view the password for the account, group, or
user listed.

The MPE V/E version of these commands gave output as an octal dump.
The information displayed by these commands now appears in ASCII format,
similar to the output from the MPE V/E LISTDIR5 utility. Figure 6-1 is an
example of MPE XL LISTGROUP output:

d a

c b

LISTGROUP XL.SYS

GROUP: XL.SYS

DISC SPACE: 124824(SECTORS) PASSWORD:

CPU TIME : 0(SECONDS) SECURITY--READ : ANY

CONNECT TIME: 0(MINUTES) WRITE : GU

DISC LIMIT: UNLIMITED APPEND : GU

CPU LIMIT : UNLIMITED LOCK : ANY

CONNECT LIMIT: 0(MINUTES) EXECUTE : ANY

PRIV VOL : n/a SAVE : GU

FILE UFID:$0D05F001 $740998E1 $00001E20 $00000008 $0000000C

MOUNT REF CNT : n/a

HOME VOL SET : XL_SYSTEM_VOLUME_SET

CAP: BA,IA,PM,MR,DS,PH

Figure 6-1. Example of LISTGROUP Output

6-8 Getting System Information DRAFT

2/14/100 07:56

LISTF Command
(changed)

File information displayed by the LISTF command has been modi�ed in MPE
XL. The output of LISTF, �1 and LISTF, 2 is modi�ed. Four new listlevels
provide �le information comparable to MPE V/E LISTDIR5 utility displays.
(LISTDIR5 is not available on MPE XL.) Changes to this command are the
following:

The �1 listlevel option, which showed an octal dump of the �le label, now
shows a hexadecimal dump.

In MPE XL, if you enter the 2 listlevel option for a loaded program �le,
the �le shows as busy (* next to �le name). This does not happen on MPE
V. On MPE V/E, the load bit is set within the program �le, and a LISTF

display appears normal for this program �le. On MPE XL, the program �le
is actually opened through FOPEN and will appear as busy when a LISTF is
performed while the program is loaded/ALLOCATED.

The four new levels that have been added to the listlevel parameter are:

3 Displays �1 listlevel output in ASCII format (similar to the output
from the LISTF command in the MPE V/E LISTDIR5 utility).
Access restrictions in e�ect for a �le are not shown; use level 4
(described below) to see them.

�3 Displays the same information as listlevel 3 and includes the �le
creator and lockword. The lockword and creator are displayed if
the user is the creator of the �le, the account manager for the �le's
account (a user with AM capability), or the system manager (a user
with SM capability).

4 Displays the �le access restrictions in e�ect for the speci�ed �le
(similar to the LISTSEC command in the MPE V/E LISTDIR5
utility). This includes account, group, and �le-level security, and the
logon security for the user.

6 Displays the fully quali�ed �le name.

Examples follow for sample outputs.

DRAFT

2/14/100 07:56

Getting System Information 6-9

d a

c b

:LISTF JOB, 3

FILE: JOB.PUB.SYS

FILE CODE : 1030 FOPTIONS: BINARY,FIXED,NOCCTL,STD

BLK FACTOR: 1 CREATOR : **

REC SIZE: 256(BYTES) LOCKWORD: **

BLK SIZE: 256(BYTES) SECURITY--READ : ANY

EXT SIZE: 0(SECT) WRITE : ANY

NUM REC: 7816 APPEND : ANY

NUM SEC: 0 LOCK : ANY

NUM EXT: 4 EXECUTE : ANY

MAX REC: 31250 **SECURITY IS ON
FLAGS : n/a

NUM LABELS: 0 CREATED : MON, JUN 9, 1986, 9:47 AM

MAX LABELS: 0 MODIFIED: MON, JUN 9, 1986, 9:48 AM

DISC DEV #: 0 ACCESSED: WED, JUN 11, 1986, 2:38 PM

CLASS : DISC LABEL ADDR: **

SEC OFFSET: 0

Figure 6-2. Example of Output from LISTF, 3 level

6-10 Getting System Information DRAFT

2/14/100 07:56

d a

c b

:LISTF JOB, �3

FILE: JOB.PUB.SYS

FILE CODE : 1030 FOPTIONS: BINARY,FIXED,NOCCTL,STD

BLK FACTOR: 1 CREATOR : MANAGER

REC SIZE: 256(BYTES) LOCKWORD: PRIVATE

BLK SIZE: 256(BYTES) SECURITY--READ : ANY

EXT SIZE: 0(SECT) WRITE : ANY

NUM REC: 7816 APPEND : ANY

NUM SEC: 0 LOCK : ANY

NUM EXT: 4 EXECUTE : ANY

MAX REC: 31250 **SECURITY IS ON
FLAGS : n/a

NUM LABELS: 0 CREATED : MON, JUN 9, 1986, 9:47 AM

MAX LABELS: 0 MODIFIED: MON, JUN 9, 1986, 9:48 AM

DISC DEV #: 0 ACCESSED: WED, JUN 11, 1986, 2:38 PM

CLASS : DISC LABEL ADDR: $00000010 $00004414

SEC OFFSET: 0

Figure 6-3. Example of Output From LISTF, �3 level

DRAFT

2/14/100 07:56

Getting System Information 6-11

d a

c b

:LISTF JOB, 4

**

FILE: JOB.PUB.SYS

ACCOUNT ------ READ : ANY

WRITE : AC

APPEND : AC

LOCK : ANY

EXECUTE : ANY

GROUP -------- READ : ANY

WRITE : GU

APPEND : GU
LOCK : ANY

EXECUTE : ANY

SAVE : GU

FILE --------- READ : ANY FCODE: 1030

WRITE : ANY

APPEND : ANY

LOCK : ANY **SECURITY IS ON

EXECUTE : ANY

FOR MANAGER.SYS: READ, WRITE, LOCK, APPEND, EXECUTE,

Figure 6-4. Example of Output from LISTF, 4 level

6-12 Getting System Information DRAFT

2/14/100 07:56

LISTFTEMP Command
(changed)

This command has been modi�ed similarly to LISTF. There are two new levels
for the listlevel parameter, 3 and �3, that operate exactly the same as the new
levels with the same numbers in LISTF. There is no Level 4, however, because
that information is not relevant for temporary �les.

REPORT Command
(changed)

The volset parameter of this command has been modi�ed to accept MPE
XL volume set names. In MPE V/E, volume set names were composed of
vsidname.group.account. MPE XL volume set names consist simply of 1 to 32
characters, beginning with an alphabetic character. The remaining characters
may be alphabetic, numeric, underscores, or periods.

You may still use the MPE V/E form of the name, but you must fully qualify
it. You cannot specify vsidname alone and expect the group and account to
default.

SHOWCATALOG Command
(changed)

This command has been modi�ed slightly. The MPE V/E version of the
command has an optional parameter, list�le , that allows you to send the
output to a speci�ed �le name on device class LP (line printer). The MPE XL
version also permits you to use a �le equation to direct the catalog listing to
another disk or tape �le. The default (as in MPE V/E) is that the listing is
sent to the $STDLIST device.

In the following example, output is sent to a disc �le called \udc�le".

DRAFT

2/14/100 07:56

Getting System Information 6-13

d a

c b

:

:FILE udcfile;dev=disc

:SHOWCATALOG *udcfile

UDC CATALOG LIST SENT TO LISTFILE.

:

Example of SHOWCATALOG

FREE5 Utility
(not used)

FREE5, an MPE V/E utility program, displays information in a histogram
format about a system's disc free space. This has been replaced by an
expanded MPE XL utility, DISCFREE discussed earlier in this chapter.

Additional Information

For more detailed information, refer to Accessing Files Programmer's
Guide (32650-90017) and Getting System Information Programmer's Guide
(32650-90018).

6-14 Getting System Information DRAFT

2/14/100 07:56

7

Managing Processes

This chapter describes the di�erences between MPE XL and MPE V/E in
process management, including the following:

New intrinsics and commands for variables.

Stack management.

Interrupt handling.

plabel incompatabilities between CM and NM.

Overview of MPE XL and MPE V/E Differences

Processes are the basic executable entities in MPE. You can use various
intrinsics and commands to create, activate, suspend, interrogate, and delete
processes, and to enable communication between them. Process management
intrinsics in MPE XL have been modi�ed to deal e�ectively with both the CM
and the NM programming environments. The Process Handling (PH) and
Programmatic Sessions (PS) capability-class attributes function the same way
in MPE XL as in MPE V/E.

Two architectural di�erences between MPE V/E and MPE XL are in the
system control of stacks and the incompatibility between NM and CM plabels.
Internal di�erences in �le structure do not impact the operation of IPC
(interprocess communication). The function of JCWs (Job Control Words) in
MPE V/E is expanded on MPE XL by the addition of variables, which are
managed with several new intrinsics and commands.

DRAFT

2/14/100 07:56

Managing Processes 7-1

New

MPE XL features that are not available on MPE V/E include:

The following intrinsics:

HPCIGETVAR HPCIPUTVAR

HPCIDELETEVAR HPFOPEN

The following commands:

SETVAR

SHOWVAR

DELETEVAR

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

Data Stack

The following intrinsics:

FCONTROL CREATE

CREATEPROCESS STARTSESS

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

ABORTSESS ACTIVATE CAUSEBREAK

FATHER FCLOSE FINDJCW

FINSTATE FINTEXIT FOPEN

FREAD FWRITE GETINFO

GETJCW GETPRIORITY GETPROCID

GETPROCINFO PAUSE PROCINFO

PROCTIME PUTJCW QUIT

QUITPROG RECEIVEMAIL SENDMAIL

SETJCW SUSPEND TERMINATE

7-2 Managing Processes DRAFT

2/14/100 07:56

The following commands:

SETJCW

SHOWJCW

HPCIGETVAR, HPCIPUTVAR, and HPCIDELETEVAR
Intrinsics
(new)

The HPCIGETVAR, HPCIPUTVAR, and HPCIDELETEVAR intrinsics are new for MPE
XL. They are used to retrieve, set, and delete variables in the job or session
variable table. Interprocess communication between processes in the same job
or session can be performed using several types of variables, and you can use
these intrinsics to manipulate variables for interprocess communication. See
Chapter 5, Using the Command Interpreter, in this manual, and the MPE XL
Intrinsics Reference Manual (32650-90028) for more information about these
intrinsics and their use.

HPFOPEN
(new)

The MPE XL intrinsic HPFOPEN is analogous to the MPE XL intrinsic
FOPEN. HPFOPEN is discussed generally in Chapter 4, Accessing Files, of this
manual. FOPEN is still valid, but HPFOPEN is recommended because of its many
additional features. HPFOPEN is available in NM only.

Some features of HPFOPEN that apply speci�cally to message �les have changed.
The options available are modi�ed somewhat, and some of the option numbers
have changed, especially those relating to access type, format, and copy mode.
Consult the MPE XL Intrinsics Reference Manual (32650-90028) for full
details.

DRAFT

2/14/100 07:56

Managing Processes 7-3

SETVAR, SHOWVAR, and DELETEVAR Commands
(new)

The DELETEVAR, SETVAR, and SHOWVAR commands are used to delete, to add or
alter, and to show variables from the job or session Variable Table.

MPE V/E has only one type of variables for interprocess communication:
JCWs (Job Control Words). On MPE XL, you can use variables as well for
interprocess communication between processes in the same job or session.

These new commands are also described in Chapter 13 of this volume, and in
the MPE XL Commands Reference Manual (32650-90003) .

Data Stack
(changed)

The demand-paged virtual memory scheme and the greatly expanded
addressing range of the Hewlett-Packard Precision Architecture have eliminated
the need for programmatic manipulation of the NM stack. In MPE XL, the
operating system itself controls the NM stack and maintains e�cient program
operation.

When programming in the high-level languages available in the 900 Series HP
3000 NM programming environment, all manipulations of the NM stack are
accomplished by the operating system. Your NM program cannot manipulate
the NM stack using optional parameters found in process management
intrinsics, except when you are creating a new process. When you use the
CREATEPROCESS intrinsic to create a new process, you are allowed to specify the
maximum allowable size of the NM stack and the NM heap. Additionally, you
can manipulate the CM stack if your NM program speci�es a CM program
when it creates a new process. When a process management intrinsic is called
by a program executing in Compatibility Mode (CM), intrinsic parameters
continue to manipulate the Compatibility Mode stack as described in the MPE
V/E Intrinsics Reference Manual (32033-90007). An exception to this rule is
when your CM program creates a process that executes in NM; in this case,
stack manipulation parameters described in the MPE V/E Intrinsics Reference

7-4 Managing Processes DRAFT

2/14/100 07:56

Manual are ignored, and two new optional parameters are available that allow
you to specify the maximum allowable size of the NM stack and the NM heap.

CREATE
(changed)

The CREATE intrinsic parameter functions depend on whether it is calling an
NM program or by a CM program.

When the formaldesignator parameter speci�es a CM program �le, all CREATE
parameters function as described in the MPE V/E Intrinsics Reference Manual
(32033-90007). All stack manipulation parameters a�ect the CM stack only. In
addition, the NM stack is created using MPE XL NM default values.

When the formaldesignator parameter speci�es an NM program �le
the loadags , stacksize, dlsize , and maxdata parameters have modi�ed
interpretations. In addition, the CM stack is created using MPE V/E
maximum default values.

The loadags parameter LIBSEARCH (library search) bits reect changes to
libraries in NM. Optional sequences are available to search XL= parameter
search string, system, group, and public libraries. The loadags NOCB bits
are impacted by dual mode programming. These bits control where MPE XL
establishes control blocks of device �les and �les of type Message, RIO, and
Circular. Because some operating system services are performed in CM, device
�les and �les of these types will, by default, have control blocks established
in the PCBX area of the CM stack. If you are programming in mixed mode
(both NM and CM) you may anticipate the need for a larger DL to Z area in
the CM stack of the process you are creating. You can use the NOCB option
to indicate that control blocks of the indicated �les are to be established in an
extra data segment.

The stacksize , dlsize , and maxdata parameters are ignored, due to changes in
implementation of the NM stack. The CM stack is created using MPE V/E
maximum default values. The NM stack is created using MPE XL NM default
values.

DRAFT

2/14/100 07:56

Managing Processes 7-5

CREATEPROCESS
(changed)

The CREATEPROCESS intrinsic is a�ected by the dual programming modes in
MPE XL in two ways.

It can be called from either a CM or an NM program.

The process it creates can be either a CM or an NM process.

The CREATEPROCESS intrinsic is e�ected by the di�erence between CM and NM
in word size, stack and heap management. The CM version of CREATEPROCESS,
has the same item/itemnum options as MPE V/E, although some have
changed because of the management of stacks and libraries. The NM version
has more options. Table 7-1, following, summarizes the changes.

Calling from CM or NM

The following are the parameters of the CREATEPROCESS intrinsic that have
been e�ected by word size.

createstatus When you call CREATEPROCESS from CM, pass a 16-bit signed
integer value to createstatus (same as MPE V/E).

When you call CREATEPROCESS from NM, pass a 32-bit signed
integer value by reference to createstatus.

itemnums When you call CREATEPROCESS from CM, pass an array of
16-bit signed integers by reference to itemnums (same as MPE
V/E).

When you call CREATEPROCESS from NM, pass an array of
32-bit signed integers by reference to itemnums .

items When you call CREATEPROCESS from CM, pass an array of
16-bit signed integers by reference to item (same as MPE
V/E).

When you call CREATEPROCESS from NM, pass an array of
32-bit signed integers by reference to item. This modi�cation
occurs because the array may contain explicit pointer values
32-bits long in NM.

7-6 Managing Processes DRAFT

2/14/100 07:56

Creating a CM or NM Process

The formaldesignator parameter speci�es the process you want to create. The
following things apply whether you call CREATEPROCESS from an NM program
or a CM program.

Creating an NM Process

When the formaldesignator parameter speci�es a CM program �le, all but two
CREATEPROCESS intrinsic parameters and itemnums/item pairs function as
described in the MPE V/E Intrinsics Reference Manual (32033-90007).

The two new items let you to specify the maximum allowable size of both
the NM stack (Item# 26) and the NM heap (Item# 27). All references to
the stack in the MPE V/E manual pertain to the CM stack only. Refer to
Table 7-1 for a description of both the new items.

Note When you are calling the NM version of CREATEPROCESS to
create a CM process, you must be certain to pass the values
contained in items 2 through 7 in the following manner:

Bits (0:16) Set to zero.

Bits (16:16) Passes the speci�ed value.

Creating a CM Process

When formaldesignator speci�es a NM program �le, the itemnums/item pairs
listed in Table 7-1 are applicable. In addition, the CM stack is created using
MPE V/E maximum default values.

DRAFT

2/14/100 07:56

Managing Processes 7-7

Table 7-1. CREATEPROCESS itemnums,item Descriptions

Item# Description of Info Passed in Item

0 (Unchanged from MPE V/E.)

1 (Unchanged from MPE V/E.)

2 (Unchanged from MPE V/E.)

3 (Changed.) Refer to the description of changes to the loadags
parameter of the CREATE intrinsic, above.

4 (Changed.) This item is ignored due to changes in the
implementation of the NM stack. The CM stack is created using
MPE V/E maximum default values.

5 (Changed.) This item is ignored due to changes in the
implementation of the NM stack. The CM stack is created using
MPE V/E maximum default values.

6 (Changed.) This item is ignored due to changes in the
implementation of the NM stack. The CM stack is created using
MPE V/E maximum default values.

7 (Unchanged from MPE V/E.)

8 (Unchanged from MPE V/E.)

9 (Unchanged from MPE V/E.)

10 (Unchanged from MPE V/E.)

13-18 (New.) Reserved for MPE XL.

7-8 Managing Processes DRAFT

2/14/100 07:56

Table 7-1.

CREATEPROCESS itemnums,item Descriptions (continued)

Item# Description of Info Passed in Item

19 (New.) XL= option; the address (type-coerced to an integer) of a
character array containing a list of executable library �les (XLs) that
the NM Loader searches to satisfy unresolved external references
found in formaldesignator . The �le names (following MPE XL �le
naming conventions) must be separated by commas. If you specify
this item, the LIBSEARCH option available in ITEM #3 is ignored.

20-22 (New.) Reserved for MPE XL.

23 (New.) The address (type-coerced to an integer) of a character array
containing the name of a procedure to which unsatis�ed references
are linked. (The array element following the name must contain an
ASCII carriage return character or a blank.)

24 (New.) The length of the LIBLIST array referenced by item number
19.

25 (New.) Reserved for MPE XL.

26 (New.) The address (type-coerced to an integer) of a 32-bit signed
integer variable containing the maximum size, in bytes, of the NM
stack.

27 (New.) The address (type-coerced to an integer) of a 32-bit signed
integer variable containing the maximum size, in bytes, of the NM
heap.

DRAFT

2/14/100 07:56

Managing Processes 7-9

FCONTROL
(changed)

File system interprocess communication often makes use of software interrupts.
This feature allows execution of a process to be suspended while control is
passed to a special interrupt handling procedure. Several �le system intrinsics
are used speci�cally for interrupt handling.

To arm or disarm software interrupts for a particular �le, you use FCONTROL
with a controlcode of 48. You pass the plabel (external label) of your interrupt
handler in the param parameter of this intrinsic.

Your use of this intrinsic may be a�ected by architectural di�erences between
MPE V/E and MPE XL-based systems. In MPE V/E and MPE XL CM,
plabel s are 16 bits long, in MPE XL NM they are 32 bits long. Therefore, to
simplify any ambiguity, the call to FCONTROL (to arm your handler) should
be initiated from the same mode as your handler. For example, if you have
a CM interrupt handler to be armed for a particular message �le, the call to
FCONTROL to arm the handler should also be initiated in CM. Similarly, a NM
interrupt handler should be armed by calling FCONTROL from NM. A failure to
follow this rule will result in the incorrect mode setting for the plabel , resulting
in unpredictable results when the interrupt handler is invoked (because the
mode of the plabel will be incorrect). The best way to avoid plabel problems
is to be sure that you arm and call your interrupt handling procedure in the
same mode. If for some reason this is impossible, you can use a switch stub to
call the procedure; refer to the Switch Programming Guide (32650-90014) for
further details on this subject.

7-10 Managing Processes DRAFT

2/14/100 07:56

STARTSESS Command
(changed)

There are new and enhanced optional parameters available to the MPE XL
HELLO command that can be passed through the required logonstr parameter
of STARTSESS. For details on these optional parameters, refer to the MPE XL
Commands Reference Manual (32650-90003).

The required logonstr parameter can not specify the following termtypes

because they are no longer supported on MPE XL due to modi�cations to the
attached peripheral environment:

4, 6, 12, 13, 14, 15, 16, 19, 20

Additional Information

For more information, refer to the Process Management Programmer's
Guide (32650-90023), the Interprocess Communication Programmer's Guide
(32650-90019), and the MPE XL Intrinsics Reference Manual (32650-90028).

DRAFT

2/14/100 07:56

Managing Processes 7-11

8

Managing Resources

This chapter describes di�erences between MPE XL and MPE V/E in the
implementation of the following resource management tasks:

Managing shared resources with RINs, so that a process sharing a resource
with other processes can be guaranteed exclusive use of that resource. RINs
can be programmatically acquired, locked, and unlocked using appropriate
system intrinsics.

Dynamic loading of library procedures with system intrinsics provided to
enable you to dynamically load a procedure located in an executable or
segmented library.

Overview of
Differences:
MPE V/E
and MPE XL

Managing Shared Resources with RINs is the same in both MPE V/E and
MPE XL based computer systems. Intrinsics related to dynamic loading of
library procedures have undergone some modi�cation in MPE XL Native
Mode. In addition, new Native Mode intrinsics have been introduced to assist
you with the dynamic loading of Native Mode executable library procedures.

DRAFT

2/14/100 07:56

Managing Resources 8-1

New

MPE XL features that are not available on MPE V/E include:

The following intrinsics:

HPFIRSTLIBRARY (NM) HPGETPROCPLABEL(NM)
HPMYPROGRAM (NM) HPMYFILE (NM)

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

The following intrinsics:

LOADPROC (NM)
UNLOADPROC (NM)

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

FREELOCRIN GETLOCRIN

LOADPROC (CM) LOCKGLORIN

LOCKLOCRIN LOCRINOWNER

UNLOADPROC (CM) UNLOCKGLORIN

UNLOCKLOCRIN

The following commands:

FREERIN

GETRIN

8-2 Managing Resources DRAFT

2/14/100 07:56

HPFIRSTLIBRARY (NM)
(new)

The HPFIRSTLIBRARY intrinsic returns the fully quali�ed �le name of the �rst
NM executable library (XL) in the binding sequence of the calling process. You
can pass this name to the HPGETPROCPLABEL intrinsic in the �rst�le parameter.
HPGETPROCPLABEL searches the �les in the binding sequence for a procedure,
beginning with the �rst XL. The �rst XL is the second �le in the binding
sequence (located immediately after the program �le).

The only required parameter is the character array, formaldesignator , which
returns the fully quali�ed �le name of the �rst XL in the binding sequence of
the calling process.

The formaldesignator parameter must be at least 28 bytes in length in order to
contain the longest possible MPE XL �le name, with delimiters. The lockword
is not returned. The �rst and last characters of the returned value are blanks
that act as delimiters.

The status parameter, a 32-bit signed integer passed by reference is optional,
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates their source. If an error
or warning condition is encountered, and you did not specify the status
parameter, HPFIRSTLIBRARY causes the calling process to abort. Using the
status parameter in MPE XL is analogous to using the condition codes in MPE
V/E.

Another optional parameter returns the length of the �le name returned in the
formaldesignator parameter.

DRAFT

2/14/100 07:56

Managing Resources 8-3

HPGETPROCPLABEL (NM)
(new)

The HPGETPROCPLABEL intrinsic locates a procedure found in an NM executable
library �le (XL) and returns its procedure label (plabel). In addition, if the
procedure is not yet loaded for the process, HPGETPROCPLABEL dynamically
loads the procedure.

You can then use the NM plabel to dynamically call the speci�ed procedure,
provided the programming language contains features for making dynamic
procedure calls.

A plabel returned by HPGETPROCPLABEL is valid only for the duration of the
calling process.

Two parameters are required: the process name, a character array, and the
plabel, a 32-bit unsigned integer passed by reference.

The status parameter, a 32-bit signed integer passed by reference, is optional
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates their source. If an error
or warning condition is encountered, and you did not specify the status
parameter, HPGETPROCPLABEL causes the calling process to abort. Using the
status parameter in MPE XL is analogous to using the condition codes and the
PRINTFILEINFO intrinsic in MPE V/E.

You can use an optional parameter to passes the name of the program �le or
XL at which to begin searching. Another optional parameter indicates whether
you want the process name parameter to be case-sensitive.

8-4 Managing Resources DRAFT

2/14/100 07:56

HPMYPROGRAM (NM)
(new)

The HPMYPROGRAM intrinsic returns the fully quali�ed �le name of the
program being executed by this process. You can pass this �le name to the
HPGETPROCPLABEL intrinsic in the �rst�le parameter. HPGETPROCPLABEL
searches the �les in the binding sequence for a procedure, beginning with the
program �le. The program �le is the �rst �le in the binding sequence of the
calling process.

The only required parameter is the character array that returns the �le name.
The formaldesignator parameter must be at least 28 bytes in length in order to
contain the longest possible MPE XL �le name, with delimiters. The lockword
is not returned. The �rst and last characters of the returned value are blanks
that act as delimiters.

The status parameter, a 32-bit signed integer passed by reference is optional,
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates their source. If an error
or warning condition is encountered, and you did not specify the status
parameter, HPMYPROGRAM causes the calling process to abort. Using the status
parameter in MPE XL is analogous to using the condition codes in MPE V/E.

An optional parameter returns the length of the �le name returned in the
formaldesignator parameter (including the two blanks that act as delimiters),
or a zero to indicate that no �le name is returned.

HPMYFILE (NM)
(new)

The HPMYFILE intrinsic returns the fully quali�ed �le name of the Native
Mode program or executable library (XL) that called HPMYFILE. You can pass
this �le name to the HPGETPROCPLABEL intrinsic in the �rst�le parameter.
HPGETPROCPLABEL searches the �les in the binding sequence of its calling
process for a procedure, beginning with the �le returned by HPMYFILE.

The only required parameter is the formaldesignator , a character array that
returns the fully quali�ed �le name of the Native Mode program or XL that

DRAFT

2/14/100 07:56

Managing Resources 8-5

called HPMYFILE. The formaldesignator parameter must be at least 28 bytes
in length in order to contain the longest possible MPE XL �le name, with
delimiters. The lockword is not returned. The �rst and last characters of the
returned value are blanks that act as delimiters.

The status parameter, a 32-bit signed integer passed by reference is optional,
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates their source. If an error
or warning condition is encountered, and you did not specify the status
parameter, HPMYFILE causes the calling process to abort. Using the status
parameter in MPE XL is analogous to using the condition codes in MPE V/E.

An optional parameter returns the length of the �le name returned in the
formaldesignator parameter (including the two blanks that act as delimiters),
or a zero to indicate that no �le name is returned.

LOADPROC (NM)
(changed)

The LOADPROC intrinsic is used by a program executing in NM to dynamically
load a procedure located in a CM segmented library. LOADPROC returns the
procedure's CM plabel.

The CM plabel can then be used by the SWITCHTOCM intrinsic for calling
and executing the CM library procedure from the NM program. For more
information on cross-mode procedure calling, refer to Switch Programming
Guide (32650-90014).

Note A new intrinsic, HPGETPROCPLABEL, is used by an NM program
to dynamically load a procedure located in a NM executable
library (XL). HPGETPROCPLABEL is not available to CM
programs.

The LOADPROC intrinsic is used by a program executing in CM to dynamically
load a procedure located in a CM segmented library. The CM version of the
LOADPROC intrinsic performs as described in the MPE V/E Intrinsics Reference
Manual (32033-90007).

8-6 Managing Resources DRAFT

2/14/100 07:56

UNLOADPROC (NM)
(changed)

The UNLOADPROC intrinsic is used by a program executing in NM to
dynamically unload a CM segmented library (SL) procedure that was
previously loaded with the LOADPROC intrinsic.

The UNLOADPROC intrinsic is used by a program executing in CM to
dynamically unload a procedure located in a CM SL. The CM version of the
UNLOADPROC intrinsic performs as described in the &90007;.

Additional Information

For more information, refer to Resource Management Programmer's Guide
(32650-90024) and the MPE XL Intrinsics Reference Manual (32650-90028).
For details concerning the use of the NM versions of LOADPROC and UNLOADPROC

refer to Switch Programming Guide (32650-90014).

DRAFT

2/14/100 07:56

Managing Resources 8-7

9

Managing Message Catalogs

This chapter briey describes the message facilities of the MPE XL operating
system: the Application Message Facility, the System Message Facility, and the
Help Facility. It also summarizes similarities and di�erences between the MPE
XL and MPE V/E implementations of these message facilities.

Overview of
Differences:
MPE V/E
and MPE XL

The message facilities of the MPE V/E operating system are similar to those of
MPE XL.

New

MPE XL features that are not available on MPE V/E include:

SYSCAT.PUB.SYS intrinsics:

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

GENMESSAGE intrinsic (NM)

DRAFT

2/14/100 07:56

Managing Message Catalogs 9-1

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

CATCLOSE CATOPEN

CATREAD NLAPPEND

SYSCAT.PUB.SYS
(new)

SYSCAT.PUB.SYS contains the Native Mode system error message under MPE
XL; CATALOG.PUB.SYS contains CM error messages. You may access these
messages, but they are primarily for system use. Access CATALOG.PUB.SYS
with the GENMESSAGE intrinsic and SYSCAT.PUB.SYS with the catalog intrinsics
CATOPEN, CATREAD, and CATCLOSE. CATALOG.PUB.SYS is formatted with the
MAKECAT utility; SYSCAT.PUB.SYS is formatted with the GENCAT utility.

GENMESSAGE (NM)
(changed)

In MPE XL NM, the GENMESSAGE intrinsic parameters param1 through param5
may now pass 32-bit pointer values instead of the 16-bit pointer values used in
MPE V/E systems. MPE V/E and MPE XL CM use a 16-bit word for data
alignment; MPE XL NM uses a 32-bit word. As a result, these parameters may
require a 32-bit value to match the Pascal integer type to be passed by value if
so speci�ed in parmask .

Only the �ve parameters have changed, and only in MPE XL NM. All the
GENMESSAGE parameters in MPE XL CM, and all the other parameters in MPE
XL NM, remain the same as described in the MPE V/E Intrinsics Reference
Manual (32033-90007).

9-2 Managing Message Catalogs DRAFT

2/14/100 07:56

For further information, refer to Chapter 10, Converting Data Types, and to
Message Catalogs Programmer's Guide (32650-90021).

Additional Information

For additional discussion of these facilities, refer to the Native Language
Programmer's Guide (32650-90022) and Message Catalogs Programmer's Guide
(32650-90021).

DRAFT

2/14/100 07:56

Managing Message Catalogs 9-3

10

Converting Data Types

This chapter describes the di�erences between MPE V/E and MPE XL data
storage techniques and the implications for the programmer. The MPE V/E
format of oating-point real numbers and the word size is not changed in MPE
XL Compatibility Mode (CM), but is di�erent in MPE XL Native Mode (NM)
and some �les will need to be converted; a sample program for conversion is
included.

Overview of
Differences:
MPE V/E
and MPE XL

Alignment for MPE V/E and MPE XL CM data structures and data variables
is based on a 16-bit word. MPE XL NM aligns based on a 32-bit word. Take
care that data passed between the two formats aligns properly.

MPE V/E and MPE XL CM oating-point formats for real numbers is
di�erent from MPE XL NM. A new intrinsic, HPFCONVERT, converts between
the two oating-point formats. Since an executable module can use only one
format, conversion will be necessary in mixed mode programs, or with data
used across modes.

Use the same tools and commands in MPE XL that you use in MPE V/E to
convert data from one type to another, such as from ASCII to binary, within a
format.

DRAFT

2/14/100 07:56

Converting Data Types 10-1

New

MPE XL features that are not available on MPE V/E include:

Data alignment (word size) (NM)
IEEE real number oating-point format (NM)
The HPFCONVERT intrinsic

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

ASCII BINARY

DASCII DBINARY

CTRANSLATE NLTRANSLATE

Data Alignment (Word Size) (NM)
(new)

MPE V/E and MPE XL have di�erent word sizes. MPE V/E and MPE XL
CM have a 16-bit word size; MPE XL has a 32-bit word size. Many data
structures that are aligned on 16-bit boundaries in MPE V/E are aligned on
32-bit boundaries in MPE XL NM. In MPE XL NM, 32-bit data types are
aligned on 32-bit boundaries, by default, to improve performance.

Converting Data between CM and NM

One way to convert data to use across formats is by choosing the appropriate
compiler option. MPE XL compilers o�er two directives: HP3000 16 speci�es
MPE V/E or MPE XL CM alignment, and HP3000 32 speci�es MPE XL NM
alignment.

For example, if you are compiling an application that will be run in Native
Mode, but will use MPE V/E compatible data �les, you would select the
HP3000 16 compiler directive. This NM option causes the compiler to:

10-2 Converting Data Types DRAFT

2/14/100 07:56

Align data in records on 16-bit boundaries (as in MPE V/E and MPE XL
CM), instead of on 32-bit boundaries (as in MPE XL NM).
Select HP3000 format for real numbers, (as in MPE V/E and MPE XL CM),
instead of IEEE oating point representation, (as in MPE XL NM.)

Using the HP3000 16 compiler directive will maintain data alignment and
format compatibility with MPE V/E, but will also impact the use of NM data
in the program.

For an application to use both native aligned data �les and MPE V/E aligned
data �les, you could specify in the program record de�nitions to force MPE XL
or MPE V/E aligned records on a structure-by-structure basis.

For example, when you need to maintain CM data alignment and format, but
also need to create NM data structures, the individual structures that must be
in NM format should be explicitly de�ned as HP3000 32 while operating under
the HP3000 16 directive.

Another alternative is to create a program that reads data in one mode and
writes it in another.

Data format conversion takes CPU time. To maximize performance, try to
convert your �les to the NM format only once.

The considerations for converting �les from MPE V/E to MPE XL NM
vary depending on the language. Table 10-1 and Table 10-2 show data type
correspondences for MPE XL NM intrinsics and supported languages.

DRAFT

2/14/100 07:56

Converting Data Types 10-3

Table 10-1.

NM Data Types: Primitive, Generic, HP Business BASIC/XL, HP

C/XL

Primitive Type Intrinsics HP Business
BASIC/XL

HP C/XL

Character C $
dimension as
1 character

CHAR or
UNSIGNED

CHAR

Integer:
16-bit

unsigned

U16 N/A UNSIGNED
SHORT INT

Integer:
32-bit

unsigned

U32 N/A UNSIGNED INT
or UNSIGNED
LONG INT

Integer:
64-bit

unsigned

U64 N/A N/A

Integer:
16-bit
signed

I16 SHORTINT
or subrange

[�32768..32767]

SHORT INT

Integer:
32-bit
signed

I32 INTEGER INT or ENUM

Integer:
64-bit
signed

I64 N/A N/A

Real
32-bit
(Single-
Precision)

R32 SHORTREAL FLOAT

Real
64-bit

(Double-
Precision)

R64 REAL DOUBLE

Decimal: Packed
or Unpacked

N/A N/A N/A

Decimal:
oating-point

N/A Short Decimal
or Decimal

N/A

10-4 Converting Data Types DRAFT

2/14/100 07:56

Table 10-2.

NM Data Types: Primitive, HP COBOL

II/XL, HP FORTRAN

77/XL, and HP Pascal/XL

Primitive Type HP
COBOLII/XL
& HP RPG/XL

HP FORTRAN
77/XL

HP Pascal/XL

Character USAGE
DISPLAY

or group item

CHARACTER CHARACTER

Integer:
16-bit

unsigned

PIC 9 to
PIC 9(4)
COMP

LOGICAL OR
LOGICAL*2

0..65535
or any 16-bit
SUBRANGE

Integer:
32-bit

unsigned

PIC 9(5) to
PIC 9(9)
COMP

LOGICAL OR
LOGICAL*4

Any 32-bit
subrange

Integer:
64-bit

unsigned

PIC 9(10) to
PIC 9(18)
COMP

N/A N/A

Integer:
16-bit
signed

PIC S(9) to
PIC S9(4)
COMP

INTEGER or
INTEGER *2

SHORTINT or
any 16-bit
subrange

Integer:
32-bit
signed

PIC S9(5) to
PIC S9(9)
COMP

INTEGER or
INTEGER *4

INTEGER or
any 32-bit
subrange

Integer:
64-bit
signed

PIC S9(10) to
PIC S9(18)
COMP

N/A N/A

Real
32-bit
(Single-
Precision)

N/A REAL or
REAL*4

REAL

Real
64-bit

(Double-
Precision)

N/A DOUBLE
PRECISION
or REAL*8

LONGREAL

Decimal: Packed USAGE
COMP-3

N/A N/A

Decimal:
Unpacked

N/A N/A

DRAFT

2/14/100 07:56

Converting Data Types 10-5

Note It is a recommended programming practice to pass character
data between languages by using COBOL II alphanumeric
data, HP FORTRAN 77 character variables (using $ALIAS
with a speci�ed language option), or Pascal packed arrays of
char.

Converting COBOL files

Characteristics of COBOL native alignment are:

32-bit aligned on 01 level items, 77 level items, and SYNC items (if SYNC32
is speci�ed).

All other data and structures are byte-aligned.

COBOL/V and COBOL/XL have incompatibilities due to data alignment:
indexed data items, and synchronized data items.

COBOL II alphanumeric data is represented as a byte array. A byte pointer to
the �rst byte is passed by reference.

For further information, refer to HP COBOL II/XL Migration Guide
(31500-90004).

Converting FORTRAN Files

Native alignment of some data types in HP FORTRAN 77/XL is di�erent
from that of HP FORTRAN 77/V, as shown in Table 10-3. This results in
COMMON block layout and data layout di�erences in �les.

10-6 Converting Data Types DRAFT

2/14/100 07:56

Table 10-3. FORTRAN 77 Native Alignment

DATA TYPE MPE V/E
Alignment

MPE XL
Alignment

CHARACTER 8-BIT 8-BIT

INTEGER*2 16-BIT 16-BIT

LOGICAL*2

INTEGER*4

LOGICAL*4 16-BIT 32-BIT

REAL*4

REAL*8

DOUBLE PRECISION

COMPLEX*8 16-BIT 64-BIT

COMPLEX*16

COMMON

Figure 10-1 shows an example of how HP FORTRAN 77/XL aligns a
COMMON block in CM and Native Mode (default).

DRAFT

2/14/100 07:56

Converting Data Types 10-7

Figure 10-1. HP FORTRAN 77 COMMON Block Data Alignment Example

To align data for maximum performance, the compiler leaves a word, or a word
portion, blank or unused. HP FORTRAN 77/V uses the unused 16-bit sections,
and the COMMON block is more compact.

An HP FORTRAN 77 character variable is represented as a byte array. A byte
pointer to the byte array and a word indicating the length of the character
variable are passed by reference. You must use the ALIAS directive with a
language option to make the compiler pass only a pointer to the character
array.

The procedure for converting FORTRAN binary �les from MPE V/E to MPE
XL format is as follows:

1. Real data from �le in a subroutine with $HP3000 16 ON.

2. Pass the data to a subroutine that has $HP3000 16 OFF.

3. Call the intrinsic HPFCONVERT to convert real numbers from MPE V/E to
MPE XL oating-point format.

4. Write the data out to a new �le.

10-8 Converting Data Types DRAFT

2/14/100 07:56

Note A program or subroutine that has $HP3000 16 ON cannot call
the HPFCONVERT intrinsic.

For further information, refer to HP FORTRAN 77/XL Migration Guide
(31501-90004).

Converting Pascal Files

Table 10-4 shows the alignment of simple data types on HP Pascal/V and HP
Pascal/XL.

DRAFT

2/14/100 07:56

Converting Data Types 10-9

Table 10-4. Pascal Native Alignment

Variable Types HP Pascal/V HP Pascal/XL

Allocation Alignment Allocation Alignment

BOOLEAN 1 byte Byte 1 byte Byte

CHAR 1 byte Byte 1 byte Byte

ENUMERATION 1-256 elements: 1-256 elements:

ENUMERATION 1 byte Byte 1 byte Byte

ENUMERATION Any other: 257-64K elements

2 bytes 2 byte 2 bytes 2 byte

Over 64K elements:

4 bytes 4 byte

INTEGER 4 bytes 2 byte 4 bytes 4 byte

POINTER 2 bytes 2 byte 4 bytes 4 byte

REAL 4 bytes 2 byte 4 bytes 4 byte

LONGREAL 8 bytes 2 byte 8 bytes 8 byte

0..255 1 byte Byte 1 byte Byte

0..65535 4 bytes 2 byte 2 bytes 2 byte

-32768..32767 2 bytes 2 byte 4 bytes 4 byte

OTHERWISE 4 bytes 4 byte 4 bytes 4 byte

HP Pascal/V and HP Pascal/XL have the following incompatibilities due to
data alignment:

MPE V/E and IEEE oating-point format.

Data alignment of simple variables and record elements.

String format.

Pointers.

10-10 Converting Data Types DRAFT

2/14/100 07:56

A Pascal packed array of char (PAC) is represented as a byte array. A
pointer to the �rst byte of the array is passed by reference. A Pascal string is
represented as a byte array pre�xed with a word containing the current length
and su�xed with a housekeeping byte. A pointer to the word containing the
current length is passed by reference.

For detailed information on independent variable allocation and alignment of
data in records and other structures, refer to HP Pascal/XL Migration Guide
(31502-90004).

DRAFT

2/14/100 07:56

Converting Data Types 10-11

Sample Conversion Program

The following example shows a conversion program that uses the HP3000_16
compiler directive and several data types.

10-12 Converting Data Types DRAFT

2/14/100 07:56

Sample Program (part 1 of 2)

$HP3000_16$

Program Convertfile(file1,file2);

CONST

HP3000_32bit=1;

IEEE_32bit=3;

RoundToZero=1;

TYPE

ARR1=ARRAY[1..10] of -32768..32767;

CMrec=PACKED RECORD

f1:char;

f2:boolean;

f3:String[40];

f4:ARR1;

f5:REAL;

END;

NMARR1=$HP3000_32$

ARRAY[1..10] of -32768..32767;

NMrec=$HP3000_32$

PACKED RECORD

f1:char;

f2:boolean;

f3:String[40];

f4:NMARR1;

f5:REAL;

END;

VAR

file1:FILE OF CMrec;

file2:FILE OF NMrec;

V1:CMrec;

V2:NMrec;

INX:1..10;
status:INTEGER;

except:-32768..32767;
DRAFT

2/14/100 07:56

Converting Data Types 10-13

Sample Program (part 2 of 2)

PROCEDURE HPFPCONVERT; INTRINSIC;

BEGIN (*Program Convertfile*)

RESET(file1);

REWRITE(file2);

WHILE NOT EOF(file1) DO
BEGIN (*Read and Write*)

READ(file1,V1);

WITH V1 DO

BEGIN (*Assign the component*)

V2.f1:=f1;

V2.f2:=f2;

V2.f3:=f3;

FOR INX:=1 to 10 DO

V2.f4[INX]:=f4[INX];

HPFPCONVERT(f5,V2.f5,HP3000_32bit,IEEE_bit,status,except,

RoundToZero);

END; (*Assign the component*)

WRITE(file1,V2);

END; (*Read and Write*)

END. (*Program Convertfile*)

10-14 Converting Data Types DRAFT

2/14/100 07:56

IEEE Real Number Format (NM)
(new)

MPE V/E uses HP3000 format for storing oating-point real numbers.
The MPE XL operating system uses two formats: HP 3000 and IEEE, the
standard set by the the American National Standards Institute and Institute of
Electrical and Electronics Engineers (ANSI/IEEE Std 754-1985). In MPE XL,
HP3000 is the default storage format for CM, and IEEE is the default for NM.
Table 10-5 shows a summary of their characteristics.

Table 10-5. IEEE and HP 3000 Format Comparison

IEEE HP 3000

Single precision:

Accuracy
(in decimal digits)

7.2 6.9

Range -3.4E38 to -1.4E-45, 0,
+1.4E-45 to +3.4E38

-1.2E77 to -8.6E-78, 0,
+8.6E-78 to +1.2E77

Double precision:

Accuracy
(in decimal digits)

15.9 16.5

Range -1.8E308 to -4.9E-324, 0,
+4.9E-324 to +1.8E308

-1.2E77 to -8.6E-78, 0,
+8.6E-78 to +1.2E77

Note Values in this table are rounded.

DRAFT

2/14/100 07:56

Converting Data Types 10-15

Real Number Bit Format

When stored in memory, real numbers are aligned on word boundaries. MPE
V/E and MPE XL CM use a 16-bit word format; MPE XL NM uses a 32-bit
word format.

In MPE V/E and in MPE XL, real numbers are represented in memory by 32
bits (single-precision) or 64 bits (double-precision) format.

Represent a oating-point zero by setting all the bits to zero (0). Represent
other numbers as binary numbers with three �elds:

Sign. The sign �eld is the �rst bit of the �rst word. A value of 0 in this
position indicates the number is positive; a value of 1, that it is negative.

Exponent. The exponent �eld starts on bit 1. Notice that this �eld is 9 bits
long on MPE V/E and MPE XL CM, but on MPE XL NM it is 8 bits long
for single-precision numbers and 11 bits long for double-precision numbers.

Mantissa. The mantissa �eld begins after the exponent �eld and goes to the
end of the word. Its length varies, depending on format and precision. Data
is stored as a binary number of the form 1.xxx , where the 1 and binary point
of the mantissa are not actually stored, but assumed to be present.

Figure 10-2 and Figure 10-3 show a comparison of the MPE V/E and MPE XL
internal representation of single-precision and double-precision real numbers.

10-16 Converting Data Types DRAFT

2/14/100 07:56

Figure 10-2. MPE V/E and MPE XL Single-Precision Real Number Comparison

Figure 10-3. MPE V/E and MPE XL Double-Precision Real Number Comparison

DRAFT

2/14/100 07:56

Converting Data Types 10-17

Converting Numbers Between Formats

You can use the MPE XL intrinsic HPFCONVERT in a program to convert
individual numbers between formats as necessary.

You can also force a oating-point number format with the compiler options
available in MPE XL. Choosing the HP3000 16 compiler option will force the
16-bit word data alignment and the HP3000 format for real number storage
compatable with MPE V/E and MPE XL CM. Specifying the HP3000 32
compiler option will align data with 32-bit words and store real numbers in
IEEE format, which are the defaults for MPE XL NM.

As Table 10-5 shows, IEEE and HP3000 formats have di�erent accuracies and
ranges for single-precision and double-precision real numbers.

Conversion Exception Conditions

Table 10-6 shows the valid oating-point conversion procedures and indicates
any exception to accurate conversion that can occur. These exception
conditions are described in the subsections below.

10-18 Converting Data Types DRAFT

2/14/100 07:56

Table 10-6. Floating-point Conversion Procedures

Source format Destination format Exception Conditions

CM32 CM32 -

CM32 CM64 -

CM32 NM32 OU

CM32 NM64 -

CM64 CM32 O

CM64 CM64 -

CM64 NM32 OUX

CM64 NM64 X

NM32 CM32 IO

NM32 CM64 IO

NM32 NM32 -

NM32 NM64 I

NM64 CM32 IOU

NM64 CM64 IOU

NM64 NM32 IOUX

NM64 NM64 -

Where:

CM32 is HP 3000 32-bit real I is Invalid

CM64 is HP 3000 64-bit real O is Overow

NM32 is IEEE 32-bit real U is Underow

NM64 is IEEE 64-bit real X is Inexact

DRAFT

2/14/100 07:56

Converting Data Types 10-19

Converting CM to NM

When converting CM to NM, the following exceptions could occur:

Inexact

Inexact occurs when the rounded result is not exact or an underow or overow
occurs. In this case, the result is restricted due to limitations in exponent
range and precision.

Invalid Operation (NaN)

Not a Number (NaN), is a symbolic entity encoded in IEEE oating-point
format. Signaling NaNs are the values assigned to uninitialized variables. Quiet
NaNs are propagated by invalid or unavailable data and/or results and provide
diagnostic information.

Any operation that involves a signaling NaN or invalid operation, returns a
quiet NaN as the result when no trap occurs and a oating-point result is to
be delivered. An operation using one or two quiet NaNs as input signals no
exception; however, if a oating-point result is to be delivered, a quiet NaN is
returned that is the same as one of the input NaNs.

Note NaNs are identi�ed by the following: the binary coded
exponent �eld contains all 1s and the fraction �eld is not equal
to zero. (This di�ers from the IEEE representation for in�nity
where the binary exponent �eld is all 1s, but the fraction �eld
is all 0s.)

Overflow

Overow is signaled when the destination format's largest �nite number is
exceeded in magnitude by the rounded oating-point result that would occur if
the exponent range were unbounded. The result is determined by the rounding
mode and the sign of the intermediate result as follows:

Round to nearest carries all overows to in�nity with the sign of the
intermediate result.

Round to zero carries all overows to the format's largest �nite number with
the sign of the intermediate result.

10-20 Converting Data Types DRAFT

2/14/100 07:56

Round toward negative in�nity carries the positive overows to the format's
largest �nite number and carries negative overows to negative in�nity.

Round toward positive in�nity carries the negative overows to the format's
most negative �nite number and carries positive overows to positive in�nity.

Underflow

Underow is signaled on one of two correlated events; the �rst is the creation
of a tiny nonzero result between the smallest nonzero numbers, which may
cause an overow if used in division. The second is an extreme loss of accuracy
during the approximation of tiny numbers by denormalized numbers. Tininess
is detected after rounding. Loss of accuracy is detected as an inexact result.

Converting NM to CM

Converting from NM to CM could cause the following exceptions to occur:

Invalid Operation (NaN)

Invalid operation is signaled when the source is a signaling or a quiet NaN.
The result is the destination format's largest �nite number with the sign of the
source.

Overflow

Overow always occurs when an attempt is made to convert in�nities (which
are represented only in IEEE) to CM formats. When an overow occurs, the
returned result is the destination format's largest �nite number with the sign of
the source.

Underflow

Underow is signaled when the magnitude of the source number (treated
as if the exponent range and precision are unbounded) is less than half the
magnitude of the destination format's smallest nonzero number. The result is
zero.

DRAFT

2/14/100 07:56

Converting Data Types 10-21

HPFPCONVERT
(new)

The HPFPCONVERT intrinsic converts data between MPE XL and MPE V/E
binary oating-point formats. It accepts a source binary oating-point number
and converts it to the equivalent destination binary oating-point number
in the other MPE format. You must specify the format of the source and
destination numbers. You have the option of specifying the rounding mode.

The source number must be a oating-point number, not a constant. The
conversion is performed by regarding the source number as in�nitely precise
and with unbounded range, and then rounding it to �t the designated
destination format. Rounding is performed according to the formal rules for
the rounding mode speci�ed. Rounding methods and exception signaling are
determined solely from the destination format and are independent of the
source format.

Conversion is performed as if all arithmetic traps are disabled. No trapping to
user-supplied or system-supplied arithmetic trap routines is done.

The status parameter, a 32-bit signed integer passed by reference is optional,
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates their source. If an error
or warning condition is encountered, and you did not specify the status
parameter, HPFPCONVERTcauses the calling process to abort. Using the status
parameter in MPE XL is analogous to using condition codes in MPE V/E.

The optional parameter exceptions , a 16-bit signed integer passed by reference,
returns any exception conditions that occurred during conversion: none,
inexact, underow and overow, and invalid operation (NaN).

Note HPFCONVERT is available only on MPE XL-based systems.

10-22 Converting Data Types DRAFT

2/14/100 07:56

Additional Information

For further details, refer to Data Types Conversion Programmer's Guide
(32650-90015).

DRAFT

2/14/100 07:56

Converting Data Types 10-23

11

Sorting and Merging

This chapter describes the di�erences between MPE V/E and MPE XL
in sorting and merging operations. The MPE XL Sort/Merge facility has
changed, but the commands are similar. Changes in parameters are noted.

Overview of MPE XL and MPE V/E Differences

MPE XL contains the new SORT-MERGE/XL facility with HPSORT-
HPMERGE intrinsics. Using the new facility is similar to using
SORT-MERGE/V.

All SORT-MERGE intrinsics can be used in NM and CM, but for more
e�ciency in Native Mode, use the new HPSORT-HPMERGE intrinsics.
The new HPSORT-HPMERGE intrinsics are used in the same way as the
SORT-MERGE intrinsics, but some parameters have changed.

New

MPE XL features that are not available on MPE V/E include:

The following intrinsics:

HPMERGEEND (NM) HPMERGEERRORMESS (NM)
HPMERGEINIT (NM) HPMERGEOUTPUT (NM)
HPMERGESTAT (NM) HPMERGETITILE (NM)
HPSORTEND (NM) HPSORTERRORMESS (NM)
HPSORTINIT HPSORTINPUT

HPSORTOUTPUT HPSORTSTAT

HPSORTTITLE

DRAFT

2/14/100 07:56

Sorting and Merging 11-1

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

The following intrinsics:

MERGEINIT (NM)
SORTINIT (NM)

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

MERGEEND MERGEERRORMESS MERGEINIT (CM)
MERGEOUTPUT MERGESTAT MERGETITLE

SORTEND SORTERRORMESS SORTINIT (CM)
SORTINPUT SORTOUTPUT SORTSTAT

SORTITLE

New Intrinsic Overview

HPSORT-HPMERGE intrinsics are used in the same way that SORT-MERGE
intrinsics are: they correspond one-to-one in their placement in programs. In
NM, using HPSORT-HPMERGE intrinsics is more e�cient. Although the two
sets of intrinsics coordinate closely, they di�er in certain areas: parameter data
types, error checking, and miscellaneous parameter changes.

Data Types

MPE V/E architecture is based on a 16-bit word, and the MPE XL emulates
this environment in CM. MPE XL architecture is based on a 32-bit word, and
the HPSORT-HPMERGE intrinsic parameters adhere to the 32-bit standards.
The 16-bit parameters you use in SORT-MERGE calls are 32-bit parameters
when they are used in HPSORT-HPMERGE calls.

11-2 Sorting and Merging DRAFT

2/14/100 07:56

Error Checking

HPSORT-HPMERGE intrinsics have an optional status parameter, a 32-bit
signed integer passed by reference. The status parameter is optional, but
recommended. If an error or warning condition is encountered, and you did not
specify the status parameter, your process will abort.

Using the status parameter is analogous to using condition codes and the
PRINTFILEINFO intrinsic. The parameter has two 16-bit �elds. One reports
errors and warnings, and the other indicates the subsystem where they
occurred. The status parameter codes are interpreted in the appendixes of
SORT-MERGE/XL Programmer's Guide (32650-90080), and in the MPE XL
Intrinsics Reference Manual (32650-90028).

Parameter Changes

This is an overview of the parameter di�erences between SORT-MERGE
intrinsics and HPSORT-HPMERGE counterparts.

Every HPSORT-HPMERGE intrinsic call has status as its �rst optional
parameter so that information will not be repeated for each intrinsic. The data
type di�erence mentioned above is also not repeated for each intrinsic. For
details about the HPSORT-HPMERGE intrinsics, refer to MPE XL Intrinsics
Reference Manual (32650-90028).

HPMERGEEND and HPSORTEND (NM)

(new)

Use the new statistics parameter in the HPMERGEINIT, HPMERGEEND, and
HPMERGESTAT or the HPSORTINIT, HPSORTEND, and HPSORTSTAT intrinsics to
obtain and print statistical information.

Note The statistics parameter does not return the number of
compares for HPSORT-MERGE intrinsics.

HPMERGEERRORMESS and HPSORTERRORMESS (NM)

(new)

DRAFT

2/14/100 07:56

Sorting and Merging 11-3

In MPE V/E, you use errorcode for checking error conditions and returning
intrinsic status. In MPE XL NM, use the status parameter instead.

HPMERGEINIT and HPSORTINIT (NM)

(new)

The altseq parameter, a character array for the HPSORT-HPMERGE
intrinsics, is di�erent. The character values are the character representations of
the integer array used for in the SORT-MERGE intrinsic counterparts.

You can indicate the new IEEE format for oating-point real numbers in the
keys parameter.

The statistics parameter is di�erent. statistics does not return the number of
comparisons.

The failure and errorparam parameters are not used in the HPSORT-
HPMERGE intrinsics.

The MPE V/E spaceallocation is now called memsize in MPE XL NM.

11-4 Sorting and Merging DRAFT

2/14/100 07:56

HPMERGEOUTPUT, HPSORTINPUT, and HPSORTOUTPUT (NM)

(new)

Change record to bu�er : The parameter name has changed, but the parameter
has the same meaning.

HPMERGESTAT and HPSORTSTAT (NM)

(new)

The statistics parameter is now required in MPE XL NM.

HPMERGETITLE and HPSORTTITILE (NM)
(new)

Di�erences to the HPMERGETITLE and HPSORTTITILE intrinsics include only
the error checking and data type di�erences as mentioned above for all
HPSORT-HPMERGE intrinsics.

MERGEINIT (NM)
(changed)

Some parameters have changed for MERGEINIT in native mode. Reserved
parameters are: preprocessor , postprocessor , keycompare, errorproc, and
memsize. You can not specify these parameters but you must maintain the
parameter positions.

DRAFT

2/14/100 07:56

Sorting and Merging 11-5

SORTINIT (NM)
(changed)

Some parameters have changed for SORTINIT in native mode. Reserved
parameters are: keycompare, errorproc, and memsize. You can not specify
these parameters, but you must maintain the parameter positions.

Additional Information

For information on using the SORT-MERGE intrinsics, refer to Sort-Merge
Reference Guide (32214-90001). For information about the HPSORT-
HPMERGE intrinsics, refer to the MPE XL Intrinsics Reference Manual
(32650-90028) and the SORT-MERGE/XL Programmer's Guide (32650-90080).

11-6 Sorting and Merging DRAFT

2/14/100 07:56

12

Handling Traps

This chapter describes the di�erences between MPE XL and MPE V/E in the
implementation of traps and trap handling.

Overview of MPE XL and MPE V/E Differences

MPE XL provides system intrinsics to deal with the following types of trap
conditions:

Arithmetic traps

CONTROL-Y traps

Software library traps

Software system traps

When a trap condition is detected during process execution, control
is transferred to the MPE XL trap handling subsystem. Normally, a
system-provided trap handler aborts the process and outputs an appropriate
error message. Some system intrinsics allow you to specify a user-created trap
handler that replaces the system trap handler.

New arithmetic trap conditions are available in the Native Mode (NM)
programming environment of MPE XL, requiring parameter changes in the
NM versions of arithmetic trap handling intrinsics. A new NM intrinsic,
HPENBLTRAP, lets you selectively enable or disable arithmetic traps. NM trap
handling intrinsics that pass and return plabels have been modi�ed to handle
32-bit NM plabels.

DRAFT

2/14/100 07:56

Handling Traps 12-1

New

MPE XL features that are not available on MPE V/E include:

Native Mode arithmetic traps

NM and CM Traps Di�erences

HPENBLTRAP intrinsic (NM)

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

NM and CM trap di�erences

The following intrinsics:

ARITRAP (NM) XARITRAP (NM)
XCONTRAP (NM) XLIBTRAP (NM)
XSYSTRAP (NM)

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

ARITRAP (CM) RESETCONTROL

XARITRAP (CM) XCONTRAP (CM)
XLIBTRAP (CM) XSYSTRAP (CM)

12-2 Handling Traps DRAFT

2/14/100 07:56

Native Mode Arithmetic Traps
(new)

The following modi�cations have been made to arithmetic trap handling in the
MPE XL NM Programming environment:

Two trap conditions still available to MPE V/E and MPE XL CM
applications are not available in NM.

Twelve new arithmetic trap conditions are available to NM applications.

NM compiler directives are available to disable arithmetic traps.

NM versions of the ARITRAP and XARITRAP intrinsics have been modi�ed to
handle the new NM arithmetic trap handling environment. In addition, a new
NM intrinsic, HPENBLTRAP, lets you selectively enable or disable arithmetic
traps, providing you with more exibility than the ARITRAP intrinsic.

Note The following apply to various arithmetic trap conditions
available to NM applications (accessed through the
HPENBLTRAP, ARITRAP, and XARITRAP intrinsics):

The results of disabling arithmetic traps on MPE XL are not
guaranteed to be identical to those on MPE V/E.

NM supports two oating point formats: IEEE and 3000
Mode. Both execute in NM, but 3000 Mode performs HP
3000-type manipulations. Since it is possible to use both
formats during program execution, there are separate bits in
the mask for enabling/disabling traps of these formats.

By default, all arithmetic traps except IEEE oating point
exceptions are enabled, and the system trap handler is
armed. Many oating point operations result in an inexact
result. Consequently, most compiler libraries doing oating
point operations will result in an inexact trap if the IEEE
Inexact Result trap is enabled. Therefore, you should enable
the IEEE Inexact Result trap only if absolutely necessary.

Some of the new trap conditions are not strictly arithmetic
traps (for example, range errors, NIL pointers, and paragraph
stack overow). However, they and many arithmetic traps

DRAFT

2/14/100 07:56

Handling Traps 12-3

are caught by reserved instructions that raise the conditional
traps. For this reason, they are treated as arithmetic traps.

Some of the instructions that raise conditional traps are
reserved to indicate some of the arithmetic trap conditions.
A nonreserved instruction is one not generated by a compiler.
If a nonreserved instruction causes a conditional trap, this is
reported as an Unimplemented Condition Trap.

Arithmetic Traps Not Available in Native Mode

The following arithmetic trap conditions are not handled by the NM arithmetic
trap-handling intrinsics, HPENBLTRAP, ARITRAP, and XARITRAP:

Invalid Source Word Count

Invalid Decimal Operand Length

These trap conditions continue to be handled by the CM versions of the
arithmetic trap handling intrinsics.

New Native Mode Arithmetic Traps

The new arithmetic trap conditions listed below are available to applications
executing in the NM programming environment of MPE XL.

IEEE oating point divide by zero.

IEEE oating point, inexact result.

IEEE oating point underow.

IEEE oating point overow.

IEEE oating point, invalid operation.

range errors.

software-detected NIL pointer reference.

result of software-detected pointer arithmetic misaligned, or error in
conversion from long pointer to short pointer.

unimplemented condition traps.

12-4 Handling Traps DRAFT

2/14/100 07:56

paragraph stack overow.

3000 mode packed decimal error.

Using Compiler Directives to Disable Traps

Another way to disable arithmetic traps on MPE XL is to use NM compiler
directives, for example $ovflcheck off$ in HP Pascal/XL. When compiler
directives are used, the compiler generates arithmetic instructions that do not
trap on overow. When compiler directives are not used, the trap actually
takes place, but the MPE XL trap subsystem recovers from the trap and takes
the action required to continue execution.

Arming Traps in a Mixed Mode Programming Environment
(new)

One major e�ect of the architectural di�erences between MPE V/E-based
and MPE XL-based systems concerns the nature of recovery actions in the
two MPE XL programming environments, CM and NM. Results of trapping
operations on the two systems are di�erent when you recover and continue.
CM trap handlers cannot catch NM traps and, likewise, NM trap handlers
cannot catch CM traps. Consequently, if your user-written code executes in
both NM and CM, then in order to catch all arithmetic, library, and system
traps, you must have both a CM and an NM trap handler and use the Switch
subsystem to arm/enable other-mode trap handlers.

The exception to the situation described above is the CONTROL-Y (subsystem
break) trap. There is only one subsystem break handler at a time for a process,
be it CM or NM. If a CM CONTROL-Y trap handler is armed with XCONTRAP

and you hit �CTRL�Y while the program is executing in NM, the operating
system automatically switches on your behalf to invoke the trap handling
procedure. The converse is also true.

Refer to the Switch Programming Guide (32650-90014) for more information
about the Switch subsystem and mixed mode programming.

DRAFT

2/14/100 07:56

Handling Traps 12-5

HPENBLTRAP (NM)
(new)

The MPE XL NM intrinsic HPENBLTRAP corresponds to the MPE V/E and CM
ARITRAP intrinsic. Both selectively enable or disable arithmetic traps, but
HPENBLTRAP provides you with more exibility.

Arming and Enabling Traps

There is a di�erence between arming and enabling traps. Enabling a trap
means that the occurrence of a trap condition is not ignored. Arming a trap is
required so that, on a trap condition, a user-written routine is invoked and can
take appropriate recovery actions.

The following list summarizes what can occur when an arithmetic trap
condition arises:

If a trap is both enabled and armed, the user-written trap handler is invoked
whenever a trap condition occurs.

If a trap is enabled but not armed, one of two situations applies:

If you have executed an HP Pascal/XL TRY statement, control is passed
to the RECOVER block by doing an ESCAPE.
If you have not executed a HP Pascal XL TRY statement, an error
message is output and the process aborts.

If a trap is disabled, irrespective of whether it is armed or not, the trap is
ignored, and execution of the process continues uninterrupted.

Real Number and Arithmetic Traps

NM supports two oating point formats: IEEE and HP3000 Mode. Both
execute in NM, but 3000 Mode performs HP 3000 type manipulations. Since
it is possible to use both formats during program execution, there are separate
bits in the mask for enabling/disabling traps of these formats.

Note By default, all traps except IEEE oating point exceptions are
enabled, and the system trap handler is armed. Many oating
point operations result in an inexact result. Consequently, most
compiler libraries doing oating-point operations will result

12-6 Handling Traps DRAFT

2/14/100 07:56

in an inexact trap if the IEEE inexact result trap is enabled.
Therefore, you should enable the IEEE inexact result trap [bit
(17:1)] only if absolutely necessary.

HPENBLTRAP Parameters

Two HPENBLTRAP parameters are required: oldmask and mask .

The oldmask parameter accepts a 32-bit signed integer passed by reference and
returns the value of the previous mask to your program.

The mask parameter, a 32-bit signed integer passed by value, indicates the
current mask. You indicate, bit by bit, which traps you want enabled or
disabled according to the correspondence code listed in the MPE XL Intrinsics
Reference Manual (32650-90028).

For example, if bit 30 is set to 0, the Integer Divide by Zero trap is o�; and if
bit 17 is set to 1, the IEEE oating point inexact result trap is on.

Some of the speci�ed error conditions are not strictly arithmetic traps (for
example, range errors, NIL pointers, and paragraph stack overow). However,
they and many arithmetic traps are caught by reserved instructions that raise
the conditional traps. For this reason, all are enabled/disabled by HPENBLTRAP.

Some of the instructions that raise conditional traps are reserved to indicate
some of the above trap conditions. A nonreserved instruction is one not
generated by a compiler. If a nonreserved instruction causes a conditional trap,
this is reported as an Unimplemented Condition Trap.

HPENBLTRAP Condition Codes

The following Condition Codes apply to HPENBLTRAP:

CCE Request granted. All traps were originally disabled.

CCG Request granted. At least one trap was originally enabled.

CCL Not returned by this intrinsic.

DRAFT

2/14/100 07:56

Handling Traps 12-7

CM and NM Trap Handler Differences
(changed)

A user-created CM trap handler di�ers from a NM trap handler in its calling
sequence and the method by which the trap handler obtains error information:

In CM, typically, error information is obtained by the trap handler from the
process stack.

In NM, a pointer to a record containing error information is passed to the
trap handler.

ARITRAP (NM)
(changed)

The trapstate parameter of the NM version of the ARITRAP intrinsic is a
required 32-bit signed integer passed by value. The parameter size has
been expanded to handle the additional arithmetic traps available to NM
applications. The trapstate parameter represents a value enabling or disabling
arithmetic traps. (An exception is the IEEE Inexact Result trap, which can
only be disabled.)

The CM version of ARITRAP performs as described in the MPE V/E Intrinsics
Reference Manual (32033-90007). The NM version performs as described in the
MPE XL Intrinsics Reference Manual (32650-90028)

12-8 Handling Traps DRAFT

2/14/100 07:56

XARITRAP (NM)
(changed)

The following are the parameters that have been modi�ed in the NM version of
the XARITRAP intrinsic. The parameter sizes have been expanded to handle the
additional arithmetic traps available to NM applications.

The mask and oldmask parameters of the NM version XARITRAP must be 32-bit
signed integer values. The mask and oldmask parameters represent values
determining which enabled trap conditions invoke the user-written software
trap handler speci�ed in the plabel or oldplabel parameters.

These parameters represent arithmetic traps identically to the mask and
oldmask parameters of the HPENBLTRAP intrinsic.

In MPE V/E and in MPE XL CM, plabels must be 16-bit entities. In NM,
memory addresses represented as plabels must be 32-bit entities. In NM, the
plabel and oldplabel parameters of XARITRAP must be 32-bit signed integer
values passed by reference.

The CM version of XARITRAP performs as described in the MPE V/E Intrinsics
Reference Manual (32033-90007). The NM version performs as described in the
MPE XL Intrinsics Reference Manual (32650-90028)

Note CM arithmetic trap handlers cannot catch traps encountered
in NM code and, likewise, NM arithmetic trap handlers cannot
catch traps encountered in CM code. For details on arming
traps when your application contains both CM and NM
code, refer to \Arming Traps in a Mixed Mode Programming
Environment (new)" earlier in this chapter.

DRAFT

2/14/100 07:56

Handling Traps 12-9

XCONTRAP (NM)
(changed)

The following are the parameters that have been modi�ed in the NM version of
the XCONTRAP intrinsic.

The plabel and oldplabel parameters of the NM version of XCONTRAP must be
32-bit signed integer values passed by reference. In NM, memory addresses
represented as plabels must be 32-bit entities (in MPE V/E and in MPE XL
CM, plabels must be 16-bit entities).

The CM version of XCONTRAP performs as described in the MPE V/E Intrinsics
Reference Manual (32033-90007). The NM version performs as described in the
MPE XL Intrinsics Reference Manual (32650-90028).

XLIBTRAP (NM)
(changed)

The following are the parameters that have been modi�ed in the NM version of
the XLIBTRAP intrinsic.

The plabel and oldplabel parameters of the NM version of XLIBTRAP must be
32-bit signed integer values passed by reference. In NM, memory addresses
represented as plabels must be 32-bit entities (in MPE V/E and in MPE XL
CM, plabels must be 16-bit entities).

The CM version of XLIBTRAP performs as described in the MPE V/E Intrinsics
Reference Manual (32033-90007). The NM version performs as described in the
MPE XL Intrinsics Reference Manual (32650-90028).

Note CM arithmetic trap handlers cannot catch traps encountered
in NM code and, likewise, NM arithmetic trap handlers cannot
catch traps encountered in CM code. For details on arming
traps when your application contains both CM and NM
code, refer to \Arming Traps in a Mixed Mode Programming
Environment (new)" earlier in this chapter.

12-10 Handling Traps DRAFT

2/14/100 07:56

XSYSTRAP (NM)
(changed)

The following are the parameters that have been modi�ed in the NM version of
the XSYSTRAP intrinsic.

The plabel and oldplabel parameters of the NM version of XSYSTRAP must be
32-bit signed integer values passed by reference. In NM, memory addresses
represented as plabels must be 32-bit entities (in MPE V/E and in MPE XL
CM, plabels must be 16-bit entities).

The CM version of XSYSTRAP performs as described in the MPE V/E Intrinsics
Reference Manual (32033-90007). The NM version performs as described in the
MPE XL Intrinsics Reference Manual (32650-90028).

Note CM arithmetic trap handlers cannot catch traps encountered
in NM code and, likewise, NM arithmetic trap handlers cannot
catch traps encountered in CM code. For details on arming
traps when your application contains both CM and NM
code, refer to \Arming Traps in a Mixed Mode Programming
Environment (new)" earlier in this chapter.

Additional Information

Refer to the MPE V/E Intrinsics Reference Manual (32033-90007), the
MPE XL Intrinsics Reference Manual (32650-90028) and the Trap Handling
Programmer's Guide (32650-90026) for details on the NM intrinsics and
features mentioned in this chapter.

DRAFT

2/14/100 07:56

Handling Traps 12-11

13

Debugging Applications

This chapter briey presents the new MPE XL System Debugger and related
intrinsics. This is an introduction, and not thorough enough to prepare you to
use the debugger. Using the debugger, both in CM and in NM, is signi�cantly
di�erent than using the MPE V/E System Debugger. Before you try to use it,
you should become familiar with the MPE XL manual, System Debug Reference
Manual (32650-90013).

Overview of
Differences:
MPE V/E
and MPE XL

MPE XL System Debug provides both privileged and non-privileged users
with an interactive debugging facility invoked through an integrated set of
commands, NM intrinsics, and CM intrinsics.

Compared to MPE V/E Debug, the MPE XL Debugger has been extensively
modi�ed and expanded. Even in CM, MPE XL Debug is not the same as MPE
V/E Debug. Many commands and intrinsics have been extended and modi�ed,
CM as well as NM. A number of new features have been added|for instance,
window displays can be used for both CM and NM debugging. The prompts
you see on the screen, and the responses you make to them, have been changed.

If you are using MPE XL Debug with a CM program, do not follow the
instructions in the MPE V/E Debug documentation. You should become
familiar with System Debug Reference Manual (32650-90013) before trying to
use the debugger in either mode.

DRAFT

2/14/100 07:56

Debugging Applications 13-1

New

MPE XL features that are not available on MPE V/E include:

MPE XL System Debug

The following intrinsics:

HPDEBUG (NM)
HPRESETDUMP (NM)
HPSETDUMP (NM)

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

The following intrinsics:

SETDUMP

STACKDUMP

The following commands:

DEBUG

ERRDUMP

SETDUMP

Not Used

Existing MPE V/E features that are not supported on MPE XL include:

The MPE V/E System Debugger

The following intrinsic:

STACKDUMP'

13-2 Debugging Applications DRAFT

2/14/100 07:56

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

DEBUG

RESETDUMP

The following command:

RESETDUMP

MPE XL System Debug
(new)

MPE XL Debug's functions have been greatly expanded by comparison with
MPE V/E Debug. Many new features have been added. MPE XL Debug
allows you to:

Calculate the value of expressions to determine the correct values for
variables at a given point in the program. Values can be custom formatted in
several bases.

Use new full screen displays (windows) to inspect registers, program code,
the current stack frame, and the top of stack. You can dynamically monitor
changing values by aiming groups of custom user windows at important data
blocks and watching the changes as they occur.

Create and reference user-de�ned variables.

De�ne powerful parameterized macros. Macros can be invoked as new
commands to perform useful sequences of commands, or as functions within
expressions that return single values.

De�ne aliases for command and macro names.

Display online help for all commands, prede�ned functions, and environment
variables.

DRAFT

2/14/100 07:56

Debugging Applications 13-3

Execute commands from a �le, record all user input to a log�le, and record
all debug output to a list�le.

Set, delete, and list breakpoints in a program. The program executes until
a breakpoint is reached, then stops and passes control to the user. When
you set breakpoints, you can specify a list of commands to be automatically
executed when the breakpoint is hit.

Single step through a program.

Display and/or modify the contents of memory locations. A full set of
addressing modes is o�ered, including absolute CM memory, code segment
relative, data segment relative, S relative, Q relative, DB relative, and
Hewlett-Packard Precision Architecture virtual or real memory addresses.

Display a symbolic procedure stack trace, optionally displaying interleaved
NM and CM calls. It is also possible to temporarily set the current debug
environment back to the environment that existed at any marker on the
stack.

HPDEBUG (NM)
(new)

The HPDEBUG intrinsic is the counterpart to the MPE V/E DEBUG intrinsic. It
calls the MPE XL system debugger. You can use an optional parameter to pass
debug commands you want to be automatically executed when the debugger is
entered.

When the HPDEBUG calls the debugger, the debugger pushes your commands
onto its command stack and executes them. You pass a character array of up
to 1024 characters in the cmdstr parameter. The �rst character in the bu�er is
recognized as the delimiter. The last character in the command string must be
immediately followed by that same delimiter.

For processes in jobs, process execution is resumed when the command string
is exhausted. Processes run from a job will not be allowed to stop in the
system debugger. If the command string does cause control to return to the
calling procedure, any remaining commands are left pending on the debugger
command stack to be executed the next time the debugger is called.

13-4 Debugging Applications DRAFT

2/14/100 07:56

For processes in sessions, control remains in the debugger unless you pass a
CONTINUE command. If no command in the command string causes control to
be returned to the calling procedure, the user will be left in the debugger as
long as the process is being run from a session environment.

You may have output sent to any writable ASCII �le you specify. By default,
output is sent to the terminal LDEV for sessions and $STDLIST for jobs.

The status parameter, a 32-bit signed integer passed by reference is optional,
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates their source. If an error
or warning condition is encountered, and you did not specify the status
parameter, HPDEBUG causes the calling process to abort. Using the status
parameter in MPE XL is analogous to using condition codes in MPE V/E. You
can translate returned values with the MPE XL Intrinsics Reference Manual
(32650-90028).

HPRESETDUMP (NM)
(new)

The HPRESETDUMP intrinsic disarms the system debugger call from a process
abort. Only the current process is a�ected.

The status parameter, a 32-bit signed integer passed by reference is optional,
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates their source. If an error
or warning condition is encountered, and you did not specify the status
parameter, HPDEBUG causes the calling process to abort. Using the status
parameter in MPE XL is analogous to using condition codes in MPE V/E. You
can translate returned values with the MPE XL Intrinsics Reference Manual
(32650-90028).

DRAFT

2/14/100 07:56

Debugging Applications 13-5

HPSETDUMP (NM)
(new)

The HPSETDUMP intrinsic arms the system debugger call from a process abort.
If a process aborts, HPSETDUMP enables automatic execution of a set of system
debugger commands. The process can be the current process or any child of
the current process created after the intrinsic call. That is, the intrinsic a�ects
all new child processes and all generations thereafter.

Before a process aborts, the debugger is called to execute the commands you
entered in the cmdstr parameter. The commands are contained in a character
array of up to 255 characters, left-justi�ed, with a delimiting character as the
�rst and last character of the command string. Commands that attempts to
obtain user input cause an error when executed by the debugger.

If the process that aborts is being run from a job, the process will terminate
after executing the command string.

If the process is being run from a session the speci�ed command string is
executed �rst. Next, the debugger stops to accept interactive commands with
I/O performed at the user terminal if the following conditions are met:

The abort did not occur while in system code.
The process entered the abort code via a native mode interrupt (typically
caused by arithmetic and code-related traps).

Once the debugger accepts interactive input, the user is free to enter any DEBUG

command. The user may choose to resume the process or have it terminate
with the CONTINUE command.

If the cause of the abort is a stack overow, a stack trace is printed and the
process is terminated immediately thereafter. The command string is not
executed.

The status parameter, a 32-bit signed integer passed by reference is optional,
but recommended. It indicates status in two �elds. One reports the presence
of errors and warnings, and the other indicates the subsystem where they
occurred. If an error or warning condition is encountered, and you did not
specify the status parameter, HPSETDUMP causes the calling process to abort.
Using the status parameter in MPE XL is analogous to using condition codes
in MPE V/E.

13-6 Debugging Applications DRAFT

2/14/100 07:56

SETDUMP, STACKDUMP
(changed)

The SETDUMP and STACKDUMP intrinsics are available in a modi�ed form in both
CM and NM. The optional parameters listed below are ignored by MPE XL
when they are speci�ed in the indicated intrinsic call:

ags|SETDUMP and STACKDUMP

idnumber|STACKDUMP

selec|STACKDUMP

Note that the idnumber parameter, while ignored as input, is still used, when
appropriate, to return a �le system error number.

Note While SETDUMP and STACKDUMP are available in NM, enhanced
functionality is provided to NM programs through the HPDEBUG,
HPRESETDUMP, and HPSETDUMP intrinsics.

Note that there is no HPSTACKDUMP intrinsic. The user can produce a custom
stackdump by using the intrinsic and entering ``TRACE'' as one of the
command parameters.

The secondary entrypoint STACKDUMP', used to send the stack trace to an
already-opened �le, is not available in the NM version of STACKDUMP (it remains
available in CM only). An equivalent feature is available in NM through the
HPSETDUMP intrinsic.

DRAFT

2/14/100 07:56

Debugging Applications 13-7

DEBUG Command
(changed)

The DEBUG command enters the system debugger directly from the session CI.

For MPE XL, there is a new optional parameter, commands , that de�nes a
string of system debugger commands to be executed at the time of invocation.
This string may be up to 255 characters long.

The command string can control return to the CI. If the command string
contains a command to return to the CI, any further commands in the string
are not executed. Subsequent commands are left pending on the debugger's
command stack. If the string does not return to the CI, the user is left in the
debugger.

For descriptions of the commands that can be used with the debugger, refer
to the System Debug Reference Manual (32650-90013). Most debugger
commands are valid in CM as well as NM (see the command descriptions for
this information).

ERRDUMP Command
(changed)

This command dumps the process or system error stack for a speci�ed number
of entries. The error stack normally contains error numbers corresponding
to non-zero values of HPE STATUS; these are the errors that the operating
system encountered while processing the last request.

The error numbers in the error stack are translated and the corresponding text
displayed (from SYSCAT.PUB.SYS) on the STDLIST device. This information
is useful in application or system debugging.

13-8 Debugging Applications DRAFT

2/14/100 07:56

SETDUMP Command
(changed)

This command arms the system debugger call for a process abort. For MPE
XL, a new optional parameter, DEBUG="commands", de�nes a string of optional
commands that will be executed when the process aborts. These are the same
debugger commands that can be used with the DEBUG command (refer to the
speci�c command descriptions for details).

Some parameters of the MPE V/E SETDUMP command are retained for
compatibility reasons. They are ignored, however, by MPE XL. These
parameters are:

DB = Dump DL to Qinitial
ST = Dump Qinitial to S

STACKDUMP' (NM)
(not used)

The secondary entrypoint STACKDUMP', used to send the stack trace to an
already-opened �le, is not available in the NM version of STACKDUMP (it remains
available in CM only). An equivalent feature is available in NM through the
HPSETDUMP intrinsic.

MPE V/E System Debugger

The MPE V/E System Debugger is not supported on MPE XL in CM or NM.
Using the MPE XL System Debugger is not the same as using the MPE V/E
debugger.

DRAFT

2/14/100 07:56

Debugging Applications 13-9

Additional Information

For more information, refer to the System Debug Reference Manual
(32650-90013). The MPE V/E programmer should consult this manual before
attempting to use the system debugger in CM or in NM, as the commands and
instructions are not the same as the MPE V/E debugger.

13-10 Debugging Applications DRAFT

2/14/100 07:56

14

Using Extra Data Segments

Introduction

This chapter describes the di�erences between MPE XL and MPE V/E in the
implementation of the Data Segment Management (DS) capability and the
use of extra data segments. Split Stack Mode execution in the native mode
programming environment is also discussed.

Overview of MPE XL and MPE V/E Differences

Data segment management is identical in MPE V/E and MPE XL
Compatibility Mode (CM). Data Segment Management has been modi�ed in
MPE XL Native Mode (NM).

Split Stack Mode Execution is identical in MPE V/E and MPE XL CM. Split
Stack Mode execution has been eliminated from NM.

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

Extra Data Segments (NM)

Not Used

Existing MPE V/E features that are not supported on MPE XL include:

Split Stack Mode Execution (NM)

SWITCHDB intrinsic (NM)

DRAFT

2/14/100 07:56

Using Extra Data Segments 14-1

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

ALTDSEG DMOVIN

DMOVOUT FREEDSEG

GETDSEG SWITCHDB (CM)

Extra Data Segments (NM)
(new)

The demand-paged virtual memory scheme and the greatly expanded
addressing range of the 900 Series HP 3000 computer systems have eliminated
the need for extra data segments.

In NM, much larger data areas can be declared in your program than are
possible in MPE V/E or in CM. Also, your program can dynamically allocate
more data areas than is possible in MPE V/E or in CM. For example, use
of mapped �les (discussed in Chapter 4, Accessing Files), or use of the NEW
procedure in Pascal XL, greatly expands the data area that the NM program
can directly access.

Data segment management (DS) intrinsics are not recommended for use in the
NM programming environment. These intrinsics are provided in NM so that
you can recompile an MPE V/E program using NM compilers without making
source code changes. Use of DS intrinsics in NM will degrade the performance
of your NM program.

Data Segment Management intrinsics continue to function in the CM
environment as described in the MPE V/E Intrinsics Reference Manual
(32033-90007).

14-2 Using Extra Data Segments DRAFT

2/14/100 07:56

MPE XL Alternatives

The following are examples of situations where extra data segments are used in
MPE V/E and suggested alternative approaches available in MPE XL.

Auxiliary Storage for Large Arrays

In MPE V/E, extra data segments are used to hold large arrays or tables that
do not �t on the MPE V/E data stack, because of the limited size (only 64K
bytes) of the stack.

In MPE XL, the expanded addressing available allows NM programs to place
these arrays or tables in the data area simply by declaring them as program
variables.

Interprocess Communication

In MPE V/E, extra data segments are used to allow messages to be passed
between processes running in the same job/session.

In MPE XL, there are several alternative implementations available. The
following, JCWs or CI variables and message �les, are the two most useful.

Job Control Words and/or CI Variables. Short messages can be passed between
processes in the same job/session using Job Control Words (JCWs) and/or
Command Interpreter variables. JCWs are somewhat changed from MPE V/E
and CI variables are a new feature on MPE XL. Values are written and read
using the following intrinsics:

Table 14-1. Interprocess Communication Intrinsics

Write Read

CI Variables HPCIPUTVAR HPCIGETVAR

JCWs PUTJCW GETJCW

Refer to the discussion on using JCWs in Interprocess Communication
Programmer's Guide (32650-90019). Refer to the discussion on the use of
variables and JCWs programmatically in Command Interpreter Access and
Variables Programmer's Guide (32650-90011).

DRAFT

2/14/100 07:56

Using Extra Data Segments 14-3

Message Files. Message �les are a special type of �le with features that make
them ideal for managing messages between processes. In addition, message �les
allow processes in di�erent jobs/sessions to communicate with one another.

Refer to the discussion of using message �les in Interprocess Communication
Programmer's Guide (32650-90019).

Data Sharing Between Processes

In MPE V/E, extra data segments are sometimes used when two processes are
sharing data (rather than passing it to one another). For example, a process
builds a table of tax information that another process uses to calculate tax
withholding.

In MPE XL, shared �les are strongly recommended for such a situation.
Refer to the discussion of sharing �les in Accessing Files Programmer's Guide
(32650-90017).

Startup Information for a Child Process

In MPE V/E an extra data segment is sometimes used when you need to pass
information from a parent process to a child process at process creation time.

In MPE XL, you can pass information from a parent process to a new child
process using optional parameters found in the :RUN command and in the
CREATEPROCESS and CREATE intrinsics. This information can be obtained by
the new process with the GETINFO intrinsic.

Refer to the discussion of passing information to a process in Process
Management Programmer's Guide (32650-90023).

14-4 Using Extra Data Segments DRAFT

2/14/100 07:56

Split Stack Mode Execution (NM)
(not used)

The demand-paged virtual memory scheme and the greatly expanded
addressing range of the 900 Series HP 3000 computer systems have eliminated
the need for Split Stack Mode Execution. In the MPE XL NM programming
environment, you can declare in your program much larger data areas than
are possible in MPE V/E or in the MPE XL CM programming environment.
Also, your program can dynamically allocate more data areas than is possible
in MPE V/E or in CM. For example, use of mapped �les or use of the NEW
procedure in Pascal XL greatly expands the data area that the NM program
can directly access.

To ensure compatibility between MPE V/E and CM, Split Stack Mode
Execution continues to function in the CM programming environment as
described in the MPE V/E Intrinsics Reference Manual (32033-90007).

SWITCHDB (NM)
(not used)

The SWITCHDB intrinsic is not available to programs executing in NM.

To ensure compatibility between MPE V/E and MPE XL CM, SWITCHDB
is available to programs executing in CM. The CM version of SWITCHDB is
described in the MPE V/E Intrinsics Reference Manual (32033-90007).

Additional Information

Refer to the MPE Segmenter (30000-90011) MPE V/E Intrinsics Reference
Manual (32033-90007) and the for details about Compatibility Mode intrinsics
discussed in this chapter. Refer to the MPE XL Intrinsics Reference Manual
(32650-90028) for details about the Native Mode intrinsics.

DRAFT

2/14/100 07:56

Using Extra Data Segments 14-5

15

Changing Stack Sizes

Introduction

This chapter describes the di�erences between MPE XL and MPE V/E in the
implementation of two stack management intrinsics, DLSIZE and ZSIZE.

Overview of MPE XL and MPE V/E Differences

When programming in the high level languages available in the Native Mode
(NM) environment, all expansions and contractions of the NM stack are
accomplished by the operating system. The NM versions of the DLSIZE and
ZSIZE intrinsics do not a�ect the NM stack. Instead, they are implemented to
enable your NM program to a�ect the Compatibility Mode (CM) stack.

The changes occur mostly because of Hewlett-Packard Precision Architecture
(HP-PA) on the 900 Series HP 3000. Instead of segmentation, the MPE XL
operating system has demand-paged virtual memory. The commands and
intrinsics relating to segmentation are maintained for backward compatibility
with MPE V/E, however.

Changed

Existing MPE V/E features that have been modi�ed on MPE XL include:

MPE V/E features that are changed on MPE XL:

Compatibility Mode Stack Allocation

The following intrinsics:

DRAFT

2/14/100 07:56

Changing Stack Sizes 15-1

DLSIZE (NM)
ZSIZE (NM)

Unchanged

Existing MPE V/E features that are the same on MPE XL include:

The following intrinsics:

DLSIZE (CM)
ZSIZE (CM)

Compatibility Mode Stack Allocation
(new)

In CM, MPE XL emulates the MPE V/E stack, but the operation is somewhat
di�erent. Because of HP-PA, MPE XL has implemented a di�erent stack
allocation scheme in CM than currently exists with the MPE V/E stack. The
di�erence is primarily how MPE XL implements the CM Z-register.

MPE V/E Stack Allocation

In MPE V/E, it is important to keep the user's stack area as small as possible
to allow for more e�cient memory management. This is accomplished through
the use (by both the system and the user) of the Z-register (or Z) and the
MAXDATA parameter found in the CREATE and CREATEPROCESS intrinsics, and
in the RUN command.

The Z-register (or Z) is initialized at process creation time to a value based
upon both the user's DB area size and the value passed in either the STACK=
parameter of the RUN command or, the stacksize parameter of the CREATE and
CREATEPROCESS intrinsics.

During the life of the process, whenever the S-register (or S) exceeds Z, a stack
overow occurs, and the system increases Z by increments of 512 16-bit words
until Z once again exceeds S. These intermediate stack overows are handled
by the system until both S and Z exceed MAXDATA, at which time the process is

15-2 Changing Stack Sizes DRAFT

2/14/100 07:56

aborted. This mechanism allows the user and the system to maintain as small
a stack segment as possible for the particular application.

MPE XL CM Stack Allocation

Because of the demand paged virtual memory scheme, MPE XL does not
need to keep the CM stack as small as possible. As a result, there is no \real"
Z-register on MPE XL. Z is a system-managed value used to emulate the MPE
V/E Z-register. To maintain compatibility with MPE V/E, the initial value of
the CM stack's Z is calculated in the same way that Z is calculated in MPE
V/E.

The major di�erence between MPE XL CM and MPE V/E stack allocation is
that in MPE XL CM, there are no intermediate stack overows that cause Z
to be incremented by the system. The only time a stack overow is detected,
is when S exceeds MAXDATA, at which time the process is aborted. This
implementation allows for less overhead in the management of the CM stack.

However, in order to emulate the relationship between S and Z that exists on
MPE V/E, the algorithm described below is used whenever an application
pushes the Z-register on to the user stack:

1. MPE XL checks to see if S (itself an emulated register) is greater than Z.

2. If S is greater than Z, MPE XL creates a temporary copy of Z (Z_PRIME),
and adds increments of 512 16-bit words to Z_PRIME until the value is
greater than S (Z_PRIME is never allowed to exceed MAXDATA).

3. Z_PRIME is pushed on to the user stack (not Z).

From the user's perspective, Z always appears larger than S because it is
Z_PRIME that is pushed on to the user's stack (in fact, Z remains unchanged).

In MPE XL, when S exceeds Z, the system does not increase Z. Z is modi�ed
only when:

The ZSIZE intrinsic is called.

The DLSIZE intrinsic is called.

The PCBX area of the CM stack is expanded.

DRAFT

2/14/100 07:56

Changing Stack Sizes 15-3

In the above three operations, Z is expanded in 512 16-bit word increments
until Z exceeds the current value of the emulated S-register (although Z is never
allowed to exceed MAXDATA).

Impact on Migrated Applications

In MPE V/E, it is common for an application to cause the Z-register to
increase through several intermediate stack overows. In many cases, the
value of S is then decreased, leaving a large amount of space between S and
Z available for expansion. Thus, when the application checks to see if there
is room on the stack for a data structure, there is usually plenty of space.
However, on MPE XL, the emulated Z-register is not increased in the same way
it is on MPE V/E. The amount of space reported between S and Z is usually of
a much smaller value.

If you want to emulate in CM those increases to the Z-register that occur in
MPE V/E whenever a intermediate stack overow is detected, you must call
the ZSIZE intrinsic from your application to set the value of Z to the desired
size.

DLSIZE (NM)
(new)

The NM version of the DLSIZE intrinsic enables your NM program to cause the
area between DL and DB in the CM stack to be expanded or contracted within
the CM stack segment.

DLSIZE does not a�ect the NM stack because the demand paged virtual
memory scheme and the greatly expanded range of the Hewlett-Packard
Precision Architecture have eliminated the need for programmatic expansion
and contraction of the NM stack. DLSIZE is provided in NM so that you can
recompile an MPE V/E program using NM compilers without making source
code changes.

The CM version of DLSIZE functions as described in the MPE V/E Intrinsics
Reference Manual (32033-90007).

15-4 Changing Stack Sizes DRAFT

2/14/100 07:56

ZSIZE (NM)
(new)

The NM version of the ZSIZE intrinsic enables your NM program to alter the
size of the current DB to Z area of the CM stack by adjusting the register
o�set of the Z address from the DB address (DB to Z).

ZSIZE does not a�ect the NM stack because the demand paged virtual memory
scheme and the greatly expanded range of the HP Precision Architecture have
eliminated the need for programmatic expansion and contraction of the Native
Mode (NM) stack. The ZSIZE intrinsic is provided in NM so that you can
recompile an MPE V/E program using NM compilers without making source
code changes.

The CM version of ZSIZE functions as described in the MPE V/E Intrinsics
Reference Manual (32033-90007).

Additional Information

Refer to the MPE XL Intrinsics Reference Manual (32650-90028) for details
about Native Mode intrinsics discussed in this chapter.

DRAFT

2/14/100 07:56

Changing Stack Sizes 15-5

	Introduction
	Overview of Differences: MPE V/E and MPE XL
	Demand-Paged Virtual Memory
	Dual Programming Modes
	Switching between CM and NM
	Emulating or Translating Migrated MPE V Code
	Word Size

	Preparing a Program for Execution
	Dual Programming Modes
	Native Mode Program Development
	Writing Source Code
	Compiling
	Linking
	Running a Program
	Errors, Aborts, and Debugging

	Mixed Mode Programs
	Running MPE V/E Programs on an MPE XL System
	Emulating or Translating
	Errors, Aborts, and Debugging

	Using Intrinsics
	What is an Intrinsic?
	Status Parameter (NM)
	Generic Data Type Mnemonics
	Intrinsic Mechanism
	Intrinsics Available

	Accessing Files
	Mapped Access to Files (NM)
	HPFOPEN (NM)
	Buffers and Disk Files
	Extents
	File Codes

	Using the Command Interpreter
	HPCICOMMAND (NM)
	CI Structure and Implementation
	COMMAND intrinsic (CM)

	Getting System Information
	DISCFREE Utility (NM)
	FFILEINFO
	FGETINFO
	FLABELINFO

	Managing Processes
	HPCIGETVAR, HPCIPUTVAR, and HPCIDELETEVAR Intrinsics
	HPFOPEN
	Data Stack
	CREATE
	CREATEPROCESS
	FCONTROL
	STARTSESS Command

	Managing Resources
	HPFIRSTLIBRARY (NM)
	HPGETPROCPLABEL (NM)
	HPMYPROGRAM (NM)
	LOADPROC (NM)

	Managing Message Catalogs
	SYSCAT.PUB.SYS
	GENMESSAGE (NM)

	Converting Data Types
	Data Alignment (Word Size) (NM)
	IEEE Real Number Format (NM)
	HPFPCONVERT

	Sorting and Merging
	HPMERGETITLE and HPSORTTITILE (NM)
	SORTINIT (NM)

	Handling Traps
	Native Mode Arithmetic Traps
	Arming Traps in a Mixed Mode Programming Environment
	HPENBLTRAP (NM)
	CM and NM Trap Handler Differences
	XARITRAP (NM)
	XCONTRAP (NM)
	XSYSTRAP (NM)

	Debugging Applications
	MPE XL System Debug
	HPDEBUG (NM)
	HPRESETDUMP (NM)
	HPSETDUMP (NM)
	SETDUMP, STACKDUMP
	DEBUG Command
	ERRDUMP Command
	MPE V/E System Debugger

	Using Extra Data Segments
	Extra Data Segments (NM)
	Split Stack Mode Execution (NM)

	Changing Stack Sizes
	Compatibility Mode Stack Allocation
	DLSIZE (NM)
	ZSIZE (NM)

