
HP/DDE Debugger User's Guide

HP 9000 Series 700/800 Computers

ABCDE

HP Part No. B3476-90015

Printed in USA July 1996

First Edition

E0796

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
�tness for a particular purpose. Hewlett-Packard shall not be held liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the speci�c warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service O�ce.

Copyright c 1983-96 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for
other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this manual and exible disk(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs may
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

cCopyright 1979, 1980, 1983, 1985-93 Regents of the University of California

This software is based in part on the Fourth Berkeley Software Distribution
under license from the Regents of the University of California.

cCopyright 1980, 1984, 1986 Novell, Inc.
cCopyright 1986-1992 Sun Microsystems, Inc.
cCopyright 1985-86, 1988 Massachusetts Institute of Technology.
cCopyright 1989-93 The Open Software Foundation, Inc.
cCopyright 1986 Digital Equipment Corporation.
cCopyright 1990 Motorola, Inc.
cCopyright 1990, 1991, 1992 Cornell University
cCopyright 1989-1991 The University of Maryland
cCopyright 1988 Carnegie Mellon University

Trademarks. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of Technology.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the U.S.
and other countries.

\Sun" and the Sun logo are trademarks of Sun Microsystems, Inc. SunOS,
Solaris, SPARC, and SPARCstation are trademarks of Sun Microsystems, Inc.
NFS is a trademark of Sun Microsystems, Inc. Copyright c 1986, 1987, 1988
Sun Microsystems, Inc.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. We may issue a technical addendum or release notes as
supplements.

The software version number printed alongside the date indicates the version of
HP/DDE at the time we issued the manual.

B3476-90015 July 1996 Version 4.0
B3476-90011 June 1995 Version 3.2
B3476-90004 April 1994 Version 3.0

iv

Preface

The HP/DDE Debugger User's Guide describes the HP Distributed Debugging
Environment (HP/DDE), the high-level language debugger for the HP-UX
operating system.

HP/DDE is also the default SoftBench Program Debugger which runs on both
HP-UX and Solaris systems.

The debugger software consists of the main debugger and a set of managers.
The main debugger provides such basic debugger functions as program control,
process control, program and data monitoring, program information, and
expression evaluation. The managers enable the debugger to handle di�erent
source languages, target machines, object �le formats, and user interfaces.

This manual contains information on how to perform debugging tasks using
HP/DDE's OSF/Motif user interface. It also contains information on the
line-mode interface and the debugger managers in appendixes.

Note HP/DDE is also the default SoftBench Program Debugger. The
SoftBench version of HP/DDE has a graphical user interface
that di�ers somewhat from the interface presented in this
manual. The debugging commands are the same.

The SoftBench Program Debugger runs on both HP-UX and
Solaris systems.

Reference information on debugger commands and information on performing
debugging tasks are available online through the HP Help System. This help
is available from the Help Manager on the HP VUE front panel. It is also
available from within the debugger if you use the Help menu or issue the help
command.

v

Audience

Audience

This manual is written for programmers in C, C++, FORTRAN, or Pascal.

vi

Summary of Technical Changes

Summary of Technical Changes

This edition of the HP/DDE Debugger User's Guide documents the HP
Distributed Debugging Environment (HP/DDE) Version 4.0 on HP-UX
workstations.

HP/DDE Version 4.0 provides the following new features and enhancements:

A new and easier to use graphical user interface.

Support of PA-RISC 2.0 assembly language.

Enhanced debugging of optimized code in C.

Support for ANSI C++, including:

Allowing object speci�c breakpoints.
Automatic detection of most overloaded operators.
Allowing watchpoints on reference-type variables.
Support for long long types.
Support for dynamic_cast<type>(expr) operator.

Support for FORTRAN 90, including:

Printing FORTRAN 90 values.
Kind Su�xes.
Specifying ranges in arrays.

Improvements to the call command, including:

Support of string literal and union arguments, which allows calls to
printf.
Support of calls to functions in images outside of the current location.
Support of calls to shared library functions with return values.

Performance improvement for very large applications.

vii

Related Documentation

Related Documentation

For more information on HP-UX programming, refer to the following
documents:

Programming on HP-UX (B2355-90653) provides an overview of
programming on HP-UX. It includes information about linking programs,
creating and managing user libraries, optimizing programs, and porting
programs.

HP/PAK Performance Analysis Tools User's Guide (B3476-90016) describes
the performance tools provided by the HP Program Analysis Kit (HP/PAK).

The HP FORTRAN/9000 Programmer's Reference (B3906-90002) and
HP FORTRAN/9000 Programmer's Guide (B3906-90001) describe the
FORTRAN programming language on HP-UX systems.

The HP C/HP-UX Reference Manual (92453-90024) and HP C Programmer's
Guide (92434-90002) describe the C programming language on HP-UX
systems.

The HP C++ Programmer's Guide (92501-90026) and the HP C++ Quick
Reference Card (B1637-90001) describe the C++ programming language on
HP-UX systems.

The HP Pascal/HP-UX Reference Manual (92431-90005) and HP
Pascal/HP-UX Programmer's Guide (92431-90006) describe the HP Pascal
programming language on HP-UX systems.

The Assembly Language Reference Manual (92432-90001) describes assembly
language programming on HP-UX Series 700/800 systems. The ADB
Tutorial (92432-90005) introduces the assembly language debugger.

The Precision Architecture and Instruction Set Reference Manual
(09740-90014) and PA-RISC 1.1 Architecture and Instruction Set Reference
Manual (09740-90039) describe, respectively, the PA-RISC 1.0 and PA-RISC
1.1 architectures. PA-RISC 2.0 Architecture, by Gerry Kane (Prentice-Hall,
ISBN 0-13-182734-0), describes the PA-RISC 2.0 architecture.

viii

Related Documentation

The Procedure Calling Conventions Reference Manual (09740-90015)
describes procedure calling conventions on PA-RISC systems.

The HP-UX Symbolic Debugger User's Guide (B2355-90044) describes the
xdb debugger.

The X Window System User's Guide, O'Reilly & Associates, Inc., provides
information about the X Window System.

To order manuals, call HP DIRECT at 1-800-637-7740. Outside the USA,
please contact your local sales o�ce.

ix

Typographical Conventions

Typographical Conventions

computer font Computer font indicates commands, keywords, options,
literals, source code, system output, and path names.
In syntax formats, computer font indicates commands,
keywords, and punctuation that you must enter exactly as
shown.

underlined text In interactive examples, underlined text represents user
input.

italic type In syntax formats, words or characters in italics represent
values that you must supply. Italics are also used for book
titles and for emphasis.

boldface type Boldface words in glossary de�nitions indicate terms that
are also de�ned in the glossary.

[] In syntax formats, square brackets enclose optional items.

f g In syntax formats, braces enclose a list from which you
must choose an item.

j In syntax formats, a vertical bar separates items in a list of
choices.

. . . In syntax formats, a horizontal ellipsis indicates that you
can repeat the preceding item one or more times.

... A vertical ellipsis means that irrelevant parts of a �gure or
example have been omitted.

�key� Type the corresponding key on the keyboard.

name(N) An italicized word followed by a number in parentheses
indicates a page and section number in the HP-UX
Reference. For example, cc(1) refers to the cc page in
Section 1 of the HP-UX Reference.

x

Typographical Conventions

Menu:Item This notation indicates a choice from the menu bar. For
example, since Quit is on the File menu, the menu bar
selection is written as File:Quit.

xi

In This Book

In This Book

The following is a brief description of the contents of this manual:

Chapter 1 Presents an overview of the debugger's graphical user
interface and online help system.

Chapter 2 Describes how to compile, load, and execute a target
program.

Chapter 3 Describes how to use breakpoints, watchpoints, traces, and
intercepts.

Chapter 4 Describes how to view and manipulate target program
data.

Chapter 5 Describes how to use the debugger's command line.

Chapter 6 Describes how to customize the debugger.

Chapter 7 Describes the concepts of blocks and environments, scope
and visibility rules, and the use of quali�ed names.

Chapter 8 Describes how to use the debugger to handle special
application requirements.

Appendix A Describes the debugger's line-mode interface.

Appendix B Describes the debugger's language managers.

Appendix C Describes the debugger's target managers.

Appendix D Describes the debugger's object managers.

Appendix E Describes the debugger's user interface managers.

This manual also contains a Glossary and Index.

xii

Contents

1. Overview
HP/DDE at a Glance 1-2
HP/DDE Online Help 1-6
Using HP/DDE Online Help 1-7

2. Compiling, Loading, and Executing the Target Program
Preparing the Target Program 2-2
Invoking the Debugger 2-3
Setting PATH and MANPATH Variables 2-3
Stopping the Debugger 2-3

Invoking and Loading a Target Program During Debugger
Startup . 2-4

Invoking and Loading a Target Program From the Debugger . . 2-5
Using the File Menu 2-5
Using the debug Command 2-6

Attaching the Debugger to a Running Process 2-7
Using the File Menu 2-7
Using the debug Command 2-7

Stopping the Target Program 2-9
Restarting the Target Program 2-9
Using the File Menu 2-9
Using the restart Command 2-9

Interrupting a Running Program 2-10
Interrupting in System or Nondebuggable Routines 2-10

Examining Source Files 2-12
Executing the Target Program 2-14
Using Command Buttons 2-14
Using the go Command 2-15
Using the step Command 2-16
Using the Mouse . 2-17

Contents-1

Looking at the Call/Return Stack 2-18
Using the tb Command 2-19
Using the environment Command 2-19

3. Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)
Using Monitors . 3-2
Setting Breakpoints . 3-3
Using the Mouse . 3-3
Using the breakpoint Command 3-3
Specifying Locations 3-4
Specifying Actions 3-4
Breaking at Blocks or Routines 3-4
Setting Breakpoints in Alternate Source Files 3-4
Using Breakpoints When Debugging Loops 3-5

Using the Break Menu 3-5
Using the Breakpoint Set/Change Dialog Box 3-6

Setting Watchpoints . 3-8
Viewing and Modifying Watchpoints 3-9
Using Command Buttons 3-10
Using the Watch Menu 3-11
Using the Data Watchpoint Set/Change Dialog Box 3-12
Using the watchpoint Command 3-13

Setting Traces . 3-14
Using the Trace Menu 3-15
Using the Trace Set/Change Dialog Box 3-16
Using the trace Command 3-17

Setting Intercepts . 3-18
Using the Intercepts Dialog Box 3-18
Using the intercept Command 3-20

4. Viewing and Manipulating Target Program Data
Examining Variables and Expressions 4-2
Using Command Buttons 4-3
Using the Mouse . 4-3
Using the Data Value Menu 4-4
Using Debugger Commands 4-4
Examining Arrays 4-5
Examining Objects Referenced by Pointers 4-6

Contents-2

Examining Linked Lists 4-7
Examining Bu�ers 4-8

Examining Registers 4-10
Using Register Commands 4-12

5. Using Debugger Commands
Abbreviating Debugger Commands 5-2
Entering Multiple Debugger Commands on One Line 5-2
Using Command Lists 5-2
Continuing Commands on the Next Line 5-3
Resolving Syntax Conicts 5-3
Resolving Case Sensitivity 5-4
Editing the Command Line 5-5
Using the Command History Facility 5-5
Recording Command Sequences for Later Playback 5-6
Invoking Shell Commands from the Debugger 5-7
Redirecting Input and Output 5-7
Creating Alias and De�ne Macros 5-9
Using Reserved Identi�ers and Special Macros 5-11
Combining Debugger Commands Using Action Lists 5-15
Creating Action Lists 5-15
Creating Conditional Action Lists 5-16
Understanding Action List Execution in Special Circumstances 5-16
Errors in Action Lists 5-16
Execution of Multiple Action Lists 5-16
Action List Execution Following an Interactive step

Command . 5-17
Placing step and go Commands in Action Lists 5-17

6. Customizing the Debugger
Using the Options Menu 6-2
Using Startup Command Files 6-3
Using a Personal Startup File to Customize the Debugger . . 6-4
A Sample Personal Startup File 6-5

Emulating Other Debuggers 6-8
Compatibility with xdb 6-8
Compatibility with dbx 6-9

Contents-3

7. Identifying Program Objects
Understanding Blocks and Environments 7-2
Changing the Environment 7-3
Overriding the Current Language 7-4

Applying Scope and Visibility Rules 7-4
Using Quali�ed Names 7-6
Block Quali�ed Names 7-6
Fully Quali�ed Names 7-7
Image Quali�ed Names 7-9
Special Block Quali�ed Forms 7-9
Quali�ed Names for Prede�ned, User-Declared, and External

Symbols . 7-9
Frame Block Quali�ed Names 7-10

8. Debugging in Special Situations
Examining Core Files 8-2
Attaching to a Core File 8-2
Core File Debugging 8-3

Debugging Shared Libraries 8-4
Debugging Multi-Threaded Applications 8-6
Making libdce.sl Writable 8-7
Stripped and Unstripped Versions of libdce.sl 8-7

Viewing and Manipulating Threads 8-8
Setting Breakpoints on Threads 8-9
Environment in Multi-Threaded Applications 8-10
Thread-Speci�c Debugger Commands 8-11

Assembly Level Debugging 8-13
Using the Assembly Instructions Dialog Box 8-13
Using Debugger Commands 8-14
Saving Assembly Code in a File 8-16

Debugging Optimized Code 8-17
Optimized Code and Unoptimized Code 8-18
What Optimization Does to Program Logic 8-18
What Optimization Does to Data 8-21

Debugging Parent and Child Processes 8-22
Debugging Applications That Use ioctl or curses 8-23
Running the Debugger Remotely 8-24

Contents-4

A. Line-Mode User Interface
Invoking the Line-Mode User Interface A-2
The User Interface Startup File A-3
Screen Display Conventions A-4
Examples . A-5

B. Language Managers
C Language Manager B-3
C++ Language Manager B-7
FORTRAN Language Manager B-13
HP Pascal Language Manager B-18
HP-UX PA-RISC Assembly Language Manager B-22
Solaris SPARC Assembly Language Manager B-25

C. Target Managers
HP-UX PA-RISC Target Manager C-3
Solaris SPARC Target Manager C-7

D. Object Managers
HP SOM Object Manager D-3
Solaris SPARC Object Manager D-4

E. User Interface Managers
Graphical User Interface Manager E-3
Line-Mode User Interface Manager E-4
SoftBench User Interface Manager E-5

Glossary

Index

Contents-5

Figures

1-1. Debugger Main Window 1-3
1-2. The Introductory HP/DDE Help Screen 1-7
2-1. Load/Rerun Dialog Box 2-6
2-2. Source File Display 2-12
2-3. Stack View Dialog Box 2-18
3-1. The Break Menu . 3-6
3-2. The Breakpoint Set/Change Dialog Box 3-7
3-3. The Data Watchpoints Dialog Box 3-9
3-4. The Watch Menu . 3-11
3-5. The Data Watchpoint Set/Change Dialog Box 3-12
3-6. The Trace Menu . 3-15
3-7. The Trace Set/Change Dialog Box 3-16
3-8. The Intercepts Dialog Box 3-19
4-1. The Data Value Tear-O� Menu 4-4
4-2. Show Registers Dialog Box (General) 4-11
6-1. The Options Menu 6-2
6-2. A Sample Personal Startup File 6-6
7-1. Sample Module Illustrating Scope and Visibility 7-5
7-2. Sample Modules Illustrating Fully Quali�ed Names 7-8
7-3. Sample Call/Return Stack and Program 7-11
8-1. The Threads Dialog Box 8-8
8-2. Stack View Dialog Box Showing Current Thread 8-10
8-3. Assembly Instructions Dialog Box 8-14
8-4. Unoptimized Code: Statement-to-Instruction Mapping 8-19
8-5. Optimized Code: Statement-to-Instruction Mapping 8-20

Contents-6

Tables

5-1. Reserved Identi�ers and Special Macros 5-12

Contents-7

1

1

Overview

The HP Distributed Debugging Environment (also referred to as \the
debugger" or \HP/DDE") is a high-level language debugger for the HP-UX
operating system. The debugger operates on object �les generated by HP
compilers and the HP assembler.

The debugger provides a powerful graphical user interface based on OSF/Motif.
For users without access to OSF/Motif, the debugger also provides a line-mode
user interface.

The debugger supports both expert and novice users with an easy-to-use
debugging environment that you can customize to �t your application.

This chapter gives a brief introduction to the debugger's graphical user
interface and to the debugger's extensive online help.

Note HP/DDE is also the default SoftBench Program Debugger. The
SoftBench version of HP/DDE has a graphical user interface
that di�ers somewhat from the interface presented in this
manual. However, the debugger commands are the same.

The SoftBench Program Debugger runs on both HP-UX and
Solaris systems.

Overview 1-1

In This Book

HP/DDE at a Glance

The debugger provides a powerful graphical user interface based on OSF/Motif.
You control the debugger by executing commands from menus, from the
command entry line, or from customizable command buttons. (The debugger
also has a line-mode user interface which is described in Appendix A.)

The main window of the debugger displays source code, debugger output, and
program I/O. Some of the features of the debugger main window, shown in
Figure 1-1, are:

1 Menu Bar

Invoke commands or display dialog boxes.

Some dialog boxes allow you to specify options to debugger commands.
Other dialog boxes include dynamic displays that allow you to view and
manipulate assembly code, registers, variables, threads, call/return stacks,
and more.

2 Input Box

Enter parameters for command buttons and pull-down menus.

You can enter information either by typing or by selecting text (from the
source code, debugger output, or program I/O areas) for use with these
commands. Text can be selected either by dragging the mouse, or by
double-clicking.

3 Interrupt Button

Interrupt the debugger or the target program.

This button changes from Interrupt Debugger to Interrupt Program

when the target program is executing.

4 Location Buttons

Change current location up and down the call/return stack.

Indicators in this area show when the current location di�ers from the
program counter (PC) location. Locations are speci�ed as function names.

1-2 Overview

1

In This Book

Figure 1-1. Debugger Main Window

Overview 1-3

In This Book

5 Annotation Margin

Shows source �le line numbers.

Click with the left mouse button on a line number to set a breakpoint.
Click on the circled B symbol to delete the breakpoint.

An arrow indicates the current program counter location.

6 Source File Display Area

Clicking the right mouse button in this area invokes the Source Actions
pop-up menu, which contains a number of program execution and
monitoring commands.

To search for text strings in the source �le, select Visit:Search.

7 Customizable Command Buttons

Invoke common debugger commands.

You can change these buttons or create additional buttons by selecting
Options:User Configurable Buttons.

8 Debugger Output Area

This transcript pad echoes debugger commands, displays messages and
warnings, and displays the output from debugger commands.

9 Debugger Command Input Box

Enter debugger commands.

For a complete list of debugger commands, their options, and usage
examples see the online command reference.

10 User Program I/O Area

Target program output is displayed here. Input to target programs is
entered here.

The debugger's GUI often provides several methods of performing a particular
task. For example, you can:

Enter debugger commands in the command input box.
Invoke actions from menus, dialog boxes, or command buttons.
Invoke actions by pointing and clicking with the mouse.

1-4 Overview

1

In This Book

This manual attempts to describe the most common alternatives for performing
each task.

In general, entering debugger commands in the command entry box provides
the widest range of options and allows the greatest exibility and control. This
manual shows only the more commonly used options to debugger commands.
For complete information on a particular command, see Command Reference in
the debugger's online help. You can also enter help command name on the
debugger's command line.

Note If, when you start HP/DDE 4.0, the main debugger window
does not look the way it does in Figure 1-1 (for example, if
it is very small), you probably have de�ned the X resource
DDE.geometry for an earlier release of HP/DDE. Comment out
or remove this de�nition from your X resources.

Overview 1-5

In This Book

HP/DDE Online Help

The debugger has an extensive hypertext-based online help facility. You can
use keyword searches or click on hyperlinks to navigate through the help
system.

Figure 1-2 shows the introductory help screen that you can invoke from the
menu bar of the debugger's main window. Click on Help and then select
Overview.

You can also invoke the debugger's online help facility from the Top Level

selection in the Help Manager, which is located on the Front Panel.

The following is a brief description of the major topical divisions of the online
help:

Getting Started contains a quick start guide that shows the basic functions
of the debugger's graphical user interface, and a tutorial that walks you
through basic debugging procedures.

Common Debugging Tasks: Graphical User Interface describes how to
invoke general debugger functions with an emphasis on using the graphical
user interface.

Common Debugging Tasks: Command Line describes how to invoke general
debugger functions with an emphasis on using debugger commands.

Graphical User Interface describes the various debugger display windows
and shows how to customize the graphical user interface.

Command Reference describes debugger commands and options and contains
useful examples. (You can also invoke help on a particular command by
invoking help command name in the debugger command input box.)

Commenting on the HP/DDE Online Help System describes how you can send
your comments about the online help to Hewlett-Packard.

1-6 Overview

1

In This Book

Figure 1-2. The Introductory HP/DDE Help Screen

Using HP/DDE Online Help

HP/DDE online help provides several ways to �nd the topic you are looking
for. Here are some of the methods you can use:

Clicking on a hyperlink. Hyperlinks connect topics within and among the
major divisions of the online help. Hyperlinks are displayed as underlined
text.

Searching for a keyword. Select the Index button to invoke a dialog box that
allows you to search through the keyword index. Click on an index item to
display the help on that item.

Using the help command. The command help command name invokes the
reference page for the speci�ed command.

Overview 1-7

In This Book

Pressing F1 to obtain context-sensitive help in dialog boxes and display
windows.

You can navigate through the HP/DDE online help using several methods,
including:

Clicking on an item from the topic hierarchy in the Help window to go to
another topic.

Clicking on an item in the history list to return to a previous topic. Select
the History button from to invoke the a dialog box that shows a list of
topics that you have visited.

Selecting the Backtrack button to return to the previous topic.

More information on using the HP Help System is available from the
debugger's menu bar by clicking on Help and then selecting Using Help.

1-8 Overview

2

2
Compiling, Loading, and Executing the Target
Program

This chapter describes:

Preparing a program for debugging.

Starting and stopping the debugger.

Load and unloading a target program.

Examining source �les.

Controlling the execution of the target program.

Viewing the current execution call stack.

For more information on the debugger commands mentioned in this chapter
see the online command reference. You can also invoke help on a particular
command by entering help command name in the debugger command input
box.

The online help also contains more information on using the debugger's
graphical user interface.

Compiling, Loading, and Executing the Target Program 2-1

In This Book

Preparing the Target Program

To prepare a target program for debugging, compile the program using the
compiler's option for debugging, usually -g. A compiler's debugging option
causes it to add information needed by the debugger to the program's object
�le. For example:

$ cc -g average.c

You can �nd average.c, a sample program that you can practice on, in the
directory /opt/langtools/dde/examples. In that directory, you can also �nd
sources for average in FORTRAN, C++, and Pascal.

If you attempt to debug a program that was compiled without the debugging
option, the debugger displays a message similar to the following:

(Warning) Object file has no debug information.

Limited debugging will be available.

Some of the limitations on debugging code compiled without the -g option are:

You can access the values of global variables but not their descriptions.

Line numbers are not available in the Assembly Instructions dialog box.

You can set breakpoints on entry points using procedure names, entry
point names, and virtual addresses. However, if some modules were
compiled with -g and some were compiled without -g, you must use the
initialize -altdbinfo command to set breakpoints on those modules
compiled without -g. (Use of the initialize -altdbinfo command is not
necessary on Solaris systems.)

The debugger will not automatically display source code. You can use the
use source command to display source code. However, you cannot follow
program execution or invoke debugger commands in the source �le display
area.

Shared libraries, which are often compiled without -g, are a special case. See
\Debugging Shared Libraries" in Chapter 8 for more information.

2-2 Compiling, Loading, and Executing the Target Program

2
In This Book

Invoking the Debugger

To invoke the debugger, enter the dde command in a shell process window. For
detailed information on the dde command and its options, refer to the dde(1)
man page.

When you invoke the debugger, it �rst executes a user interface startup �le.
Then, it executes any commands speci�ed with the -do option. For example,
the following command line speci�es where the debugger should search for
source �les:

$ dde -do "property sdir ~/src"

Next, the debugger executes startup command �les, including your personal
startup �le if you have created one. See \Using Startup Command Files" in
Chapter 6 for more information on startup �les.

When you invoke the debugger, the debugger's main window appears (see
Figure 1-1).

Note Starting the debugger from the command line is not supported
on Solaris systems. See the softdebug(1) man page for
information on starting the debugger.

Setting PATH and MANPATH Variables

You must have the /opt/langtools/bin directory in your PATH in order
to use the dde command. If you have /usr/softbench/bin in your PATH,
/opt/langtools/bin must precede it.

You must have the /opt/langtools/share/man directory in your MANPATH to
access the dde(1) man page.

Stopping the Debugger

To stop and exit the debugger, choose File:Quit from the menu bar or enter
the quit command.

If a target program is running, the debugger kills it. However, if the target
program is an attached process (see \Attaching the Debugger to a Running
Process"), the debugger frees it.

Compiling, Loading, and Executing the Target Program 2-3

In This Book

Invoking and Loading a Target Program During Debugger
Startup

If you want the debugger to load the target program at startup, then enter
the target program invocation as the last argument to the dde command. For
example, if the target program name is test, enter

$ dde test

If the target program requires arguments, precede the target program and
its arguments with a double hyphen (--). Using the double hyphen prevents
options (particularly X Window System options) from being interpreted as
options to the dde command.

For example, if the target program is called test, and test takes the X option
-synchronous, enter

$ dde -- test -synchronous

Any options to the dde command are entered before the double hyphen.The
following example shows the use of the X options -bg and -fg to set the colors
for the debugger's windows:

$ dde -bg black -fg white -- test -synchronous

2-4 Compiling, Loading, and Executing the Target Program

2
In This Book

Invoking and Loading a Target Program From the
Debugger

You can invoke and load a target program from the File menu or by using the
debug command.

Using the File Menu

Select File:Load Executable to invoke a target program. The Load/Rerun
dialog box, shown in Figure 2-1, appears.

The Load/Rerun dialog box allows:

1. Specifying the path name of the target program. (The �...� buttons invoke a
dialog box containing a list of directories and �le names under the current
working directory.)

2. Specifying program arguments.

3. Changing the current working directory.

4. Redirecting stdin, stdout, and stderr. Append and Replace buttons allow
stdout and stderr to be added to or to overwrite existing �les.

5. Specifying the environment variables to be passed to the target programs. A
window above the input boxes lists the current settings.

Compiling, Loading, and Executing the Target Program 2-5

In This Book

Figure 2-1. Load/Rerun Dialog Box

Using the debug Command

To invoke a target program from the debugger command input box, enter the
debug command followed by the target program invocation.

For example, if the target program test takes the argument -F testfile,
enter the following command:

debug test -F testfile

To redirect the target program's standard input and output, use the debug
command's -input and -output options.

2-6 Compiling, Loading, and Executing the Target Program

2
In This Book

Attaching the Debugger to a Running Process

To debug a running process, you must either have the same user ID as the
target program or you must be logged in as root.

Using the File Menu

To attach to a running process from the debugger menu bar:

1. If the debugger's current directory is not the same as the directory
that contains the target process, change it using File:Change Working

Directory.

2. Enter the name of the process in the (): parameter input box.

3. Select File:Debug Running Process().

Using the debug Command

From the command input box, enter the debug command with the -attach
option, specifying a process ID. The ps(1) command displays process IDs.

If the debugger's current directory is not the same as the directory that
contains the target process, use either the object program pathname argument
or the -wd option to the debug command.

You can set breakpoints in the main program of an attached process. On
HP-UX systems, you cannot set breakpoints in shared libraries used by the
program unless you run

/usr/lib/pxdb -s on executable �le

on the program before executing it. See \Debugging Shared Libraries" in
Chapter 8 for more information on debugging shared libraries.

When you attach to a running process, the process may be executing in kernel
code (for example, if it is waiting for input). In this case, no source �le appears
in the source �le display area, and the debugger issues a warning message.

You may �nd it helpful to use the tb and environment commands to place you
in the source code. The tb command displays a traceback of the call/return
stack. From the traceback you can �nd a frame associated with a procedure in

Compiling, Loading, and Executing the Target Program 2-7

In This Book

the source code. Use the frame block quali�er, `main(n), from the traceback
as an argument to the environment command. For example:

debug -attach 1189

Attached to process 1189; initializing "/home/smith/progs/and".

Stopped at: `va(800b8658) (800B8658)

step

(Warning) Unable to determine statement boundaries;

stepping 1 instruction.

Stepped to: read+0010 (800B8658)

tb

`main(7): Stopped at: read+0010 (800B8658)

`main(6): Called from: _filbuf+0100 (800A5CC0)

`main(5): Called from: _doscan+0a78 (80096D2C)

`main(4): Called from: _scanf+0024 (8007E8F4)

`main(3): Called from: \\and\main\12 (00001DCC)

`main(2): Called from: _start+0068 (80041D5C)

`main: Called from: $START$+0094 (0000177C)

env `main(3)

Environment: \\and\main\12 (00001DCC) (frame `main(3))

Stopped at: read+0010 (800B8658)

breakpoint 13

go

If you get a Permission denied error message when you attach to a running
process, it is likely that you are running either the debugger or the target
process over an NFS link. The relevant �le system may be mounted with the
default intr option. You must mount the �le system with the nointr option
to resolve this problem. Use a command like the following to mount the �le
system containing the debugger:

$ mount -o nointr[,other options] system:/opt/langtools /tools

Use a command like the following to mount the �le system containing the
target process:

$ mount -o nointr[,other options] system:/test_area /test

It is probably easier to create an auxiliary mount for the �le system than to
unmount and remount it.

2-8 Compiling, Loading, and Executing the Target Program

2
In This Book

Stopping the Target Program

To terminate the target program, use the kill command or select
File:Unload Executable. When the target program terminates, the debugger
continues to run. Use quit or select File:Quit to terminate the debugger.

Use the free command to detach the debugger from the target program while
allowing the target program to continue executing.

Restarting the Target Program

Using the File Menu

To restart the target program from the menu bar, select:

File:Rerun to restart the target without changing the runtime environment.

File:Rerun . . . to restart the target with changes to the runtime
environment.

Using the restart Command

Use the restart command to restart the target program while preserving
breakpoints and watchpoints.

The restart command restarts the currently loaded target program. If no
target program is loaded, it restarts the last target program that ran in the
current debugging session.

A program may not restart correctly if its object �le was modi�ed after
the original debug command. Breakpoints, for example, may be reset at
inappropriate locations after restarting.

If you do not want to preserve breakpoints, watchpoints, and symbol
information, kill the target program (or let it �nish executing) and re-enter the
debug command.

Compiling, Loading, and Executing the Target Program 2-9

In This Book

Without options, the restart command restarts the target program using the
same arguments speci�ed in the previous invocation. Use the -args option if
you want to specify di�erent arguments in the target program invocation.

For example, the following command restarts the currently running target
program, replacing previously speci�ed arguments with the argument -s:

restart -args -s

Interrupting a Running Program

When the PC Location indication is Running . . . , your program has control,
and you cannot interact with the debugger. (A small clock animation is also
displayed.) Any commands to the debugger (except commands that restart,
kill, or unload your program) will be queued until your program returns control
to the debugger.

Selecting �Interrupt Program� will ush any queued commands and return control to
the debugger.

If you interrupt your program while it is executing code that was compiled
with the debug options on, you can continue working just as if you had
encountered a breakpoint at that location. A PC arrow appears in the
annotation margin and the source for the code is displayed. At this point the
PC Location shows a valid location and you can enter debugger commands.

Interrupting in System or Nondebuggable Routines

If you interrupt the program while it is executing some system-supplied
routine, or while it is executing a routine that was compiled without debugging
information, the PC Location may consist of a virtual address. The source �le
display area will be cleared to indicate that no source is available.

You cannot examine local variables or step through statements. You can only
step by assembly instructions, and examine other procedures on the call stack.

You can run the nondebuggable routine until it reaches the point where it
returns to its calling procedure by selecting �Continue Out�. You can continue

2-10 Compiling, Loading, and Executing the Target Program

2
In This Book

doing this until your program returns to debuggable code. You could also set a
breakpoint at some later point in debuggable code.

If the nondebuggable code is in an in�nite loop, or will not return for some
other reason, you must kill or rerun the program.

Compiling, Loading, and Executing the Target Program 2-11

In This Book

Examining Source Files

When you load a target program, the source �le is displayed in the source �le
display area. See Figure 2-2.

Figure 2-2. Source File Display

An arrow symbol in the annotation margin indicates the current point of
execution. The circled B symbol designates a breakpoint.

Ordinarily, the debugger sets breakpoints at the program's entry and exit
statements and executes the program up to its entry statement. You can create
and delete breakpoints by clicking with the left mouse button on a line number
in the annotation margin.

You can search for text strings in the source by selecting Visit:Search or
�CTRL�-�S�.

If the target program was compiled from a number of source �les, you can
display other �les by selecting Visit:File() after entering the source �le name
in the (): input box.

In addition, you can use the environment command. You must enclose the
source �le name in double quotes. For example:

env "source �lename"

If you move a source �le after compiling the program, the debugger may be
unable to �nd the source �le. It will issue the warning: Unable to access

2-12 Compiling, Loading, and Executing the Target Program

2
In This Book

object. Select File:Add Source Directories or use the property sdir

command to put the source �le in the debugger's search path.

Also, the source will not appear if the main program is not debuggable (even if
there are debuggable modules within the target program). A message like the
following may appear during startup:

(Warning) end.o has not been linked in.

(Warning) Notification of dynamic loader events

will be unavailable.

Executing image in process 8981: "/home/smith/a.out".

Stopped at: $START$ (00001894)

However, you can view debuggable modules by selecting
Visit:Environment(), Visit:File() or using the environment
command. Specify "source �lename", which is the leaf name (enclosed with
double quotes) of the source �le of a debuggable module.

Compiling, Loading, and Executing the Target Program 2-13

In This Book

Executing the Target Program

The debugger can execute the target program by stepping through one or more
statements at a time.

The easiest method for stepping through a target program is to use one of the
step or continue command buttons. They are located below the source �le
display area.

The debugger commands go, step, and goto are useful when you want to
implement more complicated stepping procedures. The less commonly used
call command is particularly useful for executing user-created debugging
routines or for testing new routines in your program.

In addition, you can invoke execution commands from the Execute menu or
from a popup menu in the source �le display area. The popup menu appears
when you click with the right mouse button.

The following sections give a brief description of the command buttons and the
debugger commands.

Using Command Buttons

The following buttons are located below the source �le display area:

�Step� Execute one statement, then stop. This is called single step
execution.

�Step Over� Execute a statement, treating any procedure call as a single
statement. The procedure is called, but control does not return
to the debugger until the procedure returns. When the PC is
just before a procedure call, this has the e�ect of \stepping
over" the call.

�Continue Out� Execute until the current procedure completes and returns
to its caller, or until a breakpoint (or another event that
halts execution) is encountered. This is very useful when you
accidentally step into a procedure that you do not want to step
through, or when you interrupt your program in the middle
of nondebuggable code. Each �Continue Out� will cause your
program to \pop out" one procedure level.

2-14 Compiling, Loading, and Executing the Target Program

2
In This Book

�Continue� Execute until a breakpoint (or another event that halts
execution) is encountered.

When you select one of these buttons, the PC arrow moves to the next
statement to be executed.

Routines that are not debuggable, such as system library routines and routines
that were not compiled with the -g option, will be stepped over even when
using �Step�.

To pause at a speci�c point in your program, see \Setting Breakpoints" in
Chapter 3.

You can modify the default behavior of these buttons by selecting
Options:User Configurable Buttons. The User Configurable Buttons

dialog box is displayed. See the online help for this dialog box for more
information.

Using the go Command

The go command begins or resumes target program execution.

Execution begins at the current point of execution. If you have just entered
the debug command, the current point of execution is the �rst executable
statement in the source code.

If you enter go without options, execution continues until a program event
occurs, such as a breakpoint, program signal, or program exit.

If you want program execution to occur up to a certain program location, use
the -until option. For example,

go -until freestack

executes the target program until the entry statement for the routine
freestack is reached and

go -until 110

executes the target program until line 110 of the source code is reached.

Compiling, Loading, and Executing the Target Program 2-15

In This Book

Using the step Command

The step command advances target program execution one source code
statement at a time. If you supply a numeric argument to the step command
(for example, step 5), it will advance execution by the speci�ed number of
source code statements.

If you specify step -instruction, execution advances one assembly
instruction. The PC location arrow changes to a broken variant to indicate
when the current point of execution is either at another source statement on
the same line or at an instruction beyond the statement's �rst instruction.

However, you must invoke the Assembly Instructions dialog box to see stepping
through assembly instructions. Invoke the Assembly Instructions dialog box
from Show:Assembly Instructions.

If the current point of execution is a routine call, step advances execution
to the �rst executable statement in the called routine. To advance execution
without stepping into a routine, use step -over.

If you accidentally step into a routine, use the go -return command to
advance execution to the statement following the routine call.

The step command also has a -return option, but it takes much longer to
complete.

By default, the step command does not step into system or library calls.
If you want to step into system or library calls, you can enable the loading
of symbol information from the Dynamic Images dialog box. Select
Execution:Enable Images/Libraries to invoke it.

Alternatively, use the property libraries command with the appropriate
library as an argument if you want to step into system or library calls.

See \Debugging Shared Libraries" in Chapter 8 for information about
debugging shared libraries.

2-16 Compiling, Loading, and Executing the Target Program

2
In This Book

Using the Mouse

A number of execution commands are available by holding down the right
mouse button in the source �le display area. The Source Actions popup menu
appears.

For example, you can:

1. Scroll to a particular line number in the source �le.
2. Position the cursor on the line.
3. Invoke the Continue Until command from the Source Actions menu and

it will execute the target up to that line in the code.

Compiling, Loading, and Executing the Target Program 2-17

In This Book

Looking at the Call/Return Stack

Select Show:Stack to display the Stack View dialog box.

Figure 2-3. Stack View Dialog Box

The Stack View dialog box, shown in Figure 2-3, contains:

1. Arrow buttons to move to the top of the stack, up one level, down one level,
or to the bottom of the stack. The associated source code is displayed in
the source �le display area. (You can also use the arrow buttons above the
source �le display area.)

2. A scrollable listing of the call/return stack. When you click on an item in
the list, the associated source code is displayed in the source �le display
area.

3. A button that invokes the Stack Options dialog box, which allows you to
limit stack depth globally and to modify stack numbering behavior.

4. An input box that allows you the limit the stack depth displayed.

5. A toggle button to display or hide parameters for each entry in the
call/return stack.

6. A toggle button to control when the display is updated.

2-18 Compiling, Loading, and Executing the Target Program

2
In This Book

Using the tb Command

Use the tb command to display a traceback of the call/return stack in the
debugger output area.

The tb command numbers each frame in the stack using the notation
`main(n), where n increases in the direction of the most recent frame. The
following example illustrates this notation which was displayed after stepping
to line 33 of the sample program average:

tb

`main(4): Stopped at: \\average\print_average\33

`main(3): Called from: \\average\main\44 (0000203C)

`main(2): Called from: _start+0068 (80041D9C)

`main: Called from: $START$+0094 (0000192C)

Using the environment Command

To move up and down the call/return stack to view the associated source code,
enter the environment command. Use the notation `env(-1) to represent the
caller of the current routine, as shown in the following example:

environment `env(-1)

After you enter the preceding command, you can easily examine the program
data local to the routine shown in the source �le display area.

To move down the stack, enter the following command:

environment `env(+1)

To return to the current point of execution, regardless of the source currently
displayed, enter the following command:

environment `run

For details on the `env and `run notation, see \Frame Block Quali�ed Names"
in Chapter 7. For a description of the HP/DDE concept of environment, see
\Understanding Blocks and Environments" in Chapter 7.

Compiling, Loading, and Executing the Target Program 2-19

3

3
Using Monitors (Breakpoints, Watchpoints,
Traces, and Intercepts)

This chapter describes the use of breakpoints, watchpoints, traces, and
intercepts to monitor and control target program execution. Topics include:

Using Monitors

Setting Breakpoints

Setting Watchpoints

Setting Traces

Setting Intercepts

For more information on the debugger commands mentioned in this chapter
see the online command reference. You can also invoke help on a particular
command by entering help command name in the debugger command input
box.

The online help also contains more information on using the debugger's
graphical user interface.

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-1

In This Book

Using Monitors

Monitors are useful for stopping program execution at speci�c statements, for
tracing program execution, for watching variables for a change in value, and for
intercepting program events. The debugger provides these types of monitors:

A breakpoint stops execution at a speci�ed source code statement, then
reports the current target program location. Execution is resumed only when
you enter another program execution command, such as go or step.

A watchpoint monitors a selected variable or address range and reports the
value of the variable or address range only when that value changes. You can
specify whether a watchpoint is in e�ect at every source statement, at every
instruction, or only at routine entry or exit points.

A trace suspends execution, reports the current program location, then
continues executing the target program. You can specify whether a trace is
in e�ect at every source statement, at every instruction, or only at routine
entry or exit points.

An intercept monitors selected programming events such as the reception of
signals from the operating system, the loading or removal of an image from a
program's address space, and the termination of the program. The Intercepts
dialog box (invoked from Execution:Signals/Intercepts) contains a list of
the available intercepts and their current status.

The debugger provides several general commands that allow you to view and
modify monitors as a group. These include:

list monitors

delete monitors

suspend monitors
activate monitors

For more information on these commands and their options, see the debugger's
online command reference.

In addition, the debugger provides commands, menus, and dialog boxes for
controlling each type of monitor. The following sections describe how to set,
view, and modify breakpoints, traces, watchpoints, and intercepts.

3-2 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

Setting Breakpoints

Set breakpoints on lines in your code where you want execution to stop.

When a breakpoint is set, a circled B symbol symbol appears next to the line
number in the annotation margin.

The target program stops just prior to the execution of the statement on which
you have set a breakpoint. Each time execution stops at a breakpoint, the
debugger output area displays the line number of the next statement that will
execute.

Using the Mouse

Perhaps the easiest method for manipulating breakpoints is to use the mouse as
follows:

Click the left mouse button on a line number to set a new breakpoint. The
circled B breakpoint symbol appears.

Click the left mouse button on a breakpoint symbol to delete an existing
breakpoint. The breakpoint symbol disappears.

Click the middle mouse button on a breakpoint symbol to suspend it. The
breakpoint symbol is redisplayed with a slash through it.

Click the middle mouse button on a suspended breakpoint to activate it. The
slash in the breakpoint symbol disappears.

Press �Shift� and click the left mouse button on a line number to invoke the
Breakpoint Set/Change dialog box. The dialog box allows you to set various
attributes for breakpoints.

Using the breakpoint Command

The breakpoint command allows greater exibility than the mouse in both
setting and in customizing breakpoints. The following sections indicate some of
that exibility. See the online command reference for more information.

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-3

In This Book

Specifying Locations

To set a breakpoint at a speci�c program location, enter the breakpoint
command. For example,

breakpoint sum Sets a breakpoint at the �rst executable statement in the
procedure sum.

breakpoint 16 Sets a breakpoint at the statement on line 16 of the source
�le.

Specifying Actions

If you want a speci�c action to occur automatically when the target program
encounters a breakpoint, use the -do option. For example,

breakpoint 43 -do [print tmp; go] -silent

In this example, the debugger prints the variable tmp in the debugger output
area, then issues the go command whenever the target program encounters
the breakpoint at line 43. The -silent option prevents the breakpoint from
being reported in the debugger output area; only the value of the variable tmp
is printed.

Breaking at Blocks or Routines

If you want to set breakpoints at every routine in a block or �le, you can do so
with a single breakpoint command. Use the -in option to specify the block
name or �le name. File names must be enclosed in double quotation marks, as
shown in the following example:

breakpoint -in "iface.c" -do [args; go]

For detailed information on how to specify blocks and �les, see the online help
regarding specifying locations to the debugger.

Setting Breakpoints in Alternate Source Files

When a target program is compiled from multiple source �les, the Source
Display window displays the �le that contains the current point of execution.

You can use the environment command with a "�lename" argument to
display another source �le in the Source File Display area. Then you can set
breakpoints using one of the methods described in this section.

3-4 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

Using Breakpoints When Debugging Loops

The breakpoint command option -after count is useful for debugging large
loops in code. The -after count option speci�es that the statement associated
with the breakpoint must execute count times before execution is interrupted.
This lets you control how many iterations of the loop occur before the debugger
interrupts target program execution.

Also note that if you try to set a breakpoint at the beginning or end of a loop,
the following warning may be displayed:

(Warning) Due to optimization, address resolved

to more than one location

Although the code may not be optimized, lines at the beginning and end of
loops contain multiple fragments. You will need to follow the instructions on
setting breakpoints in optimized code described in the online help.

Using the Break Menu

A variety of breakpoint commands are available from the Break menu,
including support for setting breakpoints in C++ programs. Many entries on
the Break menu allow you to set a breakpoint associated with an expression
entered in the (): input box.

An easy way to enter tokens in the (): input box is to use the mouse to
highlight expressions in the source display. Highlight by dragging with the
left mouse button depressed. When you release the left mouse button, the
expression appears in the (): input box.

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-5

In This Book

Figure 3-1. The Break Menu

As Figure 3-1 shows, the Break menu is a Tear-o� Menu. When you click on
the dashed line at the top of the Break menu, the menu is displayed in its own
window. The menu persists so that you can invoke commands from it without
having to redisplay it. You can also move the menu to a convenient place in
your workspace.

Using the Breakpoint Set/Change Dialog Box

The Breakpoint Set/Change dialog box allows you to specify all aspects of a
breakpoint. Invoke it by selecting Breakpoint:Set. The dialog box shown in
Figure 3-2 appears.

3-6 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

Figure 3-2. The Breakpoint Set/Change Dialog Box

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-7

In This Book

From the Breakpoint Set/Change dialog box, you can:

1. Select the type of breakpoint.

The area directly under the Select Breakpoint Type radio buttons
changes to reect the information needed by the breakpoint type. Enter the
appropriate information for the selected breakpoint type.

2. Control whether or not messages appear when a breakpoint is hit.

3. Temporarily disable or re-activate breakpoints.

4. Stop execution only after the breakpoint has been reached a speci�ed
number of times.

5. Set location mapping for the breakpoint when debugging optimized code.

6. Specify debugger commands to execute when a breakpoint is hit.

7. Set breakpoints on speci�ed threads when debugging a multi-threaded
application.

To see a listing of breakpoints, select Break:Show.

Setting Watchpoints

Use watchpoints to monitor the value of a variable or memory range. (See
\Examining Registers" in Chapter 4 for information on monitoring registers.)
Values are displayed in the Data Watchpoint dialog box as well as in the
debugger output area.

When you create a watchpoint, you specify the expression or address range
to monitor, and a granularity. The granularity speci�es how often the value
should be reported: on procedure entry, on procedure exit, on procedure entry
and exit, at every statement, at every machine instruction, or whenever the
program stops and returns control to the debugger.

The default granularity is to stop and report value changes only when the
target program itself stops and returns control to the debugger. If you
needed to monitor a variable more closely, you could specify a instruction-
or statement-level granularity. At instruction-level granularity, for example,

3-8 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

the value of a variable is checked after every assembly instruction executes.
Execution of the target program stops when the value changes.

For performance purposes, you should set the granularity as coarsely as
possible. For example, if you only need to know the value of the monitored
expression each time you enter a procedure, there is no sense in monitoring
it after every assembly instruction. Typically you would locate a problem by
using a granularity of procedure entry/exit to narrow the source of the problem
down to one procedure. Once the problem is localized, use a �ner granularity
(such as instruction or statement) but limit it to a particular procedure by
entering the procedure name in the When In input box in the Data Watchpoint
Set/Change dialog box.

Viewing and Modifying Watchpoints

The following sections describe some of the methods for setting watchpoints.
When you set a watchpoint by any method, the Data Watchpoints dialog box
is displayed (you can also invoke it by selecting Watch:Values Display). See
Figure 3-3.

Figure 3-3. The Data Watchpoints Dialog Box

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-9

In This Book

The Data Watchpoints dialog box shows detailed information on each
watchpoint and it allows you to manipulate both the watchpoints and the
display itself.

Each watchpoint displays the variables or memory area it is attached to. The
data display highlights when the data being watched is modi�ed. Complete
watchpoints can be hidden by selecting the �	� button next to the watchpoint.
Select the button again (which is now ���) to redisplay the watchpoint.

Individual elements in a watchpoint (such as some elements in an array) can be
hidden by selecting them and selecting �Selected ->� Hide. Select �Watchpoint ->�
Show All Hidden Values to redisplay them.

Compound objects (such as arrays or structures) can be collapsed to simplify
the display, either by double-clicking the beginning of the compound object, or
by selecting it and choosing �Selected ->� Collapse. Double-click the collapsed
object, or choose �Selected ->� Expand, to display the entire object.

To modify the watchpoint, choose �Watchpoint ->� Change. The Data
Watchpoints dialog box is displayed, allowing you to modify all editable
attributes of the watchpoint.

To change the Active/Suspend status of a watchpoint, use the Data
Watchpoints dialog box. You can also activate or suspend all watchpoints
by selecting the �Activate All� or �Suspend All� buttons in the Data Watchpoints

window, or by choosing the Watch: Suspend ALL or Watch: Activate ALL
menu selections.

Use �Watchpoint ->� Delete to eliminate a watchpoint.

Using Command Buttons

The following buttons are located below the source �le display area:

�Watch()� Set a watchpoint on the contents of the (): input box. Check
the watchpoint whenever the debugger stops.

�Watch*()� Set a watchpoint on the location pointed to by the pointer
in the (): input box. Check the watchpoint whenever the
debugger stops.

An easy way to enter tokens in the (): input box is to use the mouse to
highlight expressions in the source display. Highlight by dragging with the

3-10 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

left mouse button depressed. When you release the left mouse button, the
expression appears in the (): input box.

Use Options:User Configurable Buttons to modify the default behavior of
the command buttons.

Using the Watch Menu

A variety of watchpoint commands are available from the Watch menu. Many
entries on the Watch menu allow you to set a watchpoint associated with an
expression entered in the (): input box.

As Figure 3-4 shows, the Watch menu is a Tear-o� Menu. When you click on
the dashed line at the top of the Watch menu, the menu is displayed in its own
window. The menu persists so that you can invoke commands from it without
having to redisplay it. You can also move the menu to a convenient place in
your workspace.

Figure 3-4. The Watch Menu

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-11

In This Book

Using the Data Watchpoint Set/Change Dialog Box

The Data Watchpoint Set/Change dialog box allows you to specify all
aspects of a watchpoint. Invoke it by selecting Watch:Set. The dialog box in
Figure 3-5 appears.

Figure 3-5. The Data Watchpoint Set/Change Dialog Box

From the Data Watchpoint Set/Change dialog box, you can:

1. Select the type of watchpoint.

The area under the Select Watchpoint Type radio buttons changes
to reect the information needed by the watchpoint type. Enter the
appropriate information for the selected watchpoint type.

3-12 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

Note that you use the �Print ()� button on the expression &var to �nd the
address of the variable var .

2. Select the granularity (how often the value is checked).

The default, Every Stop, causes the debugger to check values only when
target program execution stops for some event like a breakpoint.

If you want target program execution to stop whenever the value changes,
choose Statement granularity. Be aware, however, that Statement
granularity can slow down performance of the target program.

You can also restrict a watchpoint to be active only in a speci�ed block.

In C++ programs, you can specify how many levels of inherited data
members should be included.

3. Control whether or not messages appear when a watchpoint is hit.

4. Temporarily disable or re-activate watchpoints.

5. Specify the format in which the value is displayed. The default is to display
the value as it is declared.

6. Specify debugger commands to execute when a watchpoint is hit.

To see a listing of watchpoints, select Watch:Show.

Using the watchpoint Command

The following command sets a watchpoint on the variable idx. By default, the
watchpoint is in e�ect at every statement in the program; that is, the debugger
checks the value of idx after each program statement executes, and it stops
program execution if the value of idx changes.

watchpoint idx

The initial value of \\test\print_msg\idx is 0

go

The value of \\test\print_msg\idx has changed from 0 to 9.

Stopped at: \\test\print_msg\28

See Monitoring Memory Ranges in the online help for information on
monitoring addresses with the watchpoint command.

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-13

In This Book

Setting Traces

Traces are useful for monitoring the ow of a program. After setting a trace,
for example, you can see when a particular function is called or when certain
statements are executed.

By default, setting a trace will display every statement, as it is executed, in the
debugger output area. However, you can also set traces that stop execution or
that execute debugger commands.

Several levels of trace granularity are available:

At every procedure entry
At every procedure exit
At the entry and exit of every procedure
Every statement
Every assembly instruction

Traces can also be restricted to certain blocks. The debugger allows you to
narrow traces to a particular �le, C function or C++ object. See Chapter 7 for
an explanation of blocks.

Traces on procedure entry or exit can take a signi�cant amount of time for the
debugger to execute. Eliminating entry/exit granularity causes the debugger to
run faster, but target program execution may be much slower.

3-14 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

Figure 3-6. The Trace Menu

Using the Trace Menu

A variety of trace commands are available from the Trace menu. Choose the
appropriate option under Trace:Trace Every to enable tracing.

As Figure 3-6 shows, the Trace menu is a Tear-o� Menu. When you click on
the dashed line at the top of the Trace menu, the menu is displayed in its own
window. The menu persists so that you can invoke commands from it without
having to redisplay it. You can also move the menu to a convenient place in
your workspace.

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-15

In This Book

Figure 3-7. The Trace Set/Change Dialog Box

Using the Trace Set/Change Dialog Box

The Trace Set/Change dialog box allows you to specify all aspects of a trace.
Invoke it by selecting Trace:Set. The dialog box in Figure 3-7 appears.

From the Trace Set/Change dialog box, you can:

1. Select the granularity (how often the trace is triggered).
2. Restrict a trace to be active only in a speci�ed block.
3. Specify how many levels of inherited data members should be included (for

C++ programs).
4. Control whether or not messages appear when a trace occurs.
5. Temporarily disable or re-activate traces.
6. Stop target program execution when a trace occurs.
7. Specify debugger commands to execute when a trace occurs.

To see a listing of traces, select Trace:Show.

3-16 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

Using the trace Command

The following example shows the result of invoking default tracing on the
sample program average:

trace

go

Trace at: \\average\print_average\25

Trace at: \\average\print_average\30

Trace at: \\average\sum\12

.

.

.

Trace at: \\average\print_average\35

Break at: \\average\main\46

Trace at: \\average\main\46

In addition, you can use the trace command to:

Display only selected statements, instructions, routine entry points, and
routine exit points as they execute

Stop execution following each trace event

Suppress the display of trace locations

Execute a command list after each trace event

See the online command reference for more information on the trace command
and its options.

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-17

In This Book

Setting Intercepts

Intercepts are like breakpoints that are set on signals and other events. For
example, when a signal event occurs, target program execution stops, and a
message is displayed indicating which signal was generated. Execution stops
before the signal is delivered to the target program.

By default, the debugger sets intercepts all HP-UX signals. It also sets, then
suspends, intercepts on image loading and unloading, certain thread events,
and exit events. In C++ programs, you can also set intercepts on catch and
throw events.

Using the Intercepts Dialog Box

The Intercepts dialog box allows you to view and modify intercepts. Invoke it
by selecting Execution:Signals/Intercepts. The dialog box in Figure 3-8
appears.

From the Intercepts dialog box, you can:

1. View the current status of all available intercepts.

This list shows all the attributes of each intercept, and also shows the
monitor number and the number of times the intercept has been received.

The monitor number does not correspond to the HP-UX signal number. See
Appendix C for more information on signal numbers.

2. Temporarily disable or re-activate selected intercepts.

3. Control whether or not messages appear when an intercept occurs.

4. Temporarily disable or re-activate all intercepts.

5. Specify how many times an intercept should be ignored before the debugger
handles it.

6. Specify debugger commands to execute when an intercept occurs.

3-18 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

3

In This Book

Figure 3-8. The Intercepts Dialog Box

Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts) 3-19

In This Book

Using the intercept Command

You can use the intercept command to create and control intercepts.

In addition, you can use:

list intercepts to show all intercept requests and the monitor number for
each intercept.

activate intercepts to restore suspended intercepts.

suspend intercepts to suspend active intercepts.

delete intercepts to remove intercepts.

See the online command reference for more information on these commands.

3-20 Using Monitors (Breakpoints, Watchpoints, Traces, and Intercepts)

4

4
Viewing and Manipulating Target Program
Data

This chapter describes how to examine and change various types of target
program data. Topics include:

Examining variables and expressions

Examinging registers

For more information on the debugger commands mentioned in this chapter
see the online command reference. You can also invoke help on a particular
command by entering help command name in the debugger command input
box.

The online help also contains more information on using the debugger's
graphical user interface.

Viewing and Manipulating Target Program Data 4-1

In This Book

Examining Variables and Expressions

Variables are evaluated in the scope of the current location, as indicated in
the Current Location: line above the source �le display. Usually the current
location follows the PC (program counter) location, so variables are evaluated
in the environment where your program is executing. For example, when
you are single-stepping through your source, the current location is in the
procedure you are stepping through.

If you want to evaluate a variable in the scope of another function on the
current call stack, use the ��� and �	� buttons next to the Stack Frame: label
in the current location line. (Or choose Show:Stack and choose a stack frame
in the Stack View dialog box.) This sets the current location to the speci�ed
function in the call stack.

To evaluate in the scope of a function that is not in the current call stack, enter
the function name in the (): input box and choose Visit:Procedure() to set
the current location to that function.

Finally, you can always specify the variable fully with the appropriate DDE
syntax (see Chapter 7). This syntax overrides the current location.

The PC arrow points to the line that will be executed next. (The PC location
arrow changes to a broken variant to indicate when the current point of
execution is either at another source statement on the same line or at an
instruction beyond the statement's �rst instruction.) When the arrow points
to an assignment statement, the assignment has not yet been executed. To see
the result of an assignment statement, step past it (or step over it if it calls a
function).

When reporting a value, the debugger uses quali�ers in the form:

\\module name[\routine name[\subroutine name]...]\object name

For example, the following print command output indicates that x is local to
the routine sum of the module test:

print x

\\test\sum\x:3

You can eliminate quali�ers by entering the command property qual_max 0.

For more information on quali�ers, see \Using Quali�ed Names" in Chapter 7.

4-2 Viewing and Manipulating Target Program Data

4

In This Book

Using Command Buttons

There are two command buttons that allow you to display values of variables.
The values are printed in the debugger output area. The following buttons are
located below the source �le display area:

�Print()� Print the value of the contents of the (): input box.

You can also evaluate expressions and assign values to
expressions. For example, in C syntax, if n/2 is in the input
box, the result of n divided by 2 is printed. If n = 4 is in the
input box, the value 4 is assigned to the variable n.

If the expression, ptr, is a pointer, printing ptr displays the
address of the variable pointed to. Printing *ptr displays the
value pointed to.

�Print*()� Print the value pointed to by the pointer in the (): input
box.

For example, if ptr (declared as int *ptr;) is in the input
box, the integer pointed to by ptr is displayed.

You can double-click or highlight the variable name or expression in the
program source to copy it to the (): input box.

If the current location points to the procedure containing the variable, you can
use the name of the variable without any quali�ers. If not, specify it according
to the rules de�ned in \Using Quali�ed Names" in Chapter 7.

Using the Mouse

Another method for examining variables and expressions is to use the mouse as
follows:

1. Position the cursor over an expression in the source �le display area.

2. Click the right mouse button. The Source Actions popup menu appears.

3. Select either Print or Print*. Note that the expression under the cursor
appears as an argument to these commands.

Viewing and Manipulating Target Program Data 4-3

In This Book

Using the Data Value Menu

As shown in Figure 4-1, a number of print commands are available from the
Data Value menu. Invoke it from Show:Data Value.

Figure 4-1. The Data Value Tear-Off Menu

The Data Value menu is a Tear-o� Menu. When you click on the dashed line
at the top, the menu is displayed in its own window The menu persists so that
you can invoke commands from it without having to redisplay it. You can also
move the menu to a convenient place in your workspace.

Using Debugger Commands

If you prefer to use debugger commands, the following list shows some common
usages:

print x Displays the value of x.

print y + z Displays the sum of y plus z.

4-4 Viewing and Manipulating Target Program Data

4

In This Book

print x = y + z Assigns the value of y + z to x (using C syntax).
Displays the result in the debugger output area.

set x = y + z Assigns the value of y + z to x (using C syntax).
Does not display the result in the debugger
output area.

declare int idx Creates the temporary variable idx of type int
(using C syntax).

list declares Show all user-de�ned (temporary) variables.

args Show the values of arguments of the current
routine

The next sections give you some idea of the the versatility and exibility of
these commands. They describe how to use debugger commands to examine
arrays, pointers, linked lists, and bu�ers.

The online command reference gives more examples and describes all the
options for each command.

Examining Arrays

To print an entire array, enter the print command and specify the array
name without a subscript. For example, suppose the array list is declared as
follows:

static int list[5] = {3,4,2,0,5};

The following command prints the array list:

print list

\\parray\list: (array)

\\parray\list[0]: 3

\\parray\list[1]: 4

\\parray\list[2]: 2

\\parray\list[3]: 0

\\parray\list[4]: 5

Viewing and Manipulating Target Program Data 4-5

In This Book

To print a portion of an array, enter the range as the subscript. Specify
a range in the form element..element for C, C++, and Pascal, and as
element:element for FORTRAN. For example, the following command prints
list[1] through list[3] in the C language array list:

print list[1..3]

\\parray\list[1]: 4

\\parray\list[2]: 2

\\parray\list[3]: 0

To specify a limit on the number of elements the print command displays,
use the property array_dim_max command. For example, property
array_dim_max 10 sets the limit at 10.

Examining Objects Referenced by Pointers

To examine an object referenced by a pointer, enter the print command and
either dereference the pointer using language-speci�c syntax or use the print
command's -indirect option.

For example, assume that C is the current language and that int_ptr contains
the address of the variable num, whose value is 7. You could print the value
pointed to by int_ptr using C language syntax for dereferencing pointers, as
the following example illustrates:

print int_ptr

\\test_program\main\int_ptr: 7B03A558

print *int_ptr

*\\test_program\main\int_ptr: 7

In languages that support special interpretation of pointers to characters:

Printing the value of a pointer will also print the string that is pointed to.
Printing the value of a dereferenced pointer will print a single character.

4-6 Viewing and Manipulating Target Program Data

4

In This Book

For example, assume that C is the current language and that char_ptr points
to the �rst element in the string success:

print char_ptr

\\test_program\main\char_ptr: 7B03A541

*\\test_program\main\char_ptr: "success"

print *char_ptr

*\\test_program\main\char_ptr: 's'

Instead of using language-speci�c syntax, you can use the -indirect option to
the print command as follows:

-indirect all Follow all pointers encountered and show the value of
the object pointed to.

-indirect count Follow pointers no further than count levels.

-indirect Follow pointers one level.

Examining Linked Lists

Use the print command's -indirect option to examine linked lists.

Enter -indirect count to print a speci�c number of records in a linked
list. For example, the following command prints the record pointed to by
first_item, as well as the next record in the linked list:

print first_item -indirect 2

\\main\first_item: 00088000

*\\main\first_item: (record)

\\main\first_item->item_text: "Class"

\\main\first_item->font: "<F21>"

\\main\first_item->next: 00088C00

*\\main\first_item->next: (record)

\\main\first_item->next->item_text: "Type"

\\main\first_item->next->font: "<F21>"

\\main\first_item->next->next: 00089800

To print an entire linked list you could specify -indirect all. But if the
linked list is large, the output may become unwieldy, since every link to each
record is shown.

Viewing and Manipulating Target Program Data 4-7

In This Book

To print all the records in a large linked list, you can make the debugger walk
through the list and print each record separately. Use the while command, as
shown in the following example:

set item = first_item; \

while item != 0 -loop [print item -indirect 1; \

set item = item->next] >tmp.out

The set command assigns the value of first_item to the pointer item. The
while command then executes the commands between the brackets as long
as item points to an address. The commands between the brackets print
the current record and increment item. All output is redirected to the �le
tmp.out.

For more information on grouping commands to perform useful tasks, see
\Combining Debugger Commands Using Action Lists" in Chapter 5.

Examining Buffers

Use the describe, print, and dump commands to examine bu�ers.

The describe command with the -va option is useful for �nding the virtual
address of an element in a bu�er. In the following example, the describe
command is used to display the virtual address of an element in a character
bu�er (called buff) from a C language program:

describe buff[60] -va

4000110C

The print command can also display the address of an element. However, it
also displays the contents of the bu�er starting from the speci�ed element.
Notice the use of the & operator in the following example:

print &buff[60]

4000110C

*: "a rather serious crime\nTo marry two wives at a time."

Use print with the following syntax to display the contents of a single element
in the bu�er:

print buff[60]

*: 'a'

4-8 Viewing and Manipulating Target Program Data

4

In This Book

For large bu�ers, the dump command is useful because you can use the -from
and -to options to specify address ranges. Also, dump takes a number of
options that allow you to format the output.

The following example shows a sequence of commands that determine an
address range in a bu�er. Then, the dump command prints the data in the
address range:

describe buff[60] -va

4000110C

describe buff[92] -va

4000112A

dump -from 4000110C -to 4000112A -char -bits 256

"a rather serious crime\nTo marry "

Notice that the -char option causes the output to be displayed as characters.
The -bits 256 option speci�es that the output should be formatted in units of
256 bits or 32 characters.

See the online command reference for more information on the describe,
print, and dump commands.

Viewing and Manipulating Target Program Data 4-9

In This Book

Examining Registers

Select one of the Show:Registers menu items to display a dialog box that
shows the contents of a group of hardware registers. Figure 4-2 shows a dialog
box displaying general registers. You can also display oating point and special
registers.

From the Show Registers dialog box, you can:

1. View register contents.

Register values that change during execution are highlighted.

2. Specify how the the register values are updated (similar to setting a
watchpoint's granularity).

You can also temporarily suspend updating, which allows the target
program to run faster. When register tracing is activated and set to
anything other than Every Stop, the debugger creates an implicit
watchpoint to check the register values at the appropriate granularity.

3. Change from the default hexadecimal display format.

The oating point register dialog box allows you to specify whether the
registers are displayed as two 4-byte values (single precision) or one 8-byte
value (double precision).

4-10 Viewing and Manipulating Target Program Data

4

In This Book

Figure 4-2. Show Registers Dialog Box (General)

Viewing and Manipulating Target Program Data 4-11

In This Book

Using Register Commands

Use the following commands to display the contents of groups of registers in
the debugger output area:

regs General registers
cregs Control registers
fregs Double-precision oating-point registers
fsregs Single-precision oating-point registers
fdregs Double-precision oating-point registers
sregs Space registers

The commands listed above are aliases for the dump command. They are
de�ned in the target manager startup �le (described in \Using Startup
Command Files" in Chapter 6), which is in:

/opt/langtools/dde/tgt/tgt_hpux_pa.startup

(See \Solaris SPARC Target Manager" in Appendix C for information on the
register dumping macros on Solaris systems.)

To display a single register, use dump -from address . Specify a register name
for address . For example:

dump -from r8

r8: 40006110

See Appendix C for more information on register names.

4-12 Viewing and Manipulating Target Program Data

5

5

Using Debugger Commands

This chapter describes the conventions you need to follow when you issue
commands from the debugger command input box, in startup �les, or as
arguments to the dde command -do option. Topics include:

Abbreviating debugger commands
Entering multiple debugger commands on one line
Using command lists
Continuing commands on the next line
Resolving syntax conicts
Editing the command line
Using the command history facility
Recording command sequences for later playback
Invoking shell commands from the debugger
Redirecting input and output
Using reserved identi�ers and special macros
Creating alias and de�ne macros
Combining debugger commands using action lists

For more information on the debugger commands mentioned in this chapter
see the online command reference. You can also invoke help on a particular
command by entering help command name in the debugger command input
box.

See \Using Startup Command Files" in Chapter 6 for more information on
startup �les.

Using Debugger Commands 5-1

In This Book

Abbreviating Debugger Commands

When you enter debugger commands, you can abbreviate any debugger
command or command argument to its �rst three characters.

For example, des total is equivalent to describe total and bre 17 is
equivalent to breakpoint 17.

Entering Multiple Debugger Commands on One Line

When you enter a single debugger command, terminate it with an end-of-line
(EOL), which is usually done by pressing �Return�. When you enter multiple
commands on one line, separate each command with a semicolon (;).

The alias, debug, define, target command, property flags, and shell

commands require the rest of the line as an argument. They only recognize an
EOL, not a semicolon, as a terminator.

However, you can combine these commands with others on the command line
if you enclose them in square brackets [], braces {}, or parentheses (). For
example, you could create an alias and then invoke it on the same command
line:

[alias ph print -hex]; ph foo

Using Command Lists

A command list is one or more debugger commands with arguments, separated
by semicolons and enclosed in square brackets [], braces {}, or parentheses ().

For example, you can direct the output of several commands into a �le:

[list breakpoints; list defines; list aliases] >save

Notice that the output redirection operator must have a space before it but no
space after it.

5-2 Using Debugger Commands

5

In This Book

Continuing Commands on the Next Line

The continuation character, a backslash (\), lets you continue a command
past the end of the line. The backslash must follow a space and must be the
last character on the line. When you press �Return�, the debugger echoes the
backslash after the Debugger Input: prompt.

Some debugger commands take a list of items separated by commas as an
argument. If you enter one of these commands and press �Return� when a
comma is the last non-blank character on the line, the debugger automatically
continues the line.

The debugger also continues a line that contains unbalanced brackets, braces,
or parentheses. Note, however, that the debugger balances only delimiters of
the same type as the outermost delimiter.

When unbalanced brackets, braces, or parentheses are entered in menus or in
dialog boxes, the debugger prompts for completion on the command line.

Resolving Syntax Conflicts

Some debugger commands, such as the print command, take programming
language expressions as arguments. This may cause a problem if the
programming language's syntax conicts with the debugger's command
language syntax.

For example, a conict occurs if you use a valid option to a debugger
command, such as -hex, within a program expression.

You can usually resolve syntax conicts by enclosing expressions that are used
as arguments in parentheses. Consider the following print commands:

print (abc -hex) Prints the value of abc minus the value of hex.

print abc -hex Prints the value of abc in hexadecimal.

Using Debugger Commands 5-3

In This Book

Resolving Case Sensitivity

Debugger commands and options are not case sensitive. Arguments to
commands are case sensitive. Therefore, the debugger considers the command

debug -output temp my_prog

to be the same as

DEBUG -OUTPUT temp my_prog

but di�erent from

debug -output temp MY_PROG

Programming language expressions are case sensitive if the current language
is case sensitive. If your current language is not case sensitive and you want
to refer to another part of the program that is case sensitive, you must �rst
reset your language using the property language command. See the online
command reference for more information on the property language command.

Commands that have a -language option eliminate the need to reset your
language with the property language command. The -language option
allows the command to use a language other than the current one to parse or
evaluate an expression. The print and set commands, for example, can be
invoked with the -language option.

5-4 Using Debugger Commands

5

In This Book

Editing the Command Line

Choose Options:Command Input Mode to select an edit mode for the debugger
command input box. The two choices are:

Use Ksh Mode. This invokes a KornShell-like edit mode, which emulates
either vi or emacs depending on the value of the EDITOR environment
variable.

Use Motif Mode. This invokes a simpli�ed Motif edit mode, in which basic
editing keys (Backspace, arrows) are active.

Using the Command History Facility

When the debugger is in Motif edit mode (see \Editing the Command Line") a
history bu�er appears above the Debugger Input box. Click on an item in the
history bu�er to copy it into the input box, or double-click on it to re-execute
the command.

When the debugger is in Ksh edit mode, you can use key commands to scroll
through the command history. For example:

If EDITOR is set to emacs, �CTRL�-�P� accesses the previous command and
�CTRL�-�N� accesses the next command.

If EDITOR is set to vi and you are in vi command mode, �k� accesses the
previous command and �j� accesses the next command.

Command history is stored in a �le called .ddehist in the directory where the
debugger is started, and is preserved between debugging sessions.

Using Debugger Commands 5-5

In This Book

Recording Command Sequences for Later Playback

The property record command is useful if you want to save debugger
command sequences for reuse at another time. It records all commands
whether they are invoked from menus, command buttons, or from the debugger
command input box. The syntax is:

property record {pathname [-append | -replace]

| -on

| -off

}

The pathname argument speci�es the command �le where the command
sequences will be stored. You can add or delete entries in the command �le
with a text editor.

The -on and -off arguments start and stop recording. After specifying
pathname when you �rst start recording, you need not specify it every time
you start and stop. Only enter pathname again when you want to change to a
di�erent command �le.

The -append and -replace arguments specify whether to add to, or to
overwrite an existing command �le.

You can invoke the commands in a command �le by using the input
operator (<pathname) or the input command (input -from pathname). See
\Redirecting Input and Output" for more information.

For more information about the property record command, see the online
command reference.

5-6 Using Debugger Commands

5

In This Book

Invoking Shell Commands from the Debugger

To invoke shell commands from the debugger command line, use the shell
command. For example, the following command compiles the test program,
average.c, for debugging:

shell cc -g average.c

The value of the SHELL environment variable determines which shell is invoked.

Note Do not enter the shell command without an argument or
invoke a command that expects standard input. The command
will fail when it attempts to read from standard input

For more information on the shell command, see the online command
reference.

Redirecting Input and Output

You can direct the debugger to read its input from a �le with an I/O operator
or with the input command. File input is aborted if the debugger encounters
an error while reading from an input �le. Use the property abort command to
have the debugger continue reading from the �le when it encounters an error.

You can use the property record command to create an input �le of debugger
commands. See \Recording Command Sequences for Later Playback" for more
information about property record.

From the debugger command input box, you can direct the debugger to read
its input from a �le using an I/O operator as follows:

<pathname Read and execute debugger commands from the
�le pathname.

You can also use I/O operators to read command input from a �le and redirect
output to a �le as follows:

<pathname.in >pathname.out

print abc >pathname.out

Using Debugger Commands 5-7

In This Book

You cannot use parameters with input �les.

You can redirect debugger command output by issuing a command followed by
I/O operators (similar to those found in most shells) from the command entry
line. Output remains redirected until the command has been completed.

cmd >pathname Redirect standard output to pathname.

cmd >>pathname Redirect standard output and append it to
pathname.

cmd 2>pathname Redirect standard error output to pathname (Korn
and Bourne shell notation).

cmd 2>>pathname Redirect standard error output and append it to
pathname.

cmd >>?pathname Redirect standard error output and append it to
pathname.

Note A space must separate the command from the I/O operator.
Spaces are not allowed between I/O operators or between an
I/O operator and pathname.

You can also group the output of several commands by using brackets. For
example, the command

[cmd1;cmd2;cmd3] >pathname

redirects the output from all three commands to pathname.

5-8 Using Debugger Commands

5

In This Book

Creating Alias and Define Macros

You can use the alias and define commands to create two types of macros:

An alias macro serves as a synonym for one or more debugger commands.
The debugger expands alias macros only when the macro is at the beginning
of a command line, or when the macro follows a semicolon in a line of
commands.

A de�ne macro serves as a synonym for any string of text, including
debugger commands. The debugger always expands a de�ne macro no
matter what position the macro occupies in a command line.

For example, consider the following series of commands:

alias show print

alias ali_X total

define def_X total

show ali_X

"ali_X" not found in current environment.

show def_X

total: 20

The alias commands create show as a synonym for the print command, and
ali_X as a synonym for the variable total. The define command also creates
a synonym for total, but gives it the name def_X.

The debugger does not expand ali_X in the command show ali_X since ali_X
does not appear at the beginning of the line and it does not follow a semicolon.
However, the debugger does expand def_X since de�ne macros can appear
anywhere on the command line. Also, since the alias show appears �rst in both
of the last two command lines, the debugger expands show in both cases.

The debugger expands macros from left to right in the command line. Upon
�nding a macro with arguments, the debugger inserts the arguments into the
macro de�nition. Then the debugger rescans the command line, starting from
where it found the macro.

You can de�ne macros in terms of other macros and nest them. Note that
macros cannot be recursive.

Using Debugger Commands 5-9

In This Book

Macro names may begin with a letter, a grave (`) accent, a hyphen (-) or an
underscore (_). Macros accept parameters and are de�ned like C language
macros. See the descriptions of the alias and define commands in the online
command reference for syntax details.

You must delimit a macro name in a command string with characters not
allowed in a macro name, such as the space character. For example:

define X len De�nes macro X as len.

print X Expands to print len.

print myX Does not expand because the debugger does not treat the
letter y as a delimiter.

Start a macro name with a grave accent (`) to form a macro that can
concatenate its text with other strings. For example:

define `X len De�nes macro `X as len.

print `X Expands to print len.

print my`X Expands to print mylen.

Like arguments to debugger commands, macros are case-sensitive. You can list
alias macros using the list aliases command; use list defines to list de�ne
macros.

You can specify any string as the value for an actual parameter. The debugger
recognizes any string within matching brackets [], braces `fg'', or parentheses
() as a single argument. However, bracket pairs within the string are treated in
a special manner, and quotation marks are treated as part of the string. The
outermost brackets (within the parentheses that delimit the argument) must
balance; brackets, characters, and punctuation marks within the outermost
brackets are considered part of the argument.

A period (.) preceding a command string prevents the debugger from trying to
expand the string in an alias or de�ne macro. For example, using the period
can prevent in�nite looping in the following alias:

alias s[tep] .step -ignore

Without the period, when the debugger encounters the step command string,
it would continue to apply the alias de�nition inde�nitely.

5-10 Using Debugger Commands

5

In This Book

Using Reserved Identifiers and Special Macros

The debugger reserves certain identi�er and macro names for special purposes.
Table 5-1 contains a complete list of reserved identi�ers and special macros.
You can use these reserved identi�ers and special macros for several operations,
including the following:

Specifying commands that the debugger is to execute in speci�c situations,
such as after the invocation of the target program or after a fault occurs.

For example, after loading a target program, the debugger checks the
`after_debug macro and executes any commands assigned to it.

By default, `after_debug is unde�ned. Use the alias command to de�ne
it. For example, the following sets the `after_debug macro to delete the
intercept for the SIGVTALRM signal after a target program is loaded:

alias `after_debug delete intercept signal SIGVTALRM

Identifying an environment other than the current environment (the
target program procedure which the debugger refers to when evaluating
expressions).

For example, `env(+n | -n) is useful for changing locations on the
call/return stack. The following command changes the environment up one
frame on the stack:

environment `env(-1)

Referring explicitly to a module name in a particular image, a language-
de�ned symbol name, or a variable that you create with the declare
command.

For example, if you use the declare command to create temporary variables,
you can use `declared to refer to them. The following command would list
all the temporary variables that you de�ned:

list blocks `declared -full

Using Debugger Commands 5-11

In This Book

Table 5-1. Reserved Identifiers and Special Macros

Reserved Identi�ers and

Special Macros

Function

`after_debug 1Speci�es debugger commands that the debugger
executes after invoking the target program. See the
debug command entry in the online command
reference for details.

`after_fault 1Speci�es debugger commands that the debugger
executes if the target program faults.

`amb Identi�es an overloaded C++ function. See online
help on C++ debugging for details.

`asm 1Identi�es the appropriate assembly language
manager for the target machine. De�ned in the
target manager startup �le.

`command 1Contains the most recently entered command
string. A command string can be a single debugger
command or several debugger commands separated
by semicolons. All characters up to the carriage
return will be repeated.

`cr 1Speci�es debugger commands that the debugger
executes when you enter �Return� on an empty
command line. By default, `cr is set to `command

which causes the most recently entered command to
be invoked.

`declared Speci�es the outer block where the debugger stores
variables that you create using the declare
command. You can use `declared to refer explicitly
to variables created with declare.

1Indicates that the entry is a macro.

5-12 Using Debugger Commands

5

In This Book

Table 5-1. Reserved Identifiers and Special Macros (continued)

Reserved Identi�ers and

Special Macros

Function

`env(+n | -n) If you do not specify n, `env refers to the current
environment (that is, the target program procedure
which the debugger refers to when evaluating
expressions). If you do specify n, `env refers to an
environment relative to the current environment.
See Chapter 7 for more information.

`image(name) Associates a module name with a particular image.
This is useful when your program consists of more
than one image (that is, when your program uses
dynamically loaded libraries) and multiple images
use modules with the same name. See \Image
Quali�ed Names" in Chapter 7 for details.

`label(statement label) Uses a label in the source code to identify a line.
Any alphanumeric character string that is a valid
label in the source language is a valid argument.
Often used to specify the location of breakpoints.

`long(expression) Converts the value of expression to a 32-bit integer
type.

`main(n) Identi�es the frame that is n frames away from the
oldest frame on the call/return stack. If you don't
specify n, `main speci�es the oldest frame on the
call/return stack. See \Frame Block Quali�ed
Names" in Chapter 7 for details.

Using Debugger Commands 5-13

In This Book

Table 5-1. Reserved Identifiers and Special Macros (continued)

Reserved Identi�ers and

Special Macros

Function

`predefined(lang type,

obj type)

Speci�es special blocks where the debugger stores
names de�ned by programming languages
(lang type) and object type (obj type). You can use
`predefined to refer explicitly to a
language-de�ned symbol name. See Appendix C and
Appendix D for information on how to specify
lang type and obj type.

`run(n) Identi�es the frame that is n frames away from the
most recent frame on the call/return stack. If you
do not specify n, `run speci�es the location at
which the program stopped. See \Frame Block
Quali�ed Names" in Chapter 7 for details.

`short(expression) Transfers the value of expression to a 16-bit integer
type.

`thread(n) Speci�es a thread according to the target
manager-de�ned identi�er, n. Use the command
list threads to display threads and their
identi�ers.

`va(address) Speci�es that address is a machine location. `va is
useful for printing or changing the contents of a
machine location. See \Assembly Level Debugging"
in Chapter 8 for details.

5-14 Using Debugger Commands

5

In This Book

Combining Debugger Commands Using Action Lists

An action list is a series of debugger commands associated with a speci�c
breakpoint, watchpoint, intercept, or tracing request. The debugger executes
an action list after executing to the breakpoint location, detecting a change in
the watched value, receiving an intercept, or encountering a tracing event. (See
the breakpoint, watchpoint, intercept, or trace command description in
the online command reference for more information.)

The following sections describe how to create action lists and how the debugger
handles action lists in special situations.

Creating Action Lists

Use the -do option to specify an action list for a breakpoint, watchpoint,
intercept or trace command. For example, consider the following
breakpoint command:

breakpoint 30 -do [args; go]

Because of the -do option in the preceding example, when execution reaches
line 30, the debugger �rst prints the value of the arguments to the current
routine (that is, the debugger executes the args command) and then resumes
execution (executes go). Now consider the following watchpoint and trace

commands:

watchpoint p -do [print p/r]

trace -statement -in sum -do [print s]

In the preceding example, the -do option to the watchpoint command causes
the debugger to print the value of p divided by r whenever the value of p
changes during program execution. The -do option to the trace command, on
the other hand, causes the debugger to print s at each statement (as speci�ed
by -statement) in the routine sum (as speci�ed by -in sum).

Using Debugger Commands 5-15

In This Book

Creating Conditional Action Lists

Use the if command to create conditional action lists. For example, the
command

breakpoint 18 -do [if i > 5 -then [print s] -else [go]]

causes the debugger to invoke print s whenever i is greater than 5 at line 18.
If i is 5 or less, the debugger invokes go.

You can also add a return command to an action list if you want the debugger
to exit from the action list under certain conditions. For example, the following
return command

breakpoint 18 -do [if i>10 -then [return]; \

-else [set list[i] += 1; go]]

causes the debugger to exit the action list if i is greater than 10 at line 18. If i
is less than 10, the debugger increments array element list[i] and resumes
execution.

Understanding Action List Execution in Special Circumstances

The following sections describe how the debugger handles action lists in special
situations, such as when an error occurs in an action list or when more than
one action list is eligible for execution at the same time.

Errors in Action Lists

By default, if an error occurs in an action list, the debugger aborts the action
list. Use the property abort command to change the default and direct
the debugger to continue executing the action list even if it encounters an
error. Refer to the description of the property abort command in the online
command reference.

Execution of Multiple Action Lists

Because you can set action lists on more than one kind of program monitoring
request, you can have multiple action lists eligible for execution at the same
time. For example, the debugger may detect a change in a watched value at
the same time as it encounters a breakpoint.

5-16 Using Debugger Commands

5

In This Book

The debugger executes in an arbitrary order the action lists that are eligible
for execution at the same time. If two or more such action lists have an
unrestricted go command (a go command with no arguments), the debugger
executes all action lists up to the �rst unrestricted go command it encounters,
executes that go command, and then issues a warning that it discarded other
go commands. This behavior prevents you from inadvertently losing control of
the program when two action lists execute concurrently.

Action List Execution Following an Interactive step Command

If program execution stops following an interactive step command and the
debugger executes one or more action lists, the debugger ignores all requests
to execute the program from those action lists and issues a warning. This
behavior prevents the program from continuing to execute while you are trying
to step through it.

Placing step and go Commands in Action Lists

The debugger executes all step and go commands in the order they appear in
the action list, except unrestricted go commands as described in \Execution of
Multiple Action Lists". You can place step or go commands anywhere in an
action list. However, it is usually best to them at the end, as in the following
example:

breakpoint 45 -do [some command; another command; go]

Otherwise, you may �nd that execution of the action list generates
unanticipated results. The commands following a go or a step command might
execute at program locations you do not anticipate.

In addition, commands may execute in an order that you do not expect. This
situation can occur when control returns to the debugger from the target
program. The debugger executes any new action lists applying to the new
location, and then executes any commands remaining from earlier action lists.

Generally, you can avoid unexpected results by placing a step or go command
only at the end of an action list.

Using Debugger Commands 5-17

6

6

Customizing the Debugger

This chapter describes methods for customizing the debugger to suit your own
preferences and needs. Topics include:

Customizations available from the debugger's Options menu
Using startup command �les
Emulating the xdb or dbx debuggers

The online help contains information about customizing the debugger's
graphical user interface. Look for Customizing HP/DDE in the User Interface

section.

Customizing the Debugger 6-1

In This Book

Using the Options Menu

Figure 6-1. The Options Menu

A variety of customizations are available from the debugger's Options menu,
shown in Figure 6-1. They include:

Specifying the default program environment.
Modifying breakpoint, watchpoint, and trace behavior for C++ programs.
Changing the format and behavior of the stack display.
Changing the format and behavior of the watchpoint display.
Specifying the debugger's behavior when fork() calls are encountered.
Selecting the edit mode used in the Debugger Input command box.
Selecting the language-sensitive text selection behavior.
Displaying sections of the debugger's main window as separate windows.
Changing the command buttons on the front panel and the pop-up menus in
the source and assembly displays.
Saving and restoring all settings.

To get more help on these customizations, hold down the left mouse button on
an item in the Options menu, then press �F1�.

6-2 Customizing the Debugger

6

In This Book

Using Startup Command Files

When you invoke the debugger, it executes three startup command �les.
Startup command �les contain commands that de�ne command aliases and
commands that customize the debugging environment.

The startup �les and their order of execution are:

1. User interface manager startup �le. Contains default de�nitions for
macros and for debugging environment settings. You can override these
defaults de�nitions using your personal startup �le (see \Using a Personal
Startup File to Customize the Debugger") . To �nd out the name and
location of the user interface startup �le for each user interface manager, see
Appendix E.

Note If you specify -do on the dde command line, the debugger
executes the -do option's command list after executing the user
interface manager startup �le.

2. Personal startup �le. Contains commands that tailor the debugging
environment to your personal tastes and that de�ne personal command
aliases. \Using a Personal Startup File to Customize the Debugger"
describes personal startup �les and how to create them.

3. Target manager startup �le. Contains macro de�nitions speci�c to the
target machine. For example, it contains a de�nition of the macro regs,
which displays the machine registers.

The debugger executes the target manager startup �le after invoking or
attaching to a target program, but before activating the target program.
The debugger re-executes the target manager startup �le whenever you issue
the debug command. See Appendix C for more information on the target
managers.

Customizing the Debugger 6-3

In This Book

Using a Personal Startup File to Customize the Debugger

A personal startup �le contains debugger commands that you want executed
each time you invoke the debugger. To create a personal startup �le, create a
�le called .dderc in either your current working directory or in your $HOME
directory. In .dderc, place any commands that you want to execute at
debugger startup.

When you invoke the debugger, it searches for .dderc in the current working
directory. If the debugger does not �nd .dderc in your current working
directory, it then searches your $HOME directory.

A personal startup �le typically contains commands that:

Set debugger properties (such as the maximum number of array
elements that the debugger will print) to values that you use frequently
(property array_dim_max)

De�ne command aliases, which let you more easily enter commands or a
sequence of commands that you use frequently (alias)

In addition, you can de�ne a special alias, called `after_debug. This alias can
contain commands that you want the debugger to execute after it invokes the
target program; for example, `after_debug might set a breakpoint or invoke
a command �le containing commands speci�c to the target program. To use
`after_debug, de�ne it with an alias command in your personal startup �le.
For example, the alias command

alias `after_debug breakpoint sum; go

causes the debugger to set a breakpoint at the �rst executable statement in the
procedure sum and then to execute the go command.

6-4 Customizing the Debugger

6

In This Book

A Sample Personal Startup File

The directory /opt/langtools/dde/contrib contains sample startup �les
that you can use as models for your own .dderc �le. (On Solaris systems, the
directory is /opt/softbench/dde/dde/contrib.) The �le names and contents
are:

dderc_abbrev Shortcuts for HP/DDE commands

dderc_hints Examples of specialized macros

dderc_xdb Aliases that map HP/DDE commands to xdb

equivalents

dbx_macros Macros that simulate dbx syntax

dderc_threads Modi�cations that are useful when debugging
multi-threaded applications

Figure 6-2 shows the types of commands that are typically found in an
HP/DDE personal startup �le.

Customizing the Debugger 6-5

In This Book

property array_dim_max 10 # Print a maximum of 10

elements of an array.

property echo -graphic # In the debugger output area,

echo commands entered

using dialog boxes, pop-up

menus, or specially

defined keys.

alias so step -over # Use "so" on an empty
line to step execution,

stepping over called

routines.

alias s step # Use "s" to step

execution, stepping into

called routines.

alias gr go -return # Use "gr" to return to

the calling procedure.

alias `after_debug delete intercept signal SIGVTALRM

When starting up the

target program, delete

the intercept for the

SIGVTALRM signal.

alias ls sh ls # Use "ls" to list directory.

(continued)

Figure 6-2. A Sample Personal Startup File

6-6 Customizing the Debugger

6

In This Book

The following dump command aliases vary the format

(hexadecimal, decimal, or character) used to display

memory. "addr" is a memory address or mnemonic (such

as PC) that you must supply as an argument when you

invoke one of the aliases.

alias Dh(addr) dump -from addr -bits 256 -hex

alias Dd(addr) dump -from addr -bits 256 -decimal

alias Da(addr) dump -from addr -bits 256 -character

The following dump command aliases take two arguments:

addr and n. Use n to specify the number of bits you

want grouped as a unit in the resulting display of

memory.

alias Dan(it,n) dump -from it -bits n -character

alias Dn(it,n) dump -from it -bits n -hex

The following alias searches for procedure names

containing the character string str, and prints the

fully qualified name for each procedure name displayed.

alias find(str) list blocks >tmp; sh grep str tmp

A Sample Personal Startup File (continued)

Customizing the Debugger 6-7

In This Book

Emulating Other Debuggers

The HP/DDE install area contains sets of macros that you can use if
you prefer to use dbx or xdb commands in place of HP/DDE commands.
Additionally, you can enter any dbx command without using macros if you
pre�x the command with dbx_. The following sections detail how to use dbx or
xdb commands in place of HP/DDE commands.

Note On Solaris systems, the command �les mentioned in the
following sections are found in:

/opt/softbench/dde/dde/contrib

Compatibility with xdb

The HP/DDE online help contains command maps that show HP/DDE
equivalents for many common xdb commands. It also contains other maps that
show HP/DDE equivalents to many xdb features. To access these maps, select
xdb Commands and HP/DDE Equivalents from the Common Debugging Tasks:

Command Line menu.

The command �le /opt/langtools/dde/contrib/dderc_xdb de�nes some
aliases for xdb commands. You can read the aliases directly into your
debugging session with the following command:

</opt/langtools/dde/contrib/dderc_xdb

Alternatively, you can copy the command into a .dderc �le in your home
directory. The debugger automatically reads that �le at startup.

Note The dderc_xdb �le is not a complete list of the xdb equivalents
of HP/DDE commands. Only commands that are easy to
map are aliased in this �le. See the online help for a complete
xdb-to-HP/DDE command mapping.

See \Using a Personal Startup File to Customize the Debugger" for details on
creating a .dderc �le.

6-8 Customizing the Debugger

6

In This Book

Be aware that the macros a�ect the input syntax of commands but have no
e�ect on the way the debugger formats its output. Debugger command output
does not resemble xdb output.

Compatibility with dbx

The debugger provides a set of commands that make dbx and debugger
commands compatible. Compatibility commands for dbx consist of the pre�x
dbx_ and standard dbx syntax. For example, the debugger command break 27

and the compatibility commands dbx_stop at 27 both set a breakpoint at line
27.

The command �le /opt/langtools/dde/contrib/dbx_macros de�nes macros
that let you enter dbx commands without pre�xes. For example, you can
specify stop at 27 rather than dbx_stop at 27. You can read the macros
directly into your debugging session with the following command:

</opt/langtools/dde/contrib/dbx_macros

Alternatively, you can copy the command into a .dderc �le in your home
directory. The debugger automatically reads that �le at startup.

See \Using a Personal Startup File to Customize the Debugger" for details on
creating a .dderc �le.

Using the compatibility macros in the dbx_macros command �le masks out
some debugger commands. That is, the debugger executes the macro instead of
the debugger command. Debugger commands that are masked out by macros
remain available through the menus. Pre�xing the command with a period
(.) also inhibits macro expansion. For example, the dbx_macros command
�le de�nes a step macro. You can type .step to invoke the debugger's step
command rather than the step macro.

Be aware that the macros a�ect the input syntax of commands but have no
e�ect on the way the debugger formats its output. Debugger command output
does not resemble dbx output.

Customizing the Debugger 6-9

7

7

Identifying Program Objects

This chapter describes the debugger's concept of environment, scope and
visibility rules, and how you can refer to objects outside the scope of the
current environment. Topics include:

Understanding blocks and environments
Changing the environment
Overriding the current language
Applying scope and visibility rules
Using quali�ed names

The debugger's online help has more information on how to specify locations,
blocks, and environments to the debugger. See the following sections, which are
located under Common Debugging Tasks:

Specifying Locations to the Debugger

Specifying Blocks to the Debugger

Specifying Environments to the Debugger

Identifying Program Objects 7-1

In This Book

Understanding Blocks and Environments

A block is a program unit, such as a module, a main program, a subroutine, or
a function. What constitutes a block depends on the language in which the
program is written. Use the list blocks command to display the blocks in the
program you are debugging.

A block de�nes and encloses a scope, the region of source code over which a
name's declaration is active. The debugger also de�nes blocks called `declared

(for user-declared symbols), `predefined (for data types for supported
languages) and `image (for the program images).

The debugger de�nes two environments:

The run environment is the block containing the current point of execution.

The current environment is the block to which the debugger refers when
evaluating expressions.

The current environment is identical to the run environment, except when you
explicitly change it to another block (by using the environment command,
for example). The source �le display shows an arrow at the current point
of execution. When the current environment is set to some other block, a
horizontal bar appears within the block where the current environment is set.

In addition, the block containing the current point of execution is displayed
after the PC Location label above the source display. The current environment
block is displayed after the Current Location label.

Each time execution of the target program stops, the debugger sets the current
environment to the run environment.

The debugger starts its search for objects within the block that corresponds
to the current environment. If the debugger cannot �nd the object in the
current environment, it extends its search into outer encompassing blocks.
The debugger bases its search of outer blocks on the scope and visibility rules
described in \Applying Scope and Visibility Rules".

For multi-threaded applications (implemented using HP DCE threads), the
debugger also includes a thread component in its concept of environment. See
\Debugging Multi-Threaded Applications" in Chapter 8 for more information
on debugging multi-threaded applications.

7-2 Identifying Program Objects

7

In This Book

Changing the Environment

Commonly, you may need to change environment because you cannot access a
variable or expression from the current point of execution. For example, setting
a watchpoint on a variable fails and a not found in current environment
message is displayed.

To change the environment, use one of the following methods:

Invoke one of the selections under the Visit menu.

You can specify a procedure name, a line number, or a �le name. Or you can
specify the environment by using the debugger location syntax described in
the online help.

Use Visit:PC to return to the current point of execution.

Use one of the up/down arrow buttons located next to the Stack Frame:

label above the source display.

These buttons allow you to change environment relative to frames on the
call/return stack.

Similar up/down arrow buttons are available from the Stack View dialog box
that you can invoke from Show:Stack.

Use the environment command and specify a location or a stack frame.

See the online help for the syntax to use when specifying a location.

The reserved identi�er `env(+n | -n) is useful for changing environments
relative to frames on the call/return stack. See \Frame Block Quali�ed
Names" for more information.

For example:

env 17 Changes environment to line 17 in the source code.

env

print_average

Changes environment to the procedure, print_average.

env `env(-1) Changes environment up one frame (toward `main) on
the call/return stack.

Identifying Program Objects 7-3

In This Book

Overriding the Current Language

The debugger uses the source language of the current environment when
evaluating expressions. You can use the property language command to
change the language of evaluation, or you can use the print -language
command to override the default language used to evaluate a single expression.

For example, when the current environment is using the C language manager,
you can use FORTRAN as the language of evaluation for a command:

property language fortran

Now, although C is the language that corresponds to the current environment,
you can evaluate a FORTRAN expression:

break 32 -do[if a.eq.b -then print a]

These commands are fully described in the online command reference.

Applying Scope and Visibility Rules

The debugger applies certain scope and visibility rules to �nd symbols.

The debugger �rst searches within the block that contains the current location.
If the symbol is found, the search is completed. If the symbol is not found,
the debugger searches outer, encompassing blocks. A symbol in the outer,
encompassing block is visible to the inner block as long as no symbol of the
same name exists in the inner block. See Figure 7-1 for an example.

If the search within the scope of the current environment fails, the debugger
applies additional rules to locate the name. The following is a summary of the
debugger's search order:

1. The block containing the current location.
2. Outer encompassing blocks (lexical parents).
3. The prede�ned language (`predefined) block.
4. The user-declared block (`declared).
5. Global symbols and top-level procedures (external).

7-4 Identifying Program Objects

7

In This Book

Note Special language-speci�c search rules can also be used. For
example, when debugging C++ programs, you can �nd class
members.

Figure 7-1. Sample Module Illustrating Scope and Visibility

In addition, you can explicitly reference symbols outside the scope of the
current environment by using quali�ed names. The following section describes
the syntax for using quali�ed names.

Identifying Program Objects 7-5

In This Book

Using Qualified Names

You can use quali�ed names to have the debugger search in a speci�c block, a
top-level procedure or module, an executable image (a loaded object �le or
shared library), or a frame on the call/return stack.

Block Qualified Names

The debugger uses block quali�ed names to refer to variables that are not
visible from the current environment. A block quali�ed name explicitly
identi�es the block enclosing the object and the object's name; the format is
block\object name. Specifying a block in addition to a name changes the scope
by specifying the starting block of the search.

For example, if the current environment is line 16 in Figure 7-1, you can use
the block quali�ed name

myprog\Z

to refer to variable Z on line 3. Use the block quali�ed name

sort\Z

to refer to variable Z on line 12 in Figure 7-1.

With block quali�ed names, you can also combine variables from di�erent
blocks in a single expression. For example, use

myprog\Z + sort\Z

to refer to the sum of Z in myprog and Z in sort.

You can use block quali�ed names to explicitly identify variables that are not
visible, including variables in currently inactive modules (�les) and routines.
Note, however, that if the value identi�ed is a stack allocated variable, the
variable is only visible when it is on the call stack.

7-6 Identifying Program Objects

7

In This Book

Fully Qualified Names

A fully quali�ed name identi�es all blocks that enclose the object.

To identify objects, the debugger uses fully quali�ed names in the following
format:

nmodulen[block[nblock. . .]]nobject name

where module is a module or a top-level name.

In Pascal, module is speci�ed by the module keyword. In C, module is the
source �le name with the .c extension removed. In FORTRAN, modules do
not exist, so a top-level name is the routine name|MAIN, a program name, or a
subroutine.

Specifying a fully quali�ed name is useful for avoiding ambiguity, when you
want to reference an object that is not visible from the current environment.

Use the list blocks command to display the fully quali�ed names for all the
blocks in the target program.

For example, Figure 7-2 shows a target program in C compiled from two
modules, m1.c and m2.c.

Identifying Program Objects 7-7

In This Book

Figure 7-2. Sample Modules Illustrating Fully Qualified Names

The following list shows how to reference each instance of the variable z by
using fully quali�ed names:

\m2\z References the variable z de�ned on line 3 of m2.

\m2\procA\z References the variable z de�ned on line 9 of m2.

\m1\proc1\z References the variable z de�ned on line 8 of m1.

Note that fully quali�ed names can be preceded by either a single backslash (\)
or a double backslash (\\). The debugger, however, prints fully quali�ed names
preceded by a double backslash. For example:

print \m2\procA\z

\\m2\procA\z: 600

By default, the debugger prints fully quali�ed names. You can change the
default behavior with the property qual_max command. For example, if you
specify property qual_max 0 and issue a print command, the debugger prints
only the object name and its value; other blocks enclosing the object are not
identi�ed.

7-8 Identifying Program Objects

7

In This Book

Image Qualified Names

An image quali�ed name may be necessary to eliminate ambiguity among
module names when an application consists of more than one executable image
(loaded object �le or shared library). This occurs whenever an application
contains a dynamically loaded library. More than one image may contain
modules with the same name.

An image quali�ed name starts with the notation `image(image name), where
image name is the shortest unique path name of the object �le. Use the
list images command to list the names of the known images.

For example, suppose that your application consists of the executable image
average that contains the procedures main, sum, and print_average, and the
dynamically loaded libraries highlib and lowlib. Since one or more of the
libraries may contain a procedure named print_average or sum, you can use
the image quali�ed name

`image(average)\average\sum

where `image(average) contains average, to name the procedure sum.

Special Block Qualified Forms

The debugger provides additional block quali�ed forms that you can use to
refer to symbol names that are de�ned by the programming language or the
user, and to refer to symbols that are externally declared.

Qualified Names for Predefined, User-Declared, and External Symbols

Symbol names that are de�ned by the programming language (usually type
names such as integer or int) begin with `predefined and reside in outer
debugger blocks. Use the list blocks command to view these blocks and
names. You can explicitly refer to a language-de�ned symbol name by using a
block quali�ed name of the form `predefined(lang type,obj type)nname. For
example:

`predefined(lang_c,obj_som)\int

See Appendix B and Appendix D for information on the valid values for
lang type and obj type.

Identifying Program Objects 7-9

In This Book

You may explicitly refer to user-declared symbol names, created with
the declare command, by using a block quali�ed name of the form
`declared\name. User-declared symbol names are de�ned in an outer block
named `declared. Since program symbol names visible from the current
environment are searched before user-declared symbol names, user-declared
symbol names may be hidden by program symbol names.

When the debugger cannot �nd a symbol name by following the normal scope
rules or by searching the outer language or user-declared blocks, it looks at
variables declared to be external (that is, variables declared to be visible
everywhere). Similarly, when the debugger cannot �nd a block name, it
searches for a procedure not enclosed within another procedure.

Frame Block Qualified Names

You can identify dynamically activated symbols within recursive procedures
using frame block quali�ers. Frame block quali�ers use both a block and a
frame to specify the current environment.

Recursive procedures are called multiple times and produce multiple frames
(invocations) on the call/return stack. The debugger distinguishes one
invocation from another by identifying the current environment as both a block
and a frame. The block serves as a naming context, as described in \Block
Quali�ed Names", and helps to determine which variable names are visible
and which are not. The frame indicates which invocation of that block the
debugger should use to locate local data.

When a recursive procedure produces more than one instance of a block on the
call/return stack, local symbols in that block have more than one instance.
The current environment consists of both a frame and a block. The debugger
uses the block to determine which variable is intended, and it uses the frame to
determine which instance of that variable to use.

If a block has not been invoked, then the block is said to be inactive, and
you may only examine its static data objects. If a block has been invoked
once, then that instance is used. In the example shown in Figure 7-3, use
print_answer\COUNTER to refer to the COUNTER variable in frame `main(5). If
a block has been invoked more than once, the most recent instance is chosen
by default; for example, binary_search\HI refers to the HI variable in frame
`main(4) by default.

7-10 Identifying Program Objects

7

In This Book

Figure 7-3. Sample Call/Return Stack and Program

There are three ways to refer explicitly to symbols using a frame block
quali�er:

main relative The notation is `main(n) where n is the number
of the frame counting from the least recent frame
of the call/return stack to the desired frame.
In the example in Figure 7-3, the frame with
print_answer is `main(5). `main by itself refers
to the oldest frame in the stack. This frame may
not refer to your main program because in some
cases a procedure in a run-time library may be at
the base of your stack.

Identifying Program Objects 7-11

In This Book

run relative The notation is `run(n) where n is the number
of the frame counting from the most recent frame
in the program (that is, the location where the
program is stopped). In Figure 7-3. the frame
with print_answer is `run(2). `run by itself
refers to the location where the program is
stopped.

environment relative The notation is `env(-n) where n counts up
(toward `main) from the current environment.
The notation is `env(+n) where n counts down
(toward `run) from the current environment.
`env by itself refers to the current environment.

In Figure 7-3, you can refer to the instances of variable HI as `run(3)\HI,
`run(4)\HI, and `run(5)\HI. You could also refer to the variables with `main

or `env notation. A frame quali�ed name may not contain block quali�ers
(that is, `main\blk is not valid).

Also, you can use frame names with the environment command to change your
environment to any procedure on the call/return stack. For example, you can
set the environment to the current point of execution using:

environment `run

7-12 Identifying Program Objects

8

8

Debugging in Special Situations

The HP/DDE debugger provides support for debugging in many di�erent
situations. This chapter describes the debugger's ability to:

Examine core �les

Debug shared libraries

Debug multi-threaded applications

Debug assembly language code

Debug optimized code

Debug parent and child processes

Debug applications that use ioctl or curses

Run remotely

For more information on the debugger commands mentioned in this chapter
see the online command reference. You can also invoke help on a particular
command by entering help command name in the debugger command input
box.

The online help also contains more information on using the debugger's
graphical user interface.

Debugging in Special Situations 8-1

In This Book

Examining Core Files

You can use the debugger to diagnose some run-time errors after a program has
aborted and produced a core �le.

The operating system generates a core �le when a signal is not caught by the
program. The core �le records the state of the program at the time that the
fatal error occurred.

You can use the debugger to:

Determine which signal or signals caused the failure.

Trace back the call/return stack.

Examine the state of global static variables, local static variables, variables
stored on the stack, and registers.

You cannot modify or execute the program.

Attaching to a Core File

When attaching the debugger to a core �le on HP-UX systems, you must
supply both the name of the core �le (usually core) and the name of the
program object module that was being executed. (On Solaris systems, you can
specify just the name of the core �le.)

Choose File:Load Corefile or use the debug command with the following
syntax:

debug core �le object program pathname

If the core �le was produced by a stripped version of the executable, you
can debug it using the unstripped version of the executable. For example,
suppose you have two executables, prog.stripped and prog.unstripped. If
prog.stripped dumps core, issue the command

debug core prog.unstripped

The stripped and unstripped executables must be identical except for the
stripping.

8-2 Debugging in Special Situations

8

In This Book

Core File Debugging

When your program is �rst loaded, the PC is set to the line that caused the
core dump. The stack and all variables are as they were when the program was
about to execute that line. Here are some useful actions that can help to locate
problems:

Examine the line in the Source File Edit Area that was responsible for the
core dump to see if there is an obvious problem.

Enter a local or global variable in the (): Input Box, then select �Print ()� to
examine its value. Check for a value out of range.

Choose Show:Stack to look at the procedure call stack. Check values of
passed parameters to see if the problem originated earlier in your program.

Choose Show:Assembly Instructions, and examine CPU registers or
assembly instructions to get a low-level view of your program (see \Assembly
Level Debugging").

Debugging in Special Situations 8-3

In This Book

Debugging Shared Libraries

You can debug shared libraries that are either implicitly or explicitly loaded
by your program. Implicitly loaded shared libraries are libraries that your
program is linked against. Explicitly loaded shared libraries are loaded by calls
within your program to shl load (3X). (On Solaris systems, shared libraries are
loaded by calls to dlopen(3X).)

To debug shared libraries, you must compile your main program debuggable
(with the -g option). A main program compiled without -g does not have
enough information about shared libraries to allow you to debug them, even if
the libraries were compiled with -g.

If the shared library you want to debug was compiled with -g, you can use full
source-level debugging. If it was not compiled with -g, you must debug at the
assembly level; but you can step into library routines, set breakpoints in the
routines, and refer to symbols in the library.

The basic steps in debugging a shared library, and the debugger commands
that accomplish these, are as follows:

1. Make the library writable using the property flags tgt_shlib_debug

command. This command is issued by default when you invoke the
debugger, but you can turn it o� if you wish.

2. Intercept the loading of a library using the intercept load command.
This command is required only if you want the debugger to stop at the
loading of an explicitly loaded shared library. You can use Execution:
Signals/Intercepts . . . to perform this action.

3. Load the library. You do not need to issue a command to do this. An
implicitly loaded shared library is loaded at program startup. An explicitly
loaded shared library is loaded by a shl load(3X) call.

4. Load debugging information for the library using the property libraries

command. You can issue this command before or after the library itself is
loaded.

The Dynamic Images dialog box also allows you to perform this action.
Invoke it by selecting Execution:Enable Images/Libraries.

8-4 Debugging in Special Situations

8

In This Book

5. Load alternate debugging information for a program or library that has
been compiled partly with and partly without debugging information, so
that you can debug the routines compiled without debugging information
(initialize -altdbinfo). In this unusual situation, you must issue the
initialize command after the library is loaded.

You may also �nd the following command useful:

list images This command gives you a list of the shared libraries your
program uses. Use list images -full to �nd out whether
these libraries are mapped writable. The Execution:Enable
Images/Libraries . . . dialog box also allows you to perform
this action.

See the online help for more information and examples on debugging shared
libraries.

Debugging in Special Situations 8-5

In This Book

Debugging Multi-Threaded Applications

HP/DDE supports the debugging of multi-threaded applications that are
implemented with HP DCE threads. (The Softbench version of the debugger
for Solaris systems supports Solaris Threads.)

HP/DDE thread support includes:

A Threads dialog box for monitoring, examining, and manipulating threads

Support for setting breakpoints on speci�c threads in the Breakpoint
Set/Change dialog box

A thread id identi�er that allows speci�cation of individual threads

A thread component added to the debugger's concept of environment

Thread-speci�c commands and options

You can prepare and invoke a multi-threaded application for debugging like any
other target program. See \Preparing the Target Program" in Chapter 2 for
more information on preparing and invoking target programs for debugging.

Multi-threaded applications may execute quite di�erently when they are
invoked by the debugger because the debugger takes control of the thread
scheduler. Some debugger commands, like step and thread -select, override
the thread scheduler.

See Programming With Threads on HP-UX for more information about HP
DCE threads.

8-6 Debugging in Special Situations

8

In This Book

Making libdce.sl Writable

If your application uses /usr/lib/libdce.sl (the shared library version of HP
DCE threads), you must make the shared library writable before you debug the
application.

The following command maps all shared libraries as writable:

property flags tgt_shlib_debug

You can place the command in your .dderc �le. You can also invoke it from
the debugger command line before you issue the debug command.

When libdce.sl is read-only, you cannot step into routines or set breakpoints
in them. Also, some thread-related debugger commands will not work. The
a�ected commands are:

intercept thread_create

intercept thread_exit

intercept thread_switch

thread

If libdce.sl is read-only and you attempt to use one of the commands listed
above, the debugger will display a not mapped writable message.

Stripped and Unstripped Versions of libdce.sl

If your application links in an unstripped version of /usr/lib/libdce.sl, all
threads-related commands and options will work properly.

If, however, your program links in a stripped version of /usr/lib/libdce.sl,
the threads-related commands and options will behave as if your program had
only one thread.

Use the nm command to determine if your system has a stripped version of
libdce.sl. The output of nm contains a no symbols message when libdce.sl

is stripped. For example:

$ nm /usr/lib/libdce.sl

nm: /usr/lib/libdce.sl: no symbols

If libdce.sl is stripped, link your program with the archive library
/usr/lib/libdce.a in order to debug it.

Debugging in Special Situations 8-7

In This Book

Viewing and Manipulating Threads

Choose Execution:Threads to display the Threads dialog box. The Threads
dialog box, shown in Figure 8-1, displays a list of threads in your program. The
list is automatically updated as threads are created or change status.

Figure 8-1. The Threads Dialog Box

Notice the following in the thread list:

A numeric thread identi�er is displayed for each thread. The thread number
is assigned by the debugger.

Thread 1 is the initial thread (also known as the distinguished thread) and
Thread 2 is the system thread. The debugger always assigns the �rst two
identi�ers to these threads.

You can use these numeric identi�ers for commands that require a thread id
(for example, breakpoint -thread thread id).

Threads are also labeled by the initial procedure name. In this case, the
initial procedure name was thread.

8-8 Debugging in Special Situations

8

In This Book

Thread status is indicated with the labels RUNNING, READY, BLOCKED, and
TERMINATED. Note that execution of TERMINATED threads has ended but the
thread itself has not yet been deleted.

The point where execution has stopped is indicated with the -> marker.

You can also use the list threads command to display a list similar to the
one in the Threads dialog box.

When you highlight one or more threads in the Threads dialog box, you can
select a button to request the following actions:

�Disable� Remove the selected thread(s) from the list of threads that can
run when the program is resumed.

�Enable� Add the selected thread(s) to the list of threads that can run
when the program is resumed.

�Kill� Kill the selected thread(s).

�Stack Trace...� Display the selected thread's call/return stack in a new
window.

To monitor the call/return stack of each thread as it executes,
invoke the Stack View dialog box by selecting Show:Stack

from the menu bar.

�-> Next to Run� Make the selected thread the current execution thread. This
thread will be the �rst to run when the program is resumed.

�Examine� Change environment to the selected thread. This allows you to
examine the status of a thread without changing the current
Execution thread.

Setting Breakpoints on Threads

You can activate breakpoints on all threads, or on any selected set of threads.

The Breakpoints Set/Change dialog box contains an area at the bottom
which allows you select which threads the breakpoint will be set on. Choose
Break:Set to invoke the Breakpoints Set/Change dialog box.

Also, the breakpoint command has a -thread option. See the online
command reference for more information and examples.

Debugging in Special Situations 8-9

In This Book

Environment in Multi-Threaded Applications

When the target program is multi-threaded, the debugger includes a thread
component in its concept of environment. (See Chapter 7 for more information
on the debugger's general concept of environment.)

For example, the following shows the output from a list environment

command during a debugging session on a multi-threaded target program:

list environment

Stopped at: \\file_copy\worker\222 (`thread(3))

Notice the output indicates that the current environment is in Thread 3.

It is useful to invoke the Stack View dialog box when debugging multi-threaded
programs. You can invoke it by selecting Show:Stack from the menu bar.

Figure 8-2. Stack View Dialog Box Showing Current Thread

As shown in Figure 8-2, the Stack View dialog box shows the call/return stack
for the current thread. The current thread is the thread that the debugger

8-10 Debugging in Special Situations

8

In This Book

refers to when evaluating expressions. It di�ers from the running thread when
you change environment from one thread to another. For example, you can use
the thread speci�er, `thread(n) to change the current thread, in the following
context:

environment `thread(3)

Notice that the call/return stack in multi-threaded applications includes a
number of system calls. In Figure 8-2, the system call names begin with the
cma__ pre�x.

Arrow buttons in the Stack View dialog box allow you to move up and down
the call/return stack within the current thread. You can also use the frame
speci�ers described in Chapter 7 (`env, `run, and `main). The command
environment `env(-1), for example, moves to the caller of the current frame
without changing the current thread.

In addition, you can combine thread speci�ers with frame speci�ers to write
fully quali�ed environment speci�ers. The following shows the syntax for fully
quali�ed environment speci�ers:

`thread(thread id)\`main(frame number)

`thread(thread id)\`run(frame number)

`thread(thread id)\`env(+|-n)

The `thread(thread id) notation may also be used wherever another
environment quali�er can be used. The command print `thread(5)\x, for
example, prints the variable x in the environment of the run frame of Thread 5.

Thread-Specific Debugger Commands

The two commands that apply speci�cally to debugging threaded applications
are list threads and thread.

Use the list threads command to obtain a list of thread identi�ers for a
target program. You can also use the Threads dialog box which is described in
\Viewing and Manipulating Threads".

The thread command changes the state of program threads. The following
briey describes the thread command with its options:

thread -select alters the scheduler so that the speci�ed thread runs when
the program executes. This option is similar to the goto command in that

Debugging in Special Situations 8-11

In This Book

it alters the point of execution of the program. The debugger cannot ensure
that the program state is valid following this transfer of control.

The selected thread is the only one operated on by a step command.

thread -disable prevents speci�ed threads from running until they are
enabled again using thread -enable.

thread -enable allows the speci�ed thread to run when you issue a
go command. By default, all threads are enabled; ordinarily you use
thread -enable to reactivate a disabled thread.

thread -kill marks the speci�ed thread for termination. The killed thread
persists until the thread scheduler actually terminates it.

In addition, the intercept command can take the following arguments when
you are debugging multi-threaded applications:

thread_create Stops program execution when a thread is created.

thread_exit Stops program execution when a thread is
terminated.

thread_switch Stops program execution when the context
changes from one thread to another.

Finally, some debugger commands allow you to specify a thread by using the
-thread option. Those commands are:

activate breakpoints

breakpoint

delete breakpoints

suspend breakpoints

tb

For more information on the commands described in this section, see the online
command reference.

8-12 Debugging in Special Situations

8

In This Book

Assembly Level Debugging

Although HP/DDE is intended as a high-level (source language) debugging
tool, it also supports low-level (assembly language) debugging by using the
machine code generated by the compiler.

You can examine the machine code produced by the compiler for your program,
and step your program at the assembly code level. You can set breakpoints
on individual machine instructions, and you can also monitor virtual address
ranges.

Assembly level debugging is particularly useful for debugging optimized code.
See \Debugging Optimized Code".

Using the Assembly Instructions Dialog Box

The Show:Assembly Instructions menu choice brings up the Assembly
Instructions dialog box. (See Figure 8-3.) This dialog box contains a scrollable
view of the assembly language code for the current procedure of your program.
The format of the code depends on the system on which you are running. The
window normally shows the following:

Source line number
Memory address
Disassembly listing of the actual machine code

To set a breakpoint at the assembly level:

1. Select the address (in the Assembly Instructions dialog box). This copies
the address into the (): Input Box.

2. Choose Break:Set At Hex Address ().

You can also click the left mouse button in the Annotation Margin of the
Assembly Instructions dialog box, or press the right mouse button on the
desired assembly line, to set or clear breakpoints.

Debugging in Special Situations 8-13

In This Book

Figure 8-3. Assembly Instructions Dialog Box

Use the �Step Instruction� button to step through your program one assembly
instruction at a time. Use �Step Over Instruction� to step over routines called from
the assembly code.

The Assembly Tracing Active button enables updating of the Assembly
Instructions window. If assembly tracing is disabled until you need it, your
program might run faster.

Using Debugger Commands

You can display ranges of memory with the dump command and watch a
virtual address range with the watchpoint command. Refer to the dump
and watchpoint command descriptions in the online command reference for
details. The dump command remembers the last location that was dumped
and continues dumping from the next address when you issue another dump
command using * as the -from address. The dump command also prints the
previously speci�ed number of bits by default.

8-14 Debugging in Special Situations

8

In This Book

For example:

dump -from 2260 -to 227E -bits 16 -hex

00002260: 6BD8 3F29 2B7F FFFF 4821 0F58 8C20 2012

00002270: E800 0148 0800 025C E800 0122 23E1 0000

dump -from * -to 2284 -binary

00002280: 1110011111100000 0010011010101000 0000100000011111

The target manager startup �le de�nes aliases that dump the state of the
machine registers and that monitor registers for changes. See the \Startup
File" section in Appendix C.

You can use the debugger's `va reserved identi�er to print the contents of any
machine location or to store a value to any machine location. This function
takes a machine address (in hexadecimal format) or register name as an
argument and acts like an untyped variable at that address. You can use `va
in combination with type casting to print in any format. For example:

print (long)`va(2F5A) Prints the contents of 2F5A as a
long integer (C syntax).

print integer(`va(2F5A)) Prints the contents of 2F5A as a
long integer (Pascal syntax).

print (my_struct)`va(2F5A) Prints the value starting at 2F5A as
a record (C syntax).

set integer32(`va(31CF450)):=99 Assigns a long integer to an address
(Pascal syntax).

watch (long)`va(2F5A) Watches the contents of 2F5A as a
long integer (C syntax).

Debugging in Special Situations 8-15

In This Book

You can use the `va function to refer to a speci�c code location in any
command that calls for a location speci�er. Consider the following examples:

break `va(00001FCC) Sets a breakpoint on a speci�c
machine address.

goto `va(1FCC) Transfers control to a speci�c
machine address.

You can also use the describe command with the `va function. For example:

describe -location `va(1FCC) Finds the source statement that
corresponds to a code location.

Saving Assembly Code in a File

To save assembly code in a �le for printing or viewing, redirect output of the
dump command using the following syntax:

dump -from address -to address -instruction >�lename

You can determine address values from the Assembly Display window.

8-16 Debugging in Special Situations

8

In This Book

Debugging Optimized Code

HP/DDE supports debugging of code compiled at optimization levels 2 and
below. The following is a brief description of the compiler optimization options
that are compatible with debugging:

+O0 Minimal optimization. This is the default.

+O1 Basic block level optimization.

+O2 Full optimization within each procedure in a �le. (Can also be
invoked with the compiler option -O.)

For more information about optimization levels, consult your compiler
documentation.

Ordinarily, you �rst compile and debug your program without optimization.
All or nearly all of the bugs in your program will show up in the unoptimized
version.

After eliminating all the bugs that you can �nd, turn on optimization (compile
with -O). If the program behaves incorrectly, scan the source code for the most
common kinds of bugs that appear for the �rst time in optimized code:

Uninitialized variables

Out-of-bounds array references

Variable references based on the assumption that two variables are adjacent
in memory

These kinds of problems, however, are often very di�cult to �nd by examining
the source code. If you cannot determine the reason for the program's
misbehavior, you need to debug the optimized code.

This section provides background information on the di�erences between
optimized code and unoptimized code.

For tutorial and task-oriented information on how to debug optimized code
using the debugger, see the online help.

Debugging in Special Situations 8-17

In This Book

Optimized Code and Unoptimized Code

Source-level debugging of unoptimized code is relatively easy because there is a
simple correspondence between source-code statements and the assembly-code
instructions into which they are translated. Each statement is translated into a
contiguous series of instructions, which are executed in sequence. The source
and object code are isomorphic: they have essentially the same form. Also,
program variables are stored in memory and are therefore easy to access.

Optimization destroys isomorphism. Optimization is a series of transformations
performed on the object code in order to make the program run faster. An
optimized program performs the same tasks and produces the same results
that the source code speci�es. However, the order in which these tasks are
performed and the way in which they are performed can change drastically.

In e�ect, optimization transforms a program into a di�erent program.

The executable program you are debugging is actually not the same program as
the source program.

In addition, program variables are stored in registers instead of memory and
are therefore more di�cult to access.

The following sections describe these problems in detail.

What Optimization Does to Program Logic

Figure 8-4 shows how source-code statements map to object-code instructions
in unoptimized code. Every instruction in the object code corresponds to a
single statement in the source code. And, in general, every statement in the
source corresponds to a sequential group of instructions in the object code.
(There are a few exceptions; a loop, for example, may be broken up into two
groups of instructions, one at the beginning and one at the end of the loop.)

8-18 Debugging in Special Situations

8

In This Book

Figure 8-4. Unoptimized Code: Statement-to-Instruction Mapping

This means that even though it is the object code that is being executed
and not the source code, a view of the source code in the debugger can still
give you an accurate view of what the object code is doing. For example,
when you step from statement 1 to statement 2, instructions 1 through 5 are
executed in order, and the current location is now instruction 6, corresponding
to statement 2.

Figure 8-5 shows the several things that happen to source-code statements in
optimized code.

As before, a source-code statement corresponds to several instructions. But
these instructions are no longer contiguous; instead, there may be several
groups of instructions, called fragments because they represent only part of a
statement. (A fragment is formally de�ned as a maximal set of contiguous
instructions corresponding to the same source statement.) In the example,
the statement on line 11 corresponds to three fragments: instruction 4,
instructions 9 and 10, and instruction 12.

Instructions in the object code can now correspond to more than one source
statement. In the example, instruction 4 is associated with the statements on
lines 11, 12, 13, 16, 17, and 18.

The order of statement execution can change. In the example, the
instructions from line 12 both begin and end execution before the
instructions from line 10, though some of the instructions from those lines
are interleaved.

Debugging in Special Situations 8-19

In This Book

Figure 8-5. Optimized Code: Statement-to-Instruction Mapping

For all of these reasons, the order in which instructions are executed no
longer corresponds to the ordering of the source-code statements. In the
example, instructions 9 through 14 come from lines 11, 12, 10, 13, 10, 14, and
13.

Some source-code statements, such as line 19 in the example, have no
corresponding object code at all. This can happen for several reasons, such
as the elimination of code that is never executed (dead code).

When you debug unoptimized code,

The source display gives you a good idea of where you are in the program.
An arrow points to your current location; you know that the statements (and
instructions) before the arrow have executed, and that the statement (and
instructions) after the arrow have not yet executed.

8-20 Debugging in Special Situations

8

In This Book

You can examine the current state of program data, because variables are
stored in memory and their values are always accessible.

The reason for this is that in unoptimized code, when you step from one
statement to the next in the source code, what the debugger actually does is
to step from one group of assembly instructions to the next; but because the
assembly instruction groups correspond exactly to the source statements, it
looks as if it is the source code itself that is executing.

When you debug optimized code, however, this correspondence breaks down:

An arrow cannot accurately represent your current location in the source
code. When an arrow points to a given statement in the source code, it
is likely that not all the statements before that statement have �nished
executing, and that some of the statements after that statement have at least
partly executed.

It is more di�cult to determine the current state of program data, because
variables may be stored in registers and access to them may be unreliable.
Also, the order of assignments may be changed from the order in the source
code.

In fact, it isn't really meaningful to talk of the current location in the source
program with optimized code|only of the instructions that are actually
executing.

What Optimization Does to Data

In unoptimized code, the values of all program variables are kept in memory.
Every time the value of a variable changes, the new value is stored in memory.
This means that at any time, the debugger can determine the current value of
a variable.

In optimized code, the values of variables are kept in registers instead of
memory as much as possible, because register access is much faster than
memory access. In addition, some variables may be eliminated and replaced by
constants. Therefore, it is much more di�cult for the debugger to track the
current value associated with a variable.

Sometimes, too, there may be multiple copies of a variable|in loop
optimizations, for instance. In such cases it is often impossible to obtain a
meaningful value for the variable.

Debugging in Special Situations 8-21

In This Book

Debugging Parent and Child Processes

Select Options:Fork Behavior or use the property fork command to specify
the process to be debugged when the target program forks.

You have the following options when debugging programs that fork child
processes:

Ignore the child process and continue to debug the parent (property fork

-parent).

Free the parent process and debug the child (property fork -child).

Debug both the child and the parent process (property fork -parent

-child).

When you ask the debugger to debug both processes, it automatically creates
another dde invocation for the child when the fork occurs. (You cannot debug
both the parent and the child processes from the line-mode user interface.)

Choose Options:Save All Settings to retain the fork behavior for future
sessions.

See the property fork command description in the online reference for more
information.

8-22 Debugging in Special Situations

8

In This Book

Debugging Applications That Use ioctl or curses

Programs that use ioctl (2) or curses(3x) do not run in the User Program I/O
Area as they would in a terminal window. The User Program I/O Area is not
designed as a fully functional terminal emulator. However, you can still debug
these types of programs with HP/DDE.

One method is to run the program in a terminal window and then attach the
debugger to the process. See \Attaching the Debugger to a Running Process"
in Chapter 2 for more information.

Another method is to use I/O redirection, as follows:

1. Start an hpterm or xterm terminal window with a running shell.

2. Run the tty command in the terminal window to get its device name (for
example, /dev/pty/ttyp5).

3. Run the sleep command in the terminal window to keep the shell from
intercepting any input (for example, sleep 100000).

4. Load the target program, but redirect standard I/O to the terminal window,
using the device name obtained in Step 2.

If you use the Load/Rerun dialog box, enter the device name (which is
/dev/pty/ttyp5 in this example) in the stdin, stdout, and stderr

redirection input boxes.

When the target program starts, the User Program I/O area disappears
since all I/O has been redirected.

Debugging in Special Situations 8-23

In This Book

Running the Debugger Remotely

You can use resources provided by the X Window System to run the debugger
on one machine while displaying the user interface on another. To run a
debugging session over two machines in a network, you must:

1. Provide display access to the machine that will run the user interface. Enter
the following command at a shell prompt on the machine that will display
the user interface:

xhost debugger machine

where debugger machine is the hostname of the machine that will run the
debugger. The hostnames are usually listed in /etc/hosts.

2. Log in to the machine that will run the debugger from the machine that will
display the user interface. Typically, at a shell prompt, you would enter:

rlogin debugger machine

where debugger machine is the name of the machine that will run the
debugger.

3. Invoke HP/DDE with the -display option from the shell where you logged
into the debugger machine:

dde -display display machine:0

where display machine is the name of the machine that will display the user
interface. If you get a message stating that the dde command cannot be
found, add /opt/langtools/bin to your PATH variable.

Note that instead of using the debugger -display option, you can also set
the DISPLAY environment variable to display machine:0. You may get a
Broken pipe error message if you forget to specify the -display option or
set the DISPLAY variable.

8-24 Debugging in Special Situations

A

A

Line-Mode User Interface

This appendix describes the components and operation of the debugger's
line-mode user interface. The user interface manages all input and output and
displays information about the target program during a debugging session.

You need to use this interface if your system does not have OSF/Motif
installed. You may also use it if you prefer a simple line-based interface.

You can run the debugger's line-mode user interface under Emacs Version 18.x
by using the HP/DDE-Emacs interface �le:

/opt/langtools/dde/contrib/dde.el

Line-Mode User Interface A-1

In This Book

Invoking the Line-Mode User Interface

You invoke the line-mode user interface by specifying the option -ui line to
the dde command. When the debugger starts, a dde> prompt appears.

At the prompt, you can enter most of the commands described in the
online command reference. However, note the following exceptions and
recommendations:

The following commands do not apply to the line-mode interface:

property highlight

unhighlight

property echo -graphic

Use the property transcript command to obtain multiple-line displays
of the Source File Area, the Assembly Instructions window, the Data
Watchpoints window, and the Stack View window.

Use the following macros to monitor registers:

reg_update general registers
fsreg_update single-precision oating-point registers
fdreg_update double-precision oating-point registers

The help command pipes the contents of the help �le through the paging
command de�ned by the PAGER environment variable. If PAGER is not
de�ned, it uses more(1).

You can change the default user interface to the line-mode interface for all
users of your system. See Appendix E for details.

A-2 Line-Mode User Interface

A

In This Book

The User Interface Startup File

The �le /opt/langtools/dde/ui/nls/C/ui_line.startup contains several
macros that may save you some typing:

Use w to display the 10 lines immediately surrounding the current source line.
The w command is an alias for view -5 -lines 10.

Use l to display the 10 lines immediately following the current source line.
The l command is an alias for view -0 -lines 10.

The following macros execute common commands and allow you to repeat
the command on subsequent lines by pressing the <RETURN> key:

g go

gr go -return

sa search

s step

so step -over

si step -instruction

up env `env(-1)

down env `env(+1)

The edit macro invokes vi to edit the source �le.

Line-Mode User Interface A-3

In This Book

Screen Display Conventions

Letters and symbols in the margin of the transcript area indicate the following:

> Current point of execution (the equivalent of the arrow)

B Breakpoint (the equivalent of the stop sign)

b Suspended breakpoint

* Watched variable whose value has changed

= Current environment (the equivalent of the horizontal bar)

V Location requested by the view command

The following symbols are used when debugging optimized code:

) Midline PC location marker

Variable whose value is unsure because of optimization

C Critical point breakpoint

F Fragment breakpoint

c Suspended critical point breakpoint

f Suspended fragment breakpoint

! Critical point location marker

] Midline critical point marker

} Fragment location marker

| Midline fragment marker

A-4 Line-Mode User Interface

A

In This Book

Examples

The following examples illustrate some of the capabilities of the line-mode user
interface.

Invoke the debugger to debug the program average.

$ dde -ui ui_line average

Executing image in process 23640: "/home/smith/average".

Break at: \\average\main\44

Source File: /home/smith/average.c

44 B> print_average (my_list, first, last);

Print source lines and assembly code in the transcript area.

dde> property transcript -source -asm

dde> step -instruction

Stepped to: \\average\main\44 (0000202C)

44 B) print_average (my_list, first, last);

asm: 0000202C main+000c LDO R'6d8(%r1),%r26

Set a watchpoint and the print source and the watched variable in the
transcript area.

dde> watchpoint \\average\print_average\total

(Warning) The location of variable 'total' is not in an active frame.

dde> property transcript -source -variable

dde> step -over

The initial value of \\`main(4)\average\print_average\total is 0

var: 33) \\`main(4)\average\print_average\total: 0

The value of \\`main(4)\average\print_average\total has changed from 0 to 36.

var: 33) \\`main(4)\average\print_average\total: 36

31 > num_elements = high - low;/* note this is an off-by-one bug */

asm: 31: 00001FBC print_average+0030 LDW -108(%r30),%r1

Stopped at: \\average\print_average\31

Line-Mode User Interface A-5

In This Book

Use the prede�ned alias w to print the 10 source lines surrounding the current
line.

dde> w

26 V int list[], low, high;

27 #endif

28 {

29 int total, num_elements, average;

30 total = sum(list, low, high);

31 > num_elements = high - low;

32

33 average = total / num_elements;

34 printf("%10.d\n", average);

35 }

Print source, assembly, watched variables, and traceback in the transcript area.

dde> property transcript -source -asm -variable -tb

dde> step

Stepped to: \\average\print_average\33

33 > average = total / num_elements;

asm: > 33: 00001FCC print_average+0040 LDW -64(%r30),%r26

tb: 1 $START$+0094 (0000192C)

tb: 2 _start+0068 (80041D9C)

tb: 3 \\average\main\44 (0000203C)

tb: 4 > \\average\print_average\33

Single step one statement using the prede�ned alias s.

dde> property transcript -source

dde> s

Stepped to: \\average\print_average\34

34 > printf("%10.d\n", average);

Repeat the last command (single step). (The 4 is the output of the printf call
on the previous line.)

dde> <RETURN>

4

Stepped to: \\average\print_average\35

35 > }

A-6 Line-Mode User Interface

A

In This Book

Use the prede�ned alias up to walk up the stack.

dde> property transcript -source -asm -tb

dde> up

Environment: \\average\main\44 (0000203C) (frame `main(3))

Stopped at: \\average\print_average\35

44 B= print_average (my_list, first, last);

asm: = 0000203C main+001c BLE R'78c(%sr4,%r31)

tb: 1 $START$+0094 (0000192C)

tb: 2 _start+0068 (80041D9C)

tb: 3 > \\average\main\44 (0000203C)

tb: 4 \\average\print_average\35

Line-Mode User Interface A-7

B

B

Language Managers

Whenever the debugger performs a language-speci�c operation, a language
manager provides the necessary language-speci�c information. This chapter
describes the language managers that enable the debugger to evaluate
expressions and declarations in di�erent languages. Consult this chapter
for information speci�c to the language managers, such as the value of the
language type argument to the print command's -language option.

On HP-UX systems, the debugger uses HP C, HP C++, HP FORTRAN, and
HP Pascal high-level language managers and an HP-UX PA-RISC assembly
language manager. On Solaris systems, the debugger uses a SPARC assembly
language manager.

This chapter provides the following information about each manager:

Type Name Identi�es the name used for the manager as installed.

Title Contains the name that the manager uses to identify
itself. To list the titles of the managers currently
loaded, use the version command. The following is an
example of the output:

dde, version 4.0

User interface manager ui_gui: GUI-Mode UI, version 4.0

Target manager tgt_hpux_pa: HP-UX PA-RISC, version 4.0 DBGK 4.0

Object manager obj_som_som: HP SOM, version 4.0

Language manager lang_c: ANSI C, version 4.0

In the output of the preceding version command, the
language manager title is ANSI C. The language type
name is lang_c.

Description Briey describes what the manager does and does not
support.

Language Managers B-1

In This Book

Syntax Describes the syntax of debugger command arguments
such as expression , declaration, and address that vary
among the managers. The manager option argument
represents options you can specify with the property
flags command to change the behavior of a manager.

Currently, the language managers do not o�er any
options through the manager option argument.

You can use type names or synonyms wherever the
syntax of a debugger command calls for a type, such as
language type. For example, the following property

command speci�es pc (a synonym for the type name
lang_pas_hp) as the language type:

property language pc

You can create a new synonym for a language type
name by creating a link to the language type name in
the directory /opt/langtools/dde/lang. For example,
to make p a valid language type, enter the following
commands (as superuser):

cd /opt/langtools/dde/lang

ln -s lang_pas_hp p

Startup File Describes the startup �le that executes when the
debugger loads the manager. The language managers
do not use startup �les.

Related Managers Lists other types of managers related to this manager.

Names, titles, and syntax speci�c to the language managers are described in
the following sections.

B-2 Language Managers

B

C Language Manager

C Language Manager

Type Name

lang_c

Title

ANSI C

Description

In general, this manager supports the C expressions and declarations described
in the C language reference manual for your system, plus the debugging
extensions listed under \Syntax."

Syntax

declaration

Declaration of a type or variable, restricted to the following syntax:

type ref id, . . .

type ref id[bounds]

typedef type ref id

type ref: char

wchar_t

int

long

long long

short

float

double

long double

void

struct id

union id

Language Managers B-3

C Language Manager

enum id

type ref *

typeof(identi�er)

unsigned

signed

id

expression

A C expression constructed from the comments, operators, identi�ers,
constants, type cast, and extensions listed in this section.

Comments

/* comment */

Operators

Arithmetic +, -, *, /, %
Increment/decrement ++, --
Relational <, <=, >, >=, ==, !=
Logical &&, ||, !
Bitwise logical &, ^, |, ~
Shift <<, >>
Assignment =, +=, -=, *=, /=, %=, |=, ^=, &=, >>=, <<=
Address *, &
Conditional ?:
Sequential evaluation ,

Size sizeof

Type conversion (type)
Array indexing [,]

Member reference ->, .
Grouping ()

Identi�ers

Identi�ers are case sensitive and start with a dollar sign ($), an underscore
(_), or a letter (ISO Latin-1 decimal values 65-90 and 97-122); subsequent
characters can be a dollar sign ($), an underscore (_), a letter, or a digit
(0-9). Use of the dollar sign is an extension to C.

B-4 Language Managers

B

C Language Manager

Constants

Integer digits [L j l j U j u] (decimal)
0xdigits [L j l j U j u] (hexadecimal)
0digits [L j l j U j u] (octal)

For example, 0xFu speci�es an unsigned hexadecimal
number.

For specifying a long long, any combination of two L's is
acceptable (LL, ll, Ll, lL).

Float digits.digits [fE jeg[+ j -]digits][F j f j L j l]
digits.[fE j eg[+ j -]digits][F j f j L j l]
.digits [fE j eg[+ j -]digits][F j f j L j l]

For example, 2.0e4L speci�es a number of type long
double.

String "string"
'character'
'\nnn'

Wide string L"string"
L'character'
L'\nnn'

Type Cast

(type name)expression

Debugger Extensions

location\identi�er Name identi�er visible from the scope location

`va(address) Virtual address address

`long(expression) Cast the resulting value of expression to type long

`longlong(expression) Cast the resulting value of expression to type long
long

`short(expression) Cast the resulting value of expression to type
short

Language Managers B-5

C Language Manager

typeof(identi�er) The type of identi�er ; can be used to refer to
anonymous types

Array slices In place of an array subscript, you can give a range
of elements:

* Lower bound to upper
bound

expression..expression Given range

*..expression Lower bound to given
expression

expression..* Given expression to
upper bound

Example: print table[*, 100..110]

language type

f lang_c j c j cc g

manager option

None.

Startup File

None.

Related Managers

None.

B-6 Language Managers

B

C++ Language Manager

C++ Language Manager

Type Name

lang_c++

Title

C++

Description

In general, this manager supports the C++ expressions and declarations
described in your C++ reference manual, and the debugger extensions listed
under \Syntax."

Function overloading is permitted, and modules may contain identically named
functions. Identically named functions are speci�ed by name and parameters
that identify them using the syntax

`amb(function name,parameter type,parameter type,...)

where function name is the name of the function and parameter type is a list
of the data types of the function's parameters, separated by commas. You may
list all of the parameters; alternatively, you may list as many parameter type
arguments as you need to identify the function or functions you are referring
to, and use ellipses (. . .) to indicate that the function may take additional
parameters. Use

`amb(function name)

to specify a version of the overloaded function that takes no parameters. Use

`amb(function name,...)

to specify all versions of the overloaded function.

For example,

`amb(sum,int,int)

refers to a function sum in the current environment that takes two integer
parameters.

Language Managers B-7

C++ Language Manager

`amb(sum,int,int,...)

refers to all functions named sum in the current environment that take at least
two parameters, the �rst two being integers.

Also note that, in the examples above, the syntax relates to the use of `amb
to specify a location. You can also use `amb as a part of a quali�ed name to
identify objects or variables. An example of the syntax is:

\module\`amb(function name,parameter type,...)\object name

The language manager implements overload resolution rules appropriate
to C++ to resolve ambiguity. Overload resolution considers built-in type
conversions but not user-de�ned type conversions.

The debugger does not execute implicit references to user-de�ned
type-conversion operators.

The debugger supports standard operator syntax for user-de�ned operators
(this does not include the new, delete, ++,--,(), ->, and ->* operators). For
example, if the user de�nes a + operator for a class, the command

print a + b

on two operands of that class invokes the user-de�ned + operator. However,
you can also invoke the operator (including the new, delete, ++,--,(), ->, and
->* operators) using the following member function call syntax:

print a.operator+(b)

Syntax

declaration

A declaration of a type or variable, restricted to the following syntax:

type ref id, . . .

type ref id[bounds]

typedef type ref id

type ref: char

wchar_t

int

B-8 Language Managers

B

C++ Language Manager

long

short

float

double

long double

void

class id

struct id

union id

enum id

type ref *

typeof(identi�er)

unsigned

signed

id

The following are also available with the HP ANSI CC compiler:

bool

long long

expression

A C++ expression constructed from the comments, operators, identi�ers,
constants, and extensions listed in this section.

Comments

/* comment */
// comment

Operators

Arithmetic +, -, *, /, %
Increment/decrement ++, --
Relational <, <=, >, >=, ==, !=
Logical &&, ||, !
Bitwise logical &, ^, |, ~
Shift <<, >>
Assignment =, +=, -=, *=, /=, %=, |=, ^=, &=, >>=, <<=
Address *, &

Language Managers B-9

C++ Language Manager

Conditional ?:

Sequential evaluation ,

Size sizeof

Type conversion (type) or simple type(expr)
Array indexing [,]
Member reference ->, ., .*, ->*
Grouping ()

Scope resolution ::identi�er

The following operators are available with the HP ANSI CC compiler:

Dynamic cast dynamic_cast<type>(expr)
Type identi�cation typeid(expr)

Identi�ers

Identi�ers are case sensitive and start with a letter (ISO Latin-1 decimal
values 65-90 and 97-122), a dollar sign ($), a tilde (~), a colon (:), or an
underscore (_); any additional characters can be a letter, digit (0-9), dollar
sign ($), underscore (_), a tilde (~), a colon (:), or an operator symbol. Use
of the dollar sign, tilde, and colon are extensions to C++.

Constants

Integer digits [L j l j U j u] (decimal)
0xdigits [L j l j U j u] (hexadecimal)
0digits [L j l j U j u] (octal)

For example, 0xFu speci�es an unsigned hexadecimal
number.

Float digits.digits [fE j eg[+ j -]digits][F j f j L j l]
digits.[fE j eg[+ j -]digits][F j f j L j l]
.digits [fE j eg[+ j -]digits][F j f j L j l]

For example, 2.0e4L speci�es a number of type long
double.

String "string"
'character'
'\nnn'

B-10 Language Managers

B

C++ Language Manager

Wide string L"string"
L'character'
L'\nnn'

Debugger Extensions

location\identi�er Name identi�er visible from the scope location

`va(address) Virtual address address

`amb(function name,
parameter type,
parameter type, . . .)

Use the list of parameter types (parameter type)
to uniquely identify the overloaded function
function name

`long(expression) Cast the resulting value of expression to type long

`short(expression) Cast the resulting value of expression to type
short

typeof (identi�er) The type of identi�er ; can be used to refer to
anonymous types

Array slices In place of an array subscript, you can give a range
of elements:

* Lower bound to upper
bound

expression..expression Given range

*..expression Lower bound to given
expression

expression..* Given expression to
upper bound

Example: print table[*, 100..110]

language type

f lang_c++ j c++ j CC j ccxx g

manager option

None.

Language Managers B-11

C++ Language Manager

Startup File

None.

Related Managers

None.

B-12 Language Managers

B

FORTRAN Language Manager

FORTRAN Language Manager

Type Name

lang_ftn

Title

FORTRAN

Description

In general, this manager supports the FORTRAN expressions and declarations
described in the FORTRAN language reference manual for your system, plus
the debugging extensions listed under \Syntax."

Syntax

declaration

A declaration of a variable, restricted to the following syntax:

[external] type name fidenti�er [(integer)]g, . . .

type name: INTEGER

INTEGER*2

INTEGER*4

INTEGER*8

REAL

REAL*4

REAL*8

REAL*16

DOUBLE PRECISION

COMPLEX

COMPLEX*8

DOUBLE COMPLEX

COMPLEX*16

LOGICAL

Language Managers B-13

FORTRAN Language Manager

LOGICAL*1

LOGICAL*2

LOGICAL*4

BYTE

CHARACTER

CHARACTER*nnn

A declaration of a record variable whose form was previously declared in a
STRUCTURE statement:

RECORD/struc name/[variable name | array name | array declarator]

A declaration of a derived type whose form was previously declared in a TYPE
de�nition:

TYPE(dtype name)[, attribute list ::] entity list

expression

A FORTRAN expression constructed from the operators, identi�ers,
constants, intrinsic functions, and extensions listed in this section.

Operators

Arithmetic +, -, *, /, **
Relational .eq., .ne., .lt., .le., .gt., .ge.
Logical .not., .or., .and., .eqv., .neqv.
String //, (:)
Assignment =

Array indexing (,)

Grouping ()

Member reference ., %
Declaration ::

Identi�ers

Identi�ers are not case sensitive and must start with a letter (ISO Latin-1
decimal values 65-90 and 97-122); any additional characters can be a letter,
digit (0-9), dollar sign ($), or underscore (_).

B-14 Language Managers

B

FORTRAN Language Manager

Constants

Integer digits (decimal)
[radix#]digits [KS](radix = 2, 8, 10, 16; KS = 1, 2, 4, 8)

For example, 16#1c6 speci�es a hexadecimal integer.

Real digits.digits [KS][E[+ j -]digits](KS = 4,8,16)
digits.digits [fD j Qg[+ j -]digits]
digits.[KS][E[+ j -]digits](KS = 4,8,16)
digits.[fD j Qg[+ j -]digits]
.digits [KS][E[+ j -]digits]
.digits [fD j Qg[+ j -]digits]

For example, 3.5D0 speci�es a double-precision number.

Complex (number,number)

Logical .TRUE.

.FALSE.

Character
string

'characters'

Intrinsic Functions

ABS

AIMAG

AINT

AMOD

ANINT

CHAR

CMPLX

DABS

DBLE

DINT

DMOD

DNINT

EXP

FLOAT

IABS

ICHAR

IDINT

Language Managers B-15

FORTRAN Language Manager

IDNINT

IFIX

INT

LOC

MOD

NINT

REAL

SNGL

Debugger Extensions

iaddr() Address

location\identi�er Name identi�er visible from the scope location

`va(address) Virtual address address

(typename) expression Type conversion

`long(expression) Cast the resulting value of expression to type
INTEGER*4

`short(expression) Cast the resulting value of expression to type
INTEGER*2

Array slices In place of an array subscript, you can give a range
of elements:

: Lower bound to upper
bound

expr1:expr2 Given range

:expr Lower bound to given
expr

expr: Given expr to upper
bound

:: Lower bound to upper
bound, stride of 1

::expr Lower bound to upper
bound, stride of expr

expr1:expr2 : Given range, stride of 1

B-16 Language Managers

B

FORTRAN Language Manager

expr1:expr2:expr3 Given range, stride of
expr3

:expr2:expr3 Lower bound to expr2 ,
stride of expr3

expr1::expr3 Given expr1 to upper
bound, stride of expr3

Example: print table(::, 30:60:5)

language type

f lang_ftn j fortran j ftn j f77 j f90 g

manager option

None.

Startup File

None.

Related Managers

None.

Language Managers B-17

HP Pascal Language Manager

Type Name

lang_pas_hp

Title

HP Pascal

Description

In general, this manager supports a subset of the Pascal expressions and
declarations described in the HP Pascal reference manual for your system, plus
the debugger extensions listed under \Syntax."

Syntax

declaration

A declaration of a type or variable, restricted to the following syntax:

type identi�er [, identi�er] . . . = type reference

var identi�er [, identi�er] . . . : type reference

type reference [location\]identi�er

shortint

integer

longint

bit16

bit32

bit52

bit64

real

single

double

longreal

boolean

B-18 Language Managers

B

HP Pascal Language Manager

char

string

globalanyptr

^type reference

array [bound..bound, ...] of type reference

set of type reference

typeof([location\]identi�er)

expression

A Pascal expression constructed from the comments, operators, identi�ers,
literals, predeclared functions, type cast, and extensions listed in this section.

Comments

{ comment }
(* comment *)
"comment"

Operators

Arithmetic +, -, *, /, div, mod
Relational =, <>, <, >, <=, >=, in
Boolean and, or, not
Set +, *, -
Assignment :=

Array indexing [,]

Field selection .

Dereference ^

Set construction [. . .]
Grouping ()

Identi�ers

Identi�ers are case-insensitive and must start with a letter (ISO Latin-1
decimal values 65-90 and 97-122); any additional characters can be letters,
digits (0-9), or underscore (_).

Language Managers B-19

HP Pascal Language Manager

Literals

Integer digits (decimal)

Real digits.digits
digits [.digits]E[+ j -]digits

For example, 5.48E-11 is a valid real number.

Character 'character'

String 'characters'

Boolean TRUE

FALSE

Pointer NIL

Predeclared Functions

abs

addr

ord

round

sizeof

Type Cast

type name(expression)

Debugger Extensions

location\identi�er Name identi�er visible from the scope location

`va(address) Virtual address address

`long(expression) Cast the resulting value of expression to type
integer

`longlong(expression) Cast the resulting value of expression to type
longint

`short(expression) Cast the resulting value of expression to type
shortint

^type name(expression) Cast the resulting value of expression to type
^type name

B-20 Language Managers

B

HP Pascal Language Manager

typeof (identi�er) The type of identi�er ; can be used to refer to
anonymous types

Array slices In place of an array subscript, you can give a range
of elements:

* Lower bound to upper
bound

expression..expression Given range

*..expression Lower bound to given
expression

expression..* Given expression to
upper bound

Example: print table[*, 100..110]

language type

f lang_pas_hp j lang_pas j pascal j pc j hppas j hppascal g

manager option

None.

Startup File

None.

Related Managers

None.

Language Managers B-21

HP-UX PA-RISC Assembly Language Manager

Type Name

lang_asm_pa

Title

HP-UX PA-RISC assembler

Description

This manager supports simple PA-RISC assembly language expressions as
described in \Syntax."

Syntax

declaration

None.

expression

An assembly language expression constructed from the reserved names,
constants, operators, and address expressions listed in this section.

Reserved Names

r0 - r31 General registers
fr0l, fr0r, fr1l, . . . ,
fr31l, fr31r

Single-precision oating-point registers; these 64
registers correlate to the left and right halves of the
double-precision oating-point registers having the
corresponding numbers

fr0 - fr31 Double-precision oating-point registers
sr0 - sr7 Space registers
cr0, cr8 - cr31 Control registers
rctr Recovery counter
pidr1 - pidr4 Protection identi�ers
ccr Coprocessor con�guration register
sar Shift amount register

B-22 Language Managers

B

HP-UX PA-RISC Assembly Language Manager

iva Interruption vector address
eiem External interrupt enable mask
itmr Interval timer
pcsq, pcoq (or pcspace,
npcspace)

Interruption instruction address space and o�set
queues

iir, isr, ior Interruption parameter registers
ipsw Interruption processor status word
eirr External interrupt request register
tr0 - tr7, ppda, hta Temporary registers (usable only by code executing

at the most privileged level)
rp Return link
t1 - t4 Temporary registers
arg0 - arg3 Argument words
dp Data pointer
ret0 Return value
ret1, sl Return value, static link
sp Stack pointer
mrp Millicode return link
sret, sarg Return value, argument
farg0 - farg3 Floating arguments
fret Return value
sflags Status ags

Constants

Integer B'digits (binary) (for example, B'100001111)
Q'digits (octal) (for example, Q'71035)
digits (decimal) (for example, 9876)
D'digits (decimal) (for example, D'9876)
H'digits (hexadecimal) (for example, H'2F)
R'digits (hexadecimal right) (for example, R'2F is H'2F)
L'digits (hexadecimal left shifted 11) (for example, L'2F is
H'17800)

Float digits [fE j eg[+ j -]digits]
digits.[digits][fE j eg[+ j -]digits]

For example, 5.48E-11 is a valid number.

Character 'char [char [char [char]]]'

Language Managers B-23

HP-UX PA-RISC Assembly Language Manager

Operators

Assignment =

Arithmetic +, -, *, /
Mod %

Shift <<, >>
Logical &, |, ^, ~ (and, or, xor, not)
Grouping {}

Address Expressions

[location]identi�er Name from source program
Rn Register direct
[expression] Indirect
(expression) Indirect
(expression, expression) Add, then indirect
expression1(expression2) Indirect, plus displacement (expression1 must

be a register or a constant)
expression.B 8-bit byte
expression.W 16-bit word
expression.L 32-bit longword

Hexadecimal is the default input and output radix.

language type

f lang_asm_pa j asm_pa g

manager option

None.

Startup File

None.

Related Managers

None.

B-24 Language Managers

B

Solaris SPARC Assembly Language Manager

Solaris SPARC Assembly Language Manager

Type Name

lang_asm_sparc

Title

SPARC assembler

Description

This manager supports simple assembly language expressions as described in
\Syntax".

Syntax

declaration

None.

expression

An assembly language expression constructed from the reserved names,
constants, operators, and address expressions listed in this section.

Reserved Names

r0 - r31 General-purpose registers
g0 - g7 Global registers
o0 - o7 Output registers
i0 - i7 Input registers
sp Stack pointer (o6)
fp Frame pointer (i6)
f0 - f31 Floating-point registers
fsr Floating-point status register
fq Floating-point deferred-trap queue
pc Program counter
npc Next program counter
psw Processor status word

Language Managers B-25

Solaris SPARC Assembly Language Manager

y Multiply/divide register
wim Window invalid mask
tbr Trap base register

Constants

Integer digits (decimal) (for example, 9876)
0digits (octal) (for example, 05376)
0xdigits (hexadecimal) (for example, 0x2F)
B'digits (binary) (for example, B'10001111)
Q'digits (octal) (for example, Q'71035)
O'digits (octal) (for example, O'71035)
D'digits (decimal) (for example, D'9876)
H'digits (hexadecimal) (for example, H'2F)
X'digits (hexadecimal) (for example, X'2F)
R'digits (hexadecimal right) (for example, R'2F is H'2F)
L'digits (hexadecimal left shifted 10) (for example, L'2F is
H'BC00)

Float digits [fE j eg[+ j -]digits]
digits.[digits][fE j eg[+ j -]digits]

For example, 5.48E-11 is a valid number.

Character 'char [char [char [char]]]'

Operators

Assignment =

Arithmetic +,-, *, /
Mod %

Shift <<, >>
Logical &, |, ^,~ (and, or, xor, not)
Grouping (), {}
Unary lo (least signi�cant 10 bits)
Unary hi (most signi�cant 22 bits)

Address Expressions

<identi�er> Name from source program
<register name> Register direct
[expression] Indirect
expression.B 8 bits

B-26 Language Managers

B

Solaris SPARC Assembly Language Manager

expression.C 8 bits as a char
expression.H 16 bits
expression.L 32 bits

Hexadecimal is the default input and output radix.

language type

f lang_asm_sparc j asm_sparc g

manager option

None.

Startup File

None.

Related Managers

None.

Language Managers B-27

C

C

Target Managers

This chapter describes the debugger target managers, which perform all
operations that depend on the target hardware, operating system, or run-time
environment.

On HP-UX systems, the HP-UX PA-RISC target manager is installed. On
Solaris systems, the Solaris SPARC target manager is installed.

This chapter provides the following information about each manager:

Type Name Identi�es the name used for the manager as installed.

Title Contains the name that the manager uses to identify
itself. To list the titles of the managers currently
loaded, use the version command. The following is an
example of the output:

dde, version 4.0

User interface manager ui_gui: GUI-Mode UI, version 4.0

Target manager tgt_hpux_pa: HP-UX PA-RISC, version 4.0 DBGK 4.0

Object manager obj_som_som: HP SOM, version 4.0

Language manager lang_c: ANSI C, version 4.0

In the output of the preceding version command, the
target manager title is HP-UX PA-RISC. The target type
name is tgt_hpux_pa.

Description Briey describes what the manager does and does not
support.

Syntax Describes the syntax of debugger command arguments
such as expression, declaration, and address that
vary among the managers. The manager option
argument represents options you can specify with the
property flags command to change the behavior of
the manager.

Target Managers C-1

In This Book

You can create a new synonym for a target type name
by creating a link to the target type name in the
directory /opt/langtools/dde/tgt. For example,
to make hppa a valid target type, enter the following
commands (as superuser):

cd /opt/langtools/dde/tgt

ln -s tgt_hpux_pa hppa

Startup File Describes the startup �le that executes when the
debugger loads the manager.

Related Managers Lists other types of managers related to this manager.

Names, titles, and syntax speci�c to the target managers are described in the
following sections.

C-2 Target Managers

C
HP-UX PA-RISC Target Manager

HP-UX PA-RISC Target Manager

Type Name

tgt_hpux_pa

Title

HP-UX PA-RISC

Description

This manager supports the HP PA-RISC processors running HP-UX and the
HP SOM (Spectrum Object Module) object �le format.

Syntax

address

A hexadecimal integer or one of the following register names:

r0 - r31 General registers
fr0l, fr0r, fr1l, . . . ,
fr31l, fr31r

Single-precision oating-point registers; these 64
registers correlate to the left and right halves of the
double-precision oating-point registers having the
corresponding numbers

fr0 - fr31 Double-precision oating-point registers
sr0 - sr7 Space registers
cr0 - cr31 Control registers
rctr Recovery counter
pidr1 - pidr4 Protection identi�ers
ccr Coprocessor con�guration register
sar Shift amount register
iva Interruption vector address
eiem External interrupt enable mask
itmr Interval timer
pcsq, pcoq (or pcspace,
npcspace)

Interruption instruction address space and o�set
queues

iir, isr, ior Interruption parameter registers

Target Managers C-3

HP-UX PA-RISC Target Manager

ipsw Interruption processor status word
eirr External interrupt request register
tt0 - tr7, ppda, hta Temporary registers (usable only by code executing

at the most privileged level)
rp Return link
t1 - t4 Temporary registers
arg0 - arg3 Argument words
dp Data pointer
ret0 Return value
ret1, sl Return value, static link
sp Stack pointer
mrp Millicode return link
sret, sarg Return value, argument
farg0 - farg3 Floating arguments
fret Return value
sflags Status ag

The register indirection operator, parentheses (()), allows you to refer to the
contents of the contents of a register. This operator is particularly useful
with the dump and watchpoint commands.

manager option

The tgt_shlib_debug option to the property flags command allows
you to set breakpoints in shared library routines. It even allows you to set
breakpoints when the routines were compiled without debug information (in
system libraries, for example). For more information about using this option
and about debugging shared libraries, see \Debugging Shared Libraries" in
Chapter 8.

process id

A UNIX pid (integer).

program invocation

A program invocation of the form program pathname [program arguments].

C-4 Target Managers

C
HP-UX PA-RISC Target Manager

signal

A UNIX signal number (integer � 32) or one of the following UNIX signal
names (the numeric equivalent of each is also shown):

SIGHUP 01

SIGINT 02

SIGQUIT 03

SIGILL 04

SIGTRAP 05

SIGABRT 06

SIGEMT 07

SIGFPE 08

SIGKILL 09

SIGBUS 10

SIGSEGV 11

SIGSYS 12

SIGPIPE 13

SIGALRM 14
SIGTERM 15

SIGUSR1 16

SIGUSR2 17

SIGCHLD l8

SIGPWR 19

SIGVTALRM 20

SIGPROF 21

SIGIO 22

SIGWINCH 23

SIGSTOP 24

SIGTSTP 25

SIGCONT 26

SIGTTIN 27

SIGTTOU 28

SIGURG 29

SIGLOST 30

SIGRESERVE 31

SIGDIL 32

Target Managers C-5

HP-UX PA-RISC Target Manager

target type

f tgt_hpux_pa j pa g

target command

One of the following arguments to the command target command:

dump proc [full] Prints a list of known target processes

help Lists and describes the supported target commands

Startup File

The startup �le /opt/langtools/dde/tgt/tgt_hpux_pa.startup de�nes the
following macros:

regs Dumps general registers
cregs Dumps control registers
fregs Dumps double-precision oating-point registers
fsregs Dumps single-precision oating-point registers
fdregs Dumps double-precision oating-point registers
sregs Dumps space registers
reg_update Monitors general registers for changes
freg_update Monitors double-precision oating-point registers for changes
fsreg_update Monitors single-precision oating-point registers for changes
fdreg_update Monitors double-precision oating-point registers for changes
`asm Identi�es the appropriate assembly language manager
`r0 - `r31 Identify general registers
`pc Identi�es the program counter
`sp Identi�es the stack pointer register
`dp Identi�es the data pointer register
`arg0 - `arg3 Identify the argument word registers
`ret0, `ret1 Identify the return value registers

Related Managers

lang_asm_pa Use to evaluate expressions using assembler syntax.

obj_som Use to debug programs compiled in HP SOM format.

C-6 Target Managers

C
Solaris SPARC Target Manager

Solaris SPARC Target Manager

Type Name

tgt_solaris_sparc

Title

Solaris 2.x SPARC

Description

This manager supports SPARC processors running Solaris 2.x using the ELF
object �le format.

Syntax

address

A hexadecimal integer or one of the following register names:

r0 - r31 General purpose registers
g0 - g7 Global registers
o0 - o7 Output registers
i0 - i7 Input registers
sp Stack pointer (o6)
fp Frame pointer (i6)
f0 - f31 Floating-point registers
fsr Floating-point status register
fq Floating-point deferred-trap queue
pc Program counter
npc Next program counter
psw Processor status word
y Multiply/divide register
wim Window invalid mask
tbr Trap base register

manager option

None.

Target Managers C-7

Solaris SPARC Target Manager

process id

A UNIX pid (integer).

program invocation

A program invocation of the form program path [program arguments].

signal

A UNIX signal number (integer) or one of the following UNIX signal names:

SIGHUP SIGINT SIGQUIT SIGILL SIGTRAP

SIGABRT SIGEMT SIGFPE SIGKILL SIGBUS

SIGSEGV SIGSYS SIGPIPE SIGALRM SIGTERM

SIGUSR1 SIGUSR2 SIGCHLD SIGPWR SIGWINCH

SIGURG SIGIO SIGSTOP SIGTSTP SIGCONT

SIGTTIN SIGTTOU SIGVTALRM SIGPROF SIGXCPU

SIGXFSZ SIGWAITING SIGLWP

target type

f tgt_solaris_sparc g

target command

None.

Startup File

The startup �le dde install dir/tgt/tgt_solaris_sparc.startup de�nes the
following macros:

regs Dumps registers
fregs Dumps single-precision oating-point registers
`asm Identi�es appropriate assembly language manager

C-8 Target Managers

C
Solaris SPARC Target Manager

Related Managers

lang_asm_sparc Use to support simple assembly language expressions.

obj_elfstabs Use to support ELF object format and STAB style
debug information.

Target Managers C-9

D

D

Object Managers

This chapter describes the debugger object managers, which allow the debugger
to handle object and debug formats. The object managers process the
debugging information in executable �les.

On HP-UX systems, the debugger uses the HP SOM object manager. On
Solaris systems, the debugger uses the Solaris SPARC object manager.

This chapter provides the following information about each manager:

Type Name Identi�es the name used for the manager as installed.

Title Contains the name that the manager uses to identify
itself. To list the titles of the managers currently
loaded, use the version command. The following is an
example of the output:

dde, version 4.0

User interface manager ui_gui: GUI-Mode UI, version 4.0

Target manager tgt_hpux_pa: HP-UX PA-RISC, version 4.0 DBGK 4.0

Object manager obj_som_som: HP SOM, version 4.0

Language manager lang_c: ANSI C, version 4.0

In the output of the preceding version command,
the object manager title is HP SOM. The type name is
obj_som_som.

Description Briey describes what the manager does and does not
support.

Syntax Describes the syntax of debugger command arguments
such as expression, declaration, and address that vary
among the managers. The manager option argument
represents options you can specify with the property
flags command to change the behavior of a manager.

Object Managers D-1

In This Book

Currently, the object managers do not o�er any options
through the manager option argument.

Startup File Describes the startup �le that executes when the
debugger loads the manager. The object managers do
not use a startup �le.

Related Managers Lists other types of managers related to this manager.

Names, titles, and syntax speci�c to the object managers are described in the
following section.

D-2 Object Managers

D

HP SOM Object Manager

HP SOM Object Manager

Type Name

obj_som_som

Title

HP SOM

Description

This manager supports the object format produced by the HP C, HP C++,
HP FORTRAN, and HP Pascal, and the HP-UX PA-RISC assembler. The
object and debug format is the Spectrum Object Module (SOM) format.

Syntax

object type

f obj_som_som j som g

manager option

None.

Startup File

None.

Related Manager

tgt_hpux_pa Use to debug programs on HP PA-RISC machines running
HP-UX.

Object Managers D-3

Solaris SPARC Object Manager

Type Name

obj_elfstabs

Title

Solaris ELF with STABs

Description

This manager supports the ELF object format and STAB style debug
information produced by the SunPro C and C++ compilers. Both the SC2.X
and SC3.X versions are supported.

Syntax

object type

f obj_elfstabs j elfstabs g

manager option

None.

Startup File

None.

Related Manager

tgt_solaris_sparc Use to support SPARC processors using the ELF object
�le format.

D-4 Object Managers

E

E

User Interface Managers

This chapter describes the managers that enable the debugger to provide
di�erent user interfaces. Consult this chapter for information speci�c to the
user interface managers, such as the value of the ui type argument to the dde
command option -ui.

The debugger supports the graphical user interface, line-mode user interface,
and SoftBench managers.

This chapter provides the following information about each manager:

Type Name Identi�es the name used for the manager as installed.

Title Contains the name that the manager uses to identify
itself. To list the titles of the managers currently
loaded, use the version command. The following is an
example of the output:

dde, version 4.0

User interface manager ui_gui: GUI-Mode UI, version 4.0

Target manager tgt_hpux_pa: HP-UX PA-RISC, version 4.0 DBGK 4.0

Object manager obj_som_som: HP SOM, version 4.0

Language manager lang_c: ANSI C, version 4.0

In the output of the preceding version command, the
user interface manager title is GUI-Mode UI. The type
name is ui_gui.

Description Briey describes what the manager does and does not
support.

Syntax Describes the syntax of debugger command arguments
such as expression, declaration, and address that
vary among the managers. The manager option
argument represents options you can specify with the

User Interface Managers E-1

In This Book

property flags command to change the behavior of
the manager.

Currently, the user interface managers do not o�er any
options through the manager option argument.

You can use type names or synonyms wherever the
syntax of a debugger command calls for a type, such
as ui type. For example, the following dde command
speci�es gui as the ui type:

dde -ui gui a.out

You can create a new synonym for a user interface
type name by creating a link to the user interface type
name in the directory /opt/langtools/dde/ui. For
example, to make mtf a valid user interface type, enter
the following commands (as superuser):

cd /opt/langtools/dde/ui

ln -s ui_gui mtf

You can change the default user interface for
all users of your system by changing the link
/opt/langtools/dde/ui/default. The default user
interface is ordinarily set to ui_gui. For example, to
make the line-mode interface the default, enter the
following commands (as superuser):

cd /opt/langtools/dde/ui

rm default

ln -s ui_line default

Startup File Describes the startup �le that executes when the
debugger loads the manager.

Related Managers Lists other types of managers related to this manager.

Names, titles, and syntax speci�c to the user interface managers are described
in the following sections.

E-2 User Interface Managers

E

Graphical User Interface Manager

Graphical User Interface Manager

Type Name

ui_gui

Title

GUI-Mode UI

Description

This manager supports the graphical user interface and the HP/DDE command
language, both of which are described in the HP/DDE online help. In addition,
this manager provides compatibility with the dbx command syntax through the
macros in /opt/langtools/dde/contrib/dbx_macros.

Syntax

ui type

f ui_gui j gui g

manager option

None.

Startup File

The startup �le /opt/langtools/dde/ui/nls/C/ui_gui.startup contains
prede�ned key bindings, pop-up menus, and command buttons.

Related Managers

None.

User Interface Managers E-3

Line-Mode User Interface Manager

Type Name

ui_line

Title

Line-Mode UI

Description

This manager supports the line-mode user interface (described in Appendix A)
and the HP/DDE command language (described in the HP/DDE online help).
In addition, this manager provides compatibility with the dbx command syntax
through the macros in /opt/langtools/dde/contrib/dbx_macros.

Syntax

ui type

f ui_line j line g

manager option

None.

Startup File

The startup �le /opt/langtools/dde/ui/nls/C/ui_line.startup creates
prede�ned macros.

Related Managers

None.

E-4 User Interface Managers

E

SoftBench User Interface Manager

SoftBench User Interface Manager

Type Name

ui_softdde

Title

Softbench Softdebug UI

Description

This manager supports the Softbench Softdebug tool. When using this UI
manager, all communication (input, output, error) with HP/DDE is done via
Softbench messaging technology. All communication (input, output, error) with
the target program is also done via Softbench messaging. The message protocol
for this manager can be found in the softdebug(1) man page.

The manager provides compatibility with the dbx command syntax through the
macros in /opt/langtools/dde/contrib/dbx_macros.

Syntax

ui type

f ui_softdde j softdde g

manager option

None.

Startup File

The startup �le /opt/langtools/dde/ui/nls/C/ui_softdde.startup creates
prede�ned macros and sets several properties for softdebug behavior.

User Interface Managers E-5

Glossary

Glossary

accelerator
An OSF/Motif shortcut for choosing a selection from the menu bar or from
a pull-down menu. An accelerator for a menu item is indicated by name
after the menu item name. Unlike a mnemonic, an accelerator can invoke a
command when the name of the command is not visible.

action list
A series of debugger commands that is associated with a speci�c
breakpoint, intercept, watchpoint, or trace request. The debugger executes
an action list after executing up to the breakpoint, encountering a program
event, detecting a change in the watched value, or encountering a trace
request.

activation
An instance of a block or variable created by the recursive invocation of
a procedure or by multiple instances of a procedure in a multi-threaded
application.

alias macro
See macro.

Alt
A key that, when used in combination with a mnemonic, opens a menu
corresponding to a name on the menu bar. On a keyboard, the key may be
�ALT�, �Meta�, or �Extend char�.

ancestor
C and C++ only. Any function up the call chain from the current function.
Ancestors include functions that either directly or indirectly call the current
function.

Glossary-1

In This Book

annotation margin
An area next to the Source File Area that contains line numbers,
breakpoint symbols, and an arrow that indicates the current program
counter location.

archive library
A library that contains one or more object �les and is created with the ar
command. When linking an object �le with an archive library, ld searches
the library for global de�nitions that match up with external references
in the object �le. If a match is found, ld copies the object �le containing
the global de�nition from the library into the executable �le. See shared
library.

basic block
A sequence of statements (or their corresponding instructions) that contains
no branches. A branch is a change in the ow of control, such as an if,
for, or do statement. A branch begins a new basic block.

block
A program unit, such as a module, a main program, a subroutine, or a
function. What constitutes a block depends on the language in which
the program is written. A block de�nes and encloses a scope. The
debugger also de�nes blocks called `declared (for user-declared symbols),
`predefined (for data types for supported languages) and `image (for the
program images).

block expression
A block name, a �le name, a class name, a template name, or a class object
reference. For C++, a block expression can be any valid C++ expression
that can be evaluated to one or more executable addresses or to a class
type.

block quali�ed name
A format used by the debugger to refer to variables that are not visible
from the current environment. A block quali�ed name explicitly identi�es
the block enclosing the object and the object's name; the format is
block\object name.

Glossary-2

Glossary

In This Book

breakpoint
A monitor that, when encountered during program execution, stops
execution and transfers control back to the debugger. A breakpoint is
always associated with a particular address, which is either speci�ed
explicitly or implied by its association with a location.

bu�er
An area in memory used as a temporary storage area.

button
In OSF/Motif, an icon, usually accessible by a mouse pointer, that starts
an action. Radio buttons come in sets of two or more, each button
representing a mutually exclusive selection.

check box
In OSF/Motif, a square box on a dialog box. You may choose any number
of items with check boxes.

command
Commands tell the debugger which functions to perform. They can be
spelled out or abbreviated. The abbreviation for most commands is the
�rst three letters of each word in its name. Commands are terminated by a
newline.

command list
One or more debugger commands separated by semicolons (;) and enclosed
in square brackets, braces, or parentheses. A command list lets you combine
commands that require an EOL as a terminator with commands that are
terminated with a semicolon on the command line.

continuation character
A backslash character (\), which, when placed at the end of a command
line, allows you to continue the command on the next line.

core �le
A memory image of an abnormally terminated process (see core(4)). This
�le contains su�cient information to determine what the process was doing
at the time of its termination. It can be examined using the debugger to
determine why the program failed.

Glossary-3

In This Book

critical point
The instruction in the object code at which the most important action
accomplished by a given source statement takes place. The critical point
instruction is usually the instruction where a data value may change. Not
every source code statement has a critical point; some statements have more
than one critical point. Statements likely to have a critical point include
assignment statements and function calls.

critical points location mapping
In optimized code, a location mapping that maps a source statement to the
critical point for that statement.

current environment
See environment.

Current Location
The location at which the debugger's attention is currently focused. The
debugger uses the Current Location in the source code to determine,
among other things, what source code to display and what block to use
as the debugger's scope. The Current Location is also called the current
environment.

current point of execution
Program location where execution stopped. The statement at this location
will, by default, be the next statement to be executed when execution
resumes. Same as PC Location.

cursor
The insertion point for text. The default cursor is a blinking vertical bar
(on color displays) or a double wedge (on monochrome displays).

Also called the text cursor.

dead code
One or more lines of source code that the optimizer has eliminated from the
executable program because it is never actually executed.

Debugger Output Area
An area of the main debugger window that displays debugger commands
and debugger messages.

Glossary-4

Glossary

In This Book

debugging information
Name, type, source �le, and source-line-to-address mapping information
generated by the compiler for use by the debugger. This information can
signi�cantly increase the size of an executable �le. All debugger information
is preprocessed (and reduced in size) when the program is linked.

`declared block
Outer debugger block used to contain de�nitions of user-declared symbol
names. You may explicitly refer to symbol names created using the
declare command by using a block quali�ed name.

de�ne macro
See macro.

delay slot
The instruction following a branch instruction. In PA-RISC assembly
language, a branch instruction is paired with the instruction that follows it,
and both are executed simultaneously. When you step through assembly
code, this means that when you reach the branch instruction (the BL
instruction in the following example), you do not immediately step into the
routine read_sequence. Instead, you step to the next instruction (LDO),
and the next time you step, both the branch and the load occur.

BL read_sequence,%r2

LDO -272(%r30),%r24

dialog box
In the OSF/Motif user interface, an interactive pop-up containing command
options. Generated when a command is selected from a menu, a dialog
box provides check boxes, input �elds, and buttons that you use to select
options, enter arguments, and execute or cancel the command.

double-click
Click the mouse button twice in rapid succession.

drag
To press and hold down a mouse button while moving the mouse.

Glossary-5

In This Book

environment
A concept used by the debugger to determine what source code to display,
what language to use when parsing expressions, and what blocks to search
for objects. The run environment is the block containing the current point
of execution. The current environment (also called the Current Location)
is the run environment by default, but you can use the environment
command to change the current environment to any block within the
program.

environment variable
A named variable that is passed to all processes created by the current
shell. See your shell reference page sh(1), ksh(1) or csh(1) for information
on setting and reading environment variables.

explicitly loaded shared library
A shared library that is loaded by a call within your program to
shl load(3X) (on HP-UX systems) or dlopen(3X) (on Solaris systems).

expression
A valid combination of data object names, language operators, and constant
numeric values. Every expression is evaluated and reduced to a single value.

fragment
In optimized code, a set of contiguous instructions in the object code
that all derive from the same statement in the source code. See location
mapping.

fragments location mapping
In optimized code, a location mapping that maps a source statement to
the fragment or fragments in the object code that correspond to that
statement.

frame block quali�ed name
A format used by the debugger to identify dynamically activated symbols
within recursive procedures, by using both a block and a frame to specify
the current environment.

fully quali�ed name
A format used by the debugger to identify all blocks that enclose
the object. A fully quali�ed name explicitly identi�es the module

Glossary-6

Glossary

In This Book

and block enclosing the object and the object's name; the format is
\\module\block\object name.

HP Help System
The online help system provided on HP-UX systems. You can obtain online
help for the debugger by selecting the \Help" menu item. If you are not
using the debugger, you can obtain help by clicking on the bookshelf icon
on the front panel, then clicking on the Top Level icon to bring up the Help
Manager window, and then selecting the debugger help.

identi�er
A sequence of characters that represents an entity such as a function or
data object.

image
A loaded executable �le or shared library.

image quali�ed name
A format used by the debugger to eliminate ambiguity among module
names when an application consists of more than one executable
image. An image quali�ed name explicitly identi�es the image, module,
and block enclosing the object and the object's name; the format is
`image(image name)\module\block\object name.

implicitly loaded shared library
A shared library that is linked against your program.

indirect pointers
Pointers that address other pointers. Linked lists often use chains of
pointers in their list structure.

Input Box
A text area that can accept typed keystrokes.

The \():" Input Box is a text area in the main debugger window that
provides input to some command buttons (such as �Print ()�) and many
pull-down menu commands (such as \Break: Set at ()" and \Visit: Line
()"). You enter information in this Input Box either by typing or by
selecting text in the source or I/O areas for use with these commands. Text
can be selected either by dragging the mouse or by double-clicking.

Glossary-7

In This Book

The \Debugger Input:" Input Box is a text area in the main debugger
window in which you enter commands to the debugger from the keyboard.

intercept
A monitor that stops program execution when a speci�ed program event
occurs. Events that can be intercepted include operating-system signals,
the loading or removing of images from a program's address space, and the
termination of the program. By default, all operating-system signals are
intercepted.

location
A unique position in the user program. It can be speci�ed as a �le name,
procedure name, source line number, or combination of these. An address
can also be used to specify a location for certain commands.

location mapping
A method of de�ning the relationship between the source code and the
object code. When you debug optimized code, you can choose any of
three location mappings. The source statement order location mapping
(the default) maps a statement to an instruction so as to follow the order
of statements in the source. The critical points location mapping maps a
statement to the instruction at which some data value may change. The
fragments location mapping maps each source statement to the �rst set of
contiguous instructions that corresponds to it.

macro
An identi�er (optionally with arguments) that is de�ned as a substitute for
commands or for text strings. The debugger supports both alias macros,
which substitute for commands, and de�ne macros, which substitute for any
string of text, including commands.

main debugger window
The window that contains the main menu bar, the \():" Input Box, the
Source File Area, the Debugger Output Area, the \Debugger Input:" Input
Box, and the User Program I/O Area.

menu bar
In OSF/Motif, an area at the top of a window that contains the titles of the
pull-down menus for that application.

Glossary-8

Glossary

In This Book

mnemonic
In OSF/Motif, an underscored letter in a menu name. You can bring up the
associated menu by pressing Alt and the mnemonic.

monitor
A software \trigger," such as a breakpoint, that interrupts target program
execution and optionally describes the state of the target program after the
interrupt. See breakpoint, trace, watchpoint, and intercept.

mouse button
A key on the mouse that has some action associated with it when clicked.
On a two-button mouse, middle button commands can be accessed by
pressing both buttons at once.

mouse cursor
See pointer.

path map
A speci�cation of the replacement of a previous path argument to the
property sdir command by a new path argument. The new path
argument replaces the old one as a directory pre�x in the source �le
directory search path.

PC Location
Program location where execution stopped. The statement at this location
will, by default, be the next statement to be executed when execution
resumes. Same as current point of execution.

pointer
The screen object that tracks mouse movement. This is usually an arrow,
but it can take other forms (such as ?) to indicate speci�c applicable areas.
It may appear as a small hourglass to indicate that an application is busy
or as something resembling a sonar wave to indicate that a request message
is being processed.

Also called the mouse cursor.

process ID (pid)
A unique identi�cation number assigned to all processes by the operating
system.

Glossary-9

In This Book

quali�ed name
The name of a variable, speci�ed in a format that allows you to refer to
variables in any scope. See block quali�ed name, frame block quali�ed
name, fully quali�ed name, and image quali�ed name.

radio buttons
An X construct consisting of several buttons representing several choices.
Only one button may be selected at a time. When a button is selected, all
other buttons are automatically deselected.

registers
Hardware registers. Most of these are directly accessible by the debugger
through symbolic names (for example, fr0). Many registers have
special meaning; some cannot be modi�ed by the debugger user. Actual
modi�cation of hardware registers should not normally be necessary while
debugging. Correct program execution depends highly on registers and
their contents.

resource
A component of the X Window System resource data base. Resources
control the appearance and behavior of parts of the system.

run environment
See environment.

scope
The region of source code over which a name's declaration is active.

scroll bar
In OSF/Motif or the X Window System, a graphical device used to scroll
data displayed in a window. A scroll bar consists of a slider, scroll area, and
scroll arrows.

shared library
Like an archive library, a shared library contains relocatable object code.
However, ld treats shared libraries quite di�erently from archive libraries.
When linking an object �le with a shared library, ld does not copy object
code from the library into the executable �le; instead, the linker simply
notes in the executable �le that the code calls a routine in the shared

Glossary-10

Glossary

In This Book

library. The actual linkage does not occur until the program is run. Shared
libraries can be implicitly or explicitly loaded.

shell
An HP-UX command interpreter (Bourne, Korn, Key, Posix or C),
providing a working environment interface for the user. The shell takes
command input from the keyboard and interprets it for the operating
system.

signal
A software interrupt sent from the operating system to a program. This
can inform the program of any asynchronous event. Signals are used for
segment violation, divide by zero, or other hardware problems; they can
also be sent as a job control mechanism (stop, continue, kill).

source
Source text (�les) used to compile the user program. Source �les can be in
any of the programming languages supported by the debugger.

Source File Area
A text area in the main debugger window where a program source �le is
displayed.

source line
A single line of text in a source �le, denoted by a line number. A source
line may or may not contain actual executable statements. Conversely,
more than one statement can occur on a single line.

source statement order location mapping
In optimized code, a location mapping that maps statements to instructions
in a way that follows the order of the statements in the source code as
closely as possible, even though the actual order of instruction execution
does not follow that order. By default, the debugger uses this location
mapping.

stack
A linear data structure maintained by the user program for management of
local data and ow of control during procedure calls. Each sequential region
on the stack embodies information about a particular procedure. The
preceding region (frame) describes its caller. At any point during execution,

Glossary-11

In This Book

a stack trace (generated by the tb command) displays information
contained in each stack frame.

standard input
The source of input data for a program. The standard input �le is often
called stdin, and is automatically opened by the shell for reading on �le
descriptor 0 for every command invoked.

standard output
The destination of output data from a program. The standard output �le is
often called stdout, and is automatically opened by the shell for writing on
�le descriptor 1 for every command invoked. Standard output appears on
the display unless it is redirected otherwise.

startup �les
Files containing commands that specify the user interface, the target
manager, and the debugging environment. At invocation, the debugger
reads three startup �les: a user interface startup �le, a personal startup �le,
and a target manager startup �le.

stub
Stubs are short code segments that may be inserted into procedure calling
sequences by the PA-RISC linker. Stubs are used for very speci�c purposes,
such as inter-space (for example, shared library) calls, long branches,
and preserving calling interfaces across modules (for example, parameter
relocation). For more information on stubs, see the Procedure Calling
Conventions Reference Manual .

target program
The program that is currently being debugged.

text cursor
See cursor.

thread
A single ow of control in a process. A process may have multiple threads
capable of executing at any time.

The HP/DDE debugger distinguishes between the current thread and the
selected thread. The current thread is the thread that the debugger refers

Glossary-12

Glossary

In This Book

to when evaluating expressions. The selected thread is the thread that
was running when execution stopped. the selected thread di�ers from the
current thread when you change environments with the thread speci�er
`thread(n).

trace
A monitor that stops execution momentarily, reports the current program
location, then continues target program execution. You can specify whether
a trace is in e�ect at every source statement, at every instruction, or only at
routine entry and/or exit points.

typed pointers
Pointers that have been declared with a speci�c type; for example, a pointer
in C may be declared as a pointer to char and used for characters and
strings.

unnamed block
A block generated by the compiler, usually to enclose a new lexical scope
that has no associated name. In a C++ program, it usually holds variables
with declaration statement scope rather than function or class scope. In a
C program, it usually holds variables de�ned in a block below that of the
function.

user interface
The medium through which users communicate with their workstations or
with an application.

User Program I/O Area
A text area in the main debugger window. Programs being debugged send
their output to this area and take their input from this area. Move the
mouse pointer into this area to enter text into the standard input of your
program.

watchpoint
A monitor that monitors a selected variable or address range and reports
the value of the variable or address range only when that value changes.
As with traces, you can specify whether a watchpoint is in e�ect at every
source statement, at every instruction, or only at routine entry and/or exit
points.

Glossary-13

In This Book

window
A frame-de�ned, rectangular area of the screen used by the X Window
System to contain a particular application or a command line. Windows
can be moved, resized, iconized, and manipulated.

Glossary-14

Index

Index

Special characters

"", 5-10
(), 5-2, 5-3, 5-10
():, 1-2
,, 5-3
., 5-10, 6-9
;, 5-2
<, 5-7
>, 5-8
>>, 5-8
2>, 5-8
2>>, 5-8
>>?, 5-8
[], 5-2, 5-3, 5-10
\, 5-3, 7-8
\\, 7-8
`, 5-10
{}, 5-2, 5-3, 5-10

A

abbreviating debugger commands, 5-2
action lists, 5-15
conditional, 5-16
creating, 5-15, 5-16
errors in, 5-16
executing, 5-16
multiple, 5-16

activate intercepts command, 3-20
Add Source Directories

File menu choice, 2-12
`after_debug macro, 5-11, 6-4
`after_fault macro, 5-11

alias command, 5-9
aliases. See macros
`amb reserved identi�er, 5-11, B-7
angle brackets
2>> (appending standard error), 5-8
2> (redirecting standard error), 5-8
>>? (appending standard error), 5-8
>> (appending standard output), 5-8
< (redirecting standard input), 5-7
> (redirecting standard output), 5-8

annotation margin, 1-4, 8-13
`arg0 - `arg3 macros, C-6
args command, 4-4
arguments
displaying, 4-4

argument word registers, C-6
arrays, 4-5
`asm macro, 5-11, C-6, C-8
Assembly Instructions

Show menu choice, 2-16, 8-13
Assembly Instructions dialog box, 8-13,

8-14
assembly language code
debugging, 8-13
saving to a �le, 8-16

assembly language manager
HP-UX PA-RISC, B-22
identifying, C-8
SPARC, B-25
specifying, C-6

attaching to a running process, 2-7
average, sample program, 2-2

Index-1

B

backslash
double (\\), 7-8
single (\), 5-3, 7-8

basic debugging tasks, 1-6
block quali�ed names, 7-6
blocks, 7-2
inactive, 7-10
scope and visibility, 7-4

braces ({}), 5-2, 5-3, 5-10
brackets ([]), 5-2, 5-3, 5-10
Break menu, 3-5
Set, 3-6
Show, 3-8

breakpoint command, 3-3
-after option, 3-5
-do option, 3-4
-in option, 3-4

breakpoints, 3-2. See also monitors
action lists and, 5-15
in alternate source �les , 3-4
assembly instructions, 8-13
at blocks or routines , 3-4
Break menu, 3-5
listing, 3-8
in loops , 3-5
preserving, 2-9
setting, 3-3
setting with the mouse, 3-3
specifying actions, 3-4
specifying locations, 3-4
symbol, 3-3
threads, 8-9

Breakpoint Set/Change dialog box, 3-6
broken pipe errors, 8-24
bu�ers, 4-8
buttons
command, 1-4
interrupt, 1-2
location, 1-2

C

call/return stack
examining, 2-18

case sensitivity, 5-4
changing current environment, 7-3
changing current language, 7-4
changing environment variables, 2-5
child processes, 8-22
C++ language manager, B-7
C language manager, B-3
code, assembly language, 8-13
comma (,), 5-3
command buttons, 1-4
changing, 6-2

command input box, 1-4
Command Input Mode, 5-5
command line
conventions, 5-1
editors, 5-5
syntax conicts, 5-3

command lists, 5-2
`command macro, 5-11
command reference, 1-6
commands
abbreviating, 5-2
action lists, 5-15
activate intercepts, 3-20
alias, 5-9
args, 4-4
breakpoint, 3-3
command lists, 5-2
continuing on next line, 5-3
dde, 2-3, 2-4
debug, 2-6, 2-7, 8-2
declare, 4-4, 7-10
define, 5-9
delete intercepts, 3-20
describe, 4-8
dump, 4-8, 4-12, 8-15
environment, 2-7, 2-12, 2-19, 7-3,

7-12

Index-2

Index

executing after invoking target
program, 6-4

free, 2-9
go, 2-15, 5-17
history, 5-5
if, 5-16
initialize -altdbinfo, 2-2, 8-4
input, 5-7
intercept, 3-20, 8-12
intercept load, 8-4
kill, 2-9
list blocks, 7-9
list images, 8-5
list intercepts, 3-20
list threads, 8-9
multiple on one line, 5-2
print, 4-4, 4-8
property abort, 5-7
property array_dim_max, 4-6
property flags tgt_shlib_debug,

8-4, C-4
property fork, 8-22
property language, 5-4, 7-4
property libraries, 8-4
property qual_max, 4-2, 7-8
property record, 5-6
property sdir, 2-2, 2-12
pxdb, 2-7
quit, 2-3
register commands, 4-12
restart, 2-9
shell, 5-7
step, 2-16, 5-17
suspend intercepts, 3-20
tb, 2-7, 2-19
terminating, 5-2
thread, 8-11
trace, 3-14
use source, 2-2
watchpoint, 3-13

common debugging tasks, 1-6

compatibility with dbx. See dbx debugger
compatibility with xdb. See xdb debugger
compiling code for debugging, 2-2
conditional action lists, 5-16
continuation characters, 5-3
Continue command button, 2-14
Continue Out command button, 2-10,

2-14
continuing
commands on next line, 5-3
program execution, 2-15

control registers
displaying, 4-12, C-6

conventions
command line, 5-1

core �les
debugging, 8-2

creating
action lists, 5-15, 5-16
alias and de�ne macros, 5-9

cregs macro, 4-12, C-6
`cr macro, 5-11
Current Location:, 4-2
curses(3x), 8-23
customizable command buttons, 1-4
customizing the debugger, 1-6, 6-1

D

data pointer
specifying, C-6

Data Value menu, 4-4
Data Watchpoints dialog box, 3-9
Data Watchpoint Set/Change dialog

box, 3-12
dbx debugger
compatibility, 6-9
dbx_macros startup �le, 6-9

dde command, 2-3, 2-4
man page, 2-3

.dderc startup �le, 6-4
loading dbx macros, 6-9

Index-3

loading xdb macros, 6-8
dderc_xdb startup �le, 6-8
debug command, 2-6, 8-2
-attach option, 2-7

debugger
attaching to a running process, 2-7
basic tasks, 1-6
command input box, 1-4
command line conventions, 5-1
command reference, 1-6
customizing, 1-6, 6-1
declaring temporary variables, 4-4
executing a target program, 2-14
information generated by compiler,

2-2
invoking, 2-3
invoking remotely, 8-24
language managers, B-1
line-mode user interface, A-2
looking at call/return stack, 2-18
man page, 2-3
MANPATH variable, 2-3
object managers, D-1
output area, 1-4
overview, 1-1
PATH variable, 2-3
preparing target program for, 2-2
quick start guide, 1-6
running remotely, 8-24
scope and visibility of objects, 7-1
target managers, C-1
target program I/O area, 1-4
tutorial, 1-6
user interface managers, E-1
using monitors, 3-2
viewing program data, 4-1

debugger commands. See commands
debugging
assembly language code, 8-13
child and parent processes, 8-22
code compiled without -g, 2-2

core �les, 8-2
curses(3x), 8-23
dynamically loaded code, 8-4
forked processes, 8-22
ioctl(2), 8-23
loops, 3-5
multiprocess programs, 8-22
multi-threaded applications, 8-6
optimized code, 8-17
shared libraries, 8-4
threaded applications, 8-6

debugging session
ending, 2-3
starting, 2-3

Debug Running Process()

File menu choice, 2-7
declare command, 4-4, 7-10
`declared

block search, 7-4
`declared reserved identi�er, 5-11, 7-9,

7-10
declaring
temporary variables, 4-4

define command, 5-9
delete intercepts command, 3-20
delimiters
macro names, 5-10

dereferencing pointers, 4-6
describe command, 4-8
discarding go commands, 5-17
display, accessing remote, 8-24
displaying
routine arguments, 4-4
source �les, 2-7, 2-12
tracebacks, 2-19

dlopen(3X), 8-4
documentation, online. See online help
-do option
breakpoint command, 3-4
specifying action lists, 5-15

`dp macro, C-6

Index-4

Index

dump command, 4-8, 4-12
and assembly language code, 8-15

dumping
memory, 8-15
registers, 4-12, 8-15, C-6, C-8

dynamically loaded code, 8-4

E

editing
changing modes, 6-2
Debugger Input command line, 5-5

EDITOR environment variable, 5-5
ELF object manager, D-4
eliminating quali�ers, 4-2
Enable Images/Libraries

Execution menu choice, 2-16, 8-4
ending a debugging session, 2-3
environment
changing, 7-3
current, 7-2
overriding current language, 7-4
run, 7-2

environment command, 2-7, 2-12, 2-19,
7-3, 7-12

`env reserved identi�er, 2-19, 5-13, 7-3,
7-12

errors
action lists, in, 5-16
broken pipe, 8-24
continuing after, 5-7

evaluating
expressions, 4-4

examining
arrays, 4-5
bu�ers, 4-8
call/return stack, 2-18
linked lists, 4-7
objects referenced by pointers, 4-6
registers, 4-10
variables and expressions, 4-2

executing

action lists, 5-16
target program, 2-14

Execution menu
Enable Images/Libraries, 2-16,

8-4
Signals/Intercepts, 3-18, 8-4
Threads, 8-8

exiting
debugger, 2-3
target program, 2-9

expressions
case sensitivity, 5-4
examining, 4-2
printing values of, 4-4
syntax, 5-3

external variables, 7-10

F

faults. See intercepts
fdregs macro, 4-12, C-6
fdreg_update macro, C-6
File()

Visit menu choice, 2-12
File menu
Add Source Directories, 2-12
Debug Running Process(), 2-7
Load Corefile, 8-2
Load Executable, 2-5
Quit, 2-3, 2-9
Rerun, 2-9
Unload Executable, 2-9

�les
average, 2-2
dbx_macros, 6-9
.dderc, 6-4
startup, 6-3
xdb_macros, 6-8

oating-point registers
displaying, 4-12, C-6, C-8
monitoring for changes, C-6

Fork Behavior

Index-5

Options menu choice, 8-22
forked processes, 8-22
specifying debugger behavior, 6-2

FORTRAN language manager, B-13
frame block quali�ers, 7-10
environment relative, 7-12
main relative, 7-12
run relative, 7-12

free command, 2-9
fregs macro, 4-12, C-6, C-8
freg_update macro, C-6
fsregs macro, 4-12, C-6
fsreg_update macro, C-6
fully quali�ed names, 7-7

G

-g compiler option, 2-2
general registers
displaying, 4-12, C-6
monitoring for changes, C-6
specifying, C-6

global symbol search, 7-4
go command, 2-15
action lists, 5-17
discarding, 5-17

granularity
traces, 3-14
watchpoints, 3-8, 3-13

graphical user interface, 1-2. See also

user interface
grave accent (`), 5-10

H

help, online. See online help
HP Distributed Debugging Environment

(HP/DDE). See debugger
HP Pascal language manager, B-18
HP SOM object manager, D-3
HP-UX PA-RISC
assembly language manager, B-22
target manager, C-3

HP-UX Symbolic Debugger. See xdb

debugger

I

identi�ers, reserved, 5-11
if command, 5-16
image quali�ed names, 7-9
`image reserved identi�er, 5-13, 7-9
inactive
blocks, 7-10
modules, 7-6

inhibiting macro expansion, 5-10, 6-9
initialize -altdbinfo command,

2-2, 8-4
input and output operators, 5-8
input box, ():, 1-2
input command, 5-7
input, redirecting, 5-7
intercept command, 3-20
in multi-threaded applications, 8-12

intercept load command, 8-4
intercepts, 3-2, 3-18. See also monitors
signal names, C-5, C-8

Intercepts dialog box, 3-18
interrupt button, 1-2, 2-10
interrupting a program, 2-10
invoking
debugger, 2-3
line-mode user interface, A-2
shell commands, 5-7
target program, 2-5

ioctl(2), 8-23

K

kernel code
debugging in, 2-10

kill command, 2-9
Ksh Mode

command line editor, 5-5

Index-6

Index

L

`label reserved identi�er, 5-13
language, changing, 7-4
language managers, B-1
C, B-3
C++, B-7
FORTRAN, B-13
HP Pascal, B-18
HP-UX PA-RISC assembly language,

B-22
SPARC assembly language manager,

B-25
-language option, 5-4, 7-4
lexical block search, 7-4
libdce.sl, 8-7
libraries
dynamically loaded, 8-4
shared, 8-4
system, 2-10

line continuation, 5-3
line-mode user interface, A-1
example of use, A-5
invoking, A-2
manager, E-4
screen display conventions, A-4
startup �le, A-3

linked lists
examining, 4-7

list blocks command, 7-9
list images command, 8-5
list intercepts command, 3-20
list threads command, 8-9
Load Corefile

File menu choice, 8-2
Load Executable

File menu choice, 2-5
loading target programs, 2-4, 2-5
Load/Rerun dialog box, 2-5
location buttons, 1-2
`long reserved identi�er, 5-13
lookups, 7-4

M

macros
`after_debug, 6-4
`arg0 - `arg3, C-6
`asm, C-6, C-8
creating, 5-9
cregs, 4-12, C-6
dbx compatibility, 6-9
delimiting names, 5-10
`dp, C-6
expansion, 5-9
fdregs, 4-12, C-6
fdreg_update, C-6
fregs, 4-12, C-6, C-8
freg_update, C-6
fsregs, 4-12, C-6
fsreg_update, C-6
inhibiting expansion, 5-10, 6-9
names of, 5-10
parameters, 5-10
`pc, C-6
`r0 - `r31, C-6
register name, C-6
regs, 4-12, C-6, C-8
reg_update, C-6
`ret0, `ret1, C-6
`sp, C-6
special, 5-11
sregs, 4-12, C-6
xdb compatibility, 6-8

`main reserved identi�er, 5-13, 7-12
managers
language, B-1
object, D-1
target, C-1
user interface, E-1

MANPATH variable, 2-3
memory dumping, 4-8, 8-15
menu bar, 1-2

Index-7

monitors. See breakpoints, intercepts,
traces, watchpoints

action lists and, 5-15
using, 3-2

Motif Mode

command line editor, 5-5
mounting �le systems, 2-8
mouse
execution commands, 2-17

multiple action lists, 5-16
multiprocess debugging, 8-22
multi-threaded applications. See threads
debugger commands, 8-11
debugging, 8-6

N

names
block quali�ed, 7-6
frame block quali�ed, 7-10
fully quali�ed, 7-7
image quali�ed, 7-9
symbols, 7-4, 7-6

nondebuggable code, 2-2, 2-10

O

object managers
HP SOM, D-3
Solaris SPARC, D-4

online help
commenting on, 1-6
overview, 1-6
using, 1-7

operators
input and output, 5-8

optimized code, 8-17
compared with unoptimized code,

8-18
instruction fragments, 8-19
program logic, 8-18
statement-to-instruction mapping,

8-19

values of variables, 8-21
Options menu, 6-2
Command Input Mode, 5-5
Fork Behavior, 8-22
User Configurable Buttons, 2-15

/opt/langtools/bin, 2-3
/opt/langtools/dde/examples, 2-2
/opt/langtools/share/man, 2-3
OSF/Motif
command line editor, 5-5
user interface manager, E-3

output area, 1-4
output, redirecting, 5-7
overriding current language, 7-4

P

PAGER variable, A-2
parameter input box, ():, 1-2
parameters
and input �les, 5-8
and macros, 5-10

parentheses (()), 5-2, 5-3, 5-10
parent processes, 8-22
PA-RISC
assembly language manager, B-22
target manager, C-3

Pascal language managers, B-18
PATH variable, 2-3
PC location, 7-2
`pc macro, C-6
PC (Program Counter) arrow, 2-10,

2-14, 4-2
period (.), 5-10, 6-9
Permission denied error, 2-8
personal startup �le
creating, 6-4
loading dbx macros, 6-9
loading xdb macros, 6-8
sample �le, 6-5

playing back command sequences, 5-6
pointers, 4-6

Index-8

Index

`predefined

block search, 7-4
`predefined reserved identi�er, 5-14,

7-9
preparing target program, 2-2
preserving breakpoints and watchpoints,

2-9
print command, 4-4, 4-8
Print() command button, 4-3
Print*() command button, 4-3
Procedure()

Visit menu choice, 4-2
process, attaching to, 2-7
program counter
arrow, 2-10, 2-14, 4-2
location, 2-10
specifying, C-6

program environment
specifying defaults, 6-2

program execution
beginning or continuing, 2-15
stepping, 2-16

property abort command, 5-7
property array_dim_max command ,

4-6
property flags tgt_shlib_debug

command, 8-4, 8-7, C-4
property fork command, 8-22
property language command, 5-4, 7-4
property libraries command, 8-4
property qual_max command, 4-2, 7-8
property record command, 5-6
property sdir command, 2-2, 2-12
pxdb command, 2-7

Q

quick start guide, 1-6
Quit

File menu choice, 2-3, 2-9
quit command, 2-3
quotation marks (""), 5-10

R

recording command sequences, 5-6
recursive procedures
identifying symbols in, 7-10

redirecting stdin, stdout, and stderr,
2-5, 2-6, 5-7

register name macros, C-6
registers
commands, 4-12
displaying, 4-12, 8-15, C-6, C-8
examining, 4-10
monitoring for changes, C-6
specifying, C-6

Registers

Show menu choice, 4-10
regs macro, 4-12, C-6, C-8
reg_update macro, C-6
remote operation of the debugger, 8-24
accessing the display, 8-24

Rerun

File menu choice, 2-9
reserved identi�ers, 5-11
`amb, B-7
`declared, 7-9, 7-10
`env, 7-3, 7-12
`image, 7-9
`main, 7-12
`predefined, 7-9
`run, 7-12
`va, 8-15

resolving syntax conicts, 5-3
restart command, 2-9
restarting
target program, 2-9

`ret0 and `ret1 macros, C-6
return value registers
specifying, C-6

routines
displaying arguments, 4-4

running target programs, 2-4, 2-5
`run reserved identi�er, 5-14, 7-12

Index-9

S

sample program, 2-2
scope, 7-2
rules, 7-4

Search

Visit menu choice, 2-12
searching for text strings, 2-12
search rules, 7-4
semicolon (;), 5-2
Set

Break menu choice, 3-6
Trace menu choice, 3-16
Watch menu choice, 3-12

setting
breakpoints, 3-3
intercepts, 3-18
traces, 3-14
watchpoints, 3-8, 3-13

shared libraries
debugging, 8-4

shell command, 5-7
shl load (3X), 8-4
`short reserved identi�er, 5-14
Show

Break menu choice, 3-8
Trace menu choice, 3-16
Watch menu choice, 3-13

Show menu
Assembly Instructions, 2-16, 8-13
Registers, 4-10
Stack, 2-18, 4-2, 7-3

Show Registers dialog box, 4-10
signal
names, C-8

signals
intercepting, 3-18
names, C-5

Signals/Intercepts

Execution menu choice, 3-18, 8-4
simultaneous action lists, 5-17
SoftBench

user interface manager, E-5
SoftBench Program Debugger, 1-1
Solaris
SPARC assembly language manager,

B-25
SPARC target manager, C-7

Solaris SPARC object manager, D-4
SOM object �le format
object manager, D-3

Source Actions popup menu, 2-17,
4-3

source �les
displaying, 1-4, 2-7, 2-12
searching for text strings, 2-12

space registers, displaying, 4-12, C-6
SPARC
assembly language manager, B-25
target manager, C-7

special macros, 5-11
`sp macro, C-6
sregs macro, 4-12, C-6
stack, 2-18
modifying display, 6-2

Stack

Show menu choice, 2-18, 4-2, 7-3
Stack Frame:, 4-2
Stack Frame buttons, 7-3
Stack Options dialog box, 2-18
stack pointer, specifying, C-6
starting
debugging session, 2-3
program execution, 2-15
target program, 2-5

startup �les, 6-3
dbx_macros, 6-9
.dderc, 6-4
dderc_xdb, 6-8
line-mode user interface, A-3

`stdin'', stdout, and stderr, 2-5, 2-6
stdin, stdout, and stderr, 5-7
step command, 2-16

Index-10

Index

action lists, 5-17
Step command button, 2-14
Step Over command button, 2-14
stepping
into system or library calls, 2-16
program execution, 2-14, 2-16

stopping
debugger, 2-3
target program, 2-9

suspend intercepts command, 3-20
symbols
naming, 7-4, 7-6
scope of, 7-4
user-declared, 7-10
visibility, 7-4

syntax
command line, 5-3
expression, 5-3
resolving conicts, 5-3

system libraries, 2-10

T

target managers
HP-UX PA-RISC, C-3
Solaris SPARC, C-7

target program
changing environment variables, 2-5
executing, 2-14
exiting, 2-9
loading during debugger startup, 2-4
loading from the debugger, 2-5
redirecting stdin, stdout, and stderr,

2-5, 2-6, 5-7
restarting, 2-9

target program I/O area, 1-4
tb command, 2-7, 2-19
temporary variables, declaring, 4-4
terminating
commands, 5-2
target programs, 2-9

tgt_shlib_debug manager option

property flags command, C-4
thread command, 8-11
threaded applications
using libdce.sl, 8-7

`thread reserved identi�er, 5-14, 8-11
threads
breakpoints, 8-9
current thread, 8-11
debugger commands, 8-11
debugging multi-threaded applications,

8-6
environment, 8-10
list threads command, 8-9
`thread speci�er, 8-11

Threads

Execution menu choice, 8-8
Threads dialog box, 8-8
command buttons, 8-9

tracebacks
displaying, 2-19

trace command, 3-14
Trace menu, 3-15
Set, 3-16
Show, 3-16

traces, 3-2. See also monitors
action lists and, 5-15
granularity, 3-14
listing, 3-16
setting, 3-14
Trace menu, 3-15

Trace Set/Change dialog box, 3-16
tutorial, 1-6

U

unbalanced brackets, braces, or
parentheses, 5-3

undebuggable code, 2-2, 2-10
Unload Executable

File menu choice, 2-9
User Configurable Buttons

Options menu choice, 2-15

Index-11

user interface
graphical, 1-2
line-mode, A-1
remotely invoking, 8-24

user interface managers, E-1
line-mode, E-4
OSF/Motif, E-3
SoftBench, E-5

use source command, 2-2

V

Values Display

Watch menu choice, 3-9
`va reserved identi�er, 5-14, 8-15
variables
assigning values to, 4-4
declaring, 4-4
examining, 4-2
external, 7-10
printing values of, 4-4

visibility
rules, 7-4

Visit menu, 7-3
File(), 2-12
Procedure(), 4-2
Search, 2-12

W

Watch() command button, 3-10
Watch*() command button, 3-10
Watch menu, 3-11
Set, 3-12
Show, 3-13
Values Display, 3-9

watchpoint command, 3-13
watchpoints, 3-2. See also monitors
action lists and, 5-15
granularity, 3-8, 3-13
listing, 3-13
modifying display, 6-2
on registers, C-6
preserving, 2-9
setting, 3-8, 3-13
setting with command buttons, 3-10
viewing and modifying, 3-9
Watch menu, 3-11

windows
changing display, 6-2

X

xdb debugger
compatibility, 6-8

xdb_macros startup �le, 6-8

Index-12

