
Debugging Dynamic Memory Usage Errors
Using HP WDB

HP Part Number: 5014-0301
Published: July 2007
Edition: 2.0

© Copyright 2007 Hewlett-Packard Development Company, L.P

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose.Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Warranty A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

U.S. Government License Proprietary computer software. Valid license from HP required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed
to the U.S. Government under vendor's standard commercial license.

Copyright Notice Copyright © 2007 Hewlett-Packard Development Company, L.P.Reproduction, adaptation, or translation of this document
without prior written permission is prohibited, except as allowed under the copyright laws.

Trademark Notices

UNIX is a registered trademark of The Open Group.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Table of Contents
Introduction..9
Intended Audience...9
Typographic Conventions..9
Related Information..10
Prerequisites..11
Memory-Related Errors ...11

Heap Corruption...11
Causes for Heap Corruption..11

Memory Leaks...12
When to Suspect a Memory Leak?...12
Types of Memory Leaks...12

Access Errors...13
Using WDB to Debug Memory Problems..13

HP aC++/ HP C Compiler Runtime Checking Options...13
Memory-Debugging Features of WDB...14

Heap Profiling...15
Snapshot Profile ..15
Incremental Heap Profile...18
Arena Profile..21

Analyzing the info heap process output...21
Analyzing the info heap arenas output..22

Leak Profiling..26
Error Injection ...28
Event Monitoring...35

Monitoring Heap Events ...35
Monitoring a Specific Address...35
Monitoring Allocations Greater Than a Specified size...36
Monitoring the Program Heap Growth..38
Monitoring Changes in Data Segment Space Allocation (High Water Mark Feature)39
Monitoring De-allocations to Detect Double-Frees..42

Monitoring Heap Corruption ..42
Monitoring String Corruption..42
Detecting Out-of-Bounds Writes with the Bounds-Checking Feature.................................44
Detecting Heap Corruption..47
Scrambling a Heap Block..50

Settings to Manage Performance Degradation. ...51
Supported Modes of Memory-debugging in WDB..51

Debugging in the Interactive Mode...51
Debugging in Batch Mode...52

Environment Variables for Batch Memory-Debugging ..52
Enabling and Disabling Batch Mode Memory-Debugging ...52
Pre-loading the Appropriate Version of librtc.[sl|so] Along With the Application............52
Overriding the Default Location for librtc.[sl|so]..53
Overriding the Default Path for Searching the GDB Executable..53

Configuration File for Batch Mode Debugging...54
Location of the Configuration File for Batch Mode Debugging...54
Supported Variables for Memory-Debugging in the Batch Mode Configuration File.........54

Overriding the Configuration File Settings..55
Debugging in Batch Mode...56
Debugging Multiple Applications in Batch Mode ..60

Debugging in Attach Mode...60
Summary of Memory Debugging Commands ..61

Table of Contents 3

Debugging Memory Using WDB GUI..63
Using WDB GUI to Debug Memory-Related Problems..64
Heap and Leak Profiling Using WDB GUI...64

Incremental Heap Profiling Using WDB GUI..64
Arena Profiling Using WDB GUI..65

Conclusion..66
Additional Examples..66
FAQ...74

4 Table of Contents

List of Tables
1 Documentation for HP WDB...10
2 Compiler Options for Memory Debugging..14
3 Generic Commands for Memory Checking..14
4 Commands for Heap Profiling..15
5 Commands for Incremental Heap-Profiling...18
6 Memory-Usage in an Arena..21
7 Commands for Leak Profiling...26
8 Commands for Error Injection..28
9 Monitoring Heap Events...35
10 Commands Supporting High Water-Mark Feature..39
11 Commands for Monitoring Heap Corruption..42
12 Options for Performance Improvement..51
13 Supported Variables in the Batch Mode Configuration File...54
14 The config_strings Options for RTC_MALLOC_CONFIG ..56
15 Commonly Used Commands for Memory Debugging..62

5

6

List of Examples
1 Filtered Heap Reporting for Allocations Exceeding <num> at a Particular Call-Site...................17
2 Incremental Heap Profile..19
3 Monitoring memory usage in an arena...24
4 Simulating out-of-memory conditions after <N> allocations ...29
5 Simulating out-of-memory conditions after <N> bytes are allocated...31
6 Simulating out-of-memory conditions after a random number of allocations.............................33
7 Monitoring a specific address...36
8 Monitoring allocations greater than a specified size...37
9 Monitoring program heap growth..38
10 High Water-Mark Feature...40
11 Monitoring heap-corruption caused by erroneous handling of string functions.........................43
12 Bounds-checking to detect out-of-bounds writes...45
13 Detecting heap corruption using the info corruption command ...48
14 Scrambling a memory block on de-allocation...50
15 Batch Mode Debugging for a 32-bit Application running on Itanium...58
16 Detecting a double free error...67
17 Detecting de-allocation of memory that has not been initialized...68
18 Detecting de-allocation of un-allocated blocks...69
19 Detectingmemory leaks that are causedwhen an application overwrites a pointer that currently

addresses a block of memory with another address or data..70
20 Detecting memory leaks that are caused when a pointer variable in an application addresses

memory that is out of the scope of the application...71
21 Detecting memory leaks when you free a structure or an array that has pointers which are not

freed...72
22 Work-Around when program execution is in a frame that belongs to the GDB internal leak

detection library..73

7

8

Introduction
HPWildebeestDebugger (WDB) is anHP-supported implementation of the open source debugger
GDB. Apart from the normal debugging functions, it also enables you to debugmemory-related
errors in a program.
HPWDBsupportsmemory-debugging (usingRunTimeChecking (RTC)) of source-level programs
written in HP C, HP aC++, and Fortran 90 on Itanium®-based systems running HP-UX 11i v2,
or HP-UX 11i v3, and PA-RISC systems running HP-UX 11.0, HP-UX 11i v1, HP-UX 11i v2, or
HP-UX 11i v3 operating systems.
WDB offers the following memory-debugging capabilities:
• Reports memory leaks
• Reports heap allocation profile
• Stops program execution if bad writes occur with string operations such as strcpy(), and

memcpy()

• Stops program execution when freeing unallocated or deallocated blocks
• Stops program execution when freeing a block if bad writes occur outside block boundary
• Stops programexecution conditionally based onwhether a specified block address is allocated

or de-allocated
• Scrambles previous memory contents at malloc(), and free() calls
• Simulates and detects out-of-memory event errors
• Monitors changes in data segment space allocation

Intended Audience
This document is intended for C, C++, and Fortran programmers who use WDB to detect and
debug memory-related errors in HP C, HP aC++ and Fortran 90 applications. Reader of this
document must be familiar with the basic commands supported by WDB.

Typographic Conventions
This document uses the following typographical conventions:
$, $or # Adollar sign represents the systemprompt for the Bourne, Korn,

and POSIX shells. A number sign represents the superuser
prompt.

gdb(5) A manpage. The manpage name is gdb.
Command A command name or qualified command phrase.
Computer output Text displayed by the computer.
ENVIRONMENT VARIABLE The name of an environment variable, for example, PATH.
[ERROR NAME] The name of an error, usually returned in the errno variable.
Variable The name of a placeholder in a command, function, or other

syntax display that you replace with an actual value.
< > The contents are optional in syntax. If the contents are a list

separated by |, you must choose one of the items.
[] The contents are optional in syntax. If the contents are a list

separated by |, you must choose one of the items.
| Separates items in a list of choices.
IMPORTANT This alert provides essential information to explain a concept or

to complete a task
NOTE A note contains additional information to emphasize or

supplement important points of the main text.

Introduction 9

Related Information
The HP WDB documentation is available at the following location:
/opt/langtools/wdb/doc/

Table 1 lists the documentation available for WDB.

Table 1 Documentation for HP WDB

LocationDocument

/opt/langtools/wdb/doc/gdb.pdfDebugging with GDB

/opt/langtools/wdb/doc/refcard_a4.pdf

/opt/langtools/wdb/doc/refcard_a3.df

/opt/langtools/wdb/doc/refcard.pdf (Letter
Format)

GDB Quick Reference Card

/opt/langtools/wdb/doc/html/wdb/C/GDBtutorial.htmlGetting Started with WDB

/opt/langtools/wdb/doc/index.htmlWDB Online Help

/opt/langtools/wdb/doc/html/wdbgui/C/HPWDB GUI Documentation

gdb(1)GDB manpage

For the most current WDB documentation, see the HP WDB technical resourceswebsite at:
http://www.hp.com/go/wdb

10

http://www.hp.com/go/wdb

Prerequisites
Following are the prerequisites for debugging memory-related problems in WDB:
• The memory-debugging feature in WDB is dependent on the availability of the dynamic

Linker Version B.11.19.
• WDB uses the heap debugging library, librtc.[sl|so], to enable memory-debugging

support. The librtc.[sl|so] library is a part of the HP WDB product. If the debugger
is installed in a directory other than the default /opt/langtools/bin directory, youmust
use the environment variable, LIBRTC_SERVER, to set the path of the appropriate version
of librtc.[sl|so].
From HPWDB 5.7 onwards, the archive version of the run time check library, librtc.a,
is not available. You must use the shared version of the library, librtc.[sl|so], instead.

• WDB does not support debugging of programs that link with the archive version of the
standard C library, libc.a, or the core library, libcl.a. The programs must be linked
with libc.[sl|so].

• The memory-debugging feature is supported only for programs that directly or indirectly
call malloc(), realloc(), free(), mmap(), or munmap() from the standard C library,
libc.[sl|so], or a third party (custom allocator) implementation of these functions.

• The memory debugging feature is not supported for CMA threaded programs.
• The memory debugging feature cannot be used with applications that redefine or override

the default system-supplied versions of the standard library routines (under libc.so and
libdl.so), such as abort(), strcat(), ctime(), and dlclose(). Before enabling the
memory debugging feature inWDB, use the nm(1) command to determine if the application
or the dependent libraries in the application redefine or substitute the standard library
routines. Formore information on the dependent standard library routines, see theHPWDB
release notes, available at the HP WDB Documentationwebsite at:
http://www.hp.com/go/wdb

Memory-Related Errors
This section discusses the following memory-related errors that can occur in an application:
• Heap corruption
• Memory leaks
• Access errors

Heap Corruption
A heap corruption occurs when an application erroneously overwrites some of the data in the
heap. Heap corruption can result in data corruption, memory corruption, or both.
When an application inadvertently uses the erroneously overwritten data in the heap, it results
indata corruption in the application.Data corruption can lead to unpredictable programbehavior.
The data corruption in the heap can lead tomemory corruption if the corrupted data in the heap
is used by memory management functions in the application to allocate, access, or deallocate
memory blocks. In other words, memory corruption occurs when the corrupted datum in the
heap is accessed as a pointer.Memory corruptions compromise the data integrity of the application
and can result in segmentation violations if the erroneously allocated or accessedmemory blocks
are out of the bounds of the virtual memory of the application.

Causes for Heap Corruption
Following are some of the typical causes for heap corruption:
Double-Free

Prerequisites 11

http://www.hp.com/go/wdb

A double-free error occurs when a program attempts to free a memory block that is already
freed. (Example 16 (page 67) illustrates howWDB detects double-frees.)
Freeing Unallocated/Uninitialized Memory
Heap corruption occurswhen a program tries to freememory that is not allocated to the program.
Such instances include freeing uninitialized pointerswhere the pointer addressesmemory outside
the allocated memory. (Example 17 (page 68) illustrates howWDB detects such errors.)
Accessing freed memory
Accessing freed memory results in heap corruption. The scramble feature is a minimal aid to
detect such errors. See “Scrambling a Heap Block” (page 50) for more information.

Memory Leaks
Amemory leak occurs when an application fails to free allocatedmemory. As a result, the kernel
frees the memory that is allocated by a process only when the process terminates. If the program
leaks memory on a continual basis, the virtual memory requirement for the process continues
to increase and this can result in serious consequences for long-running applications andmemory
intensive applications.
Memory leaks can also cause fragmentation of the heap. This slows down the allocation,
de-allocation, and access of memory blocks and can eventually cause the application to fail with
out-of-memory errors.

When to Suspect a Memory Leak?
You must suspect a memory leak in an application if the system runs out of swap space, runs
slower, or both. Memory leaks in an application increase the memory consumption in an
application. When the memory consumed by the application exceeds the resource limits set by
the kernel, the application fails with out-of-memory errors.
WDB enables you to detect out-of-memory conditions through runtime memory checking. It
also enables you to simulate out-of-memory conditions in an application to understand application
behavior under such conditions.
For information on how you can use WDB to simulate and detect out-of-memory conditions in
an application, see “Error Injection ” (page 28)

Types of Memory Leaks
Following are the types of memory leaks:
• Physical Leaks

A physical leak is a definite memory leak that occurs when an application loses all handles,
or all pointers to the allocated memory. If a valid pointer to a memory block is absent, the
elusive block of memory cannot be accessed or freed.
The handles to a memory block are typically lost under the following conditions:
— When an application overwrites a pointer that addresses a block ofmemorywith another

address or data
— When a pointer variable goes out of scope
— When you free a structure or an array that has pointers which are not freed
When all handles to a block of memory are lost, it causes the block to be leaked. Example 19
(page 70), Example 20 (page 71), and Example 21 (page 72) illustrate howWDB detects
memory leaks.

• Logical Leaks
A logical leak occurs when an application fails to optimally utilize the allocated memory.
In this case the allocated block of memory can still be accessed through a pointer variable
in the application.

12

The typical causes for logical leaks are listed below:
— Leaks caused by premature allocation of memory

The application allocates the memory much ahead of the actual use of the allocated
memory.

— Leaks caused by delayed de-allocation
The application delays the freeing the allocated block beyond the actual use of the
allocated memory.

— Leaks caused by failure to utilize allocated memory
The application allocates memory, but fails to use the allocated memory.

NOTE: WDB supports the debugging of physical memory leaks only. It does not detect
logical memory leaks.

Access Errors
Memory access errors can occur under the following conditions:
• When reading uninitialized local, or heap data
• When reading or writing to nonexistent, unallocated, or unmapped memory
• When a stray pointer overflows the bounds of a heap block, or tries to access a heap block

that is already freed to cause buffer overruns and under-runs
• When reading or writing to memory locations that are already freed in the program

NOTE: WDB provides minimal support for debugging some of the memory access errors. The
scrambling feature and detection for out-of-bounds writes are supported by WDB.

Using WDB to Debug Memory Problems
WDB supports the memory-debugging of applications involving dynamic allocations and
de-allocations of virtualmemory blocks, or during the calls tolibc string routines likestrcpy(),
and memcpy(). It debugs memory-related problems at the time of allocation or de-allocation of
memory blocks. It supports the detection of outstanding memory-related problems at specific
user-defined probe-points (breakpoints) during the use of the memory blocks. Memory-related
problems that appear after the specified probe points are not detected. It does not support the
debugging of access errors that are caused when reading from or writing to unallocated,
uninitialized, or de-allocated memory.
WDBdoes not support thememory-debugging of the stack, staticmemory, and registermemory.
WDBprovides the interactive, batch, and attachmodes for debuggingmemory-related problems.
See “Supported Modes of Memory-debugging in WDB” (page 51) for more information on the
supported modes for debugging.

HP aC++/ HP C Compiler Runtime Checking Options
The HP aC++/HP C compiler also provides options for enabling memory debugging usingWDB
in Integrity Systems. This feature is supported only on Integrity Systems.
Table 2 list the runtime checking options are available in HP aC++/HP C compilers for memory
debugging.

Using WDB to Debug Memory Problems 13

Table 2 Compiler Options for Memory Debugging

DescriptionCompiler Option

The +check compiler options provide runtime checks to
detect out-of-bounds array references
(+check=bounds), memory leaks and heap corruption
(+check=malloc), writing outside the stack
frame(+check=stack), and uninitialized variables
(+check=uninit). The +check=all option enables
all the available runtime checks for the +check compiler
option.
A failed check results in the program abort at runtime.
The error message and the stack trace is printed to
stderr before the program terminates. The environment
variable RTC_NO_ABORTmust be set to 1 to continue the
program execution after a failed runtime check. This
enables you to collect the diagnostics for all the failed
checks in a single execution run.

+check=
[all|none|bounds|malloc|stack|uninit]

NOTE: The+check optionsmust be specified at compile time and link time. If different+check
options are specified while compiling different source files, all the specified +check options are
needed at link time. Multiple +check options are interpreted from left to right with the options
on the right overriding earlier +check options.

For more information on the HP aC++ compiler options for memory debugging, see theHP aC++
World Wide Webpage at:
http://www.hp.com/go/cpp
For more information on the HP aC++ compiler options for memory debugging, see the HP C
World Wide Webpage at:
http://www.hp.com/go/c

Memory-Debugging Features of WDB
WDB supports the following memory-debugging features:
• Heap Profiling features
• Leak Profiling feature
• Error Injection features
• Event Monitoring features
In addition to these features, HP WDB provides the following generic commands for memory
debugging:

Table 3 Generic Commands for Memory Checking

DescriptionCommand

Toggles the setting of commands for detecting leaks,
bounds, double frees, and heap profiling.

set heap-check <on/off>

Displays the current settings for memory checkingshow heap-check

14

http://www.hp.com/go/cpp
http://www.hp.com/go/c

NOTE: GDB reports an incorrect stack trace after dlclose or shl_unload, and a subsequent
dlopen or shl_load. The leaks are displayed erroneously when the memory address range
overlaps between the newly loaded shared library, and the recently unloaded shared library.
Workaround: Place a breakpoint at dlclose or shl_unload, and enter the info leaks
command to view the leaks accurately when a shared library is unloaded.

Heap Profiling
You can profile the heap usage in an application by using WDB. The heap-profiling feature
enables you to analyze the influence of algorithms and data structures on heap usage and tune
the memory requirements of an application.
WDB supports the following heap-analysis profiles:
• Snapshot Profile
• Incremental Heap Profile
• Arena Profile

NOTE: Heap profiling must be enabled to view heap reports. The set heap-check on
command enables heap profiling also.

Snapshot Profile
The snapshot profile displays the outstanding heap allocations at a specific instant (probe point)
at runtime. It does not display the blocks that are already freed before the probe point.
Table 4 lists the basic commands used for heap profiling.

Table 4 Commands for Heap Profiling

DescriptionCommand

Displays the heap report that includes the current heap
allocations, the sizes of the blocks allocated, and number
of allocation instances.

info heap

Writes the heap report output to the specified file.info heap <filename>

Displays detailed information about the specified heap
allocation including the allocation call stack.

info heap <idnumber>

Reports the heap allocations that exceed the specified
number,<num>, of bytes based on the cumulative number
of bytes that are allocated at each call-site inclusive of
multiple calls to malloc() at a particular call site. See
Example 1 (page 17) for more information.

set heap-check min-heap-size <num>

To obtain a snapshot heap profile, complete the following steps:
1. Run the debugger and load the program by entering the following command at command

prompt:
$ gdb <executable> <arguments>
(gdb) set heap-check on

NOTE: The set heap-check on command enables the memory-debugging feature in
WDB. This enables the detection of leaks, heap profiles, bounds checking, checking for
double free

2. Set a breakpoint by entering the following command:
(gdb) b <probepoint>

Memory-Debugging Features of WDB 15

3. Run the program by entering the following command:
(gdb)run

4. When the program is stopped at a breakpoint, enter the following info heap command:
(gdb) info heap

The following output is displayed:
Analyzing heap ...done

Actual Heap Usage:
Heap Start = 0x40408000
Heap End = 0x4041a900
Heap Size = 76288 bytes

Outstanding Allocations:
41558 bytes allocated in 28 blocks

No. Total bytes Blocks Address Function

0 34567 1 0x40411000 foo()
1 4096 1 0x7bd63000 bar()
2 1234 1 0x40419710 baz()
3 245 8 0x404108b0 boo()
[...]

5. To view a specific allocation, specify the allocation number as an argument to the info
heap command.
For example:
(gdb) info heap 1
4096 bytes at 0x7bd63000 (9.86% of all bytes allocated)
in bar () at test.c:108
in main () at test.c:17
in _start ()
in $START$ ()

When multiple blocks are allocated from the same call stack, WDB displays additional
information similar to the following:
(gdb) info heap 3
245 bytes in 8 blocks (0.59% of all bytes allocated)
These range in size from 26 to 36 bytes and are allocated
in boo ()
in link_the_list () at test.c:55
in main () at test.c:13
in _start ()

You can control the stack frames that are collected for reporting at any allocation point. For
more information on this feature, see “Settings to Manage Performance Degradation. ”
(page 51)

Example 1 (page 17) illustrates the use of the info heap command with the min-heap-size
filter setting.

16

Example 1 Filtered Heap Reporting for Allocations Exceeding <num> at a Particular Call-Site

Sample Program
1 #include <stdio.h>
2 #include <stdlib.h>
3 main()
4 {
5 int i, *arr[1000];
6 for (i=0; i < 1000; i++)
7 arr[i] = malloc (49);
8 malloc (30);
9 set_brkpt_here(0)
10 exit(0);
11
12 }

Sample Debugging Session
$ gdb minheap
(gdb) b set_brkpt_here
(gdb) set heap-check min-heap-size 31
(gdb) run
(gdb) info heap
Analyzing heap ...

49000 bytes allocated in 1000 blocks

No. Total bytes Blocks Address Function
0 49000 1000 0x4044eff0 main()

Memory-Debugging Features of WDB 17

Incremental Heap Profile
The incremental profile displays the outstanding allocations at multiple probe points in an
application at runtime. This profile is analogous to processing multiple snapshot profiles.
Example 2 (page 19) illustrates this feature.
Table 5 lists the commands for incremental heap-profiling.

Table 5 Commands for Incremental Heap-Profiling

DescriptionCommand

Starts the incremental heap growth profile. All allocations
prior to the execution of this command are ignored. If
incremental heap growth profile is already on, executing
this command resets the counters and starts a fresh
collection. The interval is specified in seconds.

set heap-check interval <nn>

Enables you to specify the number of intervals for which
WDB must collect the incremental heap growth. The
default value is 100. Every repeat of the interval tracks
heap allocation during that interval.

set heap-check repeat <nn>

Creates a detailed report of the heap growth. The data for
each interval has the start and end time of the interval. If
a filename is specified, the detailed report is written in
the specified file.

info heap-interval <filename>

When incremental heap profile is used the heap growth
data is internally stored byWDB in a temporary file. The
heap growth data gathered during each interval is
appended to this file . If the session is very long, this file
may become very large. This command discards the data
existing in the file and creates a new data file. If the
command is executed, the user cannot see the old data in
the file.

set heap-check reset

18

Example 2 Incremental Heap Profile

Sample Program
$ cat testincremental.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 char *f1_p;
5 char *f2_p;
6 char *f3_p;
7
8 void marker1()
9 {}
10
11 int
12 func1()
13 {
14 int i;
15 for (i = 0; i< 2; i++)
16 f1_p = (char *)malloc(10);
17 return 1;
18 }
19
20
21 int
22 func2()
23 {
24 int i;
25 for (i = 0; i< 2; i++)
26 f2_p = (char *)malloc(20);
27 return 1;
28 }
29
30
31 int
32 func3()
33 {
34 int i;
35 for (i = 0; i< 2; i++)
36 f3_p = (char *)malloc(30);
37 return 1;
38 }
39
40
41 main()
42 {
43 int i;
44 int repeat;
45
46 for (repeat = 0; repeat < 2; repeat++)
47 for (i = 0; i < 2; i++) {
48 func1();
49 sleep (1);
50 }
51
52 /* 2 interval records */
53 marker1();
54
55 for (repeat = 0; repeat < 2; repeat++)
56 for (i = 0; i < 2; i++) {
57 func2();
58 sleep (1);
59 }
60

Memory-Debugging Features of WDB 19

61 /* 4 (3 old and 1 new) interval records;
62 as the repeat count of 100 has been exceeded.
63 */
64 marker1();
65
66
67 /* set repeat count to 500 */
68 for (repeat = 0; repeat < 2; repeat++)
69 for (i = 0; i < 2; i++) {
70 func3();
71 sleep (1);
72 }
73
74 marker1();
75 exit(0);
76 }

Sample Debugging Session
(gdb) file testincremental
Reading symbols from testincremental.. done.
(gdb) set heap-check interval 1
(gdb) set heap-check repeat 2
(gdb) b marker1
Breakpoint 1 at 0x4000000000000e50:0: file testincremental.c,
line 9 from testincremental
(gdb) r
Starting program: testincremental
Breakpoint 1, marker1 () at testincremental.c:9 {}
(gdb) info heap-interval
Analyzing heap ...
==
Start Time: Mon Oct 30 01:38:11 2006
End Time: Mon Oct 30 01:38:12 2006
Interval: 1
40 bytes allocated in 4 blocks
No. Total bytes Blocks Address Function
0 40 4 0x6000000000004840 func1()
(gdb) c
Continuing.
Breakpoint 1, marker1 () at /testincremental.c:99 {}
(gdb) info heap-interval
Analyzing heap ...
==
Start Time: Mon Oct 30 01:38:11 2006
End Time: Mon Oct 30 01:38:12 2006
Interval: 1
40 bytes allocated in 4 blocks
No. Total bytes Blocks Address Function
0 40 4 0x6000000000004840 func1()
===
Start Time: Mon Oct 30 01:38:13 2006
End Time: Mon Oct 30 01:38:14 2006
Interval: 2
40 bytes allocated in 4 blocks
No. Total bytes Blocks Address Function
0 40 4 0x60000000000048c0 func1()
===

20

Arena Profile
WDB enables you to view the high-level memory-usage statistics of a running application. You
can analyze the memory-usage statistics to understand the memory consumption, the allocation
pattern, and the heap-fragmentation of the application.
WDB enables you to view the following memory-usage statistics:
• High level memory-usage statistics of a process
• High level memory-usage statistics of each arena
• Block level and overall memory-usage statistics of each arena
• Block level and overall memory-usage statistics of each arena along with the allocated stack

trace for each allocated block.

NOTE: For more information on arenas, see the malloc(3c) manpages.

Table 6 lists the commands for monitoring memory-usage in an arena.

Table 6 Memory-Usage in an Arena

DescriptionCommand

Displays the high level memory-usage of a process. Lists
the number of free blocks, used blocks, small blocks,
holding blocks, node blocks and regular blocks.

info heap process

Displays the high level memory-usage details of the
specified arena <arena_id>. It also lists the number of
free blocks, used blocks, small blocks, holding blocks and
regular blocks. If the <arena_id> is not specified, it
displays thememory-usage statistics for the current arena.

info heap arenas <arena_id>

Displays the memory-usage statistics of all the blocks in
the given arena, in the increasing order of block-addresses.

info heap arenas <arena_id> blocks

Displays the memory-usage statistics of a specific block
in the arena with the stack trace for the specified arena
and block.

info heap arenas <arena_id> blocks
<block-id>

Displays the overall and block level memory-usage
statistics, with stack trace wherever applicable.

info heap arena <arena_id> blocks stacks

The info heap process and info heap arenas commands do not require re-linking or
rebuilding of the application. You can attach a running process to the debugger and get a snapshot
of the heap-profile of the process. Example 3 (page 24) illustrates the use of the info heap
process and info heap arenas commands.

NOTE:
• Theinfo heap arenas andinfo heap process commands are not supported in batch

mode.
• The info heap process and info heap arenas are available only on HP-UX 11i v3.
• The stack trace is displayed only if memory debugging is enabled. (Enable the set

heap-check on command to enablememory debugging). If the stack trace is not required,
the memory-usage statistics can be viewed without enabling memory checking.

Analyzing the info heap process output

The info heap process command displays the number of used, free, small, holding, node
and regular (ordinary) blocks.
If there are a larger number of free small blocks, you can suspect heap-fragmentation. The
application does not differentiate between a small block and an ordinary block. However, you

Memory-Debugging Features of WDB 21

can tune malloc() to use a specific ratio of small and ordinary blocks and reduce
heap-fragmentation.
The holding block headers and node blocks are used for the internal data-structure and
bookkeeping in malloc(). The sum of the total bytes in holding block headers and node blocks
determines the efficiency of malloc(). The memory allocator is more efficient when it uses less
memory for the internal data-structure and bookkeeping.
Following is a sample output of the info heap process command:
(gdb) info heap process
Total space in arenas: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600
Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 0
Number of free ordinary blocks: 1
Number of free small blocks: 388
Small block allocator parameters
 enabled: 1
 maxfast: 512
 numblks: 100
 grain: 16

cache
 enabled: 0
 miss: 0
 bucketsize: 0
 buckets: 0
 retirement: 0
Exec type: SHARE_MAGIC

Analyzing the info heap arenas output

The info heap arenas commanddisplays thememory-usage statistics for the specified arena.
You can analyze thememory-usage statistics of all the arenas to determine if there is an imbalance
in memory-usage across the arenas. For example, if there are many free blocks in an arena and
these blocks are not used by threads from another arena, you can tune the memory-usage to
optimize the performance.
The info heap arenas <arena_id> blocks displays the details of all the blocks in the
given arena in an increasing order of addresses. You can analyze the size of the blocks in the
increasing order of block-addresses to detect heap-fragmentation. For example, you can suspect
heap fragmentation if two large free blocks are separated by a small used block.
Following is a sample output of the info heap arenas command:
(gdb) info heap arenas
num_arenas: 1
expansion: 4096

Arena ID: 0

Total number of blocks in arena: 47
Start address: 0x4001003c
Ending address: 0x40480ffc
Total space: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600

22

Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 35
Number of free ordinary blocks: 1
Number of free small blocks: 388

Memory-Debugging Features of WDB 23

Example 3 Monitoring memory usage in an arena

Sample Program
$ cat malloc_1.c
1 /* test large malloc.
2 * corruption.
3 */
4 #include <stdio.h>
5 #include <stdlib.h>
6 void f1()
7 {
8 char * cp;
9
10 cp = malloc (5000);
11 }
12 void f2()
13 {
14 char * cp;
15
16 cp = malloc (7000);
17 }
18 void f3()
19 {
20 char * cp;
21
22 cp = malloc (3000);
23 }
24 void f4()
25 {
26 char * cp;
27
28 cp = malloc (6000);
29 }
30 void f1_small()
31 {
32 char * cp;
33
34 cp = malloc (50);
35 }
36 void f2_small()
37 {
38 char * cp;
39
40 cp = malloc (70);
41
42 void f3_small()
43 {
44 char * cp;
45
46 cp = malloc (30);
47 }
48 void f4_small()
49 {
50 char * cp;
51
52 cp = malloc (60);
53 }
54
55 void set_brkpt_here() {
56 }
57 int main()
58 {
59
60 for (int i=0; i<777; i++)

24

61 {
62 f4_small();
63 f1_small();
64 f2_small();
65 f3_small();
66 }
67 set_brkpt_here();
68
69 for (int i=0; i<1000; i++)
70 {
71 f4();
72 f1();
73 f2();
74 f3();
75
76 }
77 set_brkpt_here();
78 }

Sample Debugging Session
(gdb) -leaks malloc_1.32
(gdb) b set_brkpt_here
(gdb) run
(gdb) info heap process
Total space in arenas: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600
Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 0
Number of free ordinary blocks: 1
Number of free small blocks: 388
Small block allocator parameters
 enabled: 1
 maxfast: 512
 numblks: 100
 grain: 16
cache
 enabled: 0
 miss: 0
 bucketsize: 0
 buckets: 0
 retirement: 0
Exec type: SHARE_MAGIC

Memory-Debugging Features of WDB 25

(gdb) info heap arenas
num_arenas: 1
expansion: 4096

Arena ID: 0

Total number of blocks in arena: 47
Start address: 0x4001003c
Ending address: 0x40480ffc
Total space: 4657088
Number of bytes in free small blocks: 69216
Number of bytes in used small blocks: 199584
Number of bytes in free ordinary blocks: 2480
Number of bytes in used ordinary blocks: 4375600
Number of bytes in holding block header: 912
Number of small blocks: 3500
Number of ordinary blocks: 9
Number of holding blocks: 35
Number of free ordinary blocks: 1
Number of free small blocks: 388

Leak Profiling
The leak profile feature in WDB conservatively identifies the blocks of memory that are leaked
in an application, and displays the stack trace that shows when the block was allocated. All the
leaks detected by WDB are definite physical leaks.
WDB uses a garbage collection algorithm to identify the blocks that are leaked. It identifies the
root-set of memory that are possible pointers to the heap. The initial root-set includes the shared
library data, the program/thread stacks, the registers, the thread specific private data, the mmap
regions, and the shared memory regions. The initial root-set includes all data except the heap
blocks.
The debugger considers suitably aligned words in the root-set as possible pointers to the heap.
The debugger performs a reachability analysis based on the root-set, and determines thememory
blocks that are reachable through possible pointers from the root-set. The heap blocks that are
not reachable through possible pointers from the root-set are reported as leaks.
WDB is conservative in detecting thememory leaks. Thememory leaks can bemasked if a datum
in the root-set inadvertently holds a possible pointer to a heap block.
Table 7 lists the basic commands for leak profiling in WDB.

Table 7 Commands for Leak Profiling

DescriptionCommand

Controls WDB memory leak checkingset heap-check leaks <on/off>

Displays a leak report. It also lists information such as the
leaks, size of blocks, and number of instances.

info leaks

Writes the complete leak report output to the specified
file

info leaks <filename>

Displays detailed information on the specified leak
including the allocation call stack

info leak <leaknumber>

Specifies theminimum leak size for stack trace collection.
The debugger continues to report leaks that are smaller
than <num> bytes, but it does not provide the stack trace
for the same. By default, num is set to 0.
This command also enables you to reduce performance
degradation. See “Settings to Manage Performance
Degradation. ” (page 51)

set heap-check min-leak-size <num>

26

To view the leak profile, complete the following steps:
1. Run the debugger and load the program by entering the following command:

$ gdb <executable> <arguments>

or
$ gdb –leaks <executable> <arguments>

2. Enable leak checking by entering the following command:
(gdb) set heap-check leaks on

(if the –leaks option is not used in Step 1)

NOTE: Alternatively, you can use the set heap-check on command to automatically
enable the detection of leaks by toggling the set heap-check leaks on command. This
command enables the detection of leaks, heap profiles, bounds checking, and checking for
double frees.

3. Set breakpoints in the code at probe-points where you want to examine cumulative leaks
by entering the following command:
(gdb) b <probe-points>

4. Run the program in the debugger by entering the following command:
(gdb) run

5. When the breakpoint triggers, enter the following info leaks command to display the list of
memory leaks:
(gdb) info leaks

The following output is displayed:
Scanning for memory leaks...done

2439 bytes leaked in 25 blocks

No. Total bytes Blocks Address Function
0 1234 1 0x40419710 foo()
1 333 1 0x40410bf8 main()
2 245 8 0x40410838 strdup()

[...]

The debugger assigns a numeric identifier for each leak. To view a stack trace for a specific
leak, specify the leak number from the list of leaks, as follows:
(gdb) info leak 2
245 bytes leaked in 8 blocks (10.05% of all bytes leaked)
These range in size from 26 to 36 bytes and are allocated in strdup ()
in link_the_list () at test.c:55
in main () at test.c:13
in _start ()

Memory-Debugging Features of WDB 27

Error Injection
WDBsupports error injection features to debug out-of-memory events in an application. It enables
you to simulate out-of-memory conditions in an application and analyze the behavior of the
applications under such conditions. In addition, it enables you to gain control over program
execution when an out-of-memory event occurs.
To simulate an out-of-memory condition, you must use the set heap-check null-check
command to forcemalloc() to return NULL after <N> or a randomnumber of allocations. After
simulating the out-of-memory error, you can use the catch nomem command to gain control
over the execution when an out-of-memory error occurs.
Table 8 lists the commands available for error injection.

Table 8 Commands for Error Injection

DescriptionCommand

Forces malloc() to return NULL after <N> invocations
of malloc().
Example 4 (page 29) illustrates the use of this command.

set heap-check null-check <N>

Forces malloc() to return NULL after <N> bytes are
allocated by the program.
Example 5 (page 31) illustrates the use of this command.

set heap-check null-check-size <N>

Forces malloc() to return NULL after random number
of invocations of malloc().
Example 6 (page 33) illustrates the use of this command.

set heap-check null-check random

Defines the range for random number calculation for the
set heap-check null-check random command

set heap-check random-range <N>

Defines the seed-value for random number calculation
for the set heap-check null-check random
command

set heap-check seed-value <N>

Enables the user to gain control over an out-of-memory
event. The user can step through program execution after
the nomem event is detected.

catch nomem

28

Example 4 Simulating out-of-memory conditions after <N> allocations

Sample Program
bash-2.05b$ cat null-check.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int cnt;
5
6 void break_here()
7 {
8 }
9
10 void test_null_check()
11 {
12 int i;
13 char *a;
14
15 cnt = 0;
16 for(i = 0; i <= 10; i++) {
17 a = malloc(100);
18 if (a == NULL)
19 printf("Out of memory scenario simulated\n");
20 }
21 }
22
23 int main()
24 {
25 test_null_check();
26 exit (0);
27 }

Sample Debugging Session

$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.

(gdb) file null
Reading symbols from null...done.
(gdb) set heap-check null-check 6
(gdb) b main
Breakpoint 1 at 0x2c64: file null-check.c, line 25 from null.
(gdb) b 19
Breakpoint 2 at 0x2c10: file null-check.c, line 19 from null.
(gdb) r
Starting program: null

Breakpoint 1, main () at null-check.c:25
25 test_null_check();
(gdb) catch nomem
Catchpoint 3 (nomem)
(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 ()
from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Memory-Debugging Features of WDB 29

Breakpoint 2, test_null_check () at null-check.c:19
19 printf("Out of memory scenario simulated\n");
(gdb) bt
#0 test_null_check () at null-check.c:19
#1 0x2c70 in main () at null-check.c:25
#2 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.
Out of memory scenario simulated

Program exited normally.

30

Example 5 Simulating out-of-memory conditions after <N> bytes are allocated

Sample Program
$ cat null-check.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int cnt;
5
6 void break_here()
7 {
8 }
9
10 void test_null_check()
11 {
12 int i;
13 char *a;
14
15 cnt = 0;
16 for(i = 0; i <= 10; i++) {
17 a = malloc(100);
18 if (a == NULL)
19 printf("Out of memory scenario simulated\n");
20 }
21 }
22
23 int main()
24 {
25 test_null_check();
26 exit (0);
27 }

Sample Debugging Session
$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.

(gdb) set heap-check on
(gdb) file null
Reading symbols from null...done.
(gdb) b test_null_check
Breakpoint 1 at 0x2be0: file null-check.c, line 15 from null.
(gdb) b 19
Breakpoint 2 at 0x2c10: file null-check.c, line 19 from null.
(gdb) run
Starting program: null

Breakpoint 1, test_null_check () at null-check.c:15
15 cnt = 0;
(gdb) set heap-check null-check-size 400
(gdb) catch nomem
Catchpoint 3 (nomem)
(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4() from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Breakpoint 2, test_null_check () at null-check.c:19
19 printf("Out of memory scenario simulated\n");
(gdb) p i
$1 = 4

Memory-Debugging Features of WDB 31

(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl

(gdb) bt
#0 0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl
#1 0x70e7b554 in handle_null_check+0x134 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b614 in malloc+0xb4 () from /opt/langtools/lib/librtc.sl
#3 0x2c04 in test_null_check () at null-check.c:17
#4 0x2c70 in main () at null-check.c:25
#5 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, test_null_check () at null-check.c:19
19 printf("Out of memory scenario simulated\n");
(gdb) p i
$2 = 9
(gdb) c
Continuing.
Out of memory scenario simulated

Program exited normally.

32

Example 6 Simulating out-of-memory conditions after a random number of allocations

Sample Program
 bash-2.05b$ cat null-random.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int main()
5 {
6 int i;
7 char *a;
8 for (i=0; i <= 500; i++) {
9 a = malloc(100);
10 if (a == NULL)
11 {
12 printf("Out of memory simulated\n");
13 }
14 }
15 exit (0);
16 }

Sample Debugging Session
$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered by
the GNU General Public License. Type "show copying" to see the
conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
(gdb) file null-random
Reading symbols from null-random...done.
(gdb) set heap-check on
(gdb) b main
Breakpoint 1 at 0x2be4: file null-random.c, line 8 from null-random.
(gdb) b 12
Breakpoint 2 at 0x2c10: file null-random.c, line 12 from null-random.
(gdb) r
Starting program: null-random

Breakpoint 1, main () at null-random.c:8
8 for (i=0; i <= 500; i++) {
(gdb) set heap-check null-check random
(gdb) catch nomem
Catchpoint 3 (nomem)
(gdb) c
Continuing.
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Breakpoint 2, main () at null-random.c:12
12 printf("Out of memory simulated\n");
(gdb) p i
$1 = 55
(gdb) c
Continuing.
Out of memory simulated
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.

Memory-Debugging Features of WDB 33

Breakpoint 2, main () at null-random.c:12
12 printf("Out of memory simulated\n");
(gdb) p i
$2 = 110
(gdb) c
Continuing.
Out of memory simulated
warning: Malloc is returning simulated 0x00000000 value
0x70e78e8c in __rtc_nomem_event+0x4 () from /opt/langtools/lib/librtc.sl

34

Event Monitoring
The event monitoring commands in WDB enable you to monitor specific heap events and
heap-corruption problems in an application.

Monitoring Heap Events
WDB enables you to monitor specific events such as the size of memory allocations, the high
water mark.
Table 9 lists the commands for monitoring heap events.

Table 9 Monitoring Heap Events

DescriptionCommand

Stops program execution when the block at the given
address is allocated or de-allocated

set heap-check watch <address>

Stops program executionwhen a program tries to allocate
a block larger than num-bytes in size

set heap-check block-size <num-bytes>

Stops program execution when the program tries to
increase the program-heap by at least num-bytes

set heap-check heap-size <num-bytes>

Displays the highest brk() value and the number of
brk() value changes for a given run. This number
signifies the number of times that the heap grows.

info heap high-mem

Stops program execution when break value has moved
<X_number> times

set heap-check high-mem-count <X_number>

Toggles the detection of double-frees and frees with
improper arguments

set heap-check free <on|off>

Monitoring a Specific Address

The set heap-check watch command enables you to monitor a specific address. It instructs
the debugger to stop the program execution and transfer execution control to the user when the
specified block at <address> is allocated, or de-allocated.
Following is the syntax for the set heap check watch command:
(gdb) set heap-check watch <address>

Example 7 (page 36) illustrates the use of theset heap-check watch <address> command.

Memory-Debugging Features of WDB 35

Example 7 Monitoring a specific address

Sample Program
bash-2.05b$ cat watch-addr.c
1 #include<stdio.h>
2
3 void enable_watch(char *cp)
4 {
5
6 }
7
8 int main()
9 {
10 char *cp = (char*)malloc(100);
11 enable_watch(cp);
12 free(cp);
13 exit(0);
14 }

Sample Debugging Session
$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to see
the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.

(gdb) file watch-addr
Reading symbols from watch-addr...done.
(gdb) set heap-check on
(gdb) b main
Breakpoint 1 at 0x2bf0: file watch-addr.c, line 10 from watch-addr.
(gdb) b 13
Breakpoint 2 at 0x2c24: file watch-addr.c, line 13 from watch-addr.
(gdb) r
Starting program: watch-addr

Breakpoint 1, main () at watch-addr.c:10
10 char *cp = (char*)malloc(100);
(gdb) n
11 enable_watch(cp);
(gdb) p/x cp
$1 = 0x4042a3b8
(gdb) set heap-check watch 0x4042a3b8
(gdb) c
Continuing.
warning: Watch address 0x4042a3b8 deallocated
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7ada0 in rtc_record_free+0xb8 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b9a0 in free+0xc8 () from /opt/langtools/lib/librtc.sl
#3 0x2c24 in main () at watch-addr.c:12
#4 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, main () at watch-addr.c:13
13 exit(0);
(gdb) q
The program is running. Exit anyway? (y or n) y

36

Monitoring Allocations Greater Than a Specified size

Theset heap-check block-size command instructsWDB to stop the program and transfer
the execution control to the user when the program allocates a heap block whose size is greater
than or equal to <num-bytes>.
Following is the syntax for the set heap-check block-size command:
set heap-check block-size <num-bytes>

Example 8 (page 37) illustrates the use of the set heap-check block-size command.

Example 8 Monitoring allocations greater than a specified size

Sample Program
bash-2.05b$ cat block-size.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char * cp;
6 printf("Start of the program\n");
7 cp = (char *)malloc(1024 *1024*10);
8 free (cp);
9 exit(0);
10 }

Sample Debugging Session
bash-2.05b$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to see
the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
(gdb) file block-size
Reading symbols from block-size...done.
(gdb) set heap-check on
(gdb) set heap-check block-size 900000
(gdb) b main
Breakpoint 1 at 0x2c04: file block-size.c, line 6 from block-size.
(gdb) b 9
Breakpoint 2 at 0x2c3c: file block-size.c, line 9 from block-size.
(gdb) r
Starting program: block-size

Breakpoint 1, main () at block-size.c:6
6 printf("Start of the program\n");
(gdb) c
Continuing.
Start of the program
warning: Attempt to allocate a large object at 0x4042c3e8
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7a918 in rtc_record_malloc+0xf0 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b7e0 in malloc+0x280 () from /opt/langtools/lib/librtc.sl
#3 0x2c28 in main () at block-size.c:7
#4 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, main () at block-size.c:9
9 exit(0);

Memory-Debugging Features of WDB 37

Monitoring the Program Heap Growth.

The set heap-check heap-size command instructsWDB to stop the program and transfer
execution control to the userwhen the program attempts to increase the heap size of the program
by <num-bytes> or more. Example 9 (page 38) illustrates the use of this command.
Following is the syntax for the set heap-check heap-size command:
set heap-check heap-size <num-bytes>

Example 9 Monitoring program heap growth

Sample Program
bash-2.05b$ cat heap-size.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char * cp;
6 printf("Start of the program\n");
7 cp = (char *)malloc(1024 *1024*10);
8 free (cp);
9 cp = (char *)malloc(1024 *1024*8);
10 free (cp);
11 exit(0);
12 }

Sample Debugging Session
bash-2.05b$ /opt/langtools/bin/gdb
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
(gdb) file heap-size
Reading symbols from heap-size...done.
(gdb) set heap-check on
(gdb) set heap-check heap-size 8000000
(gdb) b main
Breakpoint 1 at 0x2c04: file heap-size.c, line 6 from heap-size.
(gdb) b 11
Breakpoint 2 at 0x2c60: file heap-size.c, line 11 from heap-size.
(gdb) r
Starting program: heap-size

Breakpoint 1, main () at heap-size.c:6
6 printf("Start of the program\n");
(gdb) c
Continuing.
Start of the program
warning: Attempt to grow the heap at 0x4042c3e0
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7aff4 in malloc_padded+0xa8 () from /opt/langtools/lib/librtc.sl
#2 0x70e7b634 in malloc+0xd4 () from /opt/langtools/lib/librtc.sl
#3 0x2c28 in main () at heap-size.c:7
#4 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Breakpoint 2, main () at heap-size.c:11
11 exit(0);

38

Monitoring Changes in Data Segment Space Allocation (High Water Mark Feature)

The high water mark feature records the number of times the break value changes which is the
number of times the heap grows.
The high water mark feature monitors changes in the program break value. This value points to
the end of the heap (which is also the end of the data segment). Whenmemory is allocated using
malloc() in excess of the available heapmemory, the brk() call extends the heap. This changes
the break value. Most implementations of malloc() do not decrease the heap size when the
memory is freed. The break value is indicative of the memory consumption by the program.
Table 10 lists the commands that support the high water mark feature.

Table 10 Commands Supporting High Water-Mark Feature

DescriptionCommand

Displays the number of times that the break value has
been changed for the current run at the instant, the
command is issued

info heap high-mem

Stopswhen break value hasmoved the specified number,
<X_number>, of times

set heap-check high-mem-count <X_number>

NOTE: This feature assumes that an application has a deterministic memory allocation pattern
from one run to another.

The info heap high-mem command displays the maximum number of times the break value
changes for a given run. Theset heap-check high-mem-count <X_number> stopsprogram
execution when the break value moves a specified number <X_number> of times, and transfers
execution control to the user. Both these commands display the size and call site of the last
memory allocation that extended the high water mark.
This feature also enables you to analyze the memory-usage in an application and check if the
memory-usage is critical or close to triggering an out-of-memory error.Example 10 (page 40)
illustrates the high water mark feature.

Memory-Debugging Features of WDB 39

Example 10 High Water-Mark Feature

Sample Program
$cat high.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 char * func1()
5 {
6 char *ptr;
7 ptr = malloc(1000);
8 return ptr;
9
10 }
11
12 char * func2()
13 {
14 char *ptr;
15 ptr = malloc (100);
16 return ptr;
17
18 }
19
20 void func4()
21 {
22 char *ptr;
23 ptr = malloc (9000);
24 free (ptr);
25
26 }
27
28 void main()
29 {
30 char* ptr;
31 int i;
32
33 for (i=0; i<100; i++)
34 {
35 ptr = func1();
36 free(ptr);
37 }
38 ptr = func2();
39 func4();
40 }

Sample Debugging Session
Case 1: Theinfo heap high-mem commanddisplays the number of times that the break value
changes for a given run and to display the highest break value in the current run.
$ gdb high
HP gdb 5.6 for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.6 (based on GDB) is covered
by the GNU General Public License.
Type "show copying" to see the conditions to change it and/or
distribute copies. Type "show warranty" for warranty/support.
..
(gdb) b 40 /*set a breakpoint at the end of your application to view
 the highest break value for the current run*/
 Breakpoint 1 at 0x4000b90:2: file high.c, line 40 from high.
(gdb) set heap-check on
(gdb) r
Starting program: high

Breakpoint 1, main () at high.c:40

40

40 };
(gdb) info heap high-mem
Analyzing heap ...

High memory mark stat
High water mark updated count: 2

No. Total bytes Blocks Address Function
0 100 1 0x4044ff20 func2()
(gdb)

Case 2: The set heap-check high-mem-count <X_number> command stops execution
when the break value has moved <X_number> of times.
$ gdb high
HP gdb 5.6 for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.8 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check on
(gdb) set heap-check high-mem-count 2
(gdb) r
Starting program: high
warning: High water mark
(address = 0x4044ff00 total memory per call site = 100)
#1 func2() at high.c:15
#2 main() at high.c:40
#3 main_opd_entry() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

__rtc_event (ecode=RTC_NO_ERROR, pointer=0x0, pclist=0x0, size=0)
 at ../../../Src/gnu/gdb/infrtc.c:1236
1236 {

Memory-Debugging Features of WDB 41

Monitoring De-allocations to Detect Double-Frees

The set heap-check free <on/off> command enables you to detect double-frees and
frees with improper arguments.
When this command is enabled, the free() calls aremonitored to verifywhether the parameters
address valid heap blocks. If an erroneous free() is detected, the debugger stops execution
and reports the error. You can analyze the stack trace to analyzewhere and how the error occurred.
Example 16 (page 67) illustrates the use of the set heap-check free command.

Monitoring Heap Corruption
WDB enables you to detect the presence of heap-corruption in your application. Table 11 lists
the commands for monitoring heap corruption

Table 11 Commands for Monitoring Heap Corruption

DescriptionCommand

Toggles validation of calls to strcpy(), strncpy(),
memcpy(), memccpy(),memset(), memmove(),
bzero(), and, bcopy()

set heap-check string <on |off>

Toggles the bounds-checking feature for detection of
heap-corruption in WDB

set heap-check bounds <on|off>

Checks for corruption in the currently allocated heap
blocks

info corruption

Scrambles a memory block and overwrites it with a
specific pattern when it is allocated and de-allocated

set heap-check scramble <on | off>

Monitoring String Corruption

The set heap-check string <on/off> command toggles the string corruption detection
feature. It enables you to detect string corruption if functions of the strcpy() family write
out-of-bounds of the allocated memory. Example 11 (page 43)illustrates the use of the set
heap-check string command.
This command currently detects string corruption when writing out-of-bounds for strcpy(),
strncpy(),memcpy(),memccpy(),memset(),memmove(),bzero(), and,bcopy() functions.

42

Example 11 Monitoring heap-corruption caused by erroneous handling of string functions

Sample Program
bash-2.05b$ cat string.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char *ptr, *ptr1;
6
7 ptr = (char*)malloc(10);
8 ptr1 = (char *)malloc(20);
9
10 strcpy(ptr, "Hello");
11 strcpy(ptr1, "Welcome to HP WDB");
12
13 memcpy(ptr+5,ptr1,10);
14 }

Sample Debugging Session
bash-2.05b$ /opt/langtools/bin/gdb string
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is
covered by the GNU General Public License.
Type "show copying" to see the conditions to
change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check on
(gdb) set heap-check string on
(gdb) b main
Breakpoint 1 at 0x2bdc: file string.c, line 7 from string.
(gdb) r
Starting program: string

Breakpoint 1, main () at string.c:7
7 ptr = (char*)malloc(10);
(gdb) c
Continuing.
warning: memcpy corrupted (address = 0x4042a3dd size = 10)
#1 main() at string.c:7
#2 _start() from /usr/lib/libc.2
#3 _start() from /opt/langtools/lib/librtc.sl
#4 $START$() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) bt
#0 0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
#1 0x70e7cc44 in search_addr+0x64 () from /opt/langtools/lib/librtc.sl
#2 0x70e7cd88 in libc_mem_common+0x130 () from /opt/langtools/lib/librtc.sl
#3 0x70e7ceb8 in memcpy+0x58 () from /opt/langtools/lib/librtc.sl
#4 0x2c54 in main () at string.c:13
#5 0x70ee3478 in _start+0xc0 () from /usr/lib/libc.2
(gdb) c
Continuing.

Program exited normally.

Memory-Debugging Features of WDB 43

Detecting Out-of-Bounds Writes with the Bounds-Checking Feature

The set heap-check bounds <on/off> command toggles the bounds-checking feature in
WDB.Whenbounds-checking is enabled,WDBallocates extra space (guard bytes) at the beginning
and end of a block during allocation and fills this space with a specific pattern. When the blocks
are freed, the debugger verifies if the patterns are intact. If the patterns are corrupted, the debugger
detects underflowor overflow errors and reports the corruption. Example 12 (page 45) illustrates
the bounds-checking feature.
The bounds checking feature detects overflowandunderflowerrors onlywhen thewrite operation
occurs within the guard bytes.

44

Example 12 Bounds-checking to detect out-of-bounds writes

Sample Program
bash-2.05b$ cat bounds.c
1 #include<stdio.h>
2
3 int main()
4 {
5 char *cp = (char*)malloc(100);
6 cp[-1] = 100;
7 strcpy(cp,"Hello");
8 cp[100] = 100;
9 free(cp);
10 exit(0);
11 }

Sample Debugging Session
bash-2.05b$ gdb bounds
HP gdb 5.5.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.0 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check bounds on
(gdb) b main
Breakpoint 1 at 0x2c04: file bounds.c, line 5 from bounds.
(gdb) b 10
Breakpoint 2 at 0x2c58: file bounds.c, line 10 from bounds.
(gdb) r
Starting program: bounds

Breakpoint 1, main () at bounds.c:5
5 char *cp = (char*)malloc(100);
(gdb) c
Continuing.
warning: Memory block (size = 100 address = 0x4042a3c8)
appears to be corrupted at the beginning.
Allocation context not found

#1 main() at bounds.c:5
#2 _start() from /usr/lib/libc.2
#3 _start() from /opt/langtools/lib/librtc.sl
#4 $START$() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) c
Continuing.
warning: Memory block (size = 100 address = 0x4042a3c8)
appears to be corrupted at the end.
Allocation context not found

#1 main() at bounds.c:5
#2 _start() from /usr/lib/libc.2
#3 _start() from /opt/langtools/lib/librtc.sl
#4 $START$() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

Memory-Debugging Features of WDB 45

0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl
(gdb) f 4
#4 0x4000960:0 in main () at bounds.c:9
9 free(cp);
(gdb)

46

Detecting Heap Corruption

The info corruption <filename> command enables you to view the corruption profile of
all the allocations that are corrupted at a specified probe-point in the program. Ensure that the
bounds checking is enabled before using the info corruption command. The corruption
information is written to a specified file if the <file name> is provided. Otherwise, it is written
to stdout.

NOTE: The info corruption command is not supported in batch mode debugging

Example 13 (page 48) illustrates the use of the info corruption command.

Memory-Debugging Features of WDB 47

Example 13 Detecting heap corruption using the info corruption command

Sample Program
$cat infobounds.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 char *t;
5 char *t1;
6 char *t2;
7 char *t3;
8
9 char * sm_malloc(sz)
10 int sz;
11 {
12 return malloc(sz); /* line number 12 */
13 }
14
15 main()
16 {
17 t = (char *)sm_malloc(10);
18 strcpy(t, "123456789123");
19 t1 = (char *)sm_malloc(10);
20 strcpy(t1, "12345678912");
21 t2 = (char *)sm_malloc(10);
22 strcpy(t2, "1234567891");
23 t3 = (char *)sm_malloc(10);
24 strcpy(t3, "123456789");
25 printf("Hello\n");
26 free (t);
27 free (t1);
28 free (t2);
29 free (t3);
30 free (t);
31 free (t1);
32 exit(1);
33 }

Sample Debugging Session
$ gdb infobounds
HP gdb 5.6 for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.6 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) b 25
Breakpoint 1 at 0x4000b70:1: file infobounds.c,
line 25 from infobounds.
(gdb) set heap-check on
(gdb) run
Starting program: infobounds

Breakpoint 1, main ()
 at .infobounds.c:25
25 printf("Hello\n");
(gdb) info corruption
Analyzing heap ...

Following blocks appear to be corrupted
No. Total bytes Blocks Address Function
0 10 1 0x400124e0 sm_malloc()
1 10 1 0x40012500 sm_malloc()

48

2 10 1 0x40012520 sm_malloc()
(gdb) info corruption 2
10 bytes at 0x40012520 (33.33% of all bytes allocated)
#0 sm_malloc() at infobounds.c:12
#1 main() at infobounds.c:21
#2 main_opd_entry() from /usr/lib/hpux32/dld.so
(gdb)

Memory-Debugging Features of WDB 49

Scrambling a Heap Block

The set heap-check scramble <on/off> command enables you to scramble a heap block
and overwrite it with a specific pattern ("0xfeedface") when it is allocated or de-allocated.
If the application continues to use (read) a freed block (incorrect memory usage), the application
fails to find the expected data in the block. (Thismeans that the data in the block is different from
the initial data that was written in the block.)
This increases the chances of the application to crash or result in unpredictable program behavior
sooner with the unexpected data that is read from the block. Additionally, you can detect this
condition with assertion checks in the code to validate the read data during the further run of
the application.
This command does not detect the corruption. It is only a minimal aid to detect corruption.
Example 14 (page 50) illustrates the scramble feature in WDB.

Example 14 Scrambling a memory block on de-allocation

Sample Program
$ cat scramble.c
1 #include <stdio.h>
2 #include <malloc.h>
3
4 int
5 main ()
6 {
7 char **tp;
8 tp = malloc (100);
9 printf ("Batch RTC test over, *tp=%p.\n", *tp);
10 fflush(stdout);
11 free(tp);
12 exit (0);
13 }

Sample Debugging Session
$ gdb scramble
HP gdb 5.5 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00
and target hppa1.1-hp-hpux11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.5.8 (based on GDB) is covered
by the GNU General Public License. Type "show copying" to
see the conditions to change it and/or distribute copies.
Type "show warranty" for warranty/support.
..
(gdb) set heap-check scramble on
(gdb) b main
Breakpoint 1 at 0x295c: file scramble.c, line 8 from scramble.
(gdb) r
Starting program: scramble

Breakpoint 1, main () at scramble.c:8
8 tp = malloc (100);
(gdb) n
9 printf ("Batch RTC test over, *tp=%p.\n", *tp);
(gdb) p *tp
$1 = 0xfeedface <Error reading address 0xfeedface: Bad address>

50

Settings to Manage Performance Degradation.
Memory-debugging slows down the performance of an application by 20-40% because of stack
unwinding. Reducing the number of stack frames the debugger collects for each allocation reduces
the performance degradation.
Table 12 lists the options for reducing the performance degradation.

Table 12 Options for Performance Improvement

DescriptionCommandSetting

Controls the depth of the call stack. By
default, num is set to 4.

set heap-check frame-count
<num>

Stack Depth

Specifies the minimum leak size for
stack trace collection. The debugger
continues to report leaks that are
smaller than <num> bytes, but it does
not provide the stack trace for the
same. By default, num is set to 0.

set heap-check min-leak-size
<num>

Minimum Leak Size

Supported Modes of Memory-debugging in WDB
WDB supports the following modes of memory-debugging:
• Interactive Mode
• Batch Mode
• Attach Mode

Debugging in the Interactive Mode
The interactive mode of memory-debugging is typically useful during the development and
defect fixing phase, where you need the flexibility to control the flow of program executionwhile
debugging memory related problems.
To debug your program in the interactive mode, complete the following steps:
1. Compile the source files with the —g option. No special compilation of link options are

required.
The program must be linked with shared libc.[so|sl]. Memory-checking features do
not work on the programs linked with archived libc.a
$ aCC –g <source filename> –o <executable>

2. To activate the memory debugging, perform either of the following:
• Invoke WDB with the -leaks option as follows:

 $ gdb -leaks <executable>

This enables leak checking. To enable other memory debugging features you must use
the appropriate set of commands.

• Alternatively, enter the following command at the gdb prompt:
$ gdb <executable>
(gdb)set heap-check on

This enables leaks checking, bounds checking, and check for double-frees.

3. Place breakpoints at probe points by entering the following command:
(gdb)b <probe_point>

4. To generate a leak profile at the breakpoint, enter the following command:
(gdb)info leaks <filename>

Settings to Manage Performance Degradation. 51

5. To generate a snapshot heap profile at the breakpoint, enter the following command:
(gdb) info heap <filename>

Debugging in Batch Mode
In this mode, the user does not interactively issue commands in a debugger session. Instead, the
memory-debugging commands are stored in a user-specified configuration file. The configuration
file gets processed during the run of the application and at the end of the program the debugger
creates output data files for that run. It creates three separate output files for leak profile, heap
profile, and the memory corruption reports.
Batch mode memory-debugging stops the application at the end of the program when exit()
is called or when all the statically linked libraries (including librtc.[sl|so]) are unloaded.
After the application is stopped, it invokes the debugger to print the leak or heap data.
Following is the naming convention for the output files:
<file_name>.<pid>.<suffix>

Where:
<pid> is the process id and <suffix> can be either leaks, heap, or mem based on the type of
report.
For example: memtest.8494.mem

Environment Variables for Batch Memory-Debugging
This section discusses the environment variables that must be set for using the batch mode of
memory debugging.

Enabling and Disabling Batch Mode Memory-Debugging

The environment variable, BATCH_RTC, must be configured to enable and disable batch mode
memory-debugging.
Following is the syntax for enabling and disabling batch mode debugging:
export BATCH_RTC=<on/off>

Pre-loading the Appropriate Version of librtc.[sl|so] Along With the Application

The appropriate version of the librtc.[sl|so] runtime library must be preloaded to enable
batch mode and attach mode memory debugging of an application.
You can explicitly preload librtc.[sl|so] from the appropriate path by using the
LD_PRELOAD environment variable.
Alternately you canuse the+mem_check <enable|disable> option for thechatr command
to automatically preload librtc.[sl|so]. Both of thesemethods are illustrated in this section.

NOTE: The +mem_check <enable> option for the chatr command is available for dynamic
linker versions B.11.61 and later on HP 9000 systems, and dynamic linker versions B.12.46
and later on Integrity systems.

Using chatr +mem_check to Automatically Preload librtc.[sl|so]

To automatically preload librtc.[sl|so] by using the +mem_check <enable|disable>
for the chatr command, enter the following command at the HP-UX prompt:
$ chatr +mem_check <enable> <executable>

In addition to automatically loading librtc.[sl|so], the +mem_check option for the chatr
command also maps the shared libraries as private. The +mem_check option preloads
librtc.[sl|so] from the following default paths for librtc.[sl|so] :
• - For 32 bit IPF applications

52

/opt/langtools/lib/hpux32/librtc.so

• For 64 bit IPF applications,
/opt/langtools/lib/hpux64/librtc.so

• For 32 bit PA applications,
opt/langtools/lib/librtc.sl

• For 64-bit PA applications,
/opt/langtools/lib/pa20_64/librtc.sl

NOTE: To preload from a path that is different from the default paths, you must use the
LD_PRELOAD environment variable.

Using LD_PRELOAD TO Preload librtc.[sl|so]

To explicitly preload an appropriate version of librtc.[sl|so]with the application, set the
environment variable, LD_PRELOAD as follows:
• For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable> <arguments>

• For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable> <arguments>

• For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable> <arguments>

• For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable> <arguments>

NOTE: If LD_PRELOAD and chatr +mem_check are used to preload the librtc.[sl|so]
runtime library, librtc[sl|so] is loaded from the path specified by LD_PRELOAD.

Overriding the Default Location for librtc.[sl|so]

By default WDB uses the librtc.[sl|so], available at the location /opt/langtools/lib.
If the application requires the use of librtc.[sl|so] at a different location, you must set the
environment variable, LIBRTC_SERVER, to point to the location where the library is located.
Following is the syntax for setting an alternate location for librtc.[sl|so]:
export LIBRTC_SERVER=<path>

NOTE: This environmental variable is applicable for attach and interactive mode also.

Overriding the Default Path for Searching the GDB Executable

The GDB_SERVER variable enables you to override the default path from where the gdb
executable is used to debug memory problems. The default path for the gdb executable is
/opt/langtools/bin/gdb.
Following is the syntax to override the default path for the gdb executable:
export GDB_SERVER=<path>

Supported Modes of Memory-debugging in WDB 53

NOTE: Batch Mode RTC displays one of the following errors and causes the program to
temporarily hang if the version of GDB and librtc.[sl|so] do not match, or if GDB is not
available on the system:
/opt/langtools/bin/gdb: unrecognized option ‘-brtc’ Use ‘/opt/langtools/bin/gdb --help’ for a complete list of

 options.

(OR)
execl failed. Cannot print RTC info: No such file or directory

This error does not occur under normal usage where GDB or librtc.[sl|so] is used from
the default location at /opt/langtools/.... However, this error occurs if GDB_SERVER
,LIBRTC_SERVER, or both are set to a mismatched version of GDB or librtc.[sl|so]
respectively.

Configuration File for Batch Mode Debugging
You can set your preferences for batch mode memory-debugging by setting the parameters in
the configuration file. The following sections discuss the location of the configuration file and
the supported variables.

Location of the Configuration File for Batch Mode Debugging

The configuration file rtcconfig for batch mode debugging is user-defined. You must either
create the rtcconfig file in the current directory or specify the location of the configuration
file by exporting the environment variable GDBRTC_CONFIG to contain the pathname of the
configuration file (including the filename.)
The following example illustrates how to specify the path of the configuration file:
$ export GDBRTC_CONFIG=/tmp/rtcconfig

If the path to the configuration file is not specified, the debugger assumes that the rtcconfig
configuration file, by default, is located in the current working directory.

Supported Variables for Memory-Debugging in the Batch Mode Configuration File

Youmust specify the variables in the configuration file based on the commands that are required
to debug the application. Table 13 lists the variables that are supported in the configuration file.

Table 13 Supported Variables in the Batch Mode Configuration File

DescriptionCommand

Enables you to detect double-frees and frees with
improper arguments

set heap-check free <on/off>

Enables heap profilingset heap-check <on/off>

Enables you to detect leaksset heap-check leaks <on/off>

Enables validation of calls to strcpy(), strncpy(),
memcpy(), memccpy(),memset(), memmove(),
bzero(), and, bcopy()

set heap-check string <on/off>

Enables you to check for out-of-bounds corruption when
the block is freed

set heap-check bounds <on/off>

Enables you to specify the executables forwhichmemory
leak detection is enabled. If the files option is not specified
(after setting BATCH_RTC=on) , the debugger checks all
the executables.

files=<file1:file2:..fileN>

Enables you to set the number of frames to be collected
for leak or heap profiles

set heap-check frame-count <num>

54

Table 13 Supported Variables in the Batch Mode Configuration File (continued)

DescriptionCommand

Enables you to set theminimumblock size to use for heap
reporting

set heap-check min-heap-size <num>

Enables you to set theminimum block size to use for leak
reporting

set heap-check min-block-size <num>

Enables you to specify the name of the output data
directory

output_dir= <output_data_dir_path>

Enables you to scramble the blocksset heap-check scramble <on/off>

NOTE: It is incorrect to use spaces before or after the ’=’ symbol in the batchmode configuration
options in the configuration file, rtcconfig. Additionally, it is incorrect to use spaces before the
batch mode configuration options.
For example:
Correct Usage:
$ cat rtcconfig

check_leaks=on

check_heap=on

files=batchrtc4

Incorrect Usage:
$ cat rtcconfig

 check_leaks=on

check_heap = on

files=batchrtc4

Overriding the Configuration File Settings
The RTC_MALLOC_CONFIG variable enables you to override the default rtcconfig file settings.
Following is the syntax for exporting the configuration to RTC_MALLOC_CONFIG:
export RTC_MALLOC_CONFIG=config_string1[;config_strings]

The overriding settings of RTC_MALLOC_CONFIG are dependent on the global environment
variable RTC_NO_ABORT setting. RTC_NO_ABORTmust not be set if the configuration strings
must abort the execution of the programondetection of the first occurrence of bounds, double-free,
or out-of-memory conditions.
If RTC_NO_ABORT is set to 1, the program does not abort for failed checks and you can view the
logfiles for all the failed checks in a single execution run.
Table 14 lists the config_strings options that are available for RTC_MALLOC_CONFIG. The
config_strings are separated by semicolon (;).

Supported Modes of Memory-debugging in WDB 55

Table 14 The config_strings Options for RTC_MALLOC_CONFIG

Descriptionconfig_string Options

RTC_NO_ABORTmust not be set.
If abort_on_bounds is set to 1, the batch mode aborts
execution of the program and reports the bounds
condition, when bound checking fails.

abort_on_bounds=[01]

RTC_NO_ABORTmust not be set.
Ifabort_on_bad_free is set to1, the batchmode aborts
executionwhen a free(), or a realloc() call attempts
to free a heap object that is not valid.

abort_on_bad_free=[01]

RTC_NO_ABORTmust not be set.
If abort_on_nomem is set to 1, the batch mode aborts
execution when an out-of-memory condition is detected.

abort_on_nomem=[01]

The appropriate logfiles for the heap, leak, and corruption
detection are displayed on stderr. The logfiles are
directed to the specified file <filename>. Output is
appended to the file if the + option is used.

mem_logfile=stderr[+]filename

heap_logfile=stderr[+]filename

leak_logfile=stderr[+]filename

Debugging in Batch Mode
To debug an application in the batch mode, complete the following steps:
1. Compile the source files.

NOTE: On HP 9000 systems, you must map the shared libraries as private, by using the
chatr command if you are using LD_PRELOAD to preload the librtc.[sl|so] instead
of the +mem_check <enable|disable> option for the chatr command .
chatr +dbg enable ./<executable>

2. Set the required variables in the rtcconfig configuration file, as follows:
$ cat rtcconfig
"rtcconfig" 5 lines, 76 characters
set heap-check on
set heap-check free on
files=executable_name
output_dir= ./

3. Set the required environment variables as follows:
export BATCH_RTC=on

56

4. You can use the +mem_check <enable|disable> option for the chatr command to
automatically preload librtc.[sl|so] or you can explicitly preload librtc.[sl|so]
from the appropriate path by using the LD_PRELOAD environment variable.

NOTE: The +mem_check <enable> option for the chatr command is available for
dynamic linker versionsB.11.61 and later onHP 9000 systems, anddynamic linker versions
B.12.46 and later on Integrity systems.

To preload the librtc.[sl|so] runtime library, complete one of the following steps:
• To automatically preload librtc.[sl|so] by using the +mem_check

<enable|disable> for the chatr command, enter the following command at the
HP-UX prompt:
$ chatr +mem_check <enable> <executable>

NOTE: To preload from a path , which is different from the default path, you must
use the LD_PRELOAD environment variable.

• Set the environment variable, LD_PRELOAD as follows:
— For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable> <arguments>

— For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable> <arguments>

— For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable> <arguments>

— For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable> <arguments>

If LD_PRELOAD and chatr +mem_check are used to preload the
librtc.[sl|so] runtime library, librtc[sl|so] is loaded from the path
specified by LD_PRELOAD.

NOTE: If the application invokes calls such as system(3s), and popen(), which invoke
a new shell, librtc.[sl|so]must not be loaded to the invoked shell. You must use
LD_PRELOAD_ONCE, instead ofLD_PRELOAD, to exclusively load thelibrtc.[sl|so] file
to the calling process only.
Following is the syntax for using LD_PRELOAD_ONCE:
LD_PRELOAD_ONCE= /opt/langtools/lib/librtc.sl

Example 15 (page 58) illustrates the batch mode debugging of the memtest.c program. The
debugging results are stored in memtest.8494.mem, memtest.8494.heap, and
memtest.8494.leaks.

Supported Modes of Memory-debugging in WDB 57

Example 15 Batch Mode Debugging for a 32-bit Application running on Itanium

Sample Program
$ cat memtest.c
1 #include <stdlib.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 #include <signal.h>
6 void myhandler(void) {
7 exit(0);
8 }
9
10 main(int argc)
11 {
12
13 // signal(11, myhandler);
14
15 char *p[20], buffer[]="0123456789012345", *temp;
16 int i;
17
18 for (i=0; i<20; i++) {
19 p[i]=(char *)malloc(4);
20 };
21 memcpy(p[15], buffer, 12);
22 for (i=0; i<10; i++) {
23 free(p[i]);
24 };
25 free(p[9]);
26 }
27

Sample Configuration File
$ cat rtcconfig
"rtcconfig" 7 lines, 86 characters
set heap-check on
set heap-check leaks on
set heap-check free on
set heap-check string on
files=memtest
output_dir=./

Sample Debugging Session
$ cc -g -o memtest memtest.c

$ export BATCH_RTC=on

$ chatr +mem_check enable memtest
warning: Memory corruption info is written to "memtest.8494.mem".
warning: Memory leak info is written to "memtest.8494.leaks".
 Memory heap info is written to "memtest.8494.heap

$ cat memtest.8494.mem

Attempt to free unallocated or already freed object at 0x4006e7b0
(0) 0x60000000cac1bdc0 print_stack_trace_to_log_file + 0x1d0 at
 ../../../Src/gnu/gdb/infrtc.c:996
 [/opt/langtools/lib/hpux32/librtc.sl]
(1) 0x60000000cac1d3e0 __rtc_event + 0x160 at
 ../../../Src/gnu/gdb/infrtc.c:1296
 [/opt/langtools/lib/hpux32/librtc.sl]
(2) 0x60000000cac22da0 rtc_record_free + 0x380 at
 ../../../Src/gnu/gdb/infrtc.c:2651

58

 [/opt/langtools/lib/hpux32/librtc.sl]
(3) 0x60000000cac17200 __rtc_free + 0x160 at
 ../../../Src/gnu/gdb/infrtc.c:2977
 [/opt/langtools/lib/hpux32/librtc.sl]
(4) 0x0000000004000bc0 main + 0x230 at memtest.c:25[memtest]
(5) 0x60000000c0029000 main_opd_entry + 0x50[/usr/lib/hpux32/dld.so]

$ cat .//memtest.8494.leaks

40 bytes leaked in 10 blocks

No. Total bytes Blocks Address Function
0 40 10 0x4006e7d0 main()

--
 Detailed Report

--
40 bytes leaked in 10 blocks (100.00% of all bytes leaked)
These range in size from 4 to 4 bytes and are allocated
#0 main() at memtest.c:19
#1 main_opd_entry() from /usr/lib/hpux32/dld.so

--

$ cat memtest.8494.heap

40 bytes allocated in 10 blocks

No. Total bytes Blocks Address Function
0 40 10 0x4006e8f0 main()

--
 Detailed Report

--
40 bytes in 10 blocks (100.00% of all bytes allocated)
These range in size from 4 to 4 bytes and are allocated
#0 main() at memtest.c:19
#1 main_opd_entry() from /usr/lib/hpux32/dld.so

--

Supported Modes of Memory-debugging in WDB 59

Debugging Multiple Applications in Batch Mode
To debug multiple applications in the batch mode, complete the following steps:
1. Compile the source files.
2. Set the required variables in the rtcconfig configuration file, as follows:

$ cat rtcconfig
"rtcconfig" 5 lines, 83 characters
set heap-check on
set heap-check free on
files=exec1:exec2:exec3
output_dir= ./

3. Set the required environment variables as follows:
export BATCH_RTC=on

4. Complete one of the following steps to preload librtc.[sl|so]:
• Use the+mem_check option for thechatr command on each of the required executable

files that must be instrumented, as follows:
$ chatr +mem_check enable exec1 exec2 exec3

The +mem_check <enable> option for the chatr command is available for dynamic
linker versions B.11.61 and later on HP 9000 systems, and dynamic linker versions
B.12.46 and later on Integrity systems.
(Or)

• Preload librtc.[sl|so] for all the executables, as follows:
— For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so exec1 exec2 exec3

— For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so exec1 exec2 exec3

— For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl exec1 exec2 exec3

— For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl exec1 exec2 exec3

NOTE: If exec1 eventually spawns exec2, exec3, exec4, and exec5, only exec1,
exec2 and exec3 are debugged based on the settings in the rtcconfig file.

Debugging in Attach Mode
WDBcan attach to a running process and debugmemory problems.However to use the debugger
in this mode, the application must be launched after preloading the librtc.[sl|so] runtime
library.
To debug memory on attaching GDB to a running process, complete the following steps:

60

1. You can use the +mem_check <enable|disable> option for the chatr command to
automatically preload librtc.[sl|so] or you can explicitly preload librtc.[sl|so]
from the appropriate path by using the LD_PRELOAD environment variable.
To preload the librtc.[sl|so] runtime library, complete one of the following steps:
• To automatically preload librtc.[sl|so] by using the +mem_check

<enable|disable> for the chatr command, enter the following command at the
HP-UX prompt:
$ chatr +mem_check <enable> <executable>

NOTE: To preload from a path that is different from the default paths, you must use
the LD_PRELOAD environment variable.

• Set the environment variable, LD_PRELOAD as follows:
— For 32-bit applications running on Itanium,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable> <arguments>

— For 64-bit applications running on Itanium,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable> <arguments>

— For 32-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable> <arguments>

— For 64-bit applications running on PA-RISC,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable> <arguments>

If LD_PRELOAD and chatr +mem_check are used to preload the librtc.[sl|so]
runtime library, librtc[sl|so] is loaded from the path specified by LD_PRELOAD.

2. Identify the required process (using the ps command) and attach the debugger to the process
as follows.
gdb -leaks <executable-name> <process-id>

3. Insert breakpoints at suitable probe-points. When the breakpoints trigger, use the info
heap and info leaks commands to display the heap and leak profile.

NOTE: To attach and find leaks for PA-32 applications from the startup, the environment
variable RTC_INITmust be set to on in addition to preloading the librtc.[sl|so] library
before starting the application, as follows:
$ LD_PRELOAD=/opt/langtools/lib/librtc.sl RTC_INIT=on <executable>

If RTC_INIT is enabled, librtc.[sl|so] starts recording heap information for PA32 process
by default. Hence, you must set this environment variable only when it is required. You must
not export the RTC_INIT environment variable for shell.

Summary of Memory Debugging Commands
Most of the commands available in the interactive and the attach modes are also available in the
batchmode. Table 15 “CommonlyUsedCommands forMemoryDebugging”lists the commands
that are available in the batch mode and the equivalent commands in the interactive mode. It
also lists the commands that are not supported in the batch mode.

Summary of Memory Debugging Commands 61

Table 15 Commonly Used Commands for Memory Debugging

Batch ModeInteractive Mode/Attach ModeDescription

set heap-check <on/off>set heap-check <on/off>Enables heap profiling

set heap-check leaks <on/off>set heap-check leaks
<on/off>

Enables you to detect leaks.

set heap-check free <on/off>set heap-check free <on/off>Enables you to detect double-frees
and frees with improper arguments

set heap-check scramble
<on/off>

set heap-check scramble
<on/off>

Enables you to scramble blocks.

set heap-check bounds
<on/off>

set heap-check bounds
<on/off>

Enables you to check for
out-of-bounds corruption when the
block is freed.

set heap-check string
<on/off>

set heap-check string
<on/off>

Enables validation of calls to
strcpy(), strncpy(), memcpy(),
memccpy(),memset(),memmove(),
bzero(), and, bcopy()

set heap-check frame-count
<num>

set heap-check frame-count
<num>

Enables you to set the number of
frames to be printed for leak andheap
profiles.

set heap-check min-heap-size
<num>

set heap-check min-heap-size
<num>

Enables you to set the minimum
block size to report in heap profiles.

set heap-check min-leak-size
<num>

set heap-check min-leak-size
<num>

Enables you to set the minimum
block size to use for leak detection.

Not supported in Batch Modeset heap-check watch addressStops program execution when the
block at the given address is allocated
or de-allocated

Not supported in Batch Modeinfo corruptionChecks for corruption in the currently
allocated heap blocks

Not supported in Batch Modeset heap-check null-check
<num>

Forces malloc() to return NULL
after <N> invocations of malloc()

Not supported in Batch Modeset heap-check
null-check-size <size>

Forces malloc() to return NULL
after <N> bytes are allocated by the
program

Not supported in Batch Modecatch nomemEnables the user to gain control over
an out-of-memory event. The user can
step through program execution after
the nomem event is detected.

Not supported in Batch Modeset heap-check seed-value
<num>

Defines the seed-value for random
number calculation for the set
heap-check null-check random
command

Not supported in Batch Modeset heap-check random-range
<num>

Forces malloc() to return NULL
after random number of invocations
of malloc()

Not supported in Batch Modeset heap-check resetThis command resets the data existing
in the file for incremental profiling
and creates a new data file. The old
data in the file is erased.

62

Table 15 Commonly Used Commands for Memory Debugging (continued)

Batch ModeInteractive Mode/Attach ModeDescription

Not supported in Batch Modeset heap-check interval
<num>

Starts the incremental heap growth
profile. All allocations prior to the
execution of this command are
ignored. If incremental heap growth
profile is already on, executing this
command resets the counters and
starts a fresh collection. The interval
is specified in seconds.

Not supported in Batch Modeset heap-check repeat <num>Enables you to specify the number of
intervals forwhichWDBmust collect
the incremental heap growth. The
default value is 100. Every repeat of
the interval tracks heap allocation
during that interval.

Not supported in Batch Modeinfo heap intervalCreates a detailed report of the heap
growth. The data for each interval has
the start and end time of the interval.

Not supported in Batch Modeset heap-check
high-mem-count <X_number>

Stops when break value has moved
<X_number> times

Not supported in Batch Modeinfo heap high-memDisplays the number of times break
value changes for a given run

Not supported in Batch Modeinfo heap <process|arenas>Displays the high level
memory-usage of a process or an
arena. Lists the number of free blocks,
used blocks, small blocks, holding
blocks, node blocks and regular
blocks.

Debugging Memory Using WDB GUI
TheWDBGUI is a Graphical User Interface (GUI) designed by Hewlett-Packard forWDB. It can
be used to debug native-compiled HP C, HP aC++, and Fortran programs on Itanium-based
systems running HP-UX 11i v2 or HP-UX 11i v3, and PA-RISC systems running HP-UX 11.0,
HP-UX 11i v1, HP-UX 11i v2, or HP-UX 11i v3.
TheWDBGUI offers the following capabilities to debugmemory–related errors in an application
• Detects corruption caused by calls to strcpy(), memset(), and memcopy()
• Stops program-execution at free of an unallocated or de-allocated block address
• Stops program-executionwhen block is freed if badwrites occur before or after block bounds
• Scrambles previous memory contents on malloc() or free() calls
• Stops if the following block address is allocated or de-allocated
• Stops program execution when an allocation causes heap growth exceeding <num> bytes
• Collects memory leak data (equivalent to info leak) andmemory-usage (equivalent to info

heap) data
WDBGUI supports both interactive and attachmode ofmemory-debugging. It does not support
the batch mode debugging of applications.
The source window in the WDB GUI displays the source code. The command window displays
the output after debugging the application. It also enables you to use the command-line interface
in WDB. The command window can be used to take advantage of memory-debugging features
that are not directly supported in the GUI.

Debugging Memory Using WDB GUI 63

Using WDB GUI to Debug Memory-Related Problems
To debug an application for memory problems using WDB GUI, complete the following steps:
1. Load the program to WDB as follows:

• Select File —> Load Program in the WDB GUI window.
• In the Load Program dialog-box, enter the executable name to load the executable or

use the PID to attach a process for debugging.
2. After you load the application, you can set the memory checking preferences by setting the

preferences in the Memory Checking window. Select Tools —>Memory Checking to
activate the Memory Checking window.

3. To set a break-point using WDB GUI, click the rectangular selection strip adjacent to the
specific program line-number in the source window. When the breakpoint is set, a red
octagonal button appears at the specified probe-point. Alternatively, you can set breakpoints
by selectingEdit —>Breakpoints and specifying the breakpoints in theBreakpointswindow.

4. Run the application.WDBGUI nowgives you the leaks usage,memory-usage and the results
of memory checking at the specified break-points.

Heap and Leak Profiling Using WDB GUI
In order to view the heap report and leak reports while debugging the application, select the
Memory Usage tab in the commandwindow. On selecting theMemory Usage tab, theMemory
Leaks and Memory Usage options are displayed.
To view the leak report, select the Memory Leaks option. The stack-unwind information for
each leak can be obtained by expanding the enhanced array browser for each leak.
To see a heap report, select the Memory Usage option. The stack-unwind information can be
obtained by expanding the enhanced array browser for each block of the heap.

Incremental Heap Profiling Using WDB GUI
HPWDB GUI provides support to view the incremental heap profile for a program.
To view the incremental heap profile for a program, complete the following steps:
1. Load the program to WDB GUI.
2. Select Tools->Memory Check
3. Select the Incremental Heap Check Settings option while setting the memory debugging

preferences in the Memory Check window.
4. EnterHeap Check Interval andHeap Check Repeat Count in theMemory Checkwindow.
5. Run the program after setting the required breakpoints.
6. Select View->Memory Usage->Incremental Heap to view the incremental heap profile.
7. The Incremental Heap View window displays the incremental heap profile graph for the

program
The incremental heap profile graph can be plotted based on the outstanding allocations in
the program or the actual heap profile, as follows:
• To view the incremental heap profile graph based on the outstanding allocations, select

the Allocation option in the Plot Graph frame. The Allocation Profile displays the
outstanding allocations (in KB) in the program with a unique color coding for each
interval.

• To view the incremental heap profile graph based on the actual heap profile, select the
Actual Heap option in the Plot Graph frame. The Heap Space Profile displays the
heap size in KB for the program.

To specify the time interval for displaying the incremental heap profile, you must select the
Select Time option and specify the start time and the end time from the Start Time list

64

menu and the End Time list menu. The listings for time in the Start Time list menu and the
End Time list menu are calculated by dividing the total program execution time into five
equal intervals. Additionally, you can enter a custom start time, or a custom end time for
displaying the incremental heap profile.
To view the incremental heap profile summary, click Summary Table. The summary table
displays the record ID, the start time, the end time, the heap interval, the heap start, the
heap end, the heap size in bytes, the number of allocated bytes, and the number of blocks
used for all the collected incremental heap profile records. Click on the required incremental
heap profile record to view the block allocation details for the corresponding record.

Arena Profiling Using WDB GUI
HPWDBGUI 5.7 and later versions provide support to view the arena information for a program
running on HP-UX 11i v3.
To view the arena information, complete the following steps:
1. Load the program to HP WDB GUI.
2. Stop the program execution at the required breakpoints.
3. Select View->Memory Usage->Heap Arena to view the arena information. The arena

information is displayed in the View Heap Arena window.
The following information is displayed in the View Heap Arena window:
• Arenas

The Arena IDs are listed in the Arenas list menu. Select the required Arena ID from the
Arenas list menu to view Arena ID Summary, or Block Details for the selected arena.

• Arena ID Summary

The summary information for the selected Arena ID is displayed in the Arena ID Summary
frame.

• Block Details

To view the block level details in an arena, select Block Details after selecting the required
Arena ID in the Arenas list menu. The block distribution in the arena is displayed in the
Arenas Block Distribution window.
The Arenas Block Distribution window displays the block level space distribution graph
for an arena. The graph displays the space occupied by the user blocks, the free blocks, the
unclaimed space, and the mallocmetadata (which includes the node blocks, the cached
blocks, the holding header blocks, and the holding SBA blocks). The virtual address of the
blocks is used to arrange the blocks in the graph. The Block ID of the block is also displayed
within the block if the scale of the graph supports the display. The start of the heap, the end
of the heap, the total heap size, and the total number of blocks are also listed.
WDBGUI displays the block distribution graph in the defaultwindow. If the complete block
distribution graph cannot be displayed in the default window, you must select the Expand
Block Distribution Graph toggle option to view the magnified block distribution graph.
To view the Block ID, the block type, the block size, and the virtual address for each block
in the arena, youmust click on the required block in the block distribution graph. The number
of used blocks in each block-count range is also displayed graphically for the selected arena.
This information is also displayed in a tabular format.

• Heap Arena Space Usage

The Heap Arena Space Usage frame displays the Arena ID, the space usage (in KB) in the
arena, and the percentage space usage in each arena in comparison to the total space occupied
by all the arenas. The comparative space usage across arenas is also displayed in a pie chart.
The Arena ID is also displayed in the pie chart if the scale of the graph supports it.

Debugging Memory Using WDB GUI 65

• Full Summary

To view the summary for all the arenas, click Full Summary. The summary information for
all the arenas is displayed in the Arena Summary window.

• Heap Arena Detailed Graphs

The Heap Arena Detailed Graphs display the following information:
The byte distribution (in KB) across the used ordinary blocks, the used small blocks, the free
ordinary blocks, and the free small blocks is displayed for each arena. This information is
displayed as a bar graph for each arena.
The byte distribution for the used ordinary blocks, the used small blocks, the free ordinary
blocks, and the free small blocks across the arenas is displayed in a pie chart. This information
is also displayed in a table.
The number of blocks that are distributed across the used ordinary blocks, the used small
blocks, the free ordinary blocks, and the free small blocks are displayed for each arena. This
information is displayed as a bar graph for each arena.
The number of blocks occupied by the used ordinary blocks, the used small blocks, the free
ordinary blocks, and the free small blocks across the arenas are displayed in a pie chart. This
information is also displayed in a table.

Conclusion
Memory-related errors are some of the most difficult programming errors to detect and debug.
Debugging memory-related errors is difficult without the help of an effective memory analysis
tool. WDB enables you to debug memory leaks and heap-related errors in an application
In addition to pluggingmemory leaks in your application, it is also important to track thememory
utilization in your application. WDB provides capabilities such as heap profiling and error
injection to analyze thememory-usage of your application. The heap profile displays information
about the allocated memory, the calling function, and it also displays the allocating call stack.

Additional Examples
Example 16 to Example 21 illustrate howWDB detects memory leaks and heap-errors caused
by different types of programming errors.

66

Example 16 Detecting a double free error

Sample Program
$ cat double-free.c
#include<stdio.h>
1
2 int main()
3 {
4
5 printf("Starting program\n");
6 char* han = (char*)malloc(sizeof(char));
7 free(han);
8 printf("Now freeing a pointer twice...\n");
9 free(han);
10 }

Sample Debugging Session
(gdb) set heap-check free on
(gdb) file double-free
Reading symbols from double-free...done.
(gdb) b main
Breakpoint 1 at 0x2be4: file double-free.c,
 line 5 from double-free.
(gdb) r
Starting program: /double-free

Breakpoint 1, main () at double-free.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
6 char* han = (char*)malloc(sizeof(char));
(gdb)
7 free(han);
(gdb)
8 printf("Now freeing a pointer twice...\n");
(gdb)
Now freeing a pointer twice...
9 free(han);
(gdb)
warning: Attempt to free unallocated or already freed
 object at 0x4042c3e0
0x70e78d7c in __rtc_event+0 ()
 from /opt/langtools/lib/librtc.sl

Additional Examples 67

Example 17 Detecting de-allocation of memory that has not been initialized

Sample Program
$ cat unalloc.c
1 #include<stdio.h>
2
3 int main() {
4
5 printf("Starting program\n");
6 char* han;
7 free(han);
8 }

Sample Debugging Session
gdb) set heap-check on
(gdb) file unalloc
Reading symbols from unalloc...done.
(gdb) b main
Breakpoint 1 at 0x2bb4: file unalloc.c, line 5 from unalloc.
(gdb) r
Starting program: unalloc

Breakpoint 1, main () at unalloc.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
7 free(han);
(gdb)
warning: Attempt to free unallocated or already freed
 object at 0x70fee070
0x70e78d7c in __rtc_event+0 ()
 from /opt/langtools/lib/librtc.sl

68

Example 18 Detecting de-allocation of un-allocated blocks

Sample Program
$ cat unit.c
1 #include<stdio.h>
2
3 int main() {
4
5 printf("Starting program\n");
6 int *han = (int*)malloc(sizeof(int));
7 han++;
8 free(han);
9 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file uninit
Reading symbols from uninit...done.
(gdb) b main
Breakpoint 1 at 0x2bdc: file uninit.c, line 5 from uninit.
(gdb) r
Starting program: uninit

Breakpoint 1, main () at uninit.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
6 int *han = (int*)malloc(sizeof(int));
(gdb)
7 han++;
(gdb)
8 free(han);
(gdb)
warning: Attempt to free unallocated or already freed
 object at 0x4042c3e4
0x70e78d7c in __rtc_event+0 () from /opt/langtools/lib/librtc.sl

Additional Examples 69

Example 19 Detecting memory leaks that are caused when an application overwrites a pointer
that currently addresses a block of memory with another address or data

Sample Program
$ cat memleak1.c
1 #include<stdio.h>
2
3 int main() {
4
5 printf("Starting program\n");
6 int* han1 = (int*)malloc(sizeof(int));
7 int* han2 = (int*)malloc(sizeof(int));
8 han1 = han2;
9 free(han1);
10 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file memleak1
Reading symbols from memleak1...done.
(gdb) b main
Breakpoint 1 at 0x2bdc: file memleak1.c, line 5 from memleak1.
(gdb) r
Starting program: memleak1

Breakpoint 1, main () at memleak1.c:5
5 printf("Starting program\n");
(gdb) n
Starting program
6 int* han1 = (int*)malloc(sizeof(int));
(gdb)
7 int* han2 = (int*)malloc(sizeof(int));
(gdb)
8 han1 = han2;
(gdb)
9 free(han1);
(gdb)
10 }
(gdb) info leak
Scanning for memory leaks...

4 bytes leaked in 1 blocks

No. Total bytes Blocks Address Function
0 4 1 0x4042c3e0 main()
(gdb) info leak 0
4 bytes leaked at 0x4042c3e0 (100.00% of all bytes leaked)
#0 main() at memleak1.c:6
#1 _start() from /usr/lib/libc.2
#2 _start() from /opt/langtools/lib/librtc.sl
#3 $START$() from

70

Example 20 Detecting memory leaks that are caused when a pointer variable in an application
addresses memory that is out of the scope of the application

Sample Program
$ cat memleak2.c
1 #include<stdio.h>
2
3 void func1(int* ptr1)
4 {
5 ptr1 = (int*)malloc(5*sizeof(int));
6 }
7
8 void func2(int** ptr)
9 {
10 func1(*ptr);
11 }
12 int main()
13
14 {
15 printf("Starting program\n");
16 int* han1;
17 func2(&han1);
18 printf("End of the program\n");
19 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file memleak2
Reading symbols from memleak2...done.
(gdb) b 19
Breakpoint 1 at 0x2c4c: file memleak2.c, line 19 from memleak2.
(gdb) r
Starting program: memleak2
Starting program
End of the program

Breakpoint 1, main () at memleak2.c:19
19 }
(gdb) info leak
Scanning for memory leaks...

20 bytes leaked in 1 blocks

No. Total bytes Blocks Address Function
0 20 1 0x4042c3d8 func1()
(gdb) info leak 0
20 bytes leaked at 0x4042c3d8 (100.00% of all bytes leaked)
#0 func1() at memleak2.c:5
#1 func2() at memleak2.c:10
#2 main() at memleak2.c:17
#3 _start() from /usr/lib/libc.2

Additional Examples 71

Example 21 Detecting memory leaks when you free a structure or an array that has pointers
which are not freed.

Sample Program
$ cat memleak3.c
1 #include<stdio.h>
2
3 struct stud
4 {
5 char* name;
6 int id;
7 };
8
9 int main() {
10
11 struct stud *s1;
12 s1 = (struct stud*)malloc(sizeof(struct stud));
13 s1->name = (char*)malloc(50);
14 strcpy(s1,"Annie");
15 s1->id=10;
16 free(s1);
17 }

Sample Debugging Session
(gdb) set heap-check on
(gdb) file memleak3
Reading symbols from memleak3...done.
(gdb) b 17
Breakpoint 1 at 0x2c3c: file memleak3.c, line 17 from memleak3.
(gdb) r
Starting program:memleak3
Breakpoint 1, main () at memleak3.c:17
17 }
(gdb) info leak
Scanning for memory leaks...
50 bytes leaked in 1 blocks
No. Total bytes Blocks Address Function
0 50 1 0x4042a3e0 main()
(gdb) info leak 0
50 bytes leaked at 0x4042a3e0 (100.00% of all bytes leaked)
#0 main() at memleak3.c:13
#1 _start() from /usr/lib/libc.2
#2 _start() from /opt/langtools/lib/librtc.sl
#3 $START$() from usr/lib/libc.2

72

Example 22 Work-Around when program execution is in a frame that belongs to the GDB internal
leak detection library

...
(gdb) set heap-check on
(gdb) r
Starting program: corruption
warning: Memory block (size = 80 address = 0x40453970) appears to be corrupted at the end.
Allocation context not found

#1 main() at corruption.c:4
#2 main_opd_entry() from
warning: Use command backtrace (bt) to see the current context.

Ignore top 4 frames belonging to leak detection library of gdb.

__rtc_event () at ../../../Src/gnu/gdb/infrtc.c:1173
warning: Source file is more recent than library library librtc.so.

1173 */
(gdb) bt
#0 __rtc_event () at ../../../Src/gnu/gdb/infrtc.c:1173
#1 0x200000007d0fbd40:0 in check_bounds (pointer=0x40453970, size=80,
 pclist=0x404309e4) at ../../../Src/gnu/gdb/infrtc.c:1278
#2 0x200000007d100f50:0 in rtc_record_free ()
 at ../../../Src/gnu/gdb/infrtc.c:2261
#3 0x200000007d1025a0:0 in free () at
../../../Src/gnu/gdb/infrtc.c:2575
#4 0x4000950:0 in main () at corruption.c:10
(gdb) info corruption
Analyzing heap ...

Current thread is inside the allocator. Try again later.

(gdb) frame 3
#3 0x200000007d1025a0:0 in free () at
../../../Src/gnu/gdb/infrtc.c:2575
2575 __rtc_event (RTC_HEAP_GROWTH, pointer,0,0);
(gdb) finish
Run till exit from #3 0x200000007d1025a0:0 in free ()
 at ../../../Src/gnu/gdb/infrtc.c:2575
0x4000950:0 in main () at corruption.c:10
10 free (x);
(gdb) info corruption
Analyzing heap ...

Additional Examples 73

FAQ
1 Does WDB report all the leaks in a program?

WDBuses a conservative leak detection algorithm. As a result, all leaksmay not be reported,
but all reported leaks are definite leaks. WDB reports leaks only in the code path exercised
in the current run.

2 I wrote a small sample program that allocates a block using malloc() and leaks the block
immediately, by assigning NULL to the pointer, butWDB does not report this block as a leak.
Why?
This is attributed to the leak detection algorithm followed by WDB. If the datum in the
program address spacemasks a leak, the leak is not reported. In this case the address returned
from malloc() is stored in the architecture registers and consequently masks the leak.
Typically, if you call any function after the leak, such as a printf(), then WDB can catch
the leak.

3 Does WDB support detection of leaks in a third party code?
Yes. WDB supports detection of leaks in a third party code also.

4 What are the commands that the batch mode of memory-debugging does not support?
For more information on the commands that are supported in batch mode, see “Summary
of Memory Debugging Commands ” (page 61)

5 Can WDB debug applications with user-defined memory management routines?
WDB can debug applicationswithmemorymanagement routines that are either user defined
or are wrappers to the default memory management routines.

NOTE:
• This feature is not supported in the batch and the attach modes of debugging.
• In interactive mode, this feature will result in calls to the user defined memory

management routines being re-routed to default memory management routines.

6 Which version of WDB supports debugging of applications with custom allocators?
WDB 5.5 and above versions support the debugging of applications with custom allocators.

7 Does WDB report the exact instant when the block becomes a leak?
No. WDB does not provide information on when the leak occurred. It reports only the
allocation stack trace of the leaked block and does not report the stack trace where the block
leaked.

8 Does WDB support debugging of C++ applications with calls to new() and delete()?
Yes. WDB supports debugging of C++ applications with new() and delete() calls only if
they internally call malloc() and free().

9 Does WDB support memory-debugging of long running applications?
Yes. WDB supports debugging of long running applications such as daemons. However, the
daemonsmust be startedwith an explicit LD_PRELOAD of the correct version (32-bit or 64-bit)
of librtc.[sl|so], so thatWDB can debugmemorywhen it later attaches to the daemon
process.

10 What is the work-around when the following message is displayed, when attempting to
view the leak report with the info leaks command?
(gdb) info leaks
Current thread is blocked. Cannot detect leaks now.

You can switch execution to a thread, which is not blocked. To switch execution to a different
thread, enter the following command at the gdb prompt:
(gdb)thread <thread-id>

11 Does the debugger find leaks in the executable from the startup of the application when
debugging the application in attach mode?

74

In the case of Itanium binaries, and PA—RISC 64–bit binaries, the debugger finds leaks in
the executable from the startup of the executable by default, when debugging in attachmode.
However, to find leaks in the executable from the startup of PA-RISC 32–bit binaries in the
attachmode, the environment variable RTC_INITmust be set to on in addition to preloading
the librtc.[sl|so] library before starting the application, as follows:
$ LD_PRELOAD=/opt/langtools/lib/librtc.sl RTC_INIT=on <executable>

If RTC_INIT is enabled, librtc.[sl|so] starts recording heap information for PA–RISC
32–bit process by default. Hence, youmust set this environment variable onlywhenmemory
debugging is required from the startup of the program

12 When attempting to view the leak report, the following error occurs:
(gdb) info leaks
Scanning for memory leaks...

Error downloading data !
(gdb)

What is the cause for this error and what is the work-around?

This errormessage is displayedwhen you attempt to view the heap profile or the leak profile
of a debugged process, which is exiting or has exited program execution. As a work-around,
you can place a breakpoint before the program exits and then enter the info leaks
command or the info heap command.

13 What is the work-around if the following error message is displayed while debugging
memory?
(gdb) info corruption
Current thread is inside the allocator. Try again later.

This error message signifies that the program execution is in a frame that belongs to a GDB
internal leak detection library.When this error is encountered, it is not safe to enter commands
that involve calls to the leak detection library procedures. The user must set the frame to the
last leak detection library frame and enter the finish command before resuming to debug
memory.
Example 22 (page 73) illustrates the use of the finish to resume memory debugging when
the program execution is in a frame that belongs to the GDB internal leak detection library.

Index
A
Access Errors, 13
Attach Mode, 60

B
Batch Mode , 52
Batch Mode Configuration File, 54
BATCH_RTC, 52

C
catch nomem , 28

D
Debugging Memory Using WDB GUI, 63

E
Environment Variables for Batch Mode , 52
Error Injection, 28
Event Monitoring, 35

FAQ 75

H
Heap Corruption, 11
Heap Profiling, 15

I
Incremental Heap Profiling, 18
info corruption, 47
info heap <filename>, 15
info heap arenas, 21
info heap high-mem , 39
info heap process, 21
info heap-interval <filename>, 18
info leaks, 26
Intended Audience, 9
Interactive Mode , 51
Interactive, Batch and Attach Mode , 51

L
LD_PRELOAD, 52
Leak Profiling, 26

M
Memory Leaks, 12
Memory Related Errors, 11
min-heap-size, 15
Monitoring Heap Events, 35

P
Prerequisites for Memory Debugging, 11

R
RTC_MALLOC_CONFIG, 55

S
set heap-check block-size <num-bytes> , 37
set heap-check bounds <on/off>, 44
set heap-check frame-count <num>, 51
set heap-check free <on/off>, 42
set heap-check heap-size <num-bytes> , 38
set heap-check high-mem-count <X_number>, 39
set heap-check interval, 18
set heap-check leaks <on/off>, 26
set heap-check min-leak-size <num>, 51
set heap-check null-check <N>, 28
set heap-check null-check null-check-size <N>, 28
set heap-check on, 14
set heap-check random-range <N>, 28
set heap-check repeat <nn>, 18
set heap-check reset, 18
set heap-check scramble <on/off>, 50
set heap-check string <on/off>, 42
set heap-check watch <address>, 35
show heap-check, 14
Summary of Commands, 61

W
WDB, 9
WDB Documentation, 10

76 Index

	Debugging Dynamic Memory Usage Errors Using HP WDB
	Table of Contents
	Introduction
	Intended Audience
	Typographic Conventions
	Related Information
	Prerequisites
	Memory-Related Errors
	Heap Corruption
	Causes for Heap Corruption

	Memory Leaks
	When to Suspect a Memory Leak?
	Types of Memory Leaks

	Access Errors

	Using WDB to Debug Memory Problems
	HP aC++/ HP C Compiler Runtime Checking Options

	Memory-Debugging Features of WDB
	Heap Profiling
	Snapshot Profile
	Incremental Heap Profile
	Arena Profile
	Analyzing the info heap process output
	Analyzing the info heap arenas output

	Leak Profiling
	Error Injection
	Event Monitoring
	Monitoring Heap Events
	Monitoring a Specific Address
	Monitoring Allocations Greater Than a Specified size
	Monitoring the Program Heap Growth.
	Monitoring Changes in Data Segment Space Allocation (High Water Mark Feature)
	Monitoring De-allocations to Detect Double-Frees

	Monitoring Heap Corruption
	Monitoring String Corruption
	Detecting Out-of-Bounds Writes with the Bounds-Checking Feature
	Detecting Heap Corruption
	Scrambling a Heap Block

	Settings to Manage Performance Degradation.
	Supported Modes of Memory-debugging in WDB
	Debugging in the Interactive Mode
	Debugging in Batch Mode
	Environment Variables for Batch Memory-Debugging
	Enabling and Disabling Batch Mode Memory-Debugging
	Pre-loading the Appropriate Version of librtc.[sl|so] Along With the Application
	Using chatr +mem_check to Automatically Preload librtc.[sl|so]
	Using LD_PRELOAD TO Preload librtc.[sl|so]

	Overriding the Default Location for librtc.[sl|so]
	Overriding the Default Path for Searching the GDB Executable

	Configuration File for Batch Mode Debugging
	Location of the Configuration File for Batch Mode Debugging
	Supported Variables for Memory-Debugging in the Batch Mode Configuration File

	Overriding the Configuration File Settings
	Debugging in Batch Mode
	Debugging Multiple Applications in Batch Mode

	Debugging in Attach Mode

	Summary of Memory Debugging Commands
	Debugging Memory Using WDB GUI
	Using WDB GUI to Debug Memory-Related Problems
	Heap and Leak Profiling Using WDB GUI
	Incremental Heap Profiling Using WDB GUI

	Arena Profiling Using WDB GUI

	Conclusion
	Additional Examples
	FAQ
	Index

