
HP C/HP-UX Programmer's Guide

HP 9000 Computers

Ninth Edition

B3901-90002

HP C/HP-UX Compiler

June 2000

ii

Legal Notice
Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright © 2000 Hewlett-Packard Company.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the
copyright laws.

Use, duplication or disclosure by the U.S. Government Department of
Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s), compact disc(s), or tape
cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs may be made for security and back-up
purposes only. Resale of the programs in their present form or with
alterations, is expressly prohibited.

PostScript is a trademark of Adobe Systems Incorporated.

UNIX is a registered trademark of The Open Group.

Contents

iii

1. Introduction to HP C

HP C Online Help .2
Prerequisites for using HP C Online Help .2
Accessing HP C Online Help .3
X-Motif CDE Help is obsolete .3

2. Storage and Alignment Comparisons

Data Type Size and Alignments .7
The Purpose of Alignment Modes .7
Alignment Rules .8
Summary of Alignment Modes .21

The Alignment Pragmas .23
The HP_ALIGN Pragma .23
The PACK Pragma .34

Aligning Structures Between Architectures .36
Examples of Structure Alignment on Different Systems.37

3. Calling Other Languages

Comparing HP C and HP Pascal .46
Notes on HP C and HP Pascal .50
Passing Parameters Between HP C and HP Pascal54
Linking HP Pascal Routines on HP-UX .58

Comparing HP C and HP Fortran 90 .59
Notes on HP C and HP Fortran 90 .61
Mixing C and Fortran File I/O. .62
Passing Parameters Between HP C and HP Fortran 90 63
Linking HP Fortran 90 Routines on HP-UX. .63

Comparing Structured Data Type Declarations 64

iv

Contents

4. Optimizing HP C Programs

Summary of Major Optimization Levels . 68

Supporting Optimization Options . 70

Enabling Basic Optimization. 72

Enabling Different Levels of Optimization. 73
Level 1 Optimization. 73
Level 2 Optimization. 73
Level 3 Optimization. 73
Level 4 Optimization. 73

Changing the Aggressiveness of Optimizations 75

Enabling Only Conservative Optimizations . 76

Enabling Aggressive Optimizations . 77

Removing Compilation Time Limits When Optimizing. 78

Limiting the Size of Optimized Code . 79

Specifying Maximum Optimization. 80

Combining Optimization Parameters . 81

Summary of Optimization Parameters . 82

Profile-Based Optimization . 84
Instrumenting the Code . 84
Collecting Data for Profiling. 85
Performing Profile-Based Optimization. 85
Maintaining Profile Data Files. 85
Maintaining Instrumented and Optimized Program Files. 86
Profile-Based Optimization Notes . 87

Controlling Specific Optimizer Features. 88
+Olevel=name1[,name2,...nameN] . 89
+O[no]autopar . 90

Contents

v

+O[no]dataprefetch. .90
+O[no]dynsel. .91
+O[no]entrysched .91
+O[no]extern[=name1,name2,...nameN] .91
+O[no]fail_safe .92
+O[no]fastaccess .93
+O[no]fltacc. .93
+O[no]global_ptrs_unique[=name1,name2
,...name]94
+O[no]initcheck .94
+O[no]inline[=name1, name2,...nameN] .95
+Oinline_budget=n. .95
+O[no]libcalls .96
+O[no]loop_block .97
+O[no]loop_transform .97
+O[no]loop_unroll[=unroll factor] .97
+O[no]loop_unroll_jam. .98
+O[no]moveflops .98
+O[no]multiprocessor .98
+O[no]parallel. .98
+O[no]parmsoverlap. .99
+O[no]pipeline .99
+O[no]procelim .99
+O[no]promote_indirect_calls .100
+O[no]ptrs_ansi .100
+O[no]ptrs_strongly_typed .101
+O[no]ptrs_to_globals[=name1, name2, ...nameN].103
+O[no]regionsched .104
+Oreusedir=directory .104
+O[no]regreassoc .105
+O[no]report=[report_type] .105
+O[no]sharedgra. .105

vi

Contents

+O[no]sideeffects[=name1, name2, ...nameN] 105
+O[no]signedpointers . 106
+O[no]static_prediction . 106
+O[no]vectorize . 107
+O[no]volatile . 107
+O[no]whole_program_mode . 108

Using Advanced Optimization Options. 109

Level 1 Optimization Modules. 110
Branch Optimization . 110
Dead Code Elimination. 111
Faster Register Allocation . 111
Instruction Scheduler . 112
Peephole Optimizations . 113

Level 2 Optimization Modules. 114
Coloring Register Allocation. 114
Induction Variables and Strength Reduction 115
Local and Global Common Subexpression Elimination 115
Constant Folding and Propagation . 116
Loop Invariant Code Motion. 116
Store/Copy Optimization . 117
Unused Definition Elimination . 117
Software Pipelining. 118
Register Reassociation . 120

Level 3 Optimizations . 122
Inlining within a Single Source File . 122
Example of Inlining. 122

Level 4 Optimizations . 124
Inlining Across Multiple Files . 124
Global and Static Variable Optimization. 124

Contents

vii

Guidelines for Using the Optimizer .126

Optimizer Assumptions. .127

Optimizer Pragmas .129
Optimizer Control Pragmas. .129
Inlining Pragmas .131
Alias Pragmas. .132

Aliasing Options .135

Improving Shared Library Performance .138
HP_NO_RELOCATION Pragma .138
HP_LONG_RETURN Pragma. .139
HP_DEFINED_EXTERNAL Pragma .140

Improving Compile and Link Times. .142

5. Programming for Portability

Porting to the 64-bit Architecture. .144

Guidelines for Portability .145
Examples. .146

Practices to Avoid .148

General Portability Considerations .150
Data Type Sizes and Alignments .150
Accessing Unaligned Data .150
Checking for Alignment Problems with lint .153
Ensuring Alignment without Pragmas .154
Casting Pointer Types .154
Type Incompatibilities and typedef .155
Conditional Compilation .156
Isolating System-Dependent Code with include Files157
Parameter Lists .157

viii

Contents

The char Data Type . 158
Register Storage Class . 158
Identifiers . 158
Predefined Symbols. 159
Shift Operators . 159
The sizeof Operator. 159
Bit-Fields . 160
Floating-Point Exceptions . 161
Integer Overflow . 161
Overflow During Conversion from Floating Point to
 Integral Type. 162
Structure Assignment. 162
Structure-Valued Functions . 162
Dereferencing Null Pointers . 162
Expression Evaluation . 163
Variable Initialization. 163
Conversions between unsigned char or unsigned short and int. . . . 164
Temporary Files ($TMPDIR) . 164
Input/Output . 165
Checking for Standards Compliance . 165

Porting to ANSI Mode HP C . 166
ANSI Mode Compile Option (-Aa) . 166
HP C Extensions to ANSI C (+e) . 166
const and volatile Qualifiers. 167
ANSI Mode Function Prototypes . 168

Using Name Spaces in HP C and ANSI C . 175
HP Header File and Library Implementation of Name Spaces 175

Silent Changes for ANSI C . 178

Porting between HP C and Domain/C. 180

Porting between HP C and VMS C . 182

Contents

ix

Core Language Features .182
Preprocessor Features .185
Compiler Environment. .186

Calling Other Languages .188
Calling Fortran 90 .189
Calling Pascal .191

6. Migrating C Programs to HP-UX

Migrating an Application .194

Byte Order .195

Data Alignment .195

Unsupported Keywords .195

Predefined Macro Names .196

White Space .196

Hexadecimal Escape Sequence .196

Invalid Structure References .197

Leading Underscore. .197

Library Functions .198

Floating-Point Format .198

Bit Fields .198

Data Storage and Alignment .199

Typedefs .199

7. Using C Programming Tools

Debugging HP C Programs .202

Description of C Programming Tools .203

x

Contents

HP Specific Features of lex and yacc . 204

Using lint . 205
Directives. 207
Problem Detection. 207

8. Threads and Parallel Processing

Getting Started with Parallelizing C Programs 216
Transforming Loops for Parallel Execution (+Oparallel) 216
Setting the Number of Threads Used in Parallel 216
Determining Idle Thread States . 217
Accessing the Pthreads Library . 217
Profiling Parallelized Programs . 217

Guidelines for Parallelizing C Programs . 219
Conditions Inhibiting Loop Parallelization . 219

Parallel Processing Options . 222
+O[no]autopar . 222
+O[no]dynsel . 222
+O[no]loop_block . 223
+O[no]loop_unroll_jam . 223
+O[no]parallel . 223
+O[no]report[= report_type] . 224
+O[no]sharedgra . 225

Parallel Processing Pragmas . 226
begin_tasks[(attribute_list)] . 226
block_loop[(block_factor=n)] . 227
critical_section[(gate_var)] . 227
dynsel[(trip_count=n)] . 227
end_critical_section. 228
end_ordered_section . 228
end_parallel . 228

Contents

xi

end_tasks .228
loop_parallel[(attribute_list)] .228
loop_private(namelist) .229
next_task. .230
no_block_loop .230
no_distribute. .230
no_dynsel .230
no_loop_dependence(namelist). .231
no_loop_transform .231
no_parallel .231
no_side_effects(funclist) .231
ordered_section(gate_var) .232
parallel[(attribute_list)] .232
parallel_private(namelist) .232
prefer_parallel[(attribute_list)] .233
save_last[(list)] .233
scalar .234
task_private(namelist) .234
Specifying Task Parallelism. .234

Memory Classes .236
node_private .236
thread_private .237

Synchronization Functions .238
Allocate Functions .238
Deallocate Functions .239
Locking Functions .239
Unlocking Function .239
Wait Function .240

xii

Contents

xiii

Preface

Printing History
New editions are complete revisions of the manual. The dates on the title
page change only when a new edition is published.

The software code printed alongside the data indicates the version level
of the software product at the time the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual updates.

Table 1 Printing History

First Edition Nov 1986

Second Edition Nov 1987 MPE/XL: 31506A.00.02

HP-UX: 92453-01A.00.09

Update 1 Oct 1988 MPE/XL: 31506A.01.21

HP-UX: 92453-01A.03.04

Third Edition August 1992 MPE/iX: 31506A.04.01

HP-UX: 92453-01A.09.17

Fourth Edition January 1994 MPE/iX: 31506A.04.01

HP-UX: 92453-01A.09.61

Fifth Edition June 1996 HP C/HP-UX A.10.32

Sixth Edition May 1997 HP C/HP-UX A.10.33

Seventh Edition November 1997 HP C/HP-UX A.11.00.00

Eighth Edition June 1998 HP C/HP-UX A.11.00.13 (HP-UX 11.0
June 1998 Extension Pack)

Ninth Edition June 2000 HP C/HP-UX B.11.01.20

xiv

June 2000, Edition 9, part number B3901-90002, documents new HP C
features that support C99 industry standards, and new options that
result in improved performance of the HP C compiler on HP9000 V- and
K-class servers, and workstations.

You may send any suggestions for improvements in this manual to:

Languages Information Engineering Manager
Hewlett-Packard Company
Mailstop 42UD
11000 Wolfe Road
Cupertino CA 95014-9804

About This Manual
The HP C Programmer's Guide contains a detailed discussion of selected
C topics for the HP 9000 Series computer systems. This manual is
intended for experienced programmers who are familiar with HP
systems, data processing concepts, and the C programming language.
The manual does not discuss every feature of C. For more information,
refer to the HP C/HP-UX Reference Manual.

xv

Conventions
Table 2 Conventions

NOTATION DESCRIPTION

UPPERCASE Within syntax descriptions, characters in uppercase
must be entered in exactly the order shown, though
you can enter them in either uppercase or lowercase.
For example:

SHOWJOB

Valid entries: showjob ShowJob SHOWJOB
Invalid entries: shojwob ShoJob SHOW_JOB

italics Within syntax descriptions, a word in italics represents
a formal parameter or argument that you must replace
with an actual value. In the following example, you
must replace filename with the name of the file you
want to release:

RELEASE filename

punctuation Within syntax descriptions, punctuation characters
(other than brackets, braces, vertical parallel lines, and
ellipses) must be entered exactly as shown.

{ } Within syntax descriptions, braces enclose required
elements. When several descriptions are provided, you
must select one. In the following example, you must
select ON or OFF:

SETMSG { ON }

SETMSG { OFF }

xvi

[] Within syntax descriptions, brackets enclose optional
elements. In the following example, brackets around
,TEMP indicate that the parameter and its delimiter
are optional:

PURGE {filename} [,TEMP]

When several descriptions with brackets are stacked,
you can select any one of the elements or none. In the
following example, you can select devicename or
deviceclass or neither:

SHOWDEV [devicename]
SHOWDEV [deviceclass]

[...] Within syntax descriptions, a horizontal ellipsis
enclosed in brackets indicates that you can repeatedly
select elements that appear within the immediately
preceding pair of brackets or braces. In the following
example, you can select itemname and its delimiter
zero or more times. Each instance of itemname must be
preceded by a comma:

[,itemname][…]

If a punctuation character precedes the ellipsis, you
must use that character as a delimiter to separate
repeated elements. However, if you select only one
element, the delimiter is not required. In the following
example, the comma cannot precede the first instance
of itemname:

[itemname][,…]

NOTATION DESCRIPTION

xvii

|...| Within syntax descriptions, a horizontal ellipsis
enclosed in parallel vertical lines indicates that you
can select more than one element that appears within
the immediately preceding pair of brackets or braces.
However, each element can be selected only one time.
In the following example, you must select ,A or ,B or
,A,B or ,B,A :

{ ,A ,B } | ... |

 If a punctuation character precedes the ellipsis, you
must use that character as a delimiter to separate
repeated elements. However, if you select only one
element, the delimiter is not required. In the following
example, you must select

A or B or A,B or B,A (the first element is not preceded
by a comma):

{ A B } |, ... |

... Within examples, horizontal or vertical ellipses
indicate where portions of the example are omitted.

base prefixes The prefixes %, #, and $ specify the numerical base of
the value that follows:

%num specifies an octal number.
#num specifies a decimal number.
$num specifies a hexadecimal number.

When no base is specified, decimal is assumed.

NOTATION DESCRIPTION

xviii

Figure 1 bit:length Example

Related Documents
Refer to the following materials for further information on C language
programming:

American National Standard for Information Systems — Programming
Language — C, ANSI/ISO 9899-1990.

COBOL/HP-UX Operating Manual — This manual provides
information on calling C subprograms from COBOL programs on
HP-UX. It also explains how to call COBOL subprograms from C.

HP-UX 64-bit Porting and Transition Guide — Describes the changes
you need to make to compile, link, and run programs in 64-bit mode. This
document is also available online at http://docs.hp.com, and in the
Postscript file /opt/ansic/newconfig/RelNotes/64bitTrans.bk.ps .

CTRL char CTRL char indicates a control character. For example,
CTRL Y means you have to press the Y key while holding
down the CTRL key.

Bit (bit:length) When a parameter contains more than one piece of
data within its bit field, the different data fields are
described in the format Bit (bit:length), where bit is the
first bit in the field and length is the number of
consecutive bits in the field. For example, Bits
(13:3) indicates bits 13, 14, and 15 (see Figure 1.)

computer font Denotes information displayed by the computer (for
example, login :), file names (for example,
/usr/include/stdio.h), and command names (for
example, vi).

NOTATION DESCRIPTION

xix

HP-UX Floating-Point Guide — This manual describes the IEEE
floating-point standard, the HP-UX math libraries on HP 9000 systems,
performance tuning related to floating-point routines, and floating-point
coding techniques that can affect application results.

HP Fortran 90 Programmer's Guide — This manual explains how to call
C programs from the HP Fortran 90 compiler on HP-UX.

HP Pascal/HP-UX Programmer's Guide — This manual describes how
to call C programs from Pascal on HP-UX systems.

HP-UX Linker and Libraries Online User Guide — This online help
describes programming in general on HP-UX. For example, it covers
linking, loading, shared libraries, and several other HP-UX
programming features.

HP-UX Reference — For HP-UX 11.00 and 10.30 the manpages are
available in Instant Information under the title HP-UX Reference and
via the man command. For HP-UX 10.20 the manpages are available in
LaserROM and via the man command. They document commands,
system calls, subroutine libraries, file formats, device files, and other
HP-UX related topics.

Parallel Programming Guide for HP-UX Systems — Describes efficient
parallel programming techniques available using HP Fortran 90, HP C,
and HP aC++ on HP-UX.

xx

1

1 Introduction to HP C

HP C is Hewlett-Packard's version of the C programming language that
is implemented on HP 9000 workstations and servers. HP C/HP-UX is
highly compatible with the C compiler implemented on the HP 9000
Series 300/400 and CCS/C, Corporate Computer Systems C compiler for
the HP 3000. Some system and hardware-specific differences do exist.
These are documented in the HP C Reference Manual for your system.
Also, see Chapter 2, “Storage and Alignment Comparisons,” on page 5
for system-specific information.

2 Chapter 1

Introduction to HP C
HP C Online Help

HP C Online Help
Online help for HP C is available for HP 9000 workstation and server
users. HP C Online Help can be accessed from the Internet browser of
your choice. It consists of html files that contain the following reference
and how-to information:

• What is HP C?

• Program organization

• Compiling & running HP C programs

• Optimizing HP C programs

• Parallel options & pragmas

• Data types & declarations

• Expressions & operators

• Statements

• Preprocessing directives

• Calling other languages

• Programming for portability

• Migrating C programs to HP-UX

• Error message descriptions

Prerequisites for using HP C Online Help
Before you can begin using HP C Online Help, you should review the
following display and browser information. Some reconfiguration of your
environment variables may be required.

• You must set the DISPLAY environment variable to a (graphical
mode) value that can accomodate the display of an HTML browser.

• You may set the BROWSER environment variable to point to the
location of the your HTML browser. If you do not do this, the compiler
will automatically run the browser located in
/opt/ns-navgold/bin/netscape or in
/opt/ns-communicator/netscape .

Chapter 1 3

Introduction to HP C
HP C Online Help

• You may set the CROOTDIR environment variable to specify the root
directroy of the online help source. If CROOTDIR is not set, the URL of
the HP C Online Help defaults to
file:/opt/ansic/html/guide/${LOCALE}/c_index.html .
This default is based on the assumption that the compiler binaries
are located in /opt/ansic/bin .

Accessing HP C Online Help
To access the HP C Online Help, you must be logged onto a system where
the most recent version of the HP C compiler is installed. Typing the
following at the command line invokes an HTML browser, which displays
the main HTML index file for the HP C Online Help system:

/opt/ansic/bin/cc +help

The actual location of the HTML files is
file:/${CROOTDIR}/html/guide/${LOCALE}/c_index.html .

If the environment variable CROOTDIR is not set, the path will be formed
relative to the compiler’s root directory; this is usually /opt/ansic .
The previous section contains instructions on how to set CROOTDIR.

NOTE If the browser path set by the BROWSER environment variable does not
exist, or if the default browser paths
/opt/ns-navgold/bin/netscape or
/opt/ns-communicator/netscape do not exist, then you must set the
BROWSER environment variable appropriately.

X-Motif CDE Help is obsolete
Preview versions of the HP C compiler, when installed in the X-Motif
CDE environment, included a CDE version of the HP C Online Help.
This, and the accompanying text-based “charhelp” will no longer be
updated in future releases of the HP C compiler.

4 Chapter 1

Introduction to HP C
HP C Online Help

5

2 Storage and Alignment
Comparisons

This chapter focuses on the different ways that internal data storage is
allocated on various platforms.

In the following discussions, data storage refers to the size of data types.
Data alignment refers to the way a system or language aligns data
structures in memory. Data alignment and storage differences can cause
problems when moving data between systems that have different
alignment and storage schemes. These differences become apparent
when data within a structure is exchanged between systems using files
or inter-process communication.

• “The Purpose of Alignment Modes” on page 7 discusses what
alignment modes are and why they are needed.

• “Data Type Size and Alignments” on page 7 discusses the alignment
rules for the different data types.

• “The Alignment Pragmas” on page 23 discusses how to use the
HP_ALIGN and PACK alignment pragmas to control alignment of
structs, unions, bit-fields, and typedefs.

• “Aligning Structures Between Architectures” on page 36 describes
the storage and alignment rules of HP C on HP 9000 workstations
and servers as compared with those of other systems. (Note that the
storage and alignment rules on the HP 3000 Series 900 are the same
as those on the HP 9000 workstations and servers.)

The storage and alignment rules for the following systems are compared:

• HP C on the HP 9000 workstations and servers

• HP C on the HP 9000 Series 300/400.

• HP Apollo Series 3000/4000.

• HP Apollo Series 10000.

• CCS/C on the HP 1000.

• VAX/VMS C.

6 Chapter 2

Storage and Alignment Comparisons

As of the C compiler release 11.00, HP C supports a 64-bit data model in
which the long and pointer data types are 64-bits long. In the 32-bit
model, the long and pointer data types are the same size as the int
data type—32 bits. In this chapter and throughout the HP C
documentation, where differences between these two modes occur, they
are noted. The term used to specify the 64-bit mode in which the long
and pointer types are 64-bits is LP64, and the term for 32-bit mode in
which the int , long and pointer types are 32-bits is called ILP32.

Chapter 2 7

Storage and Alignment Comparisons
Data Type Size and Alignments

Data Type Size and Alignments
This section discusses storage sizes and alignment modes for the HP
9000 and HP Apollo systems as well as the VAX/VMS C, CCS/1000, and
CCS/C 3000.

The Purpose of Alignment Modes
Data alignment refers to the way different data types are stored in
system memory. By default, data is aligned to take advantage of the
system architecture to produce the fastest code. The alignment boundary
is in bytes and must be a power of two: 1, 2, 4, 8, or 16 bytes. Bit-fields
and aggregates such as structs may require padding (addition of
otherwise meaningless bits) to align on the desired boundaries.

The compiler automatically performs the default (or “natural”)
alignment for the target machine architecture unless this default
behavior is overridden with a #pragma instruction to use a different
alignment mode. You may choose a different alignment mode for greater
portability. Table 2-1 lists the names of the default alignment modes for
different HP system architectures.

Each architecture has a standard (default) alignment which is the
fastest alignment for that architecture. You may, however, choose to use
a non-standard alignment for greater portability.

Table 2-1 lists the name of the default alignment modes for different HP
system architectures.

Table 2-1 Default Alignment Modes on HP-UX Architectures

Architecture Default Alignment Mode

Series 300/400 HPUX_WORD

Series 500 HPUX_NATURAL_S500

HP 9000 Workstations and Servers,
and HP 3000 Series 900

HPUX_NATURAL

8 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

In general, the natural alignment mode works best. If you want to
specifically create code compatible with code on one of the architectures
listed, you can use the HP_ALIGN pragma and specify it. To create code
that aligns consistently across different vendors, use the PACK pragma.

Alignment Rules
This discussion of alignment rules divides them into sections on scalar
types, arrays, structures and unions, bit-fields, and typedefs.

NOTE In the discussion that follows, the data type size and alignments shown
are for both the 32-bit data model (ILP32) and the 64-bit data model
(LP64). In cases where there is a difference in data type size or
alignment between these two data models, the 64-bit value is shown in
parenthesis.

Alignment of Scalar Types
Scalar types are integral types, floating types, and pointer types.
Alignment of scalar types that are not part of a structure, union, or
typedef declaration are not affected by the alignment mode. Therefore,
they are aligned the same way in all alignment modes.

NOTE Except for the HPUX_NATURAL and DOMAIN_NATURAL modes, the
alignment of scalar types inside a structure or union may differ. (See the
next sesction“Alignment of Structures and Unions”.) Also, a type that is
defined via a typedef to any of the scalar types described may have a
different alignment (see “Alignment of Typedefs” on page 20.)

Alignment of Arrays
An array is aligned according to its element type. For example, a double
array is aligned on an 8-byte boundary; and a float array within a
struct is aligned on a 4-byte boundary.

Consistent across architectures NATURAL

HP Apollo DOMAIN_WORD

HP Apollo natural alignment DOMAIN_NATURAL

Architecture Default Alignment Mode

Chapter 2 9

Storage and Alignment Comparisons
Data Type Size and Alignments

Alignment of array elements is not affected by the alignment mode,
unless the array itself is a member of a structure or union. An array that
is a member of a structure or union is aligned according to the rules for
structure or union member alignment (see “Alignment of Structures and
Unions” below for more information.)

An array's size is computed as:

(size of array element type) × (number of elements)

For instance, the array declared below is 400 bytes (4 × 100) long:

int arr[100];

The size of the array element type is 4 bytes and the number of elements
is 100.

Alignment of Structures and Unions
In a structure, each member is allocated sequentially at the next
alignment boundary corresponding to its type. Therefore, the structure
might be padded internally if its members' types have different
alignment requirements. In a union, all members are allocated starting
at the same memory location. Both structures and unions can have
padding at the end, in order to make the size a multiple of the alignment.

NOTE These rules are not true if the member type has been previously declared
under another alignment mode. The member type will retain its original
alignment, overriding other modes in effect. See “Using the HP_ALIGN
Pragma” on page 27 for information on controlling alignment of
structures and unions.

Table 2-2 lists the alignments for structure and union members.

10 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

Table 2-2 Byte Alignment of Structure or Union Members

Data Type

HPUX_
WORD

DOMAIN_
WORD

HPUX_
NATURAL
DOMAIN_
NATURAL

HPUX_
NATURAL_

S500
NATURAL NOPADDING

char ,
signed
char ,
unsigned
char , char
enum
(1 byte)

1 1 1 1 1

short,
unsigned
short ,
signed
short ,
short enum
(2 bytes)

2 2 2 2 1

int ,
signed
int ,
unsigned
int , int
enum
(4 bytes)

2 4 4 4 1

long ,
signed
long ,
unsigned
long , long
enum
(4 bytes)
(LP64=8)

2 4
(LP64=8)

4 4
(LP64=8)

1

enum
(4 bytes)

2 4 4 4 1

Chapter 2 11

Storage and Alignment Comparisons
Data Type Size and Alignments

a. Only in HPUX_NATURAL—not in DOMAIN_NATURAL.

HPUX_WORD/DOMAIN_WORD Alignments. For HPUX_WORD
and DOMAIN_WORD alignments, all structure and union types are 2-byte
aligned. Member types larger than 2 bytes are aligned on a 2-byte
boundary. Padding is performed as necessary to reach a resulting
structure or union size which is a multiple of 2 bytes.

For example:

struct st {
char c;
long l;
char d;

long long
(8 bytes)

2 8 4 8 1

pointer
(4 bytes)
(LP64=8)

2 4
(LP64=8)

4 4
(LP64=8)

1

long
pointer
(8 bytes)

2 4
(LP64=8)

4 4
(LP64=8)

1

float
(4 bytes)

2 4 4 4 1

double
(8 bytes)

2 8 4 8 1

long
double
(16 bytes)

2 8
(LP64=16)a

4 8
(LP64=16)

1

arrays Follows alignment of array type inside a structure or union.

struct ,
union

Follows alignment of its most restricted member, or any minimum
alignment.

Data Type

HPUX_
WORD

DOMAIN_
WORD

HPUX_
NATURAL
DOMAIN_
NATURAL

HPUX_
NATURAL_

S500
NATURAL NOPADDING

12 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

short b;
int i[2];

} s;

Compiling with the +m option to show the offsets of the identifiers, you
will get the following output (compilation is for the default 32-bit data
model.) Offsets are given as “byte-offset” @ “bit-offset” in hexadecimal.

Identifier Class Type Address
- - -

s ext def struct st
c member char 0x0 @ 0x0
l member long int 0x2 @ 0x0
d member char 0x6 @ 0x0
b member short int 0x8 @ 0x0
i member ints [2] 0xa @ 0x0

The resulting size of the structure is 18 bytes, with the alignment of 2
bytes, as illustrated in Figure 2-1. (To avoid restricting your code to 32-
or 64-bit, avoid using the long and pointer types and use long long
instead.)

Figure 2-1 Example of HPUX_WORD/DOMAIN_WORD Alignment for
Structure s in 32-bit Mode

HPUX_NATURAL/DOMAIN_NATURAL Alignments. In this
mode, structs and unions may be aligned on 1-, 2-, 4-, or 8-byte
boundaries. Padding is performed as necessary so that the size of the
aggregate is a multiple of the alignment size.

For example, the declaration shown in the previous section will now be
aligned:

Identifier Class Type Address
- -

s ext def struct st
c member char 0x0 @ 0x0
l member long int 0x4 @ 0x0
d member char 0x8 @ 0x0
b member short int 0xa @ 0x0
i member ints [2] 0xc @ 0x0

Chapter 2 13

Storage and Alignment Comparisons
Data Type Size and Alignments

In this case, the size of the structure is 20 bytes, and the entire structure
is aligned on a 4-byte boundary since the strictest alignment is 4 (from
the int and long types), as illustrated in Figure 2-2.

Figure 2-2 Example of HPUX_NATURAL/DOMAIN_NATURAL Alignment for
Structure s

HPUX_NATURAL_S500 Alignments. For HPUX_NATURAL_S500
alignments, series 500 computers align structures on 2- or 4-byte
boundaries, according to the strictest alignment of its members. As with
the other alignment modes, padding is done to a multiple of the
alignment size.

For example, the following code:

struct {
char c;
double d;

} s1;

compiled with the +m option produces:

Identifier Class Type Address
- - -

s1 ext def struct
c member char 0x0 @ 0x0
d member double 0x4 @ 0x0

The entire structure is 4-byte aligned, with a resulting size of 12 bytes.

NATURAL Alignments. For NATURAL alignments, structures and
unions are aligned on 2-, 4-, or 8-byte boundaries, according to the
strictest alignment of its members. Padding is done to a multiple of the
alignment size.

NOPADDING Alignments. For NOPADDING alignments, structure
or union members are byte aligned; therefore, struct and union types are
byte aligned. This alignment mode does not cause compressed packing
where there are zero bits of padding. It only ensures that there will be no
full bytes of padding in the structure or union, unless bit-fields are used.

14 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

There may be bit padding or even a full byte of padding between
members if there are bit-fields. Refer to “Alignment of Bit-Fields” for
more information.

Consider the following code fragment:

#pragma HP_ALIGN NOPADDING
typedef struct s {

char c;
short s;

} s1;

s1 arr[4];

The size of s1 is 3 bytes, with 1-byte alignment. Therefore, the size of
arr is 12 bytes, with 1-byte alignment. There is no padding between the
individual array elements; they are all packed on a byte boundary (see
Figure 2-3).

Figure 2-3 Example of NOPADDING Alignment for Structure s1

Note that if a member of a structure or union has been declared
previously under a different alignment mode, it will retain its original
alignment which may not be byte alignment. The NOPADDING alignment
will not override the alignment of the member, so there may be some
padding within the structure, and the structure may be greater than
byte aligned.

Refer to “Aligning Structures Between Architectures” on page 36 for
examples on structure alignment for different systems.

Alignment of Bit-Fields
This section discusses bit-field alignment and how bit-field alignment
affects aggregrate alignment. bit-field alignment refers to the alignment
of several consecutive bit-fields. Aggregate alignment refers to the
bit-field’s effect on the alignment of the enclosing struct or union.

Table 2-3 summarizes bit-field alignments.

Chapter 2 15

Storage and Alignment Comparisons
Data Type Size and Alignments

Table 2-3 Byte Alignment of Bit-fields and Aggregates with Bit-fields

a. Aggregate Size refers to the size of a struct or union containing just a one-bit
bit-field of type T, where T refers either to the base type of the bit-field, or to that
type’s size in bits (for example, T is char, size 8, for “char a:1;”).

b. Bit-field alignment A means:

If the bit-field has zero length, or if it will cross the next “natural” boundary, it
must begin at the next “natural” boundary. The “natural” boundary is the next
x-byte boundary, where x is the size, in bytes, of type T.

If the bit-field is not of zero length, and it will not cross the next “natural” bound-
ary, the bit-field begins at the current location.

c. Bit-field alignment B means:

If the bit-field has zero length, or if it will cross two 2-byte boundaries, it must
begin at the next 2-byte boundary.

If the bit-field is not of zero length, and it will not cross two 2-byte boundaries, the
bit-field begins at the current location.

The default alignment is HPUX_NATURAL, which uses alignment A

Bit-field
Alignment

Aggregate
Alignment Aggregate Sizea

Modes struct union struct union struct union

HPUX_WORD T < 32
bits: Ab

T is 32+
bits: Bc N/A

T < 32
bits: T
T is 32+
bits: 2

2 2 2

HPUX_NATURAL_
S500

A T T greater of
2 and T

greater
of 2 and T

HPUX_NATURAL A T T T T

NATURAL B 2 2 2 2

DOMAIN_
NATURAL

B 2 2 2 2

DOMAIN_WORD B 2 2 2 2

NOPADDING B 1 2 (ILP32)
1 (LP64)

1 2 (ILP32)
1 (LP64)

16 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

The biggest difference between ILP32 to LP64 data models for bit-fields
is the effect of unnamed bit-fields. In ILP32, unnamed bit-fields have the
same effect on the alignment of the aggregate as do any other members.
In LP64, unnamed bit-fields do not affect the alignment of the structure
or union. In both cases, zero-length bit-fields force the following member
to the next natural boundary.

Bit-field Alignment Groups.

The alignment modes for bit-fields may be grouped as follows:

• HPUX_NATURAL/HPUX_NATURAL_S500

• DOMAIN_WORD/DOMAIN_NATURAL/NATURAL/NOPADDING

• HPUX_WORD (combination of the previous two)

These bit-field alignment groups are discussed below, and examples are
provided of each.

HPUX_NATURAL/HPUX_NATURAL_S500 Alignments. For
HPUX_NATURAL and HPUX_NATURAL_S500 alignments, no bit-field can
cross a “natural” boundary. A bit-field that immediately follows another
bit-field is packed into adjacent bits, unless the second bit-field crosses a
natural boundary according to its type. For example:

struct {
int a:5;
int b:15;
int c:17;
char :0;
char d:5;
char e:5;

} foo;

when compiled with the +m option produces:

Identifier Class Type Address
- -

foo ext def struct
a member int 0x0 @ 0x0
b member int 0x0 @ 0x5
c member int 0x4 @ 0x0

<NULL_SYMBOL> member char 0x7 @ 0x0
d member char 0x7 @ 0x0
e member char 0x8 @ 0x0

The size of the structure is 12 bytes, with 4-byte alignment as illustrated
in Figure 2-4.

Chapter 2 17

Storage and Alignment Comparisons
Data Type Size and Alignments

Figure 2-4 Example of HPUX_NATURAL/HPUX_NATURAL_S500 Alignment
for Structure foo

Since b (being an int type) does not cross any word boundaries, a and b
are adjacent. c starts on the next word because it would cross a word
boundary if it started right after b. The zero length bit-field forces no
further bit-field to be placed between the previous bit-field, if any, and
the next boundary described by the zero-length bit field's type. Thus, if
we are at bit 5 and see a zero length bit-field of type int, then the next
member will start at the next word boundary (bits 5-31 will be empty).
However, if we are at bit 5 and see a zero length bit-field of type char,
then the next member will start at least at the next byte (bits 5-7 will be
empty), depending on whether the next member can start at a
byte-boundary.

DOMAIN_WORD/DOMAIN_NATURAL/NATURAL and
NOPADDING Alignments . For DOMAIN_WORD, DOMAIN_NATURAL,
NATURAL, and NOPADDING alignments:

• All integral types are treated identically; that is, the packing for char
a:17 (this is legal) is the same as for int a:17 .

• Bit-fields can cross “natural” boundaries, unlike for
HPUX_NATURAL. That is, for int a:30; int b:7; , b will start at
bit 30.

• No bit-field can cross more than one 2-byte boundary. Thus, for int
a:14; int b:18; , b will start at bit 16. If it started at bit 14, it
would illegally cross both the 2- and 4-byte boundaries.

• The use of any type and size of bit-field alone will cause the entire
structure to have 2-byte alignment (1-byte for NOPADDING).

NOPADDING of bit-fields follows the DOMAIN alignment scheme. This may
result in a full byte of padding between two bit-fields.

For example:

struct {
char c;
int i:31; <-- At offset 2 bytes.

} bar;

18 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

The above structure bar will align the bit-field at offset 2 bytes, so that
there is a full byte of padding between c and i , even with NOPADDING
alignment mode (see Figure 2-5.)

Figure 2-5 Example of NATURAL Alignment for Structure bar

HPUX_WORD Alignments . For HPUX_WORD alignments:

• Alignment for char and short bit-fields is identical to that of
HPUX_NATURAL.

• Alignment for any other bit-fields (int, long long, enum, for example)
is identical to DOMAIN bit-field alignment.

Note that alignment of a char or short bit-field may not be the same as
alignment of a char or short enum bit-field under the same
circumstances.

For example:

#pragma HP_ALIGN HPUX_WORD

char enum b {a};
struct s {

int int_bit :30;
char char_bit :5;

};
struct t {

int int_bit :30;
char enum b char_enum_bit: 5;

};

int main()
{

struct s basic_str;
struct t enum_str;

}

Compilation with the +m option gives the following map:

Identifier Class Type Address
- -

basic_str auto struct s SP-48
int_bit member int 0x0 @ 0x0
char_bit member char 0x4 @ 0x0

enum_str auto struct t SP-42
int_bit member int 0x0 @ 0x0
char_enum_bit member enum 0x3 @ 0x6

Chapter 2 19

Storage and Alignment Comparisons
Data Type Size and Alignments

Both structures have a resulting size of 6 bytes, with 2-byte alignment as
shown in Figure 2-6.

Figure 2-6 Example of Structures basic_str and enum_str

Notice that char_bit follows the HPUX_NATURAL alignment scheme, but
char_enum_bit follows the DOMAIN_WORD alignment scheme, even
though the length of their bit-field types are equivalent.

20 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

Alignment of Typedefs
Alignment for typedefs is slightly different than alignment for
structures. Within a structure, the member itself is affected by the
alignment mode. However, with a typedef, the alignment of the type that
the typedef name is derived from is affected, not the typedef name itself.
The typedef name is then associated with the derived type.

When a typedef is seen, a new type is created by:

1. Taking the innermost type from which the typedef name is derived
(which may be another derived type).

2. Setting its alignment to what it would be if it were used inside a
structure or union declaration.

3. Creating a derived type from that new type, associating it with the
typedef name.

Let us start with a simple example1 of a declaration under NOPADDING:

typedef int my_int;

Since an int will be 1-byte aligned inside a structure under NOPADDING,
my_int will be 1-byte aligned.

Consider a pointer typedef with NOPADDING alignment:

typedef int **my_double_ptr;

my_double_ptr is derived from an integer type; therefore, a new
integer type of 1-byte alignment is created. my_double_ptr is defined to
be a 4-byte aligned pointer to another 4-byte aligned pointer which
points to a byte-aligned int.

Consider another example, this time with HPUX_WORD:

typedef int *my_ptr;
typedef my_ptr *my_double_ptr;

In the first typedef, my_ptr will be a 4-byte aligned pointer to a 2-byte
aligned int. The second typedef will create another type for my_ptr
which is now 2-byte aligned, since my_double_ptr is derived from
my_ptr . So my_double_ptr is a 4-byte aligned pointer to a 2-byte
aligned pointer which points to a 2-byte aligned int.

Similar declarations inside a structure will not have the same resulting
alignment. Consider the following declaration:

1. the example asumes the ILP32 data model.

Chapter 2 21

Storage and Alignment Comparisons
Data Type Size and Alignments

#pragma HP_ALIGN NOPADDING

typedef int **my_double_ptr;

struct s {
int **p;

};

In the above example, my_double_ptr is a 4-byte aligned pointer type
pointing to another 4-byte aligned pointer which points to a 1-byte
aligned int. However, struct s member p is a 1-byte aligned pointer
which points to a 4-byte aligned pointer which points to 4-byte aligned
int. Inside a structure, the member itself is affected by the alignment
mode. However, with a typedef, the typedef name is not directly affected.
The innermost type from which the typedef name is derived is affected
by the alignment mode.

Summary of Alignment Modes
Table 2-4 provides a summary of the differences between otherwise
similar alignment modes.

Table 2-4 Alignment Mode Summary

General
Alignment
Category

Modes in Category Differences

1-byte NOPADDING N/A

22 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments

2-byte HPUX_WORD
DOMAIN_WORD

Same except for bit field
alignment.

4-byte HPUX_NATURAL_S500 N/A

“natural” HPUX_NATURAL
NATURAL
DOMAIN_NATURAL

HPUX_NATURAL and
NATURAL are the same
except for the alignment
of bit fields and the
minimum alignment of
structs and unions.
DOMAIN_NATURAL is
like NATURAL except for
the alignment of structs
and unions, and that the
alignment of long
doubles in 64-bit mode is
8-byte.

General
Alignment
Category

Modes in Category Differences

Chapter 2 23

Storage and Alignment Comparisons
The Alignment Pragmas

The Alignment Pragmas
This section discusses the two alignment pragmas: HP_ALIGN and PACK.
With the HP_ALIGN pragma, you can specify one of the alignment modes
discussed so far, and also use PUSH and POP arguments to store and
retrieve alignment modes in code. With the new PACK pragma you get a
simpler syntax where you specify a byte boundary and then get uniform
bit field, struct and union alignments. No PUSH and POP functionality is
provided with the PACK pragma. (Refer to “The PACK Pragma” on page
34 for more information.)

The HP_ALIGN Pragma
The HP_ALIGN pragma controls data storage allocation and alignment of
structures, unions, and type definitions, using typedefs. It enables you to
control the alignment mode when allocating storage space for data. It is
especially important when used to control the allocation of binary data
that is transmitted among machines having different hardware
architectures.

The HP_ALIGN pragma takes a parameter indicating which alignment
mode to use. Not all modes are available on all HP platforms; the
HPUX_NATURAL alignment mode is the most widely available on HP-UX.
This mode is the recommended standard.

The syntax for the HP_ALIGN pragma is:

#pragma HP_ALIGN align_mode [PUSH]
#pragma HP_ALIGN [POP]

where align_mode is one of the following:

• HPUX_WORD

This is the Series 300/400 default alignment mode.

• HPUX_NATURAL_S500

This is the Series 500 default alignment mode.

• HPUX_NATURAL

This is the HP 9000 workstations and servers and HP 3000 Series
900 systems default alignment mode.

24 Chapter 2

Storage and Alignment Comparisons
The Alignment Pragmas

• NATURAL

This mode provides a consistent alignment scheme across HP
architectures.

• DOMAIN_WORD

This is the default word alignment mode on HP Apollo architecture.

• DOMAIN_NATURAL

This is the default natural alignment mode on HP Apollo
architecture.

• NOPADDING

This causes all structures and union members that are not bit-fields
to be packed on a byte boundary. It does not cause compressed
packing where there are zero bits of padding. It only insures that
there will be no full bytes of padding in the structure or union.

NOTE The above alignment modes are only available on HP-UX systems.

The HP_ALIGN pragma affects struct and union definitions as well as
typedef declarations. It causes data objects that are later declared using
these types to have the size and alignment as specified by the pragma.

The alignment pragma in effect at the time of data type declaration has
significance. The alignment pragma in effect at the time of data type
declaration has precedence over the alignment pragma in effect when
space for a data object of the previously declared type is allocated.

Refer to “Using the HP_ALIGN Pragma” on page 27 for a discussion of
how to use PUSH and POP.

HP_ALIGN Pragma Alignment Modes
In all, there are a total of seven possible alignment modes for the
HP_ALIGN pragma which can be grouped into five categories as
described in Table 2-5.

Chapter 2 25

Storage and Alignment Comparisons
The Alignment Pragmas

Table 2-5 The HP_ALIGN Pragma Alignment Modes

Alignment Mode Description

HPUX_WORD, DOMAIN_WORD HPUX_WORD is the native alignment for HP 9000
Series 300 and 400. DOMAIN_WORD is the native
alignment for HP Apollo Series 3000 and 4000. The
most restricted alignment boundary for a structure
member is 2 bytes.

HPUX_NATURAL,
DOMAIN_NATURAL

HPUX_NATURAL is the native alignment for HP 9000
workstations and servers and HP 3000 Series 900
and, therefore, is the default alignment mode.
DOMAIN_NATURAL is the native alignment for HP
Apollo Series 10000. The alignment of a structure
member is related to its size (except for long double
and long pointers), and the most restricted alignment
boundary is 8 bytes.

26 Chapter 2

Storage and Alignment Comparisons
The Alignment Pragmas

NOTE With the exception of bit-fields, DOMAIN_WORD structure alignment is the
same as HPUX_WORD structure alignment, and DOMAIN_NATURAL
structure alignment is the same as HP_NATURAL structure alignment.

The alignment modes listed above can be controlled using the HP_ALIGN
compiler pragma. See “The HP_ALIGN Pragma” on page 23 for a
detailed description of this pragma. The NATURAL alignment mode
should be used whenever possible. This mode enables data to be shared
among the greatest number of HP-UX and Domain (HP Apollo) systems.

HPUX_NATURAL_S500 HPUX_NATURAL_S500 is the native alignment for HP
9000 Series 500. The alignment of a structure member
is related to its size, and the most restricted alignment
boundary is 4 bytes.

NATURAL NATURAL is an architecture-independent alignment
mode for HP Series 300, 400, workstations and
servers, and HP Apollo Series 3000, 4000, and 10000.
In the NATURAL mode, alignment of a structure
member is related to its size, the most restricted
alignment boundary being 8 bytes. The difference
between HPUX_NATURAL and NATURAL are a 1-byte
versus 2-byte minimum structure alignment and size,
and the bit-field rules. This alignment mode is
recommended when portability is an issue, since this
mode enables data to be shared among the greatest
number of HP-UX and Domain (HP Apollo) systems.

NOPADDING This mode does not arise from a particular
architecture. The most restricted alignment is 1 byte.
NOPADDING alignment causes all structure and union
members and typedefs to be packed on a byte
boundary, and ensures that there will be no full byte
padding inside the structure. Bit-field members either
are byte-aligned or aligned immediately following a
previous bit-field member, except in rare cases
described in the section "Alignments of Bit-Fields"
below.

Alignment Mode Description

Chapter 2 27

Storage and Alignment Comparisons
The Alignment Pragmas

In addition, the PACK pragma provides a convenient way to specify byte
alignment of structs and unions. See “The PACK Pragma” on page 34
for more information.

Using the HP_ALIGN Pragma
The HP_ALIGN pragma allows you to control data storage allocation and
alignment of structures, unions, and typedefs.

NOTE The basic scalar types, array types, enumeration types, and pointer types
are not affected by the HP_ALIGN pragma. The pragma only affects
struct or union types and typedefs—no other types are affected by
specifying the HP_ALIGN pragma.

The HP_ALIGN pragma takes a parameter that specifies the alignment
mode, for example:

#pragma HP_ALIGN HPUX_NATURAL

There is also an optional parameter PUSH, which saves the current
alignment mode before setting the specified mode as the new alignment
mode. For example, in the following sequence:

#pragma HP_ALIGN NOPADDING PUSH
/* decls following */

the current alignment mode is saved on the stack. It is then set to the
new alignment mode, NOPADDING.

The PUSHed alignment mode can be retrieved later by doing a

#pragma HP_ALIGN POP

If the last alignment mode PUSHed on the stack was NOPADDING, the
current alignment mode would now be NOPADDING.

Problems Sometimes Encountered with the
HP_ALIGN Pragma
If only one alignment mode is used throughout the entire file, this
pragma is straightforward to use and to understand. However, when a
different mode is introduced in the middle of the file, you should be
aware of its implications and effects.

28 Chapter 2

Storage and Alignment Comparisons
The Alignment Pragmas

The key to understanding HP_ALIGN is the following concept: typedefs
and struct or union types retain their original alignment mode
throughout the entire file. Therefore, when a type with one alignment is
used in a different alignment mode, it will still keep its original
alignment.

This feature may lead to confusion when you have a typedef, structure or
union of one alignment nested inside a typedef, structure or union of
another alignment.

Here are some examples of the most common misunderstandings.

Example 1: Using Typedefs. The alignment pragma will affect
typedef, struct, and union types. Therefore, in the following declaration:

#pragma HP_ALIGN HPUX_WORD
typedef int int32;

int32 is not equivalent to int . To illustrate:

#pragma HP_ALIGN HPUX_WORD

typedef int int32;

void routine (int *x);

int main()
{

int *ok;
int32 *bad;

routine(ok);
routine(bad); /* warning */

}

Compiling this with -Aa -c will give two warnings:

warning 604: Pointers are not assignment-compatible.
warning 563: Argument #1 is not the correct type.

These warnings occur because the actual pointer value of bad may not be
as strictly aligned as the pointer type routine expects. This may lead to
run-time bus errors in the called function if it dereferences the
misaligned pointer.

Example 2: Using Combination of Different Alignment
Modes. In the WORD alignment modes, the members of a structure
whose sizes are larger than 2 bytes are aligned on a 2-byte boundary.
However, this is only true if those member types are scalar or have been
previously declared under the same alignment mode. If the member type

Chapter 2 29

Storage and Alignment Comparisons
The Alignment Pragmas

is a typedef, struct, or union type which has been declared previously
under a different alignment mode, it will retain its original alignment,
regardless of current alignment mode in effect. For example:

typedef int my_int;

#pragma HP_ALIGN HPUX_WORD

struct st {
char c;
my_int i;

};

int main()
{

char c;
struct st foo;

}

Although the size of my_int is greater than 2 bytes, because it was
declared previously under HPUX_NATURAL with the alignment of 4 bytes
it will be aligned on a 4-byte boundary, causing the entire struct st to be
aligned on a 4-byte boundary. Compiling with the +m option to show the
offsets of the identifiers (offsets given as "byte-offset @ bit-offset" in
hexadecimal), you will get the following output:

main

Identifier Class Type Address
- - -

c auto char SP-48
foo auto struct st SP-44

c member char 0x0 @ 0x0
i member int 0x4 @ 0x0

The resulting size of foo is 8 bytes, with 4-byte alignment.

If you change the type of member i in struct st to be a simple int type,
then you will get the following result:

main

Identifier Class Type Address
- -

c auto char SP-40
foo auto struct st SP-38

c member char 0x0 @ 0x0
i member int 0x2 @ 0x0

This time, the resulting size of foo is 6 bytes, with 2-byte alignment.

Example 3: Incorrect Use of Typedefs and Alignments.
Often, you might mix typedefs and alignments without being aware of
the actual alignment of the data types.

30 Chapter 2

Storage and Alignment Comparisons
The Alignment Pragmas

What may appear to be correct usages of these data types may turn out
to be causes for misaligned pointers and run-time bus errors, among
other things. For example, consider the following program.

<my_include.h>
typedef unsigned short ushort;
extern int get_index(void);
extern ushort get_value(void);

<my_prog.c>
#include "my_include.h"

#pragma HP_ALIGN NOPADDING PUSH
struct s {

ushort member1;
ushort member2;

};
#pragma HP_ALIGN POP

char myBuffer[100];

int main()
{

struct s *my_struct;
int index = get_index();
int value = get_value();
int not_done = 1;

while (not_done) {
my_struct = (struct s*)&myBuffer[index];
my_struct->member1 = value;

.

.

.

}
}

This code is not written safely. Although struct s is declared under
NOPADDING alignment mode, it has 2-byte alignment due to the typedef
for ushort . However, a pointer to struct s can be assigned an address
that can point to anywhere in the char array (including odd addresses). If
the function get_index always returns an even number, you will not
run into any problems, because it will always be 2-byte aligned. However,
if the index happens to be an odd number, &myBuffer[index] will be
an odd address. Dereferencing that pointer to store into a 2-byte aligned
member will result in a run-time bus error.

Below are some examples of what you can do to avoid such behavior.

• Compile with +u1 option, which forces all pointer dereferences to
assume that data is aligned on 1-byte boundaries. However, this will
have a negative impact on performance.

Chapter 2 31

Storage and Alignment Comparisons
The Alignment Pragmas

• Put the typedef inside the NOPADDING alignment. However, if you use
ushort in contexts where it must have 2-byte alignment, this may
not be what you want.

• Declare struct s with the basic type unsigned short rather than
the typedef ushort .

• Make sure that the pointer will always be 2-byte aligned by returning
an even index into the char array.

• Declare another typedef for ushort under the NOPADDING alignment:

typedef ushort ushort_1

and use the new type ushort_1 inside struct s .

As mentioned above, the HP_ALIGN pragma must have a global scope; it
must be outside of any function or enclosing structure or union. For
example, suppose you have the following sequence of pragmas:

#pragma HP_ALIGN HPUX_WORD PUSH

struct string_1 {
char *c_string;
int counter;

};

#pragma HP_ALIGN HPUX_NATURAL PUSH

struct car {
long double car_speed;
char *car_type;

};

#pragma HP_ALIGN POP

struct bus {
int bus_number;
char bus_color;

};

#pragma HP_ALIGN POP

Variables declared of type struct string_1 , are aligned according to
the HPUX_WORD alignment mode. Variables declared of type struct
car , are aligned according to the HPUX_NATURAL alignment mode.
Variables declared of type struct bus are aligned according to
HPUX_WORD.

32 Chapter 2

Storage and Alignment Comparisons
The Alignment Pragmas

Accessing Non-Natively Aligned Data with Pointers
Be careful when using pointers to access non-natively aligned data types
within structures and unions. Alignment information is significant, as
pointers may be dereferenced with either 8-bit, 16-bit, or 32-bit machine
instructions. Dereferencing a pointer with an incompatible machine
instruction usually results in a run-time error.

HP C permanently changes the size and alignment information of
typedefs defined within the scope of an HP_ALIGN pragma. It makes data
objects, such as pointers, declared by using typedefs, compatible with
similar objects defined within the scope of the pragma.

For example, a pointer to an integer type declared with a typedef that is
affected by the HP_ALIGN pragma will be dereferenced safely when it
points to an integer object whose alignment is the same as that specified
in the pragma.

The typedef alignment information is persistent outside the scope of the
HP_ALIGN pragma. An object declared with a typedef will have the same
storage and alignment as all other objects declared with the same
typedef, regardless of the location of other HP_ALIGN pragma statements
in the program.

There is a slight performance penalty for using non-native data
alignments. The compiler generates slower but safe code for
dereferencing non-natively aligned data. It generates more efficient code
for natively aligned data.

The following program generates a run-time error because a pointer that
expects word-aligned data is used to access a half-word aligned item:

#pragma HP_ALIGN HPUX_WORD

struct t1 { char a; int b;} non_native_rec;

#pragma HP_ALIGN POP

main ()
{

int i;
int *p = &non_native_rec.b;
i = *p; /* assignment causes run-time bus error */

}

The following program works as expected because the pointer has the
same alignment as the structure:

#pragma HP_ALIGN HPUX_WORD

struct t1 { char a; int b;} non_native_rec;

Chapter 2 33

Storage and Alignment Comparisons
The Alignment Pragmas

typedef int non_native_int;

#pragma HP_ALIGN POP

main ()
{

int i;
non_native_int *p = &non_native_rec.b;
i = *p;

}

An alternative to using the HP_ALIGN pragma and typedefs to control
non-natively aligned pointers is to use the +ubytes compiler option of HP
C/HP-UX. The +ubytes forces all pointer dereferences to assume that
data is aligned on 8-bit, 16-bit, or 32-bit addresses. The value of bytes can
be 1 (8-bit), 2 (16-bit), or 4 (32-bit). This option can be used when
accessing non-natively aligned data with pointers that would otherwise
be natively aligned. This option can be useful with code that generates
the compiler warning message

#565 - "address operator applied to non natively aligned member."

and aborts with a run-time error.

The +ubytes option affects all pointer dereferences within the source file.
It can have a noticeable, negative impact on performance.

NOTE The HP C/iX implementation of the +u option omits the bytes parameter.

Defining Platform Independent Data Structures
One way to avoid trouble caused by differences in data alignment is to
define structures so they are aligned the same on different systems. To
do this, use padding bytes — that is, dummy variables to align fields
the same way on different architectures.

For example, use:

struct {
char cl;
char dum1;
char dum2;
char dum3;
int i1;

};

instead of:

struct {
char c1;
int i1;

};

34 Chapter 2

Storage and Alignment Comparisons
The Alignment Pragmas

The PACK Pragma
The PACK pragma is a simple, intuitive way to
specify alignment. In the following syntax, n is the
byte boundary on which members of structs and
unions should be aligned, and can be 1, 2, 4, 8, or
16:

#pragma PACK n

The PACK pragma is not intended to be an
“extension” of the HP_ALIGN pragma. It is,
instead, a simple and highly portable way of
controlling the alignment of aggregates. It has
some significant differences with the HP_ALIGN
pragma, including uniform bit-field alignment,
uniform struct and union alignment, and the lack
of “PUSH” and “POP” functionality.

With the PACK pragma, byte alignment is the
lesser of n and the natural alignment of the type.
Table 2-6 sums up the PACK pragma byte
alignments. Structs, unions and arrays are aligned
according to the strictest alignment of their
members, with a one-byte minimum alignment.

Table 2-6 PACK Pragma Byte Alignments

n=1 n=2 n=4 n=8 n=16

Data Type 32 64 32 64 32 64 32 64 32 64

char , uchar 1 1 1 1 1 1 1 1 1 1

short ,
ushort

1 1 2 2 2 2 2 2 2 2

int , uint 1 1 2 2 4 4 4 4 4 4

long , ulong 1 1 2 2 4 4 4 8 4 8

long long
ulong long

1 1 2 2 4 4 8 8 8 8

Chapter 2 35

Storage and Alignment Comparisons
The Alignment Pragmas

The alignment of bit-fields is different than either of the two bit-field
alignments for the HP_ALIGN modes. Zero-length bit-fields will still
force the next bit-field to start at the next boundary for that type.
However, PACK bit-fields can cross natural boundaries.

float 1 1 2 2 4 4 4 4 4 4

double 1 1 2 2 4 4 8 8 8 8

enum 1 1 2 2 4 4 4 4 4 4

pointer 1 1 2 2 4 4 4 8 4 8

long
pointer

1 1 2 2 4 4 4 8 4 8

long double 1 1 2 2 4 4 8 8 8 16

n=1 n=2 n=4 n=8 n=16

Data Type 32 64 32 64 32 64 32 64 32 64

36 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures

Aligning Structures Between
Architectures
Differences in data type alignment can cause problems when porting
code or data between systems that have different alignment schemes.
For example, if you write a C program on the Series 300/400 that writes
records to a file, then read the file using the same program on HP 9000
workstations and servers, it may not work properly because the data
may fall on different byte boundaries within the file because of alignment
differences.

Three methods can be used for aligning data within structures so that it
can be shared between different architectures.

• Use only ASCII formatted data. This is the safest method, but may
have negative performance and space implications.

• Use the HP_ALIGN and PACK pragmas, to force a particular alignment
scheme, regardless of the architecture on which it is used. See “The
HP_ALIGN Pragma” on page 23 and “The PACK Pragma” on page
34 for details.

• Define platform independent data structures using explicit padding.

To illustrate the portability problem raised by different alignments,
consider the following example.

#include <stdio.h>
struct char_int

{
char field1;
int field2;

};
main (void)

{
FILE *fp;
struct char_int s;

.
 .
 .

fp = fopen("myfile", "w");
fwrite(&s, sizeof(s), 1, fp);

.
 .
 .

}

The alignment for the struct that is written to myfile in the above
example is shown in Figure 2-7.

Chapter 2 37

Storage and Alignment Comparisons
Aligning Structures Between Architectures

Figure 2-7 Comparison of HPUX_WORD and HPUX_NATURAL Byte
Alignments

In the HPUX_WORD alignment mode, six bytes are written to myfile . The
integer field2 begins on the third byte. In the HPUX_NATURAL
alignment mode, eight bytes are written to myfile . The integer field2
begins on the fifth byte.

Examples of Structure Alignment on Different
Systems
The code fragment below can be used to illustrate the alignment on
various systems.

struct x {
char y[3];
short z;
char w[5];

};

struct q {
char n;
struct x v[2];
double u;
char t;
int s:6;
char m;

} a = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20.0,21,22,23};

38 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures

HP C/HP-UX 9000 Workstations and Servers and HP
C/iX
Figure 2-8 on page 38 shows how the data in the above example is stored
in memory when using HP C on the HP 9000 workstations and servers
and HP 3000 Series 900. The values are shown above the variable
names. Shaded cells indicate padding bytes.

Figure 2-8 Storage with HP C on the HP 9000 workstations and servers and
HP 3000 Series 900

The struct q is aligned on an 8-byte boundary because the most
restrictive data type within the structure is the double u .

Chapter 2 39

Storage and Alignment Comparisons
Aligning Structures Between Architectures

Table 2-7 shows the padding for the example code fragment:

Table 2-7 Padding on HP 9000 Workstations and Servers and HP 3000
Series 900

HP C on the Series 300/400
The differences between HP C on the HP 9000 Series 300/400 and HP C
on the HP 9000 workstations and servers and HP 3000 Series 900 are:

• On the Series 300/400, a structure is aligned on a 2-byte boundary.
On the HP 9000 workstations and servers and HP 3000 Series 900, it
is aligned according to the most restrictive data type within the
structure.

• On the Series 300/400, the double data type is 2-byte aligned within
structures. It is 8-byte aligned on the HP 9000 workstations and
servers and HP 3000 Series 900.

• On the Series 300/400, the long double, available in ANSI mode only,
is 2-byte aligned within structures. The long double is 8-byte aligned
on the HP 9000 workstations and servers and HP 3000 Series 900.

• On the Series 300/400, the enumerated data type is 2-byte aligned in
a structure, array, or union. The enumerated type is always 4-byte
aligned on the HP 9000 workstations and servers and HP 3000 Series
900, unless a sized enumeration is used.

Padding Location Reason for Padding

a+1 The most restrictive type of the structure x is short ;
therefore, the structure is 2-byte aligned.

a+5 Aligns the short z on a 2-byte boundary.

a+13 Fills out the struct x to a 2-byte boundary.

a+17 Aligns the short z on a 2-byte boundary.

a+25 Fills out the structure to a 2-byte boundary.

a+26 through a+31 Aligns the double u on an 8-byte boundary. The bit-field
s begins immediately after the previous item at a+41 .
Two bits of padding is necessary to align the next byte
properly.

a+43 through a+47 Fills out the struct q to an 8-byte boundary.

40 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures

When the sample code fragment is compiled and run, the data is stored
as shown in Figure 2-9:

Figure 2-9 Storage with HP C on the HP 9000 Series 300/400

Table 2-8 shows the padding for the example code fragment.

Table 2-8 Padding on the HP 9000 Series 300/400

Padding
Location Reason For Padding

a+1 Within structures align short on a 2-byte boundary.

a+5 Aligns the short z on a 2-byte boundary.

a+14 Structures within structures are aligned on a 2-byte
boundary.

Chapter 2 41

Storage and Alignment Comparisons
Aligning Structures Between Architectures

CCS/C on the HP 1000 and HP 3000
Figure 2-10 on page 41 shows how the members of the structure defined
in “Examples of Structure Alignment on Different Systems” on page 37
are aligned in memory when using CCS/C on the HP 1000 or HP 3000:

Figure 2-10 Storage with CCS/C

a+17 Aligns the short z on a 2-byte boundary.

a+25 Doubles are 2-byte aligned within structures.

a+37 Pads a to a 2-byte boundary.

Padding
Location Reason For Padding

42 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures

NOTE All data types and structures are 2-byte aligned when using CCS/C on
the HP 1000 or HP 3000.

Table 2-9 on page 42 shows the padding for the example code fragment:

Table 2-9 Padding with CCS/C

VAX/VMS C
The differences between HP C and VAX/VMS C are:

• In HP C workstations and servers, the double type is 8-byte aligned;
in VAX/VMS C, the double type is 4-byte aligned.

• In HP C, bit-fields are packed from left to right. In VAX/VMS C, the
fields are packed from right to left.

• HP C uses big-endian data storage with the most significant byte on
the left. VAX/VMS C uses little-endian data storage with the most
significant byte on the right. (See the swab function in the HP-UX
Reference manual for information about converting from little-endian
to big-endian.)

In VAX/VMS C, the data from the program in “Examples of Structure
Alignment on Different Systems” on page 37 is stored as shown in
Figure 2-11 on page 43:

Padding
Location Reason for Padding

a+1 Aligns the structure on a 2-byte boundary.

a+5 Aligns the short z on a 2-byte boundary.

a+13 Fills out the struct x to a 2-byte boundary. (Aligns
the character on a 2-byte boundary.)

a+17 Aligns the short z on a 2-byte boundary.

a+25 Fills out the structure to a 2-byte boundary and
aligns the double u on a 2-byte boundary.

a+37 Pads a to a 2-byte boundary.

Chapter 2 43

Storage and Alignment Comparisons
Aligning Structures Between Architectures

Figure 2-11 Storage on VAX/VMS C

Table 2-10 shows the padding for the example code fragment

Table 2-10 Padding on VAX/VMS C

Padding
Location Reason for Padding

a+1 The most restrictive type of any struct x member is
short ; therefore, struct x is 2-byte aligned.

a+5 Aligns the short z on a 2-byte boundary.

a+13 Fills out the struct x to a 2-byte boundary.

a+17 Needed for alignment of the short z .

44 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures

a+25
through
a+27

Fills out the structure to a 2-byte boundary and aligns
the double u on a 4-byte boundary.

a+37 Aligns the char m on a byte boundary.

a+39 Fills out the structure to a 4-byte boundary.

Padding
Location Reason for Padding

45

3 Calling Other Languages

This chapter describes how to call routines written in other HP
languages from HP C programs.

Invoking routines or accessing data defined or declared in another
programming language from HP C can be tricky. Here are some common
problems:

• Mismatched data types for parameters and return values.

• Different language storage layouts for aggregates (arrays, records,
variants, structures, unions, equivalences, and commons).

• Different formats for strings among HP C, HP Pascal, and HP
Fortran 90.

• Different language values for true, false, eof, and nil.

• Different language bit level justification of objects smaller than 32
bits (right-justification or most significant bit or byte last versus
left-justification or most significant bit or byte first).

The topics listed above are described in detail in this chapter. For
additional information, the following manuals have chapters on calling
other languages:

• HP Pascal/HP-UX Programmer's Guide

• HP Fortran 90 Programmer's Guide

• COBOL/HP-UX Operating Manual

46 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal

Comparing HP C and HP Pascal
The following table summarizes the differences in storage allocation
between HP C and HP Pascal. The footnote numbers refer to notes
located in a section immediately following the table.

Table 3-1 HP C versus HP Pascal Storage Allocation

HP C Type HP C
Description

Corresponding
 HP Pascal

Type

HP Pascal
Description

char, signed char 1 byte, byte
aligned

1 byte, byte aligned;
Subrange: -128 ..
127

unsigned char 1 byte, byte
aligned

char 1 byte, byte aligned;
Subrange: 0 .. 255

short 2 bytes, 2-byte
aligned

shortint Subrange:
-32768..32767

unsigned short 2 bytes, 2-byte
aligned

Subrange: 0 ..
65535

int 4 bytes, 4-byte
aligned

integer 4 bytes, 4-byte
aligned; Subrange:
-2147483648 ..
2147483647

unsigned int 4 bytes, 4-byte
aligned

4 bytes, 4-byte
aligned; Subrange:
0 .. 4294967295

long 4 bytes, 4-byte
aligned (8 bytes
in LP64)

integer Subrange:
-2147483648 ..
2147483647

unsigned long 4 bytes, 4-byte
aligned (8 bytes
in LP64)

4 bytes, 4-byte
aligned; Subrange:
0 .. 4294967295

Chapter 3 47

Calling Other Languages
Comparing HP C and HP Pascal

(See Note 1) longint 8 bytes, 4-byte
aligned

float 4 bytes, 4-byte
aligned

real 4 bytes, 4-byte
aligned

double 8 bytes, 8-byte
aligned

longreal 8 bytes, 8-byte
aligned

long double 16 bytes, 16-byte
aligned

enum 4 bytes, 4-byte
aligned

enumeration or
integer (See
Note 2)

1 byte if fewer than
257 elements; 2
bytes if between
257 and 65536;
otherwise, 4 bytes.
1, 2, or 4-byte
aligned.

char enum 1 byte, 1-byte
aligned

1 byte, 1-byte
aligned, subrange:
-128..127

short enum 2 bytes, 2-byte
aligned

short int subrange:
-32768..32767

int enum 4 bytes, 4-byte
aligned

integer 4 bytes, 4-byte
aligned, subrange:
-2,147,483,648..2,14
7,483,647

long enum 4 bytes, 4-byte
aligned

integer 4 bytes, 4-byte
aligned, subrange:
-2,147,483,648..2,14
7,483,647

HP C Type HP C
Description

Corresponding
 HP Pascal

Type

HP Pascal
Description

48 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal

array [n] of type Size is number
of elements times
element size.
Align according
to element type.

ARRAY [0 .. n-1]
OF type (See
Note 3)

Size is the number
of elements times
element size. Align
according to
element type.

array [n] of
char

[n] bytes, byte
aligned

PACKED ARRAY
[0 .. n-1] OF
CHAR or not
PACKED (See
Note 4)

[n] bytes, byte
aligned

struct (See Note 5) Pascal string
descriptors may
be emulated
using C
structures, see
the note for an
example.

STRING [n] Size 4+[n]+1 bytes,
4-byte aligned.

Pointer to string
descriptor structure
(See Note 6)

Pascal VAR
parameters may
be emulated
using C pointers
to string
descriptor
structures. (See
Note 6).

STRING

char * Pointer to a null
terminated
array of
characters

pointer to
character array

(See Note 7)

struct Size of elements
plus padding,
aligned according
to largest type

record (See Note 8)

HP C Type HP C
Description

Corresponding
 HP Pascal

Type

HP Pascal
Description

Chapter 3 49

Calling Other Languages
Comparing HP C and HP Pascal

union Size of elements
plus padding,
aligned according
to largest type

(untagged)
variant record
(See Note 9)

(See Note 8)

signed bit-fields packed record
(See Note 10)

unsigned bit-fields packed record
(See Note 11)

void Used when
calling an HP
Pascal procedure
(See Note 12)

pointer 4 bytes, 4-byte
aligned (8 bytes
in LP64)

pointer to
corresponding
type

4 bytes, 4-byte
aligned

long pointer 8 bytes, 8-byte
aligned

$ExtnAddr$
pointer or
$ExtnAddr$
VAR parameter

8 bytes, 4-byte
aligned

char 1 byte, 1-byte
aligned

boolean (See
Note 13)

1 byte, 1 byte
aligned

void function
parameter

4 bytes, 4-byte
aligned

PROCEDURE
parameter

4 bytes, 4-byte
aligned

function parameter 4 bytes, 4-byte
aligned

FUNCTION
parameter

4 bytes, 4-byte
aligned

struct of 1-bit fields (See Note 14) set

HP C Type HP C
Description

Corresponding
 HP Pascal

Type

HP Pascal
Description

50 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal

Notes on HP C and HP Pascal
1. The longint type in HP Pascal is a 64-bit signed integer. A

corresponding HP C type could be any structure or array of 2 words;
however, HP C cannot directly operate on such an object.

2. By default, HP C enumerations are allocated 4 bytes of storage, while
HP Pascal enumerations use the following scheme:

• 1 byte, if fewer than 257 elements.

• 2 bytes, if between 257 and 65536 elements.

• 4 bytes, otherwise.

If the default enumeration specifier is modified with a char or short
type specifier, 1 or 2 bytes of storage are allocated. See Table 3-1 for a
description of the sized enumerated types.

This is important if the items are packed. For example, a 25-element
enumeration in HP Pascal can use 1 byte and be on a byte boundary,
so you must use the HP C type char or a sized enum declaration char
enum.

3. HP C always indexes arrays from zero, while HP Pascal arrays can
have lower bounds of any user-defined scalar value. This is only
important when passing an array using an index to subscript the
array. When passing the subscript between HP C and HP Pascal, you

Pascal files may
be read by C
programs with
some effort. (See
Note 15)

file external record
oriented file

pointer to void
function

procedure

pointer to function function

HP C Type HP C
Description

Corresponding
 HP Pascal

Type

HP Pascal
Description

Chapter 3 51

Calling Other Languages
Comparing HP C and HP Pascal

must adjust the subscript accordingly. HP C always passes a pointer
to the first element of an array. To pass an array by value, enclose the
array in a struct and pass the struct .

4. HP C char arrays are packed one character per byte, as are HP
Pascal arrays (even if PACKED is not used). HP Pascal permits
certain string operations with a packed array of char when the lower
bound is one.

5. The HP Pascal type STRING [n] uses a string descriptor that consists
of the following: a word containing the current length of the string, n
bytes for the characters, and an extra byte allocated by the HP Pascal
compiler. Thus, the HP Pascal type STRING[10] corresponds to the
following HP C structure:

typedef struct {
int cur_len; /* 4 bytes */
char chars [10]; /* 10 bytes */
char extra_byte; /* 1 byte */

} STRING_10;

which is initialized like this:

STRING_10 this_string = {
0, /* The current length */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* The 10 bytes */
0 /* The null byte */

};

Both the C structure and the Pascal string are 4-byte aligned.

6. HP Pascal also has a generic string type in which the maximum
length is unknown at compile time. Objects of this type have the same
structure as in Note 5 above; the objects are only used as VAR formal
parameters.

7. A variable of this type is a pointer to a character array if the string is
null-terminated; HP Pascal will not handle the null byte in any
special way. An HP C parameter of type "pointer to char " corresponds
to an HP Pascal VAR parameter of type "packed array of char ."
However, the type definition of that VAR parameter must have the
bounds specified.

8. The size is equal to the size of all members plus any padding needed
for the alignment. (See Chapter 2 for details on alignment.) The
alignment is that of the member with the strictest alignment
requirement.

9. A union corresponds directly to an untagged HP Pascal variant
record. For example, the HP C union:

52 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal

typedef union {
int i;
float r;
unsigned char c;

} UNIONTYPE;

corresponds to:

TYPE
UNIONTYPE = RECORD CASE INTEGER OF

1 : (i : INTEGER);
2 : (r : REAL);
3 : (c : CHAR);

END;

The tagged HP Pascal variant record:

TYPE
TAGGED_UNIONTYPE = RECORD CASE tag : INTEGER OF

1 : (i : INTEGER);
2 : (r : REAL);

END;

corresponds to this HP C structure:

typedef struct {
int tag;
union {

int i;
float r;

};
} TAGGED_UNIONTYPE;

10.HP Pascal subranges with a negative value as their lower bound have
enough bits allocated to contain the upper bound, with an extra bit
for the sign. Thus, the HP C structure:

typedef struct {
int b1 : 1;
int b2 : 2;
int b3 : 3;
int b4 : 4;
int b5 : 5;
int b6 : 6;
int b7 : 7;

} BITS;

corresponds to the following untagged HP Pascal record:

TYPE
BITS = PACKED RECORD

b1 : BOOLEAN;
b2 : -2 .. 1;
b3 : -4 .. 3;
b4 : -8 .. 7;
b5 : -16 .. 15;
b6 : -32 .. 31;
b7 : -64 .. 63;

END;

Chapter 3 53

Calling Other Languages
Comparing HP C and HP Pascal

11.Unsigned bit-fields map onto HP Pascal packed record fields whose
types are the appropriate subranges. For example, the HP C
structure:

typedef struct {
unsigned int b1 : 1;
unsigned int b2 : 2;
unsigned int b3 : 3;
unsigned int b4 : 4;
unsigned int b5 : 5;
unsigned int b6 : 6;
unsigned int b7 : 7;

} BITS;

corresponds to this untagged HP Pascal record:

TYPE
BITS = PACKED RECORD

b1 : 0 .. 1;
b2 : 0 .. 3;
b3 : 0 .. 7;
b4 : 0 .. 15;
b5 : 0 .. 31;
b6 : 0 .. 63;
b7 : 0 .. 127;
END;

12.The type void , when applied to a function declaration, corresponds to
an HP Pascal procedure.

13.HP Pascal allocates one byte for Boolean variables, and only
accesses the rightmost bit to determine its value. HP Pascal uses a 1
to represent true and zero for false; HP C interprets any nonzero
value as true and interprets zero as false.

14.HP Pascal sets are packed arrays of unsigned bits. For example, given
the HP Pascal set:

TYPE
SET_10 = SET OF 0 .. 9;

VAR s: SET_10;

the corresponding HP C struct would be:

typedef struct {
unsigned int b0 : 1;
unsigned int b1 : 1;
unsigned int b2 : 1;
unsigned int b3 : 1;
unsigned int b4 : 1;
unsigned int b5 : 1;
unsigned int b6 : 1;
unsigned int b7 : 1;
unsigned int b8 : 1;
unsigned int b9 : 1;

54 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal

} SET_10;

SET_10 s;

Also, the following operation in HP Pascal:

s := s + [9];

has the following corresponding HP C code:

s.b9 = 1;

15.HP C and HP Pascal file types and I/O operations do not correspond.

Passing Parameters Between HP C and HP
Pascal
This section describes additional information on parameter passing.

1. All HP C parameters are passed by value except arrays and functions,
which are always passed as pointers. Reference parameters to HP
Pascal can be implemented in two ways: first, by passing the address
of an object by applying the address operator & to the variable;
second, by declaring a variable to be a pointer to such a type,
assigning an address to the pointer variable, and passing the pointer.

If an HP Pascal procedure or function has a parameter that is an
array by value, it can be called from HP C by passing a struct that
contains an array of the corresponding type.

2. Be careful when passing strings to HP Pascal. If the routine expects a
packed array of char , be sure to pass a char array. If the routine
expects a user-defined string, pass the structure declared in Note 5
above.

The examples below are HP Pascal and HP C source files that show
the parameter passing rules. The HP Pascal file contains 2
subroutines, pass_char_arrays() and pass_a_string() . The HP
C file contains the main line routine that calls these two subroutines
and displays the results. The HP C program is annotated with the
expected results.

The following is the HP Pascal procedure called from HP C:

$subprogram$
program p;
const len = 10;
type

pac_10 = packed array [1..10] of char;
string_10 = string [len];

Chapter 3 55

Calling Other Languages
Comparing HP C and HP Pascal

function pass_char_arrays (a: pac_10;
var b: pac_10;

c: string_10;
var d: string_10) : integer;

var
i : integer;
ret_val : integer;

begin
ret_val := 0;

for i := 1 to len - 1 do
begin

if (a[i] <> 'a') then
ret_val := 1;

a[i] := 'z';
if (b[i] <> 'b') then

ret_val := 256;
b[i] := 'y';

end;

for i := 1 to strlen (c) do
begin

if (c[i] <> 'c') then
ret_val := 65536;

c[i] := 'x';
end;

for i := 1 to strlen (d) do
begin

if (d[i] <> 'd') then
ret_val := maxint;

d[i] := 'w';
end;

pass_char_arrays := ret_val;
end;

function pass_a_string (var a: string) : integer;
var

i : integer;
ret_val : integer;

begin
ret_val := 0;
for i := 1 to strlen (a) do
begin

if (a[i] <> 'x') then
ret_val := maxint;

a[i] := 'q';
end;

pass_a_string := ret_val;
end;

begin
end.

The following HP C main program calls the HP Pascal procedure:

#include <stdio.h>
#include <string.h>
static struct string_10 {

int cur_len;

56 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal

char chars[10];
};
/* a Pascal routine */
extern int pass_char_arrays (/* pac10,

var pac10,
string_10,
var string[10] */);

main(void)
{

static struct string_10 a, b, c, d;
int ret_val;
strcpy (a.chars, "aaaaaaaaa");
strcpy (b.chars, "bbbbbbbbb");
strcpy (c.chars, "ccccccccc");
c.cur_len = strlen (c.chars);
strcpy (d.chars, "ddddddddd");
d.cur_len = 5;
ret_val = pass_char_arrays (a.chars, b.chars, &c, &d);

printf ("a: %s\n", a.chars); /* prints aaaaaaaaa
*/

printf ("b: %s\n", b.chars); /* prints yyyyyyyyy
*/

printf ("c: %s\n", c.chars); /* value parm prints xxxxxxxxx
*/

printf ("d: %s\n", d.chars); /* prints wwwwwdddd
*/

printf ("return mask: %d\n", ret_val); /* print 0 */

ret_val = pass_a_string (&c);
printf ("c: %s\n", c.chars); /* prints qqqqqqqqq

*/
printf ("return mask: %d\n", ret_val); /* print 0 */
return 0;

}

The program produces the following output:

a: aaaaaaaaa
b: yyyyyyyyy
c: xxxxxxxxx
d: wwwwwdddd
return mask: 0
c: qqqqqqqqq
return mask: 0

The routine pass_a_string() expects a generic string (described in
Note 6 above), so you must pass an extra argument. The extra
argument consists of a value parameter containing the maximum
length of the char array.

3. HP Pascal routines do not maintain a null byte at the end of HP C
strings. HP Pascal determines the current length of the string by
maintaining the length in a 4-byte integer preceding the character

Chapter 3 57

Calling Other Languages
Comparing HP C and HP Pascal

data. When an HP Pascal procedure or function (that takes as a
parameter a string by reference) is called, the following code is
necessary if the Pascal routine modifies the string:

pass_a_string (a, temp); /* From note 2 above */
a.chars[a.cur_len] = '\0';

4. In non-ANSI mode, HP C promotes most float (32-bit) arguments to
double (64-bit). Therefore, all arithmetic using objects defined as
float is actually using double code. Float code is only used when
the float objects are stored.

In ANSI mode where function prototypes have been declared with a
float parameter, no automatic promotion is performed. If the
prototype is within the current scope, floats will not be
automatically promoted.

To call an HP Pascal routine that expects an argument of type REAL
(32-bits), you may either declare a function prototype in ANSI mode,
use the +r command line option in non-ANSI mode to always pass
floats as floats , or declare the actual parameter as a struct with
a float as its only field, such as:

typedef struct {float f;} PASCAL_REAL_ARG;

5. HP Pascal global data can usually only be accessed by HP C if the
data is declared at the outermost level. HP Pascal stores the names of
the objects in lowercase letters.

For example, the HP Pascal global:

PROGRAM example;

VAR
PASCAL_GLOBAL: INTEGER;

BEGIN END.

is accessed by HP C with this declaration:

extern int pascal_global;

The Pascal compiler directives $GLOBAL$ and $EXTERNAL$ can be used
to share global data between HP Pascal and HP C.

The $EXTERNAL$ directive should be used to reference C globals from a
Pascal subprogram.

The $GLOBAL$ directive should be used to make Pascal globals visible to
other languages such as HP C. It should be used if it is necessary to
share globals when calling C functions from a Pascal program.

58 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal

Linking HP Pascal Routines on HP-UX
When calling HP Pascal routines, you must include the HP Pascal
run-time libraries by adding the following option to the cc command
line:

-lcl

Additionally, the -lm option may be necessary if the Pascal routines use
the Pascal predefined math functions.

For details on linking external libraries, see the -l option of the cc(1)
and ld(1) commands in the HP-UX Reference manual.

Chapter 3 59

Calling Other Languages
Comparing HP C and HP Fortran 90

Comparing HP C and HP Fortran 90
Table 3-2 shows the differences in storage allocation between HP C and
HP Fortran 90. The notes the table refers to are located after the table in
the section called "Notes on HP C and HP Fortran 90."

Table 3-2 HP C versus HP Fortran 90 Storage

HP C Type HP C
Description

HP Fortran 90
Type

HP Fortran 90
Description

char , signed
char , char
enum

1 byte, byte
aligned

1 byte, 1-byte
aligned

unsigned
char

1 byte, byte
aligned

CHARACTER*1 1 byte, 1-byte
aligned

short , short
enum

2 bytes, 2-byte
aligned

INTEGER*2 2 bytes, 2-byte
aligned

unsigned
short

2 bytes, 2-byte
aligned

int , int enum 4 bytes, 4-byte
aligned

INTEGER*4 or
INTEGER

4 bytes, 4-byte
aligned

unsigned int 4 bytes, 4-byte
aligned

long , long
enum

4 bytes, 4-byte
aligned (8
bytes in LP64)

INTEGER*4 or
INTEGER

4 bytes, 4-byte
aligned

unsigned
long

4 bytes, 4-byte
aligned (8
bytes in LP64)

float 4 bytes, 4-byte
aligned

REAL or
REAL*4

4 bytes, 4-byte
aligned

double 8 bytes, 8-byte
aligned

REAL*8 or
DOUBLE
PRECISION

8 bytes, 8-byte
aligned

60 Chapter 3

Calling Other Languages
Comparing HP C and HP Fortran 90

long double 16 bytes,
16-byte aligned

REAL*16 16 bytes, 16-byte
aligned

(See Note 1) 8 bytes, 4-byte
aligned

COMPLEX or
COMPLEX*8

8 bytes, 4-byte
aligned

(See Note 2) 16 bytes,
8-byte aligned

DOUBLE
COMPLEX or
COMPLEX*16

16 bytes, 8-byte
aligned

enum 4 bytes, 4-byte
aligned

INTEGER*4 or
INTEGER

4 bytes, 4-byte
aligned

pointer to type
long pointer to
type

Not available

string (char *) CHARACTER*n
(See Note 3)

char array CHARACTER*1
array (See
Notes 4 &5)

(See Note 5) Hollerith array

arrays Size is number
of elements
times element
size. Aligned
according to
element type.

(See Note 4) Size is number of
elements times
element size.
Aligned according
to element type.

struct (See Note 6) STRUCTURE Used to declare
Fortran 90 record
structures.

union (See Note 6) UNION Used to declare
Fortran 90 union
types.

HP C Type HP C
Description

HP Fortran 90
Type

HP Fortran 90
Description

Chapter 3 61

Calling Other Languages
Comparing HP C and HP Fortran 90

Notes on HP C and HP Fortran 90
1. The following HP C structure is equivalent to the HP Fortran 90 type

listed in the table:

struct complex {
float real_part;
float imag_part;

};

2. The following HP C structure is equivalent to the HP Fortran 90 type
listed in the table:

struct double_complex {
double real_part;
double imag_part;

};

3. HP Fortran 90 passes strings as parameters using string descriptors
corresponding to the following HP C declarations:

char *char_string; /* points to string */
int len; /* length of string */

4. HP C stores arrays in row-major order, whereas HP Fortran 90 stores
arrays in column-major order. The lower bound for HP C is always
zero; for HP Fortran 90, the default lower bound is 1.

5. HP C terminates character strings with a null byte, while HP Fortran
90 does not.

short (used
for logical test)

2 bytes, 2-byte
aligned

LOGICAL*2
(See Note 7)

2 bytes, 2-byte
aligned

int (used for
logical test)

4 bytes, 4-byte
aligned

LOGICAL*4
(See Note 7)

4 bytes, 4-byte
aligned

void Used when
calling a
SUBROUTINE

function Used when
calling a
FUNCTION

HP C Type HP C
Description

HP Fortran 90
Type

HP Fortran 90
Description

62 Chapter 3

Calling Other Languages
Comparing HP C and HP Fortran 90

6. The size is equal to the size of all members plus any padding needed
for the alignment. (See Chapter 2 for details on alignment.) The
alignment is that of the member with the strictest alignment
requirement.

7. HP C and HP Fortran 90 do not share a common definition of true or
false. In HP Fortran 90, logical values are determined by the
low-order bit of the high-order byte. If this bit is 1, the logical value is
.TRUE. , and if the bit is zero, the logical value is .FALSE. . HP C
interprets nonzero value as true and interprets zero as false.

Mixing C and Fortran File I/O
A Fortran unit cannot be passed to a C routine to perform I/O on the
associated file. Nor can a C file pointer be used by a Fortran routine.
However, a file created by a program written in either language can be
used by a program of the other language if the file is declared and opened
within the latter program. C accesses the file using I/O subroutines and
intrinsics. This method of file access can also be used from Fortran
instead of Fortran I/O.

Be aware that HP Fortran 90 on HP 9000 workstations and servers
using HP-UX uses the unbuffered I/O system calls read and write
(described in the HP-UX Reference manual) for all terminal I/O,
magnetic tape I/O, and direct access I/O. It uses the system calls fread
and fwrite for all other I/O. This can cause problems in programs that
mix C and Fortran I/O. In particular, C programs that use stdio(3S)
output procedures such as printf and fwrite and Fortran output
statements must flush stdio buffers (by calling the libc function
fflush) if they are in use before returning to Fortran output or the I/O
may be asynchronous (if the library is using write).

Mixing Fortran direct, terminal, or tape READ statements with stdio
fread input results in the Fortran READ commencing from the
beginning of the next block after the contents of the buffer, not from the
current position of the input cursor in the fread buffer. The same
situation in reverse may occur by mixing read with a Fortran sequential
disc read. You can avoid these problems by using only the read and
write calls in the C program that the Fortran I/O library uses.

Chapter 3 63

Calling Other Languages
Comparing HP C and HP Fortran 90

Passing Parameters Between HP C and HP
Fortran 90
All parameters in HP Fortran 90 are passed by reference. This means
that all arguments in an HP C call to an HP Fortran 90 routine must be
pointers. In addition, all parameters in an HP C routine called from HP
Fortran 90 must be pointers, unless the HP Fortran 90 code uses the
$ALIAS directive to define the parameters as value parameters. Refer to
the example called "HP Fortran 90 Nested Structure" later in this
chapter.Passing string variables of any length must be done by: building
and passing a two-parameter descriptor (defined in Note 3 above),
initializing the string appropriately, and by passing two arguments. The
two arguments are the pointer to the characters and the value of the
length word. This is shown below:

char *chars = "Big Mitt";
int len;

 .
 .
 .

len = strlen(chars);

pass_c_string (chars, len);
.

 .
 .

Linking HP Fortran 90 Routines on HP-UX
When calling HP Fortran 90 routines on an HP-UX system, you have to
include the HP Fortran 90 run-time libraries by adding the option:

-lcl

to the cc command line.

For details on linking external libraries, see the -l option of the cc(1)
and ld(1) commands in the HP-UX Reference manual.

64 Chapter 3

Calling Other Languages
Comparing Structured Data Type Declarations

Comparing Structured Data Type
Declarations
This section shows how to declare a nested structure in HP C, HP Pascal,
and HP Fortran 90.

HP C Nested Structure

struct x {
char y [3];
short z;
char w [5];

};

struct q {
char n;
struct x v [2];
double u;
char t;

} a;

struct u{
union {

int x;
char y[4];

} uval;
};

HP Pascal Nested Structure

TYPE
x = RECORD

y : PACKED ARRAY [1 .. 3] OF CHAR;
z : SHORTINT;
w : PACKED ARRAY [1 .. 5] OF CHAR;
END;

q = RECORD
n : CHAR;
v : PACKED ARRAY [1 .. 2] OF x;
u : LONGREAL;
t : CHAR;
END;

u = RECORD
CASE
Boolean OF

TRUE : (x : INTEGER);
FALSE: (y : ARRAY[1..4] of CHAR);

END;
VAR a:q;

Chapter 3 65

Calling Other Languages
Comparing Structured Data Type Declarations

HP Fortran 90 Nested Structure

program main
structure /x/

character*3 y
integer*2 z
character*5 w

end structure

structure /q/
character n
record /x/ v(2)
real*8 u
character t

end structure

structure /u/
union

map
integer*4 x

end map
map

character*4 y
end map

end union
end structure

66 Chapter 3

Calling Other Languages
Comparing Structured Data Type Declarations

67

4 Optimizing HP C Programs

This chapter discusses the following:

• When and how to use the optimizer.

• The four levels of optimization.

• Profile-based optimization.

• Advanced optimization options and pragmas

• Improving compile and link time

The HP C optimizer transforms programs so machine resources are used
more efficiently. The optimizer can dramatically improve application
run-time speed. HP C performs only minimal optimizations unless you
specify otherwise. You activate additional optimizations using HP C
command-line options and pragmas.

There are four major levels of optimization: levels 1, 2, 3, and 4. Level 4
optimization can produce the fastest executable code. Level 4 is a
superset of the other levels.

Additional parameters enable you to control the size of the executable
program, compile time, and aggressiveness of the optimizations
performed.

Compile time memory and CPU usage increase with each higher level of
optimization due to the increasingly complex analysis that must be
performed. You can control the trade-offs between compile-time penalties
and code performance by choosing the level of optimization you desire.

Generally, the optimizer is not used during code development. It is used
when compiling production-level code for benchmarking and general use.

68 Chapter 4

Optimizing HP C Programs
Summary of Major Optimization Levels

Summary of Major Optimization Levels
Table 4-1 summarizes the major optimization options of HP C:

Table 4-1 HP C Major Optimization Options

Option Description Benefits

+O0 (default) Constant folding and
simple register
assignment.

Compiles fastest.

+O1 Level 0 optimizations
plus instruction
scheduling and
optimizations that can
be performed on small
sections of code.

Produces faster
programs than level 0.
Compiles faster than
level 2.

+O2 or -O Level 1 optimizations,
plus optimizations
performed over entire
functions in a single file.
Optimizes loops in order
to reduce pipeline stalls.
Performs scalar
replacement, and
analysis of data-flow,
memory usage, loops and
expressions.

Can produce faster
run-time code than level
1 if programs use loops
extensively. Compiles
faster than level 3.
Loop-oriented floating
point intensive
applications may see run
times reduced by 50%.
Operating system and
interactive applications
that use the already
optimized system
libraries can achieve
30% to 50% additional
improvement.

+O3 Level 2 optimizations,
plus full optimization
across all subprograms
within a single file.
Includes subprogram
inlining.

Can produce faster
run-time code than level
2 on code that frequently
calls small functions.
Links faster than level 4.

Chapter 4 69

Optimizing HP C Programs
Summary of Major Optimization Levels

+O4 Level 3 optimizations,
plus full optimizations
across the entire
application program.
Includes global and
static variable
optimization and
inlining across the entire
program. Optimizations
are performed at
link-time.

Produces faster
run-time code than level
3 if programs use many
global variables or if
there are many
opportunities for inlining
procedure calls.

Option Description Benefits

70 Chapter 4

Optimizing HP C Programs
Supporting Optimization Options

Supporting Optimization Options
Table 4-2 shows optimization options that support the core optimization
levels. These optimizations are performed only when specifically
invoked. They are available at all optimization levels.

Table 4-2 Other Supporting Optimizations

Option Description Benefits

+ESfic Generates object code
with fast indirect calls.
Only correct for programs
not using shared
libraries.

Run-time code is faster.

+ESconstlit Stores constant-qualified
(const) objects and
literals in read-only
memory.

Data that is
constant-qualified is
easier to fetch. Using
this option results in
improved performance
in some applications.

+ESlit Places string literals and
constants defined with
the ANSI C const type
qualifier into read-only
data storage. Storing to
constants with this
option will cause
segmentation violations.

Reduces memory
requirements and
improves run-time
speed in multi-user
applications. Can
improve data-cache
utilization.

+ESnolit Disables the default
behavior which causes
the HP C compiler to no
longer store literals in
read-only memory.

Allows you to specify
that literals not be
placed in read-only
memory. This is helpful
with programs that
violate the semantics
of const , which could
result in a core dump or
bus error.

Chapter 4 71

Optimizing HP C Programs
Supporting Optimization Options

+I , +P Enables all profile-based
optimizations. Uses
execution profile data to
identify the most
frequently executed code
paths. Repositions
functions, basic blocks,
and aids other
optimizations according
to these frequently
executed paths.

Improves code locality
and cache hit rates.
Improves efficiency of
other optimizations.
Benefits most
applications, especially
large applications with
multiple compilation
units. May be used at
any optimization level.

Option Description Benefits

72 Chapter 4

Optimizing HP C Programs
Enabling Basic Optimization

Enabling Basic Optimization
To enable basic optimizations, use the -O option (equivalent to +O2),
as follows:

cc -O sourcefile.c

Basic optimizations do not change the behavior of ANSI C
standard-conforming code. They improve run-time execution time but
only increase compile time and link time by a moderate amount.

Chapter 4 73

Optimizing HP C Programs
Enabling Different Levels of Optimization

Enabling Different Levels of
Optimization
There may be times when you want more or less optimization than what
is provided with the basic -O option.

Level 1 Optimization
To enable level 1 optimization, use the +O1 option, as follows:

cc +O1 sourcefile.c

Level 1 optimization compiles quickly, but still provides some run-time
speedup.

Level 2 Optimization
To enable level 2 optimization, use the +O2 option, as follows:

cc +O2 sourcefile.c

Level 2 (equivalent to -O) takes more time to compile, but produces
greatly improved run-time speed.

Level 3 Optimization
To enable level 3 optimization, use the +O3 option, as follows:

cc +O3 sourcefile.c

Level 3 does full optimization of all subprograms within a single file.

Level 4 Optimization
To enable level 4 optimization, use the +O4 option, as follows:

cc +O4 sourcefile.c

Level 4 can potentially produce the greatest improvements in speed by
performing optimizations across multiple object files. Level 4 does
optimizations at link time, so compiles will be faster, but links will be
longer.

74 Chapter 4

Optimizing HP C Programs
Enabling Different Levels of Optimization

Depending on the size and number of the modules, compiling at level 4
can consume a large amount of virtual memory. Level 4 may consume
roughly 1.25 megabytes per 1000 lines of non-commented source. When
you use level 4 on a large application, it is a good idea to increase the
system swap space. For information on increasing system swap space,
see the book Managing Systems and Workgroups.

Chapter 4 75

Optimizing HP C Programs
Changing the Aggressiveness of Optimizations

Changing the Aggressiveness of
Optimizations
At each level of optimization, you can control the aggressiveness of the
optimizations performed.

Use the +Oconservative option at optimization level 2, 3, or 4 if you
are not sure if your code conforms to standards. This option provides
more safety.

Use the +Oaggressive option at optimization level 2, 3, or 4 for best
performance when you are willing to risk changes to the behavior of your
programs. Using the +Oaggressive option can cause your program to
have compilation or run-time problems that require troubleshooting.

76 Chapter 4

Optimizing HP C Programs
Enabling Only Conservative Optimizations

Enabling Only Conservative
Optimizations
You can enable conservative optimizations at the second, third, or
fourth optimization levels by using the +Oconservative option, as
follows:

cc +O2 +Oconservative sourcefile.c

or:

cc +O3 +Oconservative sourcefile.c

or:

cc +O4 +Oconservative sourcefile.c

Conservative optimizations are optimizations that do not change the
behavior of code, in most cases, even if the code does not conform to
standards.

Use the conservative optimizations provided with level 2, 3, and 4 when
your code is non-ANSI.

Chapter 4 77

Optimizing HP C Programs
Enabling Aggressive Optimizations

Enabling Aggressive Optimizations
To enable aggressive optimizations at the second, third, or fourth
optimization levels, use the +Oaggressive option as follows:

cc +O2 +Oaggressive sourcefile.c

or:

cc +O3 +Oaggressive sourcefile.c

or:

cc +O4 +Oaggressive sourcefile.c

Aggressive optimizations are new optimizations or are optimizations
that can change the behavior of programs. These optimizations may do
any of the following:

• Convert certain library calls to millicode and inline instructions.

• Cause the inlined routines strcpy() , sqrt() , fabs() , and
alloca() to not return the routine's completion status in ERRNO.

• Alter stack unwind-based exception handling and asynchronous
interrupt handling as a result of instruction scheduling optimization.

• Cause less precise floating-point results.

• Cause programs that perform comparisons between pointers to
shared memory and pointers to private memory to run incorrectly.

Use aggressive optimizations with stable, well-structured,
ANSI-conforming code. These types of optimizations give you faster code,
but are riskier than the default optimizations.

78 Chapter 4

Optimizing HP C Programs
Removing Compilation Time Limits When Optimizing

Removing Compilation Time Limits
When Optimizing
You can remove optimization time restrictions at the second, third, or
fourth optimization levels by using the +Onolimit option as follows:

cc +O2 +Onolimit sourcefile.c

or:

cc +O3 +Onolimit sourcefile.c

or:

cc +O4 +Onolimit sourcefile.c

By default, the optimizer limits the amount of time spent optimizing
large programs at levels 2, 3, and 4. Use this option if longer compile
times and greater virtual memory use are acceptable because you want
additional optimizations to be performed.

Chapter 4 79

Optimizing HP C Programs
Limiting the Size of Optimized Code

Limiting the Size of Optimized Code
You can disable optimizations that expand code size at the second, third,
and fourth optimization levels by using the +Osize option, as follows:

cc +O2 +Osize sourcefile.c

or:

cc +O3 +Osize sourcefile.c

or:

cc +O4 +Osize sourcefile.c

Most optimizations improve execution speed and decrease executable
code size. A few optimizations significantly increase code size to gain
execution speed. The +Osize option disables these code-expanding
optimizations.

Use this option if you have limited main memory, swap space, or disk
space.

80 Chapter 4

Optimizing HP C Programs
Specifying Maximum Optimization

Specifying Maximum Optimization
To get maximum optimization, use:

cc +Oall

The +Oall option performs the maximum optimization.

Use +Oall with stable, well-structured, ANSI-conforming code. These
types of optimizations give you the fastest code, but are riskier than the
default optimizations.

You can use +Oall at optimization levels 2, 3, and 4. The default is
+Onoall.

The +Oall option by itself (specified without the +02, +03, or +04
options) combines the +O4 +Oaggressive +Onolimit options. This
combination performs aggressive optimizations with unrestricted
compile time at the highest level of optimization.

Chapter 4 81

Optimizing HP C Programs
Combining Optimization Parameters

Combining Optimization Parameters
You can combine optimization parameters that affect code size,
compile-time, and the aggressiveness of the optimizations with a level of
optimization.

For example, to specify conservative optimizations at level 2 and disable
code-expanding optimizations, use:

cc +O2 +Oconservative +Osize sourcefile.c

+Olimit and +Osize can be used with either +Oaggressive or
+Oconservative .

You cannot use +Oaggressive with +Oconservative .

82 Chapter 4

Optimizing HP C Programs
Summary of Optimization Parameters

Summary of Optimization Parameters
Table 4-3 summarizes the HP C optimization parameters:

Table 4-3 HP C Optimization Parameters

Option What It Does Level of
Opt

+O[no]aggressive The +O[no]aggressive option enables
optimizations that can result in
significant performance improvement,
but that can change a program's behavior.
These optimizations include newly
released optimizations and the
optimizations invoked by the following
advanced optimization options: a

• +Osignedpointers

• +Oregionsched

• +Oentrysched

• +Onofltacc

• +Olibcalls

• +Onoinitcheck

• +Ovectorize

The default is +Onoaggressive .

2, 3, 4

+O[no]all The +Oall option performs maximum
optimization, including aggressive
optimizations and optimizations that can
significantly increase compile time and
memory usage. The default is +Onoall .

4

Chapter 4 83

Optimizing HP C Programs
Summary of Optimization Parameters

a. See “Controlling Specific Optimizer Features” on page 88 for details
about advanced optimization options.

+O[no]conservative The +O[no]conservative option causes
the optimizer to make conservative
assumptions about the code when
optimizing it. Use +Oconservative when
conservative assumptions are necessary
due to the coding style, as with
non-standard conforming programs. The
+Oconservative option relaxes the
optimizer's assumptions about the target
program. The default is
+Onoconservative .

2, 3, 4

+O[no]info +Oinfo displays informational messages
about the optimization process. This
option supports the core optimization
levels, and therefore, can be used at levels
0-4. The default is +Onoinfo .

0, 1, 2, 3,
4

+O[no]limit The +Olimit option suppresses
optimizations that significantly increase
compile-time or that can consume a lot of
memory. The +Onolimit option allows
optimizations to be performed regardless
of their effect on compile-time or memory
usage. The default is +Olimit .

2, 3, 4

+O[no]size The +Osize option suppresses
optimizations that significantly increase
code size. The +Onosize option does not
prevent optimizations that can increase
code size. The default is +Onosize .

2, 3, 4

Option What It Does Level of
Opt

84 Chapter 4

Optimizing HP C Programs
Profile-Based Optimization

Profile-Based Optimization
Profile-based optimization (PBO) is a set of performance-improving code
transformations based on the run-time characteristics of your
application.

There are three steps involved in performing this optimization:

1. Instrumentation - Insert data collection code into the object program.

2. Data Collection - Run the program with representative data to collect
execution profile statistics.

3. Optimization - Generate optimized code based on the profile data.

Invoke profile-based optimization through HP C by using any level of
optimization and the +I and +P options on the cc command line.

When you use PBO, compile times are faster and link times are slower
because code generation happens at link time.

Instrumenting the Code
To instrument your program, use the +I option as follows:

cc -Aa +I -O -c sample.c Compile for instrumentation.

cc -o sample.exe +I -O sample.o Link to make instrumented executable.

The first command line uses the -O option to perform level 2
optimization and instruments the code. The -c option in the first
command line suppresses linking and creates an intermediate object file
called sample.o . The.o file can be used later in the optimization phase,
avoiding a second compile.

The second command line uses the -o option to link sample.o into
sample.exe . The +I option instruments sample.exe with data
collection code. Note that instrumented programs run slower than
non-instrumented programs. Only use instrumented code to collect
statistics for profile-based optimization.

Chapter 4 85

Optimizing HP C Programs
Profile-Based Optimization

Collecting Data for Profiling
To collect execution profile statistics, run your instrumented program
with representative data as follows:

sample.exe < input.file1 Collect execution profile data.

sample.exe < input.file2

This step creates and logs the profile statistics to a file, by default called
flow.data . You can use this data collection file to store the statistics
from multiple test runs of different programs that you may have
instrumented.

Performing Profile-Based Optimization
To optimize the program based on the previously collected run-time
profile statistics, relink the program as follows:

cc -o sample.exe +P -O sample.o

An alternative to this procedure is to recompile the source file in the
optimization step:

cc -o sample.exe +I -0 sample.c instrumentation

sample.exe < input.file1 data collection

cc -o sample.exe +P -O sample.c optimization

Maintaining Profile Data Files
Profile-based optimization stores execution profile data in a disk file. By
default, this file is called flow.data and is located in your current
working directory.

You can override the default name of the profile data file. This is useful
when working on large programs or on projects with many different
program files.

You can use the FLOW_DATA environment variable to specify the name of
the profile data file with either the +I or +P options. You can use the +df
command-line option to specify the name of the profile data file with the
+P option.

The +df option takes precedence over the FLOW_DATA environment
variable.

86 Chapter 4

Optimizing HP C Programs
Profile-Based Optimization

In the following example, the FLOW_DATA environment variable is set to
override the flow.data file name. The profile data is stored instead in
/users/profiles/prog.data .

% setenv FLOW_DATA /users/profiles/prog.data
% cc -Aa -c +I +O3 sample.c
% cc -o sample.exe +I +03 sample.o
% sample.exe < input.file1
% cc -o sample.exe +P +03 sample.o

In the next example, the +df option uses
/users/profiles/prog.data to override the flow.data file name.

% cc -Aa -c +I +O3 sample.c
% cc -o sample.exe +I +03 sample.o
% sample.exe < input.file1
% mv flow.data /users/profile/prog.data
% cc -o sample.exe +df /users/profiles/prog.data +P +03 sample.o

Maintaining Instrumented and Optimized
Program Files
You can maintain both instrumented and optimized versions of a
program. You might keep an instrumented version of the program on
hand for development use, and several optimized versions on hand for
performance testing and program distribution.

Care must be taken when maintaining different versions of the
executable file because the instrumented program file name is used as
the key identifier when storing execution profile data in the data file.

The optimizer must know what this key identifier name is in order to find
the execution profile data. By default, the key identifier name used to
retrieve the profile data is the instrumented program file name used to
run the program for data collection.

When you optimize a program file and the optimized program file name
is different from the instrumented program file name, you must use the
+pgm option. Specify the instrumented program file name with this
option. The optimizer uses this value as the key identifier to retrieve
execution profile data.

Chapter 4 87

Optimizing HP C Programs
Profile-Based Optimization

In the following example, the instrumented program file name is
sample.inst . The optimized program file name is sample.opt . The
+pgm name option is used to pass the instrumented program name to the
optimizer:

% cc -Aa -c +I +O3 sample.c
% cc -o sample.inst +I +03 sample.o
% sample.inst < input.file1
% cc -o sample.opt +P +03 +pgm sample.inst sample.o

Profile-Based Optimization Notes
When using profile-based optimization, please note the following:

• Because the linker performs code generation for profile-based
optimization, linking object files compiled with +I and +P takes more
time than linking ordinary object files. However, compile-times will be
relatively fast. This is because the compiler is only generating the
intermediate code.

• Profile-based optimization has a greater impact on application
performance at each higher level of optimization.

• Profile-based optimization should be enabled during the final stages
of application development. To obtain the best performance, re-profile
and re-optimize your application after making source code changes.

• If you use level-4 or profile-based optimization and do not use +DA to
generate code for a specific version of PA-RISC, note that code
generation occurs at link time. Therefore, the system on which you
link, rather than compile, determines the object code generated.

• If you use level-4 or profile-based optimization and do not use +DS to
specify instruction scheduling, note that instruction scheduling
occurs at link time. Therefore, the system on which you link, rather
than compile, determines the implementation of instruction
scheduling.

For more information on profile-based optimization, see the HP-UX
Linker and Libraries Online User Guide.

88 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

Controlling Specific Optimizer Features
Most of the time, specifying optimization level 1, 2, 3, or 4 should provide
you with the control over the optimizer that you need. Additional
parameters are provided when you require a finer level of control.

At each level, you can turn on and off specific optimizations using the
+O[no] optimization option. The optimization parameter is the name of a
specific optimization technique. The optional prefix [no] disables the
specified optimization.

Below is a list of advanced optimizer options, followed by detailed
information on each option:

• +Olevel=name1[,name2,...nameN]

• +O[no]autopar

• +O[no]dataprefetch

• +O[no]dynsel

• +O[no]entrysched

• +O[no]extern[= name1,name2,...nameN]

• +O[no]fail_safe

• +O[no]fastaccess

• +O[no]fltacc

• +O[no]global_ptrs_unique[= name1,name2,...nameN]

• +O[no]initcheck

• +O[no]inline[= name1,name2,...nameN]

• +Oinline_budget[= n]

• +O[no]libcalls

• +O[no]loop_block

• +O[no]loop_transform

• +O[no]loop_unroll[= unrollfactor]

• +O[no]loop_unroll_jam

• +O[no]moveflops

Chapter 4 89

Optimizing HP C Programs
Controlling Specific Optimizer Features

• +O[no]multiprocessor

• +O[no]parallel

• +O[no]parallel_env

• +O[no]parmsoverlap

• +O[no]pipeline

• +O[no]procelim

• +O[no]promote_indirect_calls

• +O[no]ptrs_ansi

• +O[no]ptrs_strongly_typed

• +O[no]ptrs_to_globals

• +O[no]regionsched

• +Oreusedir= directory

• +O[no]report[= report_type]

• +O[no]regreassoc

• +O[no]sharedgra

• +O[no]sideeffects

• +O[no]signedpointers

• +O[no]static_prediction

• +O[no]vectorize

• +O[no]volatile

• +O[no]whole_program_mode

+Olevel=name1[,name2,...nameN]

Optimization levels: 1, 2, 3, 4

Default: All functions are optimized at the level specified by the ordinary
+Olevel option.

90 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

This option lowers optimization to the specified level for one or more
named functions. level can be 0, 1, 2, 3, or 4. The name parameters are
names of functions in the module being compiled. Use this option when
one or more functions do not optimize well or properly. It must be used
with an ordinary +Olevel option.

This option works the same as the OPT_LEVEL pragma described under
“Optimizer Control Pragmas” on page 129. This option overrides the
OPT_LEVEL pragma for the specified functions. As with the pragma,
you can only lower the level of optimization; you cannot raise it above the
level specified in the ordinary +Olevel option. To avoid confusion, it is
best to use either this option or the OPT_LEVEL pragma rather than
both.

Examples
The following command optimizes all functions at level 3, except for the
functions myfunc1 and myfunc2 , which it optimizes at level 1.

$ cc +O3 +O1=myfunc1,myfunc2 funcs.c main.c

The following command optimizes all functions at level 2, except for the
functions myfunc1 and myfunc2 , which it optimizes at level 0.

$ cc -O +O0=myfunc1,myfunc2 funcs.c main.c

+O[no]autopar
See “+O[no]autopar”.

+O[no]dataprefetch
Default: +Onodataprefetch

When +Odataprefetch is enabled, the optimizer inserts instructions
within innermost loops to explicitly prefetch data from memory into the
data cache. Data prefetch instructions will be inserted only for data
structures referenced within innermost loops using simple loop varying
addresses (that is, in a simple arithmetic progression). It is only
available for PA-RISC 2.0 targets.

The math library contains special prefetching versions of vector routines.
If you have a PA-RISC 2.0 application that contains operations on arrays
larger than 1 megabyte in size, using +Ovectorize in conjunction with
+Odataprefetch may improve performance substantially.

Chapter 4 91

Optimizing HP C Programs
Controlling Specific Optimizer Features

Use this option for applications that have high data cache miss overhead.

+O[no]dynsel
See “+O[no]dynsel” on page 222.

+O[no]entrysched
Optimization levels: 1, 2, 3, 4

Default: +Onoentrysched

The +Oentrysched option optimizes instruction scheduling on a
procedure's entry and exit sequences. Enabling this option can speed up
an application. The option has undefined behavior for applications which
handle asynchronous interrupts by examining the sigcontext values of
caller stack operands. The option affects unwinding in the entry and exit
regions.

At optimization level +02 and higher (using data flow information), save
and restore operations become more efficient.

This option can change the behavior of programs that perform stack
unwind-based exception handling or asynchronous interrupt handling.
The behavior of setjmp() and longjmp() is not affected.

+O[no]extern[=name1,name2,...nameN]
Optimization levels: 0, 1, 2, 3, 4

Default: +Oextern

This option is available in the LP64 data model only.

The +O[no]extern option allows you to specify which accesses to
symbols in an executable or shared library (a load module) can be
optimized.

Use of +Onoextern creates code that cannot be included in a shared
library.

Use +Onoextern only to build executables.

Only internal symbols (defined in the load module) can be optimized. If
+Onoextern is specified without a name list, the compiler assumes that
no symbols are external to the load module being compiled, and any

92 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

symbol can be optimized. If +Oextern is specified without a name list,
the compiler assumes that all symbols are external to the load module
being compiled and thus cannot be optimized; this is the default.

If +Oextern is specified with a name list, the compiler treats the
specified symbols as external even if +Onoextern without a name list is
in effect. The following example indicates that foo and bar are to
eventually be imported from another load module (for example, a shared
library); all other functions and data items will not be external, since
+Onoextern is specified.

+Oextern=foo,bar +Onoextern

When +Onoextern is specified with a name list, the compiler treats the
specified symbols as internal even if +Oextern without a name list is in
effect. The following example indicates that references to baz and x may
be optimized for access in the local load module. All other symbols will be
subject to resolution to another load module since +Oextern is the
default.

+Onoextern=baz,x

Use this option to precisely control which symbols’ accesses may be
optimized. Knowledge of the shared libraries used by an application, or
the exported interface of a shared library is required.

See also, the HP_DEFINED_EXTERNAL pragma.

The default is +Oextern with no name list.

+O[no]fail_safe
Optimization levels: 1, 2, 3

Default: +Ofail_safe

The +Ofail_safe option allows compilations with internal optimization
errors to continue by issuing a warning message and restarting the
compilation at +O0.

You can use +Onofail_safe at optimization levels 1, 2, 3, or 4 when you
want the internal optimization errors to abort your build.

This option is disabled when compiling for parallelization.

Chapter 4 93

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]fastaccess
Optimization levels: 0, 1, 2, 3, 4

Default: +Onofastaccess at optimization levels 0, 1, 2 and 3,
+Ofastaccess at optimization level 4

The +Ofastaccess option optimizes for fast access to global data items.

Use +Ofastaccess to improve execution speed at the expense of longer
compile times.

+O[no]fltacc
Optimization levels: 2, 3, 4

The +Onofltacc option allows the compiler to perform floating-point
optimizations that are algebraically correct but that may result in
numerical differences. For example, this option may change the order of
expression evaluation as such: If a, b, and c are floating-point variables,
the expressions (a + b) + c and a + (b + c) may give slightly
different results due to rounding. In general, these differences will be
insignificant.

The +Onofltacc option also enables the optimizer to generate fused
multiply-add (FMA) instructions, the FMPYFADD and FMPYNFADD. These
instructions improve performance but occasionally produce results that
may differ from results produced by code without FMA instructions. In
general, the differences are slight. FMA instructions are only available
on PA-RISC 2.0 systems.

Specifying +Ofltacc disables the generation of FMA instructions as
well as some other floating-point optimizations. Use +Ofltacc if it is
important that the compiler evaluate floating-point expressions as it
does in unoptimized code. The +Ofltacc option does not allow any
optimizations that change the order of expression evaluation and
therefore may affect the result.

If you are optimizing code at level 2 or higher and do not specify
+Onofltacc or +Ofltacc , the optimizer will use FMA instructions, but
will not perform floating-point optimizations that involve expression
reordering or other optimizations that potentially impact numerical
stability.

94 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

The list below identifies the different actions taken by the optimizer
according to whether you specify +Ofltacc , +Onofltacc , or neither
option.

Optimization Expression FMA?
Options Reordering?

+02 No Yes
+02 +Ofltacc No No
+02 +Onofltacc Yes Yes

+O[no]global_ptrs_unique[=name1,name2
,...name]
Optimization levels: 2, 3, 4

Default: +Onoglobal_ptrs_unique

Use this option to identify unique global pointers, so that the optimizer
can generate more efficient code in the presence of unique pointers, for
example by using copy propagation and common sub-expression
elimination. A global pointer is unique if it does not alias with any
variable in the entire program.

This option supports a comma-separated list of unique global pointer
variable names.

+O[no]initcheck
Optimization levels: 2, 3, 4

Default: unspecified

The initialization checking feature of the optimizer has three possible
states: on, off, or unspecified. When on (+Oinitcheck), the optimizer
initializes to zero any local, scalar, non-static variables that are
uninitialized with respect to at least one path leading to a use of the
variable.

When off (+Onoinitcheck), the optimizer issues warning messages
when it discovers definitely uninitialized variables, but does not
initialize them.

Chapter 4 95

Optimizing HP C Programs
Controlling Specific Optimizer Features

When unspecified, the optimizer initializes to zero any local, scalar,
non-static variables that are definitely uninitialized with respect to all
paths leading to a use of the variable.

Use +Oinitcheck to look for variables in a program that may not be
initialized.

+O[no]inline[=name1, name2,...nameN]
Optimization levels: 3, 4

Default: +Oinline

When +Oinline is specified without a name list, any function can be
inlined. For inlining to be successful, follow prototype definitions for
function calls in the appropriate header file.

When specified with a name list, the named functions are important
candidates for inlining. For example, saying

+Oinline=foo,bar +Onoinline

indicates that inlining be strongly considered for foo and bar ; all other
routines will not be considered for inlining, since +Onoinline is given.

When this option is disabled with a name list, the compiler will not
consider the specified routines as candidates for inlining. For example,
saying

+Onoinline=baz,x

indicates that inlining should not be considered for baz and x ; all other
routines will be considered for inlining, since +Oinline is the default.

The +Onoinline disables inlining for all functions or a specific list of
functions.

Use this option when you need to precisely control which subprograms
are inlined.

+Oinline_budget=n
Optimization levels: 3, 4

Default: +Oinline_budget=100

where n is an integer in the range 1 - 1000000 that specifies the level of
aggressiveness, as follows:

96 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

• n = 100 Default level of inlining.

• n > 100 More aggressive inlining. The optimizer is less restricted by
compilation time and code size when searching for eligible routines to
inline.

• n = 1 Only inline if it reduces code size.

The +Onolimit and +Osize options also affect inlining. Specifying the
+Onolimit option has the same effect as specifying
+Oinline_budget=200. The +Osize option has the same effect as
+Oinline_budget=1 .

Note, however, that the +Oinline_budget= n option takes precedence
over both of these options. This means that you can override the effect of
+Onolimit or +Osize option on inlining by specifying the
+Oinline_budget= n option on the same compile line.

+O[no]libcalls
Optimization levels: 0, 1, 2, 3, 4

Default: +Onolibcalls

Use the +Olibcalls option to increase the runtime performance of code
which calls standard library routines in simple contexts. The
+Olibcalls option expands the following library calls inline:

• strcpy()

• sqrt()

• fabs()

• alloca()

• memset()

• memcpy()

Inlining will take place only if the function call follows the prototype
definition the appropriate header file. Fast subprogram linkage is also
emitted to tuned millicode versions of the math library functions sin,
cos, tan, atan 2, log, pow,asin, acos, atan, exp, and
log10. (See the HP-UX Floating-Point Guide for the most up-to-date
listing of the math library functions.) The calling code must not expect to
access ERRNO after the function's return.

Chapter 4 97

Optimizing HP C Programs
Controlling Specific Optimizer Features

A single call to printf() may be replaced by a series of calls to
putchar() . Calls to sprintf() and strlen() may be optimized more
effectively, including elimination of some calls producing unused results.
Calls to setjmp() and longjmp() may be replaced by their equivalents
_setjmp() and _longjmp() , which do not manipulate the process's
signal mask.

Use +Olibcalls to improve the performance of selected library routines
only when you are not performing error checking for these routines.

Using +Olibcalls with +Ofltacc will give different floating point
calculation results than those given using +Ofltacc without
+Olibcalls .

The +Olibcalls option replaces the obsolete -J option.

+O[no]loop_block
See “+O[no]loop_block”.

+O[no]loop_transform
Optimization levels: 3, 4

Default: +Oloop_transform

The +O[no]loop_transform option enables [disables] transformation
of eligible loops for improved cache performance. The most important
transformation is the reordering of nested loops to make the inner loop
unit stride, resulting in fewer cache misses.

+Onoloop_transform may be a helpful option if you experience any
problem while using +Oparallel .

+O[no]loop_unroll[=unroll factor]
Optimization levels: 2, 3, 4

Default: +Oloop_unroll

The +Oloop_unroll option turns on loop unrolling. When you use
+Oloop_unroll , you can also use the unroll factor to control the code
expansion. The default unroll factor is 4, that is, four copies of the loop
body. By experimenting with different factors, you may improve the
performance of your program.

98 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]loop_unroll_jam
See “+O[no]loop_unroll_jam” on page 223.

+O[no]moveflops
Optimization levels: 2, 3, 4

Default: +Omoveflops

Allows [or disallows] moving conditional floating point instructions out of
loops. The +Onomoveflops option replaces the obsolete +OE option. The
behavior of floating-point exception handling may be altered by this
option.

Use +Onomoveflops if floating-point traps are enabled and you do not
want the behavior of floating-point exceptions to be altered by the
relocation of floating-point instructions.

+O[no]multiprocessor
Optimization levels2: 2, 3, 4

Default: +Onomultiprocessor

If +Omultiprocessor is specified, the compiler performs
optimimizations appropriate for executables or shared libraries to run in
several different processes on multiprocessor machines.

If you enable this option inappropriately (for example, for an executable
only run a uniprocessor system), performance may be degraded.

+O[no]parallel
See “+O[no]parallel” on page 223.

Chapter 4 99

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]parmsoverlap
Optimization levels: 2, 3, 4

Default: +Oparmsoverlap

The +Oparmsoverlap option optimizes with the assumption that the
actual arguments of function calls overlap in memory.

The +Onoparmsoverlap option replaces the obsolete +Om1 option.

Use +Onoparmsoverlap if C programs have been literally translated
from FORTRAN programs.

+O[no]pipeline
Optimization levels: 2, 3, 4

Default: +Opipeline

Enables [or disables] software pipelining. The +Onopipeline option
replaces the obsolete +Os option.

Use +Onopipeline to conserve code space.

+O[no]procelim
Optimization levels: 0, 1, 2, 3, 4

Default: +Onoprocelim at levels 0-3, +Oprocelim at level 4

When +Oprocelim is specified, procedures that are not referenced by
the application are eliminated from the output executable file. The
+Oprocelim option reduces the size of the executable file, especially
when optimizing at levels 3 and 4, at which inlining may have removed
all of the calls to some routines.

When you specify +Onoprocelim , procedures that are not referenced by
the application are not eliminated from the output executable file.

The default is +Onoprocelim at levels 0-3, and +Oprocelim at level 4.

If the +Oall option is enabled, the +Oprocelim option is enabled.

100 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]promote_indirect_calls
Optimization levels: 3, 4 and profile-based optimization

Default: +Onopromote_indirect_calls

This option uses profile data from profile-based optimization and other
information to determine the most likely target of indirect calls and
promotes them to direct calls. In all cases the optimized code tests to
make sure the direct call is being taken & if not, executes the indirect
call. If +Oinline is in effect, the optimizer may also inline the promoted
calls. This option can only be used with profile-based optimization,
described in “Profile-Based Optimization” on page 84.

The optimizer tries to determine the most likely target of indirect calls. If
the profile data is incomplete or ambiguous, the optimizer may not select
the best target. If this happens, your code’s performance may decrease.

At +O3, this option is only effective if indirect calls from functions within
a file are mostly to target functions within the same file. This is because
+O3 optimizes only within a file whereas +O4 optimizes across files.

+O[no]ptrs_ansi
Optimization levels: 2, 3, 4

Default: +Onoptrs_ansi

Use +Optrs_ansi to make the following two assumptions, which the
more aggressive +Optrs_strongly_typed does not make:

• An int *p is assumed to point to an int field of a struct or union.

• char * is assumed to point to any type of object.

When both are specified, +Optrs_ansi takes precedence over
+Optrs_strongly_typed .

For more information about type aliasing see “Aliasing Options” on page
135.

Chapter 4 101

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]ptrs_strongly_typed
Optimization levels: 2, 3, 4

Default: +Onoptrs_strongly_typed

Use +Optrs_strongly_typed when pointers are type-safe. The
optimizer can use this information to generate more efficient code.

Type-safe (that is, strongly-typed) pointers are pointers to a specific type
that only point to objects of that type, and not to objects of any other
type. For example, a pointer declared as a pointer to an int is considered
type-safe if that pointer points to an object only of type int , but not to
objects of any other type.

Based on the type-safe concept, a set of groups are built based on object
types. A given group includes all the objects of the same type.

The term type-inferred aliasing is a concept which means any pointer of
a type in a given group (of objects of the same type) can only point to any
object from the same group; it can not point to a typed object from any
other group.

For more information about type aliasing see “Aliasing Options” on page
135.

Type casting to a different type violates type-inferring aliasing rules. See
Example 2 below.

Dynamic casting is allowed. See Example 3 below.

For more details, see “Aliasing Options” on page 135.

Example 1: How Data Types Interact

The optimizer generally spills all global data from registers to memory
before any modification to global variables or any loads through pointers.
However, you can instruct the optimizer on how data types interact so it
can generate more efficient code.

If you have the following:

1 int *p;
2 float *q;
3 int a,b,c;
4 float d,e,f;
5 foo()
6 {
7 for (i=1;i<10;i++) {
8 d=e
9 *p=b;
10 e=d+f;

102 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

11 f=*q;
12 }
13 }

With +Onoptrs_strongly_typed turned on, the pointers p and q will
be assumed to be disjoint because the types they point to are different
types. Without type-inferred aliasing, *p is assumed to invalidate all the
definitions. So, the use of d and f on line 10 have to be loaded from
memory. With type-inferred aliasing, the optimizer can propagate the
copy of d and f and thus avoid two loads and two stores.

This option can be used for any application involving the use of pointers,
where those pointers are type safe. To specify when a subset of types are
type-safe, use the [NO]PTRS_STRONGLY_TYPED pragma. The compiler
issues warnings for any incompatible pointer assignments that may
violate the type-inferred aliasing rules discussed in “Aliasing Options” on
page 135.

Example 2: Unsafe Type Cast

Any type cast to a different type violates type-inferred aliasing rules. Do
not use +Optrs_strongly_typed with code that has these unsafe type
casts. Use the [NO]PTRS_STRONGLY_TYPED pragma to prevent the
application of type-inferred aliasing to the unsafe type casts.

struct foo{
int a;
int b;

} *P;

struct bar {
float a;
int b;
float c;

} *q;

P = (struct foo *) q;
/* Incompatible pointer assignment
through type cast */

Example 3: Generally Applying Type Aliasing

Dynamic cast is allowed with +Optrs_strongly_typed or
+Optrs_ansi . A pointer dereference is called dynamic cast if a cast is
applied on the pointer to a different type.

In the example below, type-inferred aliasing is applied on P generally, not
just to the particular dereference. Type-aliasing will be applied to any
other dereferences of P.

Chapter 4 103

Optimizing HP C Programs
Controlling Specific Optimizer Features

struct s {
short int a;
short int b;
int c;

} *P;
* (int *)P = 0;

For more information about type aliasing, see “Aliasing Options” on page
135.

+O[no]ptrs_to_globals[=name1, name2,
...nameN]
Optimization levels: 2, 3, 4

Default: +Optrs_to_globals

By default global variables are conservatively assumed to be modified
anywhere in the program. Use this option to specify which global
variables are not modified through pointers, so that the optimizer can
make your program run more efficiently by incorporating copy
propagation and common sub-expression elimination.

This option can be used to specify all global variables as not modified via
pointers, or to specify a comma-separated list of global variables as not
modified via pointers.

Note that the on state for this option disables some optimizations, such
as aggressive optimizations on the program's global symbols.

For example, use the command-line option
+Onoptrs_to_globals=a,b,c to specify global variables a, b, and c as
not being accessed through pointers. No pointer can access these global
variables. The optimizer will perform copy propagation and constant
folding because storing to *p will not modify a or b.

int a, b, c;
float *p;
foo()
{

a = 10;
b = 20;

*p = 1.0;
c = a + b;

}

If all global variables are unique, use the following option without listing
the global variables:

+Onoptrs_to_globals

104 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

In the example below, the address of b is taken. This means b can be
accessed indirectly through the pointer. You can still use
+Onoptrs_to_globals as: +Onoptrs_to_globals
+Optrs_to_globals=b .

long b,c;
int *p;

p=b;

foo()

For more information about type aliasing see “Aliasing Options” on page
135.

+O[no]regionsched
Optimization levels: 2, 3, 4

Default: +Onoregionsched

Applies aggressive scheduling techniques to move instructions across
branches. This option is incompatible with the linker -z option. If used
with -z , it may cause a SIGSEGV error at run-time.

Use +Oregionsched to improve application run-time speed.
Compilation time may increase.

+Oreusedir=directory
Optimization levels: 4 or with profile-based optimization

Default: no reuse of object files

This option specifies a directory where the linker can save object files
created from intermediate object files when using +O4 or profile-based
optimization. It reduces link time by not recompiling intermediate object
files when they don’t need to be.

When you compile with +I, +P, or +O4, the compiler generates
intermediate code in the object file. Otherwise, the compiler generates
regular object code in the object file. When you link, the linker first
compiles the intermediate object code to regular object code, then links
the object code. With this option you can reduce link time on subsequent
links by avoiding recompiling intermediate object files that have already
been compiled to regular object code and have not changed.

Chapter 4 105

Optimizing HP C Programs
Controlling Specific Optimizer Features

Note that when you do change a source file or command line options and
recompile, a new intermediate object file will be created and compiled to
regular object code in the specified directory. The previous object file in
the directory will not be removed. You should periodically remove this
directory since old object files cannot be reused and will not be
automatically removed.

+O[no]regreassoc
Optimization levels: 2, 3, 4

Default: +Oregreassoc

If disabled, this option turns off register reassociation.

Use +Onoregreassoc to disable register reassociation if this
optimization hinders the optimized application performance.

+O[no]report=[report_type]
See “+O[no]report[= report_type]” on page 224.

+O[no]sharedgra
See “+O[no]sharedgra” on page 225.

+O[no]sideeffects[=name1, name2, ...nameN]
Optimization levels: 2, 3, 4

Default: assume all subprograms have side effects

Assume that subprograms specified in the name list might modify global
variables. Therefore, when +Osideeffects is enabled the optimizer
limits global variable optimization.

The default is to assume that all subprograms have side effects unless
the optimizer can determine that there are none.

Use +Onosideeffects if you know that the named functions do not
modify global variables and you wish to achieve the best possible
performance.

106 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]signedpointers
Optimization levels: 0, 1, 2, 3, 4

Default: +Onosignedpointers

Perform [or do not perform] optimizations related to treating pointers as
signed quantities. Applications that allocate shared memory and that
compare a pointer to shared memory with a pointer to private memory
may run incorrectly if this optimization is enabled.

Use +Osignedpointers to improve application run-time speed.

+O[no]static_prediction
Optimization levels: 0, 1, 2, 3, 4

Default: +Onostatic_prediction

+Ostatic_prediction turns on static branch prediction for PA-RISC
2.0 targets.

PA-RISC 2.0 has two means of predicting which way conditional
branches will go: dynamic branch prediction and static branch
prediction. Dynamic branch prediction uses a hardware history
mechanism to predict future executions of a branch from its last three
executions. It is transparent and quite effective unless the hardware
buffers involved are overwhelmed by a large program with poor locality.

With static branch prediction on, each branch is predicted based on
implicit hints encoded in the branch instruction itself; the dynamic
branch prediction is not used.

Static branch prediction's role is to handle large codes with poor locality
for which the small dynamic hardware facility will prove inadequate.

Use +Ostatic_prediction to better optimize large programs with
poor instruction locality, such as operating system and database code.

Use this option only when using PBO, as an amplifier to +P. It is allowed
but silently ignored with +I , so makefiles need not change between the
+I and +P phases.

Chapter 4 107

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]vectorize
Optimization levels: 0, 1, 2, 3, 4

Default: +Onovectorize

+Ovectorize allows the compiler to replace certain loops with calls to
vector routines.

Use +Ovectorize to increase the execution speed of loops.

When +Onovectorize is specified, loops are not replaced with calls to
vector routines.

Because the +Ovectorize option may change the order of operations in
an application, it may also change the results of those operations slightly.
See the HP-UX Floating-Point Guide for details.

The math library contains special prefetching versions of vector routines.
If you have a PA2.0 application that contains operations on very large
arrays (larger than 1 megabyte in size), using +Ovectorize in
conjunction with +Odataprefetch may improve performance
substantially.

You may use +Ovectorize at levels 3 and 4. +Onovectorize is also
included as part of +Oaggressive and +Oall .

This option is only valid for PA-RISC 1.1 and 2.0 systems.

+O[no]volatile
Optimization levels: 1, 2, 3, 4

Default: +Onovolatile

The +Ovolatile option implies that memory references to global
variables cannot be removed during optimization.

The +Onovolatile option implies that all globals are not of volatile
class. This means that references to global variables can be removed
during optimization.

The +Ovolatile option replaces the obsolete +OV option.

Use this option to control the volatile semantics for all global
variables.

108 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features

+O[no]whole_program_mode
Optimization level: 4

Default: +Onowhole_program_mode

The +Owhole_program_mode option enables the assertion that only the
files that are compiled with this option directly reference any global
variables and procedures that are defined in these files. In other words,
this option asserts that there are no unseen accesses to the globals.

When this assertion is in effect, the optimizer can hold global variables
in registers longer and delete inlined or cloned global procedures.

All files compiled with +Owhole_program_mode must also be compiled
with +O4. If any of the files were compiled with +O4 but were not
compiled with +Owhole_program_mode , the linker disables the
assertion for all files in the program.

The default, +Onowhole_program_mode , disables the assertion.

Use this option to increase performance speed, but only when you are
certain that only the files compiled with +Owhole_program_mode
directly access any globals that are defined in these files.

Chapter 4 109

Optimizing HP C Programs
Using Advanced Optimization Options

Using Advanced Optimization Options
Several advanced optimization options can be specified on the same
command line. For example, the following command line specifies
aggressive level 3 optimizations with unrestricted compile time, disables
software pipelining, and disables moving conditional floating-point
instructions out of a loop:

cc +O3 +Oaggressive +Onolimit +Onomoveflops +Onopipeline \
sourcefile.c

Specify the level of optimization first (+O1, +O2, +O3, or +04), followed by
any +O[no]optimization options.

110 Chapter 4

Optimizing HP C Programs
Level 1 Optimization Modules

Level 1 Optimization Modules
The level 1 optimization modules are:

• Branch optimization.

• Dead code elimination.

• Faster register allocation.

• Instruction scheduler.

• Peephole optimization.

The examples in this section are shown at the source code level wherever
possible. Transformations that cannot be shown at the source level are
shown in assembly language. See Table 4-4 on page 112 for descriptions
of the assembly language instructions used.

Branch Optimization
The branch optimization module traverses the procedure and transforms
branch instruction sequences into more efficient sequences where
possible. Examples of possible transformations are:

• Deleting branches whose target is the fall-through instruction; that
is, the target is two instructions away.

• When the target of a branch is an unconditional branch, changing the
target of the first branch to be the target of the second unconditional
branch.

• Transforming an unconditional branch at the bottom of a loop,
branching to a conditional branch at the top of the loop, into a
conditional branch at the bottom of the loop.

• Changing an unconditional branch to the exit of a procedure into an
exit sequence where possible.

• Changing conditional or unconditional branch instructions that
branch over a single instruction into a conditional nullification in the
following instruction.

Chapter 4 111

Optimizing HP C Programs
Level 1 Optimization Modules

• Looking for conditional branches over unconditional branches, where
the sense of the first branch could be inverted and the second branch
deleted. These result from null then clauses and from then clauses
that only contain goto statements. For example, the code:

if(a) {
.

 .
 .

statement 1
} else {

goto L1;
}
statement 2

L1:

becomes:

if(!a) {
goto L1;

}
statement 1
statement 2

L1:

Dead Code Elimination
The dead code elimination module removes unreachable code that is
never executed.

For example, the code:

if(0) {
a = 1;

} else {
a = 2;

becomes:

a = 2;

Faster Register Allocation
The faster register allocation module, used with unoptimized code,
analyzes register use faster than the coloring register allocator (a level 2
module).

This module performs the following:

• Inserts entry and exit code.

• Generates code for operations such as multiplication and division.

112 Chapter 4

Optimizing HP C Programs
Level 1 Optimization Modules

• Eliminates unnecessary copy instructions.

• Allocates actual registers to the dummy registers in instructions.

Instruction Scheduler
The instruction scheduler module performs the following:

• Reorders the instructions in a basic block to improve memory
pipelining. For example, where possible, a load instruction is
separated from the use of the loaded register.

• Where possible, follows a branch instruction with an instruction that
can be executed as the branch occurs.

• Schedules floating-point instructions.

For example, the code:

LDW -52(0,30),r1
ADDI 3,r1,r31 ;interlock with load of r1
LDI 10,r19

becomes:

LDW -52(0,sp),r1
LDI 10,r19
ADDI 3,r1,r31 ;use of r1 is now separated from load

Table 4-4 Descriptions of Assembly Language Instructions

Instruction Description

LDWoffset(sr, base), target Loads a word from memory into
register target.

ADDI const, reg, target Adds the constant const to the contents
of register reg and puts the result in
register target.

LDI const, target Loads the constant const into register
target.

LDOconst(reg),target Adds the constant const to the contents
of register reg and puts the result in
register target.

Chapter 4 113

Optimizing HP C Programs
Level 1 Optimization Modules

Peephole Optimizations
The peephole optimization process involves looking at small windows of
machine code for optimization opportunities. Wherever possible, the
peephole optimizer replaces assembly language instruction sequences
with faster (usually shorter) sequences, and removes redundant register
loads and stores.

For example, the code:

LDI 32,r3
AND r1,r3,r2
COMIB,= 0,r2,L1

becomes:

BB,>= r1, 26, L1

ANDreg1, reg2, target Performs a bitwise AND of the contents
of registers reg1 and reg2 and puts the
result in register target.

COMIBcond const, reg, lab Compares the constant const to the
contents of register reg and branches to
label lab if the condition cond is true.

BB cond reg,num,lab Tests the bit number num in the
contents of register reg and branches to
label lab if the condition cond is true.

COPYreg, target Copies the contents of register reg to
register target.

STWreg, offset(sr, base) Store the word in register reg to
memory.

Instruction Description

114 Chapter 4

Optimizing HP C Programs
Level 2 Optimization Modules

Level 2 Optimization Modules
Level 2 performs optimizations within each procedure. At level 2, the
optimizer performs all optimizations performed at the prior level, with
the following additions:

• FMAC synthesis.

• Coloring register allocation.

• Induction variable elimination and strength reduction.

• Local and global common subexpression elimination.

• Advanced constant folding and propagation. (Simple constant folding
is done by level 0 optimization.)

• Loop invariant code motion.

• Store/copy optimization.

• Unused definition elimination.

• Software pipelining.

• Register reassociation.

• Loop unrolling.

The examples in this section are shown at the source code level wherever
possible. Transformations that cannot be shown at the source level are
shown in assembly language.

Coloring Register Allocation
The name of this optimization comes from the similarity to map coloring
algorithms in graph theory. This optimization determines when and how
long commonly used variables and expressions occupy a register. It
minimizes the number of references to memory (loads and stores) a code
segment makes. This can improve run-time speed.

You can help the optimizer understand when certain variables are
heavily used within a function by declaring these variables with the
register qualifier. The first 10 register qualified variables
encountered in the source are honored. You should pick the ten most
important variables to be most effective.

Chapter 4 115

Optimizing HP C Programs
Level 2 Optimization Modules

The coloring register allocator may override your choices and promote to
a register a variable not declared register over one that is, based on
estimated speed improvements.

The following code shows the type of optimization the coloring register
allocation module performs. The code:

LDI 2,r104
COPY r104,r103
LDO 5(r103),r106
COPY r106,r105
LDO 10(r105),r107

becomes:

LDI 2,r25
LDO 5(r25),r26
LDO 10(r26),r31

Induction Variables and Strength Reduction
The induction variables and strength reduction module removes
expressions that are linear functions of a loop counter and replaces each
of them with a variable that contains the value of the function. Variables
of the same linear function are computed only once. This module also
simplifies the function by replacing multiplication instructions with
addition instructions wherever possible.

For example, the code:

for (i=0; i<25; i++) {
r[i] = i * k;

}

becomes:

t1 = 0;
for (i=0; i<25; i++) {

r[i] = t1;
t1 += k;

}

Local and Global Common Subexpression
Elimination
The common subexpression elimination module identifies expressions
that appear more than once and have the same result, computes the
result, and substitutes the result for each occurrence of the expression.
The types of subexpression include instructions that load values from
memory, as well as arithmetic evaluation.

116 Chapter 4

Optimizing HP C Programs
Level 2 Optimization Modules

For example, the code:

a = x + y + z;
b = x + y + w;

becomes:

t1 = x + y;
a = t1 + z;
b = t1 + w;

Constant Folding and Propagation
Constant folding computes the value of a constant expression at compile
time. For example:

A = 10;
B = A + 5;
C = 4 * B;

can be replaced by:

A = 10;
B = 15;
C = 60;

Loop Invariant Code Motion
The loop invariant code motion module recognizes instructions inside a
loop whose results do not change and moves them outside the loop. This
ensures that the invariant code is only executed once.

For example, the code:

x = z;
for(i=0; i<10; i++)
{

a[i] = 4 * x + i;
}

becomes:

x = z;
t1 = 4 * x;
for(i=0; i<10; i++)
{

a[i] = t1 + i;
}

Chapter 4 117

Optimizing HP C Programs
Level 2 Optimization Modules

Store/Copy Optimization
Where possible, the store/copy optimization module substitutes registers
for memory locations, by replacing store instructions with copy
instructions and deleting load instructions.

For example, the following HP C code:

a = x + 23;

where a is a local variable.

return a;

produces the following code for the unoptimized case:

LDO 23(r26),r1
STW r1,-52(0,sp)
LDW -52(0,sp),ret0

and this code for the optimized case:

LDO 23(r26),ret0

Unused Definition Elimination
The unused definition elimination module removes unused memory
location and register definitions. These definitions are often a result of
transformations made by other optimization modules.

For example, the function:

f(int x)
{

int a,b,c:

a = 1;
b = 2;
c = x * b;
return c;

}

becomes:

f(int x)
{

int a,b,c;

b = 2;
c = x * b;
return c;

}

118 Chapter 4

Optimizing HP C Programs
Level 2 Optimization Modules

Software Pipelining
Software pipelining is a code transformation that optimizes program
loops. It rearranges the order in which instructions are executed in a
loop. It generates code that overlaps operations from different loop
iterations. Software pipelining is useful for loops that contain arithmetic
operations on floats and doubles.

The goal of this optimization is to avoid CPU stalls due to memory or
hardware pipeline latencies. The software pipelining transformation
adds code before and after the loop to achieve a high degree of
optimization within the loop.

Example
The following pseudo-code fragment shows a loop before and after the
software pipelining optimization. Four significant things happen:

• A portion of the first iteration of the loop is performed before the loop.

• A portion of the last iteration of the loop is performed after the loop.

• The loop is unrolled twice.

• Operations from different loop iterations are interleaved with each
other.

The following is a C for loop:

#define SIZ 10000
float x[SIZ], y[SIZ]; *Software pipelining works with*\
int i; *floats and doubles. *\
init();
for (i = 0;i<= SIZ;i++);

{
x[i] =x[i] / y[i] + 4.00
}

When this loop is compiled with software pipelining, the optimization
can be expressed in pseudo-code as follows:

R1 = 0; Initialize array index.

R2 = 4.0; Load constant value.

R3 = Y[0]; Load first Y value.

R4 = X[0]; Load first X value.

R5 = R4 / R3; Perform division on first element:n = X[0] / Y[0].

do { Begin loop.

Chapter 4 119

Optimizing HP C Programs
Level 2 Optimization Modules

R6 = R1; Save current array index.

R1++; Increment array index.

R7 = X[R1]; Load current X value.

R8 = Y[R1]; Load current Y value.

R9 = R5 + R2; Perform addition on prior row:X[i] = n + 4.0.

R10 = R7 / R8; Perform division on current row:m = X[i+1] / Y[i+1].

X[R6] = R9; Save result of operations on prior row.

R6 = R1; Save current array index.

R1++; Increment array index.

R4 = X[R1]; Load next X value.

R3 = Y[R1]; Load next Y value.

R11 = R10 + R2; Perform addition on current row:X[i+1] = m + 4

R5 = R4 / R3; Perform division on next row:n = X[i+2] / Y[i+2]

X[R6] = R11 Save result of operations on current row.

} while (R1 <= 100); End loop.

R9 = R5 + R2; Perform addition on last row:X[i+2] = n + 4

X[R6] = R9; Save result of operations on last row.

This transformation stores intermediate results of the division
instructions in unique registers (noted as n and m). These registers are
not referenced until several instructions after the division operations.
This decreases the possibility that the long latency period of the division
instructions will stall the instruction pipeline and cause processing
delays.

Prerequisites of Pipelining
Software pipelining is attempted on a loop that meets the following
criteria:

• It is the innermost loop.

• There are no branches or function calls within the loop.

• The loop is of moderate size.

120 Chapter 4

Optimizing HP C Programs
Level 2 Optimization Modules

This optimization produces slightly larger program files and increases
compile time. It is most beneficial in programs containing loops that are
executed a large number of times. This optimization is not recommended
for loops that are executed only a small number of times.

Use the +Onopipeline option with the +O2, +O3, or +O4 option to
suppress software pipelining if program size is more important than
execution speed. This will perform level two optimization, but disable
software pipelining.

Register Reassociation
Array references often require one or more instructions to compute the
virtual memory address of the array element specified by the subscript
expression. The register reassociation optimization implemented in the
PA-RISC compilers tries to reduce the cost of computing the virtual
memory address expression for array references found in loops.

Within loops, the virtual memory address expression can be rearranged
and separated into a loop varying term and a loop invariant term. Loop
varying terms are those items whose values may change from one
iteration of the loop to another. Loop invariant terms are those items
whose values are constant throughout all iterations of the loop. The loop
varying term corresponds to the difference in the virtual memory
address associated with a particular array reference from one iteration of
the loop to the next.

The register reassociation optimization dedicates a register to track the
value of the virtual memory address expression for one or more array
references in a loop and updates the register appropriately in each
iteration of a loop.

The register is initialized outside the loop to the loop invariant portion of
the virtual memory address expression and the register is incremented
or decremented within the loop by the loop variant portion of the virtual
memory address expression. On PA-RISC, the update of such a dedicated
register can often be performed for free using the base-register
modification capability of load and store instructions.

The net result is that array references in loops are converted into
equivalent but more efficient pointer dereferences.

Chapter 4 121

Optimizing HP C Programs
Level 2 Optimization Modules

For example:

int a[10][20][30];

void example (void)
{
 int i, j, k;

 for (k = 0; k < 10; k++)
for (j = 0; j < 10; j++)

for (i = 0; i < 10; i++)
{

a[i][j][k] = 1;
}

}

after register reassociation is applied to the innermost loop becomes:

int a[10][20][30];

void example (void)
{

int i, j, k;
register int (*p)[20][30];

for (k = 0; k < 10; k++)
for (j = 0; j < 10; j++)

for (p = (int (*)[20][30]) a[0][j][k], i = 0 ; i < 10; i++)
{

*(p++[0][0]) = 1;
}

}

In the above example, the compiler-generated temporary register
variable, p, strides through the array a in the innermost loop. This
register pointer variable is initialized outside the innermost loop and
auto-incremented within the innermost loop as a side-effect of the
pointer dereference.

Register reassociation can often enable another loop optimization. After
performing the register reassociation optimization, the loop variable may
be needed only to control the iteration count of the loop. If this is case,
the original loop variable can be eliminated altogether by using the
PA-RISC ADDIB and ADDB machine instructions to control the loop
iteration count.

122 Chapter 4

Optimizing HP C Programs
Level 3 Optimizations

Level 3 Optimizations
Level 3 optimization includes level 2 optimizations, plus full
optimization across all subprograms within a single file. Level 3 also
inlines certain subprograms within the input file. Use +O3 to get level 3
optimization.

Level 3 optimization produces faster run-time code than level 2 on code
that frequently calls small functions within a file. Level 3 links faster
than level 4.

Inlining within a Single Source File
Inlining substitutes functions calls with copies of the function's object
code. Only functions that meet the optimizer's criteria are inlined. This
may result in slightly larger executable files. However, this increase in
size is offset by the elimination of time-consuming procedure calls and
procedure returns.

Example of Inlining
The following is an example of inlining at the source code level. Before
inlining, the source file looks like this:

/* Return the greatest common divisor of two positive integers,
*/
/* int1 and int2, computed using Euclid's algorithm. (Return 0
*/
/* if either is not positive.)
*/
int gcd(int1,int2)

int int1;
int int2;

{
int inttemp;

if ((int1 < = 0) || (int2 < = 0)) {
return(0);

}
do {

if (int1 < int2) {
inttemp = int1;
int1 = int2;
int2 = inttemp;

}
int1 = int1 - int2;

} while (int1 > 0);
return(int2);

Chapter 4 123

Optimizing HP C Programs
Level 3 Optimizations

}

main()
{

int xval,yval,gcdxy;
/* statements before call to gcd */
gcdxy = gcd(xval,yval);
/* statements after call to gcd */

}

After inlining, the source file looks like this:

main()
{

int xval,yval,gcdxy;
/* statements before inlined version of gcd */
{

int int1;
int int2;

int1 = xval;
int2 = yval;
{

int inttemp;

if ((int1 < = 0) || (int2 < = 0)) {
gcdxy = (0);
goto AA003;

}
do {

if (int1 < int2) {
inttemp = int1;
int1 = int2;
int2 = inttemp;

}
int1 = int1 - int2;

} while (int1 > 0);
gcdxy = (int2);

}
}

AA003 : ;
/* statements after inlined version of gcd */

}

124 Chapter 4

Optimizing HP C Programs
Level 4 Optimizations

Level 4 Optimizations
Level 4 performs optimizations across all files in a program. At level 4,
all optimizations of the prior levels are performed. Two additional
optimizations are performed:

• Inlining across multiple source files.

• Global and static variable optimization.

Interprocedural global optimizations across all files within a program
searches across function boundaries to produce better and faster code
sequences. Normally, global optimizations are performed within
individual functions or source code files. Interprocedural optimizations
look at function interactions within a program and transform particular
code sequences into faster code. Since information about every function
within a program is required, this level of optimization must be
performed at link time.

Inlining Across Multiple Files
Inlining at Level 4 is performed across all procedures within the
program. Inlining at level 3 is done within one file.

Inlining substitutes function calls with copies of the function's object
code. Only functions that meet the optimizer's criteria are inlined. This
may result in slightly larger executable files. However, this increase in
size is offset by the elimination of time-consuming procedure calls and
procedure returns.

Global and Static Variable Optimization
Global and static variable optimizations look for ways to reduce the
number of instructions required for accessing global and static variables.
The compiler normally generates two machine instructions when
referencing global variables. Depending on the locality of the global
variables, single machine instructions may sometimes be used to access
these variables. The linker rearranges the storage location of global and
static data to increase the number of variables that can be referenced by
single instructions.

Chapter 4 125

Optimizing HP C Programs
Level 4 Optimizations

Global Variable Optimization Coding Standards
Since this optimization rearranges the location and data alignment of
global variables, avoid the following programming practices:

• Making assumptions about the relative storage location of variables,
such as generating a pointer by adding an offset to the address of
another variable.

• Relying on pointer or address comparisons between two different
variables.

• Making assumptions about the alignment of variables, such as
assuming that a short integer is aligned the same as an integer.

126 Chapter 4

Optimizing HP C Programs
Guidelines for Using the Optimizer

Guidelines for Using the Optimizer
The following guidelines help you effectively use the optimizer and write
efficient HP C programs.

1. Use register variables where needed.

2. Hash table sizes should be in powers of 2; field sizes of variables
should also be in powers of 2.

3. Where possible, use local variables to help the optimizer promote
variables to registers.

4. When using short or char variables or bit-fields, it is more efficient
to use unsigned variables rather than signed because a signed
variable causes an extra instruction to be generated.

5. The code generated for a test for a loop termination is more efficient
with a test against zero than for a test against some other value.
Therefore, where possible, construct loops so the control variable
increases or decreases towards zero.

6. Do loops and for loops are more efficient than while loops because
opportunities for removing loop invariant code are greater.

7. Whenever possible, pass and return pointers to large structs
instead of passing and returning large structs by value.

8. Do shift, multiplication, division, or remainder operations using
constants instead of variables whenever possible.

9. Insure all local variables are initialized before they are used.

10.Use type checking tools like lint to help eliminate semantic errors.

Chapter 4 127

Optimizing HP C Programs
Optimizer Assumptions

Optimizer Assumptions
During optimization, the compiler gathers information about the use of
variables and passes this information to the optimizer. The optimizer
uses this information to ensure that every code transformation
maintains the correctness of the program, at least to the extent that the
original unoptimized program is correct.

When gathering this information, the HP C compiler makes the
following assumption: while inside a function, the only variables that can
be accessed indirectly through a pointer or by another function call are:

• Global variables, that is, all variables with file scope.

• Local variables that have had their addresses taken either explicitly
by the & operator, or implicitly by the automatic conversion of array
references to pointers.

In general, you do not need to be concerned about this assumption.
Standard-conformant C programs do not violate this assumption.
However, if you have code that does violate this assumption, the
optimizer can change the behavior of the program in an undesired
way. In particular, you should avoid the following coding practices to
ensure correct program execution for optimized code:

• Avoid referencing outside the bounds of an array.

• Avoid passing incorrect number of arguments to functions.

• Avoid accessing an array other than the one being subscripted. For
example, the construct a[b-a] where a and b are the same type of
array actually references the array b, because it is equivalent to
*(a+(b- a)) , which is equivalent to *b . Using this construct might
yield unexpected optimization results.

• Avoid referencing outside the bounds of the objects a pointer is
pointing to. All references of the form *(p+i) are assumed to remain
within the bounds of the variable or variables that p was assigned to
point to.

• Avoid using variables that are accessed by external processes. Unless
a variable is declared with the volatile attribute, the compiler will
assume that a program's data structures are accessed only by that
program. Using the volatile attribute may significantly slow down
a program.

128 Chapter 4

Optimizing HP C Programs
Optimizer Assumptions

• Avoid using local variables before they are initialized. When you
request optimization level 2, 3, or 4, the compiler tries to detect and
flag violations of this rule.

• Avoid relying on the memory layout scheme when manipulating
pointers; incorrect optimizations may result. For example, if p is
pointing to the first member of structure, it should not be assumed
that p1 points to the second member of the structure. Another
example: if p is pointing to the first in a list of declared variables, p1
should not be assumed to be pointing to the second variable in the
list.

Chapter 4 129

Optimizing HP C Programs
Optimizer Pragmas

Optimizer Pragmas
Pragmas give you the ability to:

• Control compilation in finer detail than what is allowed by command-
line options.

• Give information about the program to the compiler.

Pragmas cannot cross line boundaries and the word pragma must be in
lowercase letters. Optimizer pragmas may not appear inside a function.

Optimizer Control Pragmas
The OPTIMIZE and OPT_LEVEL pragmas control which functions are
optimized, and which set of optimizations are performed. You can place
these pragmas before any function definitions and they override any
previous pragma. These pragmas cannot raise the optimization level
above the level specified in the command line.

OPT_LEVEL 0, 1, and 2 provide more control over optimization than
the +O1 and +O2 compiler options. You use these pragmas to raise or
lower optimization at a function level inside the source file. Whereas, the
compiler options can only be used for an entire source file. (OPT_LEVEL 3
and 4 can only be used at the beginning of the source file.)

Table 4-5 shows the possible combinations of options and pragmas and
the resulting optimization levels. The level at which a function will be
optimized is the lower of the two values specified by the command line
optimization level and the optimization pragma in force.

Table 4-5 Optimization Level Precedence

Command-line
Optimization

Level

#Pragma
OPT_LEVEL

Resulting
OPT_LEVEL

none OFF 0

none 1 0

none 2 0

+O1 OFF 0

130 Chapter 4

Optimizing HP C Programs
Optimizer Pragmas

+O1 1 1

+O1 2 1

+O1 3 1

+O1 4 1

+O2 OFF 0

+O2 1 1

+O2 2 2

+O2 3 2

+O2 4 2

+O3 OFF 0

+O3 1 1

+03 2 2

+03 3 3

+03 4 3

+04 OFF 0

+04 1 1

+04 2 2

+04 3 3

+O4 4 4

Command-line
Optimization

Level

#Pragma
OPT_LEVEL

Resulting
OPT_LEVEL

Chapter 4 131

Optimizing HP C Programs
Optimizer Pragmas

The values of OPTIMIZE and OPT_LEVEL are summarized in Table 4-6

Table 4-6 Optimizer Control Pragmas

Inlining Pragmas
When INLINE is specified without a functionname, any function can be
inlined. When specified with functionname(s), these functions are
candidates for inlining.

The NOINLINE pragma disables inlining for all functions or specified
functionname(s).

The syntax for performing inlining is:

#pragma INLINE [functionname(1), ..., functionname(n)]
#pragma NOINLINE [functionname(1), ..., functionname(n)]

For example, to specify inlining of the two subprograms checkstat and
getinput , use:

#pragma INLINE checkstat, getinput

To specify that an infrequently called routine should not be inlined when
compiling at optimization level 3 or 4, use:

#pragma NOINLINE opendb

See also the related +O[no]inline optimization option.

Pragma Description

#pragma OPTIMIZE ON Turns optimization on.

#pragma OPTIMIZE OFF Turns optimization off.

#pragma OPT_LEVEL 1 Optimize only within small blocks
of code

#pragma OPT_LEVEL 2 Optimize within each procedure.

#pragma OPT_LEVEL 3 Optimize across all procedures
within a source file.

#pragma OPT_LEVEL 4 Optimize across all procedures
within a program.

132 Chapter 4

Optimizing HP C Programs
Optimizer Pragmas

Alias Pragmas
The compiler gathers information about each function (such as
information about function calls, variables, parameters, and return
values) and passes this information to the optimizer. The
NO_SIDE_EFFECTS and ALLOCS_NEW_MEMORY pragma tell the optimizer
to make assumptions it can not normally make, resulting in improved
compile-time and run-time speed. They change the default information
the compiler collects.

If used, the NO_SIDE_EFFECTS and ALLOCS_NEW_MEMORY pragmas
should appear before the first function defined in a file and are in effect
for the entire file. When used appropriately, these optional pragmas
provide better optimization.

NO_SIDE_EFFECTS Pragma
By default, the optimizer assumes that all functions might modify global
variables. To some degree, this assumption limits the extent of
optimizations it can perform on global variables. The NO_SIDE_EFFECTS
pragma provides a way to override this assumption. If you know for
certain that some functions do not modify global variables, you can gain
further optimization of code containing calls to these functions by
specifying the function names in this pragma.

NO_SIDE_EFFECTS has the following form:

#pragma NO_SIDE_EFFECTS functionname(1), ..., functionname(n)

All functions in functionname are the names of functions that do not
modify the values of global variables. Global variable references can be
optimized to a greater extent in the presence of calls to the listed
functions. Note that you need the NO_SIDE_EFFECTS pragma in the files
where the calls are made, not where the function is defined. This pragma
takes effect from the line it first occurs on to the end of the file.

ALLOCS_NEW_MEMORY pragma
The ALLOCS_NEW_MEMORY pragma states that the function
functionname returns a pointer to new memory that it either allocates or
a routine that it calls allocates. ALLOCS_NEW_MEMORY has the following
form:

#pragma ALLOCS_NEW_MEMORYfunctionname(1), ..., functionname(n)

Chapter 4 133

Optimizing HP C Programs
Optimizer Pragmas

The new memory must be memory that was either newly allocated or
was previously freed and is now reallocated. For example, the standard
routines malloc() and calloc() satisfy this requirement.

Large applications might have routines that are layered above malloc()
and calloc() . These interface routines make the calls to malloc() and
calloc() , initialize the memory, and return the pointer that malloc()
or calloc() returns. For example, in the program below:

struct_type *get_new_record(void)
{
struct_type *p;

if ((p=malloc(sizeof(*p))) == NULL) {
printf("get_new_record():out of memory\n");
abort();
}

else {
/* initialize the struct */
.

 .
 .

return p;
}

the routine get_new_record falls under this category, and can be
included in the ALLOCS_NEW_MEMORY pragma.

FLOAT_TRAPS_ON pragma
Informs the compiler that the function(s) may enable floating-point trap
handling. When the compiler is so informed, it will not perform loop
invariant code motion (LICM) on floating-point operations in the
function(s) named in the pragma. This pragma is required for proper
code generation when floating-point traps are enabled.

#pragma FLOAT_TRAPS_ON { functionname,...functionname }
#pragma FLOAT_TRAPS_ON { _ALL }

For example:

#pragma FLOAT_TRAPS_ON xyz,abc

informs the compiler and optimizer that xyz and abc have floating-point
traps turned on and therefore LICM optimization should not be
performed.

134 Chapter 4

Optimizing HP C Programs
Optimizer Pragmas

[NO]PTRS_STRONGLY_TYPED Pragma
The PTRS_STRONGLY_TYPED pragma allows you to specify when a
subset of types are type-safe. This provides a finer lever of control than
+O[no]ptrs_strongly_typed .

#pragma PTRS_STRONGLY_TYPED BEGIN

#pragma PTRS_STRONGLY_TYPED END

#pragma NOPTRS_STRONGLY_TYPED BEGIN

#pragma NOPTRS_STRONGLY_TYPED END

Any types that are defined between the begin-end pair are taken to apply
type-safe assumptions. These pragmas are not allowed to nest. For each
BEGIN an associated END must be defined in the compilation unit.

The pragma will take precedence over the command-line option.
Although, sometimes both are required (see example 2).

Example 1

double *d;
#pragma PTRS_STRONGLY_TYPED BEGIN
int *i;
float *f;
#pragma PTRS_STRONGLY_TYPED END
main(){

. . .
}

In this example only two types, pointer-to-int and pointer-to-float will be
assumed to be type-safe.

Example 2

cc +Optrs_strongly_typed foo.c

/*source for Ex.2 */
double *d;

...
#pragma NOPTRS_STRONGLY_TYPED BEGIN
int *i;
float *f;
#pragma NOPTRS_STRONGLY_TYPED END

...
main(){

...
}

In this example all types are assumed to be type-safe except the types
bracketed by pragma NOPTRS_STRONGLY_TYPED. The command-line
option is required because the default option is
+Onoptrs_strongly_typed .

Chapter 4 135

Optimizing HP C Programs
Aliasing Options

Aliasing Options
To be conservative, the optimizer assumes that a pointer can point to any
object in the entire application. Instead, if the optimizer can be educated
on the application pointer usage, then the optimizer can generate more
efficient code, due to the elimination of some false assumptions. Such
behavior can be communicated to the optimizer by using the following
options:

• +O[no]ptrs_strongly_typed

• +O[no]ptrs_to_globals[= list]

• +O[no]global_ptrs_unique[= list]

• +O[no]ptrs_ansi

where list is a comma-separated list of global variable names.

Here are the type-inferred aliasing rules:

• Type-aliasing optimizations are based on the assumption that pointer
dereferences obey their declared types.

• A C variable is considered address-exposed if and only if the address
of that variable is assigned to another variable or passed to a function
as an actual parameter. In general, address-exposed objects are
collected into a separate group based on their declared type. Global
variables and static variables are considered address-exposed by
default. Local variables and actual parameters are considered
address-exposed only if their address has been computed using the
address operator .

• Dereferences of pointers to a certain type will be assumed to only
alias with the corresponding equivalent group. An equivalent group
includes all the address exposed objects of the same type. The
dereferences of pointers are also assumed to alias with other pointer
dereferences associated with the same equivalent group.

In the example

int *p, *q;

*p and *q are assumed to alias with any objects of type int . Also *p
and *q are assumed to alias with each other.

136 Chapter 4

Optimizing HP C Programs
Aliasing Options

• Signed/Unsigned type distinctions are ignored in grouping objects
into an equivalent group. Likewise, long and int types are
considered to map to the same equivalent group. However, the
volatile type qualifier is considered significant in grouping objects
into equivalent groups (e.g., a pointer to int will not be considered to
alias with a volatile int object).

• If two type names reduce to the same type, they are considered
synonymous.

In the following example, both types type_old and type_new will
reduce to the same type, struct foo .

typedef struct foo_st type_old;
typedef type_old type_new;

• Each field of a structure type is placed in a separate equivalent group
which is distinct from the equivalent group of the field's base type.
(The assumption here is that a pointer to int will not be assigned the
address of a structure field whose type is int). The actual type name
of a structure type is not considered significant in constructing
equivalent groups (e.g., dereferences of a struct foo pointer and a
struct bar pointer will be assumed to alias with each other even if
struct foo and struct bar have identical field declarations).

• All fields of a union type are placed in the same equivalent group,
which is distinct from the equivalent group of any of the field's base
types. (Thus, all dereferences of pointers to a particular union type
will be assumed to alias with each other, regardless of which union
field is being accessed.)

• Address-exposed array variables are grouped into the equivalent
group of the array element type.

• Explicit pointer typecasts applied to expression values will be
honored in that it would alter the equivalent group associated with
an ensuing use of the typecast expression value. For example, an int
pointer that is first typecast into a float pointer and then
dereferenced will be assumed to potentially access objects in the float
equivalent group — and not the int equivalent group. However,
type-incompatible assignments to pointer variables will not alter the
aliasing assumptions on subsequent references of such pointer
variables.

In general, type incompatible assignments can potentially invalidate
some of the type-safe assumptions, and such constructs may elicit
compiler warning messages.

Chapter 4 137

Optimizing HP C Programs
Aliasing Options

NOTE Variables declared to be of type void * need to be typecast into a pointer
to a specific type before they can be dereferenced.

138 Chapter 4

Optimizing HP C Programs
Improving Shared Library Performance

Improving Shared Library Performance
These pragmas can improve performance of shared libraries by reducing
the overhead of calling shared library routines. You must be very careful
using these pragmas because incorrect use can result in incorrect and
unpredictable behavior. See also the HP-UX Linker and Libraries User’s
Guide for more information on improving shared library performance.

HP_NO_RELOCATION Pragma
This pragma improves performance of shared library calls by omitting
floating-point parameter relocation stubs in calls to shared library
functions. Put this pragma in header files of functions that take floating
point parameters or return floating point data and that will be placed in
shared libraries. By putting it in the header file and ensuring all calls
reference the header file, you ensure that it is specified at the function
definition and at all calls.

WARNING This pragma must be at the function definition and at all call
sites. If the pragma is omitted from the function definition or
from any call, the linker will generate parameter relocation code
and the application will behave incorrectly since floating point
parameters will not be in expected registers.

Syntax
#pragma HP_NO_RELOCATION name1[, name2[, ...]]

where name1, name2, and so forth are names of functions in shared
libraries.

Background
Parameter relocation stubs are instructions that move (relocate) floating
point parameters and function return values between floating point
registers and general registers. They are generated for calls to routines
in shared libraries. Relocation stubs are generated when passing floating
point parameters or using a floating point function return in routines in
shared libraries. This pragma prevents this unnecessary relocation from
being done.

Chapter 4 139

Optimizing HP C Programs
Improving Shared Library Performance

NOTE Do not use this option with functions that use the varargs macros. See
the HP C/HP-UX Reference Manual or the varargs(5) man page for
information on the varargs macros.

HP_LONG_RETURN Pragma
This pragma improves performance of shared library calls by omitting
export stubs and using a long return instruction sequence instead. An
export stub is a short code segment generated by the linker for a global
definition in a shared library. External calls to shared library functions
go through the export stub.

Put this pragma in header files of functions that will go in shared
libraries so it is specified at the function definition and at all calls. For
functions with floating point parameters or returns, use the
HP_NO_RELOCATION pragma along with this pragma.

WARNING This pragma must be at the function definition and at all call
sites. If the pragma is omitted from the function definition or
from any call, the compiler will generate incompatible return
code and the application will behave incorrectly.

Syntax
#pragma HP_LONG_RETURN name1[, name2[, ...]]

where name1, name2, and so forth are names of functions in shared
libraries.

Background
An export stub is generated by default for each function in a shared
library. Each call to the function goes through the export stub. The
export stub serves two purposes: to relocate parameters and perform an
interspace return.

The HP_LONG_RETURN pragma generates a long return sequence in
the export stub instead of an interspace branch. If you also use the
HP_NO_RELOCATION pragma (for functions taking floating point
parameters) with the HP_LONG_RETURN pragma, all the code in the
export stub is omitted, eliminating the export stub entirely. The
HP_LONG_RETURN pragma by itself eliminates the need for export
stubs for functions taking non-floating-point parameters.

140 Chapter 4

Optimizing HP C Programs
Improving Shared Library Performance

NOTE Using HP_LONG_RETURN without using HP_NO_RELOCATION with
floating point parameters, could actually degrade performance by
creating export stubs and relocation stubs.

These pragmas improve performance of calls to shared library functions
from outside the shared library. Therefore do not use this pragma for
hidden functions (see the -h and +e linker options) or for functions called
only from within the same shared library linked with the -B symbolic
linker option, otherwise this pragma may degrade performance. (See the
HP-UX Linker & Libraries User’s Guide for information on the above
mentioned options.)

Do not use this pragma if you compile on PA-RISC 2.0 or later or with
the +DA2.0 option since the effect is the default. That is, if no relocations
are generated, export stubs are not generated on PA-RISC 2.0 and later,
and a long return instruction sequence is generated by default, so this
pragma has no effect.

HP_DEFINED_EXTERNAL Pragma
This pragma improves performance of shared library calls by inlining
import stubs. Place this pragma at calls to shared library routines along
with the HP_NO_RELOCATION pragma (if using floating-point
parameters or return values) and the HP_LONG_RETURN pragma.

WARNING Do not use this pragma at function definitions, only at function
calls. Specifying it at function definitions will result in incorrect
behavior.

On PA-RISC 1.1, use this pragma only when calling a shared
library from an executable file. Using it on calls within an
executable file will cause the program to abort.

Syntax
#pragma HP_DEFINED_EXTERNAL name1[, name2[, ...]]

where name1, name2, and so forth are names of functions in shared
libraries.

Chapter 4 141

Optimizing HP C Programs
Improving Shared Library Performance

Background
Import stubs are code sequences generated at calls to shared library
routines. The import stub queries the PLT (Procedure Linkage Table) to
determine the address of the shared library function & calls it. The
HP_DEFINED_EXTERNAL pragma inlines this import stub.

NOTE If your function takes floating-point parameters, you should also use the
HP_NO_RELOCATION pragma (if floating point parameters are
present). You should also use the HP_LONG_RETURN pragma with this
pragma. If you don’t, the import stub may be too large to inline.

Use this pragma only on calls to functions in shared libraries. On
PA-RISC 2.0, it will degrade performance of calls to any other functions.

142 Chapter 4

Optimizing HP C Programs
Improving Compile and Link Times

Improving Compile and Link Times
In general, optimization increases the amount of time it takes to compile
your program, link your program, or both. However, the following
options can help to decrease this time:

• +objdebug shortens compile time by not copying debugging
information from the object files into the executable file. For more
detail, see the +[no]objdebug compiler option described in the HP
C/HP-UX Reference Manual.

• +Oreusedir shortens link time by not recompiling intermediate
object code to object code when using +O4 or profile-based
optimization. See “+Oreusedir=directory” on page 104 for details.

143

5 Programming for Portability

Portable C programs are clear, reliable, and easily maintainable and can
be easily transported from one machine to another. With few
modifications, C programs written with portability in mind can be
recompiled and run on different computers. For specific information on
system dependencies, refer to the HP C/HP-UX Reference Manual.

The ANSI standard specifies which aspects of C are required to work the
same on conforming implementations, and which can work differently.
Since many ANSI-conforming compilers are available on a wide variety
of platforms, it is easy to develop portable programs. HP C, when invoked
in ANSI mode and used with the preprocessor (cpp), headers, libraries,
and linker, conforms fully with the standard.

This chapter discusses some guidelines for making your C programs
more portable. Emphasis is placed on HP C specific portability issues,
especially as they relate to porting from pre-ANSI mode HP C
(Kernighan and Ritchie plus BSD extensions) to ANSI mode HP C.

144 Chapter 5

Programming for Portability
Porting to the 64-bit Architecture

Porting to the 64-bit Architecture
Refer to the HP-UX 64-bit Porting and Transition Guide for details
regarding porting from the 32-bit data model (ILP32) to the 64-bit data
model (LP64). The HP-UX 64-bit Porting and Transition Guide is
available on the 11.0 CD-ROM and on the World Wide Web at the
following URL:

http://docs.hp.com/hpux/development/

Chapter 5 145

Programming for Portability
Guidelines for Portability

Guidelines for Portability
This section lists some things you can do to make your HP C programs
more portable.

• Use the ANSI C compiler option whenever possible when writing new
programs. HP C conforms to the standard when it is invoked with the
-Aa option. The -w and +e options should not be used with the -Aa
option, as these options will suppress warning messages and allow
non-conforming extensions.

• When you recompile existing programs, try compiling in ANSI mode.
ANSI C mandates more thorough error checking, so portability
problems are more likely to be flagged by the compiler in this mode.
(Bugs are also more likely to be caught.) Many existing programs will
compile and execute correctly in ANSI mode with few or no changes.

• Pay attention to all warnings produced by the compiler. Most
warnings represent potentially problematic program constructs. You
should consider warnings to be portability risks.

• For an additional level of warnings, compile with the +w1 option. Pay
particular attention to the warnings that mention “ANSI migration”
issues. These identify most program constructs that are legal but are
likely to work differently between pre-ANSI and ANSI compilers.

• Consult the detailed listing of diagnostic messages in the HP C online
help for more information on how to correct each problem. For most
messages, a reference to the relevant section of the ANSI standard is
also given.

• On HP-UX, use lint , the C program syntax checker, to detect
potential portability problems in your program. The lint utility also
produces warnings about poor style, lack of efficiency, and
inconsistency within the program.

• Use the #define, #if, and #ifdef preprocessing directives and
typedef declarations to isolate any necessary machine or operating
system dependencies.

• Declare all variables with the correct types. For example, functions
and parameters default to int. On many implementations, pointers
and integers are the same size, and the defaults work correctly.
However, for maximum portability, the correct types should be used.

146 Chapter 5

Programming for Portability
Guidelines for Portability

• Use only the standard C library functions.

• Code bit manipulation algorithms carefully to gain independence
from machine-specific representations of numeric values. For
example, use x & ~3 instead of x & 0xFFFFFFFC to mask the
low-order 2 bits to zero.

• Avoid absolute addressing.

Examples
The following example illustrates some ways to program for portability.
In this example, the include files IEEE.h and floatX.h isolate
machine-dependent portions of the code. These include files use the
#define and typedef mechanisms to define macro constants and type
definitions in the main body of the program.

The main program fmult.c uses the #ifdef preprocessor command to
include floatX.h by default. If the option -D IEEE_FLOAT is passed to
the compiler, and subsequently the preprocessor, the program will use
the IEEE representation for the structure float_rep rather than a
machine-dependent representation.

Partial contents of the file IEEE.h :

#define FLT_MAX 3.4028235E38
#define PLUS_INFINITY 0X7F800000
#define MINUS_INFINITY 0XFF800000
typedef struct {

unsigned sign : 1;
unsigned exp : 8;
unsigned mant : 23;

} FLOAT_REP;
#define EXP_BIAS 127
.

 .
 .

Partial contents of the file floatX.h :

#define FLT_MAX 1.70141E38
#define PLUS_INFINITY 0X7FFFFFFE
#define MINUS_INFINITY 0XFFFFFFFE
typedef struct {

unsigned sign : 1;
unsigned mant : 23;
unsigned exp : 7;
unsigned exp_sign : 1;

} FLOAT_REP;
#define EXP_BIAS 0
.

 .
 .

Chapter 5 147

Programming for Portability
Guidelines for Portability

Partial contents of the file fmult.c :

#ifdef IEEE_FLOAT
#include "IEEE.h"
#else
#include "floatX.h"
#endif
union {

float f;
FLOAT_REP f_rep;
FLOAT_INT f_int;

} float_num;
float f_mult(float val1, float val2)
{

if (val1 > 1.0F && val2 >1.0F) {
if (val1 > FLT_MAX/val2 ||

val2 > FLT_MAX/val1) {
float_num.f_int = PLUS_INFINITY;

return float_num.f;
}

.
 .
 .

148 Chapter 5

Programming for Portability
Practices to Avoid

Practices to Avoid
To make a program portable, you need to minimize machine
dependencies. The following are programming practices you should avoid
to ensure portability:

• Using dollar signs ($) in identifiers.

• Using underscores (_) as the first character in an identifier.

• Using sized enumerations.

• Reliance on implicit expression evaluation order.

• Making assumptions regarding storage allocation and layout.

• Dependence on the number of significant characters in an identifier.
Identifiers should differ as early as possible in the name. ANSI C
requires that the first 31 characters of an internal name are
significant. Only the first 6 characters of an external name are
required to be significant by ANSI C.

• Dereferencing null pointers.

• Dependence on pointer representation.

• Dependence on being able to dereference a pointer to an object that is
not correctly aligned.

• Dependence on the ability to store a pointer in a variable of type int.

• Dependence on case distinctions in external names.

• Dependence on char being signed or unsigned.

• Dependence on bitwise operations in signed integers.

• Dependence on bit-fields of any type except int , unsigned int , or
signed int .

• Dependence on the sign of the remainder in integer division.

• Dependence on right shifts of negative signed values.

• Dependence on more than six declarators modifying a basic type.

• Dependence on values of automatic variables after a longjmp call
when the values were changed between the setjmp and longjmp
calls.

Chapter 5 149

Programming for Portability
Practices to Avoid

• Dependence on being able to call setjmp within an arbitrarily
complex expression.

• Dependence on file system characteristics.

• Dependence on string literals being modifiable.

• Dependence on extern declarations within a block being visible
outside of the block.

150 Chapter 5

Programming for Portability
General Portability Considerations

General Portability Considerations
This section summarizes some of the general considerations to take into
account when writing portable HP C programs. Some of the features
listed here may be different on other implementations of C. Differences
between Series 300/400 versus workstations and servers
implementations are also noted in this section.

Data Type Sizes and Alignments
Table 2-1 on page 7 shows the sizes and alignments of the C data types
on the different architectures.

Differences in data alignment can cause problems when porting code or
data between systems that have different alignment schemes. For
example, if you write a C program on Series 300/400 that writes records
to a file, then read the file using the same program on HP 9000
workstations and servers, it may not work properly because the data
may fall on different byte boundaries within the file due to alignment
differences. To help alleviate this problem, HP C provides the HP_ALIGN
and PACK pragmas, which force a particular alignment scheme,
regardless of the architecture on which it is used. The alignment
pragmas are described in Chapter 2.

Accessing Unaligned Data
The HP 9000 workstations and servers, like all PA-RISC processors,
require data to be accessed from locations that are aligned on multiples
of the data size. The C compiler provides an option to access data from
misaligned addresses using code sequences that load and store data in
smaller pieces, but this option will increase code size and reduce
performance. A bus error handling routine is also available to handle
misaligned accesses but can reduce performance severely if used heavily.

Here are your specific alternatives for avoiding bus errors:

1. Change your code to eliminate misaligned data, if possible. This is the
only way to get maximum performance, but it may be difficult or
impossible to do. The more of this you can do, the less you'll need the
next two alternatives.

Chapter 5 151

Programming for Portability
General Portability Considerations

2. Use the +ubytes compiler option to allow 2-byte alignment. However,
the +ubytes option, as noted above, creates big, slow code compared to
the default code generation which is able to load a double precision
number with one 8-byte load operation. Refer to the HP C/HP-UX
Reference Manual for more information.

3. Finally, you can use allow_unaligned_data_access() to avoid
alignment errors. allow_unaligned_data_access() sets up a
signal handler for the SIGBUS signal. When the SIGBUS signal
occurs, the signal handler extracts the unaligned data from memory
byte by byte.

To implement, just add a call to allow_unaligned_data_access()
within your main program before the first access to unaligned data
occurs. Then link with -lhppa . Any alignment bus errors that occur
are trapped and emulated by a routine in the libhppa.a library in a
manner that will be transparent to you. The performance degradation
will be significant, but if it only occurs in a few places in your program
it shouldn't be a big concern.

Whether you use alternative 2 or 3 above depends on your specific code.

The +ubytes option costs significantly less per access than the handler,
but it costs you on every access, whether your data is aligned or not, and
it can make your code quite a bit bigger. You should use it selectively if
you can isolate the routines in your program that may be exposed to
misaligned pointers.

There is a performance degradation associated with alternative 3
because each unaligned access has to trap to a library routine. You can
use the unaligned_access_count variable to check the number of
unaligned accesses in your program. If the number is fairly large, you
should probably use 2. If you only occasionally use a misaligned pointer,
it is probably better just use the allow_unaligned_data_access
handler. There is a stiff penalty per bus error, but it doesn't cause your
program to fail and it won't cost you anything when you operate on
aligned data.

152 Chapter 5

Programming for Portability
General Portability Considerations

The following is a an example of its use within a C program:

extern int unaligned_access_count;
/* This variable keeps a count

of unaligned accesses. */

char arr[]="abcdefgh";
char *cp, *cp2;
int i=99, j=88, k;
int *ip; /* This line would normally result in a

bus error on workstations or servers */
main()
{

allow_unaligned_data_access();
cp = (char *)&i;
cp2 = &arr[1];
for (k=0; k<4; k++)

cp2[k] = * (cp+k);
ip = (int *)&arr[1];
j = *ip;
printf("%d\n", j);
printf("unaligned_access_count is : %d\n", unaligned_access_co

unt);
}

To compile and link this program, enter

cc filename.c -lhppa

This enables you to link the program with
allow_unaligned_data_access() and the int
unaligned_access_count that reside in /usr/lib/libhppa.a .

Note that there is a performance degradation associated with using this
library since each unaligned access has to trap to a library routine. You
can use the unaligned_access_count variable to check the number of
unaligned accesses in your program. If the number is fairly large, you
should probably use the compiler option.

Chapter 5 153

Programming for Portability
General Portability Considerations

Checking for Alignment Problems with lint
If invoked with the -s option, the lint command generates warnings for
C constructs that may cause portability and alignment problems
between Series 300/400 and Series 9000 workstations and servers, and
vice versa. Specifically, lint checks for these cases:

• Internal padding of structures. lint checks for instances where a
structure member may be aligned on a boundary that is
inappropriate according to the most-restrictive alignment rules. For
example, given the code

struct s1 { char c; long l; };

lint issues the warning:

warning: alignment of struct 's1' may not be portable

• Alignment of structures and simple types. For example, in the
following code, the nested struct would align on a 2-byte boundary
on Series 300/400 and an 8-byte boundary on HP 9000 workstations
and servers:

struct s3 { int i; struct { double d; } s; };

In this case, lint issues this warning about alignment:

warning: alignment of struct 's3' may not be portable

• End padding of structures. Structures are padded to the alignment of
the most-restrictive member. For example, the following code would
pad to a 2-byte boundary on Series 300/400 and a 4-byte boundary for
HP 9000 workstations and servers:

struct s2 { int i; short s; };

In this case, lint issues the warning:

warning: trailing padding of struct/union 's2' may not be por
table

Note that these are only potential alignment problems. They would cause
problems only when a program writes raw files which are read by
another system. This is why the capability is accessible only through a
command line option; it can be switched on and off.

lint does not check the layout of bit-fields.

154 Chapter 5

Programming for Portability
General Portability Considerations

Ensuring Alignment without Pragmas
Another solution to alignment differences between systems would be to
define structures in such a way that they are forced into the same layout
on different systems. To do this, use padding bytes — that is, dummy
variables that are inserted solely for the purpose of forcing struct
layout to be uniform across implementations. For example, suppose you
need a structure with the following definition:

struct S {
char c1;
int i;
char c2;
double d;

};

An alternate definition of this structure that uses filler bytes to ensure
the same layout on Series 300/400 and workstations and servers would
look like this:

struct S {
char c1; /* byte 0 */
char pad1,pad2,pad3; /* bytes 1 through 3 */
int i; /* bytes 4 through 7 */
char c2; /* byte 8 */
char pad9,pad10,pad11, /* bytes 9 */

pad12,pad13,pad14, /* through */
pad15; /* 15 */

double d; /* bytes 16 through 23 */
};

Casting Pointer Types
Before understanding how casting pointer types can cause portability
problems, you must understand how HP 9000 workstations and servers
align data types. In general, a data type is aligned on a byte boundary
equivalent to its size. For example, the char data type can fall on any
byte boundary, the int data type must fall on a 4-byte boundary, and the
double data type must fall on an 8-byte boundary. A valid location for a
data type would then satisfy the following equation:

location mod sizeof(data_type) == 0

Consider the following program:

#include <string.h>
#include <stdio.h>
main()
{

struct chStruct {
char ch1; /* aligned on

an even boundary */

Chapter 5 155

Programming for Portability
General Portability Considerations

char chArray[9]; /* aligned on
an odd byte boundary */

} foo;

int *bar; /* must be aligned
on a word boundary */

strcpy(foo.chArray, "1234"); /* place a value
in the ch array */

bar = (int *) foo.chArray; /* type cast */
printf("*bar = %d\n",*bar); /* display the value */

}

Casting a smaller type (such as char) to a larger type (such as int) will
not cause a problem. However, casting a char* to an int* and then
dereferencing the int* may cause an alignment fault. Thus, the above
program crashes on the call to printf() when bar is dereferenced.

Such programming practices are inherently non-portable because there
is no standard for how different architectures reference memory. You
should try to avoid such programming practices.

As another example, if a program passes a casted pointer to a function
that expects a parameter with stricter alignment, an alignment fault
may occur. For example, the following program causes an alignment fault
on the HP 9000 workstations and servers:

void main (int argc, char *argv[])
{

char pad;
char name[8];

intfunc((int *)&name[1]);
}

int intfunc (int *iptr)
{

printf("intfunc got passed %d\n", *iptr);
}

Type Incompatibilities and typedef
The C typedef keyword provides an easy way to write a program to be
used on systems with different data type sizes. Simply define your own
type equivalent to a provided type that has the size you wish to use.

For example, suppose system A implements int as 16 bits and long as
32 bits. System B implements int as 32 bits and long as 64 bits. You
want to use 32 bit integers. Simply declare all your integers as type
INT32 , and insert the appropriate typedef on system A:

156 Chapter 5

Programming for Portability
General Portability Considerations

typedef long INT32;

The code on system B would be:

typedef int INT32;

Conditional Compilation
Using the #ifdef C preprocessor directive and the predefined symbols
__hp9000s300 , __hp9000s700 , and __hp9000s800 , you can group
blocks of system-dependent code for conditional compilation, as shown
below:

#ifdef __hp9000s300
.

 .

 .
Series 300/400-specific code goes here...

.
 .
 .
#endif

#ifdef __hp9000s700
.

 .
 .

Series 700-specific code goes here...
.

 .
 .
#endif

#ifdef __hp9000s800
.

 .
 .

Series 700/800-specific code goes here...
.

 .
 .
#endif

If this code is compiled on a Series 300/400 system, the first block is
compiled; if compiled on a Series 700 system, the second block is
compiled; if compiled on either the Series 700 or Series 800, the third
block is compiled. You can use this feature to ensure that a program will
compile properly on either Series 300/400 or workstations or servers.

Chapter 5 157

Programming for Portability
General Portability Considerations

If you want your code to compile only on the Series 800 but not on the
700, surround your code as follows:

#if (defined(__hp9000s800) && !defined(__hp9000s700))
.

 .
 .

Series 800-specific code goes here...
.

 .
 .
#endif

Isolating System-Dependent Code with
include Files
#include files are useful for isolating the system-dependent code like
the type definitions in the previous section. For instance, if your type
definitions were in a file mytypes.h , to account for all the data size
differences when porting from system A to system B, you would only
have to change the contents of file mytypes.h . A useful set of type
definitions is in /usr/include/model.h .

NOTE If you use the symbolic debugger, xdb , include files used within union ,
struct , or array initialization will generate correct code. However,
such use is discouraged because xdb may show incorrect debugging
information about line numbers and source file numbers.

Parameter Lists
On the Series 300/400, parameter lists grow towards higher addresses.
On the HP 9000 workstations and servers, parameter lists are usually
stacked towards decreasing addresses (though the stack itself grows
towards higher addresses). The compiler may choose to pass some
arguments through registers for efficiency; such parameters will have no
stack location at all.

ANSI C function prototypes provide a way of having the compiler check
parameter lists for consistency between a function declaration and a
function call within a compilation unit. lint provides an option (-Aa)
that flags cases where a function call is made in the absence of a
prototype.

158 Chapter 5

Programming for Portability
General Portability Considerations

The ANSI C <stdarg.h> header file provides a portable method of
writing functions that accept a variable number of arguments. You
should note that <stdarg.h> supersedes the use of the varargs
macros. varargs is retained for compatibility with the pre-ANSI
compilers and earlier releases of HP C/HP-UX. See varargs(5) and
vprintf(3S) for details and examples of the use of varargs .

The char Data Type
The char data type defaults to signed. If a char is assigned to an int ,
sign extension takes place. A char may be declared unsigned to
override this default. The line:

unsigned char ch;

declares one byte of unsigned storage named ch . On some non-HP-UX
systems, char variables are unsigned by default.

Register Storage Class
The register storage class is supported on Series 300/400 and
workstation and servers, and if properly used, can reduce execution time.
Using this type should not hinder portability. However, its usefulness on
systems will vary, since some ignore it. Refer to the HP-UX Assembler
and Supporting Tools for Series 300/400 for a more complete description
of the use of the register storage class on Series 300/400.

Also, the register storage class declarations are ignored when
optimizing at level 2 or greater on all Series.

Identifiers
To guarantee portable code to non-HP-UX systems, the ANSI C standard
requires identifier names without external linkage to be significant to 31
case-sensitive characters. Names with external linkage (identifiers that
are defined in another source file) will be significant to six
case-insensitive characters. Typical C programming practice is to name
variables with all lower-case letters, and #define constants with all
upper case.

Chapter 5 159

Programming for Portability
General Portability Considerations

Predefined Symbols
The symbol __hp9000s300 is predefined on Series 300/400; the symbols
__hp9000s800 and __hppa are predefined on Series 700/800; and
__hp9000s700 is predefined on Series 700 only. The symbols __hpux
and __unix are predefined on all HP-UX implementations. Also, the
symbol _PA_RISC2_0 is defined in 32-bit mode and __LP64__ is defined
in 64-bit mode.

This is only an issue if you port code to or from systems that also have
predefined these symbols.

Shift Operators
On left shifts, vacated positions are filled with 0. On right shifts of signed
operands, vacated positions are filled with the sign bit (arithmetic shift).
Right shifts of unsigned operands fill vacated bit positions with 0 (logical
shift). Integer constants are treated as signed unless cast to unsigned.
Circular shifts are not supported in any version of C. For a given type
with a size of n bits, the valid shift amount ranges from 0 to n - 1. So, for
example, 32 is not valid for an int , but 63 is valid for a long long .

The sizeof Operator
The sizeof operator yields an unsigned long result, as specified in
section 3.3.3.4 of the ANSI C standard (X3.159-1989). Therefore,
expressions involving this operator are inherently unsigned. Do not
expect any expression involving the sizeof operator to have a negative
value (as may occur on some other systems). In particular, logical
comparisons of such an expression against zero may not produce the
object code you expect as the following example illustrates.

main()
{

int i;
i = 2;

if ((i-sizeof(i)) < 0) /* sizeof(i) is 4,
but unsigned! */

printf("test less than 0\n");
else

printf("an unsigned expression cannot be less than 0\n");
}

When run, this program will print

an unsigned expression cannot be less than 0

160 Chapter 5

Programming for Portability
General Portability Considerations

because the expression (i-sizeof(i)) is unsigned since one of its
operands is unsigned (sizeof(i)). By definition, an unsigned number
cannot be less than 0 so the compiler will generate an unconditional
branch to the else clause rather than a test and branch.

Bit-Fields
The ANSI C definition does not prescribe bit-field implementation;
therefore each vendor can implement bit-fields somewhat differently.
This section describes how bit-fields are implemented in HP C.

Bit-fields are assigned from most-significant to least-significant bit on all
HP-UX and Domain systems.

On all HP-UX implementations, bit-fields can be signed or unsigned ,
depending on how they are declared.

On the Series 300/400, a bit-field declared without the signed or
unsigned keywords will be signed in ANSI mode and unsigned in
compatibility mode by default.

On the workstations and servers, plain int , char , or short bit-fields
declared without the signed or unsigned keywords will be signed in
both compatibility mode and ANSI mode by default.

On the HP 9000 workstations and servers, and for the most part on the
Series 300/400, bit-fields are aligned so that they cannot cross a
boundary of the declared type. Consequently, some padding within the
structure may be required. As an example,

struct foo
{

unsigned int a:3, b:3, c:3, d:3;
unsigned int remainder:20;

};

For the above struct , sizeof(struct foo) would return 4 (bytes)
because none of the bit-fields straddle a 4 byte boundary. On the other
hand, the following struct declaration will have a larger size:

struct foo2
{

unsigned char a:3, b:3, c:3, d:3;
unsigned int remainder:20;

};

In this struct declaration, the assignment of data space for c must be
aligned so it doesn't violate a byte boundary, which is the normal
alignment of unsigned char . Consequently, two undeclared bits of

Chapter 5 161

Programming for Portability
General Portability Considerations

padding are added by the compiler so that c is aligned on a byte
boundary. sizeof(struct foo2) returns 6 (bytes) on Series 300/400,
and 8 on workstations and servers. Note, however, that on Domain
systems or when using #pragma HP_ALIGN NATURAL , which uses
Domain bit-field mapping, 4 is returned because the char bit-fields are
considered to be int s.)

Bit-fields on HP-UX systems cannot exceed the size of the declared type
in length. The largest possible bit-field is 32 bits. All scalar types are
permissible to declare bit-fields, including enum.

Enum bit-fields are accepted on all HP-UX systems. On Series 300/400 in
compatibility mode they are implemented internally as unsigned
integers. On workstations and servers, however, they are implemented
internally as signed integers so care should be taken to allow enough bits
to store the sign as well as the magnitude of the enumerated type.
Otherwise your results may be unexpected. In ANSI mode, the type of
enum bit-fields is signed int on all HP-UX systems.

Floating-Point Exceptions
HP C on workstations and servers, in accordance with the IEEE
standard, does not trap on floating point exceptions such as division by
zero. By contrast, when using HP C on Series 300/400, floating-point
exceptions will result in the run-time error message Floating
exception (core dumped) . One way to handle this error on
workstations and servers is by setting up a signal handler using the
signal system call, and trapping the signal SIGFPE. For details, see
signal(2) and signal(5).

For full treatment of floating-point exceptions and how to handle them,
see HP-UX Floating-Point Guide.

Integer Overflow
In HP C, as in nearly every other implementation of C, integer overflow
does not generate an error. The overflowed number is “rolled over” into
whatever bit pattern the operation happens to produce.

162 Chapter 5

Programming for Portability
General Portability Considerations

Overflow During Conversion from Floating
Point to Integral Type
HP-UX systems will report a floating exception - core dumped at
run time if a floating point number is converted to an integral type and
the value is outside the range of that integral type. As with the error
described previously under “Floating-Point Exceptions” on page 161, a
program to trap the floating-point exception signal (SIGFPE) can be used.
See signal(2) and signal(5) for details.

Structure Assignment
The HP-UX C compilers support structure assignment, structure-valued
functions, and structure parameters. The structs in a struct
assignment s1=s2 must be declared to be the same struct type as in:

struct s s1,s2;

Structure assignment is in the ANSI standard. Prior to the ANSI
standard, it was a BSD extension that some other vendors may not have
implemented.

Structure-Valued Functions
Structure-valued functions support storing the result in a structure:

s = fs();

All HP-UX implementations allow direct field dereferences of a
structure-valued function. For example:

x = fs().a;

Structure-valued functions are ANSI standard. Prior to the ANSI
standard, they were a BSD extension that some vendors may not have
implemented.

Dereferencing Null Pointers
Dereferencing a null pointer has never been defined in any C standard.
Kernighan and Ritchie's The C Programming Language and the ANSI C
standard both warn against such programming practice. Nevertheless,
some versions of C permit dereferencing null pointers.

Chapter 5 163

Programming for Portability
General Portability Considerations

Dereferencing a null pointer returns a zero value on all HP-UX systems.
The workstations and servers C compiler provides the -z compile line
option, which causes the signal SIGSEGV to be generated if the program
attempts to read location zero. Using this option, a program can “trap”
such reads.

Since some programs written on other implementations of UNIX rely on
being able to dereference null pointers, you may have to change code to
check for a null pointer. For example, change:

if (*ch_ptr != '\0')

to:

if ((ch_ptr != NULL) && *ch_ptr != '\0')

Writes of location zero may be detected as errors even if reads are not. If
the hardware cannot assure that location zero acts as if it was initialized
to zero or is locked at zero, the hardware acts as if the -z flag is always
set.

Expression Evaluation
The order of evaluation for some expressions will differ between HP-UX
implementations. This does not mean that operator precedence is
different. For instance, in the expression:

x1 = f(x) + g(x) * 5;

f may be evaluated before or after g, but g(x) will always be multiplied
by 5 before it is added to f(x) . Since there is no C standard for order of
evaluation of expressions, you should avoid relying on the order of
evaluation when using functions with side effects or using function calls
as actual parameters. You should use temporary variables if your
program relies upon a certain order of evaluation.

Variable Initialization
On some C implementations, auto (non-static) variables are implicitly
initialized to 0. This is not the case on HP-UX and it is most likely not
the case on other implementations of UNIX. Don't depend on the system
initializing your local variables; it is not good programming practice in
general and it makes for nonportable code.

164 Chapter 5

Programming for Portability
General Portability Considerations

Conversions between unsigned char or
unsigned short and int
All HP-UX C implementations, when used in compatibility mode, are
unsigned preserving. That is, in conversions of unsigned
char or unsigned short to int , the conversion process first converts
the number to an unsigned int . This contrasts to some C
implementations that are value preserving (that is, unsigned
char terms are first converted to char and then to int before they are
used in an expression).

Consider the following program:

main()
{

int i = -1;
unsigned char uc = 2;
unsigned int ui = 2;

if (uc > i)
printf("Value preserving\n");

else
printf("Unsigned preserving\n");

if (ui < i)
printf("Unsigned comparisons performed\n");

}

On HP-UX systems in compatibility mode, the program will print:

Unsigned preserving
Unsigned comparisons performed

In contrast, ANSI C specifies value preserving; so in ANSI mode, all
HP-UX C compilers are value preserving. The same program, when
compiled in ANSI mode, will print:

Value preserving
Unsigned comparisons performed

Temporary Files ($TMPDIR)
All HP-UX C compilers produce a number of intermediate temporary
files for their private use during the compilation process. These files are
normally invisible to you since they are created and removed
automatically. If, however, your system is tightly constrained for file
space these files, which are generated in /var/tmp by default, may
exceed space requirements. By assigning another directory to the
TMPDIR environment variable you can redirect these temporary files. See
the cc manual page for details.

Chapter 5 165

Programming for Portability
General Portability Considerations

Input/Output
Since the C language definition provides no I/O capability, it depends on
library routines supplied by the host system. Data files produced by
using the HP-UX calls write(2) or fwrite(3) should not be expected to be
portable between different system implementations. Byte ordering and
structure packing rules will make the bits in the file system-dependent,
even though identical routines are used. When in doubt, move data files
using ASCII representations (as from printf(3)), or write translation
utilities that deal with the byte ordering and alignment differences.

Checking for Standards Compliance
In order to check for standards compliance to a particular standard, you
can use the lint program with one of the following -D options:

• -D_XOPEN_SOURCE

• -D_POSIX_SOURCE

For example, the command

lint -D_POSIX_SOURCE file.c

checks the source file file.c for compliance with the POSIX standard.

If you have the HP Advise product, you can also check for C standard
compliance using the apex command.

166 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C

Porting to ANSI Mode HP C
This section describes porting non-ANSI mode HP C programs to ANSI
C. Specifically, it discusses:

• Compile line options.

• ANSI C name spaces.

• Differences that can lead to porting problems.

ANSI Mode Compile Option (-Aa)
To compile in ANSI C mode, use the -Aa compile time option.

By default, beginning at the HP-UX 10.30 operating system release, HP
C compilers use -Ae .

The -w and +e options should not be used at compile time for true ANSI
compliance. These options suppress warning messages and allow HP C
extensions that are not ANSI conforming.

HP C Extensions to ANSI C (+e)
There are a number of HP C extensions enabled by the +e option in
ANSI mode:

• Long pointers.

• Dollar sign character $ in an identifier.

• Compiler supplied defaults for missing arguments to intrinsic calls
(For example FOPEN("filename",fopt,,rsize) , where ,, indicates that
the missing aopt parameter is automatically supplied with default
values.)

• Sized enumerated types: char enum , short enum , int enum , and
long enum .

• Long long integer type. Note, the long long data type is only
available in HP 9000 workstations and servers, including
workstations and servers.

These are the only HP C extensions that require using the +e option.

Chapter 5 167

Programming for Portability
Porting to ANSI Mode HP C

When coding for portability, you should compile your programs without
the +e command line option, and rewrite code that causes the compiler to
generate messages related to HP C extensions.

const and volatile Qualifiers
HP C supports the ANSI C const and volatile keywords used in
variable declarations. These keywords qualify the way in which the
compiler treats the declared variable.

The const qualifier declares variables whose values do not change
during program execution. The HP C compiler generates error messages
if there is an attempt to assign a value to a const variable. The
following declares a constant variable pi of type float with an initial
value of 3.14 :

const float pi = 3.14;

A const variable can be used like any other variable. For example:

area = pi * (radius * radius);

But attempting to assign a value to a const variable causes a compile
error:

pi = 3.1416; /* This causes an error. */

Only obvious attempts to modify const variables are detected.
Assignments made using pointer references to const variables may not
be detected by the compiler.

However, pointers may be declared using the const qualifier. For
example:

char *const prompt = "Press return to continue> ";

An attempt to reassign the const pointer prompt causes a compiler
error. For example:

prompt = "Exiting program."; /* Causes a compile time error. */

The volatile qualifier provides a way to tell the compiler that the
value of a variable may change in ways not known to the compiler. The
volatile qualifier is useful when declaring variables that may be
altered by signal handlers, device drivers, the operating system, or
routines that use shared memory. It may also prevent certain
optimizations from occurring.

168 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C

The optimizer makes assumptions about how variables are used within a
program. It assumes that the contents of memory will not be changed by
entities other than the current program. The volatile qualifier forces
the compiler to be more conservative in its assumptions regarding the
variable.

The volatile qualifier can also be used for regular variables and
pointers. For example:

volatile int intlist[100];
volatile char *revision_level;

For further information on the HP C optimizer and its assumptions, see
“Optimizing HP C Programs”. For further information on the const and
volatile qualifiers see the HP C/HP-UX Reference Manual.

ANSI Mode Function Prototypes
Function prototypes are function declarations that contain parameter
type lists. Prototype-style function declarations are available only in
ANSI mode. You are encouraged to use the prototype-style of function
declarations.

Adding function prototypes to existing C programs yields three
advantages:

• Better type checking between declarations and calls because the
number and types of the parameters are part of the function's
parameter list. For example:

struct s
{

int i;
}

int old_way(x)
struct s x;
{
/* Function body using the old method for

declaring function parameter types
*/

}
int new_way(struct s x)

{
/* Function body using the new method for

declaring function parameter types
*/

}
/* The functions "old_way" and "new_way" are

both called later on in the program.
*/
old_way(1); /* This call compiles without complaint. */
new_way(1); /* This call gives an error. */

Chapter 5 169

Programming for Portability
Porting to ANSI Mode HP C

In this example, the function new_way gives an error because the
value being passed to it is of type int instead of type struct
x .

• More efficient parameter passing in some cases. Parameters of type
float are not converted to double . For example:

void old_way(f)
float f;
{

/* Function body using the old method for
declaring function parameter types

*/
}

void new_way(float f)
{

/* Function body using the new method for
declaring function parameter types

*/
}

/* The functions "old_way" and "new_way" are
both called later on in the program.

*/
float g;

old_way(g);
new_way(g);

In the above example, when the function old_way is called, the value
of g is converted to a double before being passed. In ANSI mode, the
old_way function then converts the value back to float . When the
function new_way is called, the float value of g is passed without
conversion.

• Automatic conversion of function arguments, as if by assignment. For
example, integer parameters may be automatically converted to
floating point.

/* Function declaration using the new method
for declaring function parameter types

*/

extern double sqrt(double);

/* The function "sqrt" is called later
on in the program.

*/

sqrt(1);

In this example, any value passed to sqrt is automatically converted
to double .

170 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C

Compiling an existing program in ANSI mode yields some of these
advantages because of the existence of prototypes in the standard header
files. To take full advantage of prototypes in existing programs, change
old-style declarations (without prototype) to new style declarations. On
HP-UX, the tool protogen (see protogen(1) in the on-line man pages)
helps add prototypes to existing programs. For each source file,
protogen can produce a header file of prototypes and a modified source
file that includes prototype declarations.

Mixing Old-Style Function Definitions with ANSI
Function Declarations
A common pitfall when mixing prototypes with old-style function
definitions is to overlook the ANSI rule that for parameter types to be
compatible, the parameter type in the prototype must match the
parameter type resulting from default promotions applied to the
parameter in the old-style function definition.

For example:

void func1(char c);
void func1(c)
char c;
{ }

gets the following message when compiled in ANSI mode:

Inconsistent parameter list declaration for "func1"

The parameter type for c in the prototype is char . The parameter type
for c in the definition func1 is also char , but it expects an int because
it is an old-style function definition and in the absence of a prototype,
char is promoted to int .

Changing the prototype to:

void func1(int c);

fixes the error.

The ANSI C standard does not require a compiler to do any parameter
type checking if prototypes are not used. Value parameters whose sizes
are larger than 64 bits (8 bytes) will be passed via a short pointer to the
high-order byte of the parameter value. The receiving function then
makes a copy of the parameter pointed to by this short pointer in its own
local memory.

Chapter 5 171

Programming for Portability
Porting to ANSI Mode HP C

Function Prototype Considerations
There are three things to consider when using function prototypes:

• Type differences between actual and formal parameters.

• Declarations of a structure in a prototype parameter.

• Mixing of const and volatile qualifiers and function prototypes.

Type Differences between Actual and Formal
Parameters
When a prototype to a function is added, be careful that all calls to that
function occur with the prototype visible (in the same context). The
following example illustrates problems that can arise when this is not
the case:

func1(){
float f;
func2(f);

}

int func2(float arg1){
/* body of func2 */

}

In the example above, when the call to func2 occurs, the compiler
behaves as if func2 had been declared with an old-style declaration int
func2() . For an old-style call, the default argument promotion rules
cause the parameter f to be converted to double . When the declaration
of func2 is seen, there is a conflict. The prototype indicates that the
parameter arg1 should not be converted to double , but the call in the
absence of the prototype indicates that arg1 should be widened. When
this conflict occurs within a single file, the compiler issues an error:

Inconsistent parameter list declaration for "func2".

This error can be fixed by either making the prototype visible before the
call, or by changing the formal parameter declaration of arg1 to double .
If the declaration and call of func2 were in separate files, then the
compiler would not detect the mismatch and the program would silently
behave incorrectly.

On HP-UX, the lint(1) command can be used to find such parameter
inconsistencies across files.

172 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C

Declaration of a Structure in a Prototype Parameter
Another potential prototype problem occurs when structures are
declared within a prototype parameter list. The following example
illustrates a problem that may arise:

func3(struct stname *arg);
struct stname { int i; };

void func4(void) {
struct stname s;
func3(&s);

}

In this example, the call and declaration of func3 are not compatible
because they refer to different structures, both named stname . The
stname referred by the declaration was created within prototype scope.
This means it goes out of scope at the end of the declaration of func3 .
The declaration of stname on the line following func3 is a new instance
of struct stname . When conflicting structures are detected, the
compiler issues an error:

types in call and definition of 'func3' have incompatible
struct/union pointer types for parameter 'arg'

This error can be fixed by switching the first two lines and thus declaring
struct stname prior to referencing it in the declaration of func3 .

Mixing of const and volatile Qualifiers and Function
Prototypes
Mixing the const and volatile qualifiers and prototypes can be tricky.
Note that this section uses the const qualifier for all of its examples;
however, you could just as easily substitute the volatile qualifier for
const . The rules for prototype parameter passing are the same as the
rules for assignments. To illustrate this point, consider the following
declarations:

/* pointer to pointer to int */
int **actual0;

Figure 5-1 Mixing Qualifiers and Prototypes Example 1

/* const pointer to pointer to int */
int **const actual1;

Chapter 5 173

Programming for Portability
Porting to ANSI Mode HP C

Figure 5-2 Mixing Qualifiers and Prototypes Example 2

/* const pointer to const pointer to int */
int *const *const actual2;

Figure 5-3 Mixing Qualifiers and Prototypes Example 3

/* const pointer to const pointer to const int */
const int *const *const actual3;

Figure 5-4 Mixing Qualifiers and Prototypes Example 4

These declarations show how successive levels of a type may be qualified.
The declaration for actual0 has no qualifiers. The declaration of
actual1 has only the top level qualified. The declarations of actual2
and actual3 have two and three levels qualified. When these actual
parameters are substituted into calls to the following functions:

void f0(int **formal0);
void f1(int **const formal1);
void f2(int *const *const formal2);
void f3(const int *const *const formal3);

The compatibility rules for pointer qualifiers are different for all three
levels. At the first level, the qualifiers on pointers are ignored. At the
second level, the qualifiers of the formal parameter must be a superset of
those in the actual parameter. At levels three or greater the parameters
must match exactly. Substituting actual0 through actual3 into f0
through f3 results in the following compatibility matrix:

174 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C

Table 5-1 Compatibility Rules for Pointer Qualifiers1

1. C =compatible
S=not compatible, qualifier level two of formal is not a superset of actual parame-
ter.
N=not compatible, qualifier level three doesn't match

f0 f1 f2 f3

actual0 C C C N

actual1 C C C N

actual2 S S C N

actual3 NS NS N C

Chapter 5 175

Programming for Portability
Using Name Spaces in HP C and ANSI C

Using Name Spaces in HP C and ANSI C
The ANSI standard specifies exactly which names (for example, variable
names, function names, type definition names) are reserved. The
intention is to make it easier to port programs from one implementation
to another without unexpected collisions in names. For example, since
the ANSI C standard does not reserve the identifier open , an ANSI C
program may define and use a function named open without colliding
with the open(2) system call in different operating systems.

HP Header File and Library Implementation
of Name Spaces
The HP header files and libraries have been designed to support several
different name spaces. On HP-UX systems, four name spaces are
available:

Figure 5-5 HP-UX Name Spaces

176 Chapter 5

Programming for Portability
Using Name Spaces in HP C and ANSI C

The HP library implementation has been designed with the assumption
that many existing programs will use more routines than those allowed
by the ANSI C standard.

If a program calls, but does not define, a routine that is not in the ANSI
C name space (for example, open), then the library will resolve that
reference. This allows a clean name space and backward compatibility.

The HP header file implementation uses preprocessor conditional
compilation directives to select the name space. In non-ANSI mode, the
default is the HP-UX name space. Compatibility mode means that
virtually all programs that compiled and executed under previous
releases of HP C on HP-UX continue to work as expected. The following
table provides information on how to select a name space from a
command line or from within a program using the defined libraries.

Table 5-2 Selecting a Name Space in ANSI Mode

In ANSI mode, the default is ANSI C name space. The macro names
_POSIX_SOURCE, _XOPEN_SOURCE, and _HPUX_SOURCE may be used to
select other name spaces. The name space may need to be relaxed to
make existing programs compile in ANSI mode. This can be
accomplished by defining the _HPUX_SOURCE macro definition.

For example, in HP-UX:

#include <sys/types.h>
#include <sys/socket.h>

results in the following compile-time error in ANSI mode because
socket.h uses the symbol u_short and u_short is only defined in the
HP-UX name space section of types.h :

When using
the name
space…

Use command line
option…

or #define in
source program Platform

HP-UX -D_HPUX_SOURCE #define
_HPUX_SOURCE

HP-UX Only

XOPEN -D_XOPEN_SOURCE #define
_XOPEN_SOURCE

HP-UX Only

POSIX -D_POSIX_SOURCE #define
_POSIX_SOURCE

HP-UX

ANSI C default default HP-UX

Chapter 5 177

Programming for Portability
Using Name Spaces in HP C and ANSI C

"/usr/include/sys/socket.h", line 79: syntax error:
u_short sa_family;

This error can be fixed by adding -D_HPUX_SOURCE to the command line
of the compile.

178 Chapter 5

Programming for Portability
Silent Changes for ANSI C

Silent Changes for ANSI C
Non-ANSI mode HP C is different from ANSI mode HP C in ways that
generally go unnoticed. On HP-UX, many of these silent differences can
be found by running the lint(1) program. The following list provides some
of these silent changes:

• Trigraphs are new in ANSI C. A trigraph is a three character
sequence that is replaced by a corresponding single character. For
example, ??= is replaced by #. For more information on trigraphs,
refer to “Preprocessing Directives” in the HP C/HP-UX Reference
Manual.

• Promotion rules for unsigned char and unsigned short have
changed. Non-ANSI mode rules specify when an unsigned char or
unsigned short is used with an integer the result is unsigned .
ANSI mode rules specify the result is signed . The following program
example illustrates a case where these rules differ:

main(){
unsigned short us = 1;
int i = -2;
printf("%s\n",(i+us)>0 ? "non-ANSI mode" : "ANSI mode");

}

Note that differences in promotion rules can occur under the
following conditions:

• An expression involving an unsigned char or unsigned short
produces an integer-wide result in which the sign bit is set: that is,
either a unary operation on such a type, or a binary operation in
which the other operand is int or a “narrower” type.

• The result of the preceding expression is used in a context in
which its condition of being signed is significant: it is the left
operand of the right-shift operator or either operand of /,%,<,<=,>,
or >=.

• Floating-point expressions with float operands may be computed as
float precision in ANSI mode. In non-ANSI mode they will always
be computed in double precision.

• Initialization rules are different in some cases when braces are
omitted in an initialization.

Chapter 5 179

Programming for Portability
Silent Changes for ANSI C

• Unsuffixed integer constants may have different types. In non-ANSI
mode, unsuffixed constants have type int . In the ANSI mode,
unsuffixed constants less than or equal to 2147483647 have type int .
Constants larger than 2147483647 have type unsigned . For
example:

-2147483648

has type unsigned in the ANSI mode and int in non-ANSI mode.
The above constant is unsigned in the ANSI mode because
2147483648 is unsigned , and the - is a unary operator.

• Empty tag declarations in a block scope create a new struct instance
in ANSI mode. The term block scope refers to identifiers declared
inside a block or list of parameter declarations in a function definition
that have meaning from their point of declaration to the end of the
block. In the ANSI mode, it is possible to create recursive structures
within an inner block. For example:

struct x { int i; };
{ /* inner scope */

struct x;
struct y { struct x *xptr; };
struct x { struct y *yptr; };

}

In ANSI mode, the inner struct x declaration creates a new version
of the structure type which may then be referred to by struct y . In
non-ANSI mode, the struct x; declaration refers to the outer
structure.

• On Series workstations and servers, variable shifts (<< or >>) where
the right operand has a value greater than 31 or less than 0 will no
longer always have a result of 0. For example,

unsigned int i,j = 0xffffffff, k = 32;
i = j >> k; /* i gets the value 0 in compatibility mode, */

/* 0xffffffff(-1) in ANSI mode. */

180 Chapter 5

Programming for Portability
Porting between HP C and Domain/C

Porting between HP C and Domain/C
All HP-UX and Domain computers have ANSI C compilers. Strictly
standard-compliant programs are highly portable between all these
architectures.

The following Domain/C extensions are not supported on HP-UX in
compatibility mode and in most cases, are not supported in ANSI mode
either:

• Reference variables.

• The following preprocessor directives: #attribute , #options ,
#section , #module , #debug , #eject , #list , #nolist , and
#systype .

• std_$call .

• __attribute modifier and __options specifier.

• systype predefined macro.

• _BFMT__COFF predefined macro.

• _ISP__M68K predefined macro.

• _ISP__A88K predefined macro.

• _ISP__PA_RISC predefined macro.

• Partial specification of struct and union members.

Function prototypes, struct and union initialization, and the
predefined names __DATE__ and __TIME__ , all of which are ANSI C
features, are supported on HP-UX in ANSI mode.

Compile line options are different between HP-UX C and Domain/C.
Check the respective cc(1) page for complete descriptions.

There are other differences between HP-UX C and Domain/C:

• Alignment: All Domain workstations have hardware or software
assists to handle misaligned data. Programs that rely on these
features will not run on the Series 800.

• Floating-point exceptions: All Domain workstations, by default,
enable invalid operation, divide by zero, and overflow exception traps.
Programs that rely on fault detection, for instance, to enter a fault

Chapter 5 181

Programming for Portability
Porting between HP C and Domain/C

handler or to terminate execution on encountering a fault, will
ordinarily generate useless output on HP-UX. However, the PA1.1
math library for the workstations and servers provides a function
fpsetdefaults (3M), which enables these traps and therefore allows
such programs to run as expected. For more information, see the
HP-UX Floating-Point Guide.

• struct layout and alignment, especially bit-field, is different.

• float data type: Domain/C optimizes a statement all of whose atoms
are float or floating-point constants, to be evaluated in float
rather than double .

• register declarations: Domain/C completely ignores register
declarations, except to ensure that language constraints are not
violated.

• Include file search rules are different.

• Programs that rely on undefined behaviors, for instance, the order of
expression evaluation and the application of unsequenced
side-effects, will probably execute differently.

182 Chapter 5

Programming for Portability
Porting between HP C and VMS C

Porting between HP C and VMS C
The C language itself is easy to port from VMS to HP-UX for two main
reasons:

• There is a high degree of compatibility between HP C and other
common industry implementations of C as well as within the HP-UX
family.

• The C language itself does not consider file manipulation or
input/output to be part of the core language. These issues are handled
via libraries. Thus, C avoids some of the thorniest issues of
portability.

In most cases, HP C (in compatibility mode) is a superset of VMS C.
Therefore, porting from VMS to HP-UX is easier than porting in the
other direction. The next several subsections describe features of C that
can cause problems in porting.

Core Language Features
• Basic data types in VMS have the same general sizes as their

counterparts on HP-UX. In particular, all integral and floating-point
types have the same number of bits. struct s and union s do not
necessarily have the same size because of different alignment rules.

• Basic data types are aligned on arbitrary byte boundaries in VMS C.
HP-UX counterparts generally have more restrictive alignments.

• Type char is signed by default on both VMS and HP-UX.

• The unsigned adjective is recognized by both systems and is usable
on char , short , int , and long . It can also be used alone to refer to
unsigned int .

• Both VMS and HP-UX support void and enum data types although
the allowable uses of enum vary between the two systems. HP-UX is
generally less restrictive.

• The VMS C storage class specifiers globaldef , globalref , and
globalvalue have no direct counterparts on HP-UX or other
implementations of UNIX. On HP-UX, variables are either local or
global, based strictly on scope or static class specifiers.

Chapter 5 183

Programming for Portability
Porting between HP C and VMS C

• The VMS C class modifiers readonly and noshare have no direct
counterparts on HP-UX.

• struct s are packed differently on the two systems. All elements are
byte aligned in VMS whereas they are aligned more restrictively on
the different HP-UX architectures based upon their type.
Organization of fields within the struct differs as well.

• Bit fields within struct s are more general on HP-UX than on VMS.
VMS requires that they be of type int or unsigned whereas they
may be any integral type on HP-UX.

• Assignment of one struct to another is supported on both systems.
However, VMS permits assignment of struct s provided the types of
both sides have the same size. HP-UX is more restrictive because it
requires that the two sides be of the same type.

• VMS C stores floating-point data in memory using a proprietary
scheme. Floats are stored in F_floating format. Doubles are stored
either in D_floating format or G_floating format. D_floating
format is the default. HP-UX uses IEEE standard formats which are
not compatible with VMS types but which are compatible with most
other industry implementations of UNIX.

• VMS C converts floats to doubles by padding the mantissa with 0s.
HP-UX uses IEEE formats for floating-point data and therefore must
do a conversion by means of floating-point hardware or by use of
library functions. When doubles are converted to floats in VMS C, the
mantissa is rounded toward zero, then truncated. HP-UX uses either
floating point hardware or library calls for these conversions.

The VMS D_floating format can hide programming errors. In
particular, you might not immediately notice that mismatches exist
between formal and actual function arguments if one is declared
float and the counterpart is declared double because the only
difference in the internal representation is the length of the
mantissa.

184 Chapter 5

Programming for Portability
Porting between HP C and VMS C

• Due to the different internal representations of floating-point data,
the range and precision of floating-point numbers differs on the two
systems according to the following tables:

VMS C Floating-Point Types
Format Approximate Range of |x| Approximate Precision

F_floating 0.29E-38 to 1.7E38 7 decimal digits
D_floating 0.29E-38 to 1.7E38 16 decimal digits
G_floating 0.56E-308 to 0.99E308 15 decimal digits

HP-UX C Floating-Point Types
Format Approximate Range of |x| Approximate Precision
--
float 1.17E-38 to 3.40E38 7 decimal digits
double 2.2E308 to 1.8E308 16 decimal digits
long double 3.36E-4932 to 1.19E4932 31 decimal digits

• VMS C identifiers are significant to the 31st character. HP-UX C
identifiers are significant to 255 characters.

• register declarations are handled differently in VMS. The
register reserved word is regarded by the compiler to be a strong
hint to assign a dedicated register for the variable. On Series 300/400,
the register declaration causes an integral or pointer type to be
assigned a dedicated register to the limits of the system, unless
optimization at level +O2 or greater is requested, in which case the
compiler ignores register declarations. HP 9000 workstations and
servers treat register declarations as hints to the compiler.

• If a variable is declared to be register in VMS and the & address
operator is used in conjunction with that variable, no error is
reported. Instead, the VMS compiler converts the class of that
variable to auto . HP-UX compilers will report an error.

• Type conversions on both systems follow the usual progression found
on implementations of UNIX.

• Character constants (not to be confused with string constants) are
different on VMS. Each character constant can contain up to four
ASCII characters. If it contains fewer, as is the normal case, it is
padded on the left by NULLs. However, only the low order byte is
printed when the %c descriptor is used with printf . Multicharacter
character constants are treated as an overflow condition on Series

Chapter 5 185

Programming for Portability
Porting between HP C and VMS C

300/400 if the numerical value exceeds 127 (the overflow is silent). In
compatibility mode, HP 9000 workstations and servers detect all
multicharacter character constants as error conditions and reports
them at compile time.

• String constants can have a maximum length of 65535 characters in
VMS. They are essentially unlimited on HP-UX.

• VMS provides an alternative means of identifying a function as being
the main program by the use of the adjective main program that is
placed on the function definition. This extension is not supported on
HP-UX. Both systems support the special meaning of main() ,
however.

• VMS implicitly initializes pointers to 0. HP-UX makes no implicit
initialization of pointers unless they are static , so dereferencing an
uninitialized pointer is an undefined operation on HP-UX.

• VMS permits combining type specifiers with typedef names. So, for
example:

typedef long t;
unsigned t x;

is permitted on VMS. This is permitted only in compatibility mode on
Series 300/400; it is not allowed in ANSI C mode on any HP-UX
system. To accomplish this on HP 9000 workstations and servers,
change the typedef to include the type specifier:

typedef unsigned long t;
t x;

Or use a #define :

#define t long
unsigned t x;

Preprocessor Features
• VMS supports an unlimited nesting of #include s. HP-UX in

compatibility mode guarantees 35 levels of nesting. HP-UX in ANSI
mode guarantees 57 levels of nesting.

• The algorithms for searching for #include s differs on the two
systems. VMS has two variables, VAXC$INCLUDE and C$INCLUDE
which control the order of searching. HP-UX follows the usual order
of searching found on most implementations of UNIX.

186 Chapter 5

Programming for Portability
Porting between HP C and VMS C

• #dictionary and #module are recognized in VMS but not on
HP-UX.

• The following symbols are predefined in VMS but not on HP-UX: vms,
vax , vaxc , vax11c , vms_version , CC$gfloat , VMS, VAX, VAXC,
VAX11C, and VMS_VERSION.

• The following symbols are predefined on all HP-UX systems but not
in VMS:

• __hp9000s300 on Series 300/400

• __hp9000s700 on Series 700

• __hp9000s800 on Series 700/800

• __hppa on Series 700/800

• __hpux and __unix on all systems

• HP-UX preprocessors do not include white space in the replacement
text of a macro. The VMS preprocessor does include the trailing white
space. If your HP C program depends on the inclusion of the white
space, you can place white space around the macro invocation.

Compiler Environment
• In VMS, files with a suffix of .C are assumed to be C source files,

.OBJ suffixes imply object files, and .EXE suffixes imply executable
files. HP-UX uses the normal conventions on UNIX that .c implies a
C source file, .o implies an object file, and a.out is the default
executable file (but there is no other convention for executable files).

• varargs is supported on VMS and all HP-UX implementations. See
vprintf(3S) and varargs(5) for a description and examples.

• curses is supported on VMS and all HP-UX implementations. See
curses(3X) for a description.

• VMS supports VAXC$ERRNO and errno as two system variables to
return error conditions. HP-UX supports errno although there may
be differences in the error codes or conditions.

• VMS supplies getchar and putchar as functions only, not as
macros. HP-UX supplies them as macros and also supplies the
functions fgetc and fputc which are the function versions.

Chapter 5 187

Programming for Portability
Porting between HP C and VMS C

• Major differences exist between the file systems of the two operating
systems. One of these is that the VMS directory SYS$LIBRARY
contains many standard definition files for macros. The HP-UX
directory /usr/include has a rough correspondence but the
contents differ greatly.

• A VMS user must explicitly link the RTL libraries
SYS$LIBRARY:VAXCURSE.OLB, SYS$LIBRARY:VAXCRTLG.OLB or
SYS$LIBRARY:VAXCRTL.OLB to perform C input/output operations.
The HP-UX input/output utilities are included in /lib/libc , which
is linked automatically by cc without being specified by the user.

• Certain standard functions may have different interfaces on the two
systems. For example, strcpy() copies one string to another but the
resulting destination may not be NULL terminated on VMS whereas
it always will be on HP-UX.

• The commonly used HP-UX names end , edata and etext are not
available on VMS.

188 Chapter 5

Programming for Portability
Calling Other Languages

Calling Other Languages
It is possible to call a routine written in another language from a C
program, but you should have a good reason for doing so. Using more
than one language in a program that you plan to port to another system
will complicate the process. In any case, make sure that the program is
thoroughly tested in any new environment.

If you do call another language from C, you will have the other
language's anomalies to consider plus possible differences in parameter
passing. Since all HP-UX system routines are C programs, calling
programs written in other languages should be an uncommon event. If
you choose to do so, remember that C passes all parameters by value
except arrays and structures. The ramifications of this depend on the
language of the called function.

Table 5-3 C Interfacing Compatibility

C HP-UX Pascal Fortran

char none byte

unsigned
char

char character (could
reside on an odd
boundary and cause
a memory fault)

char *
(string)

none none

unsigned
char *
(string)

PAC+chr(0) (PAC = packed
array[1.. n] of char)

Array of
char+char(0)

short (int) -32768..32767 (shortint on
Series 700/800)

integer*2

unsigned
short (int)

BIT16 on Series 700/800; none on
Series 300/400 (0..65535 will
generate a 16-bit value only if in
a packed structure)

none

int integer integer (* 4)

Chapter 5 189

Programming for Portability
Calling Other Languages

a. long double is available only in ANSI mode.

Calling Fortran 90
You can compile Fortran 90 functions separately by putting the functions
you want into a file and compiling it with the -c option to produce a .o
file. Then, include the name of this .o file on the cc command line that
compiles your C program. The C program can refer to the Fortran
functions by the names they are declared by in the Fortran source.

Remember that in Fortran 90, parameters are usually passed by
reference (except CHARACTER parameters on Series 700/800, which are
passed by descriptor), so actual parameters in a call from C must be
pointers or variable names preceded by the address-of operator (&).

The following program uses a Fortran 90 block data subprogram to
initialize a common area and a Fortran function to access that area:

long (int)
(ILP32)

integer integer (* 4)

unsigned
(int)

none none

float real real (* 4)

double longreal real*8

long
double a

none real*16

type*
(pointer)

^var , pass by reference, or use
anyvar

none

&var
(address)

addr(var) (requires
$SYSPROG$)

none

*var (deref) var^ none

struct record (cannot always be done;
C and Pascal use different
packing algorithms)

structure

union record case of… union

C HP-UX Pascal Fortran

190 Chapter 5

Programming for Portability
Calling Other Languages

double precision function get_element(i,j)
double precision array
common /a/array(1000,10)
get_element = array(i,j)
end

block data one
double precision array
common /a/array(1000,10)

C Note how easily large array initialization is done.
data array /1000*1.0,1000*2.0,1000*3.0,1000*4.0,1000*5.0,

* 1000*6.0,1000*7.0,1000*8.0,1000*9.0,1000*10.0/
end

The Fortran 90 function and block data subprogram contained in file
xx.f are compiled using f90 -c xx.f .

The C main program is contained in file x.c :

extern double get_element(int *, int *);

main()
{
int i;

for (i=1; i <= 10; i++)
printf("element = %f\n", get_element(&i,&i));

}

The C main program is compiled using cc -Aa x.c xx.o .

Another area for potential problems is passing arrays to Fortran
subprograms. An important difference between Fortran 90 and C is that
Fortran stores arrays in column-major order whereas C stores them in
row-major order (like Pascal).

For example, the following shows sample C code:

int i,j;
int array[10][20];

for (i=0; i<10; i++) {
for (j=0; j<20; j++) /* Here the 2nd dimension

varies most rapidly */
array [i][j]=0;

}

Here is similar code for Fortran 90:

integer array (10,20)

do J=1,20
do I=1,10 !Here the first dimension varies most rapidly

array(I,J)=0
end do

end do

Chapter 5 191

Programming for Portability
Calling Other Languages

Therefore, when passing arrays from Fortran 90 to C, a C procedure
should vary the first array index the fastest. This is shown in the
following example in which a Fortran program calls a C procedure:

integer array (10,20)

do j=1,20
do i=1,10

array(i,j)=0
end do

end do
call cproc (array)

.

.

.
cproc (array)
int array [][];

for (j=1; j<20; j++) {
for (i=1; i<20; i++) /* Note that this is the reverse from

how you would normally access the
array in C as shown above */

array [i][j]= ...
}

.

.

.

There are other considerations as well when passing arrays to Fortran 90
subprograms.

It should be noted that a Fortran 90 main should not be linked with cc .

Calling Pascal
Pascal gives you the choice of passing parameters by value or by reference
(var parameters). C passes all parameters (other than arrays and
structures) by value, but allows passing pointers to simulate pass by
reference. If the Pascal function does not use var parameters, then you
may pass values just as you would to a C function. Actual parameters in
the call from the C program corresponding to formal var parameters in
the definition of the Pascal function should be pointers.

Arrays correlate fairly well between C and Pascal because elements of a
multidimensional array are stored in row-major order in both languages.
That is, elements are stored by rows; the rightmost subscript varies
fastest as elements are accessed in storage order.

192 Chapter 5

Programming for Portability
Calling Other Languages

Note that C has no special type for boolean or logical expressions.
Instead, any integer can be used with a zero value representing false,
and non-zero representing true. Also, C performs all integer math in full
precision (32-bit); the result is then truncated to the appropriate
destination size.

To call Pascal procedures from C on the HP 9000 workstations and
servers, a program may first have to call the Pascal procedure
U_INIT_TRAPS . See the HP Pascal Programmer's Guide for details
about the TRY/RECOVER mechanism.

As true of Fortran 90 main s, a Pascal main should not be linked with cc .

The following source is the Pascal module:

module a;
export

function cfunc : integer;
function dfunc : integer;

implement
function cfunc : integer;

var x : integer;

begin
x := MAXINT;
cfunc := x;

end;

function dfunc : integer;
var x : integer;

begin
x := MININT;
dfunc := x;

end;
end.

The command line for producing the Pascal relocatable object is

$ pc -c pfunc.p

The command line for compiling the C main program and linking the
Pascal module is

$ cc x.c pfunc.o -lcl

The following output results:

2147483647
-2147483648

193

6 Migrating C Programs to HP-UX

This chapter discusses issues to consider when migrating C language
programs from VAX systems, HP 9000 Series 300/400, and HP 9000
Series 500 computers to HP 9000 workstations and servers. The first
section lists some steps you need to take to migrate an application
program to an HP 9000 workstation or server. Subsequent sections in
this chapter highlight major differences between various C compilers
and suggest how to modify source files to ease migration.

Because C is a highly portable language, if you follow the
recommendations given in “Programming for Portability”, your program
should migrate easily. However, if you use system-dependent
programming practices, a program that executes successfully on one
computer may not execute properly when transferred to a HP 9000
workstation or server. For example, if you use system-specific I/O
routines outside of the standard C library, you will have difficulty with
portability.

194 Chapter 6

Migrating C Programs to HP-UX
Migrating an Application

Migrating an Application
Following are the general steps to migrate a C program from an HP-UX
or UNIX system.

1. Test your program on the current system so you have a copy of the
results.

2. Use the tar command (see the HP-UX Reference manual) with the cv
options to transfer the source files you want to migrate to tape.

3. Use the tar command with the r option to transfer any associated
data files to tape.

4. Install the source files and any related data files on the HP 9000
workstation or server using the tar command with the x option.

5. Check your makefiles for any implementation-specific options.
Change programs depending on implementation-specific command
options. On HP-UX systems, these options are generally preceded by
-W or +, and may include options to be passed to ld or cpp . You can
optionally include the -g option to permit symbolic debugging.

6. Review “Programming for Portability” and “Practices to Avoid” and
check over the source code for system-dependent programming. (If the
source files are extensive, you may want to skip this step and catch
errors when you run lint or compile.)

7. Search for instances of #include files and make sure that the files or
routines included appear in the correct directory or library on the HP
9000 workstation or server.

8. Run lint , a C program checker that verifies source code and prints
warning messages about problems with the source code style,
efficiency, portability, and consistency.

9. Compile the program on the HP 9000 workstation or server using the
cc command. (Refer to the HP C/HP-UX Reference Manual for
details about the cc command and options, and explanations of error,
warning, and panic messages.) Change the source code to resolve any
messages you receive.

10.Recompile the program until you receive no messages.

11.Link the program. The linker reports any symbols that cannot be
found.

Chapter 6 195

Migrating C Programs to HP-UX
Byte Order

12.Run the program on the HP 9000 workstation or server. Compare the
results with those received on the original computer.

Byte Order
The VAX computer has a different byte order from HP 9000 computers.
Binary data files created on a VAX computer may need to be swapped
before they can be interpreted on an HP 9000 workstation or server. Use
the descriptions of storage and alignment on both systems to write a
programming tool to reorder the data. The C library function swab (see
the HP-UX Reference Manual) can be used to swap bytes, if that is
sufficient for the particular application. Otherwise, you need to write a
customized tool. ASCII code and data files should migrate to the HP 9000
workstation or server without change.

Data Alignment
The HP 9000 workstations and servers are more strict than other
machines with respect to data alignment. Misaligned data addresses
cause bus errors when attempting to dereference them. Use the +w1
option when compiling to report occurrences of "Casting from loose to
strict alignment." Fix occurrences that result from using the address of a
more loosely aligned item (such as char) to access a more strictly aligned
item (such as int).

Unsupported Keywords
Some implementations of C permit use of the keywords asm, fortran ,
and entry . These are not supported on the HP 9000 workstations and
servers. You must rewrite any code that uses these keywords.

196 Chapter 6

Migrating C Programs to HP-UX
Predefined Macro Names

Predefined Macro Names
In non-ANSI mode, there are several HP C specific macro names defined.
These names may conflict with identifiers used in the source code.

The HP 9000 workstation and server preprocessors predefine the macro
names PWB, hpux, and unix. The HP 9000 workstations and servers
predefine the macro name hp9000s800 ; the HP 9000 Series 500
predefines hp9000s500; and the HP 9000 Series 300/400 predefine the
macro name hp9000s300 . The VAX predefines the macro name vax. If
any of these macro names is used as an identifier in the source code, use
the #undef preprocessor directive to "undefine" the macro or rename the
identifier(s).

In ANSI mode, none of the above macro names are defined and you
should not have difficulty with these HP C specific macro names.

White Space
HP 9000 Series 300/400, 500, and workstation and server preprocessors
do not include trailing white space in the replacement text of a macro.
The VAX preprocessor includes the trailing white space. If your program
depends on the inclusion of the white space, you can place white space
around the macro invocation.

Hexadecimal Escape Sequence
The HP 9000 workstations and servers compiler allows character
constants containing hexadecimal escape sequences. For example, 'A'
can be expressed with the hexadecimal escape sequence '\x41' . The HP
9000 Series 200, 300, and 500 do not allow hexadecimal escape
sequences.

Chapter 6 197

Migrating C Programs to HP-UX
Invalid Structure References

Check your source files for any occurrences for \x , and verify that a
hexadecimal escape sequence is intended.

Invalid Structure References
The HP 9000 workstations and server compiler does not allow structure
members to be referenced through a pointer to a different type of object.
The VAX pcc and HP 9000 Series 200 and 500 compilers allow this.
Change any invalid structure references to cast the pointer to the
appropriate type before referencing the member. For example, given the
following:

struct x {
int y;

}z;
char *c;
c -> y=5;

c -> y=5; is invalid. Instead, use the following code:

c = (char *) &z;
((struct x *) c)->y = 5;

Leading Underscore
External names on the HP 9000 workstations and servers do not contain
a leading underscore. You need to change any programs that rely on
external names containing leading underscores. Note that all languages
on the HP 9000 workstations and servers follow the same convention.
Therefore, only assembly language code and names that were aliased in
other languages are affected by this. Because there is no leading
underscore, external names contain one additional significant character.
Identifiers that differ only in the 255th character will denote different
items on the HP 9000 workstations and servers.

198 Chapter 6

Migrating C Programs to HP-UX
Library Functions

Library Functions
The set of library routines available on HP-UX systems may differ from
those available on BSD 4.2 systems. If you encounter an unresolved
function after linking, refer to the HP-UX Reference Manual to see if
there is an HP-UX function that does what you want it to do. If not, you
will have to write one of your own.

Floating-Point Format
The VAX floating-point representation is different from that on HP 9000
computers. You will have to change any programs dependent on the
characteristics of VAX floating point. In particular, this difference could
expose errors in the code that happen to work acceptably on the VAX.
These errors include mismatched function return types (float on one
side, double on the other), and passing the address of a double instead
of a float to scanf. The VAX representation of a float differs in the
number of bits in the exponent, as well as the mantissa. Therefore,
mismatched types can cause a vastly different answer on HP 9000
computers.

Bit Fields
The HP 9000 workstations and servers C compiler treats bit-fields
without the unsigned type modifier as signed. The VAX, HP 9000 Series
300/400, and 500 compilers treat them as unsigned.

Chapter 6 199

Migrating C Programs to HP-UX
Data Storage and Alignment

Data Storage and Alignment
The alignment requirements of some data types are different on the HP
9000 workstations and servers. Check any externally imposed data
structure layouts for differences. These may include byte and bit-field
order, if you are migrating from a VAX, or different internal padding for
structure member alignment. On the HP 9000 workstations and servers,
doubles must be aligned on a 64-bit boundary, whereas other machines
require alignment on a 32-bit boundary. Refer to Chapter 2 for complete
storage and alignment information.

Typedefs
The HP C compiler does not allow combining type specifiers with
typedef names.

For example:

typedef long t;
unsigned t var;

Compilers derived from pcc accept this code, but HP C does not. Change
the typedef to include the type specifier:

typedef unsigned long t;
t var;

or use a define:

#define t long
unsigned t var;

200 Chapter 6

Migrating C Programs to HP-UX
Typedefs

201

7 Using C Programming Tools

This chapter contains a list and a description of the C tools. It also
provides information on lint and discusses HP specific features of lex
and yacc . For more information on each of the HP C tools see the man
pages, and the book lex and yacc by John R. Levine, Tony Mason, and
Doug Brown.

202 Chapter 7

Using C Programming Tools
Debugging HP C Programs

Debugging HP C Programs
The HP WDB symbolic debugger can be used to debug your programs.
This debugger is an HP-supported version of the GDB debugger
developed by the Free Software Foundation. It is included with HP
C/HP-UX on HP-UX 11.0 and later. You can also download the HP WDB
debugger and documentation free of charge from the WDB web site
http://www.hp.com/go/wdb. Once you have installed HP WDB, you can
refer to product-specific information in the file
/opt/langtools/wdb/doc/README, lo cated in the wdb install path.

The HP DDE symbolic debugger is also available with HP C/HP-UX. You
can obtain information about HP DDE from
http://www.hp.com/go/debuggers. HP DDE is located in the directory
/opt/langtools/bin/dde and /opt/langtools/dde .

Chapter 7 203

Using C Programming Tools
Description of C Programming Tools

Description of C Programming Tools
Below is a brief description of each of the C tools.

• cb is a C program beautifier.

• cflow is a C flow graph generator.

• cpp is the C language preprocessor.

• ctags is a C programming tool that creates a tag file for ex(1) or vi(1)
from the specified C, Pascal, and FORTRAN sources.

• cxref is a C program cross-reference generator.

• lex is a program generator for lexical analysis of text.

• lint is a C program checker.

• yacc is a programming tool for describing the input to a computer
program.

204 Chapter 7

Using C Programming Tools
HP Specific Features of lex and yacc

HP Specific Features of lex and yacc
The following native language support features have been added to the
HP C lex and yacc tools:

• LC_CTYPE and LC_MESSAGES environment variable support in lex -
Determines the size of the characters and language in which
messages are displayed while you use lex .

• -m command line option for lex - Specifies that multibyte characters
may be used anywhere single byte characters are allowed. You can
intermix both 8-bit and 16-bit multibyte characters in regular
expressions if you enable the -m command line option.

• -w command line option for lex - Includes all features in -m and
returns data in the form of the wchar_t data type.

• %l <locale> directive for lex - Specifies the locale at the beginning
of the definitions section. Any valid locale recognized by the
setlocale function can be used. This directive is similar to using
the LC_CTYPE environment variable. To receive wchar_t support
with %l , use the -w command line option.

• LC_CTYPE environment variable support in yacc - Determines the
native language set used by yacc and enables multibyte character
sets. Multibyte characters can appear in token names, on terminal
symbols, strings, comments, or anywhere ASCII characters can
appear, except as separators or special characters.

• If you see the diagnostic message yacc stack overflow , then add
the macro

#define __RUNTIME_YYMAXDEPTH

at the beginning of the user subroutine section in the .y file.

Chapter 7 205

Using C Programming Tools
Using lint

Using lint
The main purpose of lint is to supply the programmer with warning
messages about problems with the source code's style, efficiency,
portability, and consistency. The lint command can be used before
compiling a program to check for syntax errors and after compiling a
program to test for subtle errors such as type differences.

Error messages and lint warnings are sent to standard error (stderr).
Once the code errors are corrected, the C source file(s) should be run
through the C compiler to produce the necessary object code.

The lint command has the form:

lint [options] files ... library-descriptors ...

where options are options flags to control lint checking and messages,
files are the files to be checked that end with .c or .ln , and library
descriptors are the names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppresses messages about assignments of long values
to variables that are not long.

-b Suppresses messages about break statements that
cannot be reached.

-c Only checks for intrafile defects; leaves external
information in files suffixed with .ln .

-h Does not apply heuristics (which attempt to detect
defects, improve style, and reduce waste).

-n Does not check for compatibility with either the
standard or the portable lint library.

-o name Creates a lint library from input files named
llib-l name.ln .

-p Attempts to check portability to other dialects of C
language.

-s Checks for cases where the alignment of structures,
unions, and pointers may not be portable.

206 Chapter 7

Using C Programming Tools
Using lint

-u Suppresses messages about function and external
variables used and not defined or defined and not used.

-v Suppresses messages about unused arguments and
functions.

-x Does not report variables referred to by external
declarations but never used.

-Aa Invokes lint in ANSI mode.

-Ac Invokes lint in compatibility mode. The default is
compatibility mode.

The names of files that contain C language programs should end with the
suffix .c , which is mandatory for lint and the C compiler.

The lint command accepts certain arguments, such as:

-lm

The lint library files are processed almost exactly like ordinary source
files. The only difference is that functions that are defined on a library
file but are not used on a source file do not result in messages. The lint
command does not simulate a full library search algorithm and will print
messages if the source files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard
library file which contains descriptions of the programs which are
normally loaded when a C language program is run. When the -p option
is used, another file is checked containing descriptions of the standard
library routines which are expected to be portable across various
machines. The -n option can be used to suppress all library checking.

lint also recognizes the -LINTLIBRARY the HP C -Wp option. The lint
-LINTLIBRARY option is equivalent to using lint comment
/*LINTLIBRARY*/ in source files. lint also recognizes the -Wp option
and passes named arguments to the preprocessor.

Chapter 7 207

Using C Programming Tools
Using lint

Directives
The alternative to using options to suppress lint 's comments about
problem areas is to use directives. Directives appear in the source code in
the form of code comments. The lint command recognizes five
directives.

/*NOTREACHED*
/ Stops an unreachable code comment about the next

line of code.

/*NOSTRICT*/ Stops lint from strictly type checking the next
expression.

/*ARGSUSED*/ Stops a comment about any unused parameters for the
following function.

/*VARARGSn*/ Stops lint from reporting variable numbers of
parameters in calls to a function. The function's
definition follows this comment. The first n parameters
must be present in each call to the function; lint
comments if they aren't. If /*VARARGS*/ appears
without the n, none of the parameters must be present.
This comment must precede the actual code for a
function. It should not precede extern declarations.

/*LINTLIBRARY
*/ Tells lint that the source file is used to create a lint

library file and to suppress comments about the unused
functions. lint objects if other files redefine routines
that are found there. This directive must be placed at
the beginning of a source file.

Problem Detection
Remember that a compiler reports errors only when it encounters
program source code that cannot be converted into object code. The main
purpose of lint is to find problem areas in C source code that it
considers to be inefficient, nonportable, bad style, or a possible defect,
but which the C compiler accepts as error-free because it can be
converted into object code.

208 Chapter 7

Using C Programming Tools
Using lint

Comments about problems that are local to a function are produced as
each problem is detected. They have the following form:

(line #) warning: message text

Information about external functions and variables is collected and
analyzed after lint has processed the source files. At that time, if a
problem has been detected, it outputs a warning message with the form

message text

followed by a list of external names causing the message and the file
where the problem occurred.

Code causing lint to issue a warning message should be analyzed to
determine the source of the problem. Sometimes the programmer has a
valid reason for writing the problem code. Usually, though, this is not the
case. The lint command can be very helpful in uncovering subtle
programming errors.

The lint command checks the source code for certain conditions, about
which it issues warning messages. These can be grouped into the
following categories:

• variable or function is declared but not used

• variable is used before it is set

• portion of code is unreachable

• function values are used incorrectly

• type matching does not adhere strictly to C rules

• code has portability problems

• code construction is strange

The code that you write may have constructions in it that lint objects to
but that are necessary to its application. Warning messages about
problem areas that you know about and do not plan to correct can be
suppressed. There are two methods for suppressing warning messages
from lint . The use of lint options is one. The lint command can be
called with any combination of its defined option set. Each option causes
lint to ignore a different problem area. The other method is to insert
lint directives into the source code. For information about lint
directives, see “Directives” on page 207.

Chapter 7 209

Using C Programming Tools
Using lint

Unused Variables and Functions
The lint command objects if source code declares a variable that is
never used or defines a function that is never called. Unused variables
and functions are considered bad style because their declarations clutter
the code.

Unused static identifiers cause the following message:

(1)static identifier 'name' defined but never used

Unused automatic variables cause the following message:

(1) warning: 'name' unused in function 'name'

A function or external variable that is unused causes the message

name defined but never used

followed by the function or variable name, the line number and file in
which it was defined. The lint command also looks at the special case
where one of the parameters of a function is not used. The warning
message is:

warning: (line number) 'arg_name' in func_name'

If functions or external variables are declared but never used or defined,
lint responds with

name declared but never used or defined

followed by a list of variable and functions names and the names of files
where they were declared.

Suppressing Unused Functions and Variables Reports
Sometimes it is necessary to have unused function parameters to
support consistent interfaces between functions. The -v option can be
used with lint to suppress warnings about unused parameters.

If lint is run on a file that is linked with other files at compile time,
many external variables and functions can be defined but not used, as
well as used but not defined. If there is no guarantee that the definition
of an external object is always seen before the object code is used, it is
declared extern . The -u option can be used to stop complaints about all
external objects, whether or not they are declared extern . If you want to
inhibit complaints about only the extern declared functions and
variables, use the -x option.

210 Chapter 7

Using C Programming Tools
Using lint

Set/Used Information
A problem exists in a program if a variable's value is used before it is
assigned. Although lint attempts to detect occurrences of this, it takes
into account only the physical location of the code. If code using a local
variable is located before the variable is given a value, the message is:

warning: 'name' may be used before set

The lint command also objects if automatic variables are set in a
function but not used. The message given is:

warning: 'name' set but not used in function 'func_name'

Note that lint does not have an option for suppressing the display of
warnings for variables that are used but not set or set but not used.

Unreachable Code
The lint command checks for three types of unreachable code. Any
statement following a goto , break , continue , or return statement
must either be labeled or reside in an outer block for lint to consider it
reachable. If neither is the case, lint responds with:

warning: (line number) statement not reached

The same message is given if lint finds an infinite loop. It only checks
for the infinite loop cases of while(1) and for(;;) . The third item that
lint looks for is a loop that cannot be entered from the top. If one is
found, then the message sent is:

warning: loop not entered from top

The lint command's detection of unreachable code is by no means
exhaustive. Warning messages can be issued about valid code, and
conversely lint may overlook code that cannot be reached.

Programs that are generated by yacc or lex can have many
unreachable break statements. Normally, each one causes a complaint
from lint . The -b option can be used to force lint to ignore
unreachable break statements.

Function Value
The C compiler allows a function containing both the statement

return();

and the statement

return (expression);

Chapter 7 211

Using C Programming Tools
Using lint

to pass through without complaint. The lint command, however, detects
this inconsistency and responds with the message:

warning: function 'name' has 'return(expression)' and 'return'

The most serious difficulty with this is detecting when a function return
is implied by flow of control reaching the end of the function. This can be
seen with a simple example:

f(a)
{

if (a) return (3);
g();

}

Notice that is a tests false, f will call g and then return with no defined
value. This will trigger a message for lint . If g (like exit) never
returns, the message will still be produced when in fact nothing is wrong.
In practice, some potentially serious defects have been discovered by this
feature.

On a global scale, lint detects cases where a function returns a value
that is sometimes or never used. When the value is never used, it may
constitute an inefficiency in the function definition. When the value is
sometimes used, it may represent bad style (e.g., not testing for error
conditions).

The lint command will not issue a diagnostic message if that function
call is cast as void . For example,

(void) printf("%d\n",i);

tells lint to not warn about the ignored return value.

The dual problem — using a function value when the function does not
return one — is also detected. This is a serious problem.

The lint command does not have an option for suppressing the display
of warning for inconsistent return functions and functions that return
no value.

Portability
The -p option of lint aids the programmer is writing portable code in
four areas:

• character comparisons

• pointer alignments (this is default on PA-RISC computers)

• length of external variables

212 Chapter 7

Using C Programming Tools
Using lint

• type casting

Character representation varies on different machines. Characters may
be implemented as signed values. As a result, certain comparisons with
characters give different results on different machines. The expression

c<0

where c is defined as type char , is always false if characters are
unsigned values. If, however, characters are signed values, the
expression could be either true or false. Where character comparisons
could result in different values depending on the machine used, lint
outputs the message:

warning: nonportable character comparison

Legal pointer assignments are determined by the alignment restrictions
of the particular machine used. For example, one machine may allow
double-precision values to begin on any modulo-4 boundary, but another
may restrict them to modulo-8 boundaries. If alignment requirements
are different, code containing an assignment of a double pointer to an
integer pointer could cause problems. The lint command attempts to
detect where the effect of pointer assignments is machine dependent.
The warning that it outputs is:

warning: possible pointer alignment problem

The amount of information about external symbols that is loaded
depends on: the machine being used, the number of significant
characters, and whether or not uppercase/lowercase distinction is kept.
The lint -p command truncates all external symbols to six characters
and allows only one case distinction. (It changes uppercase characters to
lowercase.) This provides a worst-case analysis so that the uniqueness of
an external symbol is not machine-dependent.

The effectiveness of type casting in C programs can depend on the
machine that is used. For this reason, lint ignores type casting code. All
assignments that use it are subject to lint 's type checking.

Alignment Portability
The -s option of the lint command checks for the following portability
considerations:

• pointer alignments (same as -p option)

• a structure's member alignments

• trailing padding of structures and unions

Chapter 7 213

Using C Programming Tools
Using lint

The checks made for pointer alignments are exactly the same as for the
-p option. The warning for these cases is:

warning: possible pointer alignment problem

The alignment of structure members is different between architectures.
For example, MC680x0 computers pad structures internally so that all
fields of type int begin on an even boundary. In contrast, PA-RISC
computers pad structures so that all fields of type int begin on a
four-byte boundary. The following structure will be aligned differently on
the two architectures:

struct s
{ char c;

int i; /* The offset equals 2 on MC680x0 computers */
}; /* and 4 on PA-RISC computers. */

In many cases the different alignment of structures does not affect the
behavior of a program. However, problems can happen when raw
structures are written to a file on one architecture and read back in on
another. The lint command checks for cases where a structure member
is aligned on a boundary that is not a multiple of its size (for example,
int on int boundary, short on short boundary, and double on
double boundary). The warning that it outputs is:

warning: alignment of struct 'name' may not be portable

The lint command also checks for cases where the internal padding
added at the end of a structure may differ between architectures. The
amount of trailing padding can change the size of a structure. The
warning that lint outputs is:

warning: trailing padding of struct/union 's' may not be portable

Strange Constructions
A strange construction is code that lint considers to be bad style or a
possible defect.

The lint command looks for code that has no effect. For example,

*p++;

where the * has no effect. The statement is equivalent to "p++;". In cases
like this, the message

warning: null effect

is sent.

214 Chapter 7

Using C Programming Tools
Using lint

The treatment of unsigned numbers as signed numbers in comparison
causes lint to report the following:

warning: degenerate unsigned comparison

The following code would produce such a message:

unsigned x;
.
.
.

if (x >=0) ...

The lint command also objects if constants are treated as variables. If
the boolean expression in a conditional has a set value due to constants,
such as

if(1 !=0) ...

lint 's response is:

warning: constant in conditional context

To avoid operator precedence confusion, lint encourages using
parentheses in expressions by sending the message:

warning: precedence confusion possible: parenthesize!

The lint command judges it bad style to redefine an outer block
variable in an inner block. Variables with different meanings should
normally have different names. If variables are redefined, the message
sent is:

warning: name redefinition hides earlier one

The -h option suppresses lint diagnostics of strange constructions.

Standards Compliance
The lint libraries are arranged for standards checking. For example,

lint -D_POSIX_SOURCE file.c

checks for routines referenced in file.c but not specified in the POSIX
standard.

The lint command also accepts ANSI standard C -Aa as well as
compatible C -Ac . In ANSI mode, lint invokes the ANSI preprocessor
(/lib/cpp.ansi) instead of the compatibility preprocessor (/lib/cpp).
ANSI mode lint should be used on source that is compiled with the
ANSI standard C compiler.

215

8 Threads and Parallel Processing

HP C generates efficient parallel code by default. You can increase the
amount of code the compiler can parallelize on multiprocessor systems
by using options, pragmas, and supporting library calls. Applications
running on HP 9000 K-Class and V-Class servers can benefit from the
following parallelization features:

• “Getting Started with Parallelizing C Programs” on page 216
describes basic parallel programming tasks.

• “Parallel Processing Options” on page 222 lists HP C compiler
options that turn parallelization features on or off.

• “Parallel Processing Pragmas” on page 226 describes pragmas you
include in your source file to define parallel or sequential blocks of
code.

• “Memory Classes” on page 236 lists storage classes for controlling
how memory is shared among threads.

• “Synchronization Functions” on page 238 give you control over
dispatching and synchronizing threads.

See Also: For detailed information and examples, see the Parallel Programming
Guide for HP-UX Systems.

216 Chapter 8

Threads and Parallel Processing
Getting Started with Parallelizing C Programs

Getting Started with Parallelizing C
Programs
Here are some basis tasks to help you get started with parallelizing C
programs.

Transforming Loops for Parallel Execution
(+Oparallel)
The +Oparallel option causes the compiler to transform eligible loops
for parallel execution on multiprocessor machines.

The following command lines compile (without linking) three source files:
x.c , y.c , and z.c . The files x.c and y.c are compiled for parallel
execution. The file z.c is compiled for serial execution, even though its
object file will be linked with x.o and y.o .

cc +O3 +Oparallel -c x.c y.c
cc +O3 -c z.c

The following command line links the three object files, producing the
executable file para_prog :

cc +O3 +Oparallel -o para_prog x.o y.o z.o

As this command line implies, if you link and compile separately, you
must use cc , not ld . The command line to link must also include the
+Oparallel and +O3 options in order to link in the right startup files
and runtime support.

Setting the Number of Threads Used in
Parallel
Use the MP_NUMBER_OF_THREADS environment variable to set the
number of processors that are to execute your program in parallel. If you
do not set this variable, it defaults to the number of processors on the
executing machine.

From the C shell, the following command sets MP_NUMBER_OF_THREADS
to indicate that programs compiled for parallel execution can execute on
two processors:

Chapter 8 217

Threads and Parallel Processing
Getting Started with Parallelizing C Programs

setenv MP_NUMBER_OF_THREADS 2

If you use the Korn shell, the command is:

export MP_NUMBER_OF_THREADS=2

Determining Idle Thread States
Use the MP_IDLE_THREADS_WAIT environment variable to determine
how threads wait. Idle threads can be suspended or can spin-wait.

This variable takes an integer value n. For n less than 0, the threads
spin-wait. For n equal to or greater than 0, the threads spin-wait for n
milliseconds before being suspended.

By default, idle threads spin-wait briefly after creation or a join. They
then suspend themselves if they receive no work.

Accessing the Pthreads Library
Pthreads (POSIX threads) refers to the Pthreads library of
thread-management routines. For information on Pthread routines see
the pthread(3t) man page.

To use the Pthread routines, your program must include the
<pthreads.h> header file and the Pthreads library must be explicitly
linked to your program. For example:

% cc -D_POSIX_C_SOURCE+199506L prog.c -lpthread

The -D_POSIX_C_SOURCE=199506L string specifies the appropriate
POSIX revision level. In this case, the level is 199506L.

Profiling Parallelized Programs
Profiling a program that has been compiled for parallel execution is
performed in much the same way as it is for non-parallel programs:

1. Compile the program with the option -G .

2. Run the program to produce profiling data.

3. Run gprof against the program.

4. View the output from gprof .

The differences are:

218 Chapter 8

Threads and Parallel Processing
Getting Started with Parallelizing C Programs

• Running the program in Step 2 produces a gmon.out file for the
master process and gmon.out.1 , gmon.out.2 , and so on for each of
the slave processes. If your program executes on two processors, Step
2 produces two files, gmon.out and gmon.out.1 .

• The flat profile that you view in Step 4 indicates loops that were
parallelized with the following notation:

routine_name##pr_line_0123

where routine_name is the name of the routine containing the loop,
pr (parallel region) indicates that the loop was parallelized, and 0123
is the line number of the beginning of the loop or loops that are
parallelized.

Chapter 8 219

Threads and Parallel Processing
Guidelines for Parallelizing C Programs

Guidelines for Parallelizing C Programs
To ensure the best performance from a parallel program, do not run more
than one parallel program on a multiprocessor machine at the same
time. Running two or more parallel programs simultaneously or running
one parallel program on a heavily loaded system, will slow performance.

You should run a parallel-executing program at a higher priority than
any other user program; see rtprio(1) for information about setting
real-time priorities.

Conditions Inhibiting Loop Parallelization
The following sections describe different conditions that can inhibit
parallelization.

Calling Routines with Side Effects
The compiler will not parallelize any loop containing a call to a routine
that has side effects. A routine has side effects if it does any of the
following:

• Modifies its arguments.

• Modifies an extern , static , or global variable.

• Redefines variables that are local to the calling routine.

• Performs I/O.

• Calls another subroutine or function that does any of the above.

Indeterminate Iteration Counts
If the compiler cannot determine what the runtime loop iteration count
is before the loop executes, it does not parallelize the loop. The reason for
this limitation is that the runtime code must know the iteration count in
order to know how many iterations to distribute to the different
processors for execution.

The following conditions can prevent a runtime count:

• The loop is an infinite loop.

220 Chapter 8

Threads and Parallel Processing
Guidelines for Parallelizing C Programs

• A conditional break statement or goto out of the loop appears in the
loop.

• The loop modifies either the loop-control or loop-limit variable.

• The loop is a while construct and the condition being tested is
defined within the loop.

Data Dependence
When a loop is parallelized, the iterations are executed independently on
different processors, and the order of execution differs from the serial
order that occurs on a single processor. This effect of parallelization is
not a problem. The iterations could be executed in any order with no
effect on the results. Consider the following loop:

for (i=0; i<5; i++)
a[i] = a[i] * b[i];

In this example, the array a would always end up with the same data
regardless of whether the order of execution were 0-1-2-3-4, 4-3-2-1-0,
3-1-4-0-2, or any other order. The independence of each iteration from the
others makes the loop eligible candidate for parallelization.

Such is not the case in the following:

for (i=1; i<5; i++)
a[i] = a[i-1] * b[i];

In this loop, the order of execution does matter. The data used in
iteration i is dependent upon the data that was produced in the previous
iteration [i-1]. a would end up with very different data if the order of
execution were any other than 1-2-3-4. The data dependence in this loop
thus makes it ineligible for parallelization.

Not all data dependences must inhibit parallelization. The following
paragraphs discuss some of the exceptions.

Nested Loops and Matrices
Some nested loops that operate on matrices may have a data dependence
in the inner loop only, allowing the outer loop to be parallelized. Consider
the following:

for (i=0; i<10; i++)
for (j=1; j<100; j++)

a[i][j] = a[i][j-1] + 1;

Chapter 8 221

Threads and Parallel Processing
Guidelines for Parallelizing C Programs

The data dependence in this nested loop occurs in the inner [j] loop:
Each row access of a[i][j] depends upon the preceding row [j-1]
having been assigned in the previous iteration. If the iterations of the
[j] loop were to execute in any other order than the one in which they
would execute on a single processor, the matrix would be assigned
different values. The inner loop, therefore, must not be parallelized.

But no such data dependence appears in the outer loop: Each column
access is independent of every other column access. Consequently, the
compiler can safely distribute entire columns of the matrix to execute on
different processors; the data assignments will be the same regardless of
the order in which the columns are executed, so long as each executes in
serial order.

Assumed Dependencies
When analyzing a loop, the compiler errs on the safe side and assume
that what looks like a data dependence really is one and so it does not
parallelize the loop. Consider the following:

for (i=100; i<200; i++)
a[i] = a[i-k];

The compiler assumes that a data dependence exists in this loop because
it appears that data that has been defined in a previous iteration is being
used in a later iteration. However, if the value of k is 100, the
dependence is assumed rather than real because a[i-k] is defined
outside the loop.

222 Chapter 8

Threads and Parallel Processing
Parallel Processing Options

Parallel Processing Options
HP C provides the following optimization options for parallelizing C
programs:

+O[no]autopar
Optimization level(s): 3, 4

Default: +Oautopar if +Oparallel is enabled

When used with +Oparallel , the +Onoautopar option causes the
compiler to parallelize only those loops marked by the loop_parallel
or prefer_parallel pragmas. Because the compiler does not
automatically find parallel tasks or regions, user-specified task and
region parallelization is not affected by this option.

A loop is safe to parallelize if it has an iteration count that can be
determined at runtime before loop invocation, and contains no
loop-carried dependences, procedure calls, or I/O operations.
A loop-carried dependence exists when one iteration of a loop assigns a
value to an address that is referenced or assigned on another iteration.

+O[no]dynsel
Optimization level(s): 3, 4

Default: +Odynsel if +Oparallel is enabled

When specified with +Oparallel , +Odynsel (the default) enables
workload-based dynamic selection. For parallelizable loops whose
iteration counts are known at compile time, +Odynsel causes the
compiler to generate either a parallel or a serial version of the
loop—depending on which is more profitable.

This optimization also causes the compiler to generate both parallel and
serial versions of parallelizable loops whose iteration counts are
unknown at compile time. At runtime, the loop workload is compared to
parallelization overhead, and the parallel version is run only if it is
profitable to do so.

Chapter 8 223

Threads and Parallel Processing
Parallel Processing Options

The +Onodynsel option disables dynamic selection and tells the
compiler that it is profitable to parallelize all parallelizable loops. The
dynsel pragma can be used to enable dynamic selection for specific
loops when +Onodynsel is in effect.

See Also: “dynsel[(trip_count=n)]” on page 227

+O[no]loop_block
Optimization level(s): 3, 4

Default: +Onoloop_block

The +O[no]loop_block option enables [disables] blocking of eligible
loops for improved cache performance. The +Onoloop_block option
disables automatic and directive-specified loop blocking. For more
information on loop blocking, see the Parallel Programming Guide for
HP-UX Systems.

+O[no]loop_unroll_jam
Optimization level(s): 3, 4

Default: +Onoloop_unroll_jam

The +O[no]loop_unroll_jam option enables [disables] loop unrolling
and jamming. The +Onoloop_unroll_jam option disables both
automatic and directive-specified unroll and jam. Loop unrolling and
jamming increases register exploitation. For more information on the
unroll and jam optimization, see the Parallel Programming Guide for
HP-UX Systems.

+O[no]parallel
Optimization level(s): 3, 4

Default: +Onoparallel

The +Oparallel option optimizes the time it takes to execute a single
process running on a multiprocessor system.

NOTE If you compile one or more files in an application using +Oparallel ,
then the application must be linked (using the compiler driver) with the
+Oparallel option to link in the proper start-up files and runtime
support.

224 Chapter 8

Threads and Parallel Processing
Parallel Processing Options

The +Oparallel option causes the compiler to:

• Recognize the directives and pragmas that involve parallelism, such
as begin_tasks , loop_parallel , and prefer_parallel

• Look for opportunities for parallel execution in loops

The following methods can be used to specify the number of processors
used in executing your parallel programs:

• loop_parallel (max_threads =m) pragma

• prefer_parallel (max_threads =m) pragma

• MP_NUMBER_OF_THREADS environment variable, which is read at
runtime by your program. If this variable is set to a positive integer n,
your program executes on n processors. n must be less than or equal
to the number of processors on the system where the program is
executing.

See “Setting the Number of Threads Used in Parallel” on page 216 for
an example.

The +Oparallel option disables +Ofailsafe .

See Also: “Transforming Loops for Parallel Execution (+Oparallel)” on
page 216.

+O[no]report[= report_type]
Optimization level(s): 3, 4

Default: +Onoreport

This option causes the compiler to display various optimization reports.
+Onoreport is the default. The value of report_type determines which
report is displayed, as described below.

+Oreport=loop produces the Loop Report. This report gives
information on optimizations performed on loops and calls. Using
+Oreport (without =report_type) also produces the Loop Report.

+Oreport=private produces the Loop Report and the Privatization
Table, which provides information on loop variables that are privatized
by the compiler.

+Oreport=all produces all reports.

Chapter 8 225

Threads and Parallel Processing
Parallel Processing Options

The +Oreport[= report_type] option is active only at +O3 and above.
The +Onoreport option does not accept any of the report_type values.
See the Parallel Programming Guide for HP-UX Systems for more
information on the optimization reports.

+O[no]sharedgra
Optimization level(s): 2, 3, 4

Default: +Osharedgra

The +Onosharedgra option disables global register allocation for
shared-memory variables that are visible to multiple threads. This
option can help if a variable shared among parallel threads is causing
wrong answers. See the Parallel Programming Guide for HP-UX Systems
for more information.

226 Chapter 8

Threads and Parallel Processing
Parallel Processing Pragmas

Parallel Processing Pragmas
The syntax of a parallel processing pragma is:

#pragma [_CNX] pragma-list

where:

pragma-list is a comma-separated list of pragmas
described in this section.

See “Specifying Task Parallelism” on page 234 for an example on using
these pragmas.

In the sections that follow, namelist represents a comma-separated list of
variables or arrays. The occurrence of a lowercase n or m is used to
indicate an integer constant. Occurrences of gate_var are for variables
that have been, or are being, defined as gates.

begin_tasks[(attribute_list)]
This pragma defines the beginning of sections of code (see next_task)
that are to be executed as independent, parallel tasks. Each task is
executed by a separate thread. begin_tasks must have an
accompanying end_tasks in the same program unit.

The optional attribute_list can be any of the following legal combinations
(m is an integer constant):

• threads (default)

• dist

• ordered

• max_threads =m

• threads, ordered

• dist, ordered

• threads, max_threads =m

• dist, max_threads =m

• ordered, max_threads =m

• threads, ordered, max_threads =m

Chapter 8 227

Threads and Parallel Processing
Parallel Processing Pragmas

• dist, ordered, max_threads =m

Attributes may be listed in any order. The compiler flags any attribute
combinations other than those listed above with a warning and ignores
the pragma.

Refer to the Parallel Programming Guide for HP-UX Systems for a
complete discussion of parallel tasking.

block_loop[(block_factor=n)]
This pragma indicates a specific loop to block, and optionally, the block
factor n (n must be an integer constant greater than or equal to 2) that is
to be used in the compiler’s internal computation of loop nest based data
reuse. If no block_factor is specified, the compiler uses a heuristic to
determine the block_factor . Refer to the Parallel Programming Guide
for HP-UX Systems for more information on blocking.

critical_section[(gate_var)]
This pragma defines the beginning of a code block in which only one
thread may be executing at a time. The end of the code block must be
indicated by an end_critical_section pragma, which must appear
in the same flow of control within the same program unit. The optional
gate_var can be used to implement a critical section which is not
contiguous at the source level. Refer to the Parallel Programming Guide
for HP-UX Systems for more information.

dynsel[(trip_count=n)]
This pragma enables workload-based dynamic selection for the
immediately following loop. trip_count represents either the
thread_trip_count or node_trip_count attribute, and n is an
integer constant.

When thread_trip_count= n is specified, the serial version of the loop
is run if the iteration count is less than n; otherwise, the thread-parallel
version is run. When node_trip_count= n is specified, the serial
version of the loop is run if the iteration count is less than n; otherwise,
the node-parallel version is run, assuming +Onodepar is specified.

228 Chapter 8

Threads and Parallel Processing
Parallel Processing Pragmas

end_critical_section
This pragma defines the end of the critical section that was begun with
the critical_section pragma. critical_section and
end_critical_section must appear as a pair. Refer to the Parallel
Programming Guide for HP-UX Systems for more information.

end_ordered_section
This pragma defines the end of the ordered section that was begun with
the ordered_section pragma. ordered_section and
end_ordered_section must appear as a pair. Refer to the Parallel
Programming Guide for HP-UX Systems for more information on ordered
sections.

end_parallel
This pragma signifies the end of a parallel region. The parallel
pragma signifies the beginning of a parallel region. Refer to the Parallel
Programming Guide for HP-UX Systems for more information.

end_tasks
This pragma terminates the specification of parallel tasks indicated by
begin_tasks and next_task . It must appear at the end of the last
section of parallel code defined by these pragmas. All of these must
appear in the same program unit. Refer to the Parallel Programming
Guide for HP-UX Systems for more information.

loop_parallel[(attribute_list)]
This pragma is an explicit instruction to the compiler to parallelize the
immediately following loop. The loop iterations are run in an
indeterminate order unless the optional ordered attribute appears. You
are responsible for any required data privatization and loop
synchronization, as described in the Parallel Programming Guide for
HP-UX Systems. The optional attribute_list can be any of the following
combinations (n and m are integer constants):

• threads (default)

• dist

Chapter 8 229

Threads and Parallel Processing
Parallel Processing Pragmas

• ordered

• max_threads= m

• chunk_size= n

• threads, ordered

• dist, ordered

• threads, max_threads= m

• dist, max_threads= m

• ordered, max_threads= m

• threads, chunk_size= n

• dist, chunk_size= n

• threads, ordered, max_threads= m

• dist, ordered, max_threads= m

• chunk_size= n, max_threads= m

• threads, chunk_size= n, max_threads= m

• dist, chunk_size= n, max_threads= m

• ivar= indvar

The ivar= indvar attribute is:

• Required for all loops in C

• Compatible with any other attribute

Attributes may be listed in any order. The compiler flags any attribute
combinations other than those listed above with a warning and ignores
the pragma.

Refer to the Parallel Programming Guide for HP-UX Systems for more
information.

loop_private(namelist)
This pragma declares a list of variables and/or arrays private to the
immediately following loop. No values may be carried into the loop by
loop_private variables. To be loop private, the variables and/or arrays
must be assigned before they are used on each iteration of the
immediately following loop. These private data items should be treated

230 Chapter 8

Threads and Parallel Processing
Parallel Processing Pragmas

as distinct objects from the shared items of the same name that exist
outside the loop. Values assigned to loop_private variables on the
final iteration (that is, the nth iteration of a loop with n iterations) may
be saved into the shared variables of the same name if the save_last
pragma also appears on this loop. If save_last is not used, then the
value of any shared variable declared to be loop_private is undefined
at loop termination. Refer to the Parallel Programming Guide for HP-UX
Systems for more information.

next_task
This pragma starts a block of code following a begin_tasks block that
will be executed as a parallel task. The end of the code block is marked
by another next_task or by an end_tasks pragma.

This pragma must appear within a begin_tasks and end_tasks pair.
There is no limit on the number of next_task pragmas that can appear.
Refer to the Parallel Programming Guide for HP-UX Systems for more
information.

no_block_loop
This pragma disables loop blocking on the immediately following loop.
Refer to the Parallel Programming Guide for HP-UX Systems for more
information on loop blocking.

no_distribute
This pragma disables loop distribution for the immediately following
loop. Refer to the Parallel Programming Guide for HP-UX Systems for
more information on loop distribution.

no_dynsel
This pragma disables workload-based dynamic selection for the
immediately following loop. Refer to the Parallel Programming Guide for
HP-UX Systems for more information on dynamic selection.

Chapter 8 231

Threads and Parallel Processing
Parallel Processing Pragmas

no_loop_dependence(namelist)
This pragma informs the compiler that the arrays in namelist do not
have any dependencies for iterations of the immediately following loop.
Use no_loop_dependence for arrays only; use loop_private to
indicate dependence-free scalar variables.

This pragma causes the compiler to ignore any dependences that it
perceives to exist. This can enhance the compiler’s ability to optimize the
loop, including the possibility of parallelization.

Refer to the Parallel Programming Guide for HP-UX Systems for more
information.

no_loop_transform
This pragma prevents the compiler from performing reordering
transformations on the following loop. The compiler does not distribute,
fuse, block, interchange, unroll, unroll and jam, or parallelize a loop on
which this pragma appears. Refer to the Parallel Programming Guide for
HP-UX Systems for more information.

no_parallel
This pragma prevents the compiler from generating parallel code for the
immediately following loop. Refer to the Parallel Programming Guide for
HP-UX Systems for more information.

no_side_effects(funclist)
This pragma (#pragma _CNX no_side_effects) informs the compiler
that the functions appearing in funclist have no side effects wherever
they appear lexically following the pragma. Side effects include
modifying a function argument, performing I/O, or calling another
routine that does any of the above. The compiler can sometimes
eliminate calls to procedures that have no side effects; also, the compiler
may be able to parallelize loops with calls when informed that the called
routines do not have side effects.

232 Chapter 8

Threads and Parallel Processing
Parallel Processing Pragmas

ordered_section(gate_var)
This pragma defines the beginning of an ordered section. An ordered
section is the same as a critical section (a code block in which only one
thread may be executing at a time) with the additional restriction that
the threads must pass through the ordered section in iteration order of
the most recently initiated parallelized loop. The end of the code block
must be indicated by an end_ordered_section pragma. Ordered sections
must appear within the control flow of a loop_parallel (ordered)
pragma. Refer to the Parallel Programming Guide for HP-UX Systems
for more information.

parallel[(attribute_list)]
This pragma signifies the beginning of a parallel region of code. All code
up to the following end_parallel pragma will be run on all available
threads. No loop transformations, data privatization, or parallelization
analysis will be performed by the compiler on the region.

The optional attribute_list can be any of the following legal combinations
(m is an integer constant):

• threads (default)

• max_threads= m

• threads,max_threads= m

Attributes may be listed in any order. The compiler flags any attribute
combinations other than those listed above with a warning and ignores
the pragma.

Refer to the Parallel Programming Guide for HP-UX Systems for more
information.

parallel_private(namelist)
This pragma declares a list of variables or arrays private to the
immediately following parallel region. It serves the same purpose for
parallel regions that task_private serves for tasks. The privatized
variables and arrays will not carry their values beyond the
end_parallel pragma. Refer to the Parallel Programming Guide for
HP-UX Systems for more information.

Chapter 8 233

Threads and Parallel Processing
Parallel Processing Pragmas

prefer_parallel[(attribute_list)]
This pragma instructs the compiler to parallelize the following loop, but
only if it is safe to do so. A loop is safe to parallelize if it has an iteration
count that can be determined at runtime before loop invocation and
contains no loop-carried dependences, procedure calls, or I/O operations.
(A loop-carried dependence exists when one iteration of a loop assigns a
value to an address that is referenced or assigned on another iteration.)
Refer to the Parallel Programming Guide for HP-UX Systems for more
information.

The optional attribute_list can be any of the following combinations (n
and m are integer constants):

• threads (default)

• dist

• max_threads= m

• chunk_size= n

• threads, max_threads= m

• dist, max_threads= m

• threads, chunk_size= n

• dist, chunk_size= n

• chunk_size= n, max_threads= m

• threads, chunk_size= n, max_threads= m

• dist, chunk_size= n, max_threads= m

Attributes may be listed in any order. The compiler flags any attribute
combinations other than those listed above with a warning and ignores
the pragma.

save_last[(list)]
This pragma specifies that the variables in the comma-separated list
that are also named in an associated loop_private(namelist) pragma
must have their last values saved into the “shared” variable of the same
name at loop termination. (A variable’s last value in a loop of n iterations
is the value it is assigned in the nth iteration.)

234 Chapter 8

Threads and Parallel Processing
Parallel Processing Pragmas

If the optional list is not used, save_last specifies that all variables
named in an associated loop_private(namelist) pragma must have
their last values saved into the “shared” variable of the same name at
loop termination.

If save_last is not specified then the values in any privatized variables
or arrays are indeterminate at loop termination. Refer to the Parallel
Programming Guide for HP-UX Systems for more information.

scalar
This pragma prevents the compiler from performing reordering
transformations on the following loop. The compiler does not distribute,
fuse, block, interchange, unroll, unroll and jam, or parallelize a loop on
which this pragma appears.

The no_loop_transform pragma provides the same functionality as
the scalar pragma and is recommended in place of the scalar pragma.

task_private(namelist)
This pragma privatizes the variables and arrays specified in namelist for
each task specified in the immediately following
begin_tasks /end_tasks block. If a task_private data object is
referenced within a task, it must have been assigned a value previously
in that task. The privatized variables and arrays do not carry their
values beyond the end_tasks pragma. Refer to the Parallel
Programming Guide for HP-UX Systems for more information.

Specifying Task Parallelism
The following example uses the begin_tasks , task_private ,
next_task , and end_tasks pragmas to specify simple task-parallelism:

/* one thread executes the for loop */
#pragma begin_tasks, task_private(i)

for(i=0;i<n-1;i++)
a[i] = a[i +1] + b[i];

/* another thread executes the function call */
#pragma next_task

tsub(x,y);

/* a third thread assigns elements of array d to every
other element of c */

Chapter 8 235

Threads and Parallel Processing
Parallel Processing Pragmas

#pragma next_task

for(i=0;i<500;i++)
c[i*2]=d[i];

#pragma end_tasks

The loop induction variable i is manually privatized because it is used to
control loops in two different tasks. If i was not private, both tasks
would modify it, causing wrong answers. The task_private pragma is
described in “task_private(namelist)” on page 234.

236 Chapter 8

Threads and Parallel Processing
Memory Classes

Memory Classes
In order to use memory classes in C programs, you must include the
header file /usr/include/spp_prog_model.h . Memory classes are
described in the Parallel Programming Guide for HP-UX Systems.

In C, the general form for assigning memory is:

#include <spp_prog_model.h>

. . .

[storage_class_specfier] memory_class_name type_specifier namelist

where:

storage_class_specifier specifies a non-automatic storage
class

memory_class_name is thread_private or
node_private

type_specifier is a data type (for example, int or
float)

namelist is a comma-seperated list of variables
and/or arrays of type type_specifier

Data objects that are assigned a memory class must have a static storage
duration. If the object is declared within a function, it must have the
storage class extern or static . Data objects declared at file scope and
assigned a memory class need not specify a storage class.

A hypernode is a set of processors and physical memory organized as a
symmetric multiprocessor (SMP) running a single image of the operating
system microkernel.

node_private
This storage class specifier causes the variables and arrays specified in
namelist to be replicated in the physical memory of each hypernode on
which the process is executing. While each data object has a single image
in virtual memory, it maps to a different physical location on each
hypernode. The threads of a process within a hypernode all share access
to the copy on their hypernode and cannot access the copies on other
hypernodes.

Chapter 8 237

Threads and Parallel Processing
Memory Classes

thread_private
This storage class specifier causes the variables and arrays to be treated
as thread_private . These data objects map to unique node_private
addresses for each thread of a process. Refer to the Parallel
Programming Guide for HP-UX Systems for more information.

238 Chapter 8

Threads and Parallel Processing
Synchronization Functions

Synchronization Functions
HP C provides functions that can be used with pragmas to achieve
synchronization.

Gates allow you to restrict execution of a block of code to a single thread.
They can be allocated, locked, unlocked or deallocated. Or, they can be
used with the ordered or critical section pragmas, which automate the
locking and unlocking functions.

Barrriers block further execution until all executing threads reach the
barrier.

You declare gates and barriers by using the following type definitions:

gate_t namelist declares variables to use in a critical
section, ordered section, or passed as
arguments to the synchronization
functions

barrier_t namelist declares a list of synchronization
variables for the barrier routines

namelist is a comma-separated list of one or more gate or barrier names.

Gates and barriers should only appear in definition and declaration
statements, and as formal and actual arguments.

Allocate Functions
These functions allocate memory for a gate or barrier. When memory is
first allocated, gate variables are unlocked.

int alloc_gate(gate_t *gate_p);

int alloc_barrier(barrier_t *barrier_p);

gate_p and barrier_p are pointers of the indicated type, which have been
previously declared as described above.

Chapter 8 239

Threads and Parallel Processing
Synchronization Functions

Deallocate Functions
These functions free the memory assigned to the specified gate or barrier
variable.

These functions have the following declarations:

int free_gate(gate_t *gate_p);

int free_barrier(barrier_t, * barrier_p);

where gate_p and barrier_p are pointers of the indicated type. Always
free gates and barriers when you are done using them.

Locking Functions
These functions acquire a gate for exclusive access. If the gate cannot be
immediately acquired, the calling thread waits for it. The conditional
locking functions, which are prefixed with COND_ or cond_ , acquire a
gate if doing so does not require a wait. If the gate is acquired, the
functions return 0; if not, they return -1.

The functions have the following declarations:

int lock_gate(gate_t * gate_p);

int cond_lock_gate(gate_t * gate_p);

where gate_p is a pointer of the indicated type.

Unlocking Function
This function releases a gate from exclusive access. Gates are typically
released by the thread that locks them, unless a gate was locked by
thread 0 in serial code. In that case it might be unlocked by a single
different thread in a parallel construct.

The function has the following declaration:

int unlock_gate(gate_t * gate_p);

where gate_p is a pointer of the indicated type.

240 Chapter 8

Threads and Parallel Processing
Synchronization Functions

Wait Function
This function uses a barrier to cause the calling thread to wait until the
specified number of threads call the function, at which point all threads
are released from the function simultaneously.

The function has the following declaration:

int wait_barrier(barrier_t * barrier_p, const int * nthr);

where barrier_p is a pointer of the indicated type and nthr is a pointer
referencing the number of threads calling the routine.

You can use a barrier variable in multiple calls to the wait() function,
as long as you ensure that two barriers are not active at the same time.
Also, check that nthr reflects the correct number of threads.

Index

Index 241

Symbols
__hp9000s300, 159
__hp9000s700, 159
__hp9000s800, 159
__hppa, 159
__hpux, 159
__LP64__, 159
__unix, 159
_PA_RISC2_0, 159

Numerics
64-bit porting, 144

A
-Aa compiler option, 145, 166
accessing unaligned data, 150
address 0, reading and writing,

163
aggregates, 46
aggressive optimization, 77
ALIAS ($ALIAS) directive, 63
aliasing options

optimization, 135
alignment, 199

bit field, 14
bus errors, 195
categories, 7
checking with lint, 153
DOMAIN_NATURAL, 7, 24
DOMAIN_WORD, 7, 24
HP 3000 Series 900, 38
HP 9000 workstations and

servers, 38
HPUX_NATURAL, 7, 24
HPUX_NATURAL_S500, 24
HPUX_WORD, 7, 24
NATURAL, 7, 24
NOPADDING, 24
porting between HP

architectures, 36
scalar, 8
structures, 36

typedef, 20
alloc_barrier() function, 238
alloc_gate() function, 238
ALLOCS_NEW_MEMORY

pragma, 132
allow_unaligned_data_access(),

150
ANSI C

function prototypes, 168, 170
mode, 166
porting to ANSI mode, 166
silent changes, 178

apex command, 165
application migration, 194
arrays

HP C and Fortran 90, 61
HP C and Pascal, 50
size and alignment, 8

asm keyword, 195
auto variables in C, 163

B
barrier_t type definition, 238
begin_tasks pragma, 226
BFMT COFF predefined macro,

180
bit fields, 51, 160, 183

alignment, 14
checking alignment, 153
declared without signed

keyword, 178
declared without unsigned

keyword, 178
enums, 161
HP 9000 workstations and

servers HP C, 198
in C, 160, 183
Series 300/400 HP C, 198
VAX/VMS C, 42, 198

block scope, 179
block_loop pragma, 227
boolean variables, 51

branch optimization, 110
BROWSER environment

variable, 2
bus error, 32, 33

handling in C, 150
byte order, 195

C
C

calls to Fortran 90, 189
calls to Pascal, 191
casting pointer types, 154
char data type, 158
data alignment, 154
data types, comparing Pascal/

Fortran 90, 188
division by zero, 161
expression evaluation, 163
identifiers, 158
include files, 157
input/output routines, 165
int data type, 164
integer overflow, 161
null pointers, 162
porting to Domain/C, 180
porting to/from VMS, 182
predefined symbols, 156, 159
preprocessor (cpp), 156
register storage class, 158, 184
structure assignment, 162
structure-valued functions,

162
temporary files, 164
TMPDIR variable, 164
typedef keyword, 155
unsigned char converted to int,

164
unsigned char data type, 158
unsigned short converted to

int, 164
variable initialization, 163
-z option, 162

242 Index

Index

calling other languages, 45
casting, 195
casting pointer types in C, 154
cb, 204
CCS/C storage and alignment,

41
CDE Help, 3
cflow, 204
char data type in C, 158, 182
character constants in VMS C,

185
_CNX no_side_effects pragma,

231
comparing storage and

alignment, 37
compiler options

+df, 85
+e, 166
+I, 84
+r, 57
+ubytes, 33
+w1, 195
-Aa, 145, 166
+df, 85
+pgm, 86

cond_lock_gate() function, 239
conditional branches, 110
conditional compilation in C, 156
conservative optimization, 76
const keyword, 167, 172
corresponding types, 64
cpp preprocessor, 156, 204
critical_section pragma, 227
CROOTDIR environment

variable, 3
ctags, 204
curses(3X), 186
cxref, 204

D
D_floating VMS format, 184
data alignment, 7, 9, 195

data file migration, 195
data storage, 199
data type alignment

in C, 154
without pragmas, 154

data, global, 54
DATE predefined names, 180
DDE debugger, 202
dead code elimination, 111
debugging C programs, 202
declarations, 145
define preprocessor statement,

145
defines, 227
dereferencing null pointers in C,

162
descriptor, string, 50, 61
+df compiler option, 85
DISPLAY environment variable,

2
division by zero in C, 161
Domain/C, 180
DOMAIN_NATURAL

alignment, 7, 24
DOMAIN_WORD alignment, 7,

24
dynamic selection

dynsel pragma, 227
+O[no]dynsel compiler option,

222
dynsel pragma, 227

E
+e compiler option, 166
end padding of structures, 153
end_critical_section pragma,

228
end_ordered_section pragma,

228
end_parallel pragma, 228
end_tasks pragma, 228
entry keyword, 195

enum
bit-fields in C, 161
data type in C, 182

environment variables
BROWSER, 2
CROOTDIR, 3
DISPLAY, 2

error messages, 2
+ESconstlit compiler option, 70
+ESfic compiler option, 70
+ESlit compiler option, 70
+ESnolit compiler option, 70
expression evaluation in C, 163
extensions to ANSI C, 166
external names, 197

F
F_floatin VMS format, 184
files

passing files between C and
Fortran, 62

FLOAT_TRAPS_ON pragma,
133

floating-point
conversion from float to int,

162
exceptions, 162
expressions with floats, 178
instructions, 112
representation, 198
types for C, 184
VMS memory format, 183

floating-point exceptions, 161
flow.data file, 85
FMA, 93
FMPYFADD, 93
FMPYNFADD, 93
Fortran 90, 46

$ALIAS directive, 63
calling from C, 189
compared with HP C, 59, 61
file I/O, 62

Index

Index 243

linking, 63
passing parameters with HP C,

63
READ statement, 62

fortran keyword, 195
free_barrier() function, 239
free_gate() function, 239
function declaration, 51
function prototypes, 168, 170
functions, invoking, 46
fused multiply-add, 93
fusing, 93
fwrite(3) library call, 165

G
G_floating VMS format, 184
gate_t type definition, 238
global data, 54
globaldef, 182
globalref, 182
globalvalue, 182
goto statement, 110

H
header file

spp_prog_model.h, 236
help, online, 2
HP 3000 CCS/C storage, 41
HP 3000 Series 900 alignment,

38
HP 9000 workstation and server

alignment, 38
HP Pascal, 54
HP_ALIGN pragma, 23, 27, 32,

36
HP_LONG_RETURN pragma,

139
HP_NO_RELOCATION

pragma, 138
hp9000s200 macro, 196
hp9000s300 macro, 196

hp9000s300 symbol, 156, 159,
186

hp9000s500 macro, 196
hp9000s700 symbol, 156, 159,

186
hp9000s800 macro, 196
hp9000s800 symbol, 156, 159,

186
hppa symbol, 159, 186
HP-UX

linking Pascal routines, 58
hpux macro, 196
hpux symbol, 159, 186
HP-UX workstation and server

padding, 39
HPUX_NATURAL alignment,7,

24
HPUX_NATURAL_S500

alignment, 24
HPUX_WORD alignment, 7, 24

I
+I compiler option, 70
identifiers in C, 158, 184
ifdef (#ifdef), 156
ILP32 data model, definition, 6
include files, 194
include files and portability, 157
inconsistent parameter list

declaration, 170
indexing arrays, 50
INLINE pragma, 131
input/output in C, 165
instruction scheduler, 112
integer constants, unsuffixed,

178
integer overflow in C, 161
internal padding of structures,

153

K
keywords

asm, 195
const, 167, 172
entry, 195
fortran, 195
volatile, 167, 172

L
languages, calling other, 45
leading underscore in identifier,

197
level 1 optimization, 110
level 2 optimization, 114
level 3 optimization, 122
level 4 optimization, 124
lex, 204
library functions, 198
linking

HP Fortran 90 on HP-UX, 63
HP Pascal on HP-UX, 58

lint, 157, 204
lint C program checker, 145, 194
lint, checking alignment with,

153
lint, checking for standards

compliance, 165
lock_gate() function, 239
loop optimization, 120
loop_parallel pragma, 228
loop_private pragma, 229
LP64 data model, definition, 6

M
macros

hp9000s200, 196
hp9000s300, 196
hp9000s500, 196
hp9000s800, 196
hpux, 196
PWB, 196
unix, 196
white space, 196

makefiles, 194

244 Index

Index

migrating to HP C, 194
MP_IDLE_THREADS_WAIT,

217
MP_NUMBER_OF_THREADS,

216

N
n, 227
NATURAL alignment, 7, 24
next_task pragma, 230
no_block_loop pragma, 230
no_distribute pragmapragmas

no_distribute, 230
no_dynsel pragma, 230
no_loop_dependence pragma,

231
no_loop_transform pragma, 231
no_parallel pragma, 231
NO_SIDE_EFFECTS pragma,

132
node_private storage class

specifier, 236
NOINLINE pragma, 131
NOPADDING alignment, 24
[NO]PTRS_STRONGLY_TYPE

D pragma, 134
noshare VMS C class modifier,

183
null pointers in C, accessing, 162

O
+Oaggressive option, 75
+Oconservative option, 75
+Oinline_budget option, 95
+Olevel=name, 89
online help, 2
+O[no]autopar option, 222
+O[no]dataprefetch option, 90
+O[no]dynsel option, 222
+O[no]entrysched option, 91
+O[no]extern option, 91
+O[no]fail_safe option, 92

+O[no]fastaccess option, 93
+O[no]fltacc option, 93
+O[no]global_ptrs_unique

option, 135, 94
+O[no]initcheck option, 94
+O[no]inline option, 95
+O[no]libcalls option, 96
+O[no]loop_block option, 223
+O[no]loop_transform option, 97
+O[no]loop_unroll option, 97
+O[no]loop_unroll_jam option,

223
+O[no]moveflops option, 98
+O[no]multiprocessor option,

90, 98, 105
+O[no]pipeline option, 99
+O[no]procelim option, 99
+O[no]promote_indirect_calls,

100
+O[no]ptrs_ansi option, 100, 135
+O[no]ptrs_strongly_typed

option, 135, 101
+O[no]ptrs_to_globals option,

103, 135
+O[no]regionsched option, 104
+O[no]regreassoc option, 105
+O[no]report option, 224
+O[no]sharedgra option, 225
+O[no]sideeffects option, 105
+O[no]signedpointers option,

106
+O[no]static_prediction option,

106
+O[no]vectorize option, 107
+O[no]volatile option, 107
+O[no]whole_program_mode

option, 108
OPT_LEVEL pragma, 129, 131
optimization

+ESconstlit, 70
+ESnolit, 70
aggressive, 77
aliasing options, 135

branch, 110
conservative, 76
dead code elimination, 111
+ESfic option, 70
+ESlit option, 70
+I option, 70
instruction scheduling, 112
level 0, 68
level 1, 68, 110
level 2, 68, 114
level 3, 68, 122
level 4, 68, 124
loop, 120
+Oaggressive, 75
+Oinline_budget, 95
+Olevel=name, 89
+O[no]autopar, 222
+Oconservative option, 75
+O[no]dataprefetch, 90
+O[no]dynsel, 222
+O[no]entrysched, 91
+O[no]extern, 91
+O[no]fail_safe, 92
+O[no]fastaccess, 93
+O[no]fltacc, 93
+O[no]global_ptrs_unique, 94
+O[no]initcheck, 94
+O[no]inline, 95
+O[no]libcalls, 96
+O[no]loop_block, 223
+O[no]loop_transform, 97
+O[no]loop_unroll, 97
+O[no]loop_unroll_jam, 223
+O[no]moveflops, 98
+O[no]multiprocessor, 90, 98,

105
+O[no]parallel, 223
+O[no]pipeline, 99
+O[no]procelim, 99
+O[no]promote_indirect_calls,

100
+O[no]ptrs_ansi, 100

Index

Index 245

+O[no]ptrs_strongly_typed,
101

+O[no]ptrs_to_globals, 103
+O[no]regionsched, 104
+O[no]regreassoc, 105
+O[no]sharedgra, 225
+O[no]sideeffects, 105
+O[no]signedpointers, 106
+O[no]static_prediction, 106
+O[no]vectorize, 107
+O[no]volatile, 107
+O[no]whole_program_mode,

108
+O[no]report, 224
+Oreusedir=dir, 104
+P compiler option, 70
parameters, 82
peephole, 113
register allocation, 111

optimization reports
overview, 224

OPTIMIZE pragma, 129, 131
optimizer

using register qualifier
variables, 114

order, byte, 195
ordered_section pragma, 232
+Oreusedir=dir, 104

P
+P compiler option, 70
PACK pragma, 34
padding, 33

HP 1000, 42
HP 3000, 42
HP-UX workstation and server

padding, 39
VAX/VMS C, 43

padding bytes in C structures,
154

parallel pragma
pragmas

parallel, 232
parallel regions

end_parallel pragma, 228
parallel pragma, 232
privatizing data in, 232

parallel_private pragma, 232
parallelization, 215

compile-line options, 222
guidelines, 219
MP_IDLE_THREADS_WAIT,

217
MP_NUMBER

_OF_THREADS, 216
pragmas, 226
profiling code, 217
using the +Oparallel option,

216
parameter passing, 46

formal and actual parameters,
171

HP Fortran 90, 63
HP Pascal, 54

parameter passing in C, 157
Pascal

calling from C, 191
compared to HP C, 46, 50
linking, 58
passing parameters with HP C,

54
storage allocation, 46
variant record, 51

passing by value, 46, 54
passing parameters, 54

HP Fortran 90, 63
pcc (Portable C Compiler), 145
+pgm compiler option, 86
pointer casting in C, 154
pointers, 32, 33

misaligned, 195
portability, 33, 36, 145
porting from 32-bit to 64-bit

mode, 144
pragmas

ALLOCS_NEW_MEMORY,
132

begin_tasks, 226
block_loop, 227
critical_section, 227
dynsel, 227
end_critical_section, 228
end_ordered_section, 228
end_parallel, 228
end_tasks, 228
FLOAT_TRAPS_ON, 133
HP_ALIGN, 23
HP_ALIGN NATURAL, 161
HP_LONG_RETURN, 139
HP_NO_RELOCATION, 138
INLINE, 131
loop_parallel, 228
loop_private, 229
next_task, 230
no_block_loop, 230
no_distribute, 230
no_dynsel, 230
no_loop_dependence, 231
no_loop_transform, 231
no_parallel, 231
NO_SIDE_EFFECTS, 132
no_side_effects, 231
NOINLINE, 131
[NO]PTRS_STRONGLY_TYP

ED, 134
OPT_LEVEL, 129, 131
OPTIMIZE, 129, 131
ordered_section, 232
PACK, 34
parallel, 232
parallel_private, 232
prefer_parallel, 233
save_last, 233
scalar, 234
task_private, 234

predefined symbols in C, 156,
159

prefer_parallel pragma, 233

246 Index

Index

preprocessor, 196
preprocessor directives from

Domain/C, 180
preprocessor statements, 145
profile-based optimization

+P option, 84
+df option, 85
flow.data file, 85
+pgm option, 86

program checker, lint, 145
programming languages, calling

other, 46
promotion rules

unsigned char, 178
unsigned short, 178

Pthreads (POSIX threads)
thread-management
routines, 217

PWB macro, 196

R
+r compiler option, 57
READ statements, 62
readonly VMS C class modifier,

183
references, structure, 197
region parallelization

and parallel pragma, 232
register allocation, 111, 225
register qualifier variables, 114
register reassociation, 120
register storage class in C, 158,

184
renaming flow.data file during

optimization, 85

S
-s option to lint, 153
save_last pragma, 233, 234
scalar alignment, 8
scalar pragma, 234
scheduler, instruction, 112

segment violation, 162
Series 300/400 alignment, 39
SIGFPE signal, 161, 162
signal system call, 161, 162
SIGSEGV signal, 162
sized enumerations, 39, 148,

166
sizeof operator, 159
space, white, 196
spp_prog_model.h header file,

236
stdarg, 158
storage

CCS/C, 41
VAX/VMS C, 42

storage allocation
Fortran 90, 59
HP Pascal, 46

strings
constants in VMS C, 185
descriptors, 50
HP C structure and Pascal, 51
passed as parameters to other

languages, 46
passed between HP C and

Pascal, 54
variables, 63

structures
accessing non-natively aligned

data, 32
alignment within, 9
assignment in C, 162
declared in a function

prototype, 172
HP C compared to Fortran 90

and Pascal, 64
referencing through pointers,

197
structures in VMS C, 183
structure-value functions in C,

162
subscripting arrays, 50
swab function, 195

swap bytes, 195
synchronization functions for

managing threads, 238
SYS$LIBRARY on VMS, 187

T
task_private pragma, 234
temporary files in C, 164
The, 232
This, 228, 230, 233, 234
thread_private storage class

specifier, 237
threads, 215
TIME predefined names, 180
TMPDIR environment variable

and C, 164
tools, 204
trigraphs, 178
type aliasing options, 135
type casting pointers in C, 154
type definitions, 32, 199
type incompatibilities in C, 155
typedef

alignment, 20
keyword in C, 155
keyword in VMS C, 185

types, 64

U
+u compiler option of C/iX, 33
U_INIT_TRAPS Pascal

procedure, 192
+ubytes compiler option, 33
unaligned data, accessing, 150
unconditional branches, 110
undef preprocessor directive,

196
underscore in identifier, 197
union, 51, 145
unix macro, 196
unix symbol, 159, 186
unlock_gate() function, 239

Index

Index 247

unsigned C modifier, 182
unsigned char conversion to int,

164
unsigned char data type in C,

158
unsigned preserving, 164
unsigned short conversion to int,

164

V
value preserving, 164
value, passing by, 46
varargs, 158, 186
variable argument lists, 158
variable initialization in C, 163
variable shifts in ANSI C, 179
variables

boolean, 51
string, 63

VAX, 195
floating-point format, 198
pcc, 145
VMS C, 42
VMS C padding, 43

VMS C
char, 182
character constants, 185
compiler environment, 186
D_floating format, 184
data types and alignments,

182
enum, 182
F_floating format, 184
floating-point memory format,

183
floating-point types, 184
G_floating format, 184
globaldef, 182
globalref, 182
globalvalue, 182
identifiers, 184
main program modifier, 185

noshare, 183
overview, 182
preprocessor features, 185
readonly, 183
string constants, 185
structure alignment, 183
SYS$LIBRARY, 187
typedef keyword, 185
uninitialized pointers, 185
unsigned, 182
varargs(5), 186
void, 182

void data type in C, 182
volatile keyword, 167, 172
vprintf(3) library call, 158

W
+w1 compiler option, 195
wait_barrier() function, 240
WDB debugger, 202
white space trailing macros, 196
write(2) system call, 165

X
X3.159-1989, 159
xdb, 157

Y
yacc, 204

248 Index

Index

