
Debugging Core Files Using HP WDB

HP Part Number: 5992-4661
Published: September 2008
Edition: 2.0

© Copyright 2008 Hewlett-Packard Development Company, L.P

Legal Notices

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and
12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set
forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

UNIX is a registered trademark of The Open Group.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Table of Contents
About This Document..7
Intended Audience...7
Typographic Conventions..7
Related Information..8
Introduction..9
What Is a Core File?..9
Causes for a Core Dump..9
Common Signals That Cause Core Dumps..9
Using WDB to Debug Core Files..12

Support for Invoking GDB Before a Program Aborts...13
System Requirements for Core File Debugging..13

Commands For Core File Debugging...14
Invoking WDB to Debug Core Files..14
Setting the Path for the Relevant Shared Libraries...15
Common Commands for Core File Debugging..15

What is a Symbol Table?...21
What is a Stripped Binary?...21

Debugging Core Files Created by Stripped Binaries (When the Symbol Table is
Available)...22

Debugging Core Files Created by Optimized or Stripped Binaries...................................22
Limitations for Debugging Core Files Created by Optimized Binaries........................22
Limitations for Debugging Core Files Created by Binaries CompiledWithout the -g
Option..23
Limitations for Debugging Core Files Created by Stripped Binaries...........................23

Forcing a Core Dump...29
Saving the Core File to a Specific File Name...29
Debugging a Core File Created by a Forced Core Dump...29

Debugging Core Files From a Different System...31
Displaying run time type information...32
Debugging PA-RISC Core Files on Integrity Systems..32
Avoiding Core File Corruption...34

Avoiding Core File Corruption for Applications Running HP-UX 11i v1 and HP-UX
11i v2..34
Avoiding Core File Corruption for Applications Running HP-UX 11i v3....................35

Java Corefile Debugging Support...36
Summary...36
Examples Illustrating Core File Debugging...37
FAQ...55

Table of Contents 3

List of Tables
1 System Requirements for Core File Debugging..13
2 Commonly Used Commands for Core File Debugging...16
3 Supported Systems for PA-RISC Core File Debugging..31
4 Commands for Debugging a Core File From a Different System...............................32

4 List of Tables

List of Examples
1 SIGBUS Causes a Core Dump...10
2 SIGSEGV Causes a Core Dump..11
3 SIGABRT Causes a Core Dump..12
4 Viewing Symbol Information by Using the nm Command..21
5 Debugging Core Files Created by Optimized Code, Stripped Binaries, and Code

Compiled Without the -g Option...25
6 Debugging a Core File to Find the Values for Parameters of a Function When the

Program is not Compiled with -g...37
7 Debugging a Core File to View Information on a Global Variable in a C

program...45
8 Debugging a Core File Created by a Stripped Binary When the Symbol Table is

Available..47
9 Debugging of a Core File Created by a Stripped Binary When the Symbol Table is

Available from Another Program...49
10 Core File Debugging Session for a Stripped Binary When the Symbol Table is

Available from Another Program...51

5

6

About This Document
This document describes how to debug core files and analyze the process state of an
application, using HP WDB.

Intended Audience
This document is intended for C, Fortran, and C++ programmers who use HPWDB to
debug core files generated byHPC,HP aC++, and Fortran90 compilers. Readers of this
document must be familiar with the basic commands that HP WDB supports.

Typographic Conventions
This document uses the following typographical conventions:
%, $, or # A percent sign represents the C shell system prompt.

A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells. A number sign
represents the superuser prompt.

audit(5) A manpage. The manpage name is audit, and it is
located in Section 5.

Command A command name or qualified command phrase.
Computer output Text displayed by the computer.
ENVIRONMENT VARIABLE The name of an environment variable, for example,

PATH.
Key The name of a keyboard key. Return and Enter both

refer to the same key.
Variable The name of a placeholder in a command, function, or

other syntax display that you replace with an actual
value.

[] The contents are optional in syntax. If the contents are
a list separated by |, youmust choose one of the items.

{} The contents are required in syntax. If the contents are
a list separated by |, youmust choose one of the items.

... The preceding element can be repeated an arbitrary
number of times.

| Separates items in a list of choices.
NOTE A note contains additional information to emphasize

or supplement important points of the main text.

About This Document 7

Related Information
The following table lists the documentation available for HP WDB.

LocationDocument

/opt/langtools/wdb/doc/gdb.pdfDebugging with GDB

/opt/langtools/wdb/doc/refcard.pdfGDB Quick Reference Card

/opt/langtools/wdb/doc/html/wdb/C/GDBtutorial.htmlGetting Started With HP WDB

/opt/langtools/wdb/doc/index.htmlWDB GUI Online Help

/opt/langtools/wdb/doc/html/wdbgui/C/HPWDB GUI Documentation

gdb(1)GDB manpage

For the most current HP WDB documentation, see the HP WDB Technical Resources
website at:
http://www.hp.com/go/wdb

8

http://www.hp.com/go/wdb

Introduction
HPWildebeest Debugger (WDB) is an HP-supported implementation of the open
source debugger GDB. Apart from performing the normal debugging functions, it also
enables you to debug core files and analyze the process state of an application.
HPWDB debugs core files that are created by source-level programs written in HP C,
HP aC++, and Fortran 90 on Itanium®-based systems runningHP-UX 11i v2 or HP-UX
11i v3, and HP 9000 systems running HP-UX 11i v1, HP-UX 11i v2, or HP-UX 11i v3
operating systems.

What Is a Core File?
A core dump is an abnormal termination of a program. The most common types of
programming errors that can cause a core dump include program aborts, memory
violations, bus errors, and illegal instructions. When a core dump occurs during the
execution of a program, the core file, core, is created in the working directory of the
terminated process. This core file reflects thememory image of the terminated process.
You can use the information in a core file to debug an abnormally-terminated program
and analyze the causes for the core dump.

Causes for a Core Dump
When a kernel encounters an un-handled signal, it creates a core file for that process.
Alternately, the user can force a core dump to create a core file (through WDB or by
using gcore).
The file command is the simplest method to analyze the cause of a core dump at the
HP-UX prompt.
The file command displays the signal that triggered the core dump.
For example:
$ file core
core: core file from 'a' - received SIGBUS

This example illustrates that the program dumped a core after receiving the SIGBUS
signal.

Common Signals That Cause Core Dumps
Following are some signals that commonly cause core dumps:
• SIGBUS

One reasonwhy aSIGBUS signal is sent to a process is when the program attempts
to load or store a data item at a non-aligned address.
Example 1 illustrates a load or store operation of a data item at a non-aligned
address.

Introduction 9

Example 1 SIGBUS Causes a Core Dump

$ cat a.c
#include <stdio.h>

int main()
{
 char a[64], *b;
 int *i;

 b = a;
 b++;
 i = (int *)b;
 printf("%i", *i);
return 0;
}
$ aCC a.c -o a
$./a
Memory fault(core dump)
$file core
core: core file from 'a' - received SIGBUS

In this example, the program attempts to load a data item at a non-aligned address,
which results in a SIGBUS signal.
The variable a is a local variable on the stack. The pointer b is set to point to the
start of a. The pointer b is set to increment such that it does not point to a word
aligned address. The value in pointer b is assigned to pointer i. When pointer i
is de-referenced, a SIGBUS signal is encountered.

• SIGSEGV

A SIGSEGV signal is sent to a program when a segmentation violation occurs. A
segmentation violation occurs when a process attempts to access an address that
is not in the currently allocated address space of the process.
Example 2 illustrates how a SIGSEGV signal can cause a core dump.

10

Example 2 SIGSEGV Causes a Core Dump

$ cat a.c
int main()
{
 int *i, j;
 i = (int *)0x48000000;

 j = *i;
return 0;
}
$ aCC a.c -o a
$./a
Memory fault(core dump)
$ file core
core: core file from 'a' - received SIGSEGV

In this example, the programde-references a nonexistent pointer address, and this
results in a SIGSEGV signal.

• SIGABRT

A SIGABRT signal can be sent to a process in any of the following ways:
— The process can send the abort signal, SIGABRT, by invoking the abort(3)

function.
— Another process or the user can invoke thekill command to send theSIGABRT

signal.
— As a result of calls to C++ terminate() function on various runtime library

errors. Example 3 (page 12) illustrates a SIGABRT signal caused by a call to
terminate().

Common Signals That Cause Core Dumps 11

Example 3 SIGABRT Causes a Core Dump

$ cat gdb_throw_example.c
#include <stdio.h>
void foo(int i) {
 throw i;
}
int main() {
 foo(10); // will not be caught
}
$ a.out
aCC runtime: Uncaught exception of type "int".
Abort(coredump)

Core was generated by `a.out'.
Program terminated with signal 6, Aborted.

(gdb) bt
#0 0x60000000c0349f50:0 in kill+0x30 () from /usr/lib/hpux32/libc.so.1
#1 0x60000000c0240e90:0 in raise+0x30 () from /usr/lib/hpux32/libc.so.1
#2 0x60000000c0304390:0 in abort+0x190 () from /usr/lib/hpux32/libc.so.1
#3 0x60000000c4744cb0:0 in std::terminate () at ../terminate.C:70
#4 0x60000000c476c550:0 in __cxa_throw () at ../NewExceptionHandling.C:610
#5 0x4000ad0:0 in foo () at gdb_throw_example.c:3
#6 0x4000ba0:0 in main () at gdb_throw_example.c:6

This example illustrates the core dump which is caused by a call to the C++
terminate() function.

For more information about other common signals that can cause core dumps, see
signal(5).

NOTE: The SIGKILL signal does not generate a core file.

Using WDB to Debug Core Files
The core file debugging features in WDB enable you to analyze the cause of a core
dump and analyze the process state of an application.
Core file debugging features inWDB are typically used under the following scenarios:
• The program dumps core as a result of programming errors.
• The program is forced to dump core by using the dumpcore command in WDB,

or the gcore utility, that is available on HP-UX.
WDB can be used to debug the following kinds of core files:
• A core file is created by a program that is compiled without the –g option.
• A core file is created by a stripped executable.
• A core file is created by a program, and the source code for the program is available.
If you can reproduce the problem when running the program under WDB, it is easier
to use a live debugging session in WDB to debug the program, instead of debugging

12

the core file. However, the same debug information in the program can be used for
core file debugging.

Support for Invoking GDB Before a Program Aborts
WDB also provides the -crashdebug option to monitor the program execution and
invoke the debuggerwhen the programexecution is about to abort. This option provides
support for debugging a live process before the program aborts, instead of debugging
the core file after the program aborts.
Once the debugger is invoked, you can debug the application by using the common
debugger commands. You can examine the state of the process, make changes to the
state, and continue program execution, force a core dump, or terminate execution.
It also enables you to control program execution under the debugger if the program is
about to abort. You can load a newprocess or attach to a running process formonitoring.
To monitor a new process, enter the following command at the HP-UX prompt:
$ gdb -crashdebug [command][options]

Tomonitor and attach to a running process, enter the following command at theHP-UX
prompt:
$ gdb -crashdebug -pid [pid]

System Requirements for Core File Debugging
Table 1 lists the system requirements for debugging core files using WDB.

Table 1 System Requirements for Core File Debugging

DescriptionRequirement

HP–UX 11i v1, HP-UX 11i v2, or HP-UX 11i v3 on
HP 9000 systems
HP-UX 11i v2 orHP-UX 11i v3 on Integrity systems

Operating System

Using WDB to Debug Core Files 13

Commands For Core File Debugging
This section discusses the commands for debugging core files.

Invoking WDB to Debug Core Files
To invoke the debugger on the core file, enter one of the following commands:
• At the HP-UX prompt:

$ gdb a.out core

or
$ gdb a.out -c core

or
$ gdb -c core

• (Or) At the gdb prompt:
(gdb) core core

(where a.out is the executable that dumped core.)
If the executable path is not provided, the debugger selects the invocation path of the
process that generated the core file. The invocation path information is stored in the
core file. If the invocation path is a relative path, you must specify the executable to
debug the core file.
On invoking the core file debugging session, the debugger displays the following
information (depending on the debug information available):
• The signal that caused the core file
• The cause of the un-handled signal
• The instruction at which this signal occurred
• The function name and the parameters of the function in which this instruction

resides
• The source line information
The following example illustrates the output from the debugger on invoking a core file
debugging session:
..
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
#0 inline generate_core_dump () at a.c:11
11 printf ("Generated coredump\n");
(gdb) bt
#0 inline generate_core_dump () at a.c:11
#1 0x4000a00:0 in inline foo () at a.c:30
#2 0x40009b0:1 in main () at a.c:37

14

Setting the Path for the Relevant Shared Libraries
The core files do not carry information about the exact version of shared libraries that
were in use at the time of core dump. Analyzing a core file without the correct versions
of shared libraries can producemisleading results.Hence, youmust provide information
about the relevant shared libraries before initiating a core file debugging session. All
the required libraries must be copied to a temporary location on the systemwhere you
are debugging the core file (if it is different from the system where the core file was
generated).
The executable and the core file inherently carry information about the list of shared
libraries that were loaded at the instant of core dump. However, this list of shared
libraries is referenced by pathnames (the invoked path of the shared libraries on the
system where the core dump occurred).
If the shared libraries are located at a path that is different from the invoked path, you
must provide WDB with the path for the shared libraries.
To associate the appropriate versions of the shared libraries with the core file, set the
environment variable, GDB_SHLIB_PATH, as follows:
$ export GDB_SHLIB_PATH<path>

NOTE: You can use packcore, and unpackcore to pack, or unpack the core file
alongwith the relevant executable and libraries in a single tar file, and debug the core
file on a different system from the one on which the core file was invoked.
For more information on debugging a core file from a different system than the one on
which the core file was created, see “Debugging Core Files From a Different System”
(page 31)

Common Commands for Core File Debugging
Table 2 lists the common commands for core file debugging.

Commands For Core File Debugging 15

Table 2 Commonly Used Commands for Core File Debugging

DescriptionCommand
Debugging
Feature

Invokes the core file debugging feature in WDB.
If the executable path is not provided, the debugger
selects the invocation path of the process that generated
the core file. The invocation path information is stored
in the core file. If the invocation path is a relative path,
youmust enter the executablewhile debugging the core
file.

At the HP-UX prompt:
$ gdb a.out core

or
$ gdb a.out -c core

or
$ gdb -c core

Invoking the
core file

Displays the backtrace information about the process
that encountered the un-handled signal and the call
chain (including inlined functions). The backtrace is
displayed for the thread where the un-handled signal
occurred.
All the stack frames are displayed if no arguments are
specified. If <COUNT> is specified, it display the
innermost COUNT frames. If a negative argument,
<-COUNT>, is specified, it displays the outermostCOUNT
frames.

backtrace [<-><count>]
where [<-><count>]

Viewing
backtrace
information

The up and the down commands enable you to traverse
(up or down) the call chain in the stack. You can traverse
up to a specific number of frames in the stack if
<number> is specified.
The frame <frame-number> command enables you
to traverse the stack frame to the specified frame
number,<frame-number>. This thread ismarkedwith
'>' in the info thread output, while the current
selected thread is marked with a '*' symbol.

up <number>

down <number>

frame <frame-number>

Traversing
the stack

16

Table 2 Commonly Used Commands for Core File Debugging (continued)

DescriptionCommand
Debugging
Feature

The info thread command enables you to view the
list of all the threads in the process at the time of core
dump.
The thread <thread-id> command enables you to
switch the thread view under the debugger from one
thread to another. The thread that created the
un-handled signal is the current thread when the core
file is loaded in to the debugger.
The thread apply command allows you to apply a
command to one or more threads. You can specify the
numbers of the threads, where the command must be
applied, with the command argument<thread-id>.
the command argument<thread-id> is the internal
GDB thread number, as shown in the first field of
theinfo threads display. To apply a command to all
threads, use thread apply all args.
The backtrace-other-thread commandprints the
backtrace of all stack frames for a thread with stack
pointer SP, and program counter PC. This command is
useful in cases where the debugger does not support a
user thread package fully.

info thread

thread <thread-id>

thread apply
<thread-id>[all]args

backtrace-other-thread

Viewing
thread
information

Displays information about the global and local
variables in the program.
The <expr> is an expression (in the source language).
By default the value of <expr> is printed in a format
appropriate to its data type. To change the display
format, you can use the where </f> option, where f is
a letter specifying the display format,
[x|d|u|o|t|a|c|f].

print </f><expr>Printing
global and
local variables

Prints the description of a data type,<typename>,
where <typename> can be the name of a type, or it can
have the form class class-name, struct
<structtag>, union <union-tag> or enum
<enum-tag> in the case of C code.

ptype <typename>Printing the
description of
a data type

Commands For Core File Debugging 17

Table 2 Commonly Used Commands for Core File Debugging (continued)

DescriptionCommand
Debugging
Feature

Enables you to navigate the source code if it has been
compiled with the -g option.
When no arguments are specified, it lists ten lines after
or around the previous listing.
The list - command lists the ten lines before a
previous ten-line listing.
The list <line-number> command lists the source
code around the specified line in the current file. You
can also specify the starting line number and the ending
line number of the source code to be displayed
(separated by a comma).
The list <function> command lists the source code
around the beginning of the specified function.
Thelist <*address> command lists the source code
around the line containing the specified address.

list [- | <line-number>
|<function> |
<*address>]

Navigating
the source
code

Disassembles a specified section of the memory. The
default disassembled memory is the function
surrounding the pc of the selected frame.
If an address is specified, the function surrounding the
specified address is disassembled.
If <func-name> is specified, the range of addresses for
that function are disassembled.
If two addresses are specified, the function surrounding
the specified address range is disassembled.

disassemble <address>

disassemble <func-name>

disassemble <address>
- <address>

Disassembling
the core file

Displays memory information of a specified address.
The x / x <address> command prints the contents
of the specifiedmemory address in hexadecimal format.
The x / s <address> command prints the contents
of the address of a string.
The x / d <address> command prints the contents
of the address in decimal format.

x /[x|s|d] <address>Examining
memory

Displays the contents of the registers at the time of core
dump.

info registersViewing
register
information

Displays information about all the shared libraries that
are loaded at the time of core dump.

info sharedViewing
shared library
information

18

Table 2 Commonly Used Commands for Core File Debugging (continued)

DescriptionCommand
Debugging
Feature

Theinfo files and info target commandsprint
the current target, including the names of the executable
and core dump files currently in use by GDB, and the
files from which the symbols were loaded.
The command help target lists all possible targets
rather than current ones.

info files

info target

help target

Prints the
target that is
currently
under the
debugger

Read symbol table information from file <filename>.
The symbol-file command with no argument clears
out GDB information on the symbol table of the
program, and causes GDB to erase the contents of the
convenience variables, the value history, and all
breakpoints and auto-display expressions

symbol-file <filename>Read symbol
information
from a file

Reads additional symbol table information from the file
<filename> (when <filename> is dynamically
loaded into the program that is running.
The <address> is the memory address at which the
file is loaded. (GDB cannot detect this address, unless
specified)
You can specify up to three addresses (the addresses of
the text, data, and bss segments respectively).

add-symbol-file
<filename> <address>[-s
<section>
<sect-address> -s
<section>
<sect-address>]

Read
additional
symbol
information

Forces a core dump and creates a core image file for a
process that is running under the debugger.
If the filename is specified, it saves the dumped core file
in the file, <corefile-name> , instead of the default
file,core.<pid> (wherepid is the process IDnumber).

dumpcore
<corefile-name>

Forcing a core
dump

Packs the core file along with the relevant executable
and libraries in a single tar file for core file debugging
on another system.

packcorePacking the
core file along
with the
associated
shared
libraries

Commands For Core File Debugging 19

Table 2 Commonly Used Commands for Core File Debugging (continued)

DescriptionCommand
Debugging
Feature

Unpacks the tar file that is generated by the packcore
command so that the debugger can use the executable
and shared libraries from this bundle, when debugging
the core file on a different system from the one onwhich
the core file was originally created.

unpackcoreUnpacking
the core file
alongwith the
associated
shared
libraries

Enables you to examine a packcore directory, which
was previously created by unpackcore. It takes one
optional argument, which is the name of the packcore
directory.

getcore
<packcore-directory>

Examine a
core file
which was
previously
created by
unpackcore

Example 6 (page 37) and Example 7 (page 45) illustrate the use of the common core
file debugging commands.

20

What is a Symbol Table?
A symbol table is a set of records that define the set of visible and important symbols
in a program. These symbols are stored in the program. Each (unstripped) program
has an associated symbol table.
The nm command displays the symbol information for a specified object file.
Example 4 illustrates how to view symbol information for an object file by using the
nm command for an object file, on an HP 9000 system.

Example 4 Viewing Symbol Information by Using the nm Command

This example illustrates the use of the nm command to display the symbol information
for the common linker and debugger symbols, Cerrno and Cselectdraw, on an HP
9000 system:
$ nm -x Cscreen_selection.o |grep Cerrno
Cerrno | |undef |data |
$ nm -x Cscreen_selection.o |grep Cselectdraw
Cselectdraw |0x00001178|extern|entry |$CODE$

The output of the nm command illustrates that the symbol, Cerrno is an undefined
data symbol and that the symbol,Cselectdraw is a function that is a code entry point.
Alternately, you can use odump -slexport, elfdump -n, or dynsym -s, instead
of nm to view the symbol definition for stripped binaries.
The dynamic symbols are not removed with the strip command. The strip -l
command only strips the line number tables.

What is a Stripped Binary?
The strip command removes the symbol table, debug information, and line number
information from the object file, including the archives. Thereafter, no symbolic
debugging access is available for the stripped object file.
The strip -l strips only the line table information, and the symbolic debugging
access continues to be available.
For more information on the strip command, see strip(1)
Stripped executables or shared libraries can also be built by using the -s compiler or
linker option.
In HP 9000 systems, the file command displays whether an executable is stripped or
not.
The following example illustrates the use of the file command before and after a
strip operation:
$ file a
a: PA-RISC1.1 shared executable dynamically linked -not stripped
$ strip a

What is a Symbol Table? 21

$ file a
a: PA-RISC1.1 shared executable dynamically linked

In Integrity systems, you must use the nm to display whether the binary is stripped or
not. The output from the nm command displays 'no symbols' for a stripped binary
on Integrity systems.

Debugging Core Files Created by Stripped Binaries (When the Symbol Table is Available)
You can debug a core file that is created by a stripped binary effectively, if the symbol
table for the unstripped version of the program (before the program is stripped) is
available.
Alternately, you can also debug the core file that is created by a stripped program if
the symbol table is available from another program, which functionally uses the same
symbols, but has a different link order.
Example 8 (page 47) illustrates the core file debugging for a stripped binary when the
symbol table of the unstripped program is available.
Example 9 (page 49) illustrates the core file debugging for a stripped binary when the
symbol table is available from another program, which uses the same symbols, but in
a different link order.

Debugging Core Files Created by Optimized or Stripped Binaries
All core file debugging features are available for unstripped binaries and shared libraries
that are built using the -g option.
However, the following limitations apply for core files that are created by binaries that
are compiled without the -g option, and for core files created by optimized
(optimization level 2 or above) and stripped binaries.

Limitations for Debugging Core Files Created by Optimized Binaries
The following limitations apply for core files that are created by optimized binaries
(optimization level 2 or above) that are compiled with the -g option:
• Local variables and arguments in an optimized module are not displayed.
• The backtrace information displays the inlined functions. However, the line

numbers are not displayed accurately at +O2 and higher levels of optimization.
For an illustration of these limitations, see “Sample Debugging Session 1” in Example 5
(page 25)

22

Limitations for Debugging Core Files Created by Binaries Compiled Without the -g
Option

The following limitations apply for core files that are created by binaries compiled
without the -g option:
• Argument information in the stack traces is not displayed.
• Local variables and type information are not displayed.
• Inline frame information is not displayed. The source line information is not

displayed for core files that are created by PA-RISC binaries.
In the case of Integrity systems (Itanium-based binaries), the source line information
is displayed for core files.

NOTE: In the case of core files that are created by Itanium-based binaries, the
source line information is available, irrespective of whether the binary is compiled
with the -g option, or not. To strip the line number information for Itanium-based
binaries, youmust use the strip -l command orr the +nosrcpos linker option.

For an illustration of these limitations, see “Sample Debugging Session 2” in Example 5
(page 25).

Limitations for Debugging Core Files Created by Stripped Binaries
The following limitations apply for core files that are created by a stripped executable:
• Local variables and static variables in a stripped module are not displayed.
• Global variables and type information in a stripped module are not displayed.

However, the debugger can access the global or local variables (within the scope
of the variables) that are defined in other unstripped shared libraries, which are
loaded in to the stripped executable.

• Argument information in the stack traces is not displayed.
• The static function names appearing in the stack traces are not displayed. The

debugger may print random names instead of <unknown_procedure>while
displaying these function names.

• In the case of core files created by PA-RISC binaries, the function names (static
and non-static) appearing in the stack are not displayed.

Debugging Core Files Created by Optimized or Stripped Binaries 23

NOTE:
• To avoid these limitations in debugging core files created by stripped binaries,

you can use the original unstripped version of the executable, if it is available. For
more information about debugging stripped binaries by using the symbol table
from the unstripped version of the executable, see “Debugging Core Files Created
by Stripped Binaries (When the Symbol Table is Available)” (page 22).

For an illustration of these limitations for core files created on an Integrity system, see
“Sample Debugging Session 3” in Example 5 (page 25).

24

Example 5 Debugging Core Files Created by Optimized Code, Stripped Binaries, and
Code Compiled Without the -g Option

Sample Program
 1 // a.c
 2 // Generates coredump with 3 deep stack trace.
 3
 4 #include <stdio.h>
 5
 6 void
 7 generate_core_dump ()
 8 {
 9 int i = 0;
 10 *(int*)i = 10;
 11 printf ("Generated coredump\n");
 12 *(int*)i = 10;
 13 }
 14
 15 void
 16 foo (int arg_i)
 17 {
 18 int local_j;
 19 if (arg_i == 10)
 20 {
 21 local_j = 5;
 22 printf ("Hello World! Arg_i is 10 and
 local_j is %d\n",local_j);
 23 }
 24 else
 25 {
 26 local_j = 10;
 27 printf ("Hello World! Arg_i is not 10 and
 local_j is %d\n", local_j);
 28 }
 29 if (local_j == 5)
 30 generate_core_dump();
 31 printf ("Hello World\n");
 32 }
 33
 34 int main()
 35 {
 36 int local_i = 10;
 37 foo(local_i);
 38 return 0;
 39 }

Sample Debugging Session 1
Debugging a Core File Created by Optimized Code
$ aCC -g -O a.c
$ /opt/langtools/bin/gdb ./a.out core
HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.

Debugging Core Files Created by Optimized or Stripped Binaries 25

Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for
warranty/support.
..
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
#0 inline generate_core_dump () at a.c:11
11 printf ("Generated coredump\n");
(gdb) bt
#0 inline generate_core_dump () at a.c:11
#1 0x4000a00:0 in inline foo () at a.c:30
#2 0x40009b0:1 in main () at a.c:37
(gdb) up
#1 0x4000a00:0 in inline foo () at a.c:30
30 generate_core_dump();
(gdb) p local_j
No symbol "local_j" in current context.

The debugger cannot display information about the arguments and local variables
because the program is compiled with the -O option (level 2 optimization). However,
the debugger can display the inlined functions in the backtrace and provide the line
number information. The line numbers may not be displayed accurately because the
code is moved during optimization.
If you encounter issueswhile debugging inlined functions, you can use the +d compiler
option to disable inlining, as follows:
$ aCC -g -O +d a.c

Examples on Integrity systems built without -g display significantly greater inlining
and source line information than the same examples that are built onHP 9000 systems.
Sample Debugging Session 2
Debugging a Core File Created by Code Compiled Without the -g Option

26

$ aCC a.c

$ /opt/langtools/bin/gdb ./a.out core
HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for
warranty/support.
..
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
#0 0x40009b0:1 in generate_core_dump () at a.c:10
10 *(int*)i = 10;
(gdb) bt
#0 0x40009b0:1 in generate_core_dump () at a.c:10
#1 0x4000b40:0 in foo () at a.c:30
#2 0x4000bd0:0 in main () at a.c:37
(gdb) p local_j
No symbol "local_j" in current context.
(gdb)

In the case of core files created by PA-RISC - based binaries, the source line information
is not available if the binary has not been compiledwith the -g option. The information
about the arguments and the local variables is not displayed.
In the case of core files created by Itanium-based binaries, the source line information
is available, irrespective of whether the binary is compiled with the -g option, or not.
Sample Debugging Session 3
Debugging a Core File Created by a Stripped Binary When the Symbol Table is Not
Available

Debugging Core Files Created by Optimized or Stripped Binaries 27

$ aCC -g a.c
$ strip a.out

$ /opt/langtools/bin/gdb ./a.out core
HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for
warranty/support.
..
warning: Load module ./a.out has been stripped.
Debugging information is not available.

(no debugging symbols found)...
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0x40009b0:1 in generate_core_dump+0x21
()
(gdb) bt
#0 0x40009b0:1 in generate_core_dump+0x21 ()
#1 0x4000b40:0 in foo+0x110 ()
#2 0x4000bd0:0 in main+0x20 ()
(gdb)

28

Forcing a Core Dump
WDB enables you to force a core dump of a running process, and analyze the core file.
The dumpcore command forces a core dump and generates a core image file for a
process that is running under the debugger. If no arguments are given, it saves the core
image for the current debugged process in a file named core.<pid>, where <pid>
is the process ID number.
Before debugging a forced core dump, you must enter the set live-core 1
command at the gdb prompt. The set live-core command enables the debugging
of a core file created by a forced core dump. Alternately, you can use the --lcore
start-up option to debug a core file created by a forced core dump.

Saving the Core File to a Specific File Name
You can specify a <corefile-name> as an option in the dumpcore command. This
saves the dumped core file in the specified file, <corefile-name>, instead of
core.<pid>.
To specify the filename as an option in the dumpcore command, enter the following
command at the gdb prompt:
(gdb) dumpcore <corefile-name>

Debugging a Core File Created by a Forced Core Dump
To debug a core file that is created by a forced core dump, complete the following steps:
1. To dump the core for a live process, enter the following command at the gdb

prompt:
(gdb) dumpcore

For example:
(gdb) run
Starting program: sample
Breakpoint 3, main () at sample.c:1010 b= foo(a);
(gdb) dumpcore
Dumping core to the core file core.24091
(gdb)

2. To analyze the dumped core file, enter one of the following commands:
• At gdb prompt:

(gdb) core [core.<pid>|<corefile-name>]

For example:
(gdb) file sample
Reading symbols from sample...done
(gdb) set live-core 1
(gdb) core core.24091
Core was generated by ’sample’.

Forcing a Core Dump 29

#0 main () at sample.c:1010 b = foo(a);
(gdb) backtrace
#0 main () at sample.c:10
(gdb)

(Or)

• At shell prompt:
% gdb --lcore a.out [core.<pid>|<corefile-name>]

For example:
% ./gdb --lcore sample core.24091
HP gdb for PA-RISC (narrow), HP-UX 11.23. Copyright 1986 -
2001 Free Software Foundation, Inc. Hewlett-Packard Wildebeest
(based on GDB) is covered by the GNU General Public License.
Type "show copying" to see the conditions to change it and/or
distribute copies.
Type "showwarranty" for warranty/support....

Core was generated by ’sample’.
#0 main() at sample.c:10
(gdb)

30

Debugging Core Files From a Different System
When debugging a core file, the debugger requires the exact versions of shared libraries
and the executable that are associated with the core file.
Debugging a core file on a system other than the one on which it was originally
produced is supported only under the following condition:
The correct system and user shared libraries are copied with the executable and core
file to the other system, and the location of the shared libraries is defined by setting
GDB_SHLIB_PATH or GDB_SHLIB_ROOT before debugging the core file.
For more information about these variables, see the Debugging with GDBmanual
available at:
http://www.hp.com/go/wdb
Table 3 lists the supported systems for debugging PA-RISC core files.
Core files produced by Integrity systems can be debugged on any Integrity system
with anHP-UXversion greater than or equal to theHP-UXversion on the systemwhere
the core file was produced.

Table 3 Supported Systems for PA-RISC Core File Debugging

Supported systems for debuggingType of core files produced

Any PA-RISC 1.1 or PA-RISC 2.0 system with an
HP-UX version greater than or equal to the HP-UX
version on the system where the core file was
produced.

Core files produced by 32–bit executables

Other PA-RISC 2.0 systems with HP-UX versions
greater than or equal to the HP-UX version on the
system where the core file was produced.

Core files produced by 64–bit executables

Table 4 lists the commands for debugging a core file from a different system.

Debugging Core Files From a Different System 31

http://www.hp.com/go/wdb

Table 4 Commands for Debugging a Core File From a Different System

DescriptionCommand

Packs the core file along with the relevant
executable and libraries in a single .tar file.

packcore

Unpacks the .tar file generated by the packcore
command. The debugger can use the executable
and shared libraries from this bundle while
debugging the core file on a system, which is
different from the one on which the core file was
originally created.

unpackcore

Enables you to examine a packcore directory,
which was previously created by unpackcore. It
takes one optional argument, which is the name of
thepackcore directory.

getcore

To debug core files from a different system than the one on which the core file was
created, complete the following steps:
1. Invoke WDB on the core file on the system where the core file was created.
2. Enter the packcore command to package the .tar file with the core file, the

relevant libraries, and the relevant binaries.
3. Transfer the .tar file to the required system.
4. Enter the unpackcore command to unpack the .tar file on this system.
5. Start debugging the core file on this system.
6. If you exit from the debugging session, and must debug the same core file again,

you can use the getcore command to examine the packcore directory, which
was previously created by unpackcore. The getcore command accepts the
name of the packcore directory as an argument.

Displaying run time type information
HPWDB enables you to view the run time type information for C++ polymorphic
objects. The following commanddisplays the run time information for C++ polymorphic
object.
info rtti <address>

The input to this command is address of the C++ polymorphic object. GDB displays
de-mangled type name as output.

NOTE: This command is supported only on Integrity systems.

Debugging PA-RISC Core Files on Integrity Systems
UsingWDB, you can transparently debug PA-RISC programs running in compatibility
mode under Aries on Integrity systems.

32

To debug a core file generated by a PA-RISC program on an Integrity system, complete
the following steps:
1. Transfer the executable program, core file, and all shared libraries that are used

by the PA-RISC application, to the target Integrity system.
2. Set the GDB_SHLIB_PATH environment variable to a colon-separated list of

directory path names on the system where the transferred shared libraries reside.
3. Use WDB to examine the core file on the Integrity system.

Debugging PA-RISC Core Files on Integrity Systems 33

Avoiding Core File Corruption
You can prevent overwriting of core files from a different process by setting the kernel
to store the core file in a process-specific file name, <core.pid> (where pid is the
process ID of the process that dumped the core).

Avoiding Core File Corruption for Applications Running HP-UX 11i v1 and HP-UX 11i
v2

To prevent overwriting of core files from different processes for applications running
HP–UX11i v1 or 11i v2 operating systems, youmust set the kernel parameter core_addpid
to 1. The core file is stored in a file name, <core.pid> in the current directory. To
store core files in a specific filesystem, youmust switch to the required directory (using
the cd command) and then run the required application.
To set the kernel parameter to prevent core file corruption, complete the following
steps:
1. Create the following script, corepid, as a superuser of the system before running

the application:
Following is the corepid script for HP-UX 11i v1 systems:
cat <path>/corepid
case $1 in
on) echo "core_addpid/W 1\ncore_addpid?W 1" | adb -w -k /stand/vmunix /dev/kmem;;
off) echo "core_addpid/W 0\ncore_addpid?W 0" | adb -w -k /stand/vmunix /dev/kmem;;
stat) echo "core_addpid/D\ncore_addpid?D" | adb -w -k /stand/vmunix /dev/kmem;;
*) echo "usage $0: on|off|stat";;
esac

Following is the corepid script for HP-UX 11i v2 systems:
cat <path>/corepid
case $1 in
on) echo "core_addpid/W 1\ncore_addpid?W 1" | adb -o -w /stand/vmunix /dev/kmem;;
off) echo "core_addpid/W 0\ncore_addpid?W 0" | adb -o -w /stand/vmunix /dev/kmem;;
stat) echo "core_addpid/D\ncore_addpid?D" | adb -o -w /stand/vmunix /dev/kmem;;
*) echo "usage $0: on|off|stat";;
esac

2. To enable or disable the feature to store the core file in a specific file, core.pid,
run the script, corepid, with the following parameter:
#<path>/corepid[on|off]

34

3. To view the current settings for this feature, run the corepid, with the following
parameter:
#<path>/corepid [stat]

The following example illustrates how to use this script on HP-UX 11i v1:
#cat /tmp/corepid
case $1 in
on) echo "core_addpid/W 1\ncore_addpid?W 1" | adb -w -k /stand/vmunix /dev/kmem;;
off) echo "core_addpid/W 0\ncore_addpid?W 0" | adb -w -k /stand/vmunix /dev/kmem;;
stat) echo "core_addpid/D\ncore_addpid?D" | adb -w -k /stand/vmunix /dev/kmem;;
*) echo "usage $0: on|off|stat";;
esac
#/tmp/corepid stat
core_addpid:
core_addpid: 0
core_addpid:
core_addpid: 0
#/tmp/corepid on
core_addpid: 0 = 1
core_addpid: 0 = 1
#/tmp/corepid stat
core_addpid:
core_addpid: 1
core_addpid:
core_addpid: 1
#/tmp/corepid off
core_addpid: 1 = 0
core_addpid: 1 = 0

Avoiding Core File Corruption for Applications Running HP-UX 11i v3
To prevent overwriting of core files from different processes for applications running
in HP-UX 11i v3, you can use the coreadm commandl.
The coreadm command enables you to specify the location and pattern for core files
that are created by abnormally terminating processes. This command can also be used
to specify the path for the core file placement. In addition, it can be used to specify the
process specific pattern for the file name of the core file.
For example, to set the global core file settings to include the process-ID and the system
name in the file name of the core, <core.pid> and to place the core file in the specified
path, <path>, you can enter the following command as a superuser at the HP-UX
prompt:
 # coreadm -e global -g <path>/core.%p.%n

Formore information about using the coreadm command to avoid core file corruption,
see coreadm(1M)

Avoiding Core File Corruption 35

NOTE: This feature (to prevent core file corruption) is not required for forced
core-dumps. In the case of forced core-dumps, the core files are stored in a file name,
<core.pid>, by default.

Java Corefile Debugging Support
HPWDB shows stack traces of mixed Java, C, and C++ programs for java corefile.
The GDB_JAVA_UNWINDLIB environment variable must be set to the path name of the
Java unwind library.
Following are examples that illustrate the gdb command-line options for invoking gdb
on a core file:
1. Invoke gdb on a core file generated when running a 32-bit Java application on an

Integrity system with /opt/java1.4/bin/java:
$ gdb /opt/java1.4/bin/IA64N/java core.java

2. Invoke gdb on a core file generated when running a 64-bit Java application on an
Integrity system with /opt/java1.4/bin/java -d64:
$ gdb /opt/java1.4/bin/IA64W/java core.java

3. Invoke gdb on a core file generated when running a 32-bit Java application on
PA-RISC using /opt/java1.4/bin/java:
$ gdb /opt/java1.4/bin/PA_RISC2.0/java core.java

4. Invoke gdb on a core file generated when running a 64-bit Java application on
PA-RISC using /opt/java1.4/bin/java:
$ gdb /opt/java1.4/bin/PA_RISC2.0W/java core.java

When debugging a core file, it is good practice to rename the file from core to another
name to avoid accidentally overwriting it.
If the Java and system libraries used by the failed application reside in non-standard
locations, then the GDB_SHLIB_PATH environment variable must be set to specify the
location of the libraries.

Summary
WDB enables you to debug a core file and analyze the cause for the core dump. It also
enables you to force a core dump of an application and analyze the process state of the
application. In addition, you can debug a core file on a system that is different from
the system on which the core file was created.

36

Examples Illustrating Core File Debugging
The examples in this section are for core files that are created on an HP 9000 system
(PA-RISC). If the program is not compiled with -g, the line number information is not
available in the case of core files on PA-RISC systems.
On the contrary, the source line number information is available for core files created
by Itanium-based binaries, irrespective of whether the core file is compiled with the
-g option, or not.
The following examples illustrate how to use the common core file debugging
commands in WDB:
(The examples are based on core files created by PA-RISC 32–bit binaries)

Example 6 Debugging a Core File to Find the Values for Parameters of a Function When
the Program is not Compiled with -g

Sample Program
The sample program used in this example has multiple functions. The
function_abort() function in this program causes the application to abort. This
example illustrates how to debug this core file and find values for the parameters of
function_abort().
Following is the code for the structures in function_abort():
extern int function_abort(struct st_one *, int);

struct st_two {
 char *a;
 int b;
 float c;
 char *d;
};
struct st_one {
 int one;
 char *two;
 struct st_two *three;
 int *four;
 char *five;
};
.
.
.

Sample Debugging Session

Examples Illustrating Core File Debugging 37

1. Invoke WDB on the core file, as follows:
$gdb example core
HP gdb Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest)Wildebeest is free software, covered
by the GNU General Public License, and you are welcome to change it
and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is
absolutely no warranty for Wildebeest.
Type "show warranty" for details.

..(no debugging symbols found)...
Core was generated by `example'.
Program terminated with signal 6, Aborted.
warning: The shared libraries were not privately mapped; setting a
breakpoint in a shared library will not work until you rerun the program.
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0xc01082b8 in kill () from /usr/lib/libc.2

2. View the backtrace information to analyze the flow of routines in the program that
resulted in a program abort. The following backtrace information of the core file
illustrates that function_abort() invoked the abort library call in libc to kill
the process:
(gdb) bt
#0 0xc01082b8 in kill () from /usr/lib/libc.2
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
#4 0x2420 in function_abort () from /home/u492893/example/./example
#5 0x23d0 in function_b () from /home/u492893/example/./example
#6 0x23a0 in function_a () from /home/u492893/example/./example
#7 0x2370 in main () from /home/u492893/example/./example

This program is not compiled with the debug option. However, if parts of the
program are compiled using the debug option, you can view information about
the source file that contains this code, the line number of the code where the
program crashed, and all the function parameters. You can also list the source
code for the parts of the program that are compiled using the debug option.

3. Traverse the stack to view the call chain.
Following are some of the basic commands for traversing the stack:
• To traverse (up or down) the call chain, enter the up or down command as in

the following example:
(gdb) up
#1 0xc00a52e8 in raise () from /usr/lib/libc.2

To execute the previous command at gdb prompt, press Enter at the gdb
prompt, as in the following example:
(gdb)
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
(gdb)
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2

38

(gdb)
#4 0x2420 in function_abort () from /home/u492893/example/./example

• You can also directly traverse the stack by entering the number of frames as
an option in the up or down command, as follows:
(gdb) up 4
#4 0x2420 in function_abort () from /home/u492893/example/./example
(gdb) down 4
#0 0xc01082b8 in kill () from /usr/lib/libc.2

• To traverse the stack by using the frame number, enter the frame command,
as in the following example:
(gdb) frame 4
#4 0x2420 in function_abort () from /home/u492893/example/./example

4. Disassemble the required calling function.
To view information about the function prototype and the definition of the
structures in the prototype, you must disassemble the required function. This
displays the location of the stored function parameters if the function has stored
the parameters.
The following example illustrates the disassembly of function_abort:
(gdb) disassemble function_abort
Dump of assembler code for function function_abort:
0x23f4 <function_abort>: stw %rp,-0x14(%sr0,%sp)
0x23f8 <function_abort+4>: ldo 0x40(%sp),%sp
0x23fc <function_abort+8>: stw %r26,-0x64(%sr0,%sp)
0x2400 <function_abort+12>: stw %r25,-0x68(%sr0,%sp)
0x2404 <function_abort+16>: ldw -0x64(%sr0,%sp),%r20
0x2408 <function_abort+20>: ldw 8(%sr0,%r20),%r21
0x240c <function_abort+24>: ldi 0x63,%r22
0x2410 <function_abort+28>: stw %r22,4(%sr0,%r21)
0x2414 <function_abort+32>: ldil L'0x2000,%r31
0x2418 <function_abort+36>: be,l 0x3dc(%sr4,%r31)
0x241c <function_abort+40>: copy %r31,%rp
0x2420 <function_abort+44>: ldw -0x54(%sr0,%sp),%rp
0x2424 <function_abort+48>: bv %r0(%rp)
0x2428 <function_abort+52>: ldo -0x40(%sp),%sp
End of assembler dump.

If the parameters are not stored on the stack, the task of reading the core file is
similar to reading a kernel crash dump. In such cases, youmust analyze the routines
that are invoked before the required function and check if the parameters are
passed up the stack by these routines. You must also check if these routines have
saved the address or the value on the stack.

5. Analyze the assembler dump from the disassembly output.
The first four arguments for a function are passed through registers for PA-RISC
32–bit binaries. However, the stack is not updated using these values. The invoked
function saves the arguments to the stack, if required. If the function parameters

Examples Illustrating Core File Debugging 39

are not passed up the stack, the value of the parameters are not available when
you debug the core file.
You can analyze the following lines from the assembler dump to view information
about the function parameters:
0x23fc <function_abort+8>: stw %r26,-0x64(%sr0,%sp)
0x2400 <function_abort+12>: stw %r25,-0x68(%sr0,%sp)

These lines provide information about the location of the function parameters in
the stack. This calling convention for the function parameters is defined by the
PA-RISC runtime architecture.
In the case of Itanium architecture, the arguments are normally passed through
the stacked general registers, gr32, and gr33.
For example:
r26 == arg0, r25==arg1, r24==arg2, r23==arg3

The convenience variable, $sp, stores the stack pointer in WDB. The disassembly
output for the function displays the addresses of the arguments that are relative
to the stack pointer. Hence, arg0 is stored at $sp-0x64 on the stack and arg1 is
stored at $sp-0x68.

6. Examine the contents of the required memory location.
The x command enables you to examine the contents at a specified memory
location.
You can use the x command to view the contents of arg0 at $sp-0x64, and arg1
at $sp-0x68.
For example:
(gdb) x/x $sp-0x68
0x7f7e6738: 0x00000020
(gdb) x/x $sp-0x64
0x7f7e673c: 0x7f7e6688

40

7. To determine the value of the variables, you must analyze the contents of the
required memory location.
In this example, the value of arg1 is an integer, and hence this value is 32(0x20).
The argument, arg0, is a pointer to a structure. To arrive at the value of arg0, the
offsets for the variables in the structure must be determined manually.
Following are the offsets for the variables in the structure st_one (in case of the
PA-RISC 32–bit binary):
struct st_one {
 int one; +0x0
 char *two; +0x4
 struct st_two *three; +0x8
 int *four; +0xC
 char *five; +0x10
};

Following are two methods to determine the values in the structure:

NOTE: If the debug information is available, these offsets can be displayed by
using the ptype -v struct st_one command.

• Method 1:
In this method, the memory location of the fields in the structure st_one are
calculated by determining the offsets for each field relative to the address
location ofarg0. The contents of the calculated address locations are displayed
by using the x command.
The following debugging session illustrates how to determine the values in
the structure, st_one:
— To display the char* value at the second field in the structure, enter the

following command at the gdb prompt:
(gdb) x/x 0x7f7e6688+0x4
0x7f7e668c: 0x40001140

To display the string value at the displayed address, enter the following
command at the gdb prompt:
(gdb) x/s 0x40001140
0x40001140 <__d_trap_fptr+292>: "NOT!"

— Todisplay the int* value in the fourth field, enter the following command
at the gdb prompt:
(gdb) x/x 0x7f7e6688+0xc
0x7f7e6694: 0x7f7e6688

To display the int value at this address, enter the following command at
the gdb prompt:

Examples Illustrating Core File Debugging 41

(gdb) x/x 0x7f7e6688
0x7f7e6688: 0x00000011

— To display the char* value at the last field in the structure, enter the
following command at the gdb prompt:
(gdb) x/x 0x7f7e6688+0x10
0x7f7e6698: 0x40001120

To display the char value at this address, enter the following command
at the gdb prompt:
(gdb) x/s 0x40001120
0x40001120 <__d_trap_fptr+260>: "The meaning"

— To display the address of the st_two structure, enter the following
command at the gdb prompt:
(gdb) x/x 0x7f7e6688+0x8
0x7f7e6690: 0x7f7e669c

Similarly, the offsets for the following structure st_two are calculated:
struct st_two {
 char *a; +0x0
 int b; +0x4
 float c; +0x8
 char *d; +0xC
};

42

The values of the variables in the structure st_two are determined by using
these offsets, as follows:
— To examine the first word of the structure st_two, enter the following

command at the gdb prompt:
(gdb) x/x 0x7f7e669c
0x7f7e669c: 0x40001130

Todisplay thestring value at this address, enter the following command
at the gdb prompt:
gdb) x/s 0x40001130
0x40001130 <__d_trap_fptr+276>: "of life"

— To examine the second word of the structure st_two, enter the following
command at the gdb prompt:
(gdb) x/x 0x7f7e669c+0x4
0x7f7e66a0: 0x00000063

— Todisplay thefloat value at the thirdword, enter the following command
at the gdb prompt:
(gdb) x/f 0x7f7e669c+0x8
0x7f7e66a4: 19.2099991

— To display the char* value at the fourth word, enter the following
command at the gdb prompt:
(gdb) x/x 0x7f7e669c+0xc
0x7f7e66a8: 0x40001138

To display the string value at the displayed address, enter the following
command at the gdb prompt:
(gdb) x/s 0x40001138
0x40001138 <__d_trap_fptr+284>: "is 42"

— To display the address of the structure, enter the following command at
the gdb prompt:
(gdb) x/x $sp-0x64
0x7f7e673c: 0x7f7e6688

To display the int value at the start of the structure, enter the following
command at the gdb prompt:
(gdb) x/x 0x7f7e6688
0x7f7e6688: 0x00000011

Examples Illustrating Core File Debugging 43

• Method 2:
In this method, you can use the gdb convenience variables to store and
manipulate memory addresses. You can use the show conv command to
view the current values of the convenience variables. The nomenclature of all
convenience variables is such that they start with the $ symbol. The following
debugging session illustrates this method:
— To set $my_arg0 as the value pointed by $sp-0x64, enter the following

command at the gdb prompt:
(gdb) set $my_arg0=*($sp-0x64)

To examine the contents of $my_arg0, enter the following command at
the gdb prompt:
(gdb) x/x $my_arg0
0x7f7e6688: 0x00000011

— Todisplay thestringvalue at$my_arg0+4, enter the following command
at the gdb prompt:
(gdb) x/s *($my_arg0+4)
0x40001140 <__d_trap_fptr+292>: "NOT!"

— To store the value pointed by $my_arg0+0x8 in $xtra , enter the
following command at the gdb prompt:
(gdb) set $xtra=*($my_arg0+0x8)

— To display the int value pointed to by $my_arg0+0xc , enter the
following command at the gdb prompt:
(gdb) x/x *($my_arg0+0xc)
0x7f7e6688: 0x00000011

— To display the string value pointed to by $my_arg0+0x10, enter the
following command at the gdb prompt:
(gdb) x/s *($my_arg0+0x10)
0x40001120 <__d_trap_fptr+260>: "The meaning"

— To display the string value pointed to by $xtra, enter the following
command at the gdb prompt:
(gdb) x/s *($xtra)
0x40001130 <__d_trap_fptr+276>: "of life"

— To display the int value at $xtra+0x4, enter the following command at
the gdb prompt:
(gdb) x/x $xtra+0x4
0x7f7e66a0: 0x00000063

— To display the float value at $xtra+0x8, enter the following command
at the gdb prompt:

44

(gdb) x/f $xtra+0x8
0x7f7e66a4: 19.2099991

— To display the string value pointed to by $xtra+0xC , enter the
following command at the gdb prompt:
(gdb) x/s *($xtra+0xC)
0x40001138 <__d_trap_fptr+284>: "is 42"

Example 7 Debugging a Core File to View Information on a Global Variable in a C
program

In this example, the address, &global_vars, of global_vars is required for
debugging. If the required structure is a pointer, the address of the structure is not
required. The address of the structure is cast to (char*) so that any increments to this
address will be 1 byte.
The program in this example uses the global structure, global_vars.
Following is the global structure, global_vars:
struct gvals {
 char *program; +0x0
 int arg_count; +0x4
 char *first_arg; +0x8
 char *path; +0xC
 int secret; +0x10
};
struct gvals global_vars;

Sample Debugging Session
1. To store the address of global_vars in the convenience variable, $glob, enter

the following command at the gdb prompt:
(gdb) set $glob= (char*)&global_vars

2. To display the string value pointed to by $glob+0x0, enter the following
command at the gdb prompt:
(gdb) x /s *($glob+0x4)
0x7f7e6000: "./example1"

3. To display the int value at $glob+0x4, enter the following command at the gdb
prompt:
(gdb) x/x $glob+0x1
0x40001184 <global_vars+4>: 0x00000001

4. To display the string value pointed to by $glob+0x8, enter the following
command at the gdb prompt:
(gdb) x/s *($glob+0x8)
0x0: Error accessing memory address 0x0: Invalid argument.

Examples Illustrating Core File Debugging 45

This indicates that the variable is a null pointer.

5. To display the string value pointed to by$glob+0xC, enter the following command
at the gdb prompt:
(gdb) x/s *($glob+0xC)
0x7f7e62f9: "/opt/softbench/bin:/usr/bin:/opt/user/bin:
/opt/ansic/bin:/usr/ccs/bin:/usr/contrib/bin:/opt/net/bin:
/opt/fc/bin:/opt/fcms/bin:/opt/upgrade/bin:/opt/pd/bin:/usr/bin/X11:
/usr/contrib/bin/X11:/o"...

6. To display the int value at $glob+0x10 in hexadecimal format, enter the
following command at the gdb prompt:
gdb) x/x $glob+0x10
0x40001190 <global_vars+16>: 0x0001b669

7. To display the int value at $glob+0x10 in decimal format, enter the following
command:
((gdb) x/d $glob+0x10
0x40001190 <global_vars+16>: 112233

46

Example 8 Debugging a Core File Created by a Stripped Binary When the Symbol Table
is Available

Sample Program
The program in this example has the following global structure, global_vars:
struct gvals {
 char *program; +0x0
 int arg_count; +0x4
 char *first_arg; +0x8
 char *path; +0xC
 int secret; +0x10
};
struct gvals global_vars;

Sample Debugging Session
This sample debugging session illustrates how to debug a core file that is created by
the stripped binary of this program.
$ nm -x example | grep global_var
global_vars |0x40001180|extern|data |BSS
$ strip example
$./example
Abort(core dump)
$ gdb example core
HP gdb
...
..(no debugging symbols found)...
Core was generated by `example'.
Program terminated with signal 6, Aborted.
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0xc01082b8 in kill () from /usr/lib/libc.2
(gdb) bt
#0 0xc01082b8 in kill () from /usr/lib/libc.2
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
#4 0x2394 in <unknown_procedure> () from /home/u492893/examples/./example

The addresss obtained from the output from nm command works only for the main
module of the binary. In the case of the shared libraries, the relocation offset (due to
the relocation of the addresses) must be applied to the addresses that displayed as
output for the nmcommand.
The debugger does not provide the function names for stripped binaries, only the
program counter (PC) is displayed.
However, you can use the symbol information from the unstripped program for
debugging. The symbol table is displayed as output from the nm command for the
unstripped program.
In this example, the address of the global variable global_vars (0x40001180) is
displayed as output from the nm command, and this address is used for debugging the
core file.

Examples Illustrating Core File Debugging 47

(gdb) set $glob=0x40001180
(gdb) x/s *($glob+0x0)
0x7f7e6000: "./example"
(gdb) x/x $glob+0x4
0x40001184: 0x00000001
(gdb) x/s *($glob+0x8)
0x0: Error accessing memory address 0x0: Invalid argument.
(gdb) x/s *($glob+0xc)
0x7f7e62f9: "/opt/softbench/bin:/usr/bin:/opt/butthead/bin:/opt/an
sic/bin:/usr/ccs/bin:/usr/contrib/bin:/opt/nettladm/bin:/opt/fc/bi
n:/opt/fcms/bin:/opt/upgrade/bin:/opt/pd/bin:/usr/bin/X11:/usr/con
trib/bin/X11:/o"...
(gdb) x/d $glob+0x10
0x40001190: 112233

48

Example 9 Debugging of a Core File Created by a Stripped Binary When the Symbol
Table is Available from Another Program

In this example, three copies of a program (program a1, program a2, and program a3
) are compiled and linked with a different order.
For example:
Program a1 is stripped.
Program a2 is an unstripped copy of program a1.
Programa3 is functionally the same as programa1. However, the code and the symbols
are in a different link order.
Using the symbol information from a3 to debug the core file generated by a1 does not
provide reliable symbol information as illustrated in the following example:
$ aCC main.c a.c b.c -o a1
$ aCC b.c main.c a.c -o a3
$ cp a1 a2
$ strip a1
$./a1
Abort(core dump)
$ gdb a1 core
HP gdb
... (Some output dropped)
Core was generated by `a1'.
Program terminated with signal 6, Aborted.
warning: Unable to find __dld_flags symbol in object file.
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0xc01f2740 in kill () from /usr/lib/libc.2

The backtrace of a1 does not display information about the routines, because the
program is stripped.
The symbol information of a2 can be used to analyze the backtrace from a1.
The symbol information from a3 does not provide reliable results, because the link
order is different. Unless the program a3 has a similar link order, the symbol
information is not reliable for debugging the core file created by a1. The version of the
compiler and the compiler options used can also alter the reliability of this approach.
The following example shows the backtrace for a1, a2, and a3.
(gdb) bt
#0 0xc01f2740 in kill () from /usr/lib/libc.2
#1 0xc018fc94 in raise () from /usr/lib/libc.2
#2 0xc01d00dc in abort_C () from /usr/lib/libc.2
#3 0xc01d0134 in abort () from /usr/lib/libc.2
#4 0x2498 in <unknown_procedure> () from /home/shane/test/./a1
#5 0x2430 in <unknown_procedure> () from /home/shane/test/./a1
(gdb) symbol a2
Reading symbols from a2...(no debugging symbols found)...done.
(gdb) bt
#0 0xc01f2740 in kill () from /usr/lib/libc.2
#1 0xc018fc94 in raise () from /usr/lib/libc.2

Examples Illustrating Core File Debugging 49

#2 0xc01d00dc in abort_C () from /usr/lib/libc.2
#3 0xc01d0134 in abort () from /usr/lib/libc.2
#4 0x2498 in b () from /home/shane/test/./a1
#5 0x2430 in main () from /home/shane/test/./a1
(gdb) symbol a3
Reading symbols from a3...(no debugging symbols found)...done.
(gdb) bt
#0 0xc01f2740 in kill () from /usr/lib/libc.2
#1 0xc018fc94 in raise () from /usr/lib/libc.2
#2 0xc01d00dc in abort_C () from /usr/lib/libc.2
#3 0xc01d0134 in abort () from /usr/lib/libc.2
#4 0x2498 in a () from /home/shane/test/./a1
#5 0xc018fc94 in raise () from /usr/lib/libc.2

If the program is built with debug support, you can use the symbol information from
this program to debug the stripped version of the program.

50

Example 10 Core File Debugging Session for a Stripped Binary When the Symbol Table
is Available from Another Program

This example is similar to Example 9 (page 49). This example illustrates the debugging
of a stripped binarywhen the symbol table is available from another program that uses
the same symbols.
The programs, example.c and example2.c , have the same symbol table.
Sample Program 1
$ cat example.c
#include <stdio.h>
#include <stdlib.h>

struct st_two {
 char *a;
 int b;
 float c;
 char *d;
};

struct st_one {
 int one;
 char *two;
 struct st_two *three;
 int *four;
 char *five;
};

extern int function_a(struct st_one *, int);
extern int function_b(int, struct st_one *);
extern int function_abort(struct st_one *, int);

main()
{
 char *temp1="The meaning";
 char *temp2="of life";
 char *temp3="is 42";
 char *temp4="NOT!";
 struct st_one one;
 struct st_two two;

 one.one=17;
 one.two=temp4;
 one.three=&two;
 one.four=&one.one;
 one.five=temp1;
 two.a=temp2;
 two.b=42;
 two.c=19.21;
 two.d=temp3;

Examples Illustrating Core File Debugging 51

 function_a(&one, 32);
}

int function_a(struct st_one *a, int b)
{
 function_b(b, a);
}

int function_b(int a, struct st_one *b)
{
 function_abort(b, a);
}

int function_abort(struct st_one *a, int b)
{
 a->three->b=99;
 abort();
}

Sample Program 2
$ cat example2.c
struct st_two {
 char *a;
 int b;
 float c;
 char *d;
};

struct st_one {
 int one;
 char *two;
 struct st_two *three;
 int *four;
 char *five;
};

main()
{

}

Sample Debugging Session
In this example,example.c is compiled and stripped. The program,example2.c, is
compiled with the -g option. The symbol table from example2 is used to debug the
core file that is created by the stripped executable,example, as illustrated in the
following debugging session:

52

$ aCC -g example2.c -o example2
$ aCC -g example.c -o example
$ strip example
$./example
Abort(coredump)
$ gdb example core
HP gdb
...
Core was generated by `example'.
Program terminated with signal 6, Aborted.
warning: The shared libraries were not privately mapped; setting a
breakpoint in a shared library will not work until you rerun the program.
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0xc01082b8 in kill () from /usr/lib/libc.2
(gdb) bt
#0 0xc01082b8 in kill () from /usr/lib/libc.2
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
#4 0x2428 in function_abort () from /home/u492893/example/temp/./example
#5 0x23d8 in function_b () from /home/u492893/example/temp/./example
#6 0x23a8 in function_a () from /home/u492893/example/temp/./example
#7 0x2378 in main () from /home/u492893/example/temp/./example
(gdb) up
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
(gdb)
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
(gdb)
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
(gdb)
#4 0x2428 in function_abort () from /home/u492893/example/temp/./example
(gdb) x/x $sp
0x7f7e67b0:
0x00000001

The stack is traversed such that the stack pointer reflects the address of the required
function.
The symbol table from example2 is loaded for debugging the core file generated by
example, as follows:
(gdb) symbol example2
Reading symbols from example2...done.
(gdb) x/x $sp
0x7f7e68f0:
0x7f7d27c0

The stack pointer value in $sp is changedwhen the new symbol table is loaded.Hence,
you must keep track of the earlier values of $spmanually.
When a new symbol table is loaded, the values stored in the gdb convenience variables
are changed.Hence you cannot store the value of$sp in the gdb convenience variables.
After the new symbol table is loaded, you can use the gdb features which were not
previously available for the stripped executable.

Examples Illustrating Core File Debugging 53

You can use the print command to print the values of the structure struct st_one
, as follows:
(gdb) p *(struct st_one *)(*(0x7f7e67b0-100))
$1 = {one = 17, two = 0x40001140 "NOT!", three = 0x7f7e66ac,
 four = 0x7f7e6698, five = 0x40001120 "The meaning"}
(gdb) x/x (0x7f7e67b0-100)
0x7f7e674c:
0x7f7e6698
(gdb) x/x (*(0x7f7e67b0-100))
0x7f7e6698:
0x00000011

From previous disassembling we know that the pointer to the struct st_onewas
stored at -0x64 (-100) on from $sp in the function_abort routine. However,
the pointer to the structure is stored on the stack.
Taking the offset from the stack pointer into account, we must deference the pointer
twice to get from the stack pointer to the structure, and subsequently dereference this
structure to print all the members of this structure.
(gdb) p *(struct st_two *)(0x7f7e66ac)
$2 = {a = 0x40001130 "of life", b = 99, c = 19.2099991, d = 0x40001138 "is 42"}
(gdb) p *(struct st_two *)($1.three)
$3 = {a = 0x40001130 "of life", b = 99, c = 19.2099991, d = 0x40001138 "is 42"}

(gdb) bt
#0 0xc01082b8 in kill () from /usr/lib/libc.2
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
#4 0x2428 in sigismember () from /home/u492893/example/temp/./example
#5 0x23d8 in main () at example2.c:18
#6 0x23a8 in lwp_setprivate () from /home/u492893/example/temp/./example
#7 0xc00a52e8 in raise () from /usr/lib/libc.2
#8 0x40001140 in __d_trap_fptr ()
#9 0xc00a52e8 in raise () from /usr/lib/libc.2
Cannot access memory at address 0xffffffad.
(gdb) symbol example
Load new symbol table from "example"? (y or n) y
Reading symbols from example...
(no debugging symbols found)...done.
(gdb) bt
#0 0xc01082b8 in kill () from /usr/lib/libc.2
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
#4 0x2428 in function_abort () from /home/u492893/example/temp/./example
#5 0x23d8 in function_b () from /home/u492893/example/temp/./example
#6 0x23a8 in function_a () from /home/u492893/example/temp/./example
#7 0x2378 in main () from /home/u492893/example/temp/./example

54

FAQ
1 Are shared memory segments dumped in the core file by default?

No.
However, the shared memory segments can be dumped into the core file if you set
the following kernel symbols:
• core_addshmem_read

This kernel symbol controls if shared memory segments that are mapped
read-only into a process are dumped in a core file. To view the current value
of the tunable and change it , enter the following commands:
echo 'core_addshmem_read/X'|adb -k /stand/vmunix /dev/kmem
core_addpid:
core_addpid: 0
echo 'core_addshmem_read/W 1'|adb -k -w /stand/vmunix /dev/kmem
core_addpid: 0 = 1

• core_addshmem_write
This kernel symbol controls if shared memory segments that are mapped
read/write into a process are dumped in a core file. To view the current value
of the tunable and change it , enter the following commands:
echo 'core_addshmem_write/X'|adb -k /stand/vmunix /dev/kmem
core_addpid:
core_addpid: 0
echo 'core_addshmem_write/W 1'|adb -k -w /stand/vmunix /dev/kmem
core_addpid: 0 = 1

NOTE:
• HP does not provide complete support for these kernel symbols.
• The large size of the sharedmemory segmentsmust be taken into account before

using these kernel symbols.

2 Howdo I check if the system is enabled for creating core files with sizes greater than
2 GB? How do I enable the system for creating core files with sizes greater than 2
GB?
To check if the system is enabled for creating core files with sizes greater than 2 GB,
enter the following command:
fsadm <filesystem>

If this command displays “largefiles”, the system is enabled for creating core
files greater than 2 GB.
To enable a system for creating core files greater than 2 GB, enter the following
command:
 fsadm -o largefiles <filesystem>

3 How do I verify if a core file is truncated?

FAQ 55

To verify if a core file is truncated, enter the following command:
elfdump -o -S core

If the core file is not truncated or corrupted, the output of the elfdump -o -S
core is as follows:
core:
 *** Program Header ***
Type Offset Vaddr FSize Memsz
CoreVer 0000000000003028 0000000000000000 0000000000000004 0000000000000004
CoreKern 000000000000302c 0000000000000000 000000000000003c 000000000000003c
CoreComm 0000000000003068 0000000000000000 000000000000000a 000000000000000a
CoreProc 0000000000003078 0000000000000000 000000000000be00 000000000000be00
CoreLoad 000000000000ee78 6000000000000000 0000000005160000 0000000005160000
CoreMMF 000000000516ee78 9fffffffdd6f4000 0000000000004000 0000000000004000
.
.
.
CoreStck 000000001725fe78 9fffffffef7ff000 0000000000009000 0000000000009000
CoreStck 0000000017268e78 9fffffffffec0000 0000000000140000 0000000000140000

56

	Debugging Core Files Using HP WDB
	Table of Contents
	About This Document
	Intended Audience
	Typographic Conventions
	Related Information
	Introduction
	What Is a Core File?
	Causes for a Core Dump
	Common Signals That Cause Core Dumps
	Using WDB to Debug Core Files
	Support for Invoking GDB Before a Program Aborts
	System Requirements for Core File Debugging

	Commands For Core File Debugging
	Invoking WDB to Debug Core Files
	Setting the Path for the Relevant Shared Libraries
	Common Commands for Core File Debugging

	What is a Symbol Table?
	What is a Stripped Binary?
	Debugging Core Files Created by Stripped Binaries (When the Symbol Table is Available)

	Debugging Core Files Created by Optimized or Stripped Binaries
	Limitations for Debugging Core Files Created by Optimized Binaries
	Limitations for Debugging Core Files Created by Binaries Compiled Without the -g Option
	Limitations for Debugging Core Files Created by Stripped Binaries

	Forcing a Core Dump
	Saving the Core File to a Specific File Name
	Debugging a Core File Created by a Forced Core Dump

	Debugging Core Files From a Different System
	Displaying run time type information
	Debugging PA-RISC Core Files on Integrity Systems
	Avoiding Core File Corruption
	Avoiding Core File Corruption for Applications Running HP-UX 11i v1 and HP-UX 11i v2
	Avoiding Core File Corruption for Applications Running HP-UX 11i v3

	Java Corefile Debugging Support
	Summary
	Examples Illustrating Core File Debugging
	FAQ

