
MPE SEGMENTER

Reference Manual

HP 3000 Computer Systems

ABCDE

HP Part No. 30000-90011

Printed in U.S.A. 19860801

U0886

DRAFT 2/11/100 10:13

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company

c Copyright 1982, 1986, 1988, Hewlett-Packard Company.

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which
are issued between editions, contain additional and replacement pages to be
merged into the manual by the customer. The dates on the title page change
only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition
does not change when an update is incorporated.

The software code printed alongside the data indicates the version level of the
software product at the time the manual or update was issued. Many product
updates and �xes do not require manual changes and, conversely, manual
corrections may be done without accompanying product changes. Therefore, do
not expect a one-to-one correspondence between product updates and manual
updates.

First Edition Jun 1976

Second Edition Feb 1978

Third Edition Nov 1982

Update 1 Aug 1986

MPE V MANUAL PLAN

DRAFT

2/11/100 10:13

iii

iv DRAFT

2/11/100 10:13

There are many more manuals applicable to the HP 3000. A complete list may
be found in every issue of the MPE V Communicator. Please contact your
System Manager.

PREFACE

This manual describes how you can use the MPE Segmenter to manage shared
code stored in library �les and to control the segmentation of program code.
In addition to specifying individual commands and intrinsics used within the
subsystem (Section V), the manual discusses what the Segmenter is and how it
works, and provides strategies for e�ective Segmenter use. This update to the
third edition of the MPE Segmenter Manual includes information on FPMAP
and SL Expansion.

Although the Segmenter is a powerful tool, many programmers never need
to access it explicitly. The manual, therefore, is arranged so that those
needing general information can �nd it without getting lost in technical detail.
Conversely, readers requiring more complex information should be able to
locate it quickly. Section I (INTRODUCTION TO THE SEGMENTER) is
intended for readers who need an overview or a quick review. Sections II
and III (USING THE SEGMENTER and STRATEGIES FOR USING THE
SEGMENTER) are intended for users who have become familiar with the
Segmenter and plan to use it heavily for the management of stored code and
for the control of program segmentation.

Although the manual provides basic as well as higher-level information, it is
assumed that you have some familiarity with programming, with the HP 3000,
or both. If you need further help or information, the following documentation
will provide any in-depth discussions you may require:

Using the HP 3000: An Introduction to Interactive Programming
(03000-90121)

MPE File System Reference Manual (30000-90236)

MPE V Intrinsics Reference Manual (32033-90007)

MPE V Commands Reference Manual (32033-90006)

DRAFT

2/11/100 10:13

v

CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

COMMAND Commands are shown in CAPITAL LETTERS. The names must
contain no blanks and be delimited by a non-alphabetic
character (usually a blank).

KEYWORDS Literal keywords, which are entered optionally but exactly as
speci�ed, appear in CAPITAL LETTERS.

parameter Required parameters, for which you must substitute a value,
appear in bold italics .

parameter Optional parameters, for which you may substitute a value,
appear in standard italics .

[] An element inside brackets is optional. Several elements
stacked inside a pair of brackets means the user may select any
one or none of these elements.

Example: [A]

[B] user may select A or B or neither.

When brackets are nested, parameters in inner brackets can
only be speci�ed if parameters in outer brackets or comma
place-holders are speci�ed.

Example: [parm1[,parm2[,parm3]]]

may be entered as

parm1,parm2,parm3 or

parm1,,parm3 or

,,parm3 ,etc.

f g When several elements are stacked within braces the user must
select one of these elements.

Example: f A g
f B g user must select A or B or C.
f C g

vi DRAFT

2/11/100 10:13

. . . An ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

user input In examples of interactive dialog, user input is underlined.

Example: NEW NAME? ALPHA1

superscriptc Control characters are indicated by a superscriptc.

Example: Yc. (Press Y and the CNTL key simultaneously.)

�RETURN� �RETURN� indicates the carriage return key.

DRAFT

2/11/100 10:13

vii

1

Introduction To The Segmenter

Situation Checklist

You need to study this manual in detail under these circumstances:

When you start developing programs if your facility requires large, complex
applications programs.

If you've inherited programs from another programmer and don't understand
what the Segmenter commands are doing.

If you can't prepare a program because your code segment is too large.

When you have exceeded the limit of 255 code segments in your program �le.

If you've made changes or wish to make changes to a procedure used
frequently in your facility and you wish to put it back into a relocatable
library (RL) �le or a segmented library (SL) �le.

If you wish to take a common procedure residing in a user subprogram
library (USL) �le and build it in with your code or put it into an RL �le or
an SL �le.

When you know you have infrequently-used procedures mixed into segments
with those frequently used; or you have procedures which call each other in
di�erent segments and you realize you could increase run-time e�ciency by
moving code around within or among segments.

When you frequently exhaust available Code Segment Table (CST) entries.

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-1

Virtual Memory And Segmentation

Because memory capacity is limited, all computer systems need some method
of separating code and data into units and moving these units in and out
of main memory as they are needed. HP has developed a solution based on
\virtual memory" and \segmentation."

Virtual Memory

Virtual memory is a memory management scheme which uses disc storage as
secondary memory, allowing the system to reference a virtual memory space
many times larger than main memory so that you can write programs much
larger than the physical memory available could contain. As programs are
executing, only those pieces of each program required at a particular time
actually reside in main memory. The other related segments remain on disc
until they are in turn required. Then the system makes space available for
them and brings them into main memory. Thus, segments within a program
which are idle do not take up space along with those that are actually
executing, possibly preventing the loading of code segments needed for
another program. This design allows the HP 3000 to run multiple programs
concurrently.

The process of bringing code segments from disc memory to main memory is
called \swapping". Excessive swapping slows down program execution and,
in general, makes heavy demands on system resources. The number of times
swapping occurs depends on how e�ciently a program is segmented with
respect to:

Program logic. If procedures in one segment frequently call procedures
within another segment, the operating system may have to make frequent
swaps and transfers of control.

Memory size available. If segments are too large, segments which should be
in main memory together because of their logical relation will have to be
swapped in and out. If segments are uneven in size, the system will spend
much time seeking appropriate space for each segment.

The HP 3000 allows you to tailor segmentation to the logic of your program
and the memory space available in your system.

1-2 Introduction To The Segmenter DRAFT

2/11/100 10:13

Segmentation

Segmentation is the separation of code into various-sized pieces, or \segments,"
according to logical, rather than physical, considerations. It is the most
e�cient means of implementing the HP 3000's virtual memory design. The HP
3000 can follow system defaults to segment your program. You can also handle
the segmentation yourself, using embedded control statements to the compiler
or commands to the Segmenter, which is a subsystem of the MPE operating
system. Several features contribute to the exibility of the segmentation
design.

Separation of code and data

Code consists of the executable instructions that make up a program
or subprogram. Data is the values and arrays used by the program or
subprogram. In most computer systems, prepared programs consist of
intermixed code and data. For example, within a subprocedure there are
program locations reserved by the compiler for the return addresses of other
subroutines and space set aside for the storage of local variables.

The HP 3000 system separates programs into those elements that do not need
to be altered and those that do. Thus, prepared HP 3000 programs consists of
separate segments for code and for data. The two are never intermixed (with
the exception that program constants may be present in code segments). Since
data changes dynamically during execution, it must be written back to disc
storage after each modi�cation. Code, on the other hand, is unchanging during
execution and needs only to be read into main memory, never written back to
disc. When a code segment is no longer needed, it is simply overlaid by another
code segment. Should the segment be needed again, another copy can be read
in from the original on disc.

Because it separates code from data, the HP 3000 reduces the amount of
material that must be swapped. If code were intermixed with data, the system
would have to swap material that had not changed along with material that
had.

Although code is not modi�able during execution, you can use the Segmenter
to create alternate versions of programs from the compiled source code.

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-3

Sharable code environment

Because the HP 3000 maintains code and data in strictly separate
environments, and because code is non-modi�able during execution, HP 3000
code is sharable among many users. HP 3000 code is also re-entrant: when a
program is interrupted during execution of a code segment and another user's
execution needs the same segment, that segment can be used, is completely
protected against modi�cation, and will be returned intact to the previous
user's execution. Hewlett-Packard's design for code handling uses main
memory with optimum e�ciency.

Variable segment size

In the HP 3000 design, segment sizes are not �xed, as are the code and data
entities in some designs, but vary according to the logical needs of each unit of
code or data: code segments may be up to 16,383 words in length, and data
segments may be up to 32,767 words in length. Thus, a particular subprogram
can always be contained within one segment rather than arbitrarily divided
between two physical pages. The amount of swapping necessary is reduced, and
memory space is not wasted with partially-�lled pages.

Segmentation is one of the key features in the design of the HP 3000. Good
segmentation can enhance your program's execution e�ciency as well as
lessening the overall load on system resources.

Although the management of code segments (i.e., the transfer of segments from
disc to main memory) is completely transparent to your program, the steps you
take to control segmentation a�ect how e�cient that management can be. The
Segmenter subsystem is a powerful tool which allows you to manipulate code
and to tailor segmentation, assuring e�cient individual programs and e�ective
use of your system's resources.

1-4 Introduction To The Segmenter DRAFT

2/11/100 10:13

The Segmenter

The Segmenter is a subsystem of the MPE operating system. It performs
all intermediate functions between source code compilation and program
execution. One of its primary responsibilities is to gather and link into pieces,
or segments, most of the resources needed to form an executable program �le.
The Segmenter gives programmers considerable control over the arrangement
of code within segments, which in turn a�ects the e�ciency of individual
programs and the economical use of system resources in general.

The Segmenter In Context: The Program Development Process

To get a clear idea of what the Segmenter is and how it works, it helps to have
in mind the process of program creation. Figure 1-1 provides an overview of
the entire process.

An analogy will help to summarize the process and to highlight some
particularly important points.

Think of the various elements and events of the program development process,
taken together, as forming a multi-oor condominium, with the elements
corresponding as follows:

Relocatable Binary Modules (RBMs): rooms.

Entry points: doors.

Segments: oors (groups of rooms).

Procedure libraries: �les of pre-designed common areas, such as hallways,
bathrooms, kitchens.

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-5

Figure FIGURE11 here.

Figure 1-1. Program Development Overview

User Subprogram Library (USL): preliminary plans.

Program �le: �nal plans.

The program development process is analogous to the architectural process of
designing the condominium. The architect takes her ideas and translates them
into a preliminary plan. This oorplan may contain one or more rooms per
oor, and each room may have one or more doors.

Since these are preliminary plans, the architect can rearrange rooms and even
move rooms to di�erent oors. She can also go to her portfolios for copies of
already-created rooms or groups of rooms to incorporate into one of her oors.

When the architect is �nally satis�ed with the design, she prepares the �nal
plan, inking in the lines and in e�ect locking the doors, rooms, and oors into a
permanent arrangement.

Since a copy of the preliminary plans still exists, the architect can get them
out and go through the process as often as she wishes to create other, slightly
di�erent �nal plans to be followed during actual construction (program loading
and execution).

In the following explanation, the boxed portions of the accompanying diagrams
indicate which parts of the process are active for that step.

1-6 Introduction To The Segmenter DRAFT

2/11/100 10:13

Compilation

The �rst step, illustrated in Figure 1-2, is to translate the source program units
(sometimes called procedures, functions, or subroutines) into blocks of machine
instructions called \relocatable binary modules", or RBMs. This is done by the
various MPE language compilers, which automatically store the RBMs in a
specially-formatted �le called the user subprogram library, or USL.

Figure FIGURE12 here.

Figure 1-2. Compilation

Relocatable Binary Modules.. An RBM is the smallest unit of object code
generated by a compiler. RBMs for the various subprograms contain program
instructions and external references (references to procedures in other RBMs
or in library �les). In addition to these subprogram RBMs, the compiler
constructs a main, or outer block, RBM, which contains instructions for the
main program as well as program constants. The main RBM may also contain
�xed addresses for locating items in the data stack; this information will be
used later in the program development process.

The di�erent compilers have their own speci�c conventions for constructing
program units into RBMs. See Appendices A through F for a discussion of
these.

Some programming languages (FORTRAN and SPL) allow you to specify
parameters within RBMs as \entry points". These are points within the code
unit which you can selectively instruct the system to use as starting locations
for a particular action.

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-7

When the compiler places the RBMs in the USL �le, it \associates" them with
particular code segments. Actual code segments do not yet exist, but you can
think of the RBMs as \belonging" to their associated segments.

The RBMs are relocatable, which means that using the Segmenter you can
move RBMs around and associate them with di�erent code segments. You can
also copy RBMs from other USLs, add new RBMs to a USL, or purge RBMs.

An analogy will help clarify some of the important characteristics of RBMs.

Suppose you are designing posters for a presentation. Each poster will contain
one or more pictures or diagrams. You lay the pictures out on the poster board
but leave them unglued, so you can rearrange them on the boards or move
them from board to board as often as you wish. Once they are glued down,
however, their positions are �xed, and they can no longer be moved around.

Think of RBMs as the diagrams and the code segment names as the poster
board. While in the USL, the RBMs can be rearranged and associated
with one code segment name (board) or another. At preparation time, the
Segmenter looks at the current arrangement and applies the \glue" to form the
�nal poster, or code segment, which is output to the program �le.

However, unlike the pictures which were glued to the poster board, the pieces
of code used to form the code segments still exist in the USL, waiting to be
further manipulated or changed in another cycle of segment design. The
picture, or code, glued into the code segment was just a copy of the code
modules found in the USL.

User Subprogram Libraries (USLs).. Users often think of code as residing only
in program �les, but in Hewlett-Packard's design for code-handling, code can
also be stored, maintained, and managed in three di�erent kinds of specially
formatted �les called \libraries." The user subprogram library, or USL, is the
�rst of the procedure libraries used in the program development process. It is
the �le used for compiler output and forms the basis for the other two libraries
(\Relocatable Libraries," or RLs; and \Segmented Libraries," or SLs). The
USL is the �le you can manipulate to achieve e�ective segmentation.

In addition to an RBM for the main program and each subprogram successfully
compiled, the compiler generates and places the following into the USL:

A directory to keep track of the RBMs stored in the USL.

Data stack information that will be required at a later stage.

1-8 Introduction To The Segmenter DRAFT

2/11/100 10:13

A major advantage of this library is that once code is compiled into the USL,
the programmer can manipulate it and even copy it into another USL without
having to perform time-consuming recompilation.

Users can also compile several versions of a procedure into a USL, using
the Segmenter's indexing capability to select at execution time the version
they wish to use. Although USLs are usually created by the compiler,
the programmer can create them, using commands within the Segmenter
subsystem. Segmenter commands also allow users to list the contents of the
USL they are currently working with.

Preparation

The second step in the program development process is to \prepare" the
USL. This step, which is illustrated in Figure 1-3, is performed by the MPE
Segmenter subsystem, and results in a \program �le" containing:

Loadable code segments.

A skeleton data segment, or \stack".

The Segmenter may bring in procedures from a \relocatable library" (RL)
to resolve external references made within the RBMs, such as a call to a
procedure which �nds the cosine of a number generated within the program.

Figure FIGURE13 here.

Figure 1-3. Preparation

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-9

Code segments.. During preparation, the Segmenter uses the associations
found in the USL to bind the RBMs into one or more code segments. It
is important to realize that no segments actually existed in the USL. By
associating RBMs with segments, the compiler was, in e�ect, looking forward
to segments which would eventually be created. That creation is the sole
responsibility of the Segmenter.

As it establishes the necessary linkages between RBMs, the Segmenter creates
an \external reference list", which contains information about those RBMs not
present in the program �le, but which are referred to within it.

The Segmenter also generates a Segment Transfer Table (STT) for each code
segment it creates. This table contains linkage information, used during
execution when control has to transfer from one RBM within the segment to
another. If control has to transfer to an RBM in another segment, the STT
will keep track of that linkage as well.

Code segments may contain only non-modi�able material; that is, material not
subject to change during execution. Therefore, code segments may contain
program instructions, but they may not contain data. The only exception to
this rule is that program constants (which are non-modi�able data) may be
contained in code segments.

Although you cannot change the code segments themselves, you can
manipulate the original copy of the code, which resides in the USL, and
re-prepare it into a variation of your �rst code segment.

In summary, each code segment contains the following:

The instructions of the program itself.

Program constants.

Addresses for locating items in the data stack.

An external reference list.

An STT for keeping track of intra-segment and inter-segment transfers.

The skeleton data segment, or stack.. The Segmenter is also responsible for
creating a skeleton data segment (or stack), based on references in the code,
and placing it in the program �le. Each program �le will have only one data
segment.

1-10 Introduction To The Segmenter DRAFT

2/11/100 10:13

To construct the data segment, the Segmenter uses the initial stack information
compiled into the USL. That information de�nes and initializes storage space
for data that is considered global (available to all program units directly). This
area, usually referred to as the Primary DB, contains information about and
pointers into the other parts of the data segment. A secondary storage area
accessible to all program units indirectly through local or global pointers is
de�ned as well, and parts of it may also be initialized. The secondary storage
area is called the Secondary DB.

Relocatable libraries.. The relocatable library, or RL, is the second of the three
libraries which may be accessed during the program development process. RLs
contain procedures, in RBM form, needed for program execution. They can be
created by the programmer, using Segmenter commands, from the material in
a USL. Programmers can also use Segmenter commands to add RBMs from
a USL to an already-built RL, to purge RBMs within RLs, and to list the
contents of the currently-managed RL.

When a program makes a call to some or all of the RBMs kept in an RL �le,
the Segmenter copies the RBMs at preparation time and binds them to the
calling program as a single segment, known as the \RL segment." Di�erent
programs will likely ask for di�erent RBMs or combinations of RBMs and will
need to use them in unique ways, so the RL segment must be unique to each
program.

No segmentation information accompanies the code in RL RBMs, as it does
those in a USL. Since all required RBMs are added to the calling program
�le as a single segment, individual segment associations for each RBM are
unnecessary. The Segmenter binds the single RL segment to the code segment
it is constructing from USL material.

Since a copy of requested RL material is prepared into the program �le, your
program �le will have to be re-prepared should the RL code change. In fact, all
program �les prepared with that code will have to be re-prepared.

RLs are used to keep procedures that are likely to be used with some frequency
by more than one programmer. Keeping such common procedures in an RL
means that programmers can access them more e�ciently: they can use a call
to the procedure and receive a copy of it for their program �le. They do not
have to rewrite it each time it is needed in a new program.

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-11

Di�erent programming languages have di�erent rules for the speci�c kinds of
code that may be placed in an RL; these are discussed in the reference manual
for each language. All languages allow you to place either global or non-global
procedures in an RL. Global procedures reference the global storage area of
a program's data stack, so that the system will have instructions on how to
handle the RL code that are appropriate to each particular �le in which it is
used. Non-global (also called local or dynamic) procedures are more general
and can be prepped and run without any knowledge of the program's data
stack.

Execution

In the third and �nal step, illustrated in ***<xref FIGURE14>: undefined***,
the MPE Loader allocates entries in the HP 3000 Code Segment Table (CST)
for each of the program �le's SL code segments and in the code segment table
extension for each of its other code segments. It also allocates an entry in the
HP 3000 Data Segment Table for the process's data stack. These two tables
keep track of all the segments needed for your program's execution, as well as
for the execution of all other programs ready to run at that time. The Loader
also searches segmented libraries to resolve any external references remaining in
the program �le.

Insert artwork here.

Figure 1-4. Execution

1-12 Introduction To The Segmenter DRAFT

2/11/100 10:13

Segmented libraries.. The Segmented Library, or SL, is the third of the three
libraries which may be accessed during the program development process. An
already-existing system SL contains procedures applicable to all HP 3000
systems, such as the procedure for program termination. Segmenter subsystem
commands also allow the programmer to create SLs from the material in one or
more USLs, to add segments to an already-built SL, to purge segments within
SLs, to list the contents of the currently-managed SL, and to copy the contents
of one SL into another SL.

SLs and RLs share three important characteristics. Both:

Contain procedures needed for program execution.

Are created by the programmer, using Segmenter commands, from USL
material.

Are used to permit programs to share procedures.

However, the two libraries are intended for di�erent purposes, so there are
important di�erences in how and when they are constructed and used.

First, as its name indicates, the segmented library contains procedures in
segmented form, not in RBM form as in the RL. When you use the segmenter
to build an SL �le, it uses the USL's segment association information to
bind the required RBMs into code segments as it places them into the �le.
Procedures thus exist in the SL as runnable code segments.

SLs are intended for the storage of procedures with wider applicability
than those placed in RLs. Examples are general utility procedures such as
FOPEN, which are used in exactly the same way by every calling program.
Because of this generality, the Segmenter does not have to allow for the unique
combinations and uses of procedures that occur when a program calls for
procedures from an RL. Instead, it can prepare, or segment, such general
procedures at the moment you specify that you want them placed in an
SL. Since the segmentation is not altered when di�erent programs reference
procedures in an SL, these segments may be shared concurrently by many
programs.

While RLs contain code that can be copied and bound to each calling program
�le, SLs contain code that can be shared; that is, every program references the
original version of the code. SL code is not copied or in any way combined with
the program �le. When a program calls an SL procedure, the procedure is read

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-13

into memory from its place in disc storage. This method makes economical use
of system resources, since each SL procedure exists only once in main memory
and does not need to be brought in as part of every program �le that requires
it.

As is true of RLs, the various programming languages have di�erent rules for
what kinds of code may go into an SL. The general requirement, however,
is that SLs can only contain non-global procedures. These are procedures
that make no references to the global storage area of the data stack on which
they will run: all parameters must be passed in explicitly. SL procedures may
not read information about the stack's global storage area. Sharability is the
primary feature of SL procedures. If they required knowledge of global storage,
they wouldn't be sharable, since each program's global storage area is di�erent.

While the Segmenter links RLs to the program �le at preparation time, SLs
don't enter the program development process until run time. They are used
for the �nal resolution of external references, and their linkage to the program
�le is handled by the Loader, rather than the Segmenter. The Segmenter
reserves space for called SL procedures in the Segment Transfer Table (STT)
at preparation time, but the entries are actually made by the Loader when it
searches the SL library �les at run time.

You may build multiple SLs at each of three levels:

SL.group.acct: The Group Library SL. It is the library of the group under
which the program �le is stored and is readable by any user
who can access the group.

SL.PUB.acct: The account's Public Library SL. It is the library of the public
group of the account under which the program �le is stored. It
is readable by any user who can access the account.

SL.PUB.SYS: The System Library SL. It is the library of the public group
of the System account. It can be accessed by all users of the
system.

If your program �le is a permanent �le, then then group and account refer
to the group and account where the program �le resides, which may or may
not be the same as your log-on group and account. However, if your program
�le is not a permanent �le but is a job/session temporary or passed �le, then
group and account refer to your log-on group and account. The LOADPROC
intrinsic, which you may use at times to dynamically load and unload SL

1-14 Introduction To The Segmenter DRAFT

2/11/100 10:13

procedures while your program is running, searches the SL libraries according
to the user's log-on group and account, or the group and account where the
program resides, as speci�ed by the 'LIB ' parameter. See the discussion
of the LOADPROC intrinsic in the MPE V Intrinsics Reference Manual
(32033-90007) for more information.

The search order and the number of libraries searched depend on the the ;LIB
parameter speci�ed as part of either the :RUN or the :PREPRUN commands. The
table below illustrates this relationship.

PARAMETER SEARCH ORDER

;LIB=G SL.group.acct

SL.PUB.acct

SL.PUB.SYS

;LIB=P SL.PUB.acct

SL.PUB.SYS

;

LIB=S
(or no LIB parameter)

SL.PUB.SYS

While you can search only one RL during any one program preparation
process, you can search one SL at each of the levels (group, account, and
system) during any one execution process.

The Code Segment Table (CST) and the Data Segment Table (DST) keep
track of the loading and unloading of the necessary segments as program
execution proceeds. Although their operation is completely invisible to users,
some explanation of what they are and how they work will help complete your
picture of the Segmenter.

The code segment table. The CST is a main memory-resident table which is
maintained by the MPE operating system. It contains a list of code segments
that are being referenced by executing programs and keeps track of whether
these segments are present in main memory or are out on disc. Entries in the
CST are dynamically allocated by the operating system as programs are loaded
and unloaded.

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-15

Although it is often referred to as a single table, the CST is actually divided,
logically and physically, into two portions:

The CST contains entries for coded segments in segmented libraries
(including the system SL, which contains large chunks of the MPE operating
system). Some entries or parts of entries in the CST also contain various
service procedures for internal interrupts, external interrupts, system
intrinsics, and library procedures.

The CST Extension (CSTX) contains blocks of code segment entries, one
block for each loaded program. Note that \loaded" as used here does not
necessarily mean \loaded into main memory." Rather, it means that since
the segment is part of an executing program, information about it has been
loaded, or entered, into the CSTX. The segment itself may still be waiting
out on disc.

The CST contains space for 2048 entries. The number of blocks of entries in
the CSTX is con�gurable and can be set at system con�guration time, but
any one block has space for no more than 255 code segment entries. Thus, a
program may contain as many as 255 code segments. One larger than that
would not be runnable, since there would not be enough room in the CSTX to
enter all the information the system needs in order to �nd and manage all the
segments needed for execution.

Each segment required for the program receives a unique identifying number
(the code segment number), and a CST entry which consists of a single 4-word
descriptor providing the following information:

Control information (such as whether the segment is present in main memory
or is out on disc).

The segment's length.

The segment's disc (or starting) address if it is not present in main memory.

When the system needs to read the code segment into main memory, it uses
this information to determine where to start reading and how much to read.

Since SLs are sharable, two di�erent programs running at the same time may
be using one particular SL code segment. If a CST entry has already been
made for a segment, a new entry is not made. Instead, the existing entry is
used.

1-16 Introduction To The Segmenter DRAFT

2/11/100 10:13

The data segment table. Like the Code Segment Table, the Data Segment
Table is a main-memory resident table which is maintained by the MPE
operating system. It contains a list of data segments currently in use by the
operating system and user programs. Each segment receives a four-word entry
recording its length, location, presence or absence in main memory, and other
characteristics.

The length of the table is determined at system generation time. Entries in
the DST are dynamically allocated by the system as programs are initiated or
terminated, or special capability processes request or release additional data
segments.

Summary: the program development process

Events which occur both before and after the Segmenter's part in program
development a�ect the �nal segmentation of your program. To ensure good
results, you need to keep the Segmenter's purpose and operation in mind as
you begin developing your programs, even if you are not yet planning to control
the process explicitly. For instance, what you compile into your USL will
determine what is available to be placed into an SL, which in turn will a�ect
what the loader will need to do at :RUN time to run your program, and how
e�ciently it will do so.

DRAFT

2/11/100 10:13

Introduction To The Segmenter 1-17

2

Using The Segmenter

Accessing And Exiting The Segmenter

In an interactive session, you access the Segmenter implicitly whenever you
use the MPE :PREPARE command, or when you use any of the combination
commands such as:

:PREPRUN object code �lename (prepares and executes in one step)

:BASICPREP source code �lename (compiles and prepares in one step)

:BASICGO source code �lename (compiles, prepares and executes in one step)

If you want to directly manipulate code yourself, you need to access the
Segmenter explicitly. Enter the following in response to the MPE colon
prompt:

:SEGMENTER [list�le]

where list�le is an ASCII �le from the output set (formal designator SEGLIST)
to which is written any listable output generated by Segmenter commands.
By default, all such listings are sent to $STDLIST only. If you want to route
your listings to the line printer, you must set up a �le equation and use a �le
reference when you issue the :SEGMENTER command. For example:

:FILE ELIZ;DEV=LP

:SEGMENTER *ELIZ

The designator SEGLIST should not be used as the actual �le designator, since
it is the formal �le designator.

If you decide you want a line printer listing after you are already in the
Segmenter subsystem, you cannot use the BREAK key. Instead, you will have

DRAFT

2/11/100 10:13

Using The Segmenter 2-1

to -EXIT, make the �le equation, and re-invoke the Segmenter using the �le
reference.

When you enter the :SEGMENTER command, the Segmenter responds with
the following message and displays a dash prompt character:

HP32050A.03.00 SEGMENTER/3000 (c) HEWLETT PACKARD CO. 1986

-

You can now enter Segmenter commands. To end Segmenter operation, use the
EXIT command:

text

-EXIT or -E

The system responds with the following message and returns you to the MPE
colon prompt:

END OF SUBSYSTEM

:

Note You may also explicitly call the Segmenter and provide
Segmenter commands in batch mode, but since the dash
prompt character is supplied by the system as your job is
running, it cannot be part of your input.

All examples in this manual were run in interactive mode and
thus include the dash prompt. User input is underlined in all
dialogue where it is necessary to distinguish the input from
computer output. Editorial comments are enclosed in pairs of
asterisks (**comment**).

2-2 Using The Segmenter DRAFT

2/11/100 10:13

Manipulating RBMs

Although the compilers and the Segmenter provide the required RBM
management in most circumstances, you may want to take explicit control of
RBMs for one of the following reasons:

To use common code from another USL �le.

To change the number of code segments associated with a program.

To create more e�cient programs by relocating or purging RBMs or
activating/deactivating a version of an RBM.

RBMs are units of source code which have been compiled into a User
Subprogram Library (USL). More than one version of an RBM may be
compiled into the same USL, and the various RBMs may be generated by
di�erent compilers. This \subprogram compatibility" is possible because all
of the HP 3000 compilers output information in exactly the same format,
generated by the same �le system. The HP 3000 gives you two options for
controlling RBMs: compiler control and Segmenter control.

Compiler Control of RBMs

You can embed control commands ($CONTROL) in your source code which
direct the compiler to do the following:

Assign speci�ed RBMs to speci�ed segments.

Limit the size of the segments that can be generated.

Tell the compiler to generate code only for the subprogram(s) supplied in the
text �le, suppressing generation of the outer block.

Give the main (outer block) RBM the speci�ed name.

Refer to Appendices A through F for information about the compiler
$CONTROL commands, or to the reference manuals for the various languages
if you need more detailed information.

To manipulate your code after the compiler has translated it into RBMs and
placed the RBMs in a USL, you can use the Segmenter. Segmenter control
provides you with di�erent capabilities than compiler control; of the options

DRAFT

2/11/100 10:13

Using The Segmenter 2-3

listed above, the only points of overlap are the assignment of RBMs to speci�c
segments and the speci�cation of segment size.

Further, as the compiler options listed above indicate, the compiler's
management of RBMs is limited to control of segmentation. The Segmenter
gives you this capability and several others as well. While $CONTROL
commands allow you to make some some preliminary decisions about
segmentation, Segmenter commands provide you with �ne-tuning capabilities,
which you would be likely to want after you have run your program at least
once and know where it could be improved.

Since the HP 3000 allows you to manipulate RBMs with the Segmenter as well
as the compiler, you can do such �ne tuning without having to recompile any
code.

Managing RBMs With The Segmenter

The Segmenter identi�es each RBM by its procedure name (the name you gave
it in your source code), which can be �fteen alphanumeric characters with
an initial alphabetic character. SPL also allows the apostrophe (') except as
initial character. The Segmenter also identi�es each RBM by a unique \version
index."

THE VERSION INDEX.

Since you can compile more than one version of an RBM into the same USL,
several Segmenter commands allow you to specify which version of an RBM
you wish to access. The index (also called index integer, version number, index
parameter, or version index) is the value which lets you state which version
you want the Segmenter to use. You can specify the index in all commands
which allow you to specify the name of an RBM as a parameter. Its use is
always optional: the Segmenter uses only one version of an RBM during any
one preparation process, and the default is the most recent active version of the
speci�ed RBM. The index designations and defaults are as follows:

2-4 Using The Segmenter DRAFT

2/11/100 10:13

INDEX=n INDEX=0 (Default)

ALL COMMANDS
EXCEPT CEASE AND
USE

nth version, active or
inactive

most recent active version

CEASE nth version, active or
inactive

most recent active version

USE nth version, active or
inactive

most recent inactive version

Study the -CEASE and -USE commands in Section IV of this manual for more
information about why the index works di�erently with them than with the
other Segmenter commands.

In the following example, the programmer has used the -LISTUSL command
to verify the contents of a USL. The command lists the segment names and
the RBMs associated with each. The USL in the printout contains only the
segment SEG'. Four versions of the RBM ABC are associated with SEG'; the
oldest version (the �rst one compiled into the USL) is known to the Segmenter
by the index 4 and appears on the bottom in this listing. Note that although
the Segmenter knows each RBM by its index, the index numbers do not
actually appear on the listing. (Refer to \Listing The USL" for an explanation
of the �elds in this listing.)

-USL MYUSL

-LISTUSL

USL FILE MYUSL.PUB.WHITMAN

SEG'

ABC 16 P A C N R

1

ABC 16 P I C N R

2

ABC 16 P I C N R

3

DRAFT

2/11/100 10:13

Using The Segmenter 2-5

ABC 16 P I C N R

4

FILE SIZE 144000

DIR. USED 70 INFO USED 130

DIR. GARB. 0 INFO GARB. 0

DIR. AVAIL. 14310 INFO AVAIL. 127050

Each RBM retains its particular index until an RBM is deleted from or added
to the USL. Then the index is reset. With a deletion, all older versions (those
with higher index numbers than the deleted RBM) receive a new index: their
old value minus one. With an addition, the newest RBM receives the index 1
and all older versions receive their old value plus one. Thus, while each RBM's
index number is unique, it is not �xed. An illustration will help you visualize
each situation:

ABC **1** ABC **1** ABC **1**
ABC **2**|||- ABC **1** ABC **2;previously 1**
ABC **3** ABC **2** ABC **2** ABC **3;previously 2**
ABC **4** ABC **3** ABC **3** ABC **4;previously 3**

Before deletion After deletion Before Addition After Addition
of version 2. of version 2. of new version. of new version.

There will not always be a correspondence between the way the Segmenter
accesses the RBM versions and the way they appear in your listing. In fact,
the listing order and the access order will correspond exactly only until you
move RBMs from one segment to another. When you do this, the RBM in
e�ect takes its index number with it: that is, the third version is still the third
version to the Segmenter even if it changes its position within the USL.

This next example shows the currently-managed USL before and after we have
used the command

-NEWSEG SEGASK, ABC (1)

to move version 1 of RBM ABC from the segment SEG' to the segment
SEGASK.

SEG' SEG'

ABC

2-6 Using The Segmenter DRAFT

2/11/100 10:13

1 - to be moved

ABC

2

ABC

2

XYZ

1

XYZ

1

XYZ

2

XYZ

2

SEGASK

SEGASK ABC

1 - moved

ABC

4

ABC

4

ABC

5

ABC

5

As you will see in the following discussion, the index signi�cantly increases your
power and exibility in manipulating RBMs. However, to use it successfully
you will need to keep your own records, either on-line or o�-line, of what is in
the various versions. You will also have to remember how the Segmenter uses
the index and how the correspondence between the order of accessing and the
order of your USL listings can change.

Controlling and altering segmentation

You can override the Segmenter's default manipulations of RBMs, using
Segmenter commands to:

Control segment association.

DRAFT

2/11/100 10:13

Using The Segmenter 2-7

Purge RBMs.

Activate/deactivate RBMs.

Add new RBMs to a USL.

Transfer RBMs from other USLs to the one you are currently using.

Note: the �nal item is discussed under Managing the USL.

Controlling Segment Association.. The -NEWSEG command allows you to
change the segment name associated with an RBM, thus assigning the RBM to
a di�erent code segment the next time it is prepared onto a program �le. With
the command

-NEWSEG SUB, TIMESTWO

you are associating the RBM TIMESTWO with the segment named SUB.
Whatever segment association TIMESTWO had previously no longer exists,
since each RBM can be associated with only one segment.

Purging RBMs.. If you have revised a program, you may have completely
changed a subroutine or removed it from your program altogether. You can use
the Segmenter to purge one or more versions of the RBM, or the entire segment
in which the RBM resides. With the command

-PURGERBM UNIT,MAIN,2

we are purging the second-newest version of the RBM MAIN .

With

-PURGERBM UNIT, MAIN

the Segmenter will purge the most recent active version of the RBM MAIN,
since we speci�ed no index.

If we specify

-PURGERBM SEGMENT, MAIN

the Segmenter will purge the entire segment in which the RBM MAIN resides.

If we input only

-PURGERBM,MAIN

2-8 Using The Segmenter DRAFT

2/11/100 10:13

without specifying either UNIT or SEGMENT, the Segmenter defaults to
UNIT, thus shortening the amount of information you must type when you
are managing RBMs as well as protecting you from accidentally purging more
RBMs (or more versions of an RBM) than you intend to.

<xref FIGURE2-1>: undefined illustrates the use of the -PURGERBM
command.

Activating/Deactivating RBMs.. Segmenter commands allow you to activate or
deactivate RBMs according to various \entry points." An entry point is any
location in a routine to which control can be passed by another routine. The
�rst executable statement of a main program or a procedure is an implicit
entry point. Called the \primary entry point", it is the natural beginning point
for execution. The allowance of multiple entry points permits you to begin
execution of a main program or procedure at various secondary entry points.

Each RBM is identi�ed to the operating system by the symbolic name, or
label, of the primary entry point for the program unit which resides in the
RBM. In ***<xref FIGURE2-2>: undefined***, we have compiled a simple
FORTRAN program and then used the -LISTUSL command to verify the
contents of the USL. Since we did not specify a name for our main RBM when
we compiled, the operating system gives it the default symbolic name MAIN'.
The subroutine is identi�ed as TIMESTWO, the speci�ed name of its primary
entry point. Note that the RBMs are further identi�ed by their association
with the segment SEG', to which they will belong after preparation.

An \activity bit" is associated with each entry point (the primary entry point
and any secondary entry points). This bit determines whether the program
unit currently can be entered at the corresponding entry point; that is, the bit
determines whether you can start executing your program at that location.
When a compiler writes an RBM to a USL �le, all entry points are set to the
active (entry allowed) state and the compiler deactivates any active versions of
a particular RBM already in the USL. With the Segmenter, you can switch any
activity bit in the USL to the inactive (entry disallowed) state and back again,
if you wish. (See the -CEASE and -USE commands, Chapter 4.)

:SEGMENTER

HP32050A.03.00 SEGMENTER/3000 HEWLETT-PACKARD CO. 1986

DRAFT

2/11/100 10:13

Using The Segmenter 2-9

-USL $OLDPASS

-LISTUSL

USL FILE $OLDPASS

SEG'

TIMESTWO 16 P A C N R

MAIN' 32 OB A C N

FILE SIZE 144000

DIR. USED 70 INFO USED 130

DIR. GARB. 0 INFO GARB. 0

DIR. AVAIL. 14310 INFO AVAIL. 127050

-NEWSEG SUB,TIMESTWO

-PURGERBM MAIN'

Add segment SUB. Put RBM TIMESTWO into SUB. Delete RBM MAIN'

-LISTUSL

USL FILE $OLDPASS

SUB

TIMESTWO 16 P A C N R

SEG'

Null segment

FILE SIZE 144000

DIR. USED 76 INFO USED 130

DIR. GARB. 31 INFO GARB. 112

DIR. AVAIL. 14302 INFO. AVAIL. 127050

-PURGERBM SEGMENT, SEG'

-LISTUSL

USL FILE $OLDPASS

2-10 Using The Segmenter DRAFT

2/11/100 10:13

SUB

TIMESTWO 16 P A C N R

FILE SIZE 144000

DIR. USED 76 INFO USED 130

DIR. GARB. 73 INFO GARB. 130

DIR. AVAIL 14302 INFO AVAIL. 127050

Figure 2-1. Using the Segmenter -PURGERBM Command

:FORTRAN SEG8

PAGE 0001 HP32102B.00.07

00001000 $CONTROL FREE

INTEGER A(4)

ACCEPT A

CALL TIMESTWO(A)

DISPLAY A

STOP

END

SUBROUTINE TIMESTWO(A1)

INTEGER A1(4)

DO 1 I=1,4

1 A1(I)=A1(I)*2

RETURN

END

**** GLOBAL STATISTICS ****

NO ERRORS, NO WARNINGS ****

TOTAL COMPILATION TIME 0:00:01

TOTAL ELAPSED TIME 0:00:03

END OF COMPILE

DRAFT

2/11/100 10:13

Using The Segmenter 2-11

:SEGMENTER

HP32050A.03.00 SEGMENTER/3000 HEWLETT-PACKARD CO. 1986

-USL $OLDPASS

-LISTUSL

USL FILE $OLDPASS

SEG'

TIMESTWO 16 P A C N R

MAIN' 32 OB A C N

FILE SIZE 144000

DIR. USED 70 INFO USED 130

DIR. GARB. 73 INFO. GARB. 130

DIR. AVAIL. 14302 INFO. AVAIL. 127050

Figure 2-2. Procedure Entry Points

The control given you over the activity/inactivity of entry points is a very
important feature, since it allows you to associate many versions of an RBM
with one segment, selectively deactivating those you don't want prepared into
the program �le. For large applications this is an invaluable aid, making costly
recompiles unnecessary during test phases. Suppose, for example, that you
make a change to a subprogram, compile it into a USL, and then prepare
your program from this USL, having deactivated the �rst-version RBM. If the
change turns out to be the source of a serious bug in the program, you could
simply deactivate the new version and reactivate the previous version. Your
program would be quickly returned to functional status without the need for
time-consuming and costly recompilation.

In a similar way, the activate/deactivate control also increases your power and
exibility during the program design stages. You can construct alternative
programs, varying your main program and one or more subprograms at a time,
and test them without having to recompile the entire program each time you
change something.

2-12 Using The Segmenter DRAFT

2/11/100 10:13

When the Segmenter prepares a program �le from the USL, all RBMs having
at least one active entry point are extracted from the USL for segmentation in
the program �le. Those associated with identical segment names are placed
in the same segment. To permit the creation of a program �le that can be
executed properly, only one outer-block or main-program RBM can have
active entry points, along with the RBMs for the subprograms or procedures.
The presence in a USL of two active RBMs of the same name will cause a
prepare failure. Thus, through your manipulations with the -CEASE and -USE
commands, you could have several active RBMs of the same name in a USL
�le, but must de-activate all but one of the RBMs before trying to prepare the
USL into a program �le.

In ***<xref FIGURE2-3>: undefined***, we use the -CEASE command
to deactivate the two most recent versions of the RBM ABC, and the -USE
command to activate a previous version. Then we use -LISTUSL to verify the
contents of the USL.

Note that index information is not part of the data provided by the -LISTUSL
command. You must remember the listing order and the associated index
numbers.

With both the -CEASE and -USE commands, the index 0 is assumed if you do
not specify an index number. For the -CEASE command, 0 indicates the most
recent active version. For the -USE command, it indicates the most recent
inactive version.

As with the -PURGERBM command, you can use -CEASE and -USE to
activate/deactivate a single entry point within a speci�ed RBM, all entry
points in the speci�ed RBM, or all entry points in all RBMs associated with
the speci�ed segment name. The default is the single entry point associated
with the speci�ed name.

Putting Additional RBMs in a USL.. As you are designing and changing
programs, you may need to put additional RBMs in a USL, either by copying
already-existing code from another USL or adding new RBMs. The procedures
for copying code are covered in the discussion following this one (Managing
User Subprogram Libraries). To add new RBMs, you simply create a source �le
with the new subroutine(s) and compile it into the USL. With the compiler
command

:FORTRAN SUB72, MASTRUSL

DRAFT

2/11/100 10:13

Using The Segmenter 2-13

we instruct the compiler to compile the new subroutine SUB72 into the
previously-created USL MASTRUSL.

:SEGMENTER

HP32050A.03.00 SEGMENTER/3000 (C) HEWLETT-PACKARD CO. 1986

-USL $OLDPASS

-LISTUSL

USL FILE $OLDPASS.PUB.SPL

SEG'

INDEX

ABC 1 P A C N R

1, 0 Most recent active

ABC 1 P I C N R

2

ABC 1 P I C N R

3

ABC 1 P I C N R

4

FILE SIZE 144000(620. 0)

DIR. USED 307(1.107) INFO USED 4(0. 4)

DIR. GARB. 0(0. 0) INFO GARB. 0(0. 0)

DIR. AVAIL. 14071(60. 71) INFO AVAIL. 127374(535.174)

-CEASE ABC(1)

-USE ABC(2)

-LISTUSL

USL FILE $OLDPASS.PUB.SPL

SEG'

2-14 Using The Segmenter DRAFT

2/11/100 10:13

INDEX

ABC 1 P I C N R

1

ABC 1 P A C N R

2, 0 Most recent active

ABC 1 P I C N R

3

ABC 1 P I C N R

4

FILE SIZE 144000(620. 0)

DIR. USED 307(1.107) INFO USED 4(0. 4)

DIR. GARB. 0(0. 0) INFO GARB. 0(0. 0)

DIR. AVAIL. 14071(60. 71) INFO AVAIL. 127374(535.174)

Figure 2-3. Using the Segmenter -CEASE and -USE Commands

If you wish, you can embed the compiler command SEGMENT in your source
�le to assign the new RBM to a speci�c segment:

$CONTROL SEGMENT=SEG2

SUBROUTINE SUB72

.

.

.

Or you could allow the compiler defaults to operate and later use the
Segmenter to alter segmentation, if necessary.

DRAFT

2/11/100 10:13

Using The Segmenter 2-15

Managing User Subprogram Library Files (USLs)

A USL is one of the three procedure libraries used in the program development
process. It is the �le used for compiler output. Most frequently, you will
use the USL as input for the Segmenter to use in preparing a program �le.
However, you may also use it for the following purposes:

To share code from another USL or program.

To solve code management problems which may occur if you exceed the size
limitation established for a USL.

As an aid in program design and code management. The USL eliminates
time-consuming recompilation when you are testing various versions of a
procedure or changing code storage methods.

As a basis for constructing relocatable libraries (RLs).

As a basis for constructing segmented libraries (SLs).

The last two items are discussed later in this section.

Invoking The USL

A command you will use often as you manage USLs with the Segmenter is

-USL �lereference

This command identi�es the USL speci�ed by �lereference as the
\currently-managed", or \currently-referenced", USL. These interchangeable
terms mean the speci�ed USL is the one to which the Segmenter will apply
any commands you give which have USL as a parameter, and will do so until
another -USL command is entered.

Listing The USL

Another command you will frequently use to verify the results of your code
manipulations is

-LISTUSL [segmentname]

With this command you can list all or part of the contents of the currently
managed USL. If you specify a segment name, only that segment is listed. The

2-16 Using The Segmenter DRAFT

2/11/100 10:13

output is written on the �le designated in the list�le parameter of the MPE
:SEGMENTER command, or on $STDLIST if the list�le parameter is omitted.

In ***<xref FIGURE2-4>: undefined***, the Segmenter prints information
about all segments in the USL, since we didn't specify a particular segment
name. Signi�cant entries are indicated with item numbers (**number**), which
are explained following the listing. All numbers appearing in the listing are
octal values.

-USL SEARCHUSL <<**1**>>

-LISTUSL

USL FILE SEARCHUSL.SEGMENT.SUB3000

WRITESEG

2 *4* *5* *6* *7* *8* *9*

WRITENUMSONLY

3

16 P A C N R

SEARCHSEG .

SEARCHLINE . 27 P A C N R

SEARCHLINE 27 P I C N R

ASKSEG

ASKFORMAT 15 P I C N R <<**4** **5**>>

SEG'

WRITENUMSONLY 16 P I C N R <<**6** **7**>>

WRITENUMSONLY 16 P I C N R <<**8** **9**>>

OB' 255 OB A C N

ASKCHAR 17 P A C N R

ASKNAME 13 P A C N R

FILE SIZE 2000(10. 0) <<**10**>>

DIR. USED 574(2.174) <<**11**>> INFO USED 1132(4.132)

DIR. GARB. O(0. 0) INFO GARB. 0(0. 0)

12

DIR. AVAIL. 4(0. 4) INFO. AVAIL. 46(0. 46)

DRAFT

2/11/100 10:13

Using The Segmenter 2-17

	Top of Document
	PREFACE
	Introduction To The Segmenter
	Virtual Memory And Segmentation
	The Segmenter

	Using The Segmenter
	Accessing And Exiting The Segmenter
	Manipulating RBMs
	Managing User Subprogram Library Files (USLs)

