
STREAMS
Programmer’s Guide

HP 9000 and Integrity Server Computer Systems

Edition 1
Manufacturing Part Number : 5991-4437

October 2005

United States

© Copyright 2005 Hewlett-Packard Development Company L.P.

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be held
liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can
be obtained from your local Sales and Service Office.

U.S. Government License

Proprietary computer software. Valid license from HP required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license.

Copyright Notice

Copyright  2005 Hewlett-Packard Development Company L.P. All rights reserved. Reproduction,
adaptation, or translation of this document without prior written permission is prohibited, except as allowed
under the copyright laws.

Trademark Notices

UNIX is a registered trademark in the United States and other countries, licensed exclusively through The
Open Group.

Ethernet is a registered trademark of Xerox Corporation.

All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Printing History

New editions of this manual will incorporate all material updated since the previous edition. The manual
printing date and part number indicate its current edition. The printing date changes when a new edition is
printed. (minor corrections that are incorporated at a reprinting do not cause the date to change.) The manual
part number changes when extensive technical changes are incorporated.

Edition/Part Number/Date

First/5991-4437/October 2005
2

Contents
1. Overview
STREAMS Components. 24

Stream Head . 25
STREAMS Module . 25
STREAMS Driver or Pseudo-Driver . 25

Messages and Queues . 26
Queues . 26
Messages . 26
Message Processing . 27

STREAMS Multiplexor . 28

2. STREAMS Mechanism and System Calls
STREAMS System Calls . 30

STREAMS Library Routines . 30
Creating a Stream . 31

open(2) Opening a STREAMS Device . 31
pipe(2) Creating a STREAMS-Based pipe. 31

Writing to a Stream . 33
write(2) and writev(2) . 33
putmsg(2) and putpmsg(2) . 35

Reading From a Stream. 37
read(2) and readv(2) . 37
getmsg(2) and getpmsg(2) . 39

Pushing and Popping Modules . 42
IOCTL Commands I_PUSH and I_POP . 42

Closing a Stream . 43
close(2) . 43

Polling Streams . 44
poll(2) . 44
Events Notified by poll(2) . 45
The /dev/poll Interface . 46
select(2) . 48
Differences Between select(2) and poll(2) . 49

Asynchronous Event Notification . 50
IOCTL Command — I_SETSIG . 50

Attaching and Detaching a stream to a file (Named Streams) 52
3

Contents
fattach (3C) . 52
fdetach(3C) . 52
isastream(3C) . 53

3. Messages
Message Structures . 56

Using Message Block Fields . 57
Message Queues . 59

Message Processing and Flow Control . 63
Message Processing . 63
Flow Control . 63
Common STREAMS Utilities. 66

4. Modules and Drivers
Overview. 72

Cloning . 72
Autopush . 72
Dynamically Loadable Kernel Modules. 73

Data Structures . 74
module_info Structure . 74
qinit Structure . 75
module_stat Structure . 75
Installation Structures and Configuration Routines . 76
d_flags . 79
Configuration Routines . 80

Entry Points . 82
Open. 82
Close . 82
Ioctl . 83
Put Procedure . 92
Service Procedure . 92
Interrupt Service Routine . 93

Flush Handling . 94
M_FLUSH Message Processing . 94
Flush Handling in a Pipe . 95

Design Guidelines . 96
4

Contents
Rules . 97
STREAMS Module . 100

Flow Control in Modules . 100
Sample Module . 100
Module Specific Design Guidelines . 107

STREAMS Driver. 108
Overview of Drivers . 108
Writing Drivers . 108
Major and Minor Numbers. 108
Cloning . 109
Flow Control in Drivers . 110
Sample Driver Example . 110
Driver Specific Design Guidelines . 118

DLKM STREAMS . 119

5. Multiplexing
Overview. 122
Building and Dismantling Multiplexors . 123

To Build a Multiplexor . 123
To Dismantle a Multiplexor . 125
Routing Data through a Multiplexor . 125

Connecting and Disconnecting Multiplexor Configurations . 126
To Create a Multiplexor Configuration . 126
To Disconnect a Multiplexor Configuration . 128
Characteristics of Multiplexing Configurations . 129

Persistent Links . 130
Creating Persistent Links . 130
Dismantling Persistent Links . 133
Characteristics of Persistent Links . 134

STREAMS Multiplexor . 135
Ioctl Processing in a Multiplexor . 136
Flush Handling in a Multiplexor . 136
Flow Control in a Multiplexor . 136
A Sample Multiplexing Driver . 137
Service Procedure . 147
Multiplexor Specific Design Guidelines. 150
5

Contents
A. STREAMS IOCTL Commands
Overview. 151

ioctl(2) Commands . 151
I_ATMARK . 151
I_CANPUT . 152
I_CKBAND . 152
I_FDINSERT. 152
I_FIND. 153
I_FLUSH . 153
I_FLUSHBAND . 154
I_GETBAND . 154
I_GETCLTIME . 154
I_SETCLTIME . 154
I_GETSIG . 155
I_GRDOPT . 155
I_GWROPT . 155
I_LINK. 155
I_LIST . 156
I_LOOK . 156
I_NREAD. 156
I_PEEK . 157
I_PLINK . 157
I_POP. 158
I_PUNLINK . 158
I_PUSH . 158
I_RECVFD. 159
I_SENDFD . 159
I_SETSIG . 160
I_SRDOPT. 160
I_STR. 161
I_SWROPT . 162
I_UNLINK. 162

B. STREAMS Utilities Supported by HP-UX
adjmsg () 164
6

Contents
allocb () 165
backq () 166
bcanput () 167
bcanputnext () 168
bufcall (), streams_bufcall () 169
canenable () 170
canput () 171
canputnext () 172
cmn_err () 173
copyb () 174
copymsg () 175
datamsg () 176
drv_getparm () 177
drv_priv () 178
dupb () 179
dupbn () 180
dupmsg () 181
enableok () 182
esballoc () 183
esbbcall () 184
flushband () 185
flushq () 186
freeb () 187
freemsg () 188
freezestr () 189
getadmin () 190
getmid () 191
getq () 192
insq () 193
linkb () 194
LOCK () 195
LOCK_ALLOC () 196
LOCK_DEALLOC () 197
msgdsize () 198
msgpullup () 199
noenable () 200
7

Contents
OTHERQ () 201
pcmsg () 202
pullupmsg () 203
put () 204
putbq () 205
putctl () 206
putctl1 () 207
putctl2 () 208
putnext () 209
putnextctl () 210
putnextctl2 () 211
putq () 212
qenable () 213
qprocsoff () 214
qprocson () 215
qreply () 216
qsize () 217
RD () 218
rmvb () 219
rmvq () 220
SAMESTR () 221
streams_delay () 222
streams_get_sleep_lock () 223
streams_mpsleep () 224
streams_put () 226
streams_time () 227
streams_timeout () 228
streams_untimeout () 229
strlog () 230
strqget () 232
strqset () 233
SV_ALLOC () 235
SV_BROADCAST () 236
SV_DEALLOC () 237
SV_WAIT () 238
SV_WAIT_SIG () 239
8

Contents
TRYLOCK () 240
testb () 241
unbufcall () 242
unfreezestr () 243
unlinkb () 244
UNLOCK () 245
unweldq () 246
vtop () 247
WR () 248
weldq () 249

C. Message Types
Ordinary Messages . 252

M_BREAK . 252
M_CTL. 252
M_DATA . 252
M_DELAY . 252
M_IOCTL. 252
M_PASSFP . 254
M_PROTO . 254
M_RSE. 254
M_SETOPTS . 254
M_SIG . 256
M_TRAIL. 257

High Priority Messages . 258
M_CLOSE . 258
M_CLOSE_REPL . 258
M_COPYIN . 258
M_COPYOUT . 259
M_ERROR . 259
M_FLUSH . 259
M_HANGUP . 260
M_IOCACK . 260
M_IOCNAK . 261
M_IOCDATA . 261
M_PCPROTO . 261
9

Contents
M_PCRSE . 262
M_PCSIG. 262
M_READ . 262
M_START and M_STOP. 262
M_STARTI and M_STOPI . 262

D. STREAMS Administrative Driver
Overview . 263

SAD . 263

E. Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS Commands . 268

autopush . 268
strace and strerr . 268

HP-UX Changes to STREAMS/UX System Calls. 269
fattach/fdetach Modifications. 269
ioctl Modifications. 269
pipe Modifications. 270
putmsg and putpmsg Modifications . 270
select Modifications . 271
/dev/poll Interface . 271
signal Modifications . 272
write and writev Modifications . 272

HP-UX Modifications to STREAMS/UX Utilities . 273
cmn_err . 274
esballoc . 274
freezestr and unfreezestr . 274
get_sleep_lock . 275
itimeout . 275
kmem_alloc . 275
LOCK . 275
LOCK_ALLOC . 275
putctl2 . 276
putnextctl2 . 276
qprocson and qprocsoff . 276
streams_put utility . 277
10

Contents
SV_WAIT . 277
SV_WAIT_SIG. 277
TRYLOCK . 278
UNLOCK . 278
weldq and unweldq . 278
vtop . 280

HP-UX Changes to STREAMS/UX Drivers and Modules . 281
clone. 281
strlog . 281
sad . 282
echo . 282
sc . 282
timod . 283
tirdwr. 283
Stream Head . 283
pipemod . 283

HP-UX Changes to STREAMS/UX Data Structures . 285
Message Data Structures . 285
Queue Data Structure . 285

HP-UX Changes to Message Types . 287
Ordinary or Low Priority Message Types . 287
High Priority Message Types . 287

HP-UX Changes to Cloning . 288
STREAMS/UX Hardware Driver Writing . 288
Differences Between SVR4 MP and HP-UX MP STREAMS. 289

STREAMS/UX Synchronization Levels . 289
Strategies for Porting SVR4 MP Modules and Drivers to HP-UX 289

The STREAMS/UX Scheduler . 291

F. Synchronization Levels
Queue Level Synchronization . 296
Queue-Pair Level Synchronization . 296
Module Level Synchronization . 296
Elsewhere Level Synchronization . 297
Global Level Synchronization . 297
Nosync level synchronization . 297
11

Contents
G. STREAMS Commands
Overview. 299
autopush . 300

Synopsis. 300
Options and Arguments . 300
Examples . 301

strace and strerr. 302
strace . 302
strerr . 303

strchg and strconf. 305
Diagnostics . 305
Examples . 306

strclean . 307
Example. 307

H. STREAMS Kernel Tunable Parameters
Overview. 309
NSTREVENT . 310

Values . 310
Description . 310
Who is Expected to Change This Tunable? . 310
Restrictions on Changing . 310
When Should the Value of This Tunable Be Raised? . 310
What are the Side Effects of Raising the Value of This Tunable? 310
When Should the Value of This Tunable be Lowered? . 310
What are the Side Effects of Lowering the Value of This Tunable?. 311
What Other Tunable Should be Changed at the Same Time? 311
Warnings . 311
Author . 311

NSTRPUSH . 312
Values . 312
Description . 312
Who is Expected to Change This Tunable? . 312
Restrictions on Changing . 312
When Should the Value of This Tunable Be Raised? . 312
What are the Side Effects of Raising the Value of This Tunable? 312
12

Contents
When Should the Value of This Tunable be Lowered? . 313
What are the Side Effects of Lowering the Value of This Tunable?. 313
What Other Tunable Should be Changed at the Same Time? 313
Warnings . 313
Author . 313

NSTRSCHED . 314
Values . 314
Description . 314
Who is Expected to Change This Tunable? . 314
Restrictions on Changing . 314
When Should the Value of This Tunable Be Raised? . 314
What are the Side Effects of Raising the Value of This Tunable? 314
When Should the Value of This Tunable be Lowered? . 315
What are the Side Effects of Lowering the Value of This Tunable?. 315
What Other Tunable Should be Changed at the Same Time? 315
Warnings . 315
Author . 315

STRCTLSZ . 316
Values . 316
Description . 316
Who is Expected to Change This Tunable? . 316
Restrictions on Changing . 316
When Should the Value of This Tunable Be Raised? . 316
What are the Side Effects of Raising the Value of This Tunable? 316
When Should the Value of This Tunable be Lowered? . 317
What are the Side Effects of Lowering the Value of This Tunable?. 317
What Other Tunable Should be Changed at the Same Time? 317
Warnings . 317
Author . 317

STRMSGSZ . 318
Values . 318
Description . 318
Who is Expected to Change This Tunable? . 318
Restrictions on Changing . 318
When Should the Value of This Tunable Be Raised? . 318
What are the Side Effects of Raising the Value of This Tunable? 318
13

Contents
When Should the Value of This Tunable be Lowered? . 319
What are the Side Effects of Lowering the Value of This Tunable?. 319
What Other Tunable Should be Changed at the Same Time? 319
Warnings . 319
Author . 319

streampipes . 320
Values . 320
Description . 320
Who is Expected to Change This Tunable? . 320
Restrictions on Changing . 320
When Should This Tunable be Switched On? . 320
What are the Side Effects of Switching On This Tunable? 320
When Should This Tunable be Switched Off? . 320
What are the Side Effects of Switching Off This Tunable? 321
What Other Tunable Should be Changed at the Same Time? 321
Warnings . 321
Author . 321
14

Figures
Figure 1-1. Stream with a STREAMS Module . 24
Figure 1-2. Stream without a STREAMS Module . 25
Figure 1-3. Multiplexor Configurations . 28
Figure 2-1. A STREAMS-Based Pipe . 32
Figure 3-1. Message and It’s Linkage . 56
Figure 3-2. Message Ordering in a Queue . 59
Figure 3-3. Flow Control . 65
Figure 3-4. Pulling Up a Complex Message . 68
Figure 5-1. Multiplexor Before Link . 123
Figure 5-2. Multiplexor After Link . 124
Figure 5-3. Multiplexor Before I_PLINK . 131
Figure 5-4. Multiplexor After I_PLINK . 131
Figure 5-5. Data Transfer to the Driver . 132
Figure F-1. Synchronization Levels . 295
15

Figures
16

About This Document
This document describes how to use STREAMS, a generalized, flexible communication framework and set of
tools that facilitate the development of communication services for UNIX.

The document printing date and part number indicate the document’s current edition. The printing date will
change when a new edition is printed. Minor changes may be made at reprint without changing the printing
date. The document part number will change when extensive changes are made.

Document updates may be issued between editions to correct errors or document product changes. To ensure
that you receive the updated or new editions, you should subscribe to the appropriate product support service.

See your HP sales representative for details.

The manual is organized as follows:

Chapter 1, “Overview.”

This chapter shows an overview of the STREAMS components, system calls, messages and
queues and STREAMS multiplexor.

Chapter 2, “STREAMS Mechanism and System Calls.”

This chapter describes system calls most commonly seen in user applications that interact
with STREAMS devices.

Chapter 3, “Messages.”

This chapter discusses STREAMS messages, their structure, linkage, queuing and
interfacing into other STREAMS components.

Chapter 4, “Modules and Drivers.”

Describes various data structures essential to modules and drivers and provides design
guidelines for developing them.

Chapter 5, “Multiplexing.”

Shows how the STREAMS IOCTL commands enable the user process to perform a variety of
control functions on a stream.

Appendix A, “STREAMS IOCTL Commands.”

Shows how the STREAMS IOCTL commands enable the user process to perform a variety of
control functions on a stream.

Appendix B, “STREAMS Utilities Supported by HP-UX.”

Deals with the STREAMS utilities supported by HP-UX which are used to perform specific
operations/functions in module and driver development.

Appendix C, “Message Types.”

Describes the fixed set of message types recognized by STREAMS/UX.

Appendix D, “STREAMS Administrative Driver.”

Describes the STREAMS Administrative Driver. The STREAMS Administrative Driver,
also known as SAD, is an interface to the autopush facility. SAD enables administrative
tasks to be performed on STREAMS modules and drivers.

Appendix E, “Differences Between STREAMS/UX and System V Release 4 STREAMS.”
 17

Shows the differences between STREAMS/UX and System V Release 4.2 STREAMS.

Appendix F, “Synchronization Levels.”

Explains the 5 levels of synchronization provided by STREAMS/UX.

Appendix G, “STREAMS Commands.”

Describes STREAMS commands.

Appendix H, “STREAMS Kernel Tunable Parameters.”

Describes the STREAMS kernel tunable parameters.

Intended Audience
This document is intended for HP-UX developers.

This document is not a tutorial.

The “Support/Compatibility Disclaimers” section describes the support provided by Hewlett-Packard
Company.

Using This Manual
How you read this manual depends on the tasks you need to perform. The steps you need to take will differ
depending on whether you are writing a new driver or porting an existing driver.

Because of page width restrictions, certain lines of STREAMS code exceed the space available and break in
unintended places. Please treat these “broken” lines as one line.

HP-UX 11i v1 and HP-UX 11i v2 users will need to install STREAMS Advance Release (STAR) 1.0 to obtain
NOSYNC functionality. Refer to the STREAMS Advance Release (STAR) 1.0 Release Notes at
http://www.docs.hp.com/ for more information on STAR 1.0.
18

Typographical Conventions
This document uses the following conventions.

audit (5) An HP-UX manpage. In this example, audit is the name and 5 is the section in the HP-UX
Reference. On the web and on the Instant Information CD, it may be a hot link to the
manpage itself. From the HP-UX command line, you can enter “man audit” or “man 5
audit” to view the manpage. See man (1).

Book Title The title of a book. On the web and on the Instant Information CD, it may be a hot link to
the book itself.

KeyCap The name of a keyboard key. Note that Return and Enter both refer to the same key.

Emphasis Text that is emphasized.

Bold Text that is strongly emphasized.

Bold The defined use of an important word or phrase.

ComputerOut Text displayed by the computer.

UserInput Commands and other text that you type.

Command A command name or qualified command phrase.

Variable The name of a variable that you may replace in a command or function or information in a
display that represents several possible values.

[] The contents are optional in formats and command descriptions. If the contents are a list
separated by |, you must choose one of the items.

{ } The contents are required in formats and command descriptions. If the contents are a list
separated by |, you must choose one of the items.

... The preceding element may be repeated an arbitrary number of times.

| Separates items in a list of choices.
 19

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing documentation that
meets your needs.

Send comments to: netinfo_feedback@cup.hp.com

Include the document title, manufacturing part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

Email and Internet Resources
Interface program and developer resource materials are available at the following locations:

• Develop Drivers for HP-UX at http:/www.hp.com/go/hpux_ddk

• Interface Program E-mail at interface@fc.hp.com

• Developer Resource at http://www.hp.com/dspp

• Hardware Provider Program at http://www.hp.com/dspp/hphp

Support and Compatibility Disclaimers
Since drivers function at the kernel level, Hewlett-Packard Company (HP) reminds you of the following:

Adding your own driver to HP-UX requires relinking the driver into HP-UX. With each new release, plan on
recompiling the driver and reinstalling it in the new HP-UX kernel. Many header files do not change.
However, drivers typically use some header files that could change across releases (that is, you can have some
system dependencies).

HP provides support services for HP products, including HP-UX. Products, including drivers, from non-HP
parties receive no support, other than the support of those parts of a driver that rely on the documented
behavior of supported HP products.

If difficulties arise during the development and test phases of writing a driver, HP may provide assistance in
isolating problems to determine if:

• HP hardware is not at fault; and

• HP software and firmware is not at fault by removing user-written kernel drivers.
20

Reference Documentation
❏ UNIX SVR4.2 Command Reference Manual

❏ SVR4.2 STREAMS Manual

❏ UNIX SVR4.2 Operation System API Reference Manual

❏ UNIX System V Release 4 Programmer’s Guide: STREAMS

❏ SVR4.2 Driver Manual

❏ UNIX SVR4.2 System Files and Devices Reference Manual
 21

22

1 Overview
STREAMS is a generalized flexible communication framework. STREAMS provides a set of tools to facilitate
the development of communication services for UNIX. It simplifies the user application interface to character
device drivers, and makes the application independent of the underlying implementation. The modularity
and dynamic module selection features of STREAMS make it an effective framework for implementing and
interacting with kernel level components. These components are device drivers, network controllers, and
network protocols.

STREAMS was developed by Bell Labs in the early 1980s as an improvement on UNIX character I/O. Raw
character I/O does not provide advanced features like buffer management or flow control. STREAMS
supports all the basic functionality of character I/O, and provides additional features like dynamic module
selection, queues, polling, multiplexing, and flow control. This makes STREAMS an optimal framework for
writing networking protocols and related software, where performance, delivery and high availability are
critical.

NOTE The term stream is used in multiple contexts when describing UNIX I/O. The term “Standard
I/O Streams” refers to standard UNIX library calls consisting of fopen (), fclose (), fread (), and
fprint (). STREAMS refers to the framework where a user application interacts with the UNIX
kernel for communication services.

A stream is a full-duplex path between a user process and a device driver or pseudo-driver, in the kernel
space. A pseudo-driver is a software component that emulates driver functionality, but does not manage a real
hardware device. STREAMS applications use of a set of system calls to open a driver, write messages to the
driver, and read the processed messages back from the driver. The stream implements a connection between
the kernel and one or more user processes, and shares the properties of STREAMS-based devices.
Chapter 1 23

Overview
STREAMS Components
STREAMS Components
A stream consists of the following components shown in Figure 1-1, “Stream with a STREAMS
Module.”Figure 1-2 on page 25 shows a stream without a STREAMS module.

• Stream head

• Modules (optional)

• Target device driver or pseudo-driver

Figure 1-1 Stream with a STREAMS Module

Stream Head

Driver

User Space

Kernel Space

UpstreamDownstream

User Application

Module
Chapter 124

Overview
STREAMS Components
Figure 1-2 Stream without a STREAMS Module

Stream Head

The stream head is the interface between the user process and the STREAMS driver or module. It consists of
a set of data structures and associated kernel routines. The kernel routines operate on the data structures
and interface with the next stream component in the sequence. The stream head receives data from user
processes, packs it into STREAMS messages, and sends these messages downstream to the module or driver.
The stream head also receives data back from the module or driver, and makes the data available for the user
process.

STREAMS Module

Modules are optional components of a stream. Modules process the messages in a stream before sending them
to the driver. The functionality provided by a module is based on application requirements. Message
encryption, decryption, and string manipulation are some of the examples of module functionality. A user
process pushes a module on to a stream via the ioctl() system call. The new module becomes the first
component below the stream head. When multiple modules are pushed on to a stream, the last module to be
pushed is located just below the stream head. Figure 1-1, “Stream with a STREAMS Module,” shows a block
diagram of a stream with one module. Figure 1-2, “Stream without a STREAMS Module,” shows a block
diagram of a stream without modules.

STREAMS Driver or Pseudo-Driver

A STREAMS driver is located below the stream head and modules and is the stream end. The driver can act
on a real external I/O device. Or, it can be a pseudo-driver.

Stream Head

Driver

User Space

Kernel Space

UpstreamDownstream

User Application
Chapter 1 25

Overview
Messages and Queues
Messages and Queues
This section introduces the queues and messages associated with STREAMS.

Queues

Each stream component is associated with a read queue and write queue pair. The read queue and write
queue are the data structures used to record the status of the stream component. These queues record the
messages to be processed later.

STREAMS allocates the read queue and write queue to the stream component. The allocation is performed
when the component becomes part of a stream. For example, a module’s read queue and write queue are
allocated when the module is pushed on the stream.

When a stream component is removed from the stream, STREAMS frees its corresponding read queue and
write queue. For example, a module’s read queue and write queue are freed when the module is popped out of
a stream.

Messages

Communication in STREAMS is based on messages. STREAMS modules and drivers communicate with each
other by passing pointers to these messages. Every message consists of the following data structures:

msgb Describes the message type.

datab Contains a pointer to the message data and other message details.

Messages in a stream are passed from one module or driver to another by invoking the put procedure of the
next module or driver. For details on the put procedure, see Chapter 3, “Messages,” and Chapter 4, “Modules
and Drivers,”

Messages that are not being processed are queued in a linked list of messages called the message queue. The
head and tail of the message queue are included in the queue itself.

Message Types

Each message is assigned a message type upon creation. The two message types are Normal (ordinary) and
High Priority. The message type is used by modules and drivers to determine the type of message processing
required. Although a module or driver usually assigns the message type to a message that it generates, a
module can also change the message type while processing the message.

Message Priority

The priority of a message determines the order in which it is placed or processed in a queue.

To control the processing priority of normal messages on a queue, STREAMS supports the concept of the
priority band. Priority bands are used to determine the order in which normal messages in a queue will be
stored and processed. A priority band value ranging from 1 to 255 can be assigned to these messages.
Chapter 126

Overview
Messages and Queues
Message Processing

Each queue is associated with a put procedure and an optional service procedure to process the messages.

The put procedure is used to process the messages from the preceding queue in a stream. Depending on the
message type and the availability of the next module, the put procedure can consume this message and pass
it to the next queue for further processing. Alternatively, the put procedure may place the messages on its
message queue for processing later.

The service procedure is used to process the messages in the message queue. A queue will always contain a
put procedure, but not necessarily a service procedure. Depending on the nature of the module, the module
designer determines whether a service procedure is necessary. If the put procedure allows the messages to
be queued on its own message queue, a corresponding service procedure should be provided to process these
messages.

See Chapter 4 for more information on the put and service procedures.

A limit can be set for each queue. This limit is the maximum amount of data that can be queued in the
message queue. This data flow control mechanism to allow the STREAMS modules to control the amount of
data flow in the stream. HP recommends using data flow control for modules or drivers.
Chapter 1 27

Overview
STREAMS Multiplexor
STREAMS Multiplexor
A stream is a set of components with messages flowing between them. Each module is connected to no more
than one downstream module and one upstream module. Advanced applications can require more complex
configurations than a one-to-one relationship. For instance, multiple modules can communicate with a driver.
Or, a single module may need to route messages to multiple drivers.

The STREAMS multiplexor supports complex configurations between user processes, modules, and drivers.
Figure 1-3, “Multiplexor Configurations.” illustrates the following multiplexor configurations:

• A many-to-one multiplexor routes the data from multiple upper streams to a single lower stream.
Streams above the multiplexor are referred as upper streams. Streams below the multiplexor are lower
streams.

• A one-to-many multiplexor routes messages from one upper stream to multiple lower streams. Streams
below the driver are referred to as lower streams.

• A many-to-many multiplexor routes messages from multiple upper streams to multiple lower streams.

Figure 1-3 Multiplexor Configurations

A multiplexor is a special type of a pseudo-device driver used for multiplexing streams. With the linking
facility, you can dynamically create or dismantle multiplexed streams. Multiplexor configurations can be
combined to create complex variations, as required by the application.

There are two kinds of multiplexors, upper multiplexors and lower multiplexors. The upper multiplexor
multiplexes the streams that are opened to the multiplexor driver by the user processes. The lower
multiplexor deals with the multiple streams between the device driver and the multiplexor.

Driver developers must make explicit design choices to support lower, upper, or both types of multiplexors.
STREAMS provides a flexible framework for connecting streams containing a multiplexor to other
multiplexors, thereby leading to virtually unlimited interconnections. For details of multiplexing driver
development, see Chapter 4, “Modules and Drivers.”

MUX MUX MUX

One-to-ManyMany-to-One Many-to-Many
Chapter 128

2 STREAMS Mechanism and System Calls
This chapter describes system calls that create, use, and close a stream. The stream head processes the
system calls that are made by a user level process. These system calls provide the user level facilities needed
to develop applications.

This chapter describes the following:

• Creating a stream or a streams based pipe

• Writing to a stream

• Reading from a stream

• Pushing a module into a stream

• Popping a module from a stream:

• Closing a stream

• Polling a stream

• Asynchronous event notification

• Attaching and detaching a stream to a file
Chapter 2 29

STREAMS Mechanism and System Calls
STREAMS System Calls
STREAMS System Calls
User applications use system to operate on STREAMS drivers. The following system calls are discussed in
this chapter:

open(2): Creates a stream to the specified device.

close(2): Closes the stream, free the file descriptor, and if it is the last close(2) on this file
descriptor, will dismantle the associated stream.

read(2): Enables user applications to receive messages from a stream.

write(2): Enables user applications to send messages to a stream.

putmsg(2): Enables user applications to send control information into a stream.

putpmsg(2): Sets priority control for messages written to streams.

getmsg(2): Enables user applications to receive control information from the stream.

getpmsg(2): Enables user applications to receive control information from the stream.

ioctl(2): Accesses and controls a stream. ioctl(2) system calls are used to perform functions that
are specific to a particular device.

poll (2): Provides a synchronous mechanism for quering the stream head read queue for specific
events.

select(2): Notifies the user application about specified file descriptors that are ready for reading,
writing, or pending error conditions. If the specified condition is false for all of the specified
file descriptors, select(2) blocks for the specified timeout interval. select(2) blocks until
the specified condition is true for at least one of the specified file descriptors.

pipe(2): Connects to each other. Each stream head acts as the stream end for the other stream head.
Both stream heads can be used for read and write operations.

STREAMS Library Routines

The following library routines are used in conjunction with STREAMS devices and pipes:

fattach (3C)

Attaches a specified STREAMS file descriptor or pipe to an object in the file system. The
object is designated by a path. The fattach (3C) routine uses a file descriptor and a path
name as input. fattach (3C) returns 0 on success and -1 on failure.

fdetach (3C) Detaches a previously attached streams file descriptor or pipe from an object in the file
system designated by a path. fdetach (3C) uses a path name as input. The fdetach (3C)
routine returns 0 on success and -1 on failure.

isastream (3C) Uses a file descriptor as input and checks to see if this descriptor is associated with a
stream. The isastream (3C) routine returns 1 if the descriptor belongs to a streams device or
STREAMS-based pipe. Else isastream (3C) returns 0. It returns -1 on failure.
Chapter 230

STREAMS Mechanism and System Calls
Creating a Stream
Creating a Stream

open(2) Opening a STREAMS Device

A user application creates a stream by opening a STREAMS device with the open (2) call. This call is part of
the standard UNIX I/O. It opens a UNIX file for reading, writing, or both.

Synopsis

#include <fcntl.h>

int open(const char *path, int oflag, ... /* [mode_t mode] */);

Arguments

path A pointer to a path name of the STREAMS device file being opened.

oflag The bitwise inclusive OR of O_NDELAY or O_NONBLOCK inclusive OR-ed with one of the
read-write flags. Other flag values are not applicable to STREAMS devices and have no
effect on them.

mode An optional mode argument.

Read-write flags specify the mode in which the STREAMS device is to be opened. The mode can be read-only,
write-only, or read-write. Determine the value for this flag by considering the type of driver and the nature of
the STREAMS application accessing the driver.

Only one of the following values must be used to specify the value of oflag:

O_RDONLY Open for read only

O_WRONLY Open for write only

O_RDWR Open for read-write

If none or more than one value is used, the behavior is undefined.

O_NDELAY and O_NONBLOCK are the only general flags relevant to STREAMS devices. The values of O_NDELAY
and O_NONBLOCK affect the operation of STREAMS drivers and certain system calls. Refer to read (2), getmsg
(2), putmsg (2), and write (2) for more information on these flags.

For drivers, the implementation of O_NDELAY and O_NONBLOCK is device specific. Each STREAMS device
driver may treat these options differently. For example, while opening a STREAMS device file associated with
a communication line, if either O_NDELAY or O_NONBLOCK is set, the open() returns without waiting for
carrier. Otherwise, it does not return until the carrier is present.

Return Values

open (2) returns an integer file descriptor upon successful completion, and a -1 in case of failure. The
corresponding errno is set appropriately, as with the standard UNIX File System I/O.

Creating a STREAMS-Based pipe with pipe(2)

A STREAMS-based pipe is a special case of a stream. Two streams are created and connected together when
a thread executes a pipe (2) system call. The data flow is bi-directional in a STREAMS-based pipe. Both
stream heads can be used for read and write operations. Figure 2-1, “A STREAMS-Based Pipe,” illustrates the
bi-directional data flow in a STREAMS-based pipe.
Chapter 2 31

STREAMS Mechanism and System Calls
Creating a Stream
Figure 2-1 A STREAMS-Based Pipe

Each end of the pipe maintains the status of the other end through internal data structures. Subsequent read,
write, and close operations are aware of whether the other end of the pipe is open or closed.

STREAMS modules can be added to a STREAMS-based pipe with ioctl (2) I_PUSH from either end of the pipe.
However, if a module is pushed onto one end of the pipe, that module can not be popped out from the other
end.

STREAMS-based pipes are not attached to STREAMS-based character devices.

NOTE The standard (non-STREAMS-based) pipe is still the default on HP-UX. In order to change the
default pipe to a STREAMS-based pipe, set the kernel tunable parameter streampipes to 1.
Use kctune or SAM (STREAMS/UX installation will not automatically set this value). The
streampipes is a static tunable, i.e., any modification to it will take effect after the next reboot.
Refer to Appendix H, “STREAMS Kernel Tunable Parameters,” on page 309 for more details on
streampipes.

Synopsis

int pipe (int fd[2]);

Arguments

The pipe(2) system call takes an array of two integers as input and returns two integer file descriptors,
fd[0] and fd[1] into that integer array. These represent each end of the pipe.

Return Value

The pipe(2) system call returns a zero upon successful completion and -1 in case of failure. The
corresponding error is available in errno, as with all standard UNIX file system I/O.

User
Process

STREAM HEAD STREAM HEADModule Module

User Space

Kernel Space

STREAMS-based Pipe

User
Process

User
Process

STREAM HEAD STREAM HEADModule Module

User Space

Kernel Space

STREAMS-based Pipe

User
Process
Chapter 232

STREAMS Mechanism and System Calls
Writing to a Stream
Writing to a Stream
User applications can write to a stream or a STREAMS-based pipe using the write(2), putmsg(2), or
putpmsg(2) system call. The three function calls mirror the functionality of the corresponding message
retrieval functions read(2), getmsg(2), and getpmsg(2). These system calls are described in the “Reading
From a Stream” on page 37.

The write(2) and writev(2) System Calls

A user application can write data to a stream using the write(2) and the writev(2) system calls.

Synopsis

#include <unistd.h>
ssize_t write(int fd, const void *buf, int nbytes);

#include <sys/uio.h>
ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

Arguments

fd STREAMS device file descriptor.

buf Pointer to a buffer containing the data to be written to the stream.

nbytes Number of bytes to be written.

iov An array of struct iovec (io vectors) that contain the data to be written.

iovcnt Number of elements in the previous array.

Return Values

Upon successful completion, write(2) or writev(2) will return the number of bytes written to the stream.
This number does not exceed the value specified in the nbytes argument. If writev(2) fails for any reason,
-1 is returned and errno is set to the appropriate value.

writev(2)is similar to write(2), except that it writes data from buffers (io vectors) specified by members of
the iov array (iov[0], iov[1], ..., iov[iovcnt-1]). iovcnt is valid if its value is greater than 0 and less than
or equal to {IOV_MAX}, defined in <limits.h>. The iovec structure consists of a base address (iov_base)
and a byte length (iov_len) of an area in memory to be written. The writev(2) function always writes from
one iovec member completely before moving on to the next. The iovec structure is as follows:

struct iovec {
void *iov_base; /* Starting address */
size_t iov_len; /* Number of bytes */

};

Message Priority

The write(2) system call can only write data messages to a stream. Data messages are always written as
normal messages.

Maximum Packet Size Limit

The value of nbytes must fall within the acceptable STREAMS packet size range. STREAMS imposes two
levels of constraints for writing messages. The maximum sizes of a STREAMS data message and a STREAMS
control message are defined by STRMSGZSZ and STRCTLSZ respectively.
Chapter 2 33

STREAMS Mechanism and System Calls
Writing to a Stream
The minimum and maximum acceptable STREAMS packet sizes are defined by the topmost module in the
stream. A STREAMS packet is a segment of a message written to the stream. The length of a packet must be
less than or equal to the maximum packet size defined in the topmost module.

The following conditions apply to STREAMS packet size:

• If nbytes falls within the packet size range, nbytes will be written.

• If nbytes exceeds the maximum packet size, and the minimum packet size value is 0, write (2) will split
the input buffer into segments of the maximum allowed packet size, and send them downstream. The last
segment can be less than the maximum packet size.

• If nbytes is not within the acceptable packet size range, and the minimum packet size value is not 0,
write (2) fails with an appropriate errno.

• write (2) enables the user application to write zero-length messages to a regular stream. The concept of
zero-length messages may be relevant to some applications that want to use them as terminators and
associated conditions. write (2) of a zero-length message to a STREAMS-based pipe writes nothing to the
pipe, and still returns a 0 back to the application. The I_SWROPT ioctl (2) command overrides this default
behaviour. Appendix A, “STREAMS IOCTL Commands,” describes the relevant ioctl (2) commands.

Streams Flow Control Conditions

A stream can encounter internal limits when applications attempt to write new messages to it. The following
conditions should be noted for STREAMS write (2) calls:

• If the stream was opened without the O_NDELAY or O_NONBLOCK flag, and the buffer is either not written to
the stream at all or partially written to the stream when the stream-full condition occurs, write (2) will
block until data can be accepted.

• If the stream was opened with the O_NDELAY or O_NONBLOCK flag, and the stream-full condition occurs
before any data from the buffer is written to the stream, write (2) will return -1, and set errno
appropriately.

• If the stream was opened with the O_NDELAY or O_NONBLOCK flag and the buffer has been partially written
when the stream-full condition occurs, write (2) will successfully terminate and return to the application
with the actual number of bytes written to the stream.

In many respects, a write (2) operation to a STREAMS device (i.e., to a stream opened on a STREAMS device)
is identical with write (2) on a file.
Chapter 234

STREAMS Mechanism and System Calls
Writing to a Stream
putmsg(2) and putpmsg(2)

The putmsg (2) and putpmsg (2) calls also write messages to streams. These system calls can handle control
messages and message priority information.

Synopsis

#include <sys/stropts.h>
int putmsg (int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *priflag);
int putpmsg (int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *msgband, int *priflag);

fd STREAMS file descriptor.

ctlptr Pointers to strbuf structures containing control information.

dataptr Pointers to strbuf structures containing data.

strbuf A structure defined in <sys/stropts.h> to hold the control and data information to be
written to the stream. The user process issuing the putmsg (2) or putpmsg (2) system calls
uses the following strbuf structure:

struct strbuf {
int maxlen; /* maximum buffer length */
int len; /* actual length of message to be written */
char *buf; /* Pointer to the message buffer */

};

NOTE Unlike the getmsg (2) and getpmsg (2) calls, the maxlen attribute is not used
by putmsg (2).

priflag Priority of the message to be written to the stream (Ordinary or High).

msgband Band priority of the message to be written to the stream (applicable to ordinary messages
only).

Return Values

Upon successful completion, putmsg (2) and putpmsg (2) return 0. Otherwise, they return -1 and set errno
appropriately, as with all UNIX File system I/O.

Writing Control and Data Messages

The putmsg (2) and putpmsg (2) can write the control, data, or both the parts of the message. To write any
part of the buffer, the corresponding buffer pointer (ctlptr or dataptr) must be non-null and the
corresponding len field must be greater than -1. If the buffer pointer (ctlptr or dataptr) is null or the
corresponding len field is -1, then nothing is written for that part of the message.

Message Priority

The priority of a message written to a stream is determined by the control part of the message. In the absence
of a control part (as is the case with write (2)), the message priority is set to normal by default. To explicitly
set the priority of the data part of a message, both the control part and the data part must be present as
arguments to putmsg (2) and putpmsg (2).

For putmsg (2), the priflags argument takes one of two values — RS_HIPRI or 0.

• If the control part is specified and priflags is set to RS_HIPRI, a high priority message will be written to
the stream.

• If no control part is specified, and priflags is set to RS_HIPRI, putmsg (2) fails, and sets errno .
Chapter 2 35

STREAMS Mechanism and System Calls
Writing to a Stream
• If priflags is set to 0, a normal message is written to the stream.

• If no control or data part are specified and priflags is set to 0, no message is written. However, putmsg
(2) returns 0, indicating successful completion.

For putpmsg (2), the priflags argument is a bitwise-OR of the mutually exclusive constants, MSG_HIPRI and
MSG_BAND. The priflags and msgband arguments work in conjunction to determine the message priority and
band value. The following points apply to the priflags argument of putmsg(2):

• If priflags is set to 0, putpmsg (2) fails and sets errno.

• If priflags is set to MSG_HIPRI, the control part of the message is present, and msgband is set to 0, a high
priority message will be written.

• If priflags is set to MSG_HIPRI, and either no control part is specified or msgband is set to a non-zero
value, putpmsg (2) fails, and sets errno.

• If priflags is set to MSG_BAND, and the control part of the message is present, a band message will be
written. It is important to set the msgband argument to the desired band priority level. An incorrect band
priority value causes putpmsg (2) to fail with an appropriate errno.

• If no control or data part of the message is specified, and priflags is set to MSG_BAND, no message will be
written, but the function value returned by putpmsg (2) will be 0, indicating successful completion.

Streams Flow Control conditions

Except for the following cases, putmsg (2) and putpmsg (2) will block when the stream is not able to accept
any more messages:

• High priority messages are blocked. They cause the putmsg (2) and putpmsg (2) function calls to fail.

• Non-High priority messages do not block if the O_NONBLOCK flag was set in the open (2) call for the stream.
They cause putmsg (2) and putpmsg (2) to fail.
Chapter 236

STREAMS Mechanism and System Calls
Reading From a Stream
Reading From a Stream
User applications can read from a stream or a STREAMS-based pipe using the read (2), readv (2), getmsg
(2), or getpmsg (2) system calls.

read(2) and readv(2)

The read (2) and readv (2) system calls are used by user applications to read message data from a stream. By
default, control data will be ignored by these calls.

Synopsis

#include <unistd.h>
size_t read (int fd, void *buf,size_t nbytes);

#include <sys/uio.h>
size_t readv (int fd, const struct iovec *iov, int iovcnt);

Arguments

fd STREAMS file descriptor.

buf Pointer to the user buffer into which the data will be read.

nbytes Number of bytes requested from the stream.

iov The data from the stream read into iov array.

iovcnt Number of elements in the iov array.

iovec A structure consists of a base address (iov_base) and a byte length (iovlen) of an area in
the memory. The readv (2) function always fills an iovec member completely before moving
on to the next. The iovec structure is as follows:

struct iovec {
void *iov_base; /* Starting address */
size_t iov_len; /* Number of bytes */

};

readv (2) also behaves the same way as read (2), except that it places the data read from the stream into
buffers specified by members of the struct iovec array (iov[0], iov[1], . . .iov[iovcnt-1]). The iovcnt is
valid if it is greater than 0 and less than or equal to {IOV_MAX}.

Read Modes

The read (2) can be executed in one of the following three modes:

• Byte-stream mode

• Message-nondiscard mode

• Message-discard mode

All streams are opened with a default of byte-stream mode. You can modify the mode using the I_SRDOPT
ioctl (2) command, and verify it using the I_GRDOPT ioctl (2) command.

Byte-Stream Mode:
Chapter 2 37

STREAMS Mechanism and System Calls
Reading From a Stream
read (2) ignores message boundaries. It continues to retrieve data from the stream until the
requested number of bytes is retrieved, there is no more data to be retrieved, or a
zero-length message is encountered in the stream.

If read (2) terminates on finding a zero-length message, it will place that message block
back on the stream to be retrieved by next read (2) call. read (2) then returns the control
back to the calling application. However, if a zero-byte message is read as the first message
on a STREAM, the message is removed from the STREAM and zero is returned, regardless
of the read mode.

Message Nondiscard Mode:

The read (2) system call will retrieve data from the stream until the requested number of
bytes have been retrieved, or a message boundary is encountered.

If bytes remain in the current message at the end of a successful read (2) system call, they
are left in the STREAM. Those bytes will be retrieved by a subsequent read (2).

If a zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and zero is returned. If the zero-length message is not a first message,
read (2) discards that message and continues to read the next message.

Message Discard Mode:

This mode differs from the message nondiscard mode in the way partially read messages
are handled. If bytes remain in the current message at the end of a successful read, they are
discarded. A subsequent read (2) call begins at the next message boundary.

Zero-length messages are handled in the same manner as in the corresponding
message-nondiscard mode.

The choice of read modes depends on the desired user application functionality. Most
applications need to read all the data from a stream. This makes the byte-stream mode the
most commonly used option.

Control Modes

Control Normal Mode:

The default control mode. It enables read (2) to process data only. read (2) fails if a message
containing a control part is encountered. This default action can be changed by placing the
stream in either control data mode or control discard mode with the I_SRDOPT ioctl (2) call.

Control Data Mode:

Enables read (2) to convert the control part of the message to data and send it back to the
calling application. This mode has limited use. Most applications that need to retrieve
control information will use getmsg (2) or getpmsg (2).

Control Discard Mode:

Enables read (2) to discard the control part of a message and continues to read the data
part. This mode is useful for applications that have to use read (2), and the stream head
read-queue contains messages with both control and data components.
Chapter 238

STREAMS Mechanism and System Calls
Reading From a Stream
Return Values

Upon successful completion, read (2) and readv (2) return the actual number of bytes read from the stream it
placed in the requested buffer. This number may be less than the number of bytes requested (nbytes). In case
of failure, read (2) returns -1and sets errno, as with all standard UNIX File System I/O.

When attempting to read a stream (other than a STREAMS-based pipe) that supports non-blocking reads and
has no data currently available, read() will return the following:

• If O_NONBLOCK is set, read (2) returns -1 and set errno to EAGAIN.

• If O_NONBLOCK is clear, read (2) blocks until some data becomes available.

When attempting to read from an empty pipe, read (2) returns the following:

• If no process has the pipe open for writing, read (2) returns a 0.

• If a process has the pipe open for writing and O_NONBLOCK is set, read (2) returns -1 and errno is set to
[EAGAIN].

• If O_NDELAY is set, read (2) returns a 0.

• If some process has the pipe open for writing, and O_NDELAY and O_NONBLOCK are clear, read (2) blocks
until data is written to the file or the file is no longer open for writing.

The getmsg(2) and getpmsg(2) System Calls

The getmsg (2) and getpmsg (2) system calls read messages from a stream, and place the retrieved content
separately into user-specified control and data buffers.

Synopsis

#include <stropts.h>

int getmsg (int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *flagsp);
int getpmsg (int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *bandp, int *flagsp);

Arguments

fd STREAMS file descriptor.

ctlptr, dataptr Pointers to strbuf structures containing the retrieved control and data information
respectively.

flagsp Only messages of priority specified by flagsp are retrieved from the stream head.

bandp Only ordinary messages of band priority specified by bandp will be retrieved from the
stream head.

The user process invoking the getmsg (2) or getpmsg (2) system call uses the following strbuf structure
(defined in <sys/stropts.h>) to retrieve control and data information from the stream head:

struct strbuf
{

int maxlen; /* maximum buffer length */
int len; /* Length of message */
char *buf; /* Pointer to the buffer */

};

Reading Data and Control Messages

The getmsg (2) and getpmsg (2) will read control and data messages based on the following conditions:
Chapter 2 39

STREAMS Mechanism and System Calls
Reading From a Stream
• If a buffer pointer is null or the corresponding maxlen is -1, the message is not be processed, and remains
on the stream head read queue. If the buffer pointer is null, the corresponding len field returned is set to
-1.

• If buf is not null, len is greater than 0, and len is equal to or less than maxlen, len bytes are retrieved by
getmsg (2), or getpmsg (2), and the return value of the function is set to len. However, if maxlen is less
than len and greater than 0, only maxlen bytes are retrieved, and the return value of the function is set
to maxlen. The remaining bytes are left on the stream head read queue .

• If maxlen is set to 0, and there is a zero length control or data message in the buffer, the zero-length part
is removed from the stream head read queue.

Message Priorities and Bands

By default, getmsg (2) retrieves the first message from the stream head. However, a process can retrieve only
high-priority messages by setting the flagsp argument to RS_HIPRI. In this case, getmsg (2) will only retrieve
high priority messages. A flagsp value of 0 will cause getmsg (2) to read all messages from the stream.

The getmsg (2) system call enables the user applications to select between high priority and ordinary
messages. It operates in the Read all messages and Read High priority messages modes. If an application
needs finer control over ordinary messages, the getpmsg (2) call should be used.

By default, getpmsg (2) will also process the first available message on the stream. However, the flagsp for
getpmsg (2) is a bitwise-OR of the three mutually exclusive constants MSG_HIPRI, MSG_BAND, and MSG_ANY.

The following list describes the combination of flagsp and bandp values that enable the user application to
select different groups of messages:

• An application can retrieve only high-priority message by setting flagsp to MSG_HIPRI and bandp to 0.
getpmsg (2) reads only high priority messages from the stream, and leave the rest of the messages on the
stream. The bandp value is ignored.

• An application can retrieve messages for a particular priority band by setting flagsp to MSG_BAND and
bandp to the desired band priority value. Band messages fall into priority bands ranging from 1 to 255.
The getpmsg (2) system call processes the next message only if it is a band priority value equal to or
greater than the specified bandp value, or if it is a high priority message. All other messages are left on
the stream.

• If a process must retrieve the first message, set the integer pointed by bandp to zero and flagsp to
MSG_ANY.

• If O_NONBLOCK is not set, getmsg() and getpmsg() does not block until a message of the type specified by
flagsp is available at the front of the stream head read queue. If O_NONBLOCK is set and a message of the
specified type is not present at the front of the stream head read queue, getmsg() and getpmsg() fail and
set errno to [EAGAIN].
Chapter 240

STREAMS Mechanism and System Calls
Reading From a Stream
Return Values

For getmsg (2) and getpmsg (2), the flagsp and bandp arguments serve as input and output parameters. On
successful completion of the getmsg (2) call, flagsp is set to either RS_HIPRI or 0, depending on whether the
last retrieved message was of high priority. For getpmsg (2), flagsp is set to MSG_HIPRI, MSG_BAND, or
MSG_ANY depending on the priority of the latest message retrieved. The corresponding bandp argument is set
to 0 for high priority and normal non-band messages, and to the corresponding band priority value for band
messages.

A return value of 0 indicates that an entire message was completely and successfully retrieved. If a message
is partially retrieved, MORECTL, MOREDATA, or a bitwise-OR of the two constants is returned. This indicates
that more control or data information is to be retrieved for the current message.

A return value of -1 indicates failure. The errno value is appropriately set, as with all standard UNIX File
System I/O.

See the relevant HP-UX manpages for more details on these system calls.
Chapter 2 41

STREAMS Mechanism and System Calls
Pushing and Popping Modules
Pushing and Popping Modules

IOCTL Commands I_PUSH and I_POP

Modules are an optional component of a stream. A module performs intermediate operations on messages as
they pass between components in a stream. Modules are added into a stream by using the I_PUSH ioctl (2)
command. Modules are removed from a stream by using the I_POP ioctl (2) command.

Synopsis

#include <sys/types.h> #include <sys/stropts.h>

int ioctl(int fd, cmd ... /*, arg */);

Arguments

fd STREAMS File Descriptor

cmd IOCTL command, e.g., I_PUSH, I_POP

arg Additional argument(s), if any, required by the IOCTL command. For I_PUSH, this
argument contains a pointer to the name of the module to be pushed on to the stream. For
I_POP, the arg value must be zero.

Return Values

The ioctl (2) returns a 0 upon successful execution, and a -1 on failure. The errno values are appropriately
set, as with all UNIX File System I/O.

The I_PUSH command pushes the module pointed by arg on to the top of the current stream, and below the
stream head. If the stream is a pipe, the module will be placed between the stream heads of both ends of the
pipe. It will then invoke the open routine for the module.

The I_POP command removes the module just below the stream head. If the stream is a pipe, the I_POP
directive should be executed on the side of the pipe where the corresponding I_PUSH command was used.

The following example illustrates the I_PUSH command:

if (ioctl(fd, I_PUSH, “caseconvert”) < 0)
{

/*PUSH-ing Module Dynamically */
perror(“ioctl I_PUSH failed”);
exit(1);

}

The following code sample illustrates the I_POP directive.

if (ioctl(fd,I_POP, 0) < 0)
{
/* POP - ping Module Dynamically */

perror(“ioctl I_POP failed”);
exit(2);

}

Chapter 242

STREAMS Mechanism and System Calls
Closing a Stream
Closing a Stream
The last close() to a STREAMS file dismantles the stream as follows:

• It pops modules (if any) from the stream, allowing any messages on the write queue of the module to be
drained by the module processing.

• It closes the device, allowing any messages on the write queue of the driver to be drained by the driver
processing.

• It dismantles the stream by freeing any messages left on the driver’s queues, and freeing the queues and
stream head structures.

close(2)

If O_NDELAY (or O_NONBLOCK) is clear, close will wait up to 15 seconds for each module to drain and up to 15
seconds for the driver to drain. If O_NDELAY (or O_NONBLOCK) is set, the pop is performed immediately and the
driver is closed without any delay.

Synopsis

#include <unistd.h>

int close(int fileds);

Return Value

The close (2) call returns a 0 upon successful completion, and a -1 in case of failure. The corresponding errno
is appropriately set, as with all standard UNIX File System I/O.

NOTE The close (2) frees structures allocated by STREAMS to the different components in the stream.
Modules or drivers must free any internal data structure or messages.

HP recommends that all files opened by the application, including STREAMS devices and pipes, should be
explicitly closed. In the case of pipes, both file descriptors should be closed.
Chapter 2 43

STREAMS Mechanism and System Calls
Polling Streams
Polling Streams
Polling, (sometimes referred to as Synchronous Polling) is a mechanism by which a STREAMS application
can query one or more file descriptors (stream head read-queues) for specific events. An event can be the
arrival of specific message types, the status of a stream to accept certain message types, or the occurrence of
specific error conditions.

Two variations of the polling mechanisms supported by STREAMS on HP-UX are as follows:

• poll (2) system call

• /dev/poll device

The poll(2) System Call

The poll (2) system call monitors I/O conditions on multiple file descriptors.

Synopsis

#include <sys/poll.h>
int poll(struct pollfd fds[], nfds_t nfds, int timeout);

Arguments

fds[] Array of struct pollfd, one per file descriptor to be polled. The pollfd structure is
defined in <sys/poll.h> as follows:

struct pollfd
{

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

fd File descriptor to be polled for one or more events

events Bitwise-OR of events to be polled for a file descriptor. The application can
poll different fd’s for a different set of events. As a result, the value of
events can differ from file descriptor to file descriptor.

revents Return parameter containing a bitwise-OR of events that have occurred
on that file descriptor.

nfds Number of file descriptors to be polled.

timeout Number of milliseconds for which poll (2) waits for an event if no events are pending. A
negative value indicates that poll (2) waits indefinitely until at least one event is detected.
Chapter 244

STREAMS Mechanism and System Calls
Polling Streams
Events Notified by poll(2)

STREAMS supports the following events requests in the poll (2) function:

POLLIN A non-high priority message, This is a a regular message or a priority band message at the
front of the stream head read-queue.

POLLNORM Same as POLLIN.

POLLPRI A high priority message is at the front of the stream head read queue.

POLLOUT A normal or priority band message can be written to the stream without being blocked by
flow control. This flag is not used for high priority messages — they can be set even when
the stream is under flow control.

POLLERR An error has occurred on the file descriptor. The errno value is appropriately set.

POLLHUP Stream hangup. This stream cannot have any more messages written to it.

NOTE POLLHUP and POLLOUT are mutually exclusive.

POLLNVAL The fd for this read queue is not a valid STREAMS file descriptor.

POLLRDNORM A normal (non-priority) message is at the front of the stream head read queue.

POLLRDBAND A priority band message is at the front of the stream head read queue.

POLLWRNORM Same as POLLOUT.

POLLWRBAND A priority band message can be written to the stream with no flow control restrictions.

POLLMSG An M_SIG or M_PCSIG message containing the SIGPOLL signal has reached the front of
stream head read queue.

Return Values

The poll (2) function examines each read queue for the occurrence of one or more of the corresponding events
specified by the events parameter. It returns to the calling application under one of the following conditions:

• At least one of the specified events occurs on at least one read queue

• The wait period reaches the timeout value

Upon return, the revents parameter for each read-queue (corresponding to each fd in the pollfd array)
contains the corresponding events encountered on that read queue.

In addition to the revents parameter, poll (2) returns a zero or a positive number indicating the number of
file descriptors (the number of stream head read queues) that contain at least one of the requested events,
within the specified timeout period. A return value of 0 indicates that none of the read-queues had any of the
requested events before the timeout value was reached. A return value of -1 indicates internal failure, and
causes errno to be set appropriately.

Important Aspects of poll(2) Functionality

• Three events (POLLERR, POLLHUP, and POLLNVAL) will be reported in the revents parameter if and when
they are encountered. These events are reported even if they are not specifically requested in the poll (2)
call.

• The poll (2) ignores all negative file descriptors. This feature is relevant from a performance standpoint.
STREAMS applications that deal with multiple streams are likely to define a large array of pollfd
structures. The large array accommodates the maximum number of streams to be opened for the life of
Chapter 2 45

STREAMS Mechanism and System Calls
Polling Streams
the application. However, during application execution, there can be a small number of open streams. The
unused file descriptors inside the corresponding pollfd structures must be set to -1. These pollfd
structures (with a negative fd) are ignored by poll (2). If all the pollfd structures passed to the poll (2)
call have negative fd values, poll (2) returns 0 and has no other results.

• The poll (2) system call returns to the calling application when one of the following two conditions is met.
It encounters at least one read-queue with at least one of the requested events (or a POLLERR, POLLHUP, or
POLLNVAL), or the wait period reaches the specified timeout value in milliseconds.

• A timeout value of -1 implies no timeout, that is, poll (2) will wait until at least one requested event (or a
POLLERR, POLLHUP or POLLNVAL) occurs on one of the read queues.

• For a timeout value of 0, poll (2) checks to see if any of the requested events occurred on any one of the
read-queues, and returns immediately, regardless of the results.

• The poll (2) system call behavior is not affected by the O_NONBLOCK flag set on any of the specified file
descriptors.

The /dev/poll Interface

HP-UX offers an alternative polling mechanism using a special device, /dev/poll (refer to poll (7) for
details). This device is supported by STREAMS.

The poll (2) system call and the /dev/poll device behave differently. With poll (2), the application sends all
relevant file descriptors and the requested events as parameters. The kernel routines associated with the
stream head copy these structures into the kernel memory, and then copy back the revents parameter
bitmask into every pollfd structure. This happens with every poll (2) call.

With /dev/poll, the user registers a set of file descriptors and a corresponding set of events. This is achieved
by the application opening the (/dev/poll) device, and then writing the relevant pollfd structures and
parameter values to the (/dev/poll) device. Next, the application polls the stream head read-queue with an
ioctl (2) directive specifically meant for polling.

User applications working with the /dev/poll device use the open (2), write (2), and ioctl (2) functions as
follows:

#include <sys/devpoll.h>
#include <fcntl.h>
int open(“/dev/poll”, O_RDWR);
int write(int fd, struct pollfd *buf, size_t nbyte);
int ioctl(int fd, DP_POLL, struct dvpoll *arg);
int ioctl(int fd, DP_ISPOLLED, struct pollfd *arg);
int close(fd);

The user applications performs the following steps:

1. Opens the polling device or event port (/dev/poll).

2. Registers file descriptors and corresponding events of interest with /dev/poll.

3. Deregisters (or modify selected event requests).

4. Polsl the device for the occurrence of requested events (or error conditions).

5. Closes the polling device.

Opening an event port:

Each open (2) call on /dev/poll device enables an event port where a registered set of file
descriptors can be polled for relevant events. The file descriptor returned by the open (2)
system call represents the event port as follows:
Chapter 246

STREAMS Mechanism and System Calls
Polling Streams
int evpfd;
evpfd = open(“/dev/poll”, O_RDWR);

NOTE The /dev/poll device can be used for write (2) and ioctl (2) operations only by the processes
that opened the device. Although file descriptors are generally inherited by forked processes,
the event port file descriptor behaves differently. Specifically, a child process inheriting an
event port file descriptor can only perform the close (2) operation on it.

Registering and deregistering file descriptors on an event port:

The relevant file descriptors and corresponding events of interest are registered with
/dev/poll using the write (2) call. This write (2) call is a standard UNIX File System write
operation, and not a STREAMS write (2).

NOTE /dev/poll is not a STREAMS device.

int write(int evpfd, const struct pollfd *buf, size_t nbyte);

The write (2) operation automatically registers all non-negative file descriptors in the
pollfd structure with /dev/poll. User applications can de-register file descriptors by
setting the corresponding events attribute of that file descriptor to POLLREMOVE.
POLLREMOVE is a special pseudo-event (defined for de-registration purposes) that must be
the only event present in the events bitmask.

A registered file descriptor is automatically de-registered from /dev/poll by a close (2)
operation.

Polling file descriptors:

User applications may poll an event port via the DP_POLL ioctl (2) command as follows:

int ioctl(int evpfd, DP_POLL, struct dvpoll *arg);

The arg parameter points to the following dvpoll structure:

struct dvpoll
{

pollfd_t *dp_fds; /* pollfd[] to be used */
nfds_t dp_nfds; /* number of pollfd entries */
int dp_timeout; /* milliseconds or -1 */

};

dp_fds Pointer to an array of pollfd structures.

dp_nfds Maximum number of pollfd structures in the array.

dp_timeout Maximum time, in milliseconds..

The kernel copies only the affected pollfd structures back into dvpoll.

NOTE In all other respects, e.g., the setting of revents in the relevant pollfd
structures, the return value of ioctl (2), the wait period behavior of timeout
values, and the reporting of the 3 events (POLLERR, POLLHUP and POLLNVAL),
the DP_POLL ioctl (2) command operates exactly like the corresponding poll
(2) system call for the following:

• Setting revents in the relevant pollfd structure

• The return value of ioctl (2)
Chapter 2 47

STREAMS Mechanism and System Calls
Polling Streams
• The wait period behaviour of the timeout values

• Reporting the POLLERR, POLLHUP, and POLLNVAL events

Retrieving registered poll conditions for a file descriptor:

User applications may query /dev/poll for the registration status of specific file
descriptors via the DP_ISPOLLED ioctl (2) command as follows:

struct pollfd pfd;
int ispolled;
pfd.fd = fd1;
ispolled = ioctl(evpfd, DP_ISPOLLED, &pfd);

If file descriptor fd1 is registered with /dev/poll, the ioctl (2) function call will return 1,
and the events attribute in the pollfd structure will be set to the events registered for this
file descriptor.

If the file descriptor is not registered or open, ioctl (2) will return 0.

Closing an event port:

An event port is closed with the close (2) system call that specifies the event port file
descriptor as follows:

int close(evpfd);

All registered file descriptors are automatically de-registered.

select(2)

Externally, the select (2) system call is analogous to poll (2), but the input parameters are structured
differently. The user must specify three sets of file descriptors to test for read, write, and exception
conditions as follows:

Synopsis

#include <sys/stropts.h>
#include <sys/time.h>
int select (int nfds, int *readfds, int *writefds, int *exceptfds, const struct timeval *timeout);

Arguments

nfds Number of file descriptors to be checked.

readfds Pointer to a bitmask representing a file descriptors to be checked for read-to-read

writefds Pointer to a bitmask representing a set of file descriptors to be checked for ready-to-write

exceptfds Pointer to a bitmask representing a set of file descriptors to be checked for exception
conditions

timeout Pointer to a timeout value (in microseconds) for which the select (2) call will block. A zero
indicates no timeout, i.e., the select (2) will block indefinitely until at least one event on at
least one file descriptor is detected.

Return Values

The select (2) returns the number of file descriptors found with an event (read, write, or exception). It also
modifies the bitmasks to represent only those file descriptors where an event has been detected.
Chapter 248

STREAMS Mechanism and System Calls
Polling Streams
Differences Between select(2) and poll(2)

Unlike the pollfd structure that allows poll (2) to check a virtually unlimited number of file descriptors, the
select (2) call expects file descriptors to be specified as three sets of bitmasks.

In HP-UX, both functions allow the user process to perform more or less than same function. As select (2)
requires file descriptors to be specified as bitwise-ORs, it limits the number of file descriptors that can be
examined in one select (2) call. However, the programming overhead for select (2) is lower than poll (2), where
a pollfd structure must be initialized for each file descriptor. poll (2) is useful when a large number of files
are to be examined and millisecond-level timeout granularity is not a constraint.
Chapter 2 49

STREAMS Mechanism and System Calls
Asynchronous Event Notification
Asynchronous Event Notification
The polling method described in the previous section is synchronous. The application has to explicitly stop
what it is doing, and poll each time it needs to check the occurrence of relevant events on different file
descriptors.

Asynchronous Event Notification enables the user to set the event conditions in advance, and then continue
with its normal operations until interrupted by the occurrence of one of those event conditions. The I_SETSIG
ioctl (2) command enables user applications to specify one or more events for a stream.

The IOCTL Command — I_SETSIG

Synopsis

#include <sys/types.h>
#include <sys/stropts.h>
int ioctl(int fd, I_SETSIG, *arg);

I_SETSIG is the command used for setting a bit-mask of relevant events. It directs the kernel routines
associated with the stream head to issue a SIGPOLL signal upon the occurrence of any of the selected events.

The arg parameter is a bitmask that specifies events that will signal an interrupt to the calling application. It
is the bitwise-OR of any combination, except where noted, of the events listed here. For more information and
a complete list of IOCTL commands, refer to Appendix A, “STREAMS IOCTL Commands.”

S_ERROR An M_ERROR message has reached the stream head.

S_HANGUP An M_HANGUP message has reached the stream head.

S_HIPRI A high priority message is present on the stream head read queue.

S_INPUT A message other than an M_PCPROTO has arrived on a stream head This argument is
maintained for compatibility with prior UNIX System V releases. This argument is set even
if the message is of zero length.

S_MSG A STREAMS signal message containing the SIGPOLL signal has reached the front of the
stream head read queue.

S_OUTPUT The write-queue just below the stream head is no longer full.

S_RDBAND A priority band message has arrived at the stream head read queue. This is set even if the
message is of zero length.

S_BANDURG When used in conjunction with S_RDBAND, a SIGURG is generated instead of SIGPOLL when a
priority message reaches the front of the stream head read queue.

S_RDNORM An ordinary (normal) message has arrived at the stream head read queue. This is set even if
the message is of zero length.

S_WRBAND A priority band greater than zero of a queue downstream exists and is writable. This
notifies the user that there is room on the queue for sending priority data downstream.

S_WRNORM Same as S_OUTPUT.

An arg parameter value of zero can be used to deregister the I_SETSIG events set by a previous ioctl call.

Following an I_SETSIG setup, the stream head generates a SIGPOLL signal for the user application when
relevant events occur. It is the responsibility of the user application to appropriately handle this signal. A
typical setup for signal handling is:
Chapter 250

STREAMS Mechanism and System Calls
Asynchronous Event Notification
signal (SIGPOLL, OnRecv);

OnRecv is a user-specified function to be called when the user process receives a SIGPOLL signal.

Refer to the signal (2) manpage for details on signal handling by user applications.
Chapter 2 51

STREAMS Mechanism and System Calls
Attaching and Detaching a Stream to a File - Named Streams
Attaching and Detaching a Stream to a File - Named Streams
User applications can associate a stream or STREAMS-based pipe with an existing node in the file system
name space. This enables other processes to communicate with this process. For example, a process creates a
pipe and names one end of the pipe using fattach(). When another unrelated process opens this file, it gets
access to the named end of the pipe. The two processes can then communicate with each other like parent and
child processes communicating over the pipe. STREAMS users can access this feature by using the
fattach() and fdetach() library calls.

The fattach() library routine internally uses a special file system called ffs to support named streams.

The fattach (3C) System Call

fattach() attaches a STREAMS file descriptor to an object in the file system name space. A STREAMS file
descriptor refers to either a STREAMS-based pipe or a STREAMS device driver.

Synopsis

#include <stropts.h>
int fattach(int fd, const char *path);

Arguments

fd A STREAMS file descriptor.

path Path name of an existing object in the file system.

The path cannot have a stream already attached to it. The path cannot be a mount point for a file system or
the root of a file system. The caller must be an owner of the path with write permission or a user with the
appropriate privileges to attach the file descriptor. A STREAMS device or pipe can be attached to more than
one node in the file system name space. On attaching to a file system node, any operation on any of these
paths acts on the STREAMS device or pipe, instead of the file system object path.

Once the stream is named, the stat(2) system call on the path shows information for the stream. If the
named stream is a pipe, the stat(2) information shows that the path is a pipe. If the stream is a device
driver or a pseudo-device driver, the path appears as a device. Following are the attributes of a fattached
stream: the permissions, group ID, user ID, and times are set to those of the path. The number of links and
the size as well as the device number are set to those of the STREAMS device or pipe designated by the fd
parameter. If any attributes of the fattached stream are subsequently changed, the attributes of the
underlying object are not affected. For example, chown(2).

Return Values

Upon successful completion, fattach(3) returns 0. Otherwise, it returns a value of -1, and errno is set to
indicate the error.

The fdetach(3C) System Call

The fdetach() system call detaches a STREAMS file descriptor from an object in the file system name space.

Synopsis

#include <stropts.h>
int fdetach(const char *path);
Chapter 252

STREAMS Mechanism and System Calls
Attaching and Detaching a Stream to a File - Named Streams
Arguments

path Path name of an existing object in the file system.

The fdetach () function detaches a file descriptor from its filename in the file system. The path argument
refers to the path that was previously attached using fattach (). The caller must own path or have write
permission or appropriate privileges (PRIV_MOUNT) to detach a file descriptor. As a result of the fdetach ()
operation, the node's status and permissions are restored to the state prior to the file attaching to the node.
Subsequent operations on the path will affect only the file system node and not the attached file.

If one end of a pipe is named, the last close of the other end causes the named end to be automatically
detached. If the named stream is a device and not a pipe, the last close does not cause the stream to be
detached. In this scenario, fdetach (3)/fdetach (1M) has to be explicitly issued to detach the named STREAMS
device.

Return Values

Upon successful completion, the fdetach(3C) function returns a value of 0. Otherwise, it returns a value of -1,
and errno is set to indicate the error.

The isastream(3C) System Call

isastream() tests if a file descriptor refers to a STREAMS device or a STREAMS-based pipe.

Synopsis

#include <stropts.h>
int isastream(int fd);

Arguments

fd An open file descriptor.

The isastream(3C) determines whether an open file descriptor fd corresponds

to a STREAMS device or STREAMS-based pipe.

Return Values

Upon successful completion, the isastream() function returns a value of 0 when the file descriptor of the
open file specified by fd is a STREAMS device or STREAMS-based pipe, and if it is not a stream, but is a
valid open file descriptor. Otherwise, a value of -1 is returned, and errno is set to indicate the error.

File Descriptor Passing

Named streams are useful for passing file descriptors between unrelated processes. A user process can send a
file descriptor to another process by invoking the ioctl(2) I_SENDFD on one end of a named stream. This
sends a message containing a file descriptor to the stream head at the other end of the pipe. Another process
can retrieve that message containing the file descriptor by invoking the ioctl(2) I_RECVFD on the other end
of the pipe.

See Appendix - A for more information on I_SENDFD and I_RECVFD ioctl commands.
Chapter 2 53

STREAMS Mechanism and System Calls
Attaching and Detaching a Stream to a File - Named Streams
Chapter 254

3 Messages
Messages are the means of communication within a stream. The objects passed between the stream
components are pointers to messages. This chapter covers the structure, processing, and flow control of
STREAMS messages.

This chapter addresses the following topics:

• Message Structures

• Message Processing and Flow Control
Chapter 3 55

Messages
Message Structures
Message Structures
All STREAMS messages consists of one or more message blocks as shown in Figure 3-1, “A Message and Its
Linkage.” STREAMS message is comprised of two data structures — a message block and a data block.
The message block represented by msgb describes the message, the data block represented by datab describes
the data and contains the pointer to the variable-length data buffer.

Figure 3-1 A Message and Its Linkage

The message block and data block are represented and defined as struct msgb (mblk_t) and struct datab
(dblk_t) respectively in <sys/stream.h>.

The mblk_t structure has the following fields:

 struct msgb * b_next; /* next message on queue */

 struct msgb * b_prev; /* previous message on queue */

 struct msgb * b_cont; /* next message block of message */

 unsigned char * b_rptr; /* first unread data byte in buffer */

 unsigned char * b_wptr; /* first unwritten data byte */

 struct datab * b_datap; /* data block */

 unsigned char b_band; /* message priority */

 unsigned short b_flag; /* message flags restricted for STREAMS framework use only */

data
block

data
block
(type)

buffer

header

queue
b_next b_next

b_prevb_prev

b_cont

b_cont

b_datap

b_datap

b_datap

buffer

mblk_t

mblk_t

mblk_t

data
block
(type)

buffermblk_t

mblk_t

mblk_t

Message
1

Message
2

b_datap

b_cont

b_cont
Chapter 356

Messages
Message Structures
The fields perform the following functions:

b_next and b_prev Link the messages on a module or driver Queue’s message queue.

b_cont Builds a complex message from two or more message blocks.

b_rptr and b_wptr Locate the data present in the data buffer.

b_band Contains the priority band for a message.

b_datap Points to the data block header.

b_flag Contains a bitmask of flags interpreted by stream head.

Using Message Block Fields

• The b_next, b_prev, b_cont, b_rptr, b_wptr and b_band can be modified by drivers or modules.

• The b_datap must not be modified by drivers and modules.

• The following bitmask in b_flag field can be set or cleared by modulesor drivers.

MSGMARK Provides a mechanism for driver or modules to mark the message.

MSGLASTCLOSE This flag is set in the M_CLOSE_REPL message by the driver upon receiving M_CLOSE
message to cause STREAMS to dismantle the stream. This is applicable only if the
device associated with the stream being closed has the flag C_ALLCLOSES set in d_flags
field of the cdevsw table corresponding to the driver being closed.

The datab structure has the following fields:

unsigned char * db_base; /* first byte of buffer */

 unsigned char * db_lim; /* last byte+1 of buffer */

 unsigned char db_ref; /* number of messages pointing to us */

 unsigned char db_type; /* message type */

The db_base and db_lim fields point to the beginning and end (+1) of the buffer.

The db_ref represents the number of message blocks sharing the data block. Figure 3-1, “A Message and Its
Linkage,” shows Message 1 and Message 2 sharing the data block. Multiple messages can point to the same
data block to conserve the memory and avoid copying overhead. The drivers or modules can use the dupb ()
command utility to share the data block between the multiple messages. If the value of db_ref is greater than
1, the modules and driver must not modify the data buffer.

The db_type contains the message type associated with the message. The message type indicates the type of
operation and represents the implicit priority associated with the message.

Drivers and modules must not modify the contents of dblk_t.

Message Types

Every message in STREAMS that is generated by a user application or STREAMS component has a message
type attribute associated with it. The message type specifies the implicit message priority. The different types
of messages are supported by STREAMS/UX and are defined in <sys/stream.h>, refer to Appendix C,
“Message Types,” on page 251.

STREAMS/UX supports the following message types:

Ordinary Messages
Chapter 3 57

Messages
Message Structures
Ordinary messages are always put at the end of the message queue. These messages have
the priority band (b_band) set to zero. However, any ordinary messages can be changed to
priority band messages (also known as Expedited data) by modifying b_band value.
STREAMS supports priority band value up to 255.

M_DATA User data.

M_PROTO Protocol control information.

M_IOCTL User IOCTL request generated by stream head.

M_PASSFP Passes file descriptor between the processes.

M_SIG Signal sent by a driver/module to a process.

M_BREAK Requests a driver to send a break to the hardware device.

M_DELAY Request a driver to generate a delay on output.

M_CTL Used for inter module communication and is implementation dependent.

M_SETOPTS Sets stream head characterstics.

M_TRAIL Marks the end of message after M_HANGUP.

M_RSE Reserved for STREAMS internal use.

High Priority Messages

High priority messages are placed at the head of the message queue and are not governed
by STREAMS flow control.

M_PCPROTO Protocol control information.

M_READ Read notification sent downstream by stream head.

M_PCSIG Signal sent by a driver or module to a process.

M_COPYIN Copy in user data for transparent IOCTL.

M_COPYOUT Copy out kernel data for transparent IOCTL.

M_IOCDATA Sent downstream by stream head in response to M_COPYIN or M_COPYOUT.

M_IOCACK Positive acknowledge of an IOCTL request.

M_IOCNAK Negative acknowledge of an IOCTL request.

M_ERROR Report downstream error condition and to mark stream in error.

M_FLUSH Discard messages in the stream.

M_HANGUP Sent upstream by the driver to indicate that it is disconnected from the
device.

M_START Request devices to start output.

M_STARTI Restart devices input.

M_STOP Stop device output.

M_STOPI Stop device input.

M_PCRSE Reserved for STREAMS internal use.

M_CLOSE Notify the driver of close(2) when allcloses is in effect.

M_CLOSE_REPL Driver reply to M_CLOSE; MSGLASTCLOSE flag set and indication to
dismantle the stream.
Chapter 358

Messages
Message Structures
Message Queues

Message queues are essentially a linked list of messages waiting to be processed by the service procedure. The
STREAMS scheduler accesses these lists through the pointers available to the head and tail of the lists in the
module or driver queues as explained.

A queue will generally not use its message queue if there is no service procedure associated with it. Message
queues grow as the processing of the messages on it are delayed due to a STREAMS scheduler being delayed,
or when the next module is flow-controlled. The priority of the message indicates the order in which it is
enqueued.

High priority messages are placed at the head of the message queue. Then, the priority band messages and
finally, band zero or ordinary messages as shown in Figure 3-2, “Message Ordering in a Queue.” The service
procedure processes the enqueued messages in a first-in first-out (FIFO) manner.

Figure 3-2 Message Ordering in a Queue

Queue

In addition to the pointers to the message queues, the message queue also contains the entry points for
message processing, flow control parameters, pointer to the next queue in the stream and so on.

Message queues are always allocated in pairs (read and write). One pair is allocated for each component of
the stream. A queue-pair is allocated for each streams component, and is initialized when the streams
component becomes a part of the stream. The queue pairs for the stream head and driver are allocated when
the driver is opened and deallocated on closing the driver. The queue pairs for a module are allocated upon
pushing the module on to the stream and deallocated on popping or removing it from the stream.

ordinary
band 0

messages

priority
band 1

messages

priority
band 2

messages

high
priority
messages

...

tail head
Chapter 3 59

Messages
Message Structures
The streamtab Structure

Every STREAMS module and driver installed on a system is associated with a struct streamtab structure
defined in <sys/stream.h> in addition to other structures. The information provided by the module or driver
writer in this structure is used by STREAMS to initialize the queue-pair associated with the module or driver.

The struct streamtab contains pointers to message handling procedures and other message processing
parameters defining the behavior of the module.

 struct qinit * st_rdinit; /* defines read QUEUE */

 struct qinit * st_wrinit; /* defines write QUEUE */

 struct qinit * st_muxrinit; /* for multiplexing drivers only */

 struct qinit * st_muxwinit; /* for multiplexing drivers only */

The st_muxrinit and st_muxwinit structures point to the qinit structure of the lower read-side and
write-side of a multiplexing driver.

NOTE For all modules and non-multiplexing drivers these fields should be set to NULL.

The queue Structure

The queue structure defined in <sys/stream.h> as queue_t is the central building block of the queues in
STREAMS. The struct queue has the following fields:

 struct qinit * q_qinfo; /* procedures and limits for queue */

 struct msgb * q_first; /* head of message queue */

 struct msgb * q_last; /* tail of message queue */

 struct queue * q_next; /* next QUEUE in Stream */

 struct queue * q_link; /* link to scheduling queue */

 void * q_ptr; /* to private data structure */

 ulong q_count; /* weighted count of characters on q */

 ulong q_flag; /* QUEUE state */

 long q_minpsz; /* min packet size accepted */

 long q_maxpsz; /* max packet size accepted */

 ulong q_hiwat; /* high water mark, for flow control */

 ulong q_lowat; /* low water mark */

 struct qband * q_bandp; /* band information */

 unsigned char q_nband; /* number of bands */

 struct queue * q_other; /* pointer to other Q in queue pair */

On a queue-pair allocation, the contents of this structure are initialized to zero. STREAMS however
initializes the following fields if specified by the modules:

• q_qinfo — set to the value specified in the streamtab

• q_minpsz, q_maxpsz, q_hiwat and q_lowat — set to the value specified in the struct module_info.

The module or driver open routine can optionally set the q_ptr to point to a private structure owned and
managed by the modules/drivers.

The q_first and q_last fields refer to the first and last messages on the message queue.

The q_next field points to the queue associated with the next component, downstream for a write queue and
upstream for a read queue.
Chapter 360

Messages
Message Structures
The q_count field contains the total number of message bytes on the queue inclusive of all normal, banded
and high priority messages. When q_count equals or exceeds the queue’s high watermark (q_hiwat),
STREAMS marks the queue as full.

The q_flag field contains a bitmask indicating the state of the queue. It can have one or more of the following
values listed:

QREADR Defines a read queue.

QNOENB Do not enable the queue when data is placed on it.

QENAB The queue is enabled to run the service procedure.

QFULL The queue is full.

QWANTR Enable the queue when data is placed in it.

QWANTW Back enable the stream when the queue drains.

QUSE The queue is allocated and ready for use.

QBACK The queue is back-enabled.

QOLD The queue supports module or driver interface to open or close developed prior to UNIX
System V Release 4.0.

QWELDED — The queues are welded.

The q_nband field indicates the number of priority bands present in the queue. The q_bandp points to the
linked lists of these priority band queues.

Using Queue Information

Not all the fields in the queue structure can directly be manipulated or accessed by the modules or drivers.

• The q_ptr field, is the only field which can directly be manipulated by drivers and modules.

• The q_minpsz, q_maxpsz, q_hiwat and q_lowat fields can be modified by the modules and drivers, but
should be done so using the STREAMS utilities like strqget ()/strqset ().

• The q_first and q_last fields pointing to the head and the tail of the message queue, q_count and
q_flag can get altered through the STREAMS utilities. The modules or drivers should not modify them
directly.

• The q_qinfo, q_next, q_other, q_bandp and q_nband fields can be read by the modules and drivers but
not changed.

• The q_link field is for STREAMS internal use only.
Chapter 3 61

Messages
Message Structures
The qinit Structure

The qinit structure contains the addresses of the functions associated with the queue, associated module
information, and an optional statistics if present. The streamtab structure as shown earlier for a module or
driver has pointers to the qinit structure both for the upstream and downstream processing. The struct
qinit is defined in <sys/stream.h> and contains the following fields:

 int *qi_putp (queue_t *, mblk_t *); /* put procedure */

 int *qi_srvp (queue_t *); /* service procedure */

 int *qi_qopen (); /* open routine */

 int *qi_qclose (); /* close routine */

 int *qi_qadmin (void); /* admin procedure */

 struct module_info * qi_minfo; /* module parameters */

 struct module_stat * qi_mstat; /* module statistics */

qband Structure

The qband structure maintains information about each priority band in a queue. These qband structures are
not pre-allocated per queue. They are allocated when a message with a priority band value greater than zero
is placed on a queue. The maximum number of qband structures in a queue is 255. Once allocated, the qband
structure remains associated with the queue until the queue gets freed. The struct qband is defined in
<sys/stream.h> and contains the following fields:

 struct qband * qb_next; /* next band for this queue */

 ulong qb_count; /* weighted character count in band */

 struct msgb * qb_first; /* head of message queue */

 struct msgb * qb_last; /* tail of message queue */

 ulong qb_hiwat; /* high water mark */

 ulong qb_lowat; /* low water mark */

 ulong qb_flag; /* state */

The qb_next field points to the next priority band in the queue. The qb_count field contains the total number
of bytes for all the messages in the band. The qb_first and qb_last fields point to the first and the last
message in the band. Each band also contains a separate high and low water mark, qb_hiwat and qb_lowat.
The qb_flag flag denotes the state of the band, represented by the following three values:

QB_WANTW Back enable the stream when this queue or band drains.

QB_BACK The queue is back enabled.

QB_FULL The queue is full.
Chapter 362

Messages
Message Processing and Flow Control
Message Processing and Flow Control

Message Processing

Each queue in a stream is associated with a put procedure and an optional service procedure. The only
exception is the driver’s read-queue, which may not have a put procedure. The put procedure and the
service procedure are the two routines to process the messages.

The put procedure is used to process messages immediately. It processes the message as required when it
receives the message from the previous queue. Depending on the nature of the message and the availability of
the next queue in the stream, the put procedure can consume this message, pass it to the next component’s
queue for further processing, or place the messages on its message queue for deferred processing.

The service procedure is for deferred processing of the messages in the message queue. The service
procedure must use the getq () utility to remove the message from the message queue and process the
message accordingly. STREAMS guarantees that only one instance of the service procedure for a specific
queue may run at a time. Details of the rules for put and service procedures are described in Chapter 4,
“Modules and Drivers.”

The service procedure is usually scheduled to run when a message is first placed into the message queue.
The service procedure can also be scheduled by STREAMS as described in the See “Flow Control” on page 63
section in this chapter. In addition, STREAMS provides the qenable () utility to enable the module or driver to
schedule the service procedure directly.

STREAMS provides a set of service schedulers, defined by the NSTRSCHED tunable, to run the scheduled
service procedures. By default, the number of service schedulers is equal to the number of CPUs.

Flow Control

STREAMS provides a flow control mechanism that enables module and driver developers to manage the
maximum amount of data-flow in the stream. Implementing flow control is optional, but highly
recommended.

To implement the flow control, the module or driver must meet the following requirements:

• Provide service procedure

• Set high and low water marks

• Use the canput () family calls to check for flow control condition

Service Procedure

A queue must contain a service procedure to implement the flow control. The service procedure is pointed
to by the qi_srv pointer in the qinit structure. A NULL qi_srv pointer indicates that this queue does not
implement flow control.
Chapter 3 63

Messages
Message Processing and Flow Control
Watermarks

Each queue is associated with the following watermarks and counter to manage the amount of data
accumulated in the message queue:

q_hiwat High watermark

q_lowat Low watermark

q_count Counter

When a message is placed onto the message queue, STREAMS increments q_count by the size of the
message. When a message is removed from the message queue, STREAMS decrements the q_count
accordingly.

The high watermark defines the maximum amount of data in bytes that can be accumulated in the message
queue. Once the accumulated data in the message queue reaches the high watermark, STREAMS sets the
QFULL flag to indicate that this message queue is full. When the message queue is full, the queue is under flow
control.

The high watermark is a soft limit. Hence, STREAMS allows the accumulated data to grow above the high
watermark if the preceding queue ignores the flow control condition. The low watermark defines the point
where STREAMS resets the queue full condition. That is, when the accumulated data in the message queue
reaches the low watermark, STREAMS resets the QFULL flag.

Set the high and low watermarks as follows:

1. Specify the high and low watermarks in the mi_hiwat and mi_lowat fields of the module_info structure.

These values are set independently for the read queue and the write queue. Once an instance of the
module is allocated, the q_hiwat and the q_lowat are initialized to the values specified in mi_hiwat and
mi_lowat fields.

When q_band is allocated for the band messages, the corresponding qb_hiwat and qb_lowat for each
band are defaulted to equal to the value of q_hiwat and q_lowat.

2. Dynamically change the high and low watermarks at run time by using the strqset () utility.

Checking Data Flow Condition

STREAMS provides the canput (), bcanput (), canputnext () and bcanputnext () utilities to check the flow
control condition. Their definition are available in the “Message Processing Utilities” section.

The module implementing flow control usually checks the flow control condition before it passes the message
to its next queue. HP recommends that high priority messages are not flow controlled. However, if high
priority messages are placed onto the message queue, they will be read and processed before other messages
in the queue.

Implementing flow control is optional. For example, Figure 3-3, “Flow Control,” shows that queue A and
queue C implement flow control, queue B is not flow controlled.
Chapter 364

Messages
Message Processing and Flow Control
Figure 3-3 Flow Control

When queue A uses canput () to check for available space, canput () searches through the stream. canput ()
starts searching from queue B, until it finds queue C that contains a service procedure. Then, canput ()
checks if QFULL is set on queue C. If QFULL is not set, canput () returns 1. Else, canput () marks QWANTW on
queue C, and returns 0.

Back-Enabling Mechanism

STREAMS provides a back-enabling mechanism to schedule the service procedure to processing the
messages in the message queue. This mechanism works as follows:

When the message queue reaches the high water mark, STREAMS marks the message queue as QFULL. Once
canput () detects the QFULL condition, canput () sets the QWANTW flag.

When the accumulated data drops from the high water mark to the low watermark, STREAMS clears the
QFULL flag, and checks if QWANTW is set. If QWANTW is set, STREAMS schedules the service procedure of the
nearest preceding queue to process the messages.

For example, in Figure 3-3, “Flow Control,” queue C is in the QFULL state. A canput () from queue A sets
QWANTW on queue C, and returns 0. Upon return from canput (), queue A may place the message onto the
message queue for processing when queue C becomes available at a later time.

When queue C’s state changes from QFULL to non QFULL, STREAMS checks if QWANTW is set on queue C by any
previous canput (). If QWANTW is set, STREAMS schedules the service procedure of queue A to process the
messages blocked due to the queue full condition encountered by previous canput ().

The details of how STREAMS implements the back-enabling mechanism is transparent to the stream module
and drivers. As long as the module or driver meets the three requirements listed in the “Flow Control”
section, STREAMS ensures the module or driver’s service procedure is scheduled when the QFULL state is
unset.

queue A
with service
procedure

queue B
no service
procedure

queue C
with service
procedure

QFULL

back enable queue As
service procedure
when QFULL on queue
C in not set

canput()
Chapter 3 65

Messages
Message Processing and Flow Control
Common STREAMS Utilities

This section provides an overview of the most common utilities used by modules or drivers. Appendix B,
“STREAMS Utilities Supported by HP-UX,” contains the complete set of STREAMS utilities relevant to
STREAMS programmers. All these utilities are exported via <sys/stream.h>.

Message Allocation and Deallocation

mblk_t * allocb(int size, unsigned int pri);

allocb () Allocates a message block header, data block header and the data buffer of length
determined by size (in bytes). When successful, it returns a pointer to the newly allocated
message block of type M_DATA. The b_band field is set to zero. Modules and drivers can set
this field, if needed. The pri is an unused parameter and is maintained only for
compatibility with the applications developed prior to UNIX System V Release 4.0.

The allocb () utility returns a NULL pointer if it fails to allocate the requested memory.
Module and Drivers need to take care of this condition where allocb () fails to allocate the
requested memory.

int bufcall(unsigned int size, int pri, bufcall_fcn_t func, bufcall_arg_t arg);

bufcall () Serves as a memory availability notification mechanism. It can be used if allocb () fails to
allocate memory. If the allocb () returns NULL, modules and drivers may invoke bufcall ()
to recover from the allocb () failure. This utility invokes the callback function when a
buffer of size bytes is available. The callback function must not sleep and cannot reference
u_area. The pri is not used.

The bufcall () utlity returns 1 on success, and 0 on failure. On a failure return, func is
never invoked and this indicates the system is temporarily unable to allocate the required
internal memory.

mblk_t *esballoc(uchar_t *base, int size, int pri, frtn_t *fr_rtn);

esballoc () Allocates a new message block and data block header. The user-supplied buffer pointed at
by the base is used as data buffer. The b_rptr, b_wptr, db_base and db_lim are set
appropriately, based on base and size parameters.

The free_func () pointed by fr_rtn is called with free_arg by freeb () when db_ref count
is 1.

void freeb(mblk_t *bp);

freeb () Deallocates the message block descriptor bp. The data block associated with bp is not freed
if the db_ref count is greater than 1. If the db_ref is greater than 1, freeb () will free only
the message block header and decrements the db_ref count.

void freemsg(mblk_t *bp);

freemsg () Will free the message pointed at by bp. This utility internally uses freeb () to free the
individual message blocks by traversing the b_cont list.

mblk_t *copyb(mblk_t *bp);

copyb () Allocates a new message block and updates all the information pointed at by bp. All the
data between the b_rptr and b_wptr pointers of a message block are copied to the new
message block.

The copyb () returns a pointer to the newly allocated message block for successful return. In
case of failure, it returns a NULL pointer.
Chapter 366

Messages
Message Processing and Flow Control
mblk_t *copymsg(mblk_t *mp);

copymsg () Uses copyb () to copy the message blocks contained in the message pointed by bp to a newly
allocated message block, and links the new message blocks to form the new message.

mblk_t *dupb(mblk_t *bp);

dupb () Takes a pointer to a message block descriptor (mblk_t) as an input parameter, allocates a
new message and initialized it by copying the contents of the input message block. The new
message block descriptor points to the same data block as the input message block
descriptor. The db_ref in the data block (dblk_t) is incremented by 1.

When db_ref is greater than 1, modules and drivers must be aware that any changes made
to the data buffer affects all the message blocks sharing this data block. If the contents of a
message block with a reference count greater than 1 is to be modified, copymsg () should be
used to create a new message and only the new message block should be modified.

Upon success, dupb () returns a pointer to the new message block. Otherwise it returns a
NULL pointer.

mblk_t *dupmsg(mblk_t *bp);

dupmsg () Copies all the individual message block descriptors pointed by bp, and then using b_cont
pointer links the new message blocks to form the new message. Internally this utility uses
dupb (). The dupmsg () does not copy data buffers.

Upon success, dupmsg () returns a pointer to the new message. In case of failure, it returns
a NULL pointer.

int pullupmsg(mblk_t *mp, int len);

pullupmsg () Concatenates and aligns the number of bytes as represented by len bytes stored in a
complex message mp. The pullupmsg only concatenates messages of the same type. See the
Figure 3-4, “Pulling Up a Complex Message,” to see the results of the pullupmsg () operation.
If len is -1 then pullupmsg () will concatenate and align the entire contents of all the
messages into a single data block.

The pullupmsg () returns 1 on success and 0 in case of failure.
Chapter 3 67

Messages
Message Processing and Flow Control
Figure 3-4 Pulling Up a Complex Message

Message Processing Utilities

int putnext(queue_t *q, mblk_t *mp)

putnext () Is used for passing messages to the next queue in a stream. This utility calls the put
procedure associated with the next queue in a stream and passes it a message block pointer
as an argument.

int putq(queue_t *q, mblk_t *mp)

putq () Is typically used by the put procedure for deferred processing of the messages. The putq ()
utility puts the message mp in the message queue based on its priority. The service
procedure is enabled if a high priority message is put in the queue and QNOENAB is unset if
flow control parameters are updated for this queue.

The putq () utility returns 1 on success. Otherwise it returns 0.

int insq(queue_t *q, mblk_t *emp, mblk_t *nmp)

insq () Inserts a driver supplied new message block nmp into a specific place in the message queue,
right before the message emp already in the queue. If emp is NULL, place the nmp at the end
of the queue.

The priority band of the new message must adhere to the following ordering:

emp->b_band <= nmp->b_band <= emp->b_prev->b_band

MA

b_cont

DA

100

MB

DB

50

AfterBefore

MC

DC

150

b_wptr

b_rpt

b_wptr

db_base

b_datap

b_datap

db_lim db_base

b_wptr

b_rptrb_datap

db_base

db_lim

b_rptr

db_lim
Chapter 368

Messages
Message Processing and Flow Control
The flow control parameters for the q specified are updated.

insq () Returns 1 on success. Otherwise it returns 0.

mblk_t *getq(queue_t *q)

getq () Returns the next available message from the message queue associated with the q. This is
typically used by the service procedure to process the messages. If there are no messages,
this routine will return a NULL pointer and QWANTR is set so when the next message is
placed, the service procedure will be scheduled. It updates the flow control parameters.

int putbq(queue_t *q, mblk_t *mp)

putbq () Returns a message mp back to the beginning of the queue pointed at by q. The position of
the mp depends on the message type. The flow control parameters are updated and the
service procedure is scheduled in accordance with the same set of rules mentioned in putq
().

A service procedure must not use putbq () for high priority messages.

The putbq () utility returns 1 on success and 0 on failure..

void flushq(queue_t *q, int flag)

flushq () Removes the message from the message queue associated with the q. If the flag is set to
FLUSHDATA, flushq () frees all the M_DATA, M_PROTO, M_PCPROTO, and M_DELAY messages.
FLUSHALL will result in flushing all messages in the message queue. The flow control
parameters are updated for this queue and the nearest service procedure is enabled if
QWANTW is set.

void flushband(queue_t *q, int pri, int flag)

flushband () Will free the message associated with a given priority band as specified in the pri
parameter. If the pri is set to 0, then only the normal messages are freed according to the
value of flag. Otherwise, messages are flushed from the band specified by pri. The
FLUSHDATA & FLUSHALL are the valid bitmasks for the flag parameter.

If the value of pri is greater than q_nband then flushband () routine simply returns to the
user without flushing any messages on the queue.

The flow control parameters are updated corresponding to this queue and the nearest
service procedure is enabled if QWANTW is set.

void qenable(queue_t *q)

qenable () Provides a mechanism for drivers/modules to enable service procedure to run. It inserts
the q into the linked list of queues that are ready to be invoked by the STREAMS scheduler.

int canput(queue_t *q)

canput () Checks to see if additional messages can be enqu1230.ued onto the message queue
correspond to q. It returns 1 if queue is not full, otherwise it returns 0.

int bcanput(queue_t *q, int pri)

bcanput () Checks the flow control for the given priority band. It returns 1 if a message of priority pri
can be placed on the message queue, otherwise it returns 0.
Chapter 3 69

Messages
Message Processing and Flow Control
Chapter 370

4 Modules and Drivers
This chapter describes the various data structures essential to modules and drivers. It also provides design
guidelines for developing modules and drivers. Appropriate code examples have been provided.

This chapter addresses the following topics:

• Overview

• Data Structures

• Entry Points

• Flush Handling

• Design Guidelines

• STREAMS Module

• STREAMS Driver

• DLKM STREAMS
Chapter 4 71

Modules and Drivers
Overview
Overview
Modules and drivers are the processing elements on a stream, below the stream head. STREAMS modules
and drivers are structurally similar. The streamtab, qinit, module_info, and optionally module_stat,
structures must be declared for STREAMS drivers and modules. A STREAMS driver is a required element
but modules are optional.

A STREAMS device driver is similar to a regular UNIX character device driver. It is opened as a regular
driver even if it is a pseudo-driver.

The following are the key differences between a module and driver:

• A STREAMS driver, if associated with a hardware device, must be able to handle the interrupts from the
device and include an interrupt handling routine. A STREAMS module does not contain an interrupt
handling routine.

• A STREAMS multiplexing driver can have multiple streams connected to it. Multiplexing is not
applicable to STREAMS modules.

• A STREAMS driver is initialized or deinitialized when it is opened or closed. A STREAMS module is
initialized/deinitialized when it is pushed onto a stream or popped from a stream (PUSH and POP
operations result in calling the open and close routines of the module).

• A STREAMS driver must send a negative acknowledgement if it does not understand the IOCTL
command passed to it. A STREAMS module must pass the IOCTL to the next component in the stream.

• Like all UNIX device drivers, a STREAMS driver is also associated with a major device number in the
structure drv_info and a minor device number. The structure drv_info is not applicable for a
STREAMS module, and no major or minor number is associated with it.

Cloning

STREAMS provides a feature called cloning. Using cloning, applications opening the STREAMS driver do
not need to search for an unused minor device. In HP-UX564444466466666666666666664, cloning is
implemented with the help of the clone driver with 72 as its major number.

If a STREAMS driver is implemented as a clonable driver in HP-UX, a single node in the file system may be
opened to access any unused device that the driver controls. This node must be created with its major number
as 72 (the major number of the clone driver). The minor number is the same as the real driver’s major
number. See the “Entry Points” and “STREAMS Driver” sections for more details.

Autopush

Usually, when a STREAMS driver is opened, the stream created as a result has no modules on it. Applications
have to push the required modules explicitly after opening the driver. The autopush feature in STREAMS
allows administrators to specify a list of modules to be automatically pushed when a device is opened by
STREAMS. The command autopush (1M) provides the administrative interface to configure STREAMS
devices for autopush.
Chapter 472

Modules and Drivers
Overview
Dynamically Loadable Kernel Modules

Dynamically Loadable Kernel Modules (DLKM) are device drivers and other kernel modules that can be
added to a running system without rebooting the system or rebuilding the kernel. Unless otherwise
mentioned, the STREAMS modules and drivers are statically linked into the kernel. The extra set of routines,
definitions and so on, required to make a STREAMS driver or module dynamically loadable are documented
in the HP-UX Driver Development Guide.
Chapter 4 73

Modules and Drivers
Data Structures
Data Structures
A STREAMS module or driver must define and initialize three data structures — module_info, qinit, and
streamtab. An optional module_stat structure can also be defined and initialized. In addition to these data
structures, HP-UX requires all modules and drivers to define streams_info_t. Drivers must define
drv_info_t and drv_ops_t.

DLKM modules require additional data structures to be defined. These are described in the “DLKM
STREAMS” section.

The module_info Structure

The module_info structure provides the information about a module or driver. The information in this
structure is shared between both the read and write queues:

unsigned short mi_idnum; /* module ID number */

 char * mi_idname; /* module name */

 long mi_minpsz; /* min packet size use */

 long mi_maxpsz; /* max packet size use */

 ulong mi_hiwat; /* high water mark, for flow control */

 ulong mi_lowat; /* low water mark, for flow control */

mi_idnum

Represents a number used to identify the module or driver. When this field is set to zero,
STREAMS assigns a unique number. If it is set by the driver or module, case, STREAMS
cannot ensure a unique number. The mi_idnum can be used by user processes and the
STREAMS driver or modules in tracing events and logging errors as specified in strlog (7).
See Appendix B, “STREAMS Utilities Supported by HP-UX.”

mi_idname

Is a pointer to an array of characters representing a unique name. The name identifies the
module or driver. This parameter is set by the module or driver developer. STREAMS
truncates the extra characters if the name exceeds FMNAMESZ.

mi_minpsz and mi_maxpsz

The minimum and maximum packet size of an M_DATA message that are accepted by a
module or driver. These values are copied onto q_minpsz and q_maxpsz during open (), for a
driver or the push () for a module.

These limits are used by the stream head when sending messages downstream. The stream
head uses q_maxpsz of the top most module to fragment the data, if required, for large
writes. These are advisory limits between modules and drivers.

mi_hiwat and mi_lowat

The values represent the flow control parameters for a queue. These values represent the
maximum and minimum number of bytes that can be put onto the message queues. They
are copied onto q_hiwat and q_lowat, respectively.
Chapter 474

Modules and Drivers
Data Structures
The qinit Structure

The qinit structure is as follows:

 int (*qi_putp) __((queue_t *, mblk_t *)); /* put procedure */

 int (*qi_srvp) __((queue_t *)); /* service procedure */

 int (*qi_qopen)(); /* open procedure */

 int (*qi_qclose)(); /* close procedure */

 int (*qi_qadmin) __((void)); /* qadmin routine */

 struct module_info * qi_minfo; /* module info */

 struct module_stat * qi_mstat; /* module stat */

The qinit structure defines the queue procedures; put(), service(), open(), close(), and admin(). The qinit data
structure also contains pointers to module_info and an optional module_stat structure.

NOTE The qi_mstat functionality is not supported by the STREAMS subsystem. This should be set to
NULL. Drivers or modules must not modify the contents of this structure.

Contents of the qinit structure can be shared between the read and write queues. However, modules or
drivers must define qi_open, qi_qclose, and qi_minfo in the read side qinit structure. Each queue must
define a put procedure in its qinit structure. For a driver, the read side put procedure can be set to NULL.

The streamtab structure is as follows:

 struct qinit * st_rdinit; /* read side of a module/non-mux driver */

 struct qinit * st_wrinit; /* write side of a module/non-mux driver */

 struct qinit * st_muxrinit; /* lower read side of a mux driver */

 struct qinit * st_muxwinit; /* lower write side of a mux driver */

For modules and non-multiplexing drivers, only the first two fields are valid and set the remaining two fields
to NULL. The first two fields represent the qinit structures of the read and write queues.

For multiplexing drivers, the first two fields contain the address of the read-side or write-side qinit
structures of an upper multiplexor. The next two entries contain the address of the read-side or write-side
qinit structures of a lower multiplexor.

The streamtab structure must be a globally accessible and should not be defined with a static type qualifier.
The modules or driver must not modify the contents of this structure at run time.

The module_stat Structure

The module_stat structure is optional and it can be used to hold statistics about a driver or module. The
STREAMS subsystem does not provide services to set or access the information in the module_stat structure
as follows:

 long ms_pcnt; /* count of calls to put proc */

 long ms_scnt; /* count of calls to service proc */

 long ms_ocnt; /* count of calls to open proc */

 long ms_ccnt; /* count of calls to close proc */

 long ms_acnt; /* count of calls to admin proc */

 char * ms_xptr; /* pointer to private statistics */

 short ms_xsize; /* length of private statistics buffer */
Chapter 4 75

Modules and Drivers
Data Structures
The following code snippet illustrates the declaration of mandatory structures for a dummy STREAMS driver
named drv:

#include <sys/types.h>

 #include <sys/param.h>

 #include <sys/stream.h>

 #include <sys/strenv.h>

 static int drv_open(), drv_close(), drv_put(), drv_srv();

 static struct module_info drv_minfo = {

 0, "drv", 0, 512, 65535, 8192

 };

 static struct qinit drv_rinit = {

 drv_put, drv_srv, drv_open, drv_close, NULL, &drv_minfo, NULL

 };

 static struct qinit drv_winit = {

 drv_put, drv_srv, NULL, NULL, NULL, &drv_minfo, NULL

 };

 struct streamtab drvinfo = {

 &drv_rinit, &drv_winit, NULL, NULL

 };

Installation Structures and Configuration Routines

This section describes statically linked modules. For more information on DLKM, refer to the “DLKM
STREAMS” on page 119 . All the kernel modules and drivers on HP-UX are required to define HP-UX specific
entry points for installing modules and drivers into the kernel. These entry points are called when a module
or driver is installed in the kernel. Entry points register the kernel module defined in the following
structures:

• streams_info_t

• drv_info_t

• drv_ops_t

These structures can be defined in a .c or .h file.

• Module metadata

The module metadata must be defined in a separate file for every STREAMS module and driver. Refer to
the HP-UX Driver Development Guide for details.
Chapter 476

Modules and Drivers
Data Structures
The streams_info_t Structure

The streams_info_t structure must be defined for both STREAMS modules and drivers. This structure
contains the following fields:

 char *name; /* name of the driver or a module */

 int inst_major; /* major number for driver */

 struct streamtab inst_str_tab; /* current streams tab entry */

 unsigned int inst_flags; /* stream flags */

 int inst_sync_level; /* Synchronization Level */

 char inst_sync_info[FMNAMESZ+1]; /* Elsewhere sync param. */

 /* Set NULL string if not used. */

name Points to a string containing the name of the driver. This value must match the name
specified in the module metadata.

inst_major Assign the major number to -1 for dynamic assignment. If the major number is manually
assigned, you must assign a unique number. Ensure that the inst_major matches with the
contents of the c_major field in drv_info_t. For STREAMS modules, set to -1.

inst_str_tab The streamtab data structure associated with driver or module.

inst_flags The inst_flags can contain the bitwise OR of the following flags:

STR_IS_DEVICE 0x00000001 /* For STREAMS driver. */

 STR_IS_MODULE 0x00000002 /* For STREAMS module. */

 MGR_IS_MP 0x00000008 /* Driver/module is MP safe

 Defined in <sys/conf.h>. */

 STR_SYSV4_OPEN 0x00000100 /* Supports SVR4 style open()

 and close() routines */

 STR_MP_OPEN_CLOSE 0x00001000 /* Indicates open() and close()

 routines are MP-safe. */

inst_sync_level

The synchronization level used in the streams_info_t structure is defined in
<sys/stream.h>. The synchronization level determines the level of concurrent access to the
module and driver in STREAMS/UX.

The supported synchronization levels are as follows:

SQLVL_NOSYNC Nosync level synchronization. This provides the
maximum level of parallelism. Multiple threads can
independently access the read and write queues.

SQLVL_QUEUE Queue level synchronization. Two threads can
independently access the read and write queues.

SQLVL_QUEUEPAIR Queue-pair level synchronization. Only one thread can
access the read and write queues for each instance of a
driver or module.

SQLVL_DEFAULT Default level synchronization. It is the same as
SQLVL_QUEUEPAIR.
Chapter 4 77

Modules and Drivers
Data Structures
SQLVL_MODULE Module level synchronization. All the instances of
modules/drivers are synchronized.

SQLVL_ELSEWHERE Synchronize with respect to the group of co-operating
modules/drivers which access each others data. The
group name is specified in the inst_sync_info.

SQLVL_GLOBAL Provides Global synchronization. No more than one
thread of execution can access modules/drivers under
this level.

inst_sync_info

Used to provide the name of the driver/module/group in case of SQLVL_ELSEWHERE
synchronization. If not used, set NULL string.

The drv_info_t Structure

All STREAMS drivers must define drv_info_t structure and must be allocated statically. This structure is
not applicable for STREAMS modules. The structure is defined in <sys/conf.h>.

The drv_info_t has the following fields:

 char *name; /* Name of driver */

 char *class; /* Device class ("disk","tape", etc.) */

 ubit32 flags; /* Device flags (see below) */

 int b_major; /* Block device major number */

 int c_major; /* Character device major number */

 cdio_t *cdio; /* Pointer to cdio(CDIO4) structure */

 void *gio_private; /* Additional GIO information */

 void *cdio_private; /* Additional CDIO information */

name Points to a string containing name of the driver. This should match the name specified in
module metadata.

class Pointer to a string containing the name of the class that the driver is in. For interface
drivers, instances of a card are counted within each class when they are identified at kernel
boot time. Instance numbers are unique within a device class.

flags Contains the bitmask of flags that describe the module/driver.

DRV_CHAR Character device driver.

DRV_BLOCK Block device driver.

DRV_SCAN Driver supports bus scanning.

DRV_MP_SAFE MP aware driver and provides its own multi-processing
protection.

DRV_SAVE_CONF Save configuration information to /etc/ioconfig. This
file retains potentially volatile information such as
dynamic major numbers and card instance numbers
across reboots.

b_major Set this field to -1. STREAMS drivers or modules are not block device drivers.
Chapter 478

Modules and Drivers
Data Structures
c_major Assign the major number or set it to -1 for dynamic assignment. If the major number is
manually assigned, it is the responsibility of the driver developer to assign a unique
number.

cdio Set this field to NULL.

gio_private Set this field to NULL.

cdio_private Set this field to NULL.

The drv_ops_t Structure

This structure is applicable only for STREAMS drivers. This must be allocated statically.

The drv_ops_t has the following fields.

d_open_t d_open;

 d_close_t d_close;

 d_strategy_t d_strategy;

 d_dump_t d_dump;

 d_psize_t d_psize;

 int (*reserved0) __(());

 d_read_t d_read;

 d_write_t d_write;

 d_ioctl_t d_ioctl;

 d_select_t d_select;

 d_option1_t d_option1;

 pfilter_t *pfilter;

 int (*reserved1) __(());

 int (*reserved2) __(());

 aio_ops_t *d_aio_ops;

 int d_flags;

The d_flags field is the only valid field for STREAMS drivers. STREAMS drivers can use the d_flags field.
All the other fields in drv_ops_t are ignored set to NULL.

The d_flags Field

C_ALLCLOSES If this flag is set, it is the responsibility of driver to keep track of the information about the
number of opens and closes for this device.

If this flag is set, STREAMS sends the M_CLOSE message downstream and waits for a reply
from the driver. The stream is dismantled if the reply (M_CLOSE_REPLY) for the M_CLOSE
message has MSGLASTCLOSE set in the b_flag.

C_CLONESMAJOR When this flag is set it indicates that driver supports cloning method where drivers will be
able to encode information in their minor numbers. The driver open() routine checks for the
clone minor number. The driver routine allocates a minor number and returns a new device
number to the caller. See the “Cloning” on page 72 section for more details.
Chapter 4 79

Modules and Drivers
Data Structures
Configuration Routines

The following are the configuration routines for drivers:

driver_install():

All STREAMS drivers and modules that are to be statically built into the kernel must
implement a driver_install() function. The variable is the name of the module or driver
as defined in the module_info structure. The driver must match the name specified in
drv_info_t/streams_info_t for drivers.

STREAMS Drivers: STREAMS drivers must call install_driver() and
str_install() to register the driver with the system
and populate the system structures and tables.

STREAMS Modules: STREAMS modules must call str_install() to
register the module with the system and populate the
STREAMS subsystem tables. The install_driver()
routine is not applicable for STREAMS modules.

install_driver()

Initializes the cdevsw[] table with the d_flag and drv_info_t corresponding to the driver
being configured.

str_install()

1. Initializes the entry points specified in the cdevsw[] table with the STREAMS-specific
entry points.

2. Updates dmodsw switch tables for a STREAMS driver or the fmodsw for the STREAMS
modules. These tables are internal to STREAMS subsystem.

Drivers can define additional configuration routines if required, for example, interface drivers (LAN, SLIP, etc
need to define driver_attach(), driver_init(), etc.). Refer to the HP-UX Driver Development Guide for
more details on how to write a driver.

The driver_install() routine must return 0 if the driver is installed successfully, and return the return
value of install_driver() or str_install() in case of failure.

The following code snippet illustrates the installation structures and configuration routines for a dummy
STREAMS driver named drv:

static streams_info_t drv_str_info = {

 "drv",

 -1,

 { &drv_rinit, &drv_winit, NULL, NULL },

 STR_IS_DEVICE | MGR_IS_MP | STR_SYSV4_OPEN,

 SQLVL_QUEUEPAIR,

 ""

};

static drv_info_t drv_drv_info = {

 "drv",

 "pseudo",

 DRV_CHAR | DRV_PSEUDO | DRV_MP_SAFE,
Chapter 480

Modules and Drivers
Data Structures
 -1,

 -1,

 NULL,
NULL,
NULL

};

drv_opt_t drv_drv_ops ={

 NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

 0,

};

int

drv_install()

{

 int retval;

 if ((retval = (install_driver(&drv_drv_info,

 &drv_drv_ops))) !=0) {

 return retval;

}

 if ((retval = str_install(&drv_str_info)) !=0) {

 (void)uninstall_driver(&drv_drv_info);

 return retval;

 }

 return 0;
}

NOTE The driver_install() routine must never sleep.
Chapter 4 81

Modules and Drivers
Entry Points
Entry Points
This section explains the entry points for drivers and modules in detail.

Open

The open routine for a driver is called when the device is first opened by the user process with an open (2)
system call. The module open routine is called when the module is pushed onto the stream with I_PUSH
IOCTL command or with the autopush utility.

For SVR 4 compliance, the open routine has the following definition:

int drv_open(queue_t *q, dev_t *devp, int oflag, int sflag, cred_t *credp);

For SVR 3.2 compliance, the open routineis as follows:

int drv_open(queue_t *q, dev_t devp, int oflag, int sflag, cred_t *credp);

q is the pointer to the driver/module’s read queue. devp points to the device pointer in SVR4 open (2). devp is
the device number in SVR 3.2 open (2). oflag are the flags used by the application in the open (2) system
call, sflag indicates the type of STREAMS open to perform and credp point to the processes credentials. On
success the open routine should return 0 and an error number on failure.

Valid sflag values are defined in <sys/stream.h> and are as follows:

0 — Non-cloneable driver open

CLONEOPEN — Cloneable driver open

MODOPEN — Module open

Do not call a driver with the sflag set to MODOPEN. But, as a driver can be configured as both module and
driver, appropriate sflag should be used in the open routine. i.e., when it is configured as driver sflag
should be set to 0 or CLONEOPEN and when it is configured as module sflag should be set to MODOPEN.

In the open routine the module or driver allocates and initializes its resources. For same minor device, the
driver open routines are serialized and only one open routine will be allowed to process at a time. Usually, the
first open of the device will allocate the structures and subsequent open routines will have very little
processing to do if any. Modules and drivers can sleep in the open routine at an uninterruptible priority level
or with PCATCH set, as it has user context.

Close

The close routine for a driver is invoked on the last close of the device. The close routine for a module is
invoked when it is popped from the stream as a result of a I_POP IOCTL command or closing of the stream.

For SVR 4 compliance, the close routine has the following definition:

int drv_close(queue_t *q, int oflag, cred_t *credp);

For the SVR 3.2 compliance, the close routine is as follows:

int drv_close(queue_t *q, int oflag);

Where q is the pointer to the driver or modules read queue, oflag is the bitmask of flags indicating the file
status and credp point to the processes credentials. On success the close routine should return 0 and it
returns an error value on failure, even though the return value from the close routine is currently ignored by
STREAMS.
Chapter 482

Modules and Drivers
Entry Points
In the close routine the module or driver should free any resources it allocated in the open path and clear any
pending timeouts or bufcalls. The close routine must take appropriate action for messages still left in the
module or driver queue. For drivers the read-side queue can have messages resulting from device interrupts.
Driver developers need to make sure these messages are handled properly prior to actually closing the driver.
The close routine can sleep at an uninterruptible priority level or with PCATCH set, as it has user context.

Ioctl

The ioctl (2) system call is used for performing I/O control operations on a character device. For traditional
UNIX character I/O devices the IOCTL calls are handled transparently by the kernel, that is, the ioctl calls
on a device are handled by the driver for that device. STREAMS IOCTLs are an addition to the regular UNIX
character input/output mechanism. They differ from the UNIX I/O mechanism in following manner:

• A stream may have multiple modules at any point, and each module may define its own IOCTL
commands. Thus, the ioctls that can be used on a Stream can very depending on the modules present on
the stream.

• The stream head processes a large number of stream head ioctl commands that are independent of any
module or driver present on the stream. These ioctl commands are described in streamio (7).

• When modules and drivers receive information associated with an ioctl, there is no user context
pertaining to the ioctl call as the information is received in the form of a message in the put procedure.
This prevents modules and drivers to perform copyin() or copyout() operations and associate any
kernel data with currently running process.

The most straightforward examples of STREAMS IOCTLs are for commands like I_PUSH and I_POP where
there is no data sharing between user process and a stream. These IOCTLs are Stream Head IOCTLs and are
mainly described in streamio (7). But, for other IOCTLs where the user process needs to share data between
user-space and kernel-space, the I_STR IOCTL and the transparent IOCTL mechanism provide the additional
control. The I_STR IOCTL mechanism uses only a single pair of messages to share the data between
user-space and kernel-space and is described in “I_STR IOCTL Processing” on page 84 section. The
transparent mechanism may use multiple pair of messages to share the data between user-space and
kernel-space as described in “Transparent IOCTL Processing” on page 87 section.

General IOCTL Processing

Most of the IOCTL commands described in streamio (7) are processed by the stream head and are not sent
downstream for further processing by a module/driver. Commands that require further processing by a
module or driver and commands unrecognized by the stream head are sent downstream in the form of an
M_IOCTL message, created by the stream head. Each of the module which recognizes the IOCTL command in
the M_IOCTL message must take the required action.

In general, the IOCTL processing requiring an action from a module/driver can be described as follows.

Stream head blocks the user process issuing the ioctl (2) system call, creates the M_IOCTL message and
sends it downstream. The user process remains blocked on the ioctl (2) system call until one of the following
conditions occur:

• A module or driver on the stream, recognizes the IOCTL command and responds with a positive
acknowledgement (M_IOCACK message) or a negative acknowledgement (M_IOCNAK message).

• The IOCTL request times out.

• The user process interrupts the IOCTL request.

• An error occurs.
Chapter 4 83

Modules and Drivers
Entry Points
The timeout value for STREAMS IOCTL is infinite except for I_STR IOCTLs where a user can specify a
timeout value.

Modules must pass an unrecognized M_IOCTL message to the next component on the stream without any
modifications to the message.

Drivers must respond with an M_IOCNAK message to the stream head for an unrecognized M_IOCTL message.

At any point in time only one ioctl (2) system call is active on the stream head.

An M_IOCTL message consists of an M_IOCTL message block followed by zero or more M_DATA blocks. The
M_IOCTL message block contains an iocblk structure defined in <sys/stream.h> and has the following
fields:

 int ioc_cmd; /* ioctl command type */

 cred_t * ioc_cr; /* pointer to full credentials */

 uint ioc_id; /* ioctl id */

 uint ioc_flag; /* see flag values below */

 ioc_pad ioc_cnt; /* count of bytes in data field */

 int ioc_error; /* error code */

 int ioc_rval; /* return value */

The ioc_cmd, ioc_cr, ioc_uid and ioc_id fields of the iocblk structure must not be modified by modules or
drivers.

The ioc_error is an optional field that can be used for setting error codes to accompany an M_IOCNAK or
M_IOCACK message.

The ioc_rval can be used to return a value to user application.

If a module or driver detects an error while processing the M_IOCTL message, it must send a negative
acknowledgement (M_IOCNAK) upstream. For an M_IOCNAK message no data or return value can be sent to
user. If ioc_error is set to zero, the stream head will return EINVAL to user indicating ioctl (2) system call
failure. Alternatively, the driver can specify a different ioc_error value if desired. can be used to return a
value to user application.

For the positive acknowledgment (M_IOCACK) message a return value can be sent to the user along with the
M_IOCACK message. For the I_STR IOCTLs the return value can be sent in ioc_rval field and for transparent
IOCTLs a more general mechanism is used as explained in the “Transparent IOCTL Processing” section.

If stream head does not receive an M_IOCACK or M_IOCNAK message in response to an M_IOCTL message, it will
block all IOCTL calls except for I_STR IOCTLs. For I_STR IOCTLs if an M_IOCACK or M_IOCNAK message is not
received as a response to an M_IOCTL message, it will fail when the timeout expires and is blocked when the
timeout is infinite.

I_STR IOCTL Processing

A user process can make I_STR IOCTL
call32546666555477777777777777777777777
77
7744
44s by setting the cmd parameter to
I_STR, and the arg parameter to a buffer in user space of type strioctl as shown:

if (ioctl (fd, I_STR, &strioctl) < 0) {

 perror("I_STR ioctl failed");

 exit();
Chapter 484

Modules and Drivers
Entry Points
}

The structure strioctl is defined in <stropts.h> and contains the following fields:

 int ic_cmd; /* downstream command */

 int ic_timout; /* ACK/NAK timeout */

 int ic_len; /* length of data arg */

 char * ic_dp; /* ptr to data arg */

The ic_cmd field describes the command intended for module or driver, ic_timout specifies the number of
seconds the I_STR request will wait for an acknowledgement before timing out. The ic_len field is the length
of the data buffer and ic_dp field points to the data buffer.

The stream head generates an M_IOCTL message for each I_STR IOCTL it receives. The attributes of the
strioctl structure provided by the user are copied into an iocblk structure and are attached as the data
buffer of the M_IOCTL message block. The actual user data is then attached as zero or more M_DATA messages
to the M_IOCTL message block.

The packaged M_IOCTL message is then sent downstream by the stream head for further processing. The first
component in the stream that recognizes the command in ic_cmd processes the message and sends a positive
or negative acknowledgment message upstream. If the positive/negative acknowledgment is not received by
the stream head within ic_timout seconds, then the I_STR IOCTL will fail. If data needs to be returned by
the target module or driver, ic_dp must point to a buffer large enough to hold that data, and ic_len will be
set on return to indicate the amount of data returned.

The following code sample from a put procedure of a driver describes the processing of an M_IOCTL message
generated from an I_STR IOCTL request:

drvput(q, mp)

queue_t *q;

mblk_t *mp;

{

 struct iocblk *iocp;

 struct drvdata *mydata;

 /* Get driver private data structure pointer */

 mydata = q->q_ptr;

 switch(mp->b_datap->db_type) /* Check message type */

 {

 ...

 ...

 case M_IOCTL:

 iocp = (struct iocblk *) mp->b_rptr;

/* Check ioctl command in the M_IOCTL message type */

 switch(iocp->ioc_cmd)

 {

/* valid ioctl recognized by this driver */

 case SET_OPTIONS:

/* validate user data:
Chapter 4 85

Modules and Drivers
Entry Points
* (for example count should be exactly of integer size

* for this driver user data)

*/

 if (iocp->ioc_count != sizeof(int)) {

/* Set error value */

iocp->ioc_error = EINVAL;

goto log_error;

 }

 if (mp->b_cont == NULL) {

goto log_error;

 }

 /* Process actual user data from 2nd mesage block */

set_mydrv_options(mydata, *(int *)mp->b_cont->b_rptr);

/* Send acknowledgement upstream */

 mp->b_datap->db_type = M_IOCACK;

/* no data returned to user */

 iocp->ioc_count = 0;

 qreply(q, mp);

 break;

log_error:

/* error, send negative acknowledgement */

 default:

/* unrecognized ioctls, send negative acknowledgement */

 mp->b_datap->db_type = M_IOCNAK;

/* No data returned for negative acknowledgement messages */

 iocp->ioc_count = 0;

 qreply(q,mp);

 break;

 }

 }

}
Chapter 486

Modules and Drivers
Entry Points
Transparent IOCTL Processing

The transparent IOCTL mechanism offers data transfer capability well beyond what is offered by the I_STR
IOCTL mechanism. The I_STR mechanism only enables IOCTL commands that are defined in streamio (7).
Transparent IOCTL allows user applications and modules to define their own IOCTL commands. The only
requirement is that the handling of the IOCTL command needs to be mutually understood between the user
process that generates the IOCTL and the module that handles the IOCTL. Transparent IOCTL processing
becomes necessary, for example, when the user data to be shared with a stream is scattered across multiple
buffers, or is in complex structures and cannot be linearized into a single data block as required by I_STR
processing. Because the user-defined message buffer can be complex, it is to be expected that transparent
IOCTL commands may take multiple message pairs for complete processing, as opposed to I_STR IOCTLs
which takes only one message pair. Above all, the transparent IOCTL mechanism offers a way to incorporate
the kernel copyin() and copyout() functions for STREAMS modules, which are not directly possible due to
absence of user context for STREAMS modules and drivers in data processing paths. The kernel copyin()
and copyout() functionality is achieved by having the modules and drivers generate M_COPYIN and
M_COPYOUT messages, and send them upstream to the stream head.

Going back to the interface for the ioctl (2) system call, a transparent IOCTL call has following semantics:

int ioctl (fd, ioc_cmd, &ioctl_struct);

Where fd is a STREAMS file descriptor, ioc_cmd is user-specified IOCTL command and ioctl_struct points
to a user buffer in a format mutually agreed upon by the user application and module.

NOTE In this section wherever a module is mentioned it represents a module or driver.

The following steps are generally involved in transparent IOCTL processing:

1. The user application issues an ioctl (2) request with a user-defined IOCTL command.

2. The stream head receives the request, does not recognize the IOCTL command, assumes it is a
transparent IOCTL call and accordingly creates an M_IOCTL message with a special constant
TRANSPARENT set in the ioc_cnt field of the iocblk structure and ioc_cmd field is set to the
user-specified IOCTL command. The special constant TRANSPARENT is used to recognizes the
transparent nature of the M_IOCTL message when received by modules. Also, note that the M_IOCTL
message for transparent processing consists of an M_IOCTL message block followed by one M_DATA
message block containing the four bytes making up the third argument to the ioctl (2) system call. This is
different from I_STR processing where the message may contain zero or more M_DATA blocks.

3. The general rules for M_IOCTL processing apply to transparent processing. The first module to recognize
the IOCTL command (set in ioc_cmd) will process it. This module also recognizes the transparent nature
of the M_IOCTL because of the ioc_cnt attribute.

4. If the module requires user data, it creates an M_COPYIN message and sends it upstream. The M_COPYIN
message contains the address of user data to copy in and number of bytes requested. The stream head
upon receiving the M_COPYIN message, issues a copyin() request to user-space. The response from the
copyin() is sent as a M_IOCDATA message to the module below, with indication of its success/failure
encoded in the M_IOCDATA message.

5. The module receives the M_IOCDATA message and processes it. It may reuse the M_IOCDATA message
contents to request another M_COPYIN from stream head. The module may send as many M_COPYIN
messages to the stream head as necessary to get all the required user data.

6. When all the user data has been received and the IOCTL processed, the module sends a positive
acknowledgment (M_IOCACK) message back to the stream head (or an M_IOCNAK message, in case of error).
Chapter 4 87

Modules and Drivers
Entry Points
7. If the module needs to send data back to the user, a M_COPYOUT message is created by the module and sent
to the stream head. The stream head executes a copyout() function that copies the data from the
M_COPYOUT message into the user buffer. The M_COPYOUT message contains the address of user data, size
and the data. The M_IOCDATA response for the M_COPYOUT will not contain data but only an indication of
success or failure.

The format of a M_COPYIN message is one message block of type M_COPYIN, whose data buffer contains a
copyreq structure as defined. The format of a M_COPYOUT message is one message block of M_COPYOUT, linked
to one more M_DATA blocks containing data to be copied to the user’s buffer. The data buffer in a M_COPYOUT
message also contains a copyreq structure. The format of M_IOCDATA message is one message block of type
M_IOCDATA, linked to zero or more M_DATA blocks. The data buffer of M_IOCDATA contains a copyresp
structure as defined.

The copyreq structure in M_COPYIN/M_COPYOUT messages used to communicate requests from the modules to
stream head is defined in <sys/stream.h> and contains the following fields:

 int cq_cmd; /* command type == ioc_cmd */

 cred_t * cq_cr; /* pointer to full credentials */

 uint cq_id; /* ioctl id == ioc_id */

int cq_flag; /* reserved */

 mblk_t * cq_private; /* module's private state info */

 ioc_pad cq_ad; /* address to copy data to/from */

 uint cq_size; /* number of bytes to copy */

If a new copyreq message is allocated for M_COPYIN/M_COPYOUT request, modules must copy the values of
cq_cmd, cq_cr and cq_id from the M_IOCTL or M_IOCDATA message into respective fields of the new message.
These fields should not be modified. The cq_ad refers to the address of the data buffer from which data needs
to be copied in for an M_COPYIN message, while it refers to the address of the buffer from which data needs to
be copied out for a M_COPYOUT request. The cq_size specifies the number of bytes to be copied. Both cq_ad
and cq_size values need to be set by the modules. The cq_private can be set by the modules to get their
state information.

The copyresp structure in M_IOCDATA used to communicate the results of copyin()/copyout() from the
stream head back to the modules is defined in <sys/stream.h> and contains the following fields:

 int cp_cmd; /* command type == ioc_cmd */

 cred_t * cp_cr; /* pointer to full credentials */

 uint cp_id; /* ioctl id == ioc_id */

 uint cp_flag; /* flag values */

 mblk_t * cp_private; /* module's private state info */

 ioc_pad cp_rv; /* 0 = success */

The values of cp_cmd, cp_cr, cp_id, cp_flag and cp_private refer to the cq_cmd, cq_cr, cq_id, cq_flag
and cq_private fields respectively in the copyreq structure of M_COPYIN/M_COPYOUT messages. In response
to the M_COPYIN message, the M_DATA portion of the M_IOCDATA contains the data copied in from the user
buffer. In response to a M_COPYOUT message, there are no M_DATA blocks present, instead an indication of
whether or not copy succeeded is returned through cp_rv. The cp_rv is set to zero in case of success and it is
set to error number in case of failure.

A module may intersperse M_COPYIN and M_COPYOUT messages as required. The only requirement is that only
one such request may be pending at any time, i.e., prior to issuing the next M_COPYIN or M_COPYOUT, the
module must wait until it receives the M_IOCDATA message from a previous copy request.
Chapter 488

Modules and Drivers
Entry Points
The stream head converts the M_COPYIN and M_COPYOUT messages into M_IOCDATA messages by changing the
type of the message, so it is absolutely necessary that the copyreq structure be properly formed and
initialized. Also, the iocblk, copyreq and copyresp structures all overlay one another.

M_COPYIN, M_COPYOUT and M_IOCDATA are high-priority messages and are used for communication between
the module that created them and the stream head. So, no other modules between these two should process
these messages.

Transparent IOCTL Example

The user issues the transparent IOCTL as follows:

ioctl(fd, I_TRANSPARENT, &bufadd);

The module recognizes the transparent IOCTL and processes the IOCTL as follows:

struct transparent_data { int cmd; int buflen; caddr_t bufaddr; };

struct state { int st_state; struct transparent_data st_data; };

modwput(q, bp)

queue_t *q;

mblk_t *bp;

{

 struct iocblk *iocbp;

 struct copyresp *csp;

 struct copyreq *cq;

 struct state *stp, *tmp;

 switch(bp->b_datap->db_type) {

 ...

 ...

 case M_IOCTL:

 iocbp = (struct iocblk *)bp->b_rptr;

 switch(iocbp->ioc_cmd) {

 ...

 ...

 case I_TRANSPARENT:

 if (iocbp->ioc_count == TRANSPARENT) {

 /* Reuse M_IOCTL block for M_COPYIN */

 cq = (struct copyreq *)bp->b_rptr;

 /* Get user structure address from linked M_DATA block */

 cq->cq_addr = (caddr_t) *(long *)bp->b_cont->b_rptr;

 /* free linked message */

 freemsg(bp->b_cont);

 bp->b_cont = nilp(mblk_t);
Chapter 4 89

Modules and Drivers
Entry Points
 /* Allocate state buffer */

 if ((tmp = allocb(sizeof(struct state), BPRI_LO)) == NULL) {

 bp->b_datap->db_type = M_IOCNAK;

 iocbp->ioc_error = EAGAIN;

 qreply(q, bp);

 break;

 }

 tmp->b_wptr += sizeof(struct state);

 stp = (struct state *)tmp->b_rptr;

 stp->st_state = GETSTRUCT;

 cq->cq_private = tmp;

 cq->cq_size = sizeof(struct transparent_data);

 cq->cq_flag = 0;

 bp->b_datap->db_type = M_COPYIN;

 bp->b_wptr = bp->b_rptr + sizeof(struct copyreq);

 } else {

 /* Send negative acknowledgement */

 bp->b_datap->db_type = M_IOCNACK;

 iocbp->ioc_error = EINVAL;

 }

 qreply(q, bp);

 break;

 default:

 /* Unknown message, so pass to next component */

 putnext(q, bp);

 break;

 }

 case M_IOCDATA:

 iocbp = (struct iocblk *)bp->b_rptr;

 csp = (struct copyresp *)bp->b_rptr;

 if (csp->cp_cmd == I_TRANSPARENT) {

 if (csp->cp_rval) { /* GETSTRUCT failure */

 if (csp->cp_private) /* state structure */

 freemsg(csp->cp_private);

 freemsg(bp);

 break;

 }

 stp = (struct state *)csp->cp_private->b_rptr;

 switch(stp->st_state) {

 case GETSTRUCT:

 stp->st_data = *(struct transparent_data *)bp->b_cont->b_rptr;

 freemsg(bp->b_cont);
Chapter 490

Modules and Drivers
Entry Points
 bp->b_cont = nilp(mblk_t);

 /* reuse M_IOCDATA to copyin data */

 bp->b_datap->db_type = M_COPYIN;

 cq = (struct copyreq *)bp->b_rptr;

 cq->cq_size = stp->st_data.buflen;

 cq->cq_addr = stp->st_data.bufaddr;

 cq->cq_flag = 0;

 stp->st_state = GETINDATA; /* next state */

 qreply(q, bp);

 break;

 case GETINDATA: /* data successfully copied in */

 /* process input */

 ...

 ...

 /* return output */

 bp->b_datap->db_type = M_COPYOUT;

 cq = (struct copyreq *)bp->b_rptr;

 cq->cq_size = stp->st_data.buflen;

 cq->cq_addr = stp->st_data.bufaddr;

 cq->cq_flag = 0;

 stp->st_state = PUTOUTDATA; /* next state */

 qreply(q, bp);

 break;

 case PUTOUTDATA:

 freemsg(csp->cp_private); /* state structure */

 csp->cp_private = nilp(mblk_t);

 bp->b_datap->db_type = M_IOCACK;

iocbp->ioc_error = 0; /* may have been overwritten */

iocbp->ioc_count = 0; /* may have been overwritten */

iocbp->ioc_rval = 0; /* may have been overwritten */

 qreply(q, bp);

 break;

 default:

 /* Unknown state: This can't happen but in case */

 freemsg(bp->b_cont);

 bp->b_cont = nilp(mblk_t);

 bp->b_datap->db_type = M_IOCNAK;

 iocbp->ioc_error = EINVAL;

 qreply(q, bp);

 break;
Chapter 4 91

Modules and Drivers
Entry Points
 }

 } else {

 /* M_IOCDATA not for us , so pass to next component */

 putnext(q, bp);

 }

 break;

 default:

 /* Unknown message, so pass to next component */

 putnext(q, bp);

 break;

 }

}

Put Procedure

Modules and drivers need to use the put or service procedure entry points for providing all the message
processing logic. The put procedure is used for immediate processing of the message and is required for all
queues in a stream, with a possible exception of driver read-queue.

The put procedure takes as input a queue pointer and a message pointer and has following interface:

int drv_put (queue_t *q, mblk_t *mp);

The return value from the put procedure is ignored.

A put procedure processes one message at a time. It cannot call sleep or any routines that block since it may
not have user context. The put procedure at a minimum should handle high-priority messages and flush
messages to avoid delayed processing of these messages. For all other messages it can either do deferred
processing by enqueuing the message using putq() utility or immediately process it.

When a message is passed to a driver it must do one of the following three things in its put procedure as an
action on the message; free the message, send the message back upstream or enqueue the message on its
queue for deferred processing by the driver service procedure.

When a module receives the message, it should pass the message to the next component on the stream or send
it back upstream as one of the action on the message for immediate processing of the message. It can also
enqueue the message if it wants to defer the processing of the message.

A driver must always free an unrecognized message with an exception of M_IOCTL messages which must be
replied with an M_IOCNAK message. A module should pass an unrecognized message to the next component in
the stream.

Service Procedure

The service procedure entry point is mainly used for deferred processing of the message apart from its use for
recovering from buffer allocation failures and implementing flow control. The use of service procedure for a
processing message allows minimum processing of the message on Interrupt Context Stack (ICS) and
avoids stack overflow caused due to multiple put procedure calls on the STREAMS stack.

The service procedure is optional for a queue but is required for modules and drivers that place their message
on their queue and/or implement flow control.

The service procedure takes as input a queue pointer and has following interface:

int drv_srv (queue_t *q);
Chapter 492

Modules and Drivers
Entry Points
The return value from the service procedure is ignored.

A service procedure is scheduled to run by placing a message on its queue. When a service procedure is
executed by the scheduler, it should process all the messages on its queue. If it cannot process all the
messages, then it must ensure that it gets rescheduled so that the remaining messages are processed. One of
the rescheduling mechanisms provided by streams is flow-control, where the service procedure is
back-enabled if the queue to which it wants to send the message is flow-controlled. In this scenario, the
service procedure cannot empty its queue due to flow-control condition and needs to put the message back on
its queue and need not worry about rescheduling as the flow-control back enabling mechanism would enable
the service procedure when the flow-control conditions are removed.

For various other reasons where the service procedure cannot process all the messages from its queue,
bufcall and timeouts can be used for rescheduling the service procedure.

The rules that apply to put procedure for sleeping and unknown message types (including IOCTL commands)
also apply to service procedures. In addition service procedures must never place high-priority messages back
on their queues. This will result in infinite loop because when a high-priority message is placed on a queue its
service procedure is scheduled.

Interrupt Service Routine

STREAMS drivers associated with real hardware device, should specify a interrupt service routine entry
point for handling interrupts like regular device drivers. Drivers should specify their interrupt handler
routine in the wsio_intr_alloc() routine which is executed in drv_attach() or drv_if_init() routine.
See the HP-UX Driver Development Guide for more details on driver interrupt handling.

The interrupt service procedure has the following interface:

int drv_isr (long arg1);

Drivers are usually replaced with the driver’s name and arg1 is the argument passed in the
wsio_intr_alloc() routine along with driver’s interrupt service procedure name.

Since, the interrupt service procedure is executed in interrupt context and does not have any user context
associated with it, it should not call sleep() or any routines that would block. Interrupts service routines are
called with processor priority level elevated and they block interrupts at same or lower level interrupts. The
processing in these routines should be minimal to decrease the performance degradation that can occur due to
blocking of other interrupts.
Chapter 4 93

Modules and Drivers
Flush Handling
Flush Handling
The Flush operation involves removing of messages from read queue or write queue or both the queues. It can
be initiated by a user process or by a module/driver.

The M_FLUSH message is used in flush operation. All drivers and modules must handle the M_FLUSH messages.
STREAMS provides two utilities — flushq() and flushqband(), for drivers and modules to flush an entire
queue or just a specified band.

Stream head generates M_FLUSH message and send downstream upon receiving a I_FLUSH or I_FLUSHBAND
IOCTL. Modules/Drivers can initiate the flush operation by sending M_FLUSH upstream or downstream as
appropriate by setting the flags to indicate if read queue or write queue or both the queues to be flushed:

The first byte in the data buffer of an M_FLUSH message contains flags that determines the type of requested
flush operation. It can have the following values. If FLUSHBAND is set, then the second byte contains the
priority band value and only messages in this priority band are flushed.

FLUSHR Flush the read queue.

FLUSHW Flush the write queue.

FLUSHRW Flush both read and write queues.

FLUSHBAND Flush a specified priority band.

M_FLUSH Message Processing

Stream Head A stream head receiving an M_FLUSH message will check the flags first. If FLUSHR is set, it
flushes its read queue and turns off the FLUSHR bit. Following that, if FLUSHW is set, stream
head will turn the message around and send it downstream. If FLUSHW is not set, it frees the
message instead.

Module A module must flush read or write or both the queues based on type of the flags specified in
the first byte of the data buffer of an M_FLUSH message. After processing, it must send it to
the next component in the direction of data flow.

Driver A driver flushes its write queue if FLUSHW is set and unsets the FLUSHW flag. If FLUSHR is not
set, driver frees the message. Otherwise, it flushes its read queue and send the M_FLUSH
message upstream.

If a driver wants to flush the entire stream, it would flush its read/write queues. Following that it generates
an M_FLUSH message with FLUSHRW set in the first byte of the data buffer. This M_FLUSH message is sent
upstream for modules/stream head processing.

If a module wants to flush the entire stream, it would generate M_FLUSH message with FLUSHW set and sends
it upstream. Then, the module generate another M_FLUSH message with FLUSHR set and send it down the
write side of the stream.
Chapter 494

Modules and Drivers
Flush Handling
Flush Handling in a Pipe

Message flushing in a pipe is complicated in nature because the write queue of one end of stream head is
connected to the read queue of the other, and vice versa. As a result, FLUSHW and/or FLUSHR bits have to
switched appropriately to ensure that wrong queues are not flushed. The point of switching is called the
midpoint of a pipe. Midpoint in a STREAMS based pipe is where the write queues point to the read queues.
For example, when a stream head receives an M_FLUSH message with FLUSHW set, it turns around on the write
side of the stream. Write queues of all the modules will be flushed until it reaches a midpoint where FLUSHW is
switched to FLUSHR. Then onwards, the read queues of all the modules including read queue of stream head
will be flushed.

STREAMS framework sets the MSGNOLOOP flag in b_flag the very first time when an M_FLUSH reaches a
stream head. This is done to ensure that it is not reflected back to the other side of the stream when this
message reaches the other stream head.

The midpoint of a stream can be difficult to determine if modules are being pushed from both ends of the pipe.
To make the midpoint deterministic, STREAMS provides the pipemod module. This module must be pushed
onto a pipe for message flushing to work properly. It defines the midpoint of a stream and can be pushed from
either end of a pipe. The only requirement is that pipemod must be the first module pushed onto a pipe.

The pipemod module handles only M_FLUSH messages. All other messages are passed to the next module in
the stream using putnext() utility.

Summary of pipemod functionality:

1. If pipemod receives an M_FLUSH message with FLUSHW bit set, it shuts off the FLUSHW and sets FLUSHR and
pass it to the next module.

2. If FLUSHR bit is set in an M_FLUSH message, then pipemod unsets the FLUSHR bit and sets the FLUSHW bit
before passing to the next module.

3. If FLUSHRW is set then this message is not processed, instead it is passed to the next module.
Chapter 4 95

Modules and Drivers
Design Guidelines
Design Guidelines
Some of the common design guidelines for STREAMS modules and drivers have been explained here:

• STREAMS modules and drivers are not associated with any process and do not have a process or a user
context (except during open and close. Therefore modules and drivers cannot access the information from
the u_area of a process.

• Every STREAMS module and driver must process the M_FLUSH message according to the value of the
argument passed in the message.

• The contents of the data block (dblk_t) of a duped message, i.e., a message with the reference count
(db_ref) greater than one must not be changed by STREAMS drivers and modules.

• The modules and drivers should manipulate the queues and manage message buffers using the
STREAMS utilities provided in Appendix B, “STREAMS Utilities Supported by HP-UX.”

• The modules and drivers should refrain from imposing alignment or formatting rules on data in a M_DATA
message.

• A module or driver’s synchronization level determines the entities with which it can share data. The
synchronization level determines which queues a module or driver can pass to STREAMS utilities and
also the entities with which the modules and drivers can share the STREAMS queues.

For example, if a module uses queue pair synchronization, the write-side put procedure can call insq() to
insert a message onto the module’s read queue. But, if the module uses queue synchronization, the
write-side put procedure can only call insq() to insert messages onto the write queue.

In general, a put or service procedure can only pass its own queue or queues belonging to entities with
which it can share data. The restricted utilities are backq, bcanputnext, canputnext, flushband,
flushq, freezestr, getq, insq, putbq, putnext, putnextctl, putnextctl1, putnextctl2, putq,
qreply, qsize, rmvq, SAMESTR, strqget, strqset, and unfreezestr. The putq utility is not restricted
when it is passed a driver’s read queue or a lower mux’s write queue. Any put or service procedure can call
putq if it passes a driver’s read queue or a lower mux’s write queue. However, putq’s caller must
guarantee that the queue passed in is still allocated.

Some STREAMS utilities, such as canput, are commonly passed a parameter of the form q->q_next.
These routines are restricted in a different way from those previously listed. A put or service procedure
can only pass its own queue’s q_next field or the q_next field of queues belonging to entities with which it
can share data. These requirements apply to bcanput, canput, put, putctl, putctl1, putctl2, and
streams_put. These utilities are not restricted when they are passed a parameter of the form q, except
that the queue must still be allocated.

• Some restrictions exist for timeout and bufcall callback routines as well as non-streams code in the
kernel. This software cannot share data structures with STREAMS modules and drivers, unless spinlocks
are used to protect critical sections. Also, the code cannot call the following utilities: backq, bcanputnext,
canputnext, flushband, flushq, freezestr, getq, insq, putbq, putnext, putnextctl, putnextctl1,
putnextctl2, qreply, qsize, rmvq, SAMESTR, strqget, strqset, and unfreezestr.

Callback routines and non-streams code cannot call bcanput, canput, put, putctl, putctl1, putctl2 or
streams_put if they pass the utility a parameter of the form q->q_next. They can call these utilities if
they pass a parameter of the form q (q must be a valid, allocated queue). Callback and non-streams code
can call putq or the streams_put utility only if they pass it a driver’s read queue or a lower mux’s write
queue.
Chapter 496

Modules and Drivers
Design Guidelines
• STREAMS modules and drivers must not call the put and service procedures directly. They must be
executed by calling STREAMS utilities such as putnext, put, putq, or qenable. They cannot be called
using the function pointer stored in the q_qinfo structure.

• STREAMS modules and drivers can allocate their own spinlocks to protect data structures. If they do,
they should use the lock orders reserved for them in /usr/include/sys/semglobal.h:
STREAMS_USR1_LOCK_ORDER, STREAMS_USR2_LOCK_ORDER and STREAMS_USR3_LOCK_ORDER.

Modules and drivers cannot hold spinlocks when calling some STREAMS utilities (see Appendix B,
“STREAMS Utilities Supported by HP-UX,” for details). To reduce contention and improve performance,
the amount of time that the modules and drivers hold the spinlocks should be minimized.

• STREAMS modules and drivers written for HP-UX need to be multiprocessor safe (MP-safe) and specify
the flag MGR_IS_MP explicitly in their respective streams_info_t structures.

• On HP-UX modmeta files as mentioned in the “Installation Structures and Configuration Routines” on
page 76 need to be defined for both STREAMS modules and drivers in order to configure them into the
kernel.

Rules

A few rules have been established as guidelines for the following routines and procedures.

Open/Close Routines

1. The open and close routines may sleep with a priority <= PZERO or with PCATCH set in the sleep priority, so
as to return to the calling routines when the sleep is interrupted.

2. The open and close routines have a user context and can access the u_area (defined in <sys/user.h>).

3. The open and close routines should only access the following fields in the u_area namely, u_procp,
u_ttyp, u_uid, u_gid, u_ruid, and u_rgid.

4. The open and close routines also have access to some attributes p_pid, and p_pgrp in the process table
(defined in <sys/proc.h>).

5. The open routine should return zero on success and an error number on failure. When a cloneable
STREAMS driver executes its open routine (sflag has the CLONEOPEN flag set), the device number must
be set to an unused device number for that device.

6. If a module or driver wants to allocate a controlling terminal, a M_SETOPTS message should be sent to the
stream head (by the open routine) with the SO_ISTTY flag set.

Handling IOCTLs

1. If a module does not recognize the M_IOCTL message, it should forward the message to next component in
the stream without any change to the message. If a driver does not understand an IOCTL, it must send a
M_IOCNAK message upstream.

2. The modules and drivers must not change the ioc_id, ioc_cmd, ioc_uid or ioc_gid fields in a M_IOCTL
message.

3. In addition, the drivers and modules must not change cp_id, cp_cmd, cp_uid, and cp_gid fields in
M_IOCDATA messages and cq_id, cq_cmd, cq_uid and cq_gid in M_COPYIN/M_COPYOUT messages.

4. Modules and drivers should always validate ioc_count to see whether the IOCTL is the transparent or
the I_STR form.
Chapter 4 97

Modules and Drivers
Design Guidelines
Put Procedure

1. A put procedure must be defined in the qinit structure for every queue in a stream to pass messages
between the STREAMS components.

2. A put procedure does not have any user context, so it must not sleep and must not call any functions that
call sleep().

3. The put procedure cannot access the information in the u_area of a process as no user context is
associated with it.

4. A put procedure must use the streams utility putq() to enqueue a message on its own queue to maintain
the consistency of the queue structure. The put procedure of a queue must only call putq(), if the queue
has a service procedure associated with it.

5. The putq() does not process M_FLUSH messages. Therefore if putq() is specified as the put procedure for
a queue in its qinit structure, then the service procedure defined for the same queue must process the
M_FLUSH messages.

6. When a modules/driver’s put procedure needs to pass the message to its next component the streams
utility putnext() must be used. The putq() must not be used to place the message on the next
components queue directly.

7. Processing data messages by both put and service procedures could lead to messages going out of
sequence. The put procedure should check if any data messages were queued before processing the
current message.

8. Return codes can be sent with M_IOCACK, M_IOCNAK and M_ERROR messages by a put procedure.

9. Processing too many function calls with the put procedure could lead to an interrupt stack overflow. To
avoid such a case, switch to service procedure processing whenever appropriate to switch to a different
stack.

10. Appropriate synchronization should be provided for data structures in a module/driver when both the put
and service procedures use them.

11. It is strongly recommended that put procedures not place the high priority messages on the queue.

Service Procedure

1. A service procedure does not have any user context, so it must not sleep() and must not call any
functions that call sleep().

2. The service procedure cannot access the information in the u_area of a process as no user context is
associated with it.

3. If flow control is desired, a service procedure must be defined. The canput() utilities should be used by
service procedures before doing a putnext() to honor flow control.

4. The service procedure must use the streams utility getq() to remove a message from its message queue
to maintain the flow control mechanism.

5. The service procedure should process all the messages on its queue. The only exception being if the
stream ahead is flow controlled (i.e., canput() fails) or if some error condition (for example, memory
allocation failure) is encountered. Adherence to this rule is the only guarantee that STREAMS will
schedule the service procedure to execute when necessary and to ensure that the flow control mechanism
does not fail.

If a service procedure is written to exit for other reasons, than the driver/module developer must take
explicit steps to ensure that the service procedure is reenabled.
Chapter 498

Modules and Drivers
Design Guidelines
6. The service procedure should not put a high priority message back on the queue to avoid getting into an
infinite loop.
Chapter 4 99

Modules and Drivers
STREAMS Module
STREAMS Module
A STREAMS module is essentially a pair of queues and a defined set of kernel-level routines and data
structures used to process messages as they flow through them in a stream. A stream may have zero or more
modules and pushing and popping of these modules happens in a Last In First Out (LIFO) manner.

Flow Control in Modules

Module flow control is advised and when used helps in limiting the amount of data that can be placed on a
modules’ queue. STREAMS modules must define a service procedure to utilize the STREAMS flow control
mechanism; invoking canput()/canputnext() before calling putnext() and using appropriate high and low
water marks for the queues. In addition to canput(), the streams utilities getq(), putq() and putbq() are
also used in implementing the module’s flow control.

In a module implementing the flow control:

• The put procedure queues the data using putq() (but forwards all the high priority messages regardless
of flow control).

• The putq() in turn increments the q_count appropriately (sets the QFULL flag if q_count exceeds the
high water mark) and enables the service procedure.

• When the STREAMS scheduler runs the service procedure, data is retrieved by using getq().

• The getq() decrements the q_count by an appropriate value (unsets the QFULL flag if q_count drops
below the low water mark and enables the nearest back queue with a service procedure).

• The service procedure must verify if the next component in the stream is flow controlled by doing a
canputnext() and do a putnext() if not flow controlled. If canput()/canputnext() fails, the module
should put back the message on it’s own queue by doing a putbq().

• If the module ahead is not flow controlled, the service procedure must process all the messages on it’s
queue before it returns.

Sample Module

The various data structures and routines required to define a STREAMS module have already been described
in the previous sections. In this section code examples have been given to substantiate the same.

NOTE There is no major number associated with a module, hence a value of “-1” needs to be specified
in a module’s streams_info_t struct.

Module Declaration

/* Sample Module inclusions */

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/stream.h>

#include <sys/stropts.h>
Chapter 4100

Modules and Drivers
STREAMS Module
/* Streams data structures for Modules */

int mod_open __((queue_t *, dev_t *, int, int, cred_t *));

int mod_close __((queue_t *, int, cred_t *));

int mod_rput __((queue_t * q, mblk_t *));

int mod_wput __((queue_t * q, mblk_t *));

int mod_rsrv __((queue_t * q));

int mod_wsrv __((queue_t * q));

#define MOD_ID 0

static struct module_info minfo = {

MOD_ID, "MOD", 0, INFPSZ, 65536, 1024

};

static struct qinit mod_rinit = {

mod_rput, mod_rsrv, mod_open, mod_close, NULL, &minfo

};

static struct qinit mod_winit = {

mod_wput, mod_wsrv, NULL, NULL, NULL, &minfo

};

static streams_info_t mod_str_info = {

 "MOD", /* Module name */

 -1, /* major no */

 { &mod_rinit, &mod_winit, NULL, NULL }, /* streamtab */

 STR_IS_MODULE | MGR_IS_MP | STR_SYSV4_OPEN, /* streams flags */

 SQLVL_QUEUEPAIR, /* sync level */

 "", /* elsewhere sync name */

};

struct streamtab modinfo = {

 &mod_rinit,

 &mod_winit

};

NOTE Setting module ID to “0” lets STREAMS select a unique module ID dynamically when the
module gets installed on a system. Make sure that the module name is unique.
Chapter 4 101

Modules and Drivers
STREAMS Module
Installation Routine

STREAMS modules do not have any cdevsw-related information. They only have STREAMS-specific
information and this is configured by calling str_install() with a defined streams_info_t.

int

mod_install()

{

 int retval;

 if ((retval = str_install(&mod_str_info)) !=0)

 return retval; /* failure */

 return 0; /* Success */

}

NOTE Any module specific global data structures, spinlocks etc. can be setup and initialized in the
installation routine.

Open/Close Routines

As described in the earlier sections the open and close routines associated with a module get invoked when
the module is pushed onto a stream or when it is popped out of a stream.

Based on the module’s requirement, a module can:

• Verify that MODOPEN is specified in the sflag.

• Validate the open flags specified in the oflag.

• Validate the user credentials passed through credp.

int

mod_open(q, dev, oflag, sflag, credp)

queue_t *q;

dev_t *dev;

int oflag;

int sflag;

cred_t *credp;

{

 mod_priv_t *modp; /* Pointer to the module's private data */

 /*

 * Allocate the module specific private data to be assigned to

 * the q_ptr

 */

 modp = (mod_priv_t *)kmem_alloc(sizeof(mod_priv_t), M_NOWAIT);
Chapter 4102

Modules and Drivers
STREAMS Module
 if (!modp) {

 return 1 ; /* Failure */

 }

 /*

 * Assign the private data structure to both the read and the write

 * side q_ptr's.

 */

 q->q_ptr = WR(q)->q_ptr = modp;

 return 0 ; /* Success */

}

Based on a module’s requirement, a module should:

• Validate the flag value specified in the cflag.

• Validate the user credentials passed through credp.

• Cancel any pending timeout or bufcall routines that access data that are deinitialized or deallocated
during close.

• Deallocate any resources allocated on open.

int

mod_close(q, cflag, credp)

queue_t *q;

int cflag;

cred_t *credp

{

 flushq(WQ(q), FLUSHALL);

 /*

 * Free any module specific resources allocated during open for

 * this instance of the module.

 */

 kmem_free((caddr_t)q->q_ptr, sizeof(mod_priv_t));

 /*

 * Assign NULL to both the read and the write side q_ptr's

 */

 q->q_ptr = WR(q)->q_ptr = NULL;

 return 0 ; /* Success */

}

Chapter 4 103

Modules and Drivers
STREAMS Module
Put Procedure

An example of a module’s read-side and write-side put procedure are shown:

int

mod_rput(q, mp)

queue_t *q;

mblk_t *mp;

{

 mod_priv_t *modp;

 /* get the module specific data */

 modp = (mod_priv_t *)q->q_ptr;

 if ((mp->b_datap->db_type >= QPCTL) &&

 mp->b_datap->db_type != M_FLUSH)) {

 /*

 * Process the high priority messages immediately

 * and pass it upstream

 */

 ...

 putnext(q, mp);

 return;

 }

 switch (mp->b_datap->db_type) {

 case M_DATA:

 putq(q, mp);

 return;

 case M_PROTO:

 /* process the protocol message */

 ...

 ...

 case M_FLUSH:

 /* process the M_FLUSH message */

 ...

 ...

 default:

 /* Pass the message upstream if the module does not

 * understand it.

 */

putq(q, mp);
Chapter 4104

Modules and Drivers
STREAMS Module
 return;

 }

}

int

mod_wput(q, mp)

queue_t *q;

mblk_t *mp;

{

 mod_priv_t *modp;

 modp = (mod_priv_t *)q->q_ptr;

 if ((mp->b_datap->db_type >= QPCTL) &&

 (mp->b_datap->db_type != M_FLUSH)) {

 putnext(q, mp);

 return;

 }

 switch (mp->b_datap->db_type) {

 case M_DATA:

 putq(q, mp);

 return;

 case M_PROTO:

 /* process the protocol message */

 ...

 ...

 case M_FLUSH:

 /* process the M_FLUSH message */

 ...

 ...

 case M_IOCTL:

 struct iocblk * iocp = (struct iocblk *)mp->b_rptr;

 switch (iocp->ioc_cmd) {

 /* ioctl commands recognized by the module */

 case MOD_IOCTL1:

 /*

 * process and reply back with a positive

 * or negative acknowledgment
Chapter 4 105

Modules and Drivers
STREAMS Module
 */

 ...

 if (success) {

 ...

 mp->b_datap->db_type = M_IOCACK;

 } else {

 ...

 mp->b_datap->db_type = M_IOCNAK;

 }

 qreply(q, mp);

 return;

 case MOD_IOCTL2:

 ...

 ...

 /* ioctl commands not recognized by the module */

 default:

 /* Pass the ioctl message downstream */

 putnext(q, mp);

 return;

 }

 default:

 /* Pass the message downstream if the module does not

 * understand it.

 */

 putq(q, mp);

 return;

 }

}

Chapter 4106

Modules and Drivers
STREAMS Module
Service Procedure

The following example shows a generic service procedure:

int

mod_rsrv(q)

queue_t *q;

{

 mblk_t *mp;

 while ((mp = getq(q)) != NULL) {

 /* check for flow control */

 if (!(mp->b_datap->db_type >= QPCTL) &&

 !canputnext(q) {

 putbq(q,mp);

 return;

 }

 /* Process the message */

 switch (mp->b_datap->db_type) {

 case M_DATA:

 ...

 ...

 }

 } /* while */

}

Module Specific Design Guidelines

In addition to the guidelines listed in the “Design Guidelines” section in this chapter, the module developers
should follow these guidelines:

• If a module does not understand a message type it must forward the message to the next component on
the stream.

• For reusability, module design should stay independent of the underlying device or driver functionality.

• If the module acts on a M_IOCTL message, it must send a M_IOCACK or M_IOCNAK in response to the
IOCTL. Instead, if the module does not understand the IOCTL, it must pass the M_IOCTL message to the
next component in the stream.

• Filter modules pushed between a service user and a service provider must not alter the contents of the
M_PROTO or M_PCPROTO block in messages. The contents of the data block can be modified, however the
message boundaries must be preserved.
Chapter 4 107

Modules and Drivers
STREAMS Driver
STREAMS Driver
A STREAMS device driver as mentioned earlier is similar to a regular UNIX character device driver. A
STREAMS driver is a necessary part of the stream constituting the stream end. A stream is created when a
STREAMS driver is opened. A STREAMS driver can also have multiple streams connected to it. Multiple
connections could be a result when more than one minor device of the same driver are opened and in case of
multiplexors.

Overview of Drivers

A driver is the software that provides an interface between a device and the operating system. User level
programs interact with these devices through system calls. Drivers manage the data going in and out of the
the devices and also manage the interrupts generated by the devices.

Based on the type of device the driver controls they can be classified as hardware or software drivers. A
hardware driver controls a physical device. A software driver, also known as the pseudo-device driver controls
the software, which in turn may be associated with a hardware device or a pseudo device — that has no
associated physical device.

In UNIX, the devices are represented as files. Implying that the drivers can support the character-type or
block-type access methods.

Finally, depending on the interface used between the drivers and devices, the drivers could be
STREAMS-based or non-STREAMS-based.

NOTE STREAMS drivers are always accessed through character special files, so are character based
drivers.

Writing Drivers

A driver is different from the regular C applications, in that it executes in the kernel and does not have a
main() function associated with it. The following general rules apply to all driver development:

• A driver may need a start routine for initialization. This applies more to drivers that control real
hardware devices.

• A driver must define open() and close() routines.

• A driver must have an interrupt handling routine if it controls a hardware device.

• A driver cannot use archive or shared libraries or floating point arithmetic.

All drivers must define specific entry points for initialization, switch table entry and interrupt handlers.

Major and Minor Numbers

In HP-UX device numbers (data type dev_t) formed by concatenating the major and the minor numbers is
used to identify the particular driver and device that is being accessed. The major number for a device maps
to a driver controlling the device and the minor number uniquely identifies the device.

A special device file is created for every device installed on the system, allowing user processes to view the
individual devices as files. Major and minor numbers are associated with the special device files and are used
by the operating system to determine the actual driver and device to be accessed by the user-level request for
the special device file.
Chapter 4108

Modules and Drivers
STREAMS Driver
A device is then accessed by opening, reading, writing or closing the special device file associated with the
device with proper major and minor numbers. The following example lists such special device files:

$ ls -l /dev/udp*

crw-rw-rw- 1 root root 72 0x000033 Dec 18 05:40 /dev/udp

crw-rw-rw- 1 root root 72 0x000036 Dec 18 05:40 /dev/udp6

Where, udp and udp6 are two different devices with major number as 72 and unique minor numbers
0x000033 and 0x000036 respectively.

Major numbers for the hardware devices are typically assigned by the system at boot time or by utilities like
install_driver(). Major numbers for the pseudo-devices are assigned by install_driver(). Character
major numbers and block major numbers are assigned separately for devices that are exclusively block or
character. This means that two separate special device files for two different device drivers namely character
and block device drivers may have the same value assigned to them as major number.

The minor number identifies a specific device, such as a single terminal. Minor numbers for devices are
designated by the driver developer.

The utilities getmajor() and getminor() can be used to obtain the major and minor numbers associated
with a device.

Cloning

A user process connects a stream to a driver by opening a specific device file. The connection is assigned a
major number and a minor number. When a second user process (or a second open call from the same process)
connects to the same driver, it will, by default, communicate with the stream head already created for the
stream. But if this second user process needs to connect to a different device file under the same driver, it now
becomes responsible for finding its own minor number, typically by polling for available minor device
numbers under the driver. To make the task of finding minor device number easier, STREAMS supports clone
opens. When a driver is implemented as a cloneable device, a single node in the file system can be opened to
access any unused minor devices that the driver controls, for example, the special node guarantees a separate
stream for every open (2) system call on the driver.

In HP-UX the driver can be implemented as cloneable devices in two ways.

The first cloning method uses a special clone major number, 72, to provide cloning. For each cloneable device,
a device file must exist that has the clone major number of 72 and also has a minor number equal to the major
number of the real device. When an application opens this type of device file, STREAMS passes the driver
open routine CLONEOPEN in the sflag parameter. The driver allocates a minor number and returns a new
device number containing the true major number and the chosen minor number.

The second cloning method is useful for drivers which need to be able to encode information in their minor
numbers. This is not possible in the first method, as the clone device file for that method must have as its
minor number the major number of the driver being cloned.

In the second cloning method, the driver designates a particular minor number as its “clone” minor number.
The driver open routine checks the minor number portion of the device number parameter passed to it, and if
it is the clone minor number, the driver open routine allocates a minor number and returns a new device
number to the caller, in the same way as the first cloning method described. The returned device number
must contain both a major number and the new minor number. A driver using this cloning method may also
change the major number in the device number it returns. However, the new major number must correspond
to a STREAMS driver with the same streamtab structure as the driver associated with the original major
number.
Chapter 4 109

Modules and Drivers
STREAMS Driver
Flow Control in Drivers

In general, the same utilities and mechanisms used in implementing module flow control are used by drivers
too.

STREAMS allows flow control to be used on the driver read-side to handle temporary upstream blocks. The
driver or a module has an option of resetting the stream head read-side flow control limits by sending a
M_SETOPTS message upstream.

Sample Driver Example

The following is an excerpt of the sample driver example:

/* Sample Driver inclusions */

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/stream.h>

#include <sys/stropts.h>

/* Streams data structures for Drivers */

int drv_open __((queue_t *, dev_t *, int, int, cred_t *));

int drv_close __((queue_t *, int, cred_t *));

int drv_wput __((queue_t * q, mblk_t *));

int drv_rsrv __((queue_t * q));

#define MOD_ID 0

static struct module_info minfo = {

 MOD_ID, "drv", 0, INFPSZ, 65536, 1024

};

static struct qinit drv_rinit = {

 NULL, drv_rsrv, drv_open, drv_close, NULL, &minfo

};

static struct qinit drv_winit = {

 drv_wput, NULL, NULL, NULL, NULL, &minfo

};

static drv_info_t drv_info = {

 "drv", /* Driver name */

 "pseudo", /* Driver Class */
Chapter 4110

Modules and Drivers
STREAMS Driver
 DRV_CHAR | DRV_PSEUDO | DRV_MP_SAFE, /* Driver flags */

 -1, /* Block Major number */

 -1, /* Character Major number */

 NULL, NULL, NULL /* cdio, gio_private, cdio_private */

}

static drv_ops_t test_drv_ops = {

 NULL, /* d_open */

 NULL, /* d_close */

 NULL, /* d_strategy */

 NULL, /* d_dump */

 NULL, /* d_psize */

 NULL, /* d_mount */

 NULL, /* d_read */

 NULL, /* d_write */

 NULL, /* d_ioctl */

 NULL, /* d_select */

 NULL, /* d_option1 */

 NULL, NULL, NULL, NULL, /* reserved entry points */

 NULL /* d_flags */

};

static streams_info_t drv_str_info = {

 "drv", /* Module name */

 -1, /* major no */

 { &drv_rinit, &drv_winit, NULL, NULL }, /* streamtab */

 STR_IS_DEVICE | MGR_IS_MP | STR_SYSV4_OPEN, /* streams flags */

 SQLVL_QUEUEPAIR, /* sync level */

 "", /* elsewhere sync name */

};

struct streamtab drvinfo = {

 &drv_rinit,

 &drv_winit

};

NOTE Unlike a module, when a value of -1 is specified as a major number in a driver’s
streams_info_t struct, STREAMS assigns a unique major number when the driver gets
installed on a system.
Chapter 4 111

Modules and Drivers
STREAMS Driver
Installation Routine

Like STREAMS modules, STREAMS drivers need to configure the STREAMS specific information by calling
str_install() with a defined streams_info_t. In addition, since drivers do have cdevsw information, a call
to install_driver() should be made before the configuration for streams is done in str_install().

int

drv_install()

{

 int retval;

 if ((retval = (install_driver(&drv_info, &drv_ops))) !=0)

 return retval;

 if ((retval = str_install(&drv_str_info)) !=0) {

 (void)uninstall_driver(&drv_info);

 return retval;

 }

 return 0;

}

Open/Close Routines

At the system interface, the hardware device drivers and the character I/O drivers generally have direct entry
points to process open, close, read, write, IOCTL and select calls. For the STREAMS drivers however
these entry points are accessed via STREAMS and their format differs from the non-STREAMS character
device drivers (drv_ops_t for a STREAMS driver is usually NULL).

The STREAMS mechanism allows only one stream per minor device. The driver open is called whenever a
STREAMS device is opened.

int

drv_open(q, dev, oflag, sflag, credp)

queue_t *q;

dev_t *dev;

int oflag;

int sflag;

cred_t *credp;

{

 drv_priv_t *drvp; /* Pointer to the module's private data */

 dev_t dev_minor;

 /*

 * Assign a minor number depending on whether this is a clone or
Chapter 4112

Modules and Drivers
STREAMS Driver
 * a non-clone open

 */

 if (sflag != CLONEOPEN) {

 /* Non-clone open */

 ...

 } else {

 /* Clone open */

 ...

 *dev = makedev(major(*dev), dev_minor);

 }

 /*

 * Allocate the driver specific private data to be assigned to

 * the q_ptr (per-stream data)

 */

 drvp = (drv_priv_t *)kmem_alloc(sizeof(drv_priv_t), M_NOWAIT);

 if (!drvp) {

 return 1 ; /* Failure */

 }

 /*

 * Assign the private data structure to both the read and the write

 * side q_ptr's.

 */

 q->q_ptr = WR(q)->q_ptr = drvp;

 ...

 return 0 ; /* Success */

}

int

drv_close(q, cflag, credp)

queue_t *q;

int cflag;

cred_t *credp

{

 flushq(WQ(q), FLUSHALL);

 /*

 * Free any module specific resources allocated during open for
Chapter 4 113

Modules and Drivers
STREAMS Driver
 * this instance of the module.

 */

 if (q->q_ptr)

 kmem_free((caddr_t)q->q_ptr, sizeof(drv_priv_t));

 /*

 * Free the minor number allocated for this stream

 */

 ...

 /*

 * Assign NULL to both the read and the write side q_ptr's

 */

 q->q_ptr = WR(q)->q_ptr = NULL;

 return 0 ; /* Success */

}

Put Procedure

The put procedure is the third entry point for the STREAMS driver.

Outbound Processing

The write (2) and ioctl (2) system calls are only seen by the stream head. The stream head translates the write
(2) and ioctl (2) system calls into messages and sends them downstream to be processed by the drivers’s
write-side put procedure. If the message cannot be sent immediately to the hardware or the software device, it
may be stored on a driver’s write queue if a write-side service procedure exists else may be in the driver’s
private data structures.

An example of a driver’s write-side put procedure is shown:

int

drv_wput(q, mp)

queue_t *q;

mblk_t *mp;

{

 ...

 if ((mp->b_datap->db_type >= QPCTL) &&

 (mp->b_datap->db_type != M_FLUSH)) {

 /*

 * Process the high priority message

 */

 ...

 return;

 }
Chapter 4114

Modules and Drivers
STREAMS Driver
 switch (mp->b_datap->db_type) {

 case M_DATA:

 case M_PROTO:

 /* process the message */

 ...

 ...

 case M_IOCTL:

 struct iocblk * iocp = (struct iocblk *)mp->b_rptr;

 switch (iocp->ioc_cmd) {

 /* ioctl commands recognized by the driver */

 case D_IOCTL1:

 /*

 * process and reply back with a positive

 * or negative acknowledgment

 */

 ...

 if (success) {

 ...

 mp->b_datap->db_type = M_IOCACK;

 } else {

 ...

 mp->b_datap->db_type = M_IOCNAK;

 }

 qreply(q, mp);

 return;

 case D_IOCTL2:

 ...

 ...

 /* ioctl commands not recognized by the driver */

 default:

 /* Send a negative acknowledgement upstream */

 mp->b_datap->db_type = M_IOCNAK;

 qreply(q, mp);

 return;

 }

 case M_FLUSH:

 if (*mp->b_rptr & FLUSHW) {

 /* Flush the write queue */

 ...
Chapter 4 115

Modules and Drivers
STREAMS Driver
 }

 if (*mp->b_rptr & FLUSHR) {

 *mp->b_rptr &= ~FLUSHW;

 /* Flush the read queue if messages can be enqueued */

 ...

 qreply(q, mp);

 } else

 freemsg(mp);

 return;

 default:

 /* Free the message if the driver does not

 * understand it.

 */

 freemsg(mp);

 return;

 }

}

Inbound Processing

The read (2)system call is only seen by the stream head, which processes the system call. A STREAMS driver
will not be aware of this system call. When the driver is ready to send data upstream, it builds an appropriate
message and sends it to the read queue of the appropriate stream. The driver’s interrupt routine usually does
a putnext() on the driver’s read-side queue to send the message upstream. The message to be sent upstream
can be enqueued on the driver’s read-side queue, to be processed by the service procedure either to honor the
flow control mechanisms in STREAMS or to reduce the amount of time spent by the interrupt routine in
processing these messages.

A driver could optionally implement flow control and put the message on it’s own queue to be processed later
by the service procedure.

NOTE A driver may or may not define the read-side put and service procedures. This exception of not
having a read-side put procedure is only applicable to a driver.
Chapter 4116

Modules and Drivers
STREAMS Driver
Service Procedure

Services procedures are optional for the drivers too and defined when the messages can get enqueued on to a
driver’s read-side queue.

The following example shows a read service procedure for a driver:

int

drv_rsrv(q)

queue_t *q;

{

 mblk_t *mp;

 while ((mp = getq(q)) != NULL) {

 /* check for flow control */

 if (!(mp->b_datap->db_type >= QPCTL) &&

 !canputnext(q) {

 putbq(q,mp);

 return;

 }

 /* Process the message */

 switch (mp->b_datap->db_type) {

 case M_DATA:

 ...

 ...

 }

 } /* while */

}

Chapter 4 117

Modules and Drivers
STREAMS Driver
Driver Specific Design Guidelines

In addition to the guidelines listed in the “Design Guidelines” section, the driver developers should follow
these guidelines:

• A driver must be defined and configured in a kernel before it can be opened.

• Drivers managing a hardware device must have an interrupt service procedure.

• Messages that are not understood by the driver should be freed.

• The M_IOCTL messages must be processed and acknowledged by the driver, or the stream head will block
for an M_IOCACK or M_IOCNAK until the timeout (which could potentially be infinite) expires.

• If a driver does not understand the IOCTL, it must send an M_IOCNAK upstream.

• Drivers are responsible for processing all M_FLUSH messages and whenever appropriate turn M_FLUSH
messages around, i.e., sending the M_FLUSH message upstream.

• Driver developers should be very careful with the M_ERROR messages, as an error message M_ERROR
received at the stream head could lock up the stream.

• If a driver wants to allocate a controlling terminal, it should send a M_SETOPTS message with the
SO_ISTTY flag set upstream.
Chapter 4118

Modules and Drivers
DLKM STREAMS
DLKM STREAMS
Traditionally, kernel modules have been statically bound into the main kernel executable, /stand/vmunix.
This method requires system administrators to rebuild the kernel executables and then reboot the system in
order to add, remove, or patch a kernel module.

A Dynamically Loadable Kernel Module (DLKM) can be loaded into the running kernel without the need
for a rebuild or a reboot. For a module to be dynamically loadable, it must have a few extra data structures
and functions that are not needed for static modules. The details of the DLKM related data structures,
functions and how to construct a DLKM STREAMS module/driver are documented in the HP-UX Driver
Development Guide.

The HP-UX Driver Development Guide is available for free download at http://www.hp.com/go/hpux_ddk.
Chapter 4 119

Modules and Drivers
DLKM STREAMS
Chapter 4120

5 Multiplexing
This chapter describes the STREAMS multiplexing feature of the STREAMS framework. It provides design
guidelines on building, dismantling, and configuring multiplexors.
Chapter 5 121

Multiplexing
Overview
Overview
STREAMS multiplexing is a special feature in the STREAMS framework. It provides a mechanism to connect
multiple streams below a driver so that data can be routed among the connected streams. The special purpose
STREAMS driver used in implementing STREAMS multiplexing is called a STREAMS multiplexor.

A multiplexor is logically partitioned into an upper-half and a lower-half. The upper-half deals with the
streams opened to the multiplexor while the lower-half deals with the streams linked under the
multiplexor.The upper-half of a multiplexor acts like a software driver. It follows the same rules regarding
unrecognized messages, flushing, and M_IOCTL processing. The lower-half of a multiplexor acts like a stream
head when processing messages.

A multiplexor which multiplexes data from several upper stream to a single lower stream is called an N-to-1
or upper multiplexor. A multiplexor that has only one upper stream but several lower streams is called a
1-to-M or lower multiplexor. M-to-N multiplexing configurations are implemented by using both mechanisms
in a driver. In addition to M-to-N multiplexors configuration, more complex configurations can be created by
connecting streams containing multiplexors to other multiplexors.

The M-to-N configuration is useful in implementing protocols which route data between multiple upper and
lower streams. For example, the IP multiplexing driver is an M-to-N configuration.

Multiplexor configurations can be built and dismantled at the user level by using I_LINK/I_UNLINK ioctl
commands.

A single stream can be linked under one multiplexor only. The number of streams that can be linked to a
multiplexor is implementation dependent and is not controlled by STREAMS framework.

The relationship between the multiple streams connected above or below the multiplexor is opaque to
STREAMS framework. It is the responsibility of the STREAMS multiplexor to route data between the
appropriate streams and to handle the flow control condition. STREAMS does not directly support the flow
control between multiplexed streams. The flow control in a multiplexor is discussed in “Flow Control in a
Multiplexor” on page 136
Chapter 5122

Multiplexing
Building and Dismantling Multiplexors
Building and Dismantling Multiplexors
Multiplexor configurations can be built and dismantled at the user level by using I_LINK/I_UNLINK ioctl
commands.

To Build a Multiplexor

Multiplexor configurations are created at the user level via system calls. The multiplexor driver is like any
other software driver. It owns a node in the file system and is opened just like any other STREAMS device
driver.

The mux multiplexor, illustrated in Figure 5-1, multiplexes stream(s) opened to it over a single lower stream
to the drv driver.

Opening the mux multiplexor and the drv device driver creates two distinct streams as shown in Figure 5-1,
“Multiplexor Before Link,”. The drv stream can be connected below the multiplexor stream using the I_LINK
ioctl call as shown in the following code snippet:

muxfd = open("/dev/mux", O_RDWR);

drvfd = open("/dev/drv", O_RDWR);

muxid = ioctl(muxfd, I_LINK, drvfd);

muxfd

Is the file descriptor open to the multiplexor.

drvfd

Is a file descriptor of the stream to be linked under the multiplexor.

When an I_LINK command is executed, the stream head queues of the stream to be linked under the
multiplexor are used by the multiplexor to manage its lower-half. The state of the two streams after the link
is shown in Figure 5-2, “Multiplexor After Link,”.

Figure 5-1 Multiplexor Before Link
Chapter 5 123

Multiplexing
Building and Dismantling Multiplexors
Figure 5-2 Multiplexor After Link

I_LINK returns an integer value muxid that is used by the multiplexing driver to identify the stream
connected below it. This value is used for routing data through the multiplexor or dismantling the
multiplexor.

The stream associated with muxfd is known as the controlling stream of a multiplexor link. The controlling
stream is the only stream that can be used to dismantle the multiplexor that was created via the I_LINK
command.

Once I_LINK is successful the file descriptor associated with the lower stream can be closed. However, this
will not trigger a close as STREAMS framework maintains a reference to it. When the lower stream is
unlinked, the STREAMS framework closes the stream, if there are no other references to it.

A user process cannot access streams linked below a multiplexor for the duration of the link. If the lower
stream file descriptors are not closed, all future read (), write (), ioctl (), poll (), getmsg (), and
putmsg () system calls issued to them will fail. This is because the I_LINK associates the stream head of
each of the lower streams with the multiplexor thereby denying the user from direct access.
Chapter 5124

Multiplexing
Building and Dismantling Multiplexors
To Dismantle a Multiplexor

The I_UNLINK ioctl call can be used to disconnect one or all the streams connected below a multiplexor:

ioctl(muxfd, I_UNLINK, muxid);

muxfd

Is the file descriptor associated with the controlling stream, which was used to create the
link(s). The muxid is associated with the stream linked below the multiplexor. If MUXID_ALL
is specified as the third argument, then all the streams that are connected below a
multiplexor are disconnected. The MUXID_ALL is only valid on the controlling stream that
was used to create the links.

The multiplexor configuration is automatically dismantled if the muxfd associated with the controlling
stream is closed or when the last process that references it exits. Use the persistent link mechanism if
multiplexor configurations need to be retained after the controlling stream is closed. The details of persistent
links are provided in the next section.

Routing Data through a Multiplexor

The criteria that is used by the multiplexors to route data between the linked streams are multiplexor
implementation dependent. For example, the IP multiplexor uses the IP address specified in the protocol
address to determine the subnetwork over which the data should be routed. Alternatively, the multiplexor
design may require the user application to prepend data containing the muxid (returned by I_LINK) in each
send request. The driver can then match the muxid in each message with the muxid of the corresponding
lower stream and route the data accordingly.
Chapter 5 125

Multiplexing
Connecting and Disconnecting Multiplexor Configurations
Connecting and Disconnecting Multiplexor Configurations
The STREAMS framework requires two additional qinit structures when managing a multiplexor. These
additional structures are specified in the multiplexors streamtab structure. A multiplexor is logically
partitioned into an upper-half and a lower-half. The upper-half uses the st_rdinit and st_wrinit qinit
structures specified in streamtab. The lower-half uses the st_muxrinit and st_muxwinit qinit structures
specified in streamtab. The st_muxrinit is the lower-half read-side qinit structure and the st_muxwinit is
the lower-half write-side qinit structure.

The multiplexor queue structures use the upper-half qinit structures from streamtab. The stream head of
the stream linked below the multiplexor uses the lower-half qinit structures. When a stream is linked below
the multiplexor, the qinit structures of the stream head are substituted by the lower-half qinit structures of
the multiplexor. This linkage allows multiplexors to switch messages between upper and lower streams.
When a message reaches the top of the lower stream, it is handled by the put and service procedures
specified in the lower-half qinit structures of the multiplexor.

To Create a Multiplexor Configuration

A multiplexor configuration is created as follows:

1. An open() call on the multiplexing driver creates the upper stream as in any other driver. open() uses
upper-half qinit structures from the multiplexor streamtab to create the driver queues. The
st_muxrinit and st_muxwinit fields of the streamtab are non-null but they are ignored by the open()
call. Any subsequent open() calls on this driver will create similar streams.

2. An open() on the device file will create the driver stream that we want to link under the multiplexor. The
driver for this stream is typically a device driver that is compatible with the multiplexor. See Figure 5-1
on page 123.

3. Push any modules that need to be pushed on the driver stream. The stream head queues still point to its
put and service procedures as specified in the stream head streamtab.

4. Connect the driver stream below the multiplexing stream by an I_LINK ioctl() call [See streamio(7)]. The
configuration now looks like Figure 5-2. The I_LINK on the multiplexor stream will modify the contents
of the stream head queues of the driver stream. These contents will now point to the lower-half
multiplexor's put and service procedures specified in st_muxrinit and st_muxwinit.

During this call, the stream head of the multiplexor stream sends an M_IOCTL message with ioc_cmd set
to I_LINK to the multiplexing driver. The M_DATA part of the M_IOCTL contains an linkblk structure. The
multiplexing driver stores the linkblk structure information in its private storage and returns an
M_IOCACK message. The l_index is returned to the user space process as muxid to request an I_UNLINK
later.

The linkblk structure contains following fields:

l_qtop

Is the multiplexor’s write queue.

l_qbot

Is the stream head write queue of the stream linked below multiplexor.

l_index

Is a unique (system wide) identifier for the link.
Chapter 5126

Multiplexing
Connecting and Disconnecting Multiplexor Configurations
The above plumbing causes any messages reaching the top of the stream from the driver below to be
delivered to the multiplexing driver’s lower-half read-side put and service procedures. The multiplexing
stream becomes the controlling stream. This plumbing relationship is remembered by the STREAMS
framework until the controlling stream is closed, or the stream below is unlinked through I_UNLINK.
Chapter 5 127

Multiplexing
Connecting and Disconnecting Multiplexor Configurations
To Disconnect a Multiplexor Configuration

Disconnection of multiplexor configurations involves unlinking lower streams. The unlinking can be
accomplished by the following three methods:

• An I_UNLINK ioctl referencing a specific stream.

• An I_UNLINK ioctl indicating all lower streams.

• The last close() on the upper controlling stream.

An I_UNLINK ioctl performs the unlink operation as follows:

1. The controlling stream receives a muxid or MUXID_ALL value in the I_UNLINK ioctl. This specifies an
unlink operation on an individual link or an unlink operation on all the lower streams respectively.

2. The controlling stream remembers all the link operations processed through its stream head. It sends an
linkblk structure down to the multiplexing driver through an M_IOCTL message for each unlink
operation. If the user specified MUXID_ALL in the I_UNLINK ioctl, the multiplexor sees a series of
individual unlinks. If the user specified a muxid that is returned from the unlink operation, a single
unlink request with the muxid in the l_index is sent to the multiplexing driver in the M_IOCTL message.

3. The controlling stream will replace the lower stream head queue’s qinit structures with the original
stream head queue’s qinit structures.

NOTE The I_UNLINK ioctl performs the unlink operation as follows.

• If no reference exists for a lower stream (i.e. the lower stream has been closed), a
subsequent unlink will automatically close the stream. Otherwise, the lower stream must
be closed after the unlink operation.

• STREAMS will automatically dismantle all cascaded multiplexors if their controlling
stream is closed.

• An I_UNLINK will leave lower, cascaded multiplexing streams intact unless the file
descriptors of the cascaded multiplexing streams were previously closed.
Chapter 5128

Multiplexing
Connecting and Disconnecting Multiplexor Configurations
Characteristics of Multiplexing Configurations

In a multiplexing configuration, streams opened to the multiplexor are referred to as upper streams and
those linked below the multiplexor are referred to as lower streams.

• An I_LINK is required for each lower stream connected to the driver. Additional upper streams can be
connected to the multiplexing driver by open() calls.

• An upper stream provides the only interface between the user processes and the lower stream(s). The
lower stream(s) are not accessible from the user space.

• System calls (except close()) on the lower stream return EINVAL. Therefore, all modules that need to be
pushed on the lower stream need to be pushed before an I_LINK operation.

• No direct linakge is established between the upper and lower streams.

• Messages flowing upstream from the driver enter the multiplexing driver's read side put procedure. The
multiplexing driver then has to route the messages to the appropriate upper or lower stream(s).
Similarly, messages flowing downstream from user space or any upper stream(s) to the multiplexing
driver have to be to be processed and routed by the multiplexing driver.

• STREAMS flow-control needs to be handled by the multiplexing driver as there is no direct linkage
between upper and lower streams.

• Multiplexing drivers must be implemented so that new streams can be dynamically connected to (and
existing streams disconnected from) the driver without interfering with its operation. The number of
streams that can be connected to a multiplexor is implementation dependent.
Chapter 5 129

Multiplexing
Persistent Links
Persistent Links
When I_LINK and I_UNLINK ioctls are used, the file-descriptors associated with the upper stream need to
be active through out the operation of the multiplexor configuration. Closing the controlling stream will
unplumb the multiplexor configuration. It may not be desirable to keep an application process active only to
hold the multiplexor configuration together. This is resolved by using persistent links below a multiplexor. A
persistent link is similar to a STREAMS multiplexor link, except that a process is not needed to maintain the
links. After the multiplexor configuration has been set up, the process may close all associated file descriptors
and exit. The multiplexor will remain intact.

Persistent links are created and dismantled with two ioctls:

• I_PLINK

• I_PUNLINK

close(2) and I_UNLINK cannot disconnect a multiplexor configuration created through the I_PLINK ioctl.

Creating Persistent Links

The format of the I_PLINK is:

ioctl(muxfd, I_PLINK, drvfd);

muxfd

Is the stream connected to the multiplexing driver.

drvfd

Is the stream to be linked below the multiplexing driver.

The ioctl I_PLINK returns the muxid of the configuration. The muxid can be stored in a file or passed to
another process for unplumbing the persistently linked streams later.

The following code snippet will create the persistent link configuration.

...

muxfd = open("/dev/mux", O_RDWR);

drvfd = open("/dev/drv", O_RDWR);

muxid = ioctl(muxfd, I_PLINK, drvfd);

/* Save the muxid in file for later use */

...

Figure 5-3, “Multiplexor Before I_PLINK,” shows how open() creates a stream between the device and the
stream head. Figure 5.4 shows a multiplexor after I_PLINK.
Chapter 5130

Multiplexing
Persistent Links
Figure 5-3 Multiplexor Before I_PLINK

Figure 5-4 Multiplexor After I_PLINK

Once the persistent link is setup, users can open the mux multiplexor and send the data to the drv driver as
the persistent link to the drv driver remains intact. See Fig. 5.5
Chapter 5 131

Multiplexing
Persistent Links
Figure 5-5 Data Transfer to the Driver
Chapter 5132

Multiplexing
Persistent Links
Dismantling Persistent Links

Use ioctl I_PUNLINK to dismantle the persistent link between a stream opened to the multiplexor and the
stream connected below the multiplexing driver. Its format is:

ioctl(muxfd, I_PUNLINK, muxid);

muxfd

Is a file descriptor associated with a stream opened to a multiplexing driver (upper stream).

muxid

Is the muxid returned by the I_PLINK ioctl for the stream that was connected below the
multiplexor.

There may be multiple streams persistently linked beneath a multiplexing driver. Each of these persistent
links can be individually unlinked with the I_PUNLINK ioctl by specifying the muxid associated with them,
or an I_PUNLINK ioctl with the muxid value of MUXID_ALL.

The following code snippet will dismantle the configuration given in Figure 5.4.

...

muxfd = open("/dev/mux", O_RDWR);

 /* retrive the saved muxid */

ioctl(muxfd, I_PUNLINK, muxid);

...
Chapter 5 133

Multiplexing
Persistent Links
Characteristics of Persistent Links

Regular links created through I_LINK cannot be unlinked with I_PUNLINK. Similarly, persistent links created
through I_PLINK cannot be unlinked through I_UNLINK. The ioctl will return EINVAL when the
I_LINK/I_UNLINK and I_PLINK/I_PUNLINK calls are intermixed.

In a multilevel configuration where persistent links exist below a multiplexor whose stream is connected to
the above multiplexor by non-persistent links, closing the controlling stream will remove the non-persistent
links but persistent links will stay intact.

In a multilevel configuration where a non-persistent link exists below a multiplexor whose stream is
connected to the above multiplexor by persistent links, removing the persistent links will remove the
non-persistent links, if no other references to the lower streams exist.
Chapter 5134

Multiplexing
STREAMS Multiplexor
STREAMS Multiplexor
A STREAMS multiplexing driver or multiplexor is a special purpose STREAMS driver that provides a way to
route messages between different streams. Various multiplexor configurations can be built and dismantled as
explained in the previous sections.

The upper-half of the multiplexor:

• Deals with the streams opened to the multiplexor.

• Follows the same rules as the streams drivers do regarding unrecognized messages, flushing, and
M_IOCTL processing.

The lower-half of the multiplexor:

• Deals with the streams linked below the multiplexor.

• Acts like a stream head when processing messages.

A STREAMS multiplexor differs from the regular STREAMS driver in the following ways:

• A multiplexor routes messages between multiple streams, instead of between an I/O device and the
streams connected to the device.

• For multiplexing drivers, the first two fields in the streamtab structure, st_rdinit and st_wrinit
define the read-side and the write-side qinit structures of the upper-half of the multiplexor. The other
two entries, st_muxrinit and st_muxwinit, define the read-side and the write-side qinit structures of
the lower-half of the multiplexor.
Chapter 5 135

Multiplexing
STREAMS Multiplexor
Ioctl Processing in a Multiplexor

For M_IOCTL processing, the upper-half of the multiplexor must follow the same rules as drivers. It must
always process an M_IOCTL message from the stream head and acknowledge it with a M_IOCACK/M_IOCNAK. If
the upper-half of the multiplexor does not understand the ioctl, it must send an M_IOCNAK upstream.

In addition, all STREAMS multiplexing drivers must handle the ioctls I_LINK/I_PLINK and
I_UNLINK/I_PUNLINK messages so that they can build and dismantle a multiplexing configuration.

Ioctl processing is not applicable to the lower-half of the multiplexor. This is because a stream linked under
a multiplexor will not be accessible to anything other than that multiplexor.

Flush Handling in a Multiplexor

On receiving an M_FLUSH message, the upper-half of the multiplexor behaves like a driver and the lower-half
of the multiplexor behaves like a stream head.

On receiving an M_FLUSH message from a stream linked underneath it at a lower read queue, the lower-half of
the multiplexor will flush the lower read queue, if FLUSHR is set, and unsets FLUSHR. If FLUSHW is not set, it
frees the message. Otherwise, it flushes the corresponding lower write queue and sends the M_FLUSH message
downstream.

To handle M_FLUSH messages received at a upper write queue, the upper half of the multiplexor flushes the
upper write queue if FLUSHW is set and unsets FLUSHW flag. If FLUSHR is not set, it frees the message.
Otherwise, it flushes the corresponding upper read queue and sends the M_FLUSH message upstream.

Flow Control in a Multiplexor

When multiple streams are feeding a stream, or a single stream is feeding multiple streams in a multiplexor
configuration, one or more of the receiving streams can be flow controlled. If the multiplexor implements flow
control, the sending streams should enqueue the messages on their own queues and process them when they
are back-enabled.

Unlike the rest of the stream, the queues in the upper and the lower-half of the multiplexor are not linked
together through q_next pointers. The absence of the direct linkage between the upper and lower streams
means that the flow control has to be handled by special code in the multiplexing driver. To implement flow
control, multiplexors must have a lower write service procedure and an upper read service procedure.

Typically, the multiplexor’s lower write service procedure will be enabled when the write side of a stream
linked under a multiplexor has its flow control lifted. The lower write service procedure must then enable all
the upper write queues that were blocked from sending messages downstream when the lower stream was
flow controlled.

The multiplexor’s upper read service procedure is enabled when the read side of the multiplexor stream has
its flow control lifted. The upper read service procedure must then enable all the lower read queues that were
blocked from sending messages upstream to the stream that was flow controlled.

The decision to block all the sending streams when one or more receiving streams are flow controlled is
multiplexor-implementation specific.
Chapter 5136

Multiplexing
STREAMS Multiplexor
A Sample Multiplexing Driver

This section contains an example of a STREAMS multiplexing driver that implements an N-to-1
configuration.

Multiplexor Declaration

/* Sample Multiplexor inclusions */

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/stream.h>

#include <sys/stropts.h>

/* data structures for a STREAMS multiplexing driver */

int mux_open __((queue_t *, dev_t *, int, int, cred_t *));

int mux_close __((queue_t *, int, cred_t *));

/* Upper read procedures */

int mux_ursrv __((queue_t * q));

/* Upper write procedures */

int mux_uwput __((queue_t * q, mblk_t *));

int mux_uwsrv __((queue_t * q));

/* lower read procedures */

int mux_lrput __((queue_t * q, mblk_t *));

int mux_lrsrv __((queue_t * q));

/* lower write procedures */

int mux_lwsrv __((queue_t * q));

#define MOD_ID 0

static struct module_info minfo = {

 MOD_ID, "MUX", 0, INFPSZ, 65536, 1024

};

static struct qinit mux_urinit = { /* upper read */

 NULL, mux_ursrv, mux_open, mux_close, NULL, &minfo

};
Chapter 5 137

Multiplexing
STREAMS Multiplexor
static struct qinit mux_uwinit = { /* upper write */

 mux_uwput, mux_uwsrv, NULL, NULL, NULL, &minfo

};

static struct qinit mux_lrinit = { /* lower read */

 mux_lrput, mux_lrsrv, NULL, NULL, NULL, &minfo

};

static struct qinit mux_lwinit = { /* lower write */

 NULL, mux_lwsrv, NULL, NULL, NULL, &minfo

};

static drv_info_t mux_info = {

 "MUX", /* Driver name */

 "pseudo", /* Driver Class */

 DRV_CHAR | DRV_PSEUDO | DRV_MP_SAFE, /* Driver flags */

 -1, /* Block Major number */

 -1, /* Character Major number */

 NULL, NULL, NULL /* cdio, gio_private, cdio_private */

}

static drv_ops_t mux_drv_ops = {

 NULL, /* d_open */

 NULL, /* d_close */

 NULL, /* d_strategy */

 NULL, /* d_dump */

 NULL, /* d_psize */

 NULL, /* d_mount */

 NULL, /* d_read */

 NULL, /* d_write */

 NULL, /* d_ioctl */

 NULL, /* d_select */

 NULL, /* d_option1 */

 NULL, NULL, NULL, NULL, /* reserved entry points */

 NULL /* d_flags */

};

static streams_info_t mux_str_info = {

 "MUX", /* Module name */
Chapter 5138

Multiplexing
STREAMS Multiplexor
 -1, /* major no */

 { &mux_urinit, &mux_uwinit, &mux_lrinit, &mux_lwinit}, /* streamtab */

 STR_IS_DEVICE | MGR_IS_MP | STR_SYSV4_OPEN, /* streams flags */

 SQLVL_QUEUEPAIR, /* sync level */

 "", /* elsewhere sync name */

};

struct streamtab mux_strtab = {

 &mux_urinit,

 &mux_uwinit,

 &mux_lrinit,

 &mux_lwinit

};

/* data structures private to the multiplexor used in this example */

/* Number of upper streams allowed in this N-to-1 configuration */

#define MUXCNT 10

struct mux{

 queue_t *top_rq; /* pointer to the multiplexor’s upper read queue */

}mux_data_t;

mux_data_t mux_list[MUXCNT];

queue_t *muxbot_wq; /* write-q of the linked lower stream */

int muxerr; /* Set if the lower stream recv’s a M_ERROR/M_HANGUP */
Chapter 5 139

Multiplexing
STREAMS Multiplexor
Installation Routine

Like other STREAMS drivers, STREAMS multiplexing drivers also need to configure the STREAMS specific
information by calling str_install() with a defined streams_info_t.

int

mux_install()

{

 int retval;

 if ((retval = (install_driver(&mux_info, &mux_drv_ops))) !=0)

 return retval;

 if ((retval = str_install(&mux_str_info)) !=0)

{

 (void)uninstall_driver(&mux_info);

 return retval;

 }

 return 0;

}

Open and Close Routines

The upper read queue contains the canonical driver open code. Each successful open of the multiplexor
updates the mux data structures in the mux_list, and assigns this address to the q_ptr of the upper read and
write queues. The minor number associated with the multiplexing driver is used as an index for mux_list.

The close routine below clears the mux entry set during the open, so that this queue will no longer be found.

int

mux_open(q, dev, oflag, sflag, credp)

queue_t *q; /* multiplexor’s upper read queue */

dev_t *dev;

int oflag;

int sflag;

cred_t *credp;

{

 mux_data_t *muxp; /* Pointer to the multiplexor’s private data */

 int index;

 int minor_dev;

 /*

 * Assign a minor number depending on whether this is a clone or

 * a non-clone open and make sure not to open more than MUXCNT streams.
Chapter 5140

Multiplexing
STREAMS Multiplexor
 */

 if (sflag != CLONEOPEN)

 {

 /* Non-clone open */

 minor_dev = minor(*dev);

 } else {

 /* Clone open */

 for(minor_dev=0; minor_dev < MUXCNT; minor_dev++)

 if (mux_list[minor_dev].top_rq == NULL) break;

 }

 if (minor_dev >= MUXCNT) return ENOENT; /* Failure */

 muxp = &mux_list[minor_dev];

 muxp->top_rq = q;

 /*

 * Assign the private data structure to both the read and the write

 * side q_ptr’s.

 */

 q->q_ptr = WR(q)->q_ptr = muxp;

 return 0 ; /* Success */

}

int

mux_close(q, cflag, credp)

queue_t *q;

int cflag;

cred_t *credp

{

 ((mux_data_t *)q->q_ptr)->top_rq = NULL;

 /*

 * Assign NULL to both the read and the write side q_ptr’s

 */

 q->q_ptr = WR(q)->q_ptr = NULL;

 return 0 ; /* Success */

}

Chapter 5 141

Multiplexing
STREAMS Multiplexor
Put Procedure

In a multiplexing configuration:

• The upper write put and the lower read put procedures are mandatory.

• The upper read put and the lower write put procedures can be skipped over and the message put to the
next queue if they are not mandatory.

In this example, the upper read side put procedure is not used. The lower stream read queue procedures
transfer the messages directly to the read queue upstream from the multiplexor. There is no lower write put
procedure either. This is because the upper write procedures directly feed the lower write queue downstream
from the multiplexor.

Upper Write Put Procedure

Downstream data written to an upper stream in a multiplexing configuration is queued on the corresponding
upper write queue if the lower stream is flow controlled.

The upper write put procedure does the following:

• Trap all ioctls and in particular handle the I_LINK/I_PLINK and I_UNLINK/I_PUNLINK ioctls.

• Handle M_FLUSH message like a driver.

• Discard any unrecognized messages it receives.

An example of a upper write put procedure is shown below:

int

mux_uwput(q, mp)

queue_t *q;

mblk_t *mp;

{

 ...

 if ((mp->b_datap->db_type >= QPCTL) &&

 (mp->b_datap->db_type != M_FLUSH)) {

 /* Process the high priority message */

 return;

 }

 switch (mp->b_datap->db_type) {

 case M_DATA:

 case M_PROTO:

 /* Let the service procedure do the processing */

 putq(q,mp);

 break;

 case M_IOCTL:

 struct iocblk * iocp = (struct iocblk *)mp->b_rptr;

 switch (iocp->ioc_cmd) {

 /* plumb/unplumb ioctls */
Chapter 5142

Multiplexing
STREAMS Multiplexor
 case I_LINK:

 case I_PLINK:

 if (muxbot_wq != NULL)

 /* lower stream is already linked */

 mp->b_datap->db_type = M_IOCNAK;

 else {

 /* Obtain the linkblk from the message

 * and set up the link

 */

 linkp = (struct linkblk *)mp->b_cont->b_rptr;

 muxbot_wq = linkp->l_qbot;

 muxerr = 0;

 iocp->ioc_count = 0;

 mp->b_datap->db_type = M_IOCACK;

 }

 qreply(q,mp);

 break;

 case I_UNLINK:

 case I_PUNLINK:

 muxbot_wq = NULL;

 mp->b_datap->db_type = M_IOCACK;

 iocp->ioc_count = 0;

 qreply(q, mp);

 break;

 ...

 /* other ioctl commands recognized by the driver */

 case D_IOCTL1:

 /* process and reply back with a positive

 * or negative acknowledgment

 */

 ...

 if (success) {

 ...

 mp->b_datap->db_type = M_IOCACK;

 } else {

 ...

 mp->b_datap->db_type = M_IOCNAK;

 }

 qreply(q, mp);

 break;
Chapter 5 143

Multiplexing
STREAMS Multiplexor
 case D_IOCTL2:

 ...

 /* ioctl commands not recognized by the driver */

 default:

 /* Send a negative acknowledgement upstream */

 mp->b_datap->db_type = M_IOCNAK;

 qreply(q, mp);

 break;

 }

 break;

 case M_FLUSH:

 if (*mp->b_rptr & FLUSHW) {

 /* Flush the write queue */

 ...

 }

 if (*mp->b_rptr & FLUSHR) {

 *mp->b_rptr &= ~FLUSHW;

 /* Flush the read queue if messages can be enqueued */

 ...

 qreply(q, mp);

 } else

 freemsg(mp);

 break;

 default:

 freemsg(mp);

 break;

 } /* end switch */

 return;

}

Chapter 5144

Multiplexing
STREAMS Multiplexor
Lower Read Put Procedure

The lower read put procedure receives upstream bound data from the lower stream. If the upper streams are
flow controlled then messages can be queued on the lower read queue.

The lower read put procedure acting like a stream head should do the following:

• Handle the M_FLUSH messages.

• Handle the M_ERROR and M_HANGUP messages appropriately.

• Route other data messages to the upper streams based on the criteria set by the multiplexor.

An example of a lower read put procedure is shown below:

int

mux_lrput(q, mp)

queue_t *q;

mblk_t *mp;

{

 ...

 switch (mp->b_datap->db_type) {

 case M_FLUSH:

 if (*mp->b_rptr & FLUSHR) {

 /* Flush the read queue */

 ...

 }

 if (*mp->b_rptr & FLUSHW) {

 *mp->b_rptr &= ~FLUSHR;

 /* flush the write queue if messages can be enqued */

 qreply(q, mp);

 } else

 freemsg(mp);

 break;

 case M_ERROR:

 case M_HANGUP:

 muxerr = 1;

 freemsg(mp);

 break;

 case M_DATA:

 case M_PROTO:

 /* let the service procedure do the processing and routing */

 putq(q,mp);

 break;

 default:

 /* Free all unrecognized messages */
Chapter 5 145

Multiplexing
STREAMS Multiplexor
 freemsg(mp);

 break;

 } /* end switch */

 return;

}

Chapter 5146

Multiplexing
STREAMS Multiplexor
Service Procedure

In a multiplexing configuration, the lower write side and the upper read side service procedures are required
to handle the flow control in the lower and the upper streams respectively. The upper write side and the lower
read side service procedures are optional.

Upper Write Service Procedure

If there is a stream linked underneath the multiplexor, and there are no errors, mux_uwsrv() will take a
message off the queue, process it, and send it downstream, if the lower stream is not flow controlled.

int

mux_uwsrv(q)

queue_t * q;

{

 ...

 if (muxerr || (muxbot_wq == NULL)) {

 /* flush all the data on this queue */

 ...

 return;

 }

 while(mp = getq(q)) {

 if (canputnext(muxbot_wq)) {

 /* Process data and send it downstream */

 ...

 putnext(muxbot_wq,mp);

 } else {

 putbq(q,mp);

 return;

 }

 }

 return;

}

Chapter 5 147

Multiplexing
STREAMS Multiplexor
Upper Read Service Procedure

The upper read service procedure is provided for flow control purposes only. It is scheduled to run when the
flow control on the upper stream’s read side is lifted. If the multiplexor still has the lower stream linked to it,
mux_ursrv() will enable the lower streams read queue. The code for the upper read service procedure is as
follows:

int

mux_ursrv(q)

queue_t * q;

{

 if (muxbot_wq) {

/* if the stream is still linked under the multiplexor

* enable it’s read side service procedure

*/

 qenable(RD(muxbot_wq));

 return;

}

Lower Write Service Procedure

The lower write service procedure is responsible for enabling all the upper write queues that have messages
on them. The mux_lwsrv() is scheduled to run when flow control on the linked stream below the multiplexor
is removed. The code for the lower write procedure is as follows:

int

mux_lwsrv(q)

queue_t * q;

{

 ...

 for(index=0; index<MUXCNT; index++)

 if (mux_list[index].top_rq &&

 (WR(mux_list[index].top_rq))->q_first)

 qenable(WR(mux_list[index].top_rq));

 return;

}

Chapter 5148

Multiplexing
STREAMS Multiplexor
Lower Read Service Procedure

The lower read service procedure is responsible for taking the messages of the read queue and routing them
to the appropriate upper stream if there are no errors. It is assumed here that the messages arriving at the
multiplexor's lower read queue contain the information regarding the destination stream, like a minor device
number associated with the upper stream. The information is extracted and the message is appropriately
routed.

The lower stream feeds the upper stream until it encounters a flow controlled stream.

int

mux_lrsrv(q)

queue_t * q;

{

 ...

 if (muxerr) {

 /* flush all the data on this queue */

 ...

 return;

 }

 /* Route the data to the appropriate upper stream */

 while(mp = getq(q)) {

 /* Extract the minor device number from the message */

 ...

 minor_dev = extract_minor(mp);

 /* The minor device number should be in the allowed range */

 if (minor_dev < 0 || minor_dev > MUXCNT) {

 freemsg(mp);

 } else {

 if (mux_list[minor_dev].top_rq)

 if (canputnext(mux_list[minor_dev].top_rq))

 putnext(mux_list[minor_dev].top_rq, mp);

 else {

 putbq(q,mp);

 return;

 }

 }

 } /* end while */

}

Chapter 5 149

Multiplexing
STREAMS Multiplexor
Multiplexor Specific Design Guidelines

The following is a list of general multiplexor design guidelines, in addition to the guidelines specified for the
driver development in Chapter 4.

1. The upper-half of the multiplexor must be designed to act as the stream end, or driver, for the streams
above the multiplexor.

2. The lower-half of the multiplexor must be designed to act as the stream head for the streams linked below
the multiplexor.

3. The routing of message between the upper and lower-half of the multiplexor is based on multiplexor
specific criteria.

4. When multiple streams are feeding a single stream, the receiving stream can get flow controlled. This
possibly requires more than one feeding queue to be backenabled. When the flow control is lifted, the
receiving queue’s service procedure should properly backenable all the feeding queues that are holding on
to messages. This is to prevent the feeding queues from being blocked indefinitely.

5. When one stream is feeding multiple streams, one of the receiving streams may get flow controlled.
Depending on the functionality and the requirements of the multiplexing driver, the other streams that
are not flow controlled may be starved. However, selectively forwarding the messages could result in the
loss of relative time ordering of the messages.
Chapter 5150

A STREAMS IOCTL Commands
Overview
This appendix discusses the various STREAMS ioctl(s) commands.

ioctl(2) Commands

The STREAMS ioctl () commands are a subset of the ioctl (2) commands supported by HP-UX. They enable
the user process to perform a variety of control functions on a stream.

Synopsis

The general syntax of an ioctl() directive is shown:

 #include <sys/types.h>

 #include <stropts.h>

 int ioctl(int fildes, int command, ... /* arg */);

fildes An open file descriptor that refers to a stream.

command Determines the control function to be performed as described.

arg Represents additional information that is needed by this command. The type of arg depends
upon the command, but it is generally an integer or a pointer to a command-specific data
structure.

The command and arg are interpreted by the stream head. Certain combinations of these arguments may be
passed to a module or driver in the stream.

Since these STREAMS commands are a subset of IOCTL, they are subject to the errors described there. In
addition to those errors, the call will fail with errno set to EINVAL, without processing a control function, if
the stream referenced by fildes is linked below a multiplexor, or if command is not a valid value for a
stream.

Also, as described in IOCTL, STREAMS modules and drivers can detect errors. In this case, the module or
driver sends an error message to the stream head containing an error value. This causes subsequent system
calls to fail with errno set to this value.

The following IOCTL commands, with error values indicated, are applicable to all STREAMS files.

I_ATMARK

This command allows the user to see if the current message on the stream head read queue is “marked” by
some module downstream. The arg parameter determines how the checking is done when there are multiple
marked messages on the stream head read queue. It may take the following values:

ANYMARK Checks if the message is marked.

LASTMARK Checks if the message is the last one that is marked on the queue.

If both ANYMARK and LASTMARK are set, ANYMARK supersedes LASTMARK.

The return value is 1 if the mark condition is satisfied and 0 otherwise. On failure, errno may be set to the
following value:

[EINVAL] The arg has an illegal value.
Appendix A 151

STREAMS IOCTL Commands
Overview
I_CANPUT

Checks if a certain band is writable. The arg parameter is set to the priority band in question. The return
value is 0, if the priority band arg is flow controlled. The return value is 1, if the band is writable, or -1 on
error.

On failure, errno may be set to the following value:

[EINVAL] arg has an illegal value.

I_CKBAND

This command is used to check if the message of a given priority band exists on the stream head read queue.
This returns 1 if a message of a given priority exists or -1 on error. The arg should be an integer containing
the value of the priority band in question.

On failure, errno may be set to the following value:

[EINVAL] arg has an illegal value.

I_FDINSERT

This command causes the stream head to create a message from user specified buffer(s), add information
about another stream and send the message downstream. The message contains a control part and an
optional data part. The data and control parts to be sent are distinguished by placement in separate buffers,
as described:

The arg points to a strfdinsert structure which contains the following members:

 struct strbuf ctlbuf;

 struct strbuf databuf;

 long flags;

 int fildes;

 int offset;

ctlbuf The len field in the strbuf structure of the ctlbuf field (see putmsg (2)) must be set to the
size of a pointer plus the number of bytes of control information to be sent with the message.

databuf The len field in the strbuf structure of the databuf field (see putmsg (2)) must be set to the
number of bytes of data information to be sent with the message or zero if no data part is to
be sent.

flags This field specifies the type of message to be created. An ordinary (non-priority) message is
created if the flags are set to 0, a high priority message is created if flags is set to RS_HIPRI.
For normal messages, I_FDINSERT will block if the stream head write queue is full due to
internal flow control conditions. For high priority messages, I_FDINSERT does not block on
this condition. For normal messages, I_FDINSERT does not block when the write queue is
full and the O_NONBLOCK is set. Instead, it fails and sets errno to EAGAIN.

fildes The strfdinsert structure specifies the file descriptor of the other stream.

offset Specifies the number of bytes beyond the beginning of the control buffer where I_FDINSERT
will store a pointer, must be word-aligned. This pointer will be the address of the read queue
structure of the driver for the streams corresponding to fildes in the strfdinsert
structure.

I_FDINSERT also blocks, unless prevented by the lack of internal resources, waiting for the availability of
message blocks, regardless of priority or whether O_NONBLOCK has been specified. No partial message is sent.
Appendix A152

STREAMS IOCTL Commands
Overview
On failure, errno is set to one of the following values:

[EINVAL] The fildes parameter in the strfdinsert structure is an invalid open file descriptor.

[EINVAL] The size of the pointer plus offset exceeds the value of the len field for the buffer specified
through ctlptr.

[EINVAL] Offset does not specify a properly aligned location in the data buffer.

[EINVAL] Flags contains an undefined value.

[EFAULT] The arg points, or ctrlbuf or databuf is outside the allocated address space.

[EAGAIN] The IOCTL request failed because a non-priority message was to be created, the
O_NONBLOCK option was set, and the stream’s write queue was full because of internal flow
control conditions.

[ENOSR] Buffers could not be allocated for the message that was to be created due to insufficient
STREAMS memory resources.

[ENXIO] A hangup was received on the stream specified by fildes in the I_FDINSERT IOCTL call or
on the stream specified by fildes in the strfdinsert.

[ERANGE] The value of the len field for the buffer specified through databuf does not fall within the
range for the minimum and maximum sizes of packets for the top-most module stream.

[ERANGE] The value of the len field for the buffer specified through databuf is larger than the
maximum allowable size for the data part of a message.

[ERANGE] The value of the len field for the buffer specified through ctlbuf is larger than the
maximum allowable size for the control part of a message.

The I_FDINSERT IOCTL can also fail if an error (M_ERROR) message was received by the
stream specified by the fildes field in the strfdinsert structure. In this case, errno is set
to the error value in the error message.

The I_FDINSERT can also fail if an error message was received by the stream head of the stream
corresponding to fildes in the strfdinsert structure. In this case, errno will be set to the value in the
message.

I_FIND

This command compares the names of all modules currently present on the stream to the name specified in
arg. The command returns a value of 1, if the module is present and a value of 0 (zero) if the module is not
present.

On failure, errno is set to one of the following values:

[EINVAL] The arg does not contain a valid module name.

[EFAULT] The arg points outside the allocated address space.

I_FLUSH

This request flushes all input and/or output queues, depending on the value of arg. Valid arg values are:

FLUSHRW Flush write and read queues.

FLUSHW Flush write queues.

FLUSHR Flush read queues.
Appendix A 153

STREAMS IOCTL Commands
Overview
If a pipe does not have any modules pushed, the read queue of the stream head on either end is flushed
depending on the value of arg.

If FLUSHR is set and fildes is a pipe, the read queue for that end of the pipe is flushed and the write queue for
the other end is flushed.

If FLUSHW is set, the read queue for the other end of the pipe is flushed and the write queue for this end is
flushed.

If FLUSHRW is set, the read queue of both ends of the pipe are flushed.

Correct flush handling of a pipe with modules pushed is achieved via the pipemod module. This module
should be the first module pushed onto a pipe so that it is at the midpoint of the pipe itself.

On failure, errno is set to one of the following values:

[ENOSR] Could not allocate buffers for flush operation because of a lack of STREAMS memory
resources.

[EINVAL] The arg parameter is an invalid value.

[ENXIO] A hangup was received on fildes.

I_FLUSHBAND

This command flushes a particular band of messages. The arg points to a bandinfo structure, that has the
following members:

unsigned char bi_pri;

 int bi_option;

The value of the bi_option field can be FLUSHR, FLUSHW, or FLUSHRW as described for the I_FLUSH command.

On failure, errno is set to the following value:

[EINVAL] The bi_pr parameter value exceeds the maximum band, or the bi_option parameter is
not FLUSHR, FLUSHW or FLUSHRW.

I_GETBAND

This command returns the priority band of the first message on the stream head read queue in the integer
referenced by arg.

On failure, errno is set to the following value:

[ENODATA]. No message exists on the stream head read queue.

I_GETCLTIME

This command returns the close time delay in the long integer pointed to by arg.

I_SETCLTIME

This command allows the user to set the time that the stream head will delay when a stream is closing, and
there is data on the write queues. Before closing each module and driver, the stream head will delay for the
specified amount of time to allow the data to drain. If, after the delay, data is still present, data will be
flushed. The arg is a pointer to the number of milliseconds to delay, rounded up to the nearest valid value on
the system. The default is fifteen seconds.
Appendix A154

STREAMS IOCTL Commands
Overview
On failure, errno is set to the following value:

[EINVAL] The arg has an illegal value.

I_GETSIG

This command returns the events for which the calling process has registered to receive a SIGPOLL signal.
Events are returned as in arg bitmask as defined for the I_SETSIG command.

On failure, errno is set to one of the following values:

[EINVAL] User process is not registered to receive the SIGPOLL signal.

[EFAULT] The arg points outside the allocated address space.

I_GRDOPT

This command returns the current read mode setting in an int pointed to by the argument arg. Read modes
are described in read (2).

On failure, errno is set to the following value:

[EFAULT] The arg is pointing outside the allocated address space.

I_GWROPT

This command returns the current write mode setting, as described in I_SWROPT, in the int that is pointed to
by the argument arg.

I_LINK

This command connects two streams:

fildes File descriptor of the stream connected to the multiplexing driver.

arg File descriptor of the stream connected to another driver.

The stream designated by arg gets connected below the multiplexing driver. I_LINK requires the multiplexing
driver to send an acknowledgement message to the stream head regarding the linking operation. This call
returns a multiplexor ID number (an identifier used to disconnect the multiplexor, see I_UNLINK) on success,
and -1 on failure.

On failure, errno is set to one of the following values:

[EAGAIN] Temporarily unable to allocate storage to perform the linking operation.

[EBADF] The arg parameter, not a valid open file descriptor.

[ENXIO] A hangup was received on fildes.

[EINVAL] The stream referred to by fildes does not support multiplexing.

[EINVAL] The file referred to by arg is not a stream, or the stream is already linked under a
multiplexor.

[EINVAL] The link operation would cause a “cycle” in the resulting multiplexing configuration. In
other words, the driver referred to by the arg parameter is linked into this configuration at
multiple places

[ENOSR] Not enough STREAMS memory resources to allocate storage for this command.
Appendix A 155

STREAMS IOCTL Commands
Overview
[ETIME] Acknowledgement message not received at stream head before timeout.

The I_LINK IOCTL can also fail if an M_ERROR or M_HANGUP message is received at the stream head for fildes
before receiving the driver acknowledgement. In addition, an error can be returned in an M_IOCACK or
M_IOCNAK message. When these occur, the I_LINK IOCTL fails with errno set to the value in the message.

I_LIST

This command allows the user to list all the module names on the stream, up to and including the topmost
driver name. If arg is NULL, the return value is the number of modules, including the driver, that are on the
stream pointed to by fildes. This allows the user to allocate enough space for the module names. If arg is not
NULL, it should point to a str_list structure that has the following members:

 int sl_nmods;

 struct str_mlist *sl_modlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+1];

The sl_nmods indicates the number of entries the user has allocated in the array. On success, the return
value is 0, sl_modlist contains the list of module names, and sl_nmods indicates the number of entries that
have been filled in.

On failure, the errno is set to one of the following values:

[EINVAL] The sl_nmods is less than 1.

[EAGAIN] Could not allocate buffers.

I_LOOK

This command retrieves the name of the module located just below the streams head of the stream pointed to
by fildes, and places it in a null terminated character string pointed at by arg. The buffer pointed to by arg
should be at least FNAMESZ+1 bytes long. A #include <stropts.h> declaration is required.

On failure, the errno is set to one of the following values:

[EINVAL] There are no modules in the stream.

[EFAULT] The arg points outside the allocated address space.

I_NREAD

Counts the number of data bytes in data blocks in the first message on the stream head read queue, and
places this value in the location pointed to by arg. The return value for the command is the number of
messages on the stream head read queue. For example, if zero is returned in arg, but the IOCTL return value
is greater than zero, this indicates that a zero-length message is next on the queue.

On failure, the errno is set to the following value:

[EFAULT] The arg is pointing outside the allocated address space.
Appendix A156

STREAMS IOCTL Commands
Overview
I_PEEK

Allows the user process to look (peek) at the contents of the first message on the stream head read queue.
This is done without taking the message off the queue. The I_PEEK IOCTL operates the same way as the
getmsg() function, except that it does not remove the message. The arg parameter points to a strpeek
structure (in the <stropts.h> header file) with the following members:

 struct strbuf ctlbuf;

 struct strbuf databuf;

 long flags;

The strbuf structure pointed to by ctlbuf and databuf has the following members:

 int maxlen;

 int len;

 char *buf

The maxlen field of the strbuf structure must specify the number of bytes of control or data information to be
retrieved. The flags field can be set to RS_HIPRI or 0 (zero). If this field is set to RS_HIPRI, the I_PEEK IOCTL
looks for a high priority message on the queue. If the field is set to 0, the I_PEEK IOCTL looks at the first
message on the queue.

The I_PEEK returns a 1 if a message was retrieved, and returns a value of 0 (zero) if no message was found; it
does not wait for a message. Upon successful completion, ctlbuf specifies control information in the control
buffer, databuf specifies data information in the data buffer, and flags contains RS_HIPRI or 0 (zero).

On failure, errno is set to one of the following values:

[EINVAL] The flags parameter is an illegal value.

[EFAULT] The arg points, or ctrlbuf or databuf is, outside the allocated address space.

[EBADMSG] Message to be looked at is not valid for the I_PEEK command.

I_PLINK

Connects two streams, where fildes is the file descriptor of the stream connected to the multiplexing driver,
and arg is the file descriptor of the stream connected to another driver. The stream designated by arg is
connected via a persistent link below the multiplexing river. The I_PLINK requires the multiplexing driver to
send an acknowledgement message to the stream head regarding the linking operation. This call creates a
persistent link which can exist even if the file descriptor associated with the upper stream to the multiplexing
driver is closed. This call returns a multiplexor ID number (an identifier that may be used to disconnect the
multiplexor, see I_PUNLINK) on success and -1 on failure.

On failure, errno is set to one of the following values:

[ENXIO] A hangup was received on the stream referred to by the fildes parameter.

[ETIME] A timeout occurred before an acknowledgement message was received at the stream head.

[EAGAIN] Temporarily unable to allocate storage to perform the linking operation.

[EBADF] The arg is not a valid open file descriptor.

[EINVAL] The stream referred to by fildes does not support multiplexing.

[EINVAL] The file referred to by arg is not a stream or is already linked under a multiplexing driver.

[EINVAL] The link operation would cause a “cycle” in the resulting multiplexing configuration. In
other words, the driver referred to by arg is linked into the configuration at multiple places.
Appendix A 157

STREAMS IOCTL Commands
Overview
The I_PLINK IOCTL can also fail if it is waiting for the multiplexing driver to acknowledge the link request
and an error (M_ERROR) message, or hangup (M_HANGUP) message is received at the stream head for fildes. In
addition, an error can be returned in an M_IOACK or M_IONAK message. When these occur, the I_PLINK fails
with errno set to the value in the message.

I_POP

Removes the module just below the stream head of the stream pointed to by fildes. To remove a module from
a pipe requires that the module was pushed on the side it is being removed from. The arg should be 0 in an
I_POP request.

On failure, errno is set to one of the following values:

[EINVAL] There are not modules in the stream.

[ENXIO] Error value returned by the module being popped.

[ENXIO] A hangup was received on fildes.

I_PUNLINK

Disconnects the two streams specified by fildes and arg that are connected with a persistent link. The
fildes is the file descriptor of the stream connected to the multiplexing driver. The arg is the multiplexor ID
number that was returned by I_PLINK when a stream was linked below the multiplexing driver. If arg is
MUXID_ALL, then all streams which are persistent links to fildes are disconnected. As in I_PLINK, this
command requires the multiplexing driver to acknowledge the unlink.

On failure, errno is set to one of the following values:

[ENXIO] A hangup was received on fildes.

[ETIME] A timeout occurred before an acknowledgement message was received at the stream head.

[EAGAIN] Temporarily unable to allocate storage to perform the linking operation.

[EINVAL] The arg is an invalid multiplexor ID number.

[EINVAL] The fildes is the file descriptor of a pipe.

An I_PUNLINK IOCTL can also fail if it is waiting for the multiplexor to acknowledge the unlink request and
an error (M_ERROR) message, or hangup (M_HANGUP) is received at the stream head for fildes. In addition, an
error can be returned in an M_IOCACK or M_IOCNAK message. When these occur, the P_UNLINK IOCTL fails
with errno set to the value in the message.

I_PUSH

Pushes the module whose name is pointed by arg onto the top of the current stream, just below the stream
head. If the stream is a pipe, the module will be inserted between the streams heads of both ends of the pipe.
It then calls the open routine of the newly-pushed module.

On failure, errno is set to one of the following values:

[EINVAL] An invalid module name was used.

[EFAULT] The arg points outside the allocated address space.

[ENXIO] Error value returned by the module being pushed. The push has failed.

[ENXIO] A hangup was received on fildes.
Appendix A158

STREAMS IOCTL Commands
Overview
I_RECVFD

Retrieves the file descriptor associated with the message sent by an I_SENDFD IOCTL over a stream pipe. The
arg is a pointer to a data buffer large enough to hold a strrecvfd data structure containing the following
members:

int fd;

 uid_t uid;

 gid_t gid;

 char fill[8];

The fd is an integer file descriptor, uid and gid are the user ID and group ID, respectively, of the sending
stream.

If O_NONBLOCK is clear, I_RECVFD will block until a message is present at the stream head. If O_NONBLOCK is
set, I_RECVFD will fail with errno set to EAGAIN if no message is present at the stream head.

If the message at the stream head is a message sent by a I_SENDFD, a new user file descriptor is allocated for
the file pointer contained in the message. The new file descriptor is placed in the fd field of the strrecvfd
structure. The structure is copied into the user data buffer pointed to by arg.

On failure, errno is set to one of the following values:

[EAGAIN] The O_NONBLOCK option was set, and a message was not present on the stream head read
queue.

[EFAULT] The arg parameter points outside the allocated address space.

[EBADMSG] The message present on the stream head read queue did not contain a passed file descriptor.

[EMFILE] Too many open files. No more file descriptors are permitted to be opened.

[ENXIO] A hangup was received on fildes.

I_SENDFD

Requests the stream associated with fildes to send a message, containing a file pointer, to the stream head
at the other end of a stream pipe. The file pointer corresponds to arg, which must be an open file descriptor.

The I_SENDFD command converts arg into the corresponding system file pointer. It allocates a message block
and inserts the file pointer in the block. The user ID and group ID associated with the sending process are
also inserted. This message is placed directly on the read queue of the stream head at the other end of the
stream pipe to which it is connected.

On failure, errno is set to one of the following values:

[EAGAIN] The sending stream head could not allocate a message block for the file pointer.

[EAGAIN] The read queue of the receiving stream head was full and could not accept the message.

[EBADF] The arg parameter is not a valid open file descriptor.

[EINVAL] The fildes parameter does not refer to a stream.

[ENXIO] A hangup was received on fildes.
Appendix A 159

STREAMS IOCTL Commands
Overview
I_SETSIG

Informs the stream head that the user wants the kernel to issue the SIGPOLL signal (see signal (2)) when a
particular event has occurred on the stream associated with fildes. The I_SETSIG supports an asynchronous
processing capability in STREAMS. The value of arg is a bitmask that specifies the events for which the user
should be signaled. It is the bitwise-OR of any combination, except where noted, of the following constants:

S_BANDURG When used in conjunction with S_RDBAND, SIGURG is generated instead of SIGPOLL when a
priority message reaches the front of the stream head read queue.

S_ERROR An M_ERROR message has reached the stream head.

S_HANGUP An M_HANGUP message has reached the stream head.

S_HIPRI A high priority message is present on the stream head read queue. This is set even if the
message is of zero length.

S_INPUT Any message other than an M_PCPROTO has arrived on a stream head read queue. This
event is maintained for compatibility with prior releases. This is set even if the message is
of zero length.

S_MSG A STREAMS signal message that contains the SIGPOLL signal has reached the front of the
stream head read queue.

S_OUTPUT The write queue just below the stream head is no longer full. This notifies the user that
there is room on the queue for sending (or writing) data downstream.

S_RDBAND A priority band message (band > 0) has arrived on a stream head read queue. This is set
even if the message is of zero-length.

S_RDNORM An ordinary (non-priority) message has arrived on a stream head read queue. This is set
even if the message is of zero-length.

S_WRBAND A priority band greater than 0 of a queue downstream exists and is writable. This notifies
the user that there is room on the queue for sending (or writing) priority data downstream.

S_WRNORM This event is the same as S_OUTPUT.

A user process may choose to be signaled only of high priority messages by setting arg bitmask to the value
S_HIPRI.

Processes that want to receive SIGPOLL signals must explicitly register to receive them using I_SETSIG. If
several processes register to receive the signal for the same event on the same stream, each process will be
signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered and will not receive further SIGPOLL
signals.

On failure, the errno is set to one of the following values:

[EINVAL] The user process is not registered to receive the SIGPOLL signal.

[EAGAIN] A data structure to store the signal request could not be allocated.

I_SRDOPT

Sets the read mode (see read (2)) using the value of the argument arg. Valid arg values are:

RNORM Byte-stream mode (default).

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.
Appendix A160

STREAMS IOCTL Commands
Overview
Setting both RMSGD and RMSGN is an error. RMSGD and RMSGN override NORM.

In addition, treatment of control messages by the stream head may be changed by setting the following flags
in arg:

RPROTNORM Fail read with EBADMSG if a control message is at the front of the stream head read queue.
This is the default behavior.

RPROTDAT Deliver the control portion of a message as data when a user issues read.

RPROTDIS Discard the control portion of a message, delivering any data portion, when a user issues a
read.

On failure, errno is set to the following value:

[EINVAL] The arg contains an illegal value.

I_STR

Constructs an internal STREAMS IOCTL message from the data pointed to by arg, and sends that message
downstream.

This mechanism is provided to send user IOCTL requests to downstream modules and drivers. It allows
information to be sent with the IOCTL, and will return to the user any information sent upstream by the
downstream recipient. The I_STR blocks until the system responds with either a positive or negative
acknowledgement message, or until the request “times out” after some period of time. If the request times out,
it fails with errno set to ETIME.

At most, one I_STR can be active on a stream. Further I_STR calls will block until the active I_STR completes
at the stream head. The default timeout intervals for these requests is 15 seconds. The O_NONBLOCK (see open
(2)) flags have no effect on this call.

To send requests downstream, arg must point to a strioctl structure which contains the following members:

 int ic_cmd;

 int ic_timout;

 int ic_len;

 char *ic_dp;

ic_cmd The internal IOCTL command intended for the downstream module or driver.

ic_timout The number of seconds (-1 =infinite, 0 = use default, >0 = as specified) an I_STR
request will wait for acknowledgement before timing out. The default timeout is infinite.

ic_len The number of bytes in the data argument.

ic_dp A pointer to the data argument.

The ic_len field has two uses; on input, it contains the length of the data argument passed in, and on return
from the command, it contains the number of bytes being returned to the user (the buffer pointed to by ic_dp
should be large enough to contain the maximum amount of data that any module or driver in the stream can
return).

The stream head will convert the information pointed to by strioctl structure to an internal IOCTL
command message and send it downstream.

On failure, the errno is set to one of the following values:

[EINVAL] The ic_len field is less than 0 (zero) bytes or larger than the maximum allowable size of the
data part of a message (ic_dp).

[EINVAL] The ic_timout field is less than -1.
Appendix A 161

STREAMS IOCTL Commands
Overview
[EFAULT] The arg points, or the buffer area specified by ic_dp or ic_len is, outside the allocated
address space.

[ENOSR] Buffers could not be allocated for the IOCTL request because of a lack of STREAMS
memory resources.

[ENXIO] A hangup was received on the stream referred to by fildes.

[ETIME] The IOCTL request timed out before an acknowledgement was received.

The I_STR IOCTL can also fail if the stream head receives a message indicating an error (M_ERROR) or a
hangup (M_HANGUP). In addition, an error can be returned in an M_IOCACK or M_IOCNAK message. In these
cases, the IOCTL fails with errno set to the error value in the message.

I_SWROPT

Sets the write mode using the value of the argument arg. Legal bit settings for arg are:

SNDZERO Sends a zero-length message downstream when a write of 0 bytes occurs. To not send a
zero-length message when a write of 0 bytes occurs, this bit must not be set in arg.

On failure, the errno is set to the following value:

[EINVAL] The arg parameter is an illegal value.

I_UNLINK

Disconnects the two streams specified by fildes and arg.

fildes The file descriptor of the stream connected to the multiplexing driver.

arg The multiplexor ID number that was returned by the I_LINK.

If arg is MUXID_ALL, then all streams which were linked to fildes are disconnected. As in I_LINK, this
command requires the multiplexing driver to acknowledge the unlink.

On failure, the errno is set to one of the following values:

[ENXIO] A hangup was received on fildes.

[ETIME] A timeout occurred before an acknowledgement message was received at the stream head.

[EINVAL] The arg is an invalid multiplexor ID number, or fildes is already linked under a
multiplexing driver.

An I_UNLINK IOCTL can also fail if it is waiting for the multiplexor to acknowledge the unlink request and an
error (M_ERROR) message, or hangup (M_HANGUP) is received at the stream head for fildes. In addition, an
error can be returned in M_IOCACK or M_IOCNAK message. When this occurs, the I_UNLINK IOCTL fails with
errno set to the value in the message.
Appendix A162

B STREAMS Utilities Supported by HP-UX
This Appendix deals with the STREAMS utilities supported by HP-UX. STREAMS utility routines are used
to perform specific operations/functions in module and driver development. The streams utility routines are
listed in alphabetical order.
Appendix B 163

STREAMS Utilities Supported by HP-UX
NAME
adjmsg () – Trim bytes in a message.

SYNOPSIS

#include <sys/stream.h>

 int adjmsg (mblk_t *mp , int len);

PARAMETERS
mp Pointer to a message block in a message. This block will be treated as the start of the

message.

len The number of bytes to be removed.

DESCRIPTION
adjmsg() trims a specific number of bytes from either the head or tail of the message pointed by mp. If len is
greater than 0, adjmsg() trims len bytes from the beginning of the message starting with the first message
block. If len is less than 0, then adjmsg ()removes len bytes from the end of the message block. No operation
is performed for 0 len bytes.

adjmsg() only trims bytes across message blocks of the same message type. It fails if mp points to a message
containing fewer than len bytes of the same message type starting at the message block pointed to by mp. The
message type is determined by the type of the first message block pointed to by mp.

RETURN VALUES
adjmsg() returns 1 upon successful execution, and 0 on failure.

CONSTRAINTS
adjmsg() can be called from interrupt or thread context. Spinlocks can be held across a adjmsg() call.
Appendix B164

STREAMS Utilities Supported by HP-UX
NAME
allocb () – Attempts to allocate a new message block.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *allocb (int size, int pri);

ARGUMENTS
size The number of bytes in the message block.

pri This field is no longer in use. It is provided for portability.

DESCRIPTION
The allocb() utility tries to allocate a message block with the requested data buffer. If the memory is not
available, it will return with a NULL pointer.

RETURN VALUES
On success, allocb() returns a pointer to a message block of type M_DATA containing the data buffer of the
requested size. On failure to allocate message block, it returns NULL pointer. The bufcall() can be used to
recover from allocb() failures.

CONSTRAINTS
allocb() can be called from thread or interrupt context. Spinlocks of STREAMS/UX user lock order can be
held across this call.
Appendix B 165

STREAMS Utilities Supported by HP-UX
NAME
backq () – Returns a pointer to the queue behind a specified queue.

SYNOPSIS

#include <sys/stream.h>

 queue_t *backq (queue_t *q);

ARGUMENTS
q Pointer to the head of the queue for a stream queue whose back queue is to be returned.

RETURN VALUES
backq() walks backwards from the specified q and returns a pointer to the queue whose q_next pointer is q.
If no such queue exists, backq() returns NULL.

CONSTRAINTS
backq() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B166

STREAMS Utilities Supported by HP-UX
NAME
bcanput () – Checks for the existence of a flow control condition in the queue for a specified priority
band.

SYNOPSIS

#include <sys/stream.h>

 int bcanput (queue_t *q, int pri);

ARGUMENTS
q Pointer to the queue.

pri Priority band for which the flow control check is requested.

DESCRIPTION
bcanput() routine tests if there is room left in the queue for the band specified by pri. If the queue does not
have a service procedure, it finds the queue that contains a service procedure in the direction of message flow.
It then tests to see if a message can be enqueued in the priority band specified by pri. If such a queue cannot
be found, bcanput() stops at the end of the stream.

If 0 is specified in pri, then bcanput() is equivalent to canput().

RETURN VALUES
Returns 1 if the message can be enqueued. If the message queue for the specified band is full, 0 is returned
and QB_WANTW is set in the queue that has the service procedure to automatically back-enable this queue.

CONSTRAINTS
bcanput() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 167

STREAMS Utilities Supported by HP-UX
NAME
bcanputnext () – Checks for the existence of flow control in the queue for the specified priority band.

SYNOPSIS

#include <sys/stream.h>

 int bcanputnext (queue_t *q, int pri);

ARGUMENTS
q Pointer to the queue.

pri Priority band for which the flow control check is requested.

DESCRIPTION
bcanputnext() routine tests if there is room left in the queue (q->q_next) for the band specified in pri. If
the queue does not have service procedure, then it finds the queue that contains service procedure in the
direction of message flow and tests to see if a message priority can be enqueued. But, if such a queue cannot
be found, then it stops at the end of the stream.

If 0 is specified in pri, then bcanputnext() is equivalent to canputnext().

RETURN VALUES
Returns 1 if the message can be enqueued. If the message queue for the specified band is full, 0 is returned
and QB_WANTW is set in the queue that has the service procedure to automatically back-enable the queue.

CONSTRAINTS
bcanputnext() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock
orders can be held across this call.
Appendix B168

STREAMS Utilities Supported by HP-UX
NAME
bufcall (), streams_bufcall () – Recover from allocb() failures.

SYNOPSIS

include <sys/stream.h>

 toid_t bufcall, (uint size, int prilev, (*func)(void *arg), void *art):
toid_t streams_bufcall(uint size, int prilev, bufcall_fcn_t func, bufcall_arg_t arg);

PARAMETERS
size Requested buffer size

prilev It is no longer used. This parameter is provided only for portability purposes.

func Address of function to be called when requested memory is available.

arg Pointer to argument list to be passed to the function pointed to by func.

DESCRIPTION
This function is used when an allocb() request fails, and the caller wants to be notified as and when the
memory becomes available. The streams_bufcall()/bufcall() will schedule the function pointed to by
func, to be invoked with an argument arg, whenever memory of at least size bytes is available and return a
non-zero identifier on successful scheduling. In effect, streams_bufcall()/bufcall() serves as a timeout
call of indeterminate length.

The non-zero identifier returned by streams_bufcall()/bufcall() may be passed to unbufcall() to cancel
the request.

RETURN VALUES
On success, streams_bufcall()/bufcall() returns a non-zero value that identifies the scheduling request.
On failure, streams_bufcall()/bufcall() returns 0 and the function pointed to by func will not be
executed.

CONSTRAINTS
streams_bufcall()/bufcall() can be called from thread or interrupt context. Only spinlocks of
STREAMS/UX user lock orders can be held across streams_bufcall()/bufcall(). STREAMS raises the
SPL before invoking the callback func and hence the callback func should not block.
Appendix B 169

STREAMS Utilities Supported by HP-UX
NAME
canenable () – Test whether queue can be enabled for running service procedure.

SYNOPSIS

#include <sys/stream.h>

 int canenable (queue_t *q);

PARAMETERS
q Pointer to a queue.

DESCRIPTION
This function checks whether a service procedure for the specified queue can be scheduled for running.

RETURN VALUES
It returns 1 if the queue has not been disabled from running a service procedure and returns 0 if the queue is
disabled.

CONSTRAINTS
canenable() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B170

STREAMS Utilities Supported by HP-UX
NAME
canput () – Test for available room in a queue.

SYNOPSIS

#include <sys/stream.h>
#include <sys/stropts.h>

int canput (queue_t *q);

PARAMETERS
q Pointer to a queue.

DESCRIPTION
canput() routine tests if there is room left in the queue. If the queue does not have a service procedure, then
it finds the queue that contains a service procedure in the direction of message flow and tests to see if
messages can be enqueued. If such a queue cannot be found it stops at the end of the stream.

RETURN VALUES
Returns 1 if the message can be enqueued. If the message queue is full, 0 is returned and QWANTW is set in the
queue that has the service procedure, to automatically back-enable this queue.

CONSTRAINTS
canput() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B 171

STREAMS Utilities Supported by HP-UX
NAME
canputnext () – Checks for the flow control conditions in a stream.

SYNOPSIS

#include <sys/stream.h>

 int canputnext (queue_t *q);

PARAMETERS
q Pointer to a queue.

DESCRIPTION
canputnext() routine tests if there is room left in the queue (q->q_next). If the queue does not have a
service procedure, then it finds the queue that contains service procedure in the direction of message flow
starting at q->q_next and tests to see if a message priority can be enqueued. If such a queue cannot be found,
then it stops at the end of the stream.

RETURN VALUES
Returns 1 if the message can be enqueued. If the message queue for the specified band is full, 0 is returned
and QWANTW is set in the queue that has the service procedure, thereby this queue is automatically
back-enabled

CONSTRAINTS
canputnext() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock
order can be held across this call
Appendix B172

STREAMS Utilities Supported by HP-UX
NAME
cmn_err () – Display a message on the console and optionally panic the system.

SYNOPSIS

#include <sys/cmn_err.h>

 void cmn_err(int level, char *format...);/* args */

PARAMETERS
level Severity of the error condition. Takes one of the following values:

CE_CONT Used to continue a previous message or to display an informative message
not connected with an error.

CE_NOTE To display the message preceded with NOTICE:. This is used to report the
system events that do not necessarily require action, but may interest to
system administrator.

CE_WARN To display the message preceded with WARNING:. This message is used to
report the system events that require action.

CE_PANIC To display a message preceded with panic: and panic the system. The
production code should never panic the system.

format The message to be displayed. The message is always sent to both the system console and
kernel buffer. If the first character specified in the message is an exclamation point (“!”) or
circumflex (“^”), cmn_err() ignores it.

The functionality of cmn_err() is similar to fprintf() and the valid conversion
specifications are: %c, %d, %o, %x, %s and %u.

DESCRIPTION
The cmn_err always sends the message to both the system console and circular kernel buffer. The circular
buffer is called msgbuf. The HP-UX msgbuf is a fixed size and can be viewed using the dmesg command or the
kwdb debugger tool.

RETURN VALUES
None

CONSTRAINTS
cmn_err() can be called from thread or interrupt context. Spinlocks can be held across this call. If level is
CE_PANIC the system will panic.
Appendix B 173

STREAMS Utilities Supported by HP-UX
NAME
copyb () – Creates a copy of a specified message block.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *copyb (mblk_t *mp);

PARAMETERS
mp Pointer to message block from which data is to be copied.

DESCRIPTION
copyb() calls allocb() to allocate a new message. The new block will be at least as large as the block being
copied. The data between the b->rptr and b->wptr in the source message block is copied into the newly
allocated message block, and these pointers in the new message block are given the same offset values they
had in the original message block.

RETURN VALUES
copyb()returns a pointer to the newly allocated message block when successful, or a NULL pointer when
message block allocation fails.

CONSTRAINTS
copyb() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B174

STREAMS Utilities Supported by HP-UX
NAME
copymsg () – Makes a copy of a specified message.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *copymsg (mblk_t *mp);

PARAMETERS
mp Pointer to message to be copied.

DESCRIPTION
This function uses the copyb() utility to allocate and then copy message blocks from the message pointed by
mp. It then forms the new message by appropriately linking the new message blocks together via b_cont
pointer.

RETURN VALUES
copymsg() returns a pointer to the newly created message if successful, and a NULL pointer upon failure.

CONSTRAINTS
copymsg() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 175

STREAMS Utilities Supported by HP-UX
NAME
datamsg () – Checks to see if a specified message type is a data message.

SYNOPSIS

#include <sys/stream.h>

 int datamsg (unsigned char type);

PARAMETERS
type Type of the message to be tested.

DESCRIPTION
This function is typically invoked with the message type parameter mp->b_datap->db_type, where mp is a
message pointer. This utility checks if it is a data message type: M_DATA, M_DELAY, M_PROTO or M_PCPROTO.

RETURN VALUES
datamsg() returns 1 if the message is a data message, and 0 otherwise.

CONSTRAINTS
datamsg() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B176

STREAMS Utilities Supported by HP-UX
NAME
drv_getparm () – Get kernel information.

SYNOPSIS

#include <sys/stream.h>

 int drv_getparm (unsigned long parm, unsigned long *value_p);

PARAMETERS
parm A kernel parameter of: LBOLT, PPGRP, UPROCP, PPID, PSID, TIME, or UCRED.

value_p A pointer to the address to put the result field into.

DESCRIPTION
Return the value of the parameter in parm.

RETURN VALUES
drv_getparm() returns 0 if the parm is recognized or -1 if not.

CONSTRAINTS
drv_getparm() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B 177

STREAMS Utilities Supported by HP-UX
NAME
drv_priv () – Get driver privilege.

SYNOPSIS

#include <sys/stream.h>

 int drv_priv (cred_t * cr);

PARAMETERS
cr A pointer to a struct cred_t.

DESCRIPTION
Determine if the user has the correct credentials to perform a function.

RETURN VALUES
drv_priv() returns 0 if the caller has super user privilege otherwise EPERM.

CONSTRAINTS
drv_priv() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B178

STREAMS Utilities Supported by HP-UX
NAME
dupb () – Pointer to the message block, which is to be duplicated.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *dupb (mblk_t *mp);

PARAMETERS
mp Pointer to message block descriptor that will be duplicated.

DESCRIPTION
dupb() allocates a new message block structure, and copies into it the message block structure pointed by mp.
It does not copy the data buffer. The data block pointer for the newly allocated message block is set to point to
the same data block as the original message block. The reference count (db_ref) in the data block descriptor
is incremented.

When the db_ref count of data block descriptor is greater than 1, then STREAMS module/driver must not
modify the contents of the data buffer. If the data has to be modified, then copyb() should be used to create a
new message block, and only the new message block should be modified.

RETURN VALUES
dupb() returns a pointer to the newly created message block structure if successful, and a NULL pointer
upon failure.

CONSTRAINTS
dupb() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can be
held across this call.
Appendix B 179

STREAMS Utilities Supported by HP-UX
NAME
dupbn () – Pointer to the message block, which is to be duplicated n times.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *dupbn (mblk_t *mp, int n);

PARAMETERS
mp Pointer to message block descriptor that will be duplicated.

n Number of duplicates.

DESCRIPTION
dupbn() allocates a new message block structure, and copies into it the message block structure pointed by
mp. It does not copy the data buffer. The data block pointer for the newly allocated message block is set to
point to the same data block as the original descriptor. The reference count (db_ref) in the data block
descriptor is incremented.

When the db_ref count of data block descriptor is greater than 1, then STREAMS module/driver must not
modify the contents of the data buffer. If the data has to be modified, then copyb() should be used to create a
new message block, and only the new message block should be modified.

RETURN VALUES
dupbn() returns a pointer to the newly created message block structure if successful, and a NULL pointer
upon failure.

CONSTRAINTS
dupbn() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B180

STREAMS Utilities Supported by HP-UX
NAME
dupmsg () – Duplicates a message.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *dupmsg (mblk_t *mp);

PARAMETERS
mp Pointer to a message block, which is to be duplicated.

DESCRIPTION
This function calls dupb() to duplicate all message block descriptors starting at mp, and then links the
message block descriptors to form a new message. It does not copy data buffers. Since dupb() is used to
duplicate message block descriptors, the relevant fields in the message block descriptors are initialized as
described in the section on dupb().

RETURN VALUES
dupmsg() returns a pointer to the message block on success, and a NULL pointer upon failure.

CONSTRAINT
dupmsg() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B 181

STREAMS Utilities Supported by HP-UX
NAME
enableok () – Allows the service procedure for the specified queue to be scheduled.

SYNOPSIS

#include <sys/stream.h>

 void enableok(q);

PARAMETERS
q Queue pointer.

DESCRIPTION
This function allows the service procedure for a queue to be scheduled. It does not actually schedule the
service procedure. It simply undoes the effect of a previously executed noenable() function on this queue. If
the queue was already enabled for servicing, enableok() has no effect.

RETURN VALUES
None

CONSTRAINTS
enableok() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B182

STREAMS Utilities Supported by HP-UX
NAME
esballoc () – Allocate a message block using a caller specified buffer.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *esballoc(uchar_t *base, int size, int pri, frtn_t *fr_rtnp);

PARAMETERS
base Pointer to caller data buffer.

size Size of the data block.

pri Priority of data block. It is no longer used. It is provided only the portability.

fr_rtnp Pointer to free_rtn structure.

DESCRIPTION
esballoc() creates a message block, and attaches a caller-supplied data buffer to the data block and copies
the contents of the fr_rtn structure into the message block. esballoc() sets db_base, b_rptr, and b_wptr
fields to base (data buffer size) and db_lim to base+size. When freeb() is called to free the message, on the
last reference to the message, the caller’s free routine, specified by the free_func field in fr_rtnp structure
is called with one argument, specified by the free_arg field, to free the data buffer.

The free routine passed to esballoc() can call STREAMS/UX utilities similar to the ones called by put or
service procedure. Also, a free routine can safely access the same data structures as the put or service
procedure of the calling module or driver. However, HP-UX does not block interrupts from all STREAMS/UX
devices while the free routine runs.

RETURN VALUES
The success of esballoc() depends on the success of allocb() and that base, size, and fr_rtn are not
NULL, in which case esballoc() returns a pointer to a message block. If an error occurs, esballoc()
returns NULL.

CONSTRAINTS
esballoc() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 183

STREAMS Utilities Supported by HP-UX
NAME
esbbcall () – Call a function when a caller-supplied buffer can be allocated.

SYNOPSIS

#include <sys/stream.h>

 toid_t esbbcall(int pri, void (*bufcall_fcn_t), long bufcall_arg_t);

PARAMETERS
pri It is no longer used. This parameter is provided only for portability purposes.

bufcall_fcn_t Address of function to be called when requested memory is available.

bufcall_arg_t Pointer to argument list to be passed to the function pointed to by bufcall_fcn_t.

DESCRIPTION
This function is used when an esballoc() request fails, and the caller notified as and when the memory
becomes available. In effect, esbbcall() invokes the function pointed to by bufcall_fcn_t whenever
memory becomes available.

RETURN VALUES
On success, esbbcall() returns a non-zero value that identifies the scheduling request. On failure,
esbbcall() returns 0 and the caller supplied bufcall_fcn_t function will not be executed.

CONSTRAINTS
esbbcall() can be called from thread or interrupt context. Spinlocks of STREAMS/UX user lock orders can
be held across esbbcall(). STREAMS raises the SPL level before invoking the callback function
bufcall_fcn_t hence, the callback function should not block.
Appendix B184

STREAMS Utilities Supported by HP-UX
NAME
flushband () – Flushes the messages specified in the priority band.

SYNOPSIS

#include <sys/stream.h> #include <sys/stropts.h>

 void flushband (queue_t *q, unsigned char pri, int flag);

PARAMETERS
q Queue pointer

pri Priority band to be flushed

flag Determines the type of the messages to be flushed. Valid flag values are:

FLUSHDATA Flush data messages only (M_DATA, M_PROTO, M_PCPROTO and M_DELAY).

FLUSHALL Flush all messages.

DESCRIPTION
flushband() allows modules and drivers to flush messages from a specified priority band. A pri value of 0
will flush ordinary messages. Note that as a result of flushing messages, if the messages in the band fall
below the band’s low watermark, and if a previous module was attempting to write to this queue, then the
previous service procedure will be enabled.

RETURN VALUES
None

CONSTRAINTS
flushband() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 185

STREAMS Utilities Supported by HP-UX
NAME
flushq () – Flushes the specified queue.

SYNOPSIS

#include <sys/stream.h>

 void flushq(queue_t *q, int flag);

PARAMETERS
q Queue pointer.

flag Determines messages to be flushed. Valid flag values are:

FLUSHDATA Flush data messages only (M_DATA, M_PROTO, M_PCPROTO, M_DELAY).

FLUSHALL Flush all messages.

DESCRIPTION
flushq() uses the freemsg() function to free each relevant message in the queue, based on the flag
parameter value. If and when the queue message length falls below the low watermark and if a previous
service procedure wants to write to this queue, the previous queue’s service procedure is enabled.

RETURN VALUES
None

CONSTRAINTS
flushq() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B186

STREAMS Utilities Supported by HP-UX
NAME
freeb () – Deallocates a message block.

SYNOPSIS

#include <sys/stream.h>

 void freeb (mblk_t *mp);

PARAMETERS
mp Pointer to the message block to be deallocated.

DESCRIPTION
freeb() deallocates a message block, and if the db_ref count of the datab structure it is pointing to is
greater than 1, it decrements the db_ref count by 1 and deallocates only the message block descriptor. If the
db_ref count of the data block is 1, freeb() deallocates the message block descriptor and the data buffer.

If the message block was created via the esballoc() call, and if db_ref is 1, freeb() notifies the driver by
invoking the free_func as pointed in the free_rtn structure. It waits for the driver to complete the
free_rtn operation, and then proceeds to release the message block and data block.

RETURN VALUES
None

CONSTRAINTS
freeb() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B 187

STREAMS Utilities Supported by HP-UX
NAME
freemsg () – Frees a STREAMS message.

SYNOPSIS

#include <sys/stream.h>

 void freemsg (mblk_t *mp);

PARAMETERS
mp Pointer to the message to be freed.

DESCRIPTION
This function calls freeb() to free all message blocks and corresponding data blocks and data buffers
associated with the message, beginning at mp.

RETURN VALUES
None

CONSTRAINTS
freemsg() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B188

STREAMS Utilities Supported by HP-UX
NAME
freezestr () – Freeze the state of a queue.

SYNOPSIS

#include <sys/stream.h>

 pl_t freezestr(queue_t *q);

PARAMETERS
q Pointer to a message queue.

DESCRIPTION
For modules/drivers configured at a synchronization level other than SQLVL_NOSYNC, STREAMS/UX uses a
different mechanism to protect the queues. The freezestr() utility in these modules/drivers returns the
current interrupt priority level, and is only provided to make porting code from SVR4 MP easier.

For modules/drivers configured at the synchronization level SQLVL_NOSYNC, freezestr() freezes the state of
the queue specified by q. Freezing a queue blocks everyone except the caller from adding or removing
messages from the queue.

SQLVL_NOSYNC modules and drivers must freeze the queue before calling insq(), rmvq(), strqget(), and
strqset(). Utilities like getq(), putq(), putbq(), flushq(), qsize() etc must not be called by the caller of
freezestr(), while the queue is frozen, as they indirectly freeze the queue to ensure atomicity of queue
manipulation. Calling freezestr() to freeze a queue that is already frozen by the same caller will result in
deadlock.

Freezing the queue does not automatically stop all the functions that are already running in the stream.
Instead, these functions will continue to run until they attempt to perform an operation that changes the
state of the frozen queue. Then, they will be forced to wait for the queue to be unfrozen by a call to
unfreezestr().

It is the responsibility of the caller freezing the queue via freezestr(), to also unfreeze the queue by calling
unfreezestr() after the required operations have been performed on the frozen queue.

freezestr() should be used sparingly. It is rarely necessary to freeze a queue as module/drivers do not need
to manipulate the queues directly. Freezing a queue could have a significant negative impact on performance.

RETURN VALUES
The current interrupt priority level.

CONSTRAINTS
freezestr() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 189

STREAMS Utilities Supported by HP-UX
NAME
getadmin () – Returns a pointer to the module administration function.

SYNOPSIS

#include <sys/types.h>
#include <sys/stream.h>

 int (*getadmin(ushort_t mid))();

PARAMETERS
mid Module ID of module/driver, for which the administration function pointer is needed.

DESCRIPTION
getadmin() returns a pointer to the module administration function. The module administration function is
pointed to by qqadmin, a member of the qinit structure. The module identifier is available in the mi_idnum
field of the module_info structure. The qi_minfo field of the qinit structure points to the module_info
structure. Note that while the module_info information may be available in both the read- and write-side
qinit structures, but getadmin() returns the admin() function pointer from read-side qinit structure.

RETURN VALUES
getadmin returns a pointer to the module administration function if a module or driver is present with the
specified identifier (mid). It returns NULL if no module or driver is present with that identifier.

CONSTRAINTS
getadmin() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B190

STREAMS Utilities Supported by HP-UX
NAME
getmid () – getmid returns the module identifier for a specified module or driver name.

SYNOPSIS

#include <sys/types.h>
#include <sys/stream.h>

 ushort_t getmid (char *name);

PARAMETERS
name Name of module/driver.

DESCRIPTION
This function looks into the module_info structure for the module/driver as specified in name and retrieves
the mi_idnum value. Note that while the module_info information may be available in both the read-side and
write-side qinit structures, but getadmin() looks only at the read-side qinit.

RETURN VALUES
getmid() returns the module identifier if a module/driver is found with the specified name, and a 0 if no
matching module name is found.

CONSTRAINTS
getmid() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B 191

STREAMS Utilities Supported by HP-UX
NAME
getq () – gets the next message from the head of the queue.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *getq(queue_t *q);

PARAMETERS
q Pointer to the queue from which the message is to be retrieved.

DESCRIPTION
getq() is used typically by the service procedure of a module/driver to retrieve the messages from the
message queue.

RETURN VALUES
If there is a message left in the queue to be retrieved, getq returns a pointer to that message. If there are no
messages in the queue, then getq() returns NULL and the queue is marked with QWANTR so that next time
when a message is placed on the queue, it will be scheduled for service. If the data in the enqueued messages
in the queue drops below the low water mark then queue behind the current queue is scheduled for service, if
the backq previously attempted to place a message and failed.

CONSTRAINTS
getq() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can be
held across this call.
Appendix B192

STREAMS Utilities Supported by HP-UX
NAME
insq () – To insert a message into a queue.

SYNOPSIS

#include <sys/stream.h>

 int insq (queue_t *q, mblk_t *mp, mblk_t *newmp);

PARAMETERS
q Queue pointer.

mp Pointer to message before which the new message is to be inserted.

newmp Pointer to the new message to be inserted.

DESCRIPTION
The new message is inserted before the message pointed to by mp. The new message will be placed in an
appropriate priority order, i.e., insq() will make an attempt to place the new message before, and as close as
possible to the message pointed to by mp. If the new message priority does not allow the message to be placed
before mp, insq() will fail. Further, the mp pointer needs to be a valid message pointer in the queue, otherwise
the results will be unpredictable.

A queue belonging to a module/driver with a synchronization level of SQLVL_NOSYNC may be simultaneously
manipulated by multiple threads. Therefore, the queue specified by q must be frozen by calling freezestr()
before calling insq(), rmvq(), strqget(), and strqset(). A call to unfreezestr() must be made to
unfreeze the queue after the above operations are complete.

RETURN VALUES
insq() returns a 1 on success and a 0 on failure.

CONSTRAINTS
insq() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can be
held across this call.
Appendix B 193

STREAMS Utilities Supported by HP-UX
NAME
linkb () – Concatenates two messages.

SYNOPSIS

#include <sys/stream.h>

 void linkb (mblk_t *mp1, mblk_t *mp2);

PARAMETERS
mp1 Pointer to first message block.

mp2 Pointer to the second message block that will be linked to mp1.

DESCRIPTION
linkb() links message mp2 to message mp1. Data blocks and data buffers remain untouched. The b_cont
pointer from the last message block of the message of which mp1 is the first message block is updated to point
to message block mp2.

RETURN VALUES
None

CONSTRAINTS
linkb() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B194

STREAMS Utilities Supported by HP-UX
NAME
LOCK () – Acquire a spinlock.

SYNOPSIS

#include <sys/stream.h>

 spl_t LOCK (lock_t *lockptr, spl_t prilev);

PARAMETERS
lockptr Pointer to lock to be acquired.

prilev Priority level to be set for the calling interrupt, while it holds the lock. In STREAMS/UX
this parameter is ignored.

DESCRIPTION
LOCK acquires the lock specified by lockp. If the lock is not available the caller thread will busy wait until the
lock becomes available.

RETURN VALUES
Returns the current spl level.

CONSTRAINTS
LOCK() can be called from thread or interrupt context. Spinlocks can be held across this call, provided lock
orders are used correctly.
Appendix B 195

STREAMS Utilities Supported by HP-UX
NAME
LOCK_ALLOC () – Allocates spinlock structure.

SYNOPSIS

#include <sys/stream.h> #include <sys/semglobal.h>

 lock_t *LOCK_ALLOC (uchar_t hierarchy, spl_t min_prilev, lkinfo_t *lkinfoptr, int flag);

PARAMETERS
hierarchy Hierarchy determines the order in which this lock is to be acquired. The STREAMS/UX

LOCK_ALLOC() accepts the following hierarchy of parameter values. These are reserved for
STREAMS/UX modules and drivers.

• STREAMS_USR1_LOCK_ORDER

• STREAMS_USR2_LOCK_ORDER

• STREAMS_USR3_LOCK_ORDER

min_prilev This value is ignored in STREAMS/UX.

lkinfoptr Pointer to the lkinfo structure. lk_name in the lkinfo structure (lkinfo_t) contains the
name of the lock.

flag KM_SLEEP must be set.

DESCRIPTION
LOCK_ALLOC() is used to allocate and initialize a lock. It makes use of the native HP-UX alloc_spinlock()
primitive.

RETURN VALUES
LOCK_ALLOC() returns a pointer to the allocated lock on success. The calling thread will block, if the memory
is not available. If KM_SLEEP is not set, and memory is not available, LOCK_ALLOC() returns NULL.

CONSTRAINTS
LOCK_ALLOC() must be called from thread context. Spinlocks must not be held across the calls to
LOCK_ALLOC().
Appendix B196

STREAMS Utilities Supported by HP-UX
NAME
LOCK_DEALLOC () – Deallocates an acquired lock.

SYNOPSIS

#include <sys/stream.h>

 void LOCK_DEALLOC(lock_t *lockptr);

PARAMETERS
lockptr Pointer to the lock that is to be deallocated.

RETURN VALUES
None

CONSTRAINTS
LOCK_DEALLOC() can be called from thread or interrupt context. Only spinlocks with STREAMS/UX user lock
order can be held across this call.
Appendix B 197

STREAMS Utilities Supported by HP-UX
NAME
msgdsize () – Gets the number of data bytes in a message.

SYNOPSIS

#include <sys/stream.h>

 int msgdsize (mblk_t *mp);

PARAMETERS
mp Pointer to the message.

DESCRIPTION
msgdsize() returns the total number of bytes in a message block of type M_DATA.

RETURN VALUES
msgdsize() returns the number of bytes of data in the message.

CONSTRAINTS
msgdsize() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B198

STREAMS Utilities Supported by HP-UX
NAME
msgpullup () – Concatenates a specified number of bytes from a message into a new message.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *msgpullup (mblk_t *mp, int len);

PARAMETERS
mp Pointer to the message.

len Number of bytes to be concatenated. If len is set to -1, all data bytes are concatenated.

DESCRIPTION
msgpullup concatenates and aligns the first len data bytes of the message pointed to by mp, copying the data
into a new message. All message blocks that remain in the original message once len bytes have been
concatenated and aligned (including any partial message blocks) are copied and linked to the end of the new
message, so that the length of the new message is equal to the length of the original message. The original
message is unaltered.

If len equals -1, all data are concatenated. If len bytes of the same message type cannot be found,
msgpullup() fails and returns NULL.

RETURN VALUES
Upon success, msgpullup() returns a pointer to the new message. If the number of data bytes in the original
message is less than len bytes or if memory allocation failures occur, msgpullup fails and returns NULL.

CONSTRAINTS
msgpullup can be called from thread or interrupt context. Only spinlocks with STREAMS/UX user lock order
can be held across this call.
Appendix B 199

STREAMS Utilities Supported by HP-UX
NAME
noenable () – Prevents a queue from being scheduled.

SYNOPSIS

#include <sys/stream.h>

 void noenable (queue_t *q);

PARAMETERS
q Pointer to a queue.

DESCRIPTION
This function prevents the scheduling of the service procedure for the queue pointed by q. The noenable()
does not prevent the queue’s service procedure from being scheduled when a high priority message is
enqueued, or by an explicit call to qenable.

enableok() can be used to schedule the service procedure, if it was previously disabled via noenable().

RETURN VALUES
None

CONSTRAINTS
noenable() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B200

STREAMS Utilities Supported by HP-UX
NAME
OTHERQ () – Returns the pointer to queue’s partner queue.

SYNOPSIS

#include <sys/stream.h>

 queue_t *OTHERQ (queue_t *q);

ARGUMENTS
q Pointer to the queue.

DESCRIPTION
The OTHERQ() returns a pointer to the other of the queue-pair structures that make up a STREAMS
module/driver. If q points to the read queue, the write queue will be returned and vice versa.

RETURN VALUES
OTHERQ() returns a pointer to a queue’s partner.

CONSTRAINTS
OTHERQ() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B 201

STREAMS Utilities Supported by HP-UX
NAME
pcmsg () – Checks if a specified message type is a priority control message.

SYNOPSIS

#include <sys/stream.h>

 int pcmsg (uchar_t type);

PARAMETERS
type The type of the message to be tested.

DESCRIPTION
pcmsg() is used by put and service procedures of a module or driver. Typical use of pcmsg is for a put
procedure to determine whether to process the message immediately or to place it on the queue for deferred
processing.

The message type of a message is available in the db_type field of the datab structure.

RETURN VALUES
pcmsg returns a 1 if the type is high priority (db_type >= QPCTL). All other message types cause it to return
a 0.

CONSTRAINTS
pcmsg() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B202

STREAMS Utilities Supported by HP-UX
NAME
pullupmsg () – pullupmsg concatenates multiple message blocks into a single message block.

SYNOPSIS

#include <sys/stream.h>

 int pullupmsg (mblk_t *mp, int len);

PARAMETERS
mp Pointer to message whose message blocks are to be concatenated.

len Number of bytes to be concatenated. If len = -1, all message blocks from the original
message are concatenated into a single message block.

DESCRIPTION
pullupmsg() concatenates and aligns the number of bytes as represented by len bytes stored in a complex
message mp. The pullupmsg only concatenates of same message type. If len is -1 then pullupmsg() will
concatenate and align the entire contents of all the messages into a single data block.

RETURN VALUES
pullupmsg returns 1 on success, and a 0 on failure.

CONSTRAINTS
pullupmsg() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 203

STREAMS Utilities Supported by HP-UX
NAME
put () – Calls a driver or module’s put procedure.

SYNOPSIS

#include <sys/stream.h>

 void put(queue_t *q, mblk_t *mp);

PARAMETERS
q Pointer to a queue.

mp Pointer to a message block.

DESCRIPTION
This function is called by modules and drivers to invoke their own put procedure (for the specified queue) to
operate on the specified message.

RETURN VALUES
None

CONSTRAINTS
put() can be called from thread or interrupt context. Spinlocks must not be held across calls to this function.
Appendix B204

STREAMS Utilities Supported by HP-UX
NAME
putbq () – Places a message back at the head of a queue.

SYNOPSIS

#include <sys/stream.h>

 int putbq (queue_t *q, mblk_t *mp);

PARAMETERS
q Pointer to the queue.

mp Pointer to the message.

DESCRIPTION
This function places the specified message at its assigned priority as close to the head of the queue as
possible. It is normally called by the service procedure for the queue, and is invoked when a canput() or
bcanput() call from the service procedure detects a flow control condition. All flow control parameters for the
queue are updated. Note that high priority messages should not be placed back on a queue. They should be
processed in spite of flow control.

RETURN VALUES
putbq() returns a 1 on success and a 0 on failure.

CONSTRAINTS
putbq() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B 205

STREAMS Utilities Supported by HP-UX
NAME
putctl () – Send a control message to the queue.

SYNOPSIS

#include <sys/stream.h>

 int putctl(queue_t *q, int type);

PARAMETERS
q The queue to which the message is sent.

type The type of control message to be allocated and passed to the put procedure of the queue.

DESCRIPTION
This function allocates a message block and assigns the specified control message type. Then it invokes the
put procedure for the specified queue with this newly allocated message. The putctl() returns an error if the
specified message type is M_DATA, M_PROTO or M_PCPROTO, or if memory allocation fails.

RETURN VALUES
putctl returns 1 on success and 0 on failure.

CONSTRAINTS
putctl() can be called from thread or interrupt context. Spinlocks must not be held across the calls to
putctl() function.
Appendix B206

STREAMS Utilities Supported by HP-UX
NAME
putctl1 () – Send a control message with one data byte.

SYNOPSIS

#include <sys/stream.h>

 int putctl1 (queue_t *q, int type, int parm);

PARAMETERS
q Pointer to queue.

type The type of the control message to be passed to the queue.

DESCRIPTION
putctl1() works exactly like putctl() with the addition that it allows a 1-byte parameter to be part of the
control message. The parameter addition allows for stronger control message functionality.

RETURN VALUES
putctl returns 1 on success and 0 on failure.

CONSTRAINTS
putctl1() can be called from thread or interrupt context. Spinlocks must not be held across the calls to this
function.
Appendix B 207

STREAMS Utilities Supported by HP-UX
NAME
putctl2 () – Send a control message with two byte data.

SYNOPSIS

#include <sys/stream.h>

 int putctl2 (queue_t *q, int type, int parm1, int parm2);

PARAMETERS
q Pointer to the queue to which the control message is to be sent.

type Message type

parm1 & parm2 Two 1-byte data parameters

DESCRIPTION
putctl2() is an enhanced version of putctl1(). It allows for two 1-byte parameters to accompany the
control message. Processing and error checking remains the same as putctl() or putctl1().

RETURN VALUES
putctl2 returns 1 on success and zero on failure.

CONSTRAINTS
putctl2() can be called from thread or interrupt context. Spinlocks must not be held across this call.
Appendix B208

STREAMS Utilities Supported by HP-UX
NAME
putnext () – To pass a message to the next queue.

SYNOPSIS

#include <sys/stream.h>

 int putnext (queue_t *q, mblk_t *mp);

PARAMETERS
q Pointer to the queue from which this message is to be sent.

mp Pointer to the message block to be sent.

DESCRIPTION
putnext() is used for passing messages to the next queue in a stream. This utility calls put procedure
associated with the next queue (q->q_next) in a stream and passes it a message block pointer as an
argument.

RETURN VALUES
None

CONSTRAINTS
putnext() can be called from thread or interrupt context. Spinlocks must not be held across this call.
Appendix B 209

STREAMS Utilities Supported by HP-UX
NAME
putnextctl () – Send control message with one byte parameter to the next queue.

SYNOPSIS

#include <sys/stream.h>

 int putnextctl1 (queue_t *q, int type, int parm);

PARAMETERS
q Pointer to the queue from which the control message is to be sent.

type Type of the control message.

parm 1-byte data parameter.

DESCRIPTION
putnextctl1() behaves exactly like putnextctl() with the addition of a 1-byte parameter to the control
message.

RETURN VALUES
On successful it returns 1. putnext1() returns 0 if, either the type specified is M_DATA, M_PROTO, or
M_PCPROTO, or a message block cannot be allocated.

CONSTRAINTS
putnextctl1() does not block and can be called from thread or interrupt context. Spinlocks must not be held
across this call.
Appendix B210

STREAMS Utilities Supported by HP-UX
NAME
putnextctl2 () – Send control message with two byte parameter to the next queue.

SYNOPSIS

#include <sys/stream.h>

 int putnextctl2 (queue_t *q, int type, int parm1, int parm2);

PARAMETERS
q Pointer to the queue from which the control message is being sent.

type Message type.

parm1 & parm2 Two one byte parameters.

DESCRIPTION
putnextctl2() behaves exactly like putnextctl1(), except that it allows for two 1-byte parameters in the
control message instead of one.

RETURN VALUES
putnextctl2() fails and returns 0 if, either the type specified is a M_DATA, M_PROTO, or M_PCPROTO,or a
message block cannot be allocated. It returns 1 if successful.

CONSTRAINTS
putnextctl2() does not block and can be called from thread or interrupt context. Spinlocks must not be held
across this call.
Appendix B 211

STREAMS Utilities Supported by HP-UX
NAME
putq () – Enqueue message on the queue for deferred processing.

SYNOPSIS

#include <sys/stream.h>

 int putq (queue_t *q, mblk_t *mp);

PARAMETERS
q Pointer to the queue in which the message is to be put.

mp Pointer to the message.

DESCRIPTION
putq() is typically used by put procedure for deferred processing of the messages. The putq() enqueues the
message mp in the message queue based on its priority. The service procedure is enabled if a high priority
message is enqueued and QNOENAB is unset. Flow control parameters are updated for this queue.

RETURN VALUES
putq() returns 1 on success and 0 on failure.

CONSTRAINTS
putq() can be called from thread or interrupt context. Spinlocks of STREAMS/UX user lock order can be held
across this call, and should not pass driver’s read queue or lower mux’s write queue.
Appendix B212

STREAMS Utilities Supported by HP-UX
NAME
qenable () – Schedule service procedure to run.

SYNOPSIS

#include <sys/stream.h>

 void qenable (queue_t *q);

PARAMETERS
q Pointer to the queue whose service procedure is to be scheduled.

DESCRIPTION
qenable() places the specified queue in a linked list of queues whose corresponding service procedure is to be
executed by the STEAMS scheduler. When invoked, this function ignores the noenable() status of the queue,
and schedules the service procedure.

RETURN VALUES
None

CONSTRAINTS
qenable() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 213

STREAMS Utilities Supported by HP-UX
NAME
qprocsoff () – Disable put and service procedures.

SYNOPSIS

#include <sys/stream.h>

void qprocsoff(queue_t *q);

PARAMETERS
q Pointer to a read queue.

DESCRIPTION
STREAMS/UX only provides stubs which are no-ops for qprocson and qprocsoff to make porting easier.

RETURN VALUES
None

CONSTRAINTS
None
Appendix B214

STREAMS Utilities Supported by HP-UX
NAME
qprocson () – Enable put and service procedures.

SYNOPSIS

#include <sys/stream.h>

void qprocson(queue_t *q);

PARAMETERS
q Pointer to a read queue.

DESCRIPTION
STREAMS/UX only provides stubs which are no-ops for qprocson and qprocsoff to make porting easier.

RETURN VALUES
None

CONSTRAINTS
None
Appendix B 215

STREAMS Utilities Supported by HP-UX
NAME
qreply () – Sends a message back in a opposite direction.

SYNOPSIS

#include <sys/stream.h>

void qreply (queue_t *q, mblk_t *mp);

PARAMETERS
q Pointer to queue from which a message is to be passed in the opposite direction.

mp Pointer to message to be passed as a reply.

DESCRIPTION
This function passes a message back in the opposite direction from the currently processing flow. A common
use for qreply() is seen in the way positive or negative acknowledgments are sent in response to M_IOCTL
messages received by a module or driver.

RETURN VALUES
None

CONSTRAINTS
qreply() can be called from thread or interrupt context. Spinlocks must not be held across calls to qreply().
Appendix B216

STREAMS Utilities Supported by HP-UX
NAME
qsize () – Returns the number of messages in a queue.

SYNOPSIS

#include <sys/stream.h>

 int qsize (queue_t *q);

PARAMETERS
q Pointer to queue.

RETURN VALUES
This function returns the number of messages in the specified queue. If the message queue is empty, 0 is
returned.

CONSTRAINTS
qsize() can be called from thread or interrupt context. Spinlocks of STREAMS/UX user lock order can be
held across calls to this function for modules/drivers configured with a synchronization level of
SQLVL_NOSYNC. For modules/drivers configured with any other synchronization level, spinlocks that are not
necessarily of the STREAMS/UX user lock order, can be held across calls to this function.
Appendix B 217

STREAMS Utilities Supported by HP-UX
NAME
RD () – get a pointer to the read queue.

SYNOPSIS

#include <sys/stream.h>

 queue_t *RD(queue_t *q);

PARAMETERS
q Pointer to the queue whose read queue is to be returned.

DESCRIPTION
The RD() macro accepts a queue pointer, q, as argument and returns a pointer to the read queue of the same
module.

RETURN VALUES
The pointer to the read queue.

CONSTRAINTS
RD() can be called from thread or interrupt context. Spinlocks can be held across calls to this function.
Appendix B218

STREAMS Utilities Supported by HP-UX
NAME
rmvb () – Removes a message block from a message.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *rmvb (mblk_t *mp, mblk_t *bp);

PARAMETERS
mp Pointer to message from which message block is to be removed.

bp Pointer to message block targeted for removal.

DESCRIPTION
rmvb() removes the message block pointed to by bp from the message pointed to by mp, and returns a pointer
to the altered message. The message block is just removed from the message. It is the responsibility of the
module or driver to actually free the message block and other related structures, as appropriate.

RETURN VALUES
If the block removed was the last (or only) block on the message, rmvb() returns a NULL, otherwise it returns
a pointer to the altered message. If bp is not a valid block pointer for this message, rmvb() returns a -1.

CONSTRAINTS
rmvb() can be called from thread or interrupt context. Spinlocks can be held across calls to this function.
Appendix B 219

STREAMS Utilities Supported by HP-UX
NAME
rmvq () – Removes a message from a queue.

SYNOPSIS

#include <sys/stream.h>

 void *rmvq (queue_t *q, mblk_t *mp);

PARAMETERS
q Pointer to the queue from which a message is to be removed.

mp Pointer to the message targeted for removal.

DESCRIPTION
rmvq() removes a message pointed to by mp from the queue specified by q. All flow control parameters for the
queue are appropriately updated. If mp is not a valid message pointer for this queue, the results can
unpredictable.

A queue belonging to a module/driver with a synchronization level of SQLVL_NOSYNC may be simultaneously
manipulated by multiple threads. Therefore, the queue specified by q must be frozen by calling freezestr()
before calling insq(), rmvq(), strqget(), and strqset(). A call to unfreezestr() must be made to
unfreeze the queue after the above operations are complete.

RETURN VALUES
None

CONSTRAINTS
rmvq() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can be
held across this call.
Appendix B220

STREAMS Utilities Supported by HP-UX
NAME
SAMESTR () – Test if next queue is of the same type.

SYNOPSIS

#include <sys/stream.h>

 int SAMESTR(queue_t *q);

PARAMETERS
q Pointer to the queue.

DESCRIPTION
The SAMESTR() macro checks whether the next queue in a stream (if it exists) is of the same type (read/write)
as the current queue. This macro can be used to determine the midpoint in a STREAMS-based pipe or welded
streams where the read queue is linked to the write queue.

RETURN VALUES
SAMESTR() returns:

1 — if the next queue is of the same type as the current queue

0 — if the next queue does not exist or if it is not of the same type

CONSTRAINTS
SAMESTR() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B 221

STREAMS Utilities Supported by HP-UX
NAME
streams_delay () – Delay process execution for a specified number of clock ticks.

SYNOPSIS

#include <sys/stream.h>
#include <sys/strenv.h>

 void streams_delay(int ticks);

PARAMETERS
ticks The number of clock ticks to delay.

DESCRIPTION
streams_delay() causes the caller to sleep for at least the amount of time specified by ticks, which is in
units of clock ticks. The exact length of the delay is not guaranteed but can be an arbitrary amount longer
than requested due to the scheduling of other activity in the system.

RETURN VALUES
None

CONSTRAINTS
streams_delay() will block and so can be called from a thread context only. Spinlocks must not be held
across this function call.
Appendix B222

STREAMS Utilities Supported by HP-UX
NAME
streams_get_sleep_lock () – Obtain the sleep lock.

SYNOPSIS

#include <sys/stream.h>
#include <sys/strenv.h>

 lock_t *streams_get_sleep_lock(caddr_t event);

PARAMETERS
event Kernel address signifying an event for which the caller wishes to wait in sleep.

DESCRIPTION
streams_get_sleep_lock() should be called by modules and drivers in their open/close routines before
sleeping to prevent missing wakeups. After calling this function, the open or close can release spinlocks before
sleeping. Other processes cannot wakeup the open or close between the time it calls
streams_get_sleep_lock() and sleeps through streams_mpsleep().

Modules and drivers must not call the native HP-UX get_sleep_lock() primitive directly, because
STREAMS/UX needs to do some additional synchronization before invoking get_sleep_lock(). Therefore, if
they use get_sleep_lock(), modules and drivers must include <sys/strenv.h> (which redefines
get_sleep_lock to streams_get_sleep_lock), to use get_sleep_lock().

RETURN VALUES
streams_get_sleep_lock obtains a sleep spinlock, and returns a pointer to this lock.

CONSTRAINTS
streams_get_sleep_lock() can be called with a thread context only (that is from open/close routines).
Spinlocks can be held across this function call but should be released before the thread can sleep.
Appendix B 223

STREAMS Utilities Supported by HP-UX
NAME
streams_mpsleep () – Suspend process execution pending occurrence of an event.

SYNOPSIS

#include <sys/stream.h>
#include <sys/strenv.h>

int streams_mpsleep(caddr_t event, int pri, caddr_t mesg, int tmo, void *lockp, int flags);

PARAMETERS
event Kernel address signifying an event for which the caller wishes to wait.

pri Priority value the caller wishes to sleep at.

mesg Not used, provided for portability.

tmo Number of ticks after which the process executing needs to be resumed.

lockp A pointer to the lock if held by the driver/module using spinlock() API’s during this call.

flags Not used, provided for portability.

DESCRIPTION
streams_mpsleep() must be used by the drivers or modules in their open and close routines to sleep instead
of the native HP-UX sleep primitive. This function suspends the execution of a process to await the
occurrence of an event. The process that called streams_mpsleep() can be resumed by a call to wakeup()
with the same event specified as that used to call streams_mpsleep().

The address event, has no significance except that the same address must be passed to:

— streams_get_sleep_lock() to acquire the sleep lock before sleeping. (streams_mpsleep() will verify and
acquire the sleep lock if not already acquired by the driver or module when a call to this function is made.)

— wakeup() to resume the sleeping process

The value of the priority argument determines whether the sleep may be interrupted by signals. If the value
of priority is less than or equal to the value of the constant PZERO (defined in <sys/param.h>), the sleeping
process will not be awakened by a signal. If the value of priority is greater than PZERO, the process will wake
up prematurely (without a call to wakeup) upon receipt of a non-ignored, non-held signal and will normally
return 1 to the calling code.

Unlike the native HP-UX sleep, the caller can provide the duration of time in ticks (tmo) for which the process
execution needs to be suspended through this function.

If the lock specified by lockp is held by the caller on entry, it will be released in streams_mpsleep(), before
suspending the execution of the process. When the streams_mpsleep() returns to the caller, this lock will not
be held.

RETURN VALUES
streams_mpsleep() returns:

0 — if the caller woke up because of a call to wakeup ()

1 — if a priority value greater than PZERO is specified and the process was interrupted and woken up
prematurely.
Appendix B224

STREAMS Utilities Supported by HP-UX
ETIME — the process was woken up after tmo ticks elapsed.

CONSTRAINTS
streams_mpsleep() will block and so must only be called from the driver/module’s open or close routine.
Only spinlock specified by lockp and the sleep lock can be held on entry (these locks will be released by
streams_mpseleep()). Spinlocks (with the exception of those previously mentioned) cannot be held across
this call.
Appendix B 225

STREAMS Utilities Supported by HP-UX
NAME
streams_put () – Allows non-STREAMS code to safely call STREAMS/UX utilities.

SYNOPSIS

#include <sys/stream.h>

 void streams_put(streams_put_t func, queue_t *q, mblk_t *mp, void *arg);

PARAMETERS
func Function to be executed in the STREAMS context.

q Queue pointer.

mp Pointer to valid message block.

arg Argument pointer to be passed to func.

DESCRIPTION
Non-STREAMS/UX code can call streams_put, passing it a function and a queue. STREAMS/UX runs the
function as if it were the queue’s put procedure. The function can safely manipulate the queue and access the
same data structures as the queue’s put procedure. STREAMS/UX passes arg to the function. The caller may
pass any value in the argument. It is the responsibility of the caller to make sure that the queue being
specified is valid.

It is typically called by driver’s interrupt service routine or timeout or bufcall callback function.

RETURN VALUES
None

CONSTRAINTS
streams_put() can be called from thread or interrupt context. Spinlocks must not be held across this
function call.
Appendix B226

STREAMS Utilities Supported by HP-UX
NAME
streams_time () – Get time.

SYNOPSIS

#include <sys/stream.h> #include <sys/strenv.h>

 time_t streams_time();

PARAMETERS
None

DESCRIPTION
streams_time() returns the value of time in seconds since the Epoch.

RETURN VALUES
streams_time() returns the value of time in seconds since the Epoch.

CONSTRAINTS
streams_time() can be called from thread or interrupt context. Spinlocks must not be held across this
function call.
Appendix B 227

STREAMS Utilities Supported by HP-UX
NAME
streams_timeout () – Schedule a timeout to execute a specified function after a specified time
delay.

SYNOPSIS

#include <sys/stream.h>
#include <sys/strenv.h>

toid_t *streams_timeout (timeout_fcn_t func, timeout_arg_t arg, int ticks, pl_t prilev, int
call_mp_timeout);

PARAMETERS
func Function to be executed after a specified time interval.

arg Argument passed to the timeout handler.

ticks Number of ticks after which the function is to be executed.

prilev Interrupt priority level at which the function will be called. The valid priority levels are
pltimeout, plstr, plhi and invpl.

call_mp_timeout Set 1 to indicate that the caller is MP aware STREAMS module/driver.

DESCRIPTION
The streams_timeout() function executes the specified function func() after the time interval as specified
in ticks have expired. It returns an integer identification number. The streams_untimeout() function
cancels a timeout request using this identification number.

RETURN VALUES
streams_timeout() returns a non-zero identifier to be passed to streams_untimeout() function to cancel
the request, if the function was successfully scheduled for execution. If invalid interrupt priority levels are
passed, then streams_timeout() returns a zero.

CONSTRAINTS
streams_timeout() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user
lock order can be held across this call.
Appendix B228

STREAMS Utilities Supported by HP-UX
NAME
streams_untimeout () – Cancel pending timeout request scheduled through streams_timeout().

SYNOPSIS

#include <sys/stream.h>
#include <sys/strenv.h>

 int streams_untimeout(toid_t id);

PARAMETERS
id Non-zero identifier returned from a prior call to streams_timeout().

DESCRIPTION
The streams_untimeout() cancels the pending timeout request specified by id, scheduled through a call to
streams_timeout() earlier.

RETURN VALUES
This function returns a non-zero value indicating the time (in ticks) remaining on the timer on successfully
cancelling the request and returns a -1 if the timeout request is not found.

CONSTRAINTS
streams_untimeout() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user
lock order can be held across this call.
Appendix B 229

STREAMS Utilities Supported by HP-UX
NAME
strlog () – Submit messages for logging to streams log driver.

SYNOPSIS

#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strlog.h>

int strlog(short mid, short sid, char level, ushort_t flags, char *fmt, ... /* args */);

PARAMETERS
mid STREAMS module id for the module/driver submitting the message for logging.

sid Refers to the sub-ID number of a minor device of the driver associated with the STREAMS
module or driver identified by mid.

level Specifies a level for selective screening of lower-level event messages from a tracer.

flags Contains several flags that can be set in various combinations. The flags are as follows:

SL_FATAL Provides a notification of a fatal error.

SL_NOTIFY Makes a request to mail a copy of a message to the system administrator.

SL_ERROR The message is for the error logger.

SL_TRACE The message is for the tracer.

SL_CONSOLE The message will be printed to the console.

 The following are additional flags. The strlog interface does not use these flags:

SL_WARN The message is a warning.

SL_NOTE The message is a note.

fmt printf style format string. This accepts the %x, %l, %o, %u, %d, %c, and %s conversion
specifications.

args Are numeric or character arguments for the format string. There is no maximum number of
arguments that can be specified.

DESCRIPTION
strlog() submits messages containing specified information to the streams log driver, strlog (7). The
messages can be retrieved with the getmsg() system call. The flags argument specifies the type of the
message and where it is to be sent. strace (1M) receives messages from the log driver and sends them to the
standard output. strerr (1M) receives error messages from the log driver and appends them to a file called
/var/adm/streams/error.mm-dd, where mm-dd identifies the date of the error message.

RETURN VALUES
None
Appendix B230

STREAMS Utilities Supported by HP-UX
CONSTRAINTS
strlog() can be called from thread or interrupt context. Spinlocks must not be held across this call.
Appendix B 231

STREAMS Utilities Supported by HP-UX
NAME
strqget () – Retrieves information about a queue or priority band of the queue.

SYNOPSIS

#include <sys/types.h>
#include <sys/stream.h>

int strqget (queue_t *q, qfields_t what, uchar_t band, long *valp);

PARAMETERS
q Pointer to the queue.

what The field of the queue about which to return information. Valid what values are:

QHIWAT High water mark of the specified priority band.

QLOWAT Low water mark of the specified priority band.

QMAXPSZ Maximum packet size of the specified priority band.

QMINPSZ Minimum packet size of the specified priority band.

QCOUNT Number of bytes of data in messages in the specified priority band.

QFIRST Pointer to the first message in the specified priority band.

QLAST Pointer to the last message in the specified priority band.

QFLAG Flags for the specified priority band.

band Priority band of the queue about which to obtain information.

valp Pointer to the memory location where the value is to be stored.

DESCRIPTION
This function provides modules and drivers a way to retrieve various queue and queue-band parameters
without directly dereferencing the queue data structure.

A queue belonging to a module/driver with a synchronization level of SQLVL_NOSYNC may be simultaneously
manipulated by multiple threads. Therefore, the queue specified by q must be frozen by calling freezestr()
before calling insq(), rmvq(), strqget(), and strqset(). A call to unfreezestr() must be made to
unfreeze the queue after the above operations are complete.

RETURN VALUES
strqget() returns 0 on success and the actual value of the requested field is stored in the memory pointed to
by valp. Upon failure, it returns one of the following error codes.

EINVAL If the band specified in pri does not exist.

ENOENT If QBAD is specified or unidentified value is passed to strqget().

CONSTRAINTS
strqget() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B232

STREAMS Utilities Supported by HP-UX
NAME
strqset () – Set the information in a queue or a queue band.

SYNOPSIS

#include <sys/types.h>
#include <sys/stream.h>

int strqset (queue_t *q, qfields_t what, uchar_t pri, long newval);

PARAMETERS
q Pointer to the queue.

what The field of the queue about which to return information. Valid what values are:

QHIWAT High water mark of the specified priority band.

QLOWAT Low water mark of the specified priority band.

QMAXPSZ Maximum packet size of the specified priority band.

QMINPSZ Minimum packet size of the specified priority band.

pri Priority band of a queue to be modified

newval The new value to be set in queue fields.

DESCRIPTION
This function provides modules and drivers with a way to easily update the different (modifiable) queue and
queue-band parameters without directly dereferencing queue pointers.

A queue belonging to a module/driver with a synchronization level of SQLVL_NOSYNC may be simultaneously
manipulated by multiple threads. Therefore, the queue specified by q must be frozen by calling freezestr()
before calling insq(), rmvq(), strqget(), and strqset(). A call to unfreezestr() must be made to
unfreeze the queue after the above operations are complete.

RETURN VALUES
strqset() returns 0 on success. Upon failure, one of the following error codes is returned.

EINVAL If the band specified in pri does not exist.

EPERM If caller specified any one of the following fields

QCOUNT

QFIRST

QLAST

QFLAG

ENOENT If QBAD is specified or unidentified value is passed to strqset().
Appendix B 233

STREAMS Utilities Supported by HP-UX
CONSTRAINTS
strqset() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B234

STREAMS Utilities Supported by HP-UX
NAME
SV_ALLOC () – Allocate and initialize a synchronization variable.

SYNOPSIS

#include <sys/stream.h>

sv_t *SV_ALLOC(int flag);

PARAMETERS
flag Specifies whether the caller is willing to sleep waiting for memory. Valid flags are:

KM_SLEEP Caller willing to sleep.

KM_NOSLEEP Caller cannot sleep.

DESCRIPTION
SV_ALLOC dynamically allocates and initializes an instance of a synchronization variable. Synchronization
variables are synchronization primitives that are used to coordinate the execution of processes based on
asynchronous events. When allocated, these variables serve as points on which one or more processes can
block until an event occurs. Then one or all the processes can be unblocked at the same time. Any function
that blocks on a synchronization variable must be able to tolerate premature wakeups. If flag is set to
KM_SLEEP, the caller will sleep if necessary until sufficient memory is available. If flag is set to KM_NOSLEEP,
the caller will not sleep, but SV_ALLOC will return NULL if sufficient memory is not immediately available.

RETURN VALUES
Upon successful completion, SV_ALLOC returns a pointer to the newly allocated synchronization variable. If
KM_NOSLEEP is specified and sufficient memory is not immediately available, SV_ALLOC returns a NULL
pointer.

CONSTRAINTS
If KM_SLEEP is specified, SV_ALLOC() may sleep and can only be called from a thread context. If KM_NOSLEEP is
specified, spinlocks of STREAMS/UX user lock order can be held across this call and may be called from
thread or interrupt context.
Appendix B 235

STREAMS Utilities Supported by HP-UX
NAME
SV_BROADCAST () – Wake up all processes sleeping on a synchronization variable.

SYNOPSIS

#include <sys/stream.h>

 void SV_BROADCAST(sv_t *svp, int flags);

PARAMETERS
svp Pointer to the synchronization variable to be broadcast signaled.

flags Bit field for flags. No flags are currently defined for use in drivers and the flags argument
must be set to zero.

DESCRIPTION
If one or more processes are blocked on the synchronization variable specified by svp, SV_BROADCAST wakes
up all of the blocked processes. Note that synchronization variables are stateless, and therefore calls to
SV_BROADCAST only affect processes currently blocked on the synchronization variable and have no effect on
processes that block on the synchronization variable at a later time.

RETURN VALUES
None

CONSTRAINTS
SV_BROADCAST() can be called from the thread or interrupt context. Only spinlocks of STREAMS/UX user
lock order can be held across this call.
Appendix B236

STREAMS Utilities Supported by HP-UX
NAME
SV_DEALLOC () – Deallocate an instance of a synchronization variable.

SYNOPSIS

#include <sys/stream.h>

 void SV_DEALLOC(sv_t *svp);

PARAMETERS
svp Pointer to the synchronization variable to be deallocated.

DESCRIPTION
SV_DEALLOC deallocates the synchronization variable specified by svp.

RETURN VALUES
None

CONSTRAINTS
SV_DEALLOC() does not sleep and so can be called from thread and the interrupt context. Only spinlocks of
STREAMS/UX user lock order can be held across this call.
Appendix B 237

STREAMS Utilities Supported by HP-UX
NAME
SV_WAIT () – Sleep on a synchronization variable.

SYNOPSIS

#include <sys/stream.h>

 void SV_WAIT(sv_t *svp, int priority, lock_t *lkp);

PARAMETERS
svp Pointer to the synchronization variable on which to sleep.

priority The priority value passed here is subtracted from PZERO-1. pridisk, prinet, pritty,
pritape, prihi, primed and prilo are defined to be 0 and do not affect the caller’s priority.
To change the process’s priority, study the priorities in /usr/include/sys/param.h and
pass the needed offset to PZERO-1 in the priority parameter.

lkp Pointer to a basic lock which must be locked when SV_WAIT is called. The basic lock is
released when the calling process goes to sleep.

DESCRIPTION
SV_WAIT causes the calling process to sleep (the caller’s execution is suspended and other processes may be
scheduled) waiting for a call to SV_BROADCAST (D3) for the synchronization variable specified by svp.

The basic lock specified by lkp must be held by the caller upon entry. When SV_WAIT returns, the lkp spinlock
is not held and SV_WAIT lowers the priority level to the value before the caller acquired the lkp spinlock,
which may not be SPLNOPREEMPT. If the caller acquired the lock while holding other spinlocks, the priority
level is lowered to the value before the first of these nested spinlock calls.

RETURN VALUES
None

CONSTRAINTS
SV_WAIT() sleeps and can only be called from the thread context. Spinlocks (with the exception of the lock
specified in lkp) cannot be held across this call.
Appendix B238

STREAMS Utilities Supported by HP-UX
NAME
SV_WAIT_SIG () – Sleep on a synchronization variable.

SYNOPSIS

#include <sys/stream.h>

 bool_t SV_WAIT_SIG(sv_t *svp, int priority, lock_t *lkp);

PARAMETERS
svp Pointer to the synchronization variable on which to sleep.

priority The priority value passed here is added to PZERO+1 and ORed with PCATCH. pridisk,
prinet, pritty, pritape, prihi, primed and prilo are defined to be 0 and do not affect the
caller’s priority. To change the process’s priority, study the priorities in
/usr/include/sys/param.h and pass the needed offset to PZERO+1 in the priority
parameter.

lkp Pointer to a basic lock which must be locked when SV_WAIT_SIG is called. The basic lock is
released when the calling process goes to sleep.

DESCRIPTION
SV_WAIT_SIG() causes the calling process to sleep waiting for a call to SV_BROADCAST (D3) for the
synchronization variable specified by svp. SV_WAIT_SIG() may be interrupted by a signal, in which case it
returns early without waiting for a call to SV_BROADCAST().

The basic lock specified by lkp must be held by the caller upon entry. When SV_WAIT returns, the lkp spinlock
is not held and SV_WAIT lowers the priority level to the value before the caller acquired the lkp spinlock,
which may not be SPLNOPREEMPT. If the caller acquired the lock while holding other spinlocks, the priority
level is lowered to the value before the first of these nested spinlock calls.

RETURN VALUES
SV_WAIT_SIG() returns TRUE (a non-zero value) if the caller woke up because of a call to SV_BROADCAST().
SV_WAIT_SIG() returns FALSE (zero) if the caller woke up and returned early because of the sleep being
interrupted.

CONSTRAINTS
SV_WAIT_SIG() sleeps and can only be called from the thread context. Spinlocks (with the exception of the
lock specified in lkp) cannot be held across this call.
Appendix B 239

STREAMS Utilities Supported by HP-UX
NAME
TRYLOCK () – Try to acquire a basic lock.

SYNOPSIS

#include <sys/stream.h>
spl_t TRYLOCK(lock_t *lockp, spl_t pl);

PARAMETERS
lockp Pointer to the basic lock to be acquired.

pl This value is ignored, and retained for portability only.

DESCRIPTION
If the lock specified by lockp is immediately available (can be acquired without waiting) TRYLOCK acquires
the lock. If the lock is not immediately available, the function returns without acquiring the lock.

RETURN VALUES
If the lock is acquired, TRYLOCK returns the previous interrupt priority level (plbase - plhi). If the lock is
not acquired the value invpl is returned.

CONSTRAINTS
TRYLOCK() can be called from the thread or the interrupt context. Only spinlocks of STREAMS/UX user lock
order can be held across the calls.
Appendix B240

STREAMS Utilities Supported by HP-UX
NAME
testb () – Tests for an available buffer.

SYNOPSIS

#include <sys/stream.h>

 int testb (int bufsize, unsigned int pri);

PARAMETERS
bufsize Message buffer size in bytes.

pri This field is obsolete.

DESCRIPTION
testb() tests if a STREAMS message of specified size can be allocated. It returns 1 if memory is available,
otherwise it returns 0. Successful return from this call does not guarantee successful memory allocation for a
subsequent allocb() call.

CONSTRAINTS
testb() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B 241

STREAMS Utilities Supported by HP-UX
NAME
unbufcall () – Cancels a pending bufcall() or esbcall() request specified by ID.

SYNOPSIS

#include <sys/stream.h>

 void unbufcall (toid_t id);

PARAMETERS
id A Non zero identifier returned from a prior bufcall() or esbbcall().

DESCRIPTION
If unbufcall() is invoked while any function called by the pending bufcall() or esbbcall() request is
running, unbufcall() will not return until the function completes or the pending request is cancelled.

RETURN VALUES
None

CONSTRAINTS
unbufcall() can be called from thread or interrupt context. Spinlocks must not be held across this function
call.
Appendix B242

STREAMS Utilities Supported by HP-UX
NAME
unfreezestr () – Unfreeze the frozen queue.

SYNOPSIS

#include <sys/stream.h>

 void unfreezestr(queue_t *q, pl_t pl);

PARAMETERS
q Pointer to a message queue.

pl The interrupt priority level to be set after unfreezing the stream. (This value is ignored, but
has been retained for portability.)

DESCRIPTION
unfreezestr() unfreezes the queue specified by q. Unfreezing the queue allows the continuation of all
activities that may have been forced to wait while the queue was frozen. This call must only be made by the
caller of freezestr().

The caller freezing the queue by calling freezestr() must also unfreeze the queue by calling unfreezestr()
after the required operations have been performed on the frozen queue.

unfreezestr() is only applicable to the module/drivers configured at the synchronization level
SQLVL_NOSYNC. For modules/drivers configured at any other synchronization level, STREAMS/UX uses a
different mechanism to protect STREAMS/UX queues and the unfreezestr() utility for these
modules/drivers is a no-op provided to make porting code easier.

RETURN VALUES
None

CONSTRAINTS
None
Appendix B 243

STREAMS Utilities Supported by HP-UX
NAME
unlinkb () – Removes the first message block from the head of a message.

SYNOPSIS

#include <sys/stream.h>

 mblk_t *unlinkb(mblk_t *mp);

PARAMETERS
mp Pointer to message from which the first block is to be removed.

DESCRIPTION
unlinkb() will unlink the first message block from the message and the altered message is returned to the
caller. It is the responsibility of the module or driver to actually free the message block.

RETURN VALUES
unlinkb() returns a pointer to the head of the altered message after unlinking the first block. If this was the
last (or only) block in the message, unlinkb() returns a NULL pointer.

CONSTRAINTS
unlinkb() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B244

STREAMS Utilities Supported by HP-UX
NAME
UNLOCK () – Release the previously acquired lock.

SYNOPSIS

#include <sys/stream.h>

 void UNLOCK (lock_t *lockptr, spl_t prilev);

PARAMETERS
lockptr Pointer to lock targeted for release.

prilev This parameter is ignored as STREAMS always acquires the spinlock at SPL6.

DESCRIPTION
UNLOCK() calls the native HP-UX spinunlock primitive to release the previously acquired lock.

RETURN VALUES
None

CONSTRAINTS
UNLOCK() can be called from thread or interrupt context. Spinlocks can be held across the calls to UNLOCK().
Appendix B 245

STREAMS Utilities Supported by HP-UX
NAME
unweldq () – Disconnects previously established weld connection.

SYNOPSIS

#include <sys/stream.h>

int unweldq (queue_t *d1_wq, queue_t *d2_rq, queue_t *d2_wq, queue_t *d1_rq, weld_fcn_t
func, weld_arg_t arg, queue_t *protect_q);

PARAMETERS
d1_wq, d1_rq First drivers’ write and read queues.

d2_wq, d2_rq Second drivers’ write and read queues

func and arg Optional callback function pointer and argument for callback.

protect_q Optional synchronization queue to be acquired when func is executed.

DESCRIPTION
unweldq() operation sets d1_wq->q_next and d2_wq->q_next to NULL there by disconnecting the
previously established connection. unweldq() function does not actually perform this operation, instead it
sends an asynchronous request to the weld daemon to perform unweld operation on the specified queues.If
the func and protect_q are specified, the weld daemon acquires the synchronization queue before executing
the func.

However, if the caller does not need to be notified by the weld daemon, the parameters func, arg, and
protect_q can be set to 0.

RETURN VALUES
unweldq() returns 0 on success and one of the error codes upon failure.

ENXIO Weld mechanism is not available.

EINVAL Invalid queue arguments.

EAGAIN Could not allocate weld record.

CONSTRAINTS
unweldq() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order
can be held across this call.
Appendix B246

STREAMS Utilities Supported by HP-UX
NAME
vtop () – Convert virtual address to physical address.

SYNOPSIS

#include <sys/stream.h>

 paddr_t vtop(caddr_t vaddr, proc_t *p);

PARAMETERS
vaddr Virtual address to convert.

p Pointer to the process structure used. To indicate that the address is in kernel virtual space,
p must be set to NULL.

DESCRIPTION
vtop() converts a virtual address to a physical address.

RETURN VALUES
On success, vtop() returns the physical address. Otherwise, if no physical memory is mapped to the virtual
address or the pointer to the proc_t is not NULL, vtop() returns 0.

CONSTRAINTS
vtop() can be called from thread or interrupt context. Spinlocks can be held across this call.
Appendix B 247

STREAMS Utilities Supported by HP-UX
NAME
WR () – Get pointer to the write queue.

SYNOPSIS

#include <sys/stream.h>

 queue_t *WR(queue_t *q);

PARAMETERS
q Pointer to the queue whose write queue is to be returned.

DESCRIPTION
The macro WR() accepts a queue pointer as an argument and returns a pointer to the write queue of the same
module.

RETURN VALUES
The pointer to the write queue.

CONSTRAINTS
WR() can be called from thread or interrupt context. Spinlocks can be held across the calls to WR().
Appendix B248

STREAMS Utilities Supported by HP-UX
NAME
weldq () – Establish connections between two drivers’ queues.

SYNOPSIS

#include <sys/stream.h>

int weldq (queue_t *d1_wq, queue_t *d2_rq, queue_t *d2_wq, queue_t *d1_rq, weld_fcn_t
func, weld_arg_t arg, queue_t *protect_q);

PARAMETERS
d1_wq, d1_rq First drivers’ write and read queues.

d2_wq, d2_rq Second drivers’ write and read queues

func and arg Optional callback function pointer and argument for callback.

protect_q Optional synchronization queue to be acquired when func is executed.

DESCRIPTION
weldq() sets d1_wq->q_next to point to d2_rq and d2_wq->q_next to point to d1_rq. It sends an
asynchronous request to the weld daemon to update relevant queue parameters and returns back to the caller
without waiting for the completion of that request. If the func and protect_q are specified, the weld daemon
acquires the synchronization queue before executing the func.

However, if the caller does not need to be notified by the weld daemon, the parameters func, arg, and
protect_q can be set to 0.

RETURN VALUES
unweldq() returns 0 on success and one of the error codes upon failure.

ENXIO Weld mechanism is not available.

EINVAL Invalid queue arguments.

EAGAIN Could not allocate weld record.

CONSTRAINTS
weldq() can be called from thread or interrupt context. Only spinlocks of STREAMS/UX user lock order can
be held across this call.
Appendix B 249

STREAMS Utilities Supported by HP-UX
Appendix B250

C Message Types
This section describes the fixed set of message types recognized by STREAMS/UX. As described in Chapter 3,
“Messages,” STREAMS messages can be classified as ordinary (non-priority) messages that are subject to flow
control, and high priority messages that are not subject to flow-control.

STREAMS defined message types differ in their intended purposes, their treatment at the stream head, and
their message queueing priority. STREAMS does not prevent a module or driver from generating any
message type or sending it in any direction on the stream. However, established processing and direction
rules should be observed. Stream head processing is fixed according to the message type, although certain
parameters can be altered.
Appendix C 251

Message Types
Ordinary Messages
Ordinary Messages

M_BREAK

This message is sent to a driver to transmit a BREAK on the device controlled by the driver. The message
format for an M_BREAK is defined by the driver developer. This message is never generated from a user
process, and is discarded when received by the stream head. This message may be considered as a special case
of the M_CTL message.

M_CTL

This message (and its corresponding priority counterpart M_PCCTL) is typically used by modules to send
specific information to other modules. The use of this message type is driven by module functionality. This
message is never generated from a user process, and is discarded when received by the stream head.

M_DATA

An M_DATA message contains normal data. It is the default message type for message blocks allocated via the
allocb() function. For messages with multiple message blocks, the message type for all messages following
the first M_DATA block will be M_DATA. In the putmsg (2) and getmsg (2) system calls, the contents of M_DATA
message blocks are referred to as the data part. M_DATA can be sent bi-directionally on a Stream by
STREAMS components as well as a user process.

M_DELAY

This message is sent to a driver to request a real-time delay on output, typically to avoid exceeding the buffer
size of devices (for example, slow terminal devices). M_DELAY can be seen as a special case of the M_CTL
message type, and its usage is developer-dependent. Not all devices may recognize this message. This
message is never generated from a user process, and is discarded if received by the stream head.

M_IOCTL

This message is generated by the stream head in response to I_STR, I_LINK, I_UNLINK, I_PLINK, I_PUNLINK,
and IOCTL calls that are not defined in streamio (7). When the stream head receives one of these IOCTL
calls, it creates an M_IOCTL message by using the values supplied in the ioctl() system call and the process
that issued the IOCTL system call. The M_IOCTL message is then sent downstream.

For an I_STR IOCTL call, the user process sets the cmd parameter to I_STR, and the arg parameter to a buffer
in the user space of type strioctl. This is defined in <stropts.h> which contains following fields:

int ic_cmd; /* downstream command */

int ic_timout; /* ACK/NAK timeout */

int ic_len; /* length of data arg */

char * ic_dp; /* ptr to data arg */
Appendix C252

Message Types
Ordinary Messages
Where ic_cmd describes the command intended for module or driver, ic_timout specifies the number of
seconds that the I_STR request will wait for an acknowledgement before timing out. ic_dp points to the data
buffer, and ic_len is the length of the data buffer passed in and, on return from the call, it contains the
length of the data (if any) in the being returned to the user.

An M_IOCTL message consists of an M_IOCTL message block followed by zero or more M_DATA blocks. The
M_IOCTL message block contains an iocblk structure defined in <sys/stream.h> and has following fields:

 int ioc_cmd; /* ioctl command type */

 cred_t * ioc_cr; /* pointer to full credentials */

 uint ioc_id; /* ioctl id */

 uint ioc_flag; /* see flag values below */

 ioc_pad ioc_cnt; /* count of bytes in data field */

 int ioc_error; /* error code */

 int ioc_rval; /* return value */

For an I_STR IOCTL, ioc_cmd corresponds to ic_cmd of the strioctl structure. The ioc_cr points to a
credentials structure (see <sys/cred.h>) defining the process’s permissions. The ioc_cnt is the number of
data bytes, if any, contained in the message and corresponds to ic_len. The ioc_id is an internally
generated identifier used by stream head to match each M_IOCTL message sent downstream, with responses
that come upstream to the stream head. An M_IOCACK or M_IOCNACK response message completes the IOCTL
processing.

For I_STR IOCTL, the user supplied data to be sent to the module or driver is attached as zero or more
M_DATA messages and is linked to the initial M_IOCTL message block. The ioc_cnt is copied from ic_len. If
there is no data, ioc_cnt is zero.

When the stream head does not recognize an IOCTL command, it creates a transparent M_IOCTL message.
The M_IOCTL message for transparent processing consists of an M_IOCTL message block followed by one
M_DATA message block containing the address of the third argument to the ioctl() system call. The form of
the iocblk structure is same as previously noted. However, ioc_cmd is set to the user-specified IOCTL
command and ioc_cnt is set to a special constant TRANSPARENT defined in <sys/stream.h>.
TRANSPARENT recognizes the transparent nature of the M_IOCTL message when an I_STR IOCTL may
specify a value of ioc_cmd equivalent to the user-specified IOCTL command argument of a transparent
IOCTL. The first module to recognize the IOCTL command in ioc_cmd will process the M_IOCTL message.
Intermediate modules that do not recognize the IOCTL command must pass the message on. If, the driver
does not recognize the IOCTL command, it must respond with an M_IOCNAK message to stream head.

The M_IOCACK and M_IOCNAK message types have the same format as an M_IOCTL message and contain an
iocblk structure in the first block. An M_IOCACK block may be linked to zero or more M_DATA blocks. If an
M_IOCACK or M_IOCNAK message reaches the stream head with an identifier, which does not match that of the
currently outstanding M_IOCTL message, the response message is discarded. Usually, to assure a correct
response, the replying module converts the M_IOCTL message into an M_IOCACK or M_IOCNAK message and
returns to stream head. If no data is returned, the ioc_cnt in the M_IOCACK message is set to zero. The
ioc_error is set to any return error condition by the downstream module. If this value is non-zero, it is
returned to the user in errno. A return value can be specified only with M_IOCACK message by setting
ioc_rval field. For M_IOCNAK messages stream head ignores ioc_rval field.

For I_STR IOCTL, if the module wants to send data to the user process, it must use the M_IOCACK message to
send the data by linking one or more M_DATA blocks to it and setting ioc_cnt to number of data bytes. The
stream head places the data in the address pointed to by ic_dp in the user I_STR strioctl structure.

For transparent IOCTL, if the module wants to send data to the user process, it must use an M_COPYOUT
message. The stream head will ignore any data contained in the M_IOCACK message.
Appendix C 253

Message Types
Ordinary Messages
No data can be sent to the user with an M_IOCNAK message. The stream head will free any M_DATA blocks
linked to the M_IOCNAK message block.

If the stream head does not receive an M_IOCACK or M_IOCNAK message in response to an M_IOCTL (same
ioc_id) message, it will block for all IOCTL calls except for I_STR IOCTL. For I_STR IOCTL if an M_IOCACK
or M_IOCNAK message is not received as a response to an M_IOCTL (same ioc_id) message, it will fail when the
timeout specified in ic_timout expires (and block when the timeout is infinite).

M_PASSFP

This message is used by STREAMS to pass a file pointer from the stream head at one end of a
STREAMS-based pipe to the stream head at the other end of the same pipe.

This message is generated as a result of an I_SENDFD IOCTL issued by a process to the sending stream head.
STREAMS places the M_PASSFP message directly on the read-queue of the other stream head. The user
process retrieves the file pointer contained in M_PASSFP messages through the I_RECVFD ioctl() command.
This message type is restricted to the stream head and should be only processed by the stream head read
queue. This message can be ignored by module and driver developers.

M_PROTO

This message contains control information and associated data. The message format is one or more M_PROTO
message blocks followed by one or more M_DATA message blocks. The semantics of the M_DATA and M_PROTO
message blocks are determined by the STREAMS module that receives the message. M_PROTO messages can
travel bi-directionally on a stream and can be passed between a process and the stream head. The contents of
the first message block are generally referred as the control part, and the contents of any following M_DATA
message blocks are referred as the data part.

Note that on the write-side, the user can generate M_PROTO messages containing only one M_PROTO message.
Also, it is recommended that on the read-side, the format of M_PROTO and M_PCPROTO messages should
generally contain only one M_PROTO or M_PCPROTO message block. The getmsg (2) will compact the multiple
M_PROTO/M_PCPROTO message blocks into one single control part when delivering the message to the user
process.

M_RSE

Reserved for internal use. Modules that do not recognize this message must pass it on. Drivers that do not
recognize this message must free it.

M_SETOPTS

This message is used to alter the characteristics of the stream head. It is generated by any downstream
module and is interpreted by the stream head. The data buffer in the first message block consists of a
stroptions structure. This structure is defined in <sys/stropts.h> and shown here:

ulong so_flags; /* options to set */

 short so_readopt; /* read option */

 ushort so_wroff; /* write offset */

 long so_minpsz; /* minimum read packet size */

 long so_maxpsz; /* maximum read packet size */

 ulong so_hiwat; /* read queue high-water mark */

 ulong so_lowat; /* read queue low-water mark */

 unsigned char so_band; /* update water marks for this band */
Appendix C254

Message Types
Ordinary Messages
Where so_flags specifies the options to be altered. The options can be any combination of the following:

SO_ALL Update all options according to the values specified in the remaining fields of the
stroptions structure.

SO_READOPT Set the read mode as specified in the so_readopt field. The read modes are:

RNORM: Byte stream

RMSGD: Message discard

RMSGN: Message non-discard

RPROTDAT: Convert M_PROTO/M_PCPROTO into M_DATA

RPROTNORM: Normal protocol

RPROTDIS: Discard M_PROTO/M_PCPROTO message blocks and retain any linked
M_DATA blocks

SO_WROFF Insert an offset (in bytes) specified in the so_wroff field of the stroptions structure into
the first message block of all M_DATA messages created by the write (2) system call, and into
the first M_DATA message blocks, if any, of all messages created by the putmsg (2) system
call. Write-offsets must not exceed the maximum size of the message data buffer. The
default offset is zero. Further, modules and drivers must verify, that the b_rptr in the
msgb structure is greater than the db_base in the datab structure, to determine that an
offset has been inserted in the first message block.

SO_MINPSZ Set the minimum packet size for the stream head read-queue to the so_minpsz value in the
stroptions structure. This value is advisory for modules immediately below the stream
head. This is intended to limit the size of M_DATA messages that the module should put to
the stream head. There is no intended minimum size for other message types. The default
value in the stream head is zero.

SO_MAXPSZ Set the maximum packet size for the stream head read-queue to the so_maxpsz value in the
stroptions structure. This value is advisory for modules immediately below the stream
head. This is intended to limit the size of M_DATA messages that the module should put to
the stream head. There is no intended maximum size for other message types. The default
value in the stream head is INFPSZ, the maximum that STREAMS allows.

SO_HIWAT Set the high water mark value in the stream head read-queue to the value specified in the
so_hiwat field of the stroptions structure.

SO_LOWAT Set the low water mark value in the stream head read-queue to the value specified in the
so_lowat field of the stroptions structure.

SO_BAND Use in conjunction with the SO_HIWAT and SO_LOWAT flags, to set the high and low water
marks for the priority band (in the stream head read-queue) specified by the so_band field
in the stroptions structure. If the SO_BAND flag is not set, and the SO_HIWAT and SO_LOWAT
flags are on, the normal high and low water marks are affected. The SO_BAND flag has no
effect if SO_HIWAT and SO_LOWAT flags are off.

Only one band’s water marks can be updated with a single M_SETOPTS message.

SO_MREADON Enable the stream head to generate an M_READ message when processing a read () system
call. If both SO_MREADON and SO_MREADOFF are set in so_flags, SO_MREADOFF will have
precedence.

SO_MREADOFF Disable the stream head from generating an M_READ message when processing a read()
system call. This is the default. If both SO_MREADON and SO_MREADOFF are set in so_flags,
SO_MREADOFF flag takes precedence.
Appendix C 255

Message Types
Ordinary Messages
SO_ISTTY Notify the stream head that the stream is acting as a controlling terminal.

SO_ISNTTY Notify the stream head that the stream is no longer a controlling terminal.

For SO_ISTTY, the stream may or may not be allocated as a controlling terminal via an
M_SETOPTS message arriving upstream during open processing. If the stream head is opened
before receiving this message, the stream will not be allocated as a controlling terminal
until it is queued again by a session leader.

SO_NDELON Set non-STREAMS tty semantics for O_NDELAY (or O_NONBLOCK) processing on read (2) and
write (2) system calls. If O_NDELAY (or O_NONBLOCK) is set, a read (2) will return 0 if no data
is waiting to be read at the stream head. If O_NDELAY (or O_NONBLOCK) is clear, a read (2) will
block until data become available at the stream head.What is tty?

Regardless of the state of O_NDELAY (or O_NONBLOCK), a write (2) will block on flow-control
and will block if buffers are not available.

If both SO_NDELON and SO_NDELOFF are set in the so_flags, SO_NDELOFF will have
precedence.

SO_NDELOFF Set STREAMS semantics for O_NDELAY (or O_NONBLOCK) processing on read (2) and write (2)
system calls. If O_NDELAY (or O_NONBLOCK) is set, a read (2) will return -1 and set EAGAIN if
no data is waiting to be read at the stream head. If O_NDELAY (or O_NONBLOCK) is clear, a
read (2) will block until data is available at the stream head.

If O_NDELAY (or O_NONBLOCK) is set, a write (2) will return -1 and set EAGAIN if flow-control is
in effect when the call is received. It will block if buffers are not available. If O_NDELAY (or
O_NONBLOCK) is set, part of the buffer has been written, and flow-control or buffers not
available condition is encountered, write (2) will terminate and return the number of bytes
written.

If O_NDELAY (or O_NONBLOCK) is clear, a write (2) will block on flow-control and will block if
buffers are not available.

This is the default. If both SO_NDELON and SO_NDELOFF are set in the so_flags, SO_NDELOFF
will have precedence.

In the STREAMS-based pipe mechanism, the behavior of read (2) and write (2) is different
for the O_NDELAY and O_NONBLOCK flags. See read (2) and write (2) for details.

SO_TOSTOP Notify the stream head to stop on background writes.

SO_TONSTOP Notify the stream head not to stop on background writes. The SO_TOSTOP and SO_TONSTOP
are used in conjunction with job control.

M_SIG

This message is generated by modules and drivers to post a signal to a process. On receipt of this message, the
stream head evaluates the first data byte of the message as a signal number, defined in <sys/signal.h>. The
associated signal is sent to the process(es) under following conditions:

• If the signal is SIGPOLL, it is sent only to those processes that have explicitly registered to receive the
signal (see I_SETSIG in streamio (7)).

• If the signal is not SIGPOLL and the stream containing the sending module or driver is a controlling tty,
the signal is sent to the associated process group. A stream becomes the controlling tty for its process
group if, on open(), a module or driver sends an M_SETOPTS message to the stream head with the
SO_ISTTY flag set.
Appendix C256

Message Types
Ordinary Messages
• If the signal is not SIGPOLL and the stream is not a controlling tty, no signal is sent, except in case of
SIOCSPGRP and TIOCSPGRP. These two IOCTL commands set the process group field in the stream head so
the stream can generate signals even if it is not a controlling tty.

M_TRAIL

This message is generated and sent upstream by a driver after the M_HANGUP message. It marks the end of
data after an M_HANGUP message. The M_TRAIL message will be processed at the stream head only if the
preceding M_HANGUP message sent by the driver contains the 2-byte TRAIL_TOKEN.

• Once the M_TRAIL message is processed, subsequent read() or getmsg() calls to the stream will return
any messages present at the stream head.

• After all the messages are read, read() will return 0 and getmsg() will set each of its two length fields to 0.
Appendix C 257

Message Types
High Priority Messages
High Priority Messages

M_CLOSE

This message is generated by the stream head to notify driver of a close (2) when the driver specifies
C_ALLCLOSES in the d_flags field of drv_ops_t structure. When the C_ALLCLOSES flag is set, STREAMS
sends an M_CLOSE message downstream when a close is issued on the driver. It then waits for a reply from the
driver. The stream will be dismantled if the reply (M_CLOSE_REPL message) for the M_CLOSE message has
MSGLASTCLOSE set in the b_flag field. If the M_CLOSE_REPL message does not have MSGLASTCLOSE set in the
b_flag field, STREAMS will return without dismantling the stream.

M_CLOSE_REPL

This message is generated by the driver, in response to the M_CLOSE message sent to it by the stream head.
When the flag C_ALLCLOSES is set in the d_flags field of the drv_ops_t structure, it is the responsibility of
the driver to keep track of the information about the number of opens/closes for this device. Accordingly, for
the last close on the device, the driver should set the MSGLASTCLOSE flag in the b_flag field of the
M_CLOSE_REPL message, if it wants the stream associated with device to be dismantled.

M_COPYIN

The M_COPYIN message is generated by modules or drivers to request a copyin() to be performed on their
behalf by stream head. This message is valid only after the M_IOCTL message is received by a module or driver
and before an M_IOCACK or M_IOCNAK message is sent upstream by the module or driver. The format of a
M_COPYIN message is one message block of type M_COPYIN, whose data buffer contains a copyreq structure
defined in <sys/stream.h> and is shown here:

 int cq_cmd; /* command type == ioc_cmd */

 cred_t * cq_cr; /* pointer to full credentials */

 uint cq_id; /* ioctl id == ioc_id */

 int cq_flag; /* reserved */

 mblk_t * cq_private; /* module’s private state info */

 ioc_pad cq_ad; /* address to copy data to/from */

 uint cq_size; /* number of bytes to copy */

The first four fields of the copyreq structure correspond to those of the iocblk structure in the M_IOCTL
message. This allows the same message block to be reused for M_COPYIN and M_IOCTL structures. The stream
head guarantees that the message block allocated for M_IOCTL is large enough to contain a copyreq structure.
The cq_ad refers to the address of the data buffer from which data needs to be copied for an M_COPYIN
message. The cq_size specifies the number of bytes to be copied. Both cq_ad and cq_size values need to be
set by the modules. The cq_flag field is reserved for future use and should be set to zero. cq_private can be
set by the modules and drivers to get their state information pertaining to this IOCTL. The stream head will
copy the contents of cq_private field to the M_IOCDATA response message so that the module can resume the
associated state. If an M_COPYIN or M_COPYOUT message is freed, STREAMS will not free any message block
pointed to by cq_private. It is then the modules responsibility to free any associated data in cq_private.
This message should not be queued by a module or driver unless it intends to process the data for the IOCTL.
Appendix C258

Message Types
High Priority Messages
M_COPYOUT

The M_COPYOUT message is generated by modules or drivers to request a copyout() to be performed on their
behalf by stream head. This message is valid only after receiving the M_IOCTL message by a module or driver
and before an M_IOCACK or M_IOCNAK message is sent upstream by a module or driver. The format of a
M_COPYOUT message is one message block of M_COPYOUT linked to one more M_DATA blocks containing data to
be copied to the user’s buffer. The data buffer in an M_COPYOUT message also contains a copyreq structure
with the following differences:

• The cq_ad refers to the address of the buffer from which data needs to be copied out for an M_COPYOUT
request.

• The cq_size specifies the number of bytes to be copied to the user space.

Data to be copied to the user space is contained in the linked M_DATA blocks. This message should not be
queued by a module or driver unless it intends to process the data for the IOCTL in some way.

M_ERROR

This message is sent upstream by modules and drivers to report downstream error conditions. Upon receiving
this message, the stream head does the following:

• Marks the stream in error state so that all subsequent system calls issued to the stream will fail (except
the close (2) and poll (2) system calls).

• Sets errno to the first byte of the message. The POLLERR is set if the stream is being polled (see poll (2)).

• Awakens all processes sleeping on a system call to the stream.

• Sends an M_FLUSH message downstream with FLUSHRW set.

The stream head maintains an error field for the read-side and one for the write-side. The M_ERROR message
could be in the one-byte or two-byte format. The one-byte format M_ERROR message sets both of the stream
head error fields to the error specified by the first byte in the message. In the two-byte format, the first byte is
used to set the read-side error and the second-byte is used to set the write-side error. If NOERROR is set in any
of the two-bytes, the corresponding side of the stream is unchanged. This provides flexibility to modules and
drivers to set different errors on the read-side and write-side, or set the error on only one side of the stream. If
a byte is set to 0, the error state is cleared for the corresponding side of a stream. The values, NOERROR and 0
are not valid for the one-byte format of the M_ERROR message.

M_FLUSH

This message requests all modules and drivers that receive this message, to discard all messages in their
corresponding message queues. An M_FLUSH can be sent by the stream head, or any module or driver. The first
byte of the message contains flag bits that specifies the queues to be flushed. The flags bits are:

FLUSHR: Flush the read queue of the module.

FLUSHW: Flush the write queue of the module.

FLUSHRW: Flush both the read queue and the write queue of the module.

FLUSHBAND: Flush the message according to the priority associated with the band.

When a module receives an M_FLUSH message, it flushes appropriate queues and passes the message to the
next stream component.

When a driver receives an M_FLUSH message, it does the following:

• If only FLUSHW is set, it flushes the write-queue and frees the message.
Appendix C 259

Message Types
High Priority Messages
• If FLUSHR or FUSHRW is set, it flushes the read-queue, clears the FLUSHW flag and sends the message
upstream.

When a stream head receives an M_FLUSH message, it does the following:

• If only FLUSHR is set, it flushes the read-queue and frees the message.

• If FLUSHW or FLUSHRW is set, it flushes the write-queue, turns the M_FLUSH message around, and sends it
downstream.

If FLUSHBAND is set, the second byte of the M_FLUSH data buffer contains the band priority value. In this case,
the flush flags apply only to the specified priority band.

NOTE All modules that enqueue messages must identify and process M_FLUSH messages.

M_HANGUP

This message is generated and sent upstream by a driver to indicate that the driver can no longer send data
upstream. The reasons for generating this message are driver and device-dependent. For example, it could be
an unrecoverable error or a remote line connection being dropped.

If a M_TRAIL message is used to mark the end of data after the M_HANGUP message, then the M_HANGUP
message must contain the 2-byte TRAIL_TOKEN defined in <sys/stream.h>.

When the stream head receives a M_HANGUP message, it marks the stream in the hangup state, and all
subsequent write() and putmsg() system calls issued to that stream will fail with an ENXIO error. Also,
IOCTL commands requiring a message to be sent downstream will fail. The POLLHUP will be set if the stream
is being polled (see poll (2)).

However, subsequent read() or getmsg() calls to the stream will not generate an error. These calls will
return any messages that were in, or in transit to, the stream head read-queue before the M_HANGUP message
was received. When all such messages have been read, read() will return 0 and getmsg() will set each of its
two length fields to 0.

This message also causes a SIGHUP signal to be sent to the foreground process group if the device is a
controlling terminal.

M_IOCACK

This message is used by modules and drivers to send a positive acknowledgment in response to an M_IOCTL
message. The M_IOCACK message format is one M_IOCACK block (containing iocblk structure, see M_IOCTL)
followed by zero or more M_DATA blocks. The ioc_rval field of the iocblk structure can be used to send
return values to user process. ioc_error can be used to communicate processing errors, if any, back to the
user in errno.

For M_IOCACK messages in response to I_STR IOCTL, the user data to be returned is formatted as an
M_IOCACK message block followed by one or more M_DATA blocks that contain user data. The stream head
returns the data to the user if there is a corresponding outstanding M_IOCTL request. Otherwise, the
M_IOCACK message is ignored and all blocks in the message are freed.

Data can not be returned in an M_IOCACK message in response to a transparent IOCTL request. The user data
to be returned for transparent IOCTL must be sent as M_COPYOUT messages. If any user data is linked as
M_DATA blocks to the M_IOCACK block, the stream head will ignore and free them.
Appendix C260

Message Types
High Priority Messages
M_IOCNAK

This message is generated by a module and sent back to the stream as a negative acknowledgment of an
M_IOCTL message. The M_IOCNAK message format is one M_IOCNAK block (containing iocblk structure, see
M_IOCTL). The ioc_error field in iocblk structure can be used to communicate any processing errors, back
to the user in errno. Unlike the M_IOCACK message, no user data or return values can be sent with the
M_IOCNAK message. If any user data is linked as M_DATA blocks to the M_IOCNAK message, the stream head
will ignore and free them. When the stream head receives an M_IOCNAK message, any outstanding IOCTL
request will fail.

M_IOCDATA

This message is generated and sent downstream by the stream head in response to an M_COPYIN or
M_COPYOUT message. The M_IOCDATA message is one message block of type M_IOCDATA, linked to zero or more
M_DATA blocks. The data buffer of M_IOCDATA contains a copyresp structure defined as follows:

 int cp_cmd; /* command type == ioc_cmd */

 cred_t * cp_cr; /* pointer to full credentials */

 uint cp_id; /* ioctl id == ioc_id */

 uint cp_flag; /* flag values */

 mblk_t * cp_private; /* module’s private state info */

 ioc_pad cp_rv; /* 0 = success */

The first three fields of the copyresp structure correspond to those of the iocblk structure in the M_IOCTL
message. This allows the same message block to be reused for all related transparent messages. The cp_rv
field contains the result of the request at the stream head. Zero indicates success and non-zero indicates
failure. If failure is indicated, the module must not generate an M_IOCNAK message. It must abort all IOCTL
processing, clean up its data structures, and return. The cp_private field is copied from the cq_private field
in the associated M_COPYIN/M_COPYOUT message. It is included in the M_IOCDATA message so the can be
self-describing.

If the message is in response to an M_COPYIN message and success is indicated, the M_IOCDATA block will be
followed by M_DATA blocks containing the copied data.

If an M_IOCDATA block is reused, any unused fields defined for the resultant message block should be cleared,
especially for M_IOCACK and M_IOCNAK messages.

NOTE This message must not be queued by a module or driver unless it intends to process the data for
the IOCTL in some way.

M_PCPROTO

This message type is similar to its non-priority counterpart M_PROTO and the following additional attributes:

• When an M_PCPROTO message is placed on a queue, its service procedure is always enabled.

• The stream head will allow only one M_PCPROTO message to be placed in its read queue at a time.

• If an M_PCPROTO message is already present on the stream head read queue, subsequent M_PCPROTO
messages will be discarded and freed.

With M_PCPROTO, data and control information can be sent without any flow-control constraints. The
getmsg() and putmsg() system calls refer to M_PCPROTO messages as high priority messages.
Appendix C 261

Message Types
High Priority Messages
M_PCRSE

This is a priority message type reserved for internal use. Modules that do not recognize this message must
pass it on. Drivers that do not recognize it must free it.

M_PCSIG

This message is similar to the M_SIG message type, except for the priority. M_PCSIG is generally preferred over
M_SIG, as it is not subject to flow control.

M_READ

This message is generated by the stream head and sent downstream for a read() system call if no messages
are waiting to be read at the stream head, and read notification has been enabled. The read notification can
be enabled by the SO_MREADON flag, and disabled by the SO_MREADOFF flag of the M_SETOPTS message.

The message content is set to the number of bytes to be read in the read() call. This message notifies
modules and drivers of a read, and supports communication between streams that reside on separate
processors. The use of the M_READ message is developer dependent. Modules may either process this message
and pass it on, or free the message when they recognize it. If modules do not recognize an M_READ message,
they should pass it on. Drivers may or may not process it, and then free it. This message can not be generated
by user processes and should not be generated by a module or driver. It is discarded if passed to the stream
head.

M_START and M_STOP

This message requests devices to start or stop their output. They are intended to produce momentary pauses
in a device’s output, not to turn devices on or off. The message format and its use is developer dependent and
can be considered to be special cases of the M_CTL message. These messages cannot be generated by user
processes and are discarded if passed to the stream head.

M_STARTI and M_STOPI

These messages are similar to the M_START and M_STOP messages, except that M_STARTI and M_STOPI are
used to start and stop input.
Appendix C262

D STREAMS Administrative Driver
Overview
This appendix discusses the STREAMS Administrative Driver (SAD).

SAD

The STREAMS Administrative Driver (SAD) provides an interface to the autopush facility using the ioctl
(2) function. As an interface, the sad driver enables administrative tasks to be performed on STREAMS
modules and drivers. By specifying the command parameter to the ioctl (2) function, an administrator can
configure autopush information for a device, get information on a device, or check a list of modules.

Synopsis

#include <sys/types.h>

#include <sys/conf.h>

#include <sys/sad.h>

#include <sys/stropts.h>

int ioctl(int fd, int command, void *arg);

fd: File descriptor obtained by opening /dev/sad via the open (2) system call.

command: Administrative function to be performed. The supported commands are: SAD_SAP, SAD_GAP,
SAD_VML.

arg: Points to a strapush data structure if the IOCTL command is SAD_SAP or SAD_GAP, points
to a str_list data structure if the IOCTL command is SAD_VML.

SAD_SAP

Allows the superuser to configure autopush information for a device. The arg parameter points to a strapush
structure, defined in <sys/sad.h>, and shown here:

 struct strapush {

 uint sap_cmd;

 long sap_major;

 long sap_minor;

 long sap_lastminor;

 long sap_npush;

char sap_list[MAXAPUSH][FMNAMESZ+1];

 };

sap_cmd: Allows the user to specify the type of configuration to perform. This field can have the
following values:

SAP_ALL Configures all minor devices.

SAP_RANGE Configures a range of minor devices.

SAP_ONE Configures a single minor device.
Appendix D 263

STREAMS Administrative Driver
Overview
SAP_CLEAR Clears the previous settings. Specifies only the sap_major and sap_minor
fields when using this command. If a previous entry specified SAP_ALL, set
the sap_minor field to 0 (zero). If a previous entry was specified as
SAP_RANGE, set the sap_minor field to the lowest minor device number in
the range.

sap_major: Major device number.

sap_minor: Minor device number.

sap_lastminor: Range of minor devices.

sap_npush: Number of modules to push. This number must be no more than MAXAPUSH, a constant
defined in <sys/sad.h>. Additionally, this number must not exceed the STREAMS kernel
tunable NSTRPUSH.

sap_list: Specifies, in order, the array of modules to push.

SAD_GAP

Allows the sad driver to be used to obtain autopush configuration information for a device by setting the
sap_major and sap_minor fields of the strapush structure (see the SAD_SAP command) to the major and
minor device numbers of the device being queried. This strapush structure must be pointed to by the arg
parameter. Upon successful completion, the strapush structure contains all of the information used to
configure the device. Values of 0 (zero) will appear in any unused entry in the module list.

SAD_VML

This command enables the user to check a list of modules (e.g., to see if a specific module is installed). The arg
parameter points to a str_list structure, defined in <sys/stropts.h> and shown here:

 struct str_list {

 int sl_nmods;

 struct str_mlist *sl_modlist;

 };

 sl_nmods: Number of entries allocated in an array.

 sl_modlist: Pointer to the array of module names.

The str_mlist structure, also defined in <sys/stropts.h>, contains the following:

 struct str_mlist {

 char l_name[FMNAMESZ+1];

 };

l_name: Array of module names. If the l_name array is valid, the SAD_VML command returns a value
of 0 (zero). If the array contains an invalid module name, the command returns a value of 1.
Upon failure, the command returns a value of -1.

NOTE As a STREAMS driver, sad also supports the normal STREAMS I_STR IOCTL command. In
this form, the developer needs to set the ic_cmd field in the strioctl structure to either
SAD_SAP, SAD_GAP, or SAD_VML. The ic_dp field of the strioctl structure should point to this
strapush structure.
Appendix D264

STREAMS Administrative Driver
Overview
Return Value Unless specified otherwise, upon successful completion, the sad IOCTL commands return a
value of 0 (zero). Otherwise, a value of -1 is returned.

Errors If any of the following conditions occur, the sad IOCTL commands return the corresponding value:

SAD_SAP

[EEXIST] The specified major/minor device number pair (sad_major/sad_minor) has already been
configured.

[EFAULT] The arg parameter points outside the allocated address space.

[EINVAL] The major device number (sad_major) is invalid, the number of modules (sap_list
[MAXAPUSH][FMNAMESZ+1]) is invalid, or the list of module names is invalid.

[ENODEV] The device is not configured for autopush. This value is returned from a SAD_GAP command.

[ENOSR] A internal autopush data structure cannot be allocated.

[ENOSTR] The major device does not represent a STREAMS driver.

[ERANGE] The sap_lastminor field is less than the sap_minor field when the command is SAP_RANGE,
or the minor device specified in a SAP_CLEAR command does not exist.

[EACCES] Only superuser is allowed to execute the SAD_SAP IOCTL.

SAD_GAP

[EFAULT] The arg parameter points outside the allocated address space.

[EINVAL] The major device number (sad_major) is invalid.

[ENODEV] The device is not configured for autopush.

[ENOSTR] The major device does not represent a STREAMS driver.

SAD_VML

[EFAULT] The arg parameter points outside the allocated address space.

[EINVAL] The list of module names is invalid.
Appendix D 265

STREAMS Administrative Driver
Overview
Appendix D266

E Differences Between STREAMS/UX and
System V Release 4 STREAMS
This appendix summarizes the differences between STREAMS/UX and System V Release 4.2 STREAMS.

This appendix will be divided into the following categories for describing differences between HP-UX and
SVR4.2 STREAMS:

• Commands

• System calls

• Utilities

• Drivers and modules

• Data structures

• Message types

• Cloning

• Hardware driver writing
Appendix E 267

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS Commands
HP-UX Changes to STREAMS Commands
STREAMS/UX supports the commands listed below:

• autopush

• fdetach

• strace

• strchg

• strclean

• strconf

• strerr

• strvf

HP versions of supported STREAMS/UX commands operate somewhat differently from the way the
commands are described in the UNIX SVR4.2 Command Reference manual. NLS catalogs exist for the
commands. The catalogs are called autopush.cat, fdetach.cat, strace.cat, strchg.cat, strclean.cat,
strconf.cat, strerr.cat, and strvf.cat and are located in the /usr/lib/nls/C directory. Differences in
the commands are described:

autopush

The syntax for the autopush command on HP-UX is as follows:

autopush -f autopush_file_name

autopush -r -M major_num|dev_name -m minor_num

autopush -g -M major_num|dev_name -m minor_num

autopush_file_name contents:

major_num|dev_name low_minor high_minor mod_name 1...mod_name N

The HP-UX autopush command has been enhanced to allow the user to specify the device name in place of
the major number, which is recommended since HP-UX provides dynamic major numbers. The name can be
specified in the autopush file and on the command line. The major number can still be used if needed.

strace and strerr

The strace and strerr commands use the STREAMS log driver, /dev/strlog. SVR4.2 calls this driver
/dev/log. Since HP-UX already includes a non-streams driver named /dev/log the streams log driver has
been renamed as /dev/strlog.
Appendix E268

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls
HP-UX Changes to STREAMS/UX System Calls
STREAMS/UX supports the following system calls:

• close

• fattach

• fcntl

• fdetach

• getmsg

• getpmsg

• ioctl

• isastream

• open

• pipe

• poll

• putmsg

• putpmsg

• read

• readv

• select

• signal

• write

• writev

For STREAMS-based termio, see the following manpages (which are part of the STREAMS-TIO product):
grantpt (3C), ptsname (3C), and unlockpt (3C).

There are HP-UX modifications to the fattach, ioctl, pipe, poll, putmsg, putpmsg, select, signal, write,
and writev system calls. These modifications are as follows.

fattach/fdetach Modifications

STREAMS/UX supports the fattach (3) and fdetach (3) library calls and the fdetach (1m) command as
described in the UNIX SVR4.2 Operating System API Reference and the SVR4.2 Command Reference. In
order to use fattach and fdetach, the kernel must have the ffs file system configured. If ffs has been deleted,
reinclude ffs in the system file using the HP-UX kernel configuration command kcmodule, regenerate a
kernel and reboot the system. For more information about how to regenerate the HP-UX kernel, refer to the
HP-UX Driver Development Guide.

ioctl Modifications

STREAMS supports IOCTL as described in the SVR4.2 STREAMS manual.
Appendix E 269

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls
NOTE The multiplexor ID number returned by I_LINK and I_PLINK is opaque to the user and not a
small integer such as 0, 1, 2, 3.

pipe Modifications

STREAMS/UX supports STREAMS-based pipes as an optional feature. STREAMS/UX’s STREAMS-based
pipes behave as described in the UNIX SVR4.2 Operating System API Reference and the UNIX System V
Release 4 Programmer’s Guide: STREAMS.

By default, pipes created by the pipe (2) system call are not STREAMS-based. In order to get
STREAMS-based pipes, the /stand/system file must have the pipemod and pipedev module and driver
configured, and the tunable parameter streampipes must be set to 1 (one).

When STREAMS/UX is installed, the /stand/system file is modified to include pipemod and pipedev, but
streampipes is set to zero by default. The kernel must be regenerated and the system rebooted if the setting of
streampipes to non-zero is to take effect. In other words, adb’ing the running system to turn streampipes on
will have no effect on the type of pipes created by pipe (2). Once the kernel is regenerated and rebooted, all
pipe (2) pipes on the system will be STREAMS-based. However, FIFOs will not be STREAMS-based.
STREAMS/UX does not support STREAMS-based FIFOs.

The STREAMS/UX device pipedev is only for internal STREAMS/UX use in implementing STREAMS-based
pipes. Opening a device file with pipedev’s major number will not result in a STREAMS-based pipe, or even a
properly functioning stream. STREAMS-based pipes must be created using the pipe (2) system call.

The PIPE_BUF is a pathname variable value, and SVID, XPG4, POSIX, etc. define it as the maximum number
of bytes that is guaranteed to be written atomically. To obtain the correct value of PIPE_BUF, use fpathconf()
(see pathconf()). For STREAMS-based pipes, the value of PIPE_BUF depends on the configurable parameter
STRMSGSZ (by default, 8KB). For example, PIPE_BUF is set to 4KB if STRMSGSZ is 4KB, 8KB if STRMSGSZ is
8KB, and 16KB if STRMSGSZ is 16KB. There is one exception. If STRMSGSZ is set to 0, then PIPE_BUF for
STREAMS/UX pipes is set to 8KB.

putmsg and putpmsg Modifications

Maximum and Minimum Data Buffer Size:

The size of the user’s data buffer must be within the minimum and maximum packet size
range specified in the topmost STREAM module’s streamtab. It must also be less than or
equal to STRMSGSZ. If the number of bytes to transfer is not in this range, ERANGE will be
returned.

Maximum and Minimum Control Buffer Size:

The size of the user’s control buffer must be less than or equal to both STRCTLSZ and
STRMSGSZ. If STRCTLSZ is less than or equal to zero, the page size is used instead of
STRCTLSZ for this check.

Data Buffer Segmentation

The user’s data buffer may be sent in multiple data blocks chained together to form a
message. The maximum number of bytes, including the write offset, that can be sent in one
data block is equal to the page size.
Appendix E270

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls
Write Offset

A module or driver can send the stream head an M_SETOPTS message, telling the STREAM
head to put an offset in the beginning of the first data block in a message sent by a putmsg
call. STREAMS/UX will not put the offset into the data block if the amount of memory
required is greater than the page size.

select Modifications

STREAMS/UX supports the select system call for STREAMS devices. For more information about the select
system call, see the select (2) manpage provided with the HP-UX system.

The select system call does not provide as much information as poll. If select returns an event for a
STREAMS device, the program can call poll to get more information.

A select read event is returned if a poll event POLLRDNORM, POLLERR, POLLNVAL or POLLHUP exists on the
stream. In other words, a read event is returned for the following conditions:

• Normal message is waiting to be read

• Read error exists at the stream head

• Write error exists at the stream head

• Stream is linked under a multiplexor

• Hang-up has occurred

A select write event is returned if a poll event POLLOUT, POLLWRNORM, POLLERR, POLLNVAL, or POLLHUP exists
on the STREAM. This means that a write event is returned for the following conditions:

• Normal data can be written without blocking because of flow control

• Read error exists at the stream head

• Write error exists at the stream head

• Stream is linked under a multiplexor

• Hang-up has occurred

A select exception event is returned if a poll event POLLPRI or POLLRDBAND exists on the STREAM. More
specifically, an exception event is returned if a high-priority message or a banded message is waiting to be
read.

/dev/poll Interface

HP-UX offers the /dev/poll interface as an added feature and as alternate functionality to poll (2). It
provides an interface to the event port driver allowing a user to synchronously monitor a specific set of
conditions associated with the registered set of file descriptors. Access to /dev/poll is provided through the
open (2), write (2), and ioctl (2) system calls.

The /dev/poll event port provides functionality comparable to the select (2) and poll (2) system calls.
General operations supported by the event port driver are:

• Opening an event port

• Registering and deregistering file descriptors on an event port

• Polling registered file descriptors on an event port

• Retrieving registered poll conditions for a file descriptor
Appendix E 271

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls
• Closing an event port

The poll (7) manpages provide more information on this interface.

signal Modifications

STREAMS/UX supports signals and the HP-UX signal system call. However, STREAMS/UX does not support
extended signals or the siginfo_t structure described in the siginfo (5) manpage.

write and writev Modifications

Maximum and Minimum Data Buffer Size

The size of the user’s data buffer must be within the minimum and maximum packet size
range specified in the topmost STREAM module’s streamtab. If the number of bytes to
transfer is not in this range, ERANGE will be returned. Two exceptions exist in which no error
occurs. The first exception is if the data buffer is too large and either the maximum packet
size is infinite or the minimum packet size is less than or equal to zero. (An infinite packet
size is specified using the define INFPSZ in the stream.h file.) The second exception occurs if
the buffer is too small and the minimum packet size is less than or equal to zero. With
either exception, ERANGE is not returned, and the data is transferred.

Data Buffer Segmentation

The user’s data buffer may be sent in multiple messages. The maximum amount of data
that can be sent in one message is the lower value of the topmost module’s maximum packet
size and STRMSGSZ. If the maximum packet size is infinite, then the top module’s high water
mark is taken into consideration. If the high water mark is more than zero, half of the high
water mark is used; otherwise the page size is used.

Write Offset

A module or driver can send the STREAM head an M_SETOPTS message telling it to put an
offset in the beginning of each data buffer segment (i.e., message) sent by a write call.
STREAMS/UX will not put the offset into a message if the resulting message size exceeds
STRMSGSZ.
Appendix E272

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
HP-UX Modifications to STREAMS/UX Utilities
STREAMS/UX supports the following kernel utilities described in the SVR4.2 Driver manual, although some
of the utilities have been modified for HP-UX.

In addition, HP-UX provides the following new utilities.

get_sleep_lock

putctl2

putnextctl2

streams_put

adjmsg freeb noenable strlog

allocb freemsg OTHERQ strqget

bacvkq freezestr pcmsg strqset

bcanput getadmin pullupmsg SV_ALLOC

bcanputnext getmid put SV_BROADCAST

bcopy getmajor putbq SV_DEALLOC

bufcall getminor putctl SV_WAIT

bzero getq putctl1 SV_WAIT_SIG

canput insq putnext testb

canputnext itimeout putnextctl timeout

cmn_err kmen_alloc putnextctl1 TRYLOCK

copyb kmem_free putq unbufcall

copymsg linkb qenable unfreezestr

datamsg LOCK qprocsoff unlinkb

delay LOCK_ALLOC qprocson UNLOCK

drv_getparm LOCK_DEALLOC qreply untimeout

drv_priv major qsize vtop

dupb makedev RD wakeup

dupmsg makedevice rmvb WR

enableok max rmvq

esballoc min SAMESTR

esbbcall minor sleep

flushband msgdsize spln

flushq msgppullup splstr
Appendix E 273

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
unweldq

weldq

The strenv.h file redefines some native HP-UX kernel utilities to conform to System V Release 4.2. The
strenv.h file redefines delay, get_sleep_lock, kmem_alloc, kmem_free, lbolt, max, min, sleep, time,
timeout, and untimeout. These defines might collide with declarations in STREAMS/UX modules and
drivers. The strenv.h file can be customized to avoid collisions or to use native HP-UX utilities. However,
modules and drivers cannot call the native HP-UX sleep or get_sleep_lock directly. If modules and drivers
call sleep or get_sleep_lock, they must include strenv.h to redefine sleep and get_sleep_lock to
streams_mpsleep and streams_get_sleep_lock.

Differences between the STREAMS/UX kernel utilities and the descriptions in the SVR4.2 Driver manual are
discussed here, along with information about new utilities. This section assumes that modules and drivers
include strenv.h.

cmn_err

The STREAMS/UX cmn_err is the same as the cmn_err described in the SVR4.2 Driver manual with a few
differences. The HP-UX cmn_err always sends messages to both the system console and the circular kernel
buffer. Inserting an exclamation point (“!”) or a circumflex (“^”) as the first character in the format string has
no effect. HP-UX simply removes these control characters from the message, and sends the message to both
the console and the kernel buffer. There are a couple of other very minor differences. HP-UX precedes
CE_PANIC level messages with the string panic: instead of PANIC:. Also, the HP-UX circular kernel buffer is
called msgbuf instead of putbuf. The HP-UX msgbuf is a fixed size, and can be viewed using the dmesg
command or the KWDB debugger tool.

esballoc

The STREAMS/UX esballoc is the same as the esballoc call described in the SVR4.2 Driver manual with a
few differences. The HP-UX esballoc copies the contents of the fr_rtn structure into an area of the message
block not visible to the STREAMS/UX programmer. The free routine passed to esballoc can call
STREAMS/UX utilities in the same way as the put or service procedure that called freeb. Also, a free routine
can safely access the same data structures as the put or service routine that called freeb. However, unlike
SVR4.2, HP-UX does not block interrupts from all STREAMS/UX devices while the free routine runs.

freezestr and unfreezestr

The SVR4.2 Driver manual says that freezestr and unfreezestr must be called on multiprocessors to
protect searching a STREAMS/UX queue and calling insq, rmvq, strqset, and strqget. SVR4 MP provides
freezestr and unfreezestr to prevent software on multiple processors from manipulating a queue’s list of
messages at the same time. STREAMS/UX uses synchronization levels for this. Appendix-F for more
information about synchronization levels. STREAMS/UX uses a different mechanism to protect
STREAMS/UX queues. Thus the HP-UX freezestr/unfreezestr mechanisms are different from SVR4.2
definitions in that they freeze/unfreeze the state of a single queue and not the state of the entire stream
containing the queue.

All modules/drivers with the synchronization level SQLVL_NOSYNC still need to call freezestr to freeze the
queue. The call to freezestr needs to be done before calling insq, rmvq, strqget, and strqset to prevent
multiple put routines running on different processors from manipulating the same queue. A call to
unfreezestr must be made to unfreeze the queue.

For module/drivers with a synchronization level other than SQLVL_NOSYNC, freezestr returns the current
interrupt priority level, and unfreezestr is a no-op. HP-UX provides the freezestr and unfreezestr stubs
for easier porting of code from SVR4 MP, for these levels.
Appendix E274

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
get_sleep_lock

STREAMS/UX provides some extra support for modules and drivers which use the native HP-UX
get_sleep_lock primitive. Alternatively, modules and drivers can call the SVR4 MP SV_WAIT and
SV_WAIT_SIG. Open and close routines call get_sleep_lock before sleeping to prevent missing wakeups.
After calling get_sleep_lock, the open or close can release spinlocks before sleeping. Other processes cannot
wakeup the open or close between the time it calls get_sleep_lock and sleep. Modules and drivers must
include strenv.h to use get_sleep_lock. strenv.h redefines get_sleep_lock to
streams_get_sleep_lock. Modules and drivers cannot call the native HP-UX get_sleep_lock directly,
because STREAMS/UX needs to do some additional synchronization before invoking get_sleep_lock.

lock_t * get_sleep_lock(caddr_t event);

The open or close routine passes the event it will pass to the sleep primitive to get_sleep_lock.
get_sleep_lock obtains a sleep spinlock, and returns a pointer to this lock.

itimeout

If the HP-UX itimeout cannot allocate memory, it panics instead of returning 0 like the SVR4 MP itimeout.
The STREAMS/UX itimeout only returns 0 if it is passed an interrupt priority level that is lower than
pltimeout.

kmem_alloc

A value of 0 for the size parameter is illegal in STREAMS/UX kmem_alloc(). The SVR4.2 kmem_alloc
returns NULL instead.

LOCK

The STREAMS/UX LOCK calls the native HP-UX spinlock primitive. LOCK has an interrupt priority level
parameter, which is used to raise the priority level and block interrupts which acquire the spinlock. The
SVR4.2 Driver manual says that implementations which do not need to raise the interrupt level can ignore
this parameter. Since the HP-UX spinlock primitive always raises the interrupt level to spl6 while a spinlock
is held, STREAMS/UX ignores the interrupt level parameter on multiprocessor systems. For better
performance on uniprocessor systems, the STREAMS/UX LOCK raises the priority level to the parameter
value instead of acquiring a spinlock. Whether the caller will block or spin if the lock cannot be obtained is
implementation defined. The HP-UX implementation spins.

LOCK_ALLOC

The STREAMS/UX LOCK_ALLOC calls the native HP-UX alloc_spinlock primitive. There are some small
differences between the STREAMS/UX LOCK_ALLOC and the SVR4 MP utility. The LOCK_ALLOC has a flag
parameter which indicates if the caller is willing to block while waiting for memory to be allocated. HP-UX
only allows this flag to be set to KM_SLEEP, and returns zero if it is set to KM_NOSLEEP. The STREAMS/UX
LOCK_ALLOC accepts the following hierarchy parameter values which are reserved for STREAMS/UX modules
and drivers in /usr/include/sys/semglobal.h:

• STREAMS_USR1_LOCK_ORDER

• STREAMS_USR2_LOCK_ORDER

• STREAMS_USR3_LOCK_ORDER
Appendix E 275

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
The compiler options to turn on deadlock checking for HP-UX are different than those documented in the
SVR4.2 Driver manual. The entire HP-UX kernel and the module or driver must be compiled with
SEMAPHORE_DEBUG to enable deadlock checking. According to the SVR4.2 Driver manual, the min_pl
parameter can be ignored by implementations which do not need to raise the priority level. The HP-UX
STREAMS LOCK_ALLOC ignores it.

putctl2

STREAMS/UX also provides the additional utility called putctl2. This utility can be used to send a control
message with a two-byte parameter to a queue. For example, putctl2 can send the new style of an M_ERROR
message, which is two bytes long, to the specified queue:

int putctl2(queue_t *q, int type, int p1, int p2);

where,

q The queue to which the message is sent

type The message type

p1,p2 Two bytes of data in the message.

The putctl2 utility ensures that the type is not a data type. The utility also allocates a message block, fills in
the data, and calls the put procedure of the specified queue.

The putctl2 utility returns 0 if the type is M_DATA, M_PROTO or M_PCPROTO, or if a message block cannot be
allocated. putctl2 utility returns 1 if it completes successfully.

putnextctl2

STREAMS/UX provides an additional utility putnextctl2. This utility can be used to send a control message
with a two-byte parameter to the next queue in a stream. For example, putnextctl2 can send the new style
of an M_ERROR message, which is two bytes long, to the next queue in a stream:

int putnextctl2(queue_t *q, int type, int p1, int p2);

where,

q The queue from which the message is sent to q->q_next

type is the message type

p1,p2 Two bytes of data in the message.

The putnextctl2 utility ensures that the type is not a data type. The utility also allocates a message block,
fills in the data, and calls the put procedure of q->q_next.

The putnextctl2 utility returns 0 if the type is M_DATA, M_PROTO, or M_PCPROTO, or if a message block cannot
be allocated. putnextctl2 utility returns 1 if it completes successfully.

qprocson and qprocsoff

SVR4 MPSTREAMS provides qprocson and qprocsoff, which on a multiprocessor system allows a module’s
put and service procedures to run concurrently with open and close. STREAMS/UX does not allow this
parallelism. A module’s or driver’s put and service procedures cannot run at the same time as the open or
close. Although STREAMS/UX does not run the put or service procedure in parallel with the open or close, it
does queue any requests to run the put or service procedure. STREAMS/UX will process these when open
finishes. Also, if open or close sleeps, STREAMS/UX can run the put and service procedures while open or
close are sleeping. However, a put or service procedure cannot do the wakeup on a sleeping open or close.
STREAMS/UX provides stubs which are no-ops for qprocson and qprocsoff to make porting easier.
Appendix E276

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
streams_put utility

STREAMS/UX provides a new utility streams_put(), which allows non-STREAMS software to safely call
STREAMS/UX utilities. timeout and bufcall user functions and other non-STREAMS code cannot call
several of the STREAMS utilities or share data with modules and drivers.

Non-STREAMS code can call streams_put(), passing it a function and a queue. STREAMS/UX runs the
function as if it were the queue’s put procedure. The function can safely manipulate the queue and access the
same data structures as the queue’s put procedure.

typedef void (*streams_put_t)(void *, MBPKP);

void streams_put(streams_put_t func, queue_t *q, mblk_t *mp, void *private);

STREAMS will run func as if it were q’s put procedure. STREAMS passes private and mp to func. The
non-STREAMS code can pass any value in the private parameter. The code must pass a valid message block
pointer in mp.

SV_WAIT

STREAMS/UX implements a subset of the SVR4 MP synchronization variable utilities using sleep and
wakeup. The STREAMS/UX SV_WAIT differs from the SVR4 MP utility in the following ways.

• When the SVR4 MP SV_WAIT returns, the lkp spinlock is not held and the priority level is set to plbase
(SPLNOPREEMPT on HP-UX). On a multiprocessor system, the HP-UX SV_WAIT lowers the priority level to
the value before the caller acquired the lkp spinlock, which may not be SPLNOPREEMPT. If the caller
acquired the lock while holding other spinlocks, the priority level is lowered to the value before the first of
these nested spinlock calls.

• The SVR4 MP SV_WAIT has a priority argument that specifies the priority the caller would like to run at
after waking. Since the HP-UX SV_WAIT is implemented by calling sleep, the HP-UX priorities are
different than the SVR4 MP ones. On HP-UX, the priority passed into SV_WAIT is subtracted from
PZERO-1. The pridisk, prinet, pritty, pritape, prihi, primed, and prilo are defined to be 0 and do
not affect the caller’s priority. To change the process’s priority, study the priorities in
/usr/include/sys/param.h and pass the needed offset to PZERO-1 in the priority parameter.

SV_WAIT_SIG

HP implements a subset of the SVR4 MP synchronization variable utilities using sleep and wakeup. The
STREAMS/UX SV_WAIT_SIG differs from the SVR4 MP utility in the following ways.

• When the SVR4 MP SV_WAIT_SIG returns, the lkp spinlock is not held, and the priority level is set to
plbase (SPLNOPREEMPT on HP-UX). On a multiprocessor system, the HP-UX SV_WAIT_SIG lowers the
priority level to the value before the caller acquired the lkp spinlock, which may not be SPLNOPREEMPT.

• If the caller acquired the lock while holding other spinlocks, the priority level is lowered to the value
before the first of these nested spinlock calls.

• Also, the SVR4 MP SV_WAIT_SIG has a priority argument that specifies the priority the caller would like
to run at after waking. Since the HP-UX SV_WAIT_SIG is implemented by calling sleep, the HP-UX
priorities are different than the SVR4 MP ones.

• On HP-UX, the priority passed into SV_WAIT_SIG is added to PZERO+1|PCATCH. pridisk, prinet, pritty,
pritape, prihi, primed and prilo are defined to be 0 and do not affect the caller’s priority. To change the
process’s priority, study the priorities in /usr/include/sys/param.h and pass the needed offset to
PZERO+1|PCATCH in the priority parameter.
Appendix E 277

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
• The last difference is that the SVR4 MP SV_WAIT_SIG returns if the process is first stopped by a job
control signal and then continued. The HP-UX SV_WAIT_SIG continues to sleep until it receives a signal
which does not stop the process or an SV_BROADCAST wakes up the process.

TRYLOCK

The STREAMS/UX TRYLOCK calls the native HP-UX cspinlock primitive. TRYLOCK has an interrupt
priority level parameter, which is used to raise the priority level and block interrupts which acquire the
spinlock. The SVR4.2 Driver manual says that implementations which do not require the interrupt level to be
raised, can ignore this parameter. STREAMS/UX ignores the parameter on multiprocessor systems since the
HP-UX cspinlock primitive always raises the interrupt level to spl6 while a spinlock is held. For better
performance on uniprocessor systems, the STREAMS/UX TRYLOCK raises the priority level to the
parameter value instead of acquiring a spinlock.

UNLOCK

The STREAMS/UX UNLOCK calls the native HP-UX spinunlock primitive. UNLOCK has an interrupt
priority level parameter, which is used to lower the priority level. HP-UX will ignore this parameter on
multiprocessor systems. If the caller is not holding any other spinlocks, the STREAMS/UX UNLOCK lowers
the priority level to the value before the caller acquired the spinlock. On uniprocessor systems, the
STREAMS/UX UNLOCK lowers the priority level to the parameter value instead of releasing a spinlock.

weldq and unweldq

STREAMS/UX provides the additional utilities weldq and unweldq to allow the user to build a pipe-like
stream. These utilities are provided because the programmer is not allowed to modify q_next pointers
directly

weldq

The weldq connects two drivers’ queues to form a pipe by setting the q_next pointer:

 int weldq (queue_t * d1_wq,

 queue_t * d2_rq,

 queue_t * d2_wq,

 queue_t * d1_rq,

 weld_fcn_t func,

 weld_arg_t arg,

 queue_t * protect_q);

d1_wq, d1_rq One of the drivers’ write and read queues.

d2_wq, d2_rq The second driver’s queues.

func Callback function to be executed by the weld daemon.

arg, protect_q Parameters passed to the previous function.

The weldq will set d1_wq->q_next to be d2_rq and d2_wq->q_next to d1_rq. Also, weldq updates internal
queue fields used for flow control that are not visible to the STREAMS programmer.

The weldq returns to the caller before connecting the drivers. The weldq requests the STREAMS weld
daemon to update the queues.
Appendix E278

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
The weld daemon will call func with arg as an argument after it finishes the request. The protect_q
specifies which queue the callback function can access safely. If the driver does not need to be notified when
the daemon finishes the weld request, pass weldq zero for the func, arg and protect_q parameters.

On successful completion, weldq returns 0. However, if weldq fails, an errno indicating the type of error that
has occurred is returned. The errno will contain one of the following three values:

ENXIO The weld daemon is not running.

EINVAL Invalid queue arguments exist.

EAGAIN No memory is available.

unweldq

The utility unweldq disconnects two drivers’ queues that were joined by weldq:.

 int unweldq (queue_t * d1_wq,

 queue_t * d2_rq,

 queue_t * d2_wq,

 queue_t * d1_rq,

 weld_fcn_t func,

 weld_arg_t arg,

 queue_t * protect_q);

d1_wq, d1_rq One of the drivers’ write and read queues.

d2_wq, d2_rq The second driver’s queues.

func Callback function to be executed by the weld daemon.

arg, protect_q Parameters passed to the previous function.

The unweldq will set d1_wq->q_next and d2_wq->q_next to zero. Also, it updates internal queue fields used
for flow control that are not visible to the STREAMS programmer.

The unweldq returns to the caller before disconnecting the drivers. The unweldq requests that the STREAMS
weld daemon update the queues.

NOTE If one end of a pipe-like stream created by weld is closed, STREAMS will automatically unweld
the two drivers. unweldq does not need to be called.

The weld daemon will call func with arg as an argument after it finishes the request. protect_q specifies
which queue the callback function can access safely. If the driver does not need to be notified when the
daemon finishes the weld request, pass weldq zero for the func, arg and protect_q parameters.

On successful completion, unweldq returns 0. Otherwise, it returns an errno indicating the type of error that
occurred. One of the following four values will be returned:

ENXIO The weld daemon is not running.

EINVAL Invalid queue arguments are present.

EAGAIN No memory is available.

ENXIO The weld daemon is not running.
Appendix E 279

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities
vtop

The STREAMS/UX vtop only accepts a NULL process structure pointer. In other words, it only converts
kernel space addresses.
Appendix E280

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules
HP-UX Changes to STREAMS/UX Drivers and Modules
The unsupported drivers and modules include:

 connld

 console

 ports

 sxt

 xt

NOTE Some STREAMS-based terminal I/O functionality is contained in a separate product called
STREAMS-TIO. It is part of the HP-UX runtime product. See the following manpages (which
are part of the STREAMS-TIO product): pts (7), ptm (7), ldterm (7), pterm (7) and pckt (7).

STREAMS/UX provides the following drivers and modules:

 clone

 strlog

 sad

 echo

 sc

 timod

 tirdwr

 pipemod

Entries for these drivers and modules can be found in the system file. General information about these
drivers follows. Information about the stream head is also included. Differences between the HP-UX and
SVR4.2 log and sad drivers are also described.

NOTE Any driver or module not explicitly listed as supported in this section is not supported.

clone

Major Number: 72

The clone is used to provide cloning. The major number of the device file for a cloneable driver must be the
clone driver’s major number, 72. The minor number is set to the real major number of the device.

strlog

Major Number: 73

Module ID Number: 44

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128
Appendix E 281

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules
The STREAMS/UX log driver is named strlog instead of log. The special device file is /dev/strlog. strlog
provides the same functionality for logging as described in the UNIX SVR4.2 System Files and Devices
Reference, with the exceptions described:

• The strlog kernel utility formats binary arguments before sending messages up the stream.

• STREAMS/UX does not provide a separate console logger or /dev/console device. The strlog does not
support the I_CONSLOG IOCTL. The strlog prints a log message on the console if the SL_CONSOLE flag is
set.

• The HP-UX log_ctl structure does not contain a pri field. Priority and facility codes are not supported.

sad

Major Number: 74

Module ID Number: 45

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128

The STREAMS/UX sad driver device file is /dev/sad. The system administrator and users can open
/dev/sad. However, only the system administrator can execute the SAD_SAP IOCTL system call. This differs
from the System V sad driver, which is accessed through the /dev/sad/admin and /dev/sad/user device
files.

The sad provides autopush functionality as described in the UNIX SVR4.2 System Files and Devices
Reference manual.

echo

Major Number: 116

Module ID Number: 5000

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 65536

Low Water Mark: 1024

The echo is a loopback driver used by the strvf STREAMS/UX verification tool. For more information about
strvf see the manpage strvf (1M).

sc

Module ID Number: 5002

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128
Appendix E282

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules
The sc provides auxiliary functions for the sad driver.

timod

Module ID Number: 5006

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 2048

Low Water Mark: 128

The timod provides TLI functionality as described in the UNIX SVR4.2 System Files and Devices Reference
manual.

tirdwr

Module ID Number: 0

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 16384

Low Water Mark: 128

The tirdwr provides an alternative interface to the TLI library for accessing a transport protocol provider.
The tirdwr is described in the UNIX SVR4.2 System Files and Devices Reference manual.

Stream Head

Module ID Number: 0

Module Name: sth

Maximum Packet Size: INFPSZ

Minimum Packet Size: 0

High Water Mark: 65536

Low Water Mark: 8192

The Stream head provides the interface between HP-UX system calls and STREAMS/UX utilities in the
kernel. The Stream head is the first queue pair of every Stream and is involved in flow control. Data being
read from a stream will be taken off the stream head.

pipemod

Module ID Number: 5303

Maximum Packet Size: 8192

Minimum Packet Size: 0

High Water Mark: 16384

Low Water Mark: 8192
Appendix E 283

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules
The pipemod handles M_FLUSH messages in STREAMS/UX-based pipes. The pipemod is described in
Chapter 4, “Modules and Drivers.”
Appendix E284

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Data Structures
HP-UX Changes to STREAMS/UX Data Structures
STREAMS/UX data structures are almost identical to those described in the SVR4.2 Driver manual.
STREAMS/UX places additional restrictions on how some of these structures can be accessed. STREAMS/UX
data structures that differ from the descriptions in the SVR4.2 Driver manual are described here. Data
structures identical to those described in the SVR4.2 Driver manual are not listed here.

STREAMS/UX data structures contain some declarations for fields used by STREAMS/UX internally that are
not visible to the STREAMS/UX programmer. The programmer will not be affected by these fields except that
the sizeof function will return a larger value.

Message Data Structures

These structures are slightly different from the ones in the SVR4.2 Driver manual.

msgb defined in <sys/stream.h>

The msgb structure contains MSG_KERNEL_FIELDS, which defines fields used internally by
STREAMS/UX.

iocblk defined in <sys/stream.h>

The ioc_count is defined to be a member of a union.

copyreq defined in <sys/stream.h>

The cq_addr is defined to be a member of a union.

copyresp defined in <sys/stream.h>

The cp_rval is defined to be a member of a union.

Queue Data Structure

The queue structure is slightly different from the one described in the SVR4.2 Driver manual. The structure
is defined in the file <sys/stream.h>. It contains an additional field QUEUE_KERNEL_FIELDS which defines
fields used internally by STREAMS/UX.The multiplexor ID number returned by I_LINK and I_PLINK is
opaque to the user and not a small integer such as 0, 1, 2, 3.

STREAMS/UX Data Structure Restrictions

STREAMS/UX has the same restrictions as those described in the Kernel Data Structure chapter of the
SVR4.2 Driver manual. Also, STREAMS/UX limits user written functions where users can access the queue
structure directly. A queue’s open, close, put, or service routine can manipulate the queue structure as
specified by SVR4.2. On a uniprocessor system, a queue’s entry points can access the other queue in the queue
pair in the same way that they can access their own queue. On a multiprocessor system, a queue’s entry
points can manipulate queues belonging to entities with which they can share data. They can manipulate the
queues in the same way that they can manipulate their own queue.

It is difficult to program other functions (besides those described) to access the queue structure directly,
especially on multiprocessor systems. If a queue’s entry points access queues other than those described
previously, or if non-STREAMS/UX software processes data in a STREAMS/UX queue, use the streams_put
utility to manipulate the queues safely. streams_put is described in the “HP-UX Modifications to
STREAMS/UX Utilities” section of this appendix.
Appendix E 285

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Data Structures
If streams_put cannot be used, the code that accesses a STREAMS/UX queue must, at a minimum, follow
these additional rules:

• The software must ensure that it is accessing an allocated, opened queue.

• It cannot dereference the q_first, q_last, or q_next pointers. In other words, it cannot read or write
data pointed at by the pointers. For example, the function can check if q_first is 0, but it cannot read
the q_first->b_next field.

• Any additional synchronization required for the modules and drivers must be implemented to work
correctly by the developer. The developers need to synchronize the function accessing the STREAMS/UX
queue with the queue’s entry points. This is because the function and the entry points may access the
queue in parallel on a multiprocessor system and may interrupt each other while accessing the queue on
a uniprocessor system.
Appendix E286

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Message Types
HP-UX Changes to Message Types
STREAMS/UX supports all the message types as in SVR 4.2. However STREAMS/UX differs from SVR4.2
STREAMS only in the way it behaves on the receipt of M_HANGUP message at the stream head for controlling
terminals. For the controlling terminals, the stream head sends a SIGHUP signal to the foreground process
group and not the controlling terminal when it receives a M_HANGUP message.

In addition, STREAMS/UX also offers a the following message types:

Ordinary or Low Priority Message Types

M_TRAIL

This message is generated and sent upstream by a driver following the M_HANGUP message to mark the end of
data after an M_HANGUP message. The M_TRAIL message will be processed at the stream head only if the
preceding M_HANGUP message sent by the driver contained the 2-byte TRAIL_TOKEN.

High Priority Message Types

M_CLOSE

This message is generated by the stream head to notify the driver of close(2) when the driver specifies
C_ALLCLOSES in the d_flags field of it's drv_ops_t structure. When the C_ALLCLOSES flag is set, STREAMS
sends an M_CLOSE message downstream and waits for a reply from the driver. The stream will be
dismantled only if the reply (M_CLOSE_REPL) for the M_CLOSE message has MSGLASTCLOSE set in the b_flag
else close(2) returns without dismantling the stream.

M_CLOSE_REPL

This message is generated by the driver in response to the M_CLOSE message sent to it by the stream head.
When the flag C_ALLCLOSES is set, it is the responsibility of driver to keep track of the information about the
number of opens/closes for this device and accordingly set the MSGLASTCLOSE in b_flag in the message
M_CLOSE_REPL if it wants the stream associated with device to be dismantled.

Changes to M_HANGUP

STREAMS/UX differs from SVR4.2 STREAMS in the way it behaves on the receipt of an M_HANGUP message
at the stream head for controlling terminals. STREAMS/UX differs from SVR4.2 STREAMS in the way it
behaves on the receipt of an M_HANGUP message at the stream head for controlling terminals. For the
controlling terminals on receiving an M_HANGUP message at stream head, the stream head sends a
SIGHUP signal to the foreground process group and not the controlling terminal.

If an M_TRAIL message type is used to mark the end of data after the M_HANGUP message, then the M_HANGUP
message must contain the 2-byte TRAIL_TOKEN.
Appendix E 287

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Cloning
HP-UX Changes to Cloning
STREAMS/UX supports two methods of cloning. See the SVR4.2 STREAMS manual for more information
about cloning. Chapter 4, “Modules and Drivers,” explains the two HP-UX cloning methods in detail.

The major number for the clone driver in HP-UX is 72 while SVR4.2 cloning uses 63 as the major number of
the clone driver.

STREAMS/UX Hardware Driver Writing
STREAMS/UX does not provide all the kernel utilities needed to write a STREAMS hardware driver.
STREAMS/UX provides only the utilities described in this manual. Customers who need to write STREAMS
hardware drivers should refer to the HP-UX Driver Development Guide for details.
Appendix E288

Differences Between STREAMS/UX and System V Release 4 STREAMS
Differences Between SVR4 MP and HP-UX MP STREAMS
Differences Between SVR4 MP and HP-UX MP STREAMS
HP-UX STREAMS provides MP scalability differently from SVR4 MP STREAMS. There are two main
differences.

1. The first pertains to which STREAMS/UX entities run in parallel. SVR4 MP STREAMS executes put and
service procedures for the same queue concurrently although only one instance of a service procedures
can run at a time. HP-UX, unlike SVR4 MP, allows the developer to configure which STREAMS/UX
entities run in parallel. The most parallelism that a STREAMS/UX developer can configure is to run
entry points for different queues concurrently. Unlike SVR4 MP, HP-UX only allows one entry point for a
queue to run at a time. The put and service procedures for the same queue cannot run in parallel. Also,
multiple instances of a queue’s put or service procedure cannot execute concurrently.

2. The second difference has to do with synchronizing access to module and driver private data structures.
SVR4 MP STREAMS does not provide protection for private structures. The module or driver code uses
spinlocks to synchronize access. STREAMS/UX provides protection for private structures. The developer
configures the amount of concurrency for a module or driver based on the entities with which it shares
data structures. For example, if all instances of a module access the same table, the programmer can
configure the module so that only one instance runs at a time.

STREAMS/UX Synchronization Levels

HP-UX STREAMS supports MP scalable drivers and modules. The amount of synchronization for modules
and drivers can be configured. Pick a level which is consistent with a module’s or driver’s use of shared data
structures. STREAMS/UX provides six levels of parallelism which are called queue, queue pair, module,
elsewhere, global, and NoSync (described in detail in Appendix F, “Synchronization Levels.”)

The STREAMS/UX synchronization levels also apply to open and close. For example, if a module is configured
for queue pair level synchronization, none of the put or service procedures for the queue pair can run at the
same time as the queue pair’s open or close. Also, open cannot run at the same time as close. The least amount
of protection that STREAMS/UX provides for opens and closes is queue pair. Even if a module is configured
with queue-level synchronization, it will run as if it were configured with queue pair-level synchronization
during opens and closes.

STREAMS does not synchronize the running of timeout and bufcall callback functions with modules and
drivers.

Synchronization levels can be used to protect module and driver private data structures as long as the
driver/module is not configured at SQLVL_NOSYNC.

Strategies for Porting SVR4 MP Modules and Drivers to HP-UX

The best way to port SVR4 MP scalable modules and drivers to HP-UX is to change the SVR4 MP code to use
the STREAMS/UX synchronization levels. First, analyze how the SVR4 MP code shares data structures, and
then configure the modules and drivers to use synchronization levels which correctly serialize access to
shared data. Defines can be used to change module and driver spinlock calls to no-ops. This approach is likely
to get the best performance, but may require much effort. Also, the STREAMS/UX synchronization levels may
not be suitable for all designs.

To make porting easier, STREAMS/UX will provide support for the SVR4 MP spinlock primitives. SVR4 MP
modules and drivers could be ported to HP-UX by configuring them to run with queue synchronization and
leaving in the calls to SVR4 MP spinlock routines. A disadvantage of this porting strategy is that it may not
achieve as much performance as the first. Some of the synchronization provided by STREAMS/UX will be
redundant with the synchronization implemented by module and driver spinlocks. In some cases, a
Appendix E 289

Differences Between STREAMS/UX and System V Release 4 STREAMS
Differences Between SVR4 MP and HP-UX MP STREAMS
combination of these two strategies may make sense. For example, suppose several modules and drivers share
the same structure, but do not access it on the main read and write paths. Use SVR4 MP spinlocks to protect
this data, but use the STREAMS/UX synchronization levels to protect other structures.
Appendix E290

Differences Between STREAMS/UX and System V Release 4 STREAMS
The STREAMS/UX Scheduler
The STREAMS/UX Scheduler
The STREAMS/UX scheduler runs service routines that are scheduled by STREAMS/UX utilities such as
putq. The scheduler will run all scheduled service procedures before returning to user level. The scheduler is
a real time daemon that runs at priority 100. (A low priority number denotes a high priority. For example, a
priority number of 50 would be of higher priority than the number 100). STREAMS/UX applications need to
run at a lower priority (higher priority number) than the STREAMS/UX scheduler; otherwise service
procedures will not run before the scheduler returns to user level from the kernel.
Appendix E 291

Differences Between STREAMS/UX and System V Release 4 STREAMS
The STREAMS/UX Scheduler
Appendix E292

Differences Between STREAMS/UX and System V Release 4 STREAMS
The STREAMS/UX Scheduler
Appendix E 293

Differences Between STREAMS/UX and System V Release 4 STREAMS
The STREAMS/UX Scheduler
Appendix E294

F Synchronization Levels
STREAMS/UX supports MP scalable drivers and modules. Modules and drivers need to select the level of
parallelism consistent with their use of shared data structures. STREAMS/UX allows the degree of
parallelism to be configured by providing the following levels of synchronization:

1. Queue level synchronization — SQLVL_QUEUE

2. Queue-pair level synchronization — SQLVL_QUEUEPAIR

3. Module level synchronization — SQLVL_MODULE

4. Elsewhere level synchronization — SQLVL_ELSEWHERE

5. Global level synchronization — SQLVL_GLOBAL

6. NoSync level synchronization — SQLVL_NOSYNC

HP-UX requires all modules and drivers to specify their synchronization level in the inst_sync_level field
in the streams_info_t structure.

Figure F-1, “Synchronization Levels,” shows the different synchronization levels.

Figure F-1 Synchronization Levels

Stream Head

Read QWrite Q

ECHO-A ECHO-B DLPI-A SAD-A

echo_rput
echo_rsrv

echo_wput
echo_wsrv

echo_rput
echo_rsrv

echo_wput
echo_wsrv

dipi_rput
dlpi_rsrv

dlpi_wput
dlpi_wsrv

sad_rput
sad_rsrv

sad_wput
sad_wsrv

Read QWrite Q Read QWrite Q Read QWrite Q

ECHO Driver DLPI Driver SAD Driver

(Instance 1) (Instance 1) (Instance 2)(Instance 2)

User
Space

Kernel
Space

Stream Head Stream Head Stream Head
Appendix F 295

Synchronization Levels
Queue Level Synchronization
Queue Level Synchronization
The queue level synchronization serializes access to a queue so that only one request is processed at a time.
Requests to different queues can run in parallel.

For example, if the echo driver in Figure F-1, “Synchronization Levels,” is configured for queue
synchronization, the following procedures will not execute concurrently:

• ECHO-A’s echo_rput and echo_rsrv procedures.

• ECHO-A’s echo_wput and echo_wsrv procedures.

However, in this synchronization mode, STREAMS/UX will run the following concurrently:

• ECHO-A’s echo_rput and ECHO-A’s echo_wput procedures.

• Any of ECHO-A’s procedures with any of ECHO-B, DLPI-A or SAD-A’s procedures.

If a module uses queue synchronization, a queue’s put and service procedures can share data with each other.
This occurs because STREAMS/UX does not execute these procedures concurrently.

Queue-Pair Level Synchronization
The queue-pair level synchronization serializes the read-and write-queue pair of a module/driver. This level of
synchronization ensures that only one request to this queue pair is processed at a time. Requests to different
queue pairs can run in parallel.

For example, if the echo driver in Figure F-1, “Synchronization Levels,” is configured for queue-pair
synchronization, then at any given time, only one of ECHO-A’s echo_rput, echo_rsrv, echo_wput, and
echo_wsrv can run. However, an ECHO-A routine can run in parallel with an ECHO-B routine.

If a module uses queue-pair synchronization, the read queue and write queue can share data with each other.

Module Level Synchronization
The module level synchronization serializes access to all the instances of the module. This synchronization
ensures that only one request for the instances of this module can be processed at a time. Requests to
different modules can run in parallel.

For example, in Figure F-1, “Synchronization Levels,” if the echo driver is configured for module
synchronization, then only one request to any ECHO-A or ECHO-B will be processed at a time. However,
STREAMS/UX will be able to process the requests to a dlpi or sad driver at the same time.

With module synchronization, all instances of this module can share data with each other.
Appendix F296

Synchronization Levels
Elsewhere Level Synchronization
Elsewhere Level Synchronization
The elsewhere level synchronization serializes a group of different modules. This synchronization ensures
that only one request to the entire group of modules can be processed at a time. Requests to other queues that
are not in this group can run concurrently.

For example, if the echo and dlpi drivers in Figure F-1, “Synchronization Levels,” are configured to be
members of an elsewhere synchronization group, and the sad driver is configured to be in a different
elsewhere group, then only one driver function in ECHO-A, ECHO-B and DLPI-A can run at a time. However,
a function in ECHO-A, ECHO-B or DLPI-A can run in parallel with a function in SAD-A.

Modules in a group can share data, since no two functions in a module group can run concurrently under the
elsewhere level synchronization.

Global Level Synchronization
The global level synchronization serializes all the requests to the modules configured at the global level
synchronization. Only one request to all modules under the global level synchronization can be processed at a
time. Requests to modules that are not configured under global level synchronization can run concurrently.

For example, in Figure F-1, “Synchronization Levels,” if the echo, dlpi, and sad drivers are configured for
global synchronization, only one driver function in ECHO-A, ECHO-B, DLPI-A, and SAD-A can run at a time.
However, one of these drivers could run in parallel with a module configured for a different synchronization
level.

All modules configured with global synchronization can share data.

Global level synchronization may cause a system-wide performance impact. Therefore, it is highly
recommended not to use global level synchronization.

Nosync level synchronization
Nosync level synchronization provides the highest level of concurrency. For a given queue, it allows multiple
requests to be processed at the same time. Requests to different queues can run in parallel.

For example, if the echo driver in Figure F-1 is configured for nosync synchronization, STREAMS/UX cannot
run the following procedures concurrently:

• Multiple instances of ECHO-A's echo_rsrv procedures.

• Multiple instances of ECHO-A's echo_wsrv procedures.

However, in this synchronization mode, STREAMS/UX can run the following procedures concurrently:

• Multiple instances of ECHO-A's echo_rput procedures.

• Multiple instances of ECHO-A's echo_wput procedures

• Multiple instances of ECHO-A's echo_rput and a single instance of echo_rsrv procedures.
Appendix F 297

Synchronization Levels
Nosync level synchronization
• Multiple instances of ECHO-A's echo_wput and a single instance of echo_wsrv procedures.

• Any of ECHO-A's procedures with any of ECHO-B, DLPI-A, or SAD-A's procedures.

If a module uses nosync synchronization, STREAMS/UX can concurrently execute multiple instances of a
queue's put procedure and a single instance of the same queue's service procedure. This necessitates that the
modules protect the module-specific data that has to be shared between multiple instances of the put
procedures, or between the put and the service procedures.

STREAMS/UX does not guarantee the order of messages coming out of the modules/drivers using nosync
synchronization, because it has no control of the execution order when multiple instances of the put and
service procedures are executed simultaneously. If the order of the messages matter, than the modules/drivers
should device their own mechanisms to achieve it.

STREAMS/UX in general will maintain the integrity of its private data structures. However when certain
operations manipulating the queue directly namely insq(), rmvq(), strqset() and strqget() are to be used in a
module/driver using nosync synchronization, an explicit call to freezestr() is necessary to maintain the
integrity of the STREAMS data structures.

Refer to Appendix G, “STREAMS Commands,” for more details on these utilities.
Appendix F298

G STREAMS Commands
Overview
This appendix discusses the various STREAMS/UX commands.
Appendix G 299

STREAMS Commands
autopush
autopush
The autopush command manages the system database of automatically pushed STREAMS modules. The
HP-UX autopush command has been enhanced with respect to UNIX SVR4.2, to allow the user to specify the
device name in place of the major number, which is recommended since HP-UX provides dynamic major
numbers. The name can be specified in the autopush file and on the command line. Device names are located
in the HP-UX modmeta files. The major number can still be used if needed.

Synopsis

The general syntax of autopush on HP-UX is as follows:

autopush -f autopush_file_name

autopush -r -M major_num|dev_name -m minor_num

autopush -g -M major_num|dev_name -m minor_num

The contents of the autopush filename are as follows:

major_num|dev_name low_minor high_minor mod_name 1...mod_name N

Options and Arguments

autopush recognizes the following command-line options and arguments.

-f file Using the configuration information contained in file, load the system database with the
names of the STREAMS devices and a list of modules to use for each device. When a device
is subsequently opened, the HP-UX STREAMS subsystem pushes the modules onto the
stream for the device.

If “-” appears as a file argument, autopush uses the standard input.

file must contain one or more lines of at least four fields separated by a space as shown
below:

major minor lastminor module1 module2 ... moduleN The first field major can be
either an integer or a device name. The device name is the name for the
device used in the modmeta file. The next two fields are integers. If minor
is set to -1, then all minor devices for the specified major are configured
and lastminor is ignored. If lastminor is 0, then only a single minor
device is configured.

To configure a range of minor devices for a major device, minor must be
less than lastminor. The remaining field(s) list one or more module
names. Each module is pushed in the order specified. A maximum of eight
modules can be pushed. Any text after a “#” character in file is treated as a
comment for that line only.

This option is also used to restore device configuration information previously removed by
autopush -r. However, when used in such a manner, the entire database is restored, not just
the information that was previously removed.

-g -M major -m minor Display current configuration information from the system database for the
STREAMS device specified by the major device number (or device name for the device from
the modmeta file) and minor number.
Appendix G300

STREAMS Commands
autopush
If a range of minors has been previously configured then autopush -g returns the
configuration information for the first minor in the range, in addition to other information.

-r -M major -m minor Remove configuration information from the system database for the STREAMS
device specified by the major device number (or device name for the device from the
modmeta file and minor number). Removal is performed on the database only, not on the
original configuration file. Therefore, the original configuration can be restored by using the
-f file option. To permanently exclude a STREAMS device from the database, its
information must be removed from the configuration file.

If minor matches the first minor of a previously configured range then autopush -r
removes the configuration information for the entire configured range.

Examples

The file /tmp/autopush.example contains the following:

75 -1 0 modA

modB test 0 5 modC modA

autopush -f /tmp/autopush.example will cause modA and modB to be pushed whenever major device # 75 is
opened, and modC and modA to be pushed for the first six opens of test.

The following example lists information about the stream for major device 75 and its minor device 2:

autopush -g -M 75 -m 2
Appendix G 301

STREAMS Commands
strace and strerr
strace and strerr
The strace and strerr commands use the STREAMS log driver, /dev/strlog. SVR4.2 calls this driver
/dev/log, but HP-UX already includes a non-streams driver named /dev/log. Therefore, STREAMS logging
uses /dev/strlog.

strace

strace gets STREAMS event trace messages from STREAMS drivers and modules via the STREAMS log
driver (strlog(7)), and writes these messages to standard output. By default, strace without arguments
writes all STREAMS trace messages from all drivers and modules. strace with command-line arguments
limits the trace messages received.

The syntax for the strace command is as follows:

strace [mod sub pri] ...

The following arguments must be specified in groups of three:

mod Specifies the STREAMS module identification number from the streamtab entry.

sub Specifies a sub-identification number that often corresponds to a minor device.

pri Specifies a tracing priority level. strace gets messages of a level equal to or less than the
value specified by pri. Only positive integer values are allowed.

The value "all" can be used for any argument in the strace command line to indicate that there are no
restrictions for that argument.

Multiple sets of the three arguments can be specified to obtain the messages from more than one driver or
module.

Only one strace process can open the STREAMS log driver at a time. When strace is invoked, the log driver
compares the sets of command line arguments with actual trace messages. The log driver returns only the
messages that satisfy the specified criteria.

STREAMS event trace messages have the following syntax:

seq time tick pri ind mod sub text

The components are interpreted as follows:

seq trace event sequence number.

time Time in hh:mm:ss when the message was sent

tick Time when the message was sent, expressed in terms of machine ticks since the last boot.

pri Tracing priority level as defined by the STREAMS driver or module that created the
messages.

ind Can be any combination of the following three message indicators:

E: The message has also been saved in the error log.
F: The message signalled a fatal error.
N: The message has also been mailed to the system administrator.

mod Module identification number of the trace message source.

text trace message text.
Appendix G302

STREAMS Commands
strace and strerr
strace runs until it is terminated by the user.

Example

The following examples displays all trace messages from the driver or module identified by mod 28:

strace 28 all all

Example

The following example displays trace messages of any tracing priority level from the driver or module
identified by mod 28, and its minor devices identified by the sub 2, 3, or 4:

strace 28 2 all 28 3 all 28 4 all

Example

The following example displays the trace messages from the same driver or module and subs. This example
limits the priority levels as follows:to 0 for subs 2 and 3; 1 for sub 4, driver or module 28:

• 0 for subs 2 and 3

• 1 for subs 4, driver, or mod 28

strace 28 2 0 28 3 0 28 4 1

NOTE Running strace with several sets of arguments can impair STREAMS performance,
particularly for those modules and drivers that are sending the messages. strace may not be
able to handle a large number of messages. Some of the messages may be lost if drivers and
modules return messages to strace too quickly.

strerr

strerr receives error messages from the STREAMS log driver (strlog(7)). These error messages are added
to the STREAMS error log files (error.mm-dd) in the STREAMS error logger directory (/var/adm/streams
by default). On the first call to strerr, it creates the log file error.mm-dd. This is a daily log file, where mm
indicates the month and dd indicates the day of the logged messages. strerr then appends the error
messages to the log file as they are received from the STREAMS log driver.

The syntax for the strerr command is as follows:

strerr [-a sys_admin_mail_name] [-d logdir]

-a sys_admin_mail_name Specifies tthe user's mail name for sending mail messages. Mail is sent to the
system administrator by default.

-d logdir Specify the directory to contain the error log file. The default directory is
/var/adm/streams.

STREAMS error log messages have the following syntax:

seq time tick pri ind mod sub text

The components are interpreted as follows:

seq trace event sequence number.

time Time in hh:mm:ss when the message was sent

tick Time when the message was sent, expressed in terms of machine ticks since the last boot.
Appendix G 303

STREAMS Commands
strace and strerr
pri Tracing priority level as defined by the STREAMS driver or module that created the
messages.

ind Can be any combination of the following three message indicators:

T: The message has also been saved in the trace log.
F: The message signalled a fatal error.
N: The message has also been mailed to the system administrator.

mod Module identification number of the trace message source.

text trace message text.

strace runs until it is terminated by the user.

NOTE strerr runs continuously until terminated by the user. Only one strerr process at a time can
open the STREAMS log driver. This restriction is intended to maximize performance. The
STREAMS error logging mechanism works best when it is not overused. strerr can degrade
STREAMS performance by affecting the response, throughput, and other behaviors of the
drivers and modules that invoke it. strerr also fails to capture messages if drivers and
modules generate messages at a higher rate than its optimum read rate. If there are missing
sequence numbers among the messages in a log file, messages have been lost.
Appendix G304

STREAMS Commands
strchg and strconf
strchg and strconf
The strchg and strconf commands are used to change or query the configuration of the stream associated with
the user's standard input. The strchg command pushes modules on and/or pops modules off the stream. The
strconf command queries the configuration of the stream. Only a user with appropriate privileges or owner of
a STREAMS device may alter the configuration of that stream.

The syntax options for the strchg command are:

strchg -h module1 [, module2]...

strchg -p [-a|-u module]

strchg -f file

-h module1[,module2] ... strchg pushes modules onto a stream. The modules are pushable STREAMS
modules as defined by module1, module2, and so on. The modules are pushed in order. That
is, module1 is pushed first, module2 is pushed second, etc.

-p strchg pops the topmost module from the stream.

-p -a strchg pops all the modules above the topmost driver.

-p -a strchg pops all the modules above the topmost driver.

-p -u strchg pops all the modules above module.

The -a and -u options are mutually exclusive.

-f file The user can specify a file that contains a list of modules representing the desired
configuration of the stream. Each module name must appear on a separate line where the
first name represents the topmost module and the last name represents the module that
should be closest to the driver. The strchg command will determine the current
configuration of the stream and pop and push the necessary modules in order to end up with
the desired configuration.

The -h, -f, and -p options are mutually exclusive.

NOTE If the user is neither the owner of the stream nor a user with appropriate privileges, the
strchg command will fail. If the user does not have read permissions on the stream or
appropriate privileges, the strconf command will fail. If modules are pushed in the wrong
order, the stream may not function as expected. For ttys, if the line discipline module is not
pushed in the correct place, the terminal may not respond to any command.

Diagnostics

strchg returns zero on success. It prints an error message and returns non-zero status for various error
conditions, including usage error, bad module name, too many modules to push, failure of an ioctl on the
stream, or failure to open file from the -f option.

strconf returns zero on success (for the -m or -t option, success indicates that the named or topmost
module is present).

strconf returns a non-zero status if invoked with the -m or -t option, and if the module is not present.

strconf prints an error message and returns non-zero status for various error conditions, including usage
error or failure of an ioctl on the stream.
Appendix G 305

STREAMS Commands
strchg and strconf
75 -1 0 modA

modB test 0 5 modC modA

autopush -f /tmp/autopush.example will cause modA and modB to be pushed whenever major device # 75 is
opened, and modC and modA to be pushed for the first six opens of test.

The following example lists information about the stream for major device 75 and its minor device 2:

autopush -g -M 75 -m 2

Examples

The following command pushes the module ldterm on the stream associated with the user's standard input:

strchg -h ldterm

The following command pops the topmost module from the stream associated with /dev/term/24.

strchg -p < /dev/term/24

The user must be the owner of this device or be a user with appropriate privileges.

If fileconf contains compat, 1dterm, and pterm use the following command:

strchg -f fileconf

The user’s standard input stream will be configured so that the module pterm is pushed over the driver. This
is followed by 1dterm and compat closest to the stream head.

The strconf command with no arguments lists the modules and topmost driver on the stream. For a stream
that only has the module ldterm pushed above the ports driver, it would produce the following output.

1dterm
ports

The following command asks if ldterm is on the stream:

strconf -m ldterm

The following output is produced while returning an exit status of 0: yes
Appendix G306

STREAMS Commands
strclean
strclean
strclean cleans the STREAMS error logger directory of log files (error.mm-dd) that contain error messages
sent by the STREAMS log driver strlog(7). If the -d option is not used to specify another directory,
strclean removes the error log files in the /var/adm/streams directory. If the -a option is not used to
specify another age, strclean removes the error log files that have not been modified over the last three days.

The syntax for the strclean command is as follows:

strclean [-d logdir] [-a age]

strclean recognizes the following options and command-line arguments:

-d logdir Specifies a directory for the location of the STREAMS error log files to be removed, if the
default directory /var/adm/streams is not specified.

-a age Specifies a maximum age in days for the STREAMS error log files, if the default age of 3 is
not specified. The value of age must be an integer greater than or less than 3.

Example

The following command will remove error messages that are one day old, from the /tmp/streams directory:

strclean -d /tmp/streams -a 1
Appendix G 307

STREAMS Commands
strclean
Appendix G308

H STREAMS Kernel Tunable Parameters
Overview
The following kernel parameters can be configured and used for managing the resources used by STREAMS.

NSTREVENT Maximum number of outstanding streams bufcalls that are allowed to exist at any given
time. This number should be greater than or equal to the maximum number of bufcalls that
can be generated by all modules pushed onto a given stream. This serves to limit runaway
bufcalls.

NSTRPUSH Maximum number of streams modules that are allowed to exist in any single stream at any
given time. This provides a mechanism for preventing a software defect from attempting to
push too many modules onto a stream. It does not protect against the malicious use of
streams.

NSTRSCHED Maximum number of streams scheduler daemons that are allowed to run at any given time.
This value is related to the number of processors installed in the system.

STRCTLSZ Maximum number of control bytes allowed in the control portion of any streams message.

STRMSGSZ Maximum number of bytes that can be placed in the data portion of any streams message.

streampipes Maximum number of bytes that can be placed in the data portion of any streams message.

These kernel tunable parameters can be either modified with SAM or by using the kctune(1M) command.

The details for each of these kernel tunable parameters are provided in the following manpages.
Appendix H 309

STREAMS Kernel Tunable Parameters
NSTREVENT
NSTREVENT
The maximum number of outstanding STREAMS bufcalls.

Values

Failsafe

50

Default

50

Allowed

0 - 2147483647

Recommended

50

Description

This tunable limits the maximum number of outstanding bufcalls that are allowed to exist at any given time.
This tunable is intended to protect the system against resource overload caused by the combination of mod-
ules running in all streams issuing an excessive number of bufcalls. The value selected should be equal to or
greater than the combined maximum number of bufcalls that can be reasonably expected during normal oper-
ation from all streams. bufcalls are used by STREAMS modules in low memory situations.

Who is Expected to Change This Tunable?

Any customer.

Restrictions on Changing

Changes to this tunable take effect at the next reboot.

When Should the Value of This Tunable Be Raised?

When the customer needs to push more STREAMS modules in a single stream.

What are the Side Effects of Raising the Value of This Tunable?

Runaway applications may unduly consume system resources.

When Should the Value of This Tunable be Lowered?

There is no reason to lower the value below the default value.
Appendix H310

STREAMS Kernel Tunable Parameters
NSTREVENT
What are the Side Effects of Lowering the Value of This Tunable?

Network commands may fail if the value is too low.

What Other Tunable Should be Changed at the Same Time?

None.

Warnings

All HP-UX kernel tunable parameters are release specific. This parameter may be removed or have its mean-
ing changed in future releases of HP-UX.

Author

NSTREVENT was developed by HP.
Appendix H 311

STREAMS Kernel Tunable Parameters
NSTRPUSH
NSTRPUSH
The maximum number of STREAMS modules in a single stream.

Values

Failsafe

16

Default

16

Allowed

0 - 2147483647

Recommended

16

Description

This tunable defines the maximum number of STREAMS modules that can be pushed onto a stream. This
provides some protection against run-away processes that might automatically select modules to push onto a
stream. It is not intended as defense against malicious use of STREAMS modules by system users.

Most systems do not require more than about three or four modules in a stream. However, there may be some
unusual cases where more modules are needed. The default value for this tunable allows as many as 16
modules in a stream, which should be sufficient for even the most demanding installations and applications.

Who is Expected to Change This Tunable?

Any customer.

Restrictions on Changing

Changes to this tunable take effect at the next reboot.

When Should the Value of This Tunable Be Raised?

When the system experiences a lot of low memory situations.

What are the Side Effects of Raising the Value of This Tunable?

If too big a number is chosen, the STREAMS subsystem preallocates more memory for internal data struc-
tures than necessary. This reduces the amount of memory available to applications and the system.
Appendix H312

STREAMS Kernel Tunable Parameters
NSTRPUSH
When Should the Value of This Tunable be Lowered?

If the tunable is increased for a particular STREAMS module/driver, this tunable can be lowered when that
STREAMS module/driver is removed. It should be returned to its previous value. However, HP does not rec-
ommend a value lower than the default value.

What are the Side Effects of Lowering the Value of This Tunable?

System performance will be lowered during low memory situations.

What Other Tunable Should be Changed at the Same Time?

None.

Warnings

All HP-UX kernel tunable parameters are release specific. This parameter may be removed or have its mean-
ing changed in future releases of HP-UX.

Author

NSTRPUSH was developed by HP.
Appendix H 313

STREAMS Kernel Tunable Parameters
NSTRSCHED
NSTRSCHED
The number of STREAMS scheduler daemons to be run.

Values

Failsafe

0

Default

0

Allowed

0 - 2147483647

Recommended

0

Description

This tunable defines the number of STREAMS scheduler daemons to be run on a system.

If the tunable value is set to zero, the system determines the number of daemons to run based on the number
of processors in the system. A positive non zero tunable value is the number of "smpsched" daemons that will
be created on an MP system.

NOTE This tunable is for use by specific HP products only. It may be removed in future HP-UX
releases.

Who is Expected to Change This Tunable?

Any customer.

Restrictions on Changing

Changes to this tunable take effect at the next reboot.

When Should the Value of This Tunable Be Raised?

This tunable is for use by specific HP products only. It may be removed in future HP-UX releases. Is there any
specific reason why more STREAMS scheduler daemons should be run?

What are the Side Effects of Raising the Value of This Tunable?

It could change the system performance unpredictably.
Appendix H314

STREAMS Kernel Tunable Parameters
NSTRSCHED
When Should the Value of This Tunable be Lowered?

This tunable is for use by specific HP products only. It may be removed in future HP-UX releases.

What are the Side Effects of Lowering the Value of This Tunable?

It could change the system performance unpredictably.

What Other Tunable Should be Changed at the Same Time?

None.

Warnings

This tunable is for use by specific HP products only.

All HP-UX kernel tunable parameters are release specific. This parameter may be removed or have its
meaning changed in future releases of HP-UX.

Author

NSTRSCHED was developed by HP.
Appendix H 315

STREAMS Kernel Tunable Parameters
STRCTLSZ
STRCTLSZ
The maximum size of streams message control (bytes).

Values

Failsafe

1024

Default

1024

Allowed

0 - 2147483647

Recommended

1024

Description

STRCTLSZ limits the maximum number of bytes of control data that can be inserted by putmsg() in the
control portion of any streams message on the system. If the tunable is set to zero, there is no limit on how
many bytes can be placed in the control segment of the message.

putmsg() returns ERANGE if the buffer being sent is larger than the current value of STRCTLSZ.

Who is Expected to Change This Tunable?

Any customer.

Restrictions on Changing

Changes to this tunable take effect at the next reboot.

When Should the Value of This Tunable Be Raised?

The tunable should be increased if the STREAMS modules or drivers require more bytes than the current
value in the control portion of any streams message.

What are the Side Effects of Raising the Value of This Tunable?

The kernel will use more memory. During low memory situations, it may bring reduce system performance
due to frequent swapping.
Appendix H316

STREAMS Kernel Tunable Parameters
STRCTLSZ
When Should the Value of This Tunable be Lowered?

The tunable could be lowered if the STREAMS modules or drivers do not require a longer message size than
the current value in the control portion.

What are the Side Effects of Lowering the Value of This Tunable?

Improper functioning in any of the STREAMS modules or drivers may result. There may be some perfor-
mance degradation, particularly in networking.

What Other Tunable Should be Changed at the Same Time?

None.

Warnings

This tunable is for use by specific HP products only.

All HP-UX kernel tunable parameters are release specific. This parameter may be removed or have its
meaning changed in future releases of HP-UX.

Author

STRCTLSZ was developed by HP.
Appendix H 317

STREAMS Kernel Tunable Parameters
STRMSGSZ
STRMSGSZ
The maximum size of streams message data (bytes).

Values

Failsafe

0

Default

0

Allowed

0 - 2147483647

Recommended

0

Description

This tunable limits the number of bytes of message data that can be inserted by putmsg() or write() in the
data portion of any streams message on the system. If the tunable is set to zero, there is no limit on how many
bytes can be placed in the data segment of the message.

putmsg() returns ERANGE if the buffer being sent is larger than the current value of STRCTLSZ. write()
segments the data into multiple messages.

Who is Expected to Change This Tunable?

Any customer.

Restrictions on Changing

Changes to this tunable take effect at the next reboot.

When Should the Value of This Tunable Be Raised?

The tunable should be increased if the STREAMS modules or drivers require more bytes than the current
value in the data portion of any streams message.

What are the Side Effects of Raising the Value of This Tunable?

The kernel will use more memory. During low memory situations, it may bring reduce system performance
due to frequent swapping.
Appendix H318

STREAMS Kernel Tunable Parameters
STRMSGSZ
When Should the Value of This Tunable be Lowered?

The tunable could be lowered if the STREAMS modules or drivers do not require a longer message size than
the current value in the data portion.

What are the Side Effects of Lowering the Value of This Tunable?

Improper functioning in any of the STREAMS modules or drivers may result. There may be some perfor-
mance degradation, particularly in networking.

What Other Tunable Should be Changed at the Same Time?

None.

Warnings

This tunable is for use by specific HP products only.

All HP-UX kernel tunable parameters are release specific. This parameter may be removed or have its
meaning changed in future releases of HP-UX.

Author

STRMSGSZ was developed by HP.
Appendix H 319

STREAMS Kernel Tunable Parameters
streampipes
streampipes
Forces all pipes to be STREAMS-based.

Values

Failsafe

0

Default

0

Allowed

0 - 2147483647

Recommended

0

Description

This tunable determines the type of pipe that is created by the pipe() system call. If set to the default value
of zero, all pipes created by pipe() are normal HP-UX file-system pipes. If the value is non-zero, pipe()
creates STREAMS-based pipes, and STREAMS modules can be pushed onto the resulting stream.

If this tunable is set to a non-zero value, the pipemod and pipedev module and driver must be configured in
/stand/system.

Who is Expected to Change This Tunable?

Any customer.

Restrictions on Changing

Changes to this tunable take effect at the next reboot.

When Should This Tunable be Switched On?

If the customer uses applications that require STREAMS-based pipes, this tunable should be switched on.

What are the Side Effects of Switching On This Tunable?

STREAMS-based pipes performance may differ from normal file system pipes.

When Should This Tunable be Switched Off?

If the customer does not need the STREAMS-based pipes, this tunable should
Appendix H320

STREAMS Kernel Tunable Parameters
streampipes
be turned off.

What are the Side Effects of Switching Off This Tunable?

Applications that try to push STREAMS modules onto the pipe will fail.

What Other Tunable Should be Changed at the Same Time?

If this tunable is set to a non-zero value, the pipemod and pipedev module and driver must be configured in
/stand/system.

Warnings

This tunable is for use by specific HP products only.

All HP-UX kernel tunable parameters are release specific. This parameter may be removed or have its
meaning changed in future releases of HP-UX.

Author

streampipes was developed by HP.
Appendix H 321

STREAMS Kernel Tunable Parameters
streampipes
Appendix H322

A
ANYMARK 151
arg 151, 301
B
b_major 78
bytes

len 67
C
C_ALLCLOSES 79
C_CLONESMAJOR 79
c_major 79
canput() 98, 100
canputnext() 100
cdio 79
cdio_private 79
clone 281
Cloning 288
cloning 72, 109
close (2) 30
close routine 82
cmn_err 274
command 151, 300, 305
Commands

autopush 72, 268
fdetach 268
strace 268
strchg 268
strclean 268
strconf 268
strerr 268
strvf 268

commands
I_ATMARK 151
I_CANPUT 152
I_CKBAND 152
I_FDINSERT 152
I_FIND 153
I_FLUSH 153
I_FLUSHBAND 154
I_GETBAND 154
I_GETCLTIME 154
I_GETSIG 155
I_GRDOPT 155
I_GWROPT 155
I_LINK 155

I_LIST 156
I_LOOK 156
I_NREAD 156
I_PEEK 157
I_PLINK 157
I_POP 158
I_PUNLINK 158
I_PUSH 158
I_RECVFD 159
I_SENDFD 159
I_SETCLTIME 154
I_SETSIG 160
I_SRDOPT 160
I_STR 161
I_SWROPT 162
I_UNLINK 162
SAD_GAP 264, 265
SAD_SAP 263, 265
SAD_VML 264, 265

copyreq structure 258
copyresp 88
copyresp structure 261
cp_cmd 88
cp_cr 88
cp_flag 88
cp_id 88
cp_private 88
cq_ad 88
cq_cmd 88
cq_cr 88
cq_id 88
cq_private 88
cq_size 88
crlbuf 152
D
d_flags

C_ALLCLOSES 79
C_CLONESMAJOR 79

data block 56
datab 26
dblk_t 67

Data Structures
Message 285
Queue 285
Restrictions 285
 323

data structures
module_info 74
module_stat 74
qinit 74
streamtab 74

datab
data block 26

datab structure 255
databuf 152
dblk_t

data block 67
DLKM

Dynamically Loadable Kernel Module 119
Dynamically Loadable Kernel Modules 73

DLPI-A 296
dp_fds 47
DP_ISPOLLED 48
dp_nfds 47
dp_timeout 47
DRV_BLOCK 78
DRV_CHAR 78
drv_info_t 78
DRV_MP_SAFE 78
drv_ops_t 79
DRV_SAVE_CONF 78
DRV_SCAN 78
Dynamically Loadable Kernel Module

DLKM 119
Dynamically Loadable Kernel Modules

DLKM 73
E
EAGAIN 39
echo_rput 296, 297
echo_rsrv 296, 297
echo_wput 296, 297
echo_wsrv 296, 297
ECHO-A 296
ECHO-B 296
echp 282
elsewhere synchronization 297
Entry Points

close() 82
interrupt sevice routine 93
ioctl() 83, 128
open() 82, 126

put procedure 92
service procedure 92

esballoc 274
F
fattach 269
fattach (3C) 30
fdetach (3C) 30
FIFO

first-in first-out 59
FIFOs

First In, First Out 270
fildes 151, 152, 300, 305
First In, First Out (FIFOs) 270
flags 152
FLUSHBAND 94, 259
flushq() 94
flushqband() 94
FLUSHR 94, 259
FLUSHRW 94, 259
FLUSHW 94, 259
freezestr 274
G
get_sleep_lock 275
getmajor() 109
getminor() 109
getmsg (2) 30
getpmsg (2) 30
getq() 98, 100
gio_private 79
global synchronization 297
H
High Priority Messages

M_CLOSE 258
M_CLOSE_REPL 258
M_COPYIN 58, 258
M_COPYOUT 58, 259
M_ERROR 58, 259
M_FLUSH 58, 259
M_HANGUP 58, 260
M_IOCACK 58, 260
M_IOCDATA 58, 261
M_IOCNAK 261
M_PCPROTO 58, 261
M_PCRSE 58, 262
M_PCSIG 58, 262
324

M_READ 58, 262
M_START 58, 262
M_STARTI 58, 262
M_STOP 58, 262
M_STOPI 58, 262

I
I_ATMARK 151
I_CANPUT 152
I_CKBAND 152
I_FDINSERT 152
I_FIND 153
I_FLUSH 94, 153
I_FLUSHBAND 94, 154
I_GETBAND 154
I_GETCLTIME 154
I_GETSIG 155
I_GRDOPT 155
I_GWROPT 155
I_LINK 155
I_LIST 156
I_LOOK 156
I_NREAD 156
I_PEEK 157
I_PLINK 157
I_POP 42, 158
I_PUNLINK 158
I_PUSH 42, 158
I_RECVFD 159
I_SENDFD 159
I_SETCLTIME 154
I_SETSIG 50, 160
I_SRDOPT 38, 160
I_STR 85, 161
I_SWROPT 162
I_UNLINK 162
ic_cmd 85
ICS

Interrupt Context Stack 92
inastream (3C) 30
insq() 96
inst_flags 77
inst_major 77
inst_str_tab 77
inst_sync_level 77
installation structures

drv_info_t 76
drv_ops_t 76
streams_info_t 76

Interrupt Context Stack (ICS) 92
ioc_error 84
ioc_rval 84
iocblk structure 253
ioctl 269
ioctl (2) 30
ioctl(2) commands 151, 300, 305
itimeout 275
K
kmem_alloc 275
L
Last In First Out

LIFO 100
LASTMARK 151
len 67
len bytes 67
levels of synchronization

SQLVL_ELSEWHERE 295
SQLVL_GLOBAL 295
SQLVL_MODULE 295
SQLVL_QUEUE 295
SQLVL_QUEUEPAIR 295

LIFO
Last In First Out 100

LOCK 275
LOCK_ALLOC 275
M
M_BREAK 58, 252
M_CLOSE 258
M_CLOSE_REPL 258
M_COPYIN 58, 87, 88, 258
M_COPYOUT 58, 88, 259
M_CTL 58, 252
M_DATA 58, 252
M_DELAY 58, 252
M_ERROR 58, 259
M_FLUSH 58, 94, 259
M_HANGUP 58, 260
M_IOCACK 58, 87, 260
M_IOCDATA 58, 87, 261
M_IOCNAK 58, 261
M_IOCTL 58, 85, 252
 325

M_PASSFP 58, 254
M_PCPROTO 58, 107, 261
M_PCRSE 58, 262
M_PCSIG 58, 262
M_PROTO 58, 107, 254
M_READ 58, 262
M_RSE 58, 254
M_SETOPTS 58, 97, 254
M_SIG 58, 256, 257
M_START 58, 262
M_STARTI 58, 262
M_STOP 58, 262
M_STOPI 58, 262
main() 108
MAXAPUSH 264
mblk_t

message block descriptor 67
message block 56

msgb 26
message block descriptor

mblk_t 67
Message Types

M_CLOSE 287
M_CLOSE_REPL 287

mi_hiwat 74
mi_idname 74, 123, 126
mi_lowat 74
mi_maxpsz 74
mi_minpsz 74
module synchronization 296
module_info 74, 123
module_stat structure 75, 125, 130
MORECTL 41
MOREDATA 41
MSG_BAND 36
MSG_HIPRI 36
msgb

message block 26
msgb structure 255
N
NSTRPUSH 264
O
O_NDELAY 31
O_NONBLOCK 31
O_RDONLY 31

O_RDWR 31
O_WRONLY 31
open (2) 30
open routine 82, 126
Ordinary Messages

M_BREAK 58, 252
M_CTL 58, 252
M_DATA 58, 252
M_DELAY 58, 252
M_IOCTL 58, 252
M_PASSFP 58, 254
M_PROTO 58, 254
M_RSE 58, 254
M_SETOPTS 58, 254
M_SIG 58, 256, 257

P
Parameters

revents 45
pipe 270
pipe (2) 30
pipemod 95, 283
poll (2) 30
POLLERR 45, 271
POLLHUP 45, 271
POLLIN 45
POLLMSG 45
POLLNORM 45
POLLNVAL 45, 271
POLLOUT 45, 271
POLLPRI 45
POLLRDBAND 45
POLLRDNORM 45, 271
POLLWRBAND 45
POLLWRNORM 45, 271
popped 102
popping 100
priflags 36
pushed 102
pushing 100
put procedure 98
put procedure entry point 92
putctl2 276
putmsg 270
putmsg (2) 30
putnext() 98, 100
326

putnextctl2 276
putpmsg 270
putpmsg (2) 30
putq() 100
putqb() 100
Q
q_count 100
q_hiwat 74
q_lowat 74
QB_BACK 62
QB_FULL 62
QB_WANTW 62
QBACK 61
qband 62
qband structure 62
QENAB 61
QFULL 61, 100
qinit 75
qinit structure 62, 75
QNOENB 61
QOLD 61
qprocsoff 276
qprocson 276
QREADR 61
queue procedures

admin() 75
close() 75
put() 75
service() 75

queue-pair synchronization 296
QUSE 61
QWANTR 61
QWANTW 61
QWELDED 61
R
read (2) 30
restricted utilities 96
revents 45
RMSGD 255
RMSGN 255
RNORM 255
routine

close 82
open 82, 126

RPROTDAT 255

RPROTDIS 255
RPROTNORM 255
RS_HIPRI 35
rules

handling 97
put procedure 98
service procedure 98

S
S_BANDURG 50
S_ERROR 50
S_HANDUP 50
S_HIPRI 50
S_INPUT 50
S_MSG 50
S_OUTPUT 50
S_RDBAND 50
S_RDNORM 50
S_WRBAND 50
S_WRNORM 50
SAD

STREAMS Administrative Driver 263
sad 282
SAD_GAP 264, 265
SAD_SAP 263, 265
SAD_VML 264, 265
SAD-A 296
sc 282
scheduler 291
select 271
select (2) 30
service procedure 98
service procedure entry point 92
signal 272
SIGPOLL 50, 52, 53
sleep() 98
SO_ALL 255
SO_BAND 255
SO_HIWAT 255
SO_ISNTTY 256
SO_ISTTY 97, 256
SO_LOWAT 255
SO_MAXPSZ 255
SO_MINPSZ 255
SO_MREADOFF 255
SO_MREADON 255
 327

SO_NDELOFF 256
SO_NDELON 256
SO_READOPT 255
SO_TONSTOP 256
SO_TOSTOP 256
SO_WROFF 255
SQLVL_DEFAULT 77
SQLVL_ELSEWHERE 78, 295
SQLVL_GLOBAL 78, 295
SQLVL_MODULE 78, 295
SQLVL_QUEUE 77, 295
SQLVL_QUEUEPAIR 77, 295
str_install() 102
strace 268
STRCTLSZ 34
Stream Head 283
streamio (7) 30
STREAMS

Drivers 80
Modules 80

STREAMS Administrative Driver
SAD 263

STREAMS Commands
autopush 268
fdetach 268
strace 268
strachg 268
straclean 268
straconf 268
strerr 268
strvf 268

STREAMS modules 97
streams_info_t 102
streams_put 277
streamtab structure 75
strerr 268
strioct1 structure 253
strioctl structure 253
strlog 281
STRMSGZSZ 34
stroptions structure 255
struct datab

structure data block 56
struct msgb

structure message block 56

struct qinit 62
struct streamtab

structure stream tab 60
structure

module_stat 75, 125, 130
qinit 75
streamtab 75

structure data block
struct datab 56

structure message block
struct msgb 56

structure stream tab
struct streamtab 60

structures
streams_info_t 77

SV_WAIT 277
SV_WAIT_SIG 277
Synchronization Levels 289
synchronous polling 44
System Calls

close 269
close (2) 30
fattach 269
fcntl 269
fdetach 269
getmsg 269
getpmsg 269
ioctl 269
ioctl (2) 30
isastream 269
open 269
open (2) 30
pipe 269
poll 269
poll (2) 30
putmsg 269
putpmsg 269
read 269
read (2) 30
readv 269
select 269
select (2) 30
signal 269
write 269
write (2) 30
328

writev 269
T
timod 283
tirdwr 283
TRYLOCK 278
U
unfreezestr 274
UNLOCK 278
unweldq 279
Utilities

adjmsg() 164
allocb() 165
backq() 166
bcanput() 167
bcanputnext() 168
canenable() 170
canput() 171
canputnext() 172
cmn_err() 173
copyb() 174
copymsg() 175
datamsg() 176
drv_getparm() 177
drv_priv() 178
dupb() 179
dupbn() 180
dupmsg() 181
enableok() 182
enballoc() 183
esbbcall() 184
flushband() 185
flushq() 186
freeb() 187
freemsg() 188
freezestr() 189
getadmin() 190
getmid() 191
getq() 192
insq() 193
linkb() 194
LOCK() 195
LOCK_ALLOC() 196
LOCK_DEALLOC() 197
msgdsize() 198
msgpullup() 199

noenable() 200
OTHERQ() 201
pcmsg() 202
pullupmsg() 203
put() 204
putbq() 205
putctl() 206
putctl1() 207
putctl2() 208
putnext() 209
putnextct2() 211
putnextctl() 210
putq() 212
qenable() 213
qprocsoff() 214
qprocson() 215
qreply() 216
qsize() 217
RD() 218
rmvb() 219
rmvq() 220
SAMESTR() 221
streams_bufcall() 169
streams_delay() 222
streams_get_sleep_lock() 223
streams_mpsleep() 224
streams_put() 226
streams_time() 227
streams_timeout() 228
streams_untimeout() 229
strlog() 230
strqget() 232
strqset() 233
SV_ALLOC() 235
SV_BROADCAST() 236
SV_DEALLOC() 237
SV_WAIT() 238
SV_WAIT_SIG() 239
testb() 241
TRYLOCK() 240
unbufcall() 242
unfreezestr() 243
unlinkb() 244
UNLOCK() 245
unweldq() 246
 329

vtop() 247
weldq() 249
WR() 248

utilities 96
V
vtop 280
W
weldq 278
write 272
write (2) 30
writev 272
330

	1 Overview
	STREAMS Components
	Figure�1�1 Stream with a STREAMS Module
	Figure�1�2 Stream without a STREAMS Module
	Stream Head
	STREAMS Module
	STREAMS Driver or Pseudo-Driver

	Messages and Queues
	Queues
	Messages
	Message Processing

	STREAMS Multiplexor
	Figure�1�3 Multiplexor Configurations

	2 STREAMS Mechanism and System Calls
	STREAMS System Calls
	STREAMS Library Routines

	Creating a Stream
	open(2)
	Creating a STREAMS-Based pipe with pipe(2)
	Figure�2�1 A STREAMS-Based Pipe

	Writing to a Stream
	The write(2) and writev(2) System Calls
	putmsg(2) and putpmsg(2)

	Reading From a Stream
	read(2) and readv(2)
	The getmsg(2) and getpmsg(2) System Calls

	Pushing and Popping Modules
	IOCTL Commands I_PUSH and I_POP

	Closing a Stream
	close(2)

	Polling Streams
	The poll(2) System Call
	Events Notified by poll(2)
	The /dev/poll Interface
	select(2)
	Differences Between select(2) and poll(2)

	Asynchronous Event Notification
	The IOCTL Command — I_SETSIG

	Attaching and Detaching a Stream to a File - Named Streams
	The fattach (3C) System Call
	The fdetach(3C) System Call
	The isastream(3C) System Call

	3 Messages
	Message Structures
	Figure�3�1 A Message and Its Linkage
	Using Message Block Fields
	Message Queues
	Figure�3�2 Message Ordering in a Queue

	Message Processing and Flow Control
	Message Processing
	Flow Control
	Common STREAMS Utilities
	Figure�3�4 Pulling Up a Complex Message

	4 Modules and Drivers
	Overview
	Cloning
	Autopush
	Dynamically Loadable Kernel Modules

	Data Structures
	The module_info Structure
	The qinit Structure
	The module_stat Structure
	Installation Structures and Configuration Routines
	The d_flags Field
	Configuration Routines

	Entry Points
	Open
	Close
	Ioctl
	Put Procedure
	Service Procedure
	Interrupt Service Routine

	Flush Handling
	M_FLUSH Message Processing
	Flush Handling in a Pipe

	Design Guidelines
	Rules

	STREAMS Module
	Flow Control in Modules
	Sample Module
	Module Specific Design Guidelines

	STREAMS Driver
	Overview of Drivers
	Writing Drivers
	Major and Minor Numbers
	Cloning
	Flow Control in Drivers
	Sample Driver Example
	Driver Specific Design Guidelines

	DLKM STREAMS

	5 Multiplexing
	Overview
	building
	To Build a Multiplexor
	Figure�5�1 Multiplexor Before Link
	Figure�5�2 Multiplexor After Link

	To Dismantle a Multiplexor
	Routing Data through a Multiplexor

	Connecting and Disconnecting Multiplexor Configurations
	To Create a Multiplexor Configuration
	To Disconnect a Multiplexor Configuration
	Characteristics of Multiplexing Configurations

	Persistent Links
	Creating Persistent Links
	Figure�5�3 Multiplexor Before I_PLINK
	Figure�5�4 Multiplexor After I_PLINK
	Figure�5�5 Data Transfer to the Driver

	Dismantling Persistent Links
	Characteristics of Persistent Links

	STREAMS Multiplexor
	Ioctl Processing in a Multiplexor
	Flush Handling
	Flow Control
	A Sample Multiplexing Driver
	Service Procedure
	Multiplexor Specific Desi

	A STREAMS IOCTL Commands
	Overview
	ioctl(2) Commands
	I_ATMARK
	I_CANPUT
	I_CKBAND
	I_FDINSERT
	I_FIND
	I_FLUSH
	I_FLUSHBAND
	I_GETBAND
	I_GETCLTIME
	I_SETCLTIME
	I_GETSIG
	I_GRDOPT
	I_GWROPT
	I_LINK
	I_LIST
	I_LOOK
	I_NREAD
	I_PEEK
	I_PLINK
	I_POP
	I_PUNLINK
	I_PUSH
	I_RECVFD
	I_SENDFD
	I_SETSIG
	I_SRDOPT
	I_STR
	I_SWROPT
	I_UNLINK

	B STREAMS Utilities Supported by HP-UX
	adjmsg
	allocb
	backq
	bcanput
	bcanputnext
	bufcall
	canenable
	canput
	canputnext
	cmn_err
	copyb
	copymsg
	datamsg
	drv_getparm
	drv_priv
	dupb
	dupbn
	dupmsg
	enableok
	esballoc
	esbbcall
	flushband
	flushq
	freeb
	freemsg
	freezestr
	getadmin
	getmid
	getq
	insq
	linkb
	LOCK
	LOCK_ALLOC
	LOCK_DEALLOC
	msgdsize
	msgpullup
	noenable
	OTHERQ
	pcmsg
	pullupmsg
	put
	putbq
	putctl
	putctl1
	putctl2
	putnext
	putnextctl
	putnextctl2
	putq
	qenable
	qprocsoff
	qprocson
	qreply
	qsize
	RD
	rmvb
	rmvq
	SAMESTR
	streams_delay
	streams_get_sleep_lock
	streams_mpsleep
	streams_put
	streams_time
	streams_timeout
	streams_untimeout
	strlog
	strqget
	strqset
	SV_ALLOC
	SV_BROADCAST
	SV_DEALLOC
	SV_WAIT
	SV_WAIT_SIG
	TRYLOCK
	testb
	unbufcall
	unfreezestr
	unlinkb
	UNLOCK
	unweldq
	vtop
	WR
	weldq

	C Message Types
	Ordinary Messages
	M_BREAK
	M_CTL
	M_DATA
	M_DELAY
	M_IOCTL
	M_PASSFP
	M_PROTO
	M_RSE
	M_SETOPTS
	M_SIG
	M_TRAIL

	High Priority Messages
	M_CLOSE
	M_CLOSE_REPL
	M_COPYIN
	M_COPYOUT
	M_ERROR
	M_FLUSH
	M_HANGUP
	M_IOCACK
	M_IOCNAK
	M_IOCDATA
	M_PCPROTO
	M_PCRSE
	M_PCSIG
	M_READ
	M_START and M_STOP
	M_STARTI and M_STOPI

	D STREAMS Administrative Driver
	Overview
	SAD

	E Differences Between STREAMS/UX and System V Release 4 STREAMS
	HP-UX Changes to STREAMS Commands
	autopush
	strace and strerr

	HP-UX Changes to STREAMS/UX System Calls
	fattach/fdetach Modifications
	ioctl Modifications
	pipe Modifications
	putmsg and putpmsg Modifications
	select Modifications
	/dev/poll Interface
	signal Modifications
	write and writev Modifications

	HP-UX Modifications to STREAMS/UX Utilities
	cmn_err
	esballoc
	freezestr and unfreezestr
	get_sleep_lock
	itimeout
	kmem_alloc
	LOCK
	LOCK_ALLOC
	putctl2
	putnextctl2
	qprocson and qprocsoff
	streams_put utility
	SV_WAIT
	SV_WAIT_SIG
	TRYLOCK
	UNLOCK
	weldq and unweldq
	vtop

	HP-UX Changes to STREAMS/UX Drivers and Modules
	clone
	strlog
	sad
	echo
	sc
	timod
	tirdwr
	Stream Head
	pipemod

	HP-UX Changes to STREAMS/UX Data Structures
	Message Data Structures
	Queue Data Structure

	HP-UX Changes to Message Types
	Ordinary or Low Priority Message Types
	High Priority Message Types

	HP-UX Changes to Cloning
	STREAMS/UX Hardware Driver Writing
	Differences Between SVR4 MP and HP-UX MP STREAMS
	STREAMS/UX Synchronization Levels
	Strategies for Porting SVR4 MP Modules and Drivers to HP-UX

	The STREAMS/UX Scheduler

	F Synchronization Levels
	Figure�F�1 Synchronization Levels
	Queue Level Synchronization
	Queue-Pair Level Synchronization
	Module Level Synchronization
	Elsewhere Level Synchronization
	Global Level Synchronization
	Nosync level synchronization

	G STREAMS Commands
	Overview
	autopush
	Synopsis
	Options and Arguments
	Examples

	strace and strerr
	strace
	strerr

	strchg and strconf
	Diagnostics
	Examples

	strclean
	Example

	H STREAMS Kernel Tunable Parameters
	Overview
	NSTREVENT
	Values
	Description
	Who is Expected to Change This Tunable?
	Restrictions on Changing
	When Should the Value of This Tunable Be Raised?
	What are the Side Effects of Raising the Value of This Tunable?
	When Should the Value of This Tunable be Lowered?
	What are the Side Effects of Lowering the Value of This Tunable?
	What Other Tunable Should be Changed at the Same Time?
	Warnings
	Author

	NSTRPUSH
	Values
	Description
	Who is Expected to Change This Tunable?
	Restrictions on Changing
	When Should the Value of This Tunable Be Raised?
	What are the Side Effects of Raising the Value of This Tunable?
	When Should the Value of This Tunable be Lowered?
	What are the Side Effects of Lowering the Value of This Tunable?
	What Other Tunable Should be Changed at the Same Time?
	Warnings
	Author

	NSTRSCHED
	Values
	Description
	Who is Expected to Change This Tunable?
	Restrictions on Changing
	When Should the Value of This Tunable Be Raised?
	What are the Side Effects of Raising the Value of This Tunable?
	When Should the Value of This Tunable be Lowered?
	What are the Side Effects of Lowering the Value of This Tunable?
	What Other Tunable Should be Changed at the Same Time?
	Warnings
	Author

	STRCTLSZ
	Values
	Description
	Who is Expected to Change This Tunable?
	Restrictions on Changing
	When Should the Value of This Tunable Be Raised?
	What are the Side Effects of Raising the Value of This Tunable?
	When Should the Value of This Tunable be Lowered?
	What are the Side Effects of Lowering the Value of This Tunable?
	What Other Tunable Should be Changed at the Same Time?
	Warnings
	Author

	STRMSGSZ
	Values
	Description
	Who is Expected to Change This Tunable?
	Restrictions on Changing
	When Should the Value of This Tunable Be Raised?
	What are the Side Effects of Raising the Value of This Tunable?
	When Should the Value of This Tunable be Lowered?
	What are the Side Effects of Lowering the Value of This Tunable?
	What Other Tunable Should be Changed at the Same Time?
	Warnings
	Author

	streampipes
	Values
	Description
	Who is Expected to Change This Tunable?
	Restrictions on Changing
	When Should This Tunable be Switched On?
	What are the Side Effects of Switching On This Tunable?
	When Should This Tunable be Switched Off?
	What are the Side Effects of Switching Off This Tunable?
	What Other Tunable Should be Changed at the Same Time?
	Warnings
	Author

