
Debugging Dynamic Memory Usage
Errors Using HP WDB

HP Part Number: 5992-4662
Published: September 2008
Edition: 4.0

© Copyright 2007-2008 Hewlett-Packard Development Company, L.P

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be
obtained from your local Sales and Service Office.

U.S. Government License Proprietary computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice Copyright© 2007–2008 Hewlett-Packard Development Company, L.P.Reproduction, adaptation, or translation
of this document without prior written permission is prohibited, except as allowed under the copyright laws.

Trademark Notices

UNIX is a registered trademark of The Open Group.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Table of Contents
Introduction..9
Intended Audience...9
Typographic Conventions..9
Related Information..10
Prerequisites...11
Memory-Related Errors ...11

Heap Corruption...12
Causes for Heap Corruption..12

Memory Leaks...12
When to Suspect a Memory Leak?...13
Types of Memory Leaks...13

Access Errors...14
Using WDB to Debug Memory Problems..14

HP aC++/ HP C Compiler Runtime Checking Options...15
Memory-Debugging Features of WDB...16

Heap Profiling...16
Snapshot Profile ..16
Incremental Heap Profile...20
Arena Profile..24

Analyzing the info heap process output...25
Analyzing the info heap arenas output...26

Leak Profiling..30
Error Injection ...32
Event Monitoring..39

Monitoring Heap Events ...39
Monitoring a Specific Address...39
Monitoring Allocations Greater Than a Specified size.......................................41
Monitoring the Program Heap Growth..43
Monitoring Changes in Data Segment Space Allocation (High Water Mark
Feature) ..45
Monitoring De-allocations to Detect Double-Frees..49

Monitoring Heap Corruption ...49
Monitoring String Corruption..49
Detecting Out-of-Bounds Writes with the Bounds-Checking Feature...............53
Setting the amount of guard bytes for every block of allocated memory..........55
Detecting Heap Corruption..56
Detecting dangling pointer and dangling block ..58
Scrambling a Heap Block..60

Settings to Manage Performance Degradation...62
Supported Modes of Memory-debugging in WDB..62

Debugging in the Interactive Mode..62

Table of Contents 3

Debugging in Batch Mode...63
Environment Variables for Batch Memory-Debugging ..63

Enabling and Disabling Batch Mode Memory-Debugging63
Pre-loading the Appropriate Version of librtc.[sl|so] Along With the
Application...64
Overriding the Default Location for librtc.[sl|so]..65
Overriding the Default Path for Searching the GDB Executable.......................65
Enabling the Processing of the .gdbinit File...66

Configuration File for Batch Mode Debugging...66
Location of the Configuration File for Batch Mode Debugging.........................66
Supported Variables for Memory-Debugging in the Batch Mode Configuration
File...67

Overriding the Configuration File Settings...68
Debugging in Batch Mode...69
Debugging Multiple Applications in Batch Mode ..75

Debugging in Attach Mode...75
...77
Summary of Memory Debugging Commands ..77
Debugging Memory Using WDB GUI...80

Using WDB GUI to Debug Memory-Related Problems..80
Heap and Leak Profiling Using WDB GUI...81

Incremental Heap Profiling Using WDB GUI...81
Arena Profiling Using WDB GUI..86

Conclusion..91
Additional Examples..91
FAQ...101

4 Table of Contents

List of Figures
1 Allocation Profile..83
2 Heap Space Profile..85
3 Incremental Heap Profile Summary...86
4 View Heap Arena Window 1..88
5 View Heap Arena Window 2..89
6 Arena Summary..90
7 Arena Block Distribution..90

5

List of Tables
1 Documentation for HP WDB..10
2 Compiler Options for Memory Debugging..15
3 Generic Commands for Memory Checking..16
4 Commands for Heap Profiling..17
5 Commands for Incremental Heap-Profiling...20
6 Memory-Usage in an Arena..24
7 Commands for Leak Profiling...30
8 Commands for Error Injection..32
9 Monitoring Heap Events...39
10 Commands Supporting High Water-Mark Feature..45
11 Commands for Monitoring Heap Corruption..49
12 Options for Performance Improvement..62
13 Supported Variables in the Batch Mode Configuration File.......................................67
14 The config_strings Options for RTC_MALLOC_CONFIG ..69
15 Commonly Used Commands for Memory Debugging..77

6 List of Tables

List of Examples
1 Filtered Heap Reporting for Allocations Exceeding <num> at a Particular

Call-Site...19
2 Incremental Heap Profile..21
3 Monitoring memory usage in an arena...27
4 Simulating out-of-memory conditions after <N> allocations33
5 Simulating out-of-memory conditions after <N> bytes are allocated.........................35
6 Simulating out-of-memory conditions after a random number of allocations...........37
7 Monitoring a specific address...40
8 Monitoring allocations greater than a specified size..42
9 Monitoring program heap growth..44
10 High Water-Mark Feature...46
11 Monitoring heap-corruption caused by erroneous handling of string functions.......51
12 Bounds-checking to detect out-of-bounds writes...54
13 Detecting heap corruption using the info corruption command57
14 Scrambling a memory block on de-allocation...61
15 Batch Mode Debugging for a 32-bit Application running on Itanium.......................72
16 Detecting a double free error..92
17 Detecting de-allocation of memory that has not been initialized...............................93
18 Detecting de-allocation of un-allocated blocks...94
19 Detecting memory leaks that are caused when an application overwrites a pointer

that currently addresses a block of memory with another address or data...............95
20 Detecting memory leaks that are caused when a pointer variable in an application

addresses memory that is out of the scope of the application....................................97
21 Detecting memory leaks when you free a structure or an array that has pointers

which are not freed..99
22 Work-Around when program execution is in a frame that belongs to the GDB

internal leak detection library...100

7

8

Introduction
HP Wildebeest Debugger (WDB) is an HP-supported implementation of the open
source debugger GDB. Apart from the normal debugging functions, it also enables you
to debug memory-related errors in a program.
HP WDB supports memory-debugging (using Run Time Checking (RTC)) of source-level
programs written in HP C, HP aC++, and Fortran 90 on Itanium®-based systems running
HP-UX 11i v2, or HP-UX 11i v3, and PA-RISC systems running HP-UX 11.0, HP-UX
11i v1, HP-UX 11i v2, or HP-UX 11i v3 operating systems.
WDB offers the following memory-debugging capabilities:
• Reports memory leaks
• Reports heap allocation profile
• Stops program execution if bad writes occur with string operations such as

strcpy(), and memcpy()

• Stops program execution when freeing unallocated or deallocated blocks
• Stops program execution when freeing a block if bad writes occur outside block

boundary
• Stops program execution conditionally based on whether a specified block address

is allocated or de-allocated
• Scrambles previous memory contents at malloc(), and free() calls
• Simulates and detects out-of-memory event errors
• Monitors changes in data segment space allocation

Intended Audience
This document is intended for C, C++, and Fortran programmers who use WDB to
detect and debug memory-related errors in HP C, HP aC++ and Fortran 90 applications.
Reader of this document must be familiar with the basic commands supported by WDB.

Typographic Conventions
This document uses the following typographical conventions:
$, $ or # A dollar sign represents the system prompt for the

Bourne, Korn, and POSIX shells. A number sign
represents the superuser prompt.

gdb(5) A manpage. The manpage name is gdb.
Command A command name or qualified command phrase.
Computer output Text displayed by the computer.
ENVIRONMENT VARIABLE The name of an environment variable, for example,

PATH.

Introduction 9

[ERROR NAME] The name of an error, usually returned in the errno
variable.

Variable The name of a placeholder in a command, function, or
other syntax display that you replace with an actual
value.

< > The contents are optional in syntax. If the contents are
a list separated by |, you must choose one of the items.

[] The contents are optional in syntax. If the contents are
a list separated by |, you must choose one of the items.

| Separates items in a list of choices.
IMPORTANT This alert provides essential information to explain a

concept or to complete a task
NOTE A note contains additional information to emphasize

or supplement important points of the main text.

Related Information
The HP WDB documentation is available at the following location:
/opt/langtools/wdb/doc/

Table 1 lists the documentation available for WDB.

Table 1 Documentation for HP WDB

LocationDocument

/opt/langtools/wdb/doc/gdb.pdfDebugging with GDB

/opt/langtools/wdb/doc/refcard_a4.pdf

/opt/langtools/wdb/doc/refcard_a3.df

/opt/langtools/wdb/doc/refcard.pdf
(Letter Format)

GDB Quick Reference Card

/opt/langtools/wdb/doc/html/wdb/C/GDBtutorial.htmlGetting Started with WDB

/opt/langtools/wdb/doc/index.htmlWDB Online Help

/opt/langtools/wdb/doc/html/wdbgui/C/HP WDB GUI Documentation

gdb(1)GDB manpage

For the most current WDB documentation, see the HPWDB technical resources website
at:
http://www.hp.com/go/wdb

10

http://www.hp.com/go/wdb

Prerequisites
Following are the prerequisites for debugging memory-related problems in WDB:
• The memory-debugging feature in WDB is dependent on the availability of the

dynamic Linker Version B.11.19.
• WDB uses the heap debugging library, librtc.[sl|so], to enable

memory-debugging support. The librtc.[sl|so] library is a part of the HP
WDB product. If the debugger is installed in a directory other than the default
/opt/langtools/bin directory, you must use the environment variable,
LIBRTC_SERVER, to set the path of the appropriate version oflibrtc.[sl|so].
From HP WDB 5.7 onwards, the archive version of the run time check library,
librtc.a, is not available. You must use the shared version of the library,
librtc.[sl|so], instead.

• WDB does not support debugging of programs that link with the archive version
of the standard C library, libc.a, or the core library, libcl.a. The programs
must be linked with libc.[sl|so].

• The memory-debugging feature is supported only for programs that directly or
indirectly call malloc(), realloc(), free(), mmap(), or munmap() from the
standard C library, libc.[sl|so], or a third party (custom allocator)
implementation of these functions.

• The memory debugging feature is not supported for CMA threaded programs.
• The memory debugging feature cannot be used with applications that redefine or

override the default system-supplied versions of the standard library routines
(under libc.so and libdl.so), such as abort(), strcat(), ctime(), and
dlclose(). Before enabling the memory debugging feature in WDB, use the
nm(1) command to determine if the application or the dependent libraries in the
application redefine or substitute the standard library routines. For more
information on the dependent standard library routines, see the HP WDB release
notes, available at the HP WDB Documentation website at:
http://www.hp.com/go/wdb

Memory-Related Errors
This section discusses the following memory-related errors that can occur in an
application:
• Heap corruption
• Memory leaks
• Access errors

Prerequisites 11

http://www.hp.com/go/wdb

Heap Corruption
A heap corruption occurs when an application erroneously overwrites some of the data
in the heap. Heap corruption can result in data corruption, memory corruption, or
both.
When an application inadvertently uses the erroneously overwritten data in the heap,
it results indata corruption in the application. Data corruption can lead to unpredictable
program behavior.
The data corruption in the heap can lead to memory corruption if the corrupted data
in the heap is used by memory management functions in the application to allocate,
access, or deallocate memory blocks. In other words, memory corruption occurs when
the corrupted datum in the heap is accessed as a pointer. Memory corruptions
compromise the data integrity of the application and can result in segmentation
violations if the erroneously allocated or accessed memory blocks are out of the bounds
of the virtual memory of the application.

Causes for Heap Corruption

Following are some of the typical causes for heap corruption:
Double-Free
A double-free error occurs when a program attempts to free a memory block that is
already freed. (Example 16 (page 92) illustrates how WDB detects double-frees.)
Freeing Unallocated/Uninitialized Memory
Heap corruption occurs when a program tries to free memory that is not allocated to
the program. Such instances include freeing uninitialized pointers where the pointer
addresses memory outside the allocated memory. (Example 17 (page 93) illustrates
how WDB detects such errors.)
Accessing freed memory
Accessing freed memory results in heap corruption. The scramble feature is a minimal
aid to detect such errors. See “Scrambling a Heap Block” (page 60) for more information.

Memory Leaks
A memory leak occurs when an application fails to free allocated memory. As a result,
the kernel frees the memory that is allocated by a process only when the process
terminates. If the program leaks memory on a continual basis, the virtual memory
requirement for the process continues to increase and this can result in serious
consequences for long-running applications and memory intensive applications.
Memory leaks can also cause fragmentation of the heap. This slows down the allocation,
de-allocation, and access of memory blocks and can eventually cause the application
to fail with out-of-memory errors.

12

When to Suspect a Memory Leak?

You must suspect a memory leak in an application if the system runs out of swap space,
runs slower, or both. Memory leaks in an application increase the memory consumption
in an application. When the memory consumed by the application exceeds the resource
limits set by the kernel, the application fails with out-of-memory errors.
WDB enables you to detect out-of-memory conditions through runtime memory
checking. It also enables you to simulate out-of-memory conditions in an application
to understand application behavior under such conditions.
For information on how you can use WDB to simulate and detect out-of-memory
conditions in an application, see “Error Injection ” (page 32)

Types of Memory Leaks

Following are the types of memory leaks:
• Physical Leaks

A physical leak is a definite memory leak that occurs when an application loses
all handles, or all pointers to the allocated memory. If a valid pointer to a memory
block is absent, the elusive block of memory cannot be accessed or freed.
The handles to a memory block are typically lost under the following conditions:
— When an application overwrites a pointer that addresses a block of memory

with another address or data
— When a pointer variable goes out of scope
— When you free a structure or an array that has pointers which are not freed
When all handles to a block of memory are lost, it causes the block to be leaked.
Example 19 (page 95), Example 20 (page 97), and Example 21 (page 99) illustrate
how WDB detects memory leaks.

• Logical Leaks
A logical leak occurs when an application fails to optimally utilize the allocated
memory. In this case the allocated block of memory can still be accessed through
a pointer variable in the application.

Memory-Related Errors 13

The typical causes for logical leaks are listed below:
— Leaks caused by premature allocation of memory

The application allocates the memory much ahead of the actual use of the
allocated memory.

— Leaks caused by delayed de-allocation
The application delays the freeing the allocated block beyond the actual use of
the allocated memory.

— Leaks caused by failure to utilize allocated memory
The application allocates memory, but fails to use the allocated memory.

NOTE: WDB supports the debugging of physical memory leaks only. It does not
detect logical memory leaks.

Access Errors
Memory access errors can occur under the following conditions:
• When reading uninitialized local, or heap data
• When reading or writing to nonexistent, unallocated, or unmapped memory
• When a stray pointer overflows the bounds of a heap block, or tries to access a

heap block that is already freed to cause buffer overruns and under-runs
• When reading or writing to memory locations that are already freed in the program

NOTE: WDB provides minimal support for debugging some of the memory access
errors. The scrambling feature and detection for out-of-bounds writes are supported
by WDB.

Using WDB to Debug Memory Problems
WDB supports the memory-debugging of applications involving dynamic allocations
and de-allocations of virtual memory blocks, or during the calls tolibc string routines
like strcpy(), and memcpy(). It debugs memory-related problems at the time of
allocation or de-allocation of memory blocks. It supports the detection of outstanding
memory-related problems at specific user-defined probe-points (breakpoints) during
the use of the memory blocks. Memory-related problems that appear after the specified
probe points are not detected. It does not support the debugging of access errors that
are caused when reading from or writing to unallocated, uninitialized, or de-allocated
memory.
WDB does not support the memory-debugging of the stack, static memory, and register
memory.

14

WDB provides the interactive, batch, and attach modes for debugging memory-related
problems. See “Supported Modes of Memory-debugging in WDB” (page 62) for more
information on the supported modes for debugging.

HP aC++/ HP C Compiler Runtime Checking Options
The HP aC++/HP C compiler also provides options for enabling memory debugging
using WDB in Integrity Systems. This feature is supported only on Integrity Systems.
Table 2 list the runtime checking options are available in HP aC++/HP C compilers for
memory debugging.

Table 2 Compiler Options for Memory Debugging

DescriptionCompiler Option

The +check compiler options provide runtime
checks to detect out-of-bounds array references
(+check=bounds), memory leaks and heap
corruption(+check=malloc), writing outside the
stack frame(+check=stack), and uninitialized
variables (+check=uninit). The +check=all
option enables all the available runtime checks for
the +check compiler option.
A failed check results in the program abort at
runtime. The error message and the stack trace is
printed to stderr before the program terminates.
The environment variableRTC_NO_ABORTmust be
set to 1 to continue the program execution after a
failed runtime check. This enables you to collect the
diagnostics for all the failed checks in a single
execution run.

+check=
[all|none|bounds|malloc|stack|uninit]

NOTE: The +check options must be specified at compile time and link time. If
different +check options are specified while compiling different source files, all the
specified +check options are needed at link time. Multiple +check options are
interpreted from left to right with the options on the right overriding earlier +check
options.

For more information on the HP aC++ compiler options for memory debugging, see
the HP aC++ World Wide Webpage at:
http://www.hp.com/go/cpp
For more information on the HP aC++ compiler options for memory debugging, see
the HP C World Wide Webpage at:
http://www.hp.com/go/c

Using WDB to Debug Memory Problems 15

http://www.hp.com/go/cpp
http://www.hp.com/go/c

Memory-Debugging Features of WDB
WDB supports the following memory-debugging features:
• Heap Profiling features
• Leak Profiling feature
• Error Injection features
• Event Monitoring features
In addition to these features, HP WDB provides the following generic commands for
memory debugging:

Table 3 Generic Commands for Memory Checking

DescriptionCommand

Toggles the setting of commands for detecting leaks,
bounds, double frees, and heap profiling.

set heap-check <on/off>

Displays the current settings for memory checkingshow heap-check

NOTE: GDB reports an incorrect stack trace after dlclose or shl_unload, and a
subsequent dlopen or shl_load. The leaks are displayed erroneously when the
memory address range overlaps between the newly loaded shared library, and the
recently unloaded shared library.
Workaround: Place a breakpoint at dlclose or shl_unload, and enter the info
leaks command to view the leaks accurately when a shared library is unloaded.

Heap Profiling
You can profile the heap usage in an application by using WDB. The heap-profiling
feature enables you to analyze the influence of algorithms and data structures on heap
usage and tune the memory requirements of an application.
WDB supports the following heap-analysis profiles:
• Snapshot Profile
• Incremental Heap Profile
• Arena Profile

NOTE: Heap profiling must be enabled to view heap reports. The set heap-check
on command enables heap profiling also.

Snapshot Profile

The snapshot profile displays the outstanding heap allocations at a specific instant
(probe point) at runtime. It does not display the blocks that are already freed before
the probe point.

16

Table 4 lists the basic commands used for heap profiling.

Table 4 Commands for Heap Profiling

DescriptionCommand

Displays the heap report that includes the current
heap allocations, the sizes of the blocks allocated,
and number of allocation instances.

info heap

Writes the heap report output to the specified file.info heap <filename>

Displays detailed information about the specified
heap allocation including the allocation call stack.

info heap <idnumber>

Reports the heap allocations that exceed the
specified number, <num>, of bytes based on the
cumulative number of bytes that are allocated at
each call-site inclusive of multiple calls to
malloc() at a particular call site. See Example 1
(page 19) for more information.

set heap-check min-heap-size <num>

To obtain a snapshot heap profile, complete the following steps:
1. Run the debugger and load the program by entering the following command at

command prompt:
$ gdb <executable> <arguments>
(gdb) set heap-check on

NOTE: The set heap-check on command enables the memory-debugging
feature in WDB. This enables the detection of leaks, heap profiles, bounds checking,
checking for double free

2. Set a breakpoint by entering the following command:
(gdb) b <probepoint>

3. Run the program by entering the following command:
(gdb)run

4. When the program is stopped at a breakpoint, enter the following info heap
command:
(gdb) info heap

The following output is displayed:
Analyzing heap ...done

Actual Heap Usage:
Heap Start = 0x40408000
Heap End = 0x4041a900
Heap Size = 76288 bytes

Memory-Debugging Features of WDB 17

Outstanding Allocations:
41558 bytes allocated in 28 blocks

No. Total bytes Blocks Address Function

0 34567 1 0x40411000 foo()
1 4096 1 0x7bd63000 bar()
2 1234 1 0x40419710 baz()
3 245 8 0x404108b0 boo()
[...]

5. To view a specific allocation, specify the allocation number as an argument to the
info heap command.
For example:
(gdb) info heap 1
4096 bytes at 0x7bd63000 (9.86% of all bytes allocated)
in bar () at test.c:108
in main () at test.c:17
in _start ()
in $START$ ()

When multiple blocks are allocated from the same call stack, WDB displays
additional information similar to the following:
(gdb) info heap 3
245 bytes in 8 blocks (0.59% of all bytes allocated)
These range in size from 26 to 36 bytes and are allocated
in boo ()
in link_the_list () at test.c:55
in main () at test.c:13
in _start ()

You can control the stack frames that are collected for reporting at any allocation
point. For more information on this feature, see “Settings to Manage Performance
Degradation” (page 62)

Example 1 (page 19) illustrates the use of the info heap command with the
min-heap-size filter setting.

18

Example 1 Filtered Heap Reporting for Allocations Exceeding <num> at a Particular
Call-Site

Sample Program
1 #include <stdio.h>
2 #include <stdlib.h>
3 main()
4 {
5 int i, *arr[1000];
6 for (i=0; i < 1000; i++)
7 arr[i] = malloc (49);
8 malloc (30);
9 set_brkpt_here(0)
10 exit(0);
11
12 }

Sample Debugging Session
$ gdb minheap
(gdb) b set_brkpt_here
(gdb) set heap-check min-heap-size 31
(gdb) run
(gdb) info heap
Analyzing heap ...

49000 bytes allocated in 1000 blocks

No. Total bytes Blocks Address Function
0 49000 1000 0x4044eff0 main()

Memory-Debugging Features of WDB 19

Incremental Heap Profile

The incremental profile displays the outstanding allocations at multiple probe points
in an application at runtime. This profile is analogous to processing multiple snapshot
profiles. Example 2 (page 21) illustrates this feature.
Table 5 lists the commands for incremental heap-profiling.

Table 5 Commands for Incremental Heap-Profiling

DescriptionCommand

Starts the incremental heap growth profile. All
allocations prior to the execution of this command
are ignored. If incremental heap growth profile is
already on, executing this command resets the
counters and starts a fresh collection. The interval
is specified in seconds.

set heap-check interval <nn>

Enables you to specify the number of intervals for
which WDB must collect the incremental heap
growth. The default value is 100. Every repeat of
the interval tracks heap allocation during that
interval.

set heap-check repeat <nn>

Creates a detailed report of the heap growth. The
data for each interval has the start and end time of
the interval. If a filename is specified, the detailed
report is written in the specified file.

info heap-interval <filename>

When incremental heap profile is used the heap
growth data is internally stored by WDB in a
temporary file. The heap growth data gathered
during each interval is appended to this file . If the
session is very long, this file may become very large.
This command discards the data existing in the file
and creates a new data file. If the command is
executed, the user cannot see the old data in the file.

set heap-check reset

20

Example 2 Incremental Heap Profile

Sample Program
$ cat testincremental.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 char *f1_p;
5 char *f2_p;
6 char *f3_p;
7
8 void marker1()
9 {}
10
11 int
12 func1()
13 {
14 int i;
15 for (i = 0; i< 2; i++)
16 f1_p = (char *)malloc(10);
17 return 1;
18 }
19
20
21 int
22 func2()
23 {
24 int i;
25 for (i = 0; i< 2; i++)
26 f2_p = (char *)malloc(20);
27 return 1;
28 }
29
30
31 int
32 func3()
33 {
34 int i;
35 for (i = 0; i< 2; i++)
36 f3_p = (char *)malloc(30);
37 return 1;
38 }
39
40
41 main()
42 {
43 int i;
44 int repeat;
45
46 for (repeat = 0; repeat < 2; repeat++)
47 for (i = 0; i < 2; i++) {

Memory-Debugging Features of WDB 21

48 func1();
49 sleep (1);
50 }
51
52 /* 2 interval records */
53 marker1();
54
55 for (repeat = 0; repeat < 2; repeat++)
56 for (i = 0; i < 2; i++) {
57 func2();
58 sleep (1);
59 }
60
61 /* 4 (3 old and 1 new) interval records;
62 as the repeat count of 100 has been exceeded.
63 */
64 marker1();
65
66
67 /* set repeat count to 500 */
68 for (repeat = 0; repeat < 2; repeat++)
69 for (i = 0; i < 2; i++) {
70 func3();
71 sleep (1);
72 }
73
74 marker1();
75 exit(0);
76 }

Sample Debugging Session

22

(gdb) file testincremental
Reading symbols from testincremental.. done.
(gdb) set heap-check interval 1
(gdb) set heap-check repeat 2
(gdb) b marker1
Breakpoint 1 at 0x4000000000000e50:0: file testincremental.c,
line 9 from testincremental
(gdb) r
Starting program: testincremental
Breakpoint 1, marker1 () at testincremental.c:9 {}
(gdb) info heap-interval
Analyzing heap ...
==
Start Time: Mon Oct 30 01:38:11 2006
End Time: Mon Oct 30 01:38:12 2006
Interval: 1
40 bytes allocated in 4 blocks
No. Total bytes Blocks Address Function
0 40 4 0x6000000000004840 func1()
(gdb) c
Continuing.
Breakpoint 1, marker1 () at /testincremental.c:99 {}
(gdb) info heap-interval
Analyzing heap ...
==
Start Time: Mon Oct 30 01:38:11 2006
End Time: Mon Oct 30 01:38:12 2006
Interval: 1
40 bytes allocated in 4 blocks
No. Total bytes Blocks Address Function
0 40 4 0x6000000000004840 func1()
===
Start Time: Mon Oct 30 01:38:13 2006
End Time: Mon Oct 30 01:38:14 2006
Interval: 2
40 bytes allocated in 4 blocks
No. Total bytes Blocks Address Function
0 40 4 0x60000000000048c0 func1()
===

NOTE: WDB-GUI provides graphical representation of the Incremental Heap Profile.
For more information see “Incremental Heap Profiling Using WDB GUI” (page 81).

Memory-Debugging Features of WDB 23

Arena Profile

WDB enables you to view the high-level memory-usage statistics of a running
application. You can analyze the memory-usage statistics to understand the memory
consumption, the allocation pattern, and the heap-fragmentation of the application.
WDB enables you to view the following memory-usage statistics:
• High level memory-usage statistics of a process
• High level memory-usage statistics of each arena
• Block level and overall memory-usage statistics of each arena
• Block level and overall memory-usage statistics of each arena along with the

allocated stack trace for each allocated block.

NOTE: For more information on arenas, see the malloc(3c) manpages.

Table 6 lists the commands for monitoring memory-usage in an arena.

Table 6 Memory-Usage in an Arena

DescriptionCommand

Displays the high level memory-usage of a process.
Lists the number of free blocks, used blocks, small
blocks, holding blocks, node blocks and regular
blocks.

info heap process

Displays the high level memory-usage details of
the specified arena <arena_id>. It also lists the
number of free blocks, used blocks, small blocks,
holding blocks and regular blocks. If the
<arena_id> is not specified, it displays the
memory-usage statistics for the current arena.

info heap arenas <arena_id>

Displays the memory-usage statistics of all the
blocks in the given arena, in the increasing order of
block-addresses.

info heap arenas <arena_id> blocks

Displays the memory-usage statistics of a specific
block in the arena with the stack trace for the
specified arena and block.

info heap arenas <arena_id> blocks
<block-id>

Displays the overall and block level memory-usage
statistics, with stack trace wherever applicable.

info heap arena <arena_id> blocks
stacks

The info heap process and info heap arenas commands do not require
re-linking or rebuilding of the application. You can attach a running process to the
debugger and get a snapshot of the heap-profile of the process. Example 3 (page 27)
illustrates the use of the info heap process and info heap arenas commands.

24

NOTE:
• Theinfo heap arenas andinfo heap process commands are not supported

in batch mode.
• Theinfo heap process andinfo heap arenas are available only on HP-UX

11i v3.
• The stack trace is displayed only if memory debugging is enabled. (Enable the set

heap-check on command to enable memory debugging). If the stack trace is
not required, the memory-usage statistics can be viewed without enabling memory
checking.

Analyzing the info heap process output

Theinfo heap process command displays the number of used, free, small, holding,
node and regular (ordinary) blocks.
If there are a larger number of free small blocks, you can suspect heap-fragmentation.
The application does not differentiate between a small block and an ordinary block.
However, you can tune malloc() to use a specific ratio of small and ordinary blocks
and reduce heap-fragmentation.
The holding block headers and node blocks are used for the internal data-structure
and bookkeeping in malloc(). The sum of the total bytes in holding block headers
and node blocks determines the efficiency ofmalloc(). The memory allocator is more
efficient when it uses less memory for the internal data-structure and bookkeeping.
Following is a sample output of the info heap process command:
(gdb) info heap process
Total space in arenas: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600
Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 0
Number of free ordinary blocks: 1
Number of free small blocks: 388
Small block allocator parameters
 enabled: 1
 maxfast: 512
 numblks: 100
 grain: 16

cache
 enabled: 0
 miss: 0
 bucketsize: 0

Memory-Debugging Features of WDB 25

 buckets: 0
 retirement: 0
Exec type: SHARE_MAGIC

Analyzing the info heap arenas output

The info heap arenas command displays the memory-usage statistics for the
specified arena. You can analyze the memory-usage statistics of all the arenas to
determine if there is an imbalance in memory-usage across the arenas. For example, if
there are many free blocks in an arena and these blocks are not used by threads from
another arena, you can tune the memory-usage to optimize the performance.
The info heap arenas <arena_id> blocks displays the details of all the blocks
in the given arena in an increasing order of addresses. You can analyze the size of the
blocks in the increasing order of block-addresses to detect heap-fragmentation. For
example, you can suspect heap fragmentation if two large free blocks are separated by
a small used block.
Following is a sample output of the info heap arenas command:
(gdb) info heap arenas
num_arenas: 1
expansion: 4096

Arena ID: 0

Total number of blocks in arena: 47
Start address: 0x4001003c
Ending address: 0x40480ffc
Total space: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600
Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 35
Number of free ordinary blocks: 1
Number of free small blocks: 388

26

Example 3 Monitoring memory usage in an arena

Sample Program
$ cat malloc_1.c
1 /* test large malloc.
2 * corruption.
3 */
4 #include <stdio.h>
5 #include <stdlib.h>
6 void f1()
7 {
8 char * cp;
9
10 cp = malloc (5000);
11 }
12 void f2()
13 {
14 char * cp;
15
16 cp = malloc (7000);
17 }
18 void f3()
19 {
20 char * cp;
21
22 cp = malloc (3000);
23 }
24 void f4()
25 {
26 char * cp;
27
28 cp = malloc (6000);
29 }
30 void f1_small()
31 {
32 char * cp;
33
34 cp = malloc (50);
35 }
36 void f2_small()
37 {
38 char * cp;
39
40 cp = malloc (70);
41
42 void f3_small()
43 {
44 char * cp;
45
46 cp = malloc (30);
47 }

Memory-Debugging Features of WDB 27

48 void f4_small()
49 {
50 char * cp;
51
52 cp = malloc (60);
53 }
54
55 void set_brkpt_here() {
56 }
57 int main()
58 {
59
60 for (int i=0; i<777; i++)
61 {
62 f4_small();
63 f1_small();
64 f2_small();
65 f3_small();
66 }
67 set_brkpt_here();
68
69 for (int i=0; i<1000; i++)
70 {
71 f4();
72 f1();
73 f2();
74 f3();
75
76 }
77 set_brkpt_here();
78 }

Sample Debugging Session

28

(gdb) -leaks malloc_1.32
(gdb) b set_brkpt_here
(gdb) run
(gdb) info heap process
Total space in arenas: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600
Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 0
Number of free ordinary blocks: 1
Number of free small blocks: 388
Small block allocator parameters
 enabled: 1
 maxfast: 512
 numblks: 100
 grain: 16
cache
 enabled: 0
 miss: 0
 bucketsize: 0
 buckets: 0
 retirement: 0
Exec type: SHARE_MAGIC

(gdb) info heap arenas
num_arenas: 1
expansion: 4096

Arena ID: 0

Total number of blocks in arena: 47
Start address: 0x4001003c
Ending address: 0x40480ffc
Total space: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600
Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 35
Number of free ordinary blocks: 1
Number of free small blocks: 388

Memory-Debugging Features of WDB 29

NOTE: WDB-GUI provides graphical representation of the Arena Profile. For more
information see“Arena Profiling Using WDB GUI” (page 86).

Leak Profiling
The leak profile feature in WDB conservatively identifies the blocks of memory that
are leaked in an application, and displays the stack trace that shows when the block
was allocated. All the leaks detected by WDB are definite physical leaks.
WDB uses a garbage collection algorithm to identify the blocks that are leaked. It
identifies the root-set of memory that are possible pointers to the heap. The initial
root-set includes the shared library data, the program/thread stacks, the registers, the
thread specific private data, the mmap regions, and the shared memory regions. The
initial root-set includes all data except the heap blocks.
The debugger considers suitably aligned words in the root-set as possible pointers to
the heap. The debugger performs a reachability analysis based on the root-set, and
determines the memory blocks that are reachable through possible pointers from the
root-set. The heap blocks that are not reachable through possible pointers from the
root-set are reported as leaks.
WDB is conservative in detecting the memory leaks. The memory leaks can be masked
if a datum in the root-set inadvertently holds a possible pointer to a heap block.
Table 7 lists the basic commands for leak profiling in WDB.

Table 7 Commands for Leak Profiling

DescriptionCommand

Controls WDB memory leak checkingset heap-check leaks <on/off>

Displays a leak report. It also lists information such
as the leaks, size of blocks, and number of instances.

info leaks

Writes the complete leak report output to the
specified file

info leaks <filename>

Displays detailed information on the specified leak
including the allocation call stack

info leak <leaknumber>

Specifies the minimum leak size for stack trace
collection. The debugger continues to report leaks
that are smaller than <num> bytes, but it does not
provide the stack trace for the same. By default,
num is set to 0.
This command also enables you to reduce
performance degradation. See “Settings to Manage
Performance Degradation” (page 62)

set heap-check min-leak-size <num>

30

To view the leak profile, complete the following steps:
1. Run the debugger and load the program by entering the following command:

$ gdb <executable> <arguments>

or
$ gdb –leaks <executable> <arguments>

2. Enable leak checking by entering the following command:
(gdb) set heap-check leaks on

(if the –leaks option is not used in Step 1)

NOTE: Alternatively, you can use the set heap-check on command to
automatically enable the detection of leaks by toggling the set heap-check
leaks on command. This command enables the detection of leaks, heap profiles,
bounds checking, and checking for double frees.

3. Set breakpoints in the code at probe-points where you want to examine cumulative
leaks by entering the following command:
(gdb) b <probe-points>

4. Run the program in the debugger by entering the following command:
(gdb) run

5. When the breakpoint triggers, enter the following info leaks command to display
the list of memory leaks:
(gdb) info leaks

The following output is displayed:
Scanning for memory leaks...done

2439 bytes leaked in 25 blocks

No. Total bytes Blocks Address Function
0 1234 1 0x40419710 foo()
1 333 1 0x40410bf8 main()
2 245 8 0x40410838 strdup()

[...]

The debugger assigns a numeric identifier for each leak. To view a stack trace for
a specific leak, specify the leak number from the list of leaks, as follows:
(gdb) info leak 2
245 bytes leaked in 8 blocks (10.05% of all bytes leaked)
These range in size from 26 to 36 bytes and are allocated in strdup ()
in link_the_list () at test.c:55
in main () at test.c:13
in _start ()

Memory-Debugging Features of WDB 31

Error Injection
WDB supports error injection features to debug out-of-memory events in an application.
It enables you to simulate out-of-memory conditions in an application and analyze the
behavior of the applications under such conditions. In addition, it enables you to gain
control over program execution when an out-of-memory event occurs.
To simulate an out-of-memory condition, you must use the set heap-check
null-check command to force malloc() to return NULL after <N> or a random
number of allocations. After simulating the out-of-memory error, you can use the
catch nomem command to gain control over the execution when an out-of-memory
error occurs.
Table 8 lists the commands available for error injection.

Table 8 Commands for Error Injection

DescriptionCommand

Forces malloc() to return NULL after <N>
invocations of malloc().
Example 4 (page 33) illustrates the use of this
command.

set heap-check null-check <N>

Forces malloc() to return NULL after <N> bytes
are allocated by the program.
Example 5 (page 35) illustrates the use of this
command.

set heap-check null-check-size <N>

Forces malloc() to return NULL after random
number of invocations of malloc().
Example 6 (page 37) illustrates the use of this
command.

set heap-check null-check random

Defines the range for random number calculation
for the set heap-check null-check random
command

set heap-check random-range <N>

Defines the seed-value for random number
calculation for theset heap-check null-check
random command

set heap-check seed-value <N>

Enables the user to gain control over an
out-of-memory event. The user can step through
program execution after the nomem event is
detected.

catch nomem

32

Example 4 Simulating out-of-memory conditions after <N> allocations

Sample Program
bash-2.05b$ cat null-check.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int cnt;
5
6 void break_here()
7 {
8 }
9
10 void test_null_check()
11 {
12 int i;
13 char *a;
14
15 cnt = 0;
16 for(i = 0; i <= 10; i++) {
17 a = malloc(100);
18 if (a == NULL)
19 printf("Out of memory scenario simulated\n");
20 }
21 }
22
23 int main()
24 {
25 test_null_check();
26 exit (0);
27 }

Sample Debugging Session

$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.

(gdb) file null
Reading symbols from null...done.
(gdb) set heap-check null-check 6
(gdb) b main
Breakpoint 1 at 0x2c64: file null-check.c, line 25 from null.
(gdb) b 19
Breakpoint 2 at 0x2c10: file null-check.c, line 19 from null.
(gdb) r

Memory-Debugging Features of WDB 33

Starting program: null

Breakpoint 1, main () at null-check.c:25
25 test_null_check();
(gdb) catch nomem
Catchpoint 3 (nomem)
(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 ()
from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Breakpoint 2, test_null_check () at null-check.c:19
19 printf("Out of memory scenario simulated\n");
(gdb) bt
#0 test_null_check () at null-check.c:19
#1 0x2c70 in main () at null-check.c:25
#2 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.
Out of memory scenario simulated

Program exited normally.

34

Example 5 Simulating out-of-memory conditions after <N> bytes are allocated

Sample Program
$ cat null-check.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int cnt;
5
6 void break_here()
7 {
8 }
9
10 void test_null_check()
11 {
12 int i;
13 char *a;
14
15 cnt = 0;
16 for(i = 0; i <= 10; i++) {
17 a = malloc(100);
18 if (a == NULL)
19 printf("Out of memory scenario simulated\n");
20 }
21 }
22
23 int main()
24 {
25 test_null_check();
26 exit (0);
27 }

Sample Debugging Session
$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.

(gdb) set heap-check on
(gdb) file null
Reading symbols from null...done.
(gdb) b test_null_check
Breakpoint 1 at 0x2be0: file null-check.c, line 15 from null.
(gdb) b 19
Breakpoint 2 at 0x2c10: file null-check.c, line 19 from null.
(gdb) run
Starting program: null

Breakpoint 1, test_null_check () at null-check.c:15
15 cnt = 0;
(gdb) set heap-check null-check-size 400
(gdb) catch nomem

Memory-Debugging Features of WDB 35

Catchpoint 3 (nomem)
(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4() from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Breakpoint 2, test_null_check () at null-check.c:19
19 printf("Out of memory scenario simulated\n");
(gdb) p i
$1 = 4
(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl

(gdb) bt
#0 0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl
#1 0x70e7b554 in handle_null_check+0x134 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b614 in malloc+0xb4 () from /opt/langtools/lib/librtc.sl
#3 0x2c04 in test_null_check () at null-check.c:17
#4 0x2c70 in main () at null-check.c:25
#5 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, test_null_check () at null-check.c:19
19 printf("Out of memory scenario simulated\n");
(gdb) p i
$2 = 9
(gdb) c
Continuing.
Out of memory scenario simulated

Program exited normally.

36

Example 6 Simulating out-of-memory conditions after a random number of allocations

Sample Program
 bash-2.05b$ cat null-random.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int main()
5 {
6 int i;
7 char *a;
8 for (i=0; i <= 500; i++) {
9 a = malloc(100);
10 if (a == NULL)
11 {
12 printf("Out of memory simulated\n");
13 }
14 }
15 exit (0);
16 }

Sample Debugging Session
$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered by
the GNU General Public License. Type "show copying" to see the
conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
(gdb) file null-random
Reading symbols from null-random...done.
(gdb) set heap-check on
(gdb) b main
Breakpoint 1 at 0x2be4: file null-random.c, line 8 from null-random.
(gdb) b 12
Breakpoint 2 at 0x2c10: file null-random.c, line 12 from null-random.
(gdb) r
Starting program: null-random

Breakpoint 1, main () at null-random.c:8
8 for (i=0; i <= 500; i++) {
(gdb) set heap-check null-check random
(gdb) catch nomem
Catchpoint 3 (nomem)
(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Breakpoint 2, main () at null-random.c:12
12 printf("Out of memory simulated\n");
(gdb) p i

Memory-Debugging Features of WDB 37

$1 = 55
(gdb) c
Continuing.
Out of memory simulated
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Breakpoint 2, main () at null-random.c:12
12 printf("Out of memory simulated\n");
(gdb) p i
$2 = 110
(gdb) c
Continuing.
Out of memory simulated
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl

38

Event Monitoring
The event monitoring commands in WDB enable you to monitor specific heap events
and heap-corruption problems in an application.

Monitoring Heap Events

WDB enables you to monitor specific events such as the size of memory allocations,
the high water mark.
Table 9 lists the commands for monitoring heap events.

Table 9 Monitoring Heap Events

DescriptionCommand

Stops program execution when the block at the
given address is allocated or de-allocated

set heap-check watch <address>

Stops program execution when a program tries to
allocate a block larger than num-bytes in size

set heap-check block-size <num-bytes>

Stops program execution when the program tries
to increase the program-heap by at leastnum-bytes

set heap-check heap-size <num-bytes>

Displays the highest brk() value and the number
of brk() value changes for a given run. This
number signifies the number of times that the heap
grows.

info heap high-mem

Stops program execution when break value has
moved <X_number> times

set heap-check high-mem-count
<X_number>

Toggles the detection of double-frees and frees with
improper arguments

set heap-check free <on|off>

Monitoring a Specific Address

The set heap-check watch command enables you to monitor a specific address.
It instructs the debugger to stop the program execution and transfer execution control
to the user when the specified block at <address> is allocated, or de-allocated.
Following is the syntax for the set heap check watch command:
(gdb) set heap-check watch <address>

Example 7 (page 40) illustrates the use of the set heap-check watch <address>
command.

Memory-Debugging Features of WDB 39

Example 7 Monitoring a specific address

Sample Program
bash-2.05b$ cat watch-addr.c
1 #include<stdio.h>
2
3 void enable_watch(char *cp)
4 {
5
6 }
7
8 int main()
9 {
10 char *cp = (char*)malloc(100);
11 enable_watch(cp);
12 free(cp);
13 exit(0);
14 }

Sample Debugging Session
$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to see
the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.

(gdb) file watch-addr
Reading symbols from watch-addr...done.
(gdb) set heap-check on
(gdb) b main
Breakpoint 1 at 0x2bf0: file watch-addr.c, line 10 from watch-addr.
(gdb) b 13
Breakpoint 2 at 0x2c24: file watch-addr.c, line 13 from watch-addr.
(gdb) r
Starting program: watch-addr

Breakpoint 1, main () at watch-addr.c:10
10 char *cp = (char*)malloc(100);
(gdb) n
11 enable_watch(cp);
(gdb) p/x cp
$1 = 0x4042a3b8
(gdb) set heap-check watch 0x4042a3b8
(gdb) c
Continuing.
warning: Watch address 0x4042a3b8 deallocated
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7ada0 in rtc_record_free+0xb8 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b9a0 in free+0xc8 () from /opt/langtools/lib/librtc.sl
#3 0x2c24 in main () at watch-addr.c:12

40

#4 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, main () at watch-addr.c:13
13 exit(0);
(gdb) q
The program is running. Exit anyway? (y or n) y

Monitoring Allocations Greater Than a Specified size

The set heap-check block-size command instructs WDB to stop the program
and transfer the execution control to the user when the program allocates a heap block
whose size is greater than or equal to <num-bytes>.
Following is the syntax for the set heap-check block-size command:
set heap-check block-size <num-bytes>

Example 8 (page 42) illustrates the use of the set heap-check block-size
command.

Memory-Debugging Features of WDB 41

Example 8 Monitoring allocations greater than a specified size

Sample Program
bash-2.05b$ cat block-size.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char * cp;
6 printf("Start of the program\n");
7 cp = (char *)malloc(1024 *1024*10);
8 free (cp);
9 exit(0);
10 }

Sample Debugging Session
bash-2.05b$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to see
the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
(gdb) file block-size
Reading symbols from block-size...done.
(gdb) set heap-check on
(gdb) set heap-check block-size 900000
(gdb) b main
Breakpoint 1 at 0x2c04: file block-size.c, line 6 from block-size.
(gdb) b 9
Breakpoint 2 at 0x2c3c: file block-size.c, line 9 from block-size.
(gdb) r
Starting program: block-size

Breakpoint 1, main () at block-size.c:6
6 printf("Start of the program\n");
(gdb) c
Continuing.
Start of the program
warning: Attempt to allocate a large object at 0x4042c3e8
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7a918 in rtc_record_malloc+0xf0 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b7e0 in malloc+0x280 () from /opt/langtools/lib/librtc.sl
#3 0x2c28 in main () at block-size.c:7
#4 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, main () at block-size.c:9
9 exit(0);

42

Monitoring the Program Heap Growth

The set heap-check heap-size command instructs WDB to stop the program
and transfer execution control to the user when the program attempts to increase the
heap size of the program by <num-bytes> or more. Example 9 (page 44) illustrates
the use of this command.
Following is the syntax for the set heap-check heap-size command:
set heap-check heap-size <num-bytes>

Memory-Debugging Features of WDB 43

Example 9 Monitoring program heap growth

Sample Program
bash-2.05b$ cat heap-size.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char * cp;
6 printf("Start of the program\n");
7 cp = (char *)malloc(1024 *1024*10);
8 free (cp);
9 cp = (char *)malloc(1024 *1024*8);
10 free (cp);
11 exit(0);
12 }

Sample Debugging Session
bash-2.05b$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
(gdb) file heap-size
Reading symbols from heap-size...done.
(gdb) set heap-check on
(gdb) set heap-check heap-size 8000000
(gdb) b main
Breakpoint 1 at 0x2c04: file heap-size.c, line 6 from heap-size.
(gdb) b 11
Breakpoint 2 at 0x2c60: file heap-size.c, line 11 from heap-size.
(gdb) r
Starting program: heap-size

Breakpoint 1, main () at heap-size.c:6
6 printf("Start of the program\n");
(gdb) c
Continuing.
Start of the program
warning: Attempt to grow the heap at 0x4042c3e0
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7aff4 in malloc_padded+0xa8 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b634 in malloc+0xd4 () from /opt/langtools/lib/librtc.sl
#3 0x2c28 in main () at heap-size.c:7
#4 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, main () at heap-size.c:11
11 exit(0);

44

Monitoring Changes in Data Segment Space Allocation (High Water Mark Feature)

The high water mark feature records the number of times the break value changes
which is the number of times the heap grows.
The high water mark feature monitors changes in the program break value. This value
points to the end of the heap (which is also the end of the data segment). When memory
is allocated using malloc() in excess of the available heap memory, the brk() call
extends the heap. This changes the break value. Most implementations of malloc()
do not decrease the heap size when the memory is freed. The break value is indicative
of the memory consumption by the program.
Table 10 lists the commands that support the high water mark feature.

Table 10 Commands Supporting High Water-Mark Feature

DescriptionCommand

Displays the number of times that the break value
has been changed for the current run at the instant,
the command is issued

info heap high-mem

Stops when break value has moved the specified
number, <X_number>, of times

set heap-check high-mem-count
<X_number>

NOTE: This feature assumes that an application has a deterministic memory allocation
pattern from one run to another.

The info heap high-mem command displays the maximum number of times the
break value changes for a given run. The set heap-check high-mem-count
<X_number> stops program execution when the break value moves a specified number
<X_number> of times, and transfers execution control to the user. Both these commands
display the size and call site of the last memory allocation that extended the high water
mark.
This feature also enables you to analyze the memory-usage in an application and check
if the memory-usage is critical or close to triggering an out-of-memory error.Example 10
(page 46) illustrates the high water mark feature.

Memory-Debugging Features of WDB 45

Example 10 High Water-Mark Feature

Sample Program
$cat high.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 char * func1()
5 {
6 char *ptr;
7 ptr = malloc(1000);
8 return ptr;
9
10 }
11
12 char * func2()
13 {
14 char *ptr;
15 ptr = malloc (100);
16 return ptr;
17
18 }
19
20 void func4()
21 {
22 char *ptr;
23 ptr = malloc (9000);
24 free (ptr);
25
26 }
27
28 void main()
29 {
30 char* ptr;
31 int i;
32
33 for (i=0; i<100; i++)
34 {
35 ptr = func1();
36 free(ptr);
37 }
38 ptr = func2();
39 func4();
40 }

Sample Debugging Session
Case 1: The info heap high-mem command displays the number of times that the
break value changes for a given run and to display the highest break value in the current
run.

46

$ gdb high
HP gdb 5.6 for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.6 (based on GDB) is covered
by the GNU General Public License.
Type "show copying" to see the conditions to change it and/or
distribute copies. Type "show warranty" for warranty/support.
..
(gdb) b 40 /*set a breakpoint at the end of your application to view
 the highest break value for the current run*/
 Breakpoint 1 at 0x4000b90:2: file high.c, line 40 from high.
(gdb) set heap-check on
(gdb) r
Starting program: high

Breakpoint 1, main () at high.c:40
40 };
(gdb) info heap high-mem
Analyzing heap ...

High memory mark stat
High water mark updated count: 2

No. Total bytes Blocks Address Function
0 100 1 0x4044ff20 func2()
(gdb)

Case 2: The set heap-check high-mem-count <X_number> command stops
execution when the break value has moved <X_number> of times.

Memory-Debugging Features of WDB 47

$ gdb high
HP gdb 5.6 for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.8 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check on
(gdb) set heap-check high-mem-count 2
(gdb) r
Starting program: high
warning: High water mark
(address = 0x4044ff00 total memory per call site = 100)
#1 func2() at high.c:15
#2 main() at high.c:40
#3 main_opd_entry() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

__rtc_event (ecode=RTC_NO_ERROR, pointer=0x0, pclist=0x0, size=0)
 at ../../../Src/gnu/gdb/infrtc.c:1236
1236 {

48

Monitoring De-allocations to Detect Double-Frees

Theset heap-check free <on/off> command enables you to detect double-frees
and frees with improper arguments.
When this command is enabled, the free() calls are monitored to verify whether the
parameters address valid heap blocks. If an erroneousfree() is detected, the debugger
stops execution and reports the error. You can analyze the stack trace to analyze where
and how the error occurred. Example 16 (page 92) illustrates the use of the set
heap-check free command.

Monitoring Heap Corruption

WDB enables you to detect the presence of heap-corruption in your application. Table 11
lists the commands for monitoring heap corruption

Table 11 Commands for Monitoring Heap Corruption

DescriptionCommand

Toggles validation of calls to strcpy(),
strncpy(), memcpy(), memccpy(),memset(),
memmove(), bzero(), and, bcopy()

set heap-check string <on |off>

Toggles the bounds-checking feature for detection
of heap-corruption in WDB

set heap-check bounds <on|off>

Sets the Header guard for each block of the allocated
memory. The default number of bytes for the header
is 16 bytes if this option is not used.

set heap-check header-size <number of
bytes>

Sets the Footer guard for each block of the allocated
memory. The default number of bytes for the footer
is one byte if this option is not used.

set heap-check footer-size <number of
bytes>

Enables you to detect the dangling pointers and in
block corruption of freed blocks.

set heap-check retain-freed-blocks
<on/off>

Checks for corruption in the currently allocated
heap blocks. In addition, it lists the in-block
corruptions in the freed blocks ifset heap-check
retain-freed-blocks is set to on.

info corruption

Displays a list of all the dangling pointers and
dangling blocks that are potential sources of
memory corruption.

info dangling

Scrambles a memory block and overwrites it with
a specific pattern when it is allocated and
de-allocated

set heap-check scramble <on | off>

Monitoring String Corruption

The set heap-check string <on/off> command toggles the string corruption
detection feature. It enables you to detect string corruption if functions of the strcpy()

Memory-Debugging Features of WDB 49

family write out-of-bounds of the allocated memory. Example 11 (page 51)illustrates
the use of the set heap-check string command.
This command currently detects string corruption when writing out-of-bounds for
strcpy(), strncpy(), memcpy(), memccpy(),memset(), memmove(), bzero(),
and, bcopy() functions.

50

Example 11 Monitoring heap-corruption caused by erroneous handling of string functions

Sample Program
bash-2.05b$ cat string.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char *ptr, *ptr1;
6
7 ptr = (char*)malloc(10);
8 ptr1 = (char *)malloc(20);
9
10 strcpy(ptr, "Hello");
11 strcpy(ptr1, "Welcome to HP WDB");
12
13 memcpy(ptr+5,ptr1,10);
14 }

Sample Debugging Session
bash-2.05b$ /opt/langtools/bin/gdb string
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is
covered by the GNU General Public License.
Type "show copying" to see the conditions to
change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check on
(gdb) set heap-check string on
(gdb) b main
Breakpoint 1 at 0x2bdc: file string.c, line 7 from string.
(gdb) r
Starting program: string

Breakpoint 1, main () at string.c:7
7 ptr = (char*)malloc(10);
(gdb) c
Continuing.
warning: memcpy corrupted (address = 0x4042a3dd size = 10)
#1 main() at string.c:7
#2 _start() from /usr/lib/libc.2
#3 _start() from /opt/langtools/lib/librtc.sl
#4 $START$() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7cc44 in search_addr+0x64 () from /opt/langtools/lib/librtc.sl
#2 0x70e7cd88 in libc_mem_common+0x130 () from /opt/langtools/lib/librtc.sl

Memory-Debugging Features of WDB 51

#3 0x70e7ceb8 in memcpy+0x58 () from /opt/langtools/lib/librtc.sl
#4 0x2c54 in main () at string.c:13
#5 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Program exited normally.

52

Detecting Out-of-Bounds Writes with the Bounds-Checking Feature

The set heap-check bounds <on/off> command toggles the bounds-checking
feature in WDB. When bounds-checking is enabled, WDB allocates extra space (guard
bytes) at the beginning and end of a block during allocation and fills this space with a
specific pattern. When the blocks are freed, the debugger verifies if the patterns are
intact. If the patterns are corrupted, the debugger detects underflow or overflow errors
and reports the corruption. Example 12 (page 54) illustrates the bounds-checking
feature.
The bounds checking feature detects overflow and underflow errors only when the
write operation occurs within the guard bytes.

Memory-Debugging Features of WDB 53

Example 12 Bounds-checking to detect out-of-bounds writes

Sample Program
bash-2.05b$ cat bounds.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char *cp = (char*)malloc(100);
6 cp[-1] = 100;
7 strcpy(cp,"Hello");
8 cp[100] = 100;
9 free(cp);
10 exit(0);
11 }

Sample Debugging Session
bash-2.05b$ gdb bounds
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check bounds on
(gdb) b main
Breakpoint 1 at 0x2c04: file bounds.c, line 5 from bounds.
(gdb) b 10
Breakpoint 2 at 0x2c58: file bounds.c, line 10 from bounds.
(gdb) r
Starting program: bounds

Breakpoint 1, main () at bounds.c:5
5 char *cp = (char*)malloc(100);
(gdb) c
Continuing.
warning: Memory block (size = 100 address = 0x4042a3c8)
appears to be corrupted at the beginning.
Allocation context not found

#1 main() at bounds.c:5
#2 _start() from /usr/lib/libc.2
#3 _start() from /opt/langtools/lib/librtc.sl
#4 $START$() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl

54

(gdb) c
Continuing.
warning: Memory block (size = 100 address = 0x4042a3c8)
appears to be corrupted at the end.
Allocation context not found

#1 main() at bounds.c:5
#2 _start() from /usr/lib/libc.2
#3 _start() from /opt/langtools/lib/librtc.sl
#4 $START$() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) f 4
#4 0x4000960:0 in main () at bounds.c:9
9 free(cp);
(gdb)

Setting the amount of guard bytes for every block of allocated memory

HP WDB enables you to programmatically control the size of guard bytes for every
block of the allocated memory. You can use these guard bytes to spot very rare and
non-trivial boundary (buffer over-run and buffer under-run) corruptions.
The commands which enable you to change the guard byte size are effective only when
bounds-check is turned on.
The following are the command that enable you to set the guard bytes for every block
of allocated memory:
1. set heap-check header-size <no of bytes>

This is used for setting the header guard for each block of memory that is allocated.
The default no of bytes for the footer is 16 bytes if this option is not used. If the
user specifies any number than 16, WDB ignores it and considers the default of 16
bytes. If the user specifies more than 16 bytes, then the largest closest 16 byte
integral of the user given value is chosen. For example, if the user enters 60 bytes,
WDB takes it as 48; if the user specifies 65, WDB considers it as 64.

2. set heap-check footer-size <no of bytes>

This is used for setting the footer guard for each block of memory that is allocated.
The default no of bytes for the footer is 1 byte, if this option is not used.

Memory-Debugging Features of WDB 55

Detecting Heap Corruption

The info corruption <filename> command enables you to view the corruption
profile of all the allocations that are corrupted at a specified probe-point in the program.
Ensure that the bounds checking is enabled before using the info corruption
command. The corruption information is written to a specified file if the <file name>
is provided. Otherwise, it is written to stdout.
In addition, it lists the in-block corruptions in the freed blocks if the set heap-check
retain-freed-blocks is set to on.

NOTE: Theinfo corruption command is not supported in batch mode debugging

Example 13 (page 57) illustrates the use of the info corruption command.

56

Example 13 Detecting heap corruption using the info corruption command

Sample Program
$cat infobounds.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 char *t;
5 char *t1;
6 char *t2;
7 char *t3;
8
9 char * sm_malloc(sz)
10 int sz;
11 {
12 return malloc(sz); /* line number 12 */
13 }
14
15 main()
16 {
17 t = (char *)sm_malloc(10);
18 strcpy(t, "123456789123");
19 t1 = (char *)sm_malloc(10);
20 strcpy(t1, "12345678912");
21 t2 = (char *)sm_malloc(10);
22 strcpy(t2, "1234567891");
23 t3 = (char *)sm_malloc(10);
24 strcpy(t3, "123456789");
25 printf("Hello\n");
26 free (t);
27 free (t1);
28 free (t2);
29 free (t3);
30 free (t);
31 free (t1);
32 exit(1);
33 }

Sample Debugging Session
$ gdb infobounds
HP gdb 5.6 for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.6 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) b 25
Breakpoint 1 at 0x4000b70:1: file infobounds.c,
line 25 from infobounds.
(gdb) set heap-check on

Memory-Debugging Features of WDB 57

(gdb) run
Starting program: infobounds

Breakpoint 1, main ()
 at .infobounds.c:25
25 printf("Hello\n");
(gdb) info corruption
Analyzing heap ...

Following blocks appear to be corrupted
No. Total bytes Blocks Address Function
0 10 1 0x400124e0 sm_malloc()
1 10 1 0x40012500 sm_malloc()
2 10 1 0x40012520 sm_malloc()
(gdb) info corruption 2
10 bytes at 0x40012520 (33.33% of all bytes allocated)
#0 sm_malloc() at infobounds.c:12
#1 main() at infobounds.c:21
#2 main_opd_entry() from /usr/lib/hpux32/dld.so
(gdb)

Sample output that displays the in-block corruption of freed blocks:
info corruption
Analyzing heap ...

Following blocks appear to be corrupted
No. Total bytes Blocks Corruption Address Function
0 10 1 End of block 0x8000000100966548 sm_malloc()
1 10 1 Inside block 0x8000000100966578 sm_malloc()
2 10 1 Beginning 0x80000001009665a8 sm_malloc()

NOTE: This display is possible only if the set heap-check
retain-freed-blocks command is set to on.

Detecting dangling pointer and dangling block

A pointer is a Dangling pointer if the block of memory it points to, has been freed by
the application. The block is called Dangling Block.
The same freed block could be subsequently allocated to the application in response
to another memory allocation request. In this scenario, if the application incorrectly
tries to write into the freed memory block using the dangling pointer, it could result
in incorrect or an undefined program behavior, as the new owner or function owning
the same allocated block would find different values in the heap block.
Theinfo dangling command displays a list of all the dangling pointers and dangling
blocks that are potential sources of memory corruption.

58

NOTE: Software literature names this concept as premature free orReading/writing freed
memory using a pointer.

WDB tracks the dangling pointers and dangling blocks using a modified version of
Garbage collection. The enabler for doing this is by retaining all the freed blocks
internally within RTC without actually freeing it as long as possible. It displays all the
potential pointers to the freed dangling blocks, in the application data space. WDB
turns on these checks, only when you specify set heap-check
retain-freed-blocks to on.
The pointers are potential because the pointers need not be actual pointers and could
be a datum value and hence there are chances of false positives in the Dangling report.

NOTE: WDB tries to help as much as possible to detect if these pointers are of type
datum or real pointers. In a -g compiled binary, WDB performs a look-up on a symbol
table to find the symbol name and type to find the symbol name of the potential pointer
and if its of pointer type, then the corresponding dangling block is really dangling (not
a false positive).

Memory-Debugging Features of WDB 59

Scrambling a Heap Block

The set heap-check scramble <on/off> command enables you to scramble a
heap block and overwrite it with a specific pattern ("0xfeedface") when it is allocated
or de-allocated.
If the application continues to use (read) a freed block (incorrect memory usage), the
application fails to find the expected data in the block. (This means that the data in the
block is different from the initial data that was written in the block.)
This increases the chances of the application to crash or result in unpredictable program
behavior sooner with the unexpected data that is read from the block. Additionally,
you can detect this condition with assertion checks in the code to validate the read data
during the further run of the application.
This command does not detect the corruption. It is only a minimal aid to detect
corruption.
Example 14 (page 61) illustrates the scramble feature in WDB.

60

Example 14 Scrambling a memory block on de-allocation

Sample Program
$ cat scramble.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int
5 main ()
6 {
7 char **tp;
8 tp = malloc (100);
9 printf ("Batch RTC test over, *tp=%p.\n", *tp);
10 fflush(stdout);
11 free(tp);
12 exit (0);
13 }

Sample Debugging Session
$ gdb scramble
HP gdb 5.5 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.8 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check scramble on
(gdb) b main
Breakpoint 1 at 0x295c: file scramble.c, line 8 from scramble.
(gdb) r
Starting program: scramble

Breakpoint 1, main () at scramble.c:8
8 tp = malloc (100);
(gdb) n
9 printf ("Batch RTC test over, *tp=%p.\n", *tp);
(gdb) p *tp
$1 = 0xfeedface <Error reading address 0xfeedface: Bad address>

Memory-Debugging Features of WDB 61

Settings to Manage Performance Degradation
Memory-debugging slows down the performance of an application by 20-40% because
of stack unwinding. Reducing the number of stack frames the debugger collects for
each allocation reduces the performance degradation.
Table 12 lists the options for reducing the performance degradation.

Table 12 Options for Performance Improvement

DescriptionCommandSetting

Controls the depth of the call stack.
By default, num is set to 4.

set heap-check
frame-count <num>

Stack Depth

Specifies the minimum leak size
for stack trace collection. The
debugger continues to report leaks
that are smaller than <num> bytes,
but it does not provide the stack
trace for the same. By default, num
is set to 0.

set heap-check
min-leak-size <num>

Minimum Leak Size

Supported Modes of Memory-debugging in WDB
WDB supports the following modes of memory-debugging:
• Interactive Mode
• Batch Mode
• Attach Mode

Debugging in the Interactive Mode
The interactive mode of memory-debugging is typically useful during the development
and defect fixing phase, where you need the flexibility to control the flow of program
execution while debugging memory related problems.
To debug your program in the interactive mode, complete the following steps:
1. Compile the source files with the —g option. No special compilation of link options

are required.
The program must be linked with shared libc.[so|sl]. Memory-checking
features do not work on the programs linked with archived libc.a

$ aCC –g <source filename> –o <executable>

2. To activate the memory debugging, perform either of the following:
• Invoke WDB with the -leaks option as follows:

 $ gdb -leaks <executable>

62

This enables leak checking. To enable other memory debugging features you
must use the appropriate set of commands.

• Alternatively, enter the following command at the gdb prompt:
$ gdb <executable>
(gdb)set heap-check on

This enables leaks checking, bounds checking, and check for double-frees.

3. Place breakpoints at probe points by entering the following command:
(gdb)b <probe_point>

4. To generate a leak profile at the breakpoint, enter the following command:
(gdb)info leaks <filename>

5. To generate a snapshot heap profile at the breakpoint, enter the following
command:
(gdb) info heap <filename>

Debugging in Batch Mode
In this mode, the user does not interactively issue commands in a debugger session.
Instead, the memory-debugging commands are stored in a user-specified configuration
file. The configuration file gets processed during the run of the application and at the
end of the program the debugger creates output data files for that run. It creates three
separate output files for leak profile, heap profile, and the memory corruption reports.
Batch mode memory-debugging stops the application at the end of the program when
exit() is called or when all the statically linked libraries (includinglibrtc.[sl|so])
are unloaded. After the application is stopped, it invokes the debugger to print the leak
or heap data.
Following is the naming convention for the output files:
<file_name>.<pid>.<suffix>

Where:
<pid> is the process id and <suffix> can be either leaks, heap, or mem based on
the type of report.
For example: memtest.8494.mem

Environment Variables for Batch Memory-Debugging

This section discusses the environment variables that must be set for using the batch
mode of memory debugging.

Enabling and Disabling Batch Mode Memory-Debugging

The environment variable, BATCH_RTC, must be configured to enable and disable batch
mode memory-debugging.

Supported Modes of Memory-debugging in WDB 63

Following is the syntax for enabling and disabling batch mode debugging:
export BATCH_RTC=<on/off>

Pre-loading the Appropriate Version of librtc.[sl|so] Along With the Application

The appropriate version of the librtc.[sl|so] runtime library must be preloaded
to enable batch mode and attach mode memory debugging of an application.
You can explicitly preload librtc.[sl|so] from the appropriate path by using the
LD_PRELOAD environment variable.
Alternately you can use the+rtc <enable|disable> option for thechatr command
to automatically preload librtc.[sl|so]. Both of these methods are illustrated in
this section.

NOTE: The +mem_check <enable> option for the chatr command is available
for dynamic linker versions B.11.61 and later on HP 9000 systems, and dynamic
linker versions B.12.46 and later on Integrity systems.
The +rtc <enable> option for the chatr command is available for dynamic linker
versionsB.11.66 and later on HP 9000 systems, and dynamic linker versionsB.12.51
and later on Integrity systems. However, +mem_check option is retained with the
latest Linker version.

Using chatr +rtc to Automatically Preload librtc.[sl|so]

To automatically preloadlibrtc.[sl|so] by using the+rtc <enable|disable>
for the chatr command, enter the following command at the HP-UX prompt:
$ chatr +rtc <enable> <executable>

In addition to automatically loadinglibrtc.[sl|so], the +rtc option for the chatr
command also maps the shared libraries as private. The +rtc option preloads
librtc.[sl|so] from the following default paths for librtc.[sl|so] :
• - For 32 bit IPF applications

/opt/langtools/lib/hpux32/librtc.so

• For 64 bit IPF applications,
/opt/langtools/lib/hpux64/librtc.so

• For 32 bit PA applications,
opt/langtools/lib/librtc.sl

• For 64-bit PA applications,
/opt/langtools/lib/pa20_64/librtc.sl

64

NOTE: To preload from a path that is different from the default paths, you must use
the LD_PRELOAD environment variable.

Using LD_PRELOAD TO Preload librtc.[sl|so]

To explicitly preload an appropriate version of librtc.[sl|so]with the application,
set the environment variable, LD_PRELOAD as follows:
• For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable> <arguments>

• For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable> <arguments>

• For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable> <arguments>

• For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable> <arguments>

NOTE: If LD_PRELOAD and chatr +rtc are used to preload the librtc.[sl|so]
runtime library, librtc[sl|so] is loaded from the path specified by LD_PRELOAD.

Overriding the Default Location for librtc.[sl|so]

By default WDB uses the librtc.[sl|so], available at the location
/opt/langtools/lib. If the application requires the use of librtc.[sl|so] at a
different location, you must set the environment variable, LIBRTC_SERVER, to point
to the location where the library is located.
Following is the syntax for setting an alternate location for librtc.[sl|so]:
export LIBRTC_SERVER=<path>

NOTE: This environmental variable is applicable for attach and interactive mode
also.

Overriding the Default Path for Searching the GDB Executable

The GDB_SERVER variable enables you to override the default path from where the
gdb executable is used to debug memory problems. The default path for the gdb
executable is /opt/langtools/bin/gdb.
Following is the syntax to override the default path for the gdb executable:
export GDB_SERVER=<path>

Supported Modes of Memory-debugging in WDB 65

NOTE: Batch Mode RTC displays one of the following errors and causes the program
to temporarily hang if the version of GDB and librtc.[sl|so] do not match, or if
GDB is not available on the system:
/opt/langtools/bin/gdb: unrecognized option ‘-brtc’ Use ‘/opt/langtools/bin/gdb --help’ for a complete

 list of options.

(OR)
execl failed. Cannot print RTC info: No such file or directory

This error does not occur under normal usage where GDB or librtc.[sl|so] is
used from the default location at /opt/langtools/.... However, this error occurs
if GDB_SERVER ,LIBRTC_SERVER, or both are set to a mismatched version of GDB or
librtc.[sl|so] respectively.

Enabling the Processing of the .gdbinit File

RTC_PROCESS_GDBINIT is an optional environment variable used to enable processing
of the .gdbinit file. You can use the .gdbinit file to specify path settings such as
dir, objectdir, and pathmap to set the path of the source and object files in case
the source or object paths are different than the current directory, so that the generated
RTC reports display the symbol names and line numbers correctly. This feature is
optionally enabled only when the RTC_PROCESS_GDBINIT environment variable is
set to 1. There are limitations on what commands in the .gdbinit file. If there are
erroneous commands in the .gdbinit file, the batch RTC session can possibly hang
and not produce the expected RTC reports. Following are some examples:
1. If the 'q' (quit) command is used, the session would hang and finally terminate

after approximately 10 mins, and not generate any RTC reports. It would print the
error message "Broken synchronization between child/parent process".

2. If any gdb command that would take more processing time is used, this would
interfere with the assumptions of RTC and the session may hang and print the
error message "Broken synchronization between child/parent process".

Configuration File for Batch Mode Debugging

You can set your preferences for batch mode memory-debugging by setting the
parameters in the configuration file. The following sections discuss the location of the
configuration file and the supported variables.

Location of the Configuration File for Batch Mode Debugging

The configuration file rtcconfig for batch mode debugging is user-defined. You
must either create the rtcconfig file in the current directory or specify the location
of the configuration file by exporting the environment variable GDBRTC_CONFIG to
contain the pathname of the configuration file (including the filename.)

66

The following example illustrates how to specify the path of the configuration file:
$ export GDBRTC_CONFIG=/tmp/rtcconfig

If the path to the configuration file is not specified, the debugger assumes that the
rtcconfig configuration file, by default, is located in the current working directory.

Supported Variables for Memory-Debugging in the Batch Mode Configuration File

You must specify the variables in the configuration file based on the commands that
are required to debug the application. Table 13 lists the variables that are supported
in the configuration file.

Table 13 Supported Variables in the Batch Mode Configuration File

DescriptionCommand

Enables you to detect double-frees and frees with
improper arguments

set heap-check free <on/off>

Enables heap profilingset heap-check <on/off>

Enables you to detect leaksset heap-check leaks <on/off>

Enables validation of calls to strcpy(),
strncpy(), memcpy(), memccpy(),memset(),
memmove(), bzero(), and, bcopy()

set heap-check string <on/off>

Enables you to check for out-of-bounds corruption
when the block is freed

set heap-check bounds <on/off>

Enables you to specify the executables for which
memory leak detection is enabled. If the files option
is not specified (after setting BATCH_RTC=on) , the
debugger checks all the executables.

files=<file1:file2:..fileN>

Enables you to set the number of frames to be
collected for leak or heap profiles

set heap-check frame-count <num>

Enables you to set the minimum block size to use
for heap reporting

set heap-check min-heap-size <num>

Enables you to set the minimum block size to use
for leak reporting

set heap-check min-block-size <num>

Enables you to specify the name of the output data
directory

output_dir= <output_data_dir_path>

Enables you to scramble the blocksset heap-check scramble <on/off>

Supported Modes of Memory-debugging in WDB 67

NOTE: It is incorrect to use spaces before or after the ’=’ symbol in the batch mode
configuration options in the configuration file, rtcconfig. Additionally, it is incorrect
to use spaces before the batch mode configuration options.
For example:
Correct Usage:
$ cat rtcconfig

check_leaks=on

check_heap=on

files=batchrtc4

Incorrect Usage:
$ cat rtcconfig

 check_leaks=on

check_heap = on

files=batchrtc4

Overriding the Configuration File Settings

The RTC_MALLOC_CONFIG variable enables you to override the default rtcconfig
file settings.
Following is the syntax for exporting the configuration to RTC_MALLOC_CONFIG:
export RTC_MALLOC_CONFIG=config_string1[;config_strings]

The overriding settings of RTC_MALLOC_CONFIG are dependent on the global
environment variable RTC_NO_ABORT setting. RTC_NO_ABORT must not be set if the
configuration strings must abort the execution of the program on detection of the first
occurrence of bounds, double-free, or out-of-memory conditions.
If RTC_NO_ABORT is set to 1, the program does not abort for failed checks and you can
view the logfiles for all the failed checks in a single execution run.
Table 14 lists the config_strings options that are available for
RTC_MALLOC_CONFIG. The config_strings are separated by semicolon (;).

68

Table 14 The config_strings Options for RTC_MALLOC_CONFIG

Descriptionconfig_string Options

RTC_NO_ABORT must not be set.
If abort_on_bounds is set to 1, the batch mode
aborts execution of the program and reports the
bounds condition, when bound checking fails.

abort_on_bounds=[01]

RTC_NO_ABORT must not be set.
Ifabort_on_bad_free is set to1, the batch mode
aborts execution when a free(), or a realloc()
call attempts to free a heap object that is not valid.

abort_on_bad_free=[01]

RTC_NO_ABORT must not be set.
If abort_on_nomem is set to 1, the batch mode
aborts execution when an out-of-memory condition
is detected.

abort_on_nomem=[01]

The appropriate logfiles for the heap, leak, and
corruption detection are displayed onstderr. The
logfiles are directed to the specified file
<filename>. Output is appended to the file if the
+ option is used.

mem_logfile=stderr[+]filename

heap_logfile=stderr[+]filename

leak_logfile=stderr[+]filename

Debugging in Batch Mode

To debug an application in the batch mode, complete the following steps:
1. Compile the source files.

NOTE: On HP 9000 systems, you must map the shared libraries as private, by
using the chatr command if you are using LD_PRELOAD to preload the
librtc.[sl|so] instead of the+rtc <enable|disable> option for thechatr
command .
chatr +dbg enable ./<executable>

2. Set the required variables in the rtcconfig configuration file, as follows:
$ cat rtcconfig
"rtcconfig" 5 lines, 76 characters
set heap-check on
set heap-check free on
files=executable_name
output_dir= ./

3. Set the required environment variables as follows:
export BATCH_RTC=on

Supported Modes of Memory-debugging in WDB 69

4. You can use the +rtc <enable|disable> option for the chatr command to
automatically preload librtc.[sl|so] or you can explicitly preload
librtc.[sl|so] from the appropriate path by using the LD_PRELOAD
environment variable.

NOTE: The+mem_check <enable> option for thechatr command is available
for dynamic linker versions B.11.61 and later on HP 9000 systems, and dynamic
linker versions B.12.46 and later on Integrity systems.
The +rtc <enable> option for the chatr command is available for dynamic
linker versionsB.11.66 and later on HP 9000 systems, and dynamic linker versions
B.12.51 and later on Integrity systems.

To preload the librtc.[sl|so] runtime library, complete one of the following
steps:
• To automatically preload librtc.[sl|so] by using the +rtc

<enable|disable> for thechatr command, enter the following command
at the HP-UX prompt:
$ chatr +rtc <enable> <executable>

NOTE: To preload from a path , which is different from the default path,
you must use the LD_PRELOAD environment variable.

• Set the environment variable, LD_PRELOAD as follows:
— For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable> <arguments>

— For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable> <arguments>

— For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable> <arguments>

— For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable> <arguments>

If LD_PRELOAD and chatr +rtc are used to preload the
librtc.[sl|so] runtime library, librtc[sl|so] is loaded from the
path specified by LD_PRELOAD.

NOTE: If the application invokes calls such as system(3s), and popen(),
which invoke a new shell, librtc.[sl|so] must not be loaded to the invoked
shell. You must use LD_PRELOAD_ONCE, instead of LD_PRELOAD, to exclusively
load thelibrtc.[sl|so] file to the calling process only.
Following is the syntax for using LD_PRELOAD_ONCE:

70

LD_PRELOAD_ONCE= /opt/langtools/lib/librtc.sl

Example 15 (page 72) illustrates the batch mode debugging of thememtest.cprogram.
The debugging results are stored inmemtest.8494.mem,memtest.8494.heap, and
memtest.8494.leaks.

Supported Modes of Memory-debugging in WDB 71

Example 15 Batch Mode Debugging for a 32-bit Application running on Itanium

Sample Program
$ cat memtest.c
1 #include <stdlib.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 #include <signal.h>
6 void myhandler(void) {
7 exit(0);
8 }
9
10 main(int argc)
11 {
12
13 // signal(11, myhandler);
14
15 char *p[20], buffer[]="0123456789012345", *temp;
16 int i;
17
18 for (i=0; i<20; i++) {
19 p[i]=(char *)malloc(4);
20 };
21 memcpy(p[15], buffer, 12);
22 for (i=0; i<10; i++) {
23 free(p[i]);
24 };
25 free(p[9]);
26 }
27

Sample Configuration File
$ cat rtcconfig
"rtcconfig" 7 lines, 86 characters
set heap-check on
set heap-check leaks on
set heap-check free on
set heap-check string on
files=memtest
output_dir=./

Sample Debugging Session
$ cc -g -o memtest memtest.c

$ export BATCH_RTC=on

$ chatr +rtc enable memtest
warning: Memory corruption info is written to "memtest.8494.mem".
warning: Memory leak info is written to "memtest.8494.leaks".
 Memory heap info is written to "memtest.8494.heap

72

$ cat memtest.8494.mem

Attempt to free unallocated or already freed object at 0x4006e7b0
(0) 0x60000000cac1bdc0 print_stack_trace_to_log_file + 0x1d0 at
 ../../../Src/gnu/gdb/infrtc.c:996
 [/opt/langtools/lib/hpux32/librtc.sl]
(1) 0x60000000cac1d3e0 __rtc_event + 0x160 at
 ../../../Src/gnu/gdb/infrtc.c:1296
 [/opt/langtools/lib/hpux32/librtc.sl]
(2) 0x60000000cac22da0 rtc_record_free + 0x380 at
 ../../../Src/gnu/gdb/infrtc.c:2651
 [/opt/langtools/lib/hpux32/librtc.sl]
(3) 0x60000000cac17200 __rtc_free + 0x160 at
 ../../../Src/gnu/gdb/infrtc.c:2977
 [/opt/langtools/lib/hpux32/librtc.sl]
(4) 0x0000000004000bc0 main + 0x230 at memtest.c:25[memtest]
(5) 0x60000000c0029000 main_opd_entry + 0x50[/usr/lib/hpux32/dld.so]

$ cat .//memtest.8494.leaks

40 bytes leaked in 10 blocks

No. Total bytes Blocks Address Function
0 40 10 0x4006e7d0 main()

--
 Detailed Report

--
40 bytes leaked in 10 blocks (100.00% of all bytes leaked)
These range in size from 4 to 4 bytes and are allocated
#0 main() at memtest.c:19
#1 main_opd_entry() from /usr/lib/hpux32/dld.so

--

$ cat memtest.8494.heap

40 bytes allocated in 10 blocks

No. Total bytes Blocks Address Function
0 40 10 0x4006e8f0 main()

--
 Detailed Report

--
40 bytes in 10 blocks (100.00% of all bytes allocated)
These range in size from 4 to 4 bytes and are allocated
#0 main() at memtest.c:19

Supported Modes of Memory-debugging in WDB 73

#1 main_opd_entry() from /usr/lib/hpux32/dld.so

--

74

Debugging Multiple Applications in Batch Mode

To debug multiple applications in the batch mode, complete the following steps:
1. Compile the source files.
2. Set the required variables in the rtcconfig configuration file, as follows:

$ cat rtcconfig
"rtcconfig" 5 lines, 83 characters
set heap-check on
set heap-check free on
files=exec1:exec2:exec3
output_dir= ./

3. Set the required environment variables as follows:
export BATCH_RTC=on

4. Complete one of the following steps to preload librtc.[sl|so]:
• Use the +rtc option for the chatr command on each of the required

executable files that must be instrumented, as follows:
$ chatr +rtc enable exec1 exec2 exec3

The+rtc <enable> option for thechatr command is available for dynamic
linker versions B.11.66 and later on HP 9000 systems, and dynamic linker
versions B.12.51 and later on Integrity systems.
(Or)

• Preload librtc.[sl|so] for all the executables, as follows:
— For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so exec1 exec2 exec3

— For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so exec1 exec2 exec3

— For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl exec1 exec2 exec3

— For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl exec1 exec2 exec3

NOTE: If exec1 eventually spawns exec2, exec3, exec4, and exec5, only
exec1, exec2 and exec3 are debugged based on the settings in the rtcconfig
file.

Debugging in Attach Mode
WDB can attach to a running process and debug memory problems. However to use
the debugger in this mode, the application must be launched after preloading the
librtc.[sl|so] runtime library.

Supported Modes of Memory-debugging in WDB 75

To debug memory on attaching GDB to a running process, complete the following
steps:
1. You can use the +rtc <enable|disable> option for the chatr command to

automatically preload librtc.[sl|so] or you can explicitly preload
librtc.[sl|so] from the appropriate path by using the LD_PRELOAD
environment variable.
To preload the librtc.[sl|so] runtime library, complete one of the following
steps:
• To automatically preload librtc.[sl|so] by using the +rtc

<enable|disable> for thechatr command, enter the following command
at the HP-UX prompt:
$ chatr +rtc <enable> <executable>

NOTE: To preload from a path that is different from the default paths, you
must use the LD_PRELOAD environment variable.

• Instead of automatically preloadinglibrtc and mapping the shared libraries,
you can explicitly preload the required librtc library.
Set the environment variable, LD_PRELOAD as follows:
— For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable> <arguments>

— For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable> <arguments>

— For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable> <arguments>

— For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable> <arguments>

If LD_PRELOAD and chatr +rtc are used to preload the librtc.[sl|so]
runtime library, librtc[sl|so] is loaded from the path specified by
LD_PRELOAD.

2. Identify the required process (using the ps command) and attach the debugger to
the process as follows.
gdb -leaks <executable-name> <process-id>

3. Insert breakpoints at suitable probe-points. When the breakpoints trigger, use the
info heap and info leaks commands to display the heap and leak profile.

76

NOTE: To attach and find leaks for PA-32 applications from the startup, the
environment variable RTC_INIT must be set to on in addition to preloading the
librtc.[sl|so] library before starting the application, as follows:
$ LD_PRELOAD=/opt/langtools/lib/librtc.sl RTC_INIT=on <executable>

If RTC_INIT is enabled, librtc.[sl|so] starts recording heap information for PA32
process by default. Hence, you must set this environment variable only when it is
required. You must not export the RTC_INIT environment variable for shell.

Summary of Memory Debugging Commands
Most of the commands available in the interactive and the attach modes are also
available in the batch mode. Table 15 “Commonly Used Commands for Memory
Debugging”lists the commands that are available in the batch mode and the equivalent
commands in the interactive mode. It also lists the commands that are not supported
in the batch mode.

Table 15 Commonly Used Commands for Memory Debugging

Batch ModeInteractive Mode/Attach ModeDescription

set heap-check <on/off>set heap-check <on/off>Enables heap profiling

set heap-check leaks
<on/off>

set heap-check leaks
<on/off>

Enables you to detect leaks.

set heap-check free
<on/off>

set heap-check free
<on/off>

Enables you to detect
double-frees and frees with
improper arguments

set heap-check scramble
<on/off>

set heap-check scramble
<on/off>

Enables you to scramble blocks.

set heap-check bounds
<on/off>

set heap-check bounds
<on/off>

Enables you to check for
out-of-bounds corruption when
the block is freed.

set heap-check string
<on/off>

set heap-check string
<on/off>

Enables validation of calls to
strcpy(), strncpy(),
memcpy(),
memccpy(),memset(),
memmove(), bzero(), and,
bcopy()

set heap-check frame-count
<num>

set heap-check
frame-count <num>

Enables you to set the number of
frames to be printed for leak and
heap profiles.

set heap-check
min-heap-size <num>

set heap-check
min-heap-size <num>

Enables you to set the minimum
block size to report in heap
profiles.

77

Table 15 Commonly Used Commands for Memory Debugging (continued)

Batch ModeInteractive Mode/Attach ModeDescription

set heap-check
min-leak-size <num>

set heap-check
min-leak-size <num>

Enables you to set the minimum
block size to use for leak
detection.

Not supported in Batch Modeset heap-check watch
address

Stops program execution when
the block at the given address is
allocated or de-allocated

Not supported in Batch Modeinfo corruptionChecks for corruption in the
currently allocated heap blocks
and optionally lists the in-block
corruptions in the freed blocks.

Not supported in Batch Modeinfo danglingDisplays a list of all the dangling
pointers and dangling blocks that
are potential sources of memory
corruption.

Not supported in Batch Modeset heap-check null-check
<num>

Forcesmalloc() to returnNULL
after <N> invocations of
malloc()

Not supported in Batch Modeset heap-check
null-check-size <size>

Forcesmalloc() to returnNULL
after <N> bytes are allocated by
the program

Not supported in Batch Modecatch nomemEnables the user to gain control
over an out-of-memory event.
The user can step through
program execution after the
nomem event is detected.

Not supported in Batch Modeset heap-check seed-value
<num>

Defines the seed-value for
random number calculation for
the set heap-check
null-check random command

Not supported in Batch Modeset heap-check
random-range <num>

Forcesmalloc() to returnNULL
after random number of
invocations of malloc()

Not supported in Batch Modeset heap-check resetThis command resets the data
existing in the file for incremental
profiling and creates a new data
file. The old data in the file is
erased.

78

Table 15 Commonly Used Commands for Memory Debugging (continued)

Batch ModeInteractive Mode/Attach ModeDescription

Not supported in Batch Modeset heap-check interval
<num>

Starts the incremental heap
growth profile. All allocations
prior to the execution of this
command are ignored. If
incremental heap growth profile
is already on, executing this
command resets the counters and
starts a fresh collection. The
interval is specified in seconds.

Not supported in Batch Modeset heap-check repeat
<num>

Enables you to specify the
number of intervals for which
WDB must collect the incremental
heap growth. The default value
is 100. Every repeat of the interval
tracks heap allocation during that
interval.

Not supported in Batch Modeinfo heap intervalCreates a detailed report of the
heap growth. The data for each
interval has the start and end
time of the interval.

Not supported in Batch Modeset heap-check
high-mem-count <X_number>

Stops when break value has
moved <X_number> times

Not supported in Batch Modeinfo heap high-memDisplays the number of times
break value changes for a given
run

Not supported in Batch Modeinfo heap
<process|arenas>

Displays the high level
memory-usage of a process or an
arena. Lists the number of free
blocks, used blocks, small blocks,
holding blocks, node blocks and
regular blocks.

Not supported in Batch Modeset heap-check
header-size <no of bytes>

Sets the Header guard for each
block of the allocated memory.
The default number of bytes for
the header is 16 bytes if this
option is not used.

Not supported in Batch Modeset heap-check
footer-size <no of bytes>

Sets the Footer guard for each
block of the allocated memory.
The default number of bytes for
the footer is one byte if this
option is not used.

Not supported in Batch Modeset heap-check
retain-freed-blocks
<on/off>

Enables you to detect the
dangling pointers and in block
corruption of freed blocks.

Summary of Memory Debugging Commands 79

Debugging Memory Using WDB GUI
The WDB GUI is a Graphical User Interface (GUI) designed by Hewlett-Packard for
WDB. It can be used to debug native-compiled HP C, HP aC++, and Fortran programs
on Itanium-based systems running HP-UX 11i v2 or HP-UX 11i v3, and PA-RISC systems
running HP-UX 11.0, HP-UX 11i v1, HP-UX 11i v2, or HP-UX 11i v3.
The WDB GUI offers the following capabilities to debug memory–related errors in an
application
• Detects corruption caused by calls to strcpy(), memset(), and memcopy()

• Stops program-execution at free of an unallocated or de-allocated block address
• Stops program-execution when block is freed if bad writes occur before or after

block bounds
• Scrambles previous memory contents on malloc() or free() calls
• Stops if the following block address is allocated or de-allocated
• Stops program execution when an allocation causes heap growth exceeding<num>

bytes
• Collects memory leak data (equivalent to info leak) and memory-usage (equivalent

to info heap) data
WDB GUI supports both interactive and attach mode of memory-debugging. It does
not support the batch mode debugging of applications.
The source window in the WDB GUI displays the source code. The command window
displays the output after debugging the application. It also enables you to use the
command-line interface in WDB. The command window can be used to take advantage
of memory-debugging features that are not directly supported in the GUI.

Using WDB GUI to Debug Memory-Related Problems
To debug an application for memory problems using WDB GUI, complete the following
steps:
1. Load the program to WDB as follows:

• Select File —> Load Program in the WDB GUI window.
• In the Load Program dialog-box, enter the executable name to load the

executable or use the PID to attach a process for debugging.
2. After you load the application, you can set the memory checking preferences by

setting the preferences in the Memory Checking window. Select Tools —>Memory
Checking to activate the Memory Checking window.

3. To set a break-point using WDB GUI, click the rectangular selection strip adjacent
to the specific program line-number in the source window. When the breakpoint
is set, a red octagonal button appears at the specified probe-point. Alternatively,
you can set breakpoints by selecting Edit —>Breakpoints and specifying the
breakpoints in the Breakpoints window.

80

4. Run the application. WDB GUI now gives you the leaks usage, memory-usage and
the results of memory checking at the specified break-points.

Heap and Leak Profiling Using WDB GUI
In order to view the heap report and leak reports while debugging the application,
select the Memory Usage tab in the command window. On selecting the Memory
Usage tab, the Memory Leaks and Memory Usage options are displayed.
To view the leak report, select the Memory Leaks option. The stack-unwind information
for each leak can be obtained by expanding the enhanced array browser for each leak.
To see a heap report, select the Memory Usage option. The stack-unwind information
can be obtained by expanding the enhanced array browser for each block of the heap.

Incremental Heap Profiling Using WDB GUI

HP WDB GUI provides support to view the incremental heap profile for a program.
To view the incremental heap profile for a program, complete the following steps:
1. Load the program to WDB GUI.
2. Select Tools->Memory Check
3. Select the Incremental Heap Check Settings option while setting the memory

debugging preferences in the Memory Check window.
4. Enter Heap Check Interval and Heap Check Repeat Count in the Memory Check

window.
5. Run the program after setting the required breakpoints.
6. Select View->Memory Usage->Incremental Heap to view the incremental heap

profile.
7. The Incremental Heap View window displays the incremental heap profile graph

for the program
The incremental heap profile graph can be plotted based on the outstanding
allocations in the program or the actual heap profile, as follows:
• To view the incremental heap profile graph based on the outstanding

allocations, select the Allocation option in the Plot Graph frame. The
Allocation Profile displays the outstanding allocations (in KB) in the program
with a unique color coding for each interval.

• To view the incremental heap profile graph based on the actual heap profile,
select the Actual Heap option in the Plot Graph frame. The Heap Space
Profile displays the heap size in KB for the program.

To specify the time interval for displaying the incremental heap profile, you must
select the Select Time option and specify the start time and the end time from the
Start Time list menu and the End Time list menu. The listings for time in the Start
Time list menu and the End Time list menu are calculated by dividing the total

Debugging Memory Using WDB GUI 81

program execution time into five equal intervals. Additionally, you can enter a
custom start time, or a custom end time for displaying the incremental heap profile.
To view the incremental heap profile summary, click Summary Table. The
summary table displays the record ID, the start time, the end time, the heap interval,
the heap start, the heap end, the heap size in bytes, the number of allocated bytes,
and the number of blocks used for all the collected incremental heap profile records.
Click on the required incremental heap profile record to view the block allocation
details for the corresponding record.

Snap Shots:

82

Figure 1 Allocation Profile

Debugging Memory Using WDB GUI 83

84

Figure 2 Heap Space Profile

Debugging Memory Using WDB GUI 85

Figure 3 Incremental Heap Profile Summary

Arena Profiling Using WDB GUI
HP WDB GUI 5.7 and later versions provide support to view the arena information for
a program running on HP-UX 11i v3.
To view the arena information, complete the following steps:
1. Load the program to HP WDB GUI.
2. Stop the program execution at the required breakpoints.
3. Select View->Memory Usage->Heap Arena to view the arena information. The

arena information is displayed in the View Heap Arena window.
The following information is displayed in the View Heap Arena window:
• Arenas

The Arena IDs are listed in the Arenas list menu. Select the required Arena ID
from the Arenas list menu to view Arena ID Summary, or Block Details for the
selected arena.

• Arena ID Summary

The summary information for the selected Arena ID is displayed in the Arena ID
Summary frame.

• Block Details

To view the block level details in an arena, select Block Details after selecting the
required Arena ID in the Arenas list menu. The block distribution in the arena is
displayed in the Arenas Block Distribution window.

86

The Arenas Block Distribution window displays the block level space distribution
graph for an arena. The graph displays the space occupied by the user blocks, the
free blocks, the unclaimed space, and the malloc metadata (which includes the
node blocks, the cached blocks, the holding header blocks, and the holding SBA
blocks). The virtual address of the blocks is used to arrange the blocks in the graph.
The Block ID of the block is also displayed within the block if the scale of the graph
supports the display. The start of the heap, the end of the heap, the total heap size,
and the total number of blocks are also listed.
WDB GUI displays the block distribution graph in the default window. If the
complete block distribution graph cannot be displayed in the default window, you
must select the Expand Block Distribution Graph toggle option to view the
magnified block distribution graph.
To view the Block ID, the block type, the block size, and the virtual address for
each block in the arena, you must click on the required block in the block
distribution graph. The number of used blocks in each block-count range is also
displayed graphically for the selected arena. This information is also displayed in
a tabular format.

• Heap Arena Space Usage

The Heap Arena Space Usage frame displays the Arena ID, the space usage (in
KB) in the arena, and the percentage space usage in each arena in comparison to
the total space occupied by all the arenas. The comparative space usage across
arenas is also displayed in a pie chart. The Arena ID is also displayed in the pie
chart if the scale of the graph supports it.

• Full Summary

To view the summary for all the arenas, click Full Summary. The summary
information for all the arenas is displayed in the Arena Summary window.

• Heap Arena Detailed Graphs

The Heap Arena Detailed Graphs display the following information:
The byte distribution (in KB) across the used ordinary blocks, the used small blocks,
the free ordinary blocks, and the free small blocks is displayed for each arena. This
information is displayed as a bar graph for each arena.
The byte distribution for the used ordinary blocks, the used small blocks, the free
ordinary blocks, and the free small blocks across the arenas is displayed in a pie
chart. This information is also displayed in a table.
The number of blocks that are distributed across the used ordinary blocks, the
used small blocks, the free ordinary blocks, and the free small blocks are displayed
for each arena. This information is displayed as a bar graph for each arena.

Debugging Memory Using WDB GUI 87

The number of blocks occupied by the used ordinary blocks, the used small blocks,
the free ordinary blocks, and the free small blocks across the arenas are displayed
in a pie chart. This information is also displayed in a table.

Snap Shots:

Figure 4 View Heap Arena Window 1

88

Figure 5 View Heap Arena Window 2

Debugging Memory Using WDB GUI 89

Figure 6 Arena Summary

Figure 7 Arena Block Distribution

90

Conclusion
Memory-related errors are some of the most difficult programming errors to detect
and debug. Debugging memory-related errors is difficult without the help of an effective
memory analysis tool. WDB enables you to debug memory leaks and heap-related
errors in an application
In addition to plugging memory leaks in your application, it is also important to track
the memory utilization in your application. WDB provides capabilities such as heap
profiling and error injection to analyze the memory-usage of your application. The
heap profile displays information about the allocated memory, the calling function,
and it also displays the allocating call stack.

Additional Examples
Example 16 to Example 21 illustrate how WDB detects memory leaks and heap-errors
caused by different types of programming errors.

Conclusion 91

Example 16 Detecting a double free error

Sample Program
$ cat double-free.c
#include<stdio.h>
1
2 int main()
3 {
4
5 printf("Starting program\n");
6 char* han = (char*)malloc(sizeof(char));
7 free(han);
8 printf("Now freeing a pointer twice...\n");
9 free(han);
10 }

Sample Debugging Session
(gdb) set heap-check free on
(gdb) file double-free
Reading symbols from double-free...done.
(gdb) b main
Breakpoint 1 at 0x2be4: file double-free.c,
 line 5 from double-free.
(gdb) r
Starting program: /double-free

Breakpoint 1, main () at double-free.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
6 char* han = (char*)malloc(sizeof(char));
(gdb)
7 free(han);
(gdb)
8 printf("Now freeing a pointer twice...\n");
(gdb)
Now freeing a pointer twice...
9 free(han);
(gdb)
warning: Attempt to free unallocated or already freed
 object at 0x4042c3e0
0x70e78d7c in __rtc_event+0 ()
 from /opt/langtools/lib/librtc.sl

92

Example 17 Detecting de-allocation of memory that has not been initialized

Sample Program
$ cat unalloc.c
1 #include<stdio.h>
2
3 int main() {
4
5 printf("Starting program\n");
6 char* han;
7 free(han);
8 }

Sample Debugging Session
gdb) set heap-check on
(gdb) file unalloc
Reading symbols from unalloc...done.
(gdb) b main
Breakpoint 1 at 0x2bb4: file unalloc.c, line 5 from unalloc.
(gdb) r
Starting program: unalloc

Breakpoint 1, main () at unalloc.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
7 free(han);
(gdb)
warning: Attempt to free unallocated or already freed
 object at 0x70fee070
0x70e78d7c in __rtc_event+0 ()
 from /opt/langtools/lib/librtc.sl

Additional Examples 93

Example 18 Detecting de-allocation of un-allocated blocks

Sample Program
$ cat unit.c
1 #include<stdio.h>
2
3 int main() {
4
5 printf("Starting program\n");
6 int *han = (int*)malloc(sizeof(int));
7 han++;
8 free(han);
9 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file uninit
Reading symbols from uninit...done.
(gdb) b main
Breakpoint 1 at 0x2bdc: file uninit.c, line 5 from uninit.
(gdb) r
Starting program: uninit

Breakpoint 1, main () at uninit.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
6 int *han = (int*)malloc(sizeof(int));
(gdb)
7 han++;
(gdb)
8 free(han);
(gdb)
warning: Attempt to free unallocated or already freed
 object at 0x4042c3e4
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl

94

Example 19 Detecting memory leaks that are caused when an application overwrites a
pointer that currently addresses a block of memory with another address or data

Sample Program
$ cat memleak1.c
1 #include<stdio.h>
2
3 int main() {
4
5 printf("Starting program\n");
6 int* han1 = (int*)malloc(sizeof(int));
7 int* han2 = (int*)malloc(sizeof(int));
8 han1 = han2;
9 free(han1);
10 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file memleak1
Reading symbols from memleak1...done.
(gdb) b main
Breakpoint 1 at 0x2bdc: file memleak1.c, line 5 from memleak1.
(gdb) r
Starting program: memleak1

Breakpoint 1, main () at memleak1.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
6 int* han1 = (int*)malloc(sizeof(int));
(gdb)
7 int* han2 = (int*)malloc(sizeof(int));
(gdb)
8 han1 = han2;
(gdb)
9 free(han1);
(gdb)
10 }
(gdb) info leak
Scanning for memory leaks...

4 bytes leaked in 1 blocks

No. Total bytes Blocks Address Function
0 4 1 0x4042c3e0 main()
(gdb) info leak 0
4 bytes leaked at 0x4042c3e0 (100.00% of all bytes leaked)
#0 main() at memleak1.c:6
#1 _start() from /usr/lib/libc.2
#2 _start() from /opt/langtools/lib/librtc.sl

Additional Examples 95

#3 $START$() from

96

Example 20 Detecting memory leaks that are caused when a pointer variable in an
application addresses memory that is out of the scope of the application

Sample Program
$ cat memleak2.c
1 #include<stdio.h>
2
3 void func1(int* ptr1)
4 {
5 ptr1 = (int*)malloc(5*sizeof(int));
6 }
7
8 void func2(int** ptr)
9 {
10 func1(*ptr);
11 }
12 int main()
13
14 {
15 printf("Starting program\n");
16 int* han1;
17 func2(&han1);
18 printf("End of the program\n");
19 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file memleak2
Reading symbols from memleak2...done.
(gdb) b 19
Breakpoint 1 at 0x2c4c: file memleak2.c, line 19 from memleak2.
(gdb) r
Starting program: memleak2
Starting program
End of the program

Breakpoint 1, main () at memleak2.c:19
19 }
(gdb) info leak
Scanning for memory leaks...

20 bytes leaked in 1 blocks

No. Total bytes Blocks Address Function
0 20 1 0x4042c3d8 func1()
(gdb) info leak 0
20 bytes leaked at 0x4042c3d8 (100.00% of all bytes leaked)
#0 func1() at memleak2.c:5
#1 func2() at memleak2.c:10

Additional Examples 97

#2 main() at memleak2.c:17
#3 _start() from /usr/lib/libc.2

98

Example 21 Detecting memory leaks when you free a structure or an array that has
pointers which are not freed.

Sample Program
$ cat memleak3.c
1 #include<stdio.h>
2
3 struct stud
4 {
5 char* name;
6 int id;
7 };
8
9 int main() {
10
11 struct stud *s1;
12 s1 = (struct stud*)malloc(sizeof(struct stud));
13 s1->name = (char*)malloc(50);
14 strcpy(s1,"Annie");
15 s1->id=10;
16 free(s1);
17 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file memleak3
Reading symbols from memleak3...done.
(gdb) b 17
Breakpoint 1 at 0x2c3c: file memleak3.c, line 17 from memleak3.
(gdb) r
Starting program:memleak3
Breakpoint 1, main () at memleak3.c:17
17 }
(gdb) info leak
Scanning for memory leaks...
50 bytes leaked in 1 blocks
No. Total bytes Blocks Address Function
0 50 1 0x4042a3e0 main()
(gdb) info leak 0
50 bytes leaked at 0x4042a3e0 (100.00% of all bytes leaked)
#0 main() at memleak3.c:13
#1 _start() from /usr/lib/libc.2
#2 _start() from /opt/langtools/lib/librtc.sl
#3 $START$() from usr/lib/libc.2

Additional Examples 99

Example 22 Work-Around when program execution is in a frame that belongs to the
GDB internal leak detection library

...
(gdb) set heap-check on
(gdb) r
Starting program: corruption
warning: Memory block (size = 80 address = 0x40453970) appears to be corrupted at the end.
Allocation context not found

#1 main() at corruption.c:4
#2 main_opd_entry() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

__rtc_event () at ../../../Src/gnu/gdb/infrtc.c:1173
warning: Source file is more recent than library library librtc.so.

1173 */
(gdb) bt
#0 __rtc_event () at ../../../Src/gnu/gdb/infrtc.c:1173
#1 0x200000007d0fbd40:0 in check_bounds (pointer=0x40453970, size=80,
 pclist=0x404309e4) at ../../../Src/gnu/gdb/infrtc.c:1278
#2 0x200000007d100f50:0 in rtc_record_free ()
 at ../../../Src/gnu/gdb/infrtc.c:2261
#3 0x200000007d1025a0:0 in free () at
../../../Src/gnu/gdb/infrtc.c:2575
#4 0x4000950:0 in main () at corruption.c:10
(gdb) info corruption
Analyzing heap ...

Current thread is inside the allocator. Try again later.

(gdb) frame 3
#3 0x200000007d1025a0:0 in free () at
../../../Src/gnu/gdb/infrtc.c:2575
2575 __rtc_event (RTC_HEAP_GROWTH, pointer,0,0);
(gdb) finish
Run till exit from #3 0x200000007d1025a0:0 in free ()
 at ../../../Src/gnu/gdb/infrtc.c:2575
0x4000950:0 in main () at corruption.c:10
10 free (x);
(gdb) info corruption
Analyzing heap ...

100

FAQ
1 Does WDB report all the leaks in a program?

WDB uses a conservative leak detection algorithm. As a result, all leaks may not
be reported, but all reported leaks are definite leaks. WDB reports leaks only in
the code path exercised in the current run.

2 I wrote a small sample program that allocates a block using malloc() and leaks
the block immediately, by assigning NULL to the pointer, but WDB does not report
this block as a leak. Why?
This is attributed to the leak detection algorithm followed by WDB. If the datum
in the program address space masks a leak, the leak is not reported. In this case
the address returned from malloc() is stored in the architecture registers and
consequently masks the leak. Typically, if you call any function after the leak, such
as a printf(), then WDB can catch the leak.

3 Does WDB support detection of leaks in a third party code?
Yes. WDB supports detection of leaks in a third party code also.

4 What are the commands that the batch mode of memory-debugging does not
support?
For more information on the commands that are supported in batch mode, see
“Summary of Memory Debugging Commands ” (page 77)

5 Can WDB debug applications with user-defined memory management routines?
WDB can debug applications with memory management routines that are either
user defined or are wrappers to the default memory management routines.

NOTE:
• This feature is not supported in the batch and the attach modes of debugging.
• In interactive mode, this feature will result in calls to the user defined memory

management routines being re-routed to default memory management routines.

6 Which version of WDB supports debugging of applications with custom allocators?
WDB 5.5 and above versions support the debugging of applications with custom
allocators.

7 Does WDB report the exact instant when the block becomes a leak?
No. WDB does not provide information on when the leak occurred. It reports only
the allocation stack trace of the leaked block and does not report the stack trace
where the block leaked.

8 Does WDB support debugging of C++ applications with calls to new() and
delete()?
Yes. WDB supports debugging of C++ applications with new() and delete()
calls only if they internally call malloc() and free().

9 Does WDB support memory-debugging of long running applications?

FAQ 101

Yes. WDB supports debugging of long running applications such as daemons.
However, the daemons must be started with an explicitLD_PRELOAD of the correct
version (32-bit or 64-bit) of librtc.[sl|so], so that WDB can debug memory
when it later attaches to the daemon process.

10 What is the work-around when the following message is displayed, when
attempting to view the leak report with the info leaks command?
(gdb) info leaks
Current thread is blocked. Cannot detect leaks now.

You can switch execution to a thread, which is not blocked. To switch execution
to a different thread, enter the following command at the gdb prompt:
(gdb)thread <thread-id>

11 Does the debugger find leaks in the executable from the startup of the application
when debugging the application in attach mode?
In the case of Itanium binaries, and PA—RISC 64–bit binaries, the debugger finds
leaks in the executable from the startup of the executable by default, when
debugging in attach mode.
However, to find leaks in the executable from the startup of PA-RISC 32–bit binaries
in the attach mode, the environment variable RTC_INIT must be set to on in
addition to preloading thelibrtc.[sl|so] library before starting the application,
as follows:
$ LD_PRELOAD=/opt/langtools/lib/librtc.sl RTC_INIT=on <executable>

If RTC_INIT is enabled, librtc.[sl|so] starts recording heap information for
PA–RISC 32–bit process by default. Hence, you must set this environment variable
only when memory debugging is required from the startup of the program

12 When attempting to view the leak report, the following error occurs:
(gdb) info leaks
Scanning for memory leaks...

Error downloading data !
(gdb)

What is the cause for this error and what is the work-around?

This error message is displayed when you attempt to view the heap profile or the
leak profile of a debugged process, which is exiting or has exited program execution.
As a work-around, you can place a breakpoint before the program exits and then
enter the info leaks command or the info heap command.

13 What is the work-around if the following error message is displayed while
debugging memory?
(gdb) info corruption
Current thread is inside the allocator. Try again later.

102

This error message signifies that the program execution is in a frame that belongs
to a GDB internal leak detection library. When this error is encountered, it is not
safe to enter commands that involve calls to the leak detection library procedures.
The user must set the frame to the last leak detection library frame and enter the
finish command before resuming to debug memory.
Example 22 (page 100) illustrates the use of the finish to resume memory
debugging when the program execution is in a frame that belongs to the GDB
internal leak detection library.

Index
A
Access Errors, 14
Attach Mode, 75

B
Batch Mode , 63
Batch Mode Configuration File, 66
BATCH_RTC, 63

C
catch nomem , 32

D
Dangling pointerinfo dangling, 58
Debugging Memory Using WDB GUI, 80

E
Environment Variables for Batch Mode , 63
Error Injection, 32
Event Monitoring, 39

H
Heap Corruption, 12
Heap Profiling, 17

I
Incremental Heap Profiling, 20
info corruption, 49, 56
info heap <filename>, 17
info heap arenas, 24
info heap high-mem , 45
info heap process, 24
info heap-interval <filename>, 20
info leaks, 30
Intended Audience, 9
Interactive Mode , 62
Interactive, Batch and Attach Mode , 62

FAQ 103

L
LD_PRELOAD, 64
Leak Profiling, 30

M
Memory Leaks, 12
Memory Related Errors, 11
min-heap-size, 17
Monitoring Heap Events, 39

P
Prerequisites for Memory Debugging, 11

R
RTC_MALLOC_CONFIG, 68

S
set heap-check block-size <num-bytes> , 41
set heap-check bounds <on/off>, 53
set heap-check frame-count <num>, 62
set heap-check free <on/off>, 49
set heap-check heap-size <num-bytes> , 43
set heap-check high-mem-count <X_number>, 45
set heap-check interval, 20
set heap-check leaks <on/off>, 30
set heap-check min-leak-size <num>, 62
set heap-check null-check <N>, 32
set heap-check null-check null-check-size <N>, 32
set heap-check on, 16
set heap-check random-range <N>, 32
set heap-check repeat <nn>, 20
set heap-check reset, 20
set heap-check scramble <on/off>, 60
set heap-check string <on/off>, 49
set heap-check watch <address>, 39
show heap-check, 16
Summary of Commands, 77

W
WDB, 9
WDB Documentation, 10

104 Index

	Debugging Dynamic Memory Usage Errors Using HP WDB
	Table of Contents
	Introduction
	Intended Audience
	Typographic Conventions
	Related Information
	Prerequisites
	Memory-Related Errors
	Heap Corruption
	Causes for Heap Corruption

	Memory Leaks
	When to Suspect a Memory Leak?
	Types of Memory Leaks

	Access Errors

	Using WDB to Debug Memory Problems
	HP aC++/ HP C Compiler Runtime Checking Options

	Memory-Debugging Features of WDB
	Heap Profiling
	Snapshot Profile
	Incremental Heap Profile
	Arena Profile
	Analyzing the info heap process output
	Analyzing the info heap arenas output

	Leak Profiling
	Error Injection
	Event Monitoring
	Monitoring Heap Events
	Monitoring a Specific Address
	Monitoring Allocations Greater Than a Specified size
	Monitoring the Program Heap Growth
	Monitoring Changes in Data Segment Space Allocation (High Water Mark Feature)
	Monitoring De-allocations to Detect Double-Frees

	Monitoring Heap Corruption
	Monitoring String Corruption
	Detecting Out-of-Bounds Writes with the Bounds-Checking Feature
	Setting the amount of guard bytes for every block of allocated memory
	Detecting Heap Corruption
	Detecting dangling pointer and dangling block
	Scrambling a Heap Block

	Settings to Manage Performance Degradation
	Supported Modes of Memory-debugging in WDB
	Debugging in the Interactive Mode
	Debugging in Batch Mode
	Environment Variables for Batch Memory-Debugging
	Enabling and Disabling Batch Mode Memory-Debugging
	Pre-loading the Appropriate Version of librtc.[sl|so] Along With the Application
	Using chatr +rtc to Automatically Preload librtc.[sl|so]
	Using LD_PRELOAD TO Preload librtc.[sl|so]

	Overriding the Default Location for librtc.[sl|so]
	Overriding the Default Path for Searching the GDB Executable
	Enabling the Processing of the .gdbinit File

	Configuration File for Batch Mode Debugging
	Location of the Configuration File for Batch Mode Debugging
	Supported Variables for Memory-Debugging in the Batch Mode Configuration File

	Overriding the Configuration File Settings
	Debugging in Batch Mode
	Debugging Multiple Applications in Batch Mode

	Debugging in Attach Mode

	Summary of Memory Debugging Commands
	Debugging Memory Using WDB GUI
	Using WDB GUI to Debug Memory-Related Problems
	Heap and Leak Profiling Using WDB GUI
	Incremental Heap Profiling Using WDB GUI

	Arena Profiling Using WDB GUI

	Conclusion
	Additional Examples
	FAQ
	Index

