
HP C/HP-UX Reference Manual

Version A.06.05

Edition 5
Manufacturing Part Number: B3901-90020

Septeember 2005

Printed in the U.S.A.

© Copyright 2003-2004. Hewlett-Packard Development Company L.P..

Legal Notices
Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group.
ii

Contents
1. What is HP C?
ANSI Mode . 2
Compatibility Mode . 3
About HP C/HP-UX . 4
HP C Online Help . 5

Prerequisites for using HP C Online Help . 5
Accessing HP C Online Help . 6

2. Program Organization
Lexical Elements . 8

White Space, Newlines, and Continuation Lines . 8
Spreading Source Code Across Multiple Lines . 8
Comments . 9
Identifiers . 9

Legal Identifiers . 10
Illegal Identifiers . 10
Length of Identifiers . 10
Case Sensitivity in Identifiers . 10
Predefined identifier _func_ . 11

Keywords . 11
auto . 12
break . 12
case . 13
char . 13
const . 13
continue . 13
default . 13
do . 14
double . 14
else . 14
enum . 14
extern . 14
float . 14
for . 14
goto. 15
if . 15
iii

Contents
int . 15
long . 15
register . 15
return . 15
short . 15
signed . 15
sizeof . 16
static . 16
struct . 16
switch . 16
__thread . 16
typedef . 17
union . 17
unsigned . 17
void. 18
volatile . 18
while. 18

Declarations . 18
Typedef Declarations . 19
Abstract Global Types . 19
Improving Portability . 20
Simplifying Complex Declarations . 20
Using typedefs for Arrays . 21
Name Spaces . 21

Structure, Union, and Enum Names . 22
Macro Names . 23

Declarations within code . 23
Constants . 24

Integer Constants . 24
Examples of Integer Constants . 25

Floating-Point Constants . 25
Scientific Notation . 26
Examples of Floating-Point Constants . 26

Character Constants . 27
Escape Sequences . 27
Multi-Character Constants . 28
iv

Contents
String Constants . 28
Structuring a C Program . 30

3. Data Types and Declarations
Program Structure . 34

Syntax . 34
Description . 34

Declarations . 35
Syntax . 35
Description . 35
New Declaration Features . 36

Caveats . 36
Example . 36

Examples . 37
Storage-Class Specifiers . 38

Syntax . 38
Description . 38

Type Specifiers . 40
Syntax . 40
Description . 40

_Bool . 42
New Header file . 42
Usage of _Bool . 42
Rules for _Bool Conversion. 43

Scalar to _Bool . 43
_Bool to scalar . 43

HP-Specific Type Qualifiers . 44
Syntax . 44
Description . 44

Type Qualifiers . 45
Syntax . 45
Description . 45

Structure and Union Specifiers . 48
Syntax . 48
Description . 48
Structure and Union Tags . 49
v

Contents
Enumeration . 52
Syntax . 52
Description . 52
Examples . 53
Sized enum - HP C Extension . 53

Declarators . 54
Syntax . 54
Description . 55
Pointer Declarators . 55
Array Declarators . 56
Variable Length Array . 57
Function Declarators . 58

Type Names . 60
Syntax . 60
Description . 60
Examples . 60

Type Definitions Using typedef . 61
Syntax . 61
Description . 61
Example . 62

Initialization . 63
Syntax . 63
Description . 63
Examples . 65

Compound Literal . 67
Examples . 67

Function Definitions . 70
Syntax . 70
Description . 70
Examples . 72
inline . 73

Examples . 73
Four-Byte Extended UNIX Code (EUC) . 74

4. Type Conversions
Integral Promotions . 76
vi

Contents
Usual Arithmetic Conversions . 78
Arithmetic Conversions . 80

Integral Conversions . 80
Floating Conversions . 81
Arrays, Pointers, and Functions . 81

5. Expressions and Operators
Arithmetic Operators (+, -, *, /, %) . 84

Syntax . 84
Arguments . 84
Description . 84

Array Subscripting ([]) . 86
Syntax . 86
Description . 86

Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=) 87
Syntax . 87
Arguments . 87
Description . 87

The Assignment Operator (=) . 87
The Other Assignment Operators . 88
Assignment Type Conversions . 89

Example . 92
Bit Operators (<<, >>, &, ^, |, ~) . 93

Syntax . 93
Arguments . 93
Description . 93

Bit-Shift Operators . 93
Bit Logical Operators . 94

Cast Operator . 98
Syntax . 98
Arguments. 98
Description . 98

Casting Integers to Other Integers . 99
Casting Enumerated Values to Integers . 101
Casting Double to Float and Vice Versa . 101
Casting Pointers to Pointers . 101
vii

Contents
Comma Operator (,) . 103
Syntax . 103
Arguments . 103
Description . 103

Conditional Expression Operator (?:) . 104
Syntax . 104
Arguments . 104
Description . 104
Example . 105

Function Calls . 106
Syntax . 106
Description . 106

Function Arguments . 106
Function Formal Parameters . 107
Function Recursion . 108

Increment and Decrement Operators
(++, --) . 109

Syntax . 109
Arguments. 109
Description . 109

Postfix and Prefix Forms . 109
Examples . 111

Logical Operators (&&, ||, !) . 113
Syntax . 113
Arguments . 113
Description . 113

Truth Table for C's Logical Operators . 114
Examples of Expressions Using the Logical Operators . 114
Side Effects in Logical Expressions . 115

Example . 116
Pointer Operators (*, ->, &) . 118

Syntax . 118
Description . 118

Assigning an Address Value to a Pointer . 118
Dereferencing a Pointer . 119
Pointer Arithmetic . 121
viii

Contents
Arrays and Pointers . 122
Casting a Pointer's Type . 122
Null Pointers . 123

Relational Operators (>, >=, <, ==, !=) . 126
Syntax . 126
Arguments . 126
Description . 126

Confusing = with == . 126
Relational Operators Precedence Rules . 127
Evaluation of Relational Expressions . 128
Dangers of Comparing Floating-Point Values . 129

sizeof Operator . 131
Syntax . 131
Arguments . 131
Description . 131

Example . 132
Structure and Union Members (., ->) . 134

Syntax . 134
Description . 134

Operator Precedence . 135
Precedence among Operators of Same Class . 136

Operator Quick Reference . 137
Constant Expressions . 139
Integral Expressions . 140
Floating-Point Expressions . 141
lvalue Expressions . 142
Pointer Expressions . 143
Evaluation of Expressions . 144

Examples . 144
Evaluation Order of Subexpressions . 145

6. Statements
Branch Statements . 148

Syntax . 148
Description . 148
Examples . 148
ix

Contents
Compound Statement or Block . 150
Syntax . 150
Description . 150
Example . 150

Expression and Null Statements . 151
Syntax . 151
Description . 151
Example . 151

Labeled Statements . 152
Syntax . 152
Description . 152
Example . 152

Looping Statements . 153
Syntax . 153
Description . 153
Examples . 153

Selection Statements . 155
Syntax . 155
Description . 155
Examples . 155

break . 156
Syntax . 156
Description . 156
Example . 156

continue . 157
Syntax . 157
Description . 157
Example . 157

do…while . 159
Syntax . 159
Arguments . 159
Description . 159
Example . 159

for . 161
Syntax . 161
Arguments . 161
x

Contents
Description . 161
How the for Loop is Executed . 161
for Loop Processing . 162
for versus while Loops. 162

Example . 162
goto . 166

Syntax . 166
Arguments . 166
Description . 166
Example . 166

if . 169
Syntax . 169
Arguments . 169
Description . 169

Example 1 . 169
Example 2 . 170
Using Braces in Compound if Statements . 170
The Dangling else . 171

Example. 171
return . 174

Syntax . 174
Arguments . 174
Description . 174

Return Types . 174
Pointer Return Types . 175

Example. 176
switch . 178

Syntax . 178
Arguments . 178
Description . 178

Evaluation of switch Statement . 179
Associating Statements with Multiple case Values . 180

Example . 180
while . 182

Syntax . 182
Arguments . 182
xi

Contents
Description . 182
Example . 182

7. Preprocessing Directives
Overview of the Preprocessor . 186
Source File Inclusion (#include) . 188

Syntax . 188
Description . 188
Examples . 188

Macro Replacement (#define, #undef). 190
Syntax . 190
Description . 190

Predefined Macros . 194
Conditional Compilation (#if, #ifdef, ..#endif) . 195

Syntax . 195
Description . 195
Examples . 197

Line Control (#line) . 198
Syntax . 198
Description . 198
Example . 198

Pragma Directive (#pragma) . 199
Syntax . 199
Description . 199
Example . 199

_Pragma . 200
Examples . 200

Error Directive (#error) . 202
Syntax . 202
Examples . 202

Trigraph Sequences . 203
-notrigraph Option . 203

8. C Library Functions
xii

Contents
9. Compiling and Running HP C Programs
Compiling HP C Programs . 208

The cc(1) Command . 208
Specifying Files to the cc Command . 208
Specifying Options to the cc Command . 209

An Example of Using a Compiler Option . 209
Concatenating Options . 209

HP C Compiler Options . 210
Examples of Compiler Commands . 220
Environment Variables . 222

CCOPTS Environment Variable . 222
CCROOTDIR Environment Variable . 223
TMPDIR Environment Variable . 223
aCC_MAXERR Environment Variable. 224

SDK/XDK . 224
Setting SDKROOT Environment Variable . 224
Setting TARGETROOT Environment Variable. 225

Pragmas . 226
Initialization and Termination Pragmas. 226

INIT Pragma . 226
FINI Pragma . 227

Copyright Notice and Identification Pragmas . 227
COPYRIGHT Pragma . 227
COPYRIGHT_DATE Pragma . 227
LOCALITY Pragma . 227
VERSIONID Pragma . 228

Data Alignment Pragmas. 228
ALIGN Pragma . 228
PACK Pragma . 228
UNALIGN Pragma . 229

Optimization Pragmas . 231
FLOAT_TRAPS_ON Pragma . 231
[NO]INLINE Pragma . 231
NO_SIDE_EFFECTS Pragma . 231

FastCall Pragmas . 232
HP_DEFINED_EXTERNAL Pragma . 232
xiii

Contents
HP_LONG_RETURN Pragma . 232
HP_NO_RELOCATION Pragma . 232

Gather/Scatter Prefetch Pragma . 232
Example: . 233

Running HP C Programs . 234

10. HP C/HP-UX Implementation Topics
Data Types . 236

Comments . 237
Bit-Fields . 239
IEEE Floating-Point Format . 240
Lexical Elements . 242
Structures and Unions . 243
Type Mismatches in External Names . 244
Expressions . 245
Pointers . 246
Maximum Number of Dimensions of an Array . 247
Scope of extern Declarations . 248
Conversions Between Floats, Doubles, and Long Doubles . 249
Statements . 250
Preprocessor . 251
Library Functions and Header Files . 252

The Math Library . 252
Other Library Functions . 252

The varargs Macros . 253
Example . 253
C9X standard macros . 255

Usage Differences . 255
Variable names . 256
How HP C implements GNU and C9X macros . 257

HP Specific Type Qualifiers . 259
Location of Files . 260

A. Syntax Summary
Lexical Grammar . 264

Tokens . 264
xiv

Contents
Keywords . 264
Identifiers . 265
Constants . 265
String Literals . 269
Operators . 269
Punctuators . 269
Header Names . 269
Preprocessing Numbers . 270

Phrase Structure Grammar . 271
Expressions . 271
Declarations . 273
Statements . 277
External Definitions . 278

Preprocessing Directives . 279

Index . 281
xv

Contents
xvi

About This Document
This manual presents reference information on the C programming language, as
implemented on Itanium- based systems.

The document printing date and part number indicate the document’s current edition. The
printing date will change when a new edition is printed. Minor changes may be made at
reprint without changing the printing date. The document part number will change when
extensive changes are made.

Document updates may be issued between editions to correct errors or document product
changes. To ensure that you receive the updated or new editions, you should subscribe to the
appropriate product support service. Contact your HP sales representative for details.

The latest version of this document can be found on line at http://docs.hp.com.

Intended Audience
This manual is intended for experienced C programmers who are familiar with HP computer
systems.

Printing History
The software code printed alongside the data indicates the version level of the software
product at the time the manual or update was issued. Many product updates and fixes do not
require manual changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one correspondence between
product updates and manual updates.

Table 1 Printing History

Edition Release Date Product Version

Edition 1 August 2003 HP aC++ v A.05.50

Edition 2 March 2004 HP aC++ v A.05.55

Edition 3 September 2004 HP aC++ v A.05.55.02

Edition 4 December 2004 HP aC++ v A.06.00/A.05.60

Edition 5 September 2005 HP aC++ v A.06.05
xvii

Related Documents
The following is a list of documents available with this release:

• HP aC++/HP ANSI C Release Notes

• HP aC++/HP C Programmer’s Guide

• HP C/HP-UX Reference Manual

Additional information about the HP C compiler can be found at http://www.docs.hp.com in
the Development Tools and Distributed Computing section.

Refer to the following materials for further information on C language programming:

• American National Standard for Information Systems — Programming Language — C,
ANSI/ISO 9899-1990.

• COBOL/HP-UX Operating Manual — This manual provides information on calling C
subprograms from COBOL programs on HP-UX. It also explains how to call COBOL
subprograms from C.

• HP-UX 64-bit Porting and Transition Guide — Describes the changes you need to make to
compile, link, and run programs in 64-bit mode. This document is also available online at
http://docs.hp.com, and in the Postscript file
/opt/ansic/newconfig/RelNotes/64bitTrans.bk.ps.

• HP-UX Floating-Point Guide — This manual describes the IEEE floating-point standard,
the HP-UX math libraries on HP 9000 systems, performance tuning related to
floating-point routines, and floating-point coding techniques that can affect application
results.

• HP Fortran 90 Programmer's Guide — This manual explains how to call C programs from
the HP Fortran 90 compiler on HP-UX.

• HP Pascal/HP-UX Programmer's Guide — This manual describes how to call C programs
from Pascal on HP-UX systems.

• HP-UX Linker and Libraries Online User Guide — This online help describes
programming in general on HP-UX. For example, it covers linking, loading, shared
libraries, and several other HP-UX programming features.

• HP-UX Reference — Manpages for HP-UX 11.00 are available in Instant Information
under the title HP-UX Reference and via the man command. They document commands,
system calls, subroutine libraries, file formats, device files, and other HP-UX related
topics.

• Parallel Programming Guide for HP-UX Systems — Describes efficient parallel
programming techniques available using HP Fortran 90, HP C, and HP aC++ on HP-UX.
xviii

HP Encourages Your Comments
HP encourages your comments concerning this document. We are truly committed to
providing documentation that meets your needs.

Please send comments to: c++-editor@cup.hp.com

Please include document title, manufacturing part number, and any comment, error found, or
suggestion for improvement you have concerning this document.
xix

xx

1 What is HP C?
HP C originates from the C language designed in 1972 by Dennis Ritchie at Bell Laboratories.
It descended from several ALGOL-like languages, most notably BCPL and a language
developed by Ken Thompson called B.

C has been called a low-level, high-level programming language. C's operators and data types
closely match those found in modern computers. The language is concise and C compilers
produce highly efficient code. C has traditionally been used for systems programming, but it is
being used increasingly for general applications.

The most important feature that C provides is portability. In addition, C provides many
facilities such as useful data types, including pointers and strings, and a functional set of data
structures, operators, and control statements.
Chapter 1 1

What is HP C?
ANSI Mode
ANSI Mode
Unless you are writing code that must be recompiled on a system where ANSI C is not
available, it is recommended that you use the ANSI mode of compilation for your new
development. It is also recommended that you use ANSI mode to recompile existing programs
after making any necessary changes.

Because an ANSI-conforming compiler is required to do more thorough error detection and
reporting than has been traditional among C compilers in the past, you may find that your
productivity will be enhanced because more errors will be caught at compile time. This may be
especially true if you use function prototypes.

If you do not specify the mode of compilation, beginning with the HP-UX 10.30 operating
system release, it defaults to -Ae.
Chapter 12

What is HP C?
Compatibility Mode
Compatibility Mode
You may not want to change your existing code, or you may have old code that relies on
certain non-ANSI features. Therefore, a compatibility mode of compilation has been provided.
In this mode, virtually all programs that compiled and executed under previous releases of
HP C/HP-UX will continue to work as expected.

In HP-UX 10.20 and earlier releases, compatibility mode is the default compilation mode. In
HP-UX 10.30 forward, extended ANSI mode (-Ae) is the default.
Chapter 1 3

What is HP C?
About HP C/HP-UX
About HP C/HP-UX
This manual presents ANSI C as the standard version of the C language. Where certain
constructs are not available in compatibility mode, or would work differently, it is noted and
the differences are described.

HP C/HP-UX, when invoked in ANSI mode, is a conforming implementation of ANSI C, as
specified by American National Standard 9899-1990. This manual uses the terminology of
that standard and attempts to explain the language defined by that standard, while also
documenting the implementation decisions and extensions made in HP C/HP-UX. It is not the
intent of this document to replicate the standard. Thus, you are encouraged to refer to the
standard for any fine points of the language not covered here.
Chapter 14

What is HP C?
HP C Online Help
HP C Online Help
Online help for HP C is available for HP 9000 workstation and server users. HP C Online
Help can be accessed from an HTML browser of your choice. It consists of HTML files that
contain the following reference and how-to information:

• What is HP C?

• Program organization

• Compiling & running HP C programs

• Optimizing HP C programs

• Parallel options & pragmas

• Data types & declarations

• Expressions & operators

• Statements

• Preprocessing directives

• Calling other languages

• Programming for portability

• Migrating C programs to HP-UX

• Error message descriptions

Prerequisites for using HP C Online Help

Before you can begin using HP C Online Help, you should review the following display and
browser information. Some reconfiguration of your environment variables may be required.

• You must set the DISPLAY environment variable to a (graphical mode) value that can
accommodate the display of an HTML browser.

• You may set the BROWSER environment variable to point to the location of the your HTML
browser. If you do not do this, the compiler will automatically run the browser located in
/opt/ns-navgold/bin/netscape or in /opt/ns-communicator/netscape.

• You may set the CROOTDIR environment variable to specify the root directory of the online
help source. If CROOTDIR is not set, the URL of the HP C Online Help defaults to
file:/opt/ansic/html/guide/${LOCALE}/c_index.html. This default is based on the
assumption that the compiler binaries are located in /opt/ansic/bin.
Chapter 1 5

What is HP C?
HP C Online Help
Accessing HP C Online Help

To access the HP C Online Help, you must be logged onto a system where the most recent
version of the HP C compiler is installed. Typing the following at the command line invokes
an HTML browser, which displays the main HTML index file for the HP C Online Help
system:

/opt/ansic/bin/cc +help

The actual location of the HTML files is:

file:/${CROOTDIR}/html/guide/${LOCALE}/c_index.html.

If the environment variable CROOTDIR is not set, the path will be formed relative to the
compiler’s root directory; this is usually /opt/ansic. The previous section contains
instructions on how to set CROOTDIR.

NOTE If the browser path set by the BROWSER environment variable does not exist, or
if the default browser paths /opt/ns-navgold/bin/netscape or
/opt/ns-communicator/netscape do not exist, then you must set the BROWSER
environment variable appropriately.
Chapter 16

2 Program Organization
This section describes the following topics:

• “Lexical Elements” on page 8

• “Declarations” on page 18

• “Constants” on page 24

• “Structuring a C Program” on page 30
Chapter 2 7

Program Organization
Lexical Elements
Lexical Elements
C language programs are composed of lexical elements. The lexical elements of the C
language are characters and white spaces that are grouped together into tokens. This section
describes the following syntactic objects:

• White Space, Newlines, and Continuation Lines

• Spreading Source Code Across Multiple Lines

• Comments

• Identifiers

• Keywords

White Space, Newlines, and Continuation Lines

In C source files, blanks, newlines, vertical tabs, horizontal tabs, and form feeds are all
considered to be white space characters.

The main purpose of white space characters is to format source files so that they are more
readable. The compiler ignores white space characters, except when they are used to separate
tokens or when they appear within string literals.

The newline character is not treated as white space in preprocessor directives. A newline
character is used to terminate preprocessor directives. See Overview of the Preprocessor for
more information.

The line continuation character in C is the backslash (\). Use the continuation character at
the end of the line when splitting a quoted string or preprocessor directive across one or more
lines of source code.

Spreading Source Code Across Multiple Lines

You can split a string or preprocessor directive across one or more lines. To split a string or
preprocessor directive, however, you must use the continuation character (\) at the end of the
line to be split; for example:

#define foo_macro(x,y,z) ((x) + (y))\
 * ((z) - (x))

printf("This is an very, very, very lengthy and \
very, very uninteresting string.");
Chapter 28

Program Organization
Lexical Elements
Comments

A comment is any series of characters beginning with /* and ending with */. The compiler
replaces each comment with a single space character.

HP C allows comments to appear anywhere in the source file except within identifiers or
string literals. The C language does not support nested comments.

In the following example, a comment follows an assignment statement:

average = total / number_of_components; /* Find mean value. */

Comments may also span multiple lines, as in:

/*
 This is a
 multi-line comment.
 */

Identifiers

Identifiers, also called names, can consist of the following:

• Letters (ISO Latin-1 decimal values 65-90 and 97-122)

• Digits

• Dollar sign ($) (HP C extension)

• Underscore (_)

The first character must be a letter, underscore or a $ sign. Identifiers that begin with an
underscore are generally reserved for system use. The ANSI/ISO standard reserves all names
that begin with two underscores or an underscore followed by an uppercase letter for system
use.

NOTE HP C allows the dollar sign ($) in identifiers, including using the $ in the first
character, as an extension to the language.

Identifiers cannot conflict with reserved Keywords.
Chapter 2 9

Program Organization
Lexical Elements
Legal Identifiers

 meters
 green_eggs_and_ham
 system_name
 UPPER_AND_lower_case
 $name Legal in HP C, but non-standard

Illegal Identifiers

 20_meters Starts with a digit
 int The int type is a reserved keyword
 no$#@good Contains illegal characters

Length of Identifiers

HP C identifiers are unique up to 256 characters.

The ANSI/ISO standard requires compilers to support names of up to 32 characters for local
variables and 6 characters for global variables.

To improve portability, it is a good idea to make your local variable names unique within the
first 32 characters, and global variable names unique within the first 6 characters.

Case Sensitivity in Identifiers

In C, identifier names are always case-sensitive. An identifier written in uppercase letters is
considered different from the same identifier written in lowercase. For example, the following
three identifiers are all unique:

kilograms
KILOGRAMS
Kilograms

Some HP-UX programming languages (such as Pascal and FORTRAN) are case-insensitive.
When writing an HP C program that calls routines from these other languages, you must be
aware of this difference in sensitivity.

Strings are also case-sensitive. The system recognizes the following two strings as distinct:

"THE RAIN IN SPAIN"
"the rain in spain"

#include <stdio.h>
 void varfunc(void)
 {
 printf(“%s\n”, __func__);
 /* ... */
}

Chapter 210

Program Organization
Lexical Elements
Predefined identifier _func_

The HP ANSI C compiler defines the predefined identifier__func__, as specified in the C9X
Standard. This provides an additional means of debugging your code.

The use of the predefined "__func__" identifier allows you to use more informative debugging
statements to indicate a specific function. This is useful for fatal errors and conditions that
produce warnings. __func__ can also be used within debugging macros in order to keep track
of tasks such as the function calling stack, etc.

The __func__ identifier is implicitly declared by the compiler in the following manner:

static const char __func__[] = "<function-name>";

The declaration is implicitly added immediately after the opening brace of a function which
uses the variable __func__. The value <function-name> is the name of the
lexically-enclosing function.

The following code example fragment illustrates the use of the predefined identifier__func__.

Each time the varfunc function is called, it prints to the standard output stream:

varfunc

Keywords

HP C supports the following keywords. You cannot use keywords as identifiers; if you do, the
compiler reports an error. You cannot abbreviate a keyword, and you must enter keywords in
lowercase letters.

• auto

• break

• case

• char

• const

• continue

• default

• do

• double

• else
Chapter 2 11

Program Organization
Lexical Elements
• enum

• extern

• float

• for

• goto

• if

• int

• long

• register

• return

• short

• signed

• sizeof

• static

• struct

• switch

• __thread

• typedef

• union

• unsigned

• void

• volatile

• while

auto

Causes the variable to be dynamically allocated and initialized only when the block
containing the variable is being executed. This is the default for local variables.

break

See “break” on page 156.
Chapter 212

Program Organization
Lexical Elements
case

An optional element in a switch statement. The case label is followed by an integral constant
expression and a (:) colon. No two case constant expressions in the same switch statement
can have the same value. For example:

switch (getchar())
{
 case 'r':
 case 'R':
 moveright();
 break;
 ...
}

char

The char keyword defines an integer type that is 1 byte long.

A char type has a minimum value of -128 and a maximum value of 127.

The numeric range for unsigned char is 1 byte, with a minimum value of 0 and a maximum
value of 255.

const

Specifies that an object of any type must have a constant value throughout the scope of its
name. For example:

/* declare factor as a constant float */
const float factor = 2.54;

The value of factor cannot change after the initialization.

continue

See “continue” on page 157.

default

A keyword used within the switch statement to identify the catch-all-else statement. For
example:

switch (grade){
 case 'A':
 printf("Excellent\n");
 break;
Chapter 2 13

Program Organization
Lexical Elements
 default:
 printf("Invalid grade\n");
 break;
}

do

See “do…while” on page 159.

double

A 64-bit data type for representing floating-point numbers.

The lower normalized bound is 2.225E-308. The lower de normalized bound is 4.941E-324.
The upper bound is 1.798E+308.

Other floating-point types are float and long double.

else

See “if” on page 169.

enum

See “Enumeration” on page 52.

extern

Used for declarations both within and outside of a function (except for function arguments).
Signifies that the object is declared somewhere else.

float

A 32-bit data type for representing floating-point numbers.

The range for float is:

• Min: Least normalized: 1.1755E-38 Least de normalized: 1.4013E-45

• Max: 3.4028E+38

Other floating-point types are double and long double.

for

See “for” on page 161.
Chapter 214

Program Organization
Lexical Elements
goto

See “goto” on page 166.

if

See “if” on page 169.

int

A 32-bit data type for representing whole numbers.

The range for int is -2,147,483,648 through 2,147,483,647.

The range for unsigned int is 0 through 4,294,967,295.

long

A 32-bit integer data type in the HP-UX 32-bit data model. The range for long is
-2,147,483,648 through 2,147,483,647. For the HP-UX 64-bit data model, the long data type is
64-bits and the range is the same as the long long data type.

The long long 64-bit data type is supported as an extension to the language when you use
the -Ae compile-line option.

The range for long long is -9,223,372,036,854,775,808 through +9,223,372,036,854,775,807.

register

Indicates to the compiler that the variable is heavily used and may be stored in a register for
better performance.

return

See “return” on page 174.

short

A 16-bit integer data type.

The range for short is -32,768 through 32,767.

The range for unsigned short is 0 through 65,535.

signed

All integer data types are signed by default. The high-order bit is used to indicate whether a
value is greater than or less than zero. Use this modifier for better source code readability.
The signed keyword can be used with these data types:
Chapter 2 15

Program Organization
Lexical Elements
• char

• int

• enum

• long

• long long

• short

Whether or not char is signed or unsigned by default is implementation-defined. The signed
keyword lets you explicitly declare (in a portable) way a signed char.

sizeof

See “sizeof Operator” on page 131.

static

A variable that has memory allocated for it at program startup time. The variable is
associated with a single memory location until the end of the program.

struct

See “Structure and Union Tags” on page 49.

switch

See “switch” on page 178.

__thread

The __thread keyword defines a thread specific data variable, distinguishing it from other
data items that are shared by all threads. With a thread-specific data variable, each thread
has its own copy of the data item. These variables eliminate the need to allocate
thread-specific data dynamically, thus improving performance.

This keyword is implemented as an HP-specific type qualifier, with the same syntax as const
and volatile, but not the same semantics. Syntax examples:

__thread int j=2;
int main()
{

j = 20;
}

Chapter 216

Program Organization
Lexical Elements
Semantics for the __thread keyword: Only variables of static duration can be thread specific.
Thread specific data objects can not be initialized. Pointers of static duration that are not
thread specific may not be initialized with the address of a thread specific object —
assignment is okay. All global variables, thread specific or not, are initialized to zero by the
linker implicitly.

Only one declaration, for example,

__thread int x;

is allowed in one compilation unit that contributes to the program (including libraries linked
into the executable). All other declarations must be strictly references:

extern __thread int x;

Even though __thread has the same syntax as a type qualifier, it does not qualify the type,
but is a storage class specification for the data object. As such, it is type compatible with
non-thread-specific data objects of the same type. That is, a thread specific data int is type
compatible with an ordinary int, (unlike const and volatile qualified int).

Note that use of the __thread keyword in a shared library will prevent that shared library
from being dynamically loaded (that is, loaded via an explicit call to shl_load()).

typedef

See “Typedef Declarations” on page 19.

union

See “Structure and Union Tags” on page 49.

unsigned

A data type modifier that indicates that no sign bit will be used. The data is assumed to
contain values greater than or equal to zero. All integer data types are signed by default. The
unsigned keyword can be used to modify these data types:

• char

• int

• enum

• long

• long long

• short
Chapter 2 17

Program Organization
Declarations
void

The void data type has three important purposes:

• To indicate that a function does not return a value

• To declare a function that takes no arguments

• To allow you to create generic pointers.

To indicate that a function does not return a value, you can write a function definition such as:

void func(int a, int b)
{

. . .
}

This indicates that the function func() does not return a value. Likewise, on the calling side,
you declare func() as:

extern void func(int, int);

volatile

Specifies that the value of a variable might change in ways that the compiler cannot predict. If
volatile is used, the compiler will not perform certain optimizations on that variable.

while

See “while” on page 182.

Declarations
In general, a variable declaration has the following format:

[storage_class_specifier] [data_type] variable_name [=initial_value];

where:

storage_class_specifier is an optional keyword.

data_type is one of the data types described in Chapter 3, “Data
Types and Declarations.”

variable_name is a legal identifier.
Chapter 218

Program Organization
Declarations
initial_value is an optional initializer for the variable.

Here are a few sample variable declarations without storage class specifiers or initial values:

int age; /* integer variable "age" */
int length, width; /* abbreviated declaration of two variables*/
float ph; /* floating-point variable "ph" */
char a_letter; /* character variable "a_letter" */
int values[10]; /* array of 10 integers named values */
enum days {mon, wed, fri}; /* enumerated variable "days" */

Typedef Declarations

C language allows you to create your own names for data types with the typedef keyword.
Syntactically, a typedef is similar to a variable declaration except that the declaration is
preceded by the typedef keyword.

A typedef declaration may appear anywhere a variable declaration may appear and obeys
the same scoping rules as a normal declaration. Once declared, a typedef name may be used
anywhere that the type is allowed (such as in a declaration, cast operation, or sizeof
operation). You can write typedef names in all uppercase so that they are not confused with
variable names.

You may not include an initializer with a typedef.

The following statement makes the name FOUR_BYTE_INT synonymous with long int:

typedef long int FOUR_BYTE_INT;

The following two declarations are now identical:

long int j;
FOUR_BYTE_INT j;

Abstract Global Types

Typedefs are useful for abstracting global types that can be used throughout a program, as
shown in the following structure and array declaration:

typedef struct {
char month[4];
int day;
int year;

} BIRTHDAY;

typedef char A_LINE[80]; /* A_LINE is an array of */
/* 80 characters */
Chapter 2 19

Program Organization
Declarations
Improving Portability

Type definitions can be used to compensate for differences in C compilers. For example:

#if SMALL_COMPUTER
typedef int SHORTINT;
typedef long LONGINT;

#elif
BIG_COMPUTER
typedef short SHORTINT;
typedef int LONGINT;

#endif

This is useful when writing code to run on two computers, a small computer where an int is
two bytes, and a large computer where an int is four bytes. Instead of using short, long, and
int, you can use SHORTINT and LONGINT and be assured that SHORTINT is two bytes and
LONGINT is four bytes regardless of the machine.

Simplifying Complex Declarations

You can use typedefs to simplify complex declarations. For example:

typedef float *PTRF, ARRAYF[], FUNCF();

This declares three new types called PTRF (a pointer to a float), ARRAYF (an array of floats),
and FUNCF (a function returning a float). These typedefs could then be used in declarations
such as the following:

PTRF x[5]; /* a 5-element array of pointers to floats */
FUNCF z; /* A function returning a float */
Chapter 220

Program Organization
Declarations
Using typedefs for Arrays

The following two examples illustrate what can happen when you mix pointers and typedefs
that represent arrays. The problem with the program on the left is that ptr points to an array
of 80 chars, rather than a single element of a char array. Because of scaling in pointer
arithmetic, the increment operator adds 80 bytes, not one byte, to ptr.

Name Spaces

All identifiers (names) in a program fall into one of four name spaces. Names in different
name spaces never interfere with each other. That is, you can use the same name for an object
in each of the four name spaces without these names affecting one another. Table 2-2 lists the
four name spaces:

Table 2-1 Mixing Pointers and Typedefs

Wrong Right

typedef char STR[80];
STR string, *ptr;

main()
{

ptr = string;
printf("ptr = %d\n", ptr);
ptr++;
printf("ptr = %d\n", ptr);

}

*** Run-Time Results ***

ptr = 3997696
ptr = 3997776

typedef char STR[80];
STR string;
char *ptr;

main()
{

ptr = string;
printf("ptr = %d\n", ptr);
ptr++;
printf("ptr = %d\n", ptr);

}

*** Run-Time Results ***

ptr = 3997696
ptr = 3997697

Table 2-2 Name Spaces

Name Spaces Description

Structure, Union,
and Enumeration
Tags

Tag names that immediately follow these type specifiers: struct,
union, and enum. These types are described in “Structure and
Union Specifiers” on page 48.

Member Names Names of members of a structure or union.
Chapter 2 21

Program Organization
Declarations
NOTE The separate name spaces for goto labels and for each struct, union, or enum
definition are part of the ANSI/ISO standard, but not part of the K&R language
definition.

The following example uses the same name, overuse, in four different ways:

int main(void)
{

int overuse; /* normal identifier */
struct overuse { /* tag name */

float overuse; /* member name */
char *p;

} x;
goto overuse;

overuse: overuse = 3; /* label name */
}

Structure, Union, and Enum Names

Each struct, union, or enum defines its own name space, so that different declarations can
have the same member names without conflict. The following is legal:

struct A {
int x;
float y;

};
struct B {

int x;
float y;

};

The members in struct A are distinct from the members in struct B.

Goto Labels Names that mark the target of a goto statement.

Function, Variable
and All Other
Names

Any name that is not a member of the preceding three classes.

Table 2-2 Name Spaces (Continued)

Name Spaces Description
Chapter 222

Program Organization
Declarations
Macro Names

Macro names do interfere with the other four name spaces. Therefore, when you specify a
macro name, do not use this name in one of the other four name spaces. For example, the
following program fragment is incorrect because it contains a macro named square and a
label named square:

#define square(arg) arg * arg

int main(void)
{

...
square:
...

}

Declarations within code

HP C has added the C9x feature which allows you to declare variables and types inside a
block of statements. This also allows declaration of new variables or types, such as expr_1, as
shown in the for statement below:

for(expr_1;expr_2;expr_3) statement_1

This new variable or type declared in expr_1 can be used in expr_2, expr_3 and statement_1.

NOTE The HP C/ANSI C compiler implementation of declarations within code is
similar to, but not identical to, the C++ implementation of declarations within
code.
Chapter 2 23

Program Organization
Constants
Constants
There are four types of constants in C:

• Integer Constants

• Floating-Point Constants

• Character Constants

• String Constants

Every constant has two properties: value and type. For example, the constant 15 has value
15 and type int.

Integer Constants

HP C supports three forms of integer constants:

decimal One or more digits from 0-9. The constant must not start with a 0.

octal One or more digits from 0-7. The constant must begin with 0.

hexadecimal One or more hexadecimal digits from 0-9, a-f, or A-F. The constant must
begin with 0x or 0X.

An integer constant is a simple number like 12. It is not an integer variable (like x or y) or an
integer expression.

The data type assigned to an integer constant is the first in which it will fit from the list on
the right for the constant declaration on the left:

Table 2-3 Convention Summary

Constant Assigned Data Type

decimal (no suffix) int, long int, unsigned long int

octal or hex (no suffix) int, unsigned int, long, unsigned long

letter u or U suffix unsigned int, unsigned long int

letter l or L suffix long, unsigned long

both letters u or U and unsigned long l or L suffix

letters ll or LL suffix: long long, unsigned long long
Chapter 224

Program Organization
Constants
Integer constants may not contain any punctuation such as commas or periods.

Examples of Integer Constants

The following examples show some legal constants in decimal, octal, and hexadecimal form:

Floating-Point Constants

A floating-point constant is any number that contains a decimal point and/or exponent sign
for scientific notation.

The number may be followed by an f or F, to signify that it is of type float, or by an l or L, to
signify that it is of type long double. If the number does not have a suffix, it is of type double
even if it can be accurately represented in four bytes.

If the magnitude of a floating-point constant is too great or too small to be represented in a
double, the C compiler will substitute a value that can be represented. This substitute value is
not always predictable.

both letters u or U and ll or LL
suffix:

unsigned long long

Table 2-4 Convention Summary

Decimal Octal Hexadecimal

3 003 0x3

8 010 0x8

15 017 0xF

16 020 0x10

21 025 0x15

-87 -0127 -0x57

187 0273 0xBB

255 0377 0xff

Table 2-3 Convention Summary (Continued)

Constant Assigned Data Type
Chapter 2 25

Program Organization
Constants
You may precede a floating-point constant with the unary plus or minus operator to make its
value positive or negative.

Scientific Notation

Scientific notation is a useful shorthand for writing lengthy floating-point values. In scientific
notation, a value consists of two parts: a number called the mantissa followed by a power of
10 called the characteristic (or exponent).

The letter e or E, standing for exponent, is used to separate the two parts.

The floating-point constant 3e2, for instance, is interpreted as 3*(102), or 300. Likewise, the
value -2.5e-4 is interpreted as -2.5/(104), or -0.00025.

Examples of Floating-Point Constants

Here are some examples of legal and illegal floating-point constants.

Table 2-5 Floating-Point Constants

Constant Legal or Illegal

3. legal

35 legal — interpreted as an integer.

3.141 legal

3,500.45 illegal — commas are illegal.

.3333333333 legal

4E illegal — the exponent must be followed by a number

0.3 legal

-3e2 legal

4e3.6 illegal — the exponent must be an integer

3.0E5 legal

+3.6 legal

0.4E-5 legal
Chapter 226

Program Organization
Constants
Character Constants

A character constant is any printable character or legal escape sequence enclosed in single
quotes. A character constant can begin with the letter L to indicate that it is a wide character
constant; this notation is ordinarily used for characters in an extended character set. In HP C,
an ordinary character constant occupies one byte of storage; a wide character constant
occupies the rightmost byte of a 4-byte integer.

 The value of a character constant is the integer ISO Latin-1 value of the character. For
example, the value of the constant x is 120.

Escape Sequences

HP C supports several escape sequences:

The escape sequences for octal and hexadecimal numbers are commonly used to represent
characters. For example, if ISO Latin-1 representations are being used, the letter a may be
written as \141 or \x61 and Z as \132 or \x5A. This syntax is most frequently used to

Table 2-6 Character Escape Codes

Escape
Code Character What it Does

\a Audible alert Rings the terminal's bell.

\b Backspace Moves the cursor back one space.

\f Form feed Moves the cursor to the next
logical page.

\n Newline Prints a newline.

\r Carriage return Prints a carriage return.

\t Horizontal tab Prints a horizontal tab.

\v Vertical tab Prints a vertical tab.

\\ Backslash Prints a backslash.

\? Question mark Prints a question mark.

\’ Single quote Prints a single quote.

\" Double quote Prints a double quote.
Chapter 2 27

Program Organization
Constants
represent the null character as \0. This is exactly equivalent to the numeric constant zero (0).
When you use the octal format, you do not need to include the zero prefix as you would for a
normal octal constant.

Multi-Character Constants

Each character in an ordinary character constant takes up one byte of storage; therefore, you
can store up to a 4-byte character constant in a 32-bit integer and up to a 2-byte character
constant in a 16-bit integer.

For example, the following assignments are legal:

{
char x; /* 1-byte integer */
unsigned short int si; /* 2-byte integer */

 unsigned long int li; /* 4-byte integer */

/* the following two assignments are portable: */
x = 'j'; /* 1-byte character constant */
li = L'j'; /* 4-byte wide char constant */

/* the following two assignments are not portable,
and are not recommended: */
si = 'ef'; /* 2-character constant */
li = 'abcd'; /* 4-character constant */

}

The variable si is assigned the value of e and f, where each character takes up 8 bits of the
16-bit value. The HP C compiler places the last character in the rightmost (least significant)
byte. Therefore, the constant ef will have a hexadecimal value of 6566. Since the order in
which bytes are assigned is machine dependent, other machines may reverse the order,
assigning f to the most significant byte. In that case, the resulting value would be 6665. For
maximum portability, do not use multi-character constants. Use character arrays instead.

String Constants

A string constant is any series of printable characters or escape characters enclosed in
double quotes. The compiler automatically appends a null character (\0) to the end of the
string so that the size of the array is one greater than the number of characters in the string.
For example,

"A short string"

becomes an array with 15 elements:
Chapter 228

Program Organization
Constants
Figure 2-1 String Constants

Like a character constant, a string constant can begin with the letter L to indicate that it is a
string constant in an extended character set.

To span a string constant over more than one line, use the backslash character (\), also called
the continuation character. The following, for instance, is legal:

strcpy(string,"This is a very long string that requires more \
than one line");

Note that if you indent the second line, the spaces will be part of the string.

The compiler concatenates adjacent string constants. Therefore, you can also span a string
constant over one line as shown:

strcpy(string, "This is a very long string that requires more "
 "than one line");

When you indent the second line with this method, the spaces are not part of the string.

The type of a string is array of char, and strings obey the same conversion rules as other
arrays. Except when a string appears as the operand of sizeof or as an initializer, it is
converted to a pointer to the first element of the string. Note also that the null string, "" is
legal, and contains a single trailing null character.

10

A

3

h

2

s

5

r

4

o

76

t

9

t

8

s

11

ir

12

n

13

g

14

\0

10
Chapter 2 29

Program Organization
Structuring a C Program
Structuring a C Program
When you write a C program, you can put all of your source code into one file or spread it
across many files. A typical C source file contains some or all of the following components:

• Preprocessor directives

• Variables

• Functions

Example 2-1 Example

The following shows how a program can be organized:

/* preprocessor directives */
#include <stdio.h>
#define WEIGHTING_FACTOR 0.6

/* global typedef declaration */
typedef float THIRTY_TWO_BIT_REAL;

/* global variable declaration */
THIRTY_TWO_BIT_REAL correction_factor = 1.15;

/* prototype */
float average (float arg1, THIRTY_TWO_BIT_REAL arg2);

/* start of function body */
{

/* local variable declaration */
float mean;

/* assignment statement */
mean = (arg1 * WEIGHTING_FACTOR) + (arg2 * (1.0 - WEIGHTING_FACTOR));

/* return statement */
return (mean * correction_factor);

/* end of function body */

}

int main(void)
Chapter 230

Program Organization
Structuring a C Program
/* start of function body */
{

/* local variable declarations */
float value1, value2, result;

/* statements */
printf("Enter two values -- ");
scanf("%f%f", &value1, &value2);
result = average(value1, value2);

/* continuation line */
printf("The weighted average using a correction \
factor of %4.2f is %5.2f\n", correction_factor, result);

/* end of function body */
}

Chapter 2 31

Program Organization
Structuring a C Program
Chapter 232

3 Data Types and Declarations
In C, as in many other programming languages, you must usually declare identifiers before
you can use them.

The declarable entities in C are:

• Objects

• Functions

• Tags and members of structures, unions, and enumerated types

• Type definition names

This chapter describes declarations, type specifiers, storage-class specifiers, structure and
union specifiers, enumerations, declarators, type names, and initialization. Data types and
declarations are defined using Backus-Naur form.
Chapter 3 33

Data Types and Declarations
Program Structure
Program Structure
A translation unit consists of one or more declarations and function definitions.

Syntax

translation-unit ::=
external-declaration
translation-unit external-declaration

external-declaration ::=
function-definition
declaration

Description

A C program consists of one or more translation units, each of which can be compiled
separately. A translation unit consists of a source file together with any headers and source
files included by the #include preprocessing directive. Each time the compiler is invoked, it
reads a single translation unit and typically produces a relocatable object file. A translation
unit must contain at least one declaration or function definition.
Chapter 334

Data Types and Declarations
Declarations
Declarations
A declaration specifies the attributes of an identifier or a set of identifiers.

Syntax

declaration ::=
declaration-specifiers [init-declarator-list] ;

declaration-specifiers ::=
storage-class-specifier [declaration-specifiers]
type-specifier [declaration-specifiers]
type-qualifier [declaration-specifiers]

init-declarator-list ::=
init-declarator
init-declarator-list , init-declarator

init-declarator ::=
declarator
declarator = initializer

Description

Making a declaration does not necessarily reserve storage for the identifiers declared. For
example, the declaration of an external data object provides the compiler with the attributes
of the object, but the actual storage is allocated in another translation unit.

A declaration consists of a sequence of specifiers that indicate the linkage, storage duration,
and the type of the entities that the declarators denote.

You can declare and initialize objects at the same time using the init-declarator-list syntax.
The init-declarator-list is a comma-separated sequence of declarators, each of which may have
an initializer.

Function definitions have a slightly different syntax as discussed in “Function Declarators” on
page 58. Also, note that it is often valid to define a tag (struct, union, or enum) without
actually declaring any objects.
Chapter 3 35

Data Types and Declarations
Declarations
New Declaration Features

HP C has added the C9x feature which allows you to declare variables and types inside a
block of statements. This also allows declaration of new variables or types, such as expr_1, as
shown in the for statement below:

for(expr_1;expr_2;expr_3) statement_1

This new variable or type declared in expr_1 can be used in expr_2, expr_3 and statement_1.

Caveats

The HP C/ANSI C compiler implementation of declarations within code is similar to, but not
identical to, the C++ implementation of declarations within code. When specifying
declarations within code in the HP C/ANSI C compiler, do not expect the same behavior in HP
aC++. For example:

for(int i = 0; i < j; i ++) int i;

Note the lack of a new block opening for the for statement. The C++ compiler accepts this
form, with warnings, but the C compiler does not. The difference in the way the stack is
handled causes the difference in behavior.

Previously, the C compiler did not emit the source file information for the global typedefs. To
correct this, use -y option along with -g when debug info is generated. You can generate debug
information by compiling with +objdebug.

Example

int main()
{
 int i=5,j;

 j=i*i;
 printf(*"%d\n",j);

 int k=j;
 /*This is accepted in the new release of HP C*/

for(struct aa {int a;int b} AA={10,50};AA.a<=AA.b;AA.a++){
/*This is accepted by the new feature */
printf("%d\n",AA.a);}
}

Chapter 336

Data Types and Declarations
Declarations
Examples

Valid Declarations:

extern int pressure []; /* size will be declared elsewhere */
extern int lines = 66, pages; /* declares two variables,
 initializes the first one */
static char private_func (float); /* a function taking a float,
 returning a char, not known
 outside this unit */
const float pi = 3.14; /* a constant float, initialized */

const float * const pi_ptr = π /* a constant pointer to a constant
 float, initialized with an
 address constant */
static j1, j2, j3; /* initialized to zero by default */
typedef struct {double real, imaginary;} Complex;
 /* declares a type name */
Complex impedance = {47000}; /* second member defaults to zero */
enum color {red=1, green, blue}; /* declares an enumeration tag and
 three constants */
int const short static volatile signed
 really_Strange = {sizeof '\?'}; /* pretty mixed up */

Invalid Declarations:

int ; /* no identifier */
; /* no identifier */
int i; j; /* no specifiers for j */
Chapter 3 37

Data Types and Declarations
Storage-Class Specifiers
Storage-Class Specifiers
A storage-class specifier is one of several keywords that determines the duration and linkage
of an object.

Syntax

storage-class ::=
 typedef
 extern
 static
 auto
 register

Description

You can use only one storage-class specifier in a declaration.

The typedef keyword is listed as a storage-class specifier because it is syntactically similar to
one.

The keyword extern affects the linkage of a function or object name. If the name has already
been declared in a declaration with file scope, the linkage will be the same as in that previous
declaration. Otherwise, the name will have external linkage.

The static storage-class specifier may appear in declarations of functions or data objects. If
used in an external declaration (either a function or a data object), static indicates that the
name cannot be referenced by other translation units. Using the static storage class in this
way allows translation units to have collections of local functions and data objects that are not
exported to other translation units at link time.

If the static storage class is used in a declaration within a function, the value of the variable
is preserved between invocations of that function.

The auto storage-class specifier is permitted only in the declarations of objects within blocks.
An automatic variable is one that exists only while its enclosing block is being executed.
Variables declared with the auto storage-class are all allocated when a function is entered.
Auto variables that have initializes are initialized when their defining block is entered
normally. This means that auto variables with initializes are not initialized when their
declaring block is not entered through the top.

The register storage class suggests that the compiler store the variable in a register, if
possible. You cannot apply the & (address-of) operator to register variables.
Chapter 338

Data Types and Declarations
Storage-Class Specifiers
If no storage class is specified and the declaration appears in a block, the compiler defaults
the storage duration for an object to automatic. If the declaration of an identifier for a function
has no storage-class specifier, its linkage is determined exactly as if it were declared with the
extern storage-class specifier.

If no storage class is specified and the declaration appears outside of a function, the compiler
treats it as an externally visible object with static duration.
Chapter 3 39

Data Types and Declarations
Type Specifiers
Type Specifiers
Type specifiers indicate the format of the storage associated with a given data object or the
return type of a function.

Syntax

type-specifier ::=
char
short
int
long
long long
unsigned
signed
float
double
void
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

Description

Most of the type specifiers are single keywords. (Refer to Chapter 10, “HP C/HP-UX
Implementation Topics,” on page 235 for sizes of types.) The syntax of the type specifiers
permits more types than are actually allowed in the C language. The various combinations of
type specifiers that are allowed are shown in Table 3-1. Type specifiers that are equivalent
appear together in a box. For example, specifying unsigned is equivalent to unsigned int.
Type specifiers may appear in any order, possibly intermixed with other declaration specifiers.

Table 3-1 C Type Specifiers

void

char

signed char
Chapter 340

Data Types and Declarations
Type Specifiers
If no type specifier is provided in a declaration, the default type is int.

Floating-point types in C are float (32 bits), double (64 bits), and long double (128 bits).

unsigned char

short, signed short, short int, or signed short int

unsigned short, or unsigned short int

int, signed, signed int, or no type specifiers

unsigned, or unsigned int

long, signed long, long int, or signed long int

long long, signed long long, long long int, or signed long
long int

unsigned long, or unsigned long int

unsigned long long, or unsigned long long int

float

double

long double

_Bool

float_Complex

double_Complex

long double_Complex

float_Imaginary

double_Imaginary

long double_Imaginary

struct-or-union specifier

enum-specifier

typedef-name

Table 3-1 C Type Specifiers (Continued)
Chapter 3 41

Data Types and Declarations
_Bool
_Bool
This release supports the boolean data type _Bool. The variables of the data type _Bool can
only have values true(1) or false(0), where true and false are preprocessor macros defined in
the header file stdbool.h. The _Bool data type is a part of C99 standard (ISO/IEC
9899:1999). The C99 standard specifies boolean bitfields. For example: _Bool can be defined as
in the following structure declaration:

struct foo {
 _Bool boolval:1;
 int i;
 }

Since _Bool is defined to take only 0 and 1 as values, this type of _Bool declaration has some
special properties, such as:

_Bool flip_flop = 0; // flip_flop is now false
++flip_flop; // flip_flop is now true
++flip_flop; // flip_flop is true
--flip_flop; // flip_flop is now false
--flip_flop; // flip_flop is now true

New Header file

The default location for <stdbool.h> is /usr/include. This header file is available in patch
PHSS_24204 (for HP-UX 11.00) and PHSS_24205 (for HP-UX 11.11). This header file includes
the following four macros:

• bool expands to _Bool.

• true expands to integer constant 1.

• false expands to integer constant 0.

• __bool_true_false_are_defined expands to decimal constant 1.

The last three macros are suitable for use in #if preprocessor directives.

Usage of _Bool

Observe the following while using _Bool:

• The rank of _Bool is less than the rank of all other standard integer types.
Chapter 342

Data Types and Declarations
_Bool
• A bit field of type _Bool may be used in an expression where an int or unsigned int is
used.

• When a scalar value is converted to _Bool the result is 0, if the value compares equal to 0,
else the result is 1.

Rules for _Bool Conversion

The following conversion rules are applicable while using _Bool.

Scalar to _Bool

Boolval = scalarval ? true : false;

Boolval would be true(1) or false(0) depending whether scalarval is nonzero or zero.

_Bool to scalar

scalarval = Boolval ? 1 : 0;

scalarval would be 1 or 0 depending on Boolval being true(1) or false(0).
Chapter 3 43

Data Types and Declarations
HP-Specific Type Qualifiers
HP-Specific Type Qualifiers

Syntax

type-qualifier ::= __thread

Description

Beginning with the HP-UX 10.30 operating system release, the __thread keyword defines a
thread-specific data variable, distinguishing it from other data items that are shared by all
threads. With a thread-specific data variable, each thread has its own copy of the data item.
These variables eliminate the need to allocate thread-specific data dynamically, thus
improving performance.

This keyword is implemented as an HP specific type qualifier, with the same syntax as type
qualifiers const and volatile, but not the same semantics.

Syntax examples:

__thread int var;

int __thread var;

Semantics: Only variables of static duration can be thread-specific. Thread-specific data
objects can not be initialized. Pointers of static duration that are not thread-specific may not
be initialized with the address of a thread-specific object assignment is allowed. All global
variables, thread-specific or not, are initialized to zero by the linker implicitly.

Only one declaration, for example,

__thread int x;

is allowed in one compilation unit that contributes to the program (including libraries linked
into the executable). All other declarations must be strictly references:

extern __thread int x;

Any other redeclarations of this thread-specific x will result in a duplicate definition error at
link time.

Even though __thread has the same syntax as a type qualifier, it does not qualify the type,
but is a storage class specification for the data object. As such, it is type compatible with
non-thread-specific data objects of the same type. That is, a thread-specific data int is type
compatible with an ordinary int, (unlike const and volatile qualified int).
Chapter 344

Data Types and Declarations
Type Qualifiers
Type Qualifiers

Syntax

type-qualifier :: =
const
volatile
__restrict (or restrict for C99)

Description

This section describes the type qualifiers — volatile, const and __restrict (or restrict
for C99).

The volatile type qualifier directs the compiler not to perform certain optimizations on an
object because that object can have its value altered in ways beyond the control of the
compiler.

Specifically, when an object's declaration includes the volatile type qualifier, optimizations
that would delay any references to (or modifications of) the object will not occur across
sequence points. A sequence point is a point in the execution process when the evaluation of
an expression is complete, and all side-effects of previous evaluations have occurred.

The volatile type qualifier is useful for controlling access to memory-mapped device
registers, as well as for providing reliable access to memory locations used by asynchronous
processes.

The const type qualifier informs the compiler that the object will not be modified, thereby
increasing the optimization opportunities available to the compiler.

An assignment cannot be made to a constant pointer, but an assignment can be made to the
object to which it points. An assignment can be made to a pointer to constant data, but not to
the object to which it points. In the case of a constant pointer to constant data, an assignment
cannot be made to either the pointer, or the object to which it points.

Type qualifiers may be used alone (as the sole declaration-specifier), or in conjunction with
type specifiers, including struct, union,
enum, and typedef. Type qualifiers may also be used in conjunction with storage-class
specifiers.

Use the __restrict type qualifier on the declaration of a pointer type to indicate that the
pointer is subject to compiler optimizations. The restrict is a C99 keyword which only
supported under C99 mode.
Chapter 3 45

Data Types and Declarations
Type Qualifiers
The formal definition of restricted pointer in C99 follows:

1. Let D be a declaration of an ordinary identifier that provides a means of designating an
object P as a restrict-qualified pointer to type T.

2. If D appears inside a block and does not have storage class extern, let B denote the block. If
D appears in the list of parameter declarations of a function definition, let B denote the
associated block. Otherwise, let B denote the block of main (or the block of the function
that is called at program startup in a freestanding environment).

3. In what follows, a pointer expression E is said to be based on object P if (at some sequence
point in the execution of B prior to the evaluation of E) modifying P to point to a copy of the
array object into which it formerly pointed would change the value of E. Note that based
is defined only for expressions with pointer types.

4. During each execution of B, let L be any lvalue that has &L based on P. If L is used to
access the value of the object X that it designates, and X is also modified (by any means),
then the following requirements apply:

• T shall not be const-qualified.

• Every other lvalue used to access the value of X shall also have its address based on P.

• Every access that modifies X shall be considered also to modify P, for the purposes of
this subclause.

If P is assigned the value of a pointer expression E that is based on another restricted
pointer object P2, associated with block B2, then either the execution of B2 shall begin
before the execution of B, or the execution of B2 shall end prior to the assignment. If these
requirements are not met, then the behavior is undefined.

5. Here an execution of B means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration
associated with B.

6. A translator is free to ignore any or all aliasing implications of uses of restrict.

Table 3-2 illustrates various declarations using the const and volatile type qualifiers.

Table 3-2 Declarations using const and volatile

Declaration Meaning

volatile int vol_int; Declares a volatile int variable.

const int *ptr_to_const_int;

int const *ptr_to_const_int;

Both declare a variable pointer to a constant int.
Chapter 346

Data Types and Declarations
Type Qualifiers
When a type qualifier is used with a variable typed by a typedef name, the qualifier is
applied without regard to the contents of the typedef. For example:

typedef int *t_ptr_to_int;
volatile t_ptr_to_int vol_ptr_to_int;

In the example above, the type of vol_ptr_to_int is volatile
t_ptr_to_int, which becomes volatile pointer to int. If the type t_ptr_to_int were
substituted directly in the declaration,

volatile int * ptr_to_vol_int;

the type would be pointer to volatile int.

Type qualifiers apply to objects, not to types. For example:

typedef int * t;
const t *volatile p;

In the example above, p is a volatile pointer to a const pointer to int. volatile applies to the
object p, while const applies to the object pointed to by p. The declaration of p can also be
written as follows:

t const *volatile p;

If an aggregate variable such as a structure is declared volatile, all members of the aggregate
are also volatile.

If a pointer to a volatile object is converted to a pointer to a non-volatile type, and the object is
referenced by the converted pointer, the behavior is undefined.

int *const const_ptr_to_int Declares a constant pointer to a variable int.

int *volatile vpi, *pi; Declares two pointers: vpi is a volatile pointer to an
int; pi is a pointer to an int.

int const *volatile vpci; Declares a volatile pointer to a constant int.

const *pci; Declares a pointer to a constant int. Since no type
specifier was given, it defaults to int.

Table 3-2 Declarations using const and volatile (Continued)

Declaration Meaning
Chapter 3 47

Data Types and Declarations
Structure and Union Specifiers
Structure and Union Specifiers
A structure specifier indicates an aggregate type consisting of a sequence of named members.
A union specifier defines a type whose members begin at offset zero from the beginning of the
union.

Syntax

struct-or-union specifier ::=
struct-or-union [identifier] { struct-declaration-list }
struct-or-union identifier

struct-or-union ::=
 struct
 union

struct-declaration-list ::=
struct-declaration
struct-declaration-list struct-declaration

struct-declaration ::=
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list ::=
type-specifier [specifier-qualifier-list]
type-qualifier [specifier-qualifier-list]

struct-declarator-list ::=
struct-declarator
struct-declarator-list struct-declarator

struct-declarator ::=
declarator
[declarator] : constant-expression

Description

A structure is a named collection of members. Each member belongs to a name space
associated with the structure. Members in different structures can have the same names but
represent different objects.
Chapter 348

Data Types and Declarations
Structure and Union Specifiers
Members are placed in physical storage in the same order as they are declared in the
definition of the structure. A member's offset is the distance from the start of the structure to
the beginning of the member. The compiler inserts pad bytes as necessary to insure that
members are properly aligned. For example, if a charmember is followed by a floatmember,
one or more pad bytes may be inserted to insure that the float member begins on an
appropriate boundary.

Unions are like structures except that all members of a union have a zero offset from the
beginning of the union. In other words, the members overlap. Unions are a way to store
different type of objects in the same memory location.

A declarator for a member of a structure or unionmay occupy a specified number of bits. This
is done by following the declarator with a colon and a constant non-negative integral
expression. The value of the expression indicates the number of bits to be used to hold the
member. This type of member is called a bit-field. Only integral type specifiers are allowed for
bit-field declarators.

In structures, bit-fields are placed into storage locations from the most significant bits to the
least significant bits. Bit-fields that follow one another are packed into the same storage
words, if possible. If a bit-field will not fit into the current storage location, it is put into the
beginning of the next location and the current location is padded with an unnamed field.

A colon followed by an integer constant expression indicates that the compiler should create
an unnamed bit-field at that location. In addition, a colon followed by a zero indicates that the
current location is full and that the next bit-field should begin at the start of the next storage
location.

Although bit-fields are permitted in unions (ANSI mode only), they are just like any other
members of the union in that they have a zero offset from the beginning of the union. That is,
they are not packed into the same word, as in the case of structures. The special cases of
unnamed bit-fields and unnamed bit-fields of length zero behave differently with unions; they
are simply unnamed members that cannot be assigned to.

The unary address operator (&) may not be applied to bit-fields. This implies that there cannot
be pointers to bit-fields nor can there be arrays of bit-fields.

Refer to Chapter 10, “HP C/HP-UX Implementation Topics,” on page 235 for more information
on bit-fields.

Structure and Union Tags

Structures and unions are declared with the struct or union keyword. You can follow the
keywords with a tag that names the structure or union type much the same as an enum tag
names the enumerated type. (Refer to “Enumeration” on page 52 for information on
enumerated types.) Then you can use the tag with the struct or union keyword to declare
variables of that type without re-specifying member declarations. A structure tag occupies a
Chapter 3 49

Data Types and Declarations
Structure and Union Specifiers
separate name space reserved for tags. Thus, a structure tag may have the same spelling as a
structure member or an ordinary identifier. Structure tags also obey the normal block scope
associated with identifiers. Another tag of the same spelling in a subordinate block may hide a
structure tag in an outer block.

A struct or union declaration has two parts: the structure body, where the members of the
structure are declared (and possibly a tag name associated with them); and a list of
declarators (objects with the type of the structure).

Either part of the declaration can be empty. Thus, you can put the structure body declaration
in one place, and use the struct type in another place to declare objects of that type.

For example, consider the following declarations:

struct s1 {
 int x;
 float y;
};

struct s1 obj1, *obj2;

The first example declares only the struct body and its associated tag name. The second
example uses the struct tag to declare two objects — obj1 and obj2. They are, respectively, a
structure object of type struct s1 and a pointer object, pointing to an object of type struct
s1.

This allows you to separate all the struct body declarations into one place (for example, a
header file) and use the struct types elsewhere in the program when declaring objects.

Consider the following example:

struct examp {
 float f; /* floating member */
 int i; /* integer member */
}; /* no declaration list */

In this example, the structure tag is examp and it is associated with the structure body that
contains a single floating-point quantity and an integer quantity. Note that no objects are
declared after the definition of the structure's body; only the tag is being defined.

A subsequent declaration may use the defined structure tag:

 struct examp x, y[100];

This example defines two objects using type struct examp. The first is a single structure
named x and the second, y, is an array of structures of type struct examp.
Chapter 350

Data Types and Declarations
Structure and Union Specifiers
Another use for structure tags is to write self-referential structures. A structure of type S may
contain a pointer to a structure of type S as one of its members. Note that a structure can
never have itself as a member because the definition of the structure's content would be
recursive. A pointer to a structure is of fixed size, so it may be a member. Structures that
contain pointers to themselves are key to most interesting data structures. For example, the
following is the definition of a structure that is the node of a binary tree:

struct node {
 float data; /* data stored at the node */
 struct node *left; /* left subtree */
 struct node *right; /* right subtree */
 };

This example defines the shape of a node type of structure. Note that the definition contains
two members (left and right) that are themselves pointers to structures of type node.

The C programming rule that all objects must be defined before use is relaxed somewhat for
structure tags. A structure can contain a member that is a pointer to an as yet undefined
structure. This allows for mutually referential structures:

struct s1 { struct s2 *s2p; };
struct s2 { struct s1 *s1p; };

In this example, structure s1 references the structure tag s2. When s1 is declared, s2 is
undefined. This is valid.

Example

struct tag1 {
int m1;
int :16; /* unnamed bit-field */
int m2 :16; /* named bit-field; packed into

/* same word as previous member */
int m3, m4;

}; /* empty declarator list */
union tag2 {

int u1;
int :16;
int u2:16; /* bit-field, starts at offset 0 */
int u3, u4;

} fudge1, fudge2; /* declarators denoting objects of the union type */

struct tag1 obj1, obj2; /* use of type "struct tag1", */
/* whose body has been declared above */
Chapter 3 51

Data Types and Declarations
Enumeration
Enumeration
The identifiers in an enumeration list are declared as constants.

Syntax

enum-specifier ::=
 [type-specifier] enum [identifier] {enumerator-list}
 [type-specifier] enum identifier

enumerator-list ::=
enumerator
enumerator-list , enumerator

enumerator ::=
enumeration-constant
enumeration-constant = constant-expression

enumeration-constant ::= identifier

Description

The identifiers defined in the enumerator list are enumeration constants of type int. As
constants, they can appear wherever integer constants are expected. A specific integer value
is associated with an enumeration constant by following the constant with an equal sign (=)
and a constant expression. If you define the constants without using the equal sign, the first
constant will have the value of zero and the second will have the value of one, and so on. If an
enumerator is defined with the equal sign followed by a constant expression, that identifier
will take on the value specified by the expression. Subsequent identifiers appearing without
the equal sign will have values that increase by one for each constant. For example,

enum color {red, blue, green=5, violet};

defines red as 0, blue as 1, green as 5, and violet as 6.

Enumeration constants share the same name space as ordinary identifiers. They have the
same scope as the scope of the enumeration in which they are defined. You can also use the
int or long type specifier to indicate 4-byte enums, even though 4-byte enums are the default.

The identifier in the enum declaration behaves like the tags used in structure and union
declarations. If the tag has already been declared, you can use the tag as a reference to that
enumerated type later in the program.
Chapter 352

Data Types and Declarations
Enumeration
enum color x, y[100];

In this example, the color enumeration tag declares two objects. The x object is a scalar enum
object, while y is an array of 100 enums.

An enumeration tag cannot be used before its enumerators are declared.

Examples

enum color {RED, GREEN, BLUE};

enum objectkind {triangle, square=5, circle}; /* circle == 6 */

Sized enum - HP C Extension

By default, the HP C compiler on HP 9000 systems allocates four bytes for all enumerated
variables. However, if you know that the range of values being assigned to an enum variable is
small, you can direct the compiler to allocate only one or two bytes by using the char or short
type specifier. If the range is large, you can direct the compiler to allocate eight bytes by using
the long long type specifier. You can also use the long type specifier to indicate 4-byte
enums, even though this is the default. For example:

long long enum bigger_enum {barge, yacht}; /* 8-byte enum type */
enum default_enum {ERR1, ERR2, ERR3, ERR4}; /* 4-byte enum type */
long enum big_enum {STO, ST1, ST2, ST3}; /* 4-byte enum type */
short enum small_enum {cats, dogs}; /* 2-byte enum type */
char enum tiny_enum {alpha, beta}; /* 1-byte enum type */

When mixed in expressions, enums behave exactly as their similarly sized type counterparts
do. That is, an enum behaves like an int, a long enum acts like a long int, and a short enum
acts like a short int. You will, however, receive a warning message when you mix enum
variables with integer or floating-point types, or with differently typed enums.

The sizeof() function returns the actual storage allocated when called with
enum-specifier.

NOTE enumeration-constants will have the same size as the type specified in the
enumeration declaration.

char enum {a}; /* sizeof(a) returns 1. */
Chapter 3 53

Data Types and Declarations
Declarators
Declarators
A declarator introduces an identifier and specifies its type, storage class, and scope.

Syntax

declarator ::=
[pointer] direct-declarator

direct-declarator ::=
identifier
(declarator)
direct-declarator [[constant-expression]]
direct-declarator (parameter-type-list)
direct-declarator ([identifier-list])

pointer ::=
* [type-qualifier-list]
* [type-qualifier-list] pointer

type-qualifier-list ::=
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list ::=
parameter-list
parameter-list , ...

parameter-list ::=
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration ::=
declaration-specifiers declarator
declaration-specifiers [abstract-declarator]

identifier-list ::=
identifier
identifier-list , identifier
Chapter 354

Data Types and Declarations
Declarators
Description

Various special symbols may accompany declarators. Parentheses change operator precedence
or specify functions. The asterisk specifies a pointer. Square brackets indicate an array. The
constant-expression specifies the size of an array.

A declarator specifies one identifier and may supply additional type information. When a
construction with the same form as the declarator appears in an expression, it yields an entity
of the indicated scope, storage class, and type.

If an identifier appears by itself as a declarator, it has the type indicated by the type specifiers
heading the declaration.

Declarator operators have the same precedence and associativity as operators appearing in
expressions. Function declarators and array declarators bind more tightly than pointer
declarators. You can change the binding of declarator operators using parentheses. For
example,

 int *x[10];

is an array of 10 pointers to ints. This is because the array declarator binds more tightly than
the pointer declarator. The declaration

 int (*x)[10];

is a single pointer to an array of 10 ints. The binding order is altered with the use of
parentheses.

Pointer Declarators

If D is a declarator, and T is some combination of type specifiers and storage class specifiers
(such as int), then the declaration T *D declares D to be a pointer to type T. D can be any
general declarator of arbitrary complexity. For example, if D were declared as a pointer
already, the use of a second asterisk indicates that D is a pointer to a pointer to T.

Some examples:

int *pi; /* pi: Pointer to an int */
int **ppi; /* ppi: Pointer to a pointer to an int */
int *ap[10]; /* ap: Array of 10 pointers to ints */
int (*pa)[10]; /* pa: Pointer to array of 10 ints */
int *fp(); /* fp: Function returning pointer to int */
int (*pf)(); /* pf: Pointer to function returning an int */

The binding of * (pointer) declarators is of lower precedence than either [] (array) or ()
(function) declarators. For this reason, parentheses are required in the declarations of pa and
pf.
Chapter 3 55

Data Types and Declarations
Declarators
Array Declarators

If D is a declarator, and T is some combination of type specifiers and storage class specifiers
(such as int), then the declaration

 T D[constant-expression];

declares D to be an array of type T.

You declare multidimensional arrays by specifying additional array declarators. For example,
a 3 by 5 array of integers is declared as follows:

 int x[3][5];

This notation (correctly) suggests that multidimensional arrays in C are actually arrays of
arrays. Note that the [] operator groups from left to right. The declarator x[3][5] is
actually the same as ((x[3])[5]). This indicates that x is an array of three elements each of
which is an array of five elements. This is known as row-major array storage.

You can omit the constant-expression giving the size of an array under certain circumstances.
You can omit the first dimension of an array (the dimension that binds most tightly with the
identifier) in the following cases:

• If the array is a formal parameter in a function definition.

• If the array declaration contains an initializer.

• If the array declaration has external linkage and the definition (in another translation
unit) that actually allocates storage provides the dimension.

Note that the long long data type cannot be used to declare an array's size.

Following are examples of array declarations:

int x[10]; /* x: Array of 10 integers */
float y[10][20]; /* y: Matrix of 10x20 floats */
extern int z[]; /* z: External integer array of undefined dimension */
int a[]={2,7,5,9}; /* a: Array of 4 integers */
int m[][3]= { /* m: Matrix of 2x3 integers */

{1,2,7},
{6,6,6} };

Note that an array of type T that is the formal parameter in a function definition has been
converted to a pointer to type T. The array name in this case is a modifiable lvalue and can
appear as the left operand of an assignment operator. The following function will clear an
array of integers to all zeros. Note that the array name, which is a parameter, must be a
modifiable lvalue to be the operand of the ++ operator.
Chapter 356

Data Types and Declarations
Declarators
void clear(a, n)
int a[]; /* has been converted to int * */
int n; /* number of array elements to clear */
{

while(n--) /* for the entire array */
a++ = 0; / clear each element to zero */

}

Variable Length Array

Variable Length Array(VLA) is a part of C99 standards (ISO/IEC 9899:1999). VLA allows the
integer expression delimited by [and] in an array declarator to be a variable expression or *.
An identifier whose declaration has such an array declarator is a variably modified (VM) type.

All identifiers having a VM type must be either:

• block scope or function prototype scope, if the expression in an array declarator is a
variable expression or

• function prototype scope, if the expression is *.

NOTE VLA is supported only in ANSI extended (-Ae) mode.

Arrays declared with the static or extern storage class specifier cannot have a VM type. But a
pointer to an array declared with the static storage class specifier can have a VM type. All
identifiers having a VM type are ordinary identifiers and therefore cannot be the members of
structures or unions.

extern int n;

int A[n]; // Error - file scope VM type
extern int (*p) [n]; // Error - file scope VM type
int B[100]; // OK - file scope but not VM type
void foo(int m, int C[m] // OK - function prototype

// scope VM type
{

typedef int VLA[m] [m]; // OK - block scope VM type
int D[m]; // OK - block scope with VM type
static int E[m]; // Error - static specifier in VM type
extern int F[m]; // Error - extern specifier in VM type
int (*q)[m]; // OK - block scope with VM type
extern int (*r)[m]; // Error - extern specifier in VM type
static int (*s)[m] = &B; // OK - static specifier allowed in VM

// type since ‘s’ is pointer to array
struct tag {
Chapter 3 57

Data Types and Declarations
Declarators
int (*x)[n]; // Error - x not ordinary identifier
int y[n]; // Error - y not ordinary identifier
};

}

A goto statement is not allowed to jump past any declarations of identifiers having a VM type.
A jump within the scope is permitted.

goto L1; // Error - going INTO scope of VM type
{

int a[n];
a[j] = 4;

L1:
a[j] = 3;
goto L2; // OK, going WITHIN scope of VM type
a[j] = 5;

L2:
a[j] = 6;

}
goto L2; // Error - going INTO scope of VM type

The size of an object having a VM type is determined and fixed at the point of the object's
declaration and cannot be altered.

The following example assumes size of (int) = 4,

int n = 10, vla[n];
n = 20;
printf(""%d", sizeof(vla); // prints 40, not 80

Function Declarators

If D is a declarator, and T is some combination of type specifiers and storage class specifiers
(such as int), then the declaration

T D (parameter-type-list)

or

T D ([identifier-list])

declares D to be a function returning type T. A function can return any type of object except an
array or a function. However, functions can return pointers to functions or arrays.

If the function declarator uses the form with the parameter-type-list, it is said to be in
prototype form. The parameter type list specifies the types of, and may declare identifiers for,
the parameters of the function. If the list terminates with an ellipsis (,…), no information
about the number of types of the parameters after the comma is supplied. The special case of
void as the only item in the list specifies that the function has no parameters.
Chapter 358

Data Types and Declarations
Declarators
If a function declarator is not part of a function definition, the optional identifier-list
must be empty.

Function declarators using prototype form are only allowed in ANSI mode.

Functions can also return structures. If a function returns a structure as a result, the called
function copies the resulting structure into storage space allocated in the calling function. The
length of time required to do the copy is directly related to the size of the structure. If pointers
to structures are returned, the execution time is greatly reduced. (But beware of returning a
pointer to an auto struct — the struct will disappear after returning from the function in
which it is declared.)

The function declarator is of equal precedence with the array declarator. The declarators
group from left to right. The following are examples of function declarators:

int f(); /* f: Function returning an int */
int *fp(); /* fp: Function returning pointer to an int */
int (*pf)(); /* pf: Pointer to function returning an int */
int (*apf[])(); /* apf: Array of pointers to functions returning int */

Note that the parentheses alter the binding order in the declarations of pf and apf in the
above examples.
Chapter 3 59

Data Types and Declarations
Type Names
Type Names
A type name is syntactically a declaration of an object or a function of a given type that omits
the identifier. Type names are often used in cast expressions and as operands of the sizeof
operator.

Syntax

type-name ::=
specifier-qualifier-list [abstract-declarator]

abstract-declarator ::=
pointer
[pointer] direct-abstract-declarator

direct-abstract-declarator
(abstract-declarator)
[direct-abstract-declarator] [[constant-expression]]
[direct-abstract-declarator] ([parameter-type-list])

Description

Type names are enclosed in parentheses to indicate a cast operation. The destination type is
the type named in the cast; the operand is then converted to that type. A type name is a
declaration without the identifier specified. For example, the declaration for an integer is int
i. If the identifier is omitted, only the integer type int remains.

Examples

int int
int * Pointer to int
int () Function returning an int
int *() Function returning a pointer to int
int (*)() Pointer to function returning an int
int [3]; Array of 3 int
int *[3]; Array of 3 pointers to int
int (*)[3]; Pointer to an array of 3 int

The parentheses are necessary to alter the binding order in the cases of pointer to function
and pointer to array. This is because function and array declarators have higher precedence
than the pointer declarator.
Chapter 360

Data Types and Declarations
Type Definitions Using typedef
Type Definitions Using typedef
The typedef keyword, useful for abbreviating long declarations, allows you to create
synonyms for C data types and data type definitions.

Syntax

typedef-name ::= identifier

Description

If you use the storage class typedef to declare an identifier, the identifier is a name for the
declared type rather than an object of that type. Using typedef does not define any objects or
storage. The use of a typedef does not actually introduce a new type, but instead introduces a
synonym for a type that already exists. You can use typedef to isolate machine dependencies
and thus make your programs more portable from one operating system to another.

For example, the following typedef defines a new name for a pointer to an int:

 typedef int *pointer;

Instead of the identifier pointer actually being a pointer to an int, it becomes the name for
the pointer to the int type. You can use the new name as you would use any other type. For
example:

 pointer p, *ppi;

This declares p as a pointer to an int and ppi as a pointer to a pointer to an int.

One of the most useful applications of typedef is in the definition of structure types. For
example:

 typedef struct {
 float real;
 float imaginary;
 } complex;

The new type complex is now defined. It is a structure with two members, both of which are
floating-point numbers. You can now use the complex type to declare other objects:

 complex x, *y, a[100];

This declares x as a complex, y as a pointer to the complex type and a as an array of 100
complex numbers. Note that functions would have to be written to perform complex
arithmetic because the definition of the complex type does not alter the operators in C.
Chapter 3 61

Data Types and Declarations
Type Definitions Using typedef
Other type specifiers (that is, void, char, short, int, long, long long, signed,
unsigned, float, or double) cannot be used with a name declared by typedef. For example,
the following typedef usage is illegal:

typedef long int li;
.
.
.
unsigned li x;

typedef identifiers occupy the same name space as ordinary identifiers and follow the same
scoping rules.

Structure definitions which are used in typedef declarations can also have structure tags.
These are still necessary to have self-referential structures and mutually referential
structures.

Example

typedef unsigned long ULONG; /* ULONG is an unsigned long */
typedef int (*PFI)(int); /* PFI is a pointer to a function */
 /* taking an int and returning an int */

ULONG v1; /* equivalent to "unsigned long v1" */
PFI v2; /* equivalent to "int (*v2)(int)" */
Chapter 362

Data Types and Declarations
Initialization
Initialization
An initializer is the part of a declaration that provides the initial values for the objects being
declared.

Syntax

initializer ::=
assignment-expression

 {initializer-list}
 {initializer-list , }

initializer-list ::=
initializer
initializer-list , initializer

Description

A declarator may include an initializer that specifies the initial value for the object whose
identifier is being declared.

Objects with static storage duration are initialized at load time. Objects with automatic
storage duration are initialized at run-time when entering the block that contains the
definition of the object. An initialization of such an object is similar to an assignment
statement.

You can initialize a static object with a constant expression. You can initialize a static
pointer with the address of any previously declared object of the appropriate type plus or
minus a constant.

You can initialize an auto scalar object with an expression. The expression is evaluated at
run-time, and the resulting value is used to initialize the object.

When initializing a scalar type, you may optionally enclose the initializer in braces. However,
they are normally omitted. For example

int i = {3};

is normally specified as

int i = 3;
Chapter 3 63

Data Types and Declarations
Initialization
When initializing the members of an aggregate, the initializer is a brace-enclosed list of
initializes. In the case of a structure with automatic storage duration, the initializer may be a
single expression returning a type compatible with the structure. If the aggregate contains
members that are aggregates, this rule applies recursively, with the following exceptions:

• Inner braces may be optionally omitted.

• Members that are themselves aggregates cannot be initialized with a single expression,
even if the aggregate has automatic storage duration.

In ANSI mode, the initializer lists are parsed top-down; in compatibility mode, they are
parsed bottom-up. For example,

int q [3] [3] [2] = {
 { 1 }
 { 2, 3 }
 { 4, 5, 6 }
};

produces the following layout:

ANSI Mode Compatibility Mode
1 0 0 0 0 0 1 0 2 3 4 5
2 3 0 0 0 0 6 0 0 0 0 0
4 5 6 0 0 0 0 0 0 0 0 0

It is advisable to either fully specify the braces, or fully elide all but the outermost braces,
both for readability and ease of migration from compatibility mode to ANSI mode.

Because the compiler counts the number of specified initializes, you do not need to specify the
size in array declarations. The compiler counts the initializes and that becomes the size:

 int x[] = {1, 10, 30, 2, 45};

This declaration allocates an array of int called xwith a size of five. The size is not specified in
the square brackets; instead, the compiler infers it by counting the initializes.

As a special case, you can initialize an array of characters with a character string literal. If
the dimension of the array of characters is not provided, the compiler counts the number of
characters in the string literal to determine the size of the array. Note that the terminating \0
is also counted. For example:

 char message[] = "hello";

This example defines an array of characters named message that contains six characters. It is
identical to the following:

 char message[] = {'h','e','l','l','o','\0'};

You can also initialize a pointer to characters with a string literal:
Chapter 364

Data Types and Declarations
Initialization
 char *cp = "hello";

This declares the object cp as a character pointer initialized to point to the first character of
the string “hello”.

It is illegal to specify more initializes in a list than are required to initialize the specified
aggregate. The one exception to this rule is the initialization of an array of characters with a
string literal.

 char t[3] = "cat";

This initializes the array t to contain the characters c, a, and t. The trailing '\0' character is
ignored.

If there are not enough initializes, the remainder of the aggregate is initialized to zero.

Some more examples include:

 char *errors[] = {
 "undefined file",
 "input error",
 "invalid user"
};

In this example, the array errors is an array of pointers to character (strings). The array is
initialized with the starting addresses of three strings, which will be interpreted as error
messages.

An array with element type compatible with wchar_t (unsigned
int) may be initialized by a wide string literal, optionally enclosed in braces. Successive
characters of the wide string literal initialize the members of the array. This includes the
terminating zero-valued character, if there is room or if the array is of unknown size.

Examples

wchar_t wide_message[]=L"x$$z";

You initialize structures as you do any other aggregate:

 struct{
 int i;
 unsigned u:3;
 unsigned v:5;
 float f;
 char *p;
} s[] = {
Chapter 3 65

Data Types and Declarations
Initialization
 {1, 07, 03, 3.5, "cats eat bats" },
 {2, 2, 4, 5.0, "she said with a smile"}
};

Note that the object (s), being declared, is an array of structures without a specified
dimension. The compiler counts the initializers to determine the array's dimension. In this
case, the presence of two initializes implies that the dimension of s is two. You can initialize
named bit-fields as you would any other member of the structure.

If the value used to initialize a bit-field is too large, it is truncated to fit in the bit-field.

For example, if the value 11 were used to initialize the 3-bit field u above, the actual value of u
would be 3 (the top bit is discarded).

A struct or union with automatic storage duration can also be initialized with a single
expression of the correct type.

struct SS { int y; };
extern struct SS g(void);
func()
{
 struct SS z = g();
}

When initializing a union, since only one union member can be active at one time, the first
member of the union is taken to be the initialized member.

The union initialization is only available in ANSI mode.

union {
 int i;
 float f;
 unsigned u:5;
} = { 15 };
Chapter 366

Data Types and Declarations
Compound Literal
Compound Literal
Compound literal provide a mechanism for specifying constants of aggregate or union type.
Compound literal is a part of the C99 standards (ISO/IEC 9899:1999: 6.5.2.5). Compound
literals are an easy means of initializing an object of type aggregate or union without having
to allocate a temporary variable for the object. It is represented as an unnamed object with a
type and has an lvalue.

Syntax

(type-name) {initializer-list}

type-name must specify an object type or an array of unknown size. The value of the
compound literal is that of an unnamed object initialized by the initializer list. The object has
static storage if the compound literal occurs outside the body of the function, otherwise it has
automatic storage duration associated with the enclosing blocks.

Examples

The following examples detail the usage of compound literals:

Example 3-1 An Array of Scalars

int *p=(int[]) {1,2};

In this example, an array of size 2 has been declared, with the first two elements initialized to
1 and 2. (int []){1,2} represents the compound literal and it is assigned to a pointer
variable p of type int.

Example 3-2 An Array of Structures

struct node
{

int a;
int b;

};
struct node *st=(struct node[2]) {1,2,3,4};

In this example, a pointer of structures has been initialized with the unnamed compund
literal object. (struct node[2]){1,2,3,4} is the compound literal and is converted to
struct node * and assigned to st.
Chapter 3 67

Data Types and Declarations
Compound Literal
Example 3-3 As a Parameter

int main()
{

foo((int [])(1,2,3,4));
}
int foo(int *p)
{
}

In this example, a compound literal is passed as a parameter to function foo() instead of
creating a temporary variable in the function main() and then passing the compound literal
as a parameter to foo(). Compound literals can be passed as parameters to functions
eliminating the need of defining a temporary variable in the caller function.

Example 3-4 Element in an Array

int *p=(int [10000]){[999]=20};

This example shows how a particular element[999] in an array of size 10000 can be
initialized explicitly.

Example 3-5 An Array of Characters

char *c=(char []){"/tmp/testfile"};

This example shows how a compound literal is used to initialize an array of characters.

Example 3-6 Constant Compound Literal

(const float []) {1e0,1e1};

This example shows a constant compound literal.

Example 3-7 Single Compound Literal

struct int_list {
int car;
struct int_list *cdr;

};
struct int_list endless_zeros = {0. &endless_zeros};

This example shows how a single compound literal cannot be used to specify a circularly
linked object, since compound literals are unnamed.

Example 3-8 Structure Objects

drawline((struct point){1,1},&(struct point){3,3}); /* call */
drawline(struct point, struct point *) { /* definition */ }
Chapter 368

Data Types and Declarations
Compound Literal
This example is for structure objects created using compound literals, which are passed to
functions.

Example 3-9 Example 9: Possible Ways of Using Compound Literals

int x = (int){5}; // initializing x with 5
int *y = (int *){&x}; // initializing y with address of x

The purpose of the above example is only to show the other possible ways of using compound
literals.

NOTE Compound literal is recognized only in the C99 mode (-AC99).
Chapter 3 69

Data Types and Declarations
Function Definitions
Function Definitions
A function definition introduces a new function.

Syntax

function-definition ::=
[declaration-specifiers] declarator [declaration-list] compound-statement

Description

A function definition provides the following information about the function:

1. Type.

You can specify the return type of the function. If no type is provided, the default return
type is int. If the function does not return a value, it can be defined as having a return
type of void. You can declare functions as returning any type except a function or an
array. You can, however, define functions that return pointers to functions or pointers to
arrays.

2. Formal parameters. There are two ways of specifying the type and number of the formal
parameters to the function:

a. A function declarator containing an identifier list.

The identifiers are formal parameters to the function. You must include at least one
declarator for each declaration in the declaration list of the function. These
declarators declare only identifiers from the identifier list of parameters. If a
parameter in the identifier list has no matching declaration in the declaration list, the
type of the parameter defaults to int.

b. A function declarator containing a parameter type list (prototype form).

In this case, the function definition cannot include a declaration list. You must include
an identifier in each parameter declaration (not an abstract declarator). The one
exception is when the parameter list consists of a single parameter of type void; in
this case do not use an identifier.

NOTE Function prototypes can be used only in ANSI mode.
Chapter 370

Data Types and Declarations
Function Definitions
3. Visibility outside defining translation unit. A function can be local to the translation
unit in which it is defined (if the storage class specifier is static). Alternatively, a
function can be visible to other translation units (if no storage class is specified, or if the
storage class is extern).

4. Body of the function. You supply the body that executes when the function is called in a
single compound statement following the optional declaration-list.

Do not confuse definition with declaration, especially in the case of functions. Function
definition implies that the above four pieces of information are supplied. Function declaration
implies that the function is defined elsewhere.

You can declare formal parameters as structures or unions. When the function is called, the
calling function's argument is copied to temporary locations within the called function.

All functions in C may be recursive. They may be directly recursive so the function calls itself
or they may be indirectly recursive so a function calls one or more functions which then call
the original function. Indirect recursion can extend through any number of layers.

In function definitions that do not use prototypes, any parameters of type float are actually
passed as double, even though they are seen by the body of the function as floats. When such
a function is called with a float argument, the float is converted back to float on entry into the
function.

NOTE In compatibility mode, the type of the parameter is silently changed to double,
so the reverse conversion does not take place.

In a prototype-style definition, such conversions do not take place, and the float is both passed
and accessed in the body as a float.

char and short parameters to nonprototype-style function definitions are always converted to
type int. This conversion does not take place in prototype-style definitions.

In either case, arrays of type T are always adjusted to pointer to type T, and functions are
adjusted to pointers to functions.

Single dimensioned arrays declared as formal parameters need not have their size specified. If
the name of an integer array is x, the declaration is as follows:

int x[];

For multidimensional arrays, each dimension must be indicated by a pair of brackets. The size
of the first dimension may be left unspecified.

The storage class of formal parameters is implicitly “function parameter.” A further storage
class of register is accepted.
Chapter 3 71

Data Types and Declarations
Function Definitions
Examples

The following example shows a function that returns the sum of an array of integers.

int total(data, n) /* function type, name, formal list */
int data[]; /* parameter declarations */
int n;
{
 auto int sum = 0; /* local, initialized */
 auto int i; /* loop variable */

 for(i=0; i<n; ++i) /* range over all elements */
 sum += data[i]; /* total the data array */
 return sum; /* return the value */
}

This is an example of a function definition without prototypes.

int func1 (p1, p2) /* old-style function definition */
int p1, p2; /* parameter declarations */
{ /* function body starts */
 int l1; /* local variables */
 11 = p1 + p2;
 return l1;
}

Here is an example of a function definition using prototypes.

char *func2 (void) /* new-style definition */
 /* takes no parameters */
{
 /* body */
}

int func3 (int p1, char *p2, ...)/* two declared parameters:
 p1 & p2 */
 /* "..." specifies more,
 undeclared parameters
 of unspecified type */
{
 /* body */ /* to access undeclared
 parameters here, use the
 functions declared in the
 <stdarg.h> header file. */
}

Chapter 372

Data Types and Declarations
Function Definitions
inline

HP C supports inlining frequently used functions. These functions can be inlined by
specifying them as inline either in the function declarator or in the function definition.

NOTE inline is available only with -AC99. For all other options, you must use
__inline.

The optimizer uses its own heuristics to inline a function, if necessary.

Examples

The following examples detail the usage of inline.

Example 3-10 Using inline in Function Declaration

inline void foo(int); //Function declaration with inline specifier
main()
{

foo(5);
}
void foo(int x)
{

. . .
}

Example 3-11 Using inline in Function Definition

main()
{

foo(5);
}
inline foo(int x0) // Function definition with inline specifier
{

. . .
}

Chapter 3 73

Data Types and Declarations
Four-Byte Extended UNIX Code (EUC)
Four-Byte Extended UNIX Code (EUC)
HP C/HP-UX supports four-byte Extended UNIX Code (EUC) characters in filenames,
comments, and string literals.
Chapter 374

4 Type Conversions
The use of different types of data within C programs creates a need for data type conversions.
For example, some circumstances that may require a type conversion are when a program
assigns one variable to another, when it passes arguments to functions, or when it tries to
evaluate an expression containing operands of different types. C performs data conversions in
these situations.

• Assignment — Assignment operations cause some implicit type conversions. This makes
arithmetic operations easier to write. Assigning an integer type variable to a floating type
variable causes an automatic conversion from the integer type to the floating type.

• Function call — Arguments to functions are implicitly converted following a number of
'widening' conversions. For example, characters are automatically converted to integers
when passed as function arguments in the absence of a prototype.

• Normal conversions — In preparation for arithmetic or logical operations, the compiler
automatically converts from one type to another. Also, if two operands are not of the same
type, one or both may be converted to a common type before the operation is performed.

• Casting — You can explicitly force a conversion from one type to another using a cast
operation.

• Returned values — Values returned from a function are automatically converted to the
function's type. For example, if a function was declared to return a double and the return
statement has an integer expression, the integer value is automatically converted to a
double.

Conversions from one type to another do not always cause an actual physical change in
representation. Converting a 16-bit short int into a 64-bit double causes a representational
change. Converting a 16-bit signed short int to a 16-bit unsigned short int does not cause a
representational change.
Chapter 4 75

Type Conversions
Integral Promotions
Integral Promotions
Wherever an int or an unsigned intmay be used in an expression, a narrower integral type
may also be used. The narrow type will generally be widened by means of a conversion called
an integral promotion. All ANSI C compilers follow what are called value preserving rules for
the conversion. In HP C the value preserving integral promotion takes place as follows: a
char, a short int, a bit-field, or their signed or unsigned varieties, are widened to an int; all
other arithmetic types are unchanged by the integral promotion.

NOTE Many older compilers, including previous releases of HP C/HP-UX, performed
integral promotions in a slightly different way, following unsigned preserving
rules. In order to avoid “breaking” programs that may rely on this non-ANSI
behavior, compatibility mode continues to follow the unsigned preserving rules.
Under these rules, the only difference is that unsigned char and unsigned short
are promoted to unsigned int, rather than int.

In the vast majority of cases, results are the same. However, if the promoted
result is used in a context where its sign is significant (such as a division or
comparison operation), results can be different between ANSI mode and
compatibility mode. The following program shows two expressions that are
evaluated differently in the two modes.

#include <stdio.h>
main ()
{

unsigned short us = 1;
printf ("Quotient = %d\n",-us/2);
printf ("Comparison = %d\n",us<-1);

}

In compatibility mode, as with many pre-ANSI compilers, the results are:

Quotient = 2147483647
Comparison = 1

ANSI C gives the following results:

Quotient = 0
Comparison = 0
Chapter 476

Type Conversions
Integral Promotions
To avoid situations where unsigned preserving and value preserving promotion
rules yield different results, you could refrain from using an unsigned char or
unsigned short in an expression that is used as an operand of one of the
following operators: >>, /, %, <, <=, >, or >=. Or remove the ambiguity by
using an explicit cast to specify the conversion you want.

If you enable ANSI migration warnings, the compiler will warn you of
situations where differences in the promotion rules might cause different
results. See “Compiling and Running HP C Programs” on page 207 for
information on enabling ANSI migration warnings.
Chapter 4 77

Type Conversions
Usual Arithmetic Conversions
Usual Arithmetic Conversions
In many expressions involving two operands, the operands are converted according to the
following rules, known as the usual arithmetic conversions. The common type resulting from
the application of these rules is also the type of the result. These rules are applied in the
following sequence:

1. If either operand is long double, the other operand is converted to long double.

2. If either operand is double, the other operand is converted to double.

3. If either operand is float, the other operand is converted to float.

4. Integral promotions are performed on both operands, and then the rules listed below are
followed. These rules are a strict extension of the ANSI “Usual Arithmetic Conversions”
rule (Section 3.2.1.5). This extension ensures that integral expressions will involve long
long only if one of the operands is of type long long. For ANSI conforming compilation,
the integral promotion rule is as defined in Section 3.2.1.1 of the Standard. For non-ANSI
compilation, the unsigned preserving promotion rule is used.

a. If either operand is unsigned long long, the other operand is converted to unsigned
long long,

b. otherwise, if one operand is long long, the other operand is converted to long long,

c. otherwise, if either operand is unsigned long int, the other operand is converted to
unsigned long int,

d. otherwise, if one operand is long int, and the other is unsigned
int, and long int can represent all the values of an unsigned
int, then the unsigned int is converted to a long int. (If one operand is long int,
and the other is unsigned int, and long int can NOT represent all the values of an
unsigned int, then both operands are converted to unsigned long int.)

e. If either operand is long int, the other operand is converted to long int.

f. If either operand is unsigned int, the other operand is converted to unsigned int.

g. Otherwise, both operands have type int.

NOTE In compatibility mode, the rules are slightly different.

Step 1 does not apply, because long double is not supported in compatibility
mode.
Chapter 478

Type Conversions
Usual Arithmetic Conversions
Step 3 does not apply, because in compatibility mode, whenever a float appears
in an expression, it is immediately converted to a double.

In step 4, remember that the integral promotions are performed according to
the unsigned preserving rules when compiling in compatibility mode.
Chapter 4 79

Type Conversions
Arithmetic Conversions
Arithmetic Conversions
In general, the goal of conversions between arithmetic types is to maintain the same
magnitude within the limits of the precisions involved. A value converted from a less precise
type to a more precise type and then back to the original type results in the same value.

Integral Conversions

A particular bit pattern, or representation, distinguishes each data object from all others of
that type. Data type conversion can involve a change in representation.

When signed integer types are converted to unsigned types of the same length, no change in
representation occurs. A short int value of -1 is converted to an unsigned short int value
of 65535.

Likewise, when unsigned integer types are converted to signed types of the same length, no
representational change occurs. An unsigned short int value of 65535 converted to a short
int has a value of -1.

If a signed int type is converted to an unsigned type that is wider, the conversion takes
(conceptually) two steps. First, the source type is converted to a signed type with the same
length as the destination type. (This involves sign extension.) Second, the resulting signed
type is converted to unsigned. The second step requires no change in representation.

If an unsigned integer type is converted to a signed integer type that is wider, the unsigned
source type is padded with zeros on the left and increased to the size of the signed destination
type.

When a long long (or long in the 64-bit data model) is converted into another integral data
type that is of shorter length, truncation may occur. When a long long is converted into a
double type, no overflow will occur, but there may be a loss of precision.

In general, conversions from wide integer types to narrow integer types discard high-order
bits. Overflows are not detected. Conversions from narrow integer types to wide integer types
pad on the left with either zeros or the sign bit of the source type as described above.

A “plain” char is treated as signed. A “plain” int bit-field is treated as signed.
Chapter 480

Type Conversions
Arithmetic Conversions
Floating Conversions

When an integer value is converted to a floating type, the result is the equivalent
floating-point value. If it cannot be represented exactly, the result is the nearest representable
value. If the two nearest representable values are equally near, the result is the one whose
least significant bit is zero.

When a long long is converted into a floating type, no overflow will occur but may result in
loss of precision. Converting a long long into a quad precision floating point value should be
precise with no overflow.

When a floating type is converted into a long long type, the fractional part is discarded and
overflow may occur.

When floating-point types are converted to integral types, the source type value must be in
the representable range of the destination type or the result is undefined. The result is the
whole number part of the floating-point value with the fractional part discarded as shown in
the following examples:

int i;
i = 9.99; /* i gets the value 9 */
i = -9.99; /* i gets the value -9 */

float x1 = 1e38; /* legal; double is converted to float */
float x2 = 1e39; /* illegal; value is outside of range

for float */

long double x3 = 1.f; /* legal; float is converted to long
double */

When a long double value is converted to a double or float value, or a double value is
converted to a float value, if the original value is within the range of values representable in
the new type, the result is the nearest representable value (if it cannot be represented
exactly). If the two nearest representable values are equally near, the result is the one whose
least significant bit is zero. When a float value is converted to a double or long double value, or
a double value is converted to a long double value, the value is unchanged.

Arrays, Pointers, and Functions

An expression that has function type is called a function designator. For example, a function
name is a function designator. With two exceptions, a function designator with type “function
returning type” is converted to an expression with type “pointer to function returning type.”
The exceptions are when the function designator is the operand of sizeof (which is illegal) and
when it is the operand of the unary & operator.
Chapter 4 81

Type Conversions
Arithmetic Conversions
In most cases, when an expression with array type is used, it is automatically converted to a
pointer to the first element of the array. As a result, array names and pointers are often used
interchangeably in C. This automatic conversion is not performed in the following contexts:

• When the array is the operand of sizeof or the unary &;.

• It is a character string literal initializing an array of characters.

• It is a wide string literal initializing an array of wide characters.
Chapter 482

5 Expressions and Operators
Operators are grouped as follows:

• Arithmetic Operators (+, -, *, /, %)

• Array Subscripting ([])

• Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)

• Bit Operators (<<, >>, &, ^, |, ~)

• Cast Operator

• Comma Operator (,)

• Conditional Expression Operator (?:)

• Function Calls

• Increment and Decrement Operators (++, --)

• Logical Operators (&&, ||, !)

• Pointer Operators (*, ->, &)

• Relational Operators (>, >=, <, ==, !=)

• sizeof Operator

• Structure and Union Members (., ->)

See Also:

• Operator Precedence

• Operator Quick Reference

The different types of expressions are:

• Constant Expressions

• Integral Expressions

• Floating-Point Expressions

• Pointer Expressions

• lvalue Expressions
Chapter 5 83

Expressions and Operators
Arithmetic Operators (+, -, *, /, %)
Arithmetic Operators (+, -, *, /, %)

Syntax

exp1 + exp2 Adds exp1 and exp2. An exp can be any integer or floating-point expression.

exp1 - exp2 Subtracts exp2 from exp1.

exp1 * exp2 Multiplies exp1 by exp2.

exp1 / exp2 Divides exp1 by exp2.

exp1 % exp2 Finds modulo of exp1 divided by exp2. (That is, finds the remainder of an
integer division.) An expression can be any integer expression.

-exp Negates the value of exp.

+exp Identity (unary plus).

Arguments

exp Any constant or variable expression.

Description

The addition, subtraction, and multiplication (+, -, and *) operators perform the usual
arithmetic operations in C programs. The operands may be any integral or floating-point
value, with the following exception:

• The modulo operator (%) accepts only integer operands.

• The unary plus operator (+exp) and the addition and subtraction operators accept integer,
floating-point, or pointer operands.

The addition and subtraction operators also accept pointer types as operands. Pointer
arithmetic is described in “Pointer Operators (*, ->, &)” on page 118.

C's modulo operator (%) produces the remainder of integer division, which equals 0 if the right
operand divides the left operand exactly. This operator can be useful for tasks such as
determining whether or not a year is an Olympic Games year. For example:

if (year % 4 == 0)
 printf("This is an Olympic Games year.\n");
else
 printf("There will be no Olympic Games this year.\n");
Chapter 584

Expressions and Operators
Arithmetic Operators (+, -, *, /, %)
As required by the ANSI/ISO C standard, HP C supports the following relationship between
the remainder and division operators:

a equals a%b + (a/b) * b for any integer values of a and b

The result of a division or modulo division is undefined if the right operand is 0.

The sign reversal or unary minus operator (-) multiplies its sole operand by -1. For example,
if x is an integer with the value -8, then -x evaluates to 8.

The result of the identity or unary plus operator (+) is simply the value of the operand.

Refer to “Operator Precedence” on page 135 for information about how these and other
operators evaluate with respect to each other.
Chapter 5 85

Expressions and Operators
Array Subscripting ([])
Array Subscripting ([])
A postfix expression followed by the [] operator is a subscripted reference to a single
element in an array.

Syntax

postfix-expression [expression]

Description

One of the operands of the subscript operator must be of type pointer to T (T is an object type),
the other of integral type. The resulting type is T.

The [] operator is defined so that E1[E2] is identical to (*((E1)+(E2))) in every respect.
This leads to the (counterintuitive) conclusion that the [] operator is commutative. The
expression E1[E2] is identical to E2[E1].

C's subscripts run from 0 to n-1 where n is the array size.

Multidimensional arrays are represented as arrays of arrays. For this reason, the notation is
to add subscript operators, not to put multiple expressions within a single set of brackets. For
example, int x[3][5] is actually a declaration for an array of three objects. Each object is, in
turn, an array of 5 int. Because of this, all of the following expressions are correct:

x
x[i]
x[i][j]

The first expression refers to the 3 by 5 array of int. The second refers to an array of 5 int, and
the last expression refers to a single int.

The expression x[y] is an lvalue.

There is no arbitrary limit on the number of dimensions that you can declare in an array.

Because of the design of multidimensional C arrays, the individual data objects must be
stored in row-major order.

As another example, the expression

 a[i,j] = 0

looks as if array a were doubly subscripted, when actually the comma in the subscript
indicates that the value of i should be discarded and that j is the subscript into the a array.
Chapter 586

Expressions and Operators
Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)
Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)

Syntax

lvalue = expression Simple assignment.

lvalue += expression Addition and assignment.

lvalue -= expression Subtraction and assignment.

lvalue *= expression Multiplication and assignment.

lvalue /= expression Division and assignment.

lvalue %= expression Modulo division and assignment.

lvalue <<= expression Left shift and assignment.

lvalue >>= expression Right shift and assignment.

lvalue &= expression Bitwise AND and assignment.

lvalue ^= expression Bitwise XOR and assignment.

lvalue |= expression Bitwise OR and assignment.

Arguments

lvalue Any expression that refers to a region of storage that can be manipulated.

expression Any legal expression.

Description

The assignment operators assign new values to variables. The equal sign (=) is the
fundamental assignment operator in C. The other assignment operators provide shorthand
ways to represent common variable assignments.

The Assignment Operator (=)

When the compiler encounters an equal sign, it processes the statement on the right side of
the sign and assigns the result to the variable on the left side. For example:
Chapter 5 87

Expressions and Operators
Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)
x = 3; /* assigns the value 3 to variable x */
x = y; /* assigns the value of y to x */
x = (y*z); /* performs the multiplication and */

/* assigns the result to x */

An assignment expression itself has a value, which is the same value that is assigned to the
left operand.

The assignment operator has right-to-left associativity, so the expression

a = b = c = d = 1;

is interpreted as

(a = (b = (c = (d = 1))));

First 1 is assigned to d, then d is assigned to c, then c is assigned to b, and finally, b is
assigned to a. The value of the entire expression is 1. This is a convenient syntax for assigning
the same value to more than one variable. However, each assignment may cause quiet
conversions, so that

int j;
double f;
f = j = 3.5;

assigns the truncated value 3 to both f and j. Conversely,

j = f = 3.5;

assigns 3.5 to f and 3 to j.

The Other Assignment Operators

C's assignment operators provide a handy way to avoid some keystrokes. Any statement in
which the left side of the equation is repeated on the right is a candidate for an assignment
operator. If you have a statement like this:

i = i + 10;

you can use the assignment operator format to shorten the statement to

i += 10;

In other words, any statement of the form

var = var op exp; /* traditional form */

can be represented in the following shorthand form:

var op = exp; /* shorthand form */

where var is a variable, op is a binary operator, and exp is an expression.
Chapter 588

Expressions and Operators
Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)
The only internal difference between the two forms is that var is evaluated only once in the
shorthand form. Most of the time this is not important; however, it is important when the left
operand has side effects, as in the following example:

int *ip;
ip++ += 1; / These two statements produce */
*ip++ = *ip++ + 1; /* different results. */

The second statement is ambiguous because C does not specify which assignment operand is
evaluated first. See “Operator Precedence” on page 135 for more information concerning order
of evaluation.

Assignment Type Conversions

Whenever you assign a value to a variable, the value is converted to the variable's data type if
possible. In the example below, for instance, the floating-point constant 3.5 is converted to an
int so that i gets the integer value 3.

int i;
i = 3.5;

Integer to Character Conversions Unlike arithmetic conversions, which always expand
the expression, assignment conversions can truncate the expression and therefore affect its
value. For example, suppose c is a char, and you make the following assignment:

c = 882;

The binary representation of 882 is

00000011 01110010

This number requires two bytes of storage, but the variable c has only one byte allocated for
it, so the two upper bits don't get assigned to c. This is known as overflow, and the result is
not defined by the ANSI/ISO C standard or the K&R language definition for signed types. HP
C simply ignores the extra byte, so c would be assigned the rightmost byte:

01110010

This would erroneously give c the value of 114. The principle illustrated for chars also applies
to shorts, ints, and long ints. For unsigned types, however, C has well-defined rules for
dealing with overflow conditions. When an integer value x is converted to a smaller unsigned
integer type, the result is the non-negative remainder of

x / (U_MAX+1)

where U_MAX is the largest number that can be represented in the shorter unsigned type. For
example, if j is an unsigned short, which is two bytes, then the assignment

j = 71124;
Chapter 5 89

Expressions and Operators
Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)
assigns to j, the remainder of

71124 / (65535+1)

The remainder is 5588. For non-negative numbers, and for negative numbers represented in
two's complement notation, this is the same result that you would obtain by ignoring the
extra bytes.

Integer to Float Conversions You may assign an integer value to a floating-point
variable. In this case, the integer value is implicitly converted to a floating-point type. If the
floating-point type is capable of representing the integer, there is no change in value. If f is a
double, the assignment

f = 10;

is executed as if it had been written

f = 10.0;

This conversion is invisible. There are cases, however, where a floating-point type is not
capable of exactly representing all integer values. Even though the range of floating-point
values is generally greater than the range of integer values, the precision may not be as good
for large numbers. In these instances, conversion of an integer to a floating-point value may
result in a loss of precision. Consider the following example:

#include <stdio.h>
int main(void)
{
 long int j = 2147483600;
 float x;
 x = j;
 printf("j is %d\nx is %10f\n", j, x);
 exit(0);
}

If you compile and execute this program, you get:

j is 2147483600
x is 2147483648.000000

Float to Integer Conversions The most risky mixture of integer and floating-point values
is the case where a floating-point value is assigned to an integer variable. First, the fractional
part is discarded. Then, if the resulting integer can fit in the integer variable, the assignment
is made. In the following statement, assuming j is an int, the double value 2.5 is converted to
the int value 2 before it is assigned.

j = 2.5;
Chapter 590

Expressions and Operators
Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)
This causes a loss of precision which could have a dramatic impact on your program. The
same truncation process occurs for negative values. After the assignment

j = -5.8;

the value of j is -5.

An equally serious situation occurs when the floating-point value cannot fit into an integer.
For example:

j = 999999999999.0

This causes an overflow condition which will produce unpredictable results. As a general rule,
it is a good idea to keep floating-point and integer values separate unless you have a good
reason for mixing them.

Double to Float Conversions As is the case with assigning floating-point values to
integer variables, there are also potential problems when assigning double values to float
variables. There are two potential problems: loss of precision and an overflow condition. In HP
C a double can represent approximately 16 decimal places, and a float can only represent 7
decimal places. If f is a float variable, and you make the assignment

f = 1.0123456789

the computer rounds the double constant value before assigning it to f. The value actually
assigned to f, therefore, will be 1.012346 (in double-to-float conversions, HP C always rounds
to the nearest float value). The following example shows rounding due to conversions.

/* Program name is "float_rounding". It shows how double values
 can be rounded when they are assigned to a float. */
#include <stdio.h>
int main(void)
{
 float f32;
 double f64;
 int i;
 for (i = 1, f64 = 0; i < 1000; ++i)
 f64 += 1.0/i;
 f32 = f64;
 printf("Value of f64: %1.7f\n", f64);
 printf("Value of f32: %1.7f\n", f32);
}

The output is

Value of f64: 7.4844709
Value of f32: 7.4844708
Chapter 5 91

Expressions and Operators
Assignment Operators (=, +=, -=, *=, /=, %=,<<=, >>=, &=, ^=, |=)
Floating-Point Overflows A serious problem occurs when the value being assigned is too
large to be represented in the variable. For example, the largest positive number that can be
represented by a float is approximately 3e38. However, neither the K&R language definition
nor the ANSI/ISO C standard defines what happens if you try to make an assignment outside
this range. Suppose, for example, that your program contains the following assignment:

f = 2e40;

In this simple case, the compiler recognizes the problem and reports a compile-time error. In
other instances, however, a run-time error could result.

Example

/* Following are examples of the use of each
 * assignment operator. In each case, x = 5
 * and y = 2 before the statement is executed. */

x = y; x = 2
x += y + 1; x = 8
x -= y * 3; x = -1
x *= y + 1; x = 15
x /= y; x = 2
x %= y; x = 1
x <<= y; x = 20
x >>= y; x = 1
x &= y; x = 0
x ^= y; x = 7
x |= y; x = 7
x = y = 1 x = 1, y = 1
Chapter 592

Expressions and Operators
Bit Operators (<<, >>, &, ^, |, ~)
Bit Operators (<<, >>, &, ^, |, ~)

Syntax

exp1 << exp2 Left shifts (logical shift) the bits in exp1 by exp2 positions.

exp1 >> exp2 Right shifts (logical or arithmetic shift) the bits in exp1 by exp2 positions.

exp1 & exp2 Performs a bitwise AND operation.

exp1 ^ exp2 Performs a bitwise OR operation.

exp1 | exp2 Performs a bitwise inclusive OR operation.

~exp1 Performs a bitwise negation (one's complement) operation.

Arguments

exp1 and exp2 Any integer expression.

Description

The bit operators access specific bits in an object. HP C supports the usual six bit operators,
which can be grouped into shift operators and logical operators.

Bit-Shift Operators

The << and >> operators shift an integer left or right respectively. The operands must have
integer type, and all automatic promotions are performed for each operand. For example, the
program fragment

short int to_the_left = 53, to_the_right = 53;
short int left_shifted_result, right_shifted_result;

left_shifted_result = to_the_left << 2;
right_shifted_result = to_the_right >> 2;

sets left_shifted_result to 212 and right_shifted_result to 13. The results are clearer
in binary:

 base 2 base 10
0000000000110101 53
0000000011010100 212 /* 53 shifted left 2 bits */
0000000000001101 13 /* 53 shifted right 2 bits */
Chapter 5 93

Expressions and Operators
Bit Operators (<<, >>, &, ^, |, ~)
Shifting to the left is equivalent to multiplying by powers of two:

 x << y is equivalent to x * 2y.

Shifting non-negative integers to the right is equivalent to dividing by powers of 2:

 x >> y is equivalent to x / 2y.

The << operator always fills the vacated rightmost bits with zeros. If exp1 is unsigned, the >>
operator fills the vacated leftmost bits with zeros. If exp1 is signed, then >> fills the leftmost
bits with ones (if the sign bit is 1) or zeros (if the sign bit is 0). In other words, if exp1 is
signed, the two bit-shift operators preserve its sign.

NOTE Not all compilers preserve the sign bit when doing bit-shift operations on
signed integers. The K&R language definition and the ANSI standard make
this behavior implementation-defined.

Make sure that the right operand is not larger than the size of the object being shifted. For
example, the following produces unpredictable and nonportable results because ints have
fewer than 50 bits:

10 >> 50

You will also get nonportable results if the shift count (the second operand) is a negative
value.

Bit Logical Operators

The logical bitwise operators are similar to the Boolean operators, except that they operate on
every bit in the operand(s). For instance, the bitwise AND operator (&) compares each bit of
the left operand to the corresponding bit in the righthand operand. If both bits are 1, a 1 is
placed at that bit position in the result. Otherwise, a 0 is placed at that bit position.

Bitwise AND (&) Operator The bitwise AND operator performs logical operations on a
bit-by-bit level using the following truth table:

Table 5-1 Truth Table for the bitwise AND operator, (&)

bit x of op1 bit x of op2 bit x of result

0 0 0

0 1 0

1 0 0
Chapter 594

Expressions and Operators
Bit Operators (<<, >>, &, ^, |, ~)
The following table shows an example of the bitwise AND operator:

Bitwise Inclusive (|) OR The bitwise inclusive OR operator performs logical operations on
a bit-by-bit level using the following truth table:

The bitwise inclusive OR operator (|) places a 1 in the resulting value's bit position if either
operand has a bit set at the position.

1 1 1

Table 5-2 The Bitwise AND Operator

Expression Hexadecimal Value Binary Representation

9430

5722

0x24D6

0x165A

00100100 11010110

00010110 01011010

9430 & 5722 0x0452 00000100 01010010

Table 5-3 Truth Table

bit x of op1 bit x of op2 bit x of result

0 0 0

0 1 1

1 0 1

1 1 1

Table 5-4 Example Using the Bitwise Inclusive OR Operator

Expression Hexadecimal Value Binary Representation

9430

5722

0x24D6

0x165A

00100100 11010110

00010110 01011010

9430 | 5722 0x36DE 00110110 11011110

Table 5-1 Truth Table for the bitwise AND operator, (&) (Continued)

bit x of op1 bit x of op2 bit x of result
Chapter 5 95

Expressions and Operators
Bit Operators (<<, >>, &, ^, |, ~)
Bitwise exclusive OR (^) The bitwise exclusive OR operator performs logical operations
on a bit-by-bit level using the following truth table:

The bitwise exclusive OR (XOR) operator (^) sets a bit in the resulting value's bit position if
either operand (but not both) has a bit set at the position.

Bitwise Complement (~) The bitwise complement operator (~) performs logical operations
on a bit-by-bit level using the following truth table:

The bitwise complement operator (~) reverses each bit in the operand:

Table 5-5 Truth Table for the exclusive OR, ^

bit x of op1 bit x of op2 bit x of result

0 0 0

0 1 1

1 0 1

1 1 0

Table 5-6 Example Using the XOR Operator

Expression Hexadecimal Value Binary Representation

9430

5722

0x24D6

0x165A

00100100 11010110

00010110 01011010

9430 ^ 5722 0x328C 00110010 10001100

Table 5-7 Truth table for the ~, Bitwise Complement

bit x of op2 result

0 0

0 1

Table 5-8 Example Using the Bitwise Complement Operator

Expression Hexadecimal Value Binary Representation

9430 0x24d6 00100100 11010110
Chapter 596

Expressions and Operators
Bit Operators (<<, >>, &, ^, |, ~)
~9430 0xdb29 11011011 00101001

Table 5-8 Example Using the Bitwise Complement Operator (Continued)

Expression Hexadecimal Value Binary Representation
Chapter 5 97

Expressions and Operators
Cast Operator
Cast Operator

Syntax

(data_type) exp

Arguments

data_type Any scalar data type, including a scalar data type created through a
typedef. The data_type cannot be an aggregate type, but it can be a
pointer to an aggregate type.

exp Any scalar expression.

Description

To cast a value means to explicitly convert it to another data type. For example, given the two
definitions:

int y = 5;
float x;

The following cast operation casts the value of y to float:

x = (float) y; /* x now equals 5.0 */

Here are four more casts (assume that j is a scalar data type):

i = (float) j; /* Cast j's value to float */
i = (char *)j; /* Cast j's value to a pointer to a char */
i = ((int *)())j; /* Cast j's value to a pointer */

/* to a function returning an int */
i = (float) (double) j; /* Cast j's value first to a double */

/* and then to a float */

It is important to note that if exp is a variable, a cast does not change this variable's data type;
it only changes the type of the variable's value for that one expression. For instance, in the
preceding casting examples, the cast does not produce any permanent effect on variable j.

There are no restrictions on casting from one scalar data type to another, except that you may
not cast a void object to any other type. You should be careful when casting integers to
pointers. If the integer value does not represent a valid address, the results are unpredictable.

A cast expression may not be an lvalue.
Chapter 598

Expressions and Operators
Cast Operator
Casting Integers to Other Integers

It is possible to cast one integer into an integer of a different size and to convert a
floating-point value, enumeration value or pointer to an integer. Conversions from one type of
integer to another fall into the following cases (A-E):

* Case C for long in 64-bit mode.

CASE A: Trivial Conversions It is legal to convert a value to its current type by casting it,
but this conversion has no effect.

CASE B: Integer Widening Casting an integer to a larger size is fairly straightforward.
The value remains the same, but the storage area is widened. The compiler preserves the sign
of the original value by filling the new leftmost bits with ones if the value is negative, or with
zeros if the value is positive. When it converts to an unsigned integer, the value is always
positive, so the new bits are always filled with zeros. The following table illustrates this
principle.

 hex dec
char i = 37 55
(short) i => 0037 55
(int) i => 00000037 55

char j = c3 -61
(short) j => ffc3 -61
(int) j => ffffffc3 -61

Table 5-9 Integer Conversions

Original Type char short int
unsigne
d char

unsigne
d short

unsigne
d int

char A B B D E E

short C A B C D E

int (long)* C C A* C C D*

unsigned char D B B A B B

unsigned short C D B C A B

unsigned int C C D C C A
Chapter 5 99

Expressions and Operators
Cast Operator
unsigned char k = 37 55
(short) k => 0037 55
(int) k => 00000037 55

CASE C: Casting Integers to a Smaller Type When an int value is cast to a narrower
type (short or char), the excess bits on the left are discarded. The same is true when a short
is cast to a char, or when a long in 64-bit mode is cast to an int. For instance, if an int is cast
to a short, the 16 leftmost bits are truncated. The following table of values illustrates these
conversions.

 hex dec
signed long int i = cf34bf1 217271281

(signed short int)i => 4bf1 19441
(signed char)i => f1 -15
(unsigned char)i => f1 241

If, after casting to a signed type, the leftmost bit is 1, then the number is negative. However, if
you cast to an unsigned type and after the shortening the leftmost bit is 1, then that 1 is part
of the value (it is not the sign bit).

CASE D: Casting from Signed to Unsigned, and Vice Versa When the original type
and the converted type are the same size, a representation change is necessary. That is, the
internal representation of the value remains the same, but the sign bit is interpreted
differently by the compiler. For instance:

 hex dec hex dec
signed int i = fffffca9 -855 0000f2a1 62113

(unsigned int)i => fffffca9 4294966441 0000f2a1 62113

The hexadecimal notation shows that the numbers are the same internally, but the decimal
notation shows that the compiler interprets them differently.

CASE E: Casting Signed to Unsigned and Widening This case is equivalent to
performing two conversions in succession. First, the value is converted to the signedwidened
type as described in case B, and then it is converted to unsigned as described in case D. In the
following assignments, the new leftmost bits are filled with ones to preserve negativeness
even though the final value is unsigned.

 hex dec
signed short int i = ff55 -171

(unsigned long int)i => fffff55 4294967125
Chapter 5100

Expressions and Operators
Cast Operator
Casting Floating-Point Values to Integers Casting floating-point values to integers may
produce useless values if an overflow condition occurs. The conversion is made simply by
truncating the fractional part of the number. For example, the floating-point value 3.712 is
converted to the integer 3, and the floating-point value -504.2 is converted to -504.

Here are some more examples:

float f = 3.700, f2 = -502.2, f3 = 7.35e9;

(int)f => 3
(unsigned int)f => 3
(char)f => 3

(int)f2 => -502 in decimal fffffe0a in hex
(unsigned int)f2 => 4294966794 in decimal or fffffe0a in hex
(char)f2 => 10 in decimal 0a in hex

(int)f3 => run-time error
(unsigned int)f3 => run-time error
(char)f3 => run-time error

NOTE Converting a large float to a char produces unpredictable results if the
rounded value cannot fit in one byte. If the value cannot fit in four bytes, the
run-time system issues an overflow error.

Casting Enumerated Values to Integers

When you cast an enumerated expression, the conversion is performed in two steps. First, the
enumerated value is converted to an int, and then the int is converted to the final target
data type. The sign is preserved during these conversions.

Casting Double to Float and Vice Versa

When you cast a float to a double, the system extends the number's precision without
changing its true value. However, when you cast a double to a float, the system shrinks the
number's precision, and this shrinking may change the number's value because of rounding.
The rounding generally occurs on the sixth or seventh decimal digit. Also, when you cast down
from double to float, you run the risk of causing a run-time overflow error caused by a
double that is too big or too small to fit in a float.

Casting Pointers to Pointers

You may cast a pointer of one type to a pointer to any other type. For example:
Chapter 5 101

Expressions and Operators
Cast Operator
int *int_p;
float *float_p;
struct S *str_p;
extern foo(struct T *);

. . .
int_p = (int *) float_p;
float_p = (float *) str_p;
foo((struct T *) str_p);

The cast is required whenever you assign a pointer value to a pointer variable that has a
different base type, and when you pass a pointer value as a parameter to a function that has
been prototyped with a different pointer type. The only exception to this rule concerns the
generic pointer. You may assign any pointer value to a generic pointer without casting.
Chapter 5102

Expressions and Operators
Comma Operator (,)
Comma Operator (,)

Syntax

exp1, exp2

Arguments

exp1 Any expression.

exp2 Any expression.

Description

Use the comma operator to separate two expressions that are to be evaluated one right after
the other. The comma operator is popular within for loops, as demonstrated by the following
example:

for (i = 10, j = 4; i * j < n; i++, j++);

In the preceding example, the comma operator allows you to initialize both i and j at the
beginning of the loop. The comma operator also allows you to increment i and j together at
the end of each loop iteration.

All expressions return values. When you use a comma operator, the expression returns the
value of the rightmost expression. For example, the following statement sets variable j to 2:

j = (x = 1, y = 2);

Assignments such as these, however, are considered poor programming style. You should
confine use of the comma operator to for loops.
Chapter 5 103

Expressions and Operators
Conditional Expression Operator (?:)
Conditional Expression Operator (?:)

Syntax

exp1 ? exp2 : exp3

Arguments

exp1 Any expression.

exp2 Any expression.

exp3 Any expression.

Description

The conditional expression construction provides a shorthand way of coding an if…else
condition. The difference between the expression notation and an if…else condition is that
the ? : notation is an expression and therefore returns a value, while an if…else condition is
a statement and does not return a value. The syntax described above is equivalent to

if (exp1)
 exp2;
else
 exp3;

When a conditional expression is executed, exp1 is evaluated first. If it is true (that is,
nonzero) exp2 is evaluated and its result is the value of the conditional expression. If exp1 is
false, exp3 is evaluated and its result is the value of the conditional expression.

There is no requirement that you put parentheses around the exp1 portion of the conditional
expression, but doing so will improve your code's readability.

Both exp2 and exp3 must be assignment-compatible. If exp2 and exp3 are pointers to
different types, then the compiler issues a warning. The value of a conditional expression is
either exp2 or exp3, whichever is selected. The other expression is not evaluated. The type of
the result is the type that would be produced if exp2 and exp3 were mixed in an expression.
For instance, if exp2 is a char and exp3 is a double, the result type will be double regardless of
whether exp2 or exp3 is selected.
Chapter 5104

Expressions and Operators
Conditional Expression Operator (?:)
Example

/* Program name is "conditional_exp_op_example".
 This program uses the conditional expression to
 see if the user wants to continue adding
 numbers. */
#include <stdio.h>

int main(void)
{
 int a, b, c, d, again, total;
 char answer;

 printf("\n");
 again = 1;
 while (again)
 {
 printf("Enter four numbers separated by spaces that\n");
 printf("you want added together: ");
 scanf("%d %d %d %d", &a, &b, &c, &d);
 fflush(stdin);
 total = a + b + c + d;
 printf("\nThe total is: %d\n", total);
 printf("Do you want to continue ? ");
 scanf("%c", &answer);
 again = (answer == 'y' || answer == 'Y') ? 1 : 0;
 } /* end while */
}

If you execute this program, you get the following output:

Enter four numbers separated by spaces that
you want added together: 20 30 40 50

The total is: 140
Do you want to continue ? y
Enter four numbers separated by spaces that
you want added together: 1 2 3 4

The total is: 10
Do you want to continue ? n
Chapter 5 105

Expressions and Operators
Function Calls
Function Calls

Syntax

postfix-expression ([argument-expression-list])

Description

Function calls provide a means of invoking a function and passing arguments to it.

The postfix-expression must have the type “pointer to function returning T”. The result of the
function will be type T. Functions can return any type of object except array and function.
Specifically, functions can return structures. In the case of structures, the contents of the
returned structure is copied to storage in the calling function. For large structures, this can
use a lot of execution time.

Although the expression denoting the called function must actually be a pointer to a function,
in typical usage, it is simply a function name. This works because the function name will
automatically be converted to a pointer.

C has no call statement. Instead, all function references must be followed by parentheses. The
parentheses contain any arguments that are passed to the function. If there are no
arguments, the parentheses must still remain. The parentheses can be thought of as a postfix
call operator.

If the function name is not declared before it is used, the compiler enters the default
declaration:

 extern int identifier();

Function Arguments

Function arguments are expressions. Any type of object can be passed to a function as an
argument. Specifically, structures can be passed as arguments. Structure arguments are
copied to temporary storage in the called function. The length of time required to copy a
structure argument depends upon the structure's size.

If the function being called has a prototype, each argument is evaluated and converted as if
being assigned to an object of the type of the corresponding parameter. If the prototype has an
ellipsis, any argument specified after the fixed parameters is subject to the default argument
promotions described below.
Chapter 5106

Expressions and Operators
Function Calls
The compiler checks to see that there are as many arguments as required by the function
prototype. If the prototype has an ellipsis, additional parameters are allowed. Otherwise, they
are flagged erroneous. Also, the types of the arguments must be assignment-compatible with
their corresponding formal parameters, or the compiler will emit a diagnostic message.

If the function does not have a prototype, then the arguments are evaluated and subjected to
the default argument promotions; that is, arguments of type char or short (both signed and
unsigned) are promoted to type int, and float arguments are promoted to double.

In this case, the compiler does not do any checking between the argument types and the types
of the parameters of the function (even if it has seen the definition of the function). Thus, for
safety, it is highly advisable to use prototypes wherever possible.

In both cases, arrays of type T are converted to pointers to type T, and functions are converted
to pointers to functions.

Function Formal Parameters

Within a function, the formal parameters are lvalues that can be changed during the function
execution. This does not change the arguments as they exist in the calling function. It is
possible to pass pointers to objects as arguments. The called function can then reference the
objects indirectly through the pointers. The result is as if the objects were passed to the
function using call by reference. The following swap function illustrates the use of pointers as
arguments. The swap() function exchanges two integer values:

 void swap(int *x,int *y)
 {
 int t;

 t = *x;
 *x = *y;
 *y = t;
}

To swap the contents of integer variables i and j, you call the function as follows:

 swap(&i, j);

Notice that the addresses of the objects (pointers to int) were passed and not the objects
themselves.

Because arrays of type T are converted into pointers to type T, you might think that arrays
are passed to functions using call by reference. This is not actually the case. Instead, the
address of the first element is passed to the called function. This is still strictly call by value
since the pointer is passed by value. Inside the called function, references to the array via the
passed starting address, are actually references to the array in the calling function. Arrays
are not copied into the address space of the called function.
Chapter 5 107

Expressions and Operators
Function Calls
Function Recursion

All functions are recursive both in the direct and indirect sense. Function A can call itself
directly or function A can call function B which, in turn, calls function A. Note that each
invocation of a function requires program stack space. For this reason, the depth of recursion
depends upon the size of the execution stack.
Chapter 5108

Expressions and Operators
Increment and Decrement Operators (++, --)
Increment and Decrement Operators
(++, --)

Syntax

lvalue++ Increments the current value of lvalue after lvalue has been referenced.

lvalue-- Decrements the current value of lvalue after lvalue has been referenced.

++lvalue Increments the current value of lvalue before lvalue is referenced.

--lvalue Decrements the current value of lvalue before lvalue has been referenced.

Arguments

lvalue Any previously declared integer or pointer lvalue. Although lvalue can be a
pointer variable, it cannot be a pointer to a function.

Description

The increment operator (++) adds 1 to its operand. The decrement operator (--) subtracts 1
from its operand.

The increment and decrement operators are unary. The operand must be a scalar lvalue — it
is illegal to increment or decrement a constant, structure, or union. It is legal to increment or
decrement pointer variables, but the meaning of adding 1 to a pointer is different from adding
1 to an arithmetic value. This is described in “Pointer Operators (*, ->, &)” on page 118.

Postfix and Prefix Forms

There are two forms for each of the operators: postfix and prefix. Both forms increment or
decrement the appropriate variable, but they do so at different times. The statement ++i
(prefix form) increments i before using its value, while i++ (postfix form) increments it after
its value has been used. This difference can be important to your program.

The postfix increment and decrement operators fetch the current value of the variable and
store a copy of it in a temporary location. The compiler then increments or decrements the
variable. The temporary copy, which has the variable's value before it was modified, is used in
the expression.

In many cases, you are interested only in the side effect, not in the result of the expression. In
these instances, it doesn't matter whether you use postfix or prefix.
Chapter 5 109

Expressions and Operators
Increment and Decrement Operators (++, --)
You need to be careful, however, when you use the increment and decrement operators within
an expression.

Standalone Increment Decrement Expressions
For example, as a stand-alone assignment or as the third expression in a for loop, the side
effect is the same whether you use the prefix or postfix versions. The statement

x++;

is equivalent to

++x;

Similarly, the statement

for (j = 0; j <= 10; j++)

is equivalent to

for (j = 0; j <= 10; ++j)

Using Increment and Decrement within Expressions Consider the following function
that inserts newlines into a text string at regular intervals.

#include <stdio.h>

void break_line(int interval)
{
 int c, j=0;
 while ((c = getchar()) != '\n') {
 if ((j++ % interval) == 0)
 printf("\n");
 putchar(c);
 }
}

This works because the postfix increment operator is used. If you use the prefix increment
operator, the function breaks the first line one character early.

Side Effects of the Increment and Decrement Operators The increment and
decrement operators and the assignment operators cause side effects. That is, they not only
result in a value, but they change the value of a variable as well. A problem with side effect
operators is that it is not always possible to predict the order in which the side effects occur.
Consider the following statement:

x = j * j++;
Chapter 5110

Expressions and Operators
Increment and Decrement Operators (++, --)
The C language does not specify which multiplication operand is to be evaluated first. One
compiler may evaluate the left operand first, while another evaluates the right operand first.
The results are different in the two cases. If j equals 5, and the left operand is evaluated first,
the expression will be interpreted as

x = 5 * 5; /* x is assigned 25 */

If the right operand is evaluated first, the expression becomes

x = 6 * 5; /* x is assigned 30 */

Statements such as this one are not portable and should be avoided. The side effect problem
also crops up in function calls because the C language does not guarantee the order in which
arguments are evaluated. For example, the function call

f(a, a++)

is not portable because compilers are free to evaluate the arguments in any order they choose.

To prevent side effect bugs, follow this rule: If you use a side effect operator in an expression,
do not use the affected variable anywhere else in the expression. The ambiguous expression
above, for instance, can be made unambiguous by breaking it into two assignments:

x = j * j;
++j;

Precedence of Increment and Decrement Operators
The increment and decrement operators have the same precedence, but bind from right to left.
So the expression

--j++

is evaluated as

--(j++)

This expression is illegal because j++ is not an lvalue as required by the operator. In general,
you should avoid using multiple increment or decrement operators together.

Examples

i=k--; /* Stores the value of k in i then decrements k. */
j=l++; /* Stores the value of l in j then increments l. */
i=--k; /* Decrements k then stores the new value of k in i. */
j=++l; /* Increments l then stores the new value of l in j. */

The following example uses both prefix and postfix increment and decrement operators:
Chapter 5 111

Expressions and Operators
Increment and Decrement Operators (++, --)
#include <stdio.h>
int main(void)
{
 int j = 5, k = 5, l = 5, m = 5;
 printf("j: %d\t k: %d\n", j++, k--);
 printf("j: %d\t k: %d\n", j, k);
 printf("l: %d\t m: %d\n", ++l, --m);
 printf("l: %d\t m: %d\n", l, m);
}

The result is as follows:

j: 5 k: 5
j: 6 k: 4
l: 6 m: 4
l: 6 m: 4

The results show that the initial values of j and k are used in the first printf(). They also
show that l and m are incremented and decremented, respectively, before the third printf()
call.
Chapter 5112

Expressions and Operators
Logical Operators (&&, ||, !)
Logical Operators (&&, ||, !)

Syntax

exp1 && exp2 Logical AND.

exp1 || exp2 Logical OR.

!exp1 Logical NOT.

Arguments

exp1 Any expression.

exp2 Any expression.

Description

The logical AND operator (&&) and the logical OR (||) operator evaluate the truth or falsehood
of pairs of expressions. The AND operator evaluates to 1 if and only if both expressions are
true. The OR operator evaluates to 1 if either expression is true. To test whether y is greater
than x and less than z, you would write

(x < y) && (y < z)

The logical negation operator (!) takes only one operand. If the operand is true, the result is
false; if the operand is false, the result is true.

The operands to the logical operators may be integers or floating-point objects. The expression

1 && -5

results in 1 because both operands are nonzero. The same is true of the expression

0.5 && -5

Logical operators (and the comma and conditional operators) are the only operators for which
the order of evaluation of the operands is defined. The compiler must evaluate operands from
left to right. Moreover, the compiler is guaranteed not to evaluate an operand if it is
unnecessary. For example, in the expression

if ((a != 0) && (b/a == 6.0))

if a equals 0, the expression (b/a == 6) will not be evaluated. This rule can have unexpected
consequences when one of the expressions contains side effects.
Chapter 5 113

Expressions and Operators
Logical Operators (&&, ||, !)
Truth Table for C's Logical Operators

In C, true is equivalent to any nonzero value, and false is equivalent to 0. The following table
shows the logical tables for each operator, along with the numerical equivalent. All of the
operators return 1 for true and 0 for false.

Examples of Expressions Using the Logical Operators

The following table shows a number of examples that use relational and logical operators. The
logical NOT operator has a higher precedence than the others. The AND operator has higher
precedence than the OR operator. Both the logical AND and OR operators have lower
precedence than the relational and arithmetic operators.

Table 5-10 Truth Table for C's Logical Operators

Operand Operator Operand Result

zero && zero 0

nonzero && zero 0

zero && nonzero 0

nonzero && nonzero 1

zero || zero 0

nonzero || zero 1

zero || nonzero 1

nonzero || nonzero 1

not applicable ! zero 1

! nonzero 0

Table 5-11 Examples of Expressions Using the Logical Operators

Given the following declarations:
 int j = 0, m = 1, n = -1;
 float x = 2.5, y = 0.0;

Expression Equivalent Expression Result

j && m (j) && (m) 0
Chapter 5114

Expressions and Operators
Logical Operators (&&, ||, !)
Side Effects in Logical Expressions

Logical operators (and the conditional and comma operators) are the only operators for which
the order of evaluation of the operands is defined. For these operators, operands must be
evaluated from left to right. However, the system evaluates only as much of a logical
expression as it needs to determine the result. In many cases, this means that the system
does not need to evaluate the entire expression. For instance, consider the following
expression:

if ((a < b) && (c == d))

The system begins by evaluating (a < b). If a is not less than b, the system knows that the
entire expression is false, so it will not evaluate (c == d). This can cause problems if some of
the expressions contain side effects:

if ((a < b) && (c == d++))

In this case, d is only incremented when a is less than b. This may or may not be what the
programmer intended. In general, you should avoid using side effect operators in logical
expressions.

j < m && n < m (j < m) && (n < m) 1

m + n || ! j (m + n) || (!j) 1

x * 5 && 5 || m / n ((x * 5) && 5) || (m / n) 1

j <= 10 && x >= 1 && m ((j <= 10) && (x >= 1)) && m 1

!x || !n || m+n ((!x) || (!n)) || (m+n) 0

x * y < j + m || n ((x * y) < (j + m)) || n 1

(x > y) + !j || n++ ((x > y) + (!j)) || (n++) 1

(j || m) + (x || ++n) (j || m) + (x || (++n)) 2

Table 5-11 Examples of Expressions Using the Logical Operators

Given the following declarations:
 int j = 0, m = 1, n = -1;
 float x = 2.5, y = 0.0;

Expression Equivalent Expression Result
Chapter 5 115

Expressions and Operators
Logical Operators (&&, ||, !)
Example

/* Program name is "logical_ops_example". This program */
/* shows how logical operators are used. */
#include <stdio.h>

int main(void)
{
 int won_lottery, enough_vacation, money_saved;
 char answer;

 won_lottery = enough_vacation = money_saved = 0;

 printf("\nThis program determines whether you can ");
 printf("take your next vacation in Europe.\n");
 printf("Have you won the lottery? y or n: ");
 fflush(stdin);
 scanf("%c", &answer);
 if (answer == 'y')
 won_lottery = 1;

 printf("Do you have enough vacation days saved? \
y or n: ");
 fflush(stdin);
 scanf ("%c", &answer);
 if (answer == 'y')
 enough_vacation = 1;

 printf("Have you saved enough money for the trip? \
y or n: ");
 fflush(stdin);
 scanf("%c", &answer);
 if (answer == 'y')
 money_saved = 1;

 printf("\n");
 if (won_lottery)
 {
 printf("Why do you need a program to decide if you");
 printf(" can afford a trip to Europe?\n");
 } /* end if */
 if (won_lottery || (enough_vacation &&money_saved))
Chapter 5116

Expressions and Operators
Logical Operators (&&, ||, !)
 printf("Look out Paris!\n");
 else if (enough_vacation &&(!money_saved))
 printf("You've got the time, but you haven't got \
the dollars.\n");
 else if (!enough_vacation || (!money_saved))
 {
 printf("Tough luck. Try saving your money and ");
 printf("vacation days next year.\n");
 } /* end else/if */
}

If you execute this program, you get the following output:

This program determines whether you can take your next vacation
in Europe.
Have you won the lottery? y or n: y
Do you have enough vacation days saved? y or n: n
Have you saved enough money for the trip? y or n: n

Why do you need a program to decide if you can afford a trip to
Europe?
Look out Paris!
Chapter 5 117

Expressions and Operators
Pointer Operators (*, ->, &)
Pointer Operators (*, ->, &)

Syntax

*ptr_exp Dereferences a pointer. That is, finds the contents stored at the virtual
address that ptr_exp holds.

ptr->member Dereferences a ptr to a structure or union where member is a member of
that structure or union.

&lvalue Finds the virtual address where the lvalue stored.

Description

A pointer variable is a variable that can hold the address of an object.

Assigning an Address Value to a Pointer

To declare a pointer variable, you precede the variable name with an asterisk. The following
declaration, for example, makes ptr a variable that can hold addresses of long int variables:

long *ptr;

The data type, long in this case, refers to the type of variable that ptr can point to. To assign
a pointer variable with the virtual address of a variable, you can use the address-of operator
&. For instance, the following is legal:

long *ptr;
long long_var;
ptr = &long_var; /* Assign the address of long_var to ptr. */

But this is illegal:

long *ptr;
float float_var;
ptr = &float_var; /* ILLEGAL - because ptr can only store the
 address of a long int. */

The following program illustrates the difference between a pointer variable and an integer
variable.

/* Program name is "ptr_example1". */
#include <stdio.h>
int main()
Chapter 5118

Expressions and Operators
Pointer Operators (*, ->, &)
{
 int j = 1;
 int *pj;
 pj = &j; /* Assign the address of j to pj */
 printf("The value of j is: %d\n", j);
 printf("The address of j is: %p\n", pj);
}

If you run this program (in 32-bit mode), the output looks something like this:

The value of j is: 1
The address of j is: 7b033240

Dereferencing a Pointer

To dereference a pointer (get the value stored at the pointer address), use the * operator. The
program below shows how dereferencing works:

/* Program name is "ptr_example2". */

#include <stdio.h>

int main(void)
{
 char *p_ch;
 char ch1 = 'A', ch2;
 printf("The address of p_ch is %p\n", &p_ch);
 p_ch = &ch1;
 printf("The value of p_ch is %p\n", p_ch);
 printf("The dereferenced value of p_ch is %c\n",
 *p_ch);
}

The output from this program looks something like this:

The address of p_ch is 7b033240
The value of p_ch is 7b033244
The dereferenced value of p_ch is A

This is a roundabout and somewhat contrived example that assigns the character A to both
ch1 and ch2. It does, however, illustrate the effect of the dereference (*) operator. The variable
ch1 is initialized to A. The first printf() call displays the address of the pointer variable
p_ch. In the next step, p_ch is assigned the address of ch1, which is also displayed. Finally,
the dereferenced value of p_ch is displayed and ch2 is assigned to it.
Chapter 5 119

Expressions and Operators
Pointer Operators (*, ->, &)
The expression *p_ch is interpreted as “Take the address value stored in p_ch and get the
value stored at that address.” This gives us a new way to look at the declaration. The data
type in the pointer declaration indicates what type of value results when the pointer is
dereferenced. For instance, the declaration

float *fp;

means that when *fp appears as an expression, the result will be a float value.

The expression *fp can also appear on the left side of an expression:

*fp = 3.15;

In this case, we are storing a value (3.15) at the location designated by the pointer fp. This is
different from

fp = 3.15;

which attempts to store the address 3.15 in fp. This, by the way, is illegal, because addresses
are not the same as floating-point values.

When you assign a value through a dereferenced pointer, make sure that the data types agree.
For example:

/* Program name is "ptr_example3". */

#include <stdio.h>

int main(void)
{
 float f = 1.17e3, g;
 int *ip;
 ip = &f;
 g = *ip;
 printf("The value of f is: %f\n", f);
 printf("The value of g is %f\n", g);
}

The result is

The value of f is: 1170.000000
The value of g is: 1150435328.000000

In the preceding example, instead of getting the value of f, g gets an erroneous value because
ip is a pointer to an int, not a float. The HP C compiler issues a warning message when a
pointer type is unmatched. If you compile the preceding program, for instance, you receive the
following message:
Chapter 5120

Expressions and Operators
Pointer Operators (*, ->, &)
cc: "ptr_example3.c", line 9: warning 604: Pointers are not
 assignment-compatible.

Pointer Arithmetic

The following arithmetic operations with pointers are legal:

• You may add an integer to a pointer or subtract an integer from a pointer.

• You may use a pointer as an operand to the ++ and operators.

• You may subtract one pointer from another pointer, if they point to objects of the same
type.

• You may compare two pointers

All other arithmetic operations with pointers are illegal.

When you add or subtract an integer to or from a pointer, the compiler automatically scales
the integer to the pointer's type. In this way, the integer always represents the number of
objects to jump, not the number of bytes. For example, consider the following program
fragment:

int x[10], *p1x = x, *p2x;

p2x = p1x + 3;

Since pointer p1x points to a variable (x) that is 4 bytes long, then the expression p1x + 3
actually increments p1x by 12 (4 * 3), rather than by 3.

It is legal to subtract one pointer value from another, provided that the pointers point to the
same type of object. This operation yields an integer value that represents the number of
objects between the two pointers. If the first pointer represents a lower address than the
second pointer, the result is negative. For example,

&a[3] - &a[0]

evaluates to 3, but

&a[0] - &a[3]

evaluates to -3.

It is also legal to subtract an integral value from a pointer value. This type of expression
yields a pointer value. The following examples illustrate some legal and illegal pointer
expressions:

long *p1, *p2;
int a[5], j;
char *p3;
Chapter 5 121

Expressions and Operators
Pointer Operators (*, ->, &)
p1 = a; /* Same as p1 = &a[0] */
p2 = p1 + 4; /* legal */
j = p2 - p1; /* legal -- j is assigned 4 */
j = p1 - p2; /* legal -- j is assigned -4 */
p1 = p2 - 2; /* legal -- p2 points to a[2] */
p3 = p1 - 1; /* ILLEGAL -- different pointer types*/
j = p1 - p3; /* ILLEGAL -- different pointer types*/
j = p1 + p2; /* ILLEGAL -- cannot add pointers */

Arrays and Pointers

Arrays and pointers have a close relationship in the C language. You can exploit this
relationship in order to write more efficient code. See the discussion of “Array Subscripting ([
])” on page 86 for more information.

Casting a Pointer's Type

A pointer to one type may be cast to a pointer to any other type. For example, in the following
statements, a pointer to an int is cast to a pointer to a char. Presumably, the function func()
expects a pointer to a char, not a pointer to an int.

int i, *p = &i;
func((char *) p);

As a second example, a pointer to a char is cast to a pointer to struct H:

struct H {
 int q;
} x, y;
char *genp = &x;
y = (struct H *)genp->q;

See “Cast Operator” on page 98 for more information about the cast operator.

It is always legal to assign any pointer type to a generic pointer, and vice versa, without a
cast. For example:

float x, *fp = &x;
int j, *pj = &j;
void *pv;
pv = fp; /* legal */
fp = pv; /* legal */

In both these cases, the pointers are implicitly cast to the target type before being assigned.
Chapter 5122

Expressions and Operators
Pointer Operators (*, ->, &)
Null Pointers

The C language supports the notion of a null pointer — that is, a pointer that is guaranteed
not to point to a valid object. A null pointer is any pointer assigned the integral value 0. For
example:

char *p;
p = 0; /* make p a null pointer */

In this one case — assignment of 0 — you do not need to cast the integral expression to the
pointer type.

Null pointers are particularly useful in control-flow statements, since the zero-valued pointer
evaluates to false, whereas all other pointer values evaluate to true. For example, the
following while loop continues iterating until p is a null pointer:

char *p;
 . . .
while (p) {
 . . .
/* iterate until p is a null pointer */
 . . .
}

This use of null pointers is particularly prevalent in applications that use arrays of pointers.

The compiler does not prevent you from attempting to dereference a null pointer; however,
doing so may trigger a run-time access violation. Therefore, if it is possible that a pointer
variable is a null pointer, you should make some sort of test like the following when
dereferencing it:

if (px && *px) /* if px = 0, expression will short-circuit
 . . . before dereferencing occurs*/

Null pointers are a portable feature.

Example 5-1 Accessing a 1-Dimensional Array Through Pointers

/* Program name is "pointer_array_example1". This program
 * shows how to access a 1-dimensional array through
 * pointers. Function count_chars returns the number of
 * characters in the string passed to it.
 * Note that *arg is equivalent to a_word[0];
 * arg + 1 is equivalent to a_word[1]...
 */
#include <stdio.h>

int count_chars(char *arg)
Chapter 5 123

Expressions and Operators
Pointer Operators (*, ->, &)
{
 int count = 0;
 while (*arg++)
 count++;
 return count;
}

int main(void)
{
 char a_word[30];
 int number_of_characters;
 printf("Enter a word -- ");
 scanf("%s", a_word);
 number_of_characters = count_chars(a_word);
 printf("%s contains %d characters.\n", a_word,
 number_of_characters);
}

If you execute this program, you get the following output:

Enter a word -- Marilyn
Marilyn contains 7 characters.

Example 5-2 Accessing a 2-Dimensional Array Through Pointers

/* Program name is "pointer_array_example2". This program
 * demonstrates two ways to access a 2-dimensional array. */
#include <stdio.h>

int main(void)
{
 int count = 0, which_name;
 char c1, c2;
 static char str[5][10] = {"Phil", "Sandi", "Barry",
 "David", "Amy"};
 static char *pstr[5] = { str[0], str[1], str[2],
 str[3], str[4]};
/* pstr is an array of pointers. Each element in the array
 * points to the beginning of one of the arrays in str.
 */
/* Prompt for information. */
 printf("Which name do you want to retrieve?\n");
 printf("Enter 0 for the first name,\n");
 printf(" 1 for the second name, etc. -- ");
 scanf("%d", &which_name);
/* Print name directly through array. */
 while (c1 = str[which_name][count++])
Chapter 5124

Expressions and Operators
Pointer Operators (*, ->, &)
 printf("%c", c1);
 printf("\n");

/* Print same name indirectly through an array of pointers. */
 while (c2 = *(pstr[which_name]++))
 printf("%c", c2);
/* We could also have used the following statement instead of
 * the two previous ones: printf("%s", pstr[which_name]);
 */
 printf("\n");
}

If you execute this program, you get the following output:

Which name do you want to retrieve?
Enter 0 for the first name,
 1 for the second name, etc. -- 1
Sandi
Sandi
Chapter 5 125

Expressions and Operators
Relational Operators (>, >=, <, ==, !=)
Relational Operators (>, >=, <, ==, !=)

Syntax

exp1 > exp2 Greater than.

exp1 >= exp2 Greater than or equal to.

exp1 < exp2 Less than.

exp1 <= exp2 Less than or equal to.

exp1 == exp2 Equal to.

exp1 != exp2 Not equal to.

Arguments

exp1 Any expression.

exp2 Any expression.

Description

A relational expression consists of two expressions separated by one of six relational
operators. The relational expression evaluates either to 1 (true) or 0 (false).

The equality operator (==) performs the same function as Pascal's = or Fortran's .EQ.; it just
looks different. Although the equality operator looks similar to the assignment operator (=),
the two operators serve completely different purposes. Use the assignment operator when you
want to assign a value to a variable, but use the equality operator when you want to test the
value of an expression.

Confusing = with ==

One of the most common mistakes made by beginners and experts alike is to use the
assignment operator (=) instead of the equality operator (==). For instance:

while (j = 5)
 do_something();

What is intended, clearly, is that the do_something() function should only be invoked if j
equals five. It should be written
Chapter 5126

Expressions and Operators
Relational Operators (>, >=, <, ==, !=)
while (j == 5)
 do_something();

The first version is syntactically legal, since all expressions have a value. The value of the
expression j = 5 is 5. Since this is a nonzero value, the while expression will always evaluate
to true and do_something() will always be invoked.

Relational Operators Precedence Rules

Relational operators have lower precedence than arithmetic operators. The expression

a + b * c < d / f

is evaluated as if it had been written

(a + (b * c)) < (d / f)

Among the relational operators, >, >=, <, and <= have the same precedence. The == and !=
operators have lower precedence. All of the relational operators have left-to-right
associativity. The following table illustrates how the compiler parses complex relational
expressions.

Table 5-12 Examples of Expressions Using the Relational Operators

Given the following declaration:
int j = 0, m = 1, n = -1;
float x = 2.5, y = 0.0;

Expression Equivalent Expressions Result

j > m j > m 0

m / n < x (m / n) < x 1

j <= m >= n ((j <=m) >= n) 1

j <= x == m ((j <= x) == m) 1

- x + j == y > n > m ((-x) + j) == ((y > n) >=
m)

0

x += (y >= n) x = (x + (y >= n)) 3.5

++j == m != y * 2 ((++j) == m) != (y * 2) 1
Chapter 5 127

Expressions and Operators
Relational Operators (>, >=, <, ==, !=)
Evaluation of Relational Expressions

Relational expressions are often called Boolean expressions, in recognition of the
nineteenth-century mathematician and logician, George Boole. Many programming
languages, such as Pascal, have Boolean data types for representing true and false. The C
language, however, represents these values with integers. Zero is equivalent to false, and any
nonzero value is considered true.

The value of a relational expression is an integer, either 1 (indicating the expression is true)
or 0 (indicating the expression is false). The examples in the following table illustrate how
relational expressions are evaluated:

Because Boolean values are represented as integers, you can write

if (j)
statement;

If j is any nonzero value, statement is executed; if j equals 0, statement is skipped.
Likewise, the statement

if (isalpha(ch))

is exactly the same as

if (isalpha(ch) != 0)

The practice of using a function call as a Boolean expression is a common idiom in C. It is
especially effective for functions that return 0 if an error occurs, since you can use a construct
such as

Table 5-13 Relational Expressions

Expression Value

-1 < 0 1

0 > 1 0

5 == 5 1

7 != -3 1

1 >= -1 1

1 > 10 0
Chapter 5128

Expressions and Operators
Relational Operators (>, >=, <, ==, !=)
if (func())
proceed;

else
error handler;

Dangers of Comparing Floating-Point Values

You may get unexpected results if you compare floating-point values for equality because
floating-point representations are inexact for some numbers. For example, the following
expression, though algebraically true, will evaluate to false on many computers:

(1.0/3.0 + 1.0/3.0 + 1.0/3.0) == 1.0

This evaluates to 0 (false) because the fraction 1.0/3.0 contains an infinite number of decimal
places (3.33333…). The computer is only capable of holding a limited number of decimal
places, so it rounds each occurrence of 1/3. As a result, the left side of the expression does not
equal exactly 1.0.

This problem can occur in even more subtle ways. Consider the following code:

double divide(double num, double denom)
{
 return num/denom;
}
int main(void)
{
 double c, a = 1.0, b = 3.0;
 c = a/b;
 if (c != divide(a, b))
 printf("Fuzzy doubles\n");
}

Surprisingly, the value stored in c may not equal the value returned by divide(). This
anomaly occurs due to the fact that some computers can represent more decimal places for
values stored in registers than for values stored in memory. Because the value returned by
divide() is never stored in memory, it may not be equal to the value c, which has been rounded
for memory storage.

NOTE To avoid bugs caused by inexact floating-point representations, you should
refrain from using strict equality comparisons with floating-point types.
Chapter 5 129

Expressions and Operators
Relational Operators (>, >=, <, ==, !=)
Example 5-3 C’s Relational Operators in Action

/* Program name is "relational_example". This program
 * does some mathematical calculations and shows
 * C's relational operators in action.
 */
#include <stdio.h>

int main(void)
{
 int num, i;
 printf("\n");
 num = 5;
 printf("The number is: %d\n", num);
 for (i = 0; i <= 2; i++)
 {
 if (num < 25)
 {
 num *= num;
 printf("The number squared is: %d\n", num);
 }
 else if (num == 25) {
 num *= 2;
 printf("Then, when you double that, you get: %d\n", num);
 }
 else if (num > 25)
 {
 num -= 45;
 printf("And when you subtract 45, you're back where ");
 printf("you started at: %d\n", num);
 } /* end if */
 } /* end for */

 if (num != 5)
 printf("The programmer made an error in setting up this \
example\n");
}

If you execute this program, you get the following output:

The number is: 5
The number squared is: 25
Then, when you double that, you get: 50
And when you subtract 45, you're back where you started at: 5
Chapter 5130

Expressions and Operators
sizeof Operator
sizeof Operator

Syntax

sizeof exp;

sizeof (type_name)

Arguments

exp An expression of any type except function, void, or bit field.

type_name The name of a predefined or user-defined data type, or the name of some
variable. An example of a predefined data type is int. A user-defined data
type could be the tag name of a structure.

Description

The sizeof unary operator finds the size of an object. It accepts two types of operands: an
expression or a data type. If the type of the operand is a variable length array, the operand is
evaluated - the compiler only determines what type the result would be for the expression
operand. Any side effects in the expression, therefore, will not have an effect. The result type
of the sizeof operator is size_t.

If the operand is an expression, sizeof returns the number of bytes that the result occupies
in memory:

/* Returns the size of an int (4 if ints are four bytes long) */
sizeof(3 + 5)

/* Returns the size of a double (8 if doubles are
 * eight bytes long)
 */
sizeof(3.0 + 5)

/* Returns the size of a float (4 if floats are
 * four bytes long)
 */
float x;
sizeof(x)

For expressions, the parentheses are optional, so the following is legal:
Chapter 5 131

Expressions and Operators
sizeof Operator
sizeof x

By convention, however, the parentheses are usually included.

The operand can also be a data type, in which case the result is the length in bytes of objects
of that type:

sizeof(char) /* 1 on all machines */
sizeof(short) /* 2 on HP 9000 Series */
sizeof(float) /* 4 on HP 9000 Series */
sizeof(int *) /* 4 on HP 9000 Series */

The parentheses are required if the operand is a data type.

NOTE The results of most sizeof expressions are implementation dependent. The
only result that is guaranteed is the size of a char, which is always 1.

In general, the sizeof operator is used to find the size of aggregate data objects such as
arrays and structures.

Example

You can use the sizeof operator to obtain information about the sizes of objects in your C
environment. The following prints the sizes of the basic data types:

/* Program name is "sizeof_example". This program
 * demonstrates a few uses of the sizeof operator.
 */
#include <stdio.h>
int main(void)
{
 printf("TYPE\t\tSIZE\n\n");
 printf("char\t\t%d\n", sizeof(char));
 printf("short\t\t%d\n", sizeof(short));
 printf("int\t\t%d\n", sizeof(int));
 printf("float\t\t%d\n", sizeof(float));
 printf("double\t\t%d\n", sizeof(double));
}

Chapter 5132

Expressions and Operators
sizeof Operator
If you execute this program, you get the following output:

TYPE SIZE

char 1
short 2
int 4
float 4
double 8
Chapter 5 133

Expressions and Operators
Structure and Union Members (., ->)
Structure and Union Members (., ->)
A member of a structure or a union can be referenced using either of two operators: the period
or the right arrow.

Syntax

postfix-expression . identifier postfix-expression -> identifier

Description

Use the period to reference members of structures and unions directly. Use the arrow operator
to reference members of structures and unions pointed to by pointers. The arrow operator
combines the functions of indirection through a pointer and member selection. If P is a pointer
to a structure with a member M, the expression P->M is identical to (*P).M.

The postfix-expression in the first alternative must be a structure or a union. The expression is
followed by a period (.) and an identifier. The identifier must name a member defined as part
of the structure or union referenced in the postfix-expression. The value of the expression is
the value of the named member. It is an lvalue if the postfix-expression is an lvalue.

If the postfix-expression is a pointer to a structure or a pointer to a union, follow it with an
arrow (composed of the - character followed by the |) and an identifier. The identifier must
name a member of the structure or union which the pointer references. The value of the
primary expression is the value of the named member. The resulting expression is an lvalue.

The . operator and the -> operator are closely related. If S is a structure, M is a member of
structure S, and &S is a valid pointer expression, S.M is the same as (&S)->M.
Chapter 5134

Expressions and Operators
Operator Precedence
Operator Precedence
Precedence is the order in which the compiler groups operands with operators. The C
compiler evaluates certain operators and their operands before others. If operands are not
grouped using parentheses, the compiler groups them according to its own rules.

The following lists C operator precedence in highest to lowest precedence:

Table 5-14 C Operator Precedence

Class of operator Operators Grouping

primary () [] -> . left to right

unary (type casting)

sizeof

& (address of)

* (dereference)

- (reverse sign)

~ !

++ --

right to left

multiplicative * / % left to right

additive + - left to right

shift << >> left to right

relational < <= > >= left to right

equality == != left to right

bitwise AND & left to right

bitwise XOR ^ left to right

bitwise OR | left to right

logical AND && left to right

logical OR || left to right
Chapter 5 135

Expressions and Operators
Operator Precedence
Precedence among Operators of Same Class

Most operators group from the left to the right but some group from the right to the left. The
grouping indicates how an expression containing several operators of the same precedence
will be evaluated. Left to right grouping means the expression

a/b * c/d

behaves as if it had been written:

(((a/b)*c)/d)

Likewise, an operator that groups from the right to the left causes the expression

a = b = c

to behave as if it had been written:

a = (b = c)

conditional ?: right to left

assignment = += -= *=
/= %= >>= <<=
&= ^= |=

right to left

comma , left to right

Table 5-14 C Operator Precedence (Continued)

Class of operator Operators Grouping
Chapter 5136

Expressions and Operators
Operator Quick Reference
Operator Quick Reference
Table 5-15 C Operators

Symbol Meaning

! logical negation

!= inequality

% remainder

& AND (bitwise) and address-of

&& AND (logical)

() cast and function call

* multiplication and indirection

+ addition and unary plus

++ increment, prefix or postfix

, comma

- subtraction and unary minus

-- decrement, prefix or postfix

-> structure/union pointer (arrow)

. structure/union member (dot)

/ division

< less-than

<< left-shift

<= less-than-or-equal-to

= assignment

== equality

> greater-than
Chapter 5 137

Expressions and Operators
Operator Quick Reference
>= greater-than-or-equal-to

>> right shift

?: conditional

[] subscript

^ OR (bitwise exclusive)

| OR (bitwise inclusive)

|| OR (logical)

~ complement

op= assignment, compound

sizeof compute object size at translation-time

Table 5-15 C Operators (Continued)

Symbol Meaning
Chapter 5138

Expressions and Operators
Constant Expressions
Constant Expressions
Constant expressions contain only constant values. For example, the following are all
constant expressions:

• 5

• 5 + 6 * 13 / 3.0

• 'a'
Chapter 5 139

Expressions and Operators
Integral Expressions
Integral Expressions
Integer expressions are expressions that, after all automatic and explicit type conversions,
produce a result that has one of the integer types. If j and k are integers, the following are all
integral expressions:

• j

• j * k

• j / k + 3

• k - ‘a’

• 3 + (int) 5.0
Chapter 5140

Expressions and Operators
Floating-Point Expressions
Floating-Point Expressions
Floating-point expressions are expressions that, after all automatic and explicit type
conversions, produce a result that has one of the floating-point types. If x is a float or
double, the following are floating-point expressions:

• x

• x + 3

• x / y * 5

• 3.0

• 3.0 - 2

• 3 + (float) 4
Chapter 5 141

Expressions and Operators
lvalue Expressions
lvalue Expressions
An lvalue (pronounced “el-value”) is an expression that refers to a region of storage that can
be manipulated.

For example, all simple variables, like ints and floats are lvalues. An element of an array is
also an lvalue; however an entire array is not. A member of a structure or union is an lvalue;
an entire structure or union is not.

Given the following declarations:

int *p, a, b;
int arr[4];
int func();

 a /* lvalue */
 a + b /* Not an lvalue */
 p /* lvalue */
 p / lvalue */
 arr /* lvalue, but not modifiable */
 (arr + a) / lvalue */
 arr[a] /* lvalue, equivalent to *(arr+a) */
 func /* Not an lvalue */
 func() /* Not an lvalue */
Chapter 5142

Expressions and Operators
Pointer Expressions
Pointer Expressions
Pointer expressions are expressions that evaluate to an address value. These include
expressions containing pointer variables, the address-of operator (&), string literals, and array
names. If p is a pointer and j is an int, the following are pointer expressions:

p
&j
p + 1
"abc"
(char *) 0x000fffff
Chapter 5 143

Expressions and Operators
Evaluation of Expressions
Evaluation of Expressions
Expressions are evaluated at run time. The results of the evaluation are called by product
values. For many expressions, you won't know or care what this byproduct is. In some
expressions, though, you can exploit this feature to write more compact code.

Examples

The following expression is an assignment.

x = 6;

The value 6 is both the byproduct value and the value that gets assigned to x. The byproduct
value is not used.

The following example uses the byproduct value:

y = x = 6;

The equals operator binds from right to left; therefore, C first evaluates the expression x = 6.
The byproduct of this operation is 6, so C sees the second operation as

y = 6

Now, consider the following relational operator expression:

(10 < j < 20)

It is incorrect to use an expression like this to find out whether j is between 10 and 20. Since
the relational operators bind from left to right, C first evaluates

10 < j

The byproduct of a relational operation is 0 if the comparison is false and 1 if the comparison
is true.

Assuming that j equals 5, the expression 10 < j is false. The byproduct will be 0. Thus, the
next expression evaluated:

0 < 20

is true (or 1). This is not the expected answer when j equals 5.

Finally, consider the following fragment:
Chapter 5144

Expressions and Operators
Evaluation of Expressions
static char a_char, c[20] = {"Valerie"}, *pc = c;

 while (a_char = *pc++) {
 . . .

This while statement uses C's ability to both assign and test a value. Every iteration of while
assigns a new value to variable a_char. The byproduct of an assignment is equal to the value
that gets assigned. The byproduct value will remain nonzero until the end of the string is
reached. When that happens, the byproduct value will become 0 (false), and the while loop
will end.

Evaluation Order of Subexpressions

The C language does not define the evaluation order of subexpressions within a larger
expression except in the special cases of the &&, ||, ?:, and , operators. When programming
in other computer languages, this may not be a concern. C's rich operator set, however,
introduces operations that produce side effects. The ++ operator is a prime example. The ++
operator increments a value by 1 and provides the value for further calculations. For this
reason, expressions such as

b = ++a*2 + ++a*4;

are dangerous. The language does not specify whether the variable a is first incremented and
multiplied by 4 or is first incremented and multiplied by 2. The value of this expression is
undefined.
Chapter 5 145

Expressions and Operators
Evaluation of Expressions
Chapter 5146

6 Statements
A program consists of a number of statements that are executed in sequence. A statement can
be one of the following types:

• Assignment, where values, usually the results of calculations, are stored in variables.

• Input/Output, data is read in or printed out.

• Control, the program makes a decision about what to do next.

All statements end with a semicolon. Statements are grouped as follows:

• Branch Statements

• Compound Statement or Block

• Expression and Null Statements

• Labeled Statements

• Looping Statements

• Selection Statements

The following is a list of HP C statements:

• break

• continue

• do…while

• for

• goto

• if

• return

• switch

• while
Chapter 6 147

Statements
Branch Statements
Branch Statements

Syntax

goto label;
goto *expression;
continue;
break;
return [expression];

Description

Branch statements transfer control unconditionally to another place in the executing
program. The branch statements are goto, continue, break, and return.

Examples

These four fragments all accomplish the same thing (they print out the multiples of 5 between
1 and 100):

 i = 0;
 while (i < 100)
 {
 if (++i % 5)
 continue; /* unconditional jump to top of while loop */
 printf ("%2d ", i);
 }
 printf ("\n");

 i = 0;
L: while (i < 100)
 {
 if (++i % 5)
 goto L: /* unconditional jump to top of while loop */
 printf ("%2d ",i);
 }
 printf ("\n");

 i = 0;
Chapter 6148

Statements
Branch Statements
 while (1)
 {
 if ((++i % 5) == 0)
 printf ("%2d ", i);
 if (i > 100)
 break; /* unconditional jump past the while loop */
 }
 printf ("\n");

 i = 0;
 while (1)
 {
 if ((++i % 5) == 0)
 printf ("%2d ", i);
 if (i > 100) {
 printf ("\n");
 return; /* unconditional jump to calling function */
 }
 }
Chapter 6 149

Statements
Compound Statement or Block
Compound Statement or Block

Syntax

compound-statement ::=
 {[declaration-list][statement-list]}

declaration-list ::=
 declaration
 declaration-list declaration

statement-list ::=
 statement
 statement-list statement

Description

A compound statement allows you to group statements together in a block of code and use
them as if they were a single statement.

Variables and constants declared in the block are local to the block and to any inner blocks
unless declared extern. If the variables are initialized, the initialization is performed each
time the compound statement is entered from the top through the left brace ({) character. If
the statement is entered via a goto statement or in a switch statement, the initialization is
not performed.

Any variable declared with static storage scope is created and initialized when the program is
loaded for execution. This is true even if the variable is declared in an inner block.

Example

if (x > y)
{
int temp;
 temp = x;
 x = y;
 y = temp;
}

In this example, variable temp is local to the compound statement. It can only be accessed
within the compound statement.
Chapter 6150

Statements
Expression and Null Statements
Expression and Null Statements

Syntax

expression-statement ::=
 [expression];

Description

C expressions can be statements. A null statement is simply a semicolon by itself.

You can use any valid expression as an expression statement by terminating it with a
semicolon. Expression statements are evaluated for their side effects; such as assignment or
function calls. If the expression is not specified, but the semicolon is still provided, the
statement is treated as a null statement.

Null statements are useful for specifying no-operation statements. No-operation statements
are often used in looping constructs where all of the work of the statement is done without an
additional statement.

Example

A program fragment that sums up the contents of an array named x containing 10 integers
might look like this:

 for(i=0,s=0; i<10; s+=x[i++]);

The syntax of the for statement requires a statement following the closing) of the for. A null
statement (;) satisfies this syntax requirement.
Chapter 6 151

Statements
Labeled Statements
Labeled Statements

Syntax

labeled-statement ::=
identifier : statement

case constant-expression : statement
default: statement

Description

Labeled statements are those preceded by a name or tag. You can prefix any statement
using a label so at some point you can reference it using goto statements. Any statement can
have one or more labels.

The case and default labels can only be used inside a switch statement.

Example

if (fatal_error)
goto get_out;
 . . .

get_out: return(FATAL_CONDITION);

The return statement is labeled get_out.
Chapter 6152

Statements
Looping Statements
Looping Statements

Syntax

while (expression) statement
do statement while (expression);
for ([expression1] ; [expression2]; [expression3])

statement

Description

Use looping statements to force a program to repeatedly execute a statement. The executed
statement is called the loop body. Loops execute until the control is satisfied. The controlling
expression may be any scalar data type.

C has several looping statements: while, do…while, and for. The main difference between
these statements is the point at which each loop tests for the exit condition. Refer to the goto,
continue, and break statements for ways to exit a loop without reaching its end or meeting
loop exit tests.

Examples

The following loops all accomplish the same thing (they assign i to a[i] for i from 0 to 4):

i = 0;
while (i < 5)
{
 a[i] = i;
 i++;

}

i = 0;
do
{
 a[i] = i;
 i++;

} while (i < 5);
Chapter 6 153

Statements
Looping Statements
for (i = 0; i < 5; i++)
{
 a[i] = i;

}

Chapter 6154

Statements
Selection Statements
Selection Statements

Syntax

if (expression) statement [else statement]
switch (expression) statement

Description

A selection statement alters a program's execution flow by selecting one path from a collection
based on a specified controlling expression. The if statement and the switch statement are
selection statements.

Examples

if (expression) statement:
 if (x<y) x=y;

if (expression) statement else statement:
 if (x<y) x=y; else y=x;

switch (expression) statement:
switch (x)
{ case 1: x=y;

break;
default: y=x;

break;
}

Chapter 6 155

Statements
break
break

Syntax

break;

Description

A break statement terminates the execution of the most tightly enclosing switch statement
or for, while, do…while loop.

Control passes to the statement following the switch or iteration statement. You cannot use a
break statement unless it is enclosed in a switch or loop statement. Further, a break only
exits out of one level of switch or loop statement. To exit from more than one level, you must
use a goto statement.

When used in the switch statement, break normally terminates each case statement. If you
do not use break (or other unconditional transfer of control), each statement labeled with
case flows into the next. Although not required, a break is usually placed at the end of the
last case statement. This reduces the possibility of errors when inserting additional cases at
a later time.

Example

The following example uses break to exit from the for loop after executing the loop three
times:

for (i=0; i<=6; i++)
 if(i==3) break;
 else printf ("%d\n",i);

This example prints:

0
1
2

Chapter 6156

Statements
continue
continue

Syntax

continue;

Description

The continue statement halts execution of its enclosing for, while, or do/while loop and
skips to the next iteration of the loop. In the while and do/while, this means the expression
is tested immediately, and in the for loop, the third expression (if present) is evaluated.

Example

/* Program name is "continue_example". This program
 * reads a file of student names and test scores. It
 * averages each student's grade. The for loop uses
 * a continue statement so that the third test score
 * is not included.
 */
#include <stdio.h>

int main(void)
{
 int test_score, tot_score, i;
 float average;
 FILE *fp;
 char fname[10], lname[15];

 fp = fopen("grades_data", "r");
 while (!feof(fp)) /* while not end of file */
 {
 tot_score = 0;
 fscanf(fp, "%s %s", fname, lname);
 printf("\nStudent's name: %s %s\nGrades: ", fname, lname);
 for (i = 0; i < 5; i++)
 {
 fscanf(fp, "%d", &test_score);
 printf("%d ", test_score);
Chapter 6 157

Statements
continue
 if (i == 2) /* leave out this test score */
 continue;
 tot_score += test_score;
 } /* end for i */
 fscanf(fp, "\n"); /* read end-of-line at end of */
 /* each student's data */
 average = tot_score/4.0;
 printf("\nAverage test score: %4.1f\n", average);
 } /* end while */
 fclose(fp);
}

If you execute this program, you get the following output:

Student's name: Barry Quigley
Grades: 85 91 88 100 75
Average test score: 87.8

Student's name: Pepper Rosenberg
Grades: 91 76 88 92 88
Average test score: 86.8

Student's name: Sue Connell
Grades: 95 93 91 92 89
Average test score: 92.2
Chapter 6158

Statements
do…while
do…while

Syntax

do
statement;

while (expression);

Arguments

statement A null statement, simple statement, or compound statement.

expression Any expression.

Description

The do statement executes statements within a loop until a specified condition is satisfied.
This is one of the three looping constructions in C. Unlike the for and while loops, do…while
performs statement first and then tests expression. If expression evaluates to nonzero
(true), statement executes again, but when expression evaluates to zero (false), execution of
the loop stops. This type of loop is always executed at least once.

You can jump out of a do…while loop prematurely (that is, before expression becomes false)
by doing the following:

• Use break to transfer control to the first statement following the do…while loop.

• Use goto to transfer control to some labeled statement outside of the loop.

• Use a return statement.

Example

/* Program name is "do.while_example". This program finds the
 * summation (that is, n*(n+1)/2) of an integer that a user
 * supplies and the summation of the squares of that integer.
 * The use of the do/while means that the code inside the loop
 * is always executed at least once.
 */
#include <stdio.h>
int main(void)
Chapter 6 159

Statements
do…while
{
 int num, sum, square_sum;
 char answer;

 printf("\n");
 do
 {
 printf("Enter an integer: ");
 scanf("%d", &num);
 sum = (num*(num+1))/2;
 square_sum = (num*(num+1)*(2*num+1))/6;
 printf("The summation of %d is: %d\n", num, sum);
 printf("The summation of its squares is: %d\n",
 square_sum);
 printf("\nAgain? ");
 fflush(stdin);
 scanf("%c", &answer);
 } while ((answer != 'n') && (answer != 'N'));
}

If you execute this program, you get the following output:

Enter an integer: 10
The summation of 10 is: 55
The summation of its squares is: 385

Again? y
Enter an integer: 25
The summation of 25 is: 325
The summation of its squares is: 5525

Again? n
Chapter 6160

Statements
for
for

Syntax

for ([expression1]; [expression2]; [expression3])
statement;

Arguments

expression1 This is the initialization expression that typically specifies the initial values
of variables. It is evaluated only once before the first iteration of the loop.

expression2 This is the controlling expression that determines whether or not to
terminate the loop. It is evaluated before each iteration of the loop. If
expression2 evaluates to a nonzero value, the loop body is executed. If it
evaluates to 0, execution of the loop body is terminated and control passes to
the first statement after the loop body. This means that if the initial value of
expression2 evaluates to zero, the loop body is never executed.

expression3 This is the increment expression that typically increments the variables
initialized in expression1. It is evaluated after each iteration of the loop
body and before the next evaluation of the controlling expression.

Description

The for statement executes the statements within a loop as long as expression2 is true. The
for statement is a general-purpose looping construct that allows you to specify the
initialization, termination, and increment of the loop. The for uses three expressions.
Semicolons separate the expressions. Each expression is optional, but you must include the
semicolons.

How the for Loop is Executed

The for statement works as follows:

1. First, expression1 is evaluated. This is usually an assignment expression that initializes
one or more variables.

2. Then expression2 is evaluated. This is the conditional part of the statement.

3. If expression2 is false, program control exits the for statement and flows to the next
statement in the program. If expression2 is true, statement is executed.
Chapter 6 161

Statements
for
4. After statement is executed, expression3 is evaluated. Then the statement loops back to
test expression2 again.

for Loop Processing

The for loop continues to execute until expression2 evaluates to 0 (false), or until a branch
statement, such as a break or goto, interrupts loop execution.

If the loop body executes a continue statement, control passes to expression3. Except for
the special processing of the continue statement, the for statement is equivalent to the
following:

expression1;
while (expression2) {

statement
expression3;

}

You may omit any of the three expressions. If expression2 (the controlling expression) is
omitted, it is taken to be a nonzero constant.

for versus while Loops

Note that for loops can be written as while loops, and vice versa. For example, the for loop

for (j = 0; j < 10; j++)
{
 do_something();
}

is the same as the following while loop:

j = 0;
while (j<10)
{
do_something();
j++;
}

Example

/* Program name is "for_example". The following computes a
 * permutation that is, P(n,m) = n!/(n-m)! using for
 * loops to compute n! and (n-m)!
 */
#include <stdio.h>
Chapter 6162

Statements
for
#define SIZE 10

int main(void)
{
 int n, m, n_total, m_total, perm, i, j, mid, count;

 printf("Enter the numbers for the permutation (n things ");
 printf("taken m at a time)\nseparated by a space: ");
 scanf("%d %d", &n, &m);
 n_total = m_total = 1;
 for (i = n; i > 0; i--) /* compute n! */
 n_total *= i;
 for (i = n - m; i > 0; i--) /* compute (n-m)! */
 m_total *= i;
 perm = n_total/m_total;
 printf("P(%d,%d) = %d\n\n", n, m, perm);

/* This series of for loops prints a pattern of "Z's" and shows
 * how loops can be nested and how you can either increment or
 * decrement your loop variable. The loops also show the proper
 * placement of curly braces to indicate that the outer loops
 * have multiple statements.
 */
 printf("Now, print the pattern three times:\n\n");
 mid = SIZE/2;

/* controls how many times pattern is printed */
 for (count = 0; count < 3; count++)
 {
 for (j = 0; j < mid; j++)
 {
 /* loop for printing an individual line */
 for (i = 0; i < SIZE; i++)
 if (i < mid - j || i > mid + j)
 printf(" ");
 else
 printf("Z");
 printf("\n");
 }
 for (j = mid; j >= 0; j--)
 {
 for (i = 0; i <= SIZE; i++)
Chapter 6 163

Statements
for
 if (i < mid - j || i > mid + j)
 printf(" ");
 else
 printf("Z");
 printf("\n");
 }
 }
}

If you execute this program, you get the following output:

Enter the numbers for the permutation (n things taken m at a
time) separated by a space: 4 3
P(4,3) = 24

Now, print the pattern three times:

Z
ZZZ
ZZZZZ
ZZZZZZZ
ZZZZZZZZZ
ZZZZZZZZZZZ
ZZZZZZZZZ
ZZZZZZZ
ZZZZZ
ZZZ
Z
Z
ZZZ
ZZZZZ
ZZZZZZZ
ZZZZZZZZZ
ZZZZZZZZZZZ
ZZZZZZZZZ
ZZZZZZZ
ZZZZZ
ZZZ
Z
Z
ZZZ
ZZZZZ
ZZZZZZZ
Chapter 6164

Statements
for
ZZZZZZZZZ
ZZZZZZZZZZZ
ZZZZZZZZZ
ZZZZZZZ
ZZZZZ
ZZZ
Z

Chapter 6 165

Statements
goto
goto

Syntax

goto label;

Arguments

label This is a label or tag associated with an executable statement.

Description

The purpose of the goto statement is to enable program control to jump to some other
statement. The destination statement is identified by a statement label, which is just a name
followed by a colon. The label must be in the same function as the goto statement that
references it.

Few programming statements have produced as much debate as the goto statement. The
goto statement is necessary in more rudimentary programming languages, but its use in
high-level languages is generally frowned upon. Nevertheless, most high-level languages,
including C, contain a goto statement for those rare situations where it can't be avoided.

With deeply nested logic there are times when it is cleaner and simpler to bail out with one
goto rather than backing out of the nested statements. The most common and accepted use
for a goto is to handle an extraordinary error condition.

Example

The following example shows a goto that can easily be avoided by using the while loop, and
also shows an illegal goto:

/* Program name is "goto_example". This program finds the
 * circumference and area of a circle when the user gives
 * the circle's radius.
 */
#include <stdio.h>
#define PI 3.14159

int main(void)
{
 float cir, radius, area;
Chapter 6166

Statements
goto
 char answer;
 extern void something_different(void);

circles:
 printf("Enter the circle's radius: ");
 scanf("%f", &radius);
 cir = 2 * PI * radius;
 area = PI * (radius * radius);
 printf("The circle's circumference is: %6.3f\n", cir);
 printf("Its area is: %6.3f\n", area);
 printf("\nAgain? y or n: ");
 fflush(stdin);
 scanf("%c", &answer);

 if (answer == 'y' || answer == 'Y')
 goto circles;
 else {
 printf("Do you want to try something different? ");
 fflush(stdin);
 scanf("%c", &answer);
 if (answer == 'y' || answer == 'Y')
 /* goto different; WRONG! This label is in */
 /* another block. */
 something_different();
 } /* end else */
}

void something_different(void)
{
different:
 printf("Hello. This is something different.\n");
}

If you execute this program, you get the following output:

Enter the circle's radius: 3.5
The circle's circumference is: 21.991
Its area is: 38.484

Again? y or n: y
Enter the circle's radius: 6.1
The circle's circumference is: 38.327
Its area is: 116.899
Chapter 6 167

Statements
goto
Again? y or n: n
Do you want to try something different? y
Hello. This is something different.
Chapter 6168

Statements
if
if

Syntax

if (exp) /* format 1 */
statement

if (exp) /* format 2 */
statement1

else
statement2

Arguments

exp Any expression.

statement Any null statement, simple statement, or compound statement. A statement
can itself be another if statement. Remember, a statement ends with a
semicolon.

Description

The if statement tests one or more conditions and executes one or more statements according
to the outcome of the tests. The if and switch statements are the two conditional branching
statements in C.

In the first form, if exp evaluates to true (any nonzero value), C executes statement. If exp is
false (evaluates to 0), C falls through to the next line in the program.

In the second form, if exp evaluates to true, C executes statement1, but if exp is false,
statement2 is performed.

A statement can be an if or if…else statement.

Example 1

You can test multiple conditions with a command that looks like this:

if (exp1) /* multiple conditions */
statement1

else if (exp2)
statement2
Chapter 6 169

Statements
if
else if (exp3)
statement3

.. .
else

statement N

The important thing to remember is that C executes at most only one statement in the
if…else and if…else/if…else constructions. Several expressions may indeed be true, but
only the statement associated with the first true expression is executed.

Example 2

Expressions subsequent to the first true expression are not evaluated. For example:

/* determine reason the South lost the American Civil War */
if (less_money)

printf("It had less money than the North.\n");
else if (fewer_supplies)

printf("It had fewer supplies than the North.\n");
else if (fewer_soldiers)

printf("It had fewer soldiers.\n");
else
{

printf("Its agrarian society couldn't compete with the ");
printf("North's industrial one.\n");

}

All the expressions in the above code fragment could be evaluated to true, but the run-time
system would only get as far as the first line and never even test the remaining expressions.

Using Braces in Compound if Statements

Use curly braces ({ }) in a compound statement to indicate where the statement begins and
ends. For example:

if (x > y) {
temp = x;
x = y;
y = temp;

}
else

/* make next comparison */
Chapter 6170

Statements
if
Braces also are important when you nest if statements. Since the else portion of the
statement is optional, you may not have one for an inner if. However, C associates an else with
the closest previous if statement unless you use braces to show that isn't what you want. For
example:

if (month == 12) { /* month = December */
if (day == 25)

printf("Today is Christmas.\n");
}
else

printf("It's not even December.\n");

Without the braces, the else would be associated with the inner if statement, and so the
no-December message would be printed for any day in December except December 24.
Nothing would be printed if month did not equal 12.

The Dangling else

Nested if statements create the problem of matching each else phrase to the right if
statement. This is often called the dangling else problem; the general rule is:

• An else is always associated with the nearest previous if.

Each if statement, however, can have only one else clause. It is important to format nested if
statements correctly to avoid confusion. An else clause should always be at the same
indentation level as its associated if. However, do not be misled by indentations that look
right even though the syntax is incorrect.

Example

/* Program name is "if.else_example". */
#include <stdio.h>
int main(void)
{
 int age, of_age;
 char answer;
/* This if statement is an example of the second form (see
 * "Description" section). */
 printf("\nEnter an age: ");
 scanf("%d", &age);
 if (age > 17)
 printf("You're an adult.\n");
 else {
 of_age = 18 - age;
Chapter 6 171

Statements
if
 printf("You have %d years before you're an adult.\n",
 of_age);
 } /* end else */
 printf("\n");
 printf("This part will help you decide whether to jog \
 today.\n");
 printf("What is the weather like?\n");
 printf(" raining = r\n");
 printf(" cold = c\n");
 printf(" muggy = m\n");
 printf(" hot = h\n");
 printf(" nice = n\n");
 printf("Enter one of the choices: ");
 fflush(stdin);
 scanf("\n%c", &answer);
/* This if statement is an example of the third form (see
 * "Description" section. */
 if (answer == 'r')
 printf("It's too wet to jog today. Don't bother.\n");
 else if (answer == 'c')
 printf("You'll freeze if you jog today. Stay indoors.\n");
 else if (answer == 'm')
 printf("It's no fun to run in high humidity. Skip it.\n");
 else if (answer == 'h')
 printf("You'll die of the heat if you try to jog today. \
So don't.\n");
 else if (answer == 'n')
 printf("You don't have any excuses. You'd better go \
run.\n");
 else
 printf("You didn't give a valid answer.\n");
}

If you execute this program, you get the following output:

Enter an age: 15
You have 3 years before you're an adult.

This part will help you decide whether to jog today.
What is the weather like?

raining = r
cold = c
muggy = m
Chapter 6172

Statements
if
hot = h
nice = n

Enter one of the choices: r
It's too wet to jog today. Don't bother.
Chapter 6 173

Statements
return
return

Syntax

return; /* first form */
return exp; /* second form */

Arguments

exp Any valid C expression.

Description

The return statement causes a C program to exit from the function containing the return
and go back to the calling block. It may or may not have an accompanying exp to evaluate. If
there is no exp, the function returns an unpredictable value.

A function may contain any number of return statements. The first one encountered in the
normal flow of control is executed, and causes program control to be returned to the calling
routine. If there is no return statement, program control returns to the calling routine when
the right brace of the function is reached. In this case, the value returned is undefined.

Return Types

The return value must be assignment-compatible with the type of the function. This means
that the compiler uses the same rules for allowable types on either side of an assignment
operator to determine allowable return types. For example, if f() is declared as a function
returning an int, it is legal to return any arithmetic type, since they can all be converted to
an int. It would be illegal, however, to return an aggregate type or a pointer, since these are
incompatible types.

The following example shows a function that returns a float, and some legal return values.

float f(void)
{
 float f2;
 int a;
 char c;
 f2 = a; /* OK, quietly converts a to float */
 return a; /* OK, quietly converts a to float */
Chapter 6174

Statements
return
 f2 = c; /* OK, quietly converts c to float */
 return c; /* OK, quietly converts c to float */
}

Pointer Return Types

The C language is stricter about matching pointers. In the following example, f() is declared
as a function returning a pointer to a char. Some legal and illegal return statements are
shown.

char *f(void)
{
char **cpp, *cp1, *cp2, ca[10];
int *ip1, *ip2;

cp1 = cp2; /* OK, types match */
return cp2; /* OK, types match */
cp1 = *cpp; /* OK, types match */
return *cpp; /* OK, types match */

/* An array name without a subscript is converted
* to a pointer to the first element.
*/
cp1 = ca; /* OK, types match */
return ca; /* OK, types match */

cp1 = *cp2; /* Error, mismatched types */
/* (pointer to char vs. char) */

return *cp2; /* Error, mismatched types */
/* (pointer to char vs. char) */

cp1 = ip1; /* Error, mismatched pointer types */
return ip1; /* Error, mismatched pointer types */
return; /* Produces undefined behavior */

/* should return (char *) */
}

Note in the last statement that the behavior is undefined if you return nothing. The only time
you can safely use return without an expression is when the function type is void.
Conversely, if you return an expression for a function that is declared as returning void, you
will receive a compile-time error.
Chapter 6 175

Statements
return
Functions can return only a single value directly via the return statement. The return value
can be any type except an array or function. This means that it is possible to return more than
a single value indirectly by passing a pointer to an aggregate type. It is also possible to return
a structure or union directly. HP C implements this by passing the structure or union by
reference if the structure or union is greater than eight bytes.

Example

/* Program name is "return_example".
 * This program finds the length of a word that is entered.
 */
#include <stdio.h>

int find_length(char *string)
{
 int i;
 for (i =0; string[i] != ’\0’; i++);
 return i;
}

int main(void)
{
 char string[132];
 int result;
 int again = 1;
 char answer;

 printf("This program finds the length of any word you ");
 printf("enter.\n");
 do
 {
 printf("Enter the word: ");
 fflush(stdin);
 gets(string);
 result = find_length(string);
 printf("This word contains %d characters. \n", result);
 printf("Again? ");
 scanf("%c", &answer);
 } while (answer == ’Y’ || answer == ’y’);
}

If you execute this program, you get the following output:
Chapter 6176

Statements
return
This program finds the length of any string you enter.

Enter the string: Copenhagen
The string is 10 characters.
Again? y

Enter the string: galaxy
The string is 6 characters.
Again? n
Chapter 6 177

Statements
switch
switch

Syntax

switch (exp)
{
case const_exp : [statement]...

[case const_exp : [statement]...]
[default : [statement]...]

}

Arguments

exp The integer expression that the switch statement evaluates and then
compares to the values in all the cases.

const_exp An integer expression to which exp is compared. If const_exp matches exp,
the accompanying statement is executed.

statement Zero or more simple statements. (If there is more than one simple
statement, you do not need to enclose the statements in braces.)

Description

The switch statement is a conditional branching statement that selects among several
statements based on constant values.

The expression immediately after the switch keyword must be enclosed in parentheses and
must be an integral expression.

The expressions following the case keywords must be integral constant expressions; that is,
they may not contain variables.

An important feature of the switch statement is that program flow continues from the
selected case label until another control-flow statement is encountered or the end of the
switch statement is reached. That is, the compiler executes any statements following the
selected case label until a break, goto, or return statement appears. The break statement
explicitly exits the switch construct, passing control to the statement following the switch
statement. Since this is usually what you want, you should almost always include a break
statement at the end of the statement list following each case label.
Chapter 6178

Statements
switch
The following print_error() function, for example, prints an error message based on an
error code passed to it.

/* Prints error message based on error_code.
 * Function is declared with void because it doesn't
 * return anything.
 */
#include <stdio.h>
#define ERR_INPUT_VAL 1
#define ERR_OPERAND 2
#define ERR_OPERATOR 3
#define ERR_TYPE 4
void print_error(int error_code)
{
 switch (error_code) {
 case ERR_INPUT_VAL:
 printf("Error: Illegal input value.\n");
 break;
 case ERR_OPERAND:
 printf("Error: Illegal operand.\n");
 break;
 case ERR_OPERATOR:
 printf("Error: Unknown operator.\n");
 break;
 case ERR_TYPE:
 printf("Error: Incompatible data.\n");
 break;
 default: printf("Error: Unknown error code %d\n",
 error_code);
 break;
 }
}

The break statements are necessary to prevent the function from printing more than one
error message. The last break after the default case is not really necessary, but it is a good
idea to include it anyway for the sake of consistency.

Evaluation of switch Statement

The switch expression is evaluated; if it matches one of the case labels, program flow
continues with the statement that follows the matching case label. If none of the case labels
match the switch expression, program flow continues at the default label, if it exists. (The
default label need not be the last label, though it is good style to put it last.) No two case
labels may have the same value.
Chapter 6 179

Statements
switch
Associating Statements with Multiple case Values

Sometimes you want to associate a group of statements with more than one case value. To
obtain this behavior, you can enter consecutive case labels. The following function, for
instance, returns 1 if the argument is a punctuation character, or 0 if it is anything else.

/* This function returns 1 if the argument is a
* punctuation character. Otherwise, it returns 0.
*/
is_punc(char arg)
{

switch (arg) {
case '.':
case ',':
case ':':
case ';':
case '?':
case '-':
case '(':
case ')':
case '!': return 1;
default : return 0;

}
}

Example

/* Use the switch statement to decide which comment should be printed */
#include <stdio.h>
int main(void)
{
 char answer, grade;
 answer = 'y';
 printf("\n\n");
 while (answer == 'y' || answer == 'Y') {
 printf("Enter student's grade: ");
 fflush(stdin);
 scanf("%c", &grade);
 printf("\nComments: ");
 switch (grade) {
 case 'A':
 case 'a':
 printf("Excellent\n");
Chapter 6180

Statements
switch
 break;
 case 'B':
 case 'b':
 printf("Good\n");
 break;
 case 'C':
 case 'c':
 printf("Average\n");
 break;
 case 'D':
 case 'd':
 printf("Poor\n");
 break;
 case 'E':
 case 'e':
 case 'F':
 case 'f':
 printf("Failure\n");
 break;
 default:
 printf("Invalid grade\n");
 break;
 } /* end switch */
 printf("\nAgain? ");
 fflush(stdin);
 scanf("%s", &answer);
 }
}

If you execute this program, you get the following output:

Enter student's grade: B

Comments: Good

Again? y
Enter student's grade: C

Comments: Average

Again? n
Chapter 6 181

Statements
while
while

Syntax

while (exp)
statement

Arguments

exp Any expression.

statement This statement is executed when the while (exp) is true.

Description

The while statement executes the statements within a loop as long as the specified condition,
exp, is true. This is one of the three looping constructions available in C. Like the for loop, the
while statement tests exp and if it is true (nonzero), statement is executed. Once exp
becomes false (0), execution of the loop stops. Since exp could be false the first time it is
tested, statement may not be performed even once.

The following describes two ways to jump out of a while loop prematurely (that is, before exp
becomes false):

• Use break to transfer control to the first statement following the while loop.

• Use goto to transfer control to some labeled statement outside the loop.

Example

/* Program name is "while_example" */
#include <stdio.h>

int main(void)
{
 int count = 0, count2 = 0;
 char a_string[80], *ptr_to_a_string = a_string;

 printf("Enter a string -- ");
 gets(a_string);
Chapter 6182

Statements
while
 while (*ptr_to_a_string++)
 count++; /* A simple statement loop */
 printf("The string contains %d characters.\n", count);
 printf("The first word of the string is ");

 while (a_string[count2] != ' ' && a_string[count2] != '\0')
 {
 /* A compound statement loop */
 printf ("%c", a_string[count2]);
 count2++;
 }
 printf("\n");
}

If you execute this program, you get the following output:

Enter a string Four score and seven years ago
The string contains 30 characters.
The first word of the string is Four
Chapter 6 183

Statements
while
Chapter 6184

7 Preprocessing Directives
Preprocessing directives work as compiler control lines. They allow you to direct the compiler
to perform certain actions on the source file.

You can select from any of the following topics:

• Source File Inclusion (#include)

• Macro Replacement (#define, #undef)

• Predefined Macros

• Conditional Compilation (#if, #ifdef, ..#endif)

• Line Control (#line)

• Pragma Directive (#pragma)

• _Pragma

• Error Directive (#error)

• Trigraph Sequences
Chapter 7 185

Preprocessing Directives
Overview of the Preprocessor
Overview of the Preprocessor
A preprocessor is a text processing program that manipulates the text within your source file.
You enter preprocessing directives into your source file to direct the preprocessor to perform
certain actions on the source file. For example, the preprocessor can replace tokens in the text,
insert the contents of other files into the source file, or supress the compilation of part of the
file by conditionally removing sections of the text. It also expands preprocessor macros and
conditionally strips out comments.

Syntax

preprocessor-directive ::=
include-directive newline
macro-directive newline
conditional-directive newline
line-directive newline
error-directive newline
pragma-directive newline

Description

The preprocessing directives control the following general functions:

1. Source File Inclusion

You can direct the compiler to include other source files at a given point. This is normally
used to centralize declarations or to access standard system headers such as stdio.h.

2. Macro Replacement

You can direct the compiler to replace token sequences with other token sequences. This is
frequently used to define names for constants rather than hard coding them into the
source files.

3. Conditional Inclusion

You can direct the compiler to check values and flags, and compile or skip source code
based on the outcome of a comparison. This feature is useful in writing a single source
that will be used for several different computers.

4. Line Control

You can direct the compiler to increment subsequent lines from a number specified in a
control line.

5. Pragma Directive
Chapter 7186

Preprocessing Directives
Overview of the Preprocessor
Pragmas are implementation-dependent instructions that are directed to the compiler.
Because they are very system dependent, they are not portable.

All preprocessing directives begin with a pound sign (#) as the first character in a line of a
source file. White space may precede the # character in preprocessing directives. The #
character is followed by any number of spaces and horizontal tab characters and the
preprocessing directive. The directive is terminated by a new-line character. You can continue
directives, as well as normal source lines, over several lines by ending lines that are to be
continued with a backslash (\).

Comments in the source file that are not passed through the preprocessor are replaced with a
single white-space character.

Examples

include-directive: #include <stdio.h>

macro-directive: #define MAC x+y

conditional-directive: #ifdef MAC

line-directive: #line 5 "myfile"

pragma-directive: #pragma INTRINSIC func
Chapter 7 187

Preprocessing Directives
Source File Inclusion (#include)
Source File Inclusion (#include)
You can include the contents of other files within the source file using the #include directive.

Syntax

include-directive ::=
#include <filename>
#include "filename"
#include identifier

Description

In the third form above, identifier must be in the form of one of the first two choices after
macro replacement.

The #include preprocessing directive causes the compiler to switch its input file so that
source is taken from the file named in the include directive. Historically, include files are
named:

filename.h

If the file name is enclosed in double quotation marks, the compiler searches your current
directory for the specified file. If the file name is enclosed in angle brackets, the “system”
directory is searched to find the named file. Refer to Chapter 10 for a detailed description of
how the directory is searched.

Files that are included may contain #include directives themselves. The HP C compiler
supports a nesting level of at least 35 #include files.

The arguments to the #include directive are subject to macro replacement before the
directive processes them. Error messages produced by the HP C compiler usually supply the
file name the error occurred in as well as the file relative line number of the error.

Examples

#include <stdio.h>

#include "myheader"

#ifdef MINE
define filename "file1"
Chapter 7188

Preprocessing Directives
Source File Inclusion (#include)
#else
define filename "file2"
#endif

#include filename
Chapter 7 189

Preprocessing Directives
Macro Replacement (#define, #undef)
Macro Replacement (#define, #undef)
You can define text substitutions in your source file with C macro definitions.

Syntax

macro-directive ::=
#define identifier [replacement-list]
#define identifier ([identifier-list])

[replacement-list]
#undef identifier

replacement-list ::=
token
replacement-list token

Description

A #define preprocessing directive of the form:

#define identifier [replacement-list]

defines the identifier as a macro name that represents the replacement list. The macro name
is then replaced by the list of tokens wherever it appears in the source file (except inside of a
string or character constant, or comment). A macro definition remains in force until it is
undefined through the use of the #undef directive or until the end of the translation unit.

Macros can be redefined without an intervening #undef directive. Any parameters used must
agree in number and spelling, and the replacement lists must be identical. All white space is
treated equally.

The replacement-list may be empty. If the token list is not provided, the macro name is
replaced with no characters.

If the define takes the form

#define identifier ([identifier-list]) replacement-list

a macro with formal parameters is defined. The macro name is the identifier and the formal
parameters are provided by the identifier-list which is enclosed in parentheses. The first
parenthesis must immediately follow the identifier with no intervening white space. If there
is a space between the identifier and the (, the macro is defined as if it were the first form and
that the replacement list begins with the (character.
Chapter 7190

Preprocessing Directives
Macro Replacement (#define, #undef)
The formal parameters to the macro are separated with commas. They may or may not appear
in the replacement list. When the macro is invoked, the actual arguments are placed in a
parentheses-enclosed list following the macro name. Comma tokens enclosed in additional
matching pairs of parentheses do not separate arguments but are themselves components of
arguments.

The actual arguments replace the formal parameters in the token string when the macro is
invoked.

If a formal parameter in the macro definition directive's token string follows a # operator, it is
replaced by the corresponding argument from the macro invocation, preceded and followed by
a double-quote character (") to create a string literal. This feature may be used to turn macro
arguments into strings. This feature is often used with the fact that the compiler concatenates
adjacent strings.

After all replacements have taken place during macro invocation, each instance of the special
token is deleted and the tokens preceding and following the ## are concatenated into a
single token. This is useful in forming unique variable names within macros.

The following example illustrates the use of the # operator for creating string literals out of
arguments and concatenating tokens:

#define debug(s, t) printf("x" # s "= %d, x" # t " %s", x ## s, x ## t)

Invoked as: debug(1, 2);

Results in:

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);

which, after concatenation, results in:

printf("x1= %d, x2= %s", x1, x2);

Spaces around the # and ## are optional.

NOTE The # and ## operators are only supported in ANSI mode.

The most common use of the macro replacement is in defining a constant. Rather than hard
coding constants in a program, you can name the constants using macros then use the names
in place of actual constants. By changing the definition of the macro, you can more easily
change the program:

#define ARRAY_SIZE 1000

float x[ARRAY_SIZE];
Chapter 7 191

Preprocessing Directives
Macro Replacement (#define, #undef)
In this example, the array x is dimensioned using the macro ARRAY_SIZE rather than the
constant 1000. Note that expressions that may use the array can also use the macro instead of
the actual constant:

for (i=0; i<ARRAY_SIZE; ++i) f+=x[i];

Changing the dimension of x means only changing the macro for ARRAY_SIZE; the dimension
will change and so will all the expressions that make use of the dimension.

Some other common macros used by C programmers include:

#define FALSE 0
#define TRUE 1

The following macro is more complex. It has two parameters and will produce an in-line
expression which is equal to the maximum of its two parameters:

#define MAX(x,y) ((x) > (y) ? (x) : (y))

Parentheses surrounding each argument and the resulting expression insure that the
precedences of the arguments and the result will not improperly interact with any other
operators that might be used with the MAX macro.

Using a macro definition for MAX has some advantages over a function definition. First, it
executes faster because the macro generates in-line code, avoiding the overhead of a function
call. Second, the MAX macro accepts any argument types. A functional implementation of MAX
would be restricted to the types defined for the function. Note further that because each
argument to the MAX macro appears in the token string more than once, check to be sure that
the actual arguments to the MAX macro do not have any "side effects." The following example

MAX(a++, b);

might not work as expected because the argument a is incremented two times when a is the
maximum.

The following statement

i = MAX(a, b+2);

is expanded to:

i = ((a) > (b+2) ? (a) : (b+2));

Examples

#define isodd(n) (((n % 2) == 1) ? (TRUE) : (FALSE))
/* This macro tests a number and returns TRUE if the number is odd. It will
*/
/* return FALSE otherwise..........................*/
Chapter 7192

Preprocessing Directives
Macro Replacement (#define, #undef)
#define eatspace() while((c=getc(input)) == ' ' || c == '\n' || c == '\t'
);
/* This macro skips white spaces */
Chapter 7 193

Preprocessing Directives
Predefined Macros
Predefined Macros
In addition to __LINE__ and __FILE__ (see “Line Control (#line)” on page 198), ANSI C
provides the __DATE__, __TIME__ and __STDC__ predefined macros. Table 7-1 describes the
complete set of macros that are predefined to produce special information. They may not be
undefined.

NOTE __DATE__, __TIME__, and __STDC__ are only defined in ANSI mode.

Table 7-1 Predefined Macros

Macro
Name Description

__DATE__ Produces the date of compilation in the form Mmm dd
yyyy.

__FILE__ Produces the name of the file being compiled.

__LINE__ Produces the current source line number.

__STDC__ Produces the decimal constant 1, indicating that the
implementation is standard-conforming.

__TIME__ Produces the time of compilation in the form hh:mm:ss.
Chapter 7194

Preprocessing Directives
Conditional Compilation (#if, #ifdef, ..#endif)
Conditional Compilation (#if, #ifdef, ..#endif)
Conditional compilation directives allow you to delimit portions of code that are compiled if a
condition is true.

Syntax

conditional-directive ::=
 #if constant-expression newline [group]
 #ifdef identifier newline [group]
 #ifndef identifier newline [group]
 #else newline [group]
 #elif constant-expression newline [group]
 #endif

Here, constant-expression may also contain the defined operator:

defined identifier
defined (identifier)

Description

You can use #if, #ifdef, or #ifndef to mark the beginning of the block of code that will
only be compiled conditionally. An #else directive optionally sets aside an alternative group
of statements. You mark the end of the block using an #endif directive. The structure of the
conditional compilation directives can be shown using the #if directive:

#if constant-expression
 .
 .
 .
/* (Code that compiles if the expression evaluates
 to a nonzero value.) */
#else
 .
 .
 .

 .
/* (Code that compiles if the expression evaluates
 to a zero value.) */
#endif
Chapter 7 195

Preprocessing Directives
Conditional Compilation (#if, #ifdef, ..#endif)
The constant-expression is like other C integral constant expressions except that all
arithmetic is carried out in long int precision. Also, the expressions cannot use the sizeof
operator, a cast, or an enumeration constant.

You can use the defined operator in the #if directive to use expressions that evaluate to 0 or
1 within a preprocessor line. This saves you from using nested preprocessing directives.

The parentheses around the identifier are optional. For example:

 #if defined (MAX) && ! defined (MIN)
 .
 .
 .

Without using the defined operator, you would have to include the following two directives to
perform the above example:

 #ifdef max
 #ifndef min

The #if preprocessing directive has the form:

 #if constant-expression

Use #if to test an expression. The compiler evaluates the expression in the directive. If it is
true (a nonzero value), the code following the directive is included. If the expression evaluates
to false (a zero value), the compiler ignores the code up to the next #else, #endif, or #elif
directive.

All macro identifiers that appear in the constant-expression are replaced by their current
replacement lists before the expression is evaluated. All defined expressions are replaced
with either 1 or 0 depending on their operands.

Whichever directive you use to begin the condition (#if, #ifdef, or #ifndef), you must use
#endif to end the if-section.

The following preprocessing directives are used to test for a definition:

#ifdef identifier
#ifndef identifier

They behave like the #if directive but #ifdef is considered true if the identifier was
previously defined using a #define directive or the -D option. #ifndef is considered true if
the identifier is not yet defined.

You can nest these constructions. Delimit portions of the source program using conditional
directives at the same level of nesting, or with a -D option on the command line.
Chapter 7196

Preprocessing Directives
Conditional Compilation (#if, #ifdef, ..#endif)
Use the #else directive to specify an alternative section of code to be compiled if the #if,
#ifdef, or #ifndef conditions fail. The code after the #else directive is compiled if the code
following any of the if directives does not compile.

The #elif constant-expression directive tests whether a condition of the previous #if,
#ifdef, or #ifndef was false. #elif is syntactically the same as the #if directive and can be
used in place of an #else directive.

Examples

Valid combinations of these conditional compilation directives follow:

#ifdef SWITCH
 /* compiled if SWITCH is defined */
#else
 /* compiled if SWITCH is undefined */
#endif /* end of if */

#if defined(THING)
 /* compiled if THING is defined */
#endif /* end of if */

#if A>47
 /* compiled if A evaluates > 47 */
#else
#if A < 20
 /* compiled if A evaluates < 20 */
#else
 /* compiled if A >= 20 and <= 47 */
#endif /* end of if, A < 20 */
#endif /* end of if, A > 47 */

Examples

#ifdef (HP9000_S800) /* If HP9000_S800 is defined, INT_SIZE */
#define INT_SIZE 32 /* is defined to be 32 (bits). */
#elif defined (HPVECTRA) && defined (SMALL_MODEL)
#define INT_SIZE 16 /* Otherwise, if HPVECTRA and */
#endif /* SMALL_MODEL are defined,INT_SIZE is */

#ifdef DEBUG /* If DEBUG is defined, display the */
 printf("table element : \n"); /* table elements. */
 for (i=0; i < MAX_TABLE_SIZE; ++i)
 printf("%d %f\n", i, table[i]);
#endif
Chapter 7 197

Preprocessing Directives
Line Control (#line)
Line Control (#line)
You can cause the compiler to increment line numbers during compilation from a number
specified in a line control directive. (The resulting line numbers appear in error message
references, but do not alter the line numbers of the actual source code.)

Syntax

line-directive ::=
 #line digit-sequence [filename]

Description

The #line preprocessing directive causes the compiler to treat lines following it in the
program as if the name of the source file were filename and the current line number is
digit-sequence. This is to control the file name and line number that is given in diagnostic
messages, for example. This feature is used primarily for preprocessor programs that
generate C code. It enables them to force the HP C compiler to produce diagnostic messages
with respect to the source code that is input to the preprocessor rather than the C source code
that is output and subsequently input to the compiler.

HP C defines two macros that you can use for error diagnostics. The first is __LINE__, an
integer constant equal to the value of the current line number. The second is __FILE__, a
quoted string literal equal to the name of the input source file. Note that you can change

__FILE__ and __LINE__ using #include or #line directives.

Example

#line digit-sequence [filename]: #line 5 "myfile"
Chapter 7198

Preprocessing Directives
Pragma Directive (#pragma)
Pragma Directive (#pragma)
You can provide instructions to the compiler through inclusion of pragmas.

Syntax

pragma-directive ::=
#pragma replacement-list

Description

The #pragma preprocessing directive provides implementation-dependent information to the
compiler. See Chapter 9, “Compiling and Running HP C Programs,” on page 207 for
descriptions of pragmas recognized by HP C/HP-UX. Any pragma that is not recognized by
the compiler is ignored.

Example

#pragma OPTIMIZE ON

#pragma OPTIMIZE OFF

This pragma is used to toggle optimization on/off for different sections of source code as these
pragmas are encountered in a top to bottom read of a source file.
Chapter 7 199

Preprocessing Directives
_Pragma
_Pragma
_Pragma is a preprocessing unary operator.

Syntax

_Pragma (string-literal)

_Pragma is a new preprocessing operator and is a part of C99 standards. The string literal is
destringized by deleting the L prefix, if present. _Pragma deletes the leading and trailing
double quotes, replacing each escape sequence by a double-quote, and replacing the escape
sequence by a single backlash. The resulting sequence of characters is processed to produce
preprocessor tokens that are executed as if they were preprocessed tokens in a pragma
directive.

The _Pragma operator provides portability in the use of an existing #pragma C preprocessor
construct. These pragmas are processed as defined in its implementation. Most C
implementations provide pragmas that are very similar in meaning and functionality. The
_Pragma operator can be used in the replacement text of a macro, so as to aid in abstracting
these specific pragmas a level higher.

Examples

The following examples list the usage of the _Pragma operator:

Example 7-1 _Pragma Operator Usage

A directive of the form,

#pragma listing on "..\listing.dir"

can also be expressed as,

_Pragma (listing on \"..\\listing.dir\"")

The latter form is processed as earlier, if it appears literally as shown or it results from macro
replacement, as in:

define LISTING(x) PRAGMA(listing on #x)
define PRAGMA(x) _Pragma(#x)
LISTING (..\listing.dir)

Example 7-2 _Pragma Operator Usage

_Pragma("ALIGN 4")
Chapter 7200

Preprocessing Directives
_Pragma
expands to

#pragma ALIGN 4

Example 7-3 _Pragma Operator Usage

#define FOO "ALIGN 4"
_Pragma(FOO)

expands to

#pragma ALIGN 4
Chapter 7 201

Preprocessing Directives
Error Directive (#error)
Error Directive (#error)

Syntax

#error [pp-tokens]

The #error directive causes a diagnostic message, along with any included token arguments,
to be produced by the compiler.

Examples

#ifndef (HP_C)
#error "HP_C not defined!" /* This directive will produce
#endif the diagnostic message "HP_C
 not defined!" */

#if TABLE_SIZE % 256 != 0
#error "TABLE_SIZE must be a multiple of 56!"
#endif /* This directive will produce
 the diagnostic message
 "TABLE_SIZE must be a
 multiple of 256! */

NOTE The #error directive is only supported in ANSI mode.
Chapter 7202

Preprocessing Directives
Trigraph Sequences
Trigraph Sequences
The C source code character set is a superset of the ISO 646-1983 Invariant Code Set. To
enable programs to be represented in the reduced set, trigraph sequences are defined to
represent those characters not in the reduced set. A trigraph is a three character sequence
that is replaced by a corresponding single character. Table 7-2 gives the complete list of
trigraph sequences and their replacement characters.

Any ? that does not begin one of the trigraphs listed above is not changed.

-notrigraph Option

In the ANSI extended (-Ae) mode, trigraph translation is automatically done. The option,
-notrigraph will disable automatic translation of trigraph sequences.

Table 7-2 Trigraph Sequences and Replacement Characters

Trigraph Sequence Replacement

??= #

??/ \

??' ^

??([

??)]

??! |

??< {

??> }

??- ~
Chapter 7 203

Preprocessing Directives
Trigraph Sequences
Chapter 7204

8 C Library Functions
The C library (/usr/lib/hpux32/libc.so or /usr/lib/hpux64/libc.so) is divided into
different subsections. Each subsection has a header file that defines the objects found in that
section of the library.

The standard headers are:

<assert.h> <locale.h> <stddef.h>
<ctype.h> <math.h> <stdio.h>
<errno.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>

The order of inclusion of these header files using the #include directive makes no difference.
Also, if you include the same header file more than once, an error does not occur.

Function names beginning with an underscore (_) are reserved for library use; you should
not specify identifiers that begin with an underscore.

To use some facilities, the C source code must include the preprocessor directive:

#include <libraryname.h>

The preprocessor looks for the particular header file defined in libraryname in a standard
location on the system.

The standard location is /usr/include.

The libraryname must be enclosed in angle brackets. For example, if you want to use the
fprintf function, which is in the standard I/O library, your program must specify

#include <stdio.h>

because the definition of fprintf, as well as various types and variables used by the I/O
function, are found in the stdio.h header file.

The C library contains both functions and macros. The use of macros improves the execution
speed of certain frequently used operations. One drawback to using macros is that they do not
have an address. For example, if a function expects the address of (a pointer to) another
function as an argument, you cannot use a macro name in that argument. The following
example illustrates the drawback:

#define add1(x) ((x)+=1)

extern f();

main()
Chapter 8 205

C Library Functions
{
.

 .
 .

f(add1); <This construct is illegal.
.

 .
 .

}

Using add1 as an argument causes an error.

The #undef directive may be used to reference a true function instead of a macro.

There are three ways in which a function can be used:

• In a header file (which might generate a macro)

#include <string.h>
i = strlen(x);

• By explicit declaration

extern int strlen();
i=strlen(x);

• By implicit declaration

i = strlen(x);

NOTE It is recommended you always include a header to declare C library functions.

For more information on C library functions, see the HP-UX Reference and HP-UX Linker and
Libraries User Guide.
Chapter 8206

9 Compiling and Running HP C
Programs
This chapter describes how to compile and run HP C programs. The compiler command and
its options are presented. You can compile HP C programs to produce assembly, object, or
executable files. You can also optionally optimize code to improve application run-time speed.
Chapter 9 207

Compiling and Running HP C Programs
Compiling HP C Programs
Compiling HP C Programs
When you compile a program, it passes through one or more of the following steps depending
upon which command line options you use:

• Preprocessor: This phase examines all lines beginning with a # and performs the
corresponding actions and macro replacements.

• Compilation Process: This phase takes the output of the preprocessor and generates
object code.

• Optimization: This optional phase optimizes the generated object code.

• Linking: In this phase, the linker is invoked to produce an executable program. External
references in shared and archived libraries are resolved as required. The startup routines
are copied in, and the C library in /usr/lib/hpux##/lib.so (## is 32 or 64) is referenced.
(By default, shared libraries take precedence over archived libraries if both versions are
available. However, if you use the LPATH environment variable, you should make sure that
all shared libraries come before any archive library directories. See the HP-UX Linker
and Libraries Online User Guide for information on LPATH or on creating and linking with
shared libraries.) Object modules are combined into an executable program file.

The cc(1) Command

Use the cc(1) command to compile HP C programs. It has the following format:

cc [options] files

where:

options is one or more compiler options and their arguments, if any. Options can be
grouped together under one minus sign.

files is one or more file names, separated by blanks. Each file is either a source or
an object file.

Specifying Files to the cc Command

Files with names ending in .c are assumed to be HP C source files. Each HP C source file is
compiled, producing an object file with the same name as the source file except that the .c
extension is changed to a .o extension. However, if you compile and link a single source file
into an HP C program in one step, the .o file is automatically deleted.
Chapter 9208

Compiling and Running HP C Programs
Compiling HP C Programs
Files with names ending in .i are assumed to be preprocessor output files. Files ending in .i
are processed the same as .c files, except that the preprocessor is not run on the .i file before
the file is compiled.

Files with names ending in .s are assumed to be assembly source files; the compiler invokes
the assembler to produce .o files from these.

Files with .o extensions are assumed to be relocatable object files that are included in the
linking. All other files are passed directly to the linker by the compiler.

Specifying Options to the cc Command

Each compiler option has the following format:

-optionname [optionarg]

where:

optionname is the name of a standard compiler option.

optionarg is the argument to optionname.

The optional argument -- delimits the end of options. Any following arguments are treated as
operands (typically input filenames) even if they begin with the minus (-) character.

An Example of Using a Compiler Option

By default, the cc command names the executable file a.out. For example, given the
following command line:

cc demo.c

the executable file is named a.out.

You can use the -o option to override the default name of the executable file produced by cc.
For example, suppose my_source.c contains C source code and you want to create an
executable file name my_executable. Then you would use the following command line:

cc -o my_executable my_source.c

Concatenating Options

You can concatenate some options to the cc command under a single prefix. The longest
substring that matches an option is used. Only the last option can take an argument. You can
concatenate option arguments with their options if the resulting string does not match a
longer option.

For example, suppose you want to compile my_file.c using the -v, -g, and -DPROG=sub
compiler options. There are several ways to do this:
Chapter 9 209

Compiling and Running HP C Programs
Compiling HP C Programs
cc my_file.c -v -g -DPROG=sub
cc my_file.c -vg -D PROG=sub

cc my_file.c -vgDPROG=sub
cc -vgDPROG=sub my_file.c

HP C Compiler Options

Table 9-1 summarizes the command line options supported by HP Integrity servers. Some of
these options are HP aC++ options. Refer to HP aC++/HP C Programmer’s Guide for detailed
information on compiler options.

Table 9-1 HP C Compiler Options at a Glance

Option Description

-.suffix Directs output from the -E option into a file with a
corresponding .suffix instead of a .c file.

-Aa Enables strict ANSI C compliance.

-AA Enables use of 2.0 Standard C++ library.

-Aarm Enables Tru64 UNIX C++ ARM dialect.

-AC89 Enables ANSI C89 compliance.

-AC99 Enables ANSI C99 compliance.

-Ae Enables ANSI C89 compliance, HP value-added
features (as described for +e option), and
_HPUX_SOURCE name space macro. It is equivalent
to -AC89 +e.

-Ag++ Enables GNU C++ dialiect compatibility.

-Agcc Enables GNU C dialect compatibility.

-AP Turns off the -AA mode and uses the older C++
runtime libraries.

-b Creates a shared library rather than an executable
file.

-Bdefault Assigns default export class to global symbols.

-Bhidden Assigns hidden export class to symbols.
Chapter 9210

Compiling and Running HP C Programs
Compiling HP C Programs
-Bextern Performs the same operation as
+Oextern=sym1,sym2,sym3... except that symbols
are loaded from an existing file, instead of specified
on the command line.

-Bprotected Assigns protected export class to symbols.

-Bprotected_data Assigns protected export class to data symbols.

-Bprotected_def Assigns protected export class to locally defined
symbols.

-Bsymbolic Assigns protected export class to all symbols.

-c Compiles only, does not link.

-C Prevents the preprocessor from stripping
comments.

-Dname Defines the preprocessor variable namewith a value
of "1".

-Dname=def Defines the preprocessor variable namewith a value
of def.

-dynamic Enables linking of PIC objects.

-E Performs preprocessing only with output to stdout.

-e epsym Sets the default entry point address for output file
to the same as the symbol epsym.

-exec Indicates that object files created will be used to
create an executable file.

-ext Specifying -ext enables HP aC++ extension to the
C++ standard.

-fast Selects a combination of optimization options for
optimum execution speed and reasonable build
times.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9 211

Compiling and Running HP C Programs
Compiling HP C Programs
-[no]fpwidetypes Enables [disables] extended and quad floating point
data types.

-g Inserts information for the symbolic debugger in the
object file.

-g0 Causes the compiler to generate complete debug
information for the debugger.

-g1 Causes the debugger to generate minimal
information for the debugger.

-G Inserts information required by the gprof profiler
in the object file.

-ipo Enables interprocedural optimizations across files.

-Idir Inserts dir in the include file search path.

-lname Causes the linker to search one of the default
libraries to resolve unresolved external references.

-lx Links with the /lib/libx.a and /usr/lib/libx.a
libraries.

-Ldir Links the libraries in dir before the libraries in the
default search path.

-minshared Indicates that the result of the current compilation
is going into an executable file that will make
minimal use of shared libraries. This option is
equivalent to -exec -Bprotected.

-mt Enables multi-threading capability with the need to
set flags.

-n Generates shareable code.

-N Generates unshareable code.

-o outfile Places object modules in outfile file.

-O Optimizes at level 2.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9212

Compiling and Running HP C Programs
Compiling HP C Programs
-p Inserts information required by the prof profiler in
the object file.

-P Performs preprocessing only with output to the
corresponding .i file.

-q Marks the executable as demand loadable.

-Q Marks the executable as not being demand
loadable.

-r Retains relocation information in the output file for
subsequent relinking.

-s Strips the symbol table from the executable file.

-S Generates an assembly language source file.

-t x,name Substitutes or inserts subprocess x with name.

-Uname Undefines name in the preprocessor.

-v Enables verbose mode.

-V Causes subprocesses to print version information to
stderr.

-w Suppresses warning messages.

-Wx, arg1 [,arg2,..,argn] Passes the arguments arg1 through argn to the
subprocess x.

-Wc,-ansi_for_scope [on|off] Enables or disables the standard scoping rules for
init declarations in for statements.

-Wc,-koenig_lookup,[on|off] Enables or disables standard argument-dependent
lookup rules.

-Y Enables Native Language Support (NLS).

-z Disallows runtime dereferencing of null pointers.

-Z Allows dereferencing of null pointers at runtime.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9 213

Compiling and Running HP C Programs
Compiling HP C Programs
+cond_rodata Allows more data to be placed in a read-only
section.

+d Prevents expansion of inline functions.

+DD32 Generates ILP32 code and is the default.

+DD64 Generates LP64 code.

+DSmodel Performs instruction scheduling for a specific
implementation of Itanium-based architecture.

+DOosname Sets the target operating system for the compiler.

+dryrun Generates subprocesses information for a given
command line without running the subprocesses.

+e Enables the following HP value added features
while compiling in ANSI C mode: sized enum, long
long, long pointers, compiler supplied defaults for
missing arguments to intrinsic calls, and $ in
identifier HP C extensions.

+ES[no]lit Places [does not place] string literals and
const-qualified variables that do not require
load-time or runtime initialization in the read-only
data section.

+FPflags Controls floating-point traps.

+help Launches a web browser displaying an html
version of the HP C/HP-UX Online Help.

+ild Specifies incremental linking.

+ildrelink Performs an initial incremental link, regardless of
the output load module.

+inline_level num Controls how C++ inlining hints influence HP
aC++.

+inst_compiletime Causes the compiler to use the compile time (CTTI)
instantiation.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9214

Compiling and Running HP C Programs
Compiling HP C Programs
+inst_directed Indicates to the compiler that no templates are to be
instantiated (except explicit instantiations).

+inst_implicit_include Specifies that the compiler use a process similar to
the cfront source rule for locating template
definition files.

+inst_include_suffixes Specifies the file name extensions that the compiler
uses to locate definition files.

+legacy_cpp Enables the use of the HP-UX 11.20 ANSI C
preprocessor.

+legacy_v5 Enables the use of the A.05.* compiler.

+M Provides ANSI migration warnings that explain the
differences between code compiled with -Ac and
-Aa.

+M1 Provides platform migration warnings for features
that may not be supported in future releases.

+M2 Provides migration warnings for transitioning code
from the ILP32 to the LP64 data model.

+m[d] Directs a list of quote enclosed header files to
stdout.

+M[d] Directs a list of both quote enclosed header files and
angle bracket enclosed header files to stdout.

+noeh Disables exception handling.

+nostl Eliminates references to standard header files and
libraries to allow developers full control over header
files and libraries in compilation and linking of
their applications.

+[no]nrv Enables [disables] named value return (NRV)
optimization.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9 215

Compiling and Running HP C Programs
Compiling HP C Programs
+o Prints hexadecimal code offsets in the source code
listing.

+O[no]cross_region_addressing Enables [disables] the use of cross-region
addressing.

+O[no]cxlimitedrange Enables [disables] the use of the usual formulas for
complex arithmetic.

+O[no]datalayout Enables [disables] profile-driven layout of global
and static data items to improve cache memory
utilization.

+O[no]dataprefetch When +Odataprefetch is enabled, the optimizer
inserts instructions within innermost loops to
explicitly prefetch data from memory into the data
cache.

+O[no]failsafe Enables [disables] failsafe optimization.

+O[no]fenvacess Provides a means to inform the compiler when a
program might access the floating point
environment to test flags or run under non-default
modes.

+O[no]fltacc Disables [enables] floating-point optimizations that
can result in numerical differences.

+O[no]info Displays information about the optimization
process.

+O[no]initcheck Initializes [does not initialize] local and non-static
variables.

+O[no]inline Allows [does not allow] inlining of funtions by the
optimizer.

+O[no]libmerrno Enables [disables] support for errno in libm
funtions.

+O[no]limit Enables [disables] optimizations that significantly
affect compile time or memory consumption.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9216

Compiling and Running HP C Programs
Compiling HP C Programs
+O[no]loop_transform Transforms [does not transform] eligible loops for
improved cache and performance.

+O[no]loop_unroll Enables [disables] loop unrolling.

+O[no]loop_unroll_jam Enables [disables] loop unrolling and jamming.

+O[no]openmp Honors [silently ignores] OpenMP directives.

+O[no]parminit Enables [disables] automatic initialization to
non-NaT function parameters at call sites.

+O[no]preserved_fpregs Specifies whether the compiler is allowed [not
allowed] to make use of the preserved subset of the
floating point register file.

+O[no]procelim Enables [disables] the elimination of dead
procedure code and unreferenced data.

+O[no]promote_indirect_calls Uses profile data from profile-based optimization
and other information to determine the most likely
target of indirect calls and promotes them to direct
calls.

+O[no]ptrs_to_globals Tells the optimizer whether global variables are
accessed [not accessed] through pointers.

+O[no]recovery Generates [does not generate] recovery code for
control speculation.

+O[no]report Displays [does not display] optimization reports.

+O[no]signedopinters Treats [does not treat] pointers in Boolean
comparisons as signed quantities.

+O[no]sumreduction Enables [disables] sum reduction optimization.

+O[no]size While most optimizations reduce code size, the
+Osize option suppresses those few optimizations
that significantly increase code size. The +Onosize
option enables code-expanding optimizations.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9 217

Compiling and Running HP C Programs
Compiling HP C Programs
+O[no]store_ordering Preserves [does not preserve] the original program
order for stores to memory that is visible to multiple
threads.

+O[no]volatile Treats all global variables as [not] volatile.

+O[no]whole_program_mode Enables [disables] assertion for files compiled with
this option.

+O[0|1|2|3|4] Specifies the level of optimization.

+Ofast Selects a combination of optimization options for
optimum execution speed and reasonable build
times.

+Ofaster Equivalent to +Ofast with an increased
optimization level.

+Ofrequently_called Calls a list of functions that are frequently called.
This option overrides any information in a profile
database.

+Oinlinebudget Controls the compile time budget for the inliner.

+Ointeger_overflow Ensures that runtime integer arithmetic
expressions that arise in certain contexts do not
overflow.

+Olevel Lowers optimization to a specified level for one or
more functions.

+Olit Places data items that do not require load-time or
runtime initialization in a read-only data section.

+Oprefetch_latency Applies to loops for which the compiler generates
data prefetch instructions.

+Orarely_called Calls a list of functions that are rarely called. This
option overrides any information in a profile
database.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9218

Compiling and Running HP C Programs
Compiling HP C Programs
+Oshortdata Places objects in the short data area; and references
to such data assume it resides in the short data area

+Otype_safety Controls type-based aliasing assumptions.

+Ounroll_factor Applies the unroll factor to all loops in the current
translation unit.

+Oprofile=collect Prepares the object code for profile-based
optimization data collection.

+Oprofile=use Performs profile-based optimization.

+[no]objdebug When used with -g, +objdebug leaves debug
information in the object files instead of copying it
to the executable file. The object files must be
accessible to the HP WDB debugger when
debugging.

+p Disallows all anachronistic constructs.

+profilebucketsize Enables support for prof and gprof when building
an executable, but not a shared library.

+sb Make bitfields signed by default in both 32-bit and
64-bit modes.

+[no]srcpos Controls generation of source position information
for HP Caliper.

+time Generates timing information for compiler
subprocesses.

+tls Specifies whether references to thread local data
items are to be performed according to the mode.

+tru64 Causes return types of unprototyped functions to be
treated as long, instead of int, matching Tru64
behavior.

+ub Specifies unqualified char, short, int, long, and
long long bit fields as unsigned.

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9 219

Compiling and Running HP C Programs
Compiling HP C Programs
Examples of Compiler Commands

• cc -Aa prog.c

requests a strict ANSI C compilation of prog.c.

• cc -tp,/users/devel/cpp prog.c

uses /users/devel/cpp as the pathname for the preprocessing phase.

• cc -tpca,/users/devel/x prog.s

uses /users/devel/x/cpp for cpp, /users/devel/x/ctcom for ctcom, and
/users/devel/x/as for as; the assembly file prog.s is processed by the specified
assembler.

• cc -Aa prog.c procedure.o -o prog

compiles and links the file prog.c, creating the executable program file prog. The
compiler produces prog.o. The linker ld(1) links prog.o and procedure.o with all of
the HP C startup routines and the library routines from the HP C library
/usr/lib/hpux32/libc.so.

+uc Makes unqualified char data types unsigned.

+w Warns about all questionable constructs and gives
pedantic warnings.

+W arg1[,arg2,...argn] Suppresses the specified warnings.

+We n1[,n2,...nN] Changes the specified warnings to errors.

+wn Specifies the level of warning messages. Warns
about all questionable constructs and gives pedantic
warnings.

+Ww n1[,n2,...nN] Enables the specified warnings, assuming all other
warnings are suppressed with -w or +w3.

+z Generates shared library object code (same as +Z in
64-bit mode).

+Z Generates shared library object code with a large
data linkage table (long-form PIC).

Table 9-1 HP C Compiler Options at a Glance (Continued)

Option Description
Chapter 9220

Compiling and Running HP C Programs
Compiling HP C Programs
• cc prog.c -co /users/my/prog.o

compiles the source file prog.c and places the object file prog.o in /users/my/prog.o.

• cc -Wp,-H150000 p1.c p2.c p3.c -o p +legacy_cpp

compiles the source files in the option -H150000 to the preprocessor cpp to increase the
define table size from the default.

• cc -Wl,-vt *.c -o vmh

compiles all files in the working directory ending with .c, passes the -vt option to the
linker, and causes the resulting program file to be named vmh.

• cc -vg prog.c

compiles prog.c, adds debug information, and displays the steps in the compilation
process.

• cc -S prog.c

compiles the file prog.c into an assembly output file called prog.s.

• cc -OAa prog.c

compiles prog.c in ANSI mode and requests level 2 optimization.

• cc +O1 prog.c

compiles prog.c and requests level 1 optimization.

• cc +w1 prog.c -c

compiles prog.c with low-level warnings emitted and suppresses linking.

• cc -D BUFFER_SIZE=1024 prog.c

passes the option -D BUFFER_SIZE=1024 to the preprocessor, setting the value of the
macro for the compilation of prog.c.

• cc prog.c -lm

compiles prog.c requests the linker to link the library /usr/lib/hpux32/libm.so with
the object file prog.o to create the executable a.out.

• cc -L/users/devel/lib prog.c -lme

compiles prog.c and causes the linker to search the directory /users/devel/lib for the
library libme.a, before searching in /usr/lib/hpux32.

• cc +DD32 +Z -c prog.c

compiles prog.c for use in a large shared library in 32-bit mode.
Chapter 9 221

Compiling and Running HP C Programs
Compiling HP C Programs
• cc +DD64 +Z -c prog.c

compiles prog.c for use in a large shared library or executable in 64-bit mode.

• cc +DD32 +z -c prog.c

compiles prog.c in 32-bit mode for use in a shared library with less than 16K of symbols.

• cc +DD64 prog.c

compiles prog.c in 64-bit mode.

Refer to the discussion on optimization options in the C online help or the HP C/HP-UX
Programmer’s Guide for more information.

Environment Variables

This section describes the following environment variables you can use to control the C
compiler:

• CCOPTS Environment Variable

• CCROOTDIR Environment Variable

• TMPDIR Environment Variable

• aCC_MAXERR Environment Variable

CCOPTS Environment Variable

You can pass arguments to the compiler using the CCOPTS environment variable or include
them on the command line. The CCOPTS environment variable provides a convenient way for
establishing default values for cc command line options. It also provides a way for overriding
cc command line options.

The syntax for the CCOPTS environment variable in C shell notation is:

export CCOPTS="options | options" (ksh/sh notation)

setenv CCOPTS "options | options" (csh notation)

The compiler places the arguments that appear before the vertical bar in front of the
command line arguments to cc. It then places the second group of arguments after any
command line arguments to cc.

Options that appear after the vertical bar in the CCOPTS variable override and take
precedence over options supplied on the cc command line.

If the vertical bar is omitted, the compiler gets the value of CCOPTS and places its contents
before any arguments on the command line.
Chapter 9222

Compiling and Running HP C Programs
Compiling HP C Programs
For example, the following in C shell notation

setenv CCOPTS -v
cc -g prog.c

is equivalent to

cc -v -g prog.c

For example, the following in C shell notation

setenv CCOPTS "-v | +O1"
cc +O2 prog.c

is equivalent to

cc -v +O2 prog.c +O1

In the above example, level 1 optimization is performed, since the +O1 argument appearing
after the vertical bar in CCOPTS takes precedence over the cc command line arguments.

CCROOTDIR Environment Variable

The CCROOTDIR environment variable causes aCC to invoke all subprocesses from an alternate
aCC directory, rather than from their default directory. The default aCC root directory is
/opt/aCC.

Syntax:

export CCROOTDIR=directory ksh/sh notation

setenv CCROOTDIR directory csh notation

directory is an aCC root directory where you want the HP aC++ driver to search for
subprocesses.

Example:

export CCROOTDIR=/mnt/CXX2.1

In this example, HP aC++ searches the directories under /mnt/CXX2.1 (/mnt/CXX2.1/bin
and /mnt/CXX2.1/lbin) for subprocesses rather than their respective default directories.

TMPDIR Environment Variable

Another environment variable, TMPDIR, allows you to change the location of temporary files
that the compiler creates and uses. The directory specified in TMPDIR replaces /var/tmp as
the default directory for temporary files. The syntax for TMPDIR in C shell notation is:

export TMPDIR=directory (ksh/sh notation)

setenv TMPDIR directory (csh notation)
Chapter 9 223

Compiling and Running HP C Programs
Compiling HP C Programs
directory is the name of an HP-UX directory where you want HP C to put temporary files
during compilation.

aCC_MAXERR Environment Variable

This release of HP C compiler provides support to specify the maximum number of errors
emitted before the compilation aborts. In the earlier versions, the compiler stopped, if it
recognized more than 99 errors while compiling. With this release, the maximum number of
errors that the compiler emits can be tuned as required by setting the aCC_MAXERR
environment variable.

The syntax for aCC_MAXERR in C shell notation is:

export aCC_MAXERR=errors

where errors are the maximum number of errors set.

SDK/XDK

SDK/XDK, helps you in selecting the components, headerfiles, and libraries installed in
alternate locations. To enable this support in your compiler, you need to set either one or both
of the following environment variables:

• SDKROOT

• TARGETROOT

Setting SDKROOT Environment Variable

The SDKROOT environment variable is used as a prefix for all references to tool set
components. This environment variables is set by the user while using a non-native
development kit or toolset installed at an alternative location. Some of the toolset components
are compiler drivers, compiler applications, preprocessor, linker, and object file tools. If the HP
C compiler has its tool set installed in /opt/xdk-ia/directory then the command:

export SDKROOT=/opt/xdk-ia

will prefix all references to the HP C compiler tool set components with /opt/xdk-ia. The
following details the default tool set components location as specified in the above command
and its earlier location before the execution of the command:

Table 9-2 Native and Alternate Toolset Location

Native Location Alternate Toolset Location

/opt/ansic/bin/cc /opt/xdk-ia/opt/ansic/bin/cc
Chapter 9224

Compiling and Running HP C Programs
Compiling HP C Programs
Invoking the toolset components will actually result in the invocation of tool set components
from the alternate location as specified above.

Setting TARGETROOT Environment Variable

The TARGETROOT environment variable is used as a prefix for all references to target set
components. This environment variable is set by the user when using a non-native
development kit. Some of the target set components are header files, archive libraries, and
shared libraries. If the HP C compiler has its large tool set installed in /opt/xdk-ia/
directory, the command:

export TARGETROOT=opt/xdk-ia

will prefix all references to the target tool set components with /opt/xdk-ia. The following
details the default location of the tool set components as specified in the above command and
its earlier location before the execution of the command:

NOTE Options like -l or -L on the command line will override $TARGETROOT
prefixing.

/opt/ansic/lbin/ecom (for A.06.*) /opt/xdk-ia/opt/ansic/lbin/ecom (for
A.06.*)

/opt/ansic/lbin/ctcom (for A.05.*) /opt/xdk-ia/opt/ansic/lbin/ctcom (for
A.05.*)

/opt/langtools/lbin/cpp.ansi /opt/xdk-ia/opt/langtools/lbin/cpp.ansi

/opt/langtools/lbin/u2comp /opt/xdk-ia/opt/langtools/lbin/u2comp

/opt/langtools/lbin/be /opt/xdk-ia/opt/langtools/lbin/be

Table 9-3 Native and Alternate Toolset Location

Native location Alternate Toolset Location

/usr/include /opt/xdk-ia/usr/include

/usr/lib /opt/xdk-ia/usr/lib

Table 9-2 Native and Alternate Toolset Location (Continued)

Native Location Alternate Toolset Location
Chapter 9 225

Compiling and Running HP C Programs
Pragmas
Pragmas
A #pragma directive is an instruction to the compiler. Put pragmas in your C source code
where you want them to take effect, but do not use them within a function. A pragma has
effect from the point at which it is included to the end of the translation unit (or until another
pragma changes its status).

This section introduces the following groups of HP C compiler directives:

• Initialization and Termination Pragmas

• Copyright Notice and Identification Pragmas

• Data Alignment Pragmas

• Optimization Pragmas

• FastCall Pragmas

• Gather/Scatter Prefetch Pragma

Initialization and Termination Pragmas

This section describes the INIT and FINI pragmas. These allow the user to set up functions
which are called when a load module (a shared library or executable) is loaded (initializer) or
unloaded (terminator). For example, when a program begins execution, its initializers get
called before any other user code gets called. This allows some set up work to take place. In
addition, when the user’s program ends, the terminators can do some clean up. When a shared
library is loaded or unloaded with the shl_load or dlopen API, its initializers and
terminators are also executed at the appropriate time.

INIT Pragma

#pragma INIT “string“

Use the compiler pragma INIT to specify an initialization function. The functions take no
arguments and return nothing. The function specified by the INIT pragma is called before the
program starts or when a shared library is loaded.

For example:

#pragma INIT “my_init”
void my_init() {

...do some initializations ...
}

Chapter 9226

Compiling and Running HP C Programs
Pragmas
FINI Pragma

#pragma FINI “string”

Use the compiler pragma FINI to specify a termination function. The function specified by the
FINI pragma is called after the C program terminates by either calling the libc exit()
function, returning from the main or _start functions, or when the shared library which
contains the FINI is unloaded from memory. Like the function called by the INIT pragma, the
termination function takes no arguments and returns nothing.

For example:

pragma FINI “my-fini”
void my_fini() {

...do some clean up ...
}

Copyright Notice and Identification Pragmas

The following pragmas can be used to insert strings in code.

COPYRIGHT Pragma

#pragma COPYRIGHT "string"

Places a copyright notice in the object file, using the “string” argument and the date specified
using COPYRIGHT_DATE. If no date has been specified using #pragma COPYRIGHT_DATE, the
current year is used. For example, assuming the year is 2004, the directive #pragma
COPYRIGHT "Acme Software" places the following string in the object code:

(C) Copyright Acme Software, 2004. All rights reserved. No part
of this program may be photocopied, reproduced, or transmitted
without prior written consent of Acme Software.

COPYRIGHT_DATE Pragma

#pragma COPYRIGHT_DATE "string"

Specifies a date string to be used in a copyright notice appearing in an object module.

LOCALITY Pragma

#pragma LOCALITY "string"

Specifies a name to be associated with the code written to a relocatable object module. All code
following the LOCALITY pragma is associated with the name specified in string.The smallest
scope of a unique LOCALITY pragma is a function.
Chapter 9 227

Compiling and Running HP C Programs
Pragmas
For example, the following command builds the name $CODE&MINE$:

#pragma locality “mine”

Code that is not headed by a LOCALITY pragma is associated with the name $CODE$. An empty
"string" causes the code name to revert to the default name of $CODE$.

VERSIONID Pragma

#pragma VERSIONID "string"

Specifies a version string to be associated with a particular piece of code. The string is placed
into the object file produced when the code is compiled.

Data Alignment Pragmas

This section discusses the data alignment pragmas HP_ALIGN and PACK and their various
arguments available on the HP-UX systems, to control alignment across platforms. In the
following discussion, a word represents a 32-bit data structure. Refer to HP aC++/HP C
Programmer's Guide for detailed information on the HP_ALIGN and PACK pragmas.

ALIGN Pragma

#pragma align N

N is a number raised to the power of 2.

HP aC++ supports user specified alignment for global data. The pragma takes effect on next
declaration. If the align pragma declaration is not in the global scope or if it is not a data
declaration, the compiler displays a warning message. If the specified alignment is lesser than
the original alignment of data, a warning message is displayed, and the pragma is ignored.

#pragma align 2

char c; // "c" is at least aligned on 2 byte boundary
#pragma align 64

int i, a[10]; // "i" and array "a" are at least aligned 64 byte boundary.
// the size of "a" is still 10*sizeof(int)

PACK Pragma

#pragma PACK n

The PACK pragma is a simple, intuitive way for users to specify alignment. In the syntax, n is
the byte boundary on which members of structs and unions should be aligned, and can be 1, 2,
4, 8, or 16.
Chapter 9228

Compiling and Running HP C Programs
Pragmas
The PACK pragma is not intended to be an “extension” of the HP_ALIGN pragma. It is, instead,
a simple and highly portable way of controlling the alignment of aggregates. It has some
significant differences with the HP_ALIGN pragma, including uniform bitfield alignment,
uniform struct and union alignment, and the lack of PUSH and POP functionality.

For complete details on the use of HP_ALIGN and PACK pragmas, refer to Chapter 2, “Storage
and Alignment Comparisons,” in the HP C/HP-UX Programmer's Guide.

UNALIGN Pragma

#pragma unalign [1|2|4|8|16]

typedef T1 T2;

T1 and T2 have the same size and layout, but with specified alignment requirements.

HP C supports misaligned data access using the unalign pragma. The unalign pragma can
be applied on typedef to define a type with special alignment. The unalign pragma takes effect
only on next declaration.

If the unalign pragma declaration is not in the global scope or if it is not a typedef, compiler
displays a warning message. If the specified alignment is greater than the original alignment
of the declaration, then an error message is displayed, and the pragma is ignored. For
example,

#pragma unalign 1
typedef int ua_int; // ua_int is of int type

// with 1 byte alignment

typedef ua_int *ua_intPtr; // this typedef is not affected
// affected by the above unalign
// pragma. it defines a pointer
// type which points to 1 byte
// aligned int

The interaction between pack and unalign pragmas is as follows:

#pragma pack 1
struct S {

char c;
int i;

};

#pragma pack 0

S s;
ua_int *ua_ip = &s.i; // ua_ip points to 1 byte aligned int
*ua_ip = 2; // mis-aligned access to 1 byte aligned int
Chapter 9 229

Compiling and Running HP C Programs
Pragmas
NOTE The HP_ALIGN pragma, which is supported by HP ANSI C compiler, is not
supported by HP aC++. The pack and unalign pragmas can replace most of the
HP_ALIGN functionality.
Chapter 9230

Compiling and Running HP C Programs
Pragmas
Optimization Pragmas

For additional information on the following optimization pragmas refer to HP aC++/HP C
Programmer's Guide.

FLOAT_TRAPS_ON Pragma

#pragma FLOAT_TRAPS_ON { functionname,...functionname }

#pragma FLOAT_TRAPS_ON {_ALL }

The FLOAT_TRAPS_ON pragma informs the compiler that you may have enabled floating-point
trap handling. When the compiler is so informed, it will not perform loop invariant code
motion (LICM) on floating-point operations in the functions named in the pragma. This
pragma is required for proper code generation when floating-point traps are enabled and the
code is optimized.

The _ALL parameter specifies that loop invariant code motion should be disabled for all
functions within the compilation unit.

[NO]INLINE Pragma

#pragma INLINE [functionname1,...,functionnamen]

#pragma NOINLINE [functionname1,...,functionnamen]

Enables (or disables) inlining of functions. If particular functions are specified with the
pragma, they are enabled (or disabled) for inlining. If no functions are specified with the
pragmas, all functions are enabled (or disabled) for inlining. Refer to the HP C/HP-UX
Programmer's Guide for details and examples.

NO_SIDE_EFFECTS Pragma

#pragma NO_SIDE_EFFECTS functionname1,...,functionnamen

States that functionname and all the functions that functionname calls will not modify any
of a program's local or global variables. This pragma provides additional information to the
optimizer which results in more efficient code. See the HP C/HP-UX Programmer's Guide for
further information.
Chapter 9 231

Compiling and Running HP C Programs
Pragmas
FastCall Pragmas

The compiler directives described in this section are designed to speed up shared library calls.

HP_DEFINED_EXTERNAL Pragma

#pragma HP_DEFINED_EXTERNAL sym1, sym2, ...

The externally defined symbol pragma specifies that the designated symbols are imported
from another load module (program file or shared library). Note that this pragma currently
works in 32-bit mode only. For 64-bit mode, use the option +Oextern.

HP_LONG_RETURN Pragma

#pragma HP_LONG_RETURN func1, func2, ...

The long return sequence pragma specifies that the named procedures can return directly
across a space, without needing to return through an export stub. The main goal of this
pragma is to eliminate export stubs, and better enable inlining of import stubs and $$dyncall
functionality for indirect calls.

HP_NO_RELOCATION Pragma

#pragma HP_NO_RELOCATION func1, func2, ...

The no parameter/return relocation pragma is used to suppress unnecessary floating point
argument relocation. When used, the burden is on the caller and callee to have their
argument and their return values agree in which register files they are passed.

Gather/Scatter Prefetch Pragma

This release supports pragmas for prefetching the cache lines specified in the pragma.

Syntax

#pragma prefetch <argument>

The behavior of this pragma is similar to the HP_OPT_DATA pragma which prefetches the data
specified. But the prefetch pragma can access cache lines that are accessed via a vector of
indices.

<argument> can have only one argument per pragma and it must me an array element. For
example, a[i].

The compiler generates instructions to prefetch the cache lines starting from the address of an
argument. The values prefetched must be valid values. Reading off the end of an array may
result in undefined behavior during runtime.
Chapter 9232

Compiling and Running HP C Programs
Pragmas
Example:

The function below prefetches ia and b, but not a[ia[i]] when compiled with +O2
+Odataprefetch +DA2.0 (or +DA2.0W).

testprefc2(int n, double *a, int *ia, double *b)

{
 for (int i=0; i<n, i++) {
 b[i]=a[ia[i]];
 }
}
Recording this routine as

#define USER_SPECIFIED 30

testprefc2(int n, double *a, int *ia, double *b)
{
 int dist=(int)USER_SPECIFIED;
 int nend=max(0,n_dist); /* so as not to read past the end of is */
 for(i=0;i<nend;i++) /* original loop is for (i=0;i<n;i++) */
 {
 #pragma prefetch ia[i+4*dist]
 #pragma prefetch a[ia[i+dist]]
 b[i]=a[ia[i]];
 }
/* finish up last part with no prefetching */

 for (int i=nend;i<n;i++)
 b[i]=a[ia[i]];
}

Chapter 9 233

Compiling and Running HP C Programs
Running HP C Programs
Running HP C Programs
After a program is successfully linked, it is in executable form. To run the program, enter the
executable filename (either a.out or the name following the -o option).
Chapter 9234

10 HP C/HP-UX Implementation Topics
This chapter describes the following topics that are specific to programming in C on HP-UX
systems:

• “Data Types” on page 236

• “Bit-Fields” on page 239

• “IEEE Floating-Point Format” on page 240

• “Lexical Elements” on page 242

• “Structures and Unions” on page 243

• “Type Mismatches in External Names” on page 244

• “Expressions” on page 245

• “Pointers” on page 246

• “Maximum Number of Dimensions of an Array” on page 247

• “Scope of extern Declarations” on page 248

• “Conversions Between Floats, Doubles, and Long Doubles” on page 249

• “Statements” on page 250

• “Preprocessor” on page 251

• “Library Functions and Header Files” on page 252

• “The varargs Macros” on page 253

• “HP Specific Type Qualifiers” on page 259

• “Location of Files” on page 260
Chapter 10 235

HP C/HP-UX Implementation Topics
Data Types
Data Types
Data types are implemented in HP C/HP-UX as follows:

• The char type is signed.

• All types can have the register storage class, although it is only honored for scalar types.
Ten register declarations per function are honored.

• The signed integer types are represented internally using twos complement form.

• Structures and unions start and end on an alignment boundary which is that of their most
restrictive member.

• The long long data type cannot be used to declare an array's size.

• The long long data type is available only under -Ac, -Aa +e, and -Ae compilation modes.

Table 10-1 lists the sizes and ranges of different HP C/HP-UX data types.

Table 10-1 HP C/HP-UX Data Types

Type Bits Bytes Low Bound
High

Bound Comments

char 8 1 -128 127 Character

signed char 8 1 -128 127 Signed
integer

unsigned char 8 1 0 255 Unsigned
integer

short 16 2 -32,768 32,767 Signed
integer

unsigned short 16 2 0 65,535 Unsigned
integer

int 32 4 -2,147,483,6
48

2,147,483,64
7

Signed
integer

unsigned int 32 4 0 4,294,967,29
5

Unsigned
integer
Chapter 10236

HP C/HP-UX Implementation Topics
Data Types
Comments

In the following comments, the low bounds of float, double, and long double data types are
given in their normalized and denormalized forms. Normalized and denormalized refer to
the way data is stored. Normalized numbers are represented with a greater degree of
accuracy than denormalized numbers. Denormalized numbers are very small numbers
represented with fewer significant bits than normalized numbers.

a. Least normalized: 1.17549435E-38F
Least denormalized: 1.4012985E-45F

long (ILP32) 32 4 -2,147,483,6
48

2,147,483,64
7

Signed
integer

long (LP64) 64 8 -263 263 -1 Signed
integer

long long 64 8 -263 263 -1 Signed
integer

unsigned long
(ILP32)

32 4 0 4,294,967,29
5

Unsigned
integer

unsigned long
(LP64)

64 8 0 264 -1 Unsigned
integer

unsigned long
long

64 8 0 264 -1 Unsigned
integer

float 32 4 See (a)
below.

See (b)
below.

Floating-poi
nt

double 64 8 See (c)
below.

See (d)
below.

Floating-poi
nt

long double 128 16 See (e)
below.

See (f) below. Floating-poi
nt

enum 32 4 -2,147,483,6
48

2,147,483,64
7

Signed
integer

Table 10-1 HP C/HP-UX Data Types (Continued)

Type Bits Bytes Low Bound
High

Bound Comments
Chapter 10 237

HP C/HP-UX Implementation Topics
Data Types
b. 3.40282347E+38F

c. Least normalized: 2.2250738585072014E-308
Least denormalized: 4.9406564584124654E-324

d. 1.7976931348623157E+308

e. Least normalized: 3.3621031431120935062626778173217526026E-4932L
Least denormalized: 6.4751751194380251109244389582276465525E-4966L

e. 1.1897314953572317650857593266280070162E+4932L
Chapter 10238

HP C/HP-UX Implementation Topics
Bit-Fields
Bit-Fields

• Bit-fields in structures are packed from left to right (high-order to low-order).

• The high order bit position of a “plain” integer bit-field is treated as a sign bit.

• Bit-fields of types char, short, long, long long, and enum are allowed.

• The maximum size of a bit-field is 64 bits.

• If a bit-field is too large to fit in the current word, it is moved to the next word.

• The range of values in an integer bit-field are:

— -2,147,483,648 to 2,147,483,647 for 32-bit signed quantities

— 0 to 4,294,967,295 for 32-bit unsigned quantities

— -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 for 64-bit signed quantities

— 0 to 18,446,744,073,709,551,615 for 64-bit unsigned quantities

• Bit-fields in unions are allowed only in ANSI mode.
Chapter 10 239

HP C/HP-UX Implementation Topics
IEEE Floating-Point Format
IEEE Floating-Point Format
The internal representation of floating-point numbers conforms to the IEEE floating-point
standard, ANSI/IEEE 754-1985, as shown in Figure 10-1.

Figure 10-1 Internal Representation of Floating-Point Numbers

The s field contains the sign of the number. The exp field contains the biased exponent (exp =
E + bias, where E is the real exponent) of the number. The values of bias and the maximum
and minimum values of the unbiased exponent appear in the following table:

Emin-1 is used to encode 0 and denormalized numbers.

Emax+1 is used to encode infinities and NaNs.

Table 10-2 Floating-point Bias, and Unbiased Exponents Values

float double long double

bias +127 +1023 +16383

Emax +127 +1023 +16383

Emin -126 -1022 -16382

Float

Double

Long Double

s

s exp

exp

exp

mantissa

mantissa

mantissa

1

s

1

1

8 23

11 52

15 112

bits

bits

bits
Chapter 10240

HP C/HP-UX Implementation Topics
IEEE Floating-Point Format
NaNs are binary floating-point numbers that have all ones in the exponent and a nonzero
fraction. NaN is a term used for a binary floating-point number that has no value (that is,
“Not A Number”).

If E is within the range

Emin <= E <= Emax

the mantissa field contains the number in a normalized form, preceded by an implicit 1 and
binary point.

In accordance with the IEEE standard, floating-point operations are performed with traps not
enabled, and the result of such an operation is that defined by the standard. This means, for
example, that dividing a positive finite number by zero will yield positive infinity, and no trap
will occur. Dividing zero by zero or infinity by infinity will yield a NaN, again with no trap. For
a discussion of infinity arithmetic and operations with NaNs, in the context of the IEEE
standard, see the HP Precision Architecture and Instruction Set Reference Manual (HP part
number 09740-90014).

For detailed information about floating-point arithmetic on HP-UX, how HP-UX implements
the IEEE standard, and the HP-UX math libraries, see the HP-UX Floating Point Guide.

Note that infinities and NaNs propagate through a sequence of operations. For example,
adding any finite number to infinity will yield infinity. An operation on a NaN will yield a
NaN. This means that you may be able to perform a sequence of calculations and then check
just the final result for infinity or NaN.

The HP-UX math library provides routines for determining the class of a floating point
number. For example, you can determine if a number is infinity or NAN. See the HP-UX
Reference for descriptions of the functions fpclassify, fpclassifyf, isinf, and isnan.
Chapter 10 241

HP C/HP-UX Implementation Topics
Lexical Elements
Lexical Elements

• Identifiers: 255 characters are significant in internal and external names.

• Character Constants: Any character constant of more than one character produces a
warning. The value of an integral character constant containing more than one character
is computed by concatenating the 8-bit ASCII code values of the characters, with the
leftmost character being the most significant. For example, the character constant 'AB'
has the value 256*'A'+'B' = 256*65+66 = 16706. Only the rightmost four characters
participate in the computation.

• The case of alphabetic characters is always significant in external names.

• The execution character set and the source character set are both ASCII.

• Nonprinting characters in character constants and string literals must be represented as
escape sequences.
Chapter 10242

HP C/HP-UX Implementation Topics
Structures and Unions
Structures and Unions
Structure or union references that are not fully qualified (see example below) are flagged with
an error by the compiler.

struct{
int j;
struct {int i;}in;
} out;
out.i=3;

The correct statement for the example above is out.in.i = 3;.
Chapter 10 243

HP C/HP-UX Implementation Topics
Type Mismatches in External Names
Type Mismatches in External Names
It is illegal to declare two externally visible identifiers of different types with the same name
in separately compiled translation units. The linker might not diagnose such a mismatch.
Chapter 10244

HP C/HP-UX Implementation Topics
Expressions
Expressions
The value of an expression that overflows or underflows is undefined, except when the
operands are unsigned.
Chapter 10 245

HP C/HP-UX Implementation Topics
Pointers
Pointers

• Pointers to functions should not be compared using relational operators because the
pointers represent external function labels and not actual addresses.

• Dereferencing a pointer that contains an invalid value results in a trap if the address
references protected memory or if the address is not properly aligned for the object being
referenced.

• A declaration of a pointer to an undefined structure tag is allowed, and the tag need not be
defined in the source module unless the pointer is used in an expression.
Chapter 10246

HP C/HP-UX Implementation Topics
Maximum Number of Dimensions of an Array
Maximum Number of Dimensions of an Array
Arrays can have up to 252 dimensions.
Chapter 10 247

HP C/HP-UX Implementation Topics
Scope of extern Declarations
Scope of extern Declarations
Identifiers for objects and functions declared within a block and with the storage class extern
have the same linkage as any visible declaration with file scope. If there is no visible
declaration with file scope, the identifier has external linkage, and the definition remains
visible until the end of the translation unit.

However, because this is an extension to ANSI C, a warning will be issued on subsequent uses
of the identifier if the absence of this extended visibility could cause a change in behavior on a
port to another conforming implementation.
Chapter 10248

HP C/HP-UX Implementation Topics
Conversions Between Floats, Doubles, and Long Doubles
Conversions Between Floats, Doubles, and Long Doubles

• When a long double is converted to a double or float, or when a double is converted to
a float, the original value is rounded to the nearest representable value as the new type.
If the original value is equally close to two distinct representable values, then the value
chosen is the one with the least significant bit equal to zero.

• Conversions between floating-point types involve a change in the exponent, as well as the
mantissa. It is possible for such a conversion to overflow.
Chapter 10 249

HP C/HP-UX Implementation Topics
Statements
Statements

• The types of switch expressions and their associated case label constants do not need to
match. Integral types can be mixed.

• All expressions of integral types are allowed in switch statements.
Chapter 10250

HP C/HP-UX Implementation Topics
Preprocessor
Preprocessor

• The maximum nesting depth of #include files is 35.

• For include files that are enclosed in double quotes and do not begin with a /, the
preprocessor will first search the current directory, then the directory named in the -I
option, and finally, in the standard include directory /usr/include.

• For include files that are enclosed in < and > signs, the search path begins with the
directory named in the -I option and is completed in the standard include directory,
/usr/include. The current directory is not searched.
Chapter 10 251

HP C/HP-UX Implementation Topics
Library Functions and Header Files
Library Functions and Header Files
This section describes the implementation of library functions in HP C/HP-UX. For complete
information about library functions on HP C/HP-UX, see the HP-UX Reference manual and
HP-UX Linker and Libraries Online User Guide.

The Math Library

When using any of the mathematical functions in the <math.h> header, you must include the
-lm flag on the cc or ld command when linking. This will cause the linker to link in the
appropriate math library.

Other Library Functions

• longjmp: Because HP C/HP-UX can place automatic variables in registers, you cannot
rely on their values if they are changed between the setjmp and longjmp functions.

• setjmp: There are no restrictions on when calls to setjmp can be made.

NOTE +Olibcalls transforming setjmp to _setjmp and longjmp to _longjmp is not
supported in 11.x of HP C compilers.
Chapter 10252

HP C/HP-UX Implementation Topics
The varargs Macros
The varargs Macros
The varargs macros allow accessing arguments of functions where the number and types of
the arguments can vary from call to call.

NOTE The <varargs.h> header has been superseded by the standard header
<stdarg.h>, which provides all the functionality of the varargs macros. The
<varargs.h> header is retained for compatibility with pre-ANSI compilers and
earlier releases of HP C/HP-UX.

To use varargs, a program must include the header <varargs.h>. A function that expects a
variable number of arguments must declare the first variable argument as va_alist in the
function declaration. The macro va_dcl must be used in the parameter declaration.

A local variable should be declared of type va_list. This variable is used to point to the next
argument in the variable argument list.

The va_start macro is used to initialize the argument pointer to the initial variable
argument.

Each variable argument is accessed by calling the va_arg macro. This macro returns the
value of the next argument, assuming it is of the specified type, and updates the argument
pointer to point to the next argument.

The va_end macro is provided for consistency with other implementations; it performs no
function on HP systems. The following example demonstrates the use of the <varargs.h>
header:

Example

#include <varargs.h>
#include <stdio.h>

enum arglisttype {NO_VAR_LIST, VAR_LIST_PRESENT};
enum argtype {END_OF_LIST, CHAR, DOUB, INT, PINT};

int foo (va_alist)
va_dcl /* Note: no semicolon */
{

va_list ap;
int a1;
Chapter 10 253

HP C/HP-UX Implementation Topics
The varargs Macros
enum arglisttype a2;

enum argtype ptype;
int i, *p;
char c;
double d;

/* Initialize the varargs mechanism */
va_start(ap);

/* Get the first argument, and arg list flag */
a1 = va_arg (ap, int);
a2 = va_arg (ap, enum arglisttype);

printf ("arg count = %d\n", a1);

if (a2 == VAR_LIST_PRESENT) {
/* pick up all the arguments */
do {

/* get the type of the argument */
ptype = va_arg (ap, enum argtype);

/* retrieve the argument based on the type */
switch (ptype) {

case CHAR: c = va_arg (ap, char);
printf ("char = %c\n", c);
break;

case DOUB: d = va_arg (ap, double);
printf ("double = %f\n", d);
break;

case PINT: p = va_arg (ap, int *);
printf ("pointer = %x\n", p);
break;

case INT : i = va_arg (ap, int);
printf ("int = %d\n", i);
break;

case END_OF_LIST :
break;
Chapter 10254

HP C/HP-UX Implementation Topics
The varargs Macros
default: printf ("bad argument type %d\n", ptype);
ptype = END_OF_LIST; /* to break loop */
break;

} /* switch */
} while (ptype != END_OF_LIST);

}

/* Clean up */
va_end (ap);

}

main()
{

int x = 99;

foo (1, NO_VAR_LIST);
foo (2, VAR_LIST_PRESENT, DOUB, 3.0, PINT, &x, END_OF_LIST);

}

C9X standard macros

The C9X standard-compliant version of "variadic" or variable argument (varargs) macro
notation has been added to the HP ANSI C compiler. The notation for C9X standard and for
the GNU version of varargs is very similar.

If you have coded your macros to the GNU standards, you can expect GNU-style behavior
using the HP ANSI C compiler. If you have coded your macros to C9X standards, you can
expect C9X-style behavior.

Usage Differences

In the HP ANSI C compiler, an ellipsis (...) at the end of the parameter list in a macro
definition indicates that the macro takes a variable number of arguments, or is variadic in
nature. The ellipsis should be the final parameter in C9X style and should immediately follow
the final parameter in GNU style.

The last parameter in a variable argument definition is referred to as the variable argument
parameter. In GNU terminology, this is known as the rest parameter. In a C9X style
definition, the variable argument parameter does not explicitly appear in the parameter list
but is referred to by the identifier __VA_ARGS__ in its replacement text.
Chapter 10 255

HP C/HP-UX Implementation Topics
The varargs Macros
In the use of a variable arguments macro, a one-to-one correspondence is set up between the
arguments in use and those in its definition. This is up to, but not including, the variable
argument parameter. The rest of the arguments in the use of the macro definition are referred
to as the trailing arguments. For purposes of expanding the macro, the entire combination of
the trailing arguments (including the separating commas) is substituted for the variable
argument parameter in the replacement text.

There are minor usage differences between how C9X and GNU specify variable argument
macros are defined:

• In the GNU style, the name of the variable parameter s precedes the ellipsis in the
parameter list.

• In the C9X standard, the identifier __VA_ARGS__ refers to the variable arguments.

• The identifier __VA_ARGS__ can only occur only in the replacement-list of a function-like
macro that uses the ellipsis notation in the arguments.

Variable names

Variable names are also handled slightly different by C9X and GNU.

For example:

• __VA_ARGS__ in the replacement text indicates the variable name in the following
C9X-style code:

printf(f, __VA_ARGS__)

• s in the replacement text indicates the variable name in the following GNU-style code:

Table 10-3 How C9X and GNU define a variable argument macro

C9X

#define foo(f, ...) printf (f, __VA_ARGS__)

GNU

#define foo(f, s...) printf(f, s)

Table 10-4 How C9X and GNU refer to varargs in macro replacement text

C9X GNU

Specified by the identifier
__VA_ARGS__.

Name appears in the replacement
text.
Chapter 10256

HP C/HP-UX Implementation Topics
The varargs Macros
printf(f, s)

How HP C implements GNU and C9X macros

If you intend to use GNU style variable argument macros in HP C, note that you can make
the concatenation operator ## prevent syntax errors from occurring when the variable
argument comes in as empty (the null string). However, you can also insert whitespace to the
left of the left operand of ## to more accurately specify the intended left operand.

For example, if you use

#define foo(f, s...) printf(f, s)

Then the macro "call"

foo("Hello world.\n");

 results in the expansion

 printf("Hello world.\n",);

 (note the comma ",") causing a syntax error.

GNU provides the following workaround for this kind of a situation. If you use:

 #define foo(f, s...) printf(f, ## s)

If the variable parameter s is non-null, if for example, you use:

 foo("%s %d\n", "Cycles", "1024");

the result is

 printf("%s %d\n", "Cycles", "1024");

as the expansion as you would expect.

However, if s is null, this erases the comma to the left of the ## in the macro definition and
resulting expansion is:

printf("Hello world.\n");

 Note that the comma is gone.

In order to get the same behavior in HP C, you must insert a space to the left of the comma to
make it clear to the preprocessor that the comma is the left operand of the '##' operator. Thus
your definition for the macro foo is:

#define foo(f, s...) printf(f , ## s)

 (Note the space to the left of the ## operator in the macro definition.)

 If the space is not inserted, the left operand of the ## operator is understood to be:
Chapter 10 257

HP C/HP-UX Implementation Topics
The varargs Macros
 printf(f,

Because there is no parameter by that name for foo, it is erased.
Chapter 10258

HP C/HP-UX Implementation Topics
HP Specific Type Qualifiers
HP Specific Type Qualifiers
See “HP-Specific Type Qualifiers” on page 44.
Chapter 10 259

HP C/HP-UX Implementation Topics
Location of Files
Location of Files
Table 10-5 lists the location of the HP C files.

Table 10-5 Location of Files

File or Library Location

Driver /opt/ansic/bin/cc
/opt/ansic/bin/c89

Preprocessor /opt/langtools/lbin/cpp (Compatibility mode)
/opt/langtools/lbin/cpp.ansi (ANSI mode)

(Only used with +legacy_cpp)

Compiler /opt/ansic/lbin/ecom (for A.06.*)

/opt/ansic/lbin/ctcom (for A.05.*)

Assembler /usr/ccs/bin/as

Linker /usr/ccs/bin/ld

32-bit dynamic
loader

/usr/lib/hpux32/dld.so

64-bit dynamic
loader

/usr/lib/hpux64/dld.so

Advanced
Optimizing Code
Generator

/opt/langtools/lbin/u2comp
/opt/langtools/lbin/be
/opt/langtools/lib/hpux##/libu2comp.so (plugin)
(## is 32 or 64 - provided as part of the HP-UX core system)

C libraries (libc) /usr/lib/hpux##/libc.so
(## is 32 or 64)

lex and yacc
libraries

/usr/lib/hpux##/libl.so
/usr/lib/hpux##/liby.so
(## is 32 or 64)
Chapter 10260

HP C/HP-UX Implementation Topics
Location of Files
Manpages • Manpages in English

/opt/ansic/share/man/man1.Z/cc.1
/opt/ansic/share/man/man1.Z/c89.1
/opt/ansic/share/man/man1.Z/c99.1
/opt/langtools/share/man/man1.Z/cpp.1
/opt/langtools/share/man/man1.Z/lex.1
/opt/langtools/share/man/man1.Z/yacc.1

• Manpages in Japanese

/opt/ansic/share/man/ja_JP.SJIS/man1.Z/cc.1
/opt/ansic/share/man/ja_JP.SJIS/man1.Z/c89.1
/opt/ansic/share/man/ja_JP.SJIS/man1.Z/c99.1
/opt/ansic/share/man/ja_JP.eucJP/man1.Z/cc.1
/opt/ansic/share/man/ja_JP.eucJP/man1.Z/c89.1
/opt/ansic/share/man/ja_JP.eucJP/man1.Z/c99.1

Message Catalogs /opt/langtools/lib/nls/msg/C/cpp.cat
/opt/langtools/lib/nls/msg/C/lex.cat
/opt/langtools/lib/nls/msg/C/yacc.cat
/opt/ansic/lib/nls/msg/C/aCC.cat
/opt/ansic/lib/nls/msg/C/ecc.cat (A.06.*)

prof and gprof
libraries

/usr/lib/hpux##/libprof.so
/usr/lib/hpux##/libgprof.so
(## is 32 or 64)

Temporary files /var/tmp*

Math libraries /usr/lib/hpux##/libm.a
/usr/lib/hpux##/libm.so
(## is 32 or 64)

OpenMP libraries /usr/lib/hpux##/libomp.a
/usr/lib/hpux##/libomp.so
/usr/lib/hpux##/libcps.a
/usr/lib/hpux##/libcps.so
(## is 32 or 64)

Release Notes /opt/ansic/newconfig/RelNotes/ACXX.release.notes

Table 10-5 Location of Files (Continued)

File or Library Location
Chapter 10 261

HP C/HP-UX Implementation Topics
Location of Files
*You can change the default location for the temporary files used and created by the C
compiler by setting the environment variable TMPDIR. If the compiler cannot write to $TMPDIR,
it uses the default location /var/tmp. See the HP-UX Reference for details.

Online Help /opt/ansic/html/C/guide

C Tools /opt/langtools/bin
/opt/langtools/lbin

Table 10-5 Location of Files (Continued)

File or Library Location
Chapter 10262

A Syntax Summary
This appendix presents a summary of the C language syntax using a variation of the Backus
Naur syntax.
Appendix A 263

Syntax Summary
Lexical Grammar
Lexical Grammar

Tokens

token ::= keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token ::=
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character cannot be one

of the above

Keywords

keyword ::= any word from the set:
auto extern sizeof
break float static
case for struct
char goto switch
const if __thread (HP-UX 10.30 and later)
continue int typedef
default long union
do register unsigned
double return void
else short volatile
enum signed while
Appendix A264

Syntax Summary
Lexical Grammar
Identifiers

identifier ::= nondigit
identifier nondigit
identifier digit
identifier dollar-sign

nondigit ::= any character from the set:
_ a b c d e f g h i j k l m n o p
q r s t u v w x y z A B C D E F G
H I J K L M N O P Q R S T U V W X
Y Z

digit ::= any character from the set:
0 1 2 3 4 5 6 7 8 9

dollar-sign ::= the $ character

Constants

constant ::=
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant ::=
fractional-constant [exponent-part] [floating-suffix]
digit-sequence exponent-part [floating-suffix]

fractional-constant ::=
[digit-sequence] . digit-sequence
digit-sequence .

exponent-part ::=
e [sign] digit-sequence
E [sign] digit-sequence

sign ::=
+
-

Appendix A 265

Syntax Summary
Lexical Grammar
digit-sequence ::=
digit
digit-sequence digit

floating-suffix ::=
f l F L

integer-constant ::=
decimal-constant [integer-suffix]
octal-constant [integer-suffix]
hexadecimal-constant [integer-suffix]

decimal-constant ::=
nonzero-digit
decimal-constant digit

octal-constant ::=
0
octal-constant octal-digit

hexadecimal-constant ::=
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit ::= any character from the set:
1 2 3 4 5 6 7 8 9

octal-digit ::= any character from the set
0 1 2 3 4 5 6 7

hexadecimal-digit ::= any character from the set
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix ::=
unsigned-suffix [long-suffix]
length-suffix [unsigned-suffix]
Appendix A266

Syntax Summary
Lexical Grammar
unsigned-suffix ::=
u U

length-suffix ::=
long-suffix
long-long-suffix

long-suffix ::= any character from the set
l L

long-long-suffix ::= any character from the set
ll LL Ll lL

enumeration-constant ::= identifier

character-constant ::=
'c-char-sequence'
L'c-char-sequence'

c-char-sequence ::=
c-char
c-char-sequence c-char

c-char ::=
any character in the source character set except

the single quote ('), backslash (\), or new-line character
escape-sequence

escape-sequence ::=
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence ::=
\' \" \? \\ \ddd \xdd
\a \b \f \n \r \t \v

octal-escape-sequence ::=
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
Appendix A 267

Syntax Summary
Lexical Grammar
hexadecimal-escape-sequence ::=
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit
Appendix A268

Syntax Summary
Lexical Grammar
String Literals

string-literal ::=
"[s-char-sequence]"
L"[s-char-sequence]"

s-char-sequence ::=
s-char
s-char-sequence s-char

s-char ::=
any character in the source character set except

the double-quote (") , backslash (\), or new-line
character escape-sequence

Operators

operator ::= One selected from:
[] () . ->
++ -- & * + - ~ ! sizeof
/ % << >> < > <= >= == != ^ |
&& || ? :
= *= /= %= += -= <<= >>= &= ^= |=
, # ##

Punctuators

punctuator ::= One selected from:
[] () { } * , : = ; ... #

Header Names

header-name ::=
<h-char-sequence>
"q-char-sequence"

h-char-sequence ::=
h-char
h-char-sequence h-char

h-char ::=
any character in the source character set except
Appendix A 269

Syntax Summary
Lexical Grammar
the newline character and >

q-char-sequence ::=
q-char
q-char-sequence q-char

q-char ::=
any character in the source character set except

the newline character and "

Preprocessing Numbers

pp-number ::=
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .
Appendix A270

Syntax Summary
Phrase Structure Grammar
Phrase Structure Grammar

Expressions

primary-expression ::=
identifier
constant
string-literal
(expression)

postfix-expression ::=
primary-expression
postfix-expression [expression]
postfix-expression ([argument-expression-list])
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

argument-expression-list ::=
assignment-expression
argument-expression-list , assignment-expression

unary-expression ::=
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator ::= one selected from
& * + - ~ !

cast-expression ::=
unary-expression
(type-name) cast-expression

multiplicative-expression ::=
Appendix A 271

Syntax Summary
Phrase Structure Grammar
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %% cast-expression

additive-expression ::=
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression ::=
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression ::=
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression ::=
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

AND-expression ::=
equality-expression
AND-expression & equality-expression

exclusive-OR-expression ::=
AND-expression
exclusive-OR-expression ^ AND-expression

inclusive-OR-expression ::=
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression ::=
inclusive-OR-expression
Appendix A272

Syntax Summary
Phrase Structure Grammar
logical-AND-expression && inclusive-OR-expression

logical-OR-expression ::=
logical-AND-expression
logical-OR-expression || logical-AND-expression

conditional-expression ::=
logical-OR-expression
logical-OR-expression ? logical-OR-expression :
conditional-expression

assignment-expression ::=
conditional-expression
unary-expression assign-operator assignment-expression

assign-operator ::= one selected from the set
= *= /= %= += -= <<= >>= &= ^= |=

expression ::=
assignment-expression
expression , assignment-expression

constant-expression ::=
conditional-expression

Declarations

declaration ::=
declaration-specifiers [init-declarator-list] ;

declaration-specifiers ::=
storage-class [declaration-specifiers]
type-specifier [declaration-specifiers]
type-qualifier [declaration-specifiers]

init-declarator-list ::=
init-declarator
init-declarator-list , init-declarator

init-declarator ::=
declarator
Appendix A 273

Syntax Summary
Phrase Structure Grammar
declarator = initializer

storage-class-specifier ::=
typedef
extern
static
auto
register

type-specifier ::=
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union specifier ::=
struct-or-union [identifier] {struct-declaration-list}
struct-or-union identifier

struct-or-union ::=
struct
union

struct-declaration-list ::=
struct-declaration
struct-declaration-list struct-declaration

struct-declaration ::=
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list ::=
type-specifier [specifier-qualifier-list]
type-qualifier [specifier-qualifier-list]
Appendix A274

Syntax Summary
Phrase Structure Grammar
struct-declarator-list ::=
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator ::=
declarator
[declarator] : constant-expression

enum-specifier ::=
[type-specifier] enum [identifier] {enumerator-list}
[type-specifier] enum identifier

enumerator-list ::=
enumerator
enumerator-list , enumerator

enumerator ::=
enumeration-constant
enumeration-constant = constant-expression

type-qualifier ::=
const
noalias
volatile

declarator ::=
[pointer] direct-declarator

direct-declarator ::=
identifier
(declarator)
direct-declarator [[constant-expression]]
direct-declarator (parameter-type-list)
direct-declarator ([identifier-list])

pointer ::=
* [type-qualifier-list]
* [type-qualifier-list] pointer

type-qualifier-list ::=
type-qualifier
type-qualifier-list type-qualifier
Appendix A 275

Syntax Summary
Phrase Structure Grammar
parameter-type-list ::=
parameter-list
parameter-list , ...

parameter-list ::=
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration ::=
declaration-specifiers declarator
declaration-specifiers [abstract-declarator]

identifier-list ::=
identifier
identifier-list , identifier

type-name ::=
specifier-qualifier-list [abstract-declarator]

abstract-declarator ::=
pointer
[pointer] direct-abstract-declarator

direct-abstract-declarator ::=
(abstract-declarator)
[direct-abstract-declarator] [[constant-expression]]
[direct-abstract-declarator] ([parameter-type-list])

typedef-name ::=
identifier

initializer ::=
assignment-expression
{initializer-list}
{initializer-list , }

initializer-list ::=
initializer
initializer-list , initializer
Appendix A276

Syntax Summary
Phrase Structure Grammar
Statements

statement :=
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

labeled-statement :=
identifier : statement
case constant-expression : statement
default: statement

compound-statement :=
{ [declaration-list] [statement-list] }

declaration-list :=
declaration
declaration-list declaration

statement-list :=
statement
statement-list statement

expression-statement :=
[expression];

selection-statement :=
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement :=
while (expression) statement
do statement while (expression)
for ([expression]; [expression]; [expression]) statement

jump-statement :=
goto identifier ;
Appendix A 277

Syntax Summary
Phrase Structure Grammar
continue ;
break ;
return [expression] ;

External Definitions

translation-unit :=
external-declaration
translation-unit external-declaration

external-declaration :=
function-definition
declaration

function-definition :=
[declaration-specifiers] declarator [declaration-list]

compound-statement
Appendix A278

Syntax Summary
Preprocessing Directives
Preprocessing Directives
preprocessing-file :=

[group]

group :=
group-part
group group-part

group-part :=
[pp-tokens] new-line
if-section
control-line

if-section :=
if-group [elif-groups] [else-group] endif-line

if-group :=
if constant-expression new-line [group]
ifdef identifier new-line [group]
ifndef identifier new-line [group]

elif-groups :=
elif-group
elif-groups elif-group

elif-group :=
elif constant-expression new-line [group]

else-group :=
else new-line [group]

endif-group :=
endif new-line

control-line :=
include pp-tokens new-line
define identifier replacement-list new-line
define identifier([identifier-list]) replacement-list newline
undef identifier new-line
Appendix A 279

Syntax Summary
Preprocessing Directives
line pp-tokens new-line
error [pp-tokens] new-line
pragma [pp-tokens] new-line
new-line

replacement-list :=
[pp-tokens]

pp-tokens :=
preprocessing-token
pp-tokens preprocessing-token

new-line :=
the new-line character
Appendix A280

Index
Symbols
!, logical NOT operator, 113
#elif, 195
#else, 195
#endif, 195
#error, 202
#if, 195
#ifdef, 195
#ifndef, 195
#line, 198
#pragma, 199
%, modulo division operator, 84
%=, assignment operator, 87
&&, logical AND operator, 113
&, address of operator, 118
*, dereferencing operator, 118
*, multiplication operator, 84
*=, assignment operator, 87
++,increment operator, 109
+, addition operator, 84
+, unary plus operator, 84
+=, assignment operator, 87
, comma operator, 103
-, subtraction operator, 84
--,decrement operator, 109
., structure and union member, 134
/, division operator, 84
/=, assignment operator, 87
<< =, assignment operator, 87
<<, shift left operator, 93
-=, assignment operator, 87
=, assignment operator, 87

confused with equality operator (==), 126
==, equality operator

confused with assignment operator (=), 126
>, greater than operator, 126
->, pointer member, 118
->, structure and union member, 134
>=, greater than or equal to operator, 126
>>, shift right operator, 93
>>=, assignment operator, 87
?:, conditional operator, 104
__VA_ARGS, 255
_Bool datatype, 42
_Pragma, 200
||, logical OR operator, 113

A
a.out file, 209

address of operator, 118
aggregate

initializing, 63
ALIGN Pragma, 228
ANSI C

mode, 2
standard, 2

arithmetic
conversions, 80

arithmetic operators, 84
array, 81

declarator, 56
maximum number of dimensions, 247
row-major storage, 56
storage, 56
subscripting, 86

assembly source files, 208
assignment

conversion, 89
expression, 142
operators, 87

auto keyword, 12
auto scalar objects, 63
auto storage class specifier, 38

B
bit operators, 93
bit-fields, 49, 80, 239
bitwise shift operators, 245
block of code, 150
braces in compound statements, 170
branch statements, 148
break statement, 148, 156

C
C9X macros, 255
calling functions, 106

by reference, 107
by value, 107

case keyword, 13
cast operator, 60, 98
casting

integers to integers, 99
pointers to pointers, 101

cc command, 208
CCOPTS environment variable, 222
char keyword, 13
281

Index
char type, 40
character constants, 27
comma operator (,), 103
comments in a source file, 9
compilation

ANSI mode, 2
compatibility mode, 3
compilation process, 208
conditional, 186, 195

compiler options
summary, 210

compiling HP C programs, 208
compound literal, 67
compound statement, 150
conditional compilation, 186, 195
conditional operator (?

), 104
const keyword, 13
constant expressions, 139
constants, 24

integer, 24
continuation lines, 8
continue statement, 148, 157
conversions

arithmetic, 80
floating, 81
integral, 80

COPYRIGHT pragma, 227
COPYRIGHT_DATE pragma, 227
cpp (C preprocessor), 208
CROOTDIR, 223

D
data alignment pragma, 228
data declarations, 247
data representation, 80
data type, 35

_Bool, 42
ranges, 236
sizes, 236

data types, 236
as implemented in HP C/HP-UX, 236
char, 40
double, 40
float, 40
int, 40
long, 40

long long, 40
short, 40

decimal constants, 24
declarations, 18, 35
declarator, 54

array, 56
pointer, 55
variable length array, 57

declaring variables, 18
decrement operators, 109
default keyword, 13, 178
defined operator, 195
dereferencing a pointer, 119
directives, preprocessor, 185
do/while statement, 159
dollar sign ($) in identifier, 9
double keyword, 14
double type, 40

E
else keyword, 14
enum declaration, 52
enumeration, 52
environment variables, 222

CCOPTS, TMPDIR, MAXERRORS, 222
MAXERRORS, 224
SDKROOT, 224
TARGETROOT, 225
TMPDIR, 223

error messages, 5
escape sequences, 27
expressions, 83, 151
extern, 150

declarations, 247
keyword, 14
storage class specifier, 38

F
FINI pragma, 227
float keyword, 14
float type, 40
floating-point

constants, 25
conversions, 81
expressions, 141
types, 40

for statement, 161
282

Index
function, 81, 253
call, 106
declarator, 58
definitions, 70
inline, 73
library, 205
prototypes, 70
referencing functions instead of macros, 205

function calls
by reference, 107
by value, 107

G
Gather/Scatter prefetch pragma, 232
GNU standards, 255
goto statement, 148, 152, 166

H
header files

location, 205
specifying, 205

help, online, 5
hexadecimal constants, 24
HP C file location, 260
HP C source files, 208
HP specific type qualifier, 44, 259
HP_DEFINED_EXTERNAL pragma, 232
HP_LONG_RETURN pragma, 232
HP_NO_RELOCATION pragma, 232

I
identifiers, 9

__VA_ARGS, 255
case sensitivity, 10

IEEE floating-point format, 240
if statement, 155, 169
include files, 185
increment operators, 109
INIT pragma, 226
initialization

aggregates, 63
auto scalar objects, 63
expression, 161
static objects, 63

initialization of objects, 63
INLINE, 231
inline

function, 73
INLINE pragma, 231
int keyword, 15

int type, 40
integer constants, 24
integers

expressions, 140
integral

conversions, 80
promotion, 76
unsigned preserving rules, 76

J
jump statements, 148

K
keywords, 11

L
labeled statements, 152
lexical elements, 8
libraries, file location, 260
library functions, 205
line control, 198
line number specification, 186
linking, 208
LOCALITY pragma, 227
location of HP C files, 260

table, 260
logical operators, 113, 114
long keyword, 15
long long type, 40
long type, 40
looping statements, 153
lvalue, 142

expressions, 142

M
macro, 253

definition, 190
predefined, 194
replacement, 186, 190

macros
C9X, 255
variable argument, 255
variadic, 255

math libraries, 252
MAXERRORS environment variable, 224
maximum number of array dimensions, 247
multi-character constant, 28
283

Index
N
name spaces, 21
names

type, 60
newline characters, 8
, 231
pragmas

, 231
NO_SIDE_EFFECTS pragma, 231
NOINLINE pragma, 231
no-operation statements, 151
-notrigraph option, 203
null statement, 151

O
octal constants, 24
online help, 5
operator, 83

arithmetic, 84
assignment, 87
bit, 93
cast, 98
comma (,), 103
conditional (?:), 104
decrement, 109
defined, 195
increment, 109
logical, 113
precedence, 135
sizeof, 131

optimization, 208
OPTIMIZE pragma, 231
overflow expression, 245

P
PACK pragma, 228
pointer, 81, 245, 246

assigning address value, 118
casting pointers to pointers, 101
declarator, 55
dereferencing, 119
expressions, 143

portability, 1
pragmas, 185, 186, 226

COPYRIGHT, 227
COPYRIGHT_DATE, 227

data alignment, 228
fast libcall, 232
FINI, 227
HP_DEFINED_EXTERNAL, 232
HP_LONG_RETURN, 232
HP_NO_RELOCATION, 232
INIT, 226
initialization and termination, 226
LOCALITY, 227
NO_SIDE_EFFECTS, 231
NOINLINE, 231
OPTIMIZE, 231
PACK, 228
VERSIONID, 228

precedence of operators, 135
predefined macros

DATE, 194
FILE, 194
LINE, 194
STDC, 194
TIME, 194

prefetch pragma, 232
preprocessing directives

#define, 190
#elif, 195
#else, 195
#endif, 195
#error, 202
#if, 195
#ifdef, 195
#ifndef, 195
#include, 188
#line, 198
#pragma, 199
_Pragma, 200

preprocessor, 208
promotion, integral, 76

R
ranges of data types, 236
register keyword, 15
register storage class specifier, 38
relational expressions

evaluation, 128
relational operators, 126
relocatable object file, 34, 209
284

Index
return statement, 148, 174
row-major array storage, 56
running HP C programs, 234

S
scalar objects

initializing, 63
scope, 247
SDK/XDK support, 224
SDKROOT environment variable, 224
selection statements, 155
self-referential structure, 50
shared libraries, 208
short keyword, 15
short type, 40
signed keyword, 15
simple assignment, 87
sized enum, 53
sizeof operator, 60, 131
sizes of data types, 236
source files

assembly, 208
HP C, 208
inclusion, 188
parts of C program, 8

specifier
storage-class, 38
structure, 48
type, 40
union, 48

statement
branching, 148
break, 148, 156
compound, 150
continue, 148, 157
defined, 147
do/while, 159
for, 161
goto, 148, 166
groups, 147
if, 169
labeled, 152
looping, 153
no-operation, 151
null, 151
return, 148, 174
selection, 155
switch, 178
use of semicolon, 147
while, 182

static keyword, 16
static objects, 63
static storage class specifier, 38
static variable, 150
stdarg.h header file, 253
storage-class specifiers, 38
string constants, 28
structure, 48, 243

members, 134
self-referential, 50
specifier, 48
tag, 49

structure and union member (.), 134
structure and union pointer (arrow), 134
switch statement, 152, 155, 178

T
tag

structure, 49
union, 49

TARGETROOT environment variable, 225
thread HP specific type qualifier, 44
thread keyword, 16
TMPDIR environment variable, 223
translation unit, 34
trigraph sequences, 203
type

const qualifier, 45
definitions, 61
enumeration, 52
mismatches in external names, 244
names, 60
specifiers, 40
volatile qualifier, 45

typedef declarations, 19
typedef keyword, 38, 61

U
UNALIGN Pragma, 229
underflow expression, 245
underscore (_) in identifier, 9
union, 49, 243

members, 134
specifier, 48
tag, 49

unsigned keyword, 17, 40

V
va_args macros, 253
va_dcl macro, 253
285

Index
va_start macro, 253
value preserving rules, 76
variable length array

declarator, 57
variables

syntax for declaring, 18
VERSIONID pragma, 228
void type, 40
volatile type qualifier, 18, 45

W
wchar_t typedef, 65
while statement, 182
white space, 8
wide char constant, 28
286

	HP C/HP-UX Reference Manual
	About This Document
	Intended Audience
	Printing History
	Related Documents
	HP Encourages Your Comments

	1 What is HP C?
	ANSI Mode
	Compatibility Mode
	About HP C/HP-UX
	HP C Online Help
	Prerequisites for using HP C Online Help
	Accessing HP C Online Help

	2 Program Organization
	Lexical Elements
	White Space, Newlines, and Continuation Lines
	Spreading Source Code Across Multiple Lines
	Comments
	Identifiers
	Keywords

	Declarations
	Typedef Declarations
	Abstract Global Types
	Improving Portability
	Simplifying Complex Declarations
	Using typedefs for Arrays
	Name Spaces
	Declarations within code

	Constants
	Integer Constants
	Floating-Point Constants
	Character Constants
	String Constants

	Structuring a C Program

	3 Data Types and Declarations
	Program Structure
	Syntax
	Description

	Declarations
	Syntax
	Description
	New Declaration Features
	Examples

	Storage-Class Specifiers
	Syntax
	Description

	Type Specifiers
	Syntax
	Description

	_Bool
	New Header file
	Usage of _Bool
	Rules for _Bool Conversion

	HP-Specific Type Qualifiers
	Syntax
	Description

	Type Qualifiers
	Syntax
	Description

	Structure and Union Specifiers
	Syntax
	Description
	Structure and Union Tags

	Enumeration
	Syntax
	Description
	Examples
	Sized enum - HP C Extension

	Declarators
	Syntax
	Description
	Pointer Declarators
	Array Declarators
	Variable Length Array
	Function Declarators

	Type Names
	Syntax
	Description
	Examples

	Type Definitions Using typedef
	Syntax
	Description
	Example

	Initialization
	Syntax
	Description
	Examples

	Compound Literal
	Examples

	Function Definitions
	Syntax
	Description
	Examples
	inline

	Four-Byte Extended UNIX Code (EUC)

	4 Type Conversions
	Integral Promotions
	Usual Arithmetic Conversions
	Arithmetic Conversions
	Integral Conversions
	Floating Conversions
	Arrays, Pointers, and Functions

	5 Expressions and Operators
	Arithmetic Operators (
	Syntax
	Arguments
	Description

	Array Subscripting (
	Syntax
	Description

	Assignment Operators (
	Syntax
	Arguments
	Description
	Example

	Bit Operators (
	Syntax
	Arguments
	Description

	Cast Operator
	Syntax
	Arguments
	Description

	Comma Operator (
	Syntax
	Arguments
	Description

	Conditional Expression Operator (
	Syntax
	Arguments
	Description
	Example

	Function Calls
	Syntax
	Description

	Increment and Decrement Operators (
	Syntax
	Arguments
	Description
	Examples

	Logical Operators (
	Syntax
	Arguments
	Description
	Example

	Pointer Operators (
	Syntax
	Description

	Relational Operators (
	Syntax
	Arguments
	Description

	sizeof Operator
	Syntax
	Arguments
	Description

	Structure and Union Members (
	Syntax
	Description

	Operator Precedence
	Precedence among Operators of Same Class

	Operator Quick Reference
	Constant Expressions
	Integral Expressions
	Floating-Point Expressions
	lvalue Expressions
	Pointer Expressions
	Evaluation of Expressions
	Examples
	Evaluation Order of Subexpressions

	6 Statements
	Branch Statements
	Syntax
	Description
	Examples

	Compound Statement or Block
	Syntax
	Description
	Example

	Expression and Null Statements
	Syntax
	Description
	Example

	Labeled Statements
	Syntax
	Description
	Example

	Looping Statements
	Syntax
	Description
	Examples

	Selection Statements
	Syntax
	Description
	Examples

	break
	Syntax
	Description
	Example

	continue
	Syntax
	Description
	Example

	do…while
	Syntax
	Arguments
	Description
	Example

	for
	Syntax
	Arguments
	Description
	Example

	goto
	Syntax
	Arguments
	Description
	Example

	if
	Syntax
	Arguments
	Description
	Example

	return
	Syntax
	Arguments
	Description
	Example

	switch
	Syntax
	Arguments
	Description
	Example

	while
	Syntax
	Arguments
	Description
	Example

	7 Preprocessing Directives
	Overview of the Preprocessor
	Source File Inclusion (#include)
	Syntax
	Description
	Examples

	Macro Replacement (#define, #undef)
	Syntax
	Description

	Predefined Macros
	Conditional Compilation (#if, #ifdef, ..#endif)
	Syntax
	Description
	Examples

	Line Control (#line)
	Syntax
	Description
	Example

	Pragma Directive (#pragma)
	Syntax
	Description
	Example

	_Pragma
	Examples

	Error Directive (#error)
	Syntax
	Examples

	Trigraph Sequences
	-notrigraph Option

	8 C Library Functions
	9 Compiling and Running HP C Programs
	Compiling HP C Programs
	The cc(1) Command
	Specifying Files to the cc Command
	Specifying Options to the cc Command
	HP C Compiler Options
	Examples of Compiler Commands
	Environment Variables
	SDK/XDK

	Pragmas
	Initialization and Termination Pragmas
	Copyright Notice and Identification Pragmas
	Data Alignment Pragmas
	Optimization Pragmas
	FastCall Pragmas
	Gather/Scatter Prefetch Pragma

	Running HP C Programs

	10 HP C/HP-UX Implementation Topics
	Data Types
	Comments

	Bit-Fields
	IEEE Floating-Point Format
	Lexical Elements
	Structures and Unions
	Type Mismatches in External Names
	Expressions
	Pointers
	Maximum Number of Dimensions of an Array
	Scope of extern Declarations
	Conversions Between Floats, Doubles, and Long Doubles
	Statements
	Preprocessor
	Library Functions and Header Files
	The Math Library
	Other Library Functions

	The varargs Macros
	Example
	C9X standard macros
	Variable names
	How HP C implements GNU and C9X macros

	HP Specific Type Qualifiers
	Location of Files

	A Syntax Summary
	Lexical Grammar
	Tokens
	Keywords
	Identifiers
	Constants
	String Literals
	Operators
	Punctuators
	Header Names
	Preprocessing Numbers

	Phrase Structure Grammar
	Expressions
	Declarations
	Statements
	External Definitions

	Preprocessing Directives

	Index

